xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision 36de991e)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/major.h>
46 #include <linux/mutex.h>
47 #include <linux/scatterlist.h>
48 #include <linux/bitmap.h>
49 #include <linux/list.h>
50 #include <linux/workqueue.h>
51 #include <linux/sched/mm.h>
52 
53 #include <xen/xen.h>
54 #include <xen/xenbus.h>
55 #include <xen/grant_table.h>
56 #include <xen/events.h>
57 #include <xen/page.h>
58 #include <xen/platform_pci.h>
59 
60 #include <xen/interface/grant_table.h>
61 #include <xen/interface/io/blkif.h>
62 #include <xen/interface/io/protocols.h>
63 
64 #include <asm/xen/hypervisor.h>
65 
66 /*
67  * The minimal size of segment supported by the block framework is PAGE_SIZE.
68  * When Linux is using a different page size than Xen, it may not be possible
69  * to put all the data in a single segment.
70  * This can happen when the backend doesn't support indirect descriptor and
71  * therefore the maximum amount of data that a request can carry is
72  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73  *
74  * Note that we only support one extra request. So the Linux page size
75  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76  * 88KB.
77  */
78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79 
80 enum blkif_state {
81 	BLKIF_STATE_DISCONNECTED,
82 	BLKIF_STATE_CONNECTED,
83 	BLKIF_STATE_SUSPENDED,
84 	BLKIF_STATE_ERROR,
85 };
86 
87 struct grant {
88 	grant_ref_t gref;
89 	struct page *page;
90 	struct list_head node;
91 };
92 
93 enum blk_req_status {
94 	REQ_PROCESSING,
95 	REQ_WAITING,
96 	REQ_DONE,
97 	REQ_ERROR,
98 	REQ_EOPNOTSUPP,
99 };
100 
101 struct blk_shadow {
102 	struct blkif_request req;
103 	struct request *request;
104 	struct grant **grants_used;
105 	struct grant **indirect_grants;
106 	struct scatterlist *sg;
107 	unsigned int num_sg;
108 	enum blk_req_status status;
109 
110 	#define NO_ASSOCIATED_ID ~0UL
111 	/*
112 	 * Id of the sibling if we ever need 2 requests when handling a
113 	 * block I/O request
114 	 */
115 	unsigned long associated_id;
116 };
117 
118 struct blkif_req {
119 	blk_status_t	error;
120 };
121 
122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 	return blk_mq_rq_to_pdu(rq);
125 }
126 
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 static struct delayed_work blkfront_work;
130 static LIST_HEAD(info_list);
131 
132 /*
133  * Maximum number of segments in indirect requests, the actual value used by
134  * the frontend driver is the minimum of this value and the value provided
135  * by the backend driver.
136  */
137 
138 static unsigned int xen_blkif_max_segments = 32;
139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140 MODULE_PARM_DESC(max_indirect_segments,
141 		 "Maximum amount of segments in indirect requests (default is 32)");
142 
143 static unsigned int xen_blkif_max_queues = 4;
144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146 
147 /*
148  * Maximum order of pages to be used for the shared ring between front and
149  * backend, 4KB page granularity is used.
150  */
151 static unsigned int xen_blkif_max_ring_order;
152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154 
155 #define BLK_RING_SIZE(info)	\
156 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
157 
158 /*
159  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
160  * characters are enough. Define to 20 to keep consistent with backend.
161  */
162 #define RINGREF_NAME_LEN (20)
163 /*
164  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
165  */
166 #define QUEUE_NAME_LEN (17)
167 
168 /*
169  *  Per-ring info.
170  *  Every blkfront device can associate with one or more blkfront_ring_info,
171  *  depending on how many hardware queues/rings to be used.
172  */
173 struct blkfront_ring_info {
174 	/* Lock to protect data in every ring buffer. */
175 	spinlock_t ring_lock;
176 	struct blkif_front_ring ring;
177 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
178 	unsigned int evtchn, irq;
179 	struct work_struct work;
180 	struct gnttab_free_callback callback;
181 	struct list_head indirect_pages;
182 	struct list_head grants;
183 	unsigned int persistent_gnts_c;
184 	unsigned long shadow_free;
185 	struct blkfront_info *dev_info;
186 	struct blk_shadow shadow[];
187 };
188 
189 /*
190  * We have one of these per vbd, whether ide, scsi or 'other'.  They
191  * hang in private_data off the gendisk structure. We may end up
192  * putting all kinds of interesting stuff here :-)
193  */
194 struct blkfront_info
195 {
196 	struct mutex mutex;
197 	struct xenbus_device *xbdev;
198 	struct gendisk *gd;
199 	u16 sector_size;
200 	unsigned int physical_sector_size;
201 	int vdevice;
202 	blkif_vdev_t handle;
203 	enum blkif_state connected;
204 	/* Number of pages per ring buffer. */
205 	unsigned int nr_ring_pages;
206 	struct request_queue *rq;
207 	unsigned int feature_flush:1;
208 	unsigned int feature_fua:1;
209 	unsigned int feature_discard:1;
210 	unsigned int feature_secdiscard:1;
211 	unsigned int feature_persistent:1;
212 	unsigned int discard_granularity;
213 	unsigned int discard_alignment;
214 	/* Number of 4KB segments handled */
215 	unsigned int max_indirect_segments;
216 	int is_ready;
217 	struct blk_mq_tag_set tag_set;
218 	struct blkfront_ring_info *rinfo;
219 	unsigned int nr_rings;
220 	unsigned int rinfo_size;
221 	/* Save uncomplete reqs and bios for migration. */
222 	struct list_head requests;
223 	struct bio_list bio_list;
224 	struct list_head info_list;
225 };
226 
227 static unsigned int nr_minors;
228 static unsigned long *minors;
229 static DEFINE_SPINLOCK(minor_lock);
230 
231 #define GRANT_INVALID_REF	0
232 
233 #define PARTS_PER_DISK		16
234 #define PARTS_PER_EXT_DISK      256
235 
236 #define BLKIF_MAJOR(dev) ((dev)>>8)
237 #define BLKIF_MINOR(dev) ((dev) & 0xff)
238 
239 #define EXT_SHIFT 28
240 #define EXTENDED (1<<EXT_SHIFT)
241 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
242 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
243 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
244 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
245 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
246 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
247 
248 #define DEV_NAME	"xvd"	/* name in /dev */
249 
250 /*
251  * Grants are always the same size as a Xen page (i.e 4KB).
252  * A physical segment is always the same size as a Linux page.
253  * Number of grants per physical segment
254  */
255 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
256 
257 #define GRANTS_PER_INDIRECT_FRAME \
258 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
259 
260 #define INDIRECT_GREFS(_grants)		\
261 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
262 
263 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
264 static void blkfront_gather_backend_features(struct blkfront_info *info);
265 static int negotiate_mq(struct blkfront_info *info);
266 
267 #define for_each_rinfo(info, ptr, idx)				\
268 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
269 	     (idx) < (info)->nr_rings;				\
270 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
271 
272 static inline struct blkfront_ring_info *
273 get_rinfo(const struct blkfront_info *info, unsigned int i)
274 {
275 	BUG_ON(i >= info->nr_rings);
276 	return (void *)info->rinfo + i * info->rinfo_size;
277 }
278 
279 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
280 {
281 	unsigned long free = rinfo->shadow_free;
282 
283 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
284 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
285 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
286 	return free;
287 }
288 
289 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
290 			      unsigned long id)
291 {
292 	if (rinfo->shadow[id].req.u.rw.id != id)
293 		return -EINVAL;
294 	if (rinfo->shadow[id].request == NULL)
295 		return -EINVAL;
296 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
297 	rinfo->shadow[id].request = NULL;
298 	rinfo->shadow_free = id;
299 	return 0;
300 }
301 
302 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
303 {
304 	struct blkfront_info *info = rinfo->dev_info;
305 	struct page *granted_page;
306 	struct grant *gnt_list_entry, *n;
307 	int i = 0;
308 
309 	while (i < num) {
310 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
311 		if (!gnt_list_entry)
312 			goto out_of_memory;
313 
314 		if (info->feature_persistent) {
315 			granted_page = alloc_page(GFP_NOIO);
316 			if (!granted_page) {
317 				kfree(gnt_list_entry);
318 				goto out_of_memory;
319 			}
320 			gnt_list_entry->page = granted_page;
321 		}
322 
323 		gnt_list_entry->gref = GRANT_INVALID_REF;
324 		list_add(&gnt_list_entry->node, &rinfo->grants);
325 		i++;
326 	}
327 
328 	return 0;
329 
330 out_of_memory:
331 	list_for_each_entry_safe(gnt_list_entry, n,
332 	                         &rinfo->grants, node) {
333 		list_del(&gnt_list_entry->node);
334 		if (info->feature_persistent)
335 			__free_page(gnt_list_entry->page);
336 		kfree(gnt_list_entry);
337 		i--;
338 	}
339 	BUG_ON(i != 0);
340 	return -ENOMEM;
341 }
342 
343 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
344 {
345 	struct grant *gnt_list_entry;
346 
347 	BUG_ON(list_empty(&rinfo->grants));
348 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
349 					  node);
350 	list_del(&gnt_list_entry->node);
351 
352 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
353 		rinfo->persistent_gnts_c--;
354 
355 	return gnt_list_entry;
356 }
357 
358 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
359 					const struct blkfront_info *info)
360 {
361 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
362 						 info->xbdev->otherend_id,
363 						 gnt_list_entry->page,
364 						 0);
365 }
366 
367 static struct grant *get_grant(grant_ref_t *gref_head,
368 			       unsigned long gfn,
369 			       struct blkfront_ring_info *rinfo)
370 {
371 	struct grant *gnt_list_entry = get_free_grant(rinfo);
372 	struct blkfront_info *info = rinfo->dev_info;
373 
374 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
375 		return gnt_list_entry;
376 
377 	/* Assign a gref to this page */
378 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
379 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
380 	if (info->feature_persistent)
381 		grant_foreign_access(gnt_list_entry, info);
382 	else {
383 		/* Grant access to the GFN passed by the caller */
