1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/major.h> 46 #include <linux/mutex.h> 47 #include <linux/scatterlist.h> 48 #include <linux/bitmap.h> 49 #include <linux/list.h> 50 #include <linux/workqueue.h> 51 #include <linux/sched/mm.h> 52 53 #include <xen/xen.h> 54 #include <xen/xenbus.h> 55 #include <xen/grant_table.h> 56 #include <xen/events.h> 57 #include <xen/page.h> 58 #include <xen/platform_pci.h> 59 60 #include <xen/interface/grant_table.h> 61 #include <xen/interface/io/blkif.h> 62 #include <xen/interface/io/protocols.h> 63 64 #include <asm/xen/hypervisor.h> 65 66 /* 67 * The minimal size of segment supported by the block framework is PAGE_SIZE. 68 * When Linux is using a different page size than Xen, it may not be possible 69 * to put all the data in a single segment. 70 * This can happen when the backend doesn't support indirect descriptor and 71 * therefore the maximum amount of data that a request can carry is 72 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 73 * 74 * Note that we only support one extra request. So the Linux page size 75 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 76 * 88KB. 77 */ 78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 79 80 enum blkif_state { 81 BLKIF_STATE_DISCONNECTED, 82 BLKIF_STATE_CONNECTED, 83 BLKIF_STATE_SUSPENDED, 84 BLKIF_STATE_ERROR, 85 }; 86 87 struct grant { 88 grant_ref_t gref; 89 struct page *page; 90 struct list_head node; 91 }; 92 93 enum blk_req_status { 94 REQ_PROCESSING, 95 REQ_WAITING, 96 REQ_DONE, 97 REQ_ERROR, 98 REQ_EOPNOTSUPP, 99 }; 100 101 struct blk_shadow { 102 struct blkif_request req; 103 struct request *request; 104 struct grant **grants_used; 105 struct grant **indirect_grants; 106 struct scatterlist *sg; 107 unsigned int num_sg; 108 enum blk_req_status status; 109 110 #define NO_ASSOCIATED_ID ~0UL 111 /* 112 * Id of the sibling if we ever need 2 requests when handling a 113 * block I/O request 114 */ 115 unsigned long associated_id; 116 }; 117 118 struct blkif_req { 119 blk_status_t error; 120 }; 121 122 static inline struct blkif_req *blkif_req(struct request *rq) 123 { 124 return blk_mq_rq_to_pdu(rq); 125 } 126 127 static DEFINE_MUTEX(blkfront_mutex); 128 static const struct block_device_operations xlvbd_block_fops; 129 static struct delayed_work blkfront_work; 130 static LIST_HEAD(info_list); 131 132 /* 133 * Maximum number of segments in indirect requests, the actual value used by 134 * the frontend driver is the minimum of this value and the value provided 135 * by the backend driver. 136 */ 137 138 static unsigned int xen_blkif_max_segments = 32; 139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 140 MODULE_PARM_DESC(max_indirect_segments, 141 "Maximum amount of segments in indirect requests (default is 32)"); 142 143 static unsigned int xen_blkif_max_queues = 4; 144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 146 147 /* 148 * Maximum order of pages to be used for the shared ring between front and 149 * backend, 4KB page granularity is used. 150 */ 151 static unsigned int xen_blkif_max_ring_order; 152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 154 155 #define BLK_RING_SIZE(info) \ 156 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 157 158 /* 159 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 160 * characters are enough. Define to 20 to keep consistent with backend. 161 */ 162 #define RINGREF_NAME_LEN (20) 163 /* 164 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 165 */ 166 #define QUEUE_NAME_LEN (17) 167 168 /* 169 * Per-ring info. 170 * Every blkfront device can associate with one or more blkfront_ring_info, 171 * depending on how many hardware queues/rings to be used. 172 */ 173 struct blkfront_ring_info { 174 /* Lock to protect data in every ring buffer. */ 175 spinlock_t ring_lock; 176 struct blkif_front_ring ring; 177 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 178 unsigned int evtchn, irq; 179 struct work_struct work; 180 struct gnttab_free_callback callback; 181 struct list_head indirect_pages; 182 struct list_head grants; 183 unsigned int persistent_gnts_c; 184 unsigned long shadow_free; 185 struct blkfront_info *dev_info; 186 struct blk_shadow shadow[]; 187 }; 188 189 /* 190 * We have one of these per vbd, whether ide, scsi or 'other'. They 191 * hang in private_data off the gendisk structure. We may end up 192 * putting all kinds of interesting stuff here :-) 193 */ 194 struct blkfront_info 195 { 196 struct mutex mutex; 197 struct xenbus_device *xbdev; 198 struct gendisk *gd; 199 u16 sector_size; 200 unsigned int physical_sector_size; 201 int vdevice; 202 blkif_vdev_t handle; 203 enum blkif_state connected; 204 /* Number of pages per ring buffer. */ 205 unsigned int nr_ring_pages; 206 struct request_queue *rq; 207 unsigned int feature_flush:1; 208 unsigned int feature_fua:1; 209 unsigned int feature_discard:1; 210 unsigned int feature_secdiscard:1; 211 unsigned int feature_persistent:1; 212 unsigned int discard_granularity; 213 unsigned int discard_alignment; 214 /* Number of 4KB segments handled */ 215 unsigned int max_indirect_segments; 216 int is_ready; 217 struct blk_mq_tag_set tag_set; 218 struct blkfront_ring_info *rinfo; 219 unsigned int nr_rings; 220 unsigned int rinfo_size; 221 /* Save uncomplete reqs and bios for migration. */ 222 struct list_head requests; 223 struct bio_list bio_list; 224 struct list_head info_list; 225 }; 226 227 static unsigned int nr_minors; 228 static unsigned long *minors; 229 static DEFINE_SPINLOCK(minor_lock); 230 231 #define GRANT_INVALID_REF 0 232 233 #define PARTS_PER_DISK 16 234 #define PARTS_PER_EXT_DISK 256 235 236 #define BLKIF_MAJOR(dev) ((dev)>>8) 237 #define BLKIF_MINOR(dev) ((dev) & 0xff) 238 239 #define EXT_SHIFT 28 240 #define EXTENDED (1<<EXT_SHIFT) 241 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 242 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 243 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 244 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 245 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 246 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 247 248 #define DEV_NAME "xvd" /* name in /dev */ 249 250 /* 251 * Grants are always the same size as a Xen page (i.e 4KB). 252 * A physical segment is always the same size as a Linux page. 253 * Number of grants per physical segment 254 */ 255 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 256 257 #define GRANTS_PER_INDIRECT_FRAME \ 258 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 259 260 #define INDIRECT_GREFS(_grants) \ 261 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 262 263 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 264 static void blkfront_gather_backend_features(struct blkfront_info *info); 265 static int negotiate_mq(struct blkfront_info *info); 266 267 #define for_each_rinfo(info, ptr, idx) \ 268 for ((ptr) = (info)->rinfo, (idx) = 0; \ 269 (idx) < (info)->nr_rings; \ 270 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 271 272 static inline struct blkfront_ring_info * 273 get_rinfo(const struct blkfront_info *info, unsigned int i) 274 { 275 BUG_ON(i >= info->nr_rings); 276 return (void *)info->rinfo + i * info->rinfo_size; 277 } 278 279 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 280 { 281 unsigned long free = rinfo->shadow_free; 282 283 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 284 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 285 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 286 return free; 287 } 288 289 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 290 unsigned long id) 291 { 292 if (rinfo->shadow[id].req.u.rw.id != id) 293 return -EINVAL; 294 if (rinfo->shadow[id].request == NULL) 295 return -EINVAL; 296 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 297 rinfo->shadow[id].request = NULL; 298 rinfo->shadow_free = id; 299 return 0; 300 } 301 302 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 303 { 304 struct blkfront_info *info = rinfo->dev_info; 305 struct page *granted_page; 306 struct grant *gnt_list_entry, *n; 307 int i = 0; 308 309 while (i < num) { 310 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 311 if (!gnt_list_entry) 312 goto out_of_memory; 313 314 if (info->feature_persistent) { 315 granted_page = alloc_page(GFP_NOIO); 316 if (!granted_page) { 317 kfree(gnt_list_entry); 318 goto out_of_memory; 319 } 320 gnt_list_entry->page = granted_page; 321 } 322 323 gnt_list_entry->gref = GRANT_INVALID_REF; 324 list_add(&gnt_list_entry->node, &rinfo->grants); 325 i++; 326 } 327 328 return 0; 329 330 out_of_memory: 331 list_for_each_entry_safe(gnt_list_entry, n, 332 &rinfo->grants, node) { 333 list_del(&gnt_list_entry->node); 334 if (info->feature_persistent) 335 __free_page(gnt_list_entry->page); 336 kfree(gnt_list_entry); 337 i--; 338 } 339 BUG_ON(i != 0); 340 return -ENOMEM; 341 } 342 343 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 344 { 345 struct grant *gnt_list_entry; 346 347 BUG_ON(list_empty(&rinfo->grants)); 348 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 349 node); 350 list_del(&gnt_list_entry->node); 351 352 if (gnt_list_entry->gref != GRANT_INVALID_REF) 353 rinfo->persistent_gnts_c--; 354 355 return gnt_list_entry; 356 } 357 358 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 359 const struct blkfront_info *info) 360 { 361 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 362 info->xbdev->otherend_id, 363 gnt_list_entry->page, 364 0); 365 } 366 367 static struct grant *get_grant(grant_ref_t *gref_head, 368 unsigned