xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision 4e1a33b1)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 
50 #include <xen/xen.h>
51 #include <xen/xenbus.h>
52 #include <xen/grant_table.h>
53 #include <xen/events.h>
54 #include <xen/page.h>
55 #include <xen/platform_pci.h>
56 
57 #include <xen/interface/grant_table.h>
58 #include <xen/interface/io/blkif.h>
59 #include <xen/interface/io/protocols.h>
60 
61 #include <asm/xen/hypervisor.h>
62 
63 /*
64  * The minimal size of segment supported by the block framework is PAGE_SIZE.
65  * When Linux is using a different page size than Xen, it may not be possible
66  * to put all the data in a single segment.
67  * This can happen when the backend doesn't support indirect descriptor and
68  * therefore the maximum amount of data that a request can carry is
69  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
70  *
71  * Note that we only support one extra request. So the Linux page size
72  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
73  * 88KB.
74  */
75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
76 
77 enum blkif_state {
78 	BLKIF_STATE_DISCONNECTED,
79 	BLKIF_STATE_CONNECTED,
80 	BLKIF_STATE_SUSPENDED,
81 };
82 
83 struct grant {
84 	grant_ref_t gref;
85 	struct page *page;
86 	struct list_head node;
87 };
88 
89 enum blk_req_status {
90 	REQ_WAITING,
91 	REQ_DONE,
92 	REQ_ERROR,
93 	REQ_EOPNOTSUPP,
94 };
95 
96 struct blk_shadow {
97 	struct blkif_request req;
98 	struct request *request;
99 	struct grant **grants_used;
100 	struct grant **indirect_grants;
101 	struct scatterlist *sg;
102 	unsigned int num_sg;
103 	enum blk_req_status status;
104 
105 	#define NO_ASSOCIATED_ID ~0UL
106 	/*
107 	 * Id of the sibling if we ever need 2 requests when handling a
108 	 * block I/O request
109 	 */
110 	unsigned long associated_id;
111 };
112 
113 struct split_bio {
114 	struct bio *bio;
115 	atomic_t pending;
116 };
117 
118 static DEFINE_MUTEX(blkfront_mutex);
119 static const struct block_device_operations xlvbd_block_fops;
120 
121 /*
122  * Maximum number of segments in indirect requests, the actual value used by
123  * the frontend driver is the minimum of this value and the value provided
124  * by the backend driver.
125  */
126 
127 static unsigned int xen_blkif_max_segments = 32;
128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint,
129 		   S_IRUGO);
130 MODULE_PARM_DESC(max_indirect_segments,
131 		 "Maximum amount of segments in indirect requests (default is 32)");
132 
133 static unsigned int xen_blkif_max_queues = 4;
134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO);
135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
136 
137 /*
138  * Maximum order of pages to be used for the shared ring between front and
139  * backend, 4KB page granularity is used.
140  */
141 static unsigned int xen_blkif_max_ring_order;
142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
144 
145 #define BLK_RING_SIZE(info)	\
146 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
147 
148 #define BLK_MAX_RING_SIZE	\
149 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
150 
151 /*
152  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
153  * characters are enough. Define to 20 to keep consistent with backend.
154  */
155 #define RINGREF_NAME_LEN (20)
156 /*
157  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
158  */
159 #define QUEUE_NAME_LEN (17)
160 
161 /*
162  *  Per-ring info.
163  *  Every blkfront device can associate with one or more blkfront_ring_info,
164  *  depending on how many hardware queues/rings to be used.
165  */
166 struct blkfront_ring_info {
167 	/* Lock to protect data in every ring buffer. */
168 	spinlock_t ring_lock;
169 	struct blkif_front_ring ring;
170 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
171 	unsigned int evtchn, irq;
172 	struct work_struct work;
173 	struct gnttab_free_callback callback;
174 	struct blk_shadow shadow[BLK_MAX_RING_SIZE];
175 	struct list_head indirect_pages;
176 	struct list_head grants;
177 	unsigned int persistent_gnts_c;
178 	unsigned long shadow_free;
179 	struct blkfront_info *dev_info;
180 };
181 
182 /*
183  * We have one of these per vbd, whether ide, scsi or 'other'.  They
184  * hang in private_data off the gendisk structure. We may end up
185  * putting all kinds of interesting stuff here :-)
186  */
187 struct blkfront_info
188 {
189 	struct mutex mutex;
190 	struct xenbus_device *xbdev;
191 	struct gendisk *gd;
192 	u16 sector_size;
193 	unsigned int physical_sector_size;
194 	int vdevice;
195 	blkif_vdev_t handle;
196 	enum blkif_state connected;
197 	/* Number of pages per ring buffer. */
198 	unsigned int nr_ring_pages;
199 	struct request_queue *rq;
200 	unsigned int feature_flush:1;
201 	unsigned int feature_fua:1;
202 	unsigned int feature_discard:1;
203 	unsigned int feature_secdiscard:1;
204 	unsigned int feature_persistent:1;
205 	unsigned int discard_granularity;
206 	unsigned int discard_alignment;
207 	/* Number of 4KB segments handled */
208 	unsigned int max_indirect_segments;
209 	int is_ready;
210 	struct blk_mq_tag_set tag_set;
211 	struct blkfront_ring_info *rinfo;
212 	unsigned int nr_rings;
213 	/* Save uncomplete reqs and bios for migration. */
214 	struct list_head requests;
215 	struct bio_list bio_list;
216 };
217 
218 static unsigned int nr_minors;
219 static unsigned long *minors;
220 static DEFINE_SPINLOCK(minor_lock);
221 
222 #define GRANT_INVALID_REF	0
223 
224 #define PARTS_PER_DISK		16
225 #define PARTS_PER_EXT_DISK      256
226 
227 #define BLKIF_MAJOR(dev) ((dev)>>8)
228 #define BLKIF_MINOR(dev) ((dev) & 0xff)
229 
230 #define EXT_SHIFT 28
231 #define EXTENDED (1<<EXT_SHIFT)
232 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
233 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
234 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
235 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
236 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
237 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
238 
239 #define DEV_NAME	"xvd"	/* name in /dev */
240 
241 /*
242  * Grants are always the same size as a Xen page (i.e 4KB).
243  * A physical segment is always the same size as a Linux page.
244  * Number of grants per physical segment
245  */
246 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
247 
248 #define GRANTS_PER_INDIRECT_FRAME \
249 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
250 
251 #define PSEGS_PER_INDIRECT_FRAME	\
252 	(GRANTS_INDIRECT_FRAME / GRANTS_PSEGS)
253 
254 #define INDIRECT_GREFS(_grants)		\
255 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
256 
257 #define GREFS(_psegs)	((_psegs) * GRANTS_PER_PSEG)
258 
259 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
260 static void blkfront_gather_backend_features(struct blkfront_info *info);
261 
262 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
263 {
264 	unsigned long free = rinfo->shadow_free;
265 
266 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
267 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
268 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
269 	return free;
270 }
271 
272 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
273 			      unsigned long id)
274 {
275 	if (rinfo->shadow[id].req.u.rw.id != id)
276 		return -EINVAL;
277 	if (rinfo->shadow[id].request == NULL)
278 		return -EINVAL;
279 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
280 	rinfo->shadow[id].request = NULL;
281 	rinfo->shadow_free = id;
282 	return 0;
283 }
284 
285 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
286 {
287 	struct blkfront_info *info = rinfo->dev_info;
288 	struct page *granted_page;
289 	struct grant *gnt_list_entry, *n;
290 	int i = 0;
291 
292 	while (i < num) {
293 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
294 		if (!gnt_list_entry)
295 			goto out_of_memory;
296 
297 		if (info->feature_persistent) {
298 			granted_page = alloc_page(GFP_NOIO);
299 			if (!granted_page) {
300 				kfree(gnt_list_entry);
301 				goto out_of_memory;
302 			}
303 			gnt_list_entry->page = granted_page;
304 		}
305 
306 		gnt_list_entry->gref = GRANT_INVALID_REF;
307 		list_add(&gnt_list_entry->node, &rinfo->grants);
308 		i++;
309 	}
310 
311 	return 0;
312 
313 out_of_memory:
314 	list_for_each_entry_safe(gnt_list_entry, n,
315 	                         &rinfo->grants, node) {
316 		list_del(&gnt_list_entry->node);
317 		if (info->feature_persistent)
318 			__free_page(gnt_list_entry->page);
319 		kfree(gnt_list_entry);
320 		i--;
321 	}
322 	BUG_ON(i != 0);
323 	return -ENOMEM;
324 }
325 
326 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
327 {
328 	struct grant *gnt_list_entry;
329 
330 	BUG_ON(list_empty(&rinfo->grants));
331 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
332 					  node);
333 	list_del(&gnt_list_entry->node);
334 
335 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
336 		rinfo->persistent_gnts_c--;
337 
338 	return gnt_list_entry;
339 }
340 
341 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
342 					const struct blkfront_info *info)
343 {
344 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
345 						 info->xbdev->otherend_id,
346 						 gnt_list_entry->page,
347 						 0);
348 }
349 
350 static struct grant *get_grant(grant_ref_t *gref_head,
351 			       unsigned long gfn,
352 			       struct blkfront_ring_info *rinfo)
353 {
354 	struct grant *gnt_list_entry = get_free_grant(rinfo);
355 	struct blkfront_info *info = rinfo->dev_info;
356 
357 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
358 		return gnt_list_entry;
359 
360 	/* Assign a gref to this page */
361 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
362 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
363 	if (info->feature_persistent)
364 		grant_foreign_access(gnt_list_entry, info);
365 	else {
366 		/* Grant access to the GFN passed by the caller */
367 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
368 						info->xbdev->otherend_id,
369 						gfn, 0);
370 	}
371 
372 	return gnt_list_entry;
373 }
374 
375 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
376 					struct blkfront_ring_info *rinfo)
377 {
378 	struct grant *gnt_list_entry = get_free_grant(rinfo);
379 	struct blkfront_info *info = rinfo->dev_info;
380 
381 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
382 		return gnt_list_entry;
383 
384 	/* Assign a gref to this page */
385 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 	if (!info->feature_persistent) {
388 		struct page *indirect_page;
389 
390 		/* Fetch a pre-allocated page to use for indirect grefs */
391 		BUG_ON(list_empty(&rinfo->indirect_pages));
392 		indirect_page = list_first_entry(&rinfo->indirect_pages,
393 						 struct page, lru);
394 		list_del(&indirect_page->lru);
395 		gnt_list_entry->page = indirect_page;
396 	}
397 	grant_foreign_access(gnt_list_entry, info);
398 
399 	return gnt_list_entry;
400 }
401 
402 static const char *op_name(int op)
403 {
404 	static const char *const names[] = {
405 		[BLKIF_OP_READ] = "read",
406 		[BLKIF_OP_WRITE] = "write",
407 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