384 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
385 						info->xbdev->otherend_id,
386 						gfn, 0);
387 	}
388 
389 	return gnt_list_entry;
390 }
391 
392 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
393 					struct blkfront_ring_info *rinfo)
394 {
395 	struct grant *gnt_list_entry = get_free_grant(rinfo);
396 	struct blkfront_info *info = rinfo->dev_info;
397 
398 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
399 		return gnt_list_entry;
400 
401 	/* Assign a gref to this page */
402 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
403 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
404 	if (!info->feature_persistent) {
405 		struct page *indirect_page;
406 
407 		/* Fetch a pre-allocated page to use for indirect grefs */
408 		BUG_ON(list_empty(&rinfo->indirect_pages));
409 		indirect_page = list_first_entry(&rinfo->indirect_pages,
410 						 struct page, lru);
411 		list_del(&indirect_page->lru);
412 		gnt_list_entry->page = indirect_page;
413 	}
414 	grant_foreign_access(gnt_list_entry, info);
415 
416 	return gnt_list_entry;
417 }
418 
419 static const char *op_name(int op)
420 {
421 	static const char *const names[] = {
422 		[BLKIF_OP_READ] = "read",
423 		[BLKIF_OP_WRITE] = "write",
424 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
425 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
426 		[BLKIF_OP_DISCARD] = "discard" };
427 
428 	if (op < 0 || op >= ARRAY_SIZE(names))
429 		return "unknown";
430 
431 	if (!names[op])
432 		return "reserved";
433 
434 	return names[op];
435 }
436 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
437 {
438 	unsigned int end = minor + nr;
439 	int rc;
440 
441 	if (end > nr_minors) {
442 		unsigned long *bitmap, *old;
443 
444 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
445 				 GFP_KERNEL);
446 		if (bitmap == NULL)
447 			return -ENOMEM;
448 
449 		spin_lock(&minor_lock);
450 		if (end > nr_minors) {
451 			old = minors;
452 			memcpy(bitmap, minors,
453 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
454 			minors = bitmap;
455 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
456 		} else
457 			old = bitmap;
458 		spin_unlock(&minor_lock);
459 		kfree(old);
460 	}
461 
462 	spin_lock(&minor_lock);
463 	if (find_next_bit(minors, end, minor) >= end) {
464 		bitmap_set(minors, minor, nr);
465 		rc = 0;
466 	} else
467 		rc = -EBUSY;
468 	spin_unlock(&minor_lock);
469 
470 	return rc;
471 }
472 
473 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
474 {
475 	unsigned int end = minor + nr;
476 
477 	BUG_ON(end > nr_minors);
478 	spin_lock(&minor_lock);
479 	bitmap_clear(minors,  minor, nr);
480 	spin_unlock(&minor_lock);
481 }
482 
483 static void blkif_restart_queue_callback(void *arg)
484 {
485 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
486 	schedule_work(&rinfo->work);
487 }
488 
489 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
490 {
491 	/* We don't have real geometry info, but let's at least return
492 	   values consistent with the size of the device */
493 	sector_t nsect = get_capacity(bd->bd_disk);
494 	sector_t cylinders = nsect;
495 
496 	hg->heads = 0xff;
497 	hg->sectors = 0x3f;
498 	sector_div(cylinders, hg->heads * hg->sectors);
499 	hg->cylinders = cylinders;
500 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
501 		hg->cylinders = 0xffff;
502 	return 0;
503 }
504 
505 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
506 		       unsigned command, unsigned long argument)
507 {
508 	int i;
509 
510 	switch (command) {
511 	case CDROMMULTISESSION:
512 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
513 			if (put_user(0, (char __user *)(argument + i)))
514 				return -EFAULT;
515 		return 0;
516 	case CDROM_GET_CAPABILITY:
517 		if (bdev->bd_disk->flags & GENHD_FL_CD)
518 			return 0;
519 		return -EINVAL;
520 	default:
521 		return -EINVAL;
522 	}
523 }
524 
525 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
526 					    struct request *req,
527 					    struct blkif_request **ring_req)
528 {
529 	unsigned long id;
530 
531 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
532 	rinfo->ring.req_prod_pvt++;
533 
534 	id = get_id_from_freelist(rinfo);
535 	rinfo->shadow[id].request = req;
536 	rinfo->shadow[id].status = REQ_PROCESSING;
537 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
538 
539 	rinfo->shadow[id].req.u.rw.id = id;
540 
541 	return id;
542 }
543 
544 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
545 {
546 	struct blkfront_info *info = rinfo->dev_info;
547 	struct blkif_request *ring_req, *final_ring_req;
548 	unsigned long id;
549 
550 	/* Fill out a communications ring structure. */
551 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
552 	ring_req = &rinfo->shadow[id].req;
553 
554 	ring_req->operation = BLKIF_OP_DISCARD;
555 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
556 	ring_req->u.discard.id = id;
557 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
558 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
559 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
560 	else
561 		ring_req->u.discard.flag = 0;
562 
563 	/* Copy the request to the ring page. */
564 	*final_ring_req = *ring_req;
565 	rinfo->shadow[id].status = REQ_WAITING;
566 
567 	return 0;
568 }
569 
570 struct setup_rw_req {
571 	unsigned int grant_idx;
572 	struct blkif_request_segment *segments;
573 	struct blkfront_ring_info *rinfo;
574 	struct blkif_request *ring_req;
575 	grant_ref_t gref_head;
576 	unsigned int id;
577 	/* Only used when persistent grant is used and it's a read request */
578 	bool need_copy;
579 	unsigned int bvec_off;
580 	char *bvec_data;
581 
582 	bool require_extra_req;
583 	struct blkif_request *extra_ring_req;
584 };
585 
586 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
587 				     unsigned int len, void *data)
588 {
589 	struct setup_rw_req *setup = data;
590 	int n, ref;
591 	struct grant *gnt_list_entry;
592 	unsigned int fsect, lsect;
593 	/* Convenient aliases */
594 	unsigned int grant_idx = setup->grant_idx;
595 	struct blkif_request *ring_req = setup->ring_req;
596 	struct blkfront_ring_info *rinfo = setup->rinfo;
597 	/*
598 	 * We always use the shadow of the first request to store the list
599 	 * of grant associated to the block I/O request. This made the
600 	 * completion more easy to handle even if the block I/O request is
601 	 * split.
602 	 */
603 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
604 
605 	if (unlikely(setup->require_extra_req &&
606 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
607 		/*
608 		 * We are using the second request, setup grant_idx
609 		 * to be the index of the segment array.
610 		 */
611 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
612 		ring_req = setup->extra_ring_req;
613 	}
614 
615 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
616 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
617 		if (setup->segments)
618 			kunmap_atomic(setup->segments);
619 
620 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
621 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
622 		shadow->indirect_grants[n] = gnt_list_entry;
623 		setup->segments = kmap_atomic(gnt_list_entry->page);
624 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
625 	}
626 
627 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
628 	ref = gnt_list_entry->gref;
629 	/*
630 	 * All the grants are stored in the shadow of the first
631 	 * request. Therefore we have to use the global index.
632 	 */
633 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
634 
635 	if (setup->need_copy) {
636 		void *shared_data;
637 
638 		shared_data = kmap_atomic(gnt_list_entry->page);
639 		/*
640 		 * this does not wipe data stored outside the
641 		 * range sg->offset..sg->offset+sg->length.
642 		 * Therefore, blkback *could* see data from
643 		 * previous requests. This is OK as long as
644 		 * persistent grants are shared with just one
645 		 * domain. It may need refactoring if this
646 		 * changes
647 		 */
648 		memcpy(shared_data + offset,
649 		       setup->bvec_data + setup->bvec_off,
650 		       len);
651 
652 		kunmap_atomic(shared_data);
653 		setup->bvec_off += len;
654 	}
655 
656 	fsect = offset >> 9;
657 	lsect = fsect + (len >> 9) - 1;
658 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
659 		ring_req->u.rw.seg[grant_idx] =
660 			(struct blkif_request_segment) {
661 				.gref       = ref,
662 				.first_sect = fsect,
663 				.last_sect  = lsect };
664 	} else {
665 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
666 			(struct blkif_request_segment) {
667 				.gref       = ref,
668 				.first_sect = fsect,
669 				.last_sect  = lsect };
670 	}
671 
672 	(setup->grant_idx)++;
673 }
674 
675 static void blkif_setup_extra_req(struct blkif_request *first,
676 				  struct blkif_request *second)
677 {
678 	uint16_t nr_segments = first->u.rw.nr_segments;
679 
680 	/*
681 	 * The second request is only present when the first request uses
682 	 * all its segments. It's always the continuity of the first one.
683 	 */
684 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
685 
686 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
687 	second->u.rw.sector_number = first->u.rw.sector_number +
688 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
689 
690 	second->u.rw.handle = first->u.rw.handle;
691 	second->operation = first->operation;
692 }
693 
694 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
695 {
696 	struct blkfront_info *info = rinfo->dev_info;
697 	struct blkif_request *ring_req, *extra_ring_req = NULL;
698 	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
699 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
700 	bool require_extra_req = false;
701 	int i;
702 	struct setup_rw_req setup = {
703 		.grant_idx = 0,
704 		.segments = NULL,
705 		.rinfo = rinfo,
706 		.need_copy = rq_data_dir(req) && info->feature_persistent,
707 	};
708 
709 	/*
710 	 * Used to store if we are able to queue the request by just using
711 	 * existing persistent grants, or if we have to get new grants,
712 	 * as there are not sufficiently many free.
713 	 */
714 	bool new_persistent_gnts = false;
715 	struct scatterlist *sg;
716 	int num_sg, max_grefs, num_grant;
717 
718 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
719 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
720 		/*
721 		 * If we are using indirect segments we need to account
722 		 * for the indirect grefs used in the request.