long gfn, 369 struct blkfront_ring_info *rinfo) 370 { 371 struct grant *gnt_list_entry = get_free_grant(rinfo); 372 struct blkfront_info *info = rinfo->dev_info; 373 374 if (gnt_list_entry->gref != GRANT_INVALID_REF) 375 return gnt_list_entry; 376 377 /* Assign a gref to this page */ 378 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 379 BUG_ON(gnt_list_entry->gref == -ENOSPC); 380 if (info->feature_persistent) 381 grant_foreign_access(gnt_list_entry, info); 382 else { 383 /* Grant access to the GFN passed by the caller */ 384 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 385 info->xbdev->otherend_id, 386 gfn, 0); 387 } 388 389 return gnt_list_entry; 390 } 391 392 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 393 struct blkfront_ring_info *rinfo) 394 { 395 struct grant *gnt_list_entry = get_free_grant(rinfo); 396 struct blkfront_info *info = rinfo->dev_info; 397 398 if (gnt_list_entry->gref != GRANT_INVALID_REF) 399 return gnt_list_entry; 400 401 /* Assign a gref to this page */ 402 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 403 BUG_ON(gnt_list_entry->gref == -ENOSPC); 404 if (!info->feature_persistent) { 405 struct page *indirect_page; 406 407 /* Fetch a pre-allocated page to use for indirect grefs */ 408 BUG_ON(list_empty(&rinfo->indirect_pages)); 409 indirect_page = list_first_entry(&rinfo->indirect_pages, 410 struct page, lru); 411 list_del(&indirect_page->lru); 412 gnt_list_entry->page = indirect_page; 413 } 414 grant_foreign_access(gnt_list_entry, info); 415 416 return gnt_list_entry; 417 } 418 419 static const char *op_name(int op) 420 { 421 static const char *const names[] = { 422 [BLKIF_OP_READ] = "read", 423 [BLKIF_OP_WRITE] = "write", 424 [BLKIF_OP_WRITE_BARRIER] = "barrier", 425 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 426 [BLKIF_OP_DISCARD] = "discard" }; 427 428 if (op < 0 || op >= ARRAY_SIZE(names)) 429 return "unknown"; 430 431 if (!names[op]) 432 return "reserved"; 433 434 return names[op]; 435 } 436 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 437 { 438 unsigned int end = minor + nr; 439 int rc; 440 441 if (end > nr_minors) { 442 unsigned long *bitmap, *old; 443 444 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 445 GFP_KERNEL); 446 if (bitmap == NULL) 447 return -ENOMEM; 448 449 spin_lock(&minor_lock); 450 if (end > nr_minors) { 451 old = minors; 452 memcpy(bitmap, minors, 453 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 454 minors = bitmap; 455 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 456 } else 457 old = bitmap; 458 spin_unlock(&minor_lock); 459 kfree(old); 460 } 461 462 spin_lock(&minor_lock); 463 if (find_next_bit(minors, end, minor) >= end) { 464 bitmap_set(minors, minor, nr); 465 rc = 0; 466 } else 467 rc = -EBUSY; 468 spin_unlock(&minor_lock); 469 470 return rc; 471 } 472 473 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 474 { 475 unsigned int end = minor + nr; 476 477 BUG_ON(end > nr_minors); 478 spin_lock(&minor_lock); 479 bitmap_clear(minors, minor, nr); 480 spin_unlock(&minor_lock); 481 } 482 483 static void blkif_restart_queue_callback(void *arg) 484 { 485 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 486 schedule_work(&rinfo->work); 487 } 488 489 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 490 { 491 /* We don't have real geometry info, but let's at least return 492 values consistent with the size of the device */ 493 sector_t nsect = get_capacity(bd->bd_disk); 494 sector_t cylinders = nsect; 495 496 hg->heads = 0xff; 497 hg->sectors = 0x3f; 498 sector_div(cylinders, hg->heads * hg->sectors); 499 hg->cylinders = cylinders; 500 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 501 hg->cylinders = 0xffff; 502 return 0; 503 } 504 505 static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 506 unsigned command, unsigned long argument) 507 { 508 int i; 509 510 switch (command) { 511 case CDROMMULTISESSION: 512 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 513 if (put_user(0, (char __user *)(argument + i))) 514 return -EFAULT; 515 return 0; 516 case CDROM_GET_CAPABILITY: 517 if (bdev->bd_disk->flags & GENHD_FL_CD) 518 return 0; 519 return -EINVAL; 520 default: 521 return -EINVAL; 522 } 523 } 524 525 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 526 struct request *req, 527 struct blkif_request **ring_req) 528 { 529 unsigned long id; 530 531 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 532 rinfo->ring.req_prod_pvt++; 533 534 id = get_id_from_freelist(rinfo); 535 rinfo->shadow[id].request = req; 536 rinfo->shadow[id].status = REQ_PROCESSING; 537 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 538 539 rinfo->shadow[id].req.u.rw.id = id; 540 541 return id; 542 } 543 544 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 545 { 546 struct blkfront_info *info = rinfo->dev_info; 547 struct blkif_request *ring_req, *final_ring_req; 548 unsigned long id; 549 550 /* Fill out a communications ring structure. */ 551 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 552 ring_req = &rinfo->shadow[id].req; 553 554 ring_req->operation = BLKIF_OP_DISCARD; 555 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 556 ring_req->u.discard.id = id; 557 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 558 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 559 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 560 else 561 ring_req->u.discard.flag = 0; 562 563 /* Copy the request to the ring page. */ 564 *final_ring_req = *ring_req; 565 rinfo->shadow[id].status = REQ_WAITING; 566 567 return 0; 568 } 569 570 struct setup_rw_req { 571 unsigned int grant_idx; 572 struct blkif_request_segment *segments; 573 struct blkfront_ring_info *rinfo; 574 struct blkif_request *ring_req; 575 grant_ref_t gref_head; 576 unsigned int id; 577 /* Only used when persistent grant is used and it's a read request */ 578 bool need_copy; 579 unsigned int bvec_off; 580 char *bvec_data; 581 582 bool require_extra_req; 583 struct blkif_request *extra_ring_req; 584 }; 585 586 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 587 unsigned int len, void *data) 588 { 589 struct setup_rw_req *setup = data; 590 int n, ref; 591 struct grant *gnt_list_entry; 592 unsigned int fsect, lsect; 593 /* Convenient aliases */ 594 unsigned int grant_idx = setup->grant_idx; 595 struct blkif_request *ring_req = setup->ring_req; 596 struct blkfront_ring_info *rinfo = setup->rinfo; 597 /* 598 * We always use the shadow of the first request to store the list 599 * of grant associated to the block I/O request. This made the 600 * completion more easy to handle even if the block I/O request is 601 * split. 602 */ 603 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 604 605 if (unlikely(setup->require_extra_req && 606 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 607 /* 608 * We are using the second request, setup grant_idx 609 * to be the index of the segment array. 610 */ 611 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 612 ring_req = setup->extra_ring_req; 613 } 614 615 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 616 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 617 if (setup->segments) 618 kunmap_atomic(setup->segments); 619 620 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 621 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 622 shadow->indirect_grants[n] = gnt_list_entry; 623 setup->segments = kmap_atomic(gnt_list_entry->page); 624 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 625 } 626 627 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 628 ref = gnt_list_entry->gref; 629 /* 630 * All the grants are stored in the shadow of the first 631 * request. Therefore we have to use the global index. 632 */ 633 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 634 635 if (setup->need_copy) { 636 void *shared_data; 637 638 shared_data = kmap_atomic(gnt_list_entry->page); 639 /* 640 * this does not wipe data stored outside the 641 * range sg->offset..sg->offset+sg->length. 642 * Therefore, blkback *could* see data from 643 * previous requests. This is OK as long as 644 * persistent grants are shared with just one 645 * domain. It may need refactoring if this 646 * changes 647 */ 648 memcpy(shared_data + offset, 649 setup->bvec_data + setup->bvec_off, 650 len); 651 652 kunmap_atomic(shared_data); 653 setup->bvec_off += len; 654 } 655 656 fsect = offset >> 9; 657 lsect = fsect + (len >> 9) - 1; 658 if (ring_req->operation != BLKIF_OP_INDIRECT) { 659 ring_req->u.rw.seg[grant_idx] = 660 (struct blkif_request_segment) { 661 .gref = ref, 662 .first_sect = fsect, 663 .last_sect = lsect }; 664 } else { 665 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 666 (struct blkif_request_segment) { 667 .gref = ref, 668 .first_sect = fsect, 669 .last_sect = lsect }; 670 } 671 672 (setup->grant_idx)++; 673 } 674 675 static void blkif_setup_extra_req(struct blkif_request *first, 676 struct blkif_request *second) 677 { 678 uint16_t nr_segments = first->u.rw.nr_segments; 679 680 /* 681 * The second request is only present when the first request uses 682 * all its segments. It's always the continuity of the first one. 683 */ 684 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 685 686 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 687 second->u.rw.sector_number = first->u.rw.sector_number + 688 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 689 690 second->u.rw.handle = first->u.rw.handle; 691 second->operation = first->operation; 692 } 693 694 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 695 { 696 struct blkfront_info *info = rinfo->dev_info; 697 struct blkif_request *ring_req, *extra_ring_req = NULL; 698 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL; 699 unsigned long id, extra_id = NO_ASSOCIATED_ID; 700 bool require_extra_req = false; 701 int i; 702 struct setup_rw_req setup = { 703 .grant_idx = 0, 704 .segments = NULL, 705 .rinfo = rinfo, 706 .need_copy = rq_data_dir(req) && info->feature_persistent, 707 }; 708 709 /* 710 * Used to store if we are able to queue the request by just using 711 * existing persistent grants, or if we have to get new grants, 712 * as there are not sufficiently many free. 713 */ 714 bool new_persistent_gnts = false; 715 struct scatterlist *sg; 716 int num_sg, max_grefs, num_grant; 717 718 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 719 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 720 /* 721 * If we are using indirect segments we need to account 722 * for the indirect grefs used in the request. 