xref: /openbmc/linux/drivers/block/rnbd/rnbd-clt.c (revision 83946783)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Network Block Driver
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/hdreg.h>
16 #include <linux/scatterlist.h>
17 #include <linux/idr.h>
18 
19 #include "rnbd-clt.h"
20 
21 MODULE_DESCRIPTION("RDMA Network Block Device Client");
22 MODULE_LICENSE("GPL");
23 
24 static int rnbd_client_major;
25 static DEFINE_IDA(index_ida);
26 static DEFINE_MUTEX(ida_lock);
27 static DEFINE_MUTEX(sess_lock);
28 static LIST_HEAD(sess_list);
29 
30 /*
31  * Maximum number of partitions an instance can have.
32  * 6 bits = 64 minors = 63 partitions (one minor is used for the device itself)
33  */
34 #define RNBD_PART_BITS		6
35 
36 static inline bool rnbd_clt_get_sess(struct rnbd_clt_session *sess)
37 {
38 	return refcount_inc_not_zero(&sess->refcount);
39 }
40 
41 static void free_sess(struct rnbd_clt_session *sess);
42 
43 static void rnbd_clt_put_sess(struct rnbd_clt_session *sess)
44 {
45 	might_sleep();
46 
47 	if (refcount_dec_and_test(&sess->refcount))
48 		free_sess(sess);
49 }
50 
51 static void rnbd_clt_put_dev(struct rnbd_clt_dev *dev)
52 {
53 	might_sleep();
54 
55 	if (!refcount_dec_and_test(&dev->refcount))
56 		return;
57 
58 	mutex_lock(&ida_lock);
59 	ida_simple_remove(&index_ida, dev->clt_device_id);
60 	mutex_unlock(&ida_lock);
61 	kfree(dev->hw_queues);
62 	kfree(dev->pathname);
63 	rnbd_clt_put_sess(dev->sess);
64 	mutex_destroy(&dev->lock);
65 	kfree(dev);
66 }
67 
68 static inline bool rnbd_clt_get_dev(struct rnbd_clt_dev *dev)
69 {
70 	return refcount_inc_not_zero(&dev->refcount);
71 }
72 
73 static int rnbd_clt_set_dev_attr(struct rnbd_clt_dev *dev,
74 				 const struct rnbd_msg_open_rsp *rsp)
75 {
76 	struct rnbd_clt_session *sess = dev->sess;
77 
78 	if (!rsp->logical_block_size)
79 		return -EINVAL;
80 
81 	dev->device_id		    = le32_to_cpu(rsp->device_id);
82 	dev->nsectors		    = le64_to_cpu(rsp->nsectors);
83 	dev->logical_block_size	    = le16_to_cpu(rsp->logical_block_size);
84 	dev->physical_block_size    = le16_to_cpu(rsp->physical_block_size);
85 	dev->max_write_same_sectors = le32_to_cpu(rsp->max_write_same_sectors);
86 	dev->max_discard_sectors    = le32_to_cpu(rsp->max_discard_sectors);
87 	dev->discard_granularity    = le32_to_cpu(rsp->discard_granularity);
88 	dev->discard_alignment	    = le32_to_cpu(rsp->discard_alignment);
89 	dev->secure_discard	    = le16_to_cpu(rsp->secure_discard);
90 	dev->rotational		    = rsp->rotational;
91 	dev->wc			    = !!(rsp->cache_policy & RNBD_WRITEBACK);
92 	dev->fua		    = !!(rsp->cache_policy & RNBD_FUA);
93 
94 	dev->max_hw_sectors = sess->max_io_size / SECTOR_SIZE;
95 	dev->max_segments = sess->max_segments;
96 
97 	return 0;
98 }
99 
100 static int rnbd_clt_change_capacity(struct rnbd_clt_dev *dev,
101 				    size_t new_nsectors)
102 {
103 	rnbd_clt_info(dev, "Device size changed from %zu to %zu sectors\n",
104 		       dev->nsectors, new_nsectors);
105 	dev->nsectors = new_nsectors;
106 	set_capacity_and_notify(dev->gd, dev->nsectors);
107 	return 0;
108 }
109 
110 static int process_msg_open_rsp(struct rnbd_clt_dev *dev,
111 				struct rnbd_msg_open_rsp *rsp)
112 {
113 	struct kobject *gd_kobj;
114 	int err = 0;
115 
116 	mutex_lock(&dev->lock);
117 	if (dev->dev_state == DEV_STATE_UNMAPPED) {
118 		rnbd_clt_info(dev,
119 			       "Ignoring Open-Response message from server for  unmapped device\n");
120 		err = -ENOENT;
121 		goto out;
122 	}
123 	if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED) {
124 		u64 nsectors = le64_to_cpu(rsp->nsectors);
125 
126 		/*
127 		 * If the device was remapped and the size changed in the
128 		 * meantime we need to revalidate it
129 		 */
130 		if (dev->nsectors != nsectors)
131 			rnbd_clt_change_capacity(dev, nsectors);
132 		gd_kobj = &disk_to_dev(dev->gd)->kobj;
133 		kobject_uevent(gd_kobj, KOBJ_ONLINE);
134 		rnbd_clt_info(dev, "Device online, device remapped successfully\n");
135 	}
136 	err = rnbd_clt_set_dev_attr(dev, rsp);
137 	if (err)
138 		goto out;
139 	dev->dev_state = DEV_STATE_MAPPED;
140 
141 out:
142 	mutex_unlock(&dev->lock);
143 
144 	return err;
145 }
146 
147 int rnbd_clt_resize_disk(struct rnbd_clt_dev *dev, size_t newsize)
148 {
149 	int ret = 0;
150 
151 	mutex_lock(&dev->lock);
152 	if (dev->dev_state != DEV_STATE_MAPPED) {
153 		pr_err("Failed to set new size of the device, device is not opened\n");
154 		ret = -ENOENT;
155 		goto out;
156 	}
157 	ret = rnbd_clt_change_capacity(dev, newsize);
158 
159 out:
160 	mutex_unlock(&dev->lock);
161 
162 	return ret;
163 }
164 
165 static inline void rnbd_clt_dev_requeue(struct rnbd_queue *q)
166 {
167 	if (WARN_ON(!q->hctx))
168 		return;
169 
170 	/* We can come here from interrupt, thus async=true */
171 	blk_mq_run_hw_queue(q->hctx, true);
172 }
173 
174 enum {
175 	RNBD_DELAY_IFBUSY = -1,
176 };
177 
178 /**
179  * rnbd_get_cpu_qlist() - finds a list with HW queues to be rerun
180  * @sess:	Session to find a queue for
181  * @cpu:	Cpu to start the search from
182  *
183  * Description:
184  *     Each CPU has a list of HW queues, which needs to be rerun.  If a list
185  *     is not empty - it is marked with a bit.  This function finds first
186  *     set bit in a bitmap and returns corresponding CPU list.
187  */
188 static struct rnbd_cpu_qlist *
189 rnbd_get_cpu_qlist(struct rnbd_clt_session *sess, int cpu)
190 {
191 	int bit;
192 
193 	/* Search from cpu to nr_cpu_ids */
194 	bit = find_next_bit(sess->cpu_queues_bm, nr_cpu_ids, cpu);
195 	if (bit < nr_cpu_ids) {
196 		return per_cpu_ptr(sess->cpu_queues, bit);
197 	} else if (cpu != 0) {
198 		/* Search from 0 to cpu */
199 		bit = find_next_bit(sess->cpu_queues_bm, cpu, 0);
200 		if (bit < cpu)
201 			return per_cpu_ptr(sess->cpu_queues, bit);
202 	}
203 
204 	return NULL;
205 }
206 
207 static inline int nxt_cpu(int cpu)
208 {
209 	return (cpu + 1) % nr_cpu_ids;
210 }
211 
212 /**
213  * rnbd_rerun_if_needed() - rerun next queue marked as stopped
214  * @sess:	Session to rerun a queue on
215  *
216  * Description:
217  *     Each CPU has it's own list of HW queues, which should be rerun.
218  *     Function finds such list with HW queues, takes a list lock, picks up
219  *     the first HW queue out of the list and requeues it.
220  *
221  * Return:
222  *     True if the queue was requeued, false otherwise.
223  *
224  * Context:
225  *     Does not matter.
226  */
227 static bool rnbd_rerun_if_needed(struct rnbd_clt_session *sess)
228 {
229 	struct rnbd_queue *q = NULL;
230 	struct rnbd_cpu_qlist *cpu_q;
231 	unsigned long flags;
232 	int *cpup;
233 
234 	/*
235 	 * To keep fairness and not to let other queues starve we always
236 	 * try to wake up someone else in round-robin manner.  That of course
237 	 * increases latency but queues always have a chance to be executed.
