1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 #include <linux/sched/mm.h> 51 52 #include <xen/xen.h> 53 #include <xen/xenbus.h> 54 #include <xen/grant_table.h> 55 #include <xen/events.h> 56 #include <xen/page.h> 57 #include <xen/platform_pci.h> 58 59 #include <xen/interface/grant_table.h> 60 #include <xen/interface/io/blkif.h> 61 #include <xen/interface/io/protocols.h> 62 63 #include <asm/xen/hypervisor.h> 64 65 /* 66 * The minimal size of segment supported by the block framework is PAGE_SIZE. 67 * When Linux is using a different page size than Xen, it may not be possible 68 * to put all the data in a single segment. 69 * This can happen when the backend doesn't support indirect descriptor and 70 * therefore the maximum amount of data that a request can carry is 71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 72 * 73 * Note that we only support one extra request. So the Linux page size 74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 75 * 88KB. 76 */ 77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 78 79 enum blkif_state { 80 BLKIF_STATE_DISCONNECTED, 81 BLKIF_STATE_CONNECTED, 82 BLKIF_STATE_SUSPENDED, 83 }; 84 85 struct grant { 86 grant_ref_t gref; 87 struct page *page; 88 struct list_head node; 89 }; 90 91 enum blk_req_status { 92 REQ_WAITING, 93 REQ_DONE, 94 REQ_ERROR, 95 REQ_EOPNOTSUPP, 96 }; 97 98 struct blk_shadow { 99 struct blkif_request req; 100 struct request *request; 101 struct grant **grants_used; 102 struct grant **indirect_grants; 103 struct scatterlist *sg; 104 unsigned int num_sg; 105 enum blk_req_status status; 106 107 #define NO_ASSOCIATED_ID ~0UL 108 /* 109 * Id of the sibling if we ever need 2 requests when handling a 110 * block I/O request 111 */ 112 unsigned long associated_id; 113 }; 114 115 struct blkif_req { 116 blk_status_t error; 117 }; 118 119 static inline struct blkif_req *blkif_req(struct request *rq) 120 { 121 return blk_mq_rq_to_pdu(rq); 122 } 123 124 static DEFINE_MUTEX(blkfront_mutex); 125 static const struct block_device_operations xlvbd_block_fops; 126 static struct delayed_work blkfront_work; 127 static LIST_HEAD(info_list); 128 129 /* 130 * Maximum number of segments in indirect requests, the actual value used by 131 * the frontend driver is the minimum of this value and the value provided 132 * by the backend driver. 133 */ 134 135 static unsigned int xen_blkif_max_segments = 32; 136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 137 MODULE_PARM_DESC(max_indirect_segments, 138 "Maximum amount of segments in indirect requests (default is 32)"); 139 140 static unsigned int xen_blkif_max_queues = 4; 141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 143 144 /* 145 * Maximum order of pages to be used for the shared ring between front and 146 * backend, 4KB page granularity is used. 147 */ 148 static unsigned int xen_blkif_max_ring_order; 149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 151 152 #define BLK_RING_SIZE(info) \ 153 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 154 155 /* 156 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 157 * characters are enough. Define to 20 to keep consistent with backend. 158 */ 159 #define RINGREF_NAME_LEN (20) 160 /* 161 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 162 */ 163 #define QUEUE_NAME_LEN (17) 164 165 /* 166 * Per-ring info. 167 * Every blkfront device can associate with one or more blkfront_ring_info, 168 * depending on how many hardware queues/rings to be used. 169 */ 170 struct blkfront_ring_info { 171 /* Lock to protect data in every ring buffer. */ 172 spinlock_t ring_lock; 173 struct blkif_front_ring ring; 174 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 175 unsigned int evtchn, irq; 176 struct work_struct work; 177 struct gnttab_free_callback callback; 178 struct list_head indirect_pages; 179 struct list_head grants; 180 unsigned int persistent_gnts_c; 181 unsigned long shadow_free; 182 struct blkfront_info *dev_info; 183 struct blk_shadow shadow[]; 184 }; 185 186 /* 187 * We have one of these per vbd, whether ide, scsi or 'other'. They 188 * hang in private_data off the gendisk structure. We may end up 189 * putting all kinds of interesting stuff here :-) 190 */ 191 struct blkfront_info 192 { 193 struct mutex mutex; 194 struct xenbus_device *xbdev; 195 struct gendisk *gd; 196 u16 sector_size; 197 unsigned int physical_sector_size; 198 int vdevice; 199 blkif_vdev_t handle; 200 enum blkif_state connected; 201 /* Number of pages per ring buffer. */ 202 unsigned int nr_ring_pages; 203 struct request_queue *rq; 204 unsigned int feature_flush:1; 205 unsigned int feature_fua:1; 206 unsigned int feature_discard:1; 207 unsigned int feature_secdiscard:1; 208 unsigned int feature_persistent:1; 209 unsigned int discard_granularity; 210 unsigned int discard_alignment; 211 /* Number of 4KB segments handled */ 212 unsigned int max_indirect_segments; 213 int is_ready; 214 struct blk_mq_tag_set tag_set; 215 struct blkfront_ring_info *rinfo; 216 unsigned int nr_rings; 217 unsigned int rinfo_size; 218 /* Save uncomplete reqs and bios for migration. */ 219 struct list_head requests; 220 struct bio_list bio_list; 221 struct list_head info_list; 222 }; 223 224 static unsigned int nr_minors; 225 static unsigned long *minors; 226 static DEFINE_SPINLOCK(minor_lock); 227 228 #define GRANT_INVALID_REF 0 229 230 #define PARTS_PER_DISK 16 231 #define PARTS_PER_EXT_DISK 256 232 233 #define BLKIF_MAJOR(dev) ((dev)>>8) 234 #define BLKIF_MINOR(dev) ((dev) & 0xff) 235 236 #define EXT_SHIFT 28 237 #define EXTENDED (1<<EXT_SHIFT) 238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 240 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 242 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 244 245 #define DEV_NAME "xvd" /* name in /dev */ 246 247 /* 248 * Grants are always the same size as a Xen page (i.e 4KB). 249 * A physical segment is always the same size as a Linux page. 250 * Number of grants per physical segment 251 */ 252 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 253 254 #define GRANTS_PER_INDIRECT_FRAME \ 255 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 256 257 #define INDIRECT_GREFS(_grants) \ 258 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 259 260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 261 static void blkfront_gather_backend_features(struct blkfront_info *info); 262 static int negotiate_mq(struct blkfront_info *info); 263 264 #define for_each_rinfo(info, ptr, idx) \ 265 for ((ptr) = (info)->rinfo, (idx) = 0; \ 266 (idx) < (info)->nr_rings; \ 267 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 268 269 static inline struct blkfront_ring_info * 270 get_rinfo(const struct blkfront_info *info, unsigned int i) 271 { 272 BUG_ON(i >= info->nr_rings); 273 return (void *)info->rinfo + i * info->rinfo_size; 274 } 275 276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 277 { 278 unsigned long free = rinfo->shadow_free; 279 280 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 281 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 282 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 283 return free; 284 } 285 286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 287 unsigned long id) 288 { 289 if (rinfo->shadow[id].req.u.rw.id != id) 290 return -EINVAL; 291 if (rinfo->shadow[id].request == NULL) 292 return -EINVAL; 293 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 294 rinfo->shadow[id].request = NULL; 295 rinfo->shadow_free = id; 296 return 0; 297 } 298 299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 300 { 301 struct blkfront_info *info = rinfo->dev_info; 302 struct page *granted_page; 303 struct grant *gnt_list_entry, *n; 304 int i = 0; 305 306 while (i < num) { 307 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 308 if (!gnt_list_entry) 309 goto out_of_memory; 310 311 if (info->feature_persistent) { 312 granted_page = alloc_page(GFP_NOIO); 313 if (!granted_page) { 314 kfree(gnt_list_entry); 315 goto out_of_memory; 316 } 317 gnt_list_entry->page = granted_page; 318 } 319 320 gnt_list_entry->gref = GRANT_INVALID_REF; 321 list_add(&gnt_list_entry->node, &rinfo->grants); 322 i++; 323 } 324 325 return 0; 326 327 out_of_memory: 328 list_for_each_entry_safe(gnt_list_entry, n, 329 &rinfo->grants, node) { 330 list_del(&gnt_list_entry->node); 331 if (info->feature_persistent) 332 __free_page(gnt_list_entry->page); 333 kfree(gnt_list_entry); 334 i--; 335 } 336 BUG_ON(i != 0); 337 return -ENOMEM; 338 } 339 340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 341 { 342 struct grant *gnt_list_entry; 343 344 BUG_ON(list_empty(&rinfo->grants)); 345 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 346 node); 347 list_del(&gnt_list_entry->node); 348 349 if (gnt_list_entry->gref != GRANT_INVALID_REF) 350 rinfo->persistent_gnts_c--; 351 352 return gnt_list_entry; 353 } 354 355 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 356 const struct blkfront_info *info) 357 { 358 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 359 info->xbdev->otherend_id, 360 gnt_list_entry->page, 361 0); 362 } 363 364 static struct grant *get_grant(grant_ref_t *gref_head, 365 unsigned long gfn, 366 struct blkfront_ring_info *rinfo) 367 { 368 struct grant *gnt_list_entry = get_free_grant(rinfo); 369 struct blkfront_info *info = rinfo->dev_info; 370 371 if (gnt_list_entry->gref != GRANT_INVALID_REF) 372 return gnt_list_entry; 373 374 /* Assign a gref to this page */ 375 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 376 BUG_ON(gnt_list_entry->gref == -ENOSPC); 377 if (info->feature_persistent) 378 grant_foreign_access(gnt_list_entry, info); 379 else { 380 /* Grant access to the GFN passed by the caller */ 381 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 382 info->xbdev->otherend_id, 383 gfn, 0); 384 } 385 386 return gnt_list_entry; 387 } 388 389 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 390 struct blkfront_ring_info *rinfo) 391 { 392 struct grant *gnt_list_entry = get_free_grant(rinfo); 393 struct blkfront_info *info = rinfo->dev_info; 394 395 if (gnt_list_entry->gref != GRANT_INVALID_REF) 396 return gnt_list_entry; 397 398 /* Assign a gref to this page */ 399 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 400 BUG_ON(gnt_list_entry->gref == -ENOSPC); 401 if (!info->feature_persistent) { 402 struct page *indirect_page; 403 404 /* Fetch a pre-allocated page to use for indirect grefs */ 405 BUG_ON(list_empty(&rinfo->indirect_pages)); 406 indirect_page = list_first_entry(&rinfo->indirect_pages, 407 struct page, lru); 408 list_del(&indirect_page->lru); 409 gnt_list_entry->page = indirect_page; 410 } 411 grant_foreign_access(gnt_list_entry, info); 412 413 return gnt_list_entry; 414 } 415 416 static const char *op_name(int op) 417 { 418 static const char *const names[] = { 419 [BLKIF_OP_READ] = "read", 420 [BLKIF_OP_WRITE] = "write", 421 [BLKIF_OP_WRITE_BARRIER] = "barrier", 422 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 423 [BLKIF_OP_DISCARD] = "discard" }; 424 425 if (op < 0 || op >= ARRAY_SIZE(names)) 426 return "unknown"; 427 428 if (!names[op]) 429 return "reserved"; 430 431 return names[op]; 432 } 433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 434 { 435 unsigned int end = minor + nr; 436 int rc; 437 438 if (end > nr_minors) { 439 unsigned long *bitmap, *old; 440 441 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 442 GFP_KERNEL); 443 if (bitmap == NULL) 444 return -ENOMEM; 445 446 spin_lock(&minor_lock); 447 if (end > nr_minors) { 448 old = minors; 449 memcpy(bitmap, minors, 450 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 451 minors = bitmap; 452 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 453 } else 454 old = bitmap; 455 spin_unlock(&minor_lock); 456 kfree(old); 457 } 458 459 spin_lock(&minor_lock); 460 if (find_next_bit(minors, end, minor) >= end) { 461 bitmap_set(minors, minor, nr); 462 rc = 0; 463 } else 464 rc = -EBUSY; 465 spin_unlock(&minor_lock); 466 467 return rc; 468 } 469 470 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 471 { 472 unsigned int end = minor + nr; 473 474 BUG_ON(end > nr_minors); 475 spin_lock(&minor_lock); 476 bitmap_clear(minors, minor, nr); 477 spin_unlock(&minor_lock); 478 } 479 480 static void blkif_restart_queue_callback(void *arg) 481 { 482 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 483 schedule_work(&rinfo->work); 484 } 485 486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 487 { 488 /* We don't have real geometry info, but let's at least return 489 values consistent with the size of the device */ 490 sector_t nsect = get_capacity(bd->bd_disk); 491 sector_t cylinders = nsect; 492 493 hg->heads = 0xff; 494 hg->sectors = 0x3f; 495 sector_div(cylinders, hg->heads * hg->sectors); 496 hg->cylinders = cylinders; 497 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 498 hg->cylinders = 0xffff; 499 return 0; 500 } 501 502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned command, unsigned long argument) 504 { 505 int i; 506 507 switch (command) { 508 case CDROMMULTISESSION: 509 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 510 if (put_user(0, (char __user *)(argument + i))) 511 return -EFAULT; 512 return 0; 513 case CDROM_GET_CAPABILITY: 514 if (bdev->bd_disk->flags & GENHD_FL_CD) 515 return 0; 516 return -EINVAL; 517 default: 518 return -EINVAL; 519 } 520 } 521 522 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 523 struct request *req, 524 struct blkif_request **ring_req) 525 { 526 unsigned long id; 527 528 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 529 rinfo->ring.req_prod_pvt++; 530 531 id = get_id_from_freelist(rinfo); 532 rinfo->shadow[id].request = req; 533 rinfo->shadow[id].status = REQ_WAITING; 534 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 535 536 (*ring_req)->u.rw.id = id; 537 538 return id; 539 } 540 541 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 542 { 543 struct blkfront_info *info = rinfo->dev_info; 544 struct blkif_request *ring_req; 545 unsigned long id; 546 547 /* Fill out a communications ring structure. */ 548 id = blkif_ring_get_request(rinfo, req, &ring_req); 549 550 ring_req->operation = BLKIF_OP_DISCARD; 551 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 552 ring_req->u.discard.id = id; 553 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 554 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 555 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 556 else 557 ring_req->u.discard.flag = 0; 558 559 /* Keep a private copy so we can reissue requests when recovering. */ 560 rinfo->shadow[id].req = *ring_req; 561 562 return 0; 563 } 564 565 struct setup_rw_req { 566 unsigned int grant_idx; 567 struct blkif_request_segment *segments; 568 struct blkfront_ring_info *rinfo; 569 struct blkif_request *ring_req; 570 grant_ref_t gref_head; 571 unsigned int id; 572 /* Only used when persistent grant is used and it's a read request */ 573 bool need_copy; 574 unsigned int bvec_off; 575 char *bvec_data; 576 577 bool require_extra_req; 578 struct blkif_request *extra_ring_req; 579 }; 580 581 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 582 unsigned int len, void *data) 583 { 584 struct setup_rw_req *setup = data; 585 int n, ref; 586 struct grant *gnt_list_entry; 587 unsigned int fsect, lsect; 588 /* Convenient aliases */ 589 unsigned int grant_idx = setup->grant_idx; 590 struct blkif_request *ring_req = setup->ring_req; 591 struct blkfront_ring_info *rinfo = setup->rinfo; 592 /* 593 * We always use the shadow of the first request to store the list 594 * of grant associated to the block I/O request. This made the 595 * completion more easy to handle even if the block I/O request is 596 * split. 597 */ 598 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 599 600 if (unlikely(setup->require_extra_req && 601 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 602 /* 603 * We are using the second request, setup grant_idx 604 * to be the index of the segment array. 605 */ 606 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 607 ring_req = setup->extra_ring_req; 608 } 609 610 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 611 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 612 if (setup->segments) 613 kunmap_atomic(setup->segments); 614 615 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 616 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 617 shadow->indirect_grants[n] = gnt_list_entry; 618 setup->segments = kmap_atomic(gnt_list_entry->page); 619 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 620 } 621 622 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 623 ref = gnt_list_entry->gref; 624 /* 625 * All the grants are stored in the shadow of the first 626 * request. Therefore we have to use the global index. 627 */ 628 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 629 630 if (setup->need_copy) { 631 void *shared_data; 632 633 shared_data = kmap_atomic(gnt_list_entry->page); 634 /* 635 * this does not wipe data stored outside the 636 * range sg->offset..sg->offset+sg->length. 637 * Therefore, blkback *could* see data from 638 * previous requests. This is OK as long as 639 * persistent grants are shared with just one 640 * domain. It may need refactoring if this 641 * changes 642 */ 643 memcpy(shared_data + offset, 644 setup->bvec_data + setup->bvec_off, 645 len); 646 647 kunmap_atomic(shared_data); 648 setup->bvec_off += len; 649 } 650 651 fsect = offset >> 9; 652 lsect = fsect + (len >> 9) - 1; 653 if (ring_req->operation != BLKIF_OP_INDIRECT) { 654 ring_req->u.rw.seg[grant_idx] = 655 (struct blkif_request_segment) { 656 .gref = ref, 657 .first_sect = fsect, 658 .last_sect = lsect }; 659 } else { 660 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 661 (struct blkif_request_segment) { 662 .gref = ref, 663 .first_sect = fsect, 664 .last_sect = lsect }; 665 } 666 667 (setup->grant_idx)++; 668 } 669 670 static void blkif_setup_extra_req(struct blkif_request *first, 671 struct blkif_request *second) 672 { 673 uint16_t nr_segments = first->u.rw.nr_segments; 674 675 /* 676 * The second request is only present when the first request uses 677 * all its segments. It's always the continuity of the first one. 678 */ 679 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 680 681 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 682 second->u.rw.sector_number = first->u.rw.sector_number + 683 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 684 685 second->u.rw.handle = first->u.rw.handle; 686 second->operation = first->operation; 687 } 688 689 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 690 { 691 struct blkfront_info *info = rinfo->dev_info; 692 struct blkif_request *ring_req, *extra_ring_req = NULL; 693 unsigned long id, extra_id = NO_ASSOCIATED_ID; 694 bool require_extra_req = false; 695 int i; 696 struct setup_rw_req setup = { 697 .grant_idx = 0, 698 .segments = NULL, 699 .rinfo = rinfo, 700 .need_copy = rq_data_dir(req) && info->feature_persistent, 701 }; 702 703 /* 704 * Used to store if we are able to queue the request by just using 705 * existing persistent grants, or if we have to get new grants, 706 * as there are not sufficiently many free. 707 */ 708 bool new_persistent_gnts = false; 709 struct scatterlist *sg; 710 int num_sg, max_grefs, num_grant; 711 712 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 713 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 714 /* 715 * If we are using indirect segments we need to account 716 * for the indirect grefs used in the request. 