xref: /openbmc/linux/drivers/block/xen-blkfront.c (revision 297ce026)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/major.h>
46 #include <linux/mutex.h>
47 #include <linux/scatterlist.h>
48 #include <linux/bitmap.h>
49 #include <linux/list.h>
50 #include <linux/workqueue.h>
51 #include <linux/sched/mm.h>
52 
53 #include <xen/xen.h>
54 #include <xen/xenbus.h>
55 #include <xen/grant_table.h>
56 #include <xen/events.h>
57 #include <xen/page.h>
58 #include <xen/platform_pci.h>
59 
60 #include <xen/interface/grant_table.h>
61 #include <xen/interface/io/blkif.h>
62 #include <xen/interface/io/protocols.h>
63 
64 #include <asm/xen/hypervisor.h>
65 
66 /*
67  * The minimal size of segment supported by the block framework is PAGE_SIZE.
68  * When Linux is using a different page size than Xen, it may not be possible
69  * to put all the data in a single segment.
70  * This can happen when the backend doesn't support indirect descriptor and
71  * therefore the maximum amount of data that a request can carry is
72  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
73  *
74  * Note that we only support one extra request. So the Linux page size
75  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
76  * 88KB.
77  */
78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
79 
80 enum blkif_state {
81 	BLKIF_STATE_DISCONNECTED,
82 	BLKIF_STATE_CONNECTED,
83 	BLKIF_STATE_SUSPENDED,
84 	BLKIF_STATE_ERROR,
85 };
86 
87 struct grant {
88 	grant_ref_t gref;
89 	struct page *page;
90 	struct list_head node;
91 };
92 
93 enum blk_req_status {
94 	REQ_PROCESSING,
95 	REQ_WAITING,
96 	REQ_DONE,
97 	REQ_ERROR,
98 	REQ_EOPNOTSUPP,
99 };
100 
101 struct blk_shadow {
102 	struct blkif_request req;
103 	struct request *request;
104 	struct grant **grants_used;
105 	struct grant **indirect_grants;
106 	struct scatterlist *sg;
107 	unsigned int num_sg;
108 	enum blk_req_status status;
109 
110 	#define NO_ASSOCIATED_ID ~0UL
111 	/*
112 	 * Id of the sibling if we ever need 2 requests when handling a
113 	 * block I/O request
114 	 */
115 	unsigned long associated_id;
116 };
117 
118 struct blkif_req {
119 	blk_status_t	error;
120 };
121 
122 static inline struct blkif_req *blkif_req(struct request *rq)
123 {
124 	return blk_mq_rq_to_pdu(rq);
125 }
126 
127 static DEFINE_MUTEX(blkfront_mutex);
128 static const struct block_device_operations xlvbd_block_fops;
129 static struct delayed_work blkfront_work;
130 static LIST_HEAD(info_list);
131 
132 /*
133  * Maximum number of segments in indirect requests, the actual value used by
134  * the frontend driver is the minimum of this value and the value provided
135  * by the backend driver.
136  */
137 
138 static unsigned int xen_blkif_max_segments = 32;
139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
140 MODULE_PARM_DESC(max_indirect_segments,
141 		 "Maximum amount of segments in indirect requests (default is 32)");
142 
143 static unsigned int xen_blkif_max_queues = 4;
144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
146 
147 /*
148  * Maximum order of pages to be used for the shared ring between front and
149  * backend, 4KB page granularity is used.
150  */
151 static unsigned int xen_blkif_max_ring_order;
152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
154 
155 #define BLK_RING_SIZE(info)	\
156 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
157 
158 /*
159  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
160  * characters are enough. Define to 20 to keep consistent with backend.
161  */
162 #define RINGREF_NAME_LEN (20)
163 /*
164  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
165  */
166 #define QUEUE_NAME_LEN (17)
167 
168 /*
169  *  Per-ring info.
170  *  Every blkfront device can associate with one or more blkfront_ring_info,
171  *  depending on how many hardware queues/rings to be used.
172  */
173 struct blkfront_ring_info {
174 	/* Lock to protect data in every ring buffer. */
175 	spinlock_t ring_lock;
176 	struct blkif_front_ring ring;
177 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
178 	unsigned int evtchn, irq;
179 	struct work_struct work;
180 	struct gnttab_free_callback callback;
181 	struct list_head indirect_pages;
182 	struct list_head grants;
183 	unsigned int persistent_gnts_c;
184 	unsigned long shadow_free;
185 	struct blkfront_info *dev_info;
186 	struct blk_shadow shadow[];
187 };
188 
189 /*
190  * We have one of these per vbd, whether ide, scsi or 'other'.  They
191  * hang in private_data off the gendisk structure. We may end up
192  * putting all kinds of interesting stuff here :-)
193  */
194 struct blkfront_info
195 {
196 	struct mutex mutex;
197 	struct xenbus_device *xbdev;
198 	struct gendisk *gd;
199 	u16 sector_size;
200 	unsigned int physical_sector_size;
201 	unsigned long vdisk_info;
202 	int vdevice;
203 	blkif_vdev_t handle;
204 	enum blkif_state connected;
205 	/* Number of pages per ring buffer. */
206 	unsigned int nr_ring_pages;
207 	struct request_queue *rq;
208 	unsigned int feature_flush:1;
209 	unsigned int feature_fua:1;
210 	unsigned int feature_discard:1;
211 	unsigned int feature_secdiscard:1;
212 	unsigned int feature_persistent:1;
213 	unsigned int discard_granularity;
214 	unsigned int discard_alignment;
215 	/* Number of 4KB segments handled */
216 	unsigned int max_indirect_segments;
217 	int is_ready;
218 	struct blk_mq_tag_set tag_set;
219 	struct blkfront_ring_info *rinfo;
220 	unsigned int nr_rings;
221 	unsigned int rinfo_size;
222 	/* Save uncomplete reqs and bios for migration. */
223 	struct list_head requests;
224 	struct bio_list bio_list;
225 	struct list_head info_list;
226 };
227 
228 static unsigned int nr_minors;
229 static unsigned long *minors;
230 static DEFINE_SPINLOCK(minor_lock);
231 
232 #define PARTS_PER_DISK		16
233 #define PARTS_PER_EXT_DISK      256
234 
235 #define BLKIF_MAJOR(dev) ((dev)>>8)
236 #define BLKIF_MINOR(dev) ((dev) & 0xff)
237 
238 #define EXT_SHIFT 28
239 #define EXTENDED (1<<EXT_SHIFT)
240 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
241 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
242 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
243 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
244 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
245 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
246 
247 #define DEV_NAME	"xvd"	/* name in /dev */
248 
249 /*
250  * Grants are always the same size as a Xen page (i.e 4KB).
251  * A physical segment is always the same size as a Linux page.
252  * Number of grants per physical segment
253  */
254 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
255 
256 #define GRANTS_PER_INDIRECT_FRAME \
257 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
258 
259 #define INDIRECT_GREFS(_grants)		\
260 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
261 
262 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
263 static void blkfront_gather_backend_features(struct blkfront_info *info);
264 static int negotiate_mq(struct blkfront_info *info);
265 
266 #define for_each_rinfo(info, ptr, idx)				\
267 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
268 	     (idx) < (info)->nr_rings;				\
269 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
270 
271 static inline struct blkfront_ring_info *
272 get_rinfo(const struct blkfront_info *info, unsigned int i)
273 {
274 	BUG_ON(i >= info->nr_rings);
275 	return (void *)info->rinfo + i * info->rinfo_size;
276 }
277 
278 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
279 {
280 	unsigned long free = rinfo->shadow_free;
281 
282 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
283 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
284 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
285 	return free;
286 }
287 
288 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
289 			      unsigned long id)
290 {
291 	if (rinfo->shadow[id].req.u.rw.id != id)
292 		return -EINVAL;
293 	if (rinfo->shadow[id].request == NULL)
294 		return -EINVAL;
295 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
296 	rinfo->shadow[id].request = NULL;
297 	rinfo->shadow_free = id;
298 	return 0;
299 }
300 
301 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
302 {
303 	struct blkfront_info *info = rinfo->dev_info;
304 	struct page *granted_page;
305 	struct grant *gnt_list_entry, *n;
306 	int i = 0;
307 
308 	while (i < num) {
309 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
310 		if (!gnt_list_entry)
311 			goto out_of_memory;
312 
313 		if (info->feature_persistent) {
314 			granted_page = alloc_page(GFP_NOIO);
315 			if (!granted_page) {
316 				kfree(gnt_list_entry);
317 				goto out_of_memory;
318 			}
319 			gnt_list_entry->page = granted_page;
320 		}
321 
322 		gnt_list_entry->gref = INVALID_GRANT_REF;
323 		list_add(&gnt_list_entry->node, &rinfo->grants);
324 		i++;
325 	}
326 
327 	return 0;
328 
329 out_of_memory:
330 	list_for_each_entry_safe(gnt_list_entry, n,
331 	                         &rinfo->grants, node) {
332 		list_del(&gnt_list_entry->node);
333 		if (info->feature_persistent)
334 			__free_page(gnt_list_entry->page);
335 		kfree(gnt_list_entry);
336 		i--;
337 	}
338 	BUG_ON(i != 0);
339 	return -ENOMEM;
340 }
341 
342 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
343 {
344 	struct grant *gnt_list_entry;
345 
346 	BUG_ON(list_empty(&rinfo->grants));
347 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
348 					  node);
349 	list_del(&gnt_list_entry->node);
350 
351 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
352 		rinfo->persistent_gnts_c--;
353 
354 	return gnt_list_entry;
355 }
356 
357 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
358 					const struct blkfront_info *info)
359 {
360 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
361 						 info->xbdev->otherend_id,
362 						 gnt_list_entry->page,
363 						 0);
364 }
365 
366 static struct grant *get_grant(grant_ref_t *gref_head,
367 			       unsigned long gfn,
368 			       struct blkfront_ring_info *rinfo)
369 {
370 	struct grant *gnt_list_entry = get_free_grant(rinfo);
371 	struct blkfront_info *info = rinfo->dev_info;
372 
373 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
374 		return gnt_list_entry;
375 
376 	/* Assign a gref to this page */
377 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
378 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
379 	if (info->feature_persistent)
380 		grant_foreign_access(gnt_list_entry, info);
381 	else {
382 		/* Grant access to the GFN passed by the caller */