723 		 */
724 		max_grefs += INDIRECT_GREFS(max_grefs);
725 
726 	/* Check if we have enough persistent grants to allocate a requests */
727 	if (rinfo->persistent_gnts_c < max_grefs) {
728 		new_persistent_gnts = true;
729 
730 		if (gnttab_alloc_grant_references(
731 		    max_grefs - rinfo->persistent_gnts_c,
732 		    &setup.gref_head) < 0) {
733 			gnttab_request_free_callback(
734 				&rinfo->callback,
735 				blkif_restart_queue_callback,
736 				rinfo,
737 				max_grefs - rinfo->persistent_gnts_c);
738 			return 1;
739 		}
740 	}
741 
742 	/* Fill out a communications ring structure. */
743 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
744 	ring_req = &rinfo->shadow[id].req;
745 
746 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
747 	num_grant = 0;
748 	/* Calculate the number of grant used */
749 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
750 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
751 
752 	require_extra_req = info->max_indirect_segments == 0 &&
753 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
754 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
755 
756 	rinfo->shadow[id].num_sg = num_sg;
757 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
758 	    likely(!require_extra_req)) {
759 		/*
760 		 * The indirect operation can only be a BLKIF_OP_READ or
761 		 * BLKIF_OP_WRITE
762 		 */
763 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
764 		ring_req->operation = BLKIF_OP_INDIRECT;
765 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
766 			BLKIF_OP_WRITE : BLKIF_OP_READ;
767 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
768 		ring_req->u.indirect.handle = info->handle;
769 		ring_req->u.indirect.nr_segments = num_grant;
770 	} else {
771 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
772 		ring_req->u.rw.handle = info->handle;
773 		ring_req->operation = rq_data_dir(req) ?
774 			BLKIF_OP_WRITE : BLKIF_OP_READ;
775 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
776 			/*
777 			 * Ideally we can do an unordered flush-to-disk.
778 			 * In case the backend onlysupports barriers, use that.
779 			 * A barrier request a superset of FUA, so we can
780 			 * implement it the same way.  (It's also a FLUSH+FUA,
781 			 * since it is guaranteed ordered WRT previous writes.)
782 			 */
783 			if (info->feature_flush && info->feature_fua)
784 				ring_req->operation =
785 					BLKIF_OP_WRITE_BARRIER;
786 			else if (info->feature_flush)
787 				ring_req->operation =
788 					BLKIF_OP_FLUSH_DISKCACHE;
789 			else
790 				ring_req->operation = 0;
791 		}
792 		ring_req->u.rw.nr_segments = num_grant;
793 		if (unlikely(require_extra_req)) {
794 			extra_id = blkif_ring_get_request(rinfo, req,
795 							  &final_extra_ring_req);
796 			extra_ring_req = &rinfo->shadow[extra_id].req;
797 
798 			/*
799 			 * Only the first request contains the scatter-gather
800 			 * list.
801 			 */
802 			rinfo->shadow[extra_id].num_sg = 0;
803 
804 			blkif_setup_extra_req(ring_req, extra_ring_req);
805 
806 			/* Link the 2 requests together */
807 			rinfo->shadow[extra_id].associated_id = id;
808 			rinfo->shadow[id].associated_id = extra_id;
809 		}
810 	}
811 
812 	setup.ring_req = ring_req;
813 	setup.id = id;
814 
815 	setup.require_extra_req = require_extra_req;
816 	if (unlikely(require_extra_req))
817 		setup.extra_ring_req = extra_ring_req;
818 
819 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
820 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
821 
822 		if (setup.need_copy) {
823 			setup.bvec_off = sg->offset;
824 			setup.bvec_data = kmap_atomic(sg_page(sg));
825 		}
826 
827 		gnttab_foreach_grant_in_range(sg_page(sg),
828 					      sg->offset,
829 					      sg->length,
830 					      blkif_setup_rw_req_grant,
831 					      &setup);
832 
833 		if (setup.need_copy)
834 			kunmap_atomic(setup.bvec_data);
835 	}
836 	if (setup.segments)
837 		kunmap_atomic(setup.segments);
838 
839 	/* Copy request(s) to the ring page. */
840 	*final_ring_req = *ring_req;
841 	rinfo->shadow[id].status = REQ_WAITING;
842 	if (unlikely(require_extra_req)) {
843 		*final_extra_ring_req = *extra_ring_req;
844 		rinfo->shadow[extra_id].status = REQ_WAITING;
845 	}
846 
847 	if (new_persistent_gnts)
848 		gnttab_free_grant_references(setup.gref_head);
849 
850 	return 0;
851 }
852 
853 /*
854  * Generate a Xen blkfront IO request from a blk layer request.  Reads
855  * and writes are handled as expected.
856  *
857  * @req: a request struct
858  */
859 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
860 {
861 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
862 		return 1;
863 
864 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
865 		     req_op(req) == REQ_OP_SECURE_ERASE))
866 		return blkif_queue_discard_req(req, rinfo);
867 	else
868 		return blkif_queue_rw_req(req, rinfo);
869 }
870 
871 static inline void flush_requests(struct blkfront_ring_info *rinfo)
872 {
873 	int notify;
874 
875 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
876 
877 	if (notify)
878 		notify_remote_via_irq(rinfo->irq);
879 }
880 
881 static inline bool blkif_request_flush_invalid(struct request *req,
882 					       struct blkfront_info *info)
883 {
884 	return (blk_rq_is_passthrough(req) ||
885 		((req_op(req) == REQ_OP_FLUSH) &&
886 		 !info->feature_flush) ||
887 		((req->cmd_flags & REQ_FUA) &&
888 		 !info->feature_fua));
889 }
890 
891 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
892 			  const struct blk_mq_queue_data *qd)
893 {
894 	unsigned long flags;
895 	int qid = hctx->queue_num;
896 	struct blkfront_info *info = hctx->queue->queuedata;
897 	struct blkfront_ring_info *rinfo = NULL;
898 
899 	rinfo = get_rinfo(info, qid);
900 	blk_mq_start_request(qd->rq);
901 	spin_lock_irqsave(&rinfo->ring_lock, flags);
902 	if (RING_FULL(&rinfo->ring))
903 		goto out_busy;
904 
905 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
906 		goto out_err;
907 
908 	if (blkif_queue_request(qd->rq, rinfo))
909 		goto out_busy;
910 
911 	flush_requests(rinfo);
912 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
913 	return BLK_STS_OK;
914 
915 out_err:
916 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
917 	return BLK_STS_IOERR;
918 
919 out_busy:
920 	blk_mq_stop_hw_queue(hctx);
921 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
922 	return BLK_STS_DEV_RESOURCE;
923 }
924 
925 static void blkif_complete_rq(struct request *rq)
926 {
927 	blk_mq_end_request(rq, blkif_req(rq)->error);
928 }
929 
930 static const struct blk_mq_ops blkfront_mq_ops = {
931 	.queue_rq = blkif_queue_rq,
932 	.complete = blkif_complete_rq,
933 };
934 
935 static void blkif_set_queue_limits(struct blkfront_info *info)
936 {
937 	struct request_queue *rq = info->rq;
938 	struct gendisk *gd = info->gd;
939 	unsigned int segments = info->max_indirect_segments ? :
940 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
941 
942 	blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
943 
944 	if (info->feature_discard) {
945 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
946 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
947 		rq->limits.discard_granularity = info->discard_granularity ?:
948 						 info->physical_sector_size;
949 		rq->limits.discard_alignment = info->discard_alignment;
950 		if (info->feature_secdiscard)
951 			blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
952 	}
953 
954 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
955 	blk_queue_logical_block_size(rq, info->sector_size);
956 	blk_queue_physical_block_size(rq, info->physical_sector_size);
957 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
958 
959 	/* Each segment in a request is up to an aligned page in size. */
960 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
961 	blk_queue_max_segment_size(rq, PAGE_SIZE);
962 
963 	/* Ensure a merged request will fit in a single I/O ring slot. */
964 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
965 
966 	/* Make sure buffer addresses are sector-aligned. */
967 	blk_queue_dma_alignment(rq, 511);
968 }
969 
970 static const char *flush_info(struct blkfront_info *info)
971 {
972 	if (info->feature_flush && info->feature_fua)
973 		return "barrier: enabled;";
974 	else if (info->feature_flush)
975 		return "flush diskcache: enabled;";
976 	else
977 		return "barrier or flush: disabled;";
978 }
979 
980 static void xlvbd_flush(struct blkfront_info *info)
981 {
982 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
983 			      info->feature_fua ? true : false);
984 	pr_info("blkfront: %s: %s %s %s %s %s\n",
985 		info->gd->disk_name, flush_info(info),
986 		"persistent grants:", info->feature_persistent ?