717 */ 718 max_grefs += INDIRECT_GREFS(max_grefs); 719 720 /* Check if we have enough persistent grants to allocate a requests */ 721 if (rinfo->persistent_gnts_c < max_grefs) { 722 new_persistent_gnts = true; 723 724 if (gnttab_alloc_grant_references( 725 max_grefs - rinfo->persistent_gnts_c, 726 &setup.gref_head) < 0) { 727 gnttab_request_free_callback( 728 &rinfo->callback, 729 blkif_restart_queue_callback, 730 rinfo, 731 max_grefs - rinfo->persistent_gnts_c); 732 return 1; 733 } 734 } 735 736 /* Fill out a communications ring structure. */ 737 id = blkif_ring_get_request(rinfo, req, &ring_req); 738 739 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 740 num_grant = 0; 741 /* Calculate the number of grant used */ 742 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 743 num_grant += gnttab_count_grant(sg->offset, sg->length); 744 745 require_extra_req = info->max_indirect_segments == 0 && 746 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 747 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 748 749 rinfo->shadow[id].num_sg = num_sg; 750 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 751 likely(!require_extra_req)) { 752 /* 753 * The indirect operation can only be a BLKIF_OP_READ or 754 * BLKIF_OP_WRITE 755 */ 756 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 757 ring_req->operation = BLKIF_OP_INDIRECT; 758 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 759 BLKIF_OP_WRITE : BLKIF_OP_READ; 760 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 761 ring_req->u.indirect.handle = info->handle; 762 ring_req->u.indirect.nr_segments = num_grant; 763 } else { 764 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 765 ring_req->u.rw.handle = info->handle; 766 ring_req->operation = rq_data_dir(req) ? 767 BLKIF_OP_WRITE : BLKIF_OP_READ; 768 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 769 /* 770 * Ideally we can do an unordered flush-to-disk. 771 * In case the backend onlysupports barriers, use that. 772 * A barrier request a superset of FUA, so we can 773 * implement it the same way. (It's also a FLUSH+FUA, 774 * since it is guaranteed ordered WRT previous writes.) 775 */ 776 if (info->feature_flush && info->feature_fua) 777 ring_req->operation = 778 BLKIF_OP_WRITE_BARRIER; 779 else if (info->feature_flush) 780 ring_req->operation = 781 BLKIF_OP_FLUSH_DISKCACHE; 782 else 783 ring_req->operation = 0; 784 } 785 ring_req->u.rw.nr_segments = num_grant; 786 if (unlikely(require_extra_req)) { 787 extra_id = blkif_ring_get_request(rinfo, req, 788 &extra_ring_req); 789 /* 790 * Only the first request contains the scatter-gather 791 * list. 792 */ 793 rinfo->shadow[extra_id].num_sg = 0; 794 795 blkif_setup_extra_req(ring_req, extra_ring_req); 796 797 /* Link the 2 requests together */ 798 rinfo->shadow[extra_id].associated_id = id; 799 rinfo->shadow[id].associated_id = extra_id; 800 } 801 } 802 803 setup.ring_req = ring_req; 804 setup.id = id; 805 806 setup.require_extra_req = require_extra_req; 807 if (unlikely(require_extra_req)) 808 setup.extra_ring_req = extra_ring_req; 809 810 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 811 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 812 813 if (setup.need_copy) { 814 setup.bvec_off = sg->offset; 815 setup.bvec_data = kmap_atomic(sg_page(sg)); 816 } 817 818 gnttab_foreach_grant_in_range(sg_page(sg), 819 sg->offset, 820 sg->length, 821 blkif_setup_rw_req_grant, 822 &setup); 823 824 if (setup.need_copy) 825 kunmap_atomic(setup.bvec_data); 826 } 827 if (setup.segments) 828 kunmap_atomic(setup.segments); 829 830 /* Keep a private copy so we can reissue requests when recovering. */ 831 rinfo->shadow[id].req = *ring_req; 832 if (unlikely(require_extra_req)) 833 rinfo->shadow[extra_id].req = *extra_ring_req; 834 835 if (new_persistent_gnts) 836 gnttab_free_grant_references(setup.gref_head); 837 838 return 0; 839 } 840 841 /* 842 * Generate a Xen blkfront IO request from a blk layer request. Reads 843 * and writes are handled as expected. 844 * 845 * @req: a request struct 846 */ 847 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 848 { 849 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 850 return 1; 851 852 if (unlikely(req_op(req) == REQ_OP_DISCARD || 853 req_op(req) == REQ_OP_SECURE_ERASE)) 854 return blkif_queue_discard_req(req, rinfo); 855 else 856 return blkif_queue_rw_req(req, rinfo); 857 } 858 859 static inline void flush_requests(struct blkfront_ring_info *rinfo) 860 { 861 int notify; 862 863 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 864 865 if (notify) 866 notify_remote_via_irq(rinfo->irq); 867 } 868 869 static inline bool blkif_request_flush_invalid(struct request *req, 870 struct blkfront_info *info) 871 { 872 return (blk_rq_is_passthrough(req) || 873 ((req_op(req) == REQ_OP_FLUSH) && 874 !info->feature_flush) || 875 ((req->cmd_flags & REQ_FUA) && 876 !info->feature_fua)); 877 } 878 879 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 880 const struct blk_mq_queue_data *qd) 881 { 882 unsigned long flags; 883 int qid = hctx->queue_num; 884 struct blkfront_info *info = hctx->queue->queuedata; 885 struct blkfront_ring_info *rinfo = NULL; 886 887 rinfo = get_rinfo(info, qid); 888 blk_mq_start_request(qd->rq); 889 spin_lock_irqsave(&rinfo->ring_lock, flags); 890 if (RING_FULL(&rinfo->ring)) 891 goto out_busy; 892 893 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 894 goto out_err; 895 896 if (blkif_queue_request(qd->rq, rinfo)) 897 goto out_busy; 898 899 flush_requests(rinfo); 900 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 901 return BLK_STS_OK; 902 903 out_err: 904 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 905 return BLK_STS_IOERR; 906 907 out_busy: 908 blk_mq_stop_hw_queue(hctx); 909 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 910 return BLK_STS_DEV_RESOURCE; 911 } 912 913 static void blkif_complete_rq(struct request *rq) 914 { 915 blk_mq_end_request(rq, blkif_req(rq)->error); 916 } 917 918 static const struct blk_mq_ops blkfront_mq_ops = { 919 .queue_rq = blkif_queue_rq, 920 .complete = blkif_complete_rq, 921 }; 922 923 static void blkif_set_queue_limits(struct blkfront_info *info) 924 { 925 struct request_queue *rq = info->rq; 926 struct gendisk *gd = info->gd; 927 unsigned int segments = info->max_indirect_segments ? : 928 BLKIF_MAX_SEGMENTS_PER_REQUEST; 929 930 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 931 932 if (info->feature_discard) { 933 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 934 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 935 rq->limits.discard_granularity = info->discard_granularity ?: 936 info->physical_sector_size; 937 rq->limits.discard_alignment = info->discard_alignment; 938 if (info->feature_secdiscard) 939 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 940 } 941 942 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 943 blk_queue_logical_block_size(rq, info->sector_size); 944 blk_queue_physical_block_size(rq, info->physical_sector_size); 945 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 946 947 /* Each segment in a request is up to an aligned page in size. */ 948 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 949 blk_queue_max_segment_size(rq, PAGE_SIZE); 950 951 /* Ensure a merged request will fit in a single I/O ring slot. */ 952 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 953 954 /* Make sure buffer addresses are sector-aligned. */ 955 blk_queue_dma_alignment(rq, 511); 956 } 957 958 static const char *flush_info(struct blkfront_info *info) 959 { 960 if (info->feature_flush && info->feature_fua) 961 return "barrier: enabled;"; 962 else if (info->feature_flush) 963 return "flush diskcache: enabled;"; 964 else 965 return "barrier or flush: disabled;"; 966 } 967 968 static void xlvbd_flush(struct blkfront_info *info) 969 { 970 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 971 info->feature_fua ? true : false); 972 pr_info("blkfront: %s: %s %s %s %s %s\n", 973 info->gd->disk_name, flush_info(info), 974 "persistent grants:", info->feature_persistent ? 