238 	 */
239 	cpup = get_cpu_ptr(sess->cpu_rr);
240 	for (cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(*cpup)); cpu_q;
241 	     cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(cpu_q->cpu))) {
242 		if (!spin_trylock_irqsave(&cpu_q->requeue_lock, flags))
243 			continue;
244 		if (!test_bit(cpu_q->cpu, sess->cpu_queues_bm))
245 			goto unlock;
246 		q = list_first_entry_or_null(&cpu_q->requeue_list,
247 					     typeof(*q), requeue_list);
248 		if (WARN_ON(!q))
249 			goto clear_bit;
250 		list_del_init(&q->requeue_list);
251 		clear_bit_unlock(0, &q->in_list);
252 
253 		if (list_empty(&cpu_q->requeue_list)) {
254 			/* Clear bit if nothing is left */
255 clear_bit:
256 			clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
257 		}
258 unlock:
259 		spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
260 
261 		if (q)
262 			break;
263 	}
264 
265 	/**
266 	 * Saves the CPU that is going to be requeued on the per-cpu var. Just
267 	 * incrementing it doesn't work because rnbd_get_cpu_qlist() will
268 	 * always return the first CPU with something on the queue list when the
269 	 * value stored on the var is greater than the last CPU with something
270 	 * on the list.
271 	 */
272 	if (cpu_q)
273 		*cpup = cpu_q->cpu;
274 	put_cpu_ptr(sess->cpu_rr);
275 
276 	if (q)
277 		rnbd_clt_dev_requeue(q);
278 
279 	return q;
280 }
281 
282 /**
283  * rnbd_rerun_all_if_idle() - rerun all queues left in the list if
284  *				 session is idling (there are no requests
285  *				 in-flight).
286  * @sess:	Session to rerun the queues on
287  *
288  * Description:
289  *     This function tries to rerun all stopped queues if there are no
290  *     requests in-flight anymore.  This function tries to solve an obvious
291  *     problem, when number of tags < than number of queues (hctx), which
292  *     are stopped and put to sleep.  If last permit, which has been just put,
293  *     does not wake up all left queues (hctxs), IO requests hang forever.
294  *
295  *     That can happen when all number of permits, say N, have been exhausted
296  *     from one CPU, and we have many block devices per session, say M.
297  *     Each block device has it's own queue (hctx) for each CPU, so eventually
298  *     we can put that number of queues (hctxs) to sleep: M x nr_cpu_ids.
299  *     If number of permits N < M x nr_cpu_ids finally we will get an IO hang.
300  *
301  *     To avoid this hang last caller of rnbd_put_permit() (last caller is the
302  *     one who observes sess->busy == 0) must wake up all remaining queues.
303  *
304  * Context:
305  *     Does not matter.
306  */
307 static void rnbd_rerun_all_if_idle(struct rnbd_clt_session *sess)
308 {
309 	bool requeued;
310 
311 	do {
312 		requeued = rnbd_rerun_if_needed(sess);
313 	} while (atomic_read(&sess->busy) == 0 && requeued);
314 }
315 
316 static struct rtrs_permit *rnbd_get_permit(struct rnbd_clt_session *sess,
317 					     enum rtrs_clt_con_type con_type,
318 					     enum wait_type wait)
319 {
320 	struct rtrs_permit *permit;
321 
322 	permit = rtrs_clt_get_permit(sess->rtrs, con_type, wait);
323 	if (permit)
324 		/* We have a subtle rare case here, when all permits can be
325 		 * consumed before busy counter increased.  This is safe,
326 		 * because loser will get NULL as a permit, observe 0 busy
327 		 * counter and immediately restart the queue himself.
328 		 */
329 		atomic_inc(&sess->busy);
330 
331 	return permit;
332 }
333 
334 static void rnbd_put_permit(struct rnbd_clt_session *sess,
335 			     struct rtrs_permit *permit)
336 {
337 	rtrs_clt_put_permit(sess->rtrs, permit);
338 	atomic_dec(&sess->busy);
339 	/* Paired with rnbd_clt_dev_add_to_requeue().  Decrement first
340 	 * and then check queue bits.
341 	 */
342 	smp_mb__after_atomic();
343 	rnbd_rerun_all_if_idle(sess);
344 }
345 
346 static struct rnbd_iu *rnbd_get_iu(struct rnbd_clt_session *sess,
347 				     enum rtrs_clt_con_type con_type,
348 				     enum wait_type wait)
349 {
350 	struct rnbd_iu *iu;
351 	struct rtrs_permit *permit;
352 
353 	iu = kzalloc(sizeof(*iu), GFP_KERNEL);
354 	if (!iu)
355 		return NULL;
356 
357 	permit = rnbd_get_permit(sess, con_type, wait);
358 	if (!permit) {
359 		kfree(iu);
360 		return NULL;
361 	}
362 
363 	iu->permit = permit;
364 	/*
365 	 * 1st reference is dropped after finishing sending a "user" message,
366 	 * 2nd reference is dropped after confirmation with the response is
367 	 * returned.
368 	 * 1st and 2nd can happen in any order, so the rnbd_iu should be
369 	 * released (rtrs_permit returned to rtrs) only after both
370 	 * are finished.
371 	 */
372 	atomic_set(&iu->refcount, 2);
373 	init_waitqueue_head(&iu->comp.wait);
374 	iu->comp.errno = INT_MAX;
375 
376 	if (sg_alloc_table(&iu->sgt, 1, GFP_KERNEL)) {
377 		rnbd_put_permit(sess, permit);
378 		kfree(iu);
379 		return NULL;
380 	}
381 
382 	return iu;
383 }
384 
385 static void rnbd_put_iu(struct rnbd_clt_session *sess, struct rnbd_iu *iu)
386 {
387 	if (atomic_dec_and_test(&iu->refcount)) {
388 		sg_free_table(&iu->sgt);
389 		rnbd_put_permit(sess, iu->permit);
390 		kfree(iu);
391 	}
392 }
393 
394 static void rnbd_softirq_done_fn(struct request *rq)
395 {
396 	struct rnbd_clt_dev *dev	= rq->rq_disk->private_data;
397 	struct rnbd_clt_session *sess	= dev->sess;
398 	struct rnbd_iu *iu;
399 
400 	iu = blk_mq_rq_to_pdu(rq);
401 	sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT);
402 	rnbd_put_permit(sess, iu->permit);
403 	blk_mq_end_request(rq, errno_to_blk_status(iu->errno));
404 }
405 
406 static void msg_io_conf(void *priv, int errno)
407 {
408 	struct rnbd_iu *iu = priv;
409 	struct rnbd_clt_dev *dev = iu->dev;
410 	struct request *rq = iu->rq;
411 	int rw = rq_data_dir(rq);
412 
413 	iu->errno = errno;
414 
415 	blk_mq_complete_request(rq);
416 
417 	if (errno)
418 		rnbd_clt_info_rl(dev, "%s I/O failed with err: %d\n",
419 				 rw == READ ? "read" : "write", errno);
420 }
421 
422 static void wake_up_iu_comp(struct rnbd_iu *iu, int errno)
423 {
424 	iu->comp.errno = errno;
425 	wake_up(&iu->comp.wait);
426 }
427 
428 static void msg_conf(void *priv, int errno)
429 {
430 	struct rnbd_iu *iu = priv;
431 
432 	iu->errno = errno;
433 	schedule_work(&iu->work);
434 }
435 
436 static int send_usr_msg(struct rtrs_clt *rtrs, int dir,
437 			struct rnbd_iu *iu, struct kvec *vec,
438 			size_t len, struct scatterlist *sg, unsigned int sg_len,
439 			void (*conf)(struct work_struct *work),
440 			int *errno, int wait)
441 {
442 	int err;
443 	struct rtrs_clt_req_ops req_ops;
444 
445 	INIT_WORK(&iu->work, conf);
446 	req_ops = (struct rtrs_clt_req_ops) {
447 		.priv = iu,
448 		.conf_fn = msg_conf,
449 	};
450 	err = rtrs_clt_request(dir, &req_ops, rtrs, iu->permit,
451 				vec, 1, len, sg, sg_len);
452 	if (!err && wait) {
453 		wait_event(iu->comp.wait, iu->comp.errno != INT_MAX);
454 		*errno = iu->comp.errno;
455 	} else {
456 		*errno = 0;
457 	}
458 
459 	return err;
460 }
461 
462 static void msg_close_conf(struct work_struct *work)
463 {
464 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
465 	struct rnbd_clt_dev *dev = iu->dev;
466 
467 	wake_up_iu_comp(iu, iu->errno);
468 	rnbd_put_iu(dev->sess, iu);
469 	rnbd_clt_put_dev(dev);
470 }
471 
472 static int send_msg_close(struct rnbd_clt_dev *dev, u32 device_id,
473 			  enum wait_type wait)
474 {
475 	struct rnbd_clt_session *sess = dev->sess;
476 	struct rnbd_msg_close msg;
477 	struct rnbd_iu *iu;
478 	struct kvec vec = {
479 		.iov_base = &msg,
480 		.iov_len  = sizeof(msg)
481 	};
482 	int err, errno;
483 
484 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
485 	if (!iu)
486 		return -ENOMEM;
487 
488 	iu->buf = NULL;
489 	iu->dev = dev;
490 
491 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_CLOSE);
492 	msg.device_id	= cpu_to_le32(device_id);
493 
494 	WARN_ON(!rnbd_clt_get_dev(dev));
495 	err = send_usr_msg(sess->rtrs, WRITE, iu, &vec, 0, NULL, 0,
496 			   msg_close_conf, &errno, wait);
497 	if (err) {
498 		rnbd_clt_put_dev(dev);
499 		rnbd_put_iu(sess, iu);
500 	} else {
501 		err = errno;
502 	}
503 
504 	rnbd_put_iu(sess, iu);
505 	return err;
506 }
507 
508 static void msg_open_conf(struct work_struct *work)
509 {
510 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
511 	struct rnbd_msg_open_rsp *rsp = iu->buf;
512 	struct rnbd_clt_dev *dev = iu->dev;
513 	int errno = iu->errno;
514 
515 	if (errno) {
516 		rnbd_clt_err(dev,
517 			      "Opening failed, server responded: %d\n",
518 			      errno);
519 	} else {
520 		errno = process_msg_open_rsp(dev, rsp);
521 		if (errno) {
522 			u32 device_id = le32_to_cpu(rsp->device_id);
523 			/*
524 			 * If server thinks its fine, but we fail to process
525 			 * then be nice and send a close to server.