408 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
409 		[BLKIF_OP_DISCARD] = "discard" };
410 
411 	if (op < 0 || op >= ARRAY_SIZE(names))
412 		return "unknown";
413 
414 	if (!names[op])
415 		return "reserved";
416 
417 	return names[op];
418 }
419 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
420 {
421 	unsigned int end = minor + nr;
422 	int rc;
423 
424 	if (end > nr_minors) {
425 		unsigned long *bitmap, *old;
426 
427 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
428 				 GFP_KERNEL);
429 		if (bitmap == NULL)
430 			return -ENOMEM;
431 
432 		spin_lock(&minor_lock);
433 		if (end > nr_minors) {
434 			old = minors;
435 			memcpy(bitmap, minors,
436 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
437 			minors = bitmap;
438 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
439 		} else
440 			old = bitmap;
441 		spin_unlock(&minor_lock);
442 		kfree(old);
443 	}
444 
445 	spin_lock(&minor_lock);
446 	if (find_next_bit(minors, end, minor) >= end) {
447 		bitmap_set(minors, minor, nr);
448 		rc = 0;
449 	} else
450 		rc = -EBUSY;
451 	spin_unlock(&minor_lock);
452 
453 	return rc;
454 }
455 
456 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
457 {
458 	unsigned int end = minor + nr;
459 
460 	BUG_ON(end > nr_minors);
461 	spin_lock(&minor_lock);
462 	bitmap_clear(minors,  minor, nr);
463 	spin_unlock(&minor_lock);
464 }
465 
466 static void blkif_restart_queue_callback(void *arg)
467 {
468 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
469 	schedule_work(&rinfo->work);
470 }
471 
472 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
473 {
474 	/* We don't have real geometry info, but let's at least return
475 	   values consistent with the size of the device */
476 	sector_t nsect = get_capacity(bd->bd_disk);
477 	sector_t cylinders = nsect;
478 
479 	hg->heads = 0xff;
480 	hg->sectors = 0x3f;
481 	sector_div(cylinders, hg->heads * hg->sectors);
482 	hg->cylinders = cylinders;
483 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
484 		hg->cylinders = 0xffff;
485 	return 0;
486 }
487 
488 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
489 		       unsigned command, unsigned long argument)
490 {
491 	struct blkfront_info *info = bdev->bd_disk->private_data;
492 	int i;
493 
494 	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
495 		command, (long)argument);
496 
497 	switch (command) {
498 	case CDROMMULTISESSION:
499 		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
500 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
501 			if (put_user(0, (char __user *)(argument + i)))
502 				return -EFAULT;
503 		return 0;
504 
505 	case CDROM_GET_CAPABILITY: {
506 		struct gendisk *gd = info->gd;
507 		if (gd->flags & GENHD_FL_CD)
508 			return 0;
509 		return -EINVAL;
510 	}
511 
512 	default:
513 		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
514 		  command);*/
515 		return -EINVAL; /* same return as native Linux */
516 	}
517 
518 	return 0;
519 }
520 
521 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
522 					    struct request *req,
523 					    struct blkif_request **ring_req)
524 {
525 	unsigned long id;
526 
527 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
528 	rinfo->ring.req_prod_pvt++;
529 
530 	id = get_id_from_freelist(rinfo);
531 	rinfo->shadow[id].request = req;
532 	rinfo->shadow[id].status = REQ_WAITING;
533 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
534 
535 	(*ring_req)->u.rw.id = id;
536 
537 	return id;
538 }
539 
540 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
541 {
542 	struct blkfront_info *info = rinfo->dev_info;
543 	struct blkif_request *ring_req;
544 	unsigned long id;
545 
546 	/* Fill out a communications ring structure. */
547 	id = blkif_ring_get_request(rinfo, req, &ring_req);
548 
549 	ring_req->operation = BLKIF_OP_DISCARD;
550 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
551 	ring_req->u.discard.id = id;
552 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
553 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
554 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
555 	else
556 		ring_req->u.discard.flag = 0;
557 
558 	/* Keep a private copy so we can reissue requests when recovering. */
559 	rinfo->shadow[id].req = *ring_req;
560 
561 	return 0;
562 }
563 
564 struct setup_rw_req {
565 	unsigned int grant_idx;
566 	struct blkif_request_segment *segments;
567 	struct blkfront_ring_info *rinfo;
568 	struct blkif_request *ring_req;
569 	grant_ref_t gref_head;
570 	unsigned int id;
571 	/* Only used when persistent grant is used and it's a read request */
572 	bool need_copy;
573 	unsigned int bvec_off;
574 	char *bvec_data;
575 
576 	bool require_extra_req;
577 	struct blkif_request *extra_ring_req;
578 };
579 
580 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
581 				     unsigned int len, void *data)
582 {
583 	struct setup_rw_req *setup = data;
584 	int n, ref;
585 	struct grant *gnt_list_entry;
586 	unsigned int fsect, lsect;
587 	/* Convenient aliases */
588 	unsigned int grant_idx = setup->grant_idx;
589 	struct blkif_request *ring_req = setup->ring_req;
590 	struct blkfront_ring_info *rinfo = setup->rinfo;
591 	/*
592 	 * We always use the shadow of the first request to store the list
593 	 * of grant associated to the block I/O request. This made the
594 	 * completion more easy to handle even if the block I/O request is
595 	 * split.
596 	 */
597 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
598 
599 	if (unlikely(setup->require_extra_req &&
600 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
601 		/*
602 		 * We are using the second request, setup grant_idx
603 		 * to be the index of the segment array.
604 		 */
605 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
606 		ring_req = setup->extra_ring_req;
607 	}
608 
609 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
610 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
611 		if (setup->segments)
612 			kunmap_atomic(setup->segments);
613 
614 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
615 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
616 		shadow->indirect_grants[n] = gnt_list_entry;
617 		setup->segments = kmap_atomic(gnt_list_entry->page);
618 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
619 	}
620 
621 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
622 	ref = gnt_list_entry->gref;
623 	/*
624 	 * All the grants are stored in the shadow of the first
625 	 * request. Therefore we have to use the global index.
626 	 */
627 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
628 
629 	if (setup->need_copy) {
630 		void *shared_data;
631 
632 		shared_data = kmap_atomic(gnt_list_entry->page);
633 		/*
634 		 * this does not wipe data stored outside the
635 		 * range sg->offset..sg->offset+sg->length.
636 		 * Therefore, blkback *could* see data from
637 		 * previous requests. This is OK as long as
638 		 * persistent grants are shared with just one
639 		 * domain. It may need refactoring if this
640 		 * changes
641 		 */
642 		memcpy(shared_data + offset,
643 		       setup->bvec_data + setup->bvec_off,
644 		       len);
645 
646 		kunmap_atomic(shared_data);
647 		setup->bvec_off += len;
648 	}
649 
650 	fsect = offset >> 9;
651 	lsect = fsect + (len >> 9) - 1;
652 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
653 		ring_req->u.rw.seg[grant_idx] =
654 			(struct blkif_request_segment) {
655 				.gref       = ref,
656 				.first_sect = fsect,
657 				.last_sect  = lsect };
658 	} else {
659 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
660 			(struct blkif_request_segment) {
661 				.gref       = ref,
662 				.first_sect = fsect,
663 				.last_sect  = lsect };
664 	}
665 
666 	(setup->grant_idx)++;
667 }
668 
669 static void blkif_setup_extra_req(struct blkif_request *first,
670 				  struct blkif_request *second)
671 {
672 	uint16_t nr_segments = first->u.rw.nr_segments;
673 
674 	/*
675 	 * The second request is only present when the first request uses
676 	 * all its segments. It's always the continuity of the first one.
677 	 */
678 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
679 
680 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
681 	second->u.rw.sector_number = first->u.rw.sector_number +
682 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
683 
684 	second->u.rw.handle = first->u.rw.handle;
685 	second->operation = first->operation;
686 }
687 
688 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
689 {
690 	struct blkfront_info *info = rinfo->dev_info;
691 	struct blkif_request *ring_req, *extra_ring_req = NULL;
692 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
693 	bool require_extra_req = false;
694 	int i;
695 	struct setup_rw_req setup = {
696 		.grant_idx = 0,
697 		.segments = NULL,
698 		.rinfo = rinfo,
699 		.need_copy = rq_data_dir(req) && info->feature_persistent,
700 	};
701 
702 	/*
703 	 * Used to store if we are able to queue the request by just using
704 	 * existing persistent grants, or if we have to get new grants,
705 	 * as there are not sufficiently many free.
706 	 */
707 	struct scatterlist *sg;
708 	int num_sg, max_grefs, num_grant;
709 
710 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
711 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
712 		/*
713 		 * If we are using indirect segments we need to account
714 		 * for the indirect grefs used in the request.
715 		 */
716 		max_grefs += INDIRECT_GREFS(max_grefs);
717 
718 	/*
719 	 * We have to reserve 'max_grefs' grants because persistent
720 	 * grants are shared by all rings.
721 	 */
722 	if (max_grefs > 0)
723 		if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) {
724 			gnttab_request_free_callback(
725 				&rinfo->callback,
726 				blkif_restart_queue_callback,
727 				rinfo,
728 				max_grefs);
729 			return 1;
730 		}
731 
732 	/* Fill out a communications ring structure. */
733 	id = blkif_ring_get_request(rinfo, req, &ring_req);
734 
735 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
736 	num_grant = 0;
737 	/* Calculate the number of grant used */
738 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
739 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
740 
741 	require_extra_req = info->max_indirect_segments == 0 &&
742 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
743 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
744 
745 	rinfo->shadow[id].num_sg = num_sg;
746 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
747 	    likely(!require_extra_req)) {
748 		/*
749 		 * The indirect operation can only be a BLKIF_OP_READ or
750 		 * BLKIF_OP_WRITE
751 		 */
752 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
753 		ring_req->operation = BLKIF_OP_INDIRECT;
754 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
755 			BLKIF_OP_WRITE : BLKIF_OP_READ;
756 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
757 		ring_req->u.indirect.handle = info->handle;
758 		ring_req->u.indirect.nr_segments = num_grant;
759 	} else {
760 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
761 		ring_req->u.rw.handle = info->handle;
762 		ring_req->operation = rq_data_dir(req) ?