975 "enabled;" : "disabled;", "indirect descriptors:", 976 info->max_indirect_segments ? "enabled;" : "disabled;"); 977 } 978 979 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 980 { 981 int major; 982 major = BLKIF_MAJOR(vdevice); 983 *minor = BLKIF_MINOR(vdevice); 984 switch (major) { 985 case XEN_IDE0_MAJOR: 986 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 987 *minor = ((*minor / 64) * PARTS_PER_DISK) + 988 EMULATED_HD_DISK_MINOR_OFFSET; 989 break; 990 case XEN_IDE1_MAJOR: 991 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 992 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 993 EMULATED_HD_DISK_MINOR_OFFSET; 994 break; 995 case XEN_SCSI_DISK0_MAJOR: 996 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 997 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 998 break; 999 case XEN_SCSI_DISK1_MAJOR: 1000 case XEN_SCSI_DISK2_MAJOR: 1001 case XEN_SCSI_DISK3_MAJOR: 1002 case XEN_SCSI_DISK4_MAJOR: 1003 case XEN_SCSI_DISK5_MAJOR: 1004 case XEN_SCSI_DISK6_MAJOR: 1005 case XEN_SCSI_DISK7_MAJOR: 1006 *offset = (*minor / PARTS_PER_DISK) + 1007 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1008 EMULATED_SD_DISK_NAME_OFFSET; 1009 *minor = *minor + 1010 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1011 EMULATED_SD_DISK_MINOR_OFFSET; 1012 break; 1013 case XEN_SCSI_DISK8_MAJOR: 1014 case XEN_SCSI_DISK9_MAJOR: 1015 case XEN_SCSI_DISK10_MAJOR: 1016 case XEN_SCSI_DISK11_MAJOR: 1017 case XEN_SCSI_DISK12_MAJOR: 1018 case XEN_SCSI_DISK13_MAJOR: 1019 case XEN_SCSI_DISK14_MAJOR: 1020 case XEN_SCSI_DISK15_MAJOR: 1021 *offset = (*minor / PARTS_PER_DISK) + 1022 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1023 EMULATED_SD_DISK_NAME_OFFSET; 1024 *minor = *minor + 1025 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1026 EMULATED_SD_DISK_MINOR_OFFSET; 1027 break; 1028 case XENVBD_MAJOR: 1029 *offset = *minor / PARTS_PER_DISK; 1030 break; 1031 default: 1032 printk(KERN_WARNING "blkfront: your disk configuration is " 1033 "incorrect, please use an xvd device instead\n"); 1034 return -ENODEV; 1035 } 1036 return 0; 1037 } 1038 1039 static char *encode_disk_name(char *ptr, unsigned int n) 1040 { 1041 if (n >= 26) 1042 ptr = encode_disk_name(ptr, n / 26 - 1); 1043 *ptr = 'a' + n % 26; 1044 return ptr + 1; 1045 } 1046 1047 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1048 struct blkfront_info *info, 1049 u16 vdisk_info, u16 sector_size, 1050 unsigned int physical_sector_size) 1051 { 1052 struct gendisk *gd; 1053 int nr_minors = 1; 1054 int err; 1055 unsigned int offset; 1056 int minor; 1057 int nr_parts; 1058 char *ptr; 1059 1060 BUG_ON(info->gd != NULL); 1061 BUG_ON(info->rq != NULL); 1062 1063 if ((info->vdevice>>EXT_SHIFT) > 1) { 1064 /* this is above the extended range; something is wrong */ 1065 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1066 return -ENODEV; 1067 } 1068 1069 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1070 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1071 if (err) 1072 return err; 1073 nr_parts = PARTS_PER_DISK; 1074 } else { 1075 minor = BLKIF_MINOR_EXT(info->vdevice); 1076 nr_parts = PARTS_PER_EXT_DISK; 1077 offset = minor / nr_parts; 1078 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1079 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1080 "emulated IDE disks,\n\t choose an xvd device name" 1081 "from xvde on\n", info->vdevice); 1082 } 1083 if (minor >> MINORBITS) { 1084 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1085 info->vdevice, minor); 1086 return -ENODEV; 1087 } 1088 1089 if ((minor % nr_parts) == 0) 1090 nr_minors = nr_parts; 1091 1092 err = xlbd_reserve_minors(minor, nr_minors); 1093 if (err) 1094 return err; 1095 err = -ENODEV; 1096 1097 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1098 info->tag_set.ops = &blkfront_mq_ops; 1099 info->tag_set.nr_hw_queues = info->nr_rings; 1100 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1101 /* 1102 * When indirect descriptior is not supported, the I/O request 1103 * will be split between multiple request in the ring. 1104 * To avoid problems when sending the request, divide by 1105 * 2 the depth of the queue. 1106 */ 1107 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1108 } else 1109 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1110 info->tag_set.numa_node = NUMA_NO_NODE; 1111 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1112 info->tag_set.cmd_size = sizeof(struct blkif_req); 1113 info->tag_set.driver_data = info; 1114 1115 err = blk_mq_alloc_tag_set(&info->tag_set); 1116 if (err) 1117 goto out_release_minors; 1118 1119 gd = blk_mq_alloc_disk(&info->tag_set, info); 1120 if (IS_ERR(gd)) { 1121 err = PTR_ERR(gd); 1122 goto out_free_tag_set; 1123 } 1124 1125 strcpy(gd->disk_name, DEV_NAME); 1126 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1127 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1128 if (nr_minors > 1) 1129 *ptr = 0; 1130 else 1131 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1132 "%d", minor & (nr_parts - 1)); 1133 1134 gd->major = XENVBD_MAJOR; 1135 gd->first_minor = minor; 1136 gd->minors = nr_minors; 1137 gd->fops = &xlvbd_block_fops; 1138 gd->private_data = info; 1139 set_capacity(gd, capacity); 1140 1141 info->rq = gd->queue; 1142 info->gd = gd; 1143 info->sector_size = sector_size; 1144 info->physical_sector_size = physical_sector_size; 1145 blkif_set_queue_limits(info); 1146 1147 xlvbd_flush(info); 1148 1149 if (vdisk_info & VDISK_READONLY) 1150 set_disk_ro(gd, 1); 1151 1152 if (vdisk_info & VDISK_REMOVABLE) 1153 gd->flags |= GENHD_FL_REMOVABLE; 1154 1155 if (vdisk_info & VDISK_CDROM) 1156 gd->flags |= GENHD_FL_CD; 1157 1158 return 0; 1159 1160 out_free_tag_set: 1161 blk_mq_free_tag_set(&info->tag_set); 1162 out_release_minors: 1163 xlbd_release_minors(minor, nr_minors); 1164 return err; 1165 } 1166 1167 /* Already hold rinfo->ring_lock. */ 1168 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1169 { 1170 if (!RING_FULL(&rinfo->ring)) 1171 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1172 } 1173 1174 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1175 { 1176 unsigned long flags; 1177 1178 spin_lock_irqsave(&rinfo->ring_lock, flags); 1179 kick_pending_request_queues_locked(rinfo); 1180 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1181 } 1182 1183 static void blkif_restart_queue(struct work_struct *work) 1184 { 1185 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1186 1187 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1188 kick_pending_request_queues(rinfo); 1189 } 1190 1191 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1192 { 1193 struct grant *persistent_gnt, *n; 1194 struct blkfront_info *info = rinfo->dev_info; 1195 int i, j, segs; 1196 1197 /* 1198 * Remove indirect pages, this only happens when using indirect 1199 * descriptors but not persistent grants 1200 */ 1201 if (!list_empty(&rinfo->indirect_pages)) { 1202 struct page *indirect_page, *n; 1203 1204 BUG_ON(info->feature_persistent); 1205 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1206 list_del(&indirect_page->lru); 1207 __free_page(indirect_page); 1208 } 1209 } 1210 1211 /* Remove all persistent grants. */ 1212 if (!list_empty(&rinfo->grants)) { 1213 list_for_each_entry_safe(persistent_gnt, n, 1214 &rinfo->grants, node) { 1215 list_del(&persistent_gnt->node); 1216 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1217 gnttab_end_foreign_access(persistent_gnt->gref, 1218 0, 0UL); 1219 rinfo->persistent_gnts_c--; 1220 } 1221 if (info->feature_persistent) 1222 __free_page(persistent_gnt->page); 1223 kfree(persistent_gnt); 1224 } 1225 } 1226 BUG_ON(rinfo->persistent_gnts_c != 0); 1227 1228 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1229 /* 1230 * Clear persistent grants present in requests already 1231 * on the shared ring 1232 */ 1233 if (!rinfo->shadow[i].request) 1234 goto free_shadow; 1235 1236 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1237 rinfo->shadow[i].req.u.indirect.nr_segments : 1238 rinfo->shadow[i].req.u.rw.nr_segments; 1239 for (j = 0; j < segs; j++) { 1240 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1241 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1242 if (info->feature_persistent) 1243 __free_page(persistent_gnt->page); 1244 kfree(persistent_gnt); 1245 } 1246 1247 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1248 /* 1249 * If this is not an indirect operation don't try to 1250 * free indirect segments 1251 */ 1252 goto free_shadow; 1253 1254 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1255 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1256 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1257 __free_page(persistent_gnt->page); 1258 kfree(persistent_gnt); 1259 } 1260 1261 free_shadow: 1262 kvfree(rinfo->shadow[i].grants_used); 1263 rinfo->shadow[i].grants_used = NULL; 1264 kvfree(rinfo->shadow[i].indirect_grants); 1265 rinfo->shadow[i].indirect_grants = NULL; 1266 kvfree(rinfo->shadow[i].sg); 1267 rinfo->shadow[i].sg = NULL; 1268 } 1269 1270 /* No more gnttab callback work. */ 1271 gnttab_cancel_free_callback(&rinfo->callback); 1272 1273 /* Flush gnttab callback work. Must be done with no locks held. */ 1274 flush_work(&rinfo->work); 1275 1276 /* Free resources associated with old device channel. */ 1277 for (i = 0; i < info->nr_ring_pages; i++) { 1278 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1279 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1280 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1281 } 1282 } 1283 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1284 rinfo->ring.sring = NULL; 1285 1286 if (rinfo->irq) 1287 unbind_from_irqhandler(rinfo->irq, rinfo); 1288 rinfo->evtchn = rinfo->irq = 0; 1289 } 1290 1291 static void blkif_free(struct blkfront_info *info, int suspend) 1292 { 1293 unsigned int i; 1294 struct blkfront_ring_info *rinfo; 1295 1296 /* Prevent new requests being issued until we fix things up. */ 1297 info->connected = suspend ? 