723 */ 724 max_grefs += INDIRECT_GREFS(max_grefs); 725 726 /* Check if we have enough persistent grants to allocate a requests */ 727 if (rinfo->persistent_gnts_c < max_grefs) { 728 new_persistent_gnts = true; 729 730 if (gnttab_alloc_grant_references( 731 max_grefs - rinfo->persistent_gnts_c, 732 &setup.gref_head) < 0) { 733 gnttab_request_free_callback( 734 &rinfo->callback, 735 blkif_restart_queue_callback, 736 rinfo, 737 max_grefs - rinfo->persistent_gnts_c); 738 return 1; 739 } 740 } 741 742 /* Fill out a communications ring structure. */ 743 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 744 ring_req = &rinfo->shadow[id].req; 745 746 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 747 num_grant = 0; 748 /* Calculate the number of grant used */ 749 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 750 num_grant += gnttab_count_grant(sg->offset, sg->length); 751 752 require_extra_req = info->max_indirect_segments == 0 && 753 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 754 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 755 756 rinfo->shadow[id].num_sg = num_sg; 757 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 758 likely(!require_extra_req)) { 759 /* 760 * The indirect operation can only be a BLKIF_OP_READ or 761 * BLKIF_OP_WRITE 762 */ 763 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 764 ring_req->operation = BLKIF_OP_INDIRECT; 765 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 766 BLKIF_OP_WRITE : BLKIF_OP_READ; 767 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 768 ring_req->u.indirect.handle = info->handle; 769 ring_req->u.indirect.nr_segments = num_grant; 770 } else { 771 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 772 ring_req->u.rw.handle = info->handle; 773 ring_req->operation = rq_data_dir(req) ? 774 BLKIF_OP_WRITE : BLKIF_OP_READ; 775 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 776 /* 777 * Ideally we can do an unordered flush-to-disk. 778 * In case the backend onlysupports barriers, use that. 779 * A barrier request a superset of FUA, so we can 780 * implement it the same way. (It's also a FLUSH+FUA, 781 * since it is guaranteed ordered WRT previous writes.) 782 */ 783 if (info->feature_flush && info->feature_fua) 784 ring_req->operation = 785 BLKIF_OP_WRITE_BARRIER; 786 else if (info->feature_flush) 787 ring_req->operation = 788 BLKIF_OP_FLUSH_DISKCACHE; 789 else 790 ring_req->operation = 0; 791 } 792 ring_req->u.rw.nr_segments = num_grant; 793 if (unlikely(require_extra_req)) { 794 extra_id = blkif_ring_get_request(rinfo, req, 795 &final_extra_ring_req); 796 extra_ring_req = &rinfo->shadow[extra_id].req; 797 798 /* 799 * Only the first request contains the scatter-gather 800 * list. 801 */ 802 rinfo->shadow[extra_id].num_sg = 0; 803 804 blkif_setup_extra_req(ring_req, extra_ring_req); 805 806 /* Link the 2 requests together */ 807 rinfo->shadow[extra_id].associated_id = id; 808 rinfo->shadow[id].associated_id = extra_id; 809 } 810 } 811 812 setup.ring_req = ring_req; 813 setup.id = id; 814 815 setup.require_extra_req = require_extra_req; 816 if (unlikely(require_extra_req)) 817 setup.extra_ring_req = extra_ring_req; 818 819 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 820 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 821 822 if (setup.need_copy) { 823 setup.bvec_off = sg->offset; 824 setup.bvec_data = kmap_atomic(sg_page(sg)); 825 } 826 827 gnttab_foreach_grant_in_range(sg_page(sg), 828 sg->offset, 829 sg->length, 830 blkif_setup_rw_req_grant, 831 &setup); 832 833 if (setup.need_copy) 834 kunmap_atomic(setup.bvec_data); 835 } 836 if (setup.segments) 837 kunmap_atomic(setup.segments); 838 839 /* Copy request(s) to the ring page. */ 840 *final_ring_req = *ring_req; 841 rinfo->shadow[id].status = REQ_WAITING; 842 if (unlikely(require_extra_req)) { 843 *final_extra_ring_req = *extra_ring_req; 844 rinfo->shadow[extra_id].status = REQ_WAITING; 845 } 846 847 if (new_persistent_gnts) 848 gnttab_free_grant_references(setup.gref_head); 849 850 return 0; 851 } 852 853 /* 854 * Generate a Xen blkfront IO request from a blk layer request. Reads 855 * and writes are handled as expected. 856 * 857 * @req: a request struct 858 */ 859 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 860 { 861 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 862 return 1; 863 864 if (unlikely(req_op(req) == REQ_OP_DISCARD || 865 req_op(req) == REQ_OP_SECURE_ERASE)) 866 return blkif_queue_discard_req(req, rinfo); 867 else 868 return blkif_queue_rw_req(req, rinfo); 869 } 870 871 static inline void flush_requests(struct blkfront_ring_info *rinfo) 872 { 873 int notify; 874 875 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 876 877 if (notify) 878 notify_remote_via_irq(rinfo->irq); 879 } 880 881 static inline bool blkif_request_flush_invalid(struct request *req, 882 struct blkfront_info *info) 883 { 884 return (blk_rq_is_passthrough(req) || 885 ((req_op(req) == REQ_OP_FLUSH) && 886 !info->feature_flush) || 887 ((req->cmd_flags & REQ_FUA) && 888 !info->feature_fua)); 889 } 890 891 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 892 const struct blk_mq_queue_data *qd) 893 { 894 unsigned long flags; 895 int qid = hctx->queue_num; 896 struct blkfront_info *info = hctx->queue->queuedata; 897 struct blkfront_ring_info *rinfo = NULL; 898 899 rinfo = get_rinfo(info, qid); 900 blk_mq_start_request(qd->rq); 901 spin_lock_irqsave(&rinfo->ring_lock, flags); 902 if (RING_FULL(&rinfo->ring)) 903 goto out_busy; 904 905 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 906 goto out_err; 907 908 if (blkif_queue_request(qd->rq, rinfo)) 909 goto out_busy; 910 911 flush_requests(rinfo); 912 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 913 return BLK_STS_OK; 914 915 out_err: 916 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 917 return BLK_STS_IOERR; 918 919 out_busy: 920 blk_mq_stop_hw_queue(hctx); 921 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 922 return BLK_STS_DEV_RESOURCE; 923 } 924 925 static void blkif_complete_rq(struct request *rq) 926 { 927 blk_mq_end_request(rq, blkif_req(rq)->error); 928 } 929 930 static const struct blk_mq_ops blkfront_mq_ops = { 931 .queue_rq = blkif_queue_rq, 932 .complete = blkif_complete_rq, 933 }; 934 935 static void blkif_set_queue_limits(struct blkfront_info *info) 936 { 937 struct request_queue *rq = info->rq; 938 struct gendisk *gd = info->gd; 939 unsigned int segments = info->max_indirect_segments ? : 940 BLKIF_MAX_SEGMENTS_PER_REQUEST; 941 942 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 943 944 if (info->feature_discard) { 945 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 946 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 947 rq->limits.discard_granularity = info->discard_granularity ?: 948 info->physical_sector_size; 949 rq->limits.discard_alignment = info->discard_alignment; 950 if (info->feature_secdiscard) 951 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 952 } 953 954 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 955 blk_queue_logical_block_size(rq, info->sector_size); 956 blk_queue_physical_block_size(rq, info->physical_sector_size); 957 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 958 959 /* Each segment in a request is up to an aligned page in size. */ 960 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 961 blk_queue_max_segment_size(rq, PAGE_SIZE); 962 963 /* Ensure a merged request will fit in a single I/O ring slot. */ 964 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 965 966 /* Make sure buffer addresses are sector-aligned. */ 967 blk_queue_dma_alignment(rq, 511); 968 } 969 970 static const char *flush_info(struct blkfront_info *info) 971 { 972 if (info->feature_flush && info->feature_fua) 973 return "barrier: enabled;"; 974 else if (info->feature_flush) 975 return "flush diskcache: enabled;"; 976 else 977 return "barrier or flush: disabled;"; 978 } 979 980 static void xlvbd_flush(struct blkfront_info *info) 981 { 982 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 983 info->feature_fua ? true : false); 984 pr_info("blkfront: %s: %s %s %s %s %s\n", 985 info->gd->disk_name, flush_info(info), 986 "persistent grants:", info->feature_persistent ? 