763 			BLKIF_OP_WRITE : BLKIF_OP_READ;
764 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
765 			/*
766 			 * Ideally we can do an unordered flush-to-disk.
767 			 * In case the backend onlysupports barriers, use that.
768 			 * A barrier request a superset of FUA, so we can
769 			 * implement it the same way.  (It's also a FLUSH+FUA,
770 			 * since it is guaranteed ordered WRT previous writes.)
771 			 */
772 			if (info->feature_flush && info->feature_fua)
773 				ring_req->operation =
774 					BLKIF_OP_WRITE_BARRIER;
775 			else if (info->feature_flush)
776 				ring_req->operation =
777 					BLKIF_OP_FLUSH_DISKCACHE;
778 			else
779 				ring_req->operation = 0;
780 		}
781 		ring_req->u.rw.nr_segments = num_grant;
782 		if (unlikely(require_extra_req)) {
783 			extra_id = blkif_ring_get_request(rinfo, req,
784 							  &extra_ring_req);
785 			/*
786 			 * Only the first request contains the scatter-gather
787 			 * list.
788 			 */
789 			rinfo->shadow[extra_id].num_sg = 0;
790 
791 			blkif_setup_extra_req(ring_req, extra_ring_req);
792 
793 			/* Link the 2 requests together */
794 			rinfo->shadow[extra_id].associated_id = id;
795 			rinfo->shadow[id].associated_id = extra_id;
796 		}
797 	}
798 
799 	setup.ring_req = ring_req;
800 	setup.id = id;
801 
802 	setup.require_extra_req = require_extra_req;
803 	if (unlikely(require_extra_req))
804 		setup.extra_ring_req = extra_ring_req;
805 
806 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
807 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
808 
809 		if (setup.need_copy) {
810 			setup.bvec_off = sg->offset;
811 			setup.bvec_data = kmap_atomic(sg_page(sg));
812 		}
813 
814 		gnttab_foreach_grant_in_range(sg_page(sg),
815 					      sg->offset,
816 					      sg->length,
817 					      blkif_setup_rw_req_grant,
818 					      &setup);
819 
820 		if (setup.need_copy)
821 			kunmap_atomic(setup.bvec_data);
822 	}
823 	if (setup.segments)
824 		kunmap_atomic(setup.segments);
825 
826 	/* Keep a private copy so we can reissue requests when recovering. */
827 	rinfo->shadow[id].req = *ring_req;
828 	if (unlikely(require_extra_req))
829 		rinfo->shadow[extra_id].req = *extra_ring_req;
830 
831 	if (max_grefs > 0)
832 		gnttab_free_grant_references(setup.gref_head);
833 
834 	return 0;
835 }
836 
837 /*
838  * Generate a Xen blkfront IO request from a blk layer request.  Reads
839  * and writes are handled as expected.
840  *
841  * @req: a request struct
842  */
843 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
844 {
845 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
846 		return 1;
847 
848 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
849 		     req_op(req) == REQ_OP_SECURE_ERASE))
850 		return blkif_queue_discard_req(req, rinfo);
851 	else
852 		return blkif_queue_rw_req(req, rinfo);
853 }
854 
855 static inline void flush_requests(struct blkfront_ring_info *rinfo)
856 {
857 	int notify;
858 
859 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
860 
861 	if (notify)
862 		notify_remote_via_irq(rinfo->irq);
863 }
864 
865 static inline bool blkif_request_flush_invalid(struct request *req,
866 					       struct blkfront_info *info)
867 {
868 	return (blk_rq_is_passthrough(req) ||
869 		((req_op(req) == REQ_OP_FLUSH) &&
870 		 !info->feature_flush) ||
871 		((req->cmd_flags & REQ_FUA) &&
872 		 !info->feature_fua));
873 }
874 
875 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
876 			  const struct blk_mq_queue_data *qd)
877 {
878 	unsigned long flags;
879 	int qid = hctx->queue_num;
880 	struct blkfront_info *info = hctx->queue->queuedata;
881 	struct blkfront_ring_info *rinfo = NULL;
882 
883 	BUG_ON(info->nr_rings <= qid);
884 	rinfo = &info->rinfo[qid];
885 	blk_mq_start_request(qd->rq);
886 	spin_lock_irqsave(&rinfo->ring_lock, flags);
887 	if (RING_FULL(&rinfo->ring))
888 		goto out_busy;
889 
890 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
891 		goto out_err;
892 
893 	if (blkif_queue_request(qd->rq, rinfo))
894 		goto out_busy;
895 
896 	flush_requests(rinfo);
897 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
898 	return BLK_MQ_RQ_QUEUE_OK;
899 
900 out_err:
901 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
902 	return BLK_MQ_RQ_QUEUE_ERROR;
903 
904 out_busy:
905 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
906 	blk_mq_stop_hw_queue(hctx);
907 	return BLK_MQ_RQ_QUEUE_BUSY;
908 }
909 
910 static struct blk_mq_ops blkfront_mq_ops = {
911 	.queue_rq = blkif_queue_rq,
912 };
913 
914 static void blkif_set_queue_limits(struct blkfront_info *info)
915 {
916 	struct request_queue *rq = info->rq;
917 	struct gendisk *gd = info->gd;
918 	unsigned int segments = info->max_indirect_segments ? :
919 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
920 
921 	queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
922 
923 	if (info->feature_discard) {
924 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
925 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
926 		rq->limits.discard_granularity = info->discard_granularity;
927 		rq->limits.discard_alignment = info->discard_alignment;
928 		if (info->feature_secdiscard)
929 			queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, rq);
930 	}
931 
932 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
933 	blk_queue_logical_block_size(rq, info->sector_size);
934 	blk_queue_physical_block_size(rq, info->physical_sector_size);
935 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
936 
937 	/* Each segment in a request is up to an aligned page in size. */
938 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
939 	blk_queue_max_segment_size(rq, PAGE_SIZE);
940 
941 	/* Ensure a merged request will fit in a single I/O ring slot. */
942 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
943 
944 	/* Make sure buffer addresses are sector-aligned. */
945 	blk_queue_dma_alignment(rq, 511);
946 
947 	/* Make sure we don't use bounce buffers. */
948 	blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
949 }
950 
951 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
952 				unsigned int physical_sector_size)
953 {
954 	struct request_queue *rq;
955 	struct blkfront_info *info = gd->private_data;
956 
957 	memset(&info->tag_set, 0, sizeof(info->tag_set));
958 	info->tag_set.ops = &blkfront_mq_ops;
959 	info->tag_set.nr_hw_queues = info->nr_rings;
960 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
961 		/*
962 		 * When indirect descriptior is not supported, the I/O request
963 		 * will be split between multiple request in the ring.
964 		 * To avoid problems when sending the request, divide by
965 		 * 2 the depth of the queue.
966 		 */
967 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
968 	} else
969 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
970 	info->tag_set.numa_node = NUMA_NO_NODE;
971 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
972 	info->tag_set.cmd_size = 0;
973 	info->tag_set.driver_data = info;
974 
975 	if (blk_mq_alloc_tag_set(&info->tag_set))
976 		return -EINVAL;
977 	rq = blk_mq_init_queue(&info->tag_set);
978 	if (IS_ERR(rq)) {
979 		blk_mq_free_tag_set(&info->tag_set);
980 		return PTR_ERR(rq);
981 	}
982 
983 	rq->queuedata = info;
984 	info->rq = gd->queue = rq;
985 	info->gd = gd;
986 	info->sector_size = sector_size;
987 	info->physical_sector_size = physical_sector_size;
988 	blkif_set_queue_limits(info);
989 
990 	return 0;
991 }
992 
993 static const char *flush_info(struct blkfront_info *info)
994 {
995 	if (info->feature_flush && info->feature_fua)
996 		return "barrier: enabled;";
997 	else if (info->feature_flush)
998 		return "flush diskcache: enabled;";
999 	else
1000 		return "barrier or flush: disabled;";
1001 }
1002 
1003 static void xlvbd_flush(struct blkfront_info *info)
1004 {
1005 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1006 			      info->feature_fua ? true : false);
1007 	pr_info("blkfront: %s: %s %s %s %s %s\n",
1008 		info->gd->disk_name, flush_info(info),
1009 		"persistent grants:", info->feature_persistent ?
