xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision 69868c3b)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51 
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58 
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62 
63 #include <asm/xen/hypervisor.h>
64 
65 /*
66  * The minimal size of segment supported by the block framework is PAGE_SIZE.
67  * When Linux is using a different page size than Xen, it may not be possible
68  * to put all the data in a single segment.
69  * This can happen when the backend doesn't support indirect descriptor and
70  * therefore the maximum amount of data that a request can carry is
71  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72  *
73  * Note that we only support one extra request. So the Linux page size
74  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75  * 88KB.
76  */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78 
79 enum blkif_state {
80 	BLKIF_STATE_DISCONNECTED,
81 	BLKIF_STATE_CONNECTED,
82 	BLKIF_STATE_SUSPENDED,
83 };
84 
85 struct grant {
86 	grant_ref_t gref;
87 	struct page *page;
88 	struct list_head node;
89 };
90 
91 enum blk_req_status {
92 	REQ_WAITING,
93 	REQ_DONE,
94 	REQ_ERROR,
95 	REQ_EOPNOTSUPP,
96 };
97 
98 struct blk_shadow {
99 	struct blkif_request req;
100 	struct request *request;
101 	struct grant **grants_used;
102 	struct grant **indirect_grants;
103 	struct scatterlist *sg;
104 	unsigned int num_sg;
105 	enum blk_req_status status;
106 
107 	#define NO_ASSOCIATED_ID ~0UL
108 	/*
109 	 * Id of the sibling if we ever need 2 requests when handling a
110 	 * block I/O request
111 	 */
112 	unsigned long associated_id;
113 };
114 
115 struct blkif_req {
116 	blk_status_t	error;
117 };
118 
119 static inline struct blkif_req *blkif_req(struct request *rq)
120 {
121 	return blk_mq_rq_to_pdu(rq);
122 }
123 
124 static DEFINE_MUTEX(blkfront_mutex);
125 static const struct block_device_operations xlvbd_block_fops;
126 static struct delayed_work blkfront_work;
127 static LIST_HEAD(info_list);
128 
129 /*
130  * Maximum number of segments in indirect requests, the actual value used by
131  * the frontend driver is the minimum of this value and the value provided
132  * by the backend driver.
133  */
134 
135 static unsigned int xen_blkif_max_segments = 32;
136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
137 MODULE_PARM_DESC(max_indirect_segments,
138 		 "Maximum amount of segments in indirect requests (default is 32)");
139 
140 static unsigned int xen_blkif_max_queues = 4;
141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
143 
144 /*
145  * Maximum order of pages to be used for the shared ring between front and
146  * backend, 4KB page granularity is used.
147  */
148 static unsigned int xen_blkif_max_ring_order;
149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
151 
152 #define BLK_RING_SIZE(info)	\
153 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
154 
155 /*
156  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
157  * characters are enough. Define to 20 to keep consistent with backend.
158  */
159 #define RINGREF_NAME_LEN (20)
160 /*
161  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
162  */
163 #define QUEUE_NAME_LEN (17)
164 
165 /*
166  *  Per-ring info.
167  *  Every blkfront device can associate with one or more blkfront_ring_info,
168  *  depending on how many hardware queues/rings to be used.
169  */
170 struct blkfront_ring_info {
171 	/* Lock to protect data in every ring buffer. */
172 	spinlock_t ring_lock;
173 	struct blkif_front_ring ring;
174 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
175 	unsigned int evtchn, irq;
176 	struct work_struct work;
177 	struct gnttab_free_callback callback;
178 	struct list_head indirect_pages;
179 	struct list_head grants;
180 	unsigned int persistent_gnts_c;
181 	unsigned long shadow_free;
182 	struct blkfront_info *dev_info;
183 	struct blk_shadow shadow[];
184 };
185 
186 /*
187  * We have one of these per vbd, whether ide, scsi or 'other'.  They
188  * hang in private_data off the gendisk structure. We may end up
189  * putting all kinds of interesting stuff here :-)
190  */
191 struct blkfront_info
192 {
193 	struct mutex mutex;
194 	struct xenbus_device *xbdev;
195 	struct gendisk *gd;
196 	u16 sector_size;
197 	unsigned int physical_sector_size;
198 	int vdevice;
199 	blkif_vdev_t handle;
200 	enum blkif_state connected;
201 	/* Number of pages per ring buffer. */
202 	unsigned int nr_ring_pages;
203 	struct request_queue *rq;
204 	unsigned int feature_flush:1;
205 	unsigned int feature_fua:1;
206 	unsigned int feature_discard:1;
207 	unsigned int feature_secdiscard:1;
208 	unsigned int feature_persistent:1;
209 	unsigned int discard_granularity;
210 	unsigned int discard_alignment;
211 	/* Number of 4KB segments handled */
212 	unsigned int max_indirect_segments;
213 	int is_ready;
214 	struct blk_mq_tag_set tag_set;
215 	struct blkfront_ring_info *rinfo;
216 	unsigned int nr_rings;
217 	unsigned int rinfo_size;
218 	/* Save uncomplete reqs and bios for migration. */
219 	struct list_head requests;
220 	struct bio_list bio_list;
221 	struct list_head info_list;
222 };
223 
224 static unsigned int nr_minors;
225 static unsigned long *minors;
226 static DEFINE_SPINLOCK(minor_lock);
227 
228 #define GRANT_INVALID_REF	0
229 
230 #define PARTS_PER_DISK		16
231 #define PARTS_PER_EXT_DISK      256
232 
233 #define BLKIF_MAJOR(dev) ((dev)>>8)
234 #define BLKIF_MINOR(dev) ((dev) & 0xff)
235 
236 #define EXT_SHIFT 28
237 #define EXTENDED (1<<EXT_SHIFT)
238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
240 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
242 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
244 
245 #define DEV_NAME	"xvd"	/* name in /dev */
246 
247 /*
248  * Grants are always the same size as a Xen page (i.e 4KB).
249  * A physical segment is always the same size as a Linux page.
250  * Number of grants per physical segment
251  */
252 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
253 
254 #define GRANTS_PER_INDIRECT_FRAME \
255 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
256 
257 #define INDIRECT_GREFS(_grants)		\
258 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
259 
260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
261 static void blkfront_gather_backend_features(struct blkfront_info *info);
262 static int negotiate_mq(struct blkfront_info *info);
263 
264 #define for_each_rinfo(info, ptr, idx)				\
265 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
266 	     (idx) < (info)->nr_rings;				\
267 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
268 
269 static inline struct blkfront_ring_info *
270 get_rinfo(const struct blkfront_info *info, unsigned int i)
271 {
272 	BUG_ON(i >= info->nr_rings);
273 	return (void *)info->rinfo + i * info->rinfo_size;
274 }
275 
276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
277 {
278 	unsigned long free = rinfo->shadow_free;
279 
280 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
281 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
282 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
283 	return free;
284 }
285 
286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
287 			      unsigned long id)
288 {
289 	if (rinfo->shadow[id].req.u.rw.id != id)
290 		return -EINVAL;
291 	if (rinfo->shadow[id].request == NULL)
292 		return -EINVAL;
293 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
294 	rinfo->shadow[id].request = NULL;
295 	rinfo->shadow_free = id;
296 	return 0;
297 }
298 
299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
300 {
301 	struct blkfront_info *info = rinfo->dev_info;
302 	struct page *granted_page;
303 	struct grant *gnt_list_entry, *n;
304 	int i = 0;
305 
306 	while (i < num) {
307 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
308 		if (!gnt_list_entry)
309 			goto out_of_memory;
310 
311 		if (info->feature_persistent) {
312 			granted_page = alloc_page(GFP_NOIO);
313 			if (!granted_page) {
314 				kfree(gnt_list_entry);
315 				goto out_of_memory;
316 			}
317 			gnt_list_entry->page = granted_page;
318 		}
319 
320 		gnt_list_entry->gref = GRANT_INVALID_REF;
321 		list_add(&gnt_list_entry->node, &rinfo->grants);
322 		i++;
323 	}
324 
325 	return 0;
326 
327 out_of_memory:
328 	list_for_each_entry_safe(gnt_list_entry, n,
329 	                         &rinfo->grants, node) {
330 		list_del(&gnt_list_entry->node);
331 		if (info->feature_persistent)
332 			__free_page(gnt_list_entry->page);
333 		kfree(gnt_list_entry);
334 		i--;
335 	}
336 	BUG_ON(i != 0);
337 	return -ENOMEM;
338 }
339 
340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
341 {
342 	struct grant *gnt_list_entry;
343 
344 	BUG_ON(list_empty(&rinfo->grants));
345 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
346 					  node);
347 	list_del(&gnt_list_entry->node);
348 
349 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
350 		rinfo->persistent_gnts_c--;
351 
352 	return gnt_list_entry;
353 }
354 
355 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
356 					const struct blkfront_info *info)
357 {
358 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
359 						 info->xbdev->otherend_id,
360 						 gnt_list_entry->page,
361 						 0);
362 }
363 
364 static struct grant *get_grant(grant_ref_t *gref_head,
365 			       unsigned long gfn,
366 			       struct blkfront_ring_info *rinfo)
367 {
368 	struct grant *gnt_list_entry = get_free_grant(rinfo);
369 	struct blkfront_info *info = rinfo->dev_info;
370 
371 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
372 		return gnt_list_entry;
373 
374 	/* Assign a gref to this page */
375 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
376 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
377 	if (info->feature_persistent)
378 		grant_foreign_access(gnt_list_entry, info);
379 	else {
380 		/* Grant access to the GFN passed by the caller */
381 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
382 						info->xbdev->otherend_id,
383 						gfn, 0);
384 	}
385 
386 	return gnt_list_entry;
387 }
388 
389 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