1298 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1299 /* No more blkif_request(). */ 1300 if (info->rq) 1301 blk_mq_stop_hw_queues(info->rq); 1302 1303 for_each_rinfo(info, rinfo, i) 1304 blkif_free_ring(rinfo); 1305 1306 kvfree(info->rinfo); 1307 info->rinfo = NULL; 1308 info->nr_rings = 0; 1309 } 1310 1311 struct copy_from_grant { 1312 const struct blk_shadow *s; 1313 unsigned int grant_idx; 1314 unsigned int bvec_offset; 1315 char *bvec_data; 1316 }; 1317 1318 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1319 unsigned int len, void *data) 1320 { 1321 struct copy_from_grant *info = data; 1322 char *shared_data; 1323 /* Convenient aliases */ 1324 const struct blk_shadow *s = info->s; 1325 1326 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1327 1328 memcpy(info->bvec_data + info->bvec_offset, 1329 shared_data + offset, len); 1330 1331 info->bvec_offset += len; 1332 info->grant_idx++; 1333 1334 kunmap_atomic(shared_data); 1335 } 1336 1337 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1338 { 1339 switch (rsp) 1340 { 1341 case BLKIF_RSP_OKAY: 1342 return REQ_DONE; 1343 case BLKIF_RSP_EOPNOTSUPP: 1344 return REQ_EOPNOTSUPP; 1345 case BLKIF_RSP_ERROR: 1346 default: 1347 return REQ_ERROR; 1348 } 1349 } 1350 1351 /* 1352 * Get the final status of the block request based on two ring response 1353 */ 1354 static int blkif_get_final_status(enum blk_req_status s1, 1355 enum blk_req_status s2) 1356 { 1357 BUG_ON(s1 == REQ_WAITING); 1358 BUG_ON(s2 == REQ_WAITING); 1359 1360 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1361 return BLKIF_RSP_ERROR; 1362 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1363 return BLKIF_RSP_EOPNOTSUPP; 1364 return BLKIF_RSP_OKAY; 1365 } 1366 1367 static bool blkif_completion(unsigned long *id, 1368 struct blkfront_ring_info *rinfo, 1369 struct blkif_response *bret) 1370 { 1371 int i = 0; 1372 struct scatterlist *sg; 1373 int num_sg, num_grant; 1374 struct blkfront_info *info = rinfo->dev_info; 1375 struct blk_shadow *s = &rinfo->shadow[*id]; 1376 struct copy_from_grant data = { 1377 .grant_idx = 0, 1378 }; 1379 1380 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1381 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1382 1383 /* The I/O request may be split in two. */ 1384 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1385 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1386 1387 /* Keep the status of the current response in shadow. */ 1388 s->status = blkif_rsp_to_req_status(bret->status); 1389 1390 /* Wait the second response if not yet here. */ 1391 if (s2->status == REQ_WAITING) 1392 return false; 1393 1394 bret->status = blkif_get_final_status(s->status, 1395 s2->status); 1396 1397 /* 1398 * All the grants is stored in the first shadow in order 1399 * to make the completion code simpler. 1400 */ 1401 num_grant += s2->req.u.rw.nr_segments; 1402 1403 /* 1404 * The two responses may not come in order. Only the 1405 * first request will store the scatter-gather list. 1406 */ 1407 if (s2->num_sg != 0) { 1408 /* Update "id" with the ID of the first response. */ 1409 *id = s->associated_id; 1410 s = s2; 1411 } 1412 1413 /* 1414 * We don't need anymore the second request, so recycling 1415 * it now. 1416 */ 1417 if (add_id_to_freelist(rinfo, s->associated_id)) 1418 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1419 info->gd->disk_name, s->associated_id); 1420 } 1421 1422 data.s = s; 1423 num_sg = s->num_sg; 1424 1425 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1426 for_each_sg(s->sg, sg, num_sg, i) { 1427 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1428 1429 data.bvec_offset = sg->offset; 1430 data.bvec_data = kmap_atomic(sg_page(sg)); 1431 1432 gnttab_foreach_grant_in_range(sg_page(sg), 1433 sg->offset, 1434 sg->length, 1435 blkif_copy_from_grant, 1436 &data); 1437 1438 kunmap_atomic(data.bvec_data); 1439 } 1440 } 1441 /* Add the persistent grant into the list of free grants */ 1442 for (i = 0; i < num_grant; i++) { 1443 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1444 /* 1445 * If the grant is still mapped by the backend (the 1446 * backend has chosen to make this grant persistent) 1447 * we add it at the head of the list, so it will be 1448 * reused first. 1449 */ 1450 if (!info->feature_persistent) 1451 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1452 s->grants_used[i]->gref); 1453 list_add(&s->grants_used[i]->node, &rinfo->grants); 1454 rinfo->persistent_gnts_c++; 1455 } else { 1456 /* 1457 * If the grant is not mapped by the backend we end the 1458 * foreign access and add it to the tail of the list, 1459 * so it will not be picked again unless we run out of 1460 * persistent grants. 1461 */ 1462 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1463 s->grants_used[i]->gref = GRANT_INVALID_REF; 1464 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1465 } 1466 } 1467 if (s->req.operation == BLKIF_OP_INDIRECT) { 1468 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1469 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1470 if (!info->feature_persistent) 1471 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1472 s->indirect_grants[i]->gref); 1473 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1474 rinfo->persistent_gnts_c++; 1475 } else { 1476 struct page *indirect_page; 1477 1478 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1479 /* 1480 * Add the used indirect page back to the list of 1481 * available pages for indirect grefs. 1482 */ 1483 if (!info->feature_persistent) { 1484 indirect_page = s->indirect_grants[i]->page; 1485 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1486 } 1487 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1488 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1489 } 1490 } 1491 } 1492 1493 return true; 1494 } 1495 1496 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1497 { 1498 struct request *req; 1499 struct blkif_response *bret; 1500 RING_IDX i, rp; 1501 unsigned long flags; 1502 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1503 struct blkfront_info *info = rinfo->dev_info; 1504 1505 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1506 return IRQ_HANDLED; 1507 1508 spin_lock_irqsave(&rinfo->ring_lock, flags); 1509 again: 1510 rp = rinfo->ring.sring->rsp_prod; 1511 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1512 1513 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1514 unsigned long id; 1515 1516 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1517 id = bret->id; 1518 /* 1519 * The backend has messed up and given us an id that we would 1520 * never have given to it (we stamp it up to BLK_RING_SIZE - 1521 * look in get_id_from_freelist. 1522 */ 1523 if (id >= BLK_RING_SIZE(info)) { 1524 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1525 info->gd->disk_name, op_name(bret->operation), id); 1526 /* We can't safely get the 'struct request' as 1527 * the id is busted. */ 1528 continue; 1529 } 1530 req = rinfo->shadow[id].request; 1531 1532 if (bret->operation != BLKIF_OP_DISCARD) { 1533 /* 1534 * We may need to wait for an extra response if the 1535 * I/O request is split in 2 1536 */ 1537 if (!blkif_completion(&id, rinfo, bret)) 1538 continue; 1539 } 1540 1541 if (add_id_to_freelist(rinfo, id)) { 1542 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1543 info->gd->disk_name, op_name(bret->operation), id); 1544 continue; 1545 } 1546 1547 if (bret->status == BLKIF_RSP_OKAY) 1548 blkif_req(req)->error = BLK_STS_OK; 1549 else 1550 blkif_req(req)->error = BLK_STS_IOERR; 1551 1552 switch (bret->operation) { 1553 case BLKIF_OP_DISCARD: 1554 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1555 struct request_queue *rq = info->rq; 1556 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1557 info->gd->disk_name, op_name(bret->operation)); 1558 blkif_req(req)->error = BLK_STS_NOTSUPP; 1559 info->feature_discard = 0; 1560 info->feature_secdiscard = 0; 1561 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1562 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1563 } 1564 break; 1565 case BLKIF_OP_FLUSH_DISKCACHE: 1566 case BLKIF_OP_WRITE_BARRIER: 1567 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1568 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1569 info->gd->disk_name, op_name(bret->operation)); 1570 blkif_req(req)->error = BLK_STS_NOTSUPP; 1571 } 1572 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1573 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1574 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1575 info->gd->disk_name, op_name(bret->operation)); 1576 blkif_req(req)->error = BLK_STS_NOTSUPP; 1577 } 1578 if (unlikely(blkif_req(req)->error)) { 1579 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1580 blkif_req(req)->error = BLK_STS_OK; 1581 info->feature_fua = 0; 1582 info->feature_flush = 0; 1583 xlvbd_flush(info); 1584 } 1585 fallthrough; 1586 case BLKIF_OP_READ: 1587 case BLKIF_OP_WRITE: 1588 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1589 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1590 "request: %x\n", bret->status); 1591 1592 break; 1593 default: 1594 BUG(); 1595 } 1596 1597 if (likely(!blk_should_fake_timeout(req->q))) 1598 blk_mq_complete_request(req); 1599 } 1600 1601 rinfo->ring.rsp_cons = i; 1602 1603 if (i != rinfo->ring.req_prod_pvt) { 1604 int more_to_do; 1605 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1606 if (more_to_do) 1607 goto again; 1608 } else 1609 rinfo->ring.sring->rsp_event = i + 1; 1610 1611 kick_pending_request_queues_locked(rinfo); 1612 1613 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1614 1615 return IRQ_HANDLED; 1616 } 1617 1618 1619 static int setup_blkring(struct xenbus_device *dev, 1620 struct blkfront_ring_info *rinfo) 1621 { 1622 struct blkif_sring *sring; 1623 int err, i; 1624 struct blkfront_info *info = rinfo->dev_info; 1625 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1626 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1627 1628 for (i = 0; i < info->nr_ring_pages; i++) 1629 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1630 1631 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1632 get_order(ring_size)); 1633 if (!sring) { 1634 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1635 return -ENOMEM; 1636 } 1637 SHARED_RING_INIT(sring); 1638 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1639 1640 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1641 if (err < 0) { 1642 free_pages((unsigned long)sring, get_order(ring_size)); 1643 rinfo->ring.sring = NULL; 1644 goto fail; 1645 } 1646 for (i = 0; i < info->nr_ring_pages; i++) 1647 rinfo->ring_ref[i] = gref[i]; 1648 1649 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1650 if (err) 1651 goto fail; 1652 1653 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1654 "blkif", rinfo); 1655 if (err <= 0) { 1656 xenbus_dev_fatal(dev, err, 1657 "bind_evtchn_to_irqhandler failed"); 1658 goto fail; 1659 } 1660 rinfo->irq = err; 1661 1662 return 0; 1663 fail: 1664 blkif_free(info, 0); 1665 return err; 1666 } 1667 1668 /* 1669 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1670 * ring buffer may have multi pages depending on ->nr_ring_pages. 1671 */ 1672 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1673 struct blkfront_ring_info *rinfo, const char *dir) 1674 { 1675 int err; 1676 unsigned int i; 1677 const char *message = NULL; 1678 struct blkfront_info *info = rinfo->dev_info; 1679 1680 if (info->nr_ring_pages == 1) { 1681 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1682 if (err) { 1683 message = "writing ring-ref"; 1684 goto abort_transaction; 1685 } 1686 } else { 1687 for (i = 0; i < info->nr_ring_pages; i++) { 1688 char ring_ref_name[RINGREF_NAME_LEN]; 1689 1690 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1691 err = xenbus_printf(xbt, dir, ring_ref_name, 1692 "%u", rinfo->ring_ref[i]); 1693 if (err) { 1694 message = "writing ring-ref"; 1695 goto abort_transaction; 1696 } 1697 } 1698 } 1699 1700 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1701 if (err) { 1702 message = "writing event-channel"; 1703 goto abort_transaction; 1704 } 1705 1706 return 0; 1707 1708 abort_transaction: 1709 xenbus_transaction_end(xbt, 1); 1710 if (message) 1711 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1712 1713 return err; 1714 } 1715 1716 /* Common code used when first setting up, and when resuming. */ 1717 static int talk_to_blkback(struct xenbus_device *dev, 1718 struct blkfront_info *info) 1719 { 1720 const char *message = NULL; 1721 struct xenbus_transaction xbt; 1722 int err; 1723 unsigned int i, max_page_order; 1724 unsigned int ring_page_order; 1725 struct blkfront_ring_info *rinfo; 1726 1727 if (!info) 1728 return -ENODEV; 1729 1730 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1731 "max-ring-page-order", 0); 1732 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1733 info->nr_ring_pages = 1 << ring_page_order; 1734 1735 err = negotiate_mq(info); 1736 if (err) 1737 goto destroy_blkring; 1738 1739 for_each_rinfo(info, rinfo, i) { 1740 /* Create shared ring, alloc event channel. */ 1741 err = setup_blkring(dev, rinfo); 1742 if (err) 1743 goto destroy_blkring; 1744 } 1745 1746 again: 1747 err = xenbus_transaction_start(&xbt); 1748 if (err) { 1749 xenbus_dev_fatal(dev, err, "starting transaction"); 1750 goto destroy_blkring; 1751 } 1752 1753 if (info->nr_ring_pages > 1) { 1754 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1755 ring_page_order); 1756 if (err) { 1757 message = "writing ring-page-order"; 1758 goto abort_transaction; 1759 } 1760 } 1761 1762 /* We already got the number of queues/rings in _probe */ 1763 if (info->nr_rings == 1) { 1764 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1765 if (err) 1766 goto destroy_blkring; 1767 } else { 1768 char *path; 1769 size_t pathsize; 1770 1771 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1772 info->nr_rings); 1773 if (err) { 1774 message = "writing multi-queue-num-queues"; 1775 goto abort_transaction; 1776 } 1777 1778 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1779 path = kmalloc(pathsize, GFP_KERNEL); 1780 if (!path) { 1781 err = -ENOMEM; 1782 message = "ENOMEM while writing ring references"; 1783 goto abort_transaction; 1784 } 1785 1786 for_each_rinfo(info, rinfo, i) { 1787 memset(path, 0, pathsize); 1788 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1789 err = write_per_ring_nodes(xbt, rinfo, path); 1790 if (err) { 1791 kfree(path); 1792 goto destroy_blkring; 1793 } 1794 } 1795 kfree(path); 1796 } 1797 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1798 XEN_IO_PROTO_ABI_NATIVE); 1799 if (err) { 1800 message = "writing protocol"; 1801 goto abort_transaction; 1802 } 1803 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1804 info->feature_persistent); 1805 if (err) 1806 dev_warn(&dev->dev, 1807 "writing persistent grants feature to xenbus"); 1808 1809 err = xenbus_transaction_end(xbt, 0); 1810 if (err) { 1811 if (err == -EAGAIN) 1812 goto again; 1813 xenbus_dev_fatal(dev, err, "completing transaction"); 1814 goto destroy_blkring; 1815 } 1816 1817 for_each_rinfo(info, rinfo, i) { 1818 unsigned int j; 1819 1820 for (j = 0; j < BLK_RING_SIZE(info); j++) 1821 rinfo->shadow[j].req.u.rw.id = j + 1; 1822 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1823 } 1824 xenbus_switch_state(dev, XenbusStateInitialised); 1825 1826 return 0; 1827 1828 abort_transaction: 1829 xenbus_transaction_end(xbt, 1); 1830 if (message) 1831 xenbus_dev_fatal(dev, err, "%s", message); 1832 destroy_blkring: 1833 blkif_free(info, 0); 1834 return err; 1835 } 1836 1837 static int negotiate_mq(struct blkfront_info *info) 1838 { 1839 unsigned int backend_max_queues; 1840 unsigned int i; 1841 struct blkfront_ring_info *rinfo; 1842 1843 BUG_ON(info->nr_rings); 1844 1845 /* Check if backend supports multiple queues. */ 1846 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1847 "multi-queue-max-queues", 1); 1848 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1849 /* We need at least one ring. */ 1850 if (!info->nr_rings) 1851 info->nr_rings = 1; 1852 1853 info->rinfo_size = struct_size(info->rinfo, shadow, 1854 BLK_RING_SIZE(info)); 1855 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1856 if (!info->rinfo) { 1857 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1858 info->nr_rings = 0; 1859 return -ENOMEM; 1860 } 1861 1862 for_each_rinfo(info, rinfo, i) { 1863 INIT_LIST_HEAD(&rinfo->indirect_pages); 1864 INIT_LIST_HEAD(&rinfo->grants); 1865 rinfo->dev_info = info; 1866 INIT_WORK(&rinfo->work, blkif_restart_queue); 1867 spin_lock_init(&rinfo->ring_lock); 1868 } 1869 return 0; 1870 } 1871 1872 /* Enable the persistent grants feature. */ 1873 static bool feature_persistent = true; 1874 module_param(feature_persistent, bool, 0644); 1875 MODULE_PARM_DESC(feature_persistent, 1876 "Enables the persistent grants feature"); 1877 1878 /* 1879 * Entry point to this code when a new device is created. Allocate the basic 1880 * structures and the ring buffer for communication with the backend, and 1881 * inform the backend of the appropriate details for those. Switch to 1882 * Initialised state. 