1010 		"enabled;" : "disabled;", "indirect descriptors:",
1011 		info->max_indirect_segments ? "enabled;" : "disabled;");
1012 }
1013 
1014 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1015 {
1016 	int major;
1017 	major = BLKIF_MAJOR(vdevice);
1018 	*minor = BLKIF_MINOR(vdevice);
1019 	switch (major) {
1020 		case XEN_IDE0_MAJOR:
1021 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1022 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1023 				EMULATED_HD_DISK_MINOR_OFFSET;
1024 			break;
1025 		case XEN_IDE1_MAJOR:
1026 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1027 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1028 				EMULATED_HD_DISK_MINOR_OFFSET;
1029 			break;
1030 		case XEN_SCSI_DISK0_MAJOR:
1031 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1032 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1033 			break;
1034 		case XEN_SCSI_DISK1_MAJOR:
1035 		case XEN_SCSI_DISK2_MAJOR:
1036 		case XEN_SCSI_DISK3_MAJOR:
1037 		case XEN_SCSI_DISK4_MAJOR:
1038 		case XEN_SCSI_DISK5_MAJOR:
1039 		case XEN_SCSI_DISK6_MAJOR:
1040 		case XEN_SCSI_DISK7_MAJOR:
1041 			*offset = (*minor / PARTS_PER_DISK) +
1042 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1043 				EMULATED_SD_DISK_NAME_OFFSET;
1044 			*minor = *minor +
1045 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1046 				EMULATED_SD_DISK_MINOR_OFFSET;
1047 			break;
1048 		case XEN_SCSI_DISK8_MAJOR:
1049 		case XEN_SCSI_DISK9_MAJOR:
1050 		case XEN_SCSI_DISK10_MAJOR:
1051 		case XEN_SCSI_DISK11_MAJOR:
1052 		case XEN_SCSI_DISK12_MAJOR:
1053 		case XEN_SCSI_DISK13_MAJOR:
1054 		case XEN_SCSI_DISK14_MAJOR:
1055 		case XEN_SCSI_DISK15_MAJOR:
1056 			*offset = (*minor / PARTS_PER_DISK) +
1057 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1058 				EMULATED_SD_DISK_NAME_OFFSET;
1059 			*minor = *minor +
1060 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1061 				EMULATED_SD_DISK_MINOR_OFFSET;
1062 			break;
1063 		case XENVBD_MAJOR:
1064 			*offset = *minor / PARTS_PER_DISK;
1065 			break;
1066 		default:
1067 			printk(KERN_WARNING "blkfront: your disk configuration is "
1068 					"incorrect, please use an xvd device instead\n");
1069 			return -ENODEV;
1070 	}
1071 	return 0;
1072 }
1073 
1074 static char *encode_disk_name(char *ptr, unsigned int n)
1075 {
1076 	if (n >= 26)
1077 		ptr = encode_disk_name(ptr, n / 26 - 1);
1078 	*ptr = 'a' + n % 26;
1079 	return ptr + 1;
1080 }
1081 
1082 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1083 			       struct blkfront_info *info,
1084 			       u16 vdisk_info, u16 sector_size,
1085 			       unsigned int physical_sector_size)
1086 {
1087 	struct gendisk *gd;
1088 	int nr_minors = 1;
1089 	int err;
1090 	unsigned int offset;
1091 	int minor;
1092 	int nr_parts;
1093 	char *ptr;
1094 
1095 	BUG_ON(info->gd != NULL);
1096 	BUG_ON(info->rq != NULL);
1097 
1098 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1099 		/* this is above the extended range; something is wrong */
1100 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1101 		return -ENODEV;
1102 	}
1103 
1104 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1105 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1106 		if (err)
1107 			return err;
1108  		nr_parts = PARTS_PER_DISK;
1109 	} else {
1110 		minor = BLKIF_MINOR_EXT(info->vdevice);
1111 		nr_parts = PARTS_PER_EXT_DISK;
1112 		offset = minor / nr_parts;
1113 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1114 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1115 					"emulated IDE disks,\n\t choose an xvd device name"
1116 					"from xvde on\n", info->vdevice);
1117 	}
1118 	if (minor >> MINORBITS) {
1119 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1120 			info->vdevice, minor);
1121 		return -ENODEV;
1122 	}
1123 
1124 	if ((minor % nr_parts) == 0)
1125 		nr_minors = nr_parts;
1126 
1127 	err = xlbd_reserve_minors(minor, nr_minors);
1128 	if (err)
1129 		goto out;
1130 	err = -ENODEV;
1131 
1132 	gd = alloc_disk(nr_minors);
1133 	if (gd == NULL)
1134 		goto release;
1135 
1136 	strcpy(gd->disk_name, DEV_NAME);
1137 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1138 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1139 	if (nr_minors > 1)
1140 		*ptr = 0;
1141 	else
1142 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1143 			 "%d", minor & (nr_parts - 1));
1144 
1145 	gd->major = XENVBD_MAJOR;
1146 	gd->first_minor = minor;
1147 	gd->fops = &xlvbd_block_fops;
1148 	gd->private_data = info;
1149 	set_capacity(gd, capacity);
1150 
1151 	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1152 		del_gendisk(gd);
1153 		goto release;
1154 	}
1155 
1156 	xlvbd_flush(info);
1157 
1158 	if (vdisk_info & VDISK_READONLY)
1159 		set_disk_ro(gd, 1);
1160 
1161 	if (vdisk_info & VDISK_REMOVABLE)
1162 		gd->flags |= GENHD_FL_REMOVABLE;
1163 
1164 	if (vdisk_info & VDISK_CDROM)
1165 		gd->flags |= GENHD_FL_CD;
1166 
1167 	return 0;
1168 
1169  release:
1170 	xlbd_release_minors(minor, nr_minors);
1171  out:
1172 	return err;
1173 }
1174 
1175 static void xlvbd_release_gendisk(struct blkfront_info *info)
1176 {
1177 	unsigned int minor, nr_minors, i;
1178 
1179 	if (info->rq == NULL)
1180 		return;
1181 
1182 	/* No more blkif_request(). */
1183 	blk_mq_stop_hw_queues(info->rq);
1184 
1185 	for (i = 0; i < info->nr_rings; i++) {
1186 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1187 
1188 		/* No more gnttab callback work. */
1189 		gnttab_cancel_free_callback(&rinfo->callback);
1190 
1191 		/* Flush gnttab callback work. Must be done with no locks held. */
1192 		flush_work(&rinfo->work);
1193 	}
1194 
1195 	del_gendisk(info->gd);
1196 
1197 	minor = info->gd->first_minor;
1198 	nr_minors = info->gd->minors;
1199 	xlbd_release_minors(minor, nr_minors);
1200 
1201 	blk_cleanup_queue(info->rq);
1202 	blk_mq_free_tag_set(&info->tag_set);
1203 	info->rq = NULL;
1204 
1205 	put_disk(info->gd);
1206 	info->gd = NULL;
1207 }
1208 
1209 /* Already hold rinfo->ring_lock. */
1210 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1211 {
1212 	if (!RING_FULL(&rinfo->ring))
1213 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1214 }
1215 
1216 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1217 {
1218 	unsigned long flags;
1219 
1220 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1221 	kick_pending_request_queues_locked(rinfo);
1222 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1223 }
1224 
1225 static void blkif_restart_queue(struct work_struct *work)
1226 {
1227 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1228 
1229 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1230 		kick_pending_request_queues(rinfo);
1231 }
1232 
1233 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1234 {
1235 	struct grant *persistent_gnt, *n;
1236 	struct blkfront_info *info = rinfo->dev_info;
1237 	int i, j, segs;
1238 
1239 	/*
1240 	 * Remove indirect pages, this only happens when using indirect
1241 	 * descriptors but not persistent grants
1242 	 */
1243 	if (!list_empty(&rinfo->indirect_pages)) {
1244 		struct page *indirect_page, *n;
1245 
1246 		BUG_ON(info->feature_persistent);
1247 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1248 			list_del(&indirect_page->lru);
1249 			__free_page(indirect_page);
1250 		}
1251 	}
1252 
1253 	/* Remove all persistent grants. */
1254 	if (!list_empty(&rinfo->grants)) {
1255 		list_for_each_entry_safe(persistent_gnt, n,
1256 					 &rinfo->grants, node) {
1257 			list_del(&persistent_gnt->node);
1258 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1259 				gnttab_end_foreign_access(persistent_gnt->gref,
1260 							  0, 0UL);
1261 				rinfo->persistent_gnts_c--;
1262 			}
1263 			if (info->feature_persistent)
1264 				__free_page(persistent_gnt->page);
1265 			kfree(persistent_gnt);
1266 		}
1267 	}
1268 	BUG_ON(rinfo->persistent_gnts_c != 0);
1269 
1270 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1271 		/*
1272 		 * Clear persistent grants present in requests already
1273 		 * on the shared ring
1274 		 */
1275 		if (!rinfo->shadow[i].request)
1276 			goto free_shadow;
1277 
1278 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1279 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1280 		       rinfo->shadow[i].req.u.rw.nr_segments;
1281 		for (j = 0; j < segs; j++) {
1282 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1283 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1284 			if (info->feature_persistent)
1285 				__free_page(persistent_gnt->page);
1286 			kfree(persistent_gnt);
1287 		}
1288 
1289 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1290 			/*
1291 			 * If this is not an indirect operation don't try to
1292 			 * free indirect segments
1293 			 */
1294 			goto free_shadow;
1295 
1296 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1297 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1298 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1299 			__free_page(persistent_gnt->page);
1300 			kfree(persistent_gnt);
1301 		}
1302 
1303 free_shadow:
1304 		kfree(rinfo->shadow[i].grants_used);
1305 		rinfo->shadow[i].grants_used = NULL;
1306 		kfree(rinfo->shadow[i].indirect_grants);
1307 		rinfo->shadow[i].indirect_grants = NULL;
1308 		kfree(rinfo->shadow[i].sg);
1309 		rinfo->shadow[i].sg = NULL;
1310 	}
1311 
1312 	/* No more gnttab callback work. */
1313 	gnttab_cancel_free_callback(&rinfo->callback);
1314 
1315 	/* Flush gnttab callback work. Must be done with no locks held. */
1316 	flush_work(&rinfo->work);
1317 
1318 	/* Free resources associated with old device channel. */
1319 	for (i = 0; i < info->nr_ring_pages; i++) {
1320 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1321 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1322 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1323 		}
1324 	}
1325 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1326 	rinfo->ring.sring = NULL;
1327 
1328 	if (rinfo->irq)
1329 		unbind_from_irqhandler(rinfo->irq, rinfo);
1330 	rinfo->evtchn = rinfo->irq = 0;
1331 }
1332 
1333 static void blkif_free(struct blkfront_info *info, int suspend)
1334 {
1335 	unsigned int i;
1336 
1337 	/* Prevent new requests being issued until we fix things up. */
1338 	info->connected = suspend ?