390 					struct blkfront_ring_info *rinfo)
391 {
392 	struct grant *gnt_list_entry = get_free_grant(rinfo);
393 	struct blkfront_info *info = rinfo->dev_info;
394 
395 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
396 		return gnt_list_entry;
397 
398 	/* Assign a gref to this page */
399 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
400 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
401 	if (!info->feature_persistent) {
402 		struct page *indirect_page;
403 
404 		/* Fetch a pre-allocated page to use for indirect grefs */
405 		BUG_ON(list_empty(&rinfo->indirect_pages));
406 		indirect_page = list_first_entry(&rinfo->indirect_pages,
407 						 struct page, lru);
408 		list_del(&indirect_page->lru);
409 		gnt_list_entry->page = indirect_page;
410 	}
411 	grant_foreign_access(gnt_list_entry, info);
412 
413 	return gnt_list_entry;
414 }
415 
416 static const char *op_name(int op)
417 {
418 	static const char *const names[] = {
419 		[BLKIF_OP_READ] = "read",
420 		[BLKIF_OP_WRITE] = "write",
421 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
422 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
423 		[BLKIF_OP_DISCARD] = "discard" };
424 
425 	if (op < 0 || op >= ARRAY_SIZE(names))
426 		return "unknown";
427 
428 	if (!names[op])
429 		return "reserved";
430 
431 	return names[op];
432 }
433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
434 {
435 	unsigned int end = minor + nr;
436 	int rc;
437 
438 	if (end > nr_minors) {
439 		unsigned long *bitmap, *old;
440 
441 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
442 				 GFP_KERNEL);
443 		if (bitmap == NULL)
444 			return -ENOMEM;
445 
446 		spin_lock(&minor_lock);
447 		if (end > nr_minors) {
448 			old = minors;
449 			memcpy(bitmap, minors,
450 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
451 			minors = bitmap;
452 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
453 		} else
454 			old = bitmap;
455 		spin_unlock(&minor_lock);
456 		kfree(old);
457 	}
458 
459 	spin_lock(&minor_lock);
460 	if (find_next_bit(minors, end, minor) >= end) {
461 		bitmap_set(minors, minor, nr);
462 		rc = 0;
463 	} else
464 		rc = -EBUSY;
465 	spin_unlock(&minor_lock);
466 
467 	return rc;
468 }
469 
470 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
471 {
472 	unsigned int end = minor + nr;
473 
474 	BUG_ON(end > nr_minors);
475 	spin_lock(&minor_lock);
476 	bitmap_clear(minors,  minor, nr);
477 	spin_unlock(&minor_lock);
478 }
479 
480 static void blkif_restart_queue_callback(void *arg)
481 {
482 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
483 	schedule_work(&rinfo->work);
484 }
485 
486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
487 {
488 	/* We don't have real geometry info, but let's at least return
489 	   values consistent with the size of the device */
490 	sector_t nsect = get_capacity(bd->bd_disk);
491 	sector_t cylinders = nsect;
492 
493 	hg->heads = 0xff;
494 	hg->sectors = 0x3f;
495 	sector_div(cylinders, hg->heads * hg->sectors);
496 	hg->cylinders = cylinders;
497 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
498 		hg->cylinders = 0xffff;
499 	return 0;
500 }
501 
502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
503 		       unsigned command, unsigned long argument)
504 {
505 	int i;
506 
507 	switch (command) {
508 	case CDROMMULTISESSION:
509 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
510 			if (put_user(0, (char __user *)(argument + i)))
511 				return -EFAULT;
512 		return 0;
513 	case CDROM_GET_CAPABILITY:
514 		if (bdev->bd_disk->flags & GENHD_FL_CD)
515 			return 0;
516 		return -EINVAL;
517 	default:
518 		return -EINVAL;
519 	}
520 }
521 
522 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
523 					    struct request *req,
524 					    struct blkif_request **ring_req)
525 {
526 	unsigned long id;
527 
528 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
529 	rinfo->ring.req_prod_pvt++;
530 
531 	id = get_id_from_freelist(rinfo);
532 	rinfo->shadow[id].request = req;
533 	rinfo->shadow[id].status = REQ_WAITING;
534 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
535 
536 	(*ring_req)->u.rw.id = id;
537 
538 	return id;
539 }
540 
541 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
542 {
543 	struct blkfront_info *info = rinfo->dev_info;
544 	struct blkif_request *ring_req;
545 	unsigned long id;
546 
547 	/* Fill out a communications ring structure. */
548 	id = blkif_ring_get_request(rinfo, req, &ring_req);
549 
550 	ring_req->operation = BLKIF_OP_DISCARD;
551 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
552 	ring_req->u.discard.id = id;
553 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
554 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
555 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
556 	else
557 		ring_req->u.discard.flag = 0;
558 
559 	/* Keep a private copy so we can reissue requests when recovering. */
560 	rinfo->shadow[id].req = *ring_req;
561 
562 	return 0;
563 }
564 
565 struct setup_rw_req {
566 	unsigned int grant_idx;
567 	struct blkif_request_segment *segments;
568 	struct blkfront_ring_info *rinfo;
569 	struct blkif_request *ring_req;
570 	grant_ref_t gref_head;
571 	unsigned int id;
572 	/* Only used when persistent grant is used and it's a read request */
573 	bool need_copy;
574 	unsigned int bvec_off;
575 	char *bvec_data;
576 
577 	bool require_extra_req;
578 	struct blkif_request *extra_ring_req;
579 };
580 
581 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
582 				     unsigned int len, void *data)
583 {
584 	struct setup_rw_req *setup = data;
585 	int n, ref;
586 	struct grant *gnt_list_entry;
587 	unsigned int fsect, lsect;
588 	/* Convenient aliases */
589 	unsigned int grant_idx = setup->grant_idx;
590 	struct blkif_request *ring_req = setup->ring_req;
591 	struct blkfront_ring_info *rinfo = setup->rinfo;
592 	/*
593 	 * We always use the shadow of the first request to store the list
594 	 * of grant associated to the block I/O request. This made the
595 	 * completion more easy to handle even if the block I/O request is
596 	 * split.
597 	 */
598 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
599 
600 	if (unlikely(setup->require_extra_req &&
601 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
602 		/*
603 		 * We are using the second request, setup grant_idx
604 		 * to be the index of the segment array.
605 		 */
606 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
607 		ring_req = setup->extra_ring_req;
608 	}
609 
610 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
611 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
612 		if (setup->segments)
613 			kunmap_atomic(setup->segments);
614 
615 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
616 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
617 		shadow->indirect_grants[n] = gnt_list_entry;
618 		setup->segments = kmap_atomic(gnt_list_entry->page);
619 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
620 	}
621 
622 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
623 	ref = gnt_list_entry->gref;
624 	/*
625 	 * All the grants are stored in the shadow of the first
626 	 * request. Therefore we have to use the global index.
627 	 */
628 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
629 
630 	if (setup->need_copy) {
631 		void *shared_data;
632 
633 		shared_data = kmap_atomic(gnt_list_entry->page);
634 		/*
635 		 * this does not wipe data stored outside the
636 		 * range sg->offset..sg->offset+sg->length.
637 		 * Therefore, blkback *could* see data from
638 		 * previous requests. This is OK as long as
639 		 * persistent grants are shared with just one
640 		 * domain. It may need refactoring if this
641 		 * changes
642 		 */
643 		memcpy(shared_data + offset,
644 		       setup->bvec_data + setup->bvec_off,
645 		       len);
646 
647 		kunmap_atomic(shared_data);
648 		setup->bvec_off += len;
649 	}
650 
651 	fsect = offset >> 9;
652 	lsect = fsect + (len >> 9) - 1;
653 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
654 		ring_req->u.rw.seg[grant_idx] =
655 			(struct blkif_request_segment) {
656 				.gref       = ref,
657 				.first_sect = fsect,
658 				.last_sect  = lsect };
659 	} else {
660 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
661 			(struct blkif_request_segment) {
662 				.gref       = ref,
663 				.first_sect = fsect,
664 				.last_sect  = lsect };
665 	}
666 
667 	(setup->grant_idx)++;
668 }
669 
670 static void blkif_setup_extra_req(struct blkif_request *first,
671 				  struct blkif_request *second)
672 {
673 	uint16_t nr_segments = first->u.rw.nr_segments;
674 
675 	/*
676 	 * The second request is only present when the first request uses
677 	 * all its segments. It's always the continuity of the first one.
678 	 */
679 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
680 
681 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
682 	second->u.rw.sector_number = first->u.rw.sector_number +
683 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
684 
685 	second->u.rw.handle = first->u.rw.handle;
686 	second->operation = first->operation;
687 }
688 
689 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
690 {
691 	struct blkfront_info *info = rinfo->dev_info;
692 	struct blkif_request *ring_req, *extra_ring_req = NULL;
693 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
694 	bool require_extra_req = false;
695 	int i;
696 	struct setup_rw_req setup = {
697 		.grant_idx = 0,
698 		.segments = NULL,
699 		.rinfo = rinfo,
700 		.need_copy = rq_data_dir(req) && info->feature_persistent,
701 	};
702 
703 	/*
704 	 * Used to store if we are able to queue the request by just using
705 	 * existing persistent grants, or if we have to get new grants,
706 	 * as there are not sufficiently many free.
707 	 */
708 	bool new_persistent_gnts = false;
709 	struct scatterlist *sg;
710 	int num_sg, max_grefs, num_grant;
711 
712 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
713 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
714 		/*
715 		 * If we are using indirect segments we need to account
716 		 * for the indirect grefs used in the request.
