xref: /openbmc/linux/drivers/block/rbd.c (revision fa0dadde)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	if (!obj_req->num_img_extents ||
1340 	    (rbd_obj_is_entire(obj_req) &&
1341 	     !obj_req->img_request->snapc->num_snaps))
1342 		return false;
1343 
1344 	return true;
1345 }
1346 
1347 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1348 {
1349 	return ceph_file_extents_bytes(obj_req->img_extents,
1350 				       obj_req->num_img_extents);
1351 }
1352 
1353 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1354 {
1355 	switch (img_req->op_type) {
1356 	case OBJ_OP_READ:
1357 		return false;
1358 	case OBJ_OP_WRITE:
1359 	case OBJ_OP_DISCARD:
1360 	case OBJ_OP_ZEROOUT:
1361 		return true;
1362 	default:
1363 		BUG();
1364 	}
1365 }
1366 
1367 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1368 {
1369 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1370 	int result;
1371 
1372 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1373 	     osd_req->r_result, obj_req);
1374 
1375 	/*
1376 	 * Writes aren't allowed to return a data payload.  In some
1377 	 * guarded write cases (e.g. stat + zero on an empty object)
1378 	 * a stat response makes it through, but we don't care.
1379 	 */
1380 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1381 		result = 0;
1382 	else
1383 		result = osd_req->r_result;
1384 
1385 	rbd_obj_handle_request(obj_req, result);
1386 }
1387 
1388 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1389 {
1390 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1391 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1392 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1393 
1394 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1395 	osd_req->r_snapid = obj_request->img_request->snap_id;
1396 }
1397 
1398 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1399 {
1400 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1401 
1402 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1403 	ktime_get_real_ts64(&osd_req->r_mtime);
1404 	osd_req->r_data_offset = obj_request->ex.oe_off;
1405 }
1406 
1407 static struct ceph_osd_request *
1408 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1409 			  struct ceph_snap_context *snapc, int num_ops)
1410 {
1411 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1412 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1413 	struct ceph_osd_request *req;
1414 	const char *name_format = rbd_dev->image_format == 1 ?
1415 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1416 	int ret;
1417 
1418 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1419 	if (!req)
1420 		return ERR_PTR(-ENOMEM);
1421 
1422 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1423 	req->r_callback = rbd_osd_req_callback;
1424 	req->r_priv = obj_req;
1425 
1426 	/*
1427 	 * Data objects may be stored in a separate pool, but always in
1428 	 * the same namespace in that pool as the header in its pool.
1429 	 */
1430 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1431 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1432 
1433 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1434 			       rbd_dev->header.object_prefix,
1435 			       obj_req->ex.oe_objno);
1436 	if (ret)
1437 		return ERR_PTR(ret);
1438 
1439 	return req;
1440 }
1441 
1442 static struct ceph_osd_request *
1443 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1444 {
1445 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1446 					 num_ops);
1447 }
1448 
1449 static struct rbd_obj_request *rbd_obj_request_create(void)
1450 {
1451 	struct rbd_obj_request *obj_request;
1452 
1453 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1454 	if (!obj_request)
1455 		return NULL;
1456 
1457 	ceph_object_extent_init(&obj_request->ex);
1458 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1459 	mutex_init(&obj_request->state_mutex);
1460 	kref_init(&obj_request->kref);
1461 
1462 	dout("%s %p\n", __func__, obj_request);
1463 	return obj_request;
1464 }
1465 
1466 static void rbd_obj_request_destroy(struct kref *kref)
1467 {
1468 	struct rbd_obj_request *obj_request;
1469 	struct ceph_osd_request *osd_req;
1470 	u32 i;
1471 
1472 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1473 
1474 	dout("%s: obj %p\n", __func__, obj_request);
1475 
1476 	while (!list_empty(&obj_request->osd_reqs)) {
1477 		osd_req = list_first_entry(&obj_request->osd_reqs,
1478 				    struct ceph_osd_request, r_private_item);
1479 		list_del_init(&osd_req->r_private_item);
1480 		ceph_osdc_put_request(osd_req);
1481 	}
1482 
1483 	switch (obj_request->img_request->data_type) {
1484 	case OBJ_REQUEST_NODATA:
1485 	case OBJ_REQUEST_BIO:
1486 	case OBJ_REQUEST_BVECS:
1487 		break;		/* Nothing to do */
1488 	case OBJ_REQUEST_OWN_BVECS:
1489 		kfree(obj_request->bvec_pos.bvecs);
1490 		break;
1491 	default:
1492 		BUG();
1493 	}
1494 
1495 	kfree(obj_request->img_extents);
1496 	if (obj_request->copyup_bvecs) {
1497 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1498 			if (obj_request->copyup_bvecs[i].bv_page)
1499 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1500 		}
1501 		kfree(obj_request->copyup_bvecs);
1502 	}
1503 
1504 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1505 }
1506 
1507 /* It's OK to call this for a device with no parent */
1508 
1509 static void rbd_spec_put(struct rbd_spec *spec);
1510 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1511 {
1512 	rbd_dev_remove_parent(rbd_dev);
1513 	rbd_spec_put(rbd_dev->parent_spec);
1514 	rbd_dev->parent_spec = NULL;
1515 	rbd_dev->parent_overlap = 0;
1516 }
1517 
1518 /*
1519  * Parent image reference counting is used to determine when an
1520  * image's parent fields can be safely torn down--after there are no
1521  * more in-flight requests to the parent image.  When the last
1522  * reference is dropped, cleaning them up is safe.
1523  */
1524 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1525 {
1526 	int counter;
1527 
1528 	if (!rbd_dev->parent_spec)
1529 		return;
1530 
1531 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1532 	if (counter > 0)
1533 		return;
1534 
1535 	/* Last reference; clean up parent data structures */
1536 
1537 	if (!counter)
1538 		rbd_dev_unparent(rbd_dev);
1539 	else
1540 		rbd_warn(rbd_dev, "parent reference underflow");
1541 }
1542 
1543 /*
1544  * If an image has a non-zero parent overlap, get a reference to its
1545  * parent.
1546  *
1547  * Returns true if the rbd device has a parent with a non-zero
1548  * overlap and a reference for it was successfully taken, or
1549  * false otherwise.
1550  */
1551 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1552 {
1553 	int counter = 0;
1554 
1555 	if (!rbd_dev->parent_spec)
1556 		return false;
1557 
1558 	if (rbd_dev->parent_overlap)
1559 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1560 
1561 	if (counter < 0)
1562 		rbd_warn(rbd_dev, "parent reference overflow");
1563 
1564 	return counter > 0;
1565 }
1566 
1567 static void rbd_img_request_init(struct rbd_img_request *img_request,
1568 				 struct rbd_device *rbd_dev,
1569 				 enum obj_operation_type op_type)
1570 {
1571 	memset(img_request, 0, sizeof(*img_request));
1572 
1573 	img_request->rbd_dev = rbd_dev;
1574 	img_request->op_type = op_type;
1575 
1576 	INIT_LIST_HEAD(&img_request->lock_item);
1577 	INIT_LIST_HEAD(&img_request->object_extents);
1578 	mutex_init(&img_request->state_mutex);
1579 }
1580 
1581 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1582 {
1583 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1584 
1585 	lockdep_assert_held(&rbd_dev->header_rwsem);
1586 
1587 	if (rbd_img_is_write(img_req))
1588 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1589 	else
1590 		img_req->snap_id = rbd_dev->spec->snap_id;
1591 
1592 	if (rbd_dev_parent_get(rbd_dev))
1593 		img_request_layered_set(img_req);
1594 }
1595 
1596 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1597 {
1598 	struct rbd_obj_request *obj_request;
1599 	struct rbd_obj_request *next_obj_request;
1600 
1601 	dout("%s: img %p\n", __func__, img_request);
1602 
1603 	WARN_ON(!list_empty(&img_request->lock_item));
1604 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1605 		rbd_img_obj_request_del(img_request, obj_request);
1606 
1607 	if (img_request_layered_test(img_request))
1608 		rbd_dev_parent_put(img_request->rbd_dev);
1609 
1610 	if (rbd_img_is_write(img_request))
1611 		ceph_put_snap_context(img_request->snapc);
1612 
1613 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1614 		kmem_cache_free(rbd_img_request_cache, img_request);
1615 }
1616 
1617 #define BITS_PER_OBJ	2
1618 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1619 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1620 
1621 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1622 				   u64 *index, u8 *shift)
1623 {
1624 	u32 off;
1625 
1626 	rbd_assert(objno < rbd_dev->object_map_size);
1627 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1628 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1629 }
1630 
1631 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1632 {
1633 	u64 index;
1634 	u8 shift;
1635 
1636 	lockdep_assert_held(&rbd_dev->object_map_lock);
1637 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1638 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1639 }
1640 
1641 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1642 {
1643 	u64 index;
1644 	u8 shift;
1645 	u8 *p;
1646 
1647 	lockdep_assert_held(&rbd_dev->object_map_lock);
1648 	rbd_assert(!(val & ~OBJ_MASK));
1649 
1650 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1651 	p = &rbd_dev->object_map[index];
1652 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1653 }
1654 
1655 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1656 {
1657 	u8 state;
1658 
1659 	spin_lock(&rbd_dev->object_map_lock);
1660 	state = __rbd_object_map_get(rbd_dev, objno);
1661 	spin_unlock(&rbd_dev->object_map_lock);
1662 	return state;
1663 }
1664 
1665 static bool use_object_map(struct rbd_device *rbd_dev)
1666 {
1667 	/*
1668 	 * An image mapped read-only can't use the object map -- it isn't
1669 	 * loaded because the header lock isn't acquired.  Someone else can
1670 	 * write to the image and update the object map behind our back.
