1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 50 #include <xen/xen.h> 51 #include <xen/xenbus.h> 52 #include <xen/grant_table.h> 53 #include <xen/events.h> 54 #include <xen/page.h> 55 #include <xen/platform_pci.h> 56 57 #include <xen/interface/grant_table.h> 58 #include <xen/interface/io/blkif.h> 59 #include <xen/interface/io/protocols.h> 60 61 #include <asm/xen/hypervisor.h> 62 63 /* 64 * The minimal size of segment supported by the block framework is PAGE_SIZE. 65 * When Linux is using a different page size than Xen, it may not be possible 66 * to put all the data in a single segment. 67 * This can happen when the backend doesn't support indirect descriptor and 68 * therefore the maximum amount of data that a request can carry is 69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 70 * 71 * Note that we only support one extra request. So the Linux page size 72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 73 * 88KB. 74 */ 75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 76 77 enum blkif_state { 78 BLKIF_STATE_DISCONNECTED, 79 BLKIF_STATE_CONNECTED, 80 BLKIF_STATE_SUSPENDED, 81 }; 82 83 struct grant { 84 grant_ref_t gref; 85 struct page *page; 86 struct list_head node; 87 }; 88 89 enum blk_req_status { 90 REQ_WAITING, 91 REQ_DONE, 92 REQ_ERROR, 93 REQ_EOPNOTSUPP, 94 }; 95 96 struct blk_shadow { 97 struct blkif_request req; 98 struct request *request; 99 struct grant **grants_used; 100 struct grant **indirect_grants; 101 struct scatterlist *sg; 102 unsigned int num_sg; 103 enum blk_req_status status; 104 105 #define NO_ASSOCIATED_ID ~0UL 106 /* 107 * Id of the sibling if we ever need 2 requests when handling a 108 * block I/O request 109 */ 110 unsigned long associated_id; 111 }; 112 113 struct split_bio { 114 struct bio *bio; 115 atomic_t pending; 116 }; 117 118 static DEFINE_MUTEX(blkfront_mutex); 119 static const struct block_device_operations xlvbd_block_fops; 120 121 /* 122 * Maximum number of segments in indirect requests, the actual value used by 123 * the frontend driver is the minimum of this value and the value provided 124 * by the backend driver. 125 */ 126 127 static unsigned int xen_blkif_max_segments = 32; 128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 129 S_IRUGO); 130 MODULE_PARM_DESC(max_indirect_segments, 131 "Maximum amount of segments in indirect requests (default is 32)"); 132 133 static unsigned int xen_blkif_max_queues = 4; 134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO); 135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 136 137 /* 138 * Maximum order of pages to be used for the shared ring between front and 139 * backend, 4KB page granularity is used. 140 */ 141 static unsigned int xen_blkif_max_ring_order; 142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO); 143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 144 145 #define BLK_RING_SIZE(info) \ 146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 147 148 #define BLK_MAX_RING_SIZE \ 149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS) 150 151 /* 152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 153 * characters are enough. Define to 20 to keep consistent with backend. 154 */ 155 #define RINGREF_NAME_LEN (20) 156 /* 157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 158 */ 159 #define QUEUE_NAME_LEN (17) 160 161 /* 162 * Per-ring info. 163 * Every blkfront device can associate with one or more blkfront_ring_info, 164 * depending on how many hardware queues/rings to be used. 165 */ 166 struct blkfront_ring_info { 167 /* Lock to protect data in every ring buffer. */ 168 spinlock_t ring_lock; 169 struct blkif_front_ring ring; 170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 171 unsigned int evtchn, irq; 172 struct work_struct work; 173 struct gnttab_free_callback callback; 174 struct blk_shadow shadow[BLK_MAX_RING_SIZE]; 175 struct list_head indirect_pages; 176 struct list_head grants; 177 unsigned int persistent_gnts_c; 178 unsigned long shadow_free; 179 struct blkfront_info *dev_info; 180 }; 181 182 /* 183 * We have one of these per vbd, whether ide, scsi or 'other'. They 184 * hang in private_data off the gendisk structure. We may end up 185 * putting all kinds of interesting stuff here :-) 186 */ 187 struct blkfront_info 188 { 189 struct mutex mutex; 190 struct xenbus_device *xbdev; 191 struct gendisk *gd; 192 int vdevice; 193 blkif_vdev_t handle; 194 enum blkif_state connected; 195 /* Number of pages per ring buffer. */ 196 unsigned int nr_ring_pages; 197 struct request_queue *rq; 198 unsigned int feature_flush; 199 unsigned int feature_discard:1; 200 unsigned int feature_secdiscard:1; 201 unsigned int discard_granularity; 202 unsigned int discard_alignment; 203 unsigned int feature_persistent:1; 204 /* Number of 4KB segments handled */ 205 unsigned int max_indirect_segments; 206 int is_ready; 207 struct blk_mq_tag_set tag_set; 208 struct blkfront_ring_info *rinfo; 209 unsigned int nr_rings; 210 }; 211 212 static unsigned int nr_minors; 213 static unsigned long *minors; 214 static DEFINE_SPINLOCK(minor_lock); 215 216 #define GRANT_INVALID_REF 0 217 218 #define PARTS_PER_DISK 16 219 #define PARTS_PER_EXT_DISK 256 220 221 #define BLKIF_MAJOR(dev) ((dev)>>8) 222 #define BLKIF_MINOR(dev) ((dev) & 0xff) 223 224 #define EXT_SHIFT 28 225 #define EXTENDED (1<<EXT_SHIFT) 226 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 227 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 228 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 229 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 230 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 231 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 232 233 #define DEV_NAME "xvd" /* name in /dev */ 234 235 /* 236 * Grants are always the same size as a Xen page (i.e 4KB). 237 * A physical segment is always the same size as a Linux page. 238 * Number of grants per physical segment 239 */ 240 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 241 242 #define GRANTS_PER_INDIRECT_FRAME \ 243 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 244 245 #define PSEGS_PER_INDIRECT_FRAME \ 246 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS) 247 248 #define INDIRECT_GREFS(_grants) \ 249 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 250 251 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG) 252 253 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 254 static void blkfront_gather_backend_features(struct blkfront_info *info); 255 256 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 257 { 258 unsigned long free = rinfo->shadow_free; 259 260 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 261 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 262 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 263 return free; 264 } 265 266 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 267 unsigned long id) 268 { 269 if (rinfo->shadow[id].req.u.rw.id != id) 270 return -EINVAL; 271 if (rinfo->shadow[id].request == NULL) 272 return -EINVAL; 273 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 274 rinfo->shadow[id].request = NULL; 275 rinfo->shadow_free = id; 276 return 0; 277 } 278 279 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 280 { 281 struct blkfront_info *info = rinfo->dev_info; 282 struct page *granted_page; 283 struct grant *gnt_list_entry, *n; 284 int i = 0; 285 286 while (i < num) { 287 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 288 if (!gnt_list_entry) 289 goto out_of_memory; 290 291 if (info->feature_persistent) { 292 granted_page = alloc_page(GFP_NOIO); 293 if (!granted_page) { 294 kfree(gnt_list_entry); 295 goto out_of_memory; 296 } 297 gnt_list_entry->page = granted_page; 298 } 299 300 gnt_list_entry->gref = GRANT_INVALID_REF; 301 list_add(&gnt_list_entry->node, &rinfo->grants); 302 i++; 303 } 304 305 return 0; 306 307 out_of_memory: 308 list_for_each_entry_safe(gnt_list_entry, n, 309 &rinfo->grants, node) { 310 list_del(&gnt_list_entry->node); 311 if (info->feature_persistent) 312 __free_page(gnt_list_entry->page); 313 kfree(gnt_list_entry); 314 i--; 315 } 316 BUG_ON(i != 0); 317 return -ENOMEM; 318 } 319 320 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 321 { 322 struct grant *gnt_list_entry; 323 324 BUG_ON(list_empty(&rinfo->grants)); 325 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 326 node); 327 list_del(&gnt_list_entry->node); 328 329 if (gnt_list_entry->gref != GRANT_INVALID_REF) 330 rinfo->persistent_gnts_c--; 331 332 return gnt_list_entry; 333 } 334 335 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 336 const struct blkfront_info *info) 337 { 338 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 339 info->xbdev->otherend_id, 340 gnt_list_entry->page, 341 0); 342 } 343 344 static struct grant *get_grant(grant_ref_t *gref_head, 345 unsigned long gfn, 346 struct blkfront_ring_info *rinfo) 347 { 348 struct grant *gnt_list_entry = get_free_grant(rinfo); 349 struct blkfront_info *info = rinfo->dev_info; 350 351 if (gnt_list_entry->gref != GRANT_INVALID_REF) 352 return gnt_list_entry; 353 354 /* Assign a gref to this page */ 355 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 356 BUG_ON(gnt_list_entry->gref == -ENOSPC); 357 if (info->feature_persistent) 358 grant_foreign_access(gnt_list_entry, info); 359 else { 360 /* Grant access to the GFN passed by the caller */ 361 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 362 info->xbdev->otherend_id, 363 gfn, 0); 364 } 365 366 return gnt_list_entry; 367 } 368 369 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 370 struct blkfront_ring_info *rinfo) 371 { 372 struct grant *gnt_list_entry = get_free_grant(rinfo); 373 struct blkfront_info *info = rinfo->dev_info; 