1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 #include <linux/workqueue.h> 50 #include <linux/sched/mm.h> 51 52 #include <xen/xen.h> 53 #include <xen/xenbus.h> 54 #include <xen/grant_table.h> 55 #include <xen/events.h> 56 #include <xen/page.h> 57 #include <xen/platform_pci.h> 58 59 #include <xen/interface/grant_table.h> 60 #include <xen/interface/io/blkif.h> 61 #include <xen/interface/io/protocols.h> 62 63 #include <asm/xen/hypervisor.h> 64 65 /* 66 * The minimal size of segment supported by the block framework is PAGE_SIZE. 67 * When Linux is using a different page size than Xen, it may not be possible 68 * to put all the data in a single segment. 69 * This can happen when the backend doesn't support indirect descriptor and 70 * therefore the maximum amount of data that a request can carry is 71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 72 * 73 * Note that we only support one extra request. So the Linux page size 74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 75 * 88KB. 76 */ 77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 78 79 enum blkif_state { 80 BLKIF_STATE_DISCONNECTED, 81 BLKIF_STATE_CONNECTED, 82 BLKIF_STATE_SUSPENDED, 83 BLKIF_STATE_ERROR, 84 }; 85 86 struct grant { 87 grant_ref_t gref; 88 struct page *page; 89 struct list_head node; 90 }; 91 92 enum blk_req_status { 93 REQ_PROCESSING, 94 REQ_WAITING, 95 REQ_DONE, 96 REQ_ERROR, 97 REQ_EOPNOTSUPP, 98 }; 99 100 struct blk_shadow { 101 struct blkif_request req; 102 struct request *request; 103 struct grant **grants_used; 104 struct grant **indirect_grants; 105 struct scatterlist *sg; 106 unsigned int num_sg; 107 enum blk_req_status status; 108 109 #define NO_ASSOCIATED_ID ~0UL 110 /* 111 * Id of the sibling if we ever need 2 requests when handling a 112 * block I/O request 113 */ 114 unsigned long associated_id; 115 }; 116 117 struct blkif_req { 118 blk_status_t error; 119 }; 120 121 static inline struct blkif_req *blkif_req(struct request *rq) 122 { 123 return blk_mq_rq_to_pdu(rq); 124 } 125 126 static DEFINE_MUTEX(blkfront_mutex); 127 static const struct block_device_operations xlvbd_block_fops; 128 static struct delayed_work blkfront_work; 129 static LIST_HEAD(info_list); 130 131 /* 132 * Maximum number of segments in indirect requests, the actual value used by 133 * the frontend driver is the minimum of this value and the value provided 134 * by the backend driver. 135 */ 136 137 static unsigned int xen_blkif_max_segments = 32; 138 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 139 MODULE_PARM_DESC(max_indirect_segments, 140 "Maximum amount of segments in indirect requests (default is 32)"); 141 142 static unsigned int xen_blkif_max_queues = 4; 143 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 145 146 /* 147 * Maximum order of pages to be used for the shared ring between front and 148 * backend, 4KB page granularity is used. 149 */ 150 static unsigned int xen_blkif_max_ring_order; 151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 153 154 #define BLK_RING_SIZE(info) \ 155 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 156 157 /* 158 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 159 * characters are enough. Define to 20 to keep consistent with backend. 160 */ 161 #define RINGREF_NAME_LEN (20) 162 /* 163 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 164 */ 165 #define QUEUE_NAME_LEN (17) 166 167 /* 168 * Per-ring info. 169 * Every blkfront device can associate with one or more blkfront_ring_info, 170 * depending on how many hardware queues/rings to be used. 171 */ 172 struct blkfront_ring_info { 173 /* Lock to protect data in every ring buffer. */ 174 spinlock_t ring_lock; 175 struct blkif_front_ring ring; 176 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 177 unsigned int evtchn, irq; 178 struct work_struct work; 179 struct gnttab_free_callback callback; 180 struct list_head indirect_pages; 181 struct list_head grants; 182 unsigned int persistent_gnts_c; 183 unsigned long shadow_free; 184 struct blkfront_info *dev_info; 185 struct blk_shadow shadow[]; 186 }; 187 188 /* 189 * We have one of these per vbd, whether ide, scsi or 'other'. They 190 * hang in private_data off the gendisk structure. We may end up 191 * putting all kinds of interesting stuff here :-) 192 */ 193 struct blkfront_info 194 { 195 struct mutex mutex; 196 struct xenbus_device *xbdev; 197 struct gendisk *gd; 198 u16 sector_size; 199 unsigned int physical_sector_size; 200 int vdevice; 201 blkif_vdev_t handle; 202 enum blkif_state connected; 203 /* Number of pages per ring buffer. */ 204 unsigned int nr_ring_pages; 205 struct request_queue *rq; 206 unsigned int feature_flush:1; 207 unsigned int feature_fua:1; 208 unsigned int feature_discard:1; 209 unsigned int feature_secdiscard:1; 210 unsigned int feature_persistent:1; 211 unsigned int discard_granularity; 212 unsigned int discard_alignment; 213 /* Number of 4KB segments handled */ 214 unsigned int max_indirect_segments; 215 int is_ready; 216 struct blk_mq_tag_set tag_set; 217 struct blkfront_ring_info *rinfo; 218 unsigned int nr_rings; 219 unsigned int rinfo_size; 220 /* Save uncomplete reqs and bios for migration. */ 221 struct list_head requests; 222 struct bio_list bio_list; 223 struct list_head info_list; 224 }; 225 226 static unsigned int nr_minors; 227 static unsigned long *minors; 228 static DEFINE_SPINLOCK(minor_lock); 229 230 #define GRANT_INVALID_REF 0 231 232 #define PARTS_PER_DISK 16 233 #define PARTS_PER_EXT_DISK 256 234 235 #define BLKIF_MAJOR(dev) ((dev)>>8) 236 #define BLKIF_MINOR(dev) ((dev) & 0xff) 237 238 #define EXT_SHIFT 28 239 #define EXTENDED (1<<EXT_SHIFT) 240 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 241 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 242 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 243 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 244 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 245 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 246 247 #define DEV_NAME "xvd" /* name in /dev */ 248 249 /* 250 * Grants are always the same size as a Xen page (i.e 4KB). 251 * A physical segment is always the same size as a Linux page. 252 * Number of grants per physical segment 253 */ 254 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 255 256 #define GRANTS_PER_INDIRECT_FRAME \ 257 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 258 259 #define INDIRECT_GREFS(_grants) \ 260 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 261 262 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 263 static void blkfront_gather_backend_features(struct blkfront_info *info); 264 static int negotiate_mq(struct blkfront_info *info); 265 266 #define for_each_rinfo(info, ptr, idx) \ 267 for ((ptr) = (info)->rinfo, (idx) = 0; \ 268 (idx) < (info)->nr_rings; \ 269 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 270 271 static inline struct blkfront_ring_info * 272 get_rinfo(const struct blkfront_info *info, unsigned int i) 273 { 274 BUG_ON(i >= info->nr_rings); 275 return (void *)info->rinfo + i * info->rinfo_size; 276 } 277 278 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 279 { 280 unsigned long free = rinfo->shadow_free; 281 282 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 283 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 284 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 285 return free; 286 } 287 288 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 289 unsigned long id) 290 { 291 if (rinfo->shadow[id].req.u.rw.id != id) 292 return -EINVAL; 293 if (rinfo->shadow[id].request == NULL) 294 return -EINVAL; 295 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 296 rinfo->shadow[id].request = NULL; 297 rinfo->shadow_free = id; 298 return 0; 299 } 300 301 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 302 { 303 struct blkfront_info *info = rinfo->dev_info; 304 struct page *granted_page; 305 struct grant *gnt_list_entry, *n; 306 int i = 0; 307 308 while (i < num) { 309 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 310 if (!gnt_list_entry) 311 goto out_of_memory; 312 313 if (info->feature_persistent) { 314 granted_page = alloc_page(GFP_NOIO); 315 if (!granted_page) { 316 kfree(gnt_list_entry); 317 goto out_of_memory; 318 } 319 gnt_list_entry->page = granted_page; 320 } 321 322 gnt_list_entry->gref = GRANT_INVALID_REF; 323 list_add(&gnt_list_entry->node, &rinfo->grants); 324 i++; 325 } 326 327 return 0; 328 329 out_of_memory: 330 list_for_each_entry_safe(gnt_list_entry, n, 331 &rinfo->grants, node) { 332 list_del(&gnt_list_entry->node); 333 if (info->feature_persistent) 334 __free_page(gnt_list_entry->page); 335 kfree(gnt_list_entry); 336 i--; 337 } 338 BUG_ON(i != 0); 339 return -ENOMEM; 340 } 341 342 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 343 { 344 struct grant *gnt_list_entry; 345 346 BUG_ON(list_empty(&rinfo->grants)); 347 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 348 node); 349 list_del(&gnt_list_entry->node); 350 351 if (gnt_list_entry->gref != GRANT_INVALID_REF) 352 rinfo->persistent_gnts_c--; 353 354 return gnt_list_entry; 355 } 356 357 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 358 const struct blkfront_info *info) 359 { 360 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 361 info->xbdev->otherend_id, 362 gnt_list_entry->page, 363 0); 364 } 365 366 static struct grant *get_grant(grant_ref_t *gref_head, 367 unsigned long gfn, 368 struct blkfront_ring_info *rinfo) 369 { 370 struct grant *gnt_list_entry = get_free_grant(rinfo); 371 struct blkfront_info *info = rinfo->dev_info; 372 373 if (gnt_list_entry->gref != GRANT_INVALID_REF) 374 return gnt_list_entry; 375 376 /* Assign a gref to this page */ 377 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 378 BUG_ON(gnt_list_entry->gref == -ENOSPC); 379 if (info->feature_persistent) 380 grant_foreign_access(gnt_list_entry, info); 381 else { 382 /* Grant access to the GFN passed by the caller */ 383 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 384 info->xbdev->otherend_id, 385 gfn, 0); 386 } 387 388 return gnt_list_entry; 389 } 390 391 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 392 struct blkfront_ring_info *rinfo) 393 { 394 struct grant *gnt_list_entry = get_free_grant(rinfo); 395 struct blkfront_info *info = rinfo->dev_info; 396 397 if (gnt_list_entry->gref != GRANT_INVALID_REF) 398 return gnt_list_entry; 399 400 /* Assign a gref to this page */ 401 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 402 BUG_ON(gnt_list_entry->gref == -ENOSPC); 403 if (!info->feature_persistent) { 404 struct page *indirect_page; 405 406 /* Fetch a pre-allocated page to use for indirect grefs */ 407 BUG_ON(list_empty(&rinfo->indirect_pages)); 408 indirect_page = list_first_entry(&rinfo->indirect_pages, 409 struct page, lru); 410 list_del(&indirect_page->lru); 411 gnt_list_entry->page = indirect_page; 412 } 413 grant_foreign_access(gnt_list_entry, info); 414 415 return gnt_list_entry; 416 } 417 418 static const char *op_name(int op) 419 { 420 static const char *const names[] = { 421 [BLKIF_OP_READ] = "read", 422 [BLKIF_OP_WRITE] = "write", 423 [BLKIF_OP_WRITE_BARRIER] = "barrier", 424 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 425 [BLKIF_OP_DISCARD] = "discard" }; 426 427 if (op < 0 || op >= ARRAY_SIZE(names)) 428 return "unknown"; 429 430 if (!names[op]) 431 return "reserved"; 432 433 return names[op]; 434 } 435 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 436 { 437 unsigned int end = minor + nr; 438 int rc; 439 440 if (end > nr_minors) { 441 unsigned long *bitmap, *old; 442 443 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 444 GFP_KERNEL); 445 if (bitmap == NULL) 446 return -ENOMEM; 447 448 spin_lock(&minor_lock); 449 if (end > nr_minors) { 450 old = minors; 451 memcpy(bitmap, minors, 452 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 453 minors = bitmap; 454 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 455 } else 456 old = bitmap; 457 spin_unlock(&minor_lock); 458 kfree(old); 459 } 460 461 spin_lock(&minor_lock); 462 if (find_next_bit(minors, end, minor) >= end) { 463 bitmap_set(minors, minor, nr); 464 rc = 0; 465 } else 466 rc = -EBUSY; 467 spin_unlock(&minor_lock); 468 469 return rc; 470 } 471 472 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 473 { 474 unsigned int end = minor + nr; 475 476 BUG_ON(end > nr_minors); 477 spin_lock(&minor_lock); 478 bitmap_clear(minors, minor, nr); 479 spin_unlock(&minor_lock); 480 } 481 482 static void blkif_restart_queue_callback(void *arg) 483 { 484 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 485 schedule_work(&rinfo->work); 486 } 487 488 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 489 { 490 /* We don't have real geometry info, but let's at least return 491 values consistent with the size of the device */ 492 sector_t nsect = get_capacity(bd->bd_disk); 493 sector_t cylinders = nsect; 494 495 hg->heads = 0xff; 496 hg->sectors = 0x3f; 497 sector_div(cylinders, hg->heads * hg->sectors); 498 hg->cylinders = cylinders; 499 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 500 hg->cylinders = 0xffff; 501 return 0; 502 } 503 504 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 505 unsigned command, unsigned long argument) 506 { 507 int i; 508 509 switch (command) { 510 case CDROMMULTISESSION: 511 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 512 if (put_user(0, (char __user *)(argument + i))) 513 return -EFAULT; 514 return 0; 515 case CDROM_GET_CAPABILITY: 516 if (bdev->bd_disk->flags & GENHD_FL_CD) 517 return 0; 518 return -EINVAL; 519 default: 520 return -EINVAL; 521 } 522 } 523 524 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 525 struct request *req, 526 struct blkif_request **ring_req) 527 { 528 unsigned long id; 529 530 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 531 rinfo->ring.req_prod_pvt++; 532 533 id = get_id_from_freelist(rinfo); 534 rinfo->shadow[id].request = req; 535 rinfo->shadow[id].status = REQ_PROCESSING; 536 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 537 538 rinfo->shadow[id].req.u.rw.id = id; 539 540 return id; 541 } 542 543 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 544 { 545 struct blkfront_info *info = rinfo->dev_info; 546 struct blkif_request *ring_req, *final_ring_req; 547 unsigned long id; 548 549 /* Fill out a communications ring structure. */ 550 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 551 ring_req = &rinfo->shadow[id].req; 552 553 ring_req->operation = BLKIF_OP_DISCARD; 554 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 555 ring_req->u.discard.id = id; 556 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 557 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 558 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 559 else 560 ring_req->u.discard.flag = 0; 561 562 /* Copy the request to the ring page. */ 563 *final_ring_req = *ring_req; 564 rinfo->shadow[id].status = REQ_WAITING; 565 566 return 0; 567 } 568 569 struct setup_rw_req { 570 unsigned int grant_idx; 571 struct blkif_request_segment *segments; 572 struct blkfront_ring_info *rinfo; 573 struct blkif_request *ring_req; 574 grant_ref_t gref_head; 575 unsigned int id; 576 /* Only used when persistent grant is used and it's a read request */ 577 bool need_copy; 578 unsigned int bvec_off; 579 char *bvec_data; 580 581 bool require_extra_req; 582 struct blkif_request *extra_ring_req; 583 }; 584 585 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 586 unsigned int len, void *data) 587 { 588 struct setup_rw_req *setup = data; 589 int n, ref; 590 struct grant *gnt_list_entry; 591 unsigned int fsect, lsect; 592 /* Convenient aliases */ 593 unsigned int grant_idx = setup->grant_idx; 594 struct blkif_request *ring_req = setup->ring_req; 595 struct blkfront_ring_info *rinfo = setup->rinfo; 596 /* 597 * We always use the shadow of the first request to store the list 598 * of grant associated to the block I/O request. This made the 599 * completion more easy to handle even if the block I/O request is 600 * split. 601 */ 602 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 603 604 if (unlikely(setup->require_extra_req && 605 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 606 /* 607 * We are using the second request, setup grant_idx 608 * to be the index of the segment array. 609 */ 610 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 611 ring_req = setup->extra_ring_req; 612 } 613 614 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 615 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 616 if (setup->segments) 617 kunmap_atomic(setup->segments); 618 619 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 620 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 621 shadow->indirect_grants[n] = gnt_list_entry; 622 setup->segments = kmap_atomic(gnt_list_entry->page); 623 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 624 } 625 626 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 627 ref = gnt_list_entry->gref; 628 /* 629 * All the grants are stored in the shadow of the first 630 * request. Therefore we have to use the global index. 631 */ 632 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 633 634 if (setup->need_copy) { 635 void *shared_data; 636 637 shared_data = kmap_atomic(gnt_list_entry->page); 638 /* 639 * this does not wipe data stored outside the 640 * range sg->offset..sg->offset+sg->length. 641 * Therefore, blkback *could* see data from 642 * previous requests. This is OK as long as 643 * persistent grants are shared with just one 644 * domain. It may need refactoring if this 645 * changes 646 */ 647 memcpy(shared_data + offset, 648 setup->bvec_data + setup->bvec_off, 649 len); 650 651 kunmap_atomic(shared_data); 652 setup->bvec_off += len; 653 } 654 655 fsect = offset >> 9; 656 lsect = fsect + (len >> 9) - 1; 657 if (ring_req->operation != BLKIF_OP_INDIRECT) { 658 ring_req->u.rw.seg[grant_idx] = 659 (struct blkif_request_segment) { 660 .gref = ref, 661 .first_sect = fsect, 662 .last_sect = lsect }; 663 } else { 664 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 665 (struct blkif_request_segment) { 666 .gref = ref, 667 .first_sect = fsect, 668 .last_sect = lsect }; 669 } 670 671 (setup->grant_idx)++; 672 } 673 674 static void blkif_setup_extra_req(struct blkif_request *first, 675 struct blkif_request *second) 676 { 677 uint16_t nr_segments = first->u.rw.nr_segments; 678 679 /* 680 * The second request is only present when the first request uses 681 * all its segments. It's always the continuity of the first one. 682 */ 683 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 684 685 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 686 second->u.rw.sector_number = first->u.rw.sector_number + 687 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 688 689 second->u.rw.handle = first->u.rw.handle; 690 second->operation = first->operation; 691 } 692 693 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 694 { 695 struct blkfront_info *info = rinfo->dev_info; 696 struct blkif_request *ring_req, *extra_ring_req = NULL; 697 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL; 698 unsigned long id, extra_id = NO_ASSOCIATED_ID; 699 bool require_extra_req = false; 700 int i; 701 struct setup_rw_req setup = { 702 .grant_idx = 0, 703 .segments = NULL, 704 .rinfo = rinfo, 705 .need_copy = rq_data_dir(req) && info->feature_persistent, 706 }; 707 708 /* 709 * Used to store if we are able to queue the request by just using 710 * existing persistent grants, or if we have to get new grants, 711 * as there are not sufficiently many free. 712 */ 713 bool new_persistent_gnts = false; 714 struct scatterlist *sg; 715 int num_sg, max_grefs, num_grant; 716 717 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 718 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 719 /* 720 * If we are using indirect segments we need to account 721 * for the indirect grefs used in the request. 