1671 	 *
1672 	 * A snapshot can't be written to, so using the object map is always
1673 	 * safe.
1674 	 */
1675 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1676 		return false;
1677 
1678 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1679 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1680 }
1681 
1682 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1683 {
1684 	u8 state;
1685 
1686 	/* fall back to default logic if object map is disabled or invalid */
1687 	if (!use_object_map(rbd_dev))
1688 		return true;
1689 
1690 	state = rbd_object_map_get(rbd_dev, objno);
1691 	return state != OBJECT_NONEXISTENT;
1692 }
1693 
1694 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1695 				struct ceph_object_id *oid)
1696 {
1697 	if (snap_id == CEPH_NOSNAP)
1698 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1699 				rbd_dev->spec->image_id);
1700 	else
1701 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1702 				rbd_dev->spec->image_id, snap_id);
1703 }
1704 
1705 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1706 {
1707 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1708 	CEPH_DEFINE_OID_ONSTACK(oid);
1709 	u8 lock_type;
1710 	char *lock_tag;
1711 	struct ceph_locker *lockers;
1712 	u32 num_lockers;
1713 	bool broke_lock = false;
1714 	int ret;
1715 
1716 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1717 
1718 again:
1719 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1720 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1721 	if (ret != -EBUSY || broke_lock) {
1722 		if (ret == -EEXIST)
1723 			ret = 0; /* already locked by myself */
1724 		if (ret)
1725 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1726 		return ret;
1727 	}
1728 
1729 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1730 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1731 				 &lockers, &num_lockers);
1732 	if (ret) {
1733 		if (ret == -ENOENT)
1734 			goto again;
1735 
1736 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1737 		return ret;
1738 	}
1739 
1740 	kfree(lock_tag);
1741 	if (num_lockers == 0)
1742 		goto again;
1743 
1744 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1745 		 ENTITY_NAME(lockers[0].id.name));
1746 
1747 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1748 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1749 				  &lockers[0].id.name);
1750 	ceph_free_lockers(lockers, num_lockers);
1751 	if (ret) {
1752 		if (ret == -ENOENT)
1753 			goto again;
1754 
1755 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1756 		return ret;
1757 	}
1758 
1759 	broke_lock = true;
1760 	goto again;
1761 }
1762 
1763 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1764 {
1765 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1766 	CEPH_DEFINE_OID_ONSTACK(oid);
1767 	int ret;
1768 
1769 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1770 
1771 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1772 			      "");
1773 	if (ret && ret != -ENOENT)
1774 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1775 }
1776 
1777 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1778 {
1779 	u8 struct_v;
1780 	u32 struct_len;
1781 	u32 header_len;
1782 	void *header_end;
1783 	int ret;
1784 
1785 	ceph_decode_32_safe(p, end, header_len, e_inval);
1786 	header_end = *p + header_len;
1787 
1788 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1789 				  &struct_len);
1790 	if (ret)
1791 		return ret;
1792 
1793 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1794 
1795 	*p = header_end;
1796 	return 0;
1797 
1798 e_inval:
1799 	return -EINVAL;
1800 }
1801 
1802 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1803 {
1804 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1805 	CEPH_DEFINE_OID_ONSTACK(oid);
1806 	struct page **pages;
1807 	void *p, *end;
1808 	size_t reply_len;
1809 	u64 num_objects;
1810 	u64 object_map_bytes;
1811 	u64 object_map_size;
1812 	int num_pages;
1813 	int ret;
1814 
1815 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1816 
1817 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1818 					   rbd_dev->mapping.size);
1819 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1820 					    BITS_PER_BYTE);
1821 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1822 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1823 	if (IS_ERR(pages))
1824 		return PTR_ERR(pages);
1825 
1826 	reply_len = num_pages * PAGE_SIZE;
1827 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1828 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1829 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1830 			     NULL, 0, pages, &reply_len);
1831 	if (ret)
1832 		goto out;
1833 
1834 	p = page_address(pages[0]);
1835 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1836 	ret = decode_object_map_header(&p, end, &object_map_size);
1837 	if (ret)
1838 		goto out;
1839 
1840 	if (object_map_size != num_objects) {
1841 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1842 			 object_map_size, num_objects);
1843 		ret = -EINVAL;
1844 		goto out;
1845 	}
1846 
1847 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1848 		ret = -EINVAL;
1849 		goto out;
1850 	}
1851 
1852 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1853 	if (!rbd_dev->object_map) {
1854 		ret = -ENOMEM;
1855 		goto out;
1856 	}
1857 
1858 	rbd_dev->object_map_size = object_map_size;
1859 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1860 				   offset_in_page(p), object_map_bytes);
1861 
1862 out:
1863 	ceph_release_page_vector(pages, num_pages);
1864 	return ret;
1865 }
1866 
1867 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1868 {
1869 	kvfree(rbd_dev->object_map);
1870 	rbd_dev->object_map = NULL;
1871 	rbd_dev->object_map_size = 0;
1872 }
1873 
1874 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1875 {
1876 	int ret;
1877 
1878 	ret = __rbd_object_map_load(rbd_dev);
1879 	if (ret)
1880 		return ret;
1881 
1882 	ret = rbd_dev_v2_get_flags(rbd_dev);
1883 	if (ret) {
1884 		rbd_object_map_free(rbd_dev);
1885 		return ret;
1886 	}
1887 
1888 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1889 		rbd_warn(rbd_dev, "object map is invalid");
1890 
1891 	return 0;
1892 }
1893 
1894 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1895 {
1896 	int ret;
1897 
1898 	ret = rbd_object_map_lock(rbd_dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	ret = rbd_object_map_load(rbd_dev);
1903 	if (ret) {
1904 		rbd_object_map_unlock(rbd_dev);
1905 		return ret;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1912 {
1913 	rbd_object_map_free(rbd_dev);
1914 	rbd_object_map_unlock(rbd_dev);
1915 }
1916 
1917 /*
1918  * This function needs snap_id (or more precisely just something to
1919  * distinguish between HEAD and snapshot object maps), new_state and
1920  * current_state that were passed to rbd_object_map_update().
1921  *
1922  * To avoid allocating and stashing a context we piggyback on the OSD
1923  * request.  A HEAD update has two ops (assert_locked).  For new_state
1924  * and current_state we decode our own object_map_update op, encoded in
1925  * rbd_cls_object_map_update().
1926  */
1927 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1928 					struct ceph_osd_request *osd_req)
1929 {
1930 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1931 	struct ceph_osd_data *osd_data;
1932 	u64 objno;
1933 	u8 state, new_state, current_state;
1934 	bool has_current_state;
1935 	void *p;
1936 
1937 	if (osd_req->r_result)
1938 		return osd_req->r_result;
1939 
1940 	/*
1941 	 * Nothing to do for a snapshot object map.
1942 	 */
1943 	if (osd_req->r_num_ops == 1)
1944 		return 0;
1945 
1946 	/*
1947 	 * Update in-memory HEAD object map.
1948 	 */
1949 	rbd_assert(osd_req->r_num_ops == 2);
1950 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1951 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1952 
1953 	p = page_address(osd_data->pages[0]);
1954 	objno = ceph_decode_64(&p);
1955 	rbd_assert(objno == obj_req->ex.oe_objno);
1956 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1957 	new_state = ceph_decode_8(&p);
1958 	has_current_state = ceph_decode_8(&p);
1959 	if (has_current_state)
1960 		current_state = ceph_decode_8(&p);
1961 
1962 	spin_lock(&rbd_dev->object_map_lock);
1963 	state = __rbd_object_map_get(rbd_dev, objno);
1964 	if (!has_current_state || current_state == state ||
1965 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1966 		__rbd_object_map_set(rbd_dev, objno, new_state);
1967 	spin_unlock(&rbd_dev->object_map_lock);
1968 
1969 	return 0;
1970 }
1971 
1972 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1973 {
1974 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1975 	int result;
1976 
1977 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1978 	     osd_req->r_result, obj_req);
1979 
1980 	result = rbd_object_map_update_finish(obj_req, osd_req);
1981 	rbd_obj_handle_request(obj_req, result);
1982 }
1983 
1984 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1985 {
1986 	u8 state = rbd_object_map_get(rbd_dev, objno);
1987 
1988 	if (state == new_state ||
1989 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
1990 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
1991 		return false;
1992 
1993 	return true;
1994 }
1995 
1996 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
1997 				     int which, u64 objno, u8 new_state,
1998 				     const u8 *current_state)
1999 {
2000 	struct page **pages;
2001 	void *p, *start;
2002 	int ret;
2003 
2004 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2005 	if (ret)
2006 		return ret;
2007 
2008 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2009 	if (IS_ERR(pages))
2010 		return PTR_ERR(pages);
2011 
2012 	p = start = page_address(pages[0]);
2013 	ceph_encode_64(&p, objno);
2014 	ceph_encode_64(&p, objno + 1);
2015 	ceph_encode_8(&p, new_state);
2016 	if (current_state) {
2017 		ceph_encode_8(&p, 1);
2018 		ceph_encode_8(&p, *current_state);
2019 	} else {
2020 		ceph_encode_8(&p, 0);
2021 	}
2022 
2023 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2024 					  false, true);
2025 	return 0;
2026 }
2027 
2028 /*
2029  * Return:
2030  *   0 - object map update sent
2031  *   1 - object map update isn't needed
2032  *  <0 - error
2033  */
2034 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2035 				 u8 new_state, const u8 *current_state)
2036 {
2037 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2038 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2039 	struct ceph_osd_request *req;
2040 	int num_ops = 1;
2041 	int which = 0;
2042 	int ret;
2043 
2044 	if (snap_id == CEPH_NOSNAP) {
2045 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2046 			return 1;
2047 
2048 		num_ops++; /* assert_locked */
2049 	}
2050 
2051 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2052 	if (!req)
2053 		return -ENOMEM;
2054 
2055 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2056 	req->r_callback = rbd_object_map_callback;
2057 	req->r_priv = obj_req;
2058 
2059 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2060 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2061 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2062 	ktime_get_real_ts64(&req->r_mtime);
2063 
2064 	if (snap_id == CEPH_NOSNAP) {
2065 		/*
2066 		 * Protect against possible race conditions during lock
2067 		 * ownership transitions.
