1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/scatterlist.h> 47 #include <linux/bitmap.h> 48 #include <linux/list.h> 49 50 #include <xen/xen.h> 51 #include <xen/xenbus.h> 52 #include <xen/grant_table.h> 53 #include <xen/events.h> 54 #include <xen/page.h> 55 #include <xen/platform_pci.h> 56 57 #include <xen/interface/grant_table.h> 58 #include <xen/interface/io/blkif.h> 59 #include <xen/interface/io/protocols.h> 60 61 #include <asm/xen/hypervisor.h> 62 63 /* 64 * The minimal size of segment supported by the block framework is PAGE_SIZE. 65 * When Linux is using a different page size than Xen, it may not be possible 66 * to put all the data in a single segment. 67 * This can happen when the backend doesn't support indirect descriptor and 68 * therefore the maximum amount of data that a request can carry is 69 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 70 * 71 * Note that we only support one extra request. So the Linux page size 72 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 73 * 88KB. 74 */ 75 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 76 77 enum blkif_state { 78 BLKIF_STATE_DISCONNECTED, 79 BLKIF_STATE_CONNECTED, 80 BLKIF_STATE_SUSPENDED, 81 }; 82 83 struct grant { 84 grant_ref_t gref; 85 struct page *page; 86 struct list_head node; 87 }; 88 89 enum blk_req_status { 90 REQ_WAITING, 91 REQ_DONE, 92 REQ_ERROR, 93 REQ_EOPNOTSUPP, 94 }; 95 96 struct blk_shadow { 97 struct blkif_request req; 98 struct request *request; 99 struct grant **grants_used; 100 struct grant **indirect_grants; 101 struct scatterlist *sg; 102 unsigned int num_sg; 103 enum blk_req_status status; 104 105 #define NO_ASSOCIATED_ID ~0UL 106 /* 107 * Id of the sibling if we ever need 2 requests when handling a 108 * block I/O request 109 */ 110 unsigned long associated_id; 111 }; 112 113 struct split_bio { 114 struct bio *bio; 115 atomic_t pending; 116 }; 117 118 static DEFINE_MUTEX(blkfront_mutex); 119 static const struct block_device_operations xlvbd_block_fops; 120 121 /* 122 * Maximum number of segments in indirect requests, the actual value used by 123 * the frontend driver is the minimum of this value and the value provided 124 * by the backend driver. 125 */ 126 127 static unsigned int xen_blkif_max_segments = 32; 128 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 129 S_IRUGO); 130 MODULE_PARM_DESC(max_indirect_segments, 131 "Maximum amount of segments in indirect requests (default is 32)"); 132 133 static unsigned int xen_blkif_max_queues = 4; 134 module_param_named(max_queues, xen_blkif_max_queues, uint, S_IRUGO); 135 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 136 137 /* 138 * Maximum order of pages to be used for the shared ring between front and 139 * backend, 4KB page granularity is used. 140 */ 141 static unsigned int xen_blkif_max_ring_order; 142 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO); 143 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 144 145 #define BLK_RING_SIZE(info) \ 146 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 147 148 #define BLK_MAX_RING_SIZE \ 149 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS) 150 151 /* 152 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 153 * characters are enough. Define to 20 to keep consistent with backend. 154 */ 155 #define RINGREF_NAME_LEN (20) 156 /* 157 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 158 */ 159 #define QUEUE_NAME_LEN (17) 160 161 /* 162 * Per-ring info. 163 * Every blkfront device can associate with one or more blkfront_ring_info, 164 * depending on how many hardware queues/rings to be used. 165 */ 166 struct blkfront_ring_info { 167 /* Lock to protect data in every ring buffer. */ 168 spinlock_t ring_lock; 169 struct blkif_front_ring ring; 170 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 171 unsigned int evtchn, irq; 172 struct work_struct work; 173 struct gnttab_free_callback callback; 174 struct blk_shadow shadow[BLK_MAX_RING_SIZE]; 175 struct list_head indirect_pages; 176 struct list_head grants; 177 unsigned int persistent_gnts_c; 178 unsigned long shadow_free; 179 struct blkfront_info *dev_info; 180 }; 181 182 /* 183 * We have one of these per vbd, whether ide, scsi or 'other'. They 184 * hang in private_data off the gendisk structure. We may end up 185 * putting all kinds of interesting stuff here :-) 186 */ 187 struct blkfront_info 188 { 189 struct mutex mutex; 190 struct xenbus_device *xbdev; 191 struct gendisk *gd; 192 int vdevice; 193 blkif_vdev_t handle; 194 enum blkif_state connected; 195 /* Number of pages per ring buffer. */ 196 unsigned int nr_ring_pages; 197 struct request_queue *rq; 198 unsigned int feature_flush; 199 unsigned int feature_discard:1; 200 unsigned int feature_secdiscard:1; 201 unsigned int discard_granularity; 202 unsigned int discard_alignment; 203 unsigned int feature_persistent:1; 204 /* Number of 4KB segments handled */ 205 unsigned int max_indirect_segments; 206 int is_ready; 207 struct blk_mq_tag_set tag_set; 208 struct blkfront_ring_info *rinfo; 209 unsigned int nr_rings; 210 }; 211 212 static unsigned int nr_minors; 213 static unsigned long *minors; 214 static DEFINE_SPINLOCK(minor_lock); 215 216 #define GRANT_INVALID_REF 0 217 218 #define PARTS_PER_DISK 16 219 #define PARTS_PER_EXT_DISK 256 220 221 #define BLKIF_MAJOR(dev) ((dev)>>8) 222 #define BLKIF_MINOR(dev) ((dev) & 0xff) 223 224 #define EXT_SHIFT 28 225 #define EXTENDED (1<<EXT_SHIFT) 226 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 227 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 228 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 229 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 230 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 231 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 232 233 #define DEV_NAME "xvd" /* name in /dev */ 234 235 /* 236 * Grants are always the same size as a Xen page (i.e 4KB). 237 * A physical segment is always the same size as a Linux page. 238 * Number of grants per physical segment 239 */ 240 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 241 242 #define GRANTS_PER_INDIRECT_FRAME \ 243 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 244 245 #define PSEGS_PER_INDIRECT_FRAME \ 246 (GRANTS_INDIRECT_FRAME / GRANTS_PSEGS) 247 248 #define INDIRECT_GREFS(_grants) \ 249 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 250 251 #define GREFS(_psegs) ((_psegs) * GRANTS_PER_PSEG) 252 253 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 254 static void blkfront_gather_backend_features(struct blkfront_info *info); 255 256 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 257 { 258 unsigned long free = rinfo->shadow_free; 259 260 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 261 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 262 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 263 return free; 264 } 265 266 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 267 unsigned long id) 268 { 269 if (rinfo->shadow[id].req.u.rw.id != id) 270 return -EINVAL; 271 if (rinfo->shadow[id].request == NULL) 272 return -EINVAL; 273 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 274 rinfo->shadow[id].request = NULL; 275 rinfo->shadow_free = id; 276 return 0; 277 } 278 279 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 280 { 281 struct blkfront_info *info = rinfo->dev_info; 282 struct page *granted_page; 283 struct grant *gnt_list_entry, *n; 284 int i = 0; 285 286 while (i < num) { 287 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 288 if (!gnt_list_entry) 289 goto out_of_memory; 290 291 if (info->feature_persistent) { 292 granted_page = alloc_page(GFP_NOIO); 293 if (!granted_page) { 294 kfree(gnt_list_entry); 295 goto out_of_memory; 296 } 297 gnt_list_entry->page = granted_page; 298 } 299 300 gnt_list_entry->gref = GRANT_INVALID_REF; 301 list_add(&gnt_list_entry->node, &rinfo->grants); 302 i++; 303 } 304 305 return 0; 306 307 out_of_memory: 308 list_for_each_entry_safe(gnt_list_entry, n, 309 &rinfo->grants, node) { 310 list_del(&gnt_list_entry->node); 311 if (info->feature_persistent) 312 __free_page(gnt_list_entry->page); 313 kfree(gnt_list_entry); 314 i--; 315 } 316 BUG_ON(i != 0); 317 return -ENOMEM; 318 } 319 320 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 321 { 322 struct grant *gnt_list_entry; 323 324 BUG_ON(list_empty(&rinfo->grants)); 325 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 326 node); 327 list_del(&gnt_list_entry->node); 328 329 if (gnt_list_entry->gref != GRANT_INVALID_REF) 330 rinfo->persistent_gnts_c--; 331 332 return gnt_list_entry; 333 } 334 335 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 336 const struct blkfront_info *info) 337 { 338 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 339 info->xbdev->otherend_id, 340 gnt_list_entry->page, 341 0); 342 } 343 344 static struct grant *get_grant(grant_ref_t *gref_head, 345 unsigned long gfn, 346 struct blkfront_ring_info *rinfo) 347 { 348 struct grant *gnt_list_entry = get_free_grant(rinfo); 349 struct blkfront_info *info = rinfo->dev_info; 350 351 if (gnt_list_entry->gref != GRANT_INVALID_REF) 352 return gnt_list_entry; 353 354 /* Assign a gref to this page */ 355 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 356 BUG_ON(gnt_list_entry->gref == -ENOSPC); 357 if (info->feature_persistent) 358 grant_foreign_access(gnt_list_entry, info); 359 else { 360 /* Grant access to the GFN passed by the caller */ 361 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 362 info->xbdev->otherend_id, 363 gfn, 0); 364 } 365 366 return gnt_list_entry; 367 } 368 369 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 370 struct blkfront_ring_info *rinfo) 371 { 372 struct grant *gnt_list_entry = get_free_grant(rinfo); 373 struct blkfront_info *info = rinfo->dev_info; 374 375 if (gnt_list_entry->gref != GRANT_INVALID_REF) 376 return gnt_list_entry; 377 378 /* Assign a gref to this page */ 379 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 380 BUG_ON(gnt_list_entry->gref == -ENOSPC); 381 if (!info->feature_persistent) { 382 struct page *indirect_page; 383 384 /* Fetch a pre-allocated page to use for indirect grefs */ 385 BUG_ON(list_empty(&rinfo->indirect_pages)); 386 indirect_page = list_first_entry(&rinfo->indirect_pages, 387 struct page, lru); 388 list_del(&indirect_page->lru); 389 gnt_list_entry->page = indirect_page; 390 } 391 grant_foreign_access(gnt_list_entry, info); 392 393 return gnt_list_entry; 394 } 395 396 static const char *op_name(int op) 397 { 398 static const char *const names[] = { 399 [BLKIF_OP_READ] = "read", 400 [BLKIF_OP_WRITE] = "write", 401 [BLKIF_OP_WRITE_BARRIER] = "barrier", 402 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 403 [BLKIF_OP_DISCARD] = "discard" }; 404 405 if (op < 0 || op >= ARRAY_SIZE(names)) 406 return "unknown"; 407 408 if (!names[op]) 409 return "reserved"; 410 411 return names[op]; 412 } 413 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 414 { 415 unsigned int end = minor + nr; 416 int rc; 417 418 if (end > nr_minors) { 419 unsigned long *bitmap, *old; 420 421 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 422 GFP_KERNEL); 423 if (bitmap == NULL) 424 return -ENOMEM; 425 426 spin_lock(&minor_lock); 427 if (end > nr_minors) { 428 old = minors; 429 memcpy(bitmap, minors, 430 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 431 minors = bitmap; 432 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 433 } else 434 old = bitmap; 435 spin_unlock(&minor_lock); 436 kfree(old); 437 } 438 439 spin_lock(&minor_lock); 440 if (find_next_bit(minors, end, minor) >= end) { 441 bitmap_set(minors, minor, nr); 442 rc = 0; 443 } else 444 rc = -EBUSY; 445 spin_unlock(&minor_lock); 446 447 return rc; 448 } 449 450 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 451 { 452 unsigned int end = minor + nr; 453 454 BUG_ON(end > nr_minors); 455 spin_lock(&minor_lock); 456 bitmap_clear(minors, minor, nr); 457 spin_unlock(&minor_lock); 458 } 459 460 static void blkif_restart_queue_callback(void *arg) 461 { 462 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 463 schedule_work(&rinfo->work); 464 } 465 466 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 467 { 468 /* We don't have real geometry info, but let's at least return 469 values consistent with the size of the device */ 470 sector_t nsect = get_capacity(bd->bd_disk); 471 sector_t cylinders = nsect; 472 473 hg->heads = 0xff; 474 hg->sectors = 0x3f; 475 sector_div(cylinders, hg->heads * hg->sectors); 476 hg->cylinders = cylinders; 477 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 478 hg->cylinders = 0xffff; 479 return 0; 480 } 481 482 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 483 unsigned command, unsigned long argument) 484 { 485 struct blkfront_info *info = bdev->bd_disk->private_data; 486 int i; 487 488 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 489 command, (long)argument); 490 491 switch (command) { 492 case CDROMMULTISESSION: 493 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 494 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 495 if (put_user(0, (char __user *)(argument + i))) 496 return -EFAULT; 497 return 0; 498 499 case CDROM_GET_CAPABILITY: { 500 struct gendisk *gd = info->gd; 501 if (gd->flags & GENHD_FL_CD) 502 return 0; 503 return -EINVAL; 504 } 505 506 default: 507 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 508 command);*/ 509 return -EINVAL; /* same return as native Linux */ 510 } 511 512 return 0; 513 } 514 515 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 516 struct request *req, 517 struct blkif_request **ring_req) 518 { 519 unsigned long id; 520 521 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 522 rinfo->ring.req_prod_pvt++; 523 524 id = get_id_from_freelist(rinfo); 525 rinfo->shadow[id].request = req; 526 rinfo->shadow[id].status = REQ_WAITING; 527 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 528 529 (*ring_req)->u.rw.id = id; 530 531 return id; 532 } 533 534 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 535 { 536 struct blkfront_info *info = rinfo->dev_info; 537 struct blkif_request *ring_req; 538 unsigned long id; 539 540 /* Fill out a communications ring structure. */ 541 id = blkif_ring_get_request(rinfo, req, &ring_req); 542 543 ring_req->operation = BLKIF_OP_DISCARD; 544 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 545 ring_req->u.discard.id = id; 546 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 547 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard) 548 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 549 else 550 ring_req->u.discard.flag = 0; 551 552 /* Keep a private copy so we can reissue requests when recovering. */ 553 rinfo->shadow[id].req = *ring_req; 554 555 return 0; 556 } 557 558 struct setup_rw_req { 559 unsigned int grant_idx; 560 struct blkif_request_segment *segments; 561 struct blkfront_ring_info *rinfo; 562 struct blkif_request *ring_req; 563 grant_ref_t gref_head; 564 unsigned int id; 565 /* Only used when persistent grant is used and it's a read request */ 566 bool need_copy; 567 unsigned int bvec_off; 568 char *bvec_data; 569 570 bool require_extra_req; 571 struct blkif_request *extra_ring_req; 572 }; 573 574 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 575 unsigned int len, void *data) 576 { 577 struct setup_rw_req *setup = data; 578 int n, ref; 579 struct grant *gnt_list_entry; 580 unsigned int fsect, lsect; 581 /* Convenient aliases */ 582 unsigned int grant_idx = setup->grant_idx; 583 struct blkif_request *ring_req = setup->ring_req; 584 struct blkfront_ring_info *rinfo = setup->rinfo; 585 /* 586 * We always use the shadow of the first request to store the list 587 * of grant associated to the block I/O request. This made the 588 * completion more easy to handle even if the block I/O request is 589 * split. 590 */ 591 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 592 593 if (unlikely(setup->require_extra_req && 594 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 595 /* 596 * We are using the second request, setup grant_idx 597 * to be the index of the segment array. 598 */ 599 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 600 ring_req = setup->extra_ring_req; 601 } 602 603 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 604 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 605 if (setup->segments) 606 kunmap_atomic(setup->segments); 607 608 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 609 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 610 shadow->indirect_grants[n] = gnt_list_entry; 611 setup->segments = kmap_atomic(gnt_list_entry->page); 612 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 613 } 614 615 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 616 ref = gnt_list_entry->gref; 617 /* 618 * All the grants are stored in the shadow of the first 619 * request. Therefore we have to use the global index. 620 */ 621 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 622 623 if (setup->need_copy) { 624 void *shared_data; 625 626 shared_data = kmap_atomic(gnt_list_entry->page); 627 /* 628 * this does not wipe data stored outside the 629 * range sg->offset..sg->offset+sg->length. 630 * Therefore, blkback *could* see data from 631 * previous requests. This is OK as long as 632 * persistent grants are shared with just one 633 * domain. It may need refactoring if this 634 * changes 635 */ 636 memcpy(shared_data + offset, 637 setup->bvec_data + setup->bvec_off, 638 len); 639 640 kunmap_atomic(shared_data); 641 setup->bvec_off += len; 642 } 643 644 fsect = offset >> 9; 645 lsect = fsect + (len >> 9) - 1; 646 if (ring_req->operation != BLKIF_OP_INDIRECT) { 647 ring_req->u.rw.seg[grant_idx] = 648 (struct blkif_request_segment) { 649 .gref = ref, 650 .first_sect = fsect, 651 .last_sect = lsect }; 652 } else { 653 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 654 (struct blkif_request_segment) { 655 .gref = ref, 656 .first_sect = fsect, 657 .last_sect = lsect }; 658 } 659 660 (setup->grant_idx)++; 661 } 662 663 static void blkif_setup_extra_req(struct blkif_request *first, 664 struct blkif_request *second) 665 { 666 uint16_t nr_segments = first->u.rw.nr_segments; 667 668 /* 669 * The second request is only present when the first request uses 670 * all its segments. It's always the continuity of the first one. 671 */ 672 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 673 674 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 675 second->u.rw.sector_number = first->u.rw.sector_number + 676 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 677 678 second->u.rw.handle = first->u.rw.handle; 679 second->operation = first->operation; 680 } 681 682 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 683 { 684 struct blkfront_info *info = rinfo->dev_info; 685 struct blkif_request *ring_req, *extra_ring_req = NULL; 686 unsigned long id, extra_id = NO_ASSOCIATED_ID; 687 bool require_extra_req = false; 688 int i; 689 struct setup_rw_req setup = { 690 .grant_idx = 0, 691 .segments = NULL, 692 .rinfo = rinfo, 693 .need_copy = rq_data_dir(req) && info->feature_persistent, 694 }; 695 696 /* 697 * Used to store if we are able to queue the request by just using 698 * existing persistent grants, or if we have to get new grants, 699 * as there are not sufficiently many free. 700 */ 701 struct scatterlist *sg; 702 int num_sg, max_grefs, num_grant; 703 704 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 705 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 706 /* 707 * If we are using indirect segments we need to account 708 * for the indirect grefs used in the request. 