374 375 if (gnt_list_entry->gref != GRANT_INVALID_REF) 376 return gnt_list_entry; 377 378 /* Assign a gref to this page */ 379 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 380 BUG_ON(gnt_list_entry->gref == -ENOSPC); 381 if (!info->feature_persistent) { 382 struct page *indirect_page; 383 384 /* Fetch a pre-allocated page to use for indirect grefs */ 385 BUG_ON(list_empty(&rinfo->indirect_pages)); 386 indirect_page = list_first_entry(&rinfo->indirect_pages, 387 struct page, lru); 388 list_del(&indirect_page->lru); 389 gnt_list_entry->page = indirect_page; 390 } 391 grant_foreign_access(gnt_list_entry, info); 392 393 return gnt_list_entry; 394 } 395 396 static const char *op_name(int op) 397 { 398 static const char *const names[] = { 399 [BLKIF_OP_READ] = "read", 400 [BLKIF_OP_WRITE] = "write", 401 [BLKIF_OP_WRITE_BARRIER] = "barrier", 402 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 403 [BLKIF_OP_DISCARD] = "discard" }; 404 405 if (op < 0 || op >= ARRAY_SIZE(names)) 406 return "unknown"; 407 408 if (!names[op]) 409 return "reserved"; 410 411 return names[op]; 412 } 413 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 414 { 415 unsigned int end = minor + nr; 416 int rc; 417 418 if (end > nr_minors) { 419 unsigned long *bitmap, *old; 420 421 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 422 GFP_KERNEL); 423 if (bitmap == NULL) 424 return -ENOMEM; 425 426 spin_lock(&minor_lock); 427 if (end > nr_minors) { 428 old = minors; 429 memcpy(bitmap, minors, 430 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 431 minors = bitmap; 432 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 433 } else 434 old = bitmap; 435 spin_unlock(&minor_lock); 436 kfree(old); 437 } 438 439 spin_lock(&minor_lock); 440 if (find_next_bit(minors, end, minor) >= end) { 441 bitmap_set(minors, minor, nr); 442 rc = 0; 443 } else 444 rc = -EBUSY; 445 spin_unlock(&minor_lock); 446 447 return rc; 448 } 449 450 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 451 { 452 unsigned int end = minor + nr; 453 454 BUG_ON(end > nr_minors); 455 spin_lock(&minor_lock); 456 bitmap_clear(minors, minor, nr); 457 spin_unlock(&minor_lock); 458 } 459 460 static void blkif_restart_queue_callback(void *arg) 461 { 462 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 463 schedule_work(&rinfo->work); 464 } 465 466 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 467 { 468 /* We don't have real geometry info, but let's at least return 469 values consistent with the size of the device */ 470 sector_t nsect = get_capacity(bd->bd_disk); 471 sector_t cylinders = nsect; 472 473 hg->heads = 0xff; 474 hg->sectors = 0x3f; 475 sector_div(cylinders, hg->heads * hg->sectors); 476 hg->cylinders = cylinders; 477 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 478 hg->cylinders = 0xffff; 479 return 0; 480 } 481 482 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 483 unsigned command, unsigned long argument) 484 { 485 struct blkfront_info *info = bdev->bd_disk->private_data; 486 int i; 487 488 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 489 command, (long)argument); 490 491 switch (command) { 492 case CDROMMULTISESSION: 493 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 494 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 495 if (put_user(0, (char __user *)(argument + i))) 496 return -EFAULT; 497 return 0; 498 499 case CDROM_GET_CAPABILITY: { 500 struct gendisk *gd = info->gd; 501 if (gd->flags & GENHD_FL_CD) 502 return 0; 503 return -EINVAL; 504 } 505 506 default: 507 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 508 command);*/ 509 return -EINVAL; /* same return as native Linux */ 510 } 511 512 return 0; 513 } 514 515 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 516 struct request *req, 517 struct blkif_request **ring_req) 518 { 519 unsigned long id; 520 521 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 522 rinfo->ring.req_prod_pvt++; 523 524 id = get_id_from_freelist(rinfo); 525 rinfo->shadow[id].request = req; 526 rinfo->shadow[id].status = REQ_WAITING; 527 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 528 529 (*ring_req)->u.rw.id = id; 530 531 return id; 532 } 533 534 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 535 { 536 struct blkfront_info *info = rinfo->dev_info; 537 struct blkif_request *ring_req; 538 unsigned long id; 539 540 /* Fill out a communications ring structure. */ 541 id = blkif_ring_get_request(rinfo, req, &ring_req); 542 543 ring_req->operation = BLKIF_OP_DISCARD; 544 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 545 ring_req->u.discard.id = id; 546 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 547 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard) 548 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 549 else 550 ring_req->u.discard.flag = 0; 551 552 /* Keep a private copy so we can reissue requests when recovering. */ 553 rinfo->shadow[id].req = *ring_req; 554 555 return 0; 556 } 557 558 struct setup_rw_req { 559 unsigned int grant_idx; 560 struct blkif_request_segment *segments; 561 struct blkfront_ring_info *rinfo; 562 struct blkif_request *ring_req; 563 grant_ref_t gref_head; 564 unsigned int id; 565 /* Only used when persistent grant is used and it's a read request */ 566 bool need_copy; 567 unsigned int bvec_off; 568 char *bvec_data; 569 570 bool require_extra_req; 571 struct blkif_request *extra_ring_req; 572 }; 573 574 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 575 unsigned int len, void *data) 576 { 577 struct setup_rw_req *setup = data; 578 int n, ref; 579 struct grant *gnt_list_entry; 580 unsigned int fsect, lsect; 581 /* Convenient aliases */ 582 unsigned int grant_idx = setup->grant_idx; 583 struct blkif_request *ring_req = setup->ring_req; 584 struct blkfront_ring_info *rinfo = setup->rinfo; 585 /* 586 * We always use the shadow of the first request to store the list 587 * of grant associated to the block I/O request. This made the 588 * completion more easy to handle even if the block I/O request is 589 * split. 590 */ 591 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 592 593 if (unlikely(setup->require_extra_req && 594 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 595 /* 596 * We are using the second request, setup grant_idx 597 * to be the index of the segment array. 598 */ 599 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 600 ring_req = setup->extra_ring_req; 601 } 602 603 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 604 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 605 if (setup->segments) 606 kunmap_atomic(setup->segments); 607 608 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 609 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 610 shadow->indirect_grants[n] = gnt_list_entry; 611 setup->segments = kmap_atomic(gnt_list_entry->page); 612 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 613 } 614 615 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 616 ref = gnt_list_entry->gref; 617 /* 618 * All the grants are stored in the shadow of the first 619 * request. Therefore we have to use the global index. 620 */ 621 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 622 623 if (setup->need_copy) { 624 void *shared_data; 625 626 shared_data = kmap_atomic(gnt_list_entry->page); 627 /* 628 * this does not wipe data stored outside the 629 * range sg->offset..sg->offset+sg->length. 630 * Therefore, blkback *could* see data from 631 * previous requests. This is OK as long as 632 * persistent grants are shared with just one 633 * domain. It may need refactoring if this 634 * changes 635 */ 636 memcpy(shared_data + offset, 637 setup->bvec_data + setup->bvec_off, 638 len); 639 640 kunmap_atomic(shared_data); 641 setup->bvec_off += len; 642 } 643 644 fsect = offset >> 9; 645 lsect = fsect + (len >> 9) - 1; 646 if (ring_req->operation != BLKIF_OP_INDIRECT) { 647 ring_req->u.rw.seg[grant_idx] = 648 (struct blkif_request_segment) { 649 .gref = ref, 650 .first_sect = fsect, 651 .last_sect = lsect }; 652 } else { 653 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 654 (struct blkif_request_segment) { 655 .gref = ref, 656 .first_sect = fsect, 657 .last_sect = lsect }; 658 } 659 660 (setup->grant_idx)++; 661 } 662 663 static void blkif_setup_extra_req(struct blkif_request *first, 664 struct blkif_request *second) 665 { 666 uint16_t nr_segments = first->u.rw.nr_segments; 667 668 /* 669 * The second request is only present when the first request uses 670 * all its segments. It's always the continuity of the first one. 671 */ 672 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 673 674 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 675 second->u.rw.sector_number = first->u.rw.sector_number + 676 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 677 678 second->u.rw.handle = first->u.rw.handle; 679 second->operation = first->operation; 680 } 681 682 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 683 { 684 struct blkfront_info *info = rinfo->dev_info; 685 struct blkif_request *ring_req, *extra_ring_req = NULL; 686 unsigned long id, extra_id = NO_ASSOCIATED_ID; 687 bool require_extra_req = false; 688 int i; 689 struct setup_rw_req setup = { 690 .grant_idx = 0, 691 .segments = NULL, 692 .rinfo = rinfo, 693 .need_copy = rq_data_dir(req) && info->feature_persistent, 694 }; 695 696 /* 697 * Used to store if we are able to queue the request by just using 698 * existing persistent grants, or if we have to get new grants, 699 * as there are not sufficiently many free. 700 */ 701 struct scatterlist *sg; 702 int num_sg, max_grefs, num_grant; 703 704 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 705 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 706 /* 707 * If we are using indirect segments we need to account 708 * for the indirect grefs used in the request. 