2068 		 */
2069 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2070 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2071 		if (ret)
2072 			return ret;
2073 	}
2074 
2075 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2076 					new_state, current_state);
2077 	if (ret)
2078 		return ret;
2079 
2080 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2081 	if (ret)
2082 		return ret;
2083 
2084 	ceph_osdc_start_request(osdc, req);
2085 	return 0;
2086 }
2087 
2088 static void prune_extents(struct ceph_file_extent *img_extents,
2089 			  u32 *num_img_extents, u64 overlap)
2090 {
2091 	u32 cnt = *num_img_extents;
2092 
2093 	/* drop extents completely beyond the overlap */
2094 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2095 		cnt--;
2096 
2097 	if (cnt) {
2098 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2099 
2100 		/* trim final overlapping extent */
2101 		if (ex->fe_off + ex->fe_len > overlap)
2102 			ex->fe_len = overlap - ex->fe_off;
2103 	}
2104 
2105 	*num_img_extents = cnt;
2106 }
2107 
2108 /*
2109  * Determine the byte range(s) covered by either just the object extent
2110  * or the entire object in the parent image.
2111  */
2112 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2113 				    bool entire)
2114 {
2115 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2116 	int ret;
2117 
2118 	if (!rbd_dev->parent_overlap)
2119 		return 0;
2120 
2121 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2122 				  entire ? 0 : obj_req->ex.oe_off,
2123 				  entire ? rbd_dev->layout.object_size :
2124 							obj_req->ex.oe_len,
2125 				  &obj_req->img_extents,
2126 				  &obj_req->num_img_extents);
2127 	if (ret)
2128 		return ret;
2129 
2130 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2131 		      rbd_dev->parent_overlap);
2132 	return 0;
2133 }
2134 
2135 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2136 {
2137 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2138 
2139 	switch (obj_req->img_request->data_type) {
2140 	case OBJ_REQUEST_BIO:
2141 		osd_req_op_extent_osd_data_bio(osd_req, which,
2142 					       &obj_req->bio_pos,
2143 					       obj_req->ex.oe_len);
2144 		break;
2145 	case OBJ_REQUEST_BVECS:
2146 	case OBJ_REQUEST_OWN_BVECS:
2147 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2148 							obj_req->ex.oe_len);
2149 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2150 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2151 						    &obj_req->bvec_pos);
2152 		break;
2153 	default:
2154 		BUG();
2155 	}
2156 }
2157 
2158 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2159 {
2160 	struct page **pages;
2161 
2162 	/*
2163 	 * The response data for a STAT call consists of:
2164 	 *     le64 length;
2165 	 *     struct {
2166 	 *         le32 tv_sec;
2167 	 *         le32 tv_nsec;
2168 	 *     } mtime;
2169 	 */
2170 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2171 	if (IS_ERR(pages))
2172 		return PTR_ERR(pages);
2173 
2174 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2175 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2176 				     8 + sizeof(struct ceph_timespec),
2177 				     0, false, true);
2178 	return 0;
2179 }
2180 
2181 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2182 				u32 bytes)
2183 {
2184 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2185 	int ret;
2186 
2187 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2188 	if (ret)
2189 		return ret;
2190 
2191 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2192 					  obj_req->copyup_bvec_count, bytes);
2193 	return 0;
2194 }
2195 
2196 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2197 {
2198 	obj_req->read_state = RBD_OBJ_READ_START;
2199 	return 0;
2200 }
2201 
2202 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2203 				      int which)
2204 {
2205 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2206 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2207 	u16 opcode;
2208 
2209 	if (!use_object_map(rbd_dev) ||
2210 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2211 		osd_req_op_alloc_hint_init(osd_req, which++,
2212 					   rbd_dev->layout.object_size,
2213 					   rbd_dev->layout.object_size,
2214 					   rbd_dev->opts->alloc_hint_flags);
2215 	}
2216 
2217 	if (rbd_obj_is_entire(obj_req))
2218 		opcode = CEPH_OSD_OP_WRITEFULL;
2219 	else
2220 		opcode = CEPH_OSD_OP_WRITE;
2221 
2222 	osd_req_op_extent_init(osd_req, which, opcode,
2223 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2224 	rbd_osd_setup_data(osd_req, which);
2225 }
2226 
2227 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2228 {
2229 	int ret;
2230 
2231 	/* reverse map the entire object onto the parent */
2232 	ret = rbd_obj_calc_img_extents(obj_req, true);
2233 	if (ret)
2234 		return ret;
2235 
2236 	if (rbd_obj_copyup_enabled(obj_req))
2237 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2238 
2239 	obj_req->write_state = RBD_OBJ_WRITE_START;
2240 	return 0;
2241 }
2242 
2243 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2244 {
2245 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2246 					  CEPH_OSD_OP_ZERO;
2247 }
2248 
2249 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2250 					int which)
2251 {
2252 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2253 
2254 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2255 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2256 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2257 	} else {
2258 		osd_req_op_extent_init(osd_req, which,
2259 				       truncate_or_zero_opcode(obj_req),
2260 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2261 				       0, 0);
2262 	}
2263 }
2264 
2265 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2266 {
2267 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2268 	u64 off, next_off;
2269 	int ret;
2270 
2271 	/*
2272 	 * Align the range to alloc_size boundary and punt on discards
2273 	 * that are too small to free up any space.
2274 	 *
2275 	 * alloc_size == object_size && is_tail() is a special case for
2276 	 * filestore with filestore_punch_hole = false, needed to allow
2277 	 * truncate (in addition to delete).
2278 	 */
2279 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2280 	    !rbd_obj_is_tail(obj_req)) {
2281 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2282 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2283 				      rbd_dev->opts->alloc_size);
2284 		if (off >= next_off)
2285 			return 1;
2286 
2287 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2288 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2289 		     off, next_off - off);
2290 		obj_req->ex.oe_off = off;
2291 		obj_req->ex.oe_len = next_off - off;
2292 	}
2293 
2294 	/* reverse map the entire object onto the parent */
2295 	ret = rbd_obj_calc_img_extents(obj_req, true);
2296 	if (ret)
2297 		return ret;
2298 
2299 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2300 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2301 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2302 
2303 	obj_req->write_state = RBD_OBJ_WRITE_START;
2304 	return 0;
2305 }
2306 
2307 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2308 					int which)
2309 {
2310 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2311 	u16 opcode;
2312 
2313 	if (rbd_obj_is_entire(obj_req)) {
2314 		if (obj_req->num_img_extents) {
2315 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2316 				osd_req_op_init(osd_req, which++,
2317 						CEPH_OSD_OP_CREATE, 0);
2318 			opcode = CEPH_OSD_OP_TRUNCATE;
2319 		} else {
2320 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2321 			osd_req_op_init(osd_req, which++,
2322 					CEPH_OSD_OP_DELETE, 0);
2323 			opcode = 0;
2324 		}
2325 	} else {
2326 		opcode = truncate_or_zero_opcode(obj_req);
2327 	}
2328 
2329 	if (opcode)
2330 		osd_req_op_extent_init(osd_req, which, opcode,
2331 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2332 				       0, 0);
2333 }
2334 
2335 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2336 {
2337 	int ret;
2338 
2339 	/* reverse map the entire object onto the parent */
2340 	ret = rbd_obj_calc_img_extents(obj_req, true);
2341 	if (ret)
2342 		return ret;
2343 
2344 	if (rbd_obj_copyup_enabled(obj_req))
2345 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2346 	if (!obj_req->num_img_extents) {
2347 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2348 		if (rbd_obj_is_entire(obj_req))
2349 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2350 	}
2351 
2352 	obj_req->write_state = RBD_OBJ_WRITE_START;
2353 	return 0;
2354 }
2355 
2356 static int count_write_ops(struct rbd_obj_request *obj_req)
2357 {
2358 	struct rbd_img_request *img_req = obj_req->img_request;
2359 
2360 	switch (img_req->op_type) {
2361 	case OBJ_OP_WRITE:
2362 		if (!use_object_map(img_req->rbd_dev) ||
2363 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2364 			return 2; /* setallochint + write/writefull */
2365 
2366 		return 1; /* write/writefull */
2367 	case OBJ_OP_DISCARD:
2368 		return 1; /* delete/truncate/zero */
2369 	case OBJ_OP_ZEROOUT:
2370 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2371 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2372 			return 2; /* create + truncate */
2373 
2374 		return 1; /* delete/truncate/zero */
2375 	default:
2376 		BUG();
2377 	}
2378 }
2379 
2380 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2381 				    int which)
2382 {
2383 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2384 
2385 	switch (obj_req->img_request->op_type) {
2386 	case OBJ_OP_WRITE:
2387 		__rbd_osd_setup_write_ops(osd_req, which);
2388 		break;
2389 	case OBJ_OP_DISCARD:
2390 		__rbd_osd_setup_discard_ops(osd_req, which);
2391 		break;
2392 	case OBJ_OP_ZEROOUT:
2393 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2394 		break;
2395 	default:
2396 		BUG();
2397 	}
2398 }
2399 
2400 /*
2401  * Prune the list of object requests (adjust offset and/or length, drop
2402  * redundant requests).  Prepare object request state machines and image
2403  * request state machine for execution.