717 		 */
718 		max_grefs += INDIRECT_GREFS(max_grefs);
719 
720 	/* Check if we have enough persistent grants to allocate a requests */
721 	if (rinfo->persistent_gnts_c < max_grefs) {
722 		new_persistent_gnts = true;
723 
724 		if (gnttab_alloc_grant_references(
725 		    max_grefs - rinfo->persistent_gnts_c,
726 		    &setup.gref_head) < 0) {
727 			gnttab_request_free_callback(
728 				&rinfo->callback,
729 				blkif_restart_queue_callback,
730 				rinfo,
731 				max_grefs - rinfo->persistent_gnts_c);
732 			return 1;
733 		}
734 	}
735 
736 	/* Fill out a communications ring structure. */
737 	id = blkif_ring_get_request(rinfo, req, &ring_req);
738 
739 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
740 	num_grant = 0;
741 	/* Calculate the number of grant used */
742 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
743 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
744 
745 	require_extra_req = info->max_indirect_segments == 0 &&
746 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
747 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
748 
749 	rinfo->shadow[id].num_sg = num_sg;
750 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
751 	    likely(!require_extra_req)) {
752 		/*
753 		 * The indirect operation can only be a BLKIF_OP_READ or
754 		 * BLKIF_OP_WRITE
755 		 */
756 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
757 		ring_req->operation = BLKIF_OP_INDIRECT;
758 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
759 			BLKIF_OP_WRITE : BLKIF_OP_READ;
760 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
761 		ring_req->u.indirect.handle = info->handle;
762 		ring_req->u.indirect.nr_segments = num_grant;
763 	} else {
764 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
765 		ring_req->u.rw.handle = info->handle;
766 		ring_req->operation = rq_data_dir(req) ?
767 			BLKIF_OP_WRITE : BLKIF_OP_READ;
768 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
769 			/*
770 			 * Ideally we can do an unordered flush-to-disk.
771 			 * In case the backend onlysupports barriers, use that.
772 			 * A barrier request a superset of FUA, so we can
773 			 * implement it the same way.  (It's also a FLUSH+FUA,
774 			 * since it is guaranteed ordered WRT previous writes.)
775 			 */
776 			if (info->feature_flush && info->feature_fua)
777 				ring_req->operation =
778 					BLKIF_OP_WRITE_BARRIER;
779 			else if (info->feature_flush)
780 				ring_req->operation =
781 					BLKIF_OP_FLUSH_DISKCACHE;
782 			else
783 				ring_req->operation = 0;
784 		}
785 		ring_req->u.rw.nr_segments = num_grant;
786 		if (unlikely(require_extra_req)) {
787 			extra_id = blkif_ring_get_request(rinfo, req,
788 							  &extra_ring_req);
789 			/*
790 			 * Only the first request contains the scatter-gather
791 			 * list.
792 			 */
793 			rinfo->shadow[extra_id].num_sg = 0;
794 
795 			blkif_setup_extra_req(ring_req, extra_ring_req);
796 
797 			/* Link the 2 requests together */
798 			rinfo->shadow[extra_id].associated_id = id;
799 			rinfo->shadow[id].associated_id = extra_id;
800 		}
801 	}
802 
803 	setup.ring_req = ring_req;
804 	setup.id = id;
805 
806 	setup.require_extra_req = require_extra_req;
807 	if (unlikely(require_extra_req))
808 		setup.extra_ring_req = extra_ring_req;
809 
810 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
811 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
812 
813 		if (setup.need_copy) {
814 			setup.bvec_off = sg->offset;
815 			setup.bvec_data = kmap_atomic(sg_page(sg));
816 		}
817 
818 		gnttab_foreach_grant_in_range(sg_page(sg),
819 					      sg->offset,
820 					      sg->length,
821 					      blkif_setup_rw_req_grant,
822 					      &setup);
823 
824 		if (setup.need_copy)
825 			kunmap_atomic(setup.bvec_data);
826 	}
827 	if (setup.segments)
828 		kunmap_atomic(setup.segments);
829 
830 	/* Keep a private copy so we can reissue requests when recovering. */
831 	rinfo->shadow[id].req = *ring_req;
832 	if (unlikely(require_extra_req))
833 		rinfo->shadow[extra_id].req = *extra_ring_req;
834 
835 	if (new_persistent_gnts)
836 		gnttab_free_grant_references(setup.gref_head);
837 
838 	return 0;
839 }
840 
841 /*
842  * Generate a Xen blkfront IO request from a blk layer request.  Reads
843  * and writes are handled as expected.
844  *
845  * @req: a request struct
846  */
847 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
848 {
849 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
850 		return 1;
851 
852 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
853 		     req_op(req) == REQ_OP_SECURE_ERASE))
854 		return blkif_queue_discard_req(req, rinfo);
855 	else
856 		return blkif_queue_rw_req(req, rinfo);
857 }
858 
859 static inline void flush_requests(struct blkfront_ring_info *rinfo)
860 {
861 	int notify;
862 
863 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
864 
865 	if (notify)
866 		notify_remote_via_irq(rinfo->irq);
867 }
868 
869 static inline bool blkif_request_flush_invalid(struct request *req,
870 					       struct blkfront_info *info)
871 {
872 	return (blk_rq_is_passthrough(req) ||
873 		((req_op(req) == REQ_OP_FLUSH) &&
874 		 !info->feature_flush) ||
875 		((req->cmd_flags & REQ_FUA) &&
876 		 !info->feature_fua));
877 }
878 
879 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
880 			  const struct blk_mq_queue_data *qd)
881 {
882 	unsigned long flags;
883 	int qid = hctx->queue_num;
884 	struct blkfront_info *info = hctx->queue->queuedata;
885 	struct blkfront_ring_info *rinfo = NULL;
886 
887 	rinfo = get_rinfo(info, qid);
888 	blk_mq_start_request(qd->rq);
889 	spin_lock_irqsave(&rinfo->ring_lock, flags);
890 	if (RING_FULL(&rinfo->ring))
891 		goto out_busy;
892 
893 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
894 		goto out_err;
895 
896 	if (blkif_queue_request(qd->rq, rinfo))
897 		goto out_busy;
898 
899 	flush_requests(rinfo);
900 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
901 	return BLK_STS_OK;
902 
903 out_err:
904 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
905 	return BLK_STS_IOERR;
906 
907 out_busy:
908 	blk_mq_stop_hw_queue(hctx);
909 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
910 	return BLK_STS_DEV_RESOURCE;
911 }
912 
913 static void blkif_complete_rq(struct request *rq)
914 {
915 	blk_mq_end_request(rq, blkif_req(rq)->error);
916 }
917 
918 static const struct blk_mq_ops blkfront_mq_ops = {
919 	.queue_rq = blkif_queue_rq,
920 	.complete = blkif_complete_rq,
921 };
922 
923 static void blkif_set_queue_limits(struct blkfront_info *info)
924 {
925 	struct request_queue *rq = info->rq;
926 	struct gendisk *gd = info->gd;
927 	unsigned int segments = info->max_indirect_segments ? :
928 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
929 
930 	blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
931 
932 	if (info->feature_discard) {
933 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
934 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
935 		rq->limits.discard_granularity = info->discard_granularity ?:
936 						 info->physical_sector_size;
937 		rq->limits.discard_alignment = info->discard_alignment;
938 		if (info->feature_secdiscard)
939 			blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
940 	}
941 
942 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
943 	blk_queue_logical_block_size(rq, info->sector_size);
944 	blk_queue_physical_block_size(rq, info->physical_sector_size);
945 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
946 
947 	/* Each segment in a request is up to an aligned page in size. */
948 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
949 	blk_queue_max_segment_size(rq, PAGE_SIZE);
950 
951 	/* Ensure a merged request will fit in a single I/O ring slot. */
952 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
953 
954 	/* Make sure buffer addresses are sector-aligned. */
955 	blk_queue_dma_alignment(rq, 511);
956 }
957 
958 static const char *flush_info(struct blkfront_info *info)
959 {
960 	if (info->feature_flush && info->feature_fua)
961 		return "barrier: enabled;";
962 	else if (info->feature_flush)
963 		return "flush diskcache: enabled;";
964 	else
965 		return "barrier or flush: disabled;";
966 }
967 
968 static void xlvbd_flush(struct blkfront_info *info)
969 {
970 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
971 			      info->feature_fua ? true : false);
972 	pr_info("blkfront: %s: %s %s %s %s %s\n",
973 		info->gd->disk_name, flush_info(info),
974 		"persistent grants:", info->feature_persistent ?