709 */ 710 max_grefs += INDIRECT_GREFS(max_grefs); 711 712 /* 713 * We have to reserve 'max_grefs' grants because persistent 714 * grants are shared by all rings. 715 */ 716 if (max_grefs > 0) 717 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) { 718 gnttab_request_free_callback( 719 &rinfo->callback, 720 blkif_restart_queue_callback, 721 rinfo, 722 max_grefs); 723 return 1; 724 } 725 726 /* Fill out a communications ring structure. */ 727 id = blkif_ring_get_request(rinfo, req, &ring_req); 728 729 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 730 num_grant = 0; 731 /* Calculate the number of grant used */ 732 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 733 num_grant += gnttab_count_grant(sg->offset, sg->length); 734 735 require_extra_req = info->max_indirect_segments == 0 && 736 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 737 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 738 739 rinfo->shadow[id].num_sg = num_sg; 740 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 741 likely(!require_extra_req)) { 742 /* 743 * The indirect operation can only be a BLKIF_OP_READ or 744 * BLKIF_OP_WRITE 745 */ 746 BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA)); 747 ring_req->operation = BLKIF_OP_INDIRECT; 748 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 749 BLKIF_OP_WRITE : BLKIF_OP_READ; 750 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 751 ring_req->u.indirect.handle = info->handle; 752 ring_req->u.indirect.nr_segments = num_grant; 753 } else { 754 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 755 ring_req->u.rw.handle = info->handle; 756 ring_req->operation = rq_data_dir(req) ? 757 BLKIF_OP_WRITE : BLKIF_OP_READ; 758 if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) { 759 /* 760 * Ideally we can do an unordered flush-to-disk. 761 * In case the backend onlysupports barriers, use that. 762 * A barrier request a superset of FUA, so we can 763 * implement it the same way. (It's also a FLUSH+FUA, 764 * since it is guaranteed ordered WRT previous writes.) 765 */ 766 switch (info->feature_flush & 767 ((REQ_FLUSH|REQ_FUA))) { 768 case REQ_FLUSH|REQ_FUA: 769 ring_req->operation = 770 BLKIF_OP_WRITE_BARRIER; 771 break; 772 case REQ_FLUSH: 773 ring_req->operation = 774 BLKIF_OP_FLUSH_DISKCACHE; 775 break; 776 default: 777 ring_req->operation = 0; 778 } 779 } 780 ring_req->u.rw.nr_segments = num_grant; 781 if (unlikely(require_extra_req)) { 782 extra_id = blkif_ring_get_request(rinfo, req, 783 &extra_ring_req); 784 /* 785 * Only the first request contains the scatter-gather 786 * list. 787 */ 788 rinfo->shadow[extra_id].num_sg = 0; 789 790 blkif_setup_extra_req(ring_req, extra_ring_req); 791 792 /* Link the 2 requests together */ 793 rinfo->shadow[extra_id].associated_id = id; 794 rinfo->shadow[id].associated_id = extra_id; 795 } 796 } 797 798 setup.ring_req = ring_req; 799 setup.id = id; 800 801 setup.require_extra_req = require_extra_req; 802 if (unlikely(require_extra_req)) 803 setup.extra_ring_req = extra_ring_req; 804 805 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 806 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 807 808 if (setup.need_copy) { 809 setup.bvec_off = sg->offset; 810 setup.bvec_data = kmap_atomic(sg_page(sg)); 811 } 812 813 gnttab_foreach_grant_in_range(sg_page(sg), 814 sg->offset, 815 sg->length, 816 blkif_setup_rw_req_grant, 817 &setup); 818 819 if (setup.need_copy) 820 kunmap_atomic(setup.bvec_data); 821 } 822 if (setup.segments) 823 kunmap_atomic(setup.segments); 824 825 /* Keep a private copy so we can reissue requests when recovering. */ 826 rinfo->shadow[id].req = *ring_req; 827 if (unlikely(require_extra_req)) 828 rinfo->shadow[extra_id].req = *extra_ring_req; 829 830 if (max_grefs > 0) 831 gnttab_free_grant_references(setup.gref_head); 832 833 return 0; 834 } 835 836 /* 837 * Generate a Xen blkfront IO request from a blk layer request. Reads 838 * and writes are handled as expected. 839 * 840 * @req: a request struct 841 */ 842 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 843 { 844 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 845 return 1; 846 847 if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE))) 848 return blkif_queue_discard_req(req, rinfo); 849 else 850 return blkif_queue_rw_req(req, rinfo); 851 } 852 853 static inline void flush_requests(struct blkfront_ring_info *rinfo) 854 { 855 int notify; 856 857 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 858 859 if (notify) 860 notify_remote_via_irq(rinfo->irq); 861 } 862 863 static inline bool blkif_request_flush_invalid(struct request *req, 864 struct blkfront_info *info) 865 { 866 return ((req->cmd_type != REQ_TYPE_FS) || 867 ((req->cmd_flags & REQ_FLUSH) && 868 !(info->feature_flush & REQ_FLUSH)) || 869 ((req->cmd_flags & REQ_FUA) && 870 !(info->feature_flush & REQ_FUA))); 871 } 872 873 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 874 const struct blk_mq_queue_data *qd) 875 { 876 unsigned long flags; 877 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)hctx->driver_data; 878 879 blk_mq_start_request(qd->rq); 880 spin_lock_irqsave(&rinfo->ring_lock, flags); 881 if (RING_FULL(&rinfo->ring)) 882 goto out_busy; 883 884 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 885 goto out_err; 886 887 if (blkif_queue_request(qd->rq, rinfo)) 888 goto out_busy; 889 890 flush_requests(rinfo); 891 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 892 return BLK_MQ_RQ_QUEUE_OK; 893 894 out_err: 895 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 896 return BLK_MQ_RQ_QUEUE_ERROR; 897 898 out_busy: 899 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 900 blk_mq_stop_hw_queue(hctx); 901 return BLK_MQ_RQ_QUEUE_BUSY; 902 } 903 904 static int blk_mq_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 905 unsigned int index) 906 { 907 struct blkfront_info *info = (struct blkfront_info *)data; 908 909 BUG_ON(info->nr_rings <= index); 910 hctx->driver_data = &info->rinfo[index]; 911 return 0; 912 } 913 914 static struct blk_mq_ops blkfront_mq_ops = { 915 .queue_rq = blkif_queue_rq, 916 .map_queue = blk_mq_map_queue, 917 .init_hctx = blk_mq_init_hctx, 918 }; 919 920 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 921 unsigned int physical_sector_size, 922 unsigned int segments) 923 { 924 struct request_queue *rq; 925 struct blkfront_info *info = gd->private_data; 926 927 memset(&info->tag_set, 0, sizeof(info->tag_set)); 928 info->tag_set.ops = &blkfront_mq_ops; 929 info->tag_set.nr_hw_queues = info->nr_rings; 930 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 931 /* 932 * When indirect descriptior is not supported, the I/O request 933 * will be split between multiple request in the ring. 934 * To avoid problems when sending the request, divide by 935 * 2 the depth of the queue. 936 */ 937 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 938 } else 939 info->tag_set.queue_depth = BLK_RING_SIZE(info); 940 info->tag_set.numa_node = NUMA_NO_NODE; 941 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 942 info->tag_set.cmd_size = 0; 943 info->tag_set.driver_data = info; 944 945 if (blk_mq_alloc_tag_set(&info->tag_set)) 946 return -EINVAL; 947 rq = blk_mq_init_queue(&info->tag_set); 948 if (IS_ERR(rq)) { 949 blk_mq_free_tag_set(&info->tag_set); 950 return PTR_ERR(rq); 951 } 952 953 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq); 954 955 if (info->feature_discard) { 956 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq); 957 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 958 rq->limits.discard_granularity = info->discard_granularity; 959 rq->limits.discard_alignment = info->discard_alignment; 960 if (info->feature_secdiscard) 961 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq); 962 } 963 964 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 965 blk_queue_logical_block_size(rq, sector_size); 966 blk_queue_physical_block_size(rq, physical_sector_size); 967 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 968 969 /* Each segment in a request is up to an aligned page in size. */ 970 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 971 blk_queue_max_segment_size(rq, PAGE_SIZE); 972 973 /* Ensure a merged request will fit in a single I/O ring slot. */ 974 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 975 976 /* Make sure buffer addresses are sector-aligned. */ 977 blk_queue_dma_alignment(rq, 511); 978 979 /* Make sure we don't use bounce buffers. */ 980 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY); 981 982 gd->queue = rq; 983 984 return 0; 985 } 986 987 static const char *flush_info(unsigned int feature_flush) 988 { 989 switch (feature_flush & ((REQ_FLUSH | REQ_FUA))) { 990 case REQ_FLUSH|REQ_FUA: 991 return "barrier: enabled;"; 992 case REQ_FLUSH: 993 return "flush diskcache: enabled;"; 994 default: 995 return "barrier or flush: disabled;"; 996 } 997 } 998 999 static void xlvbd_flush(struct blkfront_info *info) 1000 { 1001 blk_queue_write_cache(info->rq, info->feature_flush & REQ_FLUSH, 1002 info->feature_flush & REQ_FUA); 1003 pr_info("blkfront: %s: %s %s %s %s %s\n", 1004 info->gd->disk_name, flush_info(info->feature_flush), 1005 "persistent grants:", info->feature_persistent ? 