987 "enabled;" : "disabled;", "indirect descriptors:", 988 info->max_indirect_segments ? "enabled;" : "disabled;"); 989 } 990 991 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 992 { 993 int major; 994 major = BLKIF_MAJOR(vdevice); 995 *minor = BLKIF_MINOR(vdevice); 996 switch (major) { 997 case XEN_IDE0_MAJOR: 998 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 999 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1000 EMULATED_HD_DISK_MINOR_OFFSET; 1001 break; 1002 case XEN_IDE1_MAJOR: 1003 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1004 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1005 EMULATED_HD_DISK_MINOR_OFFSET; 1006 break; 1007 case XEN_SCSI_DISK0_MAJOR: 1008 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1009 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1010 break; 1011 case XEN_SCSI_DISK1_MAJOR: 1012 case XEN_SCSI_DISK2_MAJOR: 1013 case XEN_SCSI_DISK3_MAJOR: 1014 case XEN_SCSI_DISK4_MAJOR: 1015 case XEN_SCSI_DISK5_MAJOR: 1016 case XEN_SCSI_DISK6_MAJOR: 1017 case XEN_SCSI_DISK7_MAJOR: 1018 *offset = (*minor / PARTS_PER_DISK) + 1019 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1020 EMULATED_SD_DISK_NAME_OFFSET; 1021 *minor = *minor + 1022 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1023 EMULATED_SD_DISK_MINOR_OFFSET; 1024 break; 1025 case XEN_SCSI_DISK8_MAJOR: 1026 case XEN_SCSI_DISK9_MAJOR: 1027 case XEN_SCSI_DISK10_MAJOR: 1028 case XEN_SCSI_DISK11_MAJOR: 1029 case XEN_SCSI_DISK12_MAJOR: 1030 case XEN_SCSI_DISK13_MAJOR: 1031 case XEN_SCSI_DISK14_MAJOR: 1032 case XEN_SCSI_DISK15_MAJOR: 1033 *offset = (*minor / PARTS_PER_DISK) + 1034 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1035 EMULATED_SD_DISK_NAME_OFFSET; 1036 *minor = *minor + 1037 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1038 EMULATED_SD_DISK_MINOR_OFFSET; 1039 break; 1040 case XENVBD_MAJOR: 1041 *offset = *minor / PARTS_PER_DISK; 1042 break; 1043 default: 1044 printk(KERN_WARNING "blkfront: your disk configuration is " 1045 "incorrect, please use an xvd device instead\n"); 1046 return -ENODEV; 1047 } 1048 return 0; 1049 } 1050 1051 static char *encode_disk_name(char *ptr, unsigned int n) 1052 { 1053 if (n >= 26) 1054 ptr = encode_disk_name(ptr, n / 26 - 1); 1055 *ptr = 'a' + n % 26; 1056 return ptr + 1; 1057 } 1058 1059 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1060 struct blkfront_info *info, 1061 u16 vdisk_info, u16 sector_size, 1062 unsigned int physical_sector_size) 1063 { 1064 struct gendisk *gd; 1065 int nr_minors = 1; 1066 int err; 1067 unsigned int offset; 1068 int minor; 1069 int nr_parts; 1070 char *ptr; 1071 1072 BUG_ON(info->gd != NULL); 1073 BUG_ON(info->rq != NULL); 1074 1075 if ((info->vdevice>>EXT_SHIFT) > 1) { 1076 /* this is above the extended range; something is wrong */ 1077 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1078 return -ENODEV; 1079 } 1080 1081 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1082 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1083 if (err) 1084 return err; 1085 nr_parts = PARTS_PER_DISK; 1086 } else { 1087 minor = BLKIF_MINOR_EXT(info->vdevice); 1088 nr_parts = PARTS_PER_EXT_DISK; 1089 offset = minor / nr_parts; 1090 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1091 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1092 "emulated IDE disks,\n\t choose an xvd device name" 1093 "from xvde on\n", info->vdevice); 1094 } 1095 if (minor >> MINORBITS) { 1096 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1097 info->vdevice, minor); 1098 return -ENODEV; 1099 } 1100 1101 if ((minor % nr_parts) == 0) 1102 nr_minors = nr_parts; 1103 1104 err = xlbd_reserve_minors(minor, nr_minors); 1105 if (err) 1106 return err; 1107 1108 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1109 info->tag_set.ops = &blkfront_mq_ops; 1110 info->tag_set.nr_hw_queues = info->nr_rings; 1111 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1112 /* 1113 * When indirect descriptior is not supported, the I/O request 1114 * will be split between multiple request in the ring. 1115 * To avoid problems when sending the request, divide by 1116 * 2 the depth of the queue. 1117 */ 1118 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1119 } else 1120 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1121 info->tag_set.numa_node = NUMA_NO_NODE; 1122 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1123 info->tag_set.cmd_size = sizeof(struct blkif_req); 1124 info->tag_set.driver_data = info; 1125 1126 err = blk_mq_alloc_tag_set(&info->tag_set); 1127 if (err) 1128 goto out_release_minors; 1129 1130 gd = blk_mq_alloc_disk(&info->tag_set, info); 1131 if (IS_ERR(gd)) { 1132 err = PTR_ERR(gd); 1133 goto out_free_tag_set; 1134 } 1135 1136 strcpy(gd->disk_name, DEV_NAME); 1137 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1138 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1139 if (nr_minors > 1) 1140 *ptr = 0; 1141 else 1142 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1143 "%d", minor & (nr_parts - 1)); 1144 1145 gd->major = XENVBD_MAJOR; 1146 gd->first_minor = minor; 1147 gd->minors = nr_minors; 1148 gd->fops = &xlvbd_block_fops; 1149 gd->private_data = info; 1150 set_capacity(gd, capacity); 1151 1152 info->rq = gd->queue; 1153 info->gd = gd; 1154 info->sector_size = sector_size; 1155 info->physical_sector_size = physical_sector_size; 1156 blkif_set_queue_limits(info); 1157 1158 xlvbd_flush(info); 1159 1160 if (vdisk_info & VDISK_READONLY) 1161 set_disk_ro(gd, 1); 1162 1163 if (vdisk_info & VDISK_REMOVABLE) 1164 gd->flags |= GENHD_FL_REMOVABLE; 1165 1166 if (vdisk_info & VDISK_CDROM) 1167 gd->flags |= GENHD_FL_CD; 1168 1169 return 0; 1170 1171 out_free_tag_set: 1172 blk_mq_free_tag_set(&info->tag_set); 1173 out_release_minors: 1174 xlbd_release_minors(minor, nr_minors); 1175 return err; 1176 } 1177 1178 /* Already hold rinfo->ring_lock. */ 1179 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1180 { 1181 if (!RING_FULL(&rinfo->ring)) 1182 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1183 } 1184 1185 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1186 { 1187 unsigned long flags; 1188 1189 spin_lock_irqsave(&rinfo->ring_lock, flags); 1190 kick_pending_request_queues_locked(rinfo); 1191 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1192 } 1193 1194 static void blkif_restart_queue(struct work_struct *work) 1195 { 1196 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1197 1198 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1199 kick_pending_request_queues(rinfo); 1200 } 1201 1202 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1203 { 1204 struct grant *persistent_gnt, *n; 1205 struct blkfront_info *info = rinfo->dev_info; 1206 int i, j, segs; 1207 1208 /* 1209 * Remove indirect pages, this only happens when using indirect 1210 * descriptors but not persistent grants 1211 */ 1212 if (!list_empty(&rinfo->indirect_pages)) { 1213 struct page *indirect_page, *n; 1214 1215 BUG_ON(info->feature_persistent); 1216 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1217 list_del(&indirect_page->lru); 1218 __free_page(indirect_page); 1219 } 1220 } 1221 1222 /* Remove all persistent grants. */ 1223 if (!list_empty(&rinfo->grants)) { 1224 list_for_each_entry_safe(persistent_gnt, n, 1225 &rinfo->grants, node) { 1226 list_del(&persistent_gnt->node); 1227 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1228 gnttab_end_foreign_access(persistent_gnt->gref, 1229 0, 0UL); 1230 rinfo->persistent_gnts_c--; 1231 } 1232 if (info->feature_persistent) 1233 __free_page(persistent_gnt->page); 1234 kfree(persistent_gnt); 1235 } 1236 } 1237 BUG_ON(rinfo->persistent_gnts_c != 0); 1238 1239 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1240 /* 1241 * Clear persistent grants present in requests already 1242 * on the shared ring 1243 */ 1244 if (!rinfo->shadow[i].request) 1245 goto free_shadow; 1246 1247 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1248 rinfo->shadow[i].req.u.indirect.nr_segments : 1249 rinfo->shadow[i].req.u.rw.nr_segments; 1250 for (j = 0; j < segs; j++) { 1251 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1252 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1253 if (info->feature_persistent) 1254 __free_page(persistent_gnt->page); 1255 kfree(persistent_gnt); 1256 } 1257 1258 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1259 /* 1260 * If this is not an indirect operation don't try to 1261 * free indirect segments 1262 */ 1263 goto free_shadow; 1264 1265 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1266 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1267 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1268 __free_page(persistent_gnt->page); 1269 kfree(persistent_gnt); 1270 } 1271 1272 free_shadow: 1273 kvfree(rinfo->shadow[i].grants_used); 1274 rinfo->shadow[i].grants_used = NULL; 1275 kvfree(rinfo->shadow[i].indirect_grants); 1276 rinfo->shadow[i].indirect_grants = NULL; 1277 kvfree(rinfo->shadow[i].sg); 1278 rinfo->shadow[i].sg = NULL; 1279 } 1280 1281 /* No more gnttab callback work. */ 1282 gnttab_cancel_free_callback(&rinfo->callback); 1283 1284 /* Flush gnttab callback work. Must be done with no locks held. */ 1285 flush_work(&rinfo->work); 1286 1287 /* Free resources associated with old device channel. */ 1288 for (i = 0; i < info->nr_ring_pages; i++) { 1289 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1290 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1291 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1292 } 1293 } 1294 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE)); 1295 rinfo->ring.sring = NULL; 1296 1297 if (rinfo->irq) 1298 unbind_from_irqhandler(rinfo->irq, rinfo); 1299 rinfo->evtchn = rinfo->irq = 0; 1300 } 1301 1302 static void blkif_free(struct blkfront_info *info, int suspend) 1303 { 1304 unsigned int i; 1305 struct blkfront_ring_info *rinfo; 1306 1307 /* Prevent new requests being issued until we fix things up. */ 1308 info->connected = suspend ? 