526 			 */
527 			send_msg_close(dev, device_id, RTRS_PERMIT_NOWAIT);
528 		}
529 	}
530 	kfree(rsp);
531 	wake_up_iu_comp(iu, errno);
532 	rnbd_put_iu(dev->sess, iu);
533 	rnbd_clt_put_dev(dev);
534 }
535 
536 static void msg_sess_info_conf(struct work_struct *work)
537 {
538 	struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
539 	struct rnbd_msg_sess_info_rsp *rsp = iu->buf;
540 	struct rnbd_clt_session *sess = iu->sess;
541 
542 	if (!iu->errno)
543 		sess->ver = min_t(u8, rsp->ver, RNBD_PROTO_VER_MAJOR);
544 
545 	kfree(rsp);
546 	wake_up_iu_comp(iu, iu->errno);
547 	rnbd_put_iu(sess, iu);
548 	rnbd_clt_put_sess(sess);
549 }
550 
551 static int send_msg_open(struct rnbd_clt_dev *dev, enum wait_type wait)
552 {
553 	struct rnbd_clt_session *sess = dev->sess;
554 	struct rnbd_msg_open_rsp *rsp;
555 	struct rnbd_msg_open msg;
556 	struct rnbd_iu *iu;
557 	struct kvec vec = {
558 		.iov_base = &msg,
559 		.iov_len  = sizeof(msg)
560 	};
561 	int err, errno;
562 
563 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
564 	if (!rsp)
565 		return -ENOMEM;
566 
567 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
568 	if (!iu) {
569 		kfree(rsp);
570 		return -ENOMEM;
571 	}
572 
573 	iu->buf = rsp;
574 	iu->dev = dev;
575 
576 	sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp));
577 
578 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_OPEN);
579 	msg.access_mode	= dev->access_mode;
580 	strscpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name));
581 
582 	WARN_ON(!rnbd_clt_get_dev(dev));
583 	err = send_usr_msg(sess->rtrs, READ, iu,
584 			   &vec, sizeof(*rsp), iu->sgt.sgl, 1,
585 			   msg_open_conf, &errno, wait);
586 	if (err) {
587 		rnbd_clt_put_dev(dev);
588 		rnbd_put_iu(sess, iu);
589 		kfree(rsp);
590 	} else {
591 		err = errno;
592 	}
593 
594 	rnbd_put_iu(sess, iu);
595 	return err;
596 }
597 
598 static int send_msg_sess_info(struct rnbd_clt_session *sess, enum wait_type wait)
599 {
600 	struct rnbd_msg_sess_info_rsp *rsp;
601 	struct rnbd_msg_sess_info msg;
602 	struct rnbd_iu *iu;
603 	struct kvec vec = {
604 		.iov_base = &msg,
605 		.iov_len  = sizeof(msg)
606 	};
607 	int err, errno;
608 
609 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
610 	if (!rsp)
611 		return -ENOMEM;
612 
613 	iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
614 	if (!iu) {
615 		kfree(rsp);
616 		return -ENOMEM;
617 	}
618 
619 	iu->buf = rsp;
620 	iu->sess = sess;
621 	sg_init_one(iu->sgt.sgl, rsp, sizeof(*rsp));
622 
623 	msg.hdr.type = cpu_to_le16(RNBD_MSG_SESS_INFO);
624 	msg.ver      = RNBD_PROTO_VER_MAJOR;
625 
626 	if (!rnbd_clt_get_sess(sess)) {
627 		/*
628 		 * That can happen only in one case, when RTRS has restablished
629 		 * the connection and link_ev() is called, but session is almost
630 		 * dead, last reference on session is put and caller is waiting
631 		 * for RTRS to close everything.
632 		 */
633 		err = -ENODEV;
634 		goto put_iu;
635 	}
636 	err = send_usr_msg(sess->rtrs, READ, iu,
637 			   &vec, sizeof(*rsp), iu->sgt.sgl, 1,
638 			   msg_sess_info_conf, &errno, wait);
639 	if (err) {
640 		rnbd_clt_put_sess(sess);
641 put_iu:
642 		rnbd_put_iu(sess, iu);
643 		kfree(rsp);
644 	} else {
645 		err = errno;
646 	}
647 	rnbd_put_iu(sess, iu);
648 	return err;
649 }
650 
651 static void set_dev_states_to_disconnected(struct rnbd_clt_session *sess)
652 {
653 	struct rnbd_clt_dev *dev;
654 	struct kobject *gd_kobj;
655 
656 	mutex_lock(&sess->lock);
657 	list_for_each_entry(dev, &sess->devs_list, list) {
658 		rnbd_clt_err(dev, "Device disconnected.\n");
659 
660 		mutex_lock(&dev->lock);
661 		if (dev->dev_state == DEV_STATE_MAPPED) {
662 			dev->dev_state = DEV_STATE_MAPPED_DISCONNECTED;
663 			gd_kobj = &disk_to_dev(dev->gd)->kobj;
664 			kobject_uevent(gd_kobj, KOBJ_OFFLINE);
665 		}
666 		mutex_unlock(&dev->lock);
667 	}
668 	mutex_unlock(&sess->lock);
669 }
670 
671 static void remap_devs(struct rnbd_clt_session *sess)
672 {
673 	struct rnbd_clt_dev *dev;
674 	struct rtrs_attrs attrs;
675 	int err;
676 
677 	/*
678 	 * Careful here: we are called from RTRS link event directly,
679 	 * thus we can't send any RTRS request and wait for response
680 	 * or RTRS will not be able to complete request with failure
681 	 * if something goes wrong (failing of outstanding requests
682 	 * happens exactly from the context where we are blocking now).
683 	 *
684 	 * So to avoid deadlocks each usr message sent from here must
685 	 * be asynchronous.
686 	 */
687 
688 	err = send_msg_sess_info(sess, RTRS_PERMIT_NOWAIT);
689 	if (err) {
690 		pr_err("send_msg_sess_info(\"%s\"): %d\n", sess->sessname, err);
691 		return;
692 	}
693 
694 	err = rtrs_clt_query(sess->rtrs, &attrs);
695 	if (err) {
696 		pr_err("rtrs_clt_query(\"%s\"): %d\n", sess->sessname, err);
697 		return;
698 	}
699 	mutex_lock(&sess->lock);
700 	sess->max_io_size = attrs.max_io_size;
701 
702 	list_for_each_entry(dev, &sess->devs_list, list) {
703 		bool skip;
704 
705 		mutex_lock(&dev->lock);
706 		skip = (dev->dev_state == DEV_STATE_INIT);
707 		mutex_unlock(&dev->lock);
708 		if (skip)
709 			/*
710 			 * When device is establishing connection for the first
711 			 * time - do not remap, it will be closed soon.