1883 */ 1884 static int blkfront_probe(struct xenbus_device *dev, 1885 const struct xenbus_device_id *id) 1886 { 1887 int err, vdevice; 1888 struct blkfront_info *info; 1889 1890 /* FIXME: Use dynamic device id if this is not set. */ 1891 err = xenbus_scanf(XBT_NIL, dev->nodename, 1892 "virtual-device", "%i", &vdevice); 1893 if (err != 1) { 1894 /* go looking in the extended area instead */ 1895 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1896 "%i", &vdevice); 1897 if (err != 1) { 1898 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1899 return err; 1900 } 1901 } 1902 1903 if (xen_hvm_domain()) { 1904 char *type; 1905 int len; 1906 /* no unplug has been done: do not hook devices != xen vbds */ 1907 if (xen_has_pv_and_legacy_disk_devices()) { 1908 int major; 1909 1910 if (!VDEV_IS_EXTENDED(vdevice)) 1911 major = BLKIF_MAJOR(vdevice); 1912 else 1913 major = XENVBD_MAJOR; 1914 1915 if (major != XENVBD_MAJOR) { 1916 printk(KERN_INFO 1917 "%s: HVM does not support vbd %d as xen block device\n", 1918 __func__, vdevice); 1919 return -ENODEV; 1920 } 1921 } 1922 /* do not create a PV cdrom device if we are an HVM guest */ 1923 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1924 if (IS_ERR(type)) 1925 return -ENODEV; 1926 if (strncmp(type, "cdrom", 5) == 0) { 1927 kfree(type); 1928 return -ENODEV; 1929 } 1930 kfree(type); 1931 } 1932 info = kzalloc(sizeof(*info), GFP_KERNEL); 1933 if (!info) { 1934 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1935 return -ENOMEM; 1936 } 1937 1938 info->xbdev = dev; 1939 1940 mutex_init(&info->mutex); 1941 info->vdevice = vdevice; 1942 info->connected = BLKIF_STATE_DISCONNECTED; 1943 1944 info->feature_persistent = feature_persistent; 1945 1946 /* Front end dir is a number, which is used as the id. */ 1947 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1948 dev_set_drvdata(&dev->dev, info); 1949 1950 mutex_lock(&blkfront_mutex); 1951 list_add(&info->info_list, &info_list); 1952 mutex_unlock(&blkfront_mutex); 1953 1954 return 0; 1955 } 1956 1957 static int blkif_recover(struct blkfront_info *info) 1958 { 1959 unsigned int r_index; 1960 struct request *req, *n; 1961 int rc; 1962 struct bio *bio; 1963 unsigned int segs; 1964 struct blkfront_ring_info *rinfo; 1965 1966 blkfront_gather_backend_features(info); 1967 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 1968 blkif_set_queue_limits(info); 1969 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 1970 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 1971 1972 for_each_rinfo(info, rinfo, r_index) { 1973 rc = blkfront_setup_indirect(rinfo); 1974 if (rc) 1975 return rc; 1976 } 1977 xenbus_switch_state(info->xbdev, XenbusStateConnected); 1978 1979 /* Now safe for us to use the shared ring */ 1980 info->connected = BLKIF_STATE_CONNECTED; 1981 1982 for_each_rinfo(info, rinfo, r_index) { 1983 /* Kick any other new requests queued since we resumed */ 1984 kick_pending_request_queues(rinfo); 1985 } 1986 1987 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 1988 /* Requeue pending requests (flush or discard) */ 1989 list_del_init(&req->queuelist); 1990 BUG_ON(req->nr_phys_segments > segs); 1991 blk_mq_requeue_request(req, false); 1992 } 1993 blk_mq_start_stopped_hw_queues(info->rq, true); 1994 blk_mq_kick_requeue_list(info->rq); 1995 1996 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 1997 /* Traverse the list of pending bios and re-queue them */ 1998 submit_bio(bio); 1999 } 2000 2001 return 0; 2002 } 2003 2004 /* 2005 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2006 * driver restart. We tear down our blkif structure and recreate it, but 2007 * leave the device-layer structures intact so that this is transparent to the 2008 * rest of the kernel. 2009 */ 2010 static int blkfront_resume(struct xenbus_device *dev) 2011 { 2012 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2013 int err = 0; 2014 unsigned int i, j; 2015 struct blkfront_ring_info *rinfo; 2016 2017 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2018 2019 bio_list_init(&info->bio_list); 2020 INIT_LIST_HEAD(&info->requests); 2021 for_each_rinfo(info, rinfo, i) { 2022 struct bio_list merge_bio; 2023 struct blk_shadow *shadow = rinfo->shadow; 2024 2025 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2026 /* Not in use? */ 2027 if (!shadow[j].request) 2028 continue; 2029 2030 /* 2031 * Get the bios in the request so we can re-queue them. 2032 */ 2033 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2034 req_op(shadow[j].request) == REQ_OP_DISCARD || 2035 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2036 shadow[j].request->cmd_flags & REQ_FUA) { 2037 /* 2038 * Flush operations don't contain bios, so 2039 * we need to requeue the whole request 2040 * 2041 * XXX: but this doesn't make any sense for a 2042 * write with the FUA flag set.. 2043 */ 2044 list_add(&shadow[j].request->queuelist, &info->requests); 2045 continue; 2046 } 2047 merge_bio.head = shadow[j].request->bio; 2048 merge_bio.tail = shadow[j].request->biotail; 2049 bio_list_merge(&info->bio_list, &merge_bio); 2050 shadow[j].request->bio = NULL; 2051 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2052 } 2053 } 2054 2055 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2056 2057 err = talk_to_blkback(dev, info); 2058 if (!err) 2059 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2060 2061 /* 2062 * We have to wait for the backend to switch to 2063 * connected state, since we want to read which 2064 * features it supports. 2065 */ 2066 2067 return err; 2068 } 2069 2070 static void blkfront_closing(struct blkfront_info *info) 2071 { 2072 struct xenbus_device *xbdev = info->xbdev; 2073 struct blkfront_ring_info *rinfo; 2074 unsigned int i; 2075 2076 if (xbdev->state == XenbusStateClosing) 2077 return; 2078 2079 /* No more blkif_request(). */ 2080 blk_mq_stop_hw_queues(info->rq); 2081 blk_set_queue_dying(info->rq); 2082 set_capacity(info->gd, 0); 2083 2084 for_each_rinfo(info, rinfo, i) { 2085 /* No more gnttab callback work. */ 2086 gnttab_cancel_free_callback(&rinfo->callback); 2087 2088 /* Flush gnttab callback work. Must be done with no locks held. */ 2089 flush_work(&rinfo->work); 2090 } 2091 2092 xenbus_frontend_closed(xbdev); 2093 } 2094 2095 static void blkfront_setup_discard(struct blkfront_info *info) 2096 { 2097 info->feature_discard = 1; 2098 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2099 "discard-granularity", 2100 0); 2101 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2102 "discard-alignment", 0); 2103 info->feature_secdiscard = 2104 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2105 0); 2106 } 2107 2108 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2109 { 2110 unsigned int psegs, grants, memflags; 2111 int err, i; 2112 struct blkfront_info *info = rinfo->dev_info; 2113 2114 memflags = memalloc_noio_save(); 2115 2116 if (info->max_indirect_segments == 0) { 2117 if (!HAS_EXTRA_REQ) 2118 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2119 else { 2120 /* 2121 * When an extra req is required, the maximum 2122 * grants supported is related to the size of the 2123 * Linux block segment. 2124 */ 2125 grants = GRANTS_PER_PSEG; 2126 } 2127 } 2128 else 2129 grants = info->max_indirect_segments; 2130 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2131 2132 err = fill_grant_buffer(rinfo, 2133 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2134 if (err) 2135 goto out_of_memory; 2136 2137 if (!info->feature_persistent && info->max_indirect_segments) { 2138 /* 2139 * We are using indirect descriptors but not persistent 2140 * grants, we need to allocate a set of pages that can be 2141 * used for mapping indirect grefs 2142 */ 2143 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2144 2145 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2146 for (i = 0; i < num; i++) { 2147 struct page *indirect_page = alloc_page(GFP_KERNEL); 2148 if (!indirect_page) 2149 goto out_of_memory; 2150 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2151 } 2152 } 2153 2154 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2155 rinfo->shadow[i].grants_used = 2156 kvcalloc(grants, 2157 sizeof(rinfo->shadow[i].grants_used[0]), 2158 GFP_KERNEL); 2159 rinfo->shadow[i].sg = kvcalloc(psegs, 2160 sizeof(rinfo->shadow[i].sg[0]), 2161 GFP_KERNEL); 2162 if (info->max_indirect_segments) 2163 rinfo->shadow[i].indirect_grants = 2164 kvcalloc(INDIRECT_GREFS(grants), 2165 sizeof(rinfo->shadow[i].indirect_grants[0]), 2166 GFP_KERNEL); 2167 if ((rinfo->shadow[i].grants_used == NULL) || 2168 (rinfo->shadow[i].sg == NULL) || 2169 (info->max_indirect_segments && 2170 (rinfo->shadow[i].indirect_grants == NULL))) 2171 goto out_of_memory; 2172 sg_init_table(rinfo->shadow[i].sg, psegs); 2173 } 2174 2175 memalloc_noio_restore(memflags); 2176 2177 return 0; 2178 2179 out_of_memory: 2180 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2181 kvfree(rinfo->shadow[i].grants_used); 2182 rinfo->shadow[i].grants_used = NULL; 2183 kvfree(rinfo->shadow[i].sg); 2184 rinfo->shadow[i].sg = NULL; 2185 kvfree(rinfo->shadow[i].indirect_grants); 2186 rinfo->shadow[i].indirect_grants = NULL; 2187 } 2188 if (!list_empty(&rinfo->indirect_pages)) { 2189 struct page *indirect_page, *n; 2190 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2191 list_del(&indirect_page->lru); 2192 __free_page(indirect_page); 2193 } 2194 } 2195 2196 memalloc_noio_restore(memflags); 2197 2198 return -ENOMEM; 2199 } 2200 2201 /* 2202 * Gather all backend feature-* 2203 */ 2204 static void blkfront_gather_backend_features(struct blkfront_info *info) 2205 { 2206 unsigned int indirect_segments; 2207 2208 info->feature_flush = 0; 2209 info->feature_fua = 0; 2210 2211 /* 2212 * If there's no "feature-barrier" defined, then it means 2213 * we're dealing with a very old backend which writes 2214 * synchronously; nothing to do. 2215 * 2216 * If there are barriers, then we use flush. 2217 */ 2218 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2219 info->feature_flush = 1; 2220 info->feature_fua = 1; 2221 } 2222 2223 /* 2224 * And if there is "feature-flush-cache" use that above 2225 * barriers. 