1309 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1310 /* No more blkif_request(). */ 1311 if (info->rq) 1312 blk_mq_stop_hw_queues(info->rq); 1313 1314 for_each_rinfo(info, rinfo, i) 1315 blkif_free_ring(rinfo); 1316 1317 kvfree(info->rinfo); 1318 info->rinfo = NULL; 1319 info->nr_rings = 0; 1320 } 1321 1322 struct copy_from_grant { 1323 const struct blk_shadow *s; 1324 unsigned int grant_idx; 1325 unsigned int bvec_offset; 1326 char *bvec_data; 1327 }; 1328 1329 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1330 unsigned int len, void *data) 1331 { 1332 struct copy_from_grant *info = data; 1333 char *shared_data; 1334 /* Convenient aliases */ 1335 const struct blk_shadow *s = info->s; 1336 1337 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1338 1339 memcpy(info->bvec_data + info->bvec_offset, 1340 shared_data + offset, len); 1341 1342 info->bvec_offset += len; 1343 info->grant_idx++; 1344 1345 kunmap_atomic(shared_data); 1346 } 1347 1348 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1349 { 1350 switch (rsp) 1351 { 1352 case BLKIF_RSP_OKAY: 1353 return REQ_DONE; 1354 case BLKIF_RSP_EOPNOTSUPP: 1355 return REQ_EOPNOTSUPP; 1356 case BLKIF_RSP_ERROR: 1357 default: 1358 return REQ_ERROR; 1359 } 1360 } 1361 1362 /* 1363 * Get the final status of the block request based on two ring response 1364 */ 1365 static int blkif_get_final_status(enum blk_req_status s1, 1366 enum blk_req_status s2) 1367 { 1368 BUG_ON(s1 < REQ_DONE); 1369 BUG_ON(s2 < REQ_DONE); 1370 1371 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1372 return BLKIF_RSP_ERROR; 1373 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1374 return BLKIF_RSP_EOPNOTSUPP; 1375 return BLKIF_RSP_OKAY; 1376 } 1377 1378 static bool blkif_completion(unsigned long *id, 1379 struct blkfront_ring_info *rinfo, 1380 struct blkif_response *bret) 1381 { 1382 int i = 0; 1383 struct scatterlist *sg; 1384 int num_sg, num_grant; 1385 struct blkfront_info *info = rinfo->dev_info; 1386 struct blk_shadow *s = &rinfo->shadow[*id]; 1387 struct copy_from_grant data = { 1388 .grant_idx = 0, 1389 }; 1390 1391 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1392 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1393 1394 /* The I/O request may be split in two. */ 1395 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1396 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1397 1398 /* Keep the status of the current response in shadow. */ 1399 s->status = blkif_rsp_to_req_status(bret->status); 1400 1401 /* Wait the second response if not yet here. */ 1402 if (s2->status < REQ_DONE) 1403 return false; 1404 1405 bret->status = blkif_get_final_status(s->status, 1406 s2->status); 1407 1408 /* 1409 * All the grants is stored in the first shadow in order 1410 * to make the completion code simpler. 1411 */ 1412 num_grant += s2->req.u.rw.nr_segments; 1413 1414 /* 1415 * The two responses may not come in order. Only the 1416 * first request will store the scatter-gather list. 1417 */ 1418 if (s2->num_sg != 0) { 1419 /* Update "id" with the ID of the first response. */ 1420 *id = s->associated_id; 1421 s = s2; 1422 } 1423 1424 /* 1425 * We don't need anymore the second request, so recycling 1426 * it now. 1427 */ 1428 if (add_id_to_freelist(rinfo, s->associated_id)) 1429 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1430 info->gd->disk_name, s->associated_id); 1431 } 1432 1433 data.s = s; 1434 num_sg = s->num_sg; 1435 1436 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) { 1437 for_each_sg(s->sg, sg, num_sg, i) { 1438 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1439 1440 data.bvec_offset = sg->offset; 1441 data.bvec_data = kmap_atomic(sg_page(sg)); 1442 1443 gnttab_foreach_grant_in_range(sg_page(sg), 1444 sg->offset, 1445 sg->length, 1446 blkif_copy_from_grant, 1447 &data); 1448 1449 kunmap_atomic(data.bvec_data); 1450 } 1451 } 1452 /* Add the persistent grant into the list of free grants */ 1453 for (i = 0; i < num_grant; i++) { 1454 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) { 1455 /* 1456 * If the grant is still mapped by the backend (the 1457 * backend has chosen to make this grant persistent) 1458 * we add it at the head of the list, so it will be 1459 * reused first. 1460 */ 1461 if (!info->feature_persistent) 1462 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1463 s->grants_used[i]->gref); 1464 list_add(&s->grants_used[i]->node, &rinfo->grants); 1465 rinfo->persistent_gnts_c++; 1466 } else { 1467 /* 1468 * If the grant is not mapped by the backend we end the 1469 * foreign access and add it to the tail of the list, 1470 * so it will not be picked again unless we run out of 1471 * persistent grants. 1472 */ 1473 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL); 1474 s->grants_used[i]->gref = GRANT_INVALID_REF; 1475 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1476 } 1477 } 1478 if (s->req.operation == BLKIF_OP_INDIRECT) { 1479 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1480 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) { 1481 if (!info->feature_persistent) 1482 pr_alert_ratelimited("backed has not unmapped grant: %u\n", 1483 s->indirect_grants[i]->gref); 1484 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1485 rinfo->persistent_gnts_c++; 1486 } else { 1487 struct page *indirect_page; 1488 1489 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL); 1490 /* 1491 * Add the used indirect page back to the list of 1492 * available pages for indirect grefs. 1493 */ 1494 if (!info->feature_persistent) { 1495 indirect_page = s->indirect_grants[i]->page; 1496 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1497 } 1498 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1499 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1500 } 1501 } 1502 } 1503 1504 return true; 1505 } 1506 1507 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1508 { 1509 struct request *req; 1510 struct blkif_response bret; 1511 RING_IDX i, rp; 1512 unsigned long flags; 1513 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1514 struct blkfront_info *info = rinfo->dev_info; 1515 1516 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) 1517 return IRQ_HANDLED; 1518 1519 spin_lock_irqsave(&rinfo->ring_lock, flags); 1520 again: 1521 rp = READ_ONCE(rinfo->ring.sring->rsp_prod); 1522 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */ 1523 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) { 1524 pr_alert("%s: illegal number of responses %u\n", 1525 info->gd->disk_name, rp - rinfo->ring.rsp_cons); 1526 goto err; 1527 } 1528 1529 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1530 unsigned long id; 1531 unsigned int op; 1532 1533 RING_COPY_RESPONSE(&rinfo->ring, i, &bret); 1534 id = bret.id; 1535 1536 /* 1537 * The backend has messed up and given us an id that we would 1538 * never have given to it (we stamp it up to BLK_RING_SIZE - 1539 * look in get_id_from_freelist. 1540 */ 1541 if (id >= BLK_RING_SIZE(info)) { 1542 pr_alert("%s: response has incorrect id (%ld)\n", 1543 info->gd->disk_name, id); 1544 goto err; 1545 } 1546 if (rinfo->shadow[id].status != REQ_WAITING) { 1547 pr_alert("%s: response references no pending request\n", 1548 info->gd->disk_name); 1549 goto err; 1550 } 1551 1552 rinfo->shadow[id].status = REQ_PROCESSING; 1553 req = rinfo->shadow[id].request; 1554 1555 op = rinfo->shadow[id].req.operation; 1556 if (op == BLKIF_OP_INDIRECT) 1557 op = rinfo->shadow[id].req.u.indirect.indirect_op; 1558 if (bret.operation != op) { 1559 pr_alert("%s: response has wrong operation (%u instead of %u)\n", 1560 info->gd->disk_name, bret.operation, op); 1561 goto err; 1562 } 1563 1564 if (bret.operation != BLKIF_OP_DISCARD) { 1565 /* 1566 * We may need to wait for an extra response if the 1567 * I/O request is split in 2 1568 */ 1569 if (!blkif_completion(&id, rinfo, &bret)) 1570 continue; 1571 } 1572 1573 if (add_id_to_freelist(rinfo, id)) { 1574 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1575 info->gd->disk_name, op_name(bret.operation), id); 1576 continue; 1577 } 1578 1579 if (bret.status == BLKIF_RSP_OKAY) 1580 blkif_req(req)->error = BLK_STS_OK; 1581 else 1582 blkif_req(req)->error = BLK_STS_IOERR; 1583 1584 switch (bret.operation) { 1585 case BLKIF_OP_DISCARD: 1586 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1587 struct request_queue *rq = info->rq; 1588 1589 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1590 info->gd->disk_name, op_name(bret.operation)); 1591 blkif_req(req)->error = BLK_STS_NOTSUPP; 1592 info->feature_discard = 0; 1593 info->feature_secdiscard = 0; 1594 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1595 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1596 } 1597 break; 1598 case BLKIF_OP_FLUSH_DISKCACHE: 1599 case BLKIF_OP_WRITE_BARRIER: 1600 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1601 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1602 info->gd->disk_name, op_name(bret.operation)); 1603 blkif_req(req)->error = BLK_STS_NOTSUPP; 1604 } 1605 if (unlikely(bret.status == BLKIF_RSP_ERROR && 1606 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1607 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n", 1608 info->gd->disk_name, op_name(bret.operation)); 1609 blkif_req(req)->error = BLK_STS_NOTSUPP; 1610 } 1611 if (unlikely(blkif_req(req)->error)) { 1612 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1613 blkif_req(req)->error = BLK_STS_OK; 1614 info->feature_fua = 0; 1615 info->feature_flush = 0; 1616 xlvbd_flush(info); 1617 } 1618 fallthrough; 1619 case BLKIF_OP_READ: 1620 case BLKIF_OP_WRITE: 1621 if (unlikely(bret.status != BLKIF_RSP_OKAY)) 1622 dev_dbg_ratelimited(&info->xbdev->dev, 1623 "Bad return from blkdev data request: %#x\n", 1624 bret.status); 1625 1626 break; 1627 default: 1628 BUG(); 1629 } 1630 1631 if (likely(!blk_should_fake_timeout(req->q))) 1632 blk_mq_complete_request(req); 1633 } 1634 1635 rinfo->ring.rsp_cons = i; 1636 1637 if (i != rinfo->ring.req_prod_pvt) { 1638 int more_to_do; 1639 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1640 if (more_to_do) 1641 goto again; 1642 } else 1643 rinfo->ring.sring->rsp_event = i + 1; 1644 1645 kick_pending_request_queues_locked(rinfo); 1646 1647 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1648 1649 return IRQ_HANDLED; 1650 1651 err: 1652 info->connected = BLKIF_STATE_ERROR; 1653 1654 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1655 1656 pr_alert("%s disabled for further use\n", info->gd->disk_name); 1657 return IRQ_HANDLED; 1658 } 1659 1660 1661 static int setup_blkring(struct xenbus_device *dev, 1662 struct blkfront_ring_info *rinfo) 1663 { 1664 struct blkif_sring *sring; 1665 int err, i; 1666 struct blkfront_info *info = rinfo->dev_info; 1667 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1668 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1669 1670 for (i = 0; i < info->nr_ring_pages; i++) 1671 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1672 1673 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH, 1674 get_order(ring_size)); 1675 if (!sring) { 1676 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1677 return -ENOMEM; 1678 } 1679 SHARED_RING_INIT(sring); 1680 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1681 1682 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1683 if (err < 0) { 1684 free_pages((unsigned long)sring, get_order(ring_size)); 1685 rinfo->ring.sring = NULL; 1686 goto fail; 1687 } 1688 for (i = 0; i < info->nr_ring_pages; i++) 1689 rinfo->ring_ref[i] = gref[i]; 1690 1691 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1692 if (err) 1693 goto fail; 1694 1695 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0, 1696 "blkif", rinfo); 1697 if (err <= 0) { 1698 xenbus_dev_fatal(dev, err, 1699 "bind_evtchn_to_irqhandler failed"); 1700 goto fail; 1701 } 1702 rinfo->irq = err; 1703 1704 return 0; 1705 fail: 1706 blkif_free(info, 0); 1707 return err; 1708 } 1709 1710 /* 1711 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1712 * ring buffer may have multi pages depending on ->nr_ring_pages. 1713 */ 1714 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1715 struct blkfront_ring_info *rinfo, const char *dir) 1716 { 1717 int err; 1718 unsigned int i; 1719 const char *message = NULL; 1720 struct blkfront_info *info = rinfo->dev_info; 1721 1722 if (info->nr_ring_pages == 1) { 1723 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1724 if (err) { 1725 message = "writing ring-ref"; 1726 goto abort_transaction; 1727 } 1728 } else { 1729 for (i = 0; i < info->nr_ring_pages; i++) { 1730 char ring_ref_name[RINGREF_NAME_LEN]; 1731 1732 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1733 err = xenbus_printf(xbt, dir, ring_ref_name, 1734 "%u", rinfo->ring_ref[i]); 1735 if (err) { 1736 message = "writing ring-ref"; 1737 goto abort_transaction; 1738 } 1739 } 1740 } 1741 1742 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1743 if (err) { 1744 message = "writing event-channel"; 1745 goto abort_transaction; 1746 } 1747 1748 return 0; 1749 1750 abort_transaction: 1751 xenbus_transaction_end(xbt, 1); 1752 if (message) 1753 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1754 1755 return err; 1756 } 1757 1758 /* Common code used when first setting up, and when resuming. */ 1759 static int talk_to_blkback(struct xenbus_device *dev, 1760 struct blkfront_info *info) 1761 { 1762 const char *message = NULL; 1763 struct xenbus_transaction xbt; 1764 int err; 1765 unsigned int i, max_page_order; 1766 unsigned int ring_page_order; 1767 struct blkfront_ring_info *rinfo; 1768 1769 if (!info) 1770 return -ENODEV; 1771 1772 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1773 "max-ring-page-order", 0); 1774 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1775 info->nr_ring_pages = 1 << ring_page_order; 1776 1777 err = negotiate_mq(info); 1778 if (err) 1779 goto destroy_blkring; 1780 1781 for_each_rinfo(info, rinfo, i) { 1782 /* Create shared ring, alloc event channel. */ 1783 err = setup_blkring(dev, rinfo); 1784 if (err) 1785 goto destroy_blkring; 1786 } 1787 1788 again: 1789 err = xenbus_transaction_start(&xbt); 1790 if (err) { 1791 xenbus_dev_fatal(dev, err, "starting transaction"); 1792 goto destroy_blkring; 1793 } 1794 1795 if (info->nr_ring_pages > 1) { 1796 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1797 ring_page_order); 1798 if (err) { 1799 message = "writing ring-page-order"; 1800 goto abort_transaction; 1801 } 1802 } 1803 1804 /* We already got the number of queues/rings in _probe */ 1805 if (info->nr_rings == 1) { 1806 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1807 if (err) 1808 goto destroy_blkring; 1809 } else { 1810 char *path; 1811 size_t pathsize; 1812 1813 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1814 info->nr_rings); 1815 if (err) { 1816 message = "writing multi-queue-num-queues"; 1817 goto abort_transaction; 1818 } 1819 1820 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1821 path = kmalloc(pathsize, GFP_KERNEL); 1822 if (!path) { 1823 err = -ENOMEM; 1824 message = "ENOMEM while writing ring references"; 1825 goto abort_transaction; 1826 } 1827 1828 for_each_rinfo(info, rinfo, i) { 1829 memset(path, 0, pathsize); 1830 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1831 err = write_per_ring_nodes(xbt, rinfo, path); 1832 if (err) { 1833 kfree(path); 1834 goto destroy_blkring; 1835 } 1836 } 1837 kfree(path); 1838 } 1839 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1840 XEN_IO_PROTO_ABI_NATIVE); 1841 if (err) { 1842 message = "writing protocol"; 1843 goto abort_transaction; 1844 } 1845 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1846 info->feature_persistent); 1847 if (err) 1848 dev_warn(&dev->dev, 1849 "writing persistent grants feature to xenbus"); 1850 1851 err = xenbus_transaction_end(xbt, 0); 1852 if (err) { 1853 if (err == -EAGAIN) 1854 goto again; 1855 xenbus_dev_fatal(dev, err, "completing transaction"); 1856 goto destroy_blkring; 1857 } 1858 1859 for_each_rinfo(info, rinfo, i) { 1860 unsigned int j; 1861 1862 for (j = 0; j < BLK_RING_SIZE(info); j++) 1863 rinfo->shadow[j].req.u.rw.id = j + 1; 1864 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1865 } 1866 xenbus_switch_state(dev, XenbusStateInitialised); 1867 1868 return 0; 1869 1870 abort_transaction: 1871 xenbus_transaction_end(xbt, 1); 1872 if (message) 1873 xenbus_dev_fatal(dev, err, "%s", message); 1874 destroy_blkring: 1875 blkif_free(info, 0); 1876 return err; 1877 } 1878 1879 static int negotiate_mq(struct blkfront_info *info) 1880 { 1881 unsigned int backend_max_queues; 1882 unsigned int i; 1883 struct blkfront_ring_info *rinfo; 1884 1885 BUG_ON(info->nr_rings); 1886 1887 /* Check if backend supports multiple queues. */ 1888 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1889 "multi-queue-max-queues", 1); 1890 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1891 /* We need at least one ring. */ 1892 if (!info->nr_rings) 1893 info->nr_rings = 1; 1894 1895 info->rinfo_size = struct_size(info->rinfo, shadow, 1896 BLK_RING_SIZE(info)); 1897 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1898 if (!info->rinfo) { 1899 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1900 info->nr_rings = 0; 1901 return -ENOMEM; 1902 } 1903 1904 for_each_rinfo(info, rinfo, i) { 1905 INIT_LIST_HEAD(&rinfo->indirect_pages); 1906 INIT_LIST_HEAD(&rinfo->grants); 1907 rinfo->dev_info = info; 1908 INIT_WORK(&rinfo->work, blkif_restart_queue); 1909 spin_lock_init(&rinfo->ring_lock); 1910 } 1911 return 0; 1912 } 1913 1914 /* Enable the persistent grants feature. */ 1915 static bool feature_persistent = true; 1916 module_param(feature_persistent, bool, 0644); 1917 MODULE_PARM_DESC(feature_persistent, 1918 "Enables the persistent grants feature"); 1919 1920 /* 1921 * Entry point to this code when a new device is created. Allocate the basic 1922 * structures and the ring buffer for communication with the backend, and 1923 * inform the backend of the appropriate details for those. Switch to 1924 * Initialised state. 