383 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
384 						info->xbdev->otherend_id,
385 						gfn, 0);
386 	}
387 
388 	return gnt_list_entry;
389 }
390 
391 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
392 					struct blkfront_ring_info *rinfo)
393 {
394 	struct grant *gnt_list_entry = get_free_grant(rinfo);
395 	struct blkfront_info *info = rinfo->dev_info;
396 
397 	if (gnt_list_entry->gref != INVALID_GRANT_REF)
398 		return gnt_list_entry;
399 
400 	/* Assign a gref to this page */
401 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
402 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
403 	if (!info->feature_persistent) {
404 		struct page *indirect_page;
405 
406 		/* Fetch a pre-allocated page to use for indirect grefs */
407 		BUG_ON(list_empty(&rinfo->indirect_pages));
408 		indirect_page = list_first_entry(&rinfo->indirect_pages,
409 						 struct page, lru);
410 		list_del(&indirect_page->lru);
411 		gnt_list_entry->page = indirect_page;
412 	}
413 	grant_foreign_access(gnt_list_entry, info);
414 
415 	return gnt_list_entry;
416 }
417 
418 static const char *op_name(int op)
419 {
420 	static const char *const names[] = {
421 		[BLKIF_OP_READ] = "read",
422 		[BLKIF_OP_WRITE] = "write",
423 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
424 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
425 		[BLKIF_OP_DISCARD] = "discard" };
426 
427 	if (op < 0 || op >= ARRAY_SIZE(names))
428 		return "unknown";
429 
430 	if (!names[op])
431 		return "reserved";
432 
433 	return names[op];
434 }
435 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
436 {
437 	unsigned int end = minor + nr;
438 	int rc;
439 
440 	if (end > nr_minors) {
441 		unsigned long *bitmap, *old;
442 
443 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
444 				 GFP_KERNEL);
445 		if (bitmap == NULL)
446 			return -ENOMEM;
447 
448 		spin_lock(&minor_lock);
449 		if (end > nr_minors) {
450 			old = minors;
451 			memcpy(bitmap, minors,
452 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
453 			minors = bitmap;
454 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
455 		} else
456 			old = bitmap;
457 		spin_unlock(&minor_lock);
458 		kfree(old);
459 	}
460 
461 	spin_lock(&minor_lock);
462 	if (find_next_bit(minors, end, minor) >= end) {
463 		bitmap_set(minors, minor, nr);
464 		rc = 0;
465 	} else
466 		rc = -EBUSY;
467 	spin_unlock(&minor_lock);
468 
469 	return rc;
470 }
471 
472 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
473 {
474 	unsigned int end = minor + nr;
475 
476 	BUG_ON(end > nr_minors);
477 	spin_lock(&minor_lock);
478 	bitmap_clear(minors,  minor, nr);
479 	spin_unlock(&minor_lock);
480 }
481 
482 static void blkif_restart_queue_callback(void *arg)
483 {
484 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
485 	schedule_work(&rinfo->work);
486 }
487 
488 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
489 {
490 	/* We don't have real geometry info, but let's at least return
491 	   values consistent with the size of the device */
492 	sector_t nsect = get_capacity(bd->bd_disk);
493 	sector_t cylinders = nsect;
494 
495 	hg->heads = 0xff;
496 	hg->sectors = 0x3f;
497 	sector_div(cylinders, hg->heads * hg->sectors);
498 	hg->cylinders = cylinders;
499 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
500 		hg->cylinders = 0xffff;
501 	return 0;
502 }
503 
504 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
505 		       unsigned command, unsigned long argument)
506 {
507 	struct blkfront_info *info = bdev->bd_disk->private_data;
508 	int i;
509 
510 	switch (command) {
511 	case CDROMMULTISESSION:
512 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
513 			if (put_user(0, (char __user *)(argument + i)))
514 				return -EFAULT;
515 		return 0;
516 	case CDROM_GET_CAPABILITY:
517 		if (!(info->vdisk_info & VDISK_CDROM))
518 			return -EINVAL;
519 		return 0;
520 	default:
521 		return -EINVAL;
522 	}
523 }
524 
525 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
526 					    struct request *req,
527 					    struct blkif_request **ring_req)
528 {
529 	unsigned long id;
530 
531 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
532 	rinfo->ring.req_prod_pvt++;
533 
534 	id = get_id_from_freelist(rinfo);
535 	rinfo->shadow[id].request = req;
536 	rinfo->shadow[id].status = REQ_PROCESSING;
537 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
538 
539 	rinfo->shadow[id].req.u.rw.id = id;
540 
541 	return id;
542 }
543 
544 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
545 {
546 	struct blkfront_info *info = rinfo->dev_info;
547 	struct blkif_request *ring_req, *final_ring_req;
548 	unsigned long id;
549 
550 	/* Fill out a communications ring structure. */
551 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
552 	ring_req = &rinfo->shadow[id].req;
553 
554 	ring_req->operation = BLKIF_OP_DISCARD;
555 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
556 	ring_req->u.discard.id = id;
557 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
558 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
559 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
560 	else
561 		ring_req->u.discard.flag = 0;
562 
563 	/* Copy the request to the ring page. */
564 	*final_ring_req = *ring_req;
565 	rinfo->shadow[id].status = REQ_WAITING;
566 
567 	return 0;
568 }
569 
570 struct setup_rw_req {
571 	unsigned int grant_idx;
572 	struct blkif_request_segment *segments;
573 	struct blkfront_ring_info *rinfo;
574 	struct blkif_request *ring_req;
575 	grant_ref_t gref_head;
576 	unsigned int id;
577 	/* Only used when persistent grant is used and it's a write request */
578 	bool need_copy;
579 	unsigned int bvec_off;
580 	char *bvec_data;
581 
582 	bool require_extra_req;
583 	struct blkif_request *extra_ring_req;
584 };
585 
586 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
587 				     unsigned int len, void *data)
588 {
589 	struct setup_rw_req *setup = data;
590 	int n, ref;
591 	struct grant *gnt_list_entry;
592 	unsigned int fsect, lsect;
593 	/* Convenient aliases */
594 	unsigned int grant_idx = setup->grant_idx;
595 	struct blkif_request *ring_req = setup->ring_req;
596 	struct blkfront_ring_info *rinfo = setup->rinfo;
597 	/*
598 	 * We always use the shadow of the first request to store the list
599 	 * of grant associated to the block I/O request. This made the
600 	 * completion more easy to handle even if the block I/O request is
601 	 * split.
602 	 */
603 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
604 
605 	if (unlikely(setup->require_extra_req &&
606 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
607 		/*
608 		 * We are using the second request, setup grant_idx
609 		 * to be the index of the segment array.
610 		 */
611 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
612 		ring_req = setup->extra_ring_req;
613 	}
614 
615 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
616 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
617 		if (setup->segments)
618 			kunmap_atomic(setup->segments);
619 
620 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
621 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
622 		shadow->indirect_grants[n] = gnt_list_entry;
623 		setup->segments = kmap_atomic(gnt_list_entry->page);
624 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
625 	}
626 
627 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
628 	ref = gnt_list_entry->gref;
629 	/*
630 	 * All the grants are stored in the shadow of the first
631 	 * request. Therefore we have to use the global index.
632 	 */
633 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
634 
635 	if (setup->need_copy) {
636 		void *shared_data;
637 
638 		shared_data = kmap_atomic(gnt_list_entry->page);
639 		/*
640 		 * this does not wipe data stored outside the
641 		 * range sg->offset..sg->offset+sg->length.
642 		 * Therefore, blkback *could* see data from
643 		 * previous requests. This is OK as long as
644 		 * persistent grants are shared with just one
645 		 * domain. It may need refactoring if this
646 		 * changes
647 		 */
648 		memcpy(shared_data + offset,
649 		       setup->bvec_data + setup->bvec_off,
650 		       len);
651 
652 		kunmap_atomic(shared_data);
653 		setup->bvec_off += len;
654 	}
655 
656 	fsect = offset >> 9;
657 	lsect = fsect + (len >> 9) - 1;
658 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
659 		ring_req->u.rw.seg[grant_idx] =
660 			(struct blkif_request_segment) {
661 				.gref       = ref,
662 				.first_sect = fsect,
663 				.last_sect  = lsect };
664 	} else {
665 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
666 			(struct blkif_request_segment) {
667 				.gref       = ref,
668 				.first_sect = fsect,
669 				.last_sect  = lsect };
670 	}
671 
672 	(setup->grant_idx)++;
673 }
674 
675 static void blkif_setup_extra_req(struct blkif_request *first,
676 				  struct blkif_request *second)
677 {
678 	uint16_t nr_segments = first->u.rw.nr_segments;
679 
680 	/*
681 	 * The second request is only present when the first request uses
682 	 * all its segments. It's always the continuity of the first one.
683 	 */
684 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
685 
686 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
687 	second->u.rw.sector_number = first->u.rw.sector_number +
688 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
689 
690 	second->u.rw.handle = first->u.rw.handle;
691 	second->operation = first->operation;
692 }
693 
694 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
695 {
696 	struct blkfront_info *info = rinfo->dev_info;
697 	struct blkif_request *ring_req, *extra_ring_req = NULL;
698 	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
699 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
700 	bool require_extra_req = false;
701 	int i;
702 	struct setup_rw_req setup = {
703 		.grant_idx = 0,
704 		.segments = NULL,
705 		.rinfo = rinfo,
706 		.need_copy = rq_data_dir(req) && info->feature_persistent,
707 	};
708 
709 	/*
710 	 * Used to store if we are able to queue the request by just using
711 	 * existing persistent grants, or if we have to get new grants,
712 	 * as there are not sufficiently many free.
713 	 */
714 	bool new_persistent_gnts = false;
715 	struct scatterlist *sg;
716 	int num_sg, max_grefs, num_grant;
717 
718 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
719 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
720 		/*
721 		 * If we are using indirect segments we need to account
722 		 * for the indirect grefs used in the request.