2404  */
2405 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2406 {
2407 	struct rbd_obj_request *obj_req, *next_obj_req;
2408 	int ret;
2409 
2410 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2411 		switch (img_req->op_type) {
2412 		case OBJ_OP_READ:
2413 			ret = rbd_obj_init_read(obj_req);
2414 			break;
2415 		case OBJ_OP_WRITE:
2416 			ret = rbd_obj_init_write(obj_req);
2417 			break;
2418 		case OBJ_OP_DISCARD:
2419 			ret = rbd_obj_init_discard(obj_req);
2420 			break;
2421 		case OBJ_OP_ZEROOUT:
2422 			ret = rbd_obj_init_zeroout(obj_req);
2423 			break;
2424 		default:
2425 			BUG();
2426 		}
2427 		if (ret < 0)
2428 			return ret;
2429 		if (ret > 0) {
2430 			rbd_img_obj_request_del(img_req, obj_req);
2431 			continue;
2432 		}
2433 	}
2434 
2435 	img_req->state = RBD_IMG_START;
2436 	return 0;
2437 }
2438 
2439 union rbd_img_fill_iter {
2440 	struct ceph_bio_iter	bio_iter;
2441 	struct ceph_bvec_iter	bvec_iter;
2442 };
2443 
2444 struct rbd_img_fill_ctx {
2445 	enum obj_request_type	pos_type;
2446 	union rbd_img_fill_iter	*pos;
2447 	union rbd_img_fill_iter	iter;
2448 	ceph_object_extent_fn_t	set_pos_fn;
2449 	ceph_object_extent_fn_t	count_fn;
2450 	ceph_object_extent_fn_t	copy_fn;
2451 };
2452 
2453 static struct ceph_object_extent *alloc_object_extent(void *arg)
2454 {
2455 	struct rbd_img_request *img_req = arg;
2456 	struct rbd_obj_request *obj_req;
2457 
2458 	obj_req = rbd_obj_request_create();
2459 	if (!obj_req)
2460 		return NULL;
2461 
2462 	rbd_img_obj_request_add(img_req, obj_req);
2463 	return &obj_req->ex;
2464 }
2465 
2466 /*
2467  * While su != os && sc == 1 is technically not fancy (it's the same
2468  * layout as su == os && sc == 1), we can't use the nocopy path for it
2469  * because ->set_pos_fn() should be called only once per object.
2470  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2471  * treat su != os && sc == 1 as fancy.
2472  */
2473 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2474 {
2475 	return l->stripe_unit != l->object_size;
2476 }
2477 
2478 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2479 				       struct ceph_file_extent *img_extents,
2480 				       u32 num_img_extents,
2481 				       struct rbd_img_fill_ctx *fctx)
2482 {
2483 	u32 i;
2484 	int ret;
2485 
2486 	img_req->data_type = fctx->pos_type;
2487 
2488 	/*
2489 	 * Create object requests and set each object request's starting
2490 	 * position in the provided bio (list) or bio_vec array.
2491 	 */
2492 	fctx->iter = *fctx->pos;
2493 	for (i = 0; i < num_img_extents; i++) {
2494 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2495 					   img_extents[i].fe_off,
2496 					   img_extents[i].fe_len,
2497 					   &img_req->object_extents,
2498 					   alloc_object_extent, img_req,
2499 					   fctx->set_pos_fn, &fctx->iter);
2500 		if (ret)
2501 			return ret;
2502 	}
2503 
2504 	return __rbd_img_fill_request(img_req);
2505 }
2506 
2507 /*
2508  * Map a list of image extents to a list of object extents, create the
2509  * corresponding object requests (normally each to a different object,
2510  * but not always) and add them to @img_req.  For each object request,
2511  * set up its data descriptor to point to the corresponding chunk(s) of
2512  * @fctx->pos data buffer.
2513  *
2514  * Because ceph_file_to_extents() will merge adjacent object extents
2515  * together, each object request's data descriptor may point to multiple
2516  * different chunks of @fctx->pos data buffer.
2517  *
2518  * @fctx->pos data buffer is assumed to be large enough.
2519  */
2520 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2521 				struct ceph_file_extent *img_extents,
2522 				u32 num_img_extents,
2523 				struct rbd_img_fill_ctx *fctx)
2524 {
2525 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2526 	struct rbd_obj_request *obj_req;
2527 	u32 i;
2528 	int ret;
2529 
2530 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2531 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2532 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2533 						   num_img_extents, fctx);
2534 
2535 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2536 
2537 	/*
2538 	 * Create object requests and determine ->bvec_count for each object
2539 	 * request.  Note that ->bvec_count sum over all object requests may
2540 	 * be greater than the number of bio_vecs in the provided bio (list)
2541 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2542 	 * stripe unit boundaries.
2543 	 */
2544 	fctx->iter = *fctx->pos;
2545 	for (i = 0; i < num_img_extents; i++) {
2546 		ret = ceph_file_to_extents(&rbd_dev->layout,
2547 					   img_extents[i].fe_off,
2548 					   img_extents[i].fe_len,
2549 					   &img_req->object_extents,
2550 					   alloc_object_extent, img_req,
2551 					   fctx->count_fn, &fctx->iter);
2552 		if (ret)
2553 			return ret;
2554 	}
2555 
2556 	for_each_obj_request(img_req, obj_req) {
2557 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2558 					      sizeof(*obj_req->bvec_pos.bvecs),
2559 					      GFP_NOIO);
2560 		if (!obj_req->bvec_pos.bvecs)
2561 			return -ENOMEM;
2562 	}
2563 
2564 	/*
2565 	 * Fill in each object request's private bio_vec array, splitting and
2566 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2567 	 */
2568 	fctx->iter = *fctx->pos;
2569 	for (i = 0; i < num_img_extents; i++) {
2570 		ret = ceph_iterate_extents(&rbd_dev->layout,
2571 					   img_extents[i].fe_off,
2572 					   img_extents[i].fe_len,
2573 					   &img_req->object_extents,
2574 					   fctx->copy_fn, &fctx->iter);
2575 		if (ret)
2576 			return ret;
2577 	}
2578 
2579 	return __rbd_img_fill_request(img_req);
2580 }
2581 
2582 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2583 			       u64 off, u64 len)
2584 {
2585 	struct ceph_file_extent ex = { off, len };
2586 	union rbd_img_fill_iter dummy = {};
2587 	struct rbd_img_fill_ctx fctx = {
2588 		.pos_type = OBJ_REQUEST_NODATA,
2589 		.pos = &dummy,
2590 	};
2591 
2592 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2593 }
2594 
2595 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2596 {
2597 	struct rbd_obj_request *obj_req =
2598 	    container_of(ex, struct rbd_obj_request, ex);
2599 	struct ceph_bio_iter *it = arg;
2600 
2601 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2602 	obj_req->bio_pos = *it;
2603 	ceph_bio_iter_advance(it, bytes);
2604 }
2605 
2606 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2607 {
2608 	struct rbd_obj_request *obj_req =
2609 	    container_of(ex, struct rbd_obj_request, ex);
2610 	struct ceph_bio_iter *it = arg;
2611 
2612 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2613 	ceph_bio_iter_advance_step(it, bytes, ({
2614 		obj_req->bvec_count++;
2615 	}));
2616 
2617 }
2618 
2619 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2620 {
2621 	struct rbd_obj_request *obj_req =
2622 	    container_of(ex, struct rbd_obj_request, ex);
2623 	struct ceph_bio_iter *it = arg;
2624 
2625 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2626 	ceph_bio_iter_advance_step(it, bytes, ({
2627 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2628 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2629 	}));
2630 }
2631 
2632 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2633 				   struct ceph_file_extent *img_extents,
2634 				   u32 num_img_extents,
2635 				   struct ceph_bio_iter *bio_pos)
2636 {
2637 	struct rbd_img_fill_ctx fctx = {
2638 		.pos_type = OBJ_REQUEST_BIO,
2639 		.pos = (union rbd_img_fill_iter *)bio_pos,
2640 		.set_pos_fn = set_bio_pos,
2641 		.count_fn = count_bio_bvecs,
2642 		.copy_fn = copy_bio_bvecs,
2643 	};
2644 
2645 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2646 				    &fctx);
2647 }
2648 
2649 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2650 				 u64 off, u64 len, struct bio *bio)
2651 {
2652 	struct ceph_file_extent ex = { off, len };
2653 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2654 
2655 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2656 }
2657 
2658 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660 	struct rbd_obj_request *obj_req =
2661 	    container_of(ex, struct rbd_obj_request, ex);
2662 	struct ceph_bvec_iter *it = arg;
2663 
2664 	obj_req->bvec_pos = *it;
2665 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2666 	ceph_bvec_iter_advance(it, bytes);
2667 }
2668 
2669 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671 	struct rbd_obj_request *obj_req =
2672 	    container_of(ex, struct rbd_obj_request, ex);
2673 	struct ceph_bvec_iter *it = arg;
2674 
2675 	ceph_bvec_iter_advance_step(it, bytes, ({
2676 		obj_req->bvec_count++;
2677 	}));
2678 }
2679 
2680 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2681 {
2682 	struct rbd_obj_request *obj_req =
2683 	    container_of(ex, struct rbd_obj_request, ex);
2684 	struct ceph_bvec_iter *it = arg;
2685 
2686 	ceph_bvec_iter_advance_step(it, bytes, ({
2687 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2688 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2689 	}));
2690 }
2691 
2692 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2693 				     struct ceph_file_extent *img_extents,
2694 				     u32 num_img_extents,
2695 				     struct ceph_bvec_iter *bvec_pos)
2696 {
2697 	struct rbd_img_fill_ctx fctx = {
2698 		.pos_type = OBJ_REQUEST_BVECS,
2699 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2700 		.set_pos_fn = set_bvec_pos,
2701 		.count_fn = count_bvecs,
2702 		.copy_fn = copy_bvecs,
2703 	};
2704 
2705 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2706 				    &fctx);
2707 }
2708 
2709 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2710 				   struct ceph_file_extent *img_extents,
2711 				   u32 num_img_extents,
2712 				   struct bio_vec *bvecs)
2713 {
2714 	struct ceph_bvec_iter it = {
2715 		.bvecs = bvecs,
2716 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2717 							     num_img_extents) },
2718 	};
2719 
2720 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2721 					 &it);
2722 }
2723 
2724 static void rbd_img_handle_request_work(struct work_struct *work)
2725 {
2726 	struct rbd_img_request *img_req =