987 		"enabled;" : "disabled;", "indirect descriptors:",
988 		info->max_indirect_segments ? "enabled;" : "disabled;");
989 }
990 
991 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
992 {
993 	int major;
994 	major = BLKIF_MAJOR(vdevice);
995 	*minor = BLKIF_MINOR(vdevice);
996 	switch (major) {
997 		case XEN_IDE0_MAJOR:
998 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
999 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1000 				EMULATED_HD_DISK_MINOR_OFFSET;
1001 			break;
1002 		case XEN_IDE1_MAJOR:
1003 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1004 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1005 				EMULATED_HD_DISK_MINOR_OFFSET;
1006 			break;
1007 		case XEN_SCSI_DISK0_MAJOR:
1008 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1009 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1010 			break;
1011 		case XEN_SCSI_DISK1_MAJOR:
1012 		case XEN_SCSI_DISK2_MAJOR:
1013 		case XEN_SCSI_DISK3_MAJOR:
1014 		case XEN_SCSI_DISK4_MAJOR:
1015 		case XEN_SCSI_DISK5_MAJOR:
1016 		case XEN_SCSI_DISK6_MAJOR:
1017 		case XEN_SCSI_DISK7_MAJOR:
1018 			*offset = (*minor / PARTS_PER_DISK) +
1019 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1020 				EMULATED_SD_DISK_NAME_OFFSET;
1021 			*minor = *minor +
1022 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1023 				EMULATED_SD_DISK_MINOR_OFFSET;
1024 			break;
1025 		case XEN_SCSI_DISK8_MAJOR:
1026 		case XEN_SCSI_DISK9_MAJOR:
1027 		case XEN_SCSI_DISK10_MAJOR:
1028 		case XEN_SCSI_DISK11_MAJOR:
1029 		case XEN_SCSI_DISK12_MAJOR:
1030 		case XEN_SCSI_DISK13_MAJOR:
1031 		case XEN_SCSI_DISK14_MAJOR:
1032 		case XEN_SCSI_DISK15_MAJOR:
1033 			*offset = (*minor / PARTS_PER_DISK) +
1034 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1035 				EMULATED_SD_DISK_NAME_OFFSET;
1036 			*minor = *minor +
1037 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1038 				EMULATED_SD_DISK_MINOR_OFFSET;
1039 			break;
1040 		case XENVBD_MAJOR:
1041 			*offset = *minor / PARTS_PER_DISK;
1042 			break;
1043 		default:
1044 			printk(KERN_WARNING "blkfront: your disk configuration is "
1045 					"incorrect, please use an xvd device instead\n");
1046 			return -ENODEV;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static char *encode_disk_name(char *ptr, unsigned int n)
1052 {
1053 	if (n >= 26)
1054 		ptr = encode_disk_name(ptr, n / 26 - 1);
1055 	*ptr = 'a' + n % 26;
1056 	return ptr + 1;
1057 }
1058 
1059 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1060 			       struct blkfront_info *info,
1061 			       u16 vdisk_info, u16 sector_size,
1062 			       unsigned int physical_sector_size)
1063 {
1064 	struct gendisk *gd;
1065 	int nr_minors = 1;
1066 	int err;
1067 	unsigned int offset;
1068 	int minor;
1069 	int nr_parts;
1070 	char *ptr;
1071 
1072 	BUG_ON(info->gd != NULL);
1073 	BUG_ON(info->rq != NULL);
1074 
1075 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1076 		/* this is above the extended range; something is wrong */
1077 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1078 		return -ENODEV;
1079 	}
1080 
1081 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1082 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1083 		if (err)
1084 			return err;
1085 		nr_parts = PARTS_PER_DISK;
1086 	} else {
1087 		minor = BLKIF_MINOR_EXT(info->vdevice);
1088 		nr_parts = PARTS_PER_EXT_DISK;
1089 		offset = minor / nr_parts;
1090 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1091 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1092 					"emulated IDE disks,\n\t choose an xvd device name"
1093 					"from xvde on\n", info->vdevice);
1094 	}
1095 	if (minor >> MINORBITS) {
1096 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1097 			info->vdevice, minor);
1098 		return -ENODEV;
1099 	}
1100 
1101 	if ((minor % nr_parts) == 0)
1102 		nr_minors = nr_parts;
1103 
1104 	err = xlbd_reserve_minors(minor, nr_minors);
1105 	if (err)
1106 		return err;
1107 
1108 	memset(&info->tag_set, 0, sizeof(info->tag_set));
1109 	info->tag_set.ops = &blkfront_mq_ops;
1110 	info->tag_set.nr_hw_queues = info->nr_rings;
1111 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1112 		/*
1113 		 * When indirect descriptior is not supported, the I/O request
1114 		 * will be split between multiple request in the ring.
1115 		 * To avoid problems when sending the request, divide by
1116 		 * 2 the depth of the queue.
1117 		 */
1118 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1119 	} else
1120 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1121 	info->tag_set.numa_node = NUMA_NO_NODE;
1122 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1123 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1124 	info->tag_set.driver_data = info;
1125 
1126 	err = blk_mq_alloc_tag_set(&info->tag_set);
1127 	if (err)
1128 		goto out_release_minors;
1129 
1130 	gd = blk_mq_alloc_disk(&info->tag_set, info);
1131 	if (IS_ERR(gd)) {
1132 		err = PTR_ERR(gd);
1133 		goto out_free_tag_set;
1134 	}
1135 
1136 	strcpy(gd->disk_name, DEV_NAME);
1137 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1138 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1139 	if (nr_minors > 1)
1140 		*ptr = 0;
1141 	else
1142 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1143 			 "%d", minor & (nr_parts - 1));
1144 
1145 	gd->major = XENVBD_MAJOR;
1146 	gd->first_minor = minor;
1147 	gd->minors = nr_minors;
1148 	gd->fops = &xlvbd_block_fops;
1149 	gd->private_data = info;
1150 	set_capacity(gd, capacity);
1151 
1152 	info->rq = gd->queue;
1153 	info->gd = gd;
1154 	info->sector_size = sector_size;
1155 	info->physical_sector_size = physical_sector_size;
1156 	blkif_set_queue_limits(info);
1157 
1158 	xlvbd_flush(info);
1159 
1160 	if (vdisk_info & VDISK_READONLY)
1161 		set_disk_ro(gd, 1);
1162 
1163 	if (vdisk_info & VDISK_REMOVABLE)
1164 		gd->flags |= GENHD_FL_REMOVABLE;
1165 
1166 	if (vdisk_info & VDISK_CDROM)
1167 		gd->flags |= GENHD_FL_CD;
1168 
1169 	return 0;
1170 
1171 out_free_tag_set:
1172 	blk_mq_free_tag_set(&info->tag_set);
1173 out_release_minors:
1174 	xlbd_release_minors(minor, nr_minors);
1175 	return err;
1176 }
1177 
1178 /* Already hold rinfo->ring_lock. */
1179 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1180 {
1181 	if (!RING_FULL(&rinfo->ring))
1182 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1183 }
1184 
1185 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1186 {
1187 	unsigned long flags;
1188 
1189 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1190 	kick_pending_request_queues_locked(rinfo);
1191 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1192 }
1193 
1194 static void blkif_restart_queue(struct work_struct *work)
1195 {
1196 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1197 
1198 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1199 		kick_pending_request_queues(rinfo);
1200 }
1201 
1202 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1203 {
1204 	struct grant *persistent_gnt, *n;
1205 	struct blkfront_info *info = rinfo->dev_info;
1206 	int i, j, segs;
1207 
1208 	/*
1209 	 * Remove indirect pages, this only happens when using indirect
1210 	 * descriptors but not persistent grants
1211 	 */
1212 	if (!list_empty(&rinfo->indirect_pages)) {
1213 		struct page *indirect_page, *n;
1214 
1215 		BUG_ON(info->feature_persistent);
1216 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1217 			list_del(&indirect_page->lru);
1218 			__free_page(indirect_page);
1219 		}
1220 	}
1221 
1222 	/* Remove all persistent grants. */
1223 	if (!list_empty(&rinfo->grants)) {
1224 		list_for_each_entry_safe(persistent_gnt, n,
1225 					 &rinfo->grants, node) {
1226 			list_del(&persistent_gnt->node);
1227 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1228 				gnttab_end_foreign_access(persistent_gnt->gref,
1229 							  0, 0UL);
1230 				rinfo->persistent_gnts_c--;
1231 			}
1232 			if (info->feature_persistent)
1233 				__free_page(persistent_gnt->page);
1234 			kfree(persistent_gnt);
1235 		}
1236 	}
1237 	BUG_ON(rinfo->persistent_gnts_c != 0);
1238 
1239 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1240 		/*
1241 		 * Clear persistent grants present in requests already
1242 		 * on the shared ring
1243 		 */
1244 		if (!rinfo->shadow[i].request)
1245 			goto free_shadow;
1246 
1247 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1248 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1249 		       rinfo->shadow[i].req.u.rw.nr_segments;
1250 		for (j = 0; j < segs; j++) {
1251 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1252 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1253 			if (info->feature_persistent)
1254 				__free_page(persistent_gnt->page);
1255 			kfree(persistent_gnt);
1256 		}
1257 
1258 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1259 			/*
1260 			 * If this is not an indirect operation don't try to
1261 			 * free indirect segments
1262 			 */
1263 			goto free_shadow;
1264 
1265 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1266 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1267 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1268 			__free_page(persistent_gnt->page);
1269 			kfree(persistent_gnt);
1270 		}
1271 
1272 free_shadow:
1273 		kvfree(rinfo->shadow[i].grants_used);
1274 		rinfo->shadow[i].grants_used = NULL;
1275 		kvfree(rinfo->shadow[i].indirect_grants);
1276 		rinfo->shadow[i].indirect_grants = NULL;
1277 		kvfree(rinfo->shadow[i].sg);
1278 		rinfo->shadow[i].sg = NULL;
1279 	}
1280 
1281 	/* No more gnttab callback work. */
1282 	gnttab_cancel_free_callback(&rinfo->callback);
1283 
1284 	/* Flush gnttab callback work. Must be done with no locks held. */
1285 	flush_work(&rinfo->work);
1286 
1287 	/* Free resources associated with old device channel. */
1288 	for (i = 0; i < info->nr_ring_pages; i++) {
1289 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1290 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1291 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1292 		}
1293 	}
1294 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1295 	rinfo->ring.sring = NULL;
1296 
1297 	if (rinfo->irq)
1298 		unbind_from_irqhandler(rinfo->irq, rinfo);
1299 	rinfo->evtchn = rinfo->irq = 0;
1300 }
1301 
1302 static void blkif_free(struct blkfront_info *info, int suspend)
1303 {
1304 	unsigned int i;
1305 	struct blkfront_ring_info *rinfo;
1306 
1307 	/* Prevent new requests being issued until we fix things up. */
1308 	info->connected = suspend ?