712 			 */
713 			continue;
714 
715 		rnbd_clt_info(dev, "session reconnected, remapping device\n");
716 		err = send_msg_open(dev, RTRS_PERMIT_NOWAIT);
717 		if (err) {
718 			rnbd_clt_err(dev, "send_msg_open(): %d\n", err);
719 			break;
720 		}
721 	}
722 	mutex_unlock(&sess->lock);
723 }
724 
725 static void rnbd_clt_link_ev(void *priv, enum rtrs_clt_link_ev ev)
726 {
727 	struct rnbd_clt_session *sess = priv;
728 
729 	switch (ev) {
730 	case RTRS_CLT_LINK_EV_DISCONNECTED:
731 		set_dev_states_to_disconnected(sess);
732 		break;
733 	case RTRS_CLT_LINK_EV_RECONNECTED:
734 		remap_devs(sess);
735 		break;
736 	default:
737 		pr_err("Unknown session event received (%d), session: %s\n",
738 		       ev, sess->sessname);
739 	}
740 }
741 
742 static void rnbd_init_cpu_qlists(struct rnbd_cpu_qlist __percpu *cpu_queues)
743 {
744 	unsigned int cpu;
745 	struct rnbd_cpu_qlist *cpu_q;
746 
747 	for_each_possible_cpu(cpu) {
748 		cpu_q = per_cpu_ptr(cpu_queues, cpu);
749 
750 		cpu_q->cpu = cpu;
751 		INIT_LIST_HEAD(&cpu_q->requeue_list);
752 		spin_lock_init(&cpu_q->requeue_lock);
753 	}
754 }
755 
756 static void destroy_mq_tags(struct rnbd_clt_session *sess)
757 {
758 	if (sess->tag_set.tags)
759 		blk_mq_free_tag_set(&sess->tag_set);
760 }
761 
762 static inline void wake_up_rtrs_waiters(struct rnbd_clt_session *sess)
763 {
764 	sess->rtrs_ready = true;
765 	wake_up_all(&sess->rtrs_waitq);
766 }
767 
768 static void close_rtrs(struct rnbd_clt_session *sess)
769 {
770 	might_sleep();
771 
772 	if (!IS_ERR_OR_NULL(sess->rtrs)) {
773 		rtrs_clt_close(sess->rtrs);
774 		sess->rtrs = NULL;
775 		wake_up_rtrs_waiters(sess);
776 	}
777 }
778 
779 static void free_sess(struct rnbd_clt_session *sess)
780 {
781 	WARN_ON(!list_empty(&sess->devs_list));
782 
783 	might_sleep();
784 
785 	close_rtrs(sess);
786 	destroy_mq_tags(sess);
787 	if (!list_empty(&sess->list)) {
788 		mutex_lock(&sess_lock);
789 		list_del(&sess->list);
790 		mutex_unlock(&sess_lock);
791 	}
792 	free_percpu(sess->cpu_queues);
793 	free_percpu(sess->cpu_rr);
794 	mutex_destroy(&sess->lock);
795 	kfree(sess);
796 }
797 
798 static struct rnbd_clt_session *alloc_sess(const char *sessname)
799 {
800 	struct rnbd_clt_session *sess;
801 	int err, cpu;
802 
803 	sess = kzalloc_node(sizeof(*sess), GFP_KERNEL, NUMA_NO_NODE);
804 	if (!sess)
805 		return ERR_PTR(-ENOMEM);
806 	strscpy(sess->sessname, sessname, sizeof(sess->sessname));
807 	atomic_set(&sess->busy, 0);
808 	mutex_init(&sess->lock);
809 	INIT_LIST_HEAD(&sess->devs_list);
810 	INIT_LIST_HEAD(&sess->list);
811 	bitmap_zero(sess->cpu_queues_bm, num_possible_cpus());
812 	init_waitqueue_head(&sess->rtrs_waitq);
813 	refcount_set(&sess->refcount, 1);
814 
815 	sess->cpu_queues = alloc_percpu(struct rnbd_cpu_qlist);
816 	if (!sess->cpu_queues) {
817 		err = -ENOMEM;
818 		goto err;
819 	}
820 	rnbd_init_cpu_qlists(sess->cpu_queues);
821 
822 	/*
823 	 * That is simple percpu variable which stores cpu indices, which are
824 	 * incremented on each access.  We need that for the sake of fairness
825 	 * to wake up queues in a round-robin manner.
826 	 */
827 	sess->cpu_rr = alloc_percpu(int);
828 	if (!sess->cpu_rr) {
829 		err = -ENOMEM;
830 		goto err;
831 	}
832 	for_each_possible_cpu(cpu)
833 		* per_cpu_ptr(sess->cpu_rr, cpu) = cpu;
834 
835 	return sess;
836 
837 err:
838 	free_sess(sess);
839 
840 	return ERR_PTR(err);
841 }
842 
843 static int wait_for_rtrs_connection(struct rnbd_clt_session *sess)
844 {
845 	wait_event(sess->rtrs_waitq, sess->rtrs_ready);
846 	if (IS_ERR_OR_NULL(sess->rtrs))
847 		return -ECONNRESET;
848 
849 	return 0;
850 }
851 
852 static void wait_for_rtrs_disconnection(struct rnbd_clt_session *sess)
853 	__releases(&sess_lock)
854 	__acquires(&sess_lock)
855 {
856 	DEFINE_WAIT(wait);
857 
858 	prepare_to_wait(&sess->rtrs_waitq, &wait, TASK_UNINTERRUPTIBLE);
859 	if (IS_ERR_OR_NULL(sess->rtrs)) {
860 		finish_wait(&sess->rtrs_waitq, &wait);
861 		return;
862 	}
863 	mutex_unlock(&sess_lock);
864 	/* loop in caller, see __find_and_get_sess().
865 	 * You can't leave mutex locked and call schedule(), you will catch a
866 	 * deadlock with a caller of free_sess(), which has just put the last
867 	 * reference and is about to take the sess_lock in order to delete
868 	 * the session from the list.
869 	 */
870 	schedule();
871 	mutex_lock(&sess_lock);
872 }
873 
874 static struct rnbd_clt_session *__find_and_get_sess(const char *sessname)
875 	__releases(&sess_lock)
876 	__acquires(&sess_lock)
877 {
878 	struct rnbd_clt_session *sess, *sn;
879 	int err;
880 
881 again:
882 	list_for_each_entry_safe(sess, sn, &sess_list, list) {
883 		if (strcmp(sessname, sess->sessname))
884 			continue;
885 
886 		if (sess->rtrs_ready && IS_ERR_OR_NULL(sess->rtrs))
887 			/*
888 			 * No RTRS connection, session is dying.
889 			 */
890 			continue;
891 
892 		if (rnbd_clt_get_sess(sess)) {
893 			/*
894 			 * Alive session is found, wait for RTRS connection.
895 			 */
896 			mutex_unlock(&sess_lock);
897 			err = wait_for_rtrs_connection(sess);
898 			if (err)
899 				rnbd_clt_put_sess(sess);
900 			mutex_lock(&sess_lock);
901 
902 			if (err)
903 				/* Session is dying, repeat the loop */
904 				goto again;
905 
906 			return sess;
907 		}
908 		/*
909 		 * Ref is 0, session is dying, wait for RTRS disconnect
910 		 * in order to avoid session names clashes.
911 		 */
912 		wait_for_rtrs_disconnection(sess);
913 		/*
914 		 * RTRS is disconnected and soon session will be freed,
915 		 * so repeat a loop.
916 		 */
917 		goto again;
918 	}
919 
920 	return NULL;
921 }
922 
923 /* caller is responsible for initializing 'first' to false */
924 static struct
925 rnbd_clt_session *find_or_create_sess(const char *sessname, bool *first)
926 {
927 	struct rnbd_clt_session *sess = NULL;
928 
929 	mutex_lock(&sess_lock);
930 	sess = __find_and_get_sess(sessname);
931 	if (!sess) {
932 		sess = alloc_sess(sessname);
933 		if (IS_ERR(sess)) {
934 			mutex_unlock(&sess_lock);
935 			return sess;
936 		}
937 		list_add(&sess->list, &sess_list);
938 		*first = true;
939 	}
940 	mutex_unlock(&sess_lock);
941 
942 	return sess;
943 }
944 
945 static int rnbd_client_open(struct block_device *block_device, fmode_t mode)
946 {
947 	struct rnbd_clt_dev *dev = block_device->bd_disk->private_data;
948 
949 	if (dev->read_only && (mode & FMODE_WRITE))
950 		return -EPERM;
951 
952 	if (dev->dev_state == DEV_STATE_UNMAPPED ||
953 	    !rnbd_clt_get_dev(dev))
954 		return -EIO;
955 
956 	return 0;
957 }
958 
959 static void rnbd_client_release(struct gendisk *gen, fmode_t mode)
960 {
961 	struct rnbd_clt_dev *dev = gen->private_data;
962 
963 	rnbd_clt_put_dev(dev);
964 }
965 
966 static int rnbd_client_getgeo(struct block_device *block_device,
967 			      struct hd_geometry *geo)
968 {
969 	u64 size;
970 	struct rnbd_clt_dev *dev;
971 
972 	dev = block_device->bd_disk->private_data;
973 	size = dev->size * (dev->logical_block_size / SECTOR_SIZE);
974 	geo->cylinders	= size >> 6;	/* size/64 */
975 	geo->heads	= 4;
976 	geo->sectors	= 16;
977 	geo->start	= 0;
978 
979 	return 0;
980 }
981 
982 static const struct block_device_operations rnbd_client_ops = {
983 	.owner		= THIS_MODULE,
984 	.open		= rnbd_client_open,
985 	.release	= rnbd_client_release,
986 	.getgeo		= rnbd_client_getgeo
987 };
988 
989 /* The amount of data that belongs to an I/O and the amount of data that
990  * should be read or written to the disk (bi_size) can differ.