2727 	    container_of(work, struct rbd_img_request, work);
2728 
2729 	rbd_img_handle_request(img_req, img_req->work_result);
2730 }
2731 
2732 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2733 {
2734 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2735 	img_req->work_result = result;
2736 	queue_work(rbd_wq, &img_req->work);
2737 }
2738 
2739 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2740 {
2741 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2742 
2743 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2744 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2745 		return true;
2746 	}
2747 
2748 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2749 	     obj_req->ex.oe_objno);
2750 	return false;
2751 }
2752 
2753 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2754 {
2755 	struct ceph_osd_request *osd_req;
2756 	int ret;
2757 
2758 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2759 	if (IS_ERR(osd_req))
2760 		return PTR_ERR(osd_req);
2761 
2762 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2763 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2764 	rbd_osd_setup_data(osd_req, 0);
2765 	rbd_osd_format_read(osd_req);
2766 
2767 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2768 	if (ret)
2769 		return ret;
2770 
2771 	rbd_osd_submit(osd_req);
2772 	return 0;
2773 }
2774 
2775 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2776 {
2777 	struct rbd_img_request *img_req = obj_req->img_request;
2778 	struct rbd_device *parent = img_req->rbd_dev->parent;
2779 	struct rbd_img_request *child_img_req;
2780 	int ret;
2781 
2782 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2783 	if (!child_img_req)
2784 		return -ENOMEM;
2785 
2786 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2787 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2788 	child_img_req->obj_request = obj_req;
2789 
2790 	down_read(&parent->header_rwsem);
2791 	rbd_img_capture_header(child_img_req);
2792 	up_read(&parent->header_rwsem);
2793 
2794 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2795 	     obj_req);
2796 
2797 	if (!rbd_img_is_write(img_req)) {
2798 		switch (img_req->data_type) {
2799 		case OBJ_REQUEST_BIO:
2800 			ret = __rbd_img_fill_from_bio(child_img_req,
2801 						      obj_req->img_extents,
2802 						      obj_req->num_img_extents,
2803 						      &obj_req->bio_pos);
2804 			break;
2805 		case OBJ_REQUEST_BVECS:
2806 		case OBJ_REQUEST_OWN_BVECS:
2807 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2808 						      obj_req->img_extents,
2809 						      obj_req->num_img_extents,
2810 						      &obj_req->bvec_pos);
2811 			break;
2812 		default:
2813 			BUG();
2814 		}
2815 	} else {
2816 		ret = rbd_img_fill_from_bvecs(child_img_req,
2817 					      obj_req->img_extents,
2818 					      obj_req->num_img_extents,
2819 					      obj_req->copyup_bvecs);
2820 	}
2821 	if (ret) {
2822 		rbd_img_request_destroy(child_img_req);
2823 		return ret;
2824 	}
2825 
2826 	/* avoid parent chain recursion */
2827 	rbd_img_schedule(child_img_req, 0);
2828 	return 0;
2829 }
2830 
2831 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2832 {
2833 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2834 	int ret;
2835 
2836 again:
2837 	switch (obj_req->read_state) {
2838 	case RBD_OBJ_READ_START:
2839 		rbd_assert(!*result);
2840 
2841 		if (!rbd_obj_may_exist(obj_req)) {
2842 			*result = -ENOENT;
2843 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2844 			goto again;
2845 		}
2846 
2847 		ret = rbd_obj_read_object(obj_req);
2848 		if (ret) {
2849 			*result = ret;
2850 			return true;
2851 		}
2852 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2853 		return false;
2854 	case RBD_OBJ_READ_OBJECT:
2855 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2856 			/* reverse map this object extent onto the parent */
2857 			ret = rbd_obj_calc_img_extents(obj_req, false);
2858 			if (ret) {
2859 				*result = ret;
2860 				return true;
2861 			}
2862 			if (obj_req->num_img_extents) {
2863 				ret = rbd_obj_read_from_parent(obj_req);
2864 				if (ret) {
2865 					*result = ret;
2866 					return true;
2867 				}
2868 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2869 				return false;
2870 			}
2871 		}
2872 
2873 		/*
2874 		 * -ENOENT means a hole in the image -- zero-fill the entire
2875 		 * length of the request.  A short read also implies zero-fill
2876 		 * to the end of the request.
2877 		 */
2878 		if (*result == -ENOENT) {
2879 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2880 			*result = 0;
2881 		} else if (*result >= 0) {
2882 			if (*result < obj_req->ex.oe_len)
2883 				rbd_obj_zero_range(obj_req, *result,
2884 						obj_req->ex.oe_len - *result);
2885 			else
2886 				rbd_assert(*result == obj_req->ex.oe_len);
2887 			*result = 0;
2888 		}
2889 		return true;
2890 	case RBD_OBJ_READ_PARENT:
2891 		/*
2892 		 * The parent image is read only up to the overlap -- zero-fill
2893 		 * from the overlap to the end of the request.
2894 		 */
2895 		if (!*result) {
2896 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2897 
2898 			if (obj_overlap < obj_req->ex.oe_len)
2899 				rbd_obj_zero_range(obj_req, obj_overlap,
2900 					    obj_req->ex.oe_len - obj_overlap);
2901 		}
2902 		return true;
2903 	default:
2904 		BUG();
2905 	}
2906 }
2907 
2908 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2909 {
2910 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2911 
2912 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2913 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2914 
2915 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2916 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2917 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2918 		return true;
2919 	}
2920 
2921 	return false;
2922 }
2923 
2924 /*
2925  * Return:
2926  *   0 - object map update sent
2927  *   1 - object map update isn't needed
2928  *  <0 - error
2929  */
2930 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2931 {
2932 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2933 	u8 new_state;
2934 
2935 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2936 		return 1;
2937 
2938 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2939 		new_state = OBJECT_PENDING;
2940 	else
2941 		new_state = OBJECT_EXISTS;
2942 
2943 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2944 }
2945 
2946 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2947 {
2948 	struct ceph_osd_request *osd_req;
2949 	int num_ops = count_write_ops(obj_req);
2950 	int which = 0;
2951 	int ret;
2952 
2953 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2954 		num_ops++; /* stat */
2955 
2956 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2957 	if (IS_ERR(osd_req))
2958 		return PTR_ERR(osd_req);
2959 
2960 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2961 		ret = rbd_osd_setup_stat(osd_req, which++);
2962 		if (ret)
2963 			return ret;
2964 	}
2965 
2966 	rbd_osd_setup_write_ops(osd_req, which);
2967 	rbd_osd_format_write(osd_req);
2968 
2969 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2970 	if (ret)
2971 		return ret;
2972 
2973 	rbd_osd_submit(osd_req);
2974 	return 0;
2975 }
2976 
2977 /*
2978  * copyup_bvecs pages are never highmem pages
2979  */
2980 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2981 {
2982 	struct ceph_bvec_iter it = {
2983 		.bvecs = bvecs,
2984 		.iter = { .bi_size = bytes },
2985 	};
2986 
2987 	ceph_bvec_iter_advance_step(&it, bytes, ({
2988 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
2989 			return false;
2990 	}));
2991 	return true;
2992 }
2993 
2994 #define MODS_ONLY	U32_MAX
2995 
2996 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
2997 				      u32 bytes)
2998 {
2999 	struct ceph_osd_request *osd_req;
3000 	int ret;
3001 
3002 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3003 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3004 
3005 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3006 	if (IS_ERR(osd_req))
3007 		return PTR_ERR(osd_req);
3008 
3009 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3010 	if (ret)
3011 		return ret;
3012 
3013 	rbd_osd_format_write(osd_req);
3014 
3015 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3016 	if (ret)
3017 		return ret;
3018 
3019 	rbd_osd_submit(osd_req);
3020 	return 0;
3021 }
3022 
3023 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3024 					u32 bytes)
3025 {
3026 	struct ceph_osd_request *osd_req;
3027 	int num_ops = count_write_ops(obj_req);
3028 	int which = 0;
3029 	int ret;
3030 
3031 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3032 
3033 	if (bytes != MODS_ONLY)
3034 		num_ops++; /* copyup */
3035 
3036 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3037 	if (IS_ERR(osd_req))
3038 		return PTR_ERR(osd_req);
3039 
3040 	if (bytes != MODS_ONLY) {
3041 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3042 		if (ret)
3043 			return ret;
3044 	}
3045 
3046 	rbd_osd_setup_write_ops(osd_req, which);
3047 	rbd_osd_format_write(osd_req);
3048 
3049 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3050 	if (ret)
3051 		return ret;
3052 
3053 	rbd_osd_submit(osd_req);
3054 	return 0;
3055 }
3056 
3057 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3058 {
3059 	u32 i;
3060 
3061 	rbd_assert(!obj_req->copyup_bvecs);
3062 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3063 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3064 					sizeof(*obj_req->copyup_bvecs),
3065 					GFP_NOIO);
3066 	if (!obj_req->copyup_bvecs)
3067 		return -ENOMEM;
3068 
3069 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3070 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3071 		struct page *page = alloc_page(GFP_NOIO);
3072 
3073 		if (!page)
3074 			return -ENOMEM;
3075 
3076 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3077 		obj_overlap -= len;
3078 	}
3079 
3080 	rbd_assert(!obj_overlap);
3081 	return 0;
3082 }
3083 
3084 /*
3085  * The target object doesn't exist.  Read the data for the entire
3086  * target object up to the overlap point (if any) from the parent,
3087  * so we can use it for a copyup.