1309 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1310 	/* No more blkif_request(). */
1311 	if (info->rq)
1312 		blk_mq_stop_hw_queues(info->rq);
1313 
1314 	for_each_rinfo(info, rinfo, i)
1315 		blkif_free_ring(rinfo);
1316 
1317 	kvfree(info->rinfo);
1318 	info->rinfo = NULL;
1319 	info->nr_rings = 0;
1320 }
1321 
1322 struct copy_from_grant {
1323 	const struct blk_shadow *s;
1324 	unsigned int grant_idx;
1325 	unsigned int bvec_offset;
1326 	char *bvec_data;
1327 };
1328 
1329 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1330 				  unsigned int len, void *data)
1331 {
1332 	struct copy_from_grant *info = data;
1333 	char *shared_data;
1334 	/* Convenient aliases */
1335 	const struct blk_shadow *s = info->s;
1336 
1337 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1338 
1339 	memcpy(info->bvec_data + info->bvec_offset,
1340 	       shared_data + offset, len);
1341 
1342 	info->bvec_offset += len;
1343 	info->grant_idx++;
1344 
1345 	kunmap_atomic(shared_data);
1346 }
1347 
1348 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1349 {
1350 	switch (rsp)
1351 	{
1352 	case BLKIF_RSP_OKAY:
1353 		return REQ_DONE;
1354 	case BLKIF_RSP_EOPNOTSUPP:
1355 		return REQ_EOPNOTSUPP;
1356 	case BLKIF_RSP_ERROR:
1357 	default:
1358 		return REQ_ERROR;
1359 	}
1360 }
1361 
1362 /*
1363  * Get the final status of the block request based on two ring response
1364  */
1365 static int blkif_get_final_status(enum blk_req_status s1,
1366 				  enum blk_req_status s2)
1367 {
1368 	BUG_ON(s1 < REQ_DONE);
1369 	BUG_ON(s2 < REQ_DONE);
1370 
1371 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1372 		return BLKIF_RSP_ERROR;
1373 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1374 		return BLKIF_RSP_EOPNOTSUPP;
1375 	return BLKIF_RSP_OKAY;
1376 }
1377 
1378 static bool blkif_completion(unsigned long *id,
1379 			     struct blkfront_ring_info *rinfo,
1380 			     struct blkif_response *bret)
1381 {
1382 	int i = 0;
1383 	struct scatterlist *sg;
1384 	int num_sg, num_grant;
1385 	struct blkfront_info *info = rinfo->dev_info;
1386 	struct blk_shadow *s = &rinfo->shadow[*id];
1387 	struct copy_from_grant data = {
1388 		.grant_idx = 0,
1389 	};
1390 
1391 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1392 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1393 
1394 	/* The I/O request may be split in two. */
1395 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1396 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1397 
1398 		/* Keep the status of the current response in shadow. */
1399 		s->status = blkif_rsp_to_req_status(bret->status);
1400 
1401 		/* Wait the second response if not yet here. */
1402 		if (s2->status < REQ_DONE)
1403 			return false;
1404 
1405 		bret->status = blkif_get_final_status(s->status,
1406 						      s2->status);
1407 
1408 		/*
1409 		 * All the grants is stored in the first shadow in order
1410 		 * to make the completion code simpler.
1411 		 */
1412 		num_grant += s2->req.u.rw.nr_segments;
1413 
1414 		/*
1415 		 * The two responses may not come in order. Only the
1416 		 * first request will store the scatter-gather list.
1417 		 */
1418 		if (s2->num_sg != 0) {
1419 			/* Update "id" with the ID of the first response. */
1420 			*id = s->associated_id;
1421 			s = s2;
1422 		}
1423 
1424 		/*
1425 		 * We don't need anymore the second request, so recycling
1426 		 * it now.
1427 		 */
1428 		if (add_id_to_freelist(rinfo, s->associated_id))
1429 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1430 			     info->gd->disk_name, s->associated_id);
1431 	}
1432 
1433 	data.s = s;
1434 	num_sg = s->num_sg;
1435 
1436 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1437 		for_each_sg(s->sg, sg, num_sg, i) {
1438 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1439 
1440 			data.bvec_offset = sg->offset;
1441 			data.bvec_data = kmap_atomic(sg_page(sg));
1442 
1443 			gnttab_foreach_grant_in_range(sg_page(sg),
1444 						      sg->offset,
1445 						      sg->length,
1446 						      blkif_copy_from_grant,
1447 						      &data);
1448 
1449 			kunmap_atomic(data.bvec_data);
1450 		}
1451 	}
1452 	/* Add the persistent grant into the list of free grants */
1453 	for (i = 0; i < num_grant; i++) {
1454 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1455 			/*
1456 			 * If the grant is still mapped by the backend (the
1457 			 * backend has chosen to make this grant persistent)
1458 			 * we add it at the head of the list, so it will be
1459 			 * reused first.
1460 			 */
1461 			if (!info->feature_persistent)
1462 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1463 						     s->grants_used[i]->gref);
1464 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1465 			rinfo->persistent_gnts_c++;
1466 		} else {
1467 			/*
1468 			 * If the grant is not mapped by the backend we end the
1469 			 * foreign access and add it to the tail of the list,
1470 			 * so it will not be picked again unless we run out of
1471 			 * persistent grants.
1472 			 */
1473 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1474 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1475 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1476 		}
1477 	}
1478 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1479 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1480 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1481 				if (!info->feature_persistent)
1482 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1483 							     s->indirect_grants[i]->gref);
1484 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1485 				rinfo->persistent_gnts_c++;
1486 			} else {
1487 				struct page *indirect_page;
1488 
1489 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1490 				/*
1491 				 * Add the used indirect page back to the list of
1492 				 * available pages for indirect grefs.
1493 				 */
1494 				if (!info->feature_persistent) {
1495 					indirect_page = s->indirect_grants[i]->page;
1496 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1497 				}
1498 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1499 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1500 			}
1501 		}
1502 	}
1503 
1504 	return true;
1505 }
1506 
1507 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1508 {
1509 	struct request *req;
1510 	struct blkif_response bret;
1511 	RING_IDX i, rp;
1512 	unsigned long flags;
1513 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1514 	struct blkfront_info *info = rinfo->dev_info;
1515 	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1516 
1517 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1518 		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1519 		return IRQ_HANDLED;
1520 	}
1521 
1522 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1523  again:
1524 	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1525 	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1526 	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1527 		pr_alert("%s: illegal number of responses %u\n",
1528 			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1529 		goto err;
1530 	}
1531 
1532 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1533 		unsigned long id;
1534 		unsigned int op;
1535 
1536 		eoiflag = 0;
1537 
1538 		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1539 		id = bret.id;
1540 
1541 		/*
1542 		 * The backend has messed up and given us an id that we would
1543 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1544 		 * look in get_id_from_freelist.
1545 		 */
1546 		if (id >= BLK_RING_SIZE(info)) {
1547 			pr_alert("%s: response has incorrect id (%ld)\n",
1548 				 info->gd->disk_name, id);
1549 			goto err;
1550 		}
1551 		if (rinfo->shadow[id].status != REQ_WAITING) {
1552 			pr_alert("%s: response references no pending request\n",
1553 				 info->gd->disk_name);
1554 			goto err;
1555 		}
1556 
1557 		rinfo->shadow[id].status = REQ_PROCESSING;
1558 		req  = rinfo->shadow[id].request;
1559 
1560 		op = rinfo->shadow[id].req.operation;
1561 		if (op == BLKIF_OP_INDIRECT)
1562 			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1563 		if (bret.operation != op) {
1564 			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1565 				 info->gd->disk_name, bret.operation, op);
1566 			goto err;
1567 		}
1568 
1569 		if (bret.operation != BLKIF_OP_DISCARD) {
1570 			/*
1571 			 * We may need to wait for an extra response if the
1572 			 * I/O request is split in 2
1573 			 */
1574 			if (!blkif_completion(&id, rinfo, &bret))
1575 				continue;
1576 		}
1577 
1578 		if (add_id_to_freelist(rinfo, id)) {
1579 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1580 			     info->gd->disk_name, op_name(bret.operation), id);
1581 			continue;
1582 		}
1583 
1584 		if (bret.status == BLKIF_RSP_OKAY)
1585 			blkif_req(req)->error = BLK_STS_OK;
1586 		else
1587 			blkif_req(req)->error = BLK_STS_IOERR;
1588 
1589 		switch (bret.operation) {
1590 		case BLKIF_OP_DISCARD:
1591 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1592 				struct request_queue *rq = info->rq;
1593 
1594 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1595 					   info->gd->disk_name, op_name(bret.operation));
1596 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1597 				info->feature_discard = 0;
1598 				info->feature_secdiscard = 0;
1599 				blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1600 				blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1601 			}
1602 			break;
1603 		case BLKIF_OP_FLUSH_DISKCACHE:
1604 		case BLKIF_OP_WRITE_BARRIER:
1605 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1606 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1607 				       info->gd->disk_name, op_name(bret.operation));
1608 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1609 			}
1610 			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1611 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1612 				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1613 				       info->gd->disk_name, op_name(bret.operation));
1614 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1615 			}
1616 			if (unlikely(blkif_req(req)->error)) {
1617 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1618 					blkif_req(req)->error = BLK_STS_OK;
1619 				info->feature_fua = 0;
1620 				info->feature_flush = 0;
1621 				xlvbd_flush(info);
1622 			}
1623 			fallthrough;
1624 		case BLKIF_OP_READ:
1625 		case BLKIF_OP_WRITE:
1626 			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1627 				dev_dbg_ratelimited(&info->xbdev->dev,
1628 					"Bad return from blkdev data request: %#x\n",
1629 					bret.status);
1630 
1631 			break;
1632 		default:
1633 			BUG();
1634 		}
1635 
1636 		if (likely(!blk_should_fake_timeout(req->q)))
1637 			blk_mq_complete_request(req);
1638 	}
1639 
1640 	rinfo->ring.rsp_cons = i;
1641 
1642 	if (i != rinfo->ring.req_prod_pvt) {
1643 		int more_to_do;
1644 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1645 		if (more_to_do)
1646 			goto again;
1647 	} else
1648 		rinfo->ring.sring->rsp_event = i + 1;
1649 
1650 	kick_pending_request_queues_locked(rinfo);
1651 
1652 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1653 
1654 	xen_irq_lateeoi(irq, eoiflag);
1655 
1656 	return IRQ_HANDLED;
1657 
1658  err:
1659 	info->connected = BLKIF_STATE_ERROR;
1660 
1661 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1662 
1663 	/* No EOI in order to avoid further interrupts. */
1664 
1665 	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1666 	return IRQ_HANDLED;
1667 }
1668 
1669 
1670 static int setup_blkring(struct xenbus_device *dev,
1671 			 struct blkfront_ring_info *rinfo)
1672 {
1673 	struct blkif_sring *sring;
1674 	int err, i;
1675 	struct blkfront_info *info = rinfo->dev_info;
1676 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1677 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1678 
1679 	for (i = 0; i < info->nr_ring_pages; i++)
1680 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1681 
1682 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1683 						       get_order(ring_size));
1684 	if (!sring) {
1685 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1686 		return -ENOMEM;
1687 	}
1688 	SHARED_RING_INIT(sring);
1689 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1690 
1691 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1692 	if (err < 0) {
1693 		free_pages((unsigned long)sring, get_order(ring_size));
1694 		rinfo->ring.sring = NULL;
1695 		goto fail;
1696 	}
1697 	for (i = 0; i < info->nr_ring_pages; i++)
1698 		rinfo->ring_ref[i] = gref[i];
1699 
1700 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1701 	if (err)
1702 		goto fail;
1703 
1704 	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1705 						0, "blkif", rinfo);
1706 	if (err <= 0) {
1707 		xenbus_dev_fatal(dev, err,
1708 				 "bind_evtchn_to_irqhandler failed");
1709 		goto fail;
1710 	}
1711 	rinfo->irq = err;
1712 
1713 	return 0;
1714 fail:
1715 	blkif_free(info, 0);
1716 	return err;
1717 }
1718 
1719 /*
1720  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1721  * ring buffer may have multi pages depending on ->nr_ring_pages.