723 		 */
724 		max_grefs += INDIRECT_GREFS(max_grefs);
725 
726 	/* Check if we have enough persistent grants to allocate a requests */
727 	if (rinfo->persistent_gnts_c < max_grefs) {
728 		new_persistent_gnts = true;
729 
730 		if (gnttab_alloc_grant_references(
731 		    max_grefs - rinfo->persistent_gnts_c,
732 		    &setup.gref_head) < 0) {
733 			gnttab_request_free_callback(
734 				&rinfo->callback,
735 				blkif_restart_queue_callback,
736 				rinfo,
737 				max_grefs - rinfo->persistent_gnts_c);
738 			return 1;
739 		}
740 	}
741 
742 	/* Fill out a communications ring structure. */
743 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
744 	ring_req = &rinfo->shadow[id].req;
745 
746 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
747 	num_grant = 0;
748 	/* Calculate the number of grant used */
749 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
750 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
751 
752 	require_extra_req = info->max_indirect_segments == 0 &&
753 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
754 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
755 
756 	rinfo->shadow[id].num_sg = num_sg;
757 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
758 	    likely(!require_extra_req)) {
759 		/*
760 		 * The indirect operation can only be a BLKIF_OP_READ or
761 		 * BLKIF_OP_WRITE
762 		 */
763 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
764 		ring_req->operation = BLKIF_OP_INDIRECT;
765 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
766 			BLKIF_OP_WRITE : BLKIF_OP_READ;
767 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
768 		ring_req->u.indirect.handle = info->handle;
769 		ring_req->u.indirect.nr_segments = num_grant;
770 	} else {
771 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
772 		ring_req->u.rw.handle = info->handle;
773 		ring_req->operation = rq_data_dir(req) ?
774 			BLKIF_OP_WRITE : BLKIF_OP_READ;
775 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
776 			/*
777 			 * Ideally we can do an unordered flush-to-disk.
778 			 * In case the backend onlysupports barriers, use that.
779 			 * A barrier request a superset of FUA, so we can
780 			 * implement it the same way.  (It's also a FLUSH+FUA,
781 			 * since it is guaranteed ordered WRT previous writes.)
782 			 */
783 			if (info->feature_flush && info->feature_fua)
784 				ring_req->operation =
785 					BLKIF_OP_WRITE_BARRIER;
786 			else if (info->feature_flush)
787 				ring_req->operation =
788 					BLKIF_OP_FLUSH_DISKCACHE;
789 			else
790 				ring_req->operation = 0;
791 		}
792 		ring_req->u.rw.nr_segments = num_grant;
793 		if (unlikely(require_extra_req)) {
794 			extra_id = blkif_ring_get_request(rinfo, req,
795 							  &final_extra_ring_req);
796 			extra_ring_req = &rinfo->shadow[extra_id].req;
797 
798 			/*
799 			 * Only the first request contains the scatter-gather
800 			 * list.
801 			 */
802 			rinfo->shadow[extra_id].num_sg = 0;
803 
804 			blkif_setup_extra_req(ring_req, extra_ring_req);
805 
806 			/* Link the 2 requests together */
807 			rinfo->shadow[extra_id].associated_id = id;
808 			rinfo->shadow[id].associated_id = extra_id;
809 		}
810 	}
811 
812 	setup.ring_req = ring_req;
813 	setup.id = id;
814 
815 	setup.require_extra_req = require_extra_req;
816 	if (unlikely(require_extra_req))
817 		setup.extra_ring_req = extra_ring_req;
818 
819 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
820 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
821 
822 		if (setup.need_copy) {
823 			setup.bvec_off = sg->offset;
824 			setup.bvec_data = kmap_atomic(sg_page(sg));
825 		}
826 
827 		gnttab_foreach_grant_in_range(sg_page(sg),
828 					      sg->offset,
829 					      sg->length,
830 					      blkif_setup_rw_req_grant,
831 					      &setup);
832 
833 		if (setup.need_copy)
834 			kunmap_atomic(setup.bvec_data);
835 	}
836 	if (setup.segments)
837 		kunmap_atomic(setup.segments);
838 
839 	/* Copy request(s) to the ring page. */
840 	*final_ring_req = *ring_req;
841 	rinfo->shadow[id].status = REQ_WAITING;
842 	if (unlikely(require_extra_req)) {
843 		*final_extra_ring_req = *extra_ring_req;
844 		rinfo->shadow[extra_id].status = REQ_WAITING;
845 	}
846 
847 	if (new_persistent_gnts)
848 		gnttab_free_grant_references(setup.gref_head);
849 
850 	return 0;
851 }
852 
853 /*
854  * Generate a Xen blkfront IO request from a blk layer request.  Reads
855  * and writes are handled as expected.
856  *
857  * @req: a request struct
858  */
859 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
860 {
861 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
862 		return 1;
863 
864 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
865 		     req_op(req) == REQ_OP_SECURE_ERASE))
866 		return blkif_queue_discard_req(req, rinfo);
867 	else
868 		return blkif_queue_rw_req(req, rinfo);
869 }
870 
871 static inline void flush_requests(struct blkfront_ring_info *rinfo)
872 {
873 	int notify;
874 
875 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
876 
877 	if (notify)
878 		notify_remote_via_irq(rinfo->irq);
879 }
880 
881 static inline bool blkif_request_flush_invalid(struct request *req,
882 					       struct blkfront_info *info)
883 {
884 	return (blk_rq_is_passthrough(req) ||
885 		((req_op(req) == REQ_OP_FLUSH) &&
886 		 !info->feature_flush) ||
887 		((req->cmd_flags & REQ_FUA) &&
888 		 !info->feature_fua));
889 }
890 
891 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
892 			  const struct blk_mq_queue_data *qd)
893 {
894 	unsigned long flags;
895 	int qid = hctx->queue_num;
896 	struct blkfront_info *info = hctx->queue->queuedata;
897 	struct blkfront_ring_info *rinfo = NULL;
898 
899 	rinfo = get_rinfo(info, qid);
900 	blk_mq_start_request(qd->rq);
901 	spin_lock_irqsave(&rinfo->ring_lock, flags);
902 	if (RING_FULL(&rinfo->ring))
903 		goto out_busy;
904 
905 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
906 		goto out_err;
907 
908 	if (blkif_queue_request(qd->rq, rinfo))
909 		goto out_busy;
910 
911 	flush_requests(rinfo);
912 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
913 	return BLK_STS_OK;
914 
915 out_err:
916 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
917 	return BLK_STS_IOERR;
918 
919 out_busy:
920 	blk_mq_stop_hw_queue(hctx);
921 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
922 	return BLK_STS_DEV_RESOURCE;
923 }
924 
925 static void blkif_complete_rq(struct request *rq)
926 {
927 	blk_mq_end_request(rq, blkif_req(rq)->error);
928 }
929 
930 static const struct blk_mq_ops blkfront_mq_ops = {
931 	.queue_rq = blkif_queue_rq,
932 	.complete = blkif_complete_rq,
933 };
934 
935 static void blkif_set_queue_limits(struct blkfront_info *info)
936 {
937 	struct request_queue *rq = info->rq;
938 	struct gendisk *gd = info->gd;
939 	unsigned int segments = info->max_indirect_segments ? :
940 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
941 
942 	blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
943 
944 	if (info->feature_discard) {
945 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
946 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
947 		rq->limits.discard_granularity = info->discard_granularity ?:
948 						 info->physical_sector_size;
949 		rq->limits.discard_alignment = info->discard_alignment;
950 		if (info->feature_secdiscard)
951 			blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
952 	}
953 
954 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
955 	blk_queue_logical_block_size(rq, info->sector_size);
956 	blk_queue_physical_block_size(rq, info->physical_sector_size);
957 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
958 
959 	/* Each segment in a request is up to an aligned page in size. */
960 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
961 	blk_queue_max_segment_size(rq, PAGE_SIZE);
962 
963 	/* Ensure a merged request will fit in a single I/O ring slot. */
964 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
965 
966 	/* Make sure buffer addresses are sector-aligned. */
967 	blk_queue_dma_alignment(rq, 511);
968 }
969 
970 static const char *flush_info(struct blkfront_info *info)
971 {
972 	if (info->feature_flush && info->feature_fua)
973 		return "barrier: enabled;";
974 	else if (info->feature_flush)
975 		return "flush diskcache: enabled;";
976 	else
977 		return "barrier or flush: disabled;";
978 }
979 
980 static void xlvbd_flush(struct blkfront_info *info)
981 {
982 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
983 			      info->feature_fua ? true : false);
984 	pr_info("blkfront: %s: %s %s %s %s %s\n",
985 		info->gd->disk_name, flush_info(info),
986 		"persistent grants:", info->feature_persistent ?