991  *
992  * E.g. When WRITE_SAME is used, only a small amount of data is
993  * transferred that is then written repeatedly over a lot of sectors.
994  *
995  * Get the size of data to be transferred via RTRS by summing up the size
996  * of the scather-gather list entries.
997  */
998 static size_t rnbd_clt_get_sg_size(struct scatterlist *sglist, u32 len)
999 {
1000 	struct scatterlist *sg;
1001 	size_t tsize = 0;
1002 	int i;
1003 
1004 	for_each_sg(sglist, sg, len, i)
1005 		tsize += sg->length;
1006 	return tsize;
1007 }
1008 
1009 static int rnbd_client_xfer_request(struct rnbd_clt_dev *dev,
1010 				     struct request *rq,
1011 				     struct rnbd_iu *iu)
1012 {
1013 	struct rtrs_clt *rtrs = dev->sess->rtrs;
1014 	struct rtrs_permit *permit = iu->permit;
1015 	struct rnbd_msg_io msg;
1016 	struct rtrs_clt_req_ops req_ops;
1017 	unsigned int sg_cnt = 0;
1018 	struct kvec vec;
1019 	size_t size;
1020 	int err;
1021 
1022 	iu->rq		= rq;
1023 	iu->dev		= dev;
1024 	msg.sector	= cpu_to_le64(blk_rq_pos(rq));
1025 	msg.bi_size	= cpu_to_le32(blk_rq_bytes(rq));
1026 	msg.rw		= cpu_to_le32(rq_to_rnbd_flags(rq));
1027 	msg.prio	= cpu_to_le16(req_get_ioprio(rq));
1028 
1029 	/*
1030 	 * We only support discards with single segment for now.
1031 	 * See queue limits.
1032 	 */
1033 	if (req_op(rq) != REQ_OP_DISCARD)
1034 		sg_cnt = blk_rq_map_sg(dev->queue, rq, iu->sgt.sgl);
1035 
1036 	if (sg_cnt == 0)
1037 		sg_mark_end(&iu->sgt.sgl[0]);
1038 
1039 	msg.hdr.type	= cpu_to_le16(RNBD_MSG_IO);
1040 	msg.device_id	= cpu_to_le32(dev->device_id);
1041 
1042 	vec = (struct kvec) {
1043 		.iov_base = &msg,
1044 		.iov_len  = sizeof(msg)
1045 	};
1046 	size = rnbd_clt_get_sg_size(iu->sgt.sgl, sg_cnt);
1047 	req_ops = (struct rtrs_clt_req_ops) {
1048 		.priv = iu,
1049 		.conf_fn = msg_io_conf,
1050 	};
1051 	err = rtrs_clt_request(rq_data_dir(rq), &req_ops, rtrs, permit,
1052 			       &vec, 1, size, iu->sgt.sgl, sg_cnt);
1053 	if (err) {
1054 		rnbd_clt_err_rl(dev, "RTRS failed to transfer IO, err: %d\n",
1055 				 err);
1056 		return err;
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 /**
1063  * rnbd_clt_dev_add_to_requeue() - add device to requeue if session is busy
1064  * @dev:	Device to be checked
1065  * @q:		Queue to be added to the requeue list if required
1066  *
1067  * Description:
1068  *     If session is busy, that means someone will requeue us when resources
1069  *     are freed.  If session is not doing anything - device is not added to
1070  *     the list and @false is returned.
1071  */
1072 static bool rnbd_clt_dev_add_to_requeue(struct rnbd_clt_dev *dev,
1073 						struct rnbd_queue *q)
1074 {
1075 	struct rnbd_clt_session *sess = dev->sess;
1076 	struct rnbd_cpu_qlist *cpu_q;
1077 	unsigned long flags;
1078 	bool added = true;
1079 	bool need_set;
1080 
1081 	cpu_q = get_cpu_ptr(sess->cpu_queues);
1082 	spin_lock_irqsave(&cpu_q->requeue_lock, flags);
1083 
1084 	if (!test_and_set_bit_lock(0, &q->in_list)) {
1085 		if (WARN_ON(!list_empty(&q->requeue_list)))
1086 			goto unlock;
1087 
1088 		need_set = !test_bit(cpu_q->cpu, sess->cpu_queues_bm);
1089 		if (need_set) {
1090 			set_bit(cpu_q->cpu, sess->cpu_queues_bm);
1091 			/* Paired with rnbd_put_permit(). Set a bit first
1092 			 * and then observe the busy counter.
1093 			 */
1094 			smp_mb__before_atomic();
1095 		}
1096 		if (atomic_read(&sess->busy)) {
1097 			list_add_tail(&q->requeue_list, &cpu_q->requeue_list);
1098 		} else {
1099 			/* Very unlikely, but possible: busy counter was
1100 			 * observed as zero.  Drop all bits and return
1101 			 * false to restart the queue by ourselves.
1102 			 */
1103 			if (need_set)
1104 				clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
1105 			clear_bit_unlock(0, &q->in_list);
1106 			added = false;
1107 		}
1108 	}
1109 unlock:
1110 	spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
1111 	put_cpu_ptr(sess->cpu_queues);
1112 
1113 	return added;
1114 }
1115 
1116 static void rnbd_clt_dev_kick_mq_queue(struct rnbd_clt_dev *dev,
1117 					struct blk_mq_hw_ctx *hctx,
1118 					int delay)
1119 {
1120 	struct rnbd_queue *q = hctx->driver_data;
1121 
1122 	if (delay != RNBD_DELAY_IFBUSY)
1123 		blk_mq_delay_run_hw_queue(hctx, delay);
1124 	else if (!rnbd_clt_dev_add_to_requeue(dev, q))
1125 		/*
1126 		 * If session is not busy we have to restart
1127 		 * the queue ourselves.
1128 		 */
1129 		blk_mq_delay_run_hw_queue(hctx, 10/*ms*/);
1130 }
1131 
1132 static blk_status_t rnbd_queue_rq(struct blk_mq_hw_ctx *hctx,
1133 				   const struct blk_mq_queue_data *bd)
1134 {
1135 	struct request *rq = bd->rq;
1136 	struct rnbd_clt_dev *dev = rq->rq_disk->private_data;
1137 	struct rnbd_iu *iu = blk_mq_rq_to_pdu(rq);
1138 	int err;
1139 	blk_status_t ret = BLK_STS_IOERR;
1140 
1141 	if (dev->dev_state != DEV_STATE_MAPPED)
1142 		return BLK_STS_IOERR;
1143 
1144 	iu->permit = rnbd_get_permit(dev->sess, RTRS_IO_CON,
1145 				      RTRS_PERMIT_NOWAIT);
1146 	if (!iu->permit) {
1147 		rnbd_clt_dev_kick_mq_queue(dev, hctx, RNBD_DELAY_IFBUSY);
1148 		return BLK_STS_RESOURCE;
1149 	}
1150 
1151 	iu->sgt.sgl = iu->first_sgl;
1152 	err = sg_alloc_table_chained(&iu->sgt,
1153 				     /* Even-if the request has no segment,
1154 				      * sglist must have one entry at least.