1722  */
1723 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1724 				struct blkfront_ring_info *rinfo, const char *dir)
1725 {
1726 	int err;
1727 	unsigned int i;
1728 	const char *message = NULL;
1729 	struct blkfront_info *info = rinfo->dev_info;
1730 
1731 	if (info->nr_ring_pages == 1) {
1732 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1733 		if (err) {
1734 			message = "writing ring-ref";
1735 			goto abort_transaction;
1736 		}
1737 	} else {
1738 		for (i = 0; i < info->nr_ring_pages; i++) {
1739 			char ring_ref_name[RINGREF_NAME_LEN];
1740 
1741 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1742 			err = xenbus_printf(xbt, dir, ring_ref_name,
1743 					    "%u", rinfo->ring_ref[i]);
1744 			if (err) {
1745 				message = "writing ring-ref";
1746 				goto abort_transaction;
1747 			}
1748 		}
1749 	}
1750 
1751 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1752 	if (err) {
1753 		message = "writing event-channel";
1754 		goto abort_transaction;
1755 	}
1756 
1757 	return 0;
1758 
1759 abort_transaction:
1760 	xenbus_transaction_end(xbt, 1);
1761 	if (message)
1762 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1763 
1764 	return err;
1765 }
1766 
1767 /* Common code used when first setting up, and when resuming. */
1768 static int talk_to_blkback(struct xenbus_device *dev,
1769 			   struct blkfront_info *info)
1770 {
1771 	const char *message = NULL;
1772 	struct xenbus_transaction xbt;
1773 	int err;
1774 	unsigned int i, max_page_order;
1775 	unsigned int ring_page_order;
1776 	struct blkfront_ring_info *rinfo;
1777 
1778 	if (!info)
1779 		return -ENODEV;
1780 
1781 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1782 					      "max-ring-page-order", 0);
1783 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1784 	info->nr_ring_pages = 1 << ring_page_order;
1785 
1786 	err = negotiate_mq(info);
1787 	if (err)
1788 		goto destroy_blkring;
1789 
1790 	for_each_rinfo(info, rinfo, i) {
1791 		/* Create shared ring, alloc event channel. */
1792 		err = setup_blkring(dev, rinfo);
1793 		if (err)
1794 			goto destroy_blkring;
1795 	}
1796 
1797 again:
1798 	err = xenbus_transaction_start(&xbt);
1799 	if (err) {
1800 		xenbus_dev_fatal(dev, err, "starting transaction");
1801 		goto destroy_blkring;
1802 	}
1803 
1804 	if (info->nr_ring_pages > 1) {
1805 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1806 				    ring_page_order);
1807 		if (err) {
1808 			message = "writing ring-page-order";
1809 			goto abort_transaction;
1810 		}
1811 	}
1812 
1813 	/* We already got the number of queues/rings in _probe */
1814 	if (info->nr_rings == 1) {
1815 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1816 		if (err)
1817 			goto destroy_blkring;
1818 	} else {
1819 		char *path;
1820 		size_t pathsize;
1821 
1822 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1823 				    info->nr_rings);
1824 		if (err) {
1825 			message = "writing multi-queue-num-queues";
1826 			goto abort_transaction;
1827 		}
1828 
1829 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1830 		path = kmalloc(pathsize, GFP_KERNEL);
1831 		if (!path) {
1832 			err = -ENOMEM;
1833 			message = "ENOMEM while writing ring references";
1834 			goto abort_transaction;
1835 		}
1836 
1837 		for_each_rinfo(info, rinfo, i) {
1838 			memset(path, 0, pathsize);
1839 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1840 			err = write_per_ring_nodes(xbt, rinfo, path);
1841 			if (err) {
1842 				kfree(path);
1843 				goto destroy_blkring;
1844 			}
1845 		}
1846 		kfree(path);
1847 	}
1848 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1849 			    XEN_IO_PROTO_ABI_NATIVE);
1850 	if (err) {
1851 		message = "writing protocol";
1852 		goto abort_transaction;
1853 	}
1854 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1855 			info->feature_persistent);
1856 	if (err)
1857 		dev_warn(&dev->dev,
1858 			 "writing persistent grants feature to xenbus");
1859 
1860 	err = xenbus_transaction_end(xbt, 0);
1861 	if (err) {
1862 		if (err == -EAGAIN)
1863 			goto again;
1864 		xenbus_dev_fatal(dev, err, "completing transaction");
1865 		goto destroy_blkring;
1866 	}
1867 
1868 	for_each_rinfo(info, rinfo, i) {
1869 		unsigned int j;
1870 
1871 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1872 			rinfo->shadow[j].req.u.rw.id = j + 1;
1873 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1874 	}
1875 	xenbus_switch_state(dev, XenbusStateInitialised);
1876 
1877 	return 0;
1878 
1879  abort_transaction:
1880 	xenbus_transaction_end(xbt, 1);
1881 	if (message)
1882 		xenbus_dev_fatal(dev, err, "%s", message);
1883  destroy_blkring:
1884 	blkif_free(info, 0);
1885 	return err;
1886 }
1887 
1888 static int negotiate_mq(struct blkfront_info *info)
1889 {
1890 	unsigned int backend_max_queues;
1891 	unsigned int i;
1892 	struct blkfront_ring_info *rinfo;
1893 
1894 	BUG_ON(info->nr_rings);
1895 
1896 	/* Check if backend supports multiple queues. */
1897 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1898 						  "multi-queue-max-queues", 1);
1899 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1900 	/* We need at least one ring. */
1901 	if (!info->nr_rings)
1902 		info->nr_rings = 1;
1903 
1904 	info->rinfo_size = struct_size(info->rinfo, shadow,
1905 				       BLK_RING_SIZE(info));
1906 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1907 	if (!info->rinfo) {
1908 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1909 		info->nr_rings = 0;
1910 		return -ENOMEM;
1911 	}
1912 
1913 	for_each_rinfo(info, rinfo, i) {
1914 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1915 		INIT_LIST_HEAD(&rinfo->grants);
1916 		rinfo->dev_info = info;
1917 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1918 		spin_lock_init(&rinfo->ring_lock);
1919 	}
1920 	return 0;
1921 }
1922 
1923 /* Enable the persistent grants feature. */
1924 static bool feature_persistent = true;
1925 module_param(feature_persistent, bool, 0644);
1926 MODULE_PARM_DESC(feature_persistent,
1927 		"Enables the persistent grants feature");
1928 
1929 /*
1930  * Entry point to this code when a new device is created.  Allocate the basic
1931  * structures and the ring buffer for communication with the backend, and
1932  * inform the backend of the appropriate details for those.  Switch to
1933  * Initialised state.