987 		"enabled;" : "disabled;", "indirect descriptors:",
988 		info->max_indirect_segments ? "enabled;" : "disabled;");
989 }
990 
991 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
992 {
993 	int major;
994 	major = BLKIF_MAJOR(vdevice);
995 	*minor = BLKIF_MINOR(vdevice);
996 	switch (major) {
997 		case XEN_IDE0_MAJOR:
998 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
999 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1000 				EMULATED_HD_DISK_MINOR_OFFSET;
1001 			break;
1002 		case XEN_IDE1_MAJOR:
1003 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1004 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1005 				EMULATED_HD_DISK_MINOR_OFFSET;
1006 			break;
1007 		case XEN_SCSI_DISK0_MAJOR:
1008 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1009 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1010 			break;
1011 		case XEN_SCSI_DISK1_MAJOR:
1012 		case XEN_SCSI_DISK2_MAJOR:
1013 		case XEN_SCSI_DISK3_MAJOR:
1014 		case XEN_SCSI_DISK4_MAJOR:
1015 		case XEN_SCSI_DISK5_MAJOR:
1016 		case XEN_SCSI_DISK6_MAJOR:
1017 		case XEN_SCSI_DISK7_MAJOR:
1018 			*offset = (*minor / PARTS_PER_DISK) +
1019 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1020 				EMULATED_SD_DISK_NAME_OFFSET;
1021 			*minor = *minor +
1022 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1023 				EMULATED_SD_DISK_MINOR_OFFSET;
1024 			break;
1025 		case XEN_SCSI_DISK8_MAJOR:
1026 		case XEN_SCSI_DISK9_MAJOR:
1027 		case XEN_SCSI_DISK10_MAJOR:
1028 		case XEN_SCSI_DISK11_MAJOR:
1029 		case XEN_SCSI_DISK12_MAJOR:
1030 		case XEN_SCSI_DISK13_MAJOR:
1031 		case XEN_SCSI_DISK14_MAJOR:
1032 		case XEN_SCSI_DISK15_MAJOR:
1033 			*offset = (*minor / PARTS_PER_DISK) +
1034 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1035 				EMULATED_SD_DISK_NAME_OFFSET;
1036 			*minor = *minor +
1037 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1038 				EMULATED_SD_DISK_MINOR_OFFSET;
1039 			break;
1040 		case XENVBD_MAJOR:
1041 			*offset = *minor / PARTS_PER_DISK;
1042 			break;
1043 		default:
1044 			printk(KERN_WARNING "blkfront: your disk configuration is "
1045 					"incorrect, please use an xvd device instead\n");
1046 			return -ENODEV;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static char *encode_disk_name(char *ptr, unsigned int n)
1052 {
1053 	if (n >= 26)
1054 		ptr = encode_disk_name(ptr, n / 26 - 1);
1055 	*ptr = 'a' + n % 26;
1056 	return ptr + 1;
1057 }
1058 
1059 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1060 		struct blkfront_info *info, u16 sector_size,
1061 		unsigned int physical_sector_size)
1062 {
1063 	struct gendisk *gd;
1064 	int nr_minors = 1;
1065 	int err;
1066 	unsigned int offset;
1067 	int minor;
1068 	int nr_parts;
1069 	char *ptr;
1070 
1071 	BUG_ON(info->gd != NULL);
1072 	BUG_ON(info->rq != NULL);
1073 
1074 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1075 		/* this is above the extended range; something is wrong */
1076 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1077 		return -ENODEV;
1078 	}
1079 
1080 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1081 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1082 		if (err)
1083 			return err;
1084 		nr_parts = PARTS_PER_DISK;
1085 	} else {
1086 		minor = BLKIF_MINOR_EXT(info->vdevice);
1087 		nr_parts = PARTS_PER_EXT_DISK;
1088 		offset = minor / nr_parts;
1089 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1090 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1091 					"emulated IDE disks,\n\t choose an xvd device name"
1092 					"from xvde on\n", info->vdevice);
1093 	}
1094 	if (minor >> MINORBITS) {
1095 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1096 			info->vdevice, minor);
1097 		return -ENODEV;
1098 	}
1099 
1100 	if ((minor % nr_parts) == 0)
1101 		nr_minors = nr_parts;
1102 
1103 	err = xlbd_reserve_minors(minor, nr_minors);
1104 	if (err)
1105 		return err;
1106 
1107 	memset(&info->tag_set, 0, sizeof(info->tag_set));
1108 	info->tag_set.ops = &blkfront_mq_ops;
1109 	info->tag_set.nr_hw_queues = info->nr_rings;
1110 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1111 		/*
1112 		 * When indirect descriptior is not supported, the I/O request
1113 		 * will be split between multiple request in the ring.
1114 		 * To avoid problems when sending the request, divide by
1115 		 * 2 the depth of the queue.
1116 		 */
1117 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1118 	} else
1119 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1120 	info->tag_set.numa_node = NUMA_NO_NODE;
1121 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1122 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1123 	info->tag_set.driver_data = info;
1124 
1125 	err = blk_mq_alloc_tag_set(&info->tag_set);
1126 	if (err)
1127 		goto out_release_minors;
1128 
1129 	gd = blk_mq_alloc_disk(&info->tag_set, info);
1130 	if (IS_ERR(gd)) {
1131 		err = PTR_ERR(gd);
1132 		goto out_free_tag_set;
1133 	}
1134 
1135 	strcpy(gd->disk_name, DEV_NAME);
1136 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1137 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1138 	if (nr_minors > 1)
1139 		*ptr = 0;
1140 	else
1141 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1142 			 "%d", minor & (nr_parts - 1));
1143 
1144 	gd->major = XENVBD_MAJOR;
1145 	gd->first_minor = minor;
1146 	gd->minors = nr_minors;
1147 	gd->fops = &xlvbd_block_fops;
1148 	gd->private_data = info;
1149 	set_capacity(gd, capacity);
1150 
1151 	info->rq = gd->queue;
1152 	info->gd = gd;
1153 	info->sector_size = sector_size;
1154 	info->physical_sector_size = physical_sector_size;
1155 	blkif_set_queue_limits(info);
1156 
1157 	xlvbd_flush(info);
1158 
1159 	if (info->vdisk_info & VDISK_READONLY)
1160 		set_disk_ro(gd, 1);
1161 	if (info->vdisk_info & VDISK_REMOVABLE)
1162 		gd->flags |= GENHD_FL_REMOVABLE;
1163 
1164 	return 0;
1165 
1166 out_free_tag_set:
1167 	blk_mq_free_tag_set(&info->tag_set);
1168 out_release_minors:
1169 	xlbd_release_minors(minor, nr_minors);
1170 	return err;
1171 }
1172 
1173 /* Already hold rinfo->ring_lock. */
1174 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1175 {
1176 	if (!RING_FULL(&rinfo->ring))
1177 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1178 }
1179 
1180 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1181 {
1182 	unsigned long flags;
1183 
1184 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1185 	kick_pending_request_queues_locked(rinfo);
1186 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1187 }
1188 
1189 static void blkif_restart_queue(struct work_struct *work)
1190 {
1191 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1192 
1193 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1194 		kick_pending_request_queues(rinfo);
1195 }
1196 
1197 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1198 {
1199 	struct grant *persistent_gnt, *n;
1200 	struct blkfront_info *info = rinfo->dev_info;
1201 	int i, j, segs;
1202 
1203 	/*
1204 	 * Remove indirect pages, this only happens when using indirect
1205 	 * descriptors but not persistent grants
1206 	 */
1207 	if (!list_empty(&rinfo->indirect_pages)) {
1208 		struct page *indirect_page, *n;
1209 
1210 		BUG_ON(info->feature_persistent);
1211 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1212 			list_del(&indirect_page->lru);
1213 			__free_page(indirect_page);
1214 		}
1215 	}
1216 
1217 	/* Remove all persistent grants. */
1218 	if (!list_empty(&rinfo->grants)) {
1219 		list_for_each_entry_safe(persistent_gnt, n,
1220 					 &rinfo->grants, node) {
1221 			list_del(&persistent_gnt->node);
1222 			if (persistent_gnt->gref != INVALID_GRANT_REF) {
1223 				gnttab_end_foreign_access(persistent_gnt->gref,
1224 							  0UL);
1225 				rinfo->persistent_gnts_c--;
1226 			}
1227 			if (info->feature_persistent)
1228 				__free_page(persistent_gnt->page);
1229 			kfree(persistent_gnt);
1230 		}
1231 	}
1232 	BUG_ON(rinfo->persistent_gnts_c != 0);
1233 
1234 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1235 		/*
1236 		 * Clear persistent grants present in requests already
1237 		 * on the shared ring
1238 		 */
1239 		if (!rinfo->shadow[i].request)
1240 			goto free_shadow;
1241 
1242 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1243 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1244 		       rinfo->shadow[i].req.u.rw.nr_segments;
1245 		for (j = 0; j < segs; j++) {
1246 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1247 			gnttab_end_foreign_access(persistent_gnt->gref, 0UL);
1248 			if (info->feature_persistent)
1249 				__free_page(persistent_gnt->page);
1250 			kfree(persistent_gnt);
1251 		}
1252 
1253 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1254 			/*
1255 			 * If this is not an indirect operation don't try to
1256 			 * free indirect segments
1257 			 */
1258 			goto free_shadow;
1259 
1260 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1261 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1262 			gnttab_end_foreign_access(persistent_gnt->gref, 0UL);
1263 			__free_page(persistent_gnt->page);
1264 			kfree(persistent_gnt);
1265 		}
1266 
1267 free_shadow:
1268 		kvfree(rinfo->shadow[i].grants_used);
1269 		rinfo->shadow[i].grants_used = NULL;
1270 		kvfree(rinfo->shadow[i].indirect_grants);
1271 		rinfo->shadow[i].indirect_grants = NULL;
1272 		kvfree(rinfo->shadow[i].sg);
1273 		rinfo->shadow[i].sg = NULL;
1274 	}
1275 
1276 	/* No more gnttab callback work. */
1277 	gnttab_cancel_free_callback(&rinfo->callback);
1278 
1279 	/* Flush gnttab callback work. Must be done with no locks held. */
1280 	flush_work(&rinfo->work);
1281 
1282 	/* Free resources associated with old device channel. */
1283 	for (i = 0; i < info->nr_ring_pages; i++) {
1284 		if (rinfo->ring_ref[i] != INVALID_GRANT_REF) {
1285 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0);
1286 			rinfo->ring_ref[i] = INVALID_GRANT_REF;
1287 		}
1288 	}
1289 	free_pages_exact(rinfo->ring.sring,
1290 			 info->nr_ring_pages * XEN_PAGE_SIZE);
1291 	rinfo->ring.sring = NULL;
1292 
1293 	if (rinfo->irq)
1294 		unbind_from_irqhandler(rinfo->irq, rinfo);
1295 	rinfo->evtchn = rinfo->irq = 0;
1296 }
1297 
1298 static void blkif_free(struct blkfront_info *info, int suspend)
1299 {
1300 	unsigned int i;
1301 	struct blkfront_ring_info *rinfo;
1302 
1303 	/* Prevent new requests being issued until we fix things up. */
1304 	info->connected = suspend ?