709 */ 710 max_grefs += INDIRECT_GREFS(max_grefs); 711 712 /* 713 * We have to reserve 'max_grefs' grants because persistent 714 * grants are shared by all rings. 715 */ 716 if (max_grefs > 0) 717 if (gnttab_alloc_grant_references(max_grefs, &setup.gref_head) < 0) { 718 gnttab_request_free_callback( 719 &rinfo->callback, 720 blkif_restart_queue_callback, 721 rinfo, 722 max_grefs); 723 return 1; 724 } 725 726 /* Fill out a communications ring structure. */ 727 id = blkif_ring_get_request(rinfo, req, &ring_req); 728 729 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 730 num_grant = 0; 731 /* Calculate the number of grant used */ 732 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 733 num_grant += gnttab_count_grant(sg->offset, sg->length); 734 735 require_extra_req = info->max_indirect_segments == 0 && 736 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 737 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 738 739 rinfo->shadow[id].num_sg = num_sg; 740 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 741 likely(!require_extra_req)) { 742 /* 743 * The indirect operation can only be a BLKIF_OP_READ or 744 * BLKIF_OP_WRITE 745 */ 746 BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA)); 747 ring_req->operation = BLKIF_OP_INDIRECT; 748 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 749 BLKIF_OP_WRITE : BLKIF_OP_READ; 750 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 751 ring_req->u.indirect.handle = info->handle; 752 ring_req->u.indirect.nr_segments = num_grant; 753 } else { 754 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 755 ring_req->u.rw.handle = info->handle; 756 ring_req->operation = rq_data_dir(req) ? 757 BLKIF_OP_WRITE : BLKIF_OP_READ; 758 if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) { 759 /* 760 * Ideally we can do an unordered flush-to-disk. 761 * In case the backend onlysupports barriers, use that. 762 * A barrier request a superset of FUA, so we can 763 * implement it the same way. (It's also a FLUSH+FUA, 764 * since it is guaranteed ordered WRT previous writes.) 765 */ 766 switch (info->feature_flush & 767 ((REQ_FLUSH|REQ_FUA))) { 768 case REQ_FLUSH|REQ_FUA: 769 ring_req->operation = 770 BLKIF_OP_WRITE_BARRIER; 771 break; 772 case REQ_FLUSH: 773 ring_req->operation = 774 BLKIF_OP_FLUSH_DISKCACHE; 775 break; 776 default: 777 ring_req->operation = 0; 778 } 779 } 780 ring_req->u.rw.nr_segments = num_grant; 781 if (unlikely(require_extra_req)) { 782 extra_id = blkif_ring_get_request(rinfo, req, 783 &extra_ring_req); 784 /* 785 * Only the first request contains the scatter-gather 786 * list. 787 */ 788 rinfo->shadow[extra_id].num_sg = 0; 789 790 blkif_setup_extra_req(ring_req, extra_ring_req); 791 792 /* Link the 2 requests together */ 793 rinfo->shadow[extra_id].associated_id = id; 794 rinfo->shadow[id].associated_id = extra_id; 795 } 796 } 797 798 setup.ring_req = ring_req; 799 setup.id = id; 800 801 setup.require_extra_req = require_extra_req; 802 if (unlikely(require_extra_req)) 803 setup.extra_ring_req = extra_ring_req; 804 805 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 806 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 807 808 if (setup.need_copy) { 809 setup.bvec_off = sg->offset; 810 setup.bvec_data = kmap_atomic(sg_page(sg)); 811 } 812 813 gnttab_foreach_grant_in_range(sg_page(sg), 814 sg->offset, 815 sg->length, 816 blkif_setup_rw_req_grant, 817 &setup); 818 819 if (setup.need_copy) 820 kunmap_atomic(setup.bvec_data); 821 } 822 if (setup.segments) 823 kunmap_atomic(setup.segments); 824 825 /* Keep a private copy so we can reissue requests when recovering. */ 826 rinfo->shadow[id].req = *ring_req; 827 if (unlikely(require_extra_req)) 828 rinfo->shadow[extra_id].req = *extra_ring_req; 829 830 if (max_grefs > 0) 831 gnttab_free_grant_references(setup.gref_head); 832 833 return 0; 834 } 835 836 /* 837 * Generate a Xen blkfront IO request from a blk layer request. Reads 838 * and writes are handled as expected. 839 * 840 * @req: a request struct 841 */ 842 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 843 { 844 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 845 return 1; 846 847 if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE))) 848 return blkif_queue_discard_req(req, rinfo); 849 else 850 return blkif_queue_rw_req(req, rinfo); 851 } 852 853 static inline void flush_requests(struct blkfront_ring_info *rinfo) 854 { 855 int notify; 856 857 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 858 859 if (notify) 860 notify_remote_via_irq(rinfo->irq); 861 } 862 863 static inline bool blkif_request_flush_invalid(struct request *req, 864 struct blkfront_info *info) 865 { 866 return ((req->cmd_type != REQ_TYPE_FS) || 867 ((req->cmd_flags & REQ_FLUSH) && 868 !(info->feature_flush & REQ_FLUSH)) || 869 ((req->cmd_flags & REQ_FUA) && 870 !(info->feature_flush & REQ_FUA))); 871 } 872 873 static int blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 874 const struct blk_mq_queue_data *qd) 875 { 876 unsigned long flags; 877 int qid = hctx->queue_num; 878 struct blkfront_info *info = hctx->queue->queuedata; 879 struct blkfront_ring_info *rinfo = NULL; 880 881 BUG_ON(info->nr_rings <= qid); 882 rinfo = &info->rinfo[qid]; 883 blk_mq_start_request(qd->rq); 884 spin_lock_irqsave(&rinfo->ring_lock, flags); 885 if (RING_FULL(&rinfo->ring)) 886 goto out_busy; 887 888 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 889 goto out_err; 890 891 if (blkif_queue_request(qd->rq, rinfo)) 892 goto out_busy; 893 894 flush_requests(rinfo); 895 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 896 return BLK_MQ_RQ_QUEUE_OK; 897 898 out_err: 899 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 900 return BLK_MQ_RQ_QUEUE_ERROR; 901 902 out_busy: 903 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 904 blk_mq_stop_hw_queue(hctx); 905 return BLK_MQ_RQ_QUEUE_BUSY; 906 } 907 908 static struct blk_mq_ops blkfront_mq_ops = { 909 .queue_rq = blkif_queue_rq, 910 .map_queue = blk_mq_map_queue, 911 }; 912 913 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 914 unsigned int physical_sector_size, 915 unsigned int segments) 916 { 917 struct request_queue *rq; 918 struct blkfront_info *info = gd->private_data; 919 920 memset(&info->tag_set, 0, sizeof(info->tag_set)); 921 info->tag_set.ops = &blkfront_mq_ops; 922 info->tag_set.nr_hw_queues = info->nr_rings; 923 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 924 /* 925 * When indirect descriptior is not supported, the I/O request 926 * will be split between multiple request in the ring. 927 * To avoid problems when sending the request, divide by 928 * 2 the depth of the queue. 929 */ 930 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 931 } else 932 info->tag_set.queue_depth = BLK_RING_SIZE(info); 933 info->tag_set.numa_node = NUMA_NO_NODE; 934 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 935 info->tag_set.cmd_size = 0; 936 info->tag_set.driver_data = info; 937 938 if (blk_mq_alloc_tag_set(&info->tag_set)) 939 return -EINVAL; 940 rq = blk_mq_init_queue(&info->tag_set); 941 if (IS_ERR(rq)) { 942 blk_mq_free_tag_set(&info->tag_set); 943 return PTR_ERR(rq); 944 } 945 946 rq->queuedata = info; 947 queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq); 948 949 if (info->feature_discard) { 950 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq); 951 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 952 rq->limits.discard_granularity = info->discard_granularity; 953 rq->limits.discard_alignment = info->discard_alignment; 954 if (info->feature_secdiscard) 955 queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq); 956 } 957 958 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 959 blk_queue_logical_block_size(rq, sector_size); 960 blk_queue_physical_block_size(rq, physical_sector_size); 961 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 962 963 /* Each segment in a request is up to an aligned page in size. */ 964 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 965 blk_queue_max_segment_size(rq, PAGE_SIZE); 966 967 /* Ensure a merged request will fit in a single I/O ring slot. */ 968 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 969 970 /* Make sure buffer addresses are sector-aligned. */ 971 blk_queue_dma_alignment(rq, 511); 972 973 /* Make sure we don't use bounce buffers. */ 974 blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY); 975 976 gd->queue = rq; 977 978 return 0; 979 } 980 981 static const char *flush_info(unsigned int feature_flush) 982 { 983 switch (feature_flush & ((REQ_FLUSH | REQ_FUA))) { 984 case REQ_FLUSH|REQ_FUA: 985 return "barrier: enabled;"; 986 case REQ_FLUSH: 987 return "flush diskcache: enabled;"; 988 default: 989 return "barrier or flush: disabled;"; 990 } 991 } 992 993 static void xlvbd_flush(struct blkfront_info *info) 994 { 995 blk_queue_write_cache(info->rq, info->feature_flush & REQ_FLUSH, 996 info->feature_flush & REQ_FUA); 997 pr_info("blkfront: %s: %s %s %s %s %s\n", 998 info->gd->disk_name, flush_info(info->feature_flush), 999 "persistent grants:", info->feature_persistent ? 