1934  */
1935 static int blkfront_probe(struct xenbus_device *dev,
1936 			  const struct xenbus_device_id *id)
1937 {
1938 	int err, vdevice;
1939 	struct blkfront_info *info;
1940 
1941 	/* FIXME: Use dynamic device id if this is not set. */
1942 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1943 			   "virtual-device", "%i", &vdevice);
1944 	if (err != 1) {
1945 		/* go looking in the extended area instead */
1946 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1947 				   "%i", &vdevice);
1948 		if (err != 1) {
1949 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1950 			return err;
1951 		}
1952 	}
1953 
1954 	if (xen_hvm_domain()) {
1955 		char *type;
1956 		int len;
1957 		/* no unplug has been done: do not hook devices != xen vbds */
1958 		if (xen_has_pv_and_legacy_disk_devices()) {
1959 			int major;
1960 
1961 			if (!VDEV_IS_EXTENDED(vdevice))
1962 				major = BLKIF_MAJOR(vdevice);
1963 			else
1964 				major = XENVBD_MAJOR;
1965 
1966 			if (major != XENVBD_MAJOR) {
1967 				printk(KERN_INFO
1968 						"%s: HVM does not support vbd %d as xen block device\n",
1969 						__func__, vdevice);
1970 				return -ENODEV;
1971 			}
1972 		}
1973 		/* do not create a PV cdrom device if we are an HVM guest */
1974 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1975 		if (IS_ERR(type))
1976 			return -ENODEV;
1977 		if (strncmp(type, "cdrom", 5) == 0) {
1978 			kfree(type);
1979 			return -ENODEV;
1980 		}
1981 		kfree(type);
1982 	}
1983 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1984 	if (!info) {
1985 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1986 		return -ENOMEM;
1987 	}
1988 
1989 	info->xbdev = dev;
1990 
1991 	mutex_init(&info->mutex);
1992 	info->vdevice = vdevice;
1993 	info->connected = BLKIF_STATE_DISCONNECTED;
1994 
1995 	info->feature_persistent = feature_persistent;
1996 
1997 	/* Front end dir is a number, which is used as the id. */
1998 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1999 	dev_set_drvdata(&dev->dev, info);
2000 
2001 	mutex_lock(&blkfront_mutex);
2002 	list_add(&info->info_list, &info_list);
2003 	mutex_unlock(&blkfront_mutex);
2004 
2005 	return 0;
2006 }
2007 
2008 static int blkif_recover(struct blkfront_info *info)
2009 {
2010 	unsigned int r_index;
2011 	struct request *req, *n;
2012 	int rc;
2013 	struct bio *bio;
2014 	unsigned int segs;
2015 	struct blkfront_ring_info *rinfo;
2016 
2017 	blkfront_gather_backend_features(info);
2018 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2019 	blkif_set_queue_limits(info);
2020 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2021 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2022 
2023 	for_each_rinfo(info, rinfo, r_index) {
2024 		rc = blkfront_setup_indirect(rinfo);
2025 		if (rc)
2026 			return rc;
2027 	}
2028 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2029 
2030 	/* Now safe for us to use the shared ring */
2031 	info->connected = BLKIF_STATE_CONNECTED;
2032 
2033 	for_each_rinfo(info, rinfo, r_index) {
2034 		/* Kick any other new requests queued since we resumed */
2035 		kick_pending_request_queues(rinfo);
2036 	}
2037 
2038 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2039 		/* Requeue pending requests (flush or discard) */
2040 		list_del_init(&req->queuelist);
2041 		BUG_ON(req->nr_phys_segments > segs);
2042 		blk_mq_requeue_request(req, false);
2043 	}
2044 	blk_mq_start_stopped_hw_queues(info->rq, true);
2045 	blk_mq_kick_requeue_list(info->rq);
2046 
2047 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2048 		/* Traverse the list of pending bios and re-queue them */
2049 		submit_bio(bio);
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 /*
2056  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2057  * driver restart.  We tear down our blkif structure and recreate it, but
2058  * leave the device-layer structures intact so that this is transparent to the
2059  * rest of the kernel.
2060  */
2061 static int blkfront_resume(struct xenbus_device *dev)
2062 {
2063 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2064 	int err = 0;
2065 	unsigned int i, j;
2066 	struct blkfront_ring_info *rinfo;
2067 
2068 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2069 
2070 	bio_list_init(&info->bio_list);
2071 	INIT_LIST_HEAD(&info->requests);
2072 	for_each_rinfo(info, rinfo, i) {
2073 		struct bio_list merge_bio;
2074 		struct blk_shadow *shadow = rinfo->shadow;
2075 
2076 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2077 			/* Not in use? */
2078 			if (!shadow[j].request)
2079 				continue;
2080 
2081 			/*
2082 			 * Get the bios in the request so we can re-queue them.
2083 			 */
2084 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2085 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2086 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2087 			    shadow[j].request->cmd_flags & REQ_FUA) {
2088 				/*
2089 				 * Flush operations don't contain bios, so
2090 				 * we need to requeue the whole request
2091 				 *
2092 				 * XXX: but this doesn't make any sense for a
2093 				 * write with the FUA flag set..
2094 				 */
2095 				list_add(&shadow[j].request->queuelist, &info->requests);
2096 				continue;
2097 			}
2098 			merge_bio.head = shadow[j].request->bio;
2099 			merge_bio.tail = shadow[j].request->biotail;
2100 			bio_list_merge(&info->bio_list, &merge_bio);
2101 			shadow[j].request->bio = NULL;
2102 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2103 		}
2104 	}
2105 
2106 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2107 
2108 	err = talk_to_blkback(dev, info);
2109 	if (!err)
2110 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2111 
2112 	/*
2113 	 * We have to wait for the backend to switch to
2114 	 * connected state, since we want to read which
2115 	 * features it supports.
2116 	 */
2117 
2118 	return err;
2119 }
2120 
2121 static void blkfront_closing(struct blkfront_info *info)
2122 {
2123 	struct xenbus_device *xbdev = info->xbdev;
2124 	struct blkfront_ring_info *rinfo;
2125 	unsigned int i;
2126 
2127 	if (xbdev->state == XenbusStateClosing)
2128 		return;
2129 
2130 	/* No more blkif_request(). */
2131 	blk_mq_stop_hw_queues(info->rq);
2132 	blk_set_queue_dying(info->rq);
2133 	set_capacity(info->gd, 0);
2134 
2135 	for_each_rinfo(info, rinfo, i) {
2136 		/* No more gnttab callback work. */
2137 		gnttab_cancel_free_callback(&rinfo->callback);
2138 
2139 		/* Flush gnttab callback work. Must be done with no locks held. */
2140 		flush_work(&rinfo->work);
2141 	}
2142 
2143 	xenbus_frontend_closed(xbdev);
2144 }
2145 
2146 static void blkfront_setup_discard(struct blkfront_info *info)
2147 {
2148 	info->feature_discard = 1;
2149 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2150 							 "discard-granularity",
2151 							 0);
2152 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2153 						       "discard-alignment", 0);
2154 	info->feature_secdiscard =
2155 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2156 				       0);
2157 }
2158 
2159 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2160 {
2161 	unsigned int psegs, grants, memflags;
2162 	int err, i;
2163 	struct blkfront_info *info = rinfo->dev_info;
2164 
2165 	memflags = memalloc_noio_save();
2166 
2167 	if (info->max_indirect_segments == 0) {
2168 		if (!HAS_EXTRA_REQ)
2169 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2170 		else {
2171 			/*
2172 			 * When an extra req is required, the maximum
2173 			 * grants supported is related to the size of the
2174 			 * Linux block segment.
2175 			 */
2176 			grants = GRANTS_PER_PSEG;
2177 		}
2178 	}
2179 	else
2180 		grants = info->max_indirect_segments;
2181 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2182 
2183 	err = fill_grant_buffer(rinfo,
2184 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2185 	if (err)
2186 		goto out_of_memory;
2187 
2188 	if (!info->feature_persistent && info->max_indirect_segments) {
2189 		/*
2190 		 * We are using indirect descriptors but not persistent
2191 		 * grants, we need to allocate a set of pages that can be
2192 		 * used for mapping indirect grefs
2193 		 */
2194 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2195 
2196 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2197 		for (i = 0; i < num; i++) {
2198 			struct page *indirect_page = alloc_page(GFP_KERNEL);
2199 			if (!indirect_page)
2200 				goto out_of_memory;
2201 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2202 		}
2203 	}
2204 
2205 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2206 		rinfo->shadow[i].grants_used =
2207 			kvcalloc(grants,
2208 				 sizeof(rinfo->shadow[i].grants_used[0]),
2209 				 GFP_KERNEL);
2210 		rinfo->shadow[i].sg = kvcalloc(psegs,
2211 					       sizeof(rinfo->shadow[i].sg[0]),
2212 					       GFP_KERNEL);
2213 		if (info->max_indirect_segments)
2214 			rinfo->shadow[i].indirect_grants =
2215 				kvcalloc(INDIRECT_GREFS(grants),
2216 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2217 					 GFP_KERNEL);
2218 		if ((rinfo->shadow[i].grants_used == NULL) ||
2219 			(rinfo->shadow[i].sg == NULL) ||
2220 		     (info->max_indirect_segments &&
2221 		     (rinfo->shadow[i].indirect_grants == NULL)))
2222 			goto out_of_memory;
2223 		sg_init_table(rinfo->shadow[i].sg, psegs);
2224 	}
2225 
2226 	memalloc_noio_restore(memflags);
2227 
2228 	return 0;
2229 
2230 out_of_memory:
2231 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2232 		kvfree(rinfo->shadow[i].grants_used);
2233 		rinfo->shadow[i].grants_used = NULL;
2234 		kvfree(rinfo->shadow[i].sg);
2235 		rinfo->shadow[i].sg = NULL;
2236 		kvfree(rinfo->shadow[i].indirect_grants);
2237 		rinfo->shadow[i].indirect_grants = NULL;
2238 	}
2239 	if (!list_empty(&rinfo->indirect_pages)) {
2240 		struct page *indirect_page, *n;
2241 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2242 			list_del(&indirect_page->lru);
2243 			__free_page(indirect_page);
2244 		}
2245 	}
2246 
2247 	memalloc_noio_restore(memflags);
2248 
2249 	return -ENOMEM;
2250 }
2251 
2252 /*
2253  * Gather all backend feature-*
2254  */
2255 static void blkfront_gather_backend_features(struct blkfront_info *info)
2256 {
2257 	unsigned int indirect_segments;
2258 
2259 	info->feature_flush = 0;
2260 	info->feature_fua = 0;
2261 
2262 	/*
2263 	 * If there's no "feature-barrier" defined, then it means
2264 	 * we're dealing with a very old backend which writes
2265 	 * synchronously; nothing to do.
2266 	 *
2267 	 * If there are barriers, then we use flush.
2268 	 */
2269 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2270 		info->feature_flush = 1;
2271 		info->feature_fua = 1;
2272 	}
2273 
2274 	/*
2275 	 * And if there is "feature-flush-cache" use that above
2276 	 * barriers.
2277 	 */
2278 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2279 				 0)) {
2280 		info->feature_flush = 1;
2281 		info->feature_fua = 0;
2282 	}
2283 
2284 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2285 		blkfront_setup_discard(info);
2286 
2287 	if (info->feature_persistent)
2288 		info->feature_persistent =
2289 			!!xenbus_read_unsigned(info->xbdev->otherend,
2290 					       "feature-persistent", 0);
2291 
2292 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2293 					"feature-max-indirect-segments", 0);
2294 	if (indirect_segments > xen_blkif_max_segments)
2295 		indirect_segments = xen_blkif_max_segments;
2296 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2297 		indirect_segments = 0;
2298 	info->max_indirect_segments = indirect_segments;
2299 
2300 	if (info->feature_persistent) {
2301 		mutex_lock(&blkfront_mutex);
2302 		schedule_delayed_work(&blkfront_work, HZ * 10);
2303 		mutex_unlock(&blkfront_mutex);
2304 	}
2305 }
2306 
2307 /*
2308  * Invoked when the backend is finally 'ready' (and has told produced
2309  * the details about the physical device - #sectors, size, etc).