1305 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1306 	/* No more blkif_request(). */
1307 	if (info->rq)
1308 		blk_mq_stop_hw_queues(info->rq);
1309 
1310 	for_each_rinfo(info, rinfo, i)
1311 		blkif_free_ring(rinfo);
1312 
1313 	kvfree(info->rinfo);
1314 	info->rinfo = NULL;
1315 	info->nr_rings = 0;
1316 }
1317 
1318 struct copy_from_grant {
1319 	const struct blk_shadow *s;
1320 	unsigned int grant_idx;
1321 	unsigned int bvec_offset;
1322 	char *bvec_data;
1323 };
1324 
1325 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1326 				  unsigned int len, void *data)
1327 {
1328 	struct copy_from_grant *info = data;
1329 	char *shared_data;
1330 	/* Convenient aliases */
1331 	const struct blk_shadow *s = info->s;
1332 
1333 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1334 
1335 	memcpy(info->bvec_data + info->bvec_offset,
1336 	       shared_data + offset, len);
1337 
1338 	info->bvec_offset += len;
1339 	info->grant_idx++;
1340 
1341 	kunmap_atomic(shared_data);
1342 }
1343 
1344 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1345 {
1346 	switch (rsp)
1347 	{
1348 	case BLKIF_RSP_OKAY:
1349 		return REQ_DONE;
1350 	case BLKIF_RSP_EOPNOTSUPP:
1351 		return REQ_EOPNOTSUPP;
1352 	case BLKIF_RSP_ERROR:
1353 	default:
1354 		return REQ_ERROR;
1355 	}
1356 }
1357 
1358 /*
1359  * Get the final status of the block request based on two ring response
1360  */
1361 static int blkif_get_final_status(enum blk_req_status s1,
1362 				  enum blk_req_status s2)
1363 {
1364 	BUG_ON(s1 < REQ_DONE);
1365 	BUG_ON(s2 < REQ_DONE);
1366 
1367 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1368 		return BLKIF_RSP_ERROR;
1369 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1370 		return BLKIF_RSP_EOPNOTSUPP;
1371 	return BLKIF_RSP_OKAY;
1372 }
1373 
1374 /*
1375  * Return values:
1376  *  1 response processed.
1377  *  0 missing further responses.
1378  * -1 error while processing.
1379  */
1380 static int blkif_completion(unsigned long *id,
1381 			    struct blkfront_ring_info *rinfo,
1382 			    struct blkif_response *bret)
1383 {
1384 	int i = 0;
1385 	struct scatterlist *sg;
1386 	int num_sg, num_grant;
1387 	struct blkfront_info *info = rinfo->dev_info;
1388 	struct blk_shadow *s = &rinfo->shadow[*id];
1389 	struct copy_from_grant data = {
1390 		.grant_idx = 0,
1391 	};
1392 
1393 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1394 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1395 
1396 	/* The I/O request may be split in two. */
1397 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1398 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1399 
1400 		/* Keep the status of the current response in shadow. */
1401 		s->status = blkif_rsp_to_req_status(bret->status);
1402 
1403 		/* Wait the second response if not yet here. */
1404 		if (s2->status < REQ_DONE)
1405 			return 0;
1406 
1407 		bret->status = blkif_get_final_status(s->status,
1408 						      s2->status);
1409 
1410 		/*
1411 		 * All the grants is stored in the first shadow in order
1412 		 * to make the completion code simpler.
1413 		 */
1414 		num_grant += s2->req.u.rw.nr_segments;
1415 
1416 		/*
1417 		 * The two responses may not come in order. Only the
1418 		 * first request will store the scatter-gather list.
1419 		 */
1420 		if (s2->num_sg != 0) {
1421 			/* Update "id" with the ID of the first response. */
1422 			*id = s->associated_id;
1423 			s = s2;
1424 		}
1425 
1426 		/*
1427 		 * We don't need anymore the second request, so recycling
1428 		 * it now.
1429 		 */
1430 		if (add_id_to_freelist(rinfo, s->associated_id))
1431 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1432 			     info->gd->disk_name, s->associated_id);
1433 	}
1434 
1435 	data.s = s;
1436 	num_sg = s->num_sg;
1437 
1438 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1439 		for_each_sg(s->sg, sg, num_sg, i) {
1440 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1441 
1442 			data.bvec_offset = sg->offset;
1443 			data.bvec_data = kmap_atomic(sg_page(sg));
1444 
1445 			gnttab_foreach_grant_in_range(sg_page(sg),
1446 						      sg->offset,
1447 						      sg->length,
1448 						      blkif_copy_from_grant,
1449 						      &data);
1450 
1451 			kunmap_atomic(data.bvec_data);
1452 		}
1453 	}
1454 	/* Add the persistent grant into the list of free grants */
1455 	for (i = 0; i < num_grant; i++) {
1456 		if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1457 			/*
1458 			 * If the grant is still mapped by the backend (the
1459 			 * backend has chosen to make this grant persistent)
1460 			 * we add it at the head of the list, so it will be
1461 			 * reused first.
1462 			 */
1463 			if (!info->feature_persistent) {
1464 				pr_alert("backed has not unmapped grant: %u\n",
1465 					 s->grants_used[i]->gref);
1466 				return -1;
1467 			}
1468 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1469 			rinfo->persistent_gnts_c++;
1470 		} else {
1471 			/*
1472 			 * If the grant is not mapped by the backend we add it
1473 			 * to the tail of the list, so it will not be picked
1474 			 * again unless we run out of persistent grants.
1475 			 */
1476 			s->grants_used[i]->gref = INVALID_GRANT_REF;
1477 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1478 		}
1479 	}
1480 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1481 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1482 			if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1483 				if (!info->feature_persistent) {
1484 					pr_alert("backed has not unmapped grant: %u\n",
1485 						 s->indirect_grants[i]->gref);
1486 					return -1;
1487 				}
1488 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1489 				rinfo->persistent_gnts_c++;
1490 			} else {
1491 				struct page *indirect_page;
1492 
1493 				/*
1494 				 * Add the used indirect page back to the list of
1495 				 * available pages for indirect grefs.
1496 				 */
1497 				if (!info->feature_persistent) {
1498 					indirect_page = s->indirect_grants[i]->page;
1499 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1500 				}
1501 				s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1502 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1503 			}
1504 		}
1505 	}
1506 
1507 	return 1;
1508 }
1509 
1510 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1511 {
1512 	struct request *req;
1513 	struct blkif_response bret;
1514 	RING_IDX i, rp;
1515 	unsigned long flags;
1516 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1517 	struct blkfront_info *info = rinfo->dev_info;
1518 	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1519 
1520 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1521 		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1522 		return IRQ_HANDLED;
1523 	}
1524 
1525 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1526  again:
1527 	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1528 	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1529 	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1530 		pr_alert("%s: illegal number of responses %u\n",
1531 			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1532 		goto err;
1533 	}
1534 
1535 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1536 		unsigned long id;
1537 		unsigned int op;
1538 
1539 		eoiflag = 0;
1540 
1541 		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1542 		id = bret.id;
1543 
1544 		/*
1545 		 * The backend has messed up and given us an id that we would
1546 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1547 		 * look in get_id_from_freelist.
1548 		 */
1549 		if (id >= BLK_RING_SIZE(info)) {
1550 			pr_alert("%s: response has incorrect id (%ld)\n",
1551 				 info->gd->disk_name, id);
1552 			goto err;
1553 		}
1554 		if (rinfo->shadow[id].status != REQ_WAITING) {
1555 			pr_alert("%s: response references no pending request\n",
1556 				 info->gd->disk_name);
1557 			goto err;
1558 		}
1559 
1560 		rinfo->shadow[id].status = REQ_PROCESSING;
1561 		req  = rinfo->shadow[id].request;
1562 
1563 		op = rinfo->shadow[id].req.operation;
1564 		if (op == BLKIF_OP_INDIRECT)
1565 			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1566 		if (bret.operation != op) {
1567 			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1568 				 info->gd->disk_name, bret.operation, op);
1569 			goto err;
1570 		}
1571 
1572 		if (bret.operation != BLKIF_OP_DISCARD) {
1573 			int ret;
1574 
1575 			/*
1576 			 * We may need to wait for an extra response if the
1577 			 * I/O request is split in 2
1578 			 */
1579 			ret = blkif_completion(&id, rinfo, &bret);
1580 			if (!ret)
1581 				continue;
1582 			if (unlikely(ret < 0))
1583 				goto err;
1584 		}
1585 
1586 		if (add_id_to_freelist(rinfo, id)) {
1587 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1588 			     info->gd->disk_name, op_name(bret.operation), id);
1589 			continue;
1590 		}
1591 
1592 		if (bret.status == BLKIF_RSP_OKAY)
1593 			blkif_req(req)->error = BLK_STS_OK;
1594 		else
1595 			blkif_req(req)->error = BLK_STS_IOERR;
1596 
1597 		switch (bret.operation) {
1598 		case BLKIF_OP_DISCARD:
1599 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1600 				struct request_queue *rq = info->rq;
1601 
1602 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1603 					   info->gd->disk_name, op_name(bret.operation));
1604 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1605 				info->feature_discard = 0;
1606 				info->feature_secdiscard = 0;
1607 				blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1608 				blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1609 			}
1610 			break;
1611 		case BLKIF_OP_FLUSH_DISKCACHE:
1612 		case BLKIF_OP_WRITE_BARRIER:
1613 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1614 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1615 				       info->gd->disk_name, op_name(bret.operation));
1616 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1617 			}
1618 			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1619 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1620 				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1621 				       info->gd->disk_name, op_name(bret.operation));
1622 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1623 			}
1624 			if (unlikely(blkif_req(req)->error)) {
1625 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1626 					blkif_req(req)->error = BLK_STS_OK;
1627 				info->feature_fua = 0;
1628 				info->feature_flush = 0;
1629 				xlvbd_flush(info);
1630 			}
1631 			fallthrough;
1632 		case BLKIF_OP_READ:
1633 		case BLKIF_OP_WRITE:
1634 			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1635 				dev_dbg_ratelimited(&info->xbdev->dev,
1636 					"Bad return from blkdev data request: %#x\n",
1637 					bret.status);
1638 
1639 			break;
1640 		default:
1641 			BUG();
1642 		}
1643 
1644 		if (likely(!blk_should_fake_timeout(req->q)))
1645 			blk_mq_complete_request(req);
1646 	}
1647 
1648 	rinfo->ring.rsp_cons = i;
1649 
1650 	if (i != rinfo->ring.req_prod_pvt) {
1651 		int more_to_do;
1652 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1653 		if (more_to_do)
1654 			goto again;
1655 	} else
1656 		rinfo->ring.sring->rsp_event = i + 1;
1657 
1658 	kick_pending_request_queues_locked(rinfo);
1659 
1660 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1661 
1662 	xen_irq_lateeoi(irq, eoiflag);
1663 
1664 	return IRQ_HANDLED;
1665 
1666  err:
1667 	info->connected = BLKIF_STATE_ERROR;
1668 
1669 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1670 
1671 	/* No EOI in order to avoid further interrupts. */
1672 
1673 	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1674 	return IRQ_HANDLED;
1675 }
1676 
1677 
1678 static int setup_blkring(struct xenbus_device *dev,
1679 			 struct blkfront_ring_info *rinfo)
1680 {
1681 	struct blkif_sring *sring;
1682 	int err, i;
1683 	struct blkfront_info *info = rinfo->dev_info;
1684 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1685 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1686 
1687 	for (i = 0; i < info->nr_ring_pages; i++)
1688 		rinfo->ring_ref[i] = INVALID_GRANT_REF;
1689 
1690 	sring = alloc_pages_exact(ring_size, GFP_NOIO);
1691 	if (!sring) {
1692 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1693 		return -ENOMEM;
1694 	}
1695 	SHARED_RING_INIT(sring);
1696 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1697 
1698 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1699 	if (err < 0) {
1700 		free_pages_exact(sring, ring_size);
1701 		rinfo->ring.sring = NULL;
1702 		goto fail;
1703 	}
1704 	for (i = 0; i < info->nr_ring_pages; i++)
1705 		rinfo->ring_ref[i] = gref[i];
1706 
1707 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1708 	if (err)
1709 		goto fail;
1710 
1711 	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1712 						0, "blkif", rinfo);
1713 	if (err <= 0) {
1714 		xenbus_dev_fatal(dev, err,
1715 				 "bind_evtchn_to_irqhandler failed");
1716 		goto fail;
1717 	}
1718 	rinfo->irq = err;
1719 
1720 	return 0;
1721 fail:
1722 	blkif_free(info, 0);
1723 	return err;
1724 }
1725 
1726 /*
1727  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1728  * ring buffer may have multi pages depending on ->nr_ring_pages.