1339 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1340 	/* No more blkif_request(). */
1341 	if (info->rq)
1342 		blk_mq_stop_hw_queues(info->rq);
1343 
1344 	for (i = 0; i < info->nr_rings; i++)
1345 		blkif_free_ring(&info->rinfo[i]);
1346 
1347 	kfree(info->rinfo);
1348 	info->rinfo = NULL;
1349 	info->nr_rings = 0;
1350 }
1351 
1352 struct copy_from_grant {
1353 	const struct blk_shadow *s;
1354 	unsigned int grant_idx;
1355 	unsigned int bvec_offset;
1356 	char *bvec_data;
1357 };
1358 
1359 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1360 				  unsigned int len, void *data)
1361 {
1362 	struct copy_from_grant *info = data;
1363 	char *shared_data;
1364 	/* Convenient aliases */
1365 	const struct blk_shadow *s = info->s;
1366 
1367 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1368 
1369 	memcpy(info->bvec_data + info->bvec_offset,
1370 	       shared_data + offset, len);
1371 
1372 	info->bvec_offset += len;
1373 	info->grant_idx++;
1374 
1375 	kunmap_atomic(shared_data);
1376 }
1377 
1378 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1379 {
1380 	switch (rsp)
1381 	{
1382 	case BLKIF_RSP_OKAY:
1383 		return REQ_DONE;
1384 	case BLKIF_RSP_EOPNOTSUPP:
1385 		return REQ_EOPNOTSUPP;
1386 	case BLKIF_RSP_ERROR:
1387 		/* Fallthrough. */
1388 	default:
1389 		return REQ_ERROR;
1390 	}
1391 }
1392 
1393 /*
1394  * Get the final status of the block request based on two ring response
1395  */
1396 static int blkif_get_final_status(enum blk_req_status s1,
1397 				  enum blk_req_status s2)
1398 {
1399 	BUG_ON(s1 == REQ_WAITING);
1400 	BUG_ON(s2 == REQ_WAITING);
1401 
1402 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1403 		return BLKIF_RSP_ERROR;
1404 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1405 		return BLKIF_RSP_EOPNOTSUPP;
1406 	return BLKIF_RSP_OKAY;
1407 }
1408 
1409 static bool blkif_completion(unsigned long *id,
1410 			     struct blkfront_ring_info *rinfo,
1411 			     struct blkif_response *bret)
1412 {
1413 	int i = 0;
1414 	struct scatterlist *sg;
1415 	int num_sg, num_grant;
1416 	struct blkfront_info *info = rinfo->dev_info;
1417 	struct blk_shadow *s = &rinfo->shadow[*id];
1418 	struct copy_from_grant data = {
1419 		.grant_idx = 0,
1420 	};
1421 
1422 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1423 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1424 
1425 	/* The I/O request may be split in two. */
1426 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1427 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1428 
1429 		/* Keep the status of the current response in shadow. */
1430 		s->status = blkif_rsp_to_req_status(bret->status);
1431 
1432 		/* Wait the second response if not yet here. */
1433 		if (s2->status == REQ_WAITING)
1434 			return 0;
1435 
1436 		bret->status = blkif_get_final_status(s->status,
1437 						      s2->status);
1438 
1439 		/*
1440 		 * All the grants is stored in the first shadow in order
1441 		 * to make the completion code simpler.
1442 		 */
1443 		num_grant += s2->req.u.rw.nr_segments;
1444 
1445 		/*
1446 		 * The two responses may not come in order. Only the
1447 		 * first request will store the scatter-gather list.
1448 		 */
1449 		if (s2->num_sg != 0) {
1450 			/* Update "id" with the ID of the first response. */
1451 			*id = s->associated_id;
1452 			s = s2;
1453 		}
1454 
1455 		/*
1456 		 * We don't need anymore the second request, so recycling
1457 		 * it now.
1458 		 */
1459 		if (add_id_to_freelist(rinfo, s->associated_id))
1460 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1461 			     info->gd->disk_name, s->associated_id);
1462 	}
1463 
1464 	data.s = s;
1465 	num_sg = s->num_sg;
1466 
1467 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1468 		for_each_sg(s->sg, sg, num_sg, i) {
1469 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1470 
1471 			data.bvec_offset = sg->offset;
1472 			data.bvec_data = kmap_atomic(sg_page(sg));
1473 
1474 			gnttab_foreach_grant_in_range(sg_page(sg),
1475 						      sg->offset,
1476 						      sg->length,
1477 						      blkif_copy_from_grant,
1478 						      &data);
1479 
1480 			kunmap_atomic(data.bvec_data);
1481 		}
1482 	}
1483 	/* Add the persistent grant into the list of free grants */
1484 	for (i = 0; i < num_grant; i++) {
1485 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1486 			/*
1487 			 * If the grant is still mapped by the backend (the
1488 			 * backend has chosen to make this grant persistent)
1489 			 * we add it at the head of the list, so it will be
1490 			 * reused first.
1491 			 */
1492 			if (!info->feature_persistent)
1493 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1494 						     s->grants_used[i]->gref);
1495 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1496 			rinfo->persistent_gnts_c++;
1497 		} else {
1498 			/*
1499 			 * If the grant is not mapped by the backend we end the
1500 			 * foreign access and add it to the tail of the list,
1501 			 * so it will not be picked again unless we run out of
1502 			 * persistent grants.
1503 			 */
1504 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1505 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1506 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1507 		}
1508 	}
1509 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1510 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1511 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1512 				if (!info->feature_persistent)
1513 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1514 							     s->indirect_grants[i]->gref);
1515 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1516 				rinfo->persistent_gnts_c++;
1517 			} else {
1518 				struct page *indirect_page;
1519 
1520 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1521 				/*
1522 				 * Add the used indirect page back to the list of
1523 				 * available pages for indirect grefs.
1524 				 */
1525 				if (!info->feature_persistent) {
1526 					indirect_page = s->indirect_grants[i]->page;
1527 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1528 				}
1529 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1530 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1531 			}
1532 		}
1533 	}
1534 
1535 	return 1;
1536 }
1537 
1538 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1539 {
1540 	struct request *req;
1541 	struct blkif_response *bret;
1542 	RING_IDX i, rp;
1543 	unsigned long flags;
1544 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1545 	struct blkfront_info *info = rinfo->dev_info;
1546 	int error;
1547 
1548 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1549 		return IRQ_HANDLED;
1550 
1551 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1552  again:
1553 	rp = rinfo->ring.sring->rsp_prod;
1554 	rmb(); /* Ensure we see queued responses up to 'rp'. */
1555 
1556 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1557 		unsigned long id;
1558 
1559 		bret = RING_GET_RESPONSE(&rinfo->ring, i);
1560 		id   = bret->id;
1561 		/*
1562 		 * The backend has messed up and given us an id that we would
1563 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1564 		 * look in get_id_from_freelist.
1565 		 */
1566 		if (id >= BLK_RING_SIZE(info)) {
1567 			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1568 			     info->gd->disk_name, op_name(bret->operation), id);
1569 			/* We can't safely get the 'struct request' as
1570 			 * the id is busted. */
1571 			continue;
1572 		}
1573 		req  = rinfo->shadow[id].request;
1574 
1575 		if (bret->operation != BLKIF_OP_DISCARD) {
1576 			/*
1577 			 * We may need to wait for an extra response if the
1578 			 * I/O request is split in 2
1579 			 */
1580 			if (!blkif_completion(&id, rinfo, bret))
1581 				continue;
1582 		}
1583 
1584 		if (add_id_to_freelist(rinfo, id)) {
1585 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1586 			     info->gd->disk_name, op_name(bret->operation), id);
1587 			continue;
1588 		}
1589 
1590 		error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1591 		switch (bret->operation) {
1592 		case BLKIF_OP_DISCARD:
1593 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1594 				struct request_queue *rq = info->rq;
1595 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1596 					   info->gd->disk_name, op_name(bret->operation));
1597 				error = -EOPNOTSUPP;
1598 				info->feature_discard = 0;
1599 				info->feature_secdiscard = 0;
1600 				queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1601 				queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1602 			}
1603 			blk_mq_complete_request(req, error);
1604 			break;
1605 		case BLKIF_OP_FLUSH_DISKCACHE:
1606 		case BLKIF_OP_WRITE_BARRIER:
1607 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1608 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1609 				       info->gd->disk_name, op_name(bret->operation));
1610 				error = -EOPNOTSUPP;
1611 			}
1612 			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1613 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1614 				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1615 				       info->gd->disk_name, op_name(bret->operation));
1616 				error = -EOPNOTSUPP;
1617 			}
1618 			if (unlikely(error)) {
1619 				if (error == -EOPNOTSUPP)
1620 					error = 0;
1621 				info->feature_fua = 0;
1622 				info->feature_flush = 0;
1623 				xlvbd_flush(info);
1624 			}
1625 			/* fall through */
1626 		case BLKIF_OP_READ:
1627 		case BLKIF_OP_WRITE:
1628 			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1629 				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1630 					"request: %x\n", bret->status);
1631 
1632 			blk_mq_complete_request(req, error);
1633 			break;
1634 		default:
1635 			BUG();
1636 		}
1637 	}
1638 
1639 	rinfo->ring.rsp_cons = i;
1640 
1641 	if (i != rinfo->ring.req_prod_pvt) {
1642 		int more_to_do;
1643 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1644 		if (more_to_do)
1645 			goto again;
1646 	} else
1647 		rinfo->ring.sring->rsp_event = i + 1;
1648 
1649 	kick_pending_request_queues_locked(rinfo);
1650 
1651 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1652 
1653 	return IRQ_HANDLED;
1654 }
1655 
1656 
1657 static int setup_blkring(struct xenbus_device *dev,
1658 			 struct blkfront_ring_info *rinfo)
1659 {
1660 	struct blkif_sring *sring;
1661 	int err, i;
1662 	struct blkfront_info *info = rinfo->dev_info;
1663 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1664 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1665 
1666 	for (i = 0; i < info->nr_ring_pages; i++)
1667 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1668 
1669 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1670 						       get_order(ring_size));
1671 	if (!sring) {
1672 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1673 		return -ENOMEM;
1674 	}
1675 	SHARED_RING_INIT(sring);
1676 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1677 
1678 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1679 	if (err < 0) {
1680 		free_pages((unsigned long)sring, get_order(ring_size));
1681 		rinfo->ring.sring = NULL;
1682 		goto fail;
1683 	}
1684 	for (i = 0; i < info->nr_ring_pages; i++)
1685 		rinfo->ring_ref[i] = gref[i];
1686 
1687 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1688 	if (err)
1689 		goto fail;
1690 
1691 	err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1692 					"blkif", rinfo);
1693 	if (err <= 0) {
1694 		xenbus_dev_fatal(dev, err,
1695 				 "bind_evtchn_to_irqhandler failed");
1696 		goto fail;
1697 	}
1698 	rinfo->irq = err;
1699 
1700 	return 0;
1701 fail:
1702 	blkif_free(info, 0);
1703 	return err;
1704 }
1705 
1706 /*
1707  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1708  * ring buffer may have multi pages depending on ->nr_ring_pages.