1155 				      */
1156 				     blk_rq_nr_phys_segments(rq) ? : 1,
1157 				     iu->sgt.sgl,
1158 				     RNBD_INLINE_SG_CNT);
1159 	if (err) {
1160 		rnbd_clt_err_rl(dev, "sg_alloc_table_chained ret=%d\n", err);
1161 		rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/);
1162 		rnbd_put_permit(dev->sess, iu->permit);
1163 		return BLK_STS_RESOURCE;
1164 	}
1165 
1166 	blk_mq_start_request(rq);
1167 	err = rnbd_client_xfer_request(dev, rq, iu);
1168 	if (err == 0)
1169 		return BLK_STS_OK;
1170 	if (err == -EAGAIN || err == -ENOMEM) {
1171 		rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/);
1172 		ret = BLK_STS_RESOURCE;
1173 	}
1174 	sg_free_table_chained(&iu->sgt, RNBD_INLINE_SG_CNT);
1175 	rnbd_put_permit(dev->sess, iu->permit);
1176 	return ret;
1177 }
1178 
1179 static int rnbd_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1180 {
1181 	struct rnbd_queue *q = hctx->driver_data;
1182 	struct rnbd_clt_dev *dev = q->dev;
1183 	int cnt;
1184 
1185 	cnt = rtrs_clt_rdma_cq_direct(dev->sess->rtrs, hctx->queue_num);
1186 	return cnt;
1187 }
1188 
1189 static int rnbd_rdma_map_queues(struct blk_mq_tag_set *set)
1190 {
1191 	struct rnbd_clt_session *sess = set->driver_data;
1192 
1193 	/* shared read/write queues */
1194 	set->map[HCTX_TYPE_DEFAULT].nr_queues = num_online_cpus();
1195 	set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1196 	set->map[HCTX_TYPE_READ].nr_queues = num_online_cpus();
1197 	set->map[HCTX_TYPE_READ].queue_offset = 0;
1198 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1199 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
1200 
1201 	if (sess->nr_poll_queues) {
1202 		/* dedicated queue for poll */
1203 		set->map[HCTX_TYPE_POLL].nr_queues = sess->nr_poll_queues;
1204 		set->map[HCTX_TYPE_POLL].queue_offset = set->map[HCTX_TYPE_READ].queue_offset +
1205 			set->map[HCTX_TYPE_READ].nr_queues;
1206 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1207 		pr_info("[session=%s] mapped %d/%d/%d default/read/poll queues.\n",
1208 			sess->sessname,
1209 			set->map[HCTX_TYPE_DEFAULT].nr_queues,
1210 			set->map[HCTX_TYPE_READ].nr_queues,
1211 			set->map[HCTX_TYPE_POLL].nr_queues);
1212 	} else {
1213 		pr_info("[session=%s] mapped %d/%d default/read queues.\n",
1214 			sess->sessname,
1215 			set->map[HCTX_TYPE_DEFAULT].nr_queues,
1216 			set->map[HCTX_TYPE_READ].nr_queues);
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static struct blk_mq_ops rnbd_mq_ops = {
1223 	.queue_rq	= rnbd_queue_rq,
1224 	.complete	= rnbd_softirq_done_fn,
1225 	.map_queues     = rnbd_rdma_map_queues,
1226 	.poll           = rnbd_rdma_poll,
1227 };
1228 
1229 static int setup_mq_tags(struct rnbd_clt_session *sess)
1230 {
1231 	struct blk_mq_tag_set *tag_set = &sess->tag_set;
1232 
1233 	memset(tag_set, 0, sizeof(*tag_set));
1234 	tag_set->ops		= &rnbd_mq_ops;
1235 	tag_set->queue_depth	= sess->queue_depth;
1236 	tag_set->numa_node		= NUMA_NO_NODE;
1237 	tag_set->flags		= BLK_MQ_F_SHOULD_MERGE |
1238 				  BLK_MQ_F_TAG_QUEUE_SHARED;
1239 	tag_set->cmd_size	= sizeof(struct rnbd_iu) + RNBD_RDMA_SGL_SIZE;
1240 
1241 	/* for HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL */
1242 	tag_set->nr_maps        = sess->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1243 	/*
1244 	 * HCTX_TYPE_DEFAULT and HCTX_TYPE_READ share one set of queues
1245 	 * others are for HCTX_TYPE_POLL
1246 	 */
1247 	tag_set->nr_hw_queues	= num_online_cpus() + sess->nr_poll_queues;
1248 	tag_set->driver_data    = sess;
1249 
1250 	return blk_mq_alloc_tag_set(tag_set);
1251 }
1252 
1253 static struct rnbd_clt_session *
1254 find_and_get_or_create_sess(const char *sessname,
1255 			    const struct rtrs_addr *paths,
1256 			    size_t path_cnt, u16 port_nr, u32 nr_poll_queues)
1257 {
1258 	struct rnbd_clt_session *sess;
1259 	struct rtrs_attrs attrs;
1260 	int err;
1261 	bool first = false;
1262 	struct rtrs_clt_ops rtrs_ops;
1263 
1264 	sess = find_or_create_sess(sessname, &first);
1265 	if (sess == ERR_PTR(-ENOMEM))
1266 		return ERR_PTR(-ENOMEM);
1267 	else if ((nr_poll_queues && !first) ||  (!nr_poll_queues && sess->nr_poll_queues)) {
1268 		/*
1269 		 * A device MUST have its own session to use the polling-mode.
1270 		 * It must fail to map new device with the same session.
1271 		 */
1272 		err = -EINVAL;
1273 		goto put_sess;
1274 	}
1275 
1276 	if (!first)
1277 		return sess;
1278 
1279 	if (!path_cnt) {
1280 		pr_err("Session %s not found, and path parameter not given", sessname);
1281 		err = -ENXIO;
1282 		goto put_sess;
1283 	}
1284 
1285 	rtrs_ops = (struct rtrs_clt_ops) {
1286 		.priv = sess,
1287 		.link_ev = rnbd_clt_link_ev,
1288 	};
1289 	/*
1290 	 * Nothing was found, establish rtrs connection and proceed further.
1291 	 */
1292 	sess->rtrs = rtrs_clt_open(&rtrs_ops, sessname,
1293 				   paths, path_cnt, port_nr,
1294 				   0, /* Do not use pdu of rtrs */
1295 				   RECONNECT_DELAY,
1296 				   MAX_RECONNECTS, nr_poll_queues);
1297 	if (IS_ERR(sess->rtrs)) {
1298 		err = PTR_ERR(sess->rtrs);
1299 		goto wake_up_and_put;
1300 	}
1301 
1302 	err = rtrs_clt_query(sess->rtrs, &attrs);
1303 	if (err)
1304 		goto close_rtrs;
1305 
1306 	sess->max_io_size = attrs.max_io_size;
1307 	sess->queue_depth = attrs.queue_depth;
1308 	sess->nr_poll_queues = nr_poll_queues;
1309 	sess->max_segments = attrs.max_segments;
1310 
1311 	err = setup_mq_tags(sess);
1312 	if (err)
1313 		goto close_rtrs;
1314 
1315 	err = send_msg_sess_info(sess, RTRS_PERMIT_WAIT);
1316 	if (err)
1317 		goto close_rtrs;
1318 
1319 	wake_up_rtrs_waiters(sess);
1320 
1321 	return sess;
1322 
1323 close_rtrs:
1324 	close_rtrs(sess);
1325 put_sess:
1326 	rnbd_clt_put_sess(sess);
1327 
1328 	return ERR_PTR(err);
1329 
1330 wake_up_and_put:
1331 	wake_up_rtrs_waiters(sess);
1332 	goto put_sess;
1333 }
1334 
1335 static inline void rnbd_init_hw_queue(struct rnbd_clt_dev *dev,
1336 				       struct rnbd_queue *q,
1337 				       struct blk_mq_hw_ctx *hctx)
1338 {
1339 	INIT_LIST_HEAD(&q->requeue_list);
1340 	q->dev  = dev;
1341 	q->hctx = hctx;
1342 }
1343 
1344 static void rnbd_init_mq_hw_queues(struct rnbd_clt_dev *dev)
1345 {
1346 	int i;
1347 	struct blk_mq_hw_ctx *hctx;
1348 	struct rnbd_queue *q;
1349 
1350 	queue_for_each_hw_ctx(dev->queue, hctx, i) {
1351 		q = &dev->hw_queues[i];
1352 		rnbd_init_hw_queue(dev, q, hctx);
1353 		hctx->driver_data = q;
1354 	}
1355 }
1356 
1357 static void setup_request_queue(struct rnbd_clt_dev *dev)
1358 {
1359 	blk_queue_logical_block_size(dev->queue, dev->logical_block_size);
1360 	blk_queue_physical_block_size(dev->queue, dev->physical_block_size);
1361 	blk_queue_max_hw_sectors(dev->queue, dev->max_hw_sectors);
1362 	blk_queue_max_write_same_sectors(dev->queue,
1363 					 dev->max_write_same_sectors);
1364 
1365 	/*
1366 	 * we don't support discards to "discontiguous" segments
1367 	 * in on request
1368 	 */
1369 	blk_queue_max_discard_segments(dev->queue, 1);
1370 
1371 	blk_queue_max_discard_sectors(dev->queue, dev->max_discard_sectors);