1006 "enabled;" : "disabled;", "indirect descriptors:", 1007 info->max_indirect_segments ? "enabled;" : "disabled;"); 1008 } 1009 1010 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1011 { 1012 int major; 1013 major = BLKIF_MAJOR(vdevice); 1014 *minor = BLKIF_MINOR(vdevice); 1015 switch (major) { 1016 case XEN_IDE0_MAJOR: 1017 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1018 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1019 EMULATED_HD_DISK_MINOR_OFFSET; 1020 break; 1021 case XEN_IDE1_MAJOR: 1022 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1023 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1024 EMULATED_HD_DISK_MINOR_OFFSET; 1025 break; 1026 case XEN_SCSI_DISK0_MAJOR: 1027 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1028 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1029 break; 1030 case XEN_SCSI_DISK1_MAJOR: 1031 case XEN_SCSI_DISK2_MAJOR: 1032 case XEN_SCSI_DISK3_MAJOR: 1033 case XEN_SCSI_DISK4_MAJOR: 1034 case XEN_SCSI_DISK5_MAJOR: 1035 case XEN_SCSI_DISK6_MAJOR: 1036 case XEN_SCSI_DISK7_MAJOR: 1037 *offset = (*minor / PARTS_PER_DISK) + 1038 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1039 EMULATED_SD_DISK_NAME_OFFSET; 1040 *minor = *minor + 1041 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1042 EMULATED_SD_DISK_MINOR_OFFSET; 1043 break; 1044 case XEN_SCSI_DISK8_MAJOR: 1045 case XEN_SCSI_DISK9_MAJOR: 1046 case XEN_SCSI_DISK10_MAJOR: 1047 case XEN_SCSI_DISK11_MAJOR: 1048 case XEN_SCSI_DISK12_MAJOR: 1049 case XEN_SCSI_DISK13_MAJOR: 1050 case XEN_SCSI_DISK14_MAJOR: 1051 case XEN_SCSI_DISK15_MAJOR: 1052 *offset = (*minor / PARTS_PER_DISK) + 1053 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1054 EMULATED_SD_DISK_NAME_OFFSET; 1055 *minor = *minor + 1056 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1057 EMULATED_SD_DISK_MINOR_OFFSET; 1058 break; 1059 case XENVBD_MAJOR: 1060 *offset = *minor / PARTS_PER_DISK; 1061 break; 1062 default: 1063 printk(KERN_WARNING "blkfront: your disk configuration is " 1064 "incorrect, please use an xvd device instead\n"); 1065 return -ENODEV; 1066 } 1067 return 0; 1068 } 1069 1070 static char *encode_disk_name(char *ptr, unsigned int n) 1071 { 1072 if (n >= 26) 1073 ptr = encode_disk_name(ptr, n / 26 - 1); 1074 *ptr = 'a' + n % 26; 1075 return ptr + 1; 1076 } 1077 1078 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1079 struct blkfront_info *info, 1080 u16 vdisk_info, u16 sector_size, 1081 unsigned int physical_sector_size) 1082 { 1083 struct gendisk *gd; 1084 int nr_minors = 1; 1085 int err; 1086 unsigned int offset; 1087 int minor; 1088 int nr_parts; 1089 char *ptr; 1090 1091 BUG_ON(info->gd != NULL); 1092 BUG_ON(info->rq != NULL); 1093 1094 if ((info->vdevice>>EXT_SHIFT) > 1) { 1095 /* this is above the extended range; something is wrong */ 1096 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1097 return -ENODEV; 1098 } 1099 1100 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1101 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1102 if (err) 1103 return err; 1104 nr_parts = PARTS_PER_DISK; 1105 } else { 1106 minor = BLKIF_MINOR_EXT(info->vdevice); 1107 nr_parts = PARTS_PER_EXT_DISK; 1108 offset = minor / nr_parts; 1109 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1110 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1111 "emulated IDE disks,\n\t choose an xvd device name" 1112 "from xvde on\n", info->vdevice); 1113 } 1114 if (minor >> MINORBITS) { 1115 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1116 info->vdevice, minor); 1117 return -ENODEV; 1118 } 1119 1120 if ((minor % nr_parts) == 0) 1121 nr_minors = nr_parts; 1122 1123 err = xlbd_reserve_minors(minor, nr_minors); 1124 if (err) 1125 goto out; 1126 err = -ENODEV; 1127 1128 gd = alloc_disk(nr_minors); 1129 if (gd == NULL) 1130 goto release; 1131 1132 strcpy(gd->disk_name, DEV_NAME); 1133 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1134 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1135 if (nr_minors > 1) 1136 *ptr = 0; 1137 else 1138 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1139 "%d", minor & (nr_parts - 1)); 1140 1141 gd->major = XENVBD_MAJOR; 1142 gd->first_minor = minor; 1143 gd->fops = &xlvbd_block_fops; 1144 gd->private_data = info; 1145 gd->driverfs_dev = &(info->xbdev->dev); 1146 set_capacity(gd, capacity); 1147 1148 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size, 1149 info->max_indirect_segments ? : 1150 BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 1151 del_gendisk(gd); 1152 goto release; 1153 } 1154 1155 info->rq = gd->queue; 1156 info->gd = gd; 1157 1158 xlvbd_flush(info); 1159 1160 if (vdisk_info & VDISK_READONLY) 1161 set_disk_ro(gd, 1); 1162 1163 if (vdisk_info & VDISK_REMOVABLE) 1164 gd->flags |= GENHD_FL_REMOVABLE; 1165 1166 if (vdisk_info & VDISK_CDROM) 1167 gd->flags |= GENHD_FL_CD; 1168 1169 return 0; 1170 1171 release: 1172 xlbd_release_minors(minor, nr_minors); 1173 out: 1174 return err; 1175 } 1176 1177 static void xlvbd_release_gendisk(struct blkfront_info *info) 1178 { 1179 unsigned int minor, nr_minors, i; 1180 1181 if (info->rq == NULL) 1182 return; 1183 1184 /* No more blkif_request(). */ 1185 blk_mq_stop_hw_queues(info->rq); 1186 1187 for (i = 0; i < info->nr_rings; i++) { 1188 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1189 1190 /* No more gnttab callback work. */ 1191 gnttab_cancel_free_callback(&rinfo->callback); 1192 1193 /* Flush gnttab callback work. Must be done with no locks held. */ 1194 flush_work(&rinfo->work); 1195 } 1196 1197 del_gendisk(info->gd); 1198 1199 minor = info->gd->first_minor; 1200 nr_minors = info->gd->minors; 1201 xlbd_release_minors(minor, nr_minors); 1202 1203 blk_cleanup_queue(info->rq); 1204 blk_mq_free_tag_set(&info->tag_set); 1205 info->rq = NULL; 1206 1207 put_disk(info->gd); 1208 info->gd = NULL; 1209 } 1210 1211 /* Already hold rinfo->ring_lock. */ 1212 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1213 { 1214 if (!RING_FULL(&rinfo->ring)) 1215 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1216 } 1217 1218 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1219 { 1220 unsigned long flags; 1221 1222 spin_lock_irqsave(&rinfo->ring_lock, flags); 1223 kick_pending_request_queues_locked(rinfo); 1224 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1225 } 1226 1227 static void blkif_restart_queue(struct work_struct *work) 1228 { 1229 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1230 1231 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1232 kick_pending_request_queues(rinfo); 1233 } 1234 1235 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1236 { 1237 struct grant *persistent_gnt, *n; 1238 struct blkfront_info *info = rinfo->dev_info; 1239 int i, j, segs; 1240 1241 /* 1242 * Remove indirect pages, this only happens when using indirect 1243 * descriptors but not persistent grants 1244 */ 1245 if (!list_empty(&rinfo->indirect_pages)) { 1246 struct page *indirect_page, *n; 1247 1248 BUG_ON(info->feature_persistent); 1249 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1250 list_del(&indirect_page->lru); 1251 __free_page(indirect_page); 1252 } 1253 } 1254 1255 /* Remove all persistent grants. */ 1256 if (!list_empty(&rinfo->grants)) { 1257 list_for_each_entry_safe(persistent_gnt, n, 1258 &rinfo->grants, node) { 1259 list_del(&persistent_gnt->node); 1260 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1261 gnttab_end_foreign_access(persistent_gnt->gref, 1262 0, 0UL); 1263 rinfo->persistent_gnts_c--; 1264 } 1265 if (info->feature_persistent) 1266 __free_page(persistent_gnt->page); 1267 kfree(persistent_gnt); 1268 } 1269 } 1270 BUG_ON(rinfo->persistent_gnts_c != 0); 1271 1272 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1273 /* 1274 * Clear persistent grants present in requests already 1275 * on the shared ring 1276 */ 1277 if (!rinfo->shadow[i].request) 1278 goto free_shadow; 1279 1280 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1281 rinfo->shadow[i].req.u.indirect.nr_segments : 1282 rinfo->shadow[i].req.u.rw.nr_segments; 1283 for (j = 0; j < segs; j++) { 1284 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1285 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1286 if (info->feature_persistent) 1287 __free_page(persistent_gnt->page); 1288 kfree(persistent_gnt); 1289 } 1290 1291 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1292 /* 1293 * If this is not an indirect operation don't try to 1294 * free indirect segments 1295 */ 1296 goto free_shadow; 1297 1298 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1299 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1300 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1301 __free_page(persistent_gnt->page); 1302 kfree(persistent_gnt); 1303 } 1304 1305 free_shadow: 1306 kfree(rinfo->shadow[i].grants_used); 1307 rinfo->shadow[i].grants_used = NULL; 1308 kfree(rinfo->shadow[i].indirect_grants); 1309 rinfo->shadow[i].indirect_grants = NULL; 1310 kfree(rinfo->shadow[i].sg); 1311 rinfo->shadow[i].sg = NULL; 1312 } 1313 1314 /* No more gnttab callback work. */ 1315 gnttab_cancel_free_callback(&rinfo->callback); 1316 1317 /* Flush gnttab callback work. Must be done with no locks held. */ 1318 flush_work(&rinfo->work); 1319 1320 /* Free resources associated with old device channel. */ 1321 for (i = 0; i < info->nr_ring_pages; i++) { 1322 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1323 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1324 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1325 } 1326 } 1327 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE)); 1328 rinfo->ring.sring = NULL; 1329 1330 if (rinfo->irq) 1331 unbind_from_irqhandler(rinfo->irq, rinfo); 1332 rinfo->evtchn = rinfo->irq = 0; 1333 } 1334 1335 static void blkif_free(struct blkfront_info *info, int suspend) 1336 { 1337 unsigned int i; 1338 1339 /* Prevent new requests being issued until we fix things up. */ 1340 info->connected = suspend ? 