1709  */
1710 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1711 				struct blkfront_ring_info *rinfo, const char *dir)
1712 {
1713 	int err;
1714 	unsigned int i;
1715 	const char *message = NULL;
1716 	struct blkfront_info *info = rinfo->dev_info;
1717 
1718 	if (info->nr_ring_pages == 1) {
1719 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1720 		if (err) {
1721 			message = "writing ring-ref";
1722 			goto abort_transaction;
1723 		}
1724 	} else {
1725 		for (i = 0; i < info->nr_ring_pages; i++) {
1726 			char ring_ref_name[RINGREF_NAME_LEN];
1727 
1728 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1729 			err = xenbus_printf(xbt, dir, ring_ref_name,
1730 					    "%u", rinfo->ring_ref[i]);
1731 			if (err) {
1732 				message = "writing ring-ref";
1733 				goto abort_transaction;
1734 			}
1735 		}
1736 	}
1737 
1738 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1739 	if (err) {
1740 		message = "writing event-channel";
1741 		goto abort_transaction;
1742 	}
1743 
1744 	return 0;
1745 
1746 abort_transaction:
1747 	xenbus_transaction_end(xbt, 1);
1748 	if (message)
1749 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1750 
1751 	return err;
1752 }
1753 
1754 /* Common code used when first setting up, and when resuming. */
1755 static int talk_to_blkback(struct xenbus_device *dev,
1756 			   struct blkfront_info *info)
1757 {
1758 	const char *message = NULL;
1759 	struct xenbus_transaction xbt;
1760 	int err;
1761 	unsigned int i, max_page_order;
1762 	unsigned int ring_page_order;
1763 
1764 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1765 					      "max-ring-page-order", 0);
1766 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1767 	info->nr_ring_pages = 1 << ring_page_order;
1768 
1769 	for (i = 0; i < info->nr_rings; i++) {
1770 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1771 
1772 		/* Create shared ring, alloc event channel. */
1773 		err = setup_blkring(dev, rinfo);
1774 		if (err)
1775 			goto destroy_blkring;
1776 	}
1777 
1778 again:
1779 	err = xenbus_transaction_start(&xbt);
1780 	if (err) {
1781 		xenbus_dev_fatal(dev, err, "starting transaction");
1782 		goto destroy_blkring;
1783 	}
1784 
1785 	if (info->nr_ring_pages > 1) {
1786 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1787 				    ring_page_order);
1788 		if (err) {
1789 			message = "writing ring-page-order";
1790 			goto abort_transaction;
1791 		}
1792 	}
1793 
1794 	/* We already got the number of queues/rings in _probe */
1795 	if (info->nr_rings == 1) {
1796 		err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1797 		if (err)
1798 			goto destroy_blkring;
1799 	} else {
1800 		char *path;
1801 		size_t pathsize;
1802 
1803 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1804 				    info->nr_rings);
1805 		if (err) {
1806 			message = "writing multi-queue-num-queues";
1807 			goto abort_transaction;
1808 		}
1809 
1810 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1811 		path = kmalloc(pathsize, GFP_KERNEL);
1812 		if (!path) {
1813 			err = -ENOMEM;
1814 			message = "ENOMEM while writing ring references";
1815 			goto abort_transaction;
1816 		}
1817 
1818 		for (i = 0; i < info->nr_rings; i++) {
1819 			memset(path, 0, pathsize);
1820 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1821 			err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1822 			if (err) {
1823 				kfree(path);
1824 				goto destroy_blkring;
1825 			}
1826 		}
1827 		kfree(path);
1828 	}
1829 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1830 			    XEN_IO_PROTO_ABI_NATIVE);
1831 	if (err) {
1832 		message = "writing protocol";
1833 		goto abort_transaction;
1834 	}
1835 	err = xenbus_printf(xbt, dev->nodename,
1836 			    "feature-persistent", "%u", 1);
1837 	if (err)
1838 		dev_warn(&dev->dev,
1839 			 "writing persistent grants feature to xenbus");
1840 
1841 	err = xenbus_transaction_end(xbt, 0);
1842 	if (err) {
1843 		if (err == -EAGAIN)
1844 			goto again;
1845 		xenbus_dev_fatal(dev, err, "completing transaction");
1846 		goto destroy_blkring;
1847 	}
1848 
1849 	for (i = 0; i < info->nr_rings; i++) {
1850 		unsigned int j;
1851 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1852 
1853 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1854 			rinfo->shadow[j].req.u.rw.id = j + 1;
1855 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1856 	}
1857 	xenbus_switch_state(dev, XenbusStateInitialised);
1858 
1859 	return 0;
1860 
1861  abort_transaction:
1862 	xenbus_transaction_end(xbt, 1);
1863 	if (message)
1864 		xenbus_dev_fatal(dev, err, "%s", message);
1865  destroy_blkring:
1866 	blkif_free(info, 0);
1867 
1868 	kfree(info);
1869 	dev_set_drvdata(&dev->dev, NULL);
1870 
1871 	return err;
1872 }
1873 
1874 static int negotiate_mq(struct blkfront_info *info)
1875 {
1876 	unsigned int backend_max_queues;
1877 	unsigned int i;
1878 
1879 	BUG_ON(info->nr_rings);
1880 
1881 	/* Check if backend supports multiple queues. */
1882 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1883 						  "multi-queue-max-queues", 1);
1884 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1885 	/* We need at least one ring. */
1886 	if (!info->nr_rings)
1887 		info->nr_rings = 1;
1888 
1889 	info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL);
1890 	if (!info->rinfo) {
1891 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1892 		return -ENOMEM;
1893 	}
1894 
1895 	for (i = 0; i < info->nr_rings; i++) {
1896 		struct blkfront_ring_info *rinfo;
1897 
1898 		rinfo = &info->rinfo[i];
1899 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1900 		INIT_LIST_HEAD(&rinfo->grants);
1901 		rinfo->dev_info = info;
1902 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1903 		spin_lock_init(&rinfo->ring_lock);
1904 	}
1905 	return 0;
1906 }
1907 /**
1908  * Entry point to this code when a new device is created.  Allocate the basic
1909  * structures and the ring buffer for communication with the backend, and
1910  * inform the backend of the appropriate details for those.  Switch to
1911  * Initialised state.
1912  */
1913 static int blkfront_probe(struct xenbus_device *dev,
1914 			  const struct xenbus_device_id *id)
1915 {
1916 	int err, vdevice;
1917 	struct blkfront_info *info;
1918 
1919 	/* FIXME: Use dynamic device id if this is not set. */
1920 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1921 			   "virtual-device", "%i", &vdevice);
1922 	if (err != 1) {
1923 		/* go looking in the extended area instead */
1924 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1925 				   "%i", &vdevice);
1926 		if (err != 1) {
1927 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1928 			return err;
1929 		}
1930 	}
1931 
1932 	if (xen_hvm_domain()) {
1933 		char *type;
1934 		int len;
1935 		/* no unplug has been done: do not hook devices != xen vbds */
1936 		if (xen_has_pv_and_legacy_disk_devices()) {
1937 			int major;
1938 
1939 			if (!VDEV_IS_EXTENDED(vdevice))
1940 				major = BLKIF_MAJOR(vdevice);
1941 			else
1942 				major = XENVBD_MAJOR;
1943 
1944 			if (major != XENVBD_MAJOR) {
1945 				printk(KERN_INFO
1946 						"%s: HVM does not support vbd %d as xen block device\n",
1947 						__func__, vdevice);
1948 				return -ENODEV;
1949 			}
1950 		}
1951 		/* do not create a PV cdrom device if we are an HVM guest */
1952 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1953 		if (IS_ERR(type))
1954 			return -ENODEV;
1955 		if (strncmp(type, "cdrom", 5) == 0) {
1956 			kfree(type);
1957 			return -ENODEV;
1958 		}
1959 		kfree(type);
1960 	}
1961 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1962 	if (!info) {
1963 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1964 		return -ENOMEM;
1965 	}
1966 
1967 	info->xbdev = dev;
1968 	err = negotiate_mq(info);
1969 	if (err) {
1970 		kfree(info);
1971 		return err;
1972 	}
1973 
1974 	mutex_init(&info->mutex);
1975 	info->vdevice = vdevice;
1976 	info->connected = BLKIF_STATE_DISCONNECTED;
1977 
1978 	/* Front end dir is a number, which is used as the id. */
1979 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1980 	dev_set_drvdata(&dev->dev, info);
1981 
1982 	return 0;
1983 }
1984 
1985 static void split_bio_end(struct bio *bio)
1986 {
1987 	struct split_bio *split_bio = bio->bi_private;
1988 
1989 	if (atomic_dec_and_test(&split_bio->pending)) {
1990 		split_bio->bio->bi_phys_segments = 0;
1991 		split_bio->bio->bi_error = bio->bi_error;
1992 		bio_endio(split_bio->bio);
1993 		kfree(split_bio);
1994 	}
1995 	bio_put(bio);
1996 }
1997 
1998 static int blkif_recover(struct blkfront_info *info)
1999 {
2000 	unsigned int i, r_index;
2001 	struct request *req, *n;
2002 	int rc;
2003 	struct bio *bio, *cloned_bio;
2004 	unsigned int segs, offset;
2005 	int pending, size;
2006 	struct split_bio *split_bio;
2007 
2008 	blkfront_gather_backend_features(info);
2009 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2010 	blkif_set_queue_limits(info);
2011 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2012 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2013 
2014 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2015 		struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2016 
2017 		rc = blkfront_setup_indirect(rinfo);
2018 		if (rc)
2019 			return rc;
2020 	}
2021 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2022 
2023 	/* Now safe for us to use the shared ring */
2024 	info->connected = BLKIF_STATE_CONNECTED;
2025 
2026 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2027 		struct blkfront_ring_info *rinfo;
2028 
2029 		rinfo = &info->rinfo[r_index];
2030 		/* Kick any other new requests queued since we resumed */
2031 		kick_pending_request_queues(rinfo);
2032 	}
2033 
2034 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2035 		/* Requeue pending requests (flush or discard) */
2036 		list_del_init(&req->queuelist);
2037 		BUG_ON(req->nr_phys_segments > segs);
2038 		blk_mq_requeue_request(req, false);
2039 	}
2040 	blk_mq_start_stopped_hw_queues(info->rq, true);
2041 	blk_mq_kick_requeue_list(info->rq);
2042 
2043 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2044 		/* Traverse the list of pending bios and re-queue them */
2045 		if (bio_segments(bio) > segs) {
2046 			/*
2047 			 * This bio has more segments than what we can
2048 			 * handle, we have to split it.