3088  */
3089 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3090 {
3091 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3092 	int ret;
3093 
3094 	rbd_assert(obj_req->num_img_extents);
3095 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3096 		      rbd_dev->parent_overlap);
3097 	if (!obj_req->num_img_extents) {
3098 		/*
3099 		 * The overlap has become 0 (most likely because the
3100 		 * image has been flattened).  Re-submit the original write
3101 		 * request -- pass MODS_ONLY since the copyup isn't needed
3102 		 * anymore.
3103 		 */
3104 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3105 	}
3106 
3107 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3108 	if (ret)
3109 		return ret;
3110 
3111 	return rbd_obj_read_from_parent(obj_req);
3112 }
3113 
3114 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3115 {
3116 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3117 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3118 	u8 new_state;
3119 	u32 i;
3120 	int ret;
3121 
3122 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3123 
3124 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3125 		return;
3126 
3127 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3128 		return;
3129 
3130 	for (i = 0; i < snapc->num_snaps; i++) {
3131 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3132 		    i + 1 < snapc->num_snaps)
3133 			new_state = OBJECT_EXISTS_CLEAN;
3134 		else
3135 			new_state = OBJECT_EXISTS;
3136 
3137 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3138 					    new_state, NULL);
3139 		if (ret < 0) {
3140 			obj_req->pending.result = ret;
3141 			return;
3142 		}
3143 
3144 		rbd_assert(!ret);
3145 		obj_req->pending.num_pending++;
3146 	}
3147 }
3148 
3149 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3150 {
3151 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3152 	int ret;
3153 
3154 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3155 
3156 	/*
3157 	 * Only send non-zero copyup data to save some I/O and network
3158 	 * bandwidth -- zero copyup data is equivalent to the object not
3159 	 * existing.
3160 	 */
3161 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3162 		bytes = 0;
3163 
3164 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3165 		/*
3166 		 * Send a copyup request with an empty snapshot context to
3167 		 * deep-copyup the object through all existing snapshots.
3168 		 * A second request with the current snapshot context will be
3169 		 * sent for the actual modification.
3170 		 */
3171 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3172 		if (ret) {
3173 			obj_req->pending.result = ret;
3174 			return;
3175 		}
3176 
3177 		obj_req->pending.num_pending++;
3178 		bytes = MODS_ONLY;
3179 	}
3180 
3181 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3182 	if (ret) {
3183 		obj_req->pending.result = ret;
3184 		return;
3185 	}
3186 
3187 	obj_req->pending.num_pending++;
3188 }
3189 
3190 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3191 {
3192 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3193 	int ret;
3194 
3195 again:
3196 	switch (obj_req->copyup_state) {
3197 	case RBD_OBJ_COPYUP_START:
3198 		rbd_assert(!*result);
3199 
3200 		ret = rbd_obj_copyup_read_parent(obj_req);
3201 		if (ret) {
3202 			*result = ret;
3203 			return true;
3204 		}
3205 		if (obj_req->num_img_extents)
3206 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3207 		else
3208 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3209 		return false;
3210 	case RBD_OBJ_COPYUP_READ_PARENT:
3211 		if (*result)
3212 			return true;
3213 
3214 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3215 				  rbd_obj_img_extents_bytes(obj_req))) {
3216 			dout("%s %p detected zeros\n", __func__, obj_req);
3217 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3218 		}
3219 
3220 		rbd_obj_copyup_object_maps(obj_req);
3221 		if (!obj_req->pending.num_pending) {
3222 			*result = obj_req->pending.result;
3223 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3224 			goto again;
3225 		}
3226 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3227 		return false;
3228 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3229 		if (!pending_result_dec(&obj_req->pending, result))
3230 			return false;
3231 		fallthrough;
3232 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3233 		if (*result) {
3234 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3235 				 *result);
3236 			return true;
3237 		}
3238 
3239 		rbd_obj_copyup_write_object(obj_req);
3240 		if (!obj_req->pending.num_pending) {
3241 			*result = obj_req->pending.result;
3242 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3243 			goto again;
3244 		}
3245 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3246 		return false;
3247 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3248 		if (!pending_result_dec(&obj_req->pending, result))
3249 			return false;
3250 		fallthrough;
3251 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3252 		return true;
3253 	default:
3254 		BUG();
3255 	}
3256 }
3257 
3258 /*
3259  * Return:
3260  *   0 - object map update sent
3261  *   1 - object map update isn't needed
3262  *  <0 - error
3263  */
3264 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3265 {
3266 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3267 	u8 current_state = OBJECT_PENDING;
3268 
3269 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3270 		return 1;
3271 
3272 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3273 		return 1;
3274 
3275 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3276 				     &current_state);
3277 }
3278 
3279 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3280 {
3281 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282 	int ret;
3283 
3284 again:
3285 	switch (obj_req->write_state) {
3286 	case RBD_OBJ_WRITE_START:
3287 		rbd_assert(!*result);
3288 
3289 		if (rbd_obj_write_is_noop(obj_req))
3290 			return true;
3291 
3292 		ret = rbd_obj_write_pre_object_map(obj_req);
3293 		if (ret < 0) {
3294 			*result = ret;
3295 			return true;
3296 		}
3297 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3298 		if (ret > 0)
3299 			goto again;
3300 		return false;
3301 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3302 		if (*result) {
3303 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3304 				 *result);
3305 			return true;
3306 		}
3307 		ret = rbd_obj_write_object(obj_req);
3308 		if (ret) {
3309 			*result = ret;
3310 			return true;
3311 		}
3312 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3313 		return false;
3314 	case RBD_OBJ_WRITE_OBJECT:
3315 		if (*result == -ENOENT) {
3316 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3317 				*result = 0;
3318 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3319 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3320 				goto again;
3321 			}
3322 			/*
3323 			 * On a non-existent object:
3324 			 *   delete - -ENOENT, truncate/zero - 0
3325 			 */
3326 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3327 				*result = 0;
3328 		}
3329 		if (*result)
3330 			return true;
3331 
3332 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3333 		goto again;
3334 	case __RBD_OBJ_WRITE_COPYUP:
3335 		if (!rbd_obj_advance_copyup(obj_req, result))
3336 			return false;
3337 		fallthrough;
3338 	case RBD_OBJ_WRITE_COPYUP:
3339 		if (*result) {
3340 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3341 			return true;
3342 		}
3343 		ret = rbd_obj_write_post_object_map(obj_req);
3344 		if (ret < 0) {
3345 			*result = ret;
3346 			return true;
3347 		}
3348 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3349 		if (ret > 0)
3350 			goto again;
3351 		return false;
3352 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3353 		if (*result)
3354 			rbd_warn(rbd_dev, "post object map update failed: %d",
3355 				 *result);
3356 		return true;
3357 	default:
3358 		BUG();
3359 	}
3360 }
3361 
3362 /*
3363  * Return true if @obj_req is completed.
3364  */
3365 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3366 				     int *result)
3367 {
3368 	struct rbd_img_request *img_req = obj_req->img_request;
3369 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3370 	bool done;
3371 
3372 	mutex_lock(&obj_req->state_mutex);
3373 	if (!rbd_img_is_write(img_req))
3374 		done = rbd_obj_advance_read(obj_req, result);
3375 	else
3376 		done = rbd_obj_advance_write(obj_req, result);
3377 	mutex_unlock(&obj_req->state_mutex);
3378 
3379 	if (done && *result) {
3380 		rbd_assert(*result < 0);
3381 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3382 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3383 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3384 	}
3385 	return done;
3386 }
3387 
3388 /*
3389  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3390  * recursion.
3391  */
3392 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3393 {
3394 	if (__rbd_obj_handle_request(obj_req, &result))
3395 		rbd_img_handle_request(obj_req->img_request, result);
3396 }
3397 
3398 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3399 {
3400 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3401 
3402 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3403 		return false;
3404 
3405 	if (rbd_is_ro(rbd_dev))
3406 		return false;
3407 
3408 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3409 	if (rbd_dev->opts->lock_on_read ||
3410 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3411 		return true;
3412 
3413 	return rbd_img_is_write(img_req);
3414 }
3415 
3416 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3417 {
3418 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3419 	bool locked;
3420 
3421 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3422 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3423 	spin_lock(&rbd_dev->lock_lists_lock);
3424 	rbd_assert(list_empty(&img_req->lock_item));
3425 	if (!locked)
3426 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3427 	else
3428 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3429 	spin_unlock(&rbd_dev->lock_lists_lock);
3430 	return locked;
3431 }
3432 
3433 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3434 {
3435 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3436 	bool need_wakeup;
3437 
3438 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3439 	spin_lock(&rbd_dev->lock_lists_lock);
3440 	rbd_assert(!list_empty(&img_req->lock_item));
3441 	list_del_init(&img_req->lock_item);
3442 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3443 		       list_empty(&rbd_dev->running_list));
3444 	spin_unlock(&rbd_dev->lock_lists_lock);
3445 	if (need_wakeup)
3446 		complete(&rbd_dev->releasing_wait);
3447 }
3448 
3449 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 
3453 	if (!need_exclusive_lock(img_req))
3454 		return 1;
3455 
3456 	if (rbd_lock_add_request(img_req))
3457 		return 1;
3458 
3459 	if (rbd_dev->opts->exclusive) {
3460 		WARN_ON(1); /* lock got released? */
3461 		return -EROFS;
3462 	}
3463 
3464 	/*
3465 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3466 	 * and cancel_delayed_work() in wake_lock_waiters().