975 		"enabled;" : "disabled;", "indirect descriptors:",
976 		info->max_indirect_segments ? "enabled;" : "disabled;");
977 }
978 
979 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
980 {
981 	int major;
982 	major = BLKIF_MAJOR(vdevice);
983 	*minor = BLKIF_MINOR(vdevice);
984 	switch (major) {
985 		case XEN_IDE0_MAJOR:
986 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
987 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
988 				EMULATED_HD_DISK_MINOR_OFFSET;
989 			break;
990 		case XEN_IDE1_MAJOR:
991 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
992 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
993 				EMULATED_HD_DISK_MINOR_OFFSET;
994 			break;
995 		case XEN_SCSI_DISK0_MAJOR:
996 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
997 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
998 			break;
999 		case XEN_SCSI_DISK1_MAJOR:
1000 		case XEN_SCSI_DISK2_MAJOR:
1001 		case XEN_SCSI_DISK3_MAJOR:
1002 		case XEN_SCSI_DISK4_MAJOR:
1003 		case XEN_SCSI_DISK5_MAJOR:
1004 		case XEN_SCSI_DISK6_MAJOR:
1005 		case XEN_SCSI_DISK7_MAJOR:
1006 			*offset = (*minor / PARTS_PER_DISK) +
1007 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1008 				EMULATED_SD_DISK_NAME_OFFSET;
1009 			*minor = *minor +
1010 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1011 				EMULATED_SD_DISK_MINOR_OFFSET;
1012 			break;
1013 		case XEN_SCSI_DISK8_MAJOR:
1014 		case XEN_SCSI_DISK9_MAJOR:
1015 		case XEN_SCSI_DISK10_MAJOR:
1016 		case XEN_SCSI_DISK11_MAJOR:
1017 		case XEN_SCSI_DISK12_MAJOR:
1018 		case XEN_SCSI_DISK13_MAJOR:
1019 		case XEN_SCSI_DISK14_MAJOR:
1020 		case XEN_SCSI_DISK15_MAJOR:
1021 			*offset = (*minor / PARTS_PER_DISK) +
1022 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1023 				EMULATED_SD_DISK_NAME_OFFSET;
1024 			*minor = *minor +
1025 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1026 				EMULATED_SD_DISK_MINOR_OFFSET;
1027 			break;
1028 		case XENVBD_MAJOR:
1029 			*offset = *minor / PARTS_PER_DISK;
1030 			break;
1031 		default:
1032 			printk(KERN_WARNING "blkfront: your disk configuration is "
1033 					"incorrect, please use an xvd device instead\n");
1034 			return -ENODEV;
1035 	}
1036 	return 0;
1037 }
1038 
1039 static char *encode_disk_name(char *ptr, unsigned int n)
1040 {
1041 	if (n >= 26)
1042 		ptr = encode_disk_name(ptr, n / 26 - 1);
1043 	*ptr = 'a' + n % 26;
1044 	return ptr + 1;
1045 }
1046 
1047 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1048 			       struct blkfront_info *info,
1049 			       u16 vdisk_info, u16 sector_size,
1050 			       unsigned int physical_sector_size)
1051 {
1052 	struct gendisk *gd;
1053 	int nr_minors = 1;
1054 	int err;
1055 	unsigned int offset;
1056 	int minor;
1057 	int nr_parts;
1058 	char *ptr;
1059 
1060 	BUG_ON(info->gd != NULL);
1061 	BUG_ON(info->rq != NULL);
1062 
1063 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1064 		/* this is above the extended range; something is wrong */
1065 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1066 		return -ENODEV;
1067 	}
1068 
1069 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1070 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1071 		if (err)
1072 			return err;
1073 		nr_parts = PARTS_PER_DISK;
1074 	} else {
1075 		minor = BLKIF_MINOR_EXT(info->vdevice);
1076 		nr_parts = PARTS_PER_EXT_DISK;
1077 		offset = minor / nr_parts;
1078 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1079 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1080 					"emulated IDE disks,\n\t choose an xvd device name"
1081 					"from xvde on\n", info->vdevice);
1082 	}
1083 	if (minor >> MINORBITS) {
1084 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1085 			info->vdevice, minor);
1086 		return -ENODEV;
1087 	}
1088 
1089 	if ((minor % nr_parts) == 0)
1090 		nr_minors = nr_parts;
1091 
1092 	err = xlbd_reserve_minors(minor, nr_minors);
1093 	if (err)
1094 		return err;
1095 	err = -ENODEV;
1096 
1097 	memset(&info->tag_set, 0, sizeof(info->tag_set));
1098 	info->tag_set.ops = &blkfront_mq_ops;
1099 	info->tag_set.nr_hw_queues = info->nr_rings;
1100 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1101 		/*
1102 		 * When indirect descriptior is not supported, the I/O request
1103 		 * will be split between multiple request in the ring.
1104 		 * To avoid problems when sending the request, divide by
1105 		 * 2 the depth of the queue.
1106 		 */
1107 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1108 	} else
1109 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1110 	info->tag_set.numa_node = NUMA_NO_NODE;
1111 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1112 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1113 	info->tag_set.driver_data = info;
1114 
1115 	err = blk_mq_alloc_tag_set(&info->tag_set);
1116 	if (err)
1117 		goto out_release_minors;
1118 
1119 	gd = blk_mq_alloc_disk(&info->tag_set, info);
1120 	if (IS_ERR(gd)) {
1121 		err = PTR_ERR(gd);
1122 		goto out_free_tag_set;
1123 	}
1124 
1125 	strcpy(gd->disk_name, DEV_NAME);
1126 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1127 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1128 	if (nr_minors > 1)
1129 		*ptr = 0;
1130 	else
1131 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1132 			 "%d", minor & (nr_parts - 1));
1133 
1134 	gd->major = XENVBD_MAJOR;
1135 	gd->first_minor = minor;
1136 	gd->minors = nr_minors;
1137 	gd->fops = &xlvbd_block_fops;
1138 	gd->private_data = info;
1139 	set_capacity(gd, capacity);
1140 
1141 	info->rq = gd->queue;
1142 	info->gd = gd;
1143 	info->sector_size = sector_size;
1144 	info->physical_sector_size = physical_sector_size;
1145 	blkif_set_queue_limits(info);
1146 
1147 	xlvbd_flush(info);
1148 
1149 	if (vdisk_info & VDISK_READONLY)
1150 		set_disk_ro(gd, 1);
1151 
1152 	if (vdisk_info & VDISK_REMOVABLE)
1153 		gd->flags |= GENHD_FL_REMOVABLE;
1154 
1155 	if (vdisk_info & VDISK_CDROM)
1156 		gd->flags |= GENHD_FL_CD;
1157 
1158 	return 0;
1159 
1160 out_free_tag_set:
1161 	blk_mq_free_tag_set(&info->tag_set);
1162 out_release_minors:
1163 	xlbd_release_minors(minor, nr_minors);
1164 	return err;
1165 }
1166 
1167 /* Already hold rinfo->ring_lock. */
1168 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1169 {
1170 	if (!RING_FULL(&rinfo->ring))
1171 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1172 }
1173 
1174 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1175 {
1176 	unsigned long flags;
1177 
1178 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1179 	kick_pending_request_queues_locked(rinfo);
1180 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1181 }
1182 
1183 static void blkif_restart_queue(struct work_struct *work)
1184 {
1185 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1186 
1187 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1188 		kick_pending_request_queues(rinfo);
1189 }
1190 
1191 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1192 {
1193 	struct grant *persistent_gnt, *n;
1194 	struct blkfront_info *info = rinfo->dev_info;
1195 	int i, j, segs;
1196 
1197 	/*
1198 	 * Remove indirect pages, this only happens when using indirect
1199 	 * descriptors but not persistent grants
1200 	 */
1201 	if (!list_empty(&rinfo->indirect_pages)) {
1202 		struct page *indirect_page, *n;
1203 
1204 		BUG_ON(info->feature_persistent);
1205 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1206 			list_del(&indirect_page->lru);
1207 			__free_page(indirect_page);
1208 		}
1209 	}
1210 
1211 	/* Remove all persistent grants. */
1212 	if (!list_empty(&rinfo->grants)) {
1213 		list_for_each_entry_safe(persistent_gnt, n,
1214 					 &rinfo->grants, node) {
1215 			list_del(&persistent_gnt->node);
1216 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1217 				gnttab_end_foreign_access(persistent_gnt->gref,
1218 							  0, 0UL);
1219 				rinfo->persistent_gnts_c--;
1220 			}
1221 			if (info->feature_persistent)
1222 				__free_page(persistent_gnt->page);
1223 			kfree(persistent_gnt);
1224 		}
1225 	}
1226 	BUG_ON(rinfo->persistent_gnts_c != 0);
1227 
1228 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1229 		/*
1230 		 * Clear persistent grants present in requests already
1231 		 * on the shared ring
1232 		 */
1233 		if (!rinfo->shadow[i].request)
1234 			goto free_shadow;
1235 
1236 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1237 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1238 		       rinfo->shadow[i].req.u.rw.nr_segments;
1239 		for (j = 0; j < segs; j++) {
1240 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1241 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1242 			if (info->feature_persistent)
1243 				__free_page(persistent_gnt->page);
1244 			kfree(persistent_gnt);
1245 		}
1246 
1247 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1248 			/*
1249 			 * If this is not an indirect operation don't try to
1250 			 * free indirect segments
1251 			 */
1252 			goto free_shadow;
1253 
1254 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1255 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1256 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1257 			__free_page(persistent_gnt->page);
1258 			kfree(persistent_gnt);
1259 		}
1260 
1261 free_shadow:
1262 		kvfree(rinfo->shadow[i].grants_used);
1263 		rinfo->shadow[i].grants_used = NULL;
1264 		kvfree(rinfo->shadow[i].indirect_grants);
1265 		rinfo->shadow[i].indirect_grants = NULL;
1266 		kvfree(rinfo->shadow[i].sg);
1267 		rinfo->shadow[i].sg = NULL;
1268 	}
1269 
1270 	/* No more gnttab callback work. */
1271 	gnttab_cancel_free_callback(&rinfo->callback);
1272 
1273 	/* Flush gnttab callback work. Must be done with no locks held. */
1274 	flush_work(&rinfo->work);
1275 
1276 	/* Free resources associated with old device channel. */
1277 	for (i = 0; i < info->nr_ring_pages; i++) {
1278 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1279 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1280 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1281 		}
1282 	}
1283 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1284 	rinfo->ring.sring = NULL;
1285 
1286 	if (rinfo->irq)
1287 		unbind_from_irqhandler(rinfo->irq, rinfo);
1288 	rinfo->evtchn = rinfo->irq = 0;
1289 }
1290 
1291 static void blkif_free(struct blkfront_info *info, int suspend)
1292 {
1293 	unsigned int i;
1294 	struct blkfront_ring_info *rinfo;
1295 
1296 	/* Prevent new requests being issued until we fix things up. */
1297 	info->connected = suspend ?