722 */ 723 max_grefs += INDIRECT_GREFS(max_grefs); 724 725 /* Check if we have enough persistent grants to allocate a requests */ 726 if (rinfo->persistent_gnts_c < max_grefs) { 727 new_persistent_gnts = true; 728 729 if (gnttab_alloc_grant_references( 730 max_grefs - rinfo->persistent_gnts_c, 731 &setup.gref_head) < 0) { 732 gnttab_request_free_callback( 733 &rinfo->callback, 734 blkif_restart_queue_callback, 735 rinfo, 736 max_grefs - rinfo->persistent_gnts_c); 737 return 1; 738 } 739 } 740 741 /* Fill out a communications ring structure. */ 742 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 743 ring_req = &rinfo->shadow[id].req; 744 745 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 746 num_grant = 0; 747 /* Calculate the number of grant used */ 748 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 749 num_grant += gnttab_count_grant(sg->offset, sg->length); 750 751 require_extra_req = info->max_indirect_segments == 0 && 752 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 753 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 754 755 rinfo->shadow[id].num_sg = num_sg; 756 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 757 likely(!require_extra_req)) { 758 /* 759 * The indirect operation can only be a BLKIF_OP_READ or 760 * BLKIF_OP_WRITE 761 */ 762 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 763 ring_req->operation = BLKIF_OP_INDIRECT; 764 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 765 BLKIF_OP_WRITE : BLKIF_OP_READ; 766 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 767 ring_req->u.indirect.handle = info->handle; 768 ring_req->u.indirect.nr_segments = num_grant; 769 } else { 770 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 771 ring_req->u.rw.handle = info->handle; 772 ring_req->operation = rq_data_dir(req) ? 773 BLKIF_OP_WRITE : BLKIF_OP_READ; 774 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 775 /* 776 * Ideally we can do an unordered flush-to-disk. 777 * In case the backend onlysupports barriers, use that. 778 * A barrier request a superset of FUA, so we can 779 * implement it the same way. (It's also a FLUSH+FUA, 780 * since it is guaranteed ordered WRT previous writes.) 781 */ 782 if (info->feature_flush && info->feature_fua) 783 ring_req->operation = 784 BLKIF_OP_WRITE_BARRIER; 785 else if (info->feature_flush) 786 ring_req->operation = 787 BLKIF_OP_FLUSH_DISKCACHE; 788 else 789 ring_req->operation = 0; 790 } 791 ring_req->u.rw.nr_segments = num_grant; 792 if (unlikely(require_extra_req)) { 793 extra_id = blkif_ring_get_request(rinfo, req, 794 &final_extra_ring_req); 795 extra_ring_req = &rinfo->shadow[extra_id].req; 796 797 /* 798 * Only the first request contains the scatter-gather 799 * list. 800 */ 801 rinfo->shadow[extra_id].num_sg = 0; 802 803 blkif_setup_extra_req(ring_req, extra_ring_req); 804 805 /* Link the 2 requests together */ 806 rinfo->shadow[extra_id].associated_id = id; 807 rinfo->shadow[id].associated_id = extra_id; 808 } 809 } 810 811 setup.ring_req = ring_req; 812 setup.id = id; 813 814 setup.require_extra_req = require_extra_req; 815 if (unlikely(require_extra_req)) 816 setup.extra_ring_req = extra_ring_req; 817 818 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 819 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 820 821 if (setup.need_copy) { 822 setup.bvec_off = sg->offset; 823 setup.bvec_data = kmap_atomic(sg_page(sg)); 824 } 825 826 gnttab_foreach_grant_in_range(sg_page(sg), 827 sg->offset, 828 sg->length, 829 blkif_setup_rw_req_grant, 830 &setup); 831 832 if (setup.need_copy) 833 kunmap_atomic(setup.bvec_data); 834 } 835 if (setup.segments) 836 kunmap_atomic(setup.segments); 837 838 /* Copy request(s) to the ring page. */ 839 *final_ring_req = *ring_req; 840 rinfo->shadow[id].status = REQ_WAITING; 841 if (unlikely(require_extra_req)) { 842 *final_extra_ring_req = *extra_ring_req; 843 rinfo->shadow[extra_id].status = REQ_WAITING; 844 } 845 846 if (new_persistent_gnts) 847 gnttab_free_grant_references(setup.gref_head); 848 849 return 0; 850 } 851 852 /* 853 * Generate a Xen blkfront IO request from a blk layer request. Reads 854 * and writes are handled as expected. 855 * 856 * @req: a request struct 857 */ 858 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 859 { 860 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 861 return 1; 862 863 if (unlikely(req_op(req) == REQ_OP_DISCARD || 864 req_op(req) == REQ_OP_SECURE_ERASE)) 865 return blkif_queue_discard_req(req, rinfo); 866 else 867 return blkif_queue_rw_req(req, rinfo); 868 } 869 870 static inline void flush_requests(struct blkfront_ring_info *rinfo) 871 { 872 int notify; 873 874 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 875 876 if (notify) 877 notify_remote_via_irq(rinfo->irq); 878 } 879 880 static inline bool blkif_request_flush_invalid(struct request *req, 881 struct blkfront_info *info) 882 { 883 return (blk_rq_is_passthrough(req) || 884 ((req_op(req) == REQ_OP_FLUSH) && 885 !info->feature_flush) || 886 ((req->cmd_flags & REQ_FUA) && 887 !info->feature_fua)); 888 } 889 890 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 891 const struct blk_mq_queue_data *qd) 892 { 893 unsigned long flags; 894 int qid = hctx->queue_num; 895 struct blkfront_info *info = hctx->queue->queuedata; 896 struct blkfront_ring_info *rinfo = NULL; 897 898 rinfo = get_rinfo(info, qid); 899 blk_mq_start_request(qd->rq); 900 spin_lock_irqsave(&rinfo->ring_lock, flags); 901 if (RING_FULL(&rinfo->ring)) 902 goto out_busy; 903 904 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 905 goto out_err; 906 907 if (blkif_queue_request(qd->rq, rinfo)) 908 goto out_busy; 909 910 flush_requests(rinfo); 911 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 912 return BLK_STS_OK; 913 914 out_err: 915 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 916 return BLK_STS_IOERR; 917 918 out_busy: 919 blk_mq_stop_hw_queue(hctx); 920 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 921 return BLK_STS_DEV_RESOURCE; 922 } 923 924 static void blkif_complete_rq(struct request *rq) 925 { 926 blk_mq_end_request(rq, blkif_req(rq)->error); 927 } 928 929 static const struct blk_mq_ops blkfront_mq_ops = { 930 .queue_rq = blkif_queue_rq, 931 .complete = blkif_complete_rq, 932 }; 933 934 static void blkif_set_queue_limits(struct blkfront_info *info) 935 { 936 struct request_queue *rq = info->rq; 937 struct gendisk *gd = info->gd; 938 unsigned int segments = info->max_indirect_segments ? : 939 BLKIF_MAX_SEGMENTS_PER_REQUEST; 940 941 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 942 943 if (info->feature_discard) { 944 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 945 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 946 rq->limits.discard_granularity = info->discard_granularity ?: 947 info->physical_sector_size; 948 rq->limits.discard_alignment = info->discard_alignment; 949 if (info->feature_secdiscard) 950 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 951 } 952 953 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 954 blk_queue_logical_block_size(rq, info->sector_size); 955 blk_queue_physical_block_size(rq, info->physical_sector_size); 956 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 957 958 /* Each segment in a request is up to an aligned page in size. */ 959 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 960 blk_queue_max_segment_size(rq, PAGE_SIZE); 961 962 /* Ensure a merged request will fit in a single I/O ring slot. */ 963 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 964 965 /* Make sure buffer addresses are sector-aligned. */ 966 blk_queue_dma_alignment(rq, 511); 967 } 968 969 static const char *flush_info(struct blkfront_info *info) 970 { 971 if (info->feature_flush && info->feature_fua) 972 return "barrier: enabled;"; 973 else if (info->feature_flush) 974 return "flush diskcache: enabled;"; 975 else 976 return "barrier or flush: disabled;"; 977 } 978 979 static void xlvbd_flush(struct blkfront_info *info) 980 { 981 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 982 info->feature_fua ? true : false); 983 pr_info("blkfront: %s: %s %s %s %s %s\n", 984 info->gd->disk_name, flush_info(info), 985 "persistent grants:", info->feature_persistent ? 