3467 	 */
3468 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3469 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3470 	return 0;
3471 }
3472 
3473 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3474 {
3475 	struct rbd_obj_request *obj_req;
3476 
3477 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3478 
3479 	for_each_obj_request(img_req, obj_req) {
3480 		int result = 0;
3481 
3482 		if (__rbd_obj_handle_request(obj_req, &result)) {
3483 			if (result) {
3484 				img_req->pending.result = result;
3485 				return;
3486 			}
3487 		} else {
3488 			img_req->pending.num_pending++;
3489 		}
3490 	}
3491 }
3492 
3493 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3494 {
3495 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3496 	int ret;
3497 
3498 again:
3499 	switch (img_req->state) {
3500 	case RBD_IMG_START:
3501 		rbd_assert(!*result);
3502 
3503 		ret = rbd_img_exclusive_lock(img_req);
3504 		if (ret < 0) {
3505 			*result = ret;
3506 			return true;
3507 		}
3508 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3509 		if (ret > 0)
3510 			goto again;
3511 		return false;
3512 	case RBD_IMG_EXCLUSIVE_LOCK:
3513 		if (*result)
3514 			return true;
3515 
3516 		rbd_assert(!need_exclusive_lock(img_req) ||
3517 			   __rbd_is_lock_owner(rbd_dev));
3518 
3519 		rbd_img_object_requests(img_req);
3520 		if (!img_req->pending.num_pending) {
3521 			*result = img_req->pending.result;
3522 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3523 			goto again;
3524 		}
3525 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3526 		return false;
3527 	case __RBD_IMG_OBJECT_REQUESTS:
3528 		if (!pending_result_dec(&img_req->pending, result))
3529 			return false;
3530 		fallthrough;
3531 	case RBD_IMG_OBJECT_REQUESTS:
3532 		return true;
3533 	default:
3534 		BUG();
3535 	}
3536 }
3537 
3538 /*
3539  * Return true if @img_req is completed.
3540  */
3541 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3542 				     int *result)
3543 {
3544 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3545 	bool done;
3546 
3547 	if (need_exclusive_lock(img_req)) {
3548 		down_read(&rbd_dev->lock_rwsem);
3549 		mutex_lock(&img_req->state_mutex);
3550 		done = rbd_img_advance(img_req, result);
3551 		if (done)
3552 			rbd_lock_del_request(img_req);
3553 		mutex_unlock(&img_req->state_mutex);
3554 		up_read(&rbd_dev->lock_rwsem);
3555 	} else {
3556 		mutex_lock(&img_req->state_mutex);
3557 		done = rbd_img_advance(img_req, result);
3558 		mutex_unlock(&img_req->state_mutex);
3559 	}
3560 
3561 	if (done && *result) {
3562 		rbd_assert(*result < 0);
3563 		rbd_warn(rbd_dev, "%s%s result %d",
3564 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3565 		      obj_op_name(img_req->op_type), *result);
3566 	}
3567 	return done;
3568 }
3569 
3570 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3571 {
3572 again:
3573 	if (!__rbd_img_handle_request(img_req, &result))
3574 		return;
3575 
3576 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3577 		struct rbd_obj_request *obj_req = img_req->obj_request;
3578 
3579 		rbd_img_request_destroy(img_req);
3580 		if (__rbd_obj_handle_request(obj_req, &result)) {
3581 			img_req = obj_req->img_request;
3582 			goto again;
3583 		}
3584 	} else {
3585 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3586 
3587 		rbd_img_request_destroy(img_req);
3588 		blk_mq_end_request(rq, errno_to_blk_status(result));
3589 	}
3590 }
3591 
3592 static const struct rbd_client_id rbd_empty_cid;
3593 
3594 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3595 			  const struct rbd_client_id *rhs)
3596 {
3597 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3598 }
3599 
3600 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3601 {
3602 	struct rbd_client_id cid;
3603 
3604 	mutex_lock(&rbd_dev->watch_mutex);
3605 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3606 	cid.handle = rbd_dev->watch_cookie;
3607 	mutex_unlock(&rbd_dev->watch_mutex);
3608 	return cid;
3609 }
3610 
3611 /*
3612  * lock_rwsem must be held for write
3613  */
3614 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3615 			      const struct rbd_client_id *cid)
3616 {
3617 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3618 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3619 	     cid->gid, cid->handle);
3620 	rbd_dev->owner_cid = *cid; /* struct */
3621 }
3622 
3623 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3624 {
3625 	mutex_lock(&rbd_dev->watch_mutex);
3626 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3627 	mutex_unlock(&rbd_dev->watch_mutex);
3628 }
3629 
3630 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3631 {
3632 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3633 
3634 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3635 	strcpy(rbd_dev->lock_cookie, cookie);
3636 	rbd_set_owner_cid(rbd_dev, &cid);
3637 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3638 }
3639 
3640 /*
3641  * lock_rwsem must be held for write
3642  */
3643 static int rbd_lock(struct rbd_device *rbd_dev)
3644 {
3645 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3646 	char cookie[32];
3647 	int ret;
3648 
3649 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3650 		rbd_dev->lock_cookie[0] != '\0');
3651 
3652 	format_lock_cookie(rbd_dev, cookie);
3653 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3654 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3655 			    RBD_LOCK_TAG, "", 0);
3656 	if (ret)
3657 		return ret;
3658 
3659 	__rbd_lock(rbd_dev, cookie);
3660 	return 0;
3661 }
3662 
3663 /*
3664  * lock_rwsem must be held for write
3665  */
3666 static void rbd_unlock(struct rbd_device *rbd_dev)
3667 {
3668 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3669 	int ret;
3670 
3671 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3672 		rbd_dev->lock_cookie[0] == '\0');
3673 
3674 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3675 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3676 	if (ret && ret != -ENOENT)
3677 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3678 
3679 	/* treat errors as the image is unlocked */
3680 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3681 	rbd_dev->lock_cookie[0] = '\0';
3682 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3683 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3684 }
3685 
3686 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3687 				enum rbd_notify_op notify_op,
3688 				struct page ***preply_pages,
3689 				size_t *preply_len)
3690 {
3691 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3692 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3693 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3694 	int buf_size = sizeof(buf);
3695 	void *p = buf;
3696 
3697 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3698 
3699 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3700 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3701 	ceph_encode_32(&p, notify_op);
3702 	ceph_encode_64(&p, cid.gid);
3703 	ceph_encode_64(&p, cid.handle);
3704 
3705 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3706 				&rbd_dev->header_oloc, buf, buf_size,
3707 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3708 }
3709 
3710 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3711 			       enum rbd_notify_op notify_op)
3712 {
3713 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3714 }
3715 
3716 static void rbd_notify_acquired_lock(struct work_struct *work)
3717 {
3718 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3719 						  acquired_lock_work);
3720 
3721 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3722 }
3723 
3724 static void rbd_notify_released_lock(struct work_struct *work)
3725 {
3726 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3727 						  released_lock_work);
3728 
3729 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3730 }
3731 
3732 static int rbd_request_lock(struct rbd_device *rbd_dev)
3733 {
3734 	struct page **reply_pages;
3735 	size_t reply_len;
3736 	bool lock_owner_responded = false;
3737 	int ret;
3738 
3739 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3740 
3741 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3742 				   &reply_pages, &reply_len);
3743 	if (ret && ret != -ETIMEDOUT) {
3744 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3745 		goto out;
3746 	}
3747 
3748 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3749 		void *p = page_address(reply_pages[0]);
3750 		void *const end = p + reply_len;
3751 		u32 n;
3752 
3753 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3754 		while (n--) {
3755 			u8 struct_v;
3756 			u32 len;
3757 
3758 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3759 			p += 8 + 8; /* skip gid and cookie */
3760 
3761 			ceph_decode_32_safe(&p, end, len, e_inval);
3762 			if (!len)
3763 				continue;
3764 
3765 			if (lock_owner_responded) {
3766 				rbd_warn(rbd_dev,
3767 					 "duplicate lock owners detected");
3768 				ret = -EIO;
3769 				goto out;
3770 			}
3771 
3772 			lock_owner_responded = true;
3773 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3774 						  &struct_v, &len);
3775 			if (ret) {
3776 				rbd_warn(rbd_dev,
3777 					 "failed to decode ResponseMessage: %d",
3778 					 ret);
3779 				goto e_inval;
3780 			}
3781 
3782 			ret = ceph_decode_32(&p);
3783 		}
3784 	}
3785 
3786 	if (!lock_owner_responded) {
3787 		rbd_warn(rbd_dev, "no lock owners detected");
3788 		ret = -ETIMEDOUT;
3789 	}
3790 
3791 out:
3792 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3793 	return ret;
3794 
3795 e_inval:
3796 	ret = -EINVAL;
3797 	goto out;
3798 }
3799 
3800 /*
3801  * Either image request state machine(s) or rbd_add_acquire_lock()
3802  * (i.e. "rbd map").