1298 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1299 	/* No more blkif_request(). */
1300 	if (info->rq)
1301 		blk_mq_stop_hw_queues(info->rq);
1302 
1303 	for_each_rinfo(info, rinfo, i)
1304 		blkif_free_ring(rinfo);
1305 
1306 	kvfree(info->rinfo);
1307 	info->rinfo = NULL;
1308 	info->nr_rings = 0;
1309 }
1310 
1311 struct copy_from_grant {
1312 	const struct blk_shadow *s;
1313 	unsigned int grant_idx;
1314 	unsigned int bvec_offset;
1315 	char *bvec_data;
1316 };
1317 
1318 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1319 				  unsigned int len, void *data)
1320 {
1321 	struct copy_from_grant *info = data;
1322 	char *shared_data;
1323 	/* Convenient aliases */
1324 	const struct blk_shadow *s = info->s;
1325 
1326 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1327 
1328 	memcpy(info->bvec_data + info->bvec_offset,
1329 	       shared_data + offset, len);
1330 
1331 	info->bvec_offset += len;
1332 	info->grant_idx++;
1333 
1334 	kunmap_atomic(shared_data);
1335 }
1336 
1337 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1338 {
1339 	switch (rsp)
1340 	{
1341 	case BLKIF_RSP_OKAY:
1342 		return REQ_DONE;
1343 	case BLKIF_RSP_EOPNOTSUPP:
1344 		return REQ_EOPNOTSUPP;
1345 	case BLKIF_RSP_ERROR:
1346 	default:
1347 		return REQ_ERROR;
1348 	}
1349 }
1350 
1351 /*
1352  * Get the final status of the block request based on two ring response
1353  */
1354 static int blkif_get_final_status(enum blk_req_status s1,
1355 				  enum blk_req_status s2)
1356 {
1357 	BUG_ON(s1 == REQ_WAITING);
1358 	BUG_ON(s2 == REQ_WAITING);
1359 
1360 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1361 		return BLKIF_RSP_ERROR;
1362 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1363 		return BLKIF_RSP_EOPNOTSUPP;
1364 	return BLKIF_RSP_OKAY;
1365 }
1366 
1367 static bool blkif_completion(unsigned long *id,
1368 			     struct blkfront_ring_info *rinfo,
1369 			     struct blkif_response *bret)
1370 {
1371 	int i = 0;
1372 	struct scatterlist *sg;
1373 	int num_sg, num_grant;
1374 	struct blkfront_info *info = rinfo->dev_info;
1375 	struct blk_shadow *s = &rinfo->shadow[*id];
1376 	struct copy_from_grant data = {
1377 		.grant_idx = 0,
1378 	};
1379 
1380 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1381 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1382 
1383 	/* The I/O request may be split in two. */
1384 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1385 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1386 
1387 		/* Keep the status of the current response in shadow. */
1388 		s->status = blkif_rsp_to_req_status(bret->status);
1389 
1390 		/* Wait the second response if not yet here. */
1391 		if (s2->status == REQ_WAITING)
1392 			return false;
1393 
1394 		bret->status = blkif_get_final_status(s->status,
1395 						      s2->status);
1396 
1397 		/*
1398 		 * All the grants is stored in the first shadow in order
1399 		 * to make the completion code simpler.
1400 		 */
1401 		num_grant += s2->req.u.rw.nr_segments;
1402 
1403 		/*
1404 		 * The two responses may not come in order. Only the
1405 		 * first request will store the scatter-gather list.
1406 		 */
1407 		if (s2->num_sg != 0) {
1408 			/* Update "id" with the ID of the first response. */
1409 			*id = s->associated_id;
1410 			s = s2;
1411 		}
1412 
1413 		/*
1414 		 * We don't need anymore the second request, so recycling
1415 		 * it now.
1416 		 */
1417 		if (add_id_to_freelist(rinfo, s->associated_id))
1418 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1419 			     info->gd->disk_name, s->associated_id);
1420 	}
1421 
1422 	data.s = s;
1423 	num_sg = s->num_sg;
1424 
1425 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1426 		for_each_sg(s->sg, sg, num_sg, i) {
1427 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1428 
1429 			data.bvec_offset = sg->offset;
1430 			data.bvec_data = kmap_atomic(sg_page(sg));
1431 
1432 			gnttab_foreach_grant_in_range(sg_page(sg),
1433 						      sg->offset,
1434 						      sg->length,
1435 						      blkif_copy_from_grant,
1436 						      &data);
1437 
1438 			kunmap_atomic(data.bvec_data);
1439 		}
1440 	}
1441 	/* Add the persistent grant into the list of free grants */
1442 	for (i = 0; i < num_grant; i++) {
1443 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1444 			/*
1445 			 * If the grant is still mapped by the backend (the
1446 			 * backend has chosen to make this grant persistent)
1447 			 * we add it at the head of the list, so it will be
1448 			 * reused first.
1449 			 */
1450 			if (!info->feature_persistent)
1451 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1452 						     s->grants_used[i]->gref);
1453 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1454 			rinfo->persistent_gnts_c++;
1455 		} else {
1456 			/*
1457 			 * If the grant is not mapped by the backend we end the
1458 			 * foreign access and add it to the tail of the list,
1459 			 * so it will not be picked again unless we run out of
1460 			 * persistent grants.
1461 			 */
1462 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1463 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1464 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1465 		}
1466 	}
1467 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1468 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1469 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1470 				if (!info->feature_persistent)
1471 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1472 							     s->indirect_grants[i]->gref);
1473 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1474 				rinfo->persistent_gnts_c++;
1475 			} else {
1476 				struct page *indirect_page;
1477 
1478 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1479 				/*
1480 				 * Add the used indirect page back to the list of
1481 				 * available pages for indirect grefs.
1482 				 */
1483 				if (!info->feature_persistent) {
1484 					indirect_page = s->indirect_grants[i]->page;
1485 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1486 				}
1487 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1488 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1489 			}
1490 		}
1491 	}
1492 
1493 	return true;
1494 }
1495 
1496 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1497 {
1498 	struct request *req;
1499 	struct blkif_response *bret;
1500 	RING_IDX i, rp;
1501 	unsigned long flags;
1502 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1503 	struct blkfront_info *info = rinfo->dev_info;
1504 
1505 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1506 		return IRQ_HANDLED;
1507 
1508 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1509  again:
1510 	rp = rinfo->ring.sring->rsp_prod;
1511 	rmb(); /* Ensure we see queued responses up to 'rp'. */
1512 
1513 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1514 		unsigned long id;
1515 
1516 		bret = RING_GET_RESPONSE(&rinfo->ring, i);
1517 		id   = bret->id;
1518 		/*
1519 		 * The backend has messed up and given us an id that we would
1520 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1521 		 * look in get_id_from_freelist.
1522 		 */
1523 		if (id >= BLK_RING_SIZE(info)) {
1524 			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1525 			     info->gd->disk_name, op_name(bret->operation), id);
1526 			/* We can't safely get the 'struct request' as
1527 			 * the id is busted. */
1528 			continue;
1529 		}
1530 		req  = rinfo->shadow[id].request;
1531 
1532 		if (bret->operation != BLKIF_OP_DISCARD) {
1533 			/*
1534 			 * We may need to wait for an extra response if the
1535 			 * I/O request is split in 2
1536 			 */
1537 			if (!blkif_completion(&id, rinfo, bret))
1538 				continue;
1539 		}
1540 
1541 		if (add_id_to_freelist(rinfo, id)) {
1542 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1543 			     info->gd->disk_name, op_name(bret->operation), id);
1544 			continue;
1545 		}
1546 
1547 		if (bret->status == BLKIF_RSP_OKAY)
1548 			blkif_req(req)->error = BLK_STS_OK;
1549 		else
1550 			blkif_req(req)->error = BLK_STS_IOERR;
1551 
1552 		switch (bret->operation) {
1553 		case BLKIF_OP_DISCARD:
1554 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1555 				struct request_queue *rq = info->rq;
1556 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1557 					   info->gd->disk_name, op_name(bret->operation));
1558 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1559 				info->feature_discard = 0;
1560 				info->feature_secdiscard = 0;
1561 				blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1562 				blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1563 			}
1564 			break;
1565 		case BLKIF_OP_FLUSH_DISKCACHE:
1566 		case BLKIF_OP_WRITE_BARRIER:
1567 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1568 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1569 				       info->gd->disk_name, op_name(bret->operation));
1570 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1571 			}
1572 			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1573 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1574 				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1575 				       info->gd->disk_name, op_name(bret->operation));
1576 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1577 			}
1578 			if (unlikely(blkif_req(req)->error)) {
1579 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1580 					blkif_req(req)->error = BLK_STS_OK;
1581 				info->feature_fua = 0;
1582 				info->feature_flush = 0;
1583 				xlvbd_flush(info);
1584 			}
1585 			fallthrough;
1586 		case BLKIF_OP_READ:
1587 		case BLKIF_OP_WRITE:
1588 			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1589 				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1590 					"request: %x\n", bret->status);
1591 
1592 			break;
1593 		default:
1594 			BUG();
1595 		}
1596 
1597 		if (likely(!blk_should_fake_timeout(req->q)))
1598 			blk_mq_complete_request(req);
1599 	}
1600 
1601 	rinfo->ring.rsp_cons = i;
1602 
1603 	if (i != rinfo->ring.req_prod_pvt) {
1604 		int more_to_do;
1605 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1606 		if (more_to_do)
1607 			goto again;
1608 	} else
1609 		rinfo->ring.sring->rsp_event = i + 1;
1610 
1611 	kick_pending_request_queues_locked(rinfo);
1612 
1613 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1614 
1615 	return IRQ_HANDLED;
1616 }
1617 
1618 
1619 static int setup_blkring(struct xenbus_device *dev,
1620 			 struct blkfront_ring_info *rinfo)
1621 {
1622 	struct blkif_sring *sring;
1623 	int err, i;
1624 	struct blkfront_info *info = rinfo->dev_info;
1625 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1626 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1627 
1628 	for (i = 0; i < info->nr_ring_pages; i++)
1629 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1630 
1631 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1632 						       get_order(ring_size));
1633 	if (!sring) {
1634 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1635 		return -ENOMEM;
1636 	}
1637 	SHARED_RING_INIT(sring);
1638 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1639 
1640 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1641 	if (err < 0) {
1642 		free_pages((unsigned long)sring, get_order(ring_size));
1643 		rinfo->ring.sring = NULL;
1644 		goto fail;
1645 	}
1646 	for (i = 0; i < info->nr_ring_pages; i++)
1647 		rinfo->ring_ref[i] = gref[i];
1648 
1649 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1650 	if (err)
1651 		goto fail;
1652 
1653 	err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1654 					"blkif", rinfo);
1655 	if (err <= 0) {
1656 		xenbus_dev_fatal(dev, err,
1657 				 "bind_evtchn_to_irqhandler failed");
1658 		goto fail;
1659 	}
1660 	rinfo->irq = err;
1661 
1662 	return 0;
1663 fail:
1664 	blkif_free(info, 0);
1665 	return err;
1666 }
1667 
1668 /*
1669  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1670  * ring buffer may have multi pages depending on ->nr_ring_pages.