1341 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1342 /* No more blkif_request(). */ 1343 if (info->rq) 1344 blk_mq_stop_hw_queues(info->rq); 1345 1346 for (i = 0; i < info->nr_rings; i++) 1347 blkif_free_ring(&info->rinfo[i]); 1348 1349 kfree(info->rinfo); 1350 info->rinfo = NULL; 1351 info->nr_rings = 0; 1352 } 1353 1354 struct copy_from_grant { 1355 const struct blk_shadow *s; 1356 unsigned int grant_idx; 1357 unsigned int bvec_offset; 1358 char *bvec_data; 1359 }; 1360 1361 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1362 unsigned int len, void *data) 1363 { 1364 struct copy_from_grant *info = data; 1365 char *shared_data; 1366 /* Convenient aliases */ 1367 const struct blk_shadow *s = info->s; 1368 1369 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1370 1371 memcpy(info->bvec_data + info->bvec_offset, 1372 shared_data + offset, len); 1373 1374 info->bvec_offset += len; 1375 info->grant_idx++; 1376 1377 kunmap_atomic(shared_data); 1378 } 1379 1380 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1381 { 1382 switch (rsp) 1383 { 1384 case BLKIF_RSP_OKAY: 1385 return REQ_DONE; 1386 case BLKIF_RSP_EOPNOTSUPP: 1387 return REQ_EOPNOTSUPP; 1388 case BLKIF_RSP_ERROR: 1389 /* Fallthrough. */ 1390 default: 1391 return REQ_ERROR; 1392 } 1393 } 1394 1395 /* 1396 * Get the final status of the block request based on two ring response 1397 */ 1398 static int blkif_get_final_status(enum blk_req_status s1, 1399 enum blk_req_status s2) 1400 { 1401 BUG_ON(s1 == REQ_WAITING); 1402 BUG_ON(s2 == REQ_WAITING); 1403 1404 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1405 return BLKIF_RSP_ERROR; 1406 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1407 return BLKIF_RSP_EOPNOTSUPP; 1408 return BLKIF_RSP_OKAY; 1409 } 1410 1411 static bool blkif_completion(unsigned long *id, 1412 struct blkfront_ring_info *rinfo, 1413 struct blkif_response *bret) 1414 { 1415 int i = 0; 1416 struct scatterlist *sg; 1417 int num_sg, num_grant; 1418 struct blkfront_info *info = rinfo->dev_info; 1419 struct blk_shadow *s = &rinfo->shadow[*id]; 1420 struct copy_from_grant data = { 1421 .grant_idx = 0, 1422 }; 1423 1424 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1425 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1426 1427 /* The I/O request may be split in two. */ 1428 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1429 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1430 1431 /* Keep the status of the current response in shadow. */ 1432 s->status = blkif_rsp_to_req_status(bret->status); 1433 1434 /* Wait the second response if not yet here. */ 1435 if (s2->status == REQ_WAITING) 1436 return 0; 1437 1438 bret->status = blkif_get_final_status(s->status, 1439 s2->status); 1440 1441 /* 1442 * All the grants is stored in the first shadow in order 1443 * to make the completion code simpler. 1444 */ 1445 num_grant += s2->req.u.rw.nr_segments; 1446 1447 /* 1448 * The two responses may not come in order. Only the 1449 * first request will store the scatter-gather list. 1450 */ 1451 if (s2->num_sg != 0) { 1452 /* Update "id" with the ID of the first response. */ 1453 *id = s->associated_id; 1454 s = s2; 1455 } 1456 1457 /* 1458 * We don't need anymore the second request, so recycling 1459 * it now. 1460 */ 1461 if (add_id_to_freelist(rinfo, s->associated_id)) 1462 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1463 info->gd->disk_name, s->associated_id); 1464 } 1465 1466 data.s = s; 1467 num_sg = s->num_sg; 1468 1469 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1470 for_each_sg(s->sg, sg, num_sg, i) { 1471 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1472 1473 data.bvec_offset = sg->offset; 1474 data.bvec_data = kmap_atomic(sg_page(sg)); 1475 1476 gnttab_foreach_grant_in_range(sg_page(sg), 1477 sg->offset, 1478 sg->length, 1479 blkif_copy_from_grant, 1480 &data); 1481 1482 kunmap_atomic(data.bvec_data); 1483 } 1484 } 1485 /* Add the persistent grant into the list of free grants */ 1486 for (i = 0; i < num_grant; i++) { 1487 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1488 /* 1489 * If the grant is still mapped by the backend (the 1490 * backend has chosen to make this grant persistent) 1491 * we add it at the head of the list, so it will be 1492 * reused first. 1493 */ 1494 if (!info->feature_persistent) 1495 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1496 s->grants_used[i]->gref); 1497 list_add(&s->grants_used[i]->node, &rinfo->grants); 1498 rinfo->persistent_gnts_c++; 1499 } else { 1500 /* 1501 * If the grant is not mapped by the backend we end the 1502 * foreign access and add it to the tail of the list, 1503 * so it will not be picked again unless we run out of 1504 * persistent grants. 1505 */ 1506 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1507 s->grants_used[i]->gref = GRANT_INVALID_REF; 1508 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1509 } 1510 } 1511 if (s->req.operation == BLKIF_OP_INDIRECT) { 1512 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1513 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1514 if (!info->feature_persistent) 1515 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1516 s->indirect_grants[i]->gref); 1517 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1518 rinfo->persistent_gnts_c++; 1519 } else { 1520 struct page *indirect_page; 1521 1522 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1523 /* 1524 * Add the used indirect page back to the list of 1525 * available pages for indirect grefs. 1526 */ 1527 if (!info->feature_persistent) { 1528 indirect_page = s->indirect_grants[i]->page; 1529 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1530 } 1531 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1532 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1533 } 1534 } 1535 } 1536 1537 return 1; 1538 } 1539 1540 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1541 { 1542 struct request *req; 1543 struct blkif_response *bret; 1544 RING_IDX i, rp; 1545 unsigned long flags; 1546 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1547 struct blkfront_info *info = rinfo->dev_info; 1548 int error; 1549 1550 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1551 return IRQ_HANDLED; 1552 1553 spin_lock_irqsave(&rinfo->ring_lock, flags); 1554 again: 1555 rp = rinfo->ring.sring->rsp_prod; 1556 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1557 1558 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1559 unsigned long id; 1560 1561 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1562 id = bret->id; 1563 /* 1564 * The backend has messed up and given us an id that we would 1565 * never have given to it (we stamp it up to BLK_RING_SIZE - 1566 * look in get_id_from_freelist. 1567 */ 1568 if (id >= BLK_RING_SIZE(info)) { 1569 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1570 info->gd->disk_name, op_name(bret->operation), id); 1571 /* We can't safely get the 'struct request' as 1572 * the id is busted. */ 1573 continue; 1574 } 1575 req = rinfo->shadow[id].request; 1576 1577 if (bret->operation != BLKIF_OP_DISCARD) { 1578 /* 1579 * We may need to wait for an extra response if the 1580 * I/O request is split in 2 1581 */ 1582 if (!blkif_completion(&id, rinfo, bret)) 1583 continue; 1584 } 1585 1586 if (add_id_to_freelist(rinfo, id)) { 1587 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1588 info->gd->disk_name, op_name(bret->operation), id); 1589 continue; 1590 } 1591 1592 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO; 1593 switch (bret->operation) { 1594 case BLKIF_OP_DISCARD: 1595 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1596 struct request_queue *rq = info->rq; 1597 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1598 info->gd->disk_name, op_name(bret->operation)); 1599 error = -EOPNOTSUPP; 1600 info->feature_discard = 0; 1601 info->feature_secdiscard = 0; 1602 queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1603 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq); 1604 } 1605 blk_mq_complete_request(req, error); 1606 break; 1607 case BLKIF_OP_FLUSH_DISKCACHE: 1608 case BLKIF_OP_WRITE_BARRIER: 1609 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1610 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1611 info->gd->disk_name, op_name(bret->operation)); 1612 error = -EOPNOTSUPP; 1613 } 1614 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1615 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1616 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1617 info->gd->disk_name, op_name(bret->operation)); 1618 error = -EOPNOTSUPP; 1619 } 1620 if (unlikely(error)) { 1621 if (error == -EOPNOTSUPP) 1622 error = 0; 1623 info->feature_flush = 0; 1624 xlvbd_flush(info); 1625 } 1626 /* fall through */ 1627 case BLKIF_OP_READ: 1628 case BLKIF_OP_WRITE: 1629 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1630 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1631 "request: %x\n", bret->status); 1632 1633 blk_mq_complete_request(req, error); 1634 break; 1635 default: 1636 BUG(); 1637 } 1638 } 1639 1640 rinfo->ring.rsp_cons = i; 1641 1642 if (i != rinfo->ring.req_prod_pvt) { 1643 int more_to_do; 1644 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1645 if (more_to_do) 1646 goto again; 1647 } else 1648 rinfo->ring.sring->rsp_event = i + 1; 1649 1650 kick_pending_request_queues_locked(rinfo); 1651 1652 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1653 1654 return IRQ_HANDLED; 1655 } 1656 1657 1658 static int setup_blkring(struct xenbus_device *dev, 1659 struct blkfront_ring_info *rinfo) 1660 { 1661 struct blkif_sring *sring; 1662 int err, i; 1663 struct blkfront_info *info = rinfo->dev_info; 1664 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1665 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1666 1667 for (i = 0; i < info->nr_ring_pages; i++) 1668 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1669 1670 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1671 get_order(ring_size)); 1672 if (!sring) { 1673 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1674 return -ENOMEM; 1675 } 1676 SHARED_RING_INIT(sring); 1677 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1678 1679 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1680 if (err < 0) { 1681 free_pages((unsigned long)sring, get_order(ring_size)); 1682 rinfo->ring.sring = NULL; 1683 goto fail; 1684 } 1685 for (i = 0; i < info->nr_ring_pages; i++) 1686 rinfo->ring_ref[i] = gref[i]; 1687 1688 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1689 if (err) 1690 goto fail; 1691 1692 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1693 "blkif", rinfo); 1694 if (err <= 0) { 1695 xenbus_dev_fatal(dev, err, 1696 "bind_evtchn_to_irqhandler failed"); 1697 goto fail; 1698 } 1699 rinfo->irq = err; 1700 1701 return 0; 1702 fail: 1703 blkif_free(info, 0); 1704 return err; 1705 } 1706 1707 /* 1708 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1709 * ring buffer may have multi pages depending on ->nr_ring_pages. 