986 "enabled;" : "disabled;", "indirect descriptors:", 987 info->max_indirect_segments ? "enabled;" : "disabled;"); 988 } 989 990 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 991 { 992 int major; 993 major = BLKIF_MAJOR(vdevice); 994 *minor = BLKIF_MINOR(vdevice); 995 switch (major) { 996 case XEN_IDE0_MAJOR: 997 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 998 *minor = ((*minor / 64) * PARTS_PER_DISK) + 999 EMULATED_HD_DISK_MINOR_OFFSET; 1000 break; 1001 case XEN_IDE1_MAJOR: 1002 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1003 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1004 EMULATED_HD_DISK_MINOR_OFFSET; 1005 break; 1006 case XEN_SCSI_DISK0_MAJOR: 1007 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1008 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1009 break; 1010 case XEN_SCSI_DISK1_MAJOR: 1011 case XEN_SCSI_DISK2_MAJOR: 1012 case XEN_SCSI_DISK3_MAJOR: 1013 case XEN_SCSI_DISK4_MAJOR: 1014 case XEN_SCSI_DISK5_MAJOR: 1015 case XEN_SCSI_DISK6_MAJOR: 1016 case XEN_SCSI_DISK7_MAJOR: 1017 *offset = (*minor / PARTS_PER_DISK) + 1018 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1019 EMULATED_SD_DISK_NAME_OFFSET; 1020 *minor = *minor + 1021 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1022 EMULATED_SD_DISK_MINOR_OFFSET; 1023 break; 1024 case XEN_SCSI_DISK8_MAJOR: 1025 case XEN_SCSI_DISK9_MAJOR: 1026 case XEN_SCSI_DISK10_MAJOR: 1027 case XEN_SCSI_DISK11_MAJOR: 1028 case XEN_SCSI_DISK12_MAJOR: 1029 case XEN_SCSI_DISK13_MAJOR: 1030 case XEN_SCSI_DISK14_MAJOR: 1031 case XEN_SCSI_DISK15_MAJOR: 1032 *offset = (*minor / PARTS_PER_DISK) + 1033 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1034 EMULATED_SD_DISK_NAME_OFFSET; 1035 *minor = *minor + 1036 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1037 EMULATED_SD_DISK_MINOR_OFFSET; 1038 break; 1039 case XENVBD_MAJOR: 1040 *offset = *minor / PARTS_PER_DISK; 1041 break; 1042 default: 1043 printk(KERN_WARNING "blkfront: your disk configuration is " 1044 "incorrect, please use an xvd device instead\n"); 1045 return -ENODEV; 1046 } 1047 return 0; 1048 } 1049 1050 static char *encode_disk_name(char *ptr, unsigned int n) 1051 { 1052 if (n >= 26) 1053 ptr = encode_disk_name(ptr, n / 26 - 1); 1054 *ptr = 'a' + n % 26; 1055 return ptr + 1; 1056 } 1057 1058 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1059 struct blkfront_info *info, 1060 u16 vdisk_info, u16 sector_size, 1061 unsigned int physical_sector_size) 1062 { 1063 struct gendisk *gd; 1064 int nr_minors = 1; 1065 int err; 1066 unsigned int offset; 1067 int minor; 1068 int nr_parts; 1069 char *ptr; 1070 1071 BUG_ON(info->gd != NULL); 1072 BUG_ON(info->rq != NULL); 1073 1074 if ((info->vdevice>>EXT_SHIFT) > 1) { 1075 /* this is above the extended range; something is wrong */ 1076 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1077 return -ENODEV; 1078 } 1079 1080 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1081 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1082 if (err) 1083 return err; 1084 nr_parts = PARTS_PER_DISK; 1085 } else { 1086 minor = BLKIF_MINOR_EXT(info->vdevice); 1087 nr_parts = PARTS_PER_EXT_DISK; 1088 offset = minor / nr_parts; 1089 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1090 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1091 "emulated IDE disks,\n\t choose an xvd device name" 1092 "from xvde on\n", info->vdevice); 1093 } 1094 if (minor >> MINORBITS) { 1095 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1096 info->vdevice, minor); 1097 return -ENODEV; 1098 } 1099 1100 if ((minor % nr_parts) == 0) 1101 nr_minors = nr_parts; 1102 1103 err = xlbd_reserve_minors(minor, nr_minors); 1104 if (err) 1105 return err; 1106 1107 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1108 info->tag_set.ops = &blkfront_mq_ops; 1109 info->tag_set.nr_hw_queues = info->nr_rings; 1110 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1111 /* 1112 * When indirect descriptior is not supported, the I/O request 1113 * will be split between multiple request in the ring. 1114 * To avoid problems when sending the request, divide by 1115 * 2 the depth of the queue. 1116 */ 1117 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1118 } else 1119 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1120 info->tag_set.numa_node = NUMA_NO_NODE; 1121 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1122 info->tag_set.cmd_size = sizeof(struct blkif_req); 1123 info->tag_set.driver_data = info; 1124 1125 err = blk_mq_alloc_tag_set(&info->tag_set); 1126 if (err) 1127 goto out_release_minors; 1128 1129 gd = blk_mq_alloc_disk(&info->tag_set, info); 1130 if (IS_ERR(gd)) { 1131 err = PTR_ERR(gd); 1132 goto out_free_tag_set; 1133 } 1134 1135 strcpy(gd->disk_name, DEV_NAME); 1136 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1137 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1138 if (nr_minors > 1) 1139 *ptr = 0; 1140 else 1141 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1142 "%d", minor & (nr_parts - 1)); 1143 1144 gd->major = XENVBD_MAJOR; 1145 gd->first_minor = minor; 1146 gd->minors = nr_minors; 1147 gd->fops = &xlvbd_block_fops; 1148 gd->private_data = info; 1149 set_capacity(gd, capacity); 1150 1151 info->rq = gd->queue; 1152 info->gd = gd; 1153 info->sector_size = sector_size; 1154 info->physical_sector_size = physical_sector_size; 1155 blkif_set_queue_limits(info); 1156 1157 xlvbd_flush(info); 1158 1159 if (vdisk_info & VDISK_READONLY) 1160 set_disk_ro(gd, 1); 1161 1162 if (vdisk_info & VDISK_REMOVABLE) 1163 gd->flags |= GENHD_FL_REMOVABLE; 1164 1165 if (vdisk_info & VDISK_CDROM) 1166 gd->flags |= GENHD_FL_CD; 1167 1168 return 0; 1169 1170 out_free_tag_set: 1171 blk_mq_free_tag_set(&info->tag_set); 1172 out_release_minors: 1173 xlbd_release_minors(minor, nr_minors); 1174 return err; 1175 } 1176 1177 /* Already hold rinfo->ring_lock. */ 1178 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1179 { 1180 if (!RING_FULL(&rinfo->ring)) 1181 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1182 } 1183 1184 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1185 { 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&rinfo->ring_lock, flags); 1189 kick_pending_request_queues_locked(rinfo); 1190 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1191 } 1192 1193 static void blkif_restart_queue(struct work_struct *work) 1194 { 1195 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1196 1197 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1198 kick_pending_request_queues(rinfo); 1199 } 1200 1201 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1202 { 1203 struct grant *persistent_gnt, *n; 1204 struct blkfront_info *info = rinfo->dev_info; 1205 int i, j, segs; 1206 1207 /* 1208 * Remove indirect pages, this only happens when using indirect 1209 * descriptors but not persistent grants 1210 */ 1211 if (!list_empty(&rinfo->indirect_pages)) { 1212 struct page *indirect_page, *n; 1213 1214 BUG_ON(info->feature_persistent); 1215 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1216 list_del(&indirect_page->lru); 1217 __free_page(indirect_page); 1218 } 1219 } 1220 1221 /* Remove all persistent grants. */ 1222 if (!list_empty(&rinfo->grants)) { 1223 list_for_each_entry_safe(persistent_gnt, n, 1224 &rinfo->grants, node) { 1225 list_del(&persistent_gnt->node); 1226 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1227 gnttab_end_foreign_access(persistent_gnt->gref, 1228 0, 0UL); 1229 rinfo->persistent_gnts_c--; 1230 } 1231 if (info->feature_persistent) 1232 __free_page(persistent_gnt->page); 1233 kfree(persistent_gnt); 1234 } 1235 } 1236 BUG_ON(rinfo->persistent_gnts_c != 0); 1237 1238 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1239 /* 1240 * Clear persistent grants present in requests already 1241 * on the shared ring 1242 */ 1243 if (!rinfo->shadow[i].request) 1244 goto free_shadow; 1245 1246 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1247 rinfo->shadow[i].req.u.indirect.nr_segments : 1248 rinfo->shadow[i].req.u.rw.nr_segments; 1249 for (j = 0; j < segs; j++) { 1250 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1251 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1252 if (info->feature_persistent) 1253 __free_page(persistent_gnt->page); 1254 kfree(persistent_gnt); 1255 } 1256 1257 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1258 /* 1259 * If this is not an indirect operation don't try to 1260 * free indirect segments 1261 */ 1262 goto free_shadow; 1263 1264 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1265 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1266 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1267 __free_page(persistent_gnt->page); 1268 kfree(persistent_gnt); 1269 } 1270 1271 free_shadow: 1272 kvfree(rinfo->shadow[i].grants_used); 1273 rinfo->shadow[i].grants_used = NULL; 1274 kvfree(rinfo->shadow[i].indirect_grants); 1275 rinfo->shadow[i].indirect_grants = NULL; 1276 kvfree(rinfo->shadow[i].sg); 1277 rinfo->shadow[i].sg = NULL; 1278 } 1279 1280 /* No more gnttab callback work. */ 1281 gnttab_cancel_free_callback(&rinfo->callback); 1282 1283 /* Flush gnttab callback work. Must be done with no locks held. */ 1284 flush_work(&rinfo->work); 1285 1286 /* Free resources associated with old device channel. */ 1287 for (i = 0; i < info->nr_ring_pages; i++) { 1288 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1289 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1290 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1291 } 1292 } 1293 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1294 rinfo->ring.sring = NULL; 1295 1296 if (rinfo->irq) 1297 unbind_from_irqhandler(rinfo->irq, rinfo); 1298 rinfo->evtchn = rinfo->irq = 0; 1299 } 1300 1301 static void blkif_free(struct blkfront_info *info, int suspend) 1302 { 1303 unsigned int i; 1304 struct blkfront_ring_info *rinfo; 1305 1306 /* Prevent new requests being issued until we fix things up. */ 1307 info->connected = suspend ? 