1000 "enabled;" : "disabled;", "indirect descriptors:", 1001 info->max_indirect_segments ? "enabled;" : "disabled;"); 1002 } 1003 1004 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1005 { 1006 int major; 1007 major = BLKIF_MAJOR(vdevice); 1008 *minor = BLKIF_MINOR(vdevice); 1009 switch (major) { 1010 case XEN_IDE0_MAJOR: 1011 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1012 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1013 EMULATED_HD_DISK_MINOR_OFFSET; 1014 break; 1015 case XEN_IDE1_MAJOR: 1016 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1017 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1018 EMULATED_HD_DISK_MINOR_OFFSET; 1019 break; 1020 case XEN_SCSI_DISK0_MAJOR: 1021 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1022 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1023 break; 1024 case XEN_SCSI_DISK1_MAJOR: 1025 case XEN_SCSI_DISK2_MAJOR: 1026 case XEN_SCSI_DISK3_MAJOR: 1027 case XEN_SCSI_DISK4_MAJOR: 1028 case XEN_SCSI_DISK5_MAJOR: 1029 case XEN_SCSI_DISK6_MAJOR: 1030 case XEN_SCSI_DISK7_MAJOR: 1031 *offset = (*minor / PARTS_PER_DISK) + 1032 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1033 EMULATED_SD_DISK_NAME_OFFSET; 1034 *minor = *minor + 1035 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1036 EMULATED_SD_DISK_MINOR_OFFSET; 1037 break; 1038 case XEN_SCSI_DISK8_MAJOR: 1039 case XEN_SCSI_DISK9_MAJOR: 1040 case XEN_SCSI_DISK10_MAJOR: 1041 case XEN_SCSI_DISK11_MAJOR: 1042 case XEN_SCSI_DISK12_MAJOR: 1043 case XEN_SCSI_DISK13_MAJOR: 1044 case XEN_SCSI_DISK14_MAJOR: 1045 case XEN_SCSI_DISK15_MAJOR: 1046 *offset = (*minor / PARTS_PER_DISK) + 1047 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1048 EMULATED_SD_DISK_NAME_OFFSET; 1049 *minor = *minor + 1050 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1051 EMULATED_SD_DISK_MINOR_OFFSET; 1052 break; 1053 case XENVBD_MAJOR: 1054 *offset = *minor / PARTS_PER_DISK; 1055 break; 1056 default: 1057 printk(KERN_WARNING "blkfront: your disk configuration is " 1058 "incorrect, please use an xvd device instead\n"); 1059 return -ENODEV; 1060 } 1061 return 0; 1062 } 1063 1064 static char *encode_disk_name(char *ptr, unsigned int n) 1065 { 1066 if (n >= 26) 1067 ptr = encode_disk_name(ptr, n / 26 - 1); 1068 *ptr = 'a' + n % 26; 1069 return ptr + 1; 1070 } 1071 1072 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1073 struct blkfront_info *info, 1074 u16 vdisk_info, u16 sector_size, 1075 unsigned int physical_sector_size) 1076 { 1077 struct gendisk *gd; 1078 int nr_minors = 1; 1079 int err; 1080 unsigned int offset; 1081 int minor; 1082 int nr_parts; 1083 char *ptr; 1084 1085 BUG_ON(info->gd != NULL); 1086 BUG_ON(info->rq != NULL); 1087 1088 if ((info->vdevice>>EXT_SHIFT) > 1) { 1089 /* this is above the extended range; something is wrong */ 1090 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1091 return -ENODEV; 1092 } 1093 1094 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1095 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1096 if (err) 1097 return err; 1098 nr_parts = PARTS_PER_DISK; 1099 } else { 1100 minor = BLKIF_MINOR_EXT(info->vdevice); 1101 nr_parts = PARTS_PER_EXT_DISK; 1102 offset = minor / nr_parts; 1103 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1104 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1105 "emulated IDE disks,\n\t choose an xvd device name" 1106 "from xvde on\n", info->vdevice); 1107 } 1108 if (minor >> MINORBITS) { 1109 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1110 info->vdevice, minor); 1111 return -ENODEV; 1112 } 1113 1114 if ((minor % nr_parts) == 0) 1115 nr_minors = nr_parts; 1116 1117 err = xlbd_reserve_minors(minor, nr_minors); 1118 if (err) 1119 goto out; 1120 err = -ENODEV; 1121 1122 gd = alloc_disk(nr_minors); 1123 if (gd == NULL) 1124 goto release; 1125 1126 strcpy(gd->disk_name, DEV_NAME); 1127 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1128 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1129 if (nr_minors > 1) 1130 *ptr = 0; 1131 else 1132 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1133 "%d", minor & (nr_parts - 1)); 1134 1135 gd->major = XENVBD_MAJOR; 1136 gd->first_minor = minor; 1137 gd->fops = &xlvbd_block_fops; 1138 gd->private_data = info; 1139 gd->driverfs_dev = &(info->xbdev->dev); 1140 set_capacity(gd, capacity); 1141 1142 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size, 1143 info->max_indirect_segments ? : 1144 BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 1145 del_gendisk(gd); 1146 goto release; 1147 } 1148 1149 info->rq = gd->queue; 1150 info->gd = gd; 1151 1152 xlvbd_flush(info); 1153 1154 if (vdisk_info & VDISK_READONLY) 1155 set_disk_ro(gd, 1); 1156 1157 if (vdisk_info & VDISK_REMOVABLE) 1158 gd->flags |= GENHD_FL_REMOVABLE; 1159 1160 if (vdisk_info & VDISK_CDROM) 1161 gd->flags |= GENHD_FL_CD; 1162 1163 return 0; 1164 1165 release: 1166 xlbd_release_minors(minor, nr_minors); 1167 out: 1168 return err; 1169 } 1170 1171 static void xlvbd_release_gendisk(struct blkfront_info *info) 1172 { 1173 unsigned int minor, nr_minors, i; 1174 1175 if (info->rq == NULL) 1176 return; 1177 1178 /* No more blkif_request(). */ 1179 blk_mq_stop_hw_queues(info->rq); 1180 1181 for (i = 0; i < info->nr_rings; i++) { 1182 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1183 1184 /* No more gnttab callback work. */ 1185 gnttab_cancel_free_callback(&rinfo->callback); 1186 1187 /* Flush gnttab callback work. Must be done with no locks held. */ 1188 flush_work(&rinfo->work); 1189 } 1190 1191 del_gendisk(info->gd); 1192 1193 minor = info->gd->first_minor; 1194 nr_minors = info->gd->minors; 1195 xlbd_release_minors(minor, nr_minors); 1196 1197 blk_cleanup_queue(info->rq); 1198 blk_mq_free_tag_set(&info->tag_set); 1199 info->rq = NULL; 1200 1201 put_disk(info->gd); 1202 info->gd = NULL; 1203 } 1204 1205 /* Already hold rinfo->ring_lock. */ 1206 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1207 { 1208 if (!RING_FULL(&rinfo->ring)) 1209 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1210 } 1211 1212 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1213 { 1214 unsigned long flags; 1215 1216 spin_lock_irqsave(&rinfo->ring_lock, flags); 1217 kick_pending_request_queues_locked(rinfo); 1218 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1219 } 1220 1221 static void blkif_restart_queue(struct work_struct *work) 1222 { 1223 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1224 1225 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1226 kick_pending_request_queues(rinfo); 1227 } 1228 1229 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1230 { 1231 struct grant *persistent_gnt, *n; 1232 struct blkfront_info *info = rinfo->dev_info; 1233 int i, j, segs; 1234 1235 /* 1236 * Remove indirect pages, this only happens when using indirect 1237 * descriptors but not persistent grants 1238 */ 1239 if (!list_empty(&rinfo->indirect_pages)) { 1240 struct page *indirect_page, *n; 1241 1242 BUG_ON(info->feature_persistent); 1243 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1244 list_del(&indirect_page->lru); 1245 __free_page(indirect_page); 1246 } 1247 } 1248 1249 /* Remove all persistent grants. */ 1250 if (!list_empty(&rinfo->grants)) { 1251 list_for_each_entry_safe(persistent_gnt, n, 1252 &rinfo->grants, node) { 1253 list_del(&persistent_gnt->node); 1254 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1255 gnttab_end_foreign_access(persistent_gnt->gref, 1256 0, 0UL); 1257 rinfo->persistent_gnts_c--; 1258 } 1259 if (info->feature_persistent) 1260 __free_page(persistent_gnt->page); 1261 kfree(persistent_gnt); 1262 } 1263 } 1264 BUG_ON(rinfo->persistent_gnts_c != 0); 1265 1266 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1267 /* 1268 * Clear persistent grants present in requests already 1269 * on the shared ring 1270 */ 1271 if (!rinfo->shadow[i].request) 1272 goto free_shadow; 1273 1274 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1275 rinfo->shadow[i].req.u.indirect.nr_segments : 1276 rinfo->shadow[i].req.u.rw.nr_segments; 1277 for (j = 0; j < segs; j++) { 1278 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1279 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1280 if (info->feature_persistent) 1281 __free_page(persistent_gnt->page); 1282 kfree(persistent_gnt); 1283 } 1284 1285 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1286 /* 1287 * If this is not an indirect operation don't try to 1288 * free indirect segments 1289 */ 1290 goto free_shadow; 1291 1292 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1293 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1294 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1295 __free_page(persistent_gnt->page); 1296 kfree(persistent_gnt); 1297 } 1298 1299 free_shadow: 1300 kfree(rinfo->shadow[i].grants_used); 1301 rinfo->shadow[i].grants_used = NULL; 1302 kfree(rinfo->shadow[i].indirect_grants); 1303 rinfo->shadow[i].indirect_grants = NULL; 1304 kfree(rinfo->shadow[i].sg); 1305 rinfo->shadow[i].sg = NULL; 1306 } 1307 1308 /* No more gnttab callback work. */ 1309 gnttab_cancel_free_callback(&rinfo->callback); 1310 1311 /* Flush gnttab callback work. Must be done with no locks held. */ 1312 flush_work(&rinfo->work); 1313 1314 /* Free resources associated with old device channel. */ 1315 for (i = 0; i < info->nr_ring_pages; i++) { 1316 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1317 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1318 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1319 } 1320 } 1321 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE)); 1322 rinfo->ring.sring = NULL; 1323 1324 if (rinfo->irq) 1325 unbind_from_irqhandler(rinfo->irq, rinfo); 1326 rinfo->evtchn = rinfo->irq = 0; 1327 } 1328 1329 static void blkif_free(struct blkfront_info *info, int suspend) 1330 { 1331 unsigned int i; 1332 1333 /* Prevent new requests being issued until we fix things up. */ 1334 info->connected = suspend ? 