2310  */
2311 static void blkfront_connect(struct blkfront_info *info)
2312 {
2313 	unsigned long long sectors;
2314 	unsigned long sector_size;
2315 	unsigned int physical_sector_size;
2316 	unsigned int binfo;
2317 	int err, i;
2318 	struct blkfront_ring_info *rinfo;
2319 
2320 	switch (info->connected) {
2321 	case BLKIF_STATE_CONNECTED:
2322 		/*
2323 		 * Potentially, the back-end may be signalling
2324 		 * a capacity change; update the capacity.
2325 		 */
2326 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2327 				   "sectors", "%Lu", &sectors);
2328 		if (XENBUS_EXIST_ERR(err))
2329 			return;
2330 		printk(KERN_INFO "Setting capacity to %Lu\n",
2331 		       sectors);
2332 		set_capacity_and_notify(info->gd, sectors);
2333 
2334 		return;
2335 	case BLKIF_STATE_SUSPENDED:
2336 		/*
2337 		 * If we are recovering from suspension, we need to wait
2338 		 * for the backend to announce it's features before
2339 		 * reconnecting, at least we need to know if the backend
2340 		 * supports indirect descriptors, and how many.
2341 		 */
2342 		blkif_recover(info);
2343 		return;
2344 
2345 	default:
2346 		break;
2347 	}
2348 
2349 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2350 		__func__, info->xbdev->otherend);
2351 
2352 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2353 			    "sectors", "%llu", &sectors,
2354 			    "info", "%u", &binfo,
2355 			    "sector-size", "%lu", &sector_size,
2356 			    NULL);
2357 	if (err) {
2358 		xenbus_dev_fatal(info->xbdev, err,
2359 				 "reading backend fields at %s",
2360 				 info->xbdev->otherend);
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * physical-sector-size is a newer field, so old backends may not
2366 	 * provide this. Assume physical sector size to be the same as
2367 	 * sector_size in that case.
2368 	 */
2369 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2370 						    "physical-sector-size",
2371 						    sector_size);
2372 	blkfront_gather_backend_features(info);
2373 	for_each_rinfo(info, rinfo, i) {
2374 		err = blkfront_setup_indirect(rinfo);
2375 		if (err) {
2376 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2377 					 info->xbdev->otherend);
2378 			blkif_free(info, 0);
2379 			break;
2380 		}
2381 	}
2382 
2383 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2384 				  physical_sector_size);
2385 	if (err) {
2386 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2387 				 info->xbdev->otherend);
2388 		goto fail;
2389 	}
2390 
2391 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2392 
2393 	/* Kick pending requests. */
2394 	info->connected = BLKIF_STATE_CONNECTED;
2395 	for_each_rinfo(info, rinfo, i)
2396 		kick_pending_request_queues(rinfo);
2397 
2398 	err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2399 	if (err) {
2400 		blk_cleanup_disk(info->gd);
2401 		blk_mq_free_tag_set(&info->tag_set);
2402 		info->rq = NULL;
2403 		goto fail;
2404 	}
2405 
2406 	info->is_ready = 1;
2407 	return;
2408 
2409 fail:
2410 	blkif_free(info, 0);
2411 	return;
2412 }
2413 
2414 /*
2415  * Callback received when the backend's state changes.
2416  */
2417 static void blkback_changed(struct xenbus_device *dev,
2418 			    enum xenbus_state backend_state)
2419 {
2420 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2421 
2422 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2423 
2424 	switch (backend_state) {
2425 	case XenbusStateInitWait:
2426 		if (dev->state != XenbusStateInitialising)
2427 			break;
2428 		if (talk_to_blkback(dev, info))
2429 			break;
2430 		break;
2431 	case XenbusStateInitialising:
2432 	case XenbusStateInitialised:
2433 	case XenbusStateReconfiguring:
2434 	case XenbusStateReconfigured:
2435 	case XenbusStateUnknown:
2436 		break;
2437 
2438 	case XenbusStateConnected:
2439 		/*
2440 		 * talk_to_blkback sets state to XenbusStateInitialised
2441 		 * and blkfront_connect sets it to XenbusStateConnected
2442 		 * (if connection went OK).
2443 		 *
2444 		 * If the backend (or toolstack) decides to poke at backend
2445 		 * state (and re-trigger the watch by setting the state repeatedly
2446 		 * to XenbusStateConnected (4)) we need to deal with this.
2447 		 * This is allowed as this is used to communicate to the guest
2448 		 * that the size of disk has changed!
2449 		 */
2450 		if ((dev->state != XenbusStateInitialised) &&
2451 		    (dev->state != XenbusStateConnected)) {
2452 			if (talk_to_blkback(dev, info))
2453 				break;
2454 		}
2455 
2456 		blkfront_connect(info);
2457 		break;
2458 
2459 	case XenbusStateClosed:
2460 		if (dev->state == XenbusStateClosed)
2461 			break;
2462 		fallthrough;
2463 	case XenbusStateClosing:
2464 		blkfront_closing(info);
2465 		break;
2466 	}
2467 }
2468 
2469 static int blkfront_remove(struct xenbus_device *xbdev)
2470 {
2471 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2472 
2473 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2474 
2475 	del_gendisk(info->gd);
2476 
2477 	mutex_lock(&blkfront_mutex);
2478 	list_del(&info->info_list);
2479 	mutex_unlock(&blkfront_mutex);
2480 
2481 	blkif_free(info, 0);
2482 	xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2483 	blk_cleanup_disk(info->gd);
2484 	blk_mq_free_tag_set(&info->tag_set);
2485 
2486 	kfree(info);
2487 	return 0;
2488 }
2489 
2490 static int blkfront_is_ready(struct xenbus_device *dev)
2491 {
2492 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2493 
2494 	return info->is_ready && info->xbdev;
2495 }
2496 
2497 static const struct block_device_operations xlvbd_block_fops =
2498 {
2499 	.owner = THIS_MODULE,
2500 	.getgeo = blkif_getgeo,
2501 	.ioctl = blkif_ioctl,
2502 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2503 };
2504 
2505 
2506 static const struct xenbus_device_id blkfront_ids[] = {
2507 	{ "vbd" },
2508 	{ "" }
2509 };
2510 
2511 static struct xenbus_driver blkfront_driver = {
2512 	.ids  = blkfront_ids,
2513 	.probe = blkfront_probe,
2514 	.remove = blkfront_remove,
2515 	.resume = blkfront_resume,
2516 	.otherend_changed = blkback_changed,
2517 	.is_ready = blkfront_is_ready,
2518 };
2519 
2520 static void purge_persistent_grants(struct blkfront_info *info)
2521 {
2522 	unsigned int i;
2523 	unsigned long flags;
2524 	struct blkfront_ring_info *rinfo;
2525 
2526 	for_each_rinfo(info, rinfo, i) {
2527 		struct grant *gnt_list_entry, *tmp;
2528 
2529 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2530 
2531 		if (rinfo->persistent_gnts_c == 0) {
2532 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2533 			continue;
2534 		}
2535 
2536 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2537 					 node) {
2538 			if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2539 			    gnttab_query_foreign_access(gnt_list_entry->gref))
2540 				continue;
2541 
2542 			list_del(&gnt_list_entry->node);
2543 			gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2544 			rinfo->persistent_gnts_c--;
2545 			gnt_list_entry->gref = GRANT_INVALID_REF;
2546 			list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2547 		}
2548 
2549 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2550 	}
2551 }
2552 
2553 static void blkfront_delay_work(struct work_struct *work)
2554 {
2555 	struct blkfront_info *info;
2556 	bool need_schedule_work = false;
2557 
2558 	mutex_lock(&blkfront_mutex);
2559 
2560 	list_for_each_entry(info, &info_list, info_list) {
2561 		if (info->feature_persistent) {
2562 			need_schedule_work = true;
2563 			mutex_lock(&info->mutex);
2564 			purge_persistent_grants(info);
2565 			mutex_unlock(&info->mutex);
2566 		}
2567 	}
2568 
2569 	if (need_schedule_work)
2570 		schedule_delayed_work(&blkfront_work, HZ * 10);
2571 
2572 	mutex_unlock(&blkfront_mutex);
2573 }
2574 
2575 static int __init xlblk_init(void)
2576 {
2577 	int ret;
2578 	int nr_cpus = num_online_cpus();
2579 
2580 	if (!xen_domain())
2581 		return -ENODEV;
2582 
2583 	if (!xen_has_pv_disk_devices())
2584 		return -ENODEV;
2585 
2586 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2587 		pr_warn("xen_blk: can't get major %d with name %s\n",
2588 			XENVBD_MAJOR, DEV_NAME);
2589 		return -ENODEV;
2590 	}
2591 
2592 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2593 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2594 
2595 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2596 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2597 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2598 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2599 	}
2600 
2601 	if (xen_blkif_max_queues > nr_cpus) {
2602 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2603 			xen_blkif_max_queues, nr_cpus);
2604 		xen_blkif_max_queues = nr_cpus;
2605 	}
2606 
2607 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2608 
2609 	ret = xenbus_register_frontend(&blkfront_driver);
2610 	if (ret) {
2611 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2612 		return ret;
2613 	}
2614 
2615 	return 0;
2616 }
2617 module_init(xlblk_init);
2618 
2619 
2620 static void __exit xlblk_exit(void)
2621 {
2622 	cancel_delayed_work_sync(&blkfront_work);
2623 
2624 	xenbus_unregister_driver(&blkfront_driver);
2625 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2626 	kfree(minors);
2627 }
2628 module_exit(xlblk_exit);
2629 
2630 MODULE_DESCRIPTION("Xen virtual block device frontend");
2631 MODULE_LICENSE("GPL");
2632 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2633 MODULE_ALIAS("xen:vbd");
2634 MODULE_ALIAS("xenblk");
2635