1925 */ 1926 static int blkfront_probe(struct xenbus_device *dev, 1927 const struct xenbus_device_id *id) 1928 { 1929 int err, vdevice; 1930 struct blkfront_info *info; 1931 1932 /* FIXME: Use dynamic device id if this is not set. */ 1933 err = xenbus_scanf(XBT_NIL, dev->nodename, 1934 "virtual-device", "%i", &vdevice); 1935 if (err != 1) { 1936 /* go looking in the extended area instead */ 1937 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1938 "%i", &vdevice); 1939 if (err != 1) { 1940 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1941 return err; 1942 } 1943 } 1944 1945 if (xen_hvm_domain()) { 1946 char *type; 1947 int len; 1948 /* no unplug has been done: do not hook devices != xen vbds */ 1949 if (xen_has_pv_and_legacy_disk_devices()) { 1950 int major; 1951 1952 if (!VDEV_IS_EXTENDED(vdevice)) 1953 major = BLKIF_MAJOR(vdevice); 1954 else 1955 major = XENVBD_MAJOR; 1956 1957 if (major != XENVBD_MAJOR) { 1958 printk(KERN_INFO 1959 "%s: HVM does not support vbd %d as xen block device\n", 1960 __func__, vdevice); 1961 return -ENODEV; 1962 } 1963 } 1964 /* do not create a PV cdrom device if we are an HVM guest */ 1965 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1966 if (IS_ERR(type)) 1967 return -ENODEV; 1968 if (strncmp(type, "cdrom", 5) == 0) { 1969 kfree(type); 1970 return -ENODEV; 1971 } 1972 kfree(type); 1973 } 1974 info = kzalloc(sizeof(*info), GFP_KERNEL); 1975 if (!info) { 1976 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1977 return -ENOMEM; 1978 } 1979 1980 info->xbdev = dev; 1981 1982 mutex_init(&info->mutex); 1983 info->vdevice = vdevice; 1984 info->connected = BLKIF_STATE_DISCONNECTED; 1985 1986 info->feature_persistent = feature_persistent; 1987 1988 /* Front end dir is a number, which is used as the id. */ 1989 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1990 dev_set_drvdata(&dev->dev, info); 1991 1992 mutex_lock(&blkfront_mutex); 1993 list_add(&info->info_list, &info_list); 1994 mutex_unlock(&blkfront_mutex); 1995 1996 return 0; 1997 } 1998 1999 static int blkif_recover(struct blkfront_info *info) 2000 { 2001 unsigned int r_index; 2002 struct request *req, *n; 2003 int rc; 2004 struct bio *bio; 2005 unsigned int segs; 2006 struct blkfront_ring_info *rinfo; 2007 2008 blkfront_gather_backend_features(info); 2009 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2010 blkif_set_queue_limits(info); 2011 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2012 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2013 2014 for_each_rinfo(info, rinfo, r_index) { 2015 rc = blkfront_setup_indirect(rinfo); 2016 if (rc) 2017 return rc; 2018 } 2019 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2020 2021 /* Now safe for us to use the shared ring */ 2022 info->connected = BLKIF_STATE_CONNECTED; 2023 2024 for_each_rinfo(info, rinfo, r_index) { 2025 /* Kick any other new requests queued since we resumed */ 2026 kick_pending_request_queues(rinfo); 2027 } 2028 2029 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2030 /* Requeue pending requests (flush or discard) */ 2031 list_del_init(&req->queuelist); 2032 BUG_ON(req->nr_phys_segments > segs); 2033 blk_mq_requeue_request(req, false); 2034 } 2035 blk_mq_start_stopped_hw_queues(info->rq, true); 2036 blk_mq_kick_requeue_list(info->rq); 2037 2038 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2039 /* Traverse the list of pending bios and re-queue them */ 2040 submit_bio(bio); 2041 } 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2048 * driver restart. We tear down our blkif structure and recreate it, but 2049 * leave the device-layer structures intact so that this is transparent to the 2050 * rest of the kernel. 2051 */ 2052 static int blkfront_resume(struct xenbus_device *dev) 2053 { 2054 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2055 int err = 0; 2056 unsigned int i, j; 2057 struct blkfront_ring_info *rinfo; 2058 2059 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2060 2061 bio_list_init(&info->bio_list); 2062 INIT_LIST_HEAD(&info->requests); 2063 for_each_rinfo(info, rinfo, i) { 2064 struct bio_list merge_bio; 2065 struct blk_shadow *shadow = rinfo->shadow; 2066 2067 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2068 /* Not in use? */ 2069 if (!shadow[j].request) 2070 continue; 2071 2072 /* 2073 * Get the bios in the request so we can re-queue them. 2074 */ 2075 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2076 req_op(shadow[j].request) == REQ_OP_DISCARD || 2077 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2078 shadow[j].request->cmd_flags & REQ_FUA) { 2079 /* 2080 * Flush operations don't contain bios, so 2081 * we need to requeue the whole request 2082 * 2083 * XXX: but this doesn't make any sense for a 2084 * write with the FUA flag set.. 2085 */ 2086 list_add(&shadow[j].request->queuelist, &info->requests); 2087 continue; 2088 } 2089 merge_bio.head = shadow[j].request->bio; 2090 merge_bio.tail = shadow[j].request->biotail; 2091 bio_list_merge(&info->bio_list, &merge_bio); 2092 shadow[j].request->bio = NULL; 2093 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2094 } 2095 } 2096 2097 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2098 2099 err = talk_to_blkback(dev, info); 2100 if (!err) 2101 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2102 2103 /* 2104 * We have to wait for the backend to switch to 2105 * connected state, since we want to read which 2106 * features it supports. 2107 */ 2108 2109 return err; 2110 } 2111 2112 static void blkfront_closing(struct blkfront_info *info) 2113 { 2114 struct xenbus_device *xbdev = info->xbdev; 2115 struct blkfront_ring_info *rinfo; 2116 unsigned int i; 2117 2118 if (xbdev->state == XenbusStateClosing) 2119 return; 2120 2121 /* No more blkif_request(). */ 2122 blk_mq_stop_hw_queues(info->rq); 2123 blk_set_queue_dying(info->rq); 2124 set_capacity(info->gd, 0); 2125 2126 for_each_rinfo(info, rinfo, i) { 2127 /* No more gnttab callback work. */ 2128 gnttab_cancel_free_callback(&rinfo->callback); 2129 2130 /* Flush gnttab callback work. Must be done with no locks held. */ 2131 flush_work(&rinfo->work); 2132 } 2133 2134 xenbus_frontend_closed(xbdev); 2135 } 2136 2137 static void blkfront_setup_discard(struct blkfront_info *info) 2138 { 2139 info->feature_discard = 1; 2140 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2141 "discard-granularity", 2142 0); 2143 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2144 "discard-alignment", 0); 2145 info->feature_secdiscard = 2146 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2147 0); 2148 } 2149 2150 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2151 { 2152 unsigned int psegs, grants, memflags; 2153 int err, i; 2154 struct blkfront_info *info = rinfo->dev_info; 2155 2156 memflags = memalloc_noio_save(); 2157 2158 if (info->max_indirect_segments == 0) { 2159 if (!HAS_EXTRA_REQ) 2160 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2161 else { 2162 /* 2163 * When an extra req is required, the maximum 2164 * grants supported is related to the size of the 2165 * Linux block segment. 2166 */ 2167 grants = GRANTS_PER_PSEG; 2168 } 2169 } 2170 else 2171 grants = info->max_indirect_segments; 2172 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2173 2174 err = fill_grant_buffer(rinfo, 2175 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2176 if (err) 2177 goto out_of_memory; 2178 2179 if (!info->feature_persistent && info->max_indirect_segments) { 2180 /* 2181 * We are using indirect descriptors but not persistent 2182 * grants, we need to allocate a set of pages that can be 2183 * used for mapping indirect grefs 2184 */ 2185 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2186 2187 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2188 for (i = 0; i < num; i++) { 2189 struct page *indirect_page = alloc_page(GFP_KERNEL); 2190 if (!indirect_page) 2191 goto out_of_memory; 2192 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2193 } 2194 } 2195 2196 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2197 rinfo->shadow[i].grants_used = 2198 kvcalloc(grants, 2199 sizeof(rinfo->shadow[i].grants_used[0]), 2200 GFP_KERNEL); 2201 rinfo->shadow[i].sg = kvcalloc(psegs, 2202 sizeof(rinfo->shadow[i].sg[0]), 2203 GFP_KERNEL); 2204 if (info->max_indirect_segments) 2205 rinfo->shadow[i].indirect_grants = 2206 kvcalloc(INDIRECT_GREFS(grants), 2207 sizeof(rinfo->shadow[i].indirect_grants[0]), 2208 GFP_KERNEL); 2209 if ((rinfo->shadow[i].grants_used == NULL) || 2210 (rinfo->shadow[i].sg == NULL) || 2211 (info->max_indirect_segments && 2212 (rinfo->shadow[i].indirect_grants == NULL))) 2213 goto out_of_memory; 2214 sg_init_table(rinfo->shadow[i].sg, psegs); 2215 } 2216 2217 memalloc_noio_restore(memflags); 2218 2219 return 0; 2220 2221 out_of_memory: 2222 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2223 kvfree(rinfo->shadow[i].grants_used); 2224 rinfo->shadow[i].grants_used = NULL; 2225 kvfree(rinfo->shadow[i].sg); 2226 rinfo->shadow[i].sg = NULL; 2227 kvfree(rinfo->shadow[i].indirect_grants); 2228 rinfo->shadow[i].indirect_grants = NULL; 2229 } 2230 if (!list_empty(&rinfo->indirect_pages)) { 2231 struct page *indirect_page, *n; 2232 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2233 list_del(&indirect_page->lru); 2234 __free_page(indirect_page); 2235 } 2236 } 2237 2238 memalloc_noio_restore(memflags); 2239 2240 return -ENOMEM; 2241 } 2242 2243 /* 2244 * Gather all backend feature-* 2245 */ 2246 static void blkfront_gather_backend_features(struct blkfront_info *info) 2247 { 2248 unsigned int indirect_segments; 2249 2250 info->feature_flush = 0; 2251 info->feature_fua = 0; 2252 2253 /* 2254 * If there's no "feature-barrier" defined, then it means 2255 * we're dealing with a very old backend which writes 2256 * synchronously; nothing to do. 2257 * 2258 * If there are barriers, then we use flush. 2259 */ 2260 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2261 info->feature_flush = 1; 2262 info->feature_fua = 1; 2263 } 2264 2265 /* 2266 * And if there is "feature-flush-cache" use that above 2267 * barriers. 