1335 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1336 /* No more blkif_request(). */ 1337 if (info->rq) 1338 blk_mq_stop_hw_queues(info->rq); 1339 1340 for (i = 0; i < info->nr_rings; i++) 1341 blkif_free_ring(&info->rinfo[i]); 1342 1343 kfree(info->rinfo); 1344 info->rinfo = NULL; 1345 info->nr_rings = 0; 1346 } 1347 1348 struct copy_from_grant { 1349 const struct blk_shadow *s; 1350 unsigned int grant_idx; 1351 unsigned int bvec_offset; 1352 char *bvec_data; 1353 }; 1354 1355 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1356 unsigned int len, void *data) 1357 { 1358 struct copy_from_grant *info = data; 1359 char *shared_data; 1360 /* Convenient aliases */ 1361 const struct blk_shadow *s = info->s; 1362 1363 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1364 1365 memcpy(info->bvec_data + info->bvec_offset, 1366 shared_data + offset, len); 1367 1368 info->bvec_offset += len; 1369 info->grant_idx++; 1370 1371 kunmap_atomic(shared_data); 1372 } 1373 1374 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1375 { 1376 switch (rsp) 1377 { 1378 case BLKIF_RSP_OKAY: 1379 return REQ_DONE; 1380 case BLKIF_RSP_EOPNOTSUPP: 1381 return REQ_EOPNOTSUPP; 1382 case BLKIF_RSP_ERROR: 1383 /* Fallthrough. */ 1384 default: 1385 return REQ_ERROR; 1386 } 1387 } 1388 1389 /* 1390 * Get the final status of the block request based on two ring response 1391 */ 1392 static int blkif_get_final_status(enum blk_req_status s1, 1393 enum blk_req_status s2) 1394 { 1395 BUG_ON(s1 == REQ_WAITING); 1396 BUG_ON(s2 == REQ_WAITING); 1397 1398 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1399 return BLKIF_RSP_ERROR; 1400 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1401 return BLKIF_RSP_EOPNOTSUPP; 1402 return BLKIF_RSP_OKAY; 1403 } 1404 1405 static bool blkif_completion(unsigned long *id, 1406 struct blkfront_ring_info *rinfo, 1407 struct blkif_response *bret) 1408 { 1409 int i = 0; 1410 struct scatterlist *sg; 1411 int num_sg, num_grant; 1412 struct blkfront_info *info = rinfo->dev_info; 1413 struct blk_shadow *s = &rinfo->shadow[*id]; 1414 struct copy_from_grant data = { 1415 .grant_idx = 0, 1416 }; 1417 1418 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1419 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1420 1421 /* The I/O request may be split in two. */ 1422 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1423 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1424 1425 /* Keep the status of the current response in shadow. */ 1426 s->status = blkif_rsp_to_req_status(bret->status); 1427 1428 /* Wait the second response if not yet here. */ 1429 if (s2->status == REQ_WAITING) 1430 return 0; 1431 1432 bret->status = blkif_get_final_status(s->status, 1433 s2->status); 1434 1435 /* 1436 * All the grants is stored in the first shadow in order 1437 * to make the completion code simpler. 1438 */ 1439 num_grant += s2->req.u.rw.nr_segments; 1440 1441 /* 1442 * The two responses may not come in order. Only the 1443 * first request will store the scatter-gather list. 1444 */ 1445 if (s2->num_sg != 0) { 1446 /* Update "id" with the ID of the first response. */ 1447 *id = s->associated_id; 1448 s = s2; 1449 } 1450 1451 /* 1452 * We don't need anymore the second request, so recycling 1453 * it now. 1454 */ 1455 if (add_id_to_freelist(rinfo, s->associated_id)) 1456 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1457 info->gd->disk_name, s->associated_id); 1458 } 1459 1460 data.s = s; 1461 num_sg = s->num_sg; 1462 1463 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1464 for_each_sg(s->sg, sg, num_sg, i) { 1465 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1466 1467 data.bvec_offset = sg->offset; 1468 data.bvec_data = kmap_atomic(sg_page(sg)); 1469 1470 gnttab_foreach_grant_in_range(sg_page(sg), 1471 sg->offset, 1472 sg->length, 1473 blkif_copy_from_grant, 1474 &data); 1475 1476 kunmap_atomic(data.bvec_data); 1477 } 1478 } 1479 /* Add the persistent grant into the list of free grants */ 1480 for (i = 0; i < num_grant; i++) { 1481 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1482 /* 1483 * If the grant is still mapped by the backend (the 1484 * backend has chosen to make this grant persistent) 1485 * we add it at the head of the list, so it will be 1486 * reused first. 1487 */ 1488 if (!info->feature_persistent) 1489 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1490 s->grants_used[i]->gref); 1491 list_add(&s->grants_used[i]->node, &rinfo->grants); 1492 rinfo->persistent_gnts_c++; 1493 } else { 1494 /* 1495 * If the grant is not mapped by the backend we end the 1496 * foreign access and add it to the tail of the list, 1497 * so it will not be picked again unless we run out of 1498 * persistent grants. 1499 */ 1500 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1501 s->grants_used[i]->gref = GRANT_INVALID_REF; 1502 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1503 } 1504 } 1505 if (s->req.operation == BLKIF_OP_INDIRECT) { 1506 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1507 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1508 if (!info->feature_persistent) 1509 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1510 s->indirect_grants[i]->gref); 1511 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1512 rinfo->persistent_gnts_c++; 1513 } else { 1514 struct page *indirect_page; 1515 1516 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1517 /* 1518 * Add the used indirect page back to the list of 1519 * available pages for indirect grefs. 1520 */ 1521 if (!info->feature_persistent) { 1522 indirect_page = s->indirect_grants[i]->page; 1523 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1524 } 1525 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1526 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1527 } 1528 } 1529 } 1530 1531 return 1; 1532 } 1533 1534 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1535 { 1536 struct request *req; 1537 struct blkif_response *bret; 1538 RING_IDX i, rp; 1539 unsigned long flags; 1540 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1541 struct blkfront_info *info = rinfo->dev_info; 1542 int error; 1543 1544 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1545 return IRQ_HANDLED; 1546 1547 spin_lock_irqsave(&rinfo->ring_lock, flags); 1548 again: 1549 rp = rinfo->ring.sring->rsp_prod; 1550 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1551 1552 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1553 unsigned long id; 1554 1555 bret = RING_GET_RESPONSE(&rinfo->ring, i); 1556 id = bret->id; 1557 /* 1558 * The backend has messed up and given us an id that we would 1559 * never have given to it (we stamp it up to BLK_RING_SIZE - 1560 * look in get_id_from_freelist. 1561 */ 1562 if (id >= BLK_RING_SIZE(info)) { 1563 WARN(1, "%s: response to %s has incorrect id (%ld)\n", 1564 info->gd->disk_name, op_name(bret->operation), id); 1565 /* We can't safely get the 'struct request' as 1566 * the id is busted. */ 1567 continue; 1568 } 1569 req = rinfo->shadow[id].request; 1570 1571 if (bret->operation != BLKIF_OP_DISCARD) { 1572 /* 1573 * We may need to wait for an extra response if the 1574 * I/O request is split in 2 1575 */ 1576 if (!blkif_completion(&id, rinfo, bret)) 1577 continue; 1578 } 1579 1580 if (add_id_to_freelist(rinfo, id)) { 1581 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1582 info->gd->disk_name, op_name(bret->operation), id); 1583 continue; 1584 } 1585 1586 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO; 1587 switch (bret->operation) { 1588 case BLKIF_OP_DISCARD: 1589 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1590 struct request_queue *rq = info->rq; 1591 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1592 info->gd->disk_name, op_name(bret->operation)); 1593 error = -EOPNOTSUPP; 1594 info->feature_discard = 0; 1595 info->feature_secdiscard = 0; 1596 queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1597 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq); 1598 } 1599 blk_mq_complete_request(req, error); 1600 break; 1601 case BLKIF_OP_FLUSH_DISKCACHE: 1602 case BLKIF_OP_WRITE_BARRIER: 1603 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) { 1604 printk(KERN_WARNING "blkfront: %s: %s op failed\n", 1605 info->gd->disk_name, op_name(bret->operation)); 1606 error = -EOPNOTSUPP; 1607 } 1608 if (unlikely(bret->status == BLKIF_RSP_ERROR && 1609 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1610 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n", 1611 info->gd->disk_name, op_name(bret->operation)); 1612 error = -EOPNOTSUPP; 1613 } 1614 if (unlikely(error)) { 1615 if (error == -EOPNOTSUPP) 1616 error = 0; 1617 info->feature_flush = 0; 1618 xlvbd_flush(info); 1619 } 1620 /* fall through */ 1621 case BLKIF_OP_READ: 1622 case BLKIF_OP_WRITE: 1623 if (unlikely(bret->status != BLKIF_RSP_OKAY)) 1624 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data " 1625 "request: %x\n", bret->status); 1626 1627 blk_mq_complete_request(req, error); 1628 break; 1629 default: 1630 BUG(); 1631 } 1632 } 1633 1634 rinfo->ring.rsp_cons = i; 1635 1636 if (i != rinfo->ring.req_prod_pvt) { 1637 int more_to_do; 1638 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1639 if (more_to_do) 1640 goto again; 1641 } else 1642 rinfo->ring.sring->rsp_event = i + 1; 1643 1644 kick_pending_request_queues_locked(rinfo); 1645 1646 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1647 1648 return IRQ_HANDLED; 1649 } 1650 1651 1652 static int setup_blkring(struct xenbus_device *dev, 1653 struct blkfront_ring_info *rinfo) 1654 { 1655 struct blkif_sring *sring; 1656 int err, i; 1657 struct blkfront_info *info = rinfo->dev_info; 1658 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1659 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1660 1661 for (i = 0; i < info->nr_ring_pages; i++) 1662 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1663 1664 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1665 get_order(ring_size)); 1666 if (!sring) { 1667 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1668 return -ENOMEM; 1669 } 1670 SHARED_RING_INIT(sring); 1671 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1672 1673 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1674 if (err < 0) { 1675 free_pages((unsigned long)sring, get_order(ring_size)); 1676 rinfo->ring.sring = NULL; 1677 goto fail; 1678 } 1679 for (i = 0; i < info->nr_ring_pages; i++) 1680 rinfo->ring_ref[i] = gref[i]; 1681 1682 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1683 if (err) 1684 goto fail; 1685 1686 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1687 "blkif", rinfo); 1688 if (err <= 0) { 1689 xenbus_dev_fatal(dev, err, 1690 "bind_evtchn_to_irqhandler failed"); 1691 goto fail; 1692 } 1693 rinfo->irq = err; 1694 1695 return 0; 1696 fail: 1697 blkif_free(info, 0); 1698 return err; 1699 } 1700 1701 /* 1702 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1703 * ring buffer may have multi pages depending on ->nr_ring_pages. 