1372 	dev->queue->limits.discard_granularity	= dev->discard_granularity;
1373 	dev->queue->limits.discard_alignment	= dev->discard_alignment;
1374 	if (dev->max_discard_sectors)
1375 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, dev->queue);
1376 	if (dev->secure_discard)
1377 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, dev->queue);
1378 
1379 	blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, dev->queue);
1380 	blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, dev->queue);
1381 	blk_queue_max_segments(dev->queue, dev->max_segments);
1382 	blk_queue_io_opt(dev->queue, dev->sess->max_io_size);
1383 	blk_queue_virt_boundary(dev->queue, SZ_4K - 1);
1384 	blk_queue_write_cache(dev->queue, dev->wc, dev->fua);
1385 }
1386 
1387 static int rnbd_clt_setup_gen_disk(struct rnbd_clt_dev *dev, int idx)
1388 {
1389 	int err;
1390 
1391 	dev->gd->major		= rnbd_client_major;
1392 	dev->gd->first_minor	= idx << RNBD_PART_BITS;
1393 	dev->gd->minors		= 1 << RNBD_PART_BITS;
1394 	dev->gd->fops		= &rnbd_client_ops;
1395 	dev->gd->queue		= dev->queue;
1396 	dev->gd->private_data	= dev;
1397 	snprintf(dev->gd->disk_name, sizeof(dev->gd->disk_name), "rnbd%d",
1398 		 idx);
1399 	pr_debug("disk_name=%s, capacity=%zu\n",
1400 		 dev->gd->disk_name,
1401 		 dev->nsectors * (dev->logical_block_size / SECTOR_SIZE)
1402 		 );
1403 
1404 	set_capacity(dev->gd, dev->nsectors);
1405 
1406 	if (dev->access_mode == RNBD_ACCESS_RO) {
1407 		dev->read_only = true;
1408 		set_disk_ro(dev->gd, true);
1409 	} else {
1410 		dev->read_only = false;
1411 	}
1412 
1413 	if (!dev->rotational)
1414 		blk_queue_flag_set(QUEUE_FLAG_NONROT, dev->queue);
1415 	err = add_disk(dev->gd);
1416 	if (err)
1417 		blk_cleanup_disk(dev->gd);
1418 
1419 	return err;
1420 }
1421 
1422 static int rnbd_client_setup_device(struct rnbd_clt_dev *dev)
1423 {
1424 	int idx = dev->clt_device_id;
1425 
1426 	dev->size = dev->nsectors * dev->logical_block_size;
1427 
1428 	dev->gd = blk_mq_alloc_disk(&dev->sess->tag_set, dev);
1429 	if (IS_ERR(dev->gd))
1430 		return PTR_ERR(dev->gd);
1431 	dev->queue = dev->gd->queue;
1432 	rnbd_init_mq_hw_queues(dev);
1433 
1434 	setup_request_queue(dev);
1435 	return rnbd_clt_setup_gen_disk(dev, idx);
1436 }
1437 
1438 static struct rnbd_clt_dev *init_dev(struct rnbd_clt_session *sess,
1439 				      enum rnbd_access_mode access_mode,
1440 				      const char *pathname,
1441 				      u32 nr_poll_queues)
1442 {
1443 	struct rnbd_clt_dev *dev;
1444 	int ret;
1445 
1446 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, NUMA_NO_NODE);
1447 	if (!dev)
1448 		return ERR_PTR(-ENOMEM);
1449 
1450 	/*
1451 	 * nr_cpu_ids: the number of softirq queues
1452 	 * nr_poll_queues: the number of polling queues
1453 	 */
1454 	dev->hw_queues = kcalloc(nr_cpu_ids + nr_poll_queues,
1455 				 sizeof(*dev->hw_queues),
1456 				 GFP_KERNEL);
1457 	if (!dev->hw_queues) {
1458 		ret = -ENOMEM;
1459 		goto out_alloc;
1460 	}
1461 
1462 	mutex_lock(&ida_lock);
1463 	ret = ida_simple_get(&index_ida, 0, 1 << (MINORBITS - RNBD_PART_BITS),
1464 			     GFP_KERNEL);
1465 	mutex_unlock(&ida_lock);
1466 	if (ret < 0) {
1467 		pr_err("Failed to initialize device '%s' from session %s, allocating idr failed, err: %d\n",
1468 		       pathname, sess->sessname, ret);
1469 		goto out_queues;
1470 	}
1471 
1472 	dev->pathname = kstrdup(pathname, GFP_KERNEL);
1473 	if (!dev->pathname) {
1474 		ret = -ENOMEM;
1475 		goto out_queues;
1476 	}
1477 
1478 	dev->clt_device_id	= ret;
1479 	dev->sess		= sess;
1480 	dev->access_mode	= access_mode;
1481 	dev->nr_poll_queues	= nr_poll_queues;
1482 	mutex_init(&dev->lock);
1483 	refcount_set(&dev->refcount, 1);
1484 	dev->dev_state = DEV_STATE_INIT;
1485 
1486 	/*
1487 	 * Here we called from sysfs entry, thus clt-sysfs is
1488 	 * responsible that session will not disappear.
1489 	 */
1490 	WARN_ON(!rnbd_clt_get_sess(sess));
1491 
1492 	return dev;
1493 
1494 out_queues:
1495 	kfree(dev->hw_queues);
1496 out_alloc:
1497 	kfree(dev);
1498 	return ERR_PTR(ret);
1499 }
1500 
1501 static bool __exists_dev(const char *pathname, const char *sessname)
1502 {
1503 	struct rnbd_clt_session *sess;
1504 	struct rnbd_clt_dev *dev;
1505 	bool found = false;
1506 
1507 	list_for_each_entry(sess, &sess_list, list) {
1508 		if (sessname && strncmp(sess->sessname, sessname,
1509 					sizeof(sess->sessname)))
1510 			continue;
1511 		mutex_lock(&sess->lock);
1512 		list_for_each_entry(dev, &sess->devs_list, list) {
1513 			if (strlen(dev->pathname) == strlen(pathname) &&
1514 			    !strcmp(dev->pathname, pathname)) {
1515 				found = true;
1516 				break;
1517 			}
1518 		}
1519 		mutex_unlock(&sess->lock);
1520 		if (found)
1521 			break;
1522 	}
1523 
1524 	return found;
1525 }
1526 
1527 static bool exists_devpath(const char *pathname, const char *sessname)
1528 {
1529 	bool found;
1530 
1531 	mutex_lock(&sess_lock);
1532 	found = __exists_dev(pathname, sessname);
1533 	mutex_unlock(&sess_lock);
1534 
1535 	return found;
1536 }
1537 
1538 static bool insert_dev_if_not_exists_devpath(struct rnbd_clt_dev *dev)
1539 {
1540 	bool found;
1541 	struct rnbd_clt_session *sess = dev->sess;
1542 
1543 	mutex_lock(&sess_lock);
1544 	found = __exists_dev(dev->pathname, sess->sessname);
1545 	if (!found) {
1546 		mutex_lock(&sess->lock);
1547 		list_add_tail(&dev->list, &sess->devs_list);
1548 		mutex_unlock(&sess->lock);
1549 	}
1550 	mutex_unlock(&sess_lock);
1551 
1552 	return found;
1553 }
1554 
1555 static void delete_dev(struct rnbd_clt_dev *dev)
1556 {
1557 	struct rnbd_clt_session *sess = dev->sess;
1558 
1559 	mutex_lock(&sess->lock);
1560 	list_del(&dev->list);
1561 	mutex_unlock(&sess->lock);
1562 }
1563 
1564 struct rnbd_clt_dev *rnbd_clt_map_device(const char *sessname,
1565 					   struct rtrs_addr *paths,
1566 					   size_t path_cnt, u16 port_nr,
1567 					   const char *pathname,
1568 					   enum rnbd_access_mode access_mode,
1569 					   u32 nr_poll_queues)
1570 {
1571 	struct rnbd_clt_session *sess;
1572 	struct rnbd_clt_dev *dev;
1573 	int ret;
1574 
1575 	if (exists_devpath(pathname, sessname))
1576 		return ERR_PTR(-EEXIST);
1577 
1578 	sess = find_and_get_or_create_sess(sessname, paths, path_cnt, port_nr, nr_poll_queues);
1579 	if (IS_ERR(sess))
1580 		return ERR_CAST(sess);
1581 
1582 	dev = init_dev(sess, access_mode, pathname, nr_poll_queues);
1583 	if (IS_ERR(dev)) {
1584 		pr_err("map_device: failed to map device '%s' from session %s, can't initialize device, err: %ld\n",
1585 		       pathname, sess->sessname, PTR_ERR(dev));
1586 		ret = PTR_ERR(dev);
1587 		goto put_sess;
1588 	}
1589 	if (insert_dev_if_not_exists_devpath(dev)) {
1590 		ret = -EEXIST;
1591 		goto put_dev;
1592 	}
1593 	ret = send_msg_open(dev, RTRS_PERMIT_WAIT);
1594 	if (ret) {
1595 		rnbd_clt_err(dev,
1596 			      "map_device: failed, can't open remote device, err: %d\n",
1597 			      ret);
1598 		goto del_dev;
1599 	}
1600 	mutex_lock(&dev->lock);
1601 	pr_debug("Opened remote device: session=%s, path='%s'\n",