1308 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1309 /* No more blkif_request(). */ 1310 if (info->rq) 1311 blk_mq_stop_hw_queues(info->rq); 1312 1313 for_each_rinfo(info, rinfo, i) 1314 blkif_free_ring(rinfo); 1315 1316 kvfree(info->rinfo); 1317 info->rinfo = NULL; 1318 info->nr_rings = 0; 1319 } 1320 1321 struct copy_from_grant { 1322 const struct blk_shadow *s; 1323 unsigned int grant_idx; 1324 unsigned int bvec_offset; 1325 char *bvec_data; 1326 }; 1327 1328 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1329 unsigned int len, void *data) 1330 { 1331 struct copy_from_grant *info = data; 1332 char *shared_data; 1333 /* Convenient aliases */ 1334 const struct blk_shadow *s = info->s; 1335 1336 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1337 1338 memcpy(info->bvec_data + info->bvec_offset, 1339 shared_data + offset, len); 1340 1341 info->bvec_offset += len; 1342 info->grant_idx++; 1343 1344 kunmap_atomic(shared_data); 1345 } 1346 1347 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1348 { 1349 switch (rsp) 1350 { 1351 case BLKIF_RSP_OKAY: 1352 return REQ_DONE; 1353 case BLKIF_RSP_EOPNOTSUPP: 1354 return REQ_EOPNOTSUPP; 1355 case BLKIF_RSP_ERROR: 1356 default: 1357 return REQ_ERROR; 1358 } 1359 } 1360 1361 /* 1362 * Get the final status of the block request based on two ring response 1363 */ 1364 static int blkif_get_final_status(enum blk_req_status s1, 1365 enum blk_req_status s2) 1366 { 1367 BUG_ON(s1 < REQ_DONE); 1368 BUG_ON(s2 < REQ_DONE); 1369 1370 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1371 return BLKIF_RSP_ERROR; 1372 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1373 return BLKIF_RSP_EOPNOTSUPP; 1374 return BLKIF_RSP_OKAY; 1375 } 1376 1377 static bool blkif_completion(unsigned long *id, 1378 struct blkfront_ring_info *rinfo, 1379 struct blkif_response *bret) 1380 { 1381 int i = 0; 1382 struct scatterlist *sg; 1383 int num_sg, num_grant; 1384 struct blkfront_info *info = rinfo->dev_info; 1385 struct blk_shadow *s = &rinfo->shadow[*id]; 1386 struct copy_from_grant data = { 1387 .grant_idx = 0, 1388 }; 1389 1390 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1391 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1392 1393 /* The I/O request may be split in two. */ 1394 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1395 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1396 1397 /* Keep the status of the current response in shadow. */ 1398 s->status = blkif_rsp_to_req_status(bret->status); 1399 1400 /* Wait the second response if not yet here. */ 1401 if (s2->status < REQ_DONE) 1402 return false; 1403 1404 bret->status = blkif_get_final_status(s->status, 1405 s2->status); 1406 1407 /* 1408 * All the grants is stored in the first shadow in order 1409 * to make the completion code simpler. 1410 */ 1411 num_grant += s2->req.u.rw.nr_segments; 1412 1413 /* 1414 * The two responses may not come in order. Only the 1415 * first request will store the scatter-gather list. 1416 */ 1417 if (s2->num_sg != 0) { 1418 /* Update "id" with the ID of the first response. */ 1419 *id = s->associated_id; 1420 s = s2; 1421 } 1422 1423 /* 1424 * We don't need anymore the second request, so recycling 1425 * it now. 1426 */ 1427 if (add_id_to_freelist(rinfo, s->associated_id)) 1428 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1429 info->gd->disk_name, s->associated_id); 1430 } 1431 1432 data.s = s; 1433 num_sg = s->num_sg; 1434 1435 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1436 for_each_sg(s->sg, sg, num_sg, i) { 1437 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1438 1439 data.bvec_offset = sg->offset; 1440 data.bvec_data = kmap_atomic(sg_page(sg)); 1441 1442 gnttab_foreach_grant_in_range(sg_page(sg), 1443 sg->offset, 1444 sg->length, 1445 blkif_copy_from_grant, 1446 &data); 1447 1448 kunmap_atomic(data.bvec_data); 1449 } 1450 } 1451 /* Add the persistent grant into the list of free grants */ 1452 for (i = 0; i < num_grant; i++) { 1453 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1454 /* 1455 * If the grant is still mapped by the backend (the 1456 * backend has chosen to make this grant persistent) 1457 * we add it at the head of the list, so it will be 1458 * reused first. 1459 */ 1460 if (!info->feature_persistent) 1461 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1462 s->grants_used[i]->gref); 1463 list_add(&s->grants_used[i]->node, &rinfo->grants); 1464 rinfo->persistent_gnts_c++; 1465 } else { 1466 /* 1467 * If the grant is not mapped by the backend we end the 1468 * foreign access and add it to the tail of the list, 1469 * so it will not be picked again unless we run out of 1470 * persistent grants. 1471 */ 1472 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1473 s->grants_used[i]->gref = GRANT_INVALID_REF; 1474 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1475 } 1476 } 1477 if (s->req.operation == BLKIF_OP_INDIRECT) { 1478 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1479 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1480 if (!info->feature_persistent) 1481 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1482 s->indirect_grants[i]->gref); 1483 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1484 rinfo->persistent_gnts_c++; 1485 } else { 1486 struct page *indirect_page; 1487 1488 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1489 /* 1490 * Add the used indirect page back to the list of 1491 * available pages for indirect grefs. 1492 */ 1493 if (!info->feature_persistent) { 1494 indirect_page = s->indirect_grants[i]->page; 1495 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1496 } 1497 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1498 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1499 } 1500 } 1501 } 1502 1503 return true; 1504 } 1505 1506 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1507 { 1508 struct request *req; 1509 struct blkif_response bret; 1510 RING_IDX i, rp; 1511 unsigned long flags; 1512 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1513 struct blkfront_info *info = rinfo->dev_info; 1514 1515 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1516 return IRQ_HANDLED; 1517 1518 spin_lock_irqsave(&rinfo->ring_lock, flags); 1519 again: 1520 rp = READ_ONCE(rinfo->ring.sring->rsp_prod); 1521 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */ 1522 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) { 1523 pr_alert("%s: illegal number of responses %u\n", 1524 info->gd->disk_name, rp - rinfo->ring.rsp_cons); 1525 goto err; 1526 } 1527 1528 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1529 unsigned long id; 1530 unsigned int op; 1531 1532 RING_COPY_RESPONSE(&rinfo->ring, i, &bret); 1533 id = bret.id; 1534 1535 /* 1536 * The backend has messed up and given us an id that we would 1537 * never have given to it (we stamp it up to BLK_RING_SIZE - 1538 * look in get_id_from_freelist. 1539 */ 1540 if (id >= BLK_RING_SIZE(info)) { 1541 pr_alert("%s: response has incorrect id (%ld)\n", 1542 info->gd->disk_name, id); 1543 goto err; 1544 } 1545 if (rinfo->shadow[id].status != REQ_WAITING) { 1546 pr_alert("%s: response references no pending request\n", 1547 info->gd->disk_name); 1548 goto err; 1549 } 1550 1551 rinfo->shadow[id].status = REQ_PROCESSING; 1552 req = rinfo->shadow[id].request; 1553 1554 op = rinfo->shadow[id].req.operation; 1555 if (op == BLKIF_OP_INDIRECT) 1556 op = rinfo->shadow[id].req.u.indirect.indirect_op; 1557 if (bret.operation != op) { 1558 pr_alert("%s: response has wrong operation (%u instead of %u)\n", 1559 info->gd->disk_name, bret.operation, op); 1560 goto err; 1561 } 1562 1563 if (bret.operation != BLKIF_OP_DISCARD) { 1564 /* 1565 * We may need to wait for an extra response if the 1566 * I/O request is split in 2 1567 */ 1568 if (!blkif_completion(&id, rinfo, &bret)) 1569 continue; 1570 } 1571 1572 if (add_id_to_freelist(rinfo, id)) { 1573 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1574 info->gd->disk_name, op_name(bret.operation), id); 1575 continue; 1576 } 1577 1578 if (bret.status == BLKIF_RSP_OKAY) 1579 blkif_req(req)->error = BLK_STS_OK; 1580 else 1581 blkif_req(req)->error = BLK_STS_IOERR; 1582 1583 switch (bret.operation) { 1584 case BLKIF_OP_DISCARD: 1585 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1586 struct request_queue *rq = info->rq; 1587 1588 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1589 info->gd->disk_name, op_name(bret.operation)); 1590 blkif_req(req)->error = BLK_STS_NOTSUPP; 1591 info->feature_discard = 0; 1592 info->feature_secdiscard = 0; 1593 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1594 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1595 } 1596 break; 1597 case BLKIF_OP_FLUSH_DISKCACHE: 1598 case BLKIF_OP_WRITE_BARRIER: 1599 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1600 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1601 info->gd->disk_name, op_name(bret.operation)); 1602 blkif_req(req)->error = BLK_STS_NOTSUPP; 1603 } 1604 if (unlikely(bret.status == BLKIF_RSP_ERROR && 1605 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1606 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n", 1607 info->gd->disk_name, op_name(bret.operation)); 1608 blkif_req(req)->error = BLK_STS_NOTSUPP; 1609 } 1610 if (unlikely(blkif_req(req)->error)) { 1611 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1612 blkif_req(req)->error = BLK_STS_OK; 1613 info->feature_fua = 0; 1614 info->feature_flush = 0; 1615 xlvbd_flush(info); 1616 } 1617 fallthrough; 1618 case BLKIF_OP_READ: 1619 case BLKIF_OP_WRITE: 1620 if (unlikely(bret.status != BLKIF_RSP_OKAY)) 1621 dev_dbg_ratelimited(&info->xbdev->dev, 1622 "Bad return from blkdev data request: %#x\n", 1623 bret.status); 1624 1625 break; 1626 default: 1627 BUG(); 1628 } 1629 1630 if (likely(!blk_should_fake_timeout(req->q))) 1631 blk_mq_complete_request(req); 1632 } 1633 1634 rinfo->ring.rsp_cons = i; 1635 1636 if (i != rinfo->ring.req_prod_pvt) { 1637 int more_to_do; 1638 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1639 if (more_to_do) 1640 goto again; 1641 } else 1642 rinfo->ring.sring->rsp_event = i + 1; 1643 1644 kick_pending_request_queues_locked(rinfo); 1645 1646 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1647 1648 return IRQ_HANDLED; 1649 1650 err: 1651 info->connected = BLKIF_STATE_ERROR; 1652 1653 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1654 1655 pr_alert("%s disabled for further use\n", info->gd->disk_name); 1656 return IRQ_HANDLED; 1657 } 1658 1659 1660 static int setup_blkring(struct xenbus_device *dev, 1661 struct blkfront_ring_info *rinfo) 1662 { 1663 struct blkif_sring *sring; 1664 int err, i; 1665 struct blkfront_info *info = rinfo->dev_info; 1666 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1667 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1668 1669 for (i = 0; i < info->nr_ring_pages; i++) 1670 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1671 1672 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1673 get_order(ring_size)); 1674 if (!sring) { 1675 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1676 return -ENOMEM; 1677 } 1678 SHARED_RING_INIT(sring); 1679 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1680 1681 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1682 if (err < 0) { 1683 free_pages((unsigned long)sring, get_order(ring_size)); 1684 rinfo->ring.sring = NULL; 1685 goto fail; 1686 } 1687 for (i = 0; i < info->nr_ring_pages; i++) 1688 rinfo->ring_ref[i] = gref[i]; 1689 1690 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1691 if (err) 1692 goto fail; 1693 1694 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1695 "blkif", rinfo); 1696 if (err <= 0) { 1697 xenbus_dev_fatal(dev, err, 1698 "bind_evtchn_to_irqhandler failed"); 1699 goto fail; 1700 } 1701 rinfo->irq = err; 1702 1703 return 0; 1704 fail: 1705 blkif_free(info, 0); 1706 return err; 1707 } 1708 1709 /* 1710 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1711 * ring buffer may have multi pages depending on ->nr_ring_pages. 1712 */ 1713 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1714 struct blkfront_ring_info *rinfo, const char *dir) 1715 { 1716 int err; 1717 unsigned int i; 1718 const char *message = NULL; 1719 struct blkfront_info *info = rinfo->dev_info; 1720 1721 if (info->nr_ring_pages == 1) { 1722 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1723 if (err) { 1724 message = "writing ring-ref"; 1725 goto abort_transaction; 1726 } 1727 } else { 1728 for (i = 0; i < info->nr_ring_pages; i++) { 1729 char ring_ref_name[RINGREF_NAME_LEN]; 1730 1731 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1732 err = xenbus_printf(xbt, dir, ring_ref_name, 1733 "%u", rinfo->ring_ref[i]); 1734 if (err) { 1735 message = "writing ring-ref"; 1736 goto abort_transaction; 1737 } 1738 } 1739 } 1740 1741 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1742 if (err) { 1743 message = "writing event-channel"; 1744 goto abort_transaction; 1745 } 1746 1747 return 0; 1748 1749 abort_transaction: 1750 xenbus_transaction_end(xbt, 1); 1751 if (message) 1752 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1753 1754 return err; 1755 } 1756 1757 /* Common code used when first setting up, and when resuming. */ 1758 static int talk_to_blkback(struct xenbus_device *dev, 1759 struct blkfront_info *info) 1760 { 1761 const char *message = NULL; 1762 struct xenbus_transaction xbt; 1763 int err; 1764 unsigned int i, max_page_order; 1765 unsigned int ring_page_order; 1766 struct blkfront_ring_info *rinfo; 1767 1768 if (!info) 1769 return -ENODEV; 1770 1771 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1772 "max-ring-page-order", 0); 1773 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1774 info->nr_ring_pages = 1 << ring_page_order; 1775 1776 err = negotiate_mq(info); 1777 if (err) 1778 goto destroy_blkring; 1779 1780 for_each_rinfo(info, rinfo, i) { 1781 /* Create shared ring, alloc event channel. */ 1782 err = setup_blkring(dev, rinfo); 1783 if (err) 1784 goto destroy_blkring; 1785 } 1786 1787 again: 1788 err = xenbus_transaction_start(&xbt); 1789 if (err) { 1790 xenbus_dev_fatal(dev, err, "starting transaction"); 1791 goto destroy_blkring; 1792 } 1793 1794 if (info->nr_ring_pages > 1) { 1795 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1796 ring_page_order); 1797 if (err) { 1798 message = "writing ring-page-order"; 1799 goto abort_transaction; 1800 } 1801 } 1802 1803 /* We already got the number of queues/rings in _probe */ 1804 if (info->nr_rings == 1) { 1805 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1806 if (err) 1807 goto destroy_blkring; 1808 } else { 1809 char *path; 1810 size_t pathsize; 1811 1812 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1813 info->nr_rings); 1814 if (err) { 1815 message = "writing multi-queue-num-queues"; 1816 goto abort_transaction; 1817 } 1818 1819 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1820 path = kmalloc(pathsize, GFP_KERNEL); 1821 if (!path) { 1822 err = -ENOMEM; 1823 message = "ENOMEM while writing ring references"; 1824 goto abort_transaction; 1825 } 1826 1827 for_each_rinfo(info, rinfo, i) { 1828 memset(path, 0, pathsize); 1829 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1830 err = write_per_ring_nodes(xbt, rinfo, path); 1831 if (err) { 1832 kfree(path); 1833 goto destroy_blkring; 1834 } 1835 } 1836 kfree(path); 1837 } 1838 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1839 XEN_IO_PROTO_ABI_NATIVE); 1840 if (err) { 1841 message = "writing protocol"; 1842 goto abort_transaction; 1843 } 1844 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1845 info->feature_persistent); 1846 if (err) 1847 dev_warn(&dev->dev, 1848 "writing persistent grants feature to xenbus"); 1849 1850 err = xenbus_transaction_end(xbt, 0); 1851 if (err) { 1852 if (err == -EAGAIN) 1853 goto again; 1854 xenbus_dev_fatal(dev, err, "completing transaction"); 1855 goto destroy_blkring; 1856 } 1857 1858 for_each_rinfo(info, rinfo, i) { 1859 unsigned int j; 1860 1861 for (j = 0; j < BLK_RING_SIZE(info); j++) 1862 rinfo->shadow[j].req.u.rw.id = j + 1; 1863 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1864 } 1865 xenbus_switch_state(dev, XenbusStateInitialised); 1866 1867 return 0; 1868 1869 abort_transaction: 1870 xenbus_transaction_end(xbt, 1); 1871 if (message) 1872 xenbus_dev_fatal(dev, err, "%s", message); 1873 destroy_blkring: 1874 blkif_free(info, 0); 1875 return err; 1876 } 1877 1878 static int negotiate_mq(struct blkfront_info *info) 1879 { 1880 unsigned int backend_max_queues; 1881 unsigned int i; 1882 struct blkfront_ring_info *rinfo; 1883 1884 BUG_ON(info->nr_rings); 1885 1886 /* Check if backend supports multiple queues. */ 1887 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1888 "multi-queue-max-queues", 1); 1889 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1890 /* We need at least one ring. */ 1891 if (!info->nr_rings) 1892 info->nr_rings = 1; 1893 1894 info->rinfo_size = struct_size(info->rinfo, shadow, 1895 BLK_RING_SIZE(info)); 1896 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1897 if (!info->rinfo) { 1898 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1899 info->nr_rings = 0; 1900 return -ENOMEM; 1901 } 1902 1903 for_each_rinfo(info, rinfo, i) { 1904 INIT_LIST_HEAD(&rinfo->indirect_pages); 1905 INIT_LIST_HEAD(&rinfo->grants); 1906 rinfo->dev_info = info; 1907 INIT_WORK(&rinfo->work, blkif_restart_queue); 1908 spin_lock_init(&rinfo->ring_lock); 1909 } 1910 return 0; 1911 } 1912 1913 /* Enable the persistent grants feature. */ 1914 static bool feature_persistent = true; 1915 module_param(feature_persistent, bool, 0644); 1916 MODULE_PARM_DESC(feature_persistent, 1917 "Enables the persistent grants feature"); 1918 1919 /* 1920 * Entry point to this code when a new device is created. Allocate the basic 1921 * structures and the ring buffer for communication with the backend, and 1922 * inform the backend of the appropriate details for those. Switch to 1923 * Initialised state. 