1704 */ 1705 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1706 struct blkfront_ring_info *rinfo, const char *dir) 1707 { 1708 int err; 1709 unsigned int i; 1710 const char *message = NULL; 1711 struct blkfront_info *info = rinfo->dev_info; 1712 1713 if (info->nr_ring_pages == 1) { 1714 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1715 if (err) { 1716 message = "writing ring-ref"; 1717 goto abort_transaction; 1718 } 1719 } else { 1720 for (i = 0; i < info->nr_ring_pages; i++) { 1721 char ring_ref_name[RINGREF_NAME_LEN]; 1722 1723 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1724 err = xenbus_printf(xbt, dir, ring_ref_name, 1725 "%u", rinfo->ring_ref[i]); 1726 if (err) { 1727 message = "writing ring-ref"; 1728 goto abort_transaction; 1729 } 1730 } 1731 } 1732 1733 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1734 if (err) { 1735 message = "writing event-channel"; 1736 goto abort_transaction; 1737 } 1738 1739 return 0; 1740 1741 abort_transaction: 1742 xenbus_transaction_end(xbt, 1); 1743 if (message) 1744 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1745 1746 return err; 1747 } 1748 1749 /* Common code used when first setting up, and when resuming. */ 1750 static int talk_to_blkback(struct xenbus_device *dev, 1751 struct blkfront_info *info) 1752 { 1753 const char *message = NULL; 1754 struct xenbus_transaction xbt; 1755 int err; 1756 unsigned int i, max_page_order = 0; 1757 unsigned int ring_page_order = 0; 1758 1759 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1760 "max-ring-page-order", "%u", &max_page_order); 1761 if (err != 1) 1762 info->nr_ring_pages = 1; 1763 else { 1764 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1765 info->nr_ring_pages = 1 << ring_page_order; 1766 } 1767 1768 for (i = 0; i < info->nr_rings; i++) { 1769 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1770 1771 /* Create shared ring, alloc event channel. */ 1772 err = setup_blkring(dev, rinfo); 1773 if (err) 1774 goto destroy_blkring; 1775 } 1776 1777 again: 1778 err = xenbus_transaction_start(&xbt); 1779 if (err) { 1780 xenbus_dev_fatal(dev, err, "starting transaction"); 1781 goto destroy_blkring; 1782 } 1783 1784 if (info->nr_ring_pages > 1) { 1785 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1786 ring_page_order); 1787 if (err) { 1788 message = "writing ring-page-order"; 1789 goto abort_transaction; 1790 } 1791 } 1792 1793 /* We already got the number of queues/rings in _probe */ 1794 if (info->nr_rings == 1) { 1795 err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename); 1796 if (err) 1797 goto destroy_blkring; 1798 } else { 1799 char *path; 1800 size_t pathsize; 1801 1802 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1803 info->nr_rings); 1804 if (err) { 1805 message = "writing multi-queue-num-queues"; 1806 goto abort_transaction; 1807 } 1808 1809 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1810 path = kmalloc(pathsize, GFP_KERNEL); 1811 if (!path) { 1812 err = -ENOMEM; 1813 message = "ENOMEM while writing ring references"; 1814 goto abort_transaction; 1815 } 1816 1817 for (i = 0; i < info->nr_rings; i++) { 1818 memset(path, 0, pathsize); 1819 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1820 err = write_per_ring_nodes(xbt, &info->rinfo[i], path); 1821 if (err) { 1822 kfree(path); 1823 goto destroy_blkring; 1824 } 1825 } 1826 kfree(path); 1827 } 1828 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1829 XEN_IO_PROTO_ABI_NATIVE); 1830 if (err) { 1831 message = "writing protocol"; 1832 goto abort_transaction; 1833 } 1834 err = xenbus_printf(xbt, dev->nodename, 1835 "feature-persistent", "%u", 1); 1836 if (err) 1837 dev_warn(&dev->dev, 1838 "writing persistent grants feature to xenbus"); 1839 1840 err = xenbus_transaction_end(xbt, 0); 1841 if (err) { 1842 if (err == -EAGAIN) 1843 goto again; 1844 xenbus_dev_fatal(dev, err, "completing transaction"); 1845 goto destroy_blkring; 1846 } 1847 1848 for (i = 0; i < info->nr_rings; i++) { 1849 unsigned int j; 1850 struct blkfront_ring_info *rinfo = &info->rinfo[i]; 1851 1852 for (j = 0; j < BLK_RING_SIZE(info); j++) 1853 rinfo->shadow[j].req.u.rw.id = j + 1; 1854 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1855 } 1856 xenbus_switch_state(dev, XenbusStateInitialised); 1857 1858 return 0; 1859 1860 abort_transaction: 1861 xenbus_transaction_end(xbt, 1); 1862 if (message) 1863 xenbus_dev_fatal(dev, err, "%s", message); 1864 destroy_blkring: 1865 blkif_free(info, 0); 1866 1867 kfree(info); 1868 dev_set_drvdata(&dev->dev, NULL); 1869 1870 return err; 1871 } 1872 1873 static int negotiate_mq(struct blkfront_info *info) 1874 { 1875 unsigned int backend_max_queues = 0; 1876 int err; 1877 unsigned int i; 1878 1879 BUG_ON(info->nr_rings); 1880 1881 /* Check if backend supports multiple queues. */ 1882 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 1883 "multi-queue-max-queues", "%u", &backend_max_queues); 1884 if (err < 0) 1885 backend_max_queues = 1; 1886 1887 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1888 /* We need at least one ring. */ 1889 if (!info->nr_rings) 1890 info->nr_rings = 1; 1891 1892 info->rinfo = kzalloc(sizeof(struct blkfront_ring_info) * info->nr_rings, GFP_KERNEL); 1893 if (!info->rinfo) { 1894 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1895 return -ENOMEM; 1896 } 1897 1898 for (i = 0; i < info->nr_rings; i++) { 1899 struct blkfront_ring_info *rinfo; 1900 1901 rinfo = &info->rinfo[i]; 1902 INIT_LIST_HEAD(&rinfo->indirect_pages); 1903 INIT_LIST_HEAD(&rinfo->grants); 1904 rinfo->dev_info = info; 1905 INIT_WORK(&rinfo->work, blkif_restart_queue); 1906 spin_lock_init(&rinfo->ring_lock); 1907 } 1908 return 0; 1909 } 1910 /** 1911 * Entry point to this code when a new device is created. Allocate the basic 1912 * structures and the ring buffer for communication with the backend, and 1913 * inform the backend of the appropriate details for those. Switch to 1914 * Initialised state. 1915 */ 1916 static int blkfront_probe(struct xenbus_device *dev, 1917 const struct xenbus_device_id *id) 1918 { 1919 int err, vdevice; 1920 struct blkfront_info *info; 1921 1922 /* FIXME: Use dynamic device id if this is not set. */ 1923 err = xenbus_scanf(XBT_NIL, dev->nodename, 1924 "virtual-device", "%i", &vdevice); 1925 if (err != 1) { 1926 /* go looking in the extended area instead */ 1927 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1928 "%i", &vdevice); 1929 if (err != 1) { 1930 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1931 return err; 1932 } 1933 } 1934 1935 if (xen_hvm_domain()) { 1936 char *type; 1937 int len; 1938 /* no unplug has been done: do not hook devices != xen vbds */ 1939 if (xen_has_pv_and_legacy_disk_devices()) { 1940 int major; 1941 1942 if (!VDEV_IS_EXTENDED(vdevice)) 1943 major = BLKIF_MAJOR(vdevice); 1944 else 1945 major = XENVBD_MAJOR; 1946 1947 if (major != XENVBD_MAJOR) { 1948 printk(KERN_INFO 1949 "%s: HVM does not support vbd %d as xen block device\n", 1950 __func__, vdevice); 1951 return -ENODEV; 1952 } 1953 } 1954 /* do not create a PV cdrom device if we are an HVM guest */ 1955 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1956 if (IS_ERR(type)) 1957 return -ENODEV; 1958 if (strncmp(type, "cdrom", 5) == 0) { 1959 kfree(type); 1960 return -ENODEV; 1961 } 1962 kfree(type); 1963 } 1964 info = kzalloc(sizeof(*info), GFP_KERNEL); 1965 if (!info) { 1966 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1967 return -ENOMEM; 1968 } 1969 1970 info->xbdev = dev; 1971 err = negotiate_mq(info); 1972 if (err) { 1973 kfree(info); 1974 return err; 1975 } 1976 1977 mutex_init(&info->mutex); 1978 info->vdevice = vdevice; 1979 info->connected = BLKIF_STATE_DISCONNECTED; 1980 1981 /* Front end dir is a number, which is used as the id. */ 1982 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1983 dev_set_drvdata(&dev->dev, info); 1984 1985 return 0; 1986 } 1987 1988 static void split_bio_end(struct bio *bio) 1989 { 1990 struct split_bio *split_bio = bio->bi_private; 1991 1992 if (atomic_dec_and_test(&split_bio->pending)) { 1993 split_bio->bio->bi_phys_segments = 0; 1994 split_bio->bio->bi_error = bio->bi_error; 1995 bio_endio(split_bio->bio); 1996 kfree(split_bio); 1997 } 1998 bio_put(bio); 1999 } 2000 2001 static int blkif_recover(struct blkfront_info *info) 2002 { 2003 unsigned int i, r_index; 2004 struct request *req, *n; 2005 struct blk_shadow *copy; 2006 int rc; 2007 struct bio *bio, *cloned_bio; 2008 struct bio_list bio_list, merge_bio; 2009 unsigned int segs, offset; 2010 int pending, size; 2011 struct split_bio *split_bio; 2012 struct list_head requests; 2013 2014 blkfront_gather_backend_features(info); 2015 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2016 blk_queue_max_segments(info->rq, segs); 2017 bio_list_init(&bio_list); 2018 INIT_LIST_HEAD(&requests); 2019 2020 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2021 struct blkfront_ring_info *rinfo; 2022 2023 rinfo = &info->rinfo[r_index]; 2024 /* Stage 1: Make a safe copy