1710 */ 1711 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1712 struct blkfront_ring_info *rinfo, const char *dir) 1713 { 1714 int err; 1715 unsigned int i; 1716 const char *message = NULL; 1717 struct blkfront_info *info = rinfo->dev_info; 1718 1719 if (info->nr_ring_pages == 1) { 1720 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1721 if (err) { 1722 message = "writing ring-ref"; 1723 goto abort_transaction; 1724 } 1725 } else { 1726 for (i = 0; i < info->nr_ring_pages; i++) { 1727 char ring_ref_name[RINGREF_NAME_LEN]; 1728 1729 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1730 err = xenbus_printf(xbt, dir, ring_ref_name, 1731 "%u", rinfo->ring_ref[i]); 1732 if (err) { 1733 message = "writing ring-ref"; 1734 goto abort_transaction; 1735 } 1736 } 1737 } 1738 1739 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1740 if (err) { 1741 message = "writing event-channel"; 1742 goto abort_transaction; 1743 } 1744 1745 return 0; 1746 1747 abort_transaction: 1748 xenbus_transaction_end(xbt, 1); 1749 if (message) 1750 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1751 1752 return err; 1753 } 1754 1755 /* Common code used when first setting up, and when resuming. */ 1756 static int talk_to_blkback(struct xenbus_device *dev, 1757 struct blkfront_info *info) 1758 { 1759 const char *message = NULL; 1760 struct xenbus_transaction xbt; 1761 int err; 1762 unsigned int i, max_page_order = 0; 1763 unsigned int ring_page_order = 0; 1764 1765 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1766 "max-ring-page-order", "%u", &max_page_order); 1767 if (err != 1) 1768 info->nr_ring_pages = 1; 1769 else { 1770 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1771 info->nr_ring_pages = 1 << ring_page_order; 1772 } 1773 1774 for (i = 0; i < info->nr_rings; i++) { 1775 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1776 1777 /* Create shared ring, alloc event channel. */ 1778 err = setup_blkring(dev, rinfo); 1779 if (err) 1780 goto destroy_blkring; 1781 } 1782 1783 again: 1784 err = xenbus_transaction_start(&xbt); 1785 if (err) { 1786 xenbus_dev_fatal(dev, err, "starting transaction"); 1787 goto destroy_blkring; 1788 } 1789 1790 if (info->nr_ring_pages > 1) { 1791 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1792 ring_page_order); 1793 if (err) { 1794 message = "writing ring-page-order"; 1795 goto abort_transaction; 1796 } 1797 } 1798 1799 /* We already got the number of queues/rings in _probe */ 1800 if (info->nr_rings == 1) { 1801 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename); 1802 if (err) 1803 goto destroy_blkring; 1804 } else { 1805 char *path; 1806 size_t pathsize; 1807 1808 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1809 info->nr_rings); 1810 if (err) { 1811 message = "writing multi-queue-num-queues"; 1812 goto abort_transaction; 1813 } 1814 1815 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1816 path = kmalloc(pathsize, GFP_KERNEL); 1817 if (!path) { 1818 err = -ENOMEM; 1819 message = "ENOMEM while writing ring references"; 1820 goto abort_transaction; 1821 } 1822 1823 for (i = 0; i < info->nr_rings; i++) { 1824 memset(path, 0, pathsize); 1825 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1826 err = write_per_ring_nodes(xbt, &info->rinfo[i], path); 1827 if (err) { 1828 kfree(path); 1829 goto destroy_blkring; 1830 } 1831 } 1832 kfree(path); 1833 } 1834 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1835 XEN_IO_PROTO_ABI_NATIVE); 1836 if (err) { 1837 message = "writing protocol"; 1838 goto abort_transaction; 1839 } 1840 err = xenbus_printf(xbt, dev->nodename, 1841 "feature-persistent", "%u", 1); 1842 if (err) 1843 dev_warn(&dev->dev, 1844 "writing persistent grants feature to xenbus"); 1845 1846 err = xenbus_transaction_end(xbt, 0); 1847 if (err) { 1848 if (err == -EAGAIN) 1849 goto again; 1850 xenbus_dev_fatal(dev, err, "completing transaction"); 1851 goto destroy_blkring; 1852 } 1853 1854 for (i = 0; i < info->nr_rings; i++) { 1855 unsigned int j; 1856 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1857 1858 for (j = 0; j < BLK_RING_SIZE(info); j++) 1859 rinfo->shadow[j].req.u.rw.id = j + 1; 1860 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1861 } 1862 xenbus_switch_state(dev, XenbusStateInitialised); 1863 1864 return 0; 1865 1866 abort_transaction: 1867 xenbus_transaction_end(xbt, 1); 1868 if (message) 1869 xenbus_dev_fatal(dev, err, "%s", message); 1870 destroy_blkring: 1871 blkif_free(info, 0); 1872 1873 kfree(info); 1874 dev_set_drvdata(&dev->dev, NULL); 1875 1876 return err; 1877 } 1878 1879 static int negotiate_mq(struct blkfront_info *info) 1880 { 1881 unsigned int backend_max_queues = 0; 1882 int err; 1883 unsigned int i; 1884 1885 BUG_ON(info->nr_rings); 1886 1887 /* Check if backend supports multiple queues. */ 1888 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1889 "multi-queue-max-queues", "%u", &backend_max_queues); 1890 if (err < 0) 1891 backend_max_queues = 1; 1892 1893 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1894 /* We need at least one ring. */ 1895 if (!info->nr_rings) 1896 info->nr_rings = 1; 1897 1898 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL); 1899 if (!info->rinfo) { 1900 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1901 return -ENOMEM; 1902 } 1903 1904 for (i = 0; i < info->nr_rings; i++) { 1905 struct blkfront_ring_info *rinfo; 1906 1907 rinfo = &info->rinfo[i]; 1908 INIT_LIST_HEAD(&rinfo->indirect_pages); 1909 INIT_LIST_HEAD(&rinfo->grants); 1910 rinfo->dev_info = info; 1911 INIT_WORK(&rinfo->work, blkif_restart_queue); 1912 spin_lock_init(&rinfo->ring_lock); 1913 } 1914 return 0; 1915 } 1916 /** 1917 * Entry point to this code when a new device is created. Allocate the basic 1918 * structures and the ring buffer for communication with the backend, and 1919 * inform the backend of the appropriate details for those. Switch to 1920 * Initialised state. 1921 */ 1922 static int blkfront_probe(struct xenbus_device *dev, 1923 const struct xenbus_device_id *id) 1924 { 1925 int err, vdevice; 1926 struct blkfront_info *info; 1927 1928 /* FIXME: Use dynamic device id if this is not set. */ 1929 err = xenbus_scanf(XBT_NIL, dev->nodename, 1930 "virtual-device", "%i", &vdevice); 1931 if (err != 1) { 1932 /* go looking in the extended area instead */ 1933 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1934 "%i", &vdevice); 1935 if (err != 1) { 1936 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1937 return err; 1938 } 1939 } 1940 1941 if (xen_hvm_domain()) { 1942 char *type; 1943 int len; 1944 /* no unplug has been done: do not hook devices != xen vbds */ 1945 if (xen_has_pv_and_legacy_disk_devices()) { 1946 int major; 1947 1948 if (!VDEV_IS_EXTENDED(vdevice)) 1949 major = BLKIF_MAJOR(vdevice); 1950 else 1951 major = XENVBD_MAJOR; 1952 1953 if (major != XENVBD_MAJOR) { 1954 printk(KERN_INFO 1955 "%s: HVM does not support vbd %d as xen block device\n", 1956 __func__, vdevice); 1957 return -ENODEV; 1958 } 1959 } 1960 /* do not create a PV cdrom device if we are an HVM guest */ 1961 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1962 if (IS_ERR(type)) 1963 return -ENODEV; 1964 if (strncmp(type, "cdrom", 5) == 0) { 1965 kfree(type); 1966 return -ENODEV; 1967 } 1968 kfree(type); 1969 } 1970 info = kzalloc(sizeof(*info), GFP_KERNEL); 1971 if (!info) { 1972 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1973 return -ENOMEM; 1974 } 1975 1976 info->xbdev = dev; 1977 err = negotiate_mq(info); 1978 if (err) { 1979 kfree(info); 1980 return err; 1981 } 1982 1983 mutex_init(&info->mutex); 1984 info->vdevice = vdevice; 1985 info->connected = BLKIF_STATE_DISCONNECTED; 1986 1987 /* Front end dir is a number, which is used as the id. */ 1988 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1989 dev_set_drvdata(&dev->dev, info); 1990 1991 return 0; 1992 } 1993 1994 static void split_bio_end(struct bio *bio) 1995 { 1996 struct split_bio *split_bio = bio->bi_private; 1997 1998 if (atomic_dec_and_test(&split_bio->pending)) { 1999 split_bio->bio->bi_phys_segments = 0; 2000 split_bio->bio->bi_error = bio->bi_error; 2001 bio_endio(split_bio->bio); 2002 kfree(split_bio); 2003 } 2004 bio_put(bio); 2005 } 2006 2007 static int blkif_recover(struct blkfront_info *info) 2008 { 2009 unsigned int i, r_index; 2010 struct request *req, *n; 2011 struct blk_shadow *copy; 2012 int rc; 2013 struct bio *bio, *cloned_bio; 2014 struct bio_list bio_list, merge_bio; 2015 unsigned int segs, offset; 2016 int pending, size; 2017 struct split_bio *split_bio; 