1924 */ 1925 static int blkfront_probe(struct xenbus_device *dev, 1926 const struct xenbus_device_id *id) 1927 { 1928 int err, vdevice; 1929 struct blkfront_info *info; 1930 1931 /* FIXME: Use dynamic device id if this is not set. */ 1932 err = xenbus_scanf(XBT_NIL, dev->nodename, 1933 "virtual-device", "%i", &vdevice); 1934 if (err != 1) { 1935 /* go looking in the extended area instead */ 1936 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1937 "%i", &vdevice); 1938 if (err != 1) { 1939 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1940 return err; 1941 } 1942 } 1943 1944 if (xen_hvm_domain()) { 1945 char *type; 1946 int len; 1947 /* no unplug has been done: do not hook devices != xen vbds */ 1948 if (xen_has_pv_and_legacy_disk_devices()) { 1949 int major; 1950 1951 if (!VDEV_IS_EXTENDED(vdevice)) 1952 major = BLKIF_MAJOR(vdevice); 1953 else 1954 major = XENVBD_MAJOR; 1955 1956 if (major != XENVBD_MAJOR) { 1957 printk(KERN_INFO 1958 "%s: HVM does not support vbd %d as xen block device\n", 1959 __func__, vdevice); 1960 return -ENODEV; 1961 } 1962 } 1963 /* do not create a PV cdrom device if we are an HVM guest */ 1964 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1965 if (IS_ERR(type)) 1966 return -ENODEV; 1967 if (strncmp(type, "cdrom", 5) == 0) { 1968 kfree(type); 1969 return -ENODEV; 1970 } 1971 kfree(type); 1972 } 1973 info = kzalloc(sizeof(*info), GFP_KERNEL); 1974 if (!info) { 1975 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1976 return -ENOMEM; 1977 } 1978 1979 info->xbdev = dev; 1980 1981 mutex_init(&info->mutex); 1982 info->vdevice = vdevice; 1983 info->connected = BLKIF_STATE_DISCONNECTED; 1984 1985 info->feature_persistent = feature_persistent; 1986 1987 /* Front end dir is a number, which is used as the id. */ 1988 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1989 dev_set_drvdata(&dev->dev, info); 1990 1991 mutex_lock(&blkfront_mutex); 1992 list_add(&info->info_list, &info_list); 1993 mutex_unlock(&blkfront_mutex); 1994 1995 return 0; 1996 } 1997 1998 static int blkif_recover(struct blkfront_info *info) 1999 { 2000 unsigned int r_index; 2001 struct request *req, *n; 2002 int rc; 2003 struct bio *bio; 2004 unsigned int segs; 2005 struct blkfront_ring_info *rinfo; 2006 2007 blkfront_gather_backend_features(info); 2008 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2009 blkif_set_queue_limits(info); 2010 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2011 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2012 2013 for_each_rinfo(info, rinfo, r_index) { 2014 rc = blkfront_setup_indirect(rinfo); 2015 if (rc) 2016 return rc; 2017 } 2018 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2019 2020 /* Now safe for us to use the shared ring */ 2021 info->connected = BLKIF_STATE_CONNECTED; 2022 2023 for_each_rinfo(info, rinfo, r_index) { 2024 /* Kick any other new requests queued since we resumed */ 2025 kick_pending_request_queues(rinfo); 2026 } 2027 2028 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2029 /* Requeue pending requests (flush or discard) */ 2030 list_del_init(&req->queuelist); 2031 BUG_ON(req->nr_phys_segments > segs); 2032 blk_mq_requeue_request(req, false); 2033 } 2034 blk_mq_start_stopped_hw_queues(info->rq, true); 2035 blk_mq_kick_requeue_list(info->rq); 2036 2037 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2038 /* Traverse the list of pending bios and re-queue them */ 2039 submit_bio(bio); 2040 } 2041 2042 return 0; 2043 } 2044 2045 /* 2046 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2047 * driver restart. We tear down our blkif structure and recreate it, but 2048 * leave the device-layer structures intact so that this is transparent to the 2049 * rest of the kernel. 2050 */ 2051 static int blkfront_resume(struct xenbus_device *dev) 2052 { 2053 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2054 int err = 0; 2055 unsigned int i, j; 2056 struct blkfront_ring_info *rinfo; 2057 2058 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2059 2060 bio_list_init(&info->bio_list); 2061 INIT_LIST_HEAD(&info->requests); 2062 for_each_rinfo(info, rinfo, i) { 2063 struct bio_list merge_bio; 2064 struct blk_shadow *shadow = rinfo->shadow; 2065 2066 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2067 /* Not in use? */ 2068 if (!shadow[j].request) 2069 continue; 2070 2071 /* 2072 * Get the bios in the request so we can re-queue them. 2073 */ 2074 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2075 req_op(shadow[j].request) == REQ_OP_DISCARD || 2076 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2077 shadow[j].request->cmd_flags & REQ_FUA) { 2078 /* 2079 * Flush operations don't contain bios, so 2080 * we need to requeue the whole request 2081 * 2082 * XXX: but this doesn't make any sense for a 2083 * write with the FUA flag set.. 2084 */ 2085 list_add(&shadow[j].request->queuelist, &info->requests); 2086 continue; 2087 } 2088 merge_bio.head = shadow[j].request->bio; 2089 merge_bio.tail = shadow[j].request->biotail; 2090 bio_list_merge(&info->bio_list, &merge_bio); 2091 shadow[j].request->bio = NULL; 2092 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2093 } 2094 } 2095 2096 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2097 2098 err = talk_to_blkback(dev, info); 2099 if (!err) 2100 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2101 2102 /* 2103 * We have to wait for the backend to switch to 2104 * connected state, since we want to read which 2105 * features it supports. 2106 */ 2107 2108 return err; 2109 } 2110 2111 static void blkfront_closing(struct blkfront_info *info) 2112 { 2113 struct xenbus_device *xbdev = info->xbdev; 2114 struct blkfront_ring_info *rinfo; 2115 unsigned int i; 2116 2117 if (xbdev->state == XenbusStateClosing) 2118 return; 2119 2120 /* No more blkif_request(). */ 2121 blk_mq_stop_hw_queues(info->rq); 2122 blk_set_queue_dying(info->rq); 2123 set_capacity(info->gd, 0); 2124 2125 for_each_rinfo(info, rinfo, i) { 2126 /* No more gnttab callback work. */ 2127 gnttab_cancel_free_callback(&rinfo->callback); 2128 2129 /* Flush gnttab callback work. Must be done with no locks held. */ 2130 flush_work(&rinfo->work); 2131 } 2132 2133 xenbus_frontend_closed(xbdev); 2134 } 2135 2136 static void blkfront_setup_discard(struct blkfront_info *info) 2137 { 2138 info->feature_discard = 1; 2139 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2140 "discard-granularity", 2141 0); 2142 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2143 "discard-alignment", 0); 2144 info->feature_secdiscard = 2145 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2146 0); 2147 } 2148 2149 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2150 { 2151 unsigned int psegs, grants, memflags; 2152 int err, i; 2153 struct blkfront_info *info = rinfo->dev_info; 2154 2155 memflags = memalloc_noio_save(); 2156 2157 if (info->max_indirect_segments == 0) { 2158 if (!HAS_EXTRA_REQ) 2159 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2160 else { 2161 /* 2162 * When an extra req is required, the maximum 2163 * grants supported is related to the size of the 2164 * Linux block segment. 2165 */ 2166 grants = GRANTS_PER_PSEG; 2167 } 2168 } 2169 else 2170 grants = info->max_indirect_segments; 2171 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2172 2173 err = fill_grant_buffer(rinfo, 2174 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2175 if (err) 2176 goto out_of_memory; 2177 2178 if (!info->feature_persistent && info->max_indirect_segments) { 2179 /* 2180 * We are using indirect descriptors but not persistent 2181 * grants, we need to allocate a set of pages that can be 2182 * used for mapping indirect grefs 2183 */ 2184 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2185 2186 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2187 for (i = 0; i < num; i++) { 2188 struct page *indirect_page = alloc_page(GFP_KERNEL); 2189 if (!indirect_page) 2190 goto out_of_memory; 2191 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2192 } 2193 } 2194 2195 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2196 rinfo->shadow[i].grants_used = 2197 kvcalloc(grants, 2198 sizeof(rinfo->shadow[i].grants_used[0]), 2199 GFP_KERNEL); 2200 rinfo->shadow[i].sg = kvcalloc(psegs, 2201 sizeof(rinfo->shadow[i].sg[0]), 2202 GFP_KERNEL); 2203 if (info->max_indirect_segments) 2204 rinfo->shadow[i].indirect_grants = 2205 kvcalloc(INDIRECT_GREFS(grants), 2206 sizeof(rinfo->shadow[i].indirect_grants[0]), 2207 GFP_KERNEL); 2208 if ((rinfo->shadow[i].grants_used == NULL) || 2209 (rinfo->shadow[i].sg == NULL) || 2210 (info->max_indirect_segments && 2211 (rinfo->shadow[i].indirect_grants == NULL))) 2212 goto out_of_memory; 2213 sg_init_table(rinfo->shadow[i].sg, psegs); 2214 } 2215 2216 memalloc_noio_restore(memflags); 2217 2218 return 0; 2219 2220 out_of_memory: 2221 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2222 kvfree(rinfo->shadow[i].grants_used); 2223 rinfo->shadow[i].grants_used = NULL; 2224 kvfree(rinfo->shadow[i].sg); 2225 rinfo->shadow[i].sg = NULL; 2226 kvfree(rinfo->shadow[i].indirect_grants); 2227 rinfo->shadow[i].indirect_grants = NULL; 2228 } 2229 if (!list_empty(&rinfo->indirect_pages)) { 2230 struct page *indirect_page, *n; 2231 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2232 list_del(&indirect_page->lru); 2233 __free_page(indirect_page); 2234 } 2235 } 2236 2237 memalloc_noio_restore(memflags); 2238 2239 return -ENOMEM; 2240 } 2241 2242 /* 2243 * Gather all backend feature-* 2244 */ 2245 static void blkfront_gather_backend_features(struct blkfront_info *info) 2246 { 2247 unsigned int indirect_segments; 2248 2249 info->feature_flush = 0; 2250 info->feature_fua = 0; 2251 2252 /* 2253 * If there's no "feature-barrier" defined, then it means 2254 * we're dealing with a very old backend which writes 2255 * synchronously; nothing to do. 2256 * 2257 * If there are barriers, then we use flush. 2258 */ 2259 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2260 info->feature_flush = 1; 2261 info->feature_fua = 1; 2262 } 2263 2264 /* 2265 * And if there is "feature-flush-cache" use that above 2266 * barriers. 