of the shadow state. */ 2025 copy = kmemdup(rinfo->shadow, sizeof(rinfo->shadow), 2026 GFP_NOIO | __GFP_REPEAT | __GFP_HIGH); 2027 if (!copy) 2028 return -ENOMEM; 2029 2030 /* Stage 2: Set up free list. */ 2031 memset(&rinfo->shadow, 0, sizeof(rinfo->shadow)); 2032 for (i = 0; i < BLK_RING_SIZE(info); i++) 2033 rinfo->shadow[i].req.u.rw.id = i+1; 2034 rinfo->shadow_free = rinfo->ring.req_prod_pvt; 2035 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 2036 2037 rc = blkfront_setup_indirect(rinfo); 2038 if (rc) { 2039 kfree(copy); 2040 return rc; 2041 } 2042 2043 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2044 /* Not in use? */ 2045 if (!copy[i].request) 2046 continue; 2047 2048 /* 2049 * Get the bios in the request so we can re-queue them. 2050 */ 2051 if (copy[i].request->cmd_flags & 2052 (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) { 2053 /* 2054 * Flush operations don't contain bios, so 2055 * we need to requeue the whole request 2056 */ 2057 list_add(©[i].request->queuelist, &requests); 2058 continue; 2059 } 2060 merge_bio.head = copy[i].request->bio; 2061 merge_bio.tail = copy[i].request->biotail; 2062 bio_list_merge(&bio_list, &merge_bio); 2063 copy[i].request->bio = NULL; 2064 blk_end_request_all(copy[i].request, 0); 2065 } 2066 2067 kfree(copy); 2068 } 2069 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2070 2071 /* Now safe for us to use the shared ring */ 2072 info->connected = BLKIF_STATE_CONNECTED; 2073 2074 for (r_index = 0; r_index < info->nr_rings; r_index++) { 2075 struct blkfront_ring_info *rinfo; 2076 2077 rinfo = &info->rinfo[r_index]; 2078 /* Kick any other new requests queued since we resumed */ 2079 kick_pending_request_queues(rinfo); 2080 } 2081 2082 list_for_each_entry_safe(req, n, &requests, queuelist) { 2083 /* Requeue pending requests (flush or discard) */ 2084 list_del_init(&req->queuelist); 2085 BUG_ON(req->nr_phys_segments > segs); 2086 blk_mq_requeue_request(req); 2087 } 2088 blk_mq_kick_requeue_list(info->rq); 2089 2090 while ((bio = bio_list_pop(&bio_list)) != NULL) { 2091 /* Traverse the list of pending bios and re-queue them */ 2092 if (bio_segments(bio) > segs) { 2093 /* 2094 * This bio has more segments than what we can 2095 * handle, we have to split it. 2096 */ 2097 pending = (bio_segments(bio) + segs - 1) / segs; 2098 split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO); 2099 BUG_ON(split_bio == NULL); 2100 atomic_set(&split_bio->pending, pending); 2101 split_bio->bio = bio; 2102 for (i = 0; i < pending; i++) { 2103 offset = (i * segs * XEN_PAGE_SIZE) >> 9; 2104 size = min((unsigned int)(segs * XEN_PAGE_SIZE) >> 9, 2105 (unsigned int)bio_sectors(bio) - offset); 2106 cloned_bio = bio_clone(bio, GFP_NOIO); 2107 BUG_ON(cloned_bio == NULL); 2108 bio_trim(cloned_bio, offset, size); 2109 cloned_bio->bi_private = split_bio; 2110 cloned_bio->bi_end_io = split_bio_end; 2111 submit_bio(cloned_bio->bi_rw, cloned_bio); 2112 } 2113 /* 2114 * Now we have to wait for all those smaller bios to 2115 * end, so we can also end the "parent" bio. 2116 */ 2117 continue; 2118 } 2119 /* We don't need to split this bio */ 2120 submit_bio(bio->bi_rw, bio); 2121 } 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2128 * driver restart. We tear down our blkif structure and recreate it, but 2129 * leave the device-layer structures intact so that this is transparent to the 2130 * rest of the kernel. 2131 */ 2132 static int blkfront_resume(struct xenbus_device *dev) 2133 { 2134 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2135 int err = 0; 2136 2137 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2138 2139 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2140 2141 err = negotiate_mq(info); 2142 if (err) 2143 return err; 2144 2145 err = talk_to_blkback(dev, info); 2146 if (!err) 2147 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2148 2149 /* 2150 * We have to wait for the backend to switch to 2151 * connected state, since we want to read which 2152 * features it supports. 2153 */ 2154 2155 return err; 2156 } 2157 2158 static void blkfront_closing(struct blkfront_info *info) 2159 { 2160 struct xenbus_device *xbdev = info->xbdev; 2161 struct block_device *bdev = NULL; 2162 2163 mutex_lock(&info->mutex); 2164 2165 if (xbdev->state == XenbusStateClosing) { 2166 mutex_unlock(&info->mutex); 2167 return; 2168 } 2169 2170 if (info->gd) 2171 bdev = bdget_disk(info->gd, 0); 2172 2173 mutex_unlock(&info->mutex); 2174 2175 if (!bdev) { 2176 xenbus_frontend_closed(xbdev); 2177 return; 2178 } 2179 2180 mutex_lock(&bdev->bd_mutex); 2181 2182 if (bdev->bd_openers) { 2183 xenbus_dev_error(xbdev, -EBUSY, 2184 "Device in use; refusing to close"); 2185 xenbus_switch_state(xbdev, XenbusStateClosing); 2186 } else { 2187 xlvbd_release_gendisk(info); 2188 xenbus_frontend_closed(xbdev); 2189 } 2190 2191 mutex_unlock(&bdev->bd_mutex); 2192 bdput(bdev); 2193 } 2194 2195 static void blkfront_setup_discard(struct blkfront_info *info) 2196 { 2197 int err; 2198 unsigned int discard_granularity; 2199 unsigned int discard_alignment; 2200 unsigned int discard_secure; 2201 2202 info->feature_discard = 1; 2203 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2204 "discard-granularity", "%u", &discard_granularity, 2205 "discard-alignment", "%u", &discard_alignment, 2206 NULL); 2207 if (!err) { 2208 info->discard_granularity = discard_granularity; 2209 info->discard_alignment = discard_alignment; 2210 } 2211 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2212 "discard-secure", "%d", &discard_secure, 2213 NULL); 2214 if (!err) 2215 info->feature_secdiscard = !!discard_secure; 2216 } 2217 2218 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2219 { 2220 unsigned int psegs, grants; 2221 int err, i; 2222 struct blkfront_info *info = rinfo->dev_info; 2223 2224 if (info->max_indirect_segments == 0) { 2225 if (!HAS_EXTRA_REQ) 2226 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2227 else { 2228 /* 2229 * When an extra req is required, the maximum 2230 * grants supported is related to the size of the 2231 * Linux block segment. 2232 */ 2233 grants = GRANTS_PER_PSEG; 2234 } 2235 } 2236 else 2237 grants = info->max_indirect_segments; 2238 psegs = grants / GRANTS_PER_PSEG; 2239 2240 err = fill_grant_buffer(rinfo, 2241 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2242 if (err) 2243 goto out_of_memory; 2244 2245 if (!info->feature_persistent && info->max_indirect_segments) { 2246 /* 2247 * We are using indirect descriptors but not persistent 2248 * grants, we need to allocate a set of pages that can be 2249 * used for mapping indirect grefs 2250 */ 2251 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2252 2253 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2254 for (i = 0; i < num; i++) { 2255 struct page *indirect_page = alloc_page(GFP_NOIO); 2256 if (!indirect_page) 2257 goto out_of_memory; 2258 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2259 } 2260 } 2261 2262 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2263 rinfo->shadow[i].grants_used = kzalloc( 2264 sizeof(rinfo->shadow[i].grants_used[0]) * grants, 2265 GFP_NOIO); 2266 rinfo->shadow[i].sg = kzalloc(sizeof(rinfo->shadow[i].sg[0]) * psegs, GFP_NOIO); 2267 if (info->max_indirect_segments) 2268 rinfo->shadow[i].indirect_grants = kzalloc( 2269 sizeof(rinfo->shadow[i].indirect_grants[0]) * 2270 INDIRECT_GREFS(grants), 2271 GFP_NOIO); 2272 if ((rinfo->shadow[i].grants_used == NULL) || 2273 (rinfo->shadow[i].sg == NULL) || 2274 (info->max_indirect_segments && 2275 (rinfo->shadow[i].indirect_grants == NULL))) 2276 goto out_of_memory; 2277 sg_init_table(rinfo->shadow[i].sg, psegs); 2278 } 2279 2280 2281 return 0; 2282 2283 out_of_memory: 2284 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2285 kfree(rinfo->shadow[i].grants_used); 2286 rinfo->shadow[i].grants_used = NULL; 2287 kfree(rinfo->shadow[i].sg); 2288 rinfo->shadow[i].sg = NULL; 2289 kfree(rinfo->shadow[i].indirect_grants); 2290 rinfo->shadow[i].indirect_grants = NULL; 2291 } 2292 if (!list_empty(&rinfo->indirect_pages)) { 2293 struct page *indirect_page, *n; 2294 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2295 list_del(&indirect_page->lru); 2296 __free_page(indirect_page); 2297 } 2298 } 2299 return -ENOMEM; 2300 } 2301 2302 /* 2303 * Gather all backend feature-* 2304 */ 2305 static void blkfront_gather_backend_features(struct blkfront_info *info) 2306 { 2307 int err; 2308 int barrier, flush, discard, persistent; 2309 unsigned int indirect_segments; 2310 2311 info->feature_flush = 0; 2312 2313 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2314 "feature-barrier", "%d", &barrier, 2315 NULL); 2316 2317 /* 2318 * If there's no "feature-barrier" defined, then it means 2319 * we're dealing with a very old backend which writes 2320 * synchronously; nothing to do. 2321 * 2322 * If there are barriers, then we use flush. 2323 */ 2324 if (!err && barrier) 2325 info->feature_flush = REQ_FLUSH | REQ_FUA; 2326 /* 2327 * And if there is "feature-flush-cache" use that above 2328 * barriers. 2329 */ 2330 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2331 "feature-flush-cache", "%d", &flush, 2332 NULL); 2333 2334 if (!err && flush) 2335 info->feature_flush = REQ_FLUSH; 2336 2337 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2338 "feature-discard", "%d", &discard, 2339 NULL); 2340 2341 if (!err && discard) 2342 blkfront_setup_discard(info); 2343 2344 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2345 "feature-persistent", "%u", &persistent, 2346 NULL); 2347 if (err) 2348 info->feature_persistent = 0; 2349 else 2350 info->feature_persistent = persistent; 2351 2352 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2353 "feature-max-indirect-segments", "%u", &indirect_segments, 2354 NULL); 2355 if (err) 2356 info->max_indirect_segments = 0; 2357 else 2358 info->max_indirect_segments = min(indirect_segments, 2359 xen_blkif_max_segments); 2360 } 2361 2362 /* 2363 * Invoked when the backend is finally 'ready' (and has told produced 2364 * the details about the physical device - #sectors, size, etc). 