1671  */
1672 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1673 				struct blkfront_ring_info *rinfo, const char *dir)
1674 {
1675 	int err;
1676 	unsigned int i;
1677 	const char *message = NULL;
1678 	struct blkfront_info *info = rinfo->dev_info;
1679 
1680 	if (info->nr_ring_pages == 1) {
1681 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1682 		if (err) {
1683 			message = "writing ring-ref";
1684 			goto abort_transaction;
1685 		}
1686 	} else {
1687 		for (i = 0; i < info->nr_ring_pages; i++) {
1688 			char ring_ref_name[RINGREF_NAME_LEN];
1689 
1690 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1691 			err = xenbus_printf(xbt, dir, ring_ref_name,
1692 					    "%u", rinfo->ring_ref[i]);
1693 			if (err) {
1694 				message = "writing ring-ref";
1695 				goto abort_transaction;
1696 			}
1697 		}
1698 	}
1699 
1700 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1701 	if (err) {
1702 		message = "writing event-channel";
1703 		goto abort_transaction;
1704 	}
1705 
1706 	return 0;
1707 
1708 abort_transaction:
1709 	xenbus_transaction_end(xbt, 1);
1710 	if (message)
1711 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1712 
1713 	return err;
1714 }
1715 
1716 /* Common code used when first setting up, and when resuming. */
1717 static int talk_to_blkback(struct xenbus_device *dev,
1718 			   struct blkfront_info *info)
1719 {
1720 	const char *message = NULL;
1721 	struct xenbus_transaction xbt;
1722 	int err;
1723 	unsigned int i, max_page_order;
1724 	unsigned int ring_page_order;
1725 	struct blkfront_ring_info *rinfo;
1726 
1727 	if (!info)
1728 		return -ENODEV;
1729 
1730 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1731 					      "max-ring-page-order", 0);
1732 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1733 	info->nr_ring_pages = 1 << ring_page_order;
1734 
1735 	err = negotiate_mq(info);
1736 	if (err)
1737 		goto destroy_blkring;
1738 
1739 	for_each_rinfo(info, rinfo, i) {
1740 		/* Create shared ring, alloc event channel. */
1741 		err = setup_blkring(dev, rinfo);
1742 		if (err)
1743 			goto destroy_blkring;
1744 	}
1745 
1746 again:
1747 	err = xenbus_transaction_start(&xbt);
1748 	if (err) {
1749 		xenbus_dev_fatal(dev, err, "starting transaction");
1750 		goto destroy_blkring;
1751 	}
1752 
1753 	if (info->nr_ring_pages > 1) {
1754 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1755 				    ring_page_order);
1756 		if (err) {
1757 			message = "writing ring-page-order";
1758 			goto abort_transaction;
1759 		}
1760 	}
1761 
1762 	/* We already got the number of queues/rings in _probe */
1763 	if (info->nr_rings == 1) {
1764 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1765 		if (err)
1766 			goto destroy_blkring;
1767 	} else {
1768 		char *path;
1769 		size_t pathsize;
1770 
1771 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1772 				    info->nr_rings);
1773 		if (err) {
1774 			message = "writing multi-queue-num-queues";
1775 			goto abort_transaction;
1776 		}
1777 
1778 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1779 		path = kmalloc(pathsize, GFP_KERNEL);
1780 		if (!path) {
1781 			err = -ENOMEM;
1782 			message = "ENOMEM while writing ring references";
1783 			goto abort_transaction;
1784 		}
1785 
1786 		for_each_rinfo(info, rinfo, i) {
1787 			memset(path, 0, pathsize);
1788 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1789 			err = write_per_ring_nodes(xbt, rinfo, path);
1790 			if (err) {
1791 				kfree(path);
1792 				goto destroy_blkring;
1793 			}
1794 		}
1795 		kfree(path);
1796 	}
1797 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1798 			    XEN_IO_PROTO_ABI_NATIVE);
1799 	if (err) {
1800 		message = "writing protocol";
1801 		goto abort_transaction;
1802 	}
1803 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1804 			info->feature_persistent);
1805 	if (err)
1806 		dev_warn(&dev->dev,
1807 			 "writing persistent grants feature to xenbus");
1808 
1809 	err = xenbus_transaction_end(xbt, 0);
1810 	if (err) {
1811 		if (err == -EAGAIN)
1812 			goto again;
1813 		xenbus_dev_fatal(dev, err, "completing transaction");
1814 		goto destroy_blkring;
1815 	}
1816 
1817 	for_each_rinfo(info, rinfo, i) {
1818 		unsigned int j;
1819 
1820 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1821 			rinfo->shadow[j].req.u.rw.id = j + 1;
1822 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1823 	}
1824 	xenbus_switch_state(dev, XenbusStateInitialised);
1825 
1826 	return 0;
1827 
1828  abort_transaction:
1829 	xenbus_transaction_end(xbt, 1);
1830 	if (message)
1831 		xenbus_dev_fatal(dev, err, "%s", message);
1832  destroy_blkring:
1833 	blkif_free(info, 0);
1834 	return err;
1835 }
1836 
1837 static int negotiate_mq(struct blkfront_info *info)
1838 {
1839 	unsigned int backend_max_queues;
1840 	unsigned int i;
1841 	struct blkfront_ring_info *rinfo;
1842 
1843 	BUG_ON(info->nr_rings);
1844 
1845 	/* Check if backend supports multiple queues. */
1846 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1847 						  "multi-queue-max-queues", 1);
1848 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1849 	/* We need at least one ring. */
1850 	if (!info->nr_rings)
1851 		info->nr_rings = 1;
1852 
1853 	info->rinfo_size = struct_size(info->rinfo, shadow,
1854 				       BLK_RING_SIZE(info));
1855 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1856 	if (!info->rinfo) {
1857 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1858 		info->nr_rings = 0;
1859 		return -ENOMEM;
1860 	}
1861 
1862 	for_each_rinfo(info, rinfo, i) {
1863 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1864 		INIT_LIST_HEAD(&rinfo->grants);
1865 		rinfo->dev_info = info;
1866 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1867 		spin_lock_init(&rinfo->ring_lock);
1868 	}
1869 	return 0;
1870 }
1871 
1872 /* Enable the persistent grants feature. */
1873 static bool feature_persistent = true;
1874 module_param(feature_persistent, bool, 0644);
1875 MODULE_PARM_DESC(feature_persistent,
1876 		"Enables the persistent grants feature");
1877 
1878 /*
1879  * Entry point to this code when a new device is created.  Allocate the basic
1880  * structures and the ring buffer for communication with the backend, and
1881  * inform the backend of the appropriate details for those.  Switch to
1882  * Initialised state.
1883  */
1884 static int blkfront_probe(struct xenbus_device *dev,
1885 			  const struct xenbus_device_id *id)
1886 {
1887 	int err, vdevice;
1888 	struct blkfront_info *info;
1889 
1890 	/* FIXME: Use dynamic device id if this is not set. */
1891 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1892 			   "virtual-device", "%i", &vdevice);
1893 	if (err != 1) {
1894 		/* go looking in the extended area instead */
1895 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1896 				   "%i", &vdevice);
1897 		if (err != 1) {
1898 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1899 			return err;
1900 		}
1901 	}
1902 
1903 	if (xen_hvm_domain()) {
1904 		char *type;
1905 		int len;
1906 		/* no unplug has been done: do not hook devices != xen vbds */
1907 		if (xen_has_pv_and_legacy_disk_devices()) {
1908 			int major;
1909 
1910 			if (!VDEV_IS_EXTENDED(vdevice))
1911 				major = BLKIF_MAJOR(vdevice);
1912 			else
1913 				major = XENVBD_MAJOR;
1914 
1915 			if (major != XENVBD_MAJOR) {
1916 				printk(KERN_INFO
1917 						"%s: HVM does not support vbd %d as xen block device\n",
1918 						__func__, vdevice);
1919 				return -ENODEV;
1920 			}
1921 		}
1922 		/* do not create a PV cdrom device if we are an HVM guest */
1923 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1924 		if (IS_ERR(type))
1925 			return -ENODEV;
1926 		if (strncmp(type, "cdrom", 5) == 0) {
1927 			kfree(type);
1928 			return -ENODEV;
1929 		}
1930 		kfree(type);
1931 	}
1932 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1933 	if (!info) {
1934 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1935 		return -ENOMEM;
1936 	}
1937 
1938 	info->xbdev = dev;
1939 
1940 	mutex_init(&info->mutex);
1941 	info->vdevice = vdevice;
1942 	info->connected = BLKIF_STATE_DISCONNECTED;
1943 
1944 	info->feature_persistent = feature_persistent;
1945 
1946 	/* Front end dir is a number, which is used as the id. */
1947 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1948 	dev_set_drvdata(&dev->dev, info);
1949 
1950 	mutex_lock(&blkfront_mutex);
1951 	list_add(&info->info_list, &info_list);
1952 	mutex_unlock(&blkfront_mutex);
1953 
1954 	return 0;
1955 }
1956 
1957 static int blkif_recover(struct blkfront_info *info)
1958 {
1959 	unsigned int r_index;
1960 	struct request *req, *n;
1961 	int rc;
1962 	struct bio *bio;
1963 	unsigned int segs;
1964 	struct blkfront_ring_info *rinfo;
1965 
1966 	blkfront_gather_backend_features(info);
1967 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
1968 	blkif_set_queue_limits(info);
1969 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
1970 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
1971 
1972 	for_each_rinfo(info, rinfo, r_index) {
1973 		rc = blkfront_setup_indirect(rinfo);
1974 		if (rc)
1975 			return rc;
1976 	}
1977 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
1978 
1979 	/* Now safe for us to use the shared ring */
1980 	info->connected = BLKIF_STATE_CONNECTED;
1981 
1982 	for_each_rinfo(info, rinfo, r_index) {
1983 		/* Kick any other new requests queued since we resumed */
1984 		kick_pending_request_queues(rinfo);
1985 	}
1986 
1987 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
1988 		/* Requeue pending requests (flush or discard) */
1989 		list_del_init(&req->queuelist);
1990 		BUG_ON(req->nr_phys_segments > segs);
1991 		blk_mq_requeue_request(req, false);
1992 	}
1993 	blk_mq_start_stopped_hw_queues(info->rq, true);
1994 	blk_mq_kick_requeue_list(info->rq);
1995 
1996 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
1997 		/* Traverse the list of pending bios and re-queue them */
1998 		submit_bio(bio);
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 /*
2005  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2006  * driver restart.  We tear down our blkif structure and recreate it, but
2007  * leave the device-layer structures intact so that this is transparent to the
2008  * rest of the kernel.