2267 */ 2268 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2269 0)) { 2270 info->feature_flush = 1; 2271 info->feature_fua = 0; 2272 } 2273 2274 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2275 blkfront_setup_discard(info); 2276 2277 if (info->feature_persistent) 2278 info->feature_persistent = 2279 !!xenbus_read_unsigned(info->xbdev->otherend, 2280 "feature-persistent", 0); 2281 2282 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2283 "feature-max-indirect-segments", 0); 2284 if (indirect_segments > xen_blkif_max_segments) 2285 indirect_segments = xen_blkif_max_segments; 2286 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2287 indirect_segments = 0; 2288 info->max_indirect_segments = indirect_segments; 2289 2290 if (info->feature_persistent) { 2291 mutex_lock(&blkfront_mutex); 2292 schedule_delayed_work(&blkfront_work, HZ * 10); 2293 mutex_unlock(&blkfront_mutex); 2294 } 2295 } 2296 2297 /* 2298 * Invoked when the backend is finally 'ready' (and has told produced 2299 * the details about the physical device - #sectors, size, etc). 2300 */ 2301 static void blkfront_connect(struct blkfront_info *info) 2302 { 2303 unsigned long long sectors; 2304 unsigned long sector_size; 2305 unsigned int physical_sector_size; 2306 unsigned int binfo; 2307 int err, i; 2308 struct blkfront_ring_info *rinfo; 2309 2310 switch (info->connected) { 2311 case BLKIF_STATE_CONNECTED: 2312 /* 2313 * Potentially, the back-end may be signalling 2314 * a capacity change; update the capacity. 2315 */ 2316 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2317 "sectors", "%Lu", §ors); 2318 if (XENBUS_EXIST_ERR(err)) 2319 return; 2320 printk(KERN_INFO "Setting capacity to %Lu\n", 2321 sectors); 2322 set_capacity_and_notify(info->gd, sectors); 2323 2324 return; 2325 case BLKIF_STATE_SUSPENDED: 2326 /* 2327 * If we are recovering from suspension, we need to wait 2328 * for the backend to announce it's features before 2329 * reconnecting, at least we need to know if the backend 2330 * supports indirect descriptors, and how many. 2331 */ 2332 blkif_recover(info); 2333 return; 2334 2335 default: 2336 break; 2337 } 2338 2339 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2340 __func__, info->xbdev->otherend); 2341 2342 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2343 "sectors", "%llu", §ors, 2344 "info", "%u", &binfo, 2345 "sector-size", "%lu", §or_size, 2346 NULL); 2347 if (err) { 2348 xenbus_dev_fatal(info->xbdev, err, 2349 "reading backend fields at %s", 2350 info->xbdev->otherend); 2351 return; 2352 } 2353 2354 /* 2355 * physical-sector-size is a newer field, so old backends may not 2356 * provide this. Assume physical sector size to be the same as 2357 * sector_size in that case. 2358 */ 2359 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2360 "physical-sector-size", 2361 sector_size); 2362 blkfront_gather_backend_features(info); 2363 for_each_rinfo(info, rinfo, i) { 2364 err = blkfront_setup_indirect(rinfo); 2365 if (err) { 2366 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2367 info->xbdev->otherend); 2368 blkif_free(info, 0); 2369 break; 2370 } 2371 } 2372 2373 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2374 physical_sector_size); 2375 if (err) { 2376 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2377 info->xbdev->otherend); 2378 goto fail; 2379 } 2380 2381 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2382 2383 /* Kick pending requests. */ 2384 info->connected = BLKIF_STATE_CONNECTED; 2385 for_each_rinfo(info, rinfo, i) 2386 kick_pending_request_queues(rinfo); 2387 2388 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2389 2390 info->is_ready = 1; 2391 return; 2392 2393 fail: 2394 blkif_free(info, 0); 2395 return; 2396 } 2397 2398 /* 2399 * Callback received when the backend's state changes. 2400 */ 2401 static void blkback_changed(struct xenbus_device *dev, 2402 enum xenbus_state backend_state) 2403 { 2404 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2405 2406 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2407 2408 switch (backend_state) { 2409 case XenbusStateInitWait: 2410 if (dev->state != XenbusStateInitialising) 2411 break; 2412 if (talk_to_blkback(dev, info)) 2413 break; 2414 break; 2415 case XenbusStateInitialising: 2416 case XenbusStateInitialised: 2417 case XenbusStateReconfiguring: 2418 case XenbusStateReconfigured: 2419 case XenbusStateUnknown: 2420 break; 2421 2422 case XenbusStateConnected: 2423 /* 2424 * talk_to_blkback sets state to XenbusStateInitialised 2425 * and blkfront_connect sets it to XenbusStateConnected 2426 * (if connection went OK). 2427 * 2428 * If the backend (or toolstack) decides to poke at backend 2429 * state (and re-trigger the watch by setting the state repeatedly 2430 * to XenbusStateConnected (4)) we need to deal with this. 2431 * This is allowed as this is used to communicate to the guest 2432 * that the size of disk has changed! 2433 */ 2434 if ((dev->state != XenbusStateInitialised) && 2435 (dev->state != XenbusStateConnected)) { 2436 if (talk_to_blkback(dev, info)) 2437 break; 2438 } 2439 2440 blkfront_connect(info); 2441 break; 2442 2443 case XenbusStateClosed: 2444 if (dev->state == XenbusStateClosed) 2445 break; 2446 fallthrough; 2447 case XenbusStateClosing: 2448 blkfront_closing(info); 2449 break; 2450 } 2451 } 2452 2453 static int blkfront_remove(struct xenbus_device *xbdev) 2454 { 2455 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2456 2457 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2458 2459 del_gendisk(info->gd); 2460 2461 mutex_lock(&blkfront_mutex); 2462 list_del(&info->info_list); 2463 mutex_unlock(&blkfront_mutex); 2464 2465 blkif_free(info, 0); 2466 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2467 blk_cleanup_disk(info->gd); 2468 blk_mq_free_tag_set(&info->tag_set); 2469 2470 kfree(info); 2471 return 0; 2472 } 2473 2474 static int blkfront_is_ready(struct xenbus_device *dev) 2475 { 2476 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2477 2478 return info->is_ready && info->xbdev; 2479 } 2480 2481 static const struct block_device_operations xlvbd_block_fops = 2482 { 2483 .owner = THIS_MODULE, 2484 .getgeo = blkif_getgeo, 2485 .ioctl = blkif_ioctl, 2486 .compat_ioctl = blkdev_compat_ptr_ioctl, 2487 }; 2488 2489 2490 static const struct xenbus_device_id blkfront_ids[] = { 2491 { "vbd" }, 2492 { "" } 2493 }; 2494 2495 static struct xenbus_driver blkfront_driver = { 2496 .ids = blkfront_ids, 2497 .probe = blkfront_probe, 2498 .remove = blkfront_remove, 2499 .resume = blkfront_resume, 2500 .otherend_changed = blkback_changed, 2501 .is_ready = blkfront_is_ready, 2502 }; 2503 2504 static void purge_persistent_grants(struct blkfront_info *info) 2505 { 2506 unsigned int i; 2507 unsigned long flags; 2508 struct blkfront_ring_info *rinfo; 2509 2510 for_each_rinfo(info, rinfo, i) { 2511 struct grant *gnt_list_entry, *tmp; 2512 2513 spin_lock_irqsave(&rinfo->ring_lock, flags); 2514 2515 if (rinfo->persistent_gnts_c == 0) { 2516 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2517 continue; 2518 } 2519 2520 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2521 node) { 2522 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2523 gnttab_query_foreign_access(gnt_list_entry->gref)) 2524 continue; 2525 2526 list_del(&gnt_list_entry->node); 2527 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2528 rinfo->persistent_gnts_c--; 2529 gnt_list_entry->gref = GRANT_INVALID_REF; 2530 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2531 } 2532 2533 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2534 } 2535 } 2536 2537 static void blkfront_delay_work(struct work_struct *work) 2538 { 2539 struct blkfront_info *info; 2540 bool need_schedule_work = false; 2541 2542 mutex_lock(&blkfront_mutex); 2543 2544 list_for_each_entry(info, &info_list, info_list) { 2545 if (info->feature_persistent) { 2546 need_schedule_work = true; 2547 mutex_lock(&info->mutex); 2548 purge_persistent_grants(info); 2549 mutex_unlock(&info->mutex); 2550 } 2551 } 2552 2553 if (need_schedule_work) 2554 schedule_delayed_work(&blkfront_work, HZ * 10); 2555 2556 mutex_unlock(&blkfront_mutex); 2557 } 2558 2559 static int __init xlblk_init(void) 2560 { 2561 int ret; 2562 int nr_cpus = num_online_cpus(); 2563 2564 if (!xen_domain()) 2565 return -ENODEV; 2566 2567 if (!xen_has_pv_disk_devices()) 2568 return -ENODEV; 2569 2570 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2571 pr_warn("xen_blk: can't get major %d with name %s\n", 2572 XENVBD_MAJOR, DEV_NAME); 2573 return -ENODEV; 2574 } 2575 2576 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2577 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2578 2579 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2580 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2581 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2582 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2583 } 2584 2585 if (xen_blkif_max_queues > nr_cpus) { 2586 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2587 xen_blkif_max_queues, nr_cpus); 2588 xen_blkif_max_queues = nr_cpus; 2589 } 2590 2591 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2592 2593 ret = xenbus_register_frontend(&blkfront_driver); 2594 if (ret) { 2595 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2596 return ret; 2597 } 2598 2599 return 0; 2600 } 2601 module_init(xlblk_init); 2602 2603 2604 static void __exit xlblk_exit(void) 2605 { 2606 cancel_delayed_work_sync(&blkfront_work); 2607 2608 xenbus_unregister_driver(&blkfront_driver); 2609 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2610 kfree(minors); 2611 } 2612 module_exit(xlblk_exit); 2613 2614 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2615 MODULE_LICENSE("GPL"); 2616 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2617 MODULE_ALIAS("xen:vbd"); 2618 MODULE_ALIAS("xenblk"); 2619