2268 */ 2269 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2270 0)) { 2271 info->feature_flush = 1; 2272 info->feature_fua = 0; 2273 } 2274 2275 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2276 blkfront_setup_discard(info); 2277 2278 if (info->feature_persistent) 2279 info->feature_persistent = 2280 !!xenbus_read_unsigned(info->xbdev->otherend, 2281 "feature-persistent", 0); 2282 2283 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2284 "feature-max-indirect-segments", 0); 2285 if (indirect_segments > xen_blkif_max_segments) 2286 indirect_segments = xen_blkif_max_segments; 2287 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2288 indirect_segments = 0; 2289 info->max_indirect_segments = indirect_segments; 2290 2291 if (info->feature_persistent) { 2292 mutex_lock(&blkfront_mutex); 2293 schedule_delayed_work(&blkfront_work, HZ * 10); 2294 mutex_unlock(&blkfront_mutex); 2295 } 2296 } 2297 2298 /* 2299 * Invoked when the backend is finally 'ready' (and has told produced 2300 * the details about the physical device - #sectors, size, etc). 2301 */ 2302 static void blkfront_connect(struct blkfront_info *info) 2303 { 2304 unsigned long long sectors; 2305 unsigned long sector_size; 2306 unsigned int physical_sector_size; 2307 unsigned int binfo; 2308 int err, i; 2309 struct blkfront_ring_info *rinfo; 2310 2311 switch (info->connected) { 2312 case BLKIF_STATE_CONNECTED: 2313 /* 2314 * Potentially, the back-end may be signalling 2315 * a capacity change; update the capacity. 2316 */ 2317 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2318 "sectors", "%Lu", §ors); 2319 if (XENBUS_EXIST_ERR(err)) 2320 return; 2321 printk(KERN_INFO "Setting capacity to %Lu\n", 2322 sectors); 2323 set_capacity_and_notify(info->gd, sectors); 2324 2325 return; 2326 case BLKIF_STATE_SUSPENDED: 2327 /* 2328 * If we are recovering from suspension, we need to wait 2329 * for the backend to announce it's features before 2330 * reconnecting, at least we need to know if the backend 2331 * supports indirect descriptors, and how many. 2332 */ 2333 blkif_recover(info); 2334 return; 2335 2336 default: 2337 break; 2338 } 2339 2340 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2341 __func__, info->xbdev->otherend); 2342 2343 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2344 "sectors", "%llu", §ors, 2345 "info", "%u", &binfo, 2346 "sector-size", "%lu", §or_size, 2347 NULL); 2348 if (err) { 2349 xenbus_dev_fatal(info->xbdev, err, 2350 "reading backend fields at %s", 2351 info->xbdev->otherend); 2352 return; 2353 } 2354 2355 /* 2356 * physical-sector-size is a newer field, so old backends may not 2357 * provide this. Assume physical sector size to be the same as 2358 * sector_size in that case. 2359 */ 2360 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2361 "physical-sector-size", 2362 sector_size); 2363 blkfront_gather_backend_features(info); 2364 for_each_rinfo(info, rinfo, i) { 2365 err = blkfront_setup_indirect(rinfo); 2366 if (err) { 2367 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2368 info->xbdev->otherend); 2369 blkif_free(info, 0); 2370 break; 2371 } 2372 } 2373 2374 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2375 physical_sector_size); 2376 if (err) { 2377 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2378 info->xbdev->otherend); 2379 goto fail; 2380 } 2381 2382 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2383 2384 /* Kick pending requests. */ 2385 info->connected = BLKIF_STATE_CONNECTED; 2386 for_each_rinfo(info, rinfo, i) 2387 kick_pending_request_queues(rinfo); 2388 2389 err = device_add_disk(&info->xbdev->dev, info->gd, NULL); 2390 if (err) { 2391 blk_cleanup_disk(info->gd); 2392 blk_mq_free_tag_set(&info->tag_set); 2393 info->rq = NULL; 2394 goto fail; 2395 } 2396 2397 info->is_ready = 1; 2398 return; 2399 2400 fail: 2401 blkif_free(info, 0); 2402 return; 2403 } 2404 2405 /* 2406 * Callback received when the backend's state changes. 2407 */ 2408 static void blkback_changed(struct xenbus_device *dev, 2409 enum xenbus_state backend_state) 2410 { 2411 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2412 2413 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2414 2415 switch (backend_state) { 2416 case XenbusStateInitWait: 2417 if (dev->state != XenbusStateInitialising) 2418 break; 2419 if (talk_to_blkback(dev, info)) 2420 break; 2421 break; 2422 case XenbusStateInitialising: 2423 case XenbusStateInitialised: 2424 case XenbusStateReconfiguring: 2425 case XenbusStateReconfigured: 2426 case XenbusStateUnknown: 2427 break; 2428 2429 case XenbusStateConnected: 2430 /* 2431 * talk_to_blkback sets state to XenbusStateInitialised 2432 * and blkfront_connect sets it to XenbusStateConnected 2433 * (if connection went OK). 2434 * 2435 * If the backend (or toolstack) decides to poke at backend 2436 * state (and re-trigger the watch by setting the state repeatedly 2437 * to XenbusStateConnected (4)) we need to deal with this. 2438 * This is allowed as this is used to communicate to the guest 2439 * that the size of disk has changed! 2440 */ 2441 if ((dev->state != XenbusStateInitialised) && 2442 (dev->state != XenbusStateConnected)) { 2443 if (talk_to_blkback(dev, info)) 2444 break; 2445 } 2446 2447 blkfront_connect(info); 2448 break; 2449 2450 case XenbusStateClosed: 2451 if (dev->state == XenbusStateClosed) 2452 break; 2453 fallthrough; 2454 case XenbusStateClosing: 2455 blkfront_closing(info); 2456 break; 2457 } 2458 } 2459 2460 static int blkfront_remove(struct xenbus_device *xbdev) 2461 { 2462 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2463 2464 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2465 2466 del_gendisk(info->gd); 2467 2468 mutex_lock(&blkfront_mutex); 2469 list_del(&info->info_list); 2470 mutex_unlock(&blkfront_mutex); 2471 2472 blkif_free(info, 0); 2473 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2474 blk_cleanup_disk(info->gd); 2475 blk_mq_free_tag_set(&info->tag_set); 2476 2477 kfree(info); 2478 return 0; 2479 } 2480 2481 static int blkfront_is_ready(struct xenbus_device *dev) 2482 { 2483 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2484 2485 return info->is_ready && info->xbdev; 2486 } 2487 2488 static const struct block_device_operations xlvbd_block_fops = 2489 { 2490 .owner = THIS_MODULE, 2491 .getgeo = blkif_getgeo, 2492 .ioctl = blkif_ioctl, 2493 .compat_ioctl = blkdev_compat_ptr_ioctl, 2494 }; 2495 2496 2497 static const struct xenbus_device_id blkfront_ids[] = { 2498 { "vbd" }, 2499 { "" } 2500 }; 2501 2502 static struct xenbus_driver blkfront_driver = { 2503 .ids = blkfront_ids, 2504 .probe = blkfront_probe, 2505 .remove = blkfront_remove, 2506 .resume = blkfront_resume, 2507 .otherend_changed = blkback_changed, 2508 .is_ready = blkfront_is_ready, 2509 }; 2510 2511 static void purge_persistent_grants(struct blkfront_info *info) 2512 { 2513 unsigned int i; 2514 unsigned long flags; 2515 struct blkfront_ring_info *rinfo; 2516 2517 for_each_rinfo(info, rinfo, i) { 2518 struct grant *gnt_list_entry, *tmp; 2519 2520 spin_lock_irqsave(&rinfo->ring_lock, flags); 2521 2522 if (rinfo->persistent_gnts_c == 0) { 2523 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2524 continue; 2525 } 2526 2527 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2528 node) { 2529 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2530 gnttab_query_foreign_access(gnt_list_entry->gref)) 2531 continue; 2532 2533 list_del(&gnt_list_entry->node); 2534 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL); 2535 rinfo->persistent_gnts_c--; 2536 gnt_list_entry->gref = GRANT_INVALID_REF; 2537 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2538 } 2539 2540 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2541 } 2542 } 2543 2544 static void blkfront_delay_work(struct work_struct *work) 2545 { 2546 struct blkfront_info *info; 2547 bool need_schedule_work = false; 2548 2549 mutex_lock(&blkfront_mutex); 2550 2551 list_for_each_entry(info, &info_list, info_list) { 2552 if (info->feature_persistent) { 2553 need_schedule_work = true; 2554 mutex_lock(&info->mutex); 2555 purge_persistent_grants(info); 2556 mutex_unlock(&info->mutex); 2557 } 2558 } 2559 2560 if (need_schedule_work) 2561 schedule_delayed_work(&blkfront_work, HZ * 10); 2562 2563 mutex_unlock(&blkfront_mutex); 2564 } 2565 2566 static int __init xlblk_init(void) 2567 { 2568 int ret; 2569 int nr_cpus = num_online_cpus(); 2570 2571 if (!xen_domain()) 2572 return -ENODEV; 2573 2574 if (!xen_has_pv_disk_devices()) 2575 return -ENODEV; 2576 2577 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2578 pr_warn("xen_blk: can't get major %d with name %s\n", 2579 XENVBD_MAJOR, DEV_NAME); 2580 return -ENODEV; 2581 } 2582 2583 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2584 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2585 2586 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2587 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2588 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2589 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2590 } 2591 2592 if (xen_blkif_max_queues > nr_cpus) { 2593 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2594 xen_blkif_max_queues, nr_cpus); 2595 xen_blkif_max_queues = nr_cpus; 2596 } 2597 2598 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2599 2600 ret = xenbus_register_frontend(&blkfront_driver); 2601 if (ret) { 2602 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2603 return ret; 2604 } 2605 2606 return 0; 2607 } 2608 module_init(xlblk_init); 2609 2610 2611 static void __exit xlblk_exit(void) 2612 { 2613 cancel_delayed_work_sync(&blkfront_work); 2614 2615 xenbus_unregister_driver(&blkfront_driver); 2616 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2617 kfree(minors); 2618 } 2619 module_exit(xlblk_exit); 2620 2621 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2622 MODULE_LICENSE("GPL"); 2623 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2624 MODULE_ALIAS("xen:vbd"); 2625 MODULE_ALIAS("xenblk"); 2626