1729  */
1730 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1731 				struct blkfront_ring_info *rinfo, const char *dir)
1732 {
1733 	int err;
1734 	unsigned int i;
1735 	const char *message = NULL;
1736 	struct blkfront_info *info = rinfo->dev_info;
1737 
1738 	if (info->nr_ring_pages == 1) {
1739 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1740 		if (err) {
1741 			message = "writing ring-ref";
1742 			goto abort_transaction;
1743 		}
1744 	} else {
1745 		for (i = 0; i < info->nr_ring_pages; i++) {
1746 			char ring_ref_name[RINGREF_NAME_LEN];
1747 
1748 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1749 			err = xenbus_printf(xbt, dir, ring_ref_name,
1750 					    "%u", rinfo->ring_ref[i]);
1751 			if (err) {
1752 				message = "writing ring-ref";
1753 				goto abort_transaction;
1754 			}
1755 		}
1756 	}
1757 
1758 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1759 	if (err) {
1760 		message = "writing event-channel";
1761 		goto abort_transaction;
1762 	}
1763 
1764 	return 0;
1765 
1766 abort_transaction:
1767 	xenbus_transaction_end(xbt, 1);
1768 	if (message)
1769 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1770 
1771 	return err;
1772 }
1773 
1774 /* Common code used when first setting up, and when resuming. */
1775 static int talk_to_blkback(struct xenbus_device *dev,
1776 			   struct blkfront_info *info)
1777 {
1778 	const char *message = NULL;
1779 	struct xenbus_transaction xbt;
1780 	int err;
1781 	unsigned int i, max_page_order;
1782 	unsigned int ring_page_order;
1783 	struct blkfront_ring_info *rinfo;
1784 
1785 	if (!info)
1786 		return -ENODEV;
1787 
1788 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1789 					      "max-ring-page-order", 0);
1790 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1791 	info->nr_ring_pages = 1 << ring_page_order;
1792 
1793 	err = negotiate_mq(info);
1794 	if (err)
1795 		goto destroy_blkring;
1796 
1797 	for_each_rinfo(info, rinfo, i) {
1798 		/* Create shared ring, alloc event channel. */
1799 		err = setup_blkring(dev, rinfo);
1800 		if (err)
1801 			goto destroy_blkring;
1802 	}
1803 
1804 again:
1805 	err = xenbus_transaction_start(&xbt);
1806 	if (err) {
1807 		xenbus_dev_fatal(dev, err, "starting transaction");
1808 		goto destroy_blkring;
1809 	}
1810 
1811 	if (info->nr_ring_pages > 1) {
1812 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1813 				    ring_page_order);
1814 		if (err) {
1815 			message = "writing ring-page-order";
1816 			goto abort_transaction;
1817 		}
1818 	}
1819 
1820 	/* We already got the number of queues/rings in _probe */
1821 	if (info->nr_rings == 1) {
1822 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1823 		if (err)
1824 			goto destroy_blkring;
1825 	} else {
1826 		char *path;
1827 		size_t pathsize;
1828 
1829 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1830 				    info->nr_rings);
1831 		if (err) {
1832 			message = "writing multi-queue-num-queues";
1833 			goto abort_transaction;
1834 		}
1835 
1836 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1837 		path = kmalloc(pathsize, GFP_KERNEL);
1838 		if (!path) {
1839 			err = -ENOMEM;
1840 			message = "ENOMEM while writing ring references";
1841 			goto abort_transaction;
1842 		}
1843 
1844 		for_each_rinfo(info, rinfo, i) {
1845 			memset(path, 0, pathsize);
1846 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1847 			err = write_per_ring_nodes(xbt, rinfo, path);
1848 			if (err) {
1849 				kfree(path);
1850 				goto destroy_blkring;
1851 			}
1852 		}
1853 		kfree(path);
1854 	}
1855 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1856 			    XEN_IO_PROTO_ABI_NATIVE);
1857 	if (err) {
1858 		message = "writing protocol";
1859 		goto abort_transaction;
1860 	}
1861 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1862 			info->feature_persistent);
1863 	if (err)
1864 		dev_warn(&dev->dev,
1865 			 "writing persistent grants feature to xenbus");
1866 
1867 	err = xenbus_transaction_end(xbt, 0);
1868 	if (err) {
1869 		if (err == -EAGAIN)
1870 			goto again;
1871 		xenbus_dev_fatal(dev, err, "completing transaction");
1872 		goto destroy_blkring;
1873 	}
1874 
1875 	for_each_rinfo(info, rinfo, i) {
1876 		unsigned int j;
1877 
1878 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1879 			rinfo->shadow[j].req.u.rw.id = j + 1;
1880 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1881 	}
1882 	xenbus_switch_state(dev, XenbusStateInitialised);
1883 
1884 	return 0;
1885 
1886  abort_transaction:
1887 	xenbus_transaction_end(xbt, 1);
1888 	if (message)
1889 		xenbus_dev_fatal(dev, err, "%s", message);
1890  destroy_blkring:
1891 	blkif_free(info, 0);
1892 	return err;
1893 }
1894 
1895 static int negotiate_mq(struct blkfront_info *info)
1896 {
1897 	unsigned int backend_max_queues;
1898 	unsigned int i;
1899 	struct blkfront_ring_info *rinfo;
1900 
1901 	BUG_ON(info->nr_rings);
1902 
1903 	/* Check if backend supports multiple queues. */
1904 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1905 						  "multi-queue-max-queues", 1);
1906 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1907 	/* We need at least one ring. */
1908 	if (!info->nr_rings)
1909 		info->nr_rings = 1;
1910 
1911 	info->rinfo_size = struct_size(info->rinfo, shadow,
1912 				       BLK_RING_SIZE(info));
1913 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1914 	if (!info->rinfo) {
1915 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1916 		info->nr_rings = 0;
1917 		return -ENOMEM;
1918 	}
1919 
1920 	for_each_rinfo(info, rinfo, i) {
1921 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1922 		INIT_LIST_HEAD(&rinfo->grants);
1923 		rinfo->dev_info = info;
1924 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1925 		spin_lock_init(&rinfo->ring_lock);
1926 	}
1927 	return 0;
1928 }
1929 
1930 /* Enable the persistent grants feature. */
1931 static bool feature_persistent = true;
1932 module_param(feature_persistent, bool, 0644);
1933 MODULE_PARM_DESC(feature_persistent,
1934 		"Enables the persistent grants feature");
1935 
1936 /*
1937  * Entry point to this code when a new device is created.  Allocate the basic
1938  * structures and the ring buffer for communication with the backend, and
1939  * inform the backend of the appropriate details for those.  Switch to
1940  * Initialised state.