1602 		 sess->sessname, pathname);
1603 	ret = rnbd_client_setup_device(dev);
1604 	if (ret) {
1605 		rnbd_clt_err(dev,
1606 			      "map_device: Failed to configure device, err: %d\n",
1607 			      ret);
1608 		mutex_unlock(&dev->lock);
1609 		goto send_close;
1610 	}
1611 
1612 	rnbd_clt_info(dev,
1613 		       "map_device: Device mapped as %s (nsectors: %zu, logical_block_size: %d, physical_block_size: %d, max_write_same_sectors: %d, max_discard_sectors: %d, discard_granularity: %d, discard_alignment: %d, secure_discard: %d, max_segments: %d, max_hw_sectors: %d, rotational: %d, wc: %d, fua: %d)\n",
1614 		       dev->gd->disk_name, dev->nsectors,
1615 		       dev->logical_block_size, dev->physical_block_size,
1616 		       dev->max_write_same_sectors, dev->max_discard_sectors,
1617 		       dev->discard_granularity, dev->discard_alignment,
1618 		       dev->secure_discard, dev->max_segments,
1619 		       dev->max_hw_sectors, dev->rotational, dev->wc, dev->fua);
1620 
1621 	mutex_unlock(&dev->lock);
1622 	rnbd_clt_put_sess(sess);
1623 
1624 	return dev;
1625 
1626 send_close:
1627 	send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT);
1628 del_dev:
1629 	delete_dev(dev);
1630 put_dev:
1631 	rnbd_clt_put_dev(dev);
1632 put_sess:
1633 	rnbd_clt_put_sess(sess);
1634 
1635 	return ERR_PTR(ret);
1636 }
1637 
1638 static void destroy_gen_disk(struct rnbd_clt_dev *dev)
1639 {
1640 	del_gendisk(dev->gd);
1641 	blk_cleanup_disk(dev->gd);
1642 }
1643 
1644 static void destroy_sysfs(struct rnbd_clt_dev *dev,
1645 			  const struct attribute *sysfs_self)
1646 {
1647 	rnbd_clt_remove_dev_symlink(dev);
1648 	if (dev->kobj.state_initialized) {
1649 		if (sysfs_self)
1650 			/* To avoid deadlock firstly remove itself */
1651 			sysfs_remove_file_self(&dev->kobj, sysfs_self);
1652 		kobject_del(&dev->kobj);
1653 		kobject_put(&dev->kobj);
1654 	}
1655 }
1656 
1657 int rnbd_clt_unmap_device(struct rnbd_clt_dev *dev, bool force,
1658 			   const struct attribute *sysfs_self)
1659 {
1660 	struct rnbd_clt_session *sess = dev->sess;
1661 	int refcount, ret = 0;
1662 	bool was_mapped;
1663 
1664 	mutex_lock(&dev->lock);
1665 	if (dev->dev_state == DEV_STATE_UNMAPPED) {
1666 		rnbd_clt_info(dev, "Device is already being unmapped\n");
1667 		ret = -EALREADY;
1668 		goto err;
1669 	}
1670 	refcount = refcount_read(&dev->refcount);
1671 	if (!force && refcount > 1) {
1672 		rnbd_clt_err(dev,
1673 			      "Closing device failed, device is in use, (%d device users)\n",
1674 			      refcount - 1);
1675 		ret = -EBUSY;
1676 		goto err;
1677 	}
1678 	was_mapped = (dev->dev_state == DEV_STATE_MAPPED);
1679 	dev->dev_state = DEV_STATE_UNMAPPED;
1680 	mutex_unlock(&dev->lock);
1681 
1682 	delete_dev(dev);
1683 	destroy_sysfs(dev, sysfs_self);
1684 	destroy_gen_disk(dev);
1685 	if (was_mapped && sess->rtrs)
1686 		send_msg_close(dev, dev->device_id, RTRS_PERMIT_WAIT);
1687 
1688 	rnbd_clt_info(dev, "Device is unmapped\n");
1689 
1690 	/* Likely last reference put */
1691 	rnbd_clt_put_dev(dev);
1692 
1693 	/*
1694 	 * Here device and session can be vanished!
1695 	 */
1696 
1697 	return 0;
1698 err:
1699 	mutex_unlock(&dev->lock);
1700 
1701 	return ret;
1702 }
1703 
1704 int rnbd_clt_remap_device(struct rnbd_clt_dev *dev)
1705 {
1706 	int err;
1707 
1708 	mutex_lock(&dev->lock);
1709 	if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED)
1710 		err = 0;
1711 	else if (dev->dev_state == DEV_STATE_UNMAPPED)
1712 		err = -ENODEV;
1713 	else if (dev->dev_state == DEV_STATE_MAPPED)
1714 		err = -EALREADY;
1715 	else
1716 		err = -EBUSY;
1717 	mutex_unlock(&dev->lock);
1718 	if (!err) {
1719 		rnbd_clt_info(dev, "Remapping device.\n");
1720 		err = send_msg_open(dev, RTRS_PERMIT_WAIT);
1721 		if (err)
1722 			rnbd_clt_err(dev, "remap_device: %d\n", err);
1723 	}
1724 
1725 	return err;
1726 }
1727 
1728 static void unmap_device_work(struct work_struct *work)
1729 {
1730 	struct rnbd_clt_dev *dev;
1731 
1732 	dev = container_of(work, typeof(*dev), unmap_on_rmmod_work);
1733 	rnbd_clt_unmap_device(dev, true, NULL);
1734 }
1735 
1736 static void rnbd_destroy_sessions(void)
1737 {
1738 	struct rnbd_clt_session *sess, *sn;
1739 	struct rnbd_clt_dev *dev, *tn;
1740 
1741 	/* Firstly forbid access through sysfs interface */
1742 	rnbd_clt_destroy_sysfs_files();
1743 
1744 	/*
1745 	 * Here at this point there is no any concurrent access to sessions
1746 	 * list and devices list:
1747 	 *   1. New session or device can't be created - session sysfs files
1748 	 *      are removed.
1749 	 *   2. Device or session can't be removed - module reference is taken
1750 	 *      into account in unmap device sysfs callback.
1751 	 *   3. No IO requests inflight - each file open of block_dev increases
1752 	 *      module reference in get_disk().
1753 	 *
1754 	 * But still there can be user requests inflights, which are sent by
1755 	 * asynchronous send_msg_*() functions, thus before unmapping devices
1756 	 * RTRS session must be explicitly closed.
1757 	 */
1758 
1759 	list_for_each_entry_safe(sess, sn, &sess_list, list) {
1760 		if (!rnbd_clt_get_sess(sess))
1761 			continue;
1762 		close_rtrs(sess);
1763 		list_for_each_entry_safe(dev, tn, &sess->devs_list, list) {
1764 			/*
1765 			 * Here unmap happens in parallel for only one reason:
1766 			 * blk_cleanup_queue() takes around half a second, so
1767 			 * on huge amount of devices the whole module unload
1768 			 * procedure takes minutes.
1769 			 */
1770 			INIT_WORK(&dev->unmap_on_rmmod_work, unmap_device_work);
1771 			queue_work(system_long_wq, &dev->unmap_on_rmmod_work);
1772 		}
1773 		rnbd_clt_put_sess(sess);
1774 	}
1775 	/* Wait for all scheduled unmap works */
1776 	flush_workqueue(system_long_wq);
1777 	WARN_ON(!list_empty(&sess_list));
1778 }
1779 
1780 static int __init rnbd_client_init(void)
1781 {
1782 	int err = 0;
1783 
1784 	BUILD_BUG_ON(sizeof(struct rnbd_msg_hdr) != 4);
1785 	BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info) != 36);
1786 	BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info_rsp) != 36);
1787 	BUILD_BUG_ON(sizeof(struct rnbd_msg_open) != 264);
1788 	BUILD_BUG_ON(sizeof(struct rnbd_msg_close) != 8);
1789 	BUILD_BUG_ON(sizeof(struct rnbd_msg_open_rsp) != 56);
1790 	rnbd_client_major = register_blkdev(rnbd_client_major, "rnbd");
1791 	if (rnbd_client_major <= 0) {
1792 		pr_err("Failed to load module, block device registration failed\n");
1793 		return -EBUSY;
1794 	}
1795 
1796 	err = rnbd_clt_create_sysfs_files();
1797 	if (err) {
1798 		pr_err("Failed to load module, creating sysfs device files failed, err: %d\n",
1799 		       err);
1800 		unregister_blkdev(rnbd_client_major, "rnbd");
1801 	}
1802 
1803 	return err;
1804 }
1805 
1806 static void __exit rnbd_client_exit(void)
1807 {
1808 	rnbd_destroy_sessions();
1809 	unregister_blkdev(rnbd_client_major, "rnbd");
1810 	ida_destroy(&index_ida);
1811 }
1812 
1813 module_init(rnbd_client_init);
1814 module_exit(rnbd_client_exit);
1815