2049 			 */
2050 			pending = (bio_segments(bio) + segs - 1) / segs;
2051 			split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
2052 			BUG_ON(split_bio == NULL);
2053 			atomic_set(&split_bio->pending, pending);
2054 			split_bio->bio = bio;
2055 			for (i = 0; i < pending; i++) {
2056 				offset = (i * segs * XEN_PAGE_SIZE) >> 9;
2057 				size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9,
2058 					   (unsigned int)bio_sectors(bio) - offset);
2059 				cloned_bio = bio_clone(bio, GFP_NOIO);
2060 				BUG_ON(cloned_bio == NULL);
2061 				bio_trim(cloned_bio, offset, size);
2062 				cloned_bio->bi_private = split_bio;
2063 				cloned_bio->bi_end_io = split_bio_end;
2064 				submit_bio(cloned_bio);
2065 			}
2066 			/*
2067 			 * Now we have to wait for all those smaller bios to
2068 			 * end, so we can also end the "parent" bio.
2069 			 */
2070 			continue;
2071 		}
2072 		/* We don't need to split this bio */
2073 		submit_bio(bio);
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2081  * driver restart.  We tear down our blkif structure and recreate it, but
2082  * leave the device-layer structures intact so that this is transparent to the
2083  * rest of the kernel.
2084  */
2085 static int blkfront_resume(struct xenbus_device *dev)
2086 {
2087 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2088 	int err = 0;
2089 	unsigned int i, j;
2090 
2091 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2092 
2093 	bio_list_init(&info->bio_list);
2094 	INIT_LIST_HEAD(&info->requests);
2095 	for (i = 0; i < info->nr_rings; i++) {
2096 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
2097 		struct bio_list merge_bio;
2098 		struct blk_shadow *shadow = rinfo->shadow;
2099 
2100 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2101 			/* Not in use? */
2102 			if (!shadow[j].request)
2103 				continue;
2104 
2105 			/*
2106 			 * Get the bios in the request so we can re-queue them.
2107 			 */
2108 			if (req_op(shadow[i].request) == REQ_OP_FLUSH ||
2109 			    req_op(shadow[i].request) == REQ_OP_DISCARD ||
2110 			    req_op(shadow[i].request) == REQ_OP_SECURE_ERASE ||
2111 			    shadow[j].request->cmd_flags & REQ_FUA) {
2112 				/*
2113 				 * Flush operations don't contain bios, so
2114 				 * we need to requeue the whole request
2115 				 *
2116 				 * XXX: but this doesn't make any sense for a
2117 				 * write with the FUA flag set..
2118 				 */
2119 				list_add(&shadow[j].request->queuelist, &info->requests);
2120 				continue;
2121 			}
2122 			merge_bio.head = shadow[j].request->bio;
2123 			merge_bio.tail = shadow[j].request->biotail;
2124 			bio_list_merge(&info->bio_list, &merge_bio);
2125 			shadow[j].request->bio = NULL;
2126 			blk_mq_end_request(shadow[j].request, 0);
2127 		}
2128 	}
2129 
2130 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2131 
2132 	err = negotiate_mq(info);
2133 	if (err)
2134 		return err;
2135 
2136 	err = talk_to_blkback(dev, info);
2137 	if (!err)
2138 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2139 
2140 	/*
2141 	 * We have to wait for the backend to switch to
2142 	 * connected state, since we want to read which
2143 	 * features it supports.
2144 	 */
2145 
2146 	return err;
2147 }
2148 
2149 static void blkfront_closing(struct blkfront_info *info)
2150 {
2151 	struct xenbus_device *xbdev = info->xbdev;
2152 	struct block_device *bdev = NULL;
2153 
2154 	mutex_lock(&info->mutex);
2155 
2156 	if (xbdev->state == XenbusStateClosing) {
2157 		mutex_unlock(&info->mutex);
2158 		return;
2159 	}
2160 
2161 	if (info->gd)
2162 		bdev = bdget_disk(info->gd, 0);
2163 
2164 	mutex_unlock(&info->mutex);
2165 
2166 	if (!bdev) {
2167 		xenbus_frontend_closed(xbdev);
2168 		return;
2169 	}
2170 
2171 	mutex_lock(&bdev->bd_mutex);
2172 
2173 	if (bdev->bd_openers) {
2174 		xenbus_dev_error(xbdev, -EBUSY,
2175 				 "Device in use; refusing to close");
2176 		xenbus_switch_state(xbdev, XenbusStateClosing);
2177 	} else {
2178 		xlvbd_release_gendisk(info);
2179 		xenbus_frontend_closed(xbdev);
2180 	}
2181 
2182 	mutex_unlock(&bdev->bd_mutex);
2183 	bdput(bdev);
2184 }
2185 
2186 static void blkfront_setup_discard(struct blkfront_info *info)
2187 {
2188 	int err;
2189 	unsigned int discard_granularity;
2190 	unsigned int discard_alignment;
2191 
2192 	info->feature_discard = 1;
2193 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2194 		"discard-granularity", "%u", &discard_granularity,
2195 		"discard-alignment", "%u", &discard_alignment,
2196 		NULL);
2197 	if (!err) {
2198 		info->discard_granularity = discard_granularity;
2199 		info->discard_alignment = discard_alignment;
2200 	}
2201 	info->feature_secdiscard =
2202 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2203 				       0);
2204 }
2205 
2206 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2207 {
2208 	unsigned int psegs, grants;
2209 	int err, i;
2210 	struct blkfront_info *info = rinfo->dev_info;
2211 
2212 	if (info->max_indirect_segments == 0) {
2213 		if (!HAS_EXTRA_REQ)
2214 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2215 		else {
2216 			/*
2217 			 * When an extra req is required, the maximum
2218 			 * grants supported is related to the size of the
2219 			 * Linux block segment.
2220 			 */
2221 			grants = GRANTS_PER_PSEG;
2222 		}
2223 	}
2224 	else
2225 		grants = info->max_indirect_segments;
2226 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2227 
2228 	err = fill_grant_buffer(rinfo,
2229 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2230 	if (err)
2231 		goto out_of_memory;
2232 
2233 	if (!info->feature_persistent && info->max_indirect_segments) {
2234 		/*
2235 		 * We are using indirect descriptors but not persistent
2236 		 * grants, we need to allocate a set of pages that can be
2237 		 * used for mapping indirect grefs
2238 		 */
2239 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2240 
2241 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2242 		for (i = 0; i < num; i++) {
2243 			struct page *indirect_page = alloc_page(GFP_NOIO);
2244 			if (!indirect_page)
2245 				goto out_of_memory;
2246 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2247 		}
2248 	}
2249 
2250 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2251 		rinfo->shadow[i].grants_used = kzalloc(
2252 			sizeof(rinfo->shadow[i].grants_used[0]) * grants,
2253 			GFP_NOIO);
2254 		rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO);
2255 		if (info->max_indirect_segments)
2256 			rinfo->shadow[i].indirect_grants = kzalloc(
2257 				sizeof(rinfo->shadow[i].indirect_grants[0]) *
2258 				INDIRECT_GREFS(grants),
2259 				GFP_NOIO);
2260 		if ((rinfo->shadow[i].grants_used == NULL) ||
2261 			(rinfo->shadow[i].sg == NULL) ||
2262 		     (info->max_indirect_segments &&
2263 		     (rinfo->shadow[i].indirect_grants == NULL)))
2264 			goto out_of_memory;
2265 		sg_init_table(rinfo->shadow[i].sg, psegs);
2266 	}
2267 
2268 
2269 	return 0;
2270 
2271 out_of_memory:
2272 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2273 		kfree(rinfo->shadow[i].grants_used);
2274 		rinfo->shadow[i].grants_used = NULL;
2275 		kfree(rinfo->shadow[i].sg);
2276 		rinfo->shadow[i].sg = NULL;
2277 		kfree(rinfo->shadow[i].indirect_grants);
2278 		rinfo->shadow[i].indirect_grants = NULL;
2279 	}
2280 	if (!list_empty(&rinfo->indirect_pages)) {
2281 		struct page *indirect_page, *n;
2282 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2283 			list_del(&indirect_page->lru);
2284 			__free_page(indirect_page);
2285 		}
2286 	}
2287 	return -ENOMEM;
2288 }
2289 
2290 /*
2291  * Gather all backend feature-*
2292  */
2293 static void blkfront_gather_backend_features(struct blkfront_info *info)
2294 {
2295 	unsigned int indirect_segments;
2296 
2297 	info->feature_flush = 0;
2298 	info->feature_fua = 0;
2299 
2300 	/*
2301 	 * If there's no "feature-barrier" defined, then it means
2302 	 * we're dealing with a very old backend which writes
2303 	 * synchronously; nothing to do.
2304 	 *
2305 	 * If there are barriers, then we use flush.
2306 	 */
2307 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2308 		info->feature_flush = 1;
2309 		info->feature_fua = 1;
2310 	}
2311 
2312 	/*
2313 	 * And if there is "feature-flush-cache" use that above
2314 	 * barriers.
2315 	 */
2316 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2317 				 0)) {
2318 		info->feature_flush = 1;
2319 		info->feature_fua = 0;
2320 	}
2321 
2322 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2323 		blkfront_setup_discard(info);
2324 
2325 	info->feature_persistent =
2326 		!!xenbus_read_unsigned(info->xbdev->otherend,
2327 				       "feature-persistent", 0);
2328 
2329 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2330 					"feature-max-indirect-segments", 0);
2331 	if (indirect_segments > xen_blkif_max_segments)
2332 		indirect_segments = xen_blkif_max_segments;
2333 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2334 		indirect_segments = 0;
2335 	info->max_indirect_segments = indirect_segments;
2336 }
2337 
2338 /*
2339  * Invoked when the backend is finally 'ready' (and has told produced
2340  * the details about the physical device - #sectors, size, etc).
2341  */
2342 static void blkfront_connect(struct blkfront_info *info)
2343 {
2344 	unsigned long long sectors;
2345 	unsigned long sector_size;
2346 	unsigned int physical_sector_size;
2347 	unsigned int binfo;
2348 	int err, i;
2349 
2350 	switch (info->connected) {
2351 	case BLKIF_STATE_CONNECTED:
2352 		/*
2353 		 * Potentially, the back-end may be signalling
2354 		 * a capacity change; update the capacity.
2355 		 */
2356 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2357 				   "sectors", "%Lu", &sectors);
2358 		if (XENBUS_EXIST_ERR(err))
2359 			return;
2360 		printk(KERN_INFO "Setting capacity to %Lu\n",
2361 		       sectors);
2362 		set_capacity(info->gd, sectors);
2363 		revalidate_disk(info->gd);
2364 
2365 		return;
2366 	case BLKIF_STATE_SUSPENDED:
2367 		/*
2368 		 * If we are recovering from suspension, we need to wait
2369 		 * for the backend to announce it's features before
2370 		 * reconnecting, at least we need to know if the backend
2371 		 * supports indirect descriptors, and how many.