1941  */
1942 static int blkfront_probe(struct xenbus_device *dev,
1943 			  const struct xenbus_device_id *id)
1944 {
1945 	int err, vdevice;
1946 	struct blkfront_info *info;
1947 
1948 	/* FIXME: Use dynamic device id if this is not set. */
1949 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1950 			   "virtual-device", "%i", &vdevice);
1951 	if (err != 1) {
1952 		/* go looking in the extended area instead */
1953 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1954 				   "%i", &vdevice);
1955 		if (err != 1) {
1956 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1957 			return err;
1958 		}
1959 	}
1960 
1961 	if (xen_hvm_domain()) {
1962 		char *type;
1963 		int len;
1964 		/* no unplug has been done: do not hook devices != xen vbds */
1965 		if (xen_has_pv_and_legacy_disk_devices()) {
1966 			int major;
1967 
1968 			if (!VDEV_IS_EXTENDED(vdevice))
1969 				major = BLKIF_MAJOR(vdevice);
1970 			else
1971 				major = XENVBD_MAJOR;
1972 
1973 			if (major != XENVBD_MAJOR) {
1974 				printk(KERN_INFO
1975 						"%s: HVM does not support vbd %d as xen block device\n",
1976 						__func__, vdevice);
1977 				return -ENODEV;
1978 			}
1979 		}
1980 		/* do not create a PV cdrom device if we are an HVM guest */
1981 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1982 		if (IS_ERR(type))
1983 			return -ENODEV;
1984 		if (strncmp(type, "cdrom", 5) == 0) {
1985 			kfree(type);
1986 			return -ENODEV;
1987 		}
1988 		kfree(type);
1989 	}
1990 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1991 	if (!info) {
1992 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1993 		return -ENOMEM;
1994 	}
1995 
1996 	info->xbdev = dev;
1997 
1998 	mutex_init(&info->mutex);
1999 	info->vdevice = vdevice;
2000 	info->connected = BLKIF_STATE_DISCONNECTED;
2001 
2002 	info->feature_persistent = feature_persistent;
2003 
2004 	/* Front end dir is a number, which is used as the id. */
2005 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2006 	dev_set_drvdata(&dev->dev, info);
2007 
2008 	mutex_lock(&blkfront_mutex);
2009 	list_add(&info->info_list, &info_list);
2010 	mutex_unlock(&blkfront_mutex);
2011 
2012 	return 0;
2013 }
2014 
2015 static int blkif_recover(struct blkfront_info *info)
2016 {
2017 	unsigned int r_index;
2018 	struct request *req, *n;
2019 	int rc;
2020 	struct bio *bio;
2021 	unsigned int segs;
2022 	struct blkfront_ring_info *rinfo;
2023 
2024 	blkfront_gather_backend_features(info);
2025 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2026 	blkif_set_queue_limits(info);
2027 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2028 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2029 
2030 	for_each_rinfo(info, rinfo, r_index) {
2031 		rc = blkfront_setup_indirect(rinfo);
2032 		if (rc)
2033 			return rc;
2034 	}
2035 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2036 
2037 	/* Now safe for us to use the shared ring */
2038 	info->connected = BLKIF_STATE_CONNECTED;
2039 
2040 	for_each_rinfo(info, rinfo, r_index) {
2041 		/* Kick any other new requests queued since we resumed */
2042 		kick_pending_request_queues(rinfo);
2043 	}
2044 
2045 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2046 		/* Requeue pending requests (flush or discard) */
2047 		list_del_init(&req->queuelist);
2048 		BUG_ON(req->nr_phys_segments > segs);
2049 		blk_mq_requeue_request(req, false);
2050 	}
2051 	blk_mq_start_stopped_hw_queues(info->rq, true);
2052 	blk_mq_kick_requeue_list(info->rq);
2053 
2054 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2055 		/* Traverse the list of pending bios and re-queue them */
2056 		submit_bio(bio);
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 /*
2063  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2064  * driver restart.  We tear down our blkif structure and recreate it, but
2065  * leave the device-layer structures intact so that this is transparent to the
2066  * rest of the kernel.
2067  */
2068 static int blkfront_resume(struct xenbus_device *dev)
2069 {
2070 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2071 	int err = 0;
2072 	unsigned int i, j;
2073 	struct blkfront_ring_info *rinfo;
2074 
2075 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2076 
2077 	bio_list_init(&info->bio_list);
2078 	INIT_LIST_HEAD(&info->requests);
2079 	for_each_rinfo(info, rinfo, i) {
2080 		struct bio_list merge_bio;
2081 		struct blk_shadow *shadow = rinfo->shadow;
2082 
2083 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2084 			/* Not in use? */
2085 			if (!shadow[j].request)
2086 				continue;
2087 
2088 			/*
2089 			 * Get the bios in the request so we can re-queue them.
2090 			 */
2091 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2092 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2093 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2094 			    shadow[j].request->cmd_flags & REQ_FUA) {
2095 				/*
2096 				 * Flush operations don't contain bios, so
2097 				 * we need to requeue the whole request
2098 				 *
2099 				 * XXX: but this doesn't make any sense for a
2100 				 * write with the FUA flag set..
2101 				 */
2102 				list_add(&shadow[j].request->queuelist, &info->requests);
2103 				continue;
2104 			}
2105 			merge_bio.head = shadow[j].request->bio;
2106 			merge_bio.tail = shadow[j].request->biotail;
2107 			bio_list_merge(&info->bio_list, &merge_bio);
2108 			shadow[j].request->bio = NULL;
2109 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2110 		}
2111 	}
2112 
2113 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2114 
2115 	err = talk_to_blkback(dev, info);
2116 	if (!err)
2117 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2118 
2119 	/*
2120 	 * We have to wait for the backend to switch to
2121 	 * connected state, since we want to read which
2122 	 * features it supports.
2123 	 */
2124 
2125 	return err;
2126 }
2127 
2128 static void blkfront_closing(struct blkfront_info *info)
2129 {
2130 	struct xenbus_device *xbdev = info->xbdev;
2131 	struct blkfront_ring_info *rinfo;
2132 	unsigned int i;
2133 
2134 	if (xbdev->state == XenbusStateClosing)
2135 		return;
2136 
2137 	/* No more blkif_request(). */
2138 	blk_mq_stop_hw_queues(info->rq);
2139 	blk_mark_disk_dead(info->gd);
2140 	set_capacity(info->gd, 0);
2141 
2142 	for_each_rinfo(info, rinfo, i) {
2143 		/* No more gnttab callback work. */
2144 		gnttab_cancel_free_callback(&rinfo->callback);
2145 
2146 		/* Flush gnttab callback work. Must be done with no locks held. */
2147 		flush_work(&rinfo->work);
2148 	}
2149 
2150 	xenbus_frontend_closed(xbdev);
2151 }
2152 
2153 static void blkfront_setup_discard(struct blkfront_info *info)
2154 {
2155 	info->feature_discard = 1;
2156 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2157 							 "discard-granularity",
2158 							 0);
2159 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2160 						       "discard-alignment", 0);
2161 	info->feature_secdiscard =
2162 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2163 				       0);
2164 }
2165 
2166 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2167 {
2168 	unsigned int psegs, grants, memflags;
2169 	int err, i;
2170 	struct blkfront_info *info = rinfo->dev_info;
2171 
2172 	memflags = memalloc_noio_save();
2173 
2174 	if (info->max_indirect_segments == 0) {
2175 		if (!HAS_EXTRA_REQ)
2176 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2177 		else {
2178 			/*
2179 			 * When an extra req is required, the maximum
2180 			 * grants supported is related to the size of the
2181 			 * Linux block segment.
2182 			 */
2183 			grants = GRANTS_PER_PSEG;
2184 		}
2185 	}
2186 	else
2187 		grants = info->max_indirect_segments;
2188 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2189 
2190 	err = fill_grant_buffer(rinfo,
2191 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2192 	if (err)
2193 		goto out_of_memory;
2194 
2195 	if (!info->feature_persistent && info->max_indirect_segments) {
2196 		/*
2197 		 * We are using indirect descriptors but not persistent
2198 		 * grants, we need to allocate a set of pages that can be
2199 		 * used for mapping indirect grefs
2200 		 */
2201 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2202 
2203 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2204 		for (i = 0; i < num; i++) {
2205 			struct page *indirect_page = alloc_page(GFP_KERNEL);
2206 			if (!indirect_page)
2207 				goto out_of_memory;
2208 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2209 		}
2210 	}
2211 
2212 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2213 		rinfo->shadow[i].grants_used =
2214 			kvcalloc(grants,
2215 				 sizeof(rinfo->shadow[i].grants_used[0]),
2216 				 GFP_KERNEL);
2217 		rinfo->shadow[i].sg = kvcalloc(psegs,
2218 					       sizeof(rinfo->shadow[i].sg[0]),
2219 					       GFP_KERNEL);
2220 		if (info->max_indirect_segments)
2221 			rinfo->shadow[i].indirect_grants =
2222 				kvcalloc(INDIRECT_GREFS(grants),
2223 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2224 					 GFP_KERNEL);
2225 		if ((rinfo->shadow[i].grants_used == NULL) ||
2226 			(rinfo->shadow[i].sg == NULL) ||
2227 		     (info->max_indirect_segments &&
2228 		     (rinfo->shadow[i].indirect_grants == NULL)))
2229 			goto out_of_memory;
2230 		sg_init_table(rinfo->shadow[i].sg, psegs);
2231 	}
2232 
2233 	memalloc_noio_restore(memflags);
2234 
2235 	return 0;
2236 
2237 out_of_memory:
2238 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2239 		kvfree(rinfo->shadow[i].grants_used);
2240 		rinfo->shadow[i].grants_used = NULL;
2241 		kvfree(rinfo->shadow[i].sg);
2242 		rinfo->shadow[i].sg = NULL;
2243 		kvfree(rinfo->shadow[i].indirect_grants);
2244 		rinfo->shadow[i].indirect_grants = NULL;
2245 	}
2246 	if (!list_empty(&rinfo->indirect_pages)) {
2247 		struct page *indirect_page, *n;
2248 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2249 			list_del(&indirect_page->lru);
2250 			__free_page(indirect_page);
2251 		}
2252 	}
2253 
2254 	memalloc_noio_restore(memflags);
2255 
2256 	return -ENOMEM;
2257 }
2258 
2259 /*
2260  * Gather all backend feature-*
2261  */
2262 static void blkfront_gather_backend_features(struct blkfront_info *info)
2263 {
2264 	unsigned int indirect_segments;
2265 
2266 	info->feature_flush = 0;
2267 	info->feature_fua = 0;
2268 
2269 	/*
2270 	 * If there's no "feature-barrier" defined, then it means
2271 	 * we're dealing with a very old backend which writes
2272 	 * synchronously; nothing to do.
2273 	 *
2274 	 * If there are barriers, then we use flush.
2275 	 */
2276 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2277 		info->feature_flush = 1;
2278 		info->feature_fua = 1;
2279 	}
2280 
2281 	/*
2282 	 * And if there is "feature-flush-cache" use that above
2283 	 * barriers.
2284 	 */
2285 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2286 				 0)) {
2287 		info->feature_flush = 1;
2288 		info->feature_fua = 0;
2289 	}
2290 
2291 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2292 		blkfront_setup_discard(info);
2293 
2294 	if (info->feature_persistent)
2295 		info->feature_persistent =
2296 			!!xenbus_read_unsigned(info->xbdev->otherend,
2297 					       "feature-persistent", 0);
2298 
2299 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2300 					"feature-max-indirect-segments", 0);
2301 	if (indirect_segments > xen_blkif_max_segments)
2302 		indirect_segments = xen_blkif_max_segments;
2303 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2304 		indirect_segments = 0;
2305 	info->max_indirect_segments = indirect_segments;
2306 
2307 	if (info->feature_persistent) {
2308 		mutex_lock(&blkfront_mutex);
2309 		schedule_delayed_work(&blkfront_work, HZ * 10);
2310 		mutex_unlock(&blkfront_mutex);
2311 	}
2312 }
2313 
2314 /*
2315  * Invoked when the backend is finally 'ready' (and has told produced
2316  * the details about the physical device - #sectors, size, etc).