2009  */
2010 static int blkfront_resume(struct xenbus_device *dev)
2011 {
2012 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2013 	int err = 0;
2014 	unsigned int i, j;
2015 	struct blkfront_ring_info *rinfo;
2016 
2017 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2018 
2019 	bio_list_init(&info->bio_list);
2020 	INIT_LIST_HEAD(&info->requests);
2021 	for_each_rinfo(info, rinfo, i) {
2022 		struct bio_list merge_bio;
2023 		struct blk_shadow *shadow = rinfo->shadow;
2024 
2025 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2026 			/* Not in use? */
2027 			if (!shadow[j].request)
2028 				continue;
2029 
2030 			/*
2031 			 * Get the bios in the request so we can re-queue them.
2032 			 */
2033 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2034 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2035 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2036 			    shadow[j].request->cmd_flags & REQ_FUA) {
2037 				/*
2038 				 * Flush operations don't contain bios, so
2039 				 * we need to requeue the whole request
2040 				 *
2041 				 * XXX: but this doesn't make any sense for a
2042 				 * write with the FUA flag set..
2043 				 */
2044 				list_add(&shadow[j].request->queuelist, &info->requests);
2045 				continue;
2046 			}
2047 			merge_bio.head = shadow[j].request->bio;
2048 			merge_bio.tail = shadow[j].request->biotail;
2049 			bio_list_merge(&info->bio_list, &merge_bio);
2050 			shadow[j].request->bio = NULL;
2051 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2052 		}
2053 	}
2054 
2055 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2056 
2057 	err = talk_to_blkback(dev, info);
2058 	if (!err)
2059 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2060 
2061 	/*
2062 	 * We have to wait for the backend to switch to
2063 	 * connected state, since we want to read which
2064 	 * features it supports.
2065 	 */
2066 
2067 	return err;
2068 }
2069 
2070 static void blkfront_closing(struct blkfront_info *info)
2071 {
2072 	struct xenbus_device *xbdev = info->xbdev;
2073 	struct blkfront_ring_info *rinfo;
2074 	unsigned int i;
2075 
2076 	if (xbdev->state == XenbusStateClosing)
2077 		return;
2078 
2079 	/* No more blkif_request(). */
2080 	blk_mq_stop_hw_queues(info->rq);
2081 	blk_set_queue_dying(info->rq);
2082 	set_capacity(info->gd, 0);
2083 
2084 	for_each_rinfo(info, rinfo, i) {
2085 		/* No more gnttab callback work. */
2086 		gnttab_cancel_free_callback(&rinfo->callback);
2087 
2088 		/* Flush gnttab callback work. Must be done with no locks held. */
2089 		flush_work(&rinfo->work);
2090 	}
2091 
2092 	xenbus_frontend_closed(xbdev);
2093 }
2094 
2095 static void blkfront_setup_discard(struct blkfront_info *info)
2096 {
2097 	info->feature_discard = 1;
2098 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2099 							 "discard-granularity",
2100 							 0);
2101 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2102 						       "discard-alignment", 0);
2103 	info->feature_secdiscard =
2104 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2105 				       0);
2106 }
2107 
2108 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2109 {
2110 	unsigned int psegs, grants, memflags;
2111 	int err, i;
2112 	struct blkfront_info *info = rinfo->dev_info;
2113 
2114 	memflags = memalloc_noio_save();
2115 
2116 	if (info->max_indirect_segments == 0) {
2117 		if (!HAS_EXTRA_REQ)
2118 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2119 		else {
2120 			/*
2121 			 * When an extra req is required, the maximum
2122 			 * grants supported is related to the size of the
2123 			 * Linux block segment.
2124 			 */
2125 			grants = GRANTS_PER_PSEG;
2126 		}
2127 	}
2128 	else
2129 		grants = info->max_indirect_segments;
2130 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2131 
2132 	err = fill_grant_buffer(rinfo,
2133 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2134 	if (err)
2135 		goto out_of_memory;
2136 
2137 	if (!info->feature_persistent && info->max_indirect_segments) {
2138 		/*
2139 		 * We are using indirect descriptors but not persistent
2140 		 * grants, we need to allocate a set of pages that can be
2141 		 * used for mapping indirect grefs
2142 		 */
2143 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2144 
2145 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2146 		for (i = 0; i < num; i++) {
2147 			struct page *indirect_page = alloc_page(GFP_KERNEL);
2148 			if (!indirect_page)
2149 				goto out_of_memory;
2150 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2151 		}
2152 	}
2153 
2154 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2155 		rinfo->shadow[i].grants_used =
2156 			kvcalloc(grants,
2157 				 sizeof(rinfo->shadow[i].grants_used[0]),
2158 				 GFP_KERNEL);
2159 		rinfo->shadow[i].sg = kvcalloc(psegs,
2160 					       sizeof(rinfo->shadow[i].sg[0]),
2161 					       GFP_KERNEL);
2162 		if (info->max_indirect_segments)
2163 			rinfo->shadow[i].indirect_grants =
2164 				kvcalloc(INDIRECT_GREFS(grants),
2165 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2166 					 GFP_KERNEL);
2167 		if ((rinfo->shadow[i].grants_used == NULL) ||
2168 			(rinfo->shadow[i].sg == NULL) ||
2169 		     (info->max_indirect_segments &&
2170 		     (rinfo->shadow[i].indirect_grants == NULL)))
2171 			goto out_of_memory;
2172 		sg_init_table(rinfo->shadow[i].sg, psegs);
2173 	}
2174 
2175 	memalloc_noio_restore(memflags);
2176 
2177 	return 0;
2178 
2179 out_of_memory:
2180 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2181 		kvfree(rinfo->shadow[i].grants_used);
2182 		rinfo->shadow[i].grants_used = NULL;
2183 		kvfree(rinfo->shadow[i].sg);
2184 		rinfo->shadow[i].sg = NULL;
2185 		kvfree(rinfo->shadow[i].indirect_grants);
2186 		rinfo->shadow[i].indirect_grants = NULL;
2187 	}
2188 	if (!list_empty(&rinfo->indirect_pages)) {
2189 		struct page *indirect_page, *n;
2190 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2191 			list_del(&indirect_page->lru);
2192 			__free_page(indirect_page);
2193 		}
2194 	}
2195 
2196 	memalloc_noio_restore(memflags);
2197 
2198 	return -ENOMEM;
2199 }
2200 
2201 /*
2202  * Gather all backend feature-*
2203  */
2204 static void blkfront_gather_backend_features(struct blkfront_info *info)
2205 {
2206 	unsigned int indirect_segments;
2207 
2208 	info->feature_flush = 0;
2209 	info->feature_fua = 0;
2210 
2211 	/*
2212 	 * If there's no "feature-barrier" defined, then it means
2213 	 * we're dealing with a very old backend which writes
2214 	 * synchronously; nothing to do.
2215 	 *
2216 	 * If there are barriers, then we use flush.
2217 	 */
2218 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2219 		info->feature_flush = 1;
2220 		info->feature_fua = 1;
2221 	}
2222 
2223 	/*
2224 	 * And if there is "feature-flush-cache" use that above
2225 	 * barriers.
2226 	 */
2227 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2228 				 0)) {
2229 		info->feature_flush = 1;
2230 		info->feature_fua = 0;
2231 	}
2232 
2233 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2234 		blkfront_setup_discard(info);
2235 
2236 	if (info->feature_persistent)
2237 		info->feature_persistent =
2238 			!!xenbus_read_unsigned(info->xbdev->otherend,
2239 					       "feature-persistent", 0);
2240 
2241 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2242 					"feature-max-indirect-segments", 0);
2243 	if (indirect_segments > xen_blkif_max_segments)
2244 		indirect_segments = xen_blkif_max_segments;
2245 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2246 		indirect_segments = 0;
2247 	info->max_indirect_segments = indirect_segments;
2248 
2249 	if (info->feature_persistent) {
2250 		mutex_lock(&blkfront_mutex);
2251 		schedule_delayed_work(&blkfront_work, HZ * 10);
2252 		mutex_unlock(&blkfront_mutex);
2253 	}
2254 }
2255 
2256 /*
2257  * Invoked when the backend is finally 'ready' (and has told produced
2258  * the details about the physical device - #sectors, size, etc).