2372 		 */
2373 		blkif_recover(info);
2374 		return;
2375 
2376 	default:
2377 		break;
2378 	}
2379 
2380 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2381 		__func__, info->xbdev->otherend);
2382 
2383 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2384 			    "sectors", "%llu", &sectors,
2385 			    "info", "%u", &binfo,
2386 			    "sector-size", "%lu", &sector_size,
2387 			    NULL);
2388 	if (err) {
2389 		xenbus_dev_fatal(info->xbdev, err,
2390 				 "reading backend fields at %s",
2391 				 info->xbdev->otherend);
2392 		return;
2393 	}
2394 
2395 	/*
2396 	 * physcial-sector-size is a newer field, so old backends may not
2397 	 * provide this. Assume physical sector size to be the same as
2398 	 * sector_size in that case.
2399 	 */
2400 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2401 						    "physical-sector-size",
2402 						    sector_size);
2403 	blkfront_gather_backend_features(info);
2404 	for (i = 0; i < info->nr_rings; i++) {
2405 		err = blkfront_setup_indirect(&info->rinfo[i]);
2406 		if (err) {
2407 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2408 					 info->xbdev->otherend);
2409 			blkif_free(info, 0);
2410 			break;
2411 		}
2412 	}
2413 
2414 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2415 				  physical_sector_size);
2416 	if (err) {
2417 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2418 				 info->xbdev->otherend);
2419 		goto fail;
2420 	}
2421 
2422 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2423 
2424 	/* Kick pending requests. */
2425 	info->connected = BLKIF_STATE_CONNECTED;
2426 	for (i = 0; i < info->nr_rings; i++)
2427 		kick_pending_request_queues(&info->rinfo[i]);
2428 
2429 	device_add_disk(&info->xbdev->dev, info->gd);
2430 
2431 	info->is_ready = 1;
2432 	return;
2433 
2434 fail:
2435 	blkif_free(info, 0);
2436 	return;
2437 }
2438 
2439 /**
2440  * Callback received when the backend's state changes.
2441  */
2442 static void blkback_changed(struct xenbus_device *dev,
2443 			    enum xenbus_state backend_state)
2444 {
2445 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2446 
2447 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2448 
2449 	switch (backend_state) {
2450 	case XenbusStateInitWait:
2451 		if (dev->state != XenbusStateInitialising)
2452 			break;
2453 		if (talk_to_blkback(dev, info))
2454 			break;
2455 	case XenbusStateInitialising:
2456 	case XenbusStateInitialised:
2457 	case XenbusStateReconfiguring:
2458 	case XenbusStateReconfigured:
2459 	case XenbusStateUnknown:
2460 		break;
2461 
2462 	case XenbusStateConnected:
2463 		/*
2464 		 * talk_to_blkback sets state to XenbusStateInitialised
2465 		 * and blkfront_connect sets it to XenbusStateConnected
2466 		 * (if connection went OK).
2467 		 *
2468 		 * If the backend (or toolstack) decides to poke at backend
2469 		 * state (and re-trigger the watch by setting the state repeatedly
2470 		 * to XenbusStateConnected (4)) we need to deal with this.
2471 		 * This is allowed as this is used to communicate to the guest
2472 		 * that the size of disk has changed!
2473 		 */
2474 		if ((dev->state != XenbusStateInitialised) &&
2475 		    (dev->state != XenbusStateConnected)) {
2476 			if (talk_to_blkback(dev, info))
2477 				break;
2478 		}
2479 
2480 		blkfront_connect(info);
2481 		break;
2482 
2483 	case XenbusStateClosed:
2484 		if (dev->state == XenbusStateClosed)
2485 			break;
2486 		/* Missed the backend's Closing state -- fallthrough */
2487 	case XenbusStateClosing:
2488 		if (info)
2489 			blkfront_closing(info);
2490 		break;
2491 	}
2492 }
2493 
2494 static int blkfront_remove(struct xenbus_device *xbdev)
2495 {
2496 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2497 	struct block_device *bdev = NULL;
2498 	struct gendisk *disk;
2499 
2500 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2501 
2502 	blkif_free(info, 0);
2503 
2504 	mutex_lock(&info->mutex);
2505 
2506 	disk = info->gd;
2507 	if (disk)
2508 		bdev = bdget_disk(disk, 0);
2509 
2510 	info->xbdev = NULL;
2511 	mutex_unlock(&info->mutex);
2512 
2513 	if (!bdev) {
2514 		kfree(info);
2515 		return 0;
2516 	}
2517 
2518 	/*
2519 	 * The xbdev was removed before we reached the Closed
2520 	 * state. See if it's safe to remove the disk. If the bdev
2521 	 * isn't closed yet, we let release take care of it.
2522 	 */
2523 
2524 	mutex_lock(&bdev->bd_mutex);
2525 	info = disk->private_data;
2526 
2527 	dev_warn(disk_to_dev(disk),
2528 		 "%s was hot-unplugged, %d stale handles\n",
2529 		 xbdev->nodename, bdev->bd_openers);
2530 
2531 	if (info && !bdev->bd_openers) {
2532 		xlvbd_release_gendisk(info);
2533 		disk->private_data = NULL;
2534 		kfree(info);
2535 	}
2536 
2537 	mutex_unlock(&bdev->bd_mutex);
2538 	bdput(bdev);
2539 
2540 	return 0;
2541 }
2542 
2543 static int blkfront_is_ready(struct xenbus_device *dev)
2544 {
2545 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2546 
2547 	return info->is_ready && info->xbdev;
2548 }
2549 
2550 static int blkif_open(struct block_device *bdev, fmode_t mode)
2551 {
2552 	struct gendisk *disk = bdev->bd_disk;
2553 	struct blkfront_info *info;
2554 	int err = 0;
2555 
2556 	mutex_lock(&blkfront_mutex);
2557 
2558 	info = disk->private_data;
2559 	if (!info) {
2560 		/* xbdev gone */
2561 		err = -ERESTARTSYS;
2562 		goto out;
2563 	}
2564 
2565 	mutex_lock(&info->mutex);
2566 
2567 	if (!info->gd)
2568 		/* xbdev is closed */
2569 		err = -ERESTARTSYS;
2570 
2571 	mutex_unlock(&info->mutex);
2572 
2573 out:
2574 	mutex_unlock(&blkfront_mutex);
2575 	return err;
2576 }
2577 
2578 static void blkif_release(struct gendisk *disk, fmode_t mode)
2579 {
2580 	struct blkfront_info *info = disk->private_data;
2581 	struct block_device *bdev;
2582 	struct xenbus_device *xbdev;
2583 
2584 	mutex_lock(&blkfront_mutex);
2585 
2586 	bdev = bdget_disk(disk, 0);
2587 
2588 	if (!bdev) {
2589 		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2590 		goto out_mutex;
2591 	}
2592 	if (bdev->bd_openers)
2593 		goto out;
2594 
2595 	/*
2596 	 * Check if we have been instructed to close. We will have
2597 	 * deferred this request, because the bdev was still open.
2598 	 */
2599 
2600 	mutex_lock(&info->mutex);
2601 	xbdev = info->xbdev;
2602 
2603 	if (xbdev && xbdev->state == XenbusStateClosing) {
2604 		/* pending switch to state closed */
2605 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2606 		xlvbd_release_gendisk(info);
2607 		xenbus_frontend_closed(info->xbdev);
2608  	}
2609 
2610 	mutex_unlock(&info->mutex);
2611 
2612 	if (!xbdev) {
2613 		/* sudden device removal */
2614 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2615 		xlvbd_release_gendisk(info);
2616 		disk->private_data = NULL;
2617 		kfree(info);
2618 	}
2619 
2620 out:
2621 	bdput(bdev);
2622 out_mutex:
2623 	mutex_unlock(&blkfront_mutex);
2624 }
2625 
2626 static const struct block_device_operations xlvbd_block_fops =
2627 {
2628 	.owner = THIS_MODULE,
2629 	.open = blkif_open,
2630 	.release = blkif_release,
2631 	.getgeo = blkif_getgeo,
2632 	.ioctl = blkif_ioctl,
2633 };
2634 
2635 
2636 static const struct xenbus_device_id blkfront_ids[] = {
2637 	{ "vbd" },
2638 	{ "" }
2639 };
2640 
2641 static struct xenbus_driver blkfront_driver = {
2642 	.ids  = blkfront_ids,
2643 	.probe = blkfront_probe,
2644 	.remove = blkfront_remove,
2645 	.resume = blkfront_resume,
2646 	.otherend_changed = blkback_changed,
2647 	.is_ready = blkfront_is_ready,
2648 };
2649 
2650 static int __init xlblk_init(void)
2651 {
2652 	int ret;
2653 	int nr_cpus = num_online_cpus();
2654 
2655 	if (!xen_domain())
2656 		return -ENODEV;
2657 
2658 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2659 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2660 
2661 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2662 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2663 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2664 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2665 	}
2666 
2667 	if (xen_blkif_max_queues > nr_cpus) {
2668 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2669 			xen_blkif_max_queues, nr_cpus);
2670 		xen_blkif_max_queues = nr_cpus;
2671 	}
2672 
2673 	if (!xen_has_pv_disk_devices())
2674 		return -ENODEV;
2675 
2676 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2677 		printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2678 		       XENVBD_MAJOR, DEV_NAME);
2679 		return -ENODEV;
2680 	}
2681 
2682 	ret = xenbus_register_frontend(&blkfront_driver);
2683 	if (ret) {
2684 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2685 		return ret;
2686 	}
2687 
2688 	return 0;
2689 }
2690 module_init(xlblk_init);
2691 
2692 
2693 static void __exit xlblk_exit(void)
2694 {
2695 	xenbus_unregister_driver(&blkfront_driver);
2696 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2697 	kfree(minors);
2698 }
2699 module_exit(xlblk_exit);
2700 
2701 MODULE_DESCRIPTION("Xen virtual block device frontend");
2702 MODULE_LICENSE("GPL");
2703 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2704 MODULE_ALIAS("xen:vbd");
2705 MODULE_ALIAS("xenblk");
2706