2018 struct list_head requests; 2019 2020 blkfront_gather_backend_features(info); 2021 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2022 blk_queue_max_segments(info->rq, segs); 2023 bio_list_init(&bio_list); 2024 INIT_LIST_HEAD(&requests); 2025 2026 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2027 struct blkfront_ring_info *rinfo; 2028 2029 rinfo = &info->rinfo[r_index]; 2030 /* Stage 1: Make a safe copy of the shadow state. */ 2031 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow), 2032 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH); 2033 if (!copy) 2034 return -ENOMEM; 2035 2036 /* Stage 2: Set up free list. */ 2037 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow)); 2038 for (i = 0; i < BLK_RING_SIZE(info); i++) 2039 rinfo->shadow[i].req.u.rw.id = i+1; 2040 rinfo->shadow_free = rinfo->ring.req_prod_pvt; 2041 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 2042 2043 rc = blkfront_setup_indirect(rinfo); 2044 if (rc) { 2045 kfree(copy); 2046 return rc; 2047 } 2048 2049 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2050 /* Not in use? */ 2051 if (!copy[i].request) 2052 continue; 2053 2054 /* 2055 * Get the bios in the request so we can re-queue them. 2056 */ 2057 if (copy[i].request->cmd_flags & 2058 (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) { 2059 /* 2060 * Flush operations don't contain bios, so 2061 * we need to requeue the whole request 2062 */ 2063 list_add(©[i].request->queuelist, &requests); 2064 continue; 2065 } 2066 merge_bio.head = copy[i].request->bio; 2067 merge_bio.tail = copy[i].request->biotail; 2068 bio_list_merge(&bio_list, &merge_bio); 2069 copy[i].request->bio = NULL; 2070 blk_end_request_all(copy[i].request, 0); 2071 } 2072 2073 kfree(copy); 2074 } 2075 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2076 2077 /* Now safe for us to use the shared ring */ 2078 info->connected = BLKIF_STATE_CONNECTED; 2079 2080 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2081 struct blkfront_ring_info *rinfo; 2082 2083 rinfo = &info->rinfo[r_index]; 2084 /* Kick any other new requests queued since we resumed */ 2085 kick_pending_request_queues(rinfo); 2086 } 2087 2088 list_for_each_entry_safe(req, n, &requests, queuelist) { 2089 /* Requeue pending requests (flush or discard) */ 2090 list_del_init(&req->queuelist); 2091 BUG_ON(req->nr_phys_segments > segs); 2092 blk_mq_requeue_request(req); 2093 } 2094 blk_mq_kick_requeue_list(info->rq); 2095 2096 while ((bio = bio_list_pop(&bio_list)) != NULL) { 2097 /* Traverse the list of pending bios and re-queue them */ 2098 if (bio_segments(bio) > segs) { 2099 /* 2100 * This bio has more segments than what we can 2101 * handle, we have to split it. 2102 */ 2103 pending = (bio_segments(bio) + segs - 1) / segs; 2104 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO); 2105 BUG_ON(split_bio == NULL); 2106 atomic_set(&split_bio->pending, pending); 2107 split_bio->bio = bio; 2108 for (i = 0; i < pending; i++) { 2109 offset = (i * segs * XEN_PAGE_SIZE) >> 9; 2110 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9, 2111 (unsigned int)bio_sectors(bio) - offset); 2112 cloned_bio = bio_clone(bio, GFP_NOIO); 2113 BUG_ON(cloned_bio == NULL); 2114 bio_trim(cloned_bio, offset, size); 2115 cloned_bio->bi_private = split_bio; 2116 cloned_bio->bi_end_io = split_bio_end; 2117 submit_bio(cloned_bio->bi_rw, cloned_bio); 2118 } 2119 /* 2120 * Now we have to wait for all those smaller bios to 2121 * end, so we can also end the "parent" bio. 2122 */ 2123 continue; 2124 } 2125 /* We don't need to split this bio */ 2126 submit_bio(bio->bi_rw, bio); 2127 } 2128 2129 return 0; 2130 } 2131 2132 /** 2133 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2134 * driver restart. We tear down our blkif structure and recreate it, but 2135 * leave the device-layer structures intact so that this is transparent to the 2136 * rest of the kernel. 2137 */ 2138 static int blkfront_resume(struct xenbus_device *dev) 2139 { 2140 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2141 int err = 0; 2142 2143 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2144 2145 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2146 2147 err = negotiate_mq(info); 2148 if (err) 2149 return err; 2150 2151 err = talk_to_blkback(dev, info); 2152 2153 /* 2154 * We have to wait for the backend to switch to 2155 * connected state, since we want to read which 2156 * features it supports. 2157 */ 2158 2159 return err; 2160 } 2161 2162 static void blkfront_closing(struct blkfront_info *info) 2163 { 2164 struct xenbus_device *xbdev = info->xbdev; 2165 struct block_device *bdev = NULL; 2166 2167 mutex_lock(&info->mutex); 2168 2169 if (xbdev->state == XenbusStateClosing) { 2170 mutex_unlock(&info->mutex); 2171 return; 2172 } 2173 2174 if (info->gd) 2175 bdev = bdget_disk(info->gd, 0); 2176 2177 mutex_unlock(&info->mutex); 2178 2179 if (!bdev) { 2180 xenbus_frontend_closed(xbdev); 2181 return; 2182 } 2183 2184 mutex_lock(&bdev->bd_mutex); 2185 2186 if (bdev->bd_openers) { 2187 xenbus_dev_error(xbdev, -EBUSY, 2188 "Device in use; refusing to close"); 2189 xenbus_switch_state(xbdev, XenbusStateClosing); 2190 } else { 2191 xlvbd_release_gendisk(info); 2192 xenbus_frontend_closed(xbdev); 2193 } 2194 2195 mutex_unlock(&bdev->bd_mutex); 2196 bdput(bdev); 2197 } 2198 2199 static void blkfront_setup_discard(struct blkfront_info *info) 2200 { 2201 int err; 2202 unsigned int discard_granularity; 2203 unsigned int discard_alignment; 2204 unsigned int discard_secure; 2205 2206 info->feature_discard = 1; 2207 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2208 "discard-granularity", "%u", &discard_granularity, 2209 "discard-alignment", "%u", &discard_alignment, 2210 NULL); 2211 if (!err) { 2212 info->discard_granularity = discard_granularity; 2213 info->discard_alignment = discard_alignment; 2214 } 2215 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2216 "discard-secure", "%d", &discard_secure, 2217 NULL); 2218 if (!err) 2219 info->feature_secdiscard = !!discard_secure; 2220 } 2221 2222 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2223 { 2224 unsigned int psegs, grants; 2225 int err, i; 2226 struct blkfront_info *info = rinfo->dev_info; 2227 2228 if (info->max_indirect_segments == 0) { 2229 if (!HAS_EXTRA_REQ) 2230 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2231 else { 2232 /* 2233 * When an extra req is required, the maximum 2234 * grants supported is related to the size of the 2235 * Linux block segment. 2236 */ 2237 grants = GRANTS_PER_PSEG; 2238 } 2239 } 2240 else 2241 grants = info->max_indirect_segments; 2242 psegs = grants / GRANTS_PER_PSEG; 2243 2244 err = fill_grant_buffer(rinfo, 2245 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2246 if (err) 2247 goto out_of_memory; 2248 2249 if (!info->feature_persistent && info->max_indirect_segments) { 2250 /* 2251 * We are using indirect descriptors but not persistent 2252 * grants, we need to allocate a set of pages that can be 2253 * used for mapping indirect grefs 2254 */ 2255 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2256 2257 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2258 for (i = 0; i < num; i++) { 2259 struct page *indirect_page = alloc_page(GFP_NOIO); 2260 if (!indirect_page) 2261 goto out_of_memory; 2262 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2263 } 2264 } 2265 2266 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2267 rinfo->shadow[i].grants_used = kzalloc( 2268 sizeof(rinfo->shadow[i].grants_used[0]) * grants, 2269 GFP_NOIO); 2270 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO); 2271 if (info->max_indirect_segments) 2272 rinfo->shadow[i].indirect_grants = kzalloc( 2273 sizeof(rinfo->shadow[i].indirect_grants[0]) * 2274 INDIRECT_GREFS(grants), 2275 GFP_NOIO); 2276 if ((rinfo->shadow[i].grants_used == NULL) || 2277 (rinfo->shadow[i].sg == NULL) || 2278 (info->max_indirect_segments && 2279 (rinfo->shadow[i].indirect_grants == NULL))) 2280 goto out_of_memory; 2281 sg_init_table(rinfo->shadow[i].sg, psegs); 2282 } 2283 2284 2285 return 0; 2286 2287 out_of_memory: 2288 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2289 kfree(rinfo->shadow[i].grants_used); 2290 rinfo->shadow[i].grants_used = NULL; 2291 kfree(rinfo->shadow[i].sg); 2292 rinfo->shadow[i].sg = NULL; 2293 kfree(rinfo->shadow[i].indirect_grants); 2294 rinfo->shadow[i].indirect_grants = NULL; 2295 } 2296 if (!list_empty(&rinfo->indirect_pages)) { 2297 struct page *indirect_page, *n; 2298 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2299 list_del(&indirect_page->lru); 2300 __free_page(indirect_page); 2301 } 2302 } 2303 return -ENOMEM; 2304 } 2305 2306 /* 2307 * Gather all backend feature-* 2308 */ 2309 static void blkfront_gather_backend_features(struct blkfront_info *info) 2310 { 2311 int err; 2312 int barrier, flush, discard, persistent; 2313 unsigned int indirect_segments; 2314 2315 info->feature_flush = 0; 2316 2317 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2318 "feature-barrier", "%d", &barrier, 2319 NULL); 2320 2321 /* 2322 * If there's no "feature-barrier" defined, then it means 2323 * we're dealing with a very old backend which writes 2324 * synchronously; nothing to do. 2325 * 2326 * If there are barriers, then we use flush. 2327 */ 2328 if (!err && barrier) 2329 info->feature_flush = REQ_FLUSH | REQ_FUA; 2330 /* 2331 * And if there is "feature-flush-cache" use that above 2332 * barriers. 