2226 */ 2227 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2228 0)) { 2229 info->feature_flush = 1; 2230 info->feature_fua = 0; 2231 } 2232 2233 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2234 blkfront_setup_discard(info); 2235 2236 if (info->feature_persistent) 2237 info->feature_persistent = 2238 !!xenbus_read_unsigned(info->xbdev->otherend, 2239 "feature-persistent", 0); 2240 2241 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2242 "feature-max-indirect-segments", 0); 2243 if (indirect_segments > xen_blkif_max_segments) 2244 indirect_segments = xen_blkif_max_segments; 2245 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2246 indirect_segments = 0; 2247 info->max_indirect_segments = indirect_segments; 2248 2249 if (info->feature_persistent) { 2250 mutex_lock(&blkfront_mutex); 2251 schedule_delayed_work(&blkfront_work, HZ * 10); 2252 mutex_unlock(&blkfront_mutex); 2253 } 2254 } 2255 2256 /* 2257 * Invoked when the backend is finally 'ready' (and has told produced 2258 * the details about the physical device - #sectors, size, etc). 2259 */ 2260 static void blkfront_connect(struct blkfront_info *info) 2261 { 2262 unsigned long long sectors; 2263 unsigned long sector_size; 2264 unsigned int physical_sector_size; 2265 unsigned int binfo; 2266 int err, i; 2267 struct blkfront_ring_info *rinfo; 2268 2269 switch (info->connected) { 2270 case BLKIF_STATE_CONNECTED: 2271 /* 2272 * Potentially, the back-end may be signalling 2273 * a capacity change; update the capacity. 2274 */ 2275 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2276 "sectors", "%Lu", §ors); 2277 if (XENBUS_EXIST_ERR(err)) 2278 return; 2279 printk(KERN_INFO "Setting capacity to %Lu\n", 2280 sectors); 2281 set_capacity_and_notify(info->gd, sectors); 2282 2283 return; 2284 case BLKIF_STATE_SUSPENDED: 2285 /* 2286 * If we are recovering from suspension, we need to wait 2287 * for the backend to announce it's features before 2288 * reconnecting, at least we need to know if the backend 2289 * supports indirect descriptors, and how many. 2290 */ 2291 blkif_recover(info); 2292 return; 2293 2294 default: 2295 break; 2296 } 2297 2298 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2299 __func__, info->xbdev->otherend); 2300 2301 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2302 "sectors", "%llu", §ors, 2303 "info", "%u", &binfo, 2304 "sector-size", "%lu", §or_size, 2305 NULL); 2306 if (err) { 2307 xenbus_dev_fatal(info->xbdev, err, 2308 "reading backend fields at %s", 2309 info->xbdev->otherend); 2310 return; 2311 } 2312 2313 /* 2314 * physical-sector-size is a newer field, so old backends may not 2315 * provide this. Assume physical sector size to be the same as 2316 * sector_size in that case. 2317 */ 2318 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2319 "physical-sector-size", 2320 sector_size); 2321 blkfront_gather_backend_features(info); 2322 for_each_rinfo(info, rinfo, i) { 2323 err = blkfront_setup_indirect(rinfo); 2324 if (err) { 2325 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2326 info->xbdev->otherend); 2327 blkif_free(info, 0); 2328 break; 2329 } 2330 } 2331 2332 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2333 physical_sector_size); 2334 if (err) { 2335 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2336 info->xbdev->otherend); 2337 goto fail; 2338 } 2339 2340 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2341 2342 /* Kick pending requests. */ 2343 info->connected = BLKIF_STATE_CONNECTED; 2344 for_each_rinfo(info, rinfo, i) 2345 kick_pending_request_queues(rinfo); 2346 2347 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2348 2349 info->is_ready = 1; 2350 return; 2351 2352 fail: 2353 blkif_free(info, 0); 2354 return; 2355 } 2356 2357 /* 2358 * Callback received when the backend's state changes. 2359 */ 2360 static void blkback_changed(struct xenbus_device *dev, 2361 enum xenbus_state backend_state) 2362 { 2363 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2364 2365 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2366 2367 switch (backend_state) { 2368 case XenbusStateInitWait: 2369 if (dev->state != XenbusStateInitialising) 2370 break; 2371 if (talk_to_blkback(dev, info)) 2372 break; 2373 break; 2374 case XenbusStateInitialising: 2375 case XenbusStateInitialised: 2376 case XenbusStateReconfiguring: 2377 case XenbusStateReconfigured: 2378 case XenbusStateUnknown: 2379 break; 2380 2381 case XenbusStateConnected: 2382 /* 2383 * talk_to_blkback sets state to XenbusStateInitialised 2384 * and blkfront_connect sets it to XenbusStateConnected 2385 * (if connection went OK). 2386 * 2387 * If the backend (or toolstack) decides to poke at backend 2388 * state (and re-trigger the watch by setting the state repeatedly 2389 * to XenbusStateConnected (4)) we need to deal with this. 2390 * This is allowed as this is used to communicate to the guest 2391 * that the size of disk has changed! 2392 */ 2393 if ((dev->state != XenbusStateInitialised) && 2394 (dev->state != XenbusStateConnected)) { 2395 if (talk_to_blkback(dev, info)) 2396 break; 2397 } 2398 2399 blkfront_connect(info); 2400 break; 2401 2402 case XenbusStateClosed: 2403 if (dev->state == XenbusStateClosed) 2404 break; 2405 fallthrough; 2406 case XenbusStateClosing: 2407 blkfront_closing(info); 2408 break; 2409 } 2410 } 2411 2412 static int blkfront_remove(struct xenbus_device *xbdev) 2413 { 2414 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2415 2416 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2417 2418 del_gendisk(info->gd); 2419 2420 mutex_lock(&blkfront_mutex); 2421 list_del(&info->info_list); 2422 mutex_unlock(&blkfront_mutex); 2423 2424 blkif_free(info, 0); 2425 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2426 blk_cleanup_disk(info->gd); 2427 blk_mq_free_tag_set(&info->tag_set); 2428 2429 kfree(info); 2430 return 0; 2431 } 2432 2433 static int blkfront_is_ready(struct xenbus_device *dev) 2434 { 2435 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2436 2437 return info->is_ready && info->xbdev; 2438 } 2439 2440 static const struct block_device_operations xlvbd_block_fops = 2441 { 2442 .owner = THIS_MODULE, 2443 .getgeo = blkif_getgeo, 2444 .ioctl = blkif_ioctl, 2445 .compat_ioctl = blkdev_compat_ptr_ioctl, 2446 }; 2447 2448 2449 static const struct xenbus_device_id blkfront_ids[] = { 2450 { "vbd" }, 2451 { "" } 2452 }; 2453 2454 static struct xenbus_driver blkfront_driver = { 2455 .ids = blkfront_ids, 2456 .probe = blkfront_probe, 2457 .remove = blkfront_remove, 2458 .resume = blkfront_resume, 2459 .otherend_changed = blkback_changed, 2460 .is_ready = blkfront_is_ready, 2461 }; 2462 2463 static void purge_persistent_grants(struct blkfront_info *info) 2464 { 2465 unsigned int i; 2466 unsigned long flags; 2467 struct blkfront_ring_info *rinfo; 2468 2469 for_each_rinfo(info, rinfo, i) { 2470 struct grant *gnt_list_entry, *tmp; 2471 2472 spin_lock_irqsave(&rinfo->ring_lock, flags); 2473 2474 if (rinfo->persistent_gnts_c == 0) { 2475 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2476 continue; 2477 } 2478 2479 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2480 node) { 2481 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2482 gnttab_query_foreign_access(gnt_list_entry->gref)) 2483 continue; 2484 2485 list_del(&gnt_list_entry->node); 2486 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2487 rinfo->persistent_gnts_c--; 2488 gnt_list_entry->gref = GRANT_INVALID_REF; 2489 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2490 } 2491 2492 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2493 } 2494 } 2495 2496 static void blkfront_delay_work(struct work_struct *work) 2497 { 2498 struct blkfront_info *info; 2499 bool need_schedule_work = false; 2500 2501 mutex_lock(&blkfront_mutex); 2502 2503 list_for_each_entry(info, &info_list, info_list) { 2504 if (info->feature_persistent) { 2505 need_schedule_work = true; 2506 mutex_lock(&info->mutex); 2507 purge_persistent_grants(info); 2508 mutex_unlock(&info->mutex); 2509 } 2510 } 2511 2512 if (need_schedule_work) 2513 schedule_delayed_work(&blkfront_work, HZ * 10); 2514 2515 mutex_unlock(&blkfront_mutex); 2516 } 2517 2518 static int __init xlblk_init(void) 2519 { 2520 int ret; 2521 int nr_cpus = num_online_cpus(); 2522 2523 if (!xen_domain()) 2524 return -ENODEV; 2525 2526 if (!xen_has_pv_disk_devices()) 2527 return -ENODEV; 2528 2529 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2530 pr_warn("xen_blk: can't get major %d with name %s\n", 2531 XENVBD_MAJOR, DEV_NAME); 2532 return -ENODEV; 2533 } 2534 2535 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2536 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2537 2538 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2539 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2540 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2541 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2542 } 2543 2544 if (xen_blkif_max_queues > nr_cpus) { 2545 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2546 xen_blkif_max_queues, nr_cpus); 2547 xen_blkif_max_queues = nr_cpus; 2548 } 2549 2550 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2551 2552 ret = xenbus_register_frontend(&blkfront_driver); 2553 if (ret) { 2554 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2555 return ret; 2556 } 2557 2558 return 0; 2559 } 2560 module_init(xlblk_init); 2561 2562 2563 static void __exit xlblk_exit(void) 2564 { 2565 cancel_delayed_work_sync(&blkfront_work); 2566 2567 xenbus_unregister_driver(&blkfront_driver); 2568 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2569 kfree(minors); 2570 } 2571 module_exit(xlblk_exit); 2572 2573 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2574 MODULE_LICENSE("GPL"); 2575 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2576 MODULE_ALIAS("xen:vbd"); 2577 MODULE_ALIAS("xenblk"); 2578