2259  */
2260 static void blkfront_connect(struct blkfront_info *info)
2261 {
2262 	unsigned long long sectors;
2263 	unsigned long sector_size;
2264 	unsigned int physical_sector_size;
2265 	unsigned int binfo;
2266 	int err, i;
2267 	struct blkfront_ring_info *rinfo;
2268 
2269 	switch (info->connected) {
2270 	case BLKIF_STATE_CONNECTED:
2271 		/*
2272 		 * Potentially, the back-end may be signalling
2273 		 * a capacity change; update the capacity.
2274 		 */
2275 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2276 				   "sectors", "%Lu", &sectors);
2277 		if (XENBUS_EXIST_ERR(err))
2278 			return;
2279 		printk(KERN_INFO "Setting capacity to %Lu\n",
2280 		       sectors);
2281 		set_capacity_and_notify(info->gd, sectors);
2282 
2283 		return;
2284 	case BLKIF_STATE_SUSPENDED:
2285 		/*
2286 		 * If we are recovering from suspension, we need to wait
2287 		 * for the backend to announce it's features before
2288 		 * reconnecting, at least we need to know if the backend
2289 		 * supports indirect descriptors, and how many.
2290 		 */
2291 		blkif_recover(info);
2292 		return;
2293 
2294 	default:
2295 		break;
2296 	}
2297 
2298 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2299 		__func__, info->xbdev->otherend);
2300 
2301 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2302 			    "sectors", "%llu", &sectors,
2303 			    "info", "%u", &binfo,
2304 			    "sector-size", "%lu", &sector_size,
2305 			    NULL);
2306 	if (err) {
2307 		xenbus_dev_fatal(info->xbdev, err,
2308 				 "reading backend fields at %s",
2309 				 info->xbdev->otherend);
2310 		return;
2311 	}
2312 
2313 	/*
2314 	 * physical-sector-size is a newer field, so old backends may not
2315 	 * provide this. Assume physical sector size to be the same as
2316 	 * sector_size in that case.
2317 	 */
2318 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2319 						    "physical-sector-size",
2320 						    sector_size);
2321 	blkfront_gather_backend_features(info);
2322 	for_each_rinfo(info, rinfo, i) {
2323 		err = blkfront_setup_indirect(rinfo);
2324 		if (err) {
2325 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2326 					 info->xbdev->otherend);
2327 			blkif_free(info, 0);
2328 			break;
2329 		}
2330 	}
2331 
2332 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2333 				  physical_sector_size);
2334 	if (err) {
2335 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2336 				 info->xbdev->otherend);
2337 		goto fail;
2338 	}
2339 
2340 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2341 
2342 	/* Kick pending requests. */
2343 	info->connected = BLKIF_STATE_CONNECTED;
2344 	for_each_rinfo(info, rinfo, i)
2345 		kick_pending_request_queues(rinfo);
2346 
2347 	device_add_disk(&info->xbdev->dev, info->gd, NULL);
2348 
2349 	info->is_ready = 1;
2350 	return;
2351 
2352 fail:
2353 	blkif_free(info, 0);
2354 	return;
2355 }
2356 
2357 /*
2358  * Callback received when the backend's state changes.
2359  */
2360 static void blkback_changed(struct xenbus_device *dev,
2361 			    enum xenbus_state backend_state)
2362 {
2363 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2364 
2365 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2366 
2367 	switch (backend_state) {
2368 	case XenbusStateInitWait:
2369 		if (dev->state != XenbusStateInitialising)
2370 			break;
2371 		if (talk_to_blkback(dev, info))
2372 			break;
2373 		break;
2374 	case XenbusStateInitialising:
2375 	case XenbusStateInitialised:
2376 	case XenbusStateReconfiguring:
2377 	case XenbusStateReconfigured:
2378 	case XenbusStateUnknown:
2379 		break;
2380 
2381 	case XenbusStateConnected:
2382 		/*
2383 		 * talk_to_blkback sets state to XenbusStateInitialised
2384 		 * and blkfront_connect sets it to XenbusStateConnected
2385 		 * (if connection went OK).
2386 		 *
2387 		 * If the backend (or toolstack) decides to poke at backend
2388 		 * state (and re-trigger the watch by setting the state repeatedly
2389 		 * to XenbusStateConnected (4)) we need to deal with this.
2390 		 * This is allowed as this is used to communicate to the guest
2391 		 * that the size of disk has changed!
2392 		 */
2393 		if ((dev->state != XenbusStateInitialised) &&
2394 		    (dev->state != XenbusStateConnected)) {
2395 			if (talk_to_blkback(dev, info))
2396 				break;
2397 		}
2398 
2399 		blkfront_connect(info);
2400 		break;
2401 
2402 	case XenbusStateClosed:
2403 		if (dev->state == XenbusStateClosed)
2404 			break;
2405 		fallthrough;
2406 	case XenbusStateClosing:
2407 		blkfront_closing(info);
2408 		break;
2409 	}
2410 }
2411 
2412 static int blkfront_remove(struct xenbus_device *xbdev)
2413 {
2414 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2415 
2416 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2417 
2418 	del_gendisk(info->gd);
2419 
2420 	mutex_lock(&blkfront_mutex);
2421 	list_del(&info->info_list);
2422 	mutex_unlock(&blkfront_mutex);
2423 
2424 	blkif_free(info, 0);
2425 	xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2426 	blk_cleanup_disk(info->gd);
2427 	blk_mq_free_tag_set(&info->tag_set);
2428 
2429 	kfree(info);
2430 	return 0;
2431 }
2432 
2433 static int blkfront_is_ready(struct xenbus_device *dev)
2434 {
2435 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2436 
2437 	return info->is_ready && info->xbdev;
2438 }
2439 
2440 static const struct block_device_operations xlvbd_block_fops =
2441 {
2442 	.owner = THIS_MODULE,
2443 	.getgeo = blkif_getgeo,
2444 	.ioctl = blkif_ioctl,
2445 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2446 };
2447 
2448 
2449 static const struct xenbus_device_id blkfront_ids[] = {
2450 	{ "vbd" },
2451 	{ "" }
2452 };
2453 
2454 static struct xenbus_driver blkfront_driver = {
2455 	.ids  = blkfront_ids,
2456 	.probe = blkfront_probe,
2457 	.remove = blkfront_remove,
2458 	.resume = blkfront_resume,
2459 	.otherend_changed = blkback_changed,
2460 	.is_ready = blkfront_is_ready,
2461 };
2462 
2463 static void purge_persistent_grants(struct blkfront_info *info)
2464 {
2465 	unsigned int i;
2466 	unsigned long flags;
2467 	struct blkfront_ring_info *rinfo;
2468 
2469 	for_each_rinfo(info, rinfo, i) {
2470 		struct grant *gnt_list_entry, *tmp;
2471 
2472 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2473 
2474 		if (rinfo->persistent_gnts_c == 0) {
2475 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2476 			continue;
2477 		}
2478 
2479 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2480 					 node) {
2481 			if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2482 			    gnttab_query_foreign_access(gnt_list_entry->gref))
2483 				continue;
2484 
2485 			list_del(&gnt_list_entry->node);
2486 			gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2487 			rinfo->persistent_gnts_c--;
2488 			gnt_list_entry->gref = GRANT_INVALID_REF;
2489 			list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2490 		}
2491 
2492 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2493 	}
2494 }
2495 
2496 static void blkfront_delay_work(struct work_struct *work)
2497 {
2498 	struct blkfront_info *info;
2499 	bool need_schedule_work = false;
2500 
2501 	mutex_lock(&blkfront_mutex);
2502 
2503 	list_for_each_entry(info, &info_list, info_list) {
2504 		if (info->feature_persistent) {
2505 			need_schedule_work = true;
2506 			mutex_lock(&info->mutex);
2507 			purge_persistent_grants(info);
2508 			mutex_unlock(&info->mutex);
2509 		}
2510 	}
2511 
2512 	if (need_schedule_work)
2513 		schedule_delayed_work(&blkfront_work, HZ * 10);
2514 
2515 	mutex_unlock(&blkfront_mutex);
2516 }
2517 
2518 static int __init xlblk_init(void)
2519 {
2520 	int ret;
2521 	int nr_cpus = num_online_cpus();
2522 
2523 	if (!xen_domain())
2524 		return -ENODEV;
2525 
2526 	if (!xen_has_pv_disk_devices())
2527 		return -ENODEV;
2528 
2529 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2530 		pr_warn("xen_blk: can't get major %d with name %s\n",
2531 			XENVBD_MAJOR, DEV_NAME);
2532 		return -ENODEV;
2533 	}
2534 
2535 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2536 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2537 
2538 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2539 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2540 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2541 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2542 	}
2543 
2544 	if (xen_blkif_max_queues > nr_cpus) {
2545 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2546 			xen_blkif_max_queues, nr_cpus);
2547 		xen_blkif_max_queues = nr_cpus;
2548 	}
2549 
2550 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2551 
2552 	ret = xenbus_register_frontend(&blkfront_driver);
2553 	if (ret) {
2554 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2555 		return ret;
2556 	}
2557 
2558 	return 0;
2559 }
2560 module_init(xlblk_init);
2561 
2562 
2563 static void __exit xlblk_exit(void)
2564 {
2565 	cancel_delayed_work_sync(&blkfront_work);
2566 
2567 	xenbus_unregister_driver(&blkfront_driver);
2568 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2569 	kfree(minors);
2570 }
2571 module_exit(xlblk_exit);
2572 
2573 MODULE_DESCRIPTION("Xen virtual block device frontend");
2574 MODULE_LICENSE("GPL");
2575 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2576 MODULE_ALIAS("xen:vbd");
2577 MODULE_ALIAS("xenblk");
2578