2365 */ 2366 static void blkfront_connect(struct blkfront_info *info) 2367 { 2368 unsigned long long sectors; 2369 unsigned long sector_size; 2370 unsigned int physical_sector_size; 2371 unsigned int binfo; 2372 int err, i; 2373 2374 switch (info->connected) { 2375 case BLKIF_STATE_CONNECTED: 2376 /* 2377 * Potentially, the back-end may be signalling 2378 * a capacity change; update the capacity. 2379 */ 2380 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2381 "sectors", "%Lu", §ors); 2382 if (XENBUS_EXIST_ERR(err)) 2383 return; 2384 printk(KERN_INFO "Setting capacity to %Lu\n", 2385 sectors); 2386 set_capacity(info->gd, sectors); 2387 revalidate_disk(info->gd); 2388 2389 return; 2390 case BLKIF_STATE_SUSPENDED: 2391 /* 2392 * If we are recovering from suspension, we need to wait 2393 * for the backend to announce it's features before 2394 * reconnecting, at least we need to know if the backend 2395 * supports indirect descriptors, and how many. 2396 */ 2397 blkif_recover(info); 2398 return; 2399 2400 default: 2401 break; 2402 } 2403 2404 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2405 __func__, info->xbdev->otherend); 2406 2407 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2408 "sectors", "%llu", §ors, 2409 "info", "%u", &binfo, 2410 "sector-size", "%lu", §or_size, 2411 NULL); 2412 if (err) { 2413 xenbus_dev_fatal(info->xbdev, err, 2414 "reading backend fields at %s", 2415 info->xbdev->otherend); 2416 return; 2417 } 2418 2419 /* 2420 * physcial-sector-size is a newer field, so old backends may not 2421 * provide this. Assume physical sector size to be the same as 2422 * sector_size in that case. 2423 */ 2424 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2425 "physical-sector-size", "%u", &physical_sector_size); 2426 if (err != 1) 2427 physical_sector_size = sector_size; 2428 2429 blkfront_gather_backend_features(info); 2430 for (i = 0; i < info->nr_rings; i++) { 2431 err = blkfront_setup_indirect(&info->rinfo[i]); 2432 if (err) { 2433 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2434 info->xbdev->otherend); 2435 blkif_free(info, 0); 2436 break; 2437 } 2438 } 2439 2440 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2441 physical_sector_size); 2442 if (err) { 2443 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2444 info->xbdev->otherend); 2445 return; 2446 } 2447 2448 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2449 2450 /* Kick pending requests. */ 2451 info->connected = BLKIF_STATE_CONNECTED; 2452 for (i = 0; i < info->nr_rings; i++) 2453 kick_pending_request_queues(&info->rinfo[i]); 2454 2455 add_disk(info->gd); 2456 2457 info->is_ready = 1; 2458 } 2459 2460 /** 2461 * Callback received when the backend's state changes. 2462 */ 2463 static void blkback_changed(struct xenbus_device *dev, 2464 enum xenbus_state backend_state) 2465 { 2466 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2467 2468 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2469 2470 switch (backend_state) { 2471 case XenbusStateInitWait: 2472 if (dev->state != XenbusStateInitialising) 2473 break; 2474 if (talk_to_blkback(dev, info)) 2475 break; 2476 case XenbusStateInitialising: 2477 case XenbusStateInitialised: 2478 case XenbusStateReconfiguring: 2479 case XenbusStateReconfigured: 2480 case XenbusStateUnknown: 2481 break; 2482 2483 case XenbusStateConnected: 2484 /* 2485 * talk_to_blkback sets state to XenbusStateInitialised 2486 * and blkfront_connect sets it to XenbusStateConnected 2487 * (if connection went OK). 2488 * 2489 * If the backend (or toolstack) decides to poke at backend 2490 * state (and re-trigger the watch by setting the state repeatedly 2491 * to XenbusStateConnected (4)) we need to deal with this. 2492 * This is allowed as this is used to communicate to the guest 2493 * that the size of disk has changed! 2494 */ 2495 if ((dev->state != XenbusStateInitialised) && 2496 (dev->state != XenbusStateConnected)) { 2497 if (talk_to_blkback(dev, info)) 2498 break; 2499 } 2500 2501 blkfront_connect(info); 2502 break; 2503 2504 case XenbusStateClosed: 2505 if (dev->state == XenbusStateClosed) 2506 break; 2507 /* Missed the backend's Closing state -- fallthrough */ 2508 case XenbusStateClosing: 2509 if (info) 2510 blkfront_closing(info); 2511 break; 2512 } 2513 } 2514 2515 static int blkfront_remove(struct xenbus_device *xbdev) 2516 { 2517 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2518 struct block_device *bdev = NULL; 2519 struct gendisk *disk; 2520 2521 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2522 2523 blkif_free(info, 0); 2524 2525 mutex_lock(&info->mutex); 2526 2527 disk = info->gd; 2528 if (disk) 2529 bdev = bdget_disk(disk, 0); 2530 2531 info->xbdev = NULL; 2532 mutex_unlock(&info->mutex); 2533 2534 if (!bdev) { 2535 kfree(info); 2536 return 0; 2537 } 2538 2539 /* 2540 * The xbdev was removed before we reached the Closed 2541 * state. See if it's safe to remove the disk. If the bdev 2542 * isn't closed yet, we let release take care of it. 2543 */ 2544 2545 mutex_lock(&bdev->bd_mutex); 2546 info = disk->private_data; 2547 2548 dev_warn(disk_to_dev(disk), 2549 "%s was hot-unplugged, %d stale handles\n", 2550 xbdev->nodename, bdev->bd_openers); 2551 2552 if (info && !bdev->bd_openers) { 2553 xlvbd_release_gendisk(info); 2554 disk->private_data = NULL; 2555 kfree(info); 2556 } 2557 2558 mutex_unlock(&bdev->bd_mutex); 2559 bdput(bdev); 2560 2561 return 0; 2562 } 2563 2564 static int blkfront_is_ready(struct xenbus_device *dev) 2565 { 2566 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2567 2568 return info->is_ready && info->xbdev; 2569 } 2570 2571 static int blkif_open(struct block_device *bdev, fmode_t mode) 2572 { 2573 struct gendisk *disk = bdev->bd_disk; 2574 struct blkfront_info *info; 2575 int err = 0; 2576 2577 mutex_lock(&blkfront_mutex); 2578 2579 info = disk->private_data; 2580 if (!info) { 2581 /* xbdev gone */ 2582 err = -ERESTARTSYS; 2583 goto out; 2584 } 2585 2586 mutex_lock(&info->mutex); 2587 2588 if (!info->gd) 2589 /* xbdev is closed */ 2590 err = -ERESTARTSYS; 2591 2592 mutex_unlock(&info->mutex); 2593 2594 out: 2595 mutex_unlock(&blkfront_mutex); 2596 return err; 2597 } 2598 2599 static void blkif_release(struct gendisk *disk, fmode_t mode) 2600 { 2601 struct blkfront_info *info = disk->private_data; 2602 struct block_device *bdev; 2603 struct xenbus_device *xbdev; 2604 2605 mutex_lock(&blkfront_mutex); 2606 2607 bdev = bdget_disk(disk, 0); 2608 2609 if (!bdev) { 2610 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2611 goto out_mutex; 2612 } 2613 if (bdev->bd_openers) 2614 goto out; 2615 2616 /* 2617 * Check if we have been instructed to close. We will have 2618 * deferred this request, because the bdev was still open. 2619 */ 2620 2621 mutex_lock(&info->mutex); 2622 xbdev = info->xbdev; 2623 2624 if (xbdev && xbdev->state == XenbusStateClosing) { 2625 /* pending switch to state closed */ 2626 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2627 xlvbd_release_gendisk(info); 2628 xenbus_frontend_closed(info->xbdev); 2629 } 2630 2631 mutex_unlock(&info->mutex); 2632 2633 if (!xbdev) { 2634 /* sudden device removal */ 2635 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2636 xlvbd_release_gendisk(info); 2637 disk->private_data = NULL; 2638 kfree(info); 2639 } 2640 2641 out: 2642 bdput(bdev); 2643 out_mutex: 2644 mutex_unlock(&blkfront_mutex); 2645 } 2646 2647 static const struct block_device_operations xlvbd_block_fops = 2648 { 2649 .owner = THIS_MODULE, 2650 .open = blkif_open, 2651 .release = blkif_release, 2652 .getgeo = blkif_getgeo, 2653 .ioctl = blkif_ioctl, 2654 }; 2655 2656 2657 static const struct xenbus_device_id blkfront_ids[] = { 2658 { "vbd" }, 2659 { "" } 2660 }; 2661 2662 static struct xenbus_driver blkfront_driver = { 2663 .ids = blkfront_ids, 2664 .probe = blkfront_probe, 2665 .remove = blkfront_remove, 2666 .resume = blkfront_resume, 2667 .otherend_changed = blkback_changed, 2668 .is_ready = blkfront_is_ready, 2669 }; 2670 2671 static int __init xlblk_init(void) 2672 { 2673 int ret; 2674 int nr_cpus = num_online_cpus(); 2675 2676 if (!xen_domain()) 2677 return -ENODEV; 2678 2679 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2680 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2681 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2682 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2683 } 2684 2685 if (xen_blkif_max_queues > nr_cpus) { 2686 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2687 xen_blkif_max_queues, nr_cpus); 2688 xen_blkif_max_queues = nr_cpus; 2689 } 2690 2691 if (!xen_has_pv_disk_devices()) 2692 return -ENODEV; 2693 2694 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2695 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n", 2696 XENVBD_MAJOR, DEV_NAME); 2697 return -ENODEV; 2698 } 2699 2700 ret = xenbus_register_frontend(&blkfront_driver); 2701 if (ret) { 2702 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2703 return ret; 2704 } 2705 2706 return 0; 2707 } 2708 module_init(xlblk_init); 2709 2710 2711 static void __exit xlblk_exit(void) 2712 { 2713 xenbus_unregister_driver(&blkfront_driver); 2714 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2715 kfree(minors); 2716 } 2717 module_exit(xlblk_exit); 2718 2719 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2720 MODULE_LICENSE("GPL"); 2721 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2722 MODULE_ALIAS("xen:vbd"); 2723 MODULE_ALIAS("xenblk"); 2724