2317  */
2318 static void blkfront_connect(struct blkfront_info *info)
2319 {
2320 	unsigned long long sectors;
2321 	unsigned long sector_size;
2322 	unsigned int physical_sector_size;
2323 	int err, i;
2324 	struct blkfront_ring_info *rinfo;
2325 
2326 	switch (info->connected) {
2327 	case BLKIF_STATE_CONNECTED:
2328 		/*
2329 		 * Potentially, the back-end may be signalling
2330 		 * a capacity change; update the capacity.
2331 		 */
2332 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2333 				   "sectors", "%Lu", &sectors);
2334 		if (XENBUS_EXIST_ERR(err))
2335 			return;
2336 		printk(KERN_INFO "Setting capacity to %Lu\n",
2337 		       sectors);
2338 		set_capacity_and_notify(info->gd, sectors);
2339 
2340 		return;
2341 	case BLKIF_STATE_SUSPENDED:
2342 		/*
2343 		 * If we are recovering from suspension, we need to wait
2344 		 * for the backend to announce it's features before
2345 		 * reconnecting, at least we need to know if the backend
2346 		 * supports indirect descriptors, and how many.
2347 		 */
2348 		blkif_recover(info);
2349 		return;
2350 
2351 	default:
2352 		break;
2353 	}
2354 
2355 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2356 		__func__, info->xbdev->otherend);
2357 
2358 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2359 			    "sectors", "%llu", &sectors,
2360 			    "info", "%u", &info->vdisk_info,
2361 			    "sector-size", "%lu", &sector_size,
2362 			    NULL);
2363 	if (err) {
2364 		xenbus_dev_fatal(info->xbdev, err,
2365 				 "reading backend fields at %s",
2366 				 info->xbdev->otherend);
2367 		return;
2368 	}
2369 
2370 	/*
2371 	 * physical-sector-size is a newer field, so old backends may not
2372 	 * provide this. Assume physical sector size to be the same as
2373 	 * sector_size in that case.
2374 	 */
2375 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2376 						    "physical-sector-size",
2377 						    sector_size);
2378 	blkfront_gather_backend_features(info);
2379 	for_each_rinfo(info, rinfo, i) {
2380 		err = blkfront_setup_indirect(rinfo);
2381 		if (err) {
2382 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2383 					 info->xbdev->otherend);
2384 			blkif_free(info, 0);
2385 			break;
2386 		}
2387 	}
2388 
2389 	err = xlvbd_alloc_gendisk(sectors, info, sector_size,
2390 				  physical_sector_size);
2391 	if (err) {
2392 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2393 				 info->xbdev->otherend);
2394 		goto fail;
2395 	}
2396 
2397 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2398 
2399 	/* Kick pending requests. */
2400 	info->connected = BLKIF_STATE_CONNECTED;
2401 	for_each_rinfo(info, rinfo, i)
2402 		kick_pending_request_queues(rinfo);
2403 
2404 	err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2405 	if (err) {
2406 		blk_cleanup_disk(info->gd);
2407 		blk_mq_free_tag_set(&info->tag_set);
2408 		info->rq = NULL;
2409 		goto fail;
2410 	}
2411 
2412 	info->is_ready = 1;
2413 	return;
2414 
2415 fail:
2416 	blkif_free(info, 0);
2417 	return;
2418 }
2419 
2420 /*
2421  * Callback received when the backend's state changes.
2422  */
2423 static void blkback_changed(struct xenbus_device *dev,
2424 			    enum xenbus_state backend_state)
2425 {
2426 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2427 
2428 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2429 
2430 	switch (backend_state) {
2431 	case XenbusStateInitWait:
2432 		if (dev->state != XenbusStateInitialising)
2433 			break;
2434 		if (talk_to_blkback(dev, info))
2435 			break;
2436 		break;
2437 	case XenbusStateInitialising:
2438 	case XenbusStateInitialised:
2439 	case XenbusStateReconfiguring:
2440 	case XenbusStateReconfigured:
2441 	case XenbusStateUnknown:
2442 		break;
2443 
2444 	case XenbusStateConnected:
2445 		/*
2446 		 * talk_to_blkback sets state to XenbusStateInitialised
2447 		 * and blkfront_connect sets it to XenbusStateConnected
2448 		 * (if connection went OK).
2449 		 *
2450 		 * If the backend (or toolstack) decides to poke at backend
2451 		 * state (and re-trigger the watch by setting the state repeatedly
2452 		 * to XenbusStateConnected (4)) we need to deal with this.
2453 		 * This is allowed as this is used to communicate to the guest
2454 		 * that the size of disk has changed!
2455 		 */
2456 		if ((dev->state != XenbusStateInitialised) &&
2457 		    (dev->state != XenbusStateConnected)) {
2458 			if (talk_to_blkback(dev, info))
2459 				break;
2460 		}
2461 
2462 		blkfront_connect(info);
2463 		break;
2464 
2465 	case XenbusStateClosed:
2466 		if (dev->state == XenbusStateClosed)
2467 			break;
2468 		fallthrough;
2469 	case XenbusStateClosing:
2470 		blkfront_closing(info);
2471 		break;
2472 	}
2473 }
2474 
2475 static int blkfront_remove(struct xenbus_device *xbdev)
2476 {
2477 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2478 
2479 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2480 
2481 	del_gendisk(info->gd);
2482 
2483 	mutex_lock(&blkfront_mutex);
2484 	list_del(&info->info_list);
2485 	mutex_unlock(&blkfront_mutex);
2486 
2487 	blkif_free(info, 0);
2488 	xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2489 	blk_cleanup_disk(info->gd);
2490 	blk_mq_free_tag_set(&info->tag_set);
2491 
2492 	kfree(info);
2493 	return 0;
2494 }
2495 
2496 static int blkfront_is_ready(struct xenbus_device *dev)
2497 {
2498 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2499 
2500 	return info->is_ready && info->xbdev;
2501 }
2502 
2503 static const struct block_device_operations xlvbd_block_fops =
2504 {
2505 	.owner = THIS_MODULE,
2506 	.getgeo = blkif_getgeo,
2507 	.ioctl = blkif_ioctl,
2508 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2509 };
2510 
2511 
2512 static const struct xenbus_device_id blkfront_ids[] = {
2513 	{ "vbd" },
2514 	{ "" }
2515 };
2516 
2517 static struct xenbus_driver blkfront_driver = {
2518 	.ids  = blkfront_ids,
2519 	.probe = blkfront_probe,
2520 	.remove = blkfront_remove,
2521 	.resume = blkfront_resume,
2522 	.otherend_changed = blkback_changed,
2523 	.is_ready = blkfront_is_ready,
2524 };
2525 
2526 static void purge_persistent_grants(struct blkfront_info *info)
2527 {
2528 	unsigned int i;
2529 	unsigned long flags;
2530 	struct blkfront_ring_info *rinfo;
2531 
2532 	for_each_rinfo(info, rinfo, i) {
2533 		struct grant *gnt_list_entry, *tmp;
2534 		LIST_HEAD(grants);
2535 
2536 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2537 
2538 		if (rinfo->persistent_gnts_c == 0) {
2539 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2540 			continue;
2541 		}
2542 
2543 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2544 					 node) {
2545 			if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2546 			    !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2547 				continue;
2548 
2549 			list_del(&gnt_list_entry->node);
2550 			rinfo->persistent_gnts_c--;
2551 			gnt_list_entry->gref = INVALID_GRANT_REF;
2552 			list_add_tail(&gnt_list_entry->node, &grants);
2553 		}
2554 
2555 		list_splice_tail(&grants, &rinfo->grants);
2556 
2557 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2558 	}
2559 }
2560 
2561 static void blkfront_delay_work(struct work_struct *work)
2562 {
2563 	struct blkfront_info *info;
2564 	bool need_schedule_work = false;
2565 
2566 	mutex_lock(&blkfront_mutex);
2567 
2568 	list_for_each_entry(info, &info_list, info_list) {
2569 		if (info->feature_persistent) {
2570 			need_schedule_work = true;
2571 			mutex_lock(&info->mutex);
2572 			purge_persistent_grants(info);
2573 			mutex_unlock(&info->mutex);
2574 		}
2575 	}
2576 
2577 	if (need_schedule_work)
2578 		schedule_delayed_work(&blkfront_work, HZ * 10);
2579 
2580 	mutex_unlock(&blkfront_mutex);
2581 }
2582 
2583 static int __init xlblk_init(void)
2584 {
2585 	int ret;
2586 	int nr_cpus = num_online_cpus();
2587 
2588 	if (!xen_domain())
2589 		return -ENODEV;
2590 
2591 	if (!xen_has_pv_disk_devices())
2592 		return -ENODEV;
2593 
2594 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2595 		pr_warn("xen_blk: can't get major %d with name %s\n",
2596 			XENVBD_MAJOR, DEV_NAME);
2597 		return -ENODEV;
2598 	}
2599 
2600 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2601 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2602 
2603 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2604 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2605 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2606 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2607 	}
2608 
2609 	if (xen_blkif_max_queues > nr_cpus) {
2610 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2611 			xen_blkif_max_queues, nr_cpus);
2612 		xen_blkif_max_queues = nr_cpus;
2613 	}
2614 
2615 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2616 
2617 	ret = xenbus_register_frontend(&blkfront_driver);
2618 	if (ret) {
2619 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2620 		return ret;
2621 	}
2622 
2623 	return 0;
2624 }
2625 module_init(xlblk_init);
2626 
2627 
2628 static void __exit xlblk_exit(void)
2629 {
2630 	cancel_delayed_work_sync(&blkfront_work);
2631 
2632 	xenbus_unregister_driver(&blkfront_driver);
2633 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2634 	kfree(minors);
2635 }
2636 module_exit(xlblk_exit);
2637 
2638 MODULE_DESCRIPTION("Xen virtual block device frontend");
2639 MODULE_LICENSE("GPL");
2640 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2641 MODULE_ALIAS("xen:vbd");
2642 MODULE_ALIAS("xenblk");
2643