2333 */ 2334 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2335 "feature-flush-cache", "%d", &flush, 2336 NULL); 2337 2338 if (!err && flush) 2339 info->feature_flush = REQ_FLUSH; 2340 2341 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2342 "feature-discard", "%d", &discard, 2343 NULL); 2344 2345 if (!err && discard) 2346 blkfront_setup_discard(info); 2347 2348 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2349 "feature-persistent", "%u", &persistent, 2350 NULL); 2351 if (err) 2352 info->feature_persistent = 0; 2353 else 2354 info->feature_persistent = persistent; 2355 2356 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2357 "feature-max-indirect-segments", "%u", &indirect_segments, 2358 NULL); 2359 if (err) 2360 info->max_indirect_segments = 0; 2361 else 2362 info->max_indirect_segments = min(indirect_segments, 2363 xen_blkif_max_segments); 2364 } 2365 2366 /* 2367 * Invoked when the backend is finally 'ready' (and has told produced 2368 * the details about the physical device - #sectors, size, etc). 2369 */ 2370 static void blkfront_connect(struct blkfront_info *info) 2371 { 2372 unsigned long long sectors; 2373 unsigned long sector_size; 2374 unsigned int physical_sector_size; 2375 unsigned int binfo; 2376 int err, i; 2377 2378 switch (info->connected) { 2379 case BLKIF_STATE_CONNECTED: 2380 /* 2381 * Potentially, the back-end may be signalling 2382 * a capacity change; update the capacity. 2383 */ 2384 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2385 "sectors", "%Lu", §ors); 2386 if (XENBUS_EXIST_ERR(err)) 2387 return; 2388 printk(KERN_INFO "Setting capacity to %Lu\n", 2389 sectors); 2390 set_capacity(info->gd, sectors); 2391 revalidate_disk(info->gd); 2392 2393 return; 2394 case BLKIF_STATE_SUSPENDED: 2395 /* 2396 * If we are recovering from suspension, we need to wait 2397 * for the backend to announce it's features before 2398 * reconnecting, at least we need to know if the backend 2399 * supports indirect descriptors, and how many. 2400 */ 2401 blkif_recover(info); 2402 return; 2403 2404 default: 2405 break; 2406 } 2407 2408 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2409 __func__, info->xbdev->otherend); 2410 2411 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2412 "sectors", "%llu", §ors, 2413 "info", "%u", &binfo, 2414 "sector-size", "%lu", §or_size, 2415 NULL); 2416 if (err) { 2417 xenbus_dev_fatal(info->xbdev, err, 2418 "reading backend fields at %s", 2419 info->xbdev->otherend); 2420 return; 2421 } 2422 2423 /* 2424 * physcial-sector-size is a newer field, so old backends may not 2425 * provide this. Assume physical sector size to be the same as 2426 * sector_size in that case. 2427 */ 2428 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2429 "physical-sector-size", "%u", &physical_sector_size); 2430 if (err != 1) 2431 physical_sector_size = sector_size; 2432 2433 blkfront_gather_backend_features(info); 2434 for (i = 0; i < info->nr_rings; i++) { 2435 err = blkfront_setup_indirect(&info->rinfo[i]); 2436 if (err) { 2437 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2438 info->xbdev->otherend); 2439 blkif_free(info, 0); 2440 break; 2441 } 2442 } 2443 2444 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2445 physical_sector_size); 2446 if (err) { 2447 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2448 info->xbdev->otherend); 2449 return; 2450 } 2451 2452 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2453 2454 /* Kick pending requests. */ 2455 info->connected = BLKIF_STATE_CONNECTED; 2456 for (i = 0; i < info->nr_rings; i++) 2457 kick_pending_request_queues(&info->rinfo[i]); 2458 2459 add_disk(info->gd); 2460 2461 info->is_ready = 1; 2462 } 2463 2464 /** 2465 * Callback received when the backend's state changes. 2466 */ 2467 static void blkback_changed(struct xenbus_device *dev, 2468 enum xenbus_state backend_state) 2469 { 2470 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2471 2472 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2473 2474 switch (backend_state) { 2475 case XenbusStateInitWait: 2476 if (dev->state != XenbusStateInitialising) 2477 break; 2478 if (talk_to_blkback(dev, info)) 2479 break; 2480 case XenbusStateInitialising: 2481 case XenbusStateInitialised: 2482 case XenbusStateReconfiguring: 2483 case XenbusStateReconfigured: 2484 case XenbusStateUnknown: 2485 break; 2486 2487 case XenbusStateConnected: 2488 if (dev->state != XenbusStateInitialised) { 2489 if (talk_to_blkback(dev, info)) 2490 break; 2491 } 2492 blkfront_connect(info); 2493 break; 2494 2495 case XenbusStateClosed: 2496 if (dev->state == XenbusStateClosed) 2497 break; 2498 /* Missed the backend's Closing state -- fallthrough */ 2499 case XenbusStateClosing: 2500 if (info) 2501 blkfront_closing(info); 2502 break; 2503 } 2504 } 2505 2506 static int blkfront_remove(struct xenbus_device *xbdev) 2507 { 2508 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2509 struct block_device *bdev = NULL; 2510 struct gendisk *disk; 2511 2512 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2513 2514 blkif_free(info, 0); 2515 2516 mutex_lock(&info->mutex); 2517 2518 disk = info->gd; 2519 if (disk) 2520 bdev = bdget_disk(disk, 0); 2521 2522 info->xbdev = NULL; 2523 mutex_unlock(&info->mutex); 2524 2525 if (!bdev) { 2526 kfree(info); 2527 return 0; 2528 } 2529 2530 /* 2531 * The xbdev was removed before we reached the Closed 2532 * state. See if it's safe to remove the disk. If the bdev 2533 * isn't closed yet, we let release take care of it. 2534 */ 2535 2536 mutex_lock(&bdev->bd_mutex); 2537 info = disk->private_data; 2538 2539 dev_warn(disk_to_dev(disk), 2540 "%s was hot-unplugged, %d stale handles\n", 2541 xbdev->nodename, bdev->bd_openers); 2542 2543 if (info && !bdev->bd_openers) { 2544 xlvbd_release_gendisk(info); 2545 disk->private_data = NULL; 2546 kfree(info); 2547 } 2548 2549 mutex_unlock(&bdev->bd_mutex); 2550 bdput(bdev); 2551 2552 return 0; 2553 } 2554 2555 static int blkfront_is_ready(struct xenbus_device *dev) 2556 { 2557 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2558 2559 return info->is_ready && info->xbdev; 2560 } 2561 2562 static int blkif_open(struct block_device *bdev, fmode_t mode) 2563 { 2564 struct gendisk *disk = bdev->bd_disk; 2565 struct blkfront_info *info; 2566 int err = 0; 2567 2568 mutex_lock(&blkfront_mutex); 2569 2570 info = disk->private_data; 2571 if (!info) { 2572 /* xbdev gone */ 2573 err = -ERESTARTSYS; 2574 goto out; 2575 } 2576 2577 mutex_lock(&info->mutex); 2578 2579 if (!info->gd) 2580 /* xbdev is closed */ 2581 err = -ERESTARTSYS; 2582 2583 mutex_unlock(&info->mutex); 2584 2585 out: 2586 mutex_unlock(&blkfront_mutex); 2587 return err; 2588 } 2589 2590 static void blkif_release(struct gendisk *disk, fmode_t mode) 2591 { 2592 struct blkfront_info *info = disk->private_data; 2593 struct block_device *bdev; 2594 struct xenbus_device *xbdev; 2595 2596 mutex_lock(&blkfront_mutex); 2597 2598 bdev = bdget_disk(disk, 0); 2599 2600 if (!bdev) { 2601 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2602 goto out_mutex; 2603 } 2604 if (bdev->bd_openers) 2605 goto out; 2606 2607 /* 2608 * Check if we have been instructed to close. We will have 2609 * deferred this request, because the bdev was still open. 2610 */ 2611 2612 mutex_lock(&info->mutex); 2613 xbdev = info->xbdev; 2614 2615 if (xbdev && xbdev->state == XenbusStateClosing) { 2616 /* pending switch to state closed */ 2617 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2618 xlvbd_release_gendisk(info); 2619 xenbus_frontend_closed(info->xbdev); 2620 } 2621 2622 mutex_unlock(&info->mutex); 2623 2624 if (!xbdev) { 2625 /* sudden device removal */ 2626 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2627 xlvbd_release_gendisk(info); 2628 disk->private_data = NULL; 2629 kfree(info); 2630 } 2631 2632 out: 2633 bdput(bdev); 2634 out_mutex: 2635 mutex_unlock(&blkfront_mutex); 2636 } 2637 2638 static const struct block_device_operations xlvbd_block_fops = 2639 { 2640 .owner = THIS_MODULE, 2641 .open = blkif_open, 2642 .release = blkif_release, 2643 .getgeo = blkif_getgeo, 2644 .ioctl = blkif_ioctl, 2645 }; 2646 2647 2648 static const struct xenbus_device_id blkfront_ids[] = { 2649 { "vbd" }, 2650 { "" } 2651 }; 2652 2653 static struct xenbus_driver blkfront_driver = { 2654 .ids = blkfront_ids, 2655 .probe = blkfront_probe, 2656 .remove = blkfront_remove, 2657 .resume = blkfront_resume, 2658 .otherend_changed = blkback_changed, 2659 .is_ready = blkfront_is_ready, 2660 }; 2661 2662 static int __init xlblk_init(void) 2663 { 2664 int ret; 2665 int nr_cpus = num_online_cpus(); 2666 2667 if (!xen_domain()) 2668 return -ENODEV; 2669 2670 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2671 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2672 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2673 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2674 } 2675 2676 if (xen_blkif_max_queues > nr_cpus) { 2677 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2678 xen_blkif_max_queues, nr_cpus); 2679 xen_blkif_max_queues = nr_cpus; 2680 } 2681 2682 if (!xen_has_pv_disk_devices()) 2683 return -ENODEV; 2684 2685 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2686 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n", 2687 XENVBD_MAJOR, DEV_NAME); 2688 return -ENODEV; 2689 } 2690 2691 ret = xenbus_register_frontend(&blkfront_driver); 2692 if (ret) { 2693 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2694 return ret; 2695 } 2696 2697 return 0; 2698 } 2699 module_init(xlblk_init); 2700 2701 2702 static void __exit xlblk_exit(void) 2703 { 2704 xenbus_unregister_driver(&blkfront_driver); 2705 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2706 kfree(minors); 2707 } 2708 module_exit(xlblk_exit); 2709 2710 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2711 MODULE_LICENSE("GPL"); 2712 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2713 MODULE_ALIAS("xen:vbd"); 2714 MODULE_ALIAS("xenblk"); 2715