3803  */
3804 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3805 {
3806 	struct rbd_img_request *img_req;
3807 
3808 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3809 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3810 
3811 	cancel_delayed_work(&rbd_dev->lock_dwork);
3812 	if (!completion_done(&rbd_dev->acquire_wait)) {
3813 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3814 			   list_empty(&rbd_dev->running_list));
3815 		rbd_dev->acquire_err = result;
3816 		complete_all(&rbd_dev->acquire_wait);
3817 		return;
3818 	}
3819 
3820 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3821 		mutex_lock(&img_req->state_mutex);
3822 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3823 		rbd_img_schedule(img_req, result);
3824 		mutex_unlock(&img_req->state_mutex);
3825 	}
3826 
3827 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3828 }
3829 
3830 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3831 			       struct ceph_locker **lockers, u32 *num_lockers)
3832 {
3833 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3834 	u8 lock_type;
3835 	char *lock_tag;
3836 	int ret;
3837 
3838 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3839 
3840 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3841 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3842 				 &lock_type, &lock_tag, lockers, num_lockers);
3843 	if (ret)
3844 		return ret;
3845 
3846 	if (*num_lockers == 0) {
3847 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3848 		goto out;
3849 	}
3850 
3851 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3852 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3853 			 lock_tag);
3854 		ret = -EBUSY;
3855 		goto out;
3856 	}
3857 
3858 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3859 		rbd_warn(rbd_dev, "shared lock type detected");
3860 		ret = -EBUSY;
3861 		goto out;
3862 	}
3863 
3864 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3865 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3866 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3867 			 (*lockers)[0].id.cookie);
3868 		ret = -EBUSY;
3869 		goto out;
3870 	}
3871 
3872 out:
3873 	kfree(lock_tag);
3874 	return ret;
3875 }
3876 
3877 static int find_watcher(struct rbd_device *rbd_dev,
3878 			const struct ceph_locker *locker)
3879 {
3880 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3881 	struct ceph_watch_item *watchers;
3882 	u32 num_watchers;
3883 	u64 cookie;
3884 	int i;
3885 	int ret;
3886 
3887 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3888 				      &rbd_dev->header_oloc, &watchers,
3889 				      &num_watchers);
3890 	if (ret)
3891 		return ret;
3892 
3893 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3894 	for (i = 0; i < num_watchers; i++) {
3895 		/*
3896 		 * Ignore addr->type while comparing.  This mimics
3897 		 * entity_addr_t::get_legacy_str() + strcmp().
3898 		 */
3899 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3900 					    &locker->info.addr) &&
3901 		    watchers[i].cookie == cookie) {
3902 			struct rbd_client_id cid = {
3903 				.gid = le64_to_cpu(watchers[i].name.num),
3904 				.handle = cookie,
3905 			};
3906 
3907 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3908 			     rbd_dev, cid.gid, cid.handle);
3909 			rbd_set_owner_cid(rbd_dev, &cid);
3910 			ret = 1;
3911 			goto out;
3912 		}
3913 	}
3914 
3915 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3916 	ret = 0;
3917 out:
3918 	kfree(watchers);
3919 	return ret;
3920 }
3921 
3922 /*
3923  * lock_rwsem must be held for write
3924  */
3925 static int rbd_try_lock(struct rbd_device *rbd_dev)
3926 {
3927 	struct ceph_client *client = rbd_dev->rbd_client->client;
3928 	struct ceph_locker *lockers;
3929 	u32 num_lockers;
3930 	int ret;
3931 
3932 	for (;;) {
3933 		ret = rbd_lock(rbd_dev);
3934 		if (ret != -EBUSY)
3935 			return ret;
3936 
3937 		/* determine if the current lock holder is still alive */
3938 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3939 		if (ret)
3940 			return ret;
3941 
3942 		if (num_lockers == 0)
3943 			goto again;
3944 
3945 		ret = find_watcher(rbd_dev, lockers);
3946 		if (ret)
3947 			goto out; /* request lock or error */
3948 
3949 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3950 			 ENTITY_NAME(lockers[0].id.name));
3951 
3952 		ret = ceph_monc_blocklist_add(&client->monc,
3953 					      &lockers[0].info.addr);
3954 		if (ret) {
3955 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3956 				 ENTITY_NAME(lockers[0].id.name), ret);
3957 			goto out;
3958 		}
3959 
3960 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3961 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3962 					  lockers[0].id.cookie,
3963 					  &lockers[0].id.name);
3964 		if (ret && ret != -ENOENT)
3965 			goto out;
3966 
3967 again:
3968 		ceph_free_lockers(lockers, num_lockers);
3969 	}
3970 
3971 out:
3972 	ceph_free_lockers(lockers, num_lockers);
3973 	return ret;
3974 }
3975 
3976 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3977 {
3978 	int ret;
3979 
3980 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3981 		ret = rbd_object_map_open(rbd_dev);
3982 		if (ret)
3983 			return ret;
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 /*
3990  * Return:
3991  *   0 - lock acquired
3992  *   1 - caller should call rbd_request_lock()
3993  *  <0 - error
3994  */
3995 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
3996 {
3997 	int ret;
3998 
3999 	down_read(&rbd_dev->lock_rwsem);
4000 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4001 	     rbd_dev->lock_state);
4002 	if (__rbd_is_lock_owner(rbd_dev)) {
4003 		up_read(&rbd_dev->lock_rwsem);
4004 		return 0;
4005 	}
4006 
4007 	up_read(&rbd_dev->lock_rwsem);
4008 	down_write(&rbd_dev->lock_rwsem);
4009 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4010 	     rbd_dev->lock_state);
4011 	if (__rbd_is_lock_owner(rbd_dev)) {
4012 		up_write(&rbd_dev->lock_rwsem);
4013 		return 0;
4014 	}
4015 
4016 	ret = rbd_try_lock(rbd_dev);
4017 	if (ret < 0) {
4018 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4019 		if (ret == -EBLOCKLISTED)
4020 			goto out;
4021 
4022 		ret = 1; /* request lock anyway */
4023 	}
4024 	if (ret > 0) {
4025 		up_write(&rbd_dev->lock_rwsem);
4026 		return ret;
4027 	}
4028 
4029 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4030 	rbd_assert(list_empty(&rbd_dev->running_list));
4031 
4032 	ret = rbd_post_acquire_action(rbd_dev);
4033 	if (ret) {
4034 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4035 		/*
4036 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4037 		 * rbd_lock_add_request() would let the request through,
4038 		 * assuming that e.g. object map is locked and loaded.
4039 		 */
4040 		rbd_unlock(rbd_dev);
4041 	}
4042 
4043 out:
4044 	wake_lock_waiters(rbd_dev, ret);
4045 	up_write(&rbd_dev->lock_rwsem);
4046 	return ret;
4047 }
4048 
4049 static void rbd_acquire_lock(struct work_struct *work)
4050 {
4051 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4052 					    struct rbd_device, lock_dwork);
4053 	int ret;
4054 
4055 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4056 again:
4057 	ret = rbd_try_acquire_lock(rbd_dev);
4058 	if (ret <= 0) {
4059 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4060 		return;
4061 	}
4062 
4063 	ret = rbd_request_lock(rbd_dev);
4064 	if (ret == -ETIMEDOUT) {
4065 		goto again; /* treat this as a dead client */
4066 	} else if (ret == -EROFS) {
4067 		rbd_warn(rbd_dev, "peer will not release lock");
4068 		down_write(&rbd_dev->lock_rwsem);
4069 		wake_lock_waiters(rbd_dev, ret);
4070 		up_write(&rbd_dev->lock_rwsem);
4071 	} else if (ret < 0) {
4072 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4073 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4074 				 RBD_RETRY_DELAY);
4075 	} else {
4076 		/*
4077 		 * lock owner acked, but resend if we don't see them
4078 		 * release the lock
4079 		 */
4080 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4081 		     rbd_dev);
4082 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4083 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4084 	}
4085 }
4086 
4087 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4088 {
4089 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4090 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4091 
4092 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4093 		return false;
4094 
4095 	/*
4096 	 * Ensure that all in-flight IO is flushed.
4097 	 */
4098 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4099 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4100 	if (list_empty(&rbd_dev->running_list))
4101 		return true;
4102 
4103 	up_write(&rbd_dev->lock_rwsem);
4104 	wait_for_completion(&rbd_dev->releasing_wait);
4105 
4106 	down_write(&rbd_dev->lock_rwsem);
4107 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4108 		return false;
4109 
4110 	rbd_assert(list_empty(&rbd_dev->running_list));
4111 	return true;
4112 }
4113 
4114 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4115 {
4116 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4117 		rbd_object_map_close(rbd_dev);
4118 }
4119 
4120 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4121 {
4122 	rbd_assert(list_empty(&rbd_dev->running_list));
4123 
4124 	rbd_pre_release_action(rbd_dev);
4125 	rbd_unlock(rbd_dev);
4126 }
4127 
4128 /*
4129  * lock_rwsem must be held for write
4130  */
4131 static void rbd_release_lock(struct rbd_device *rbd_dev)
4132 {
4133 	if (!rbd_quiesce_lock(rbd_dev))
4134 		return;
4135 
4136 	__rbd_release_lock(rbd_dev);
4137 
4138 	/*
4139 	 * Give others a chance to grab the lock - we would re-acquire
4140 	 * almost immediately if we got new IO while draining the running
4141 	 * list otherwise.  We need to ack our own notifications, so this
4142 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4143 	 * way of maybe_kick_acquire().
4144 	 */
4145 	cancel_delayed_work(&rbd_dev->lock_dwork);
4146 }
4147 
4148 static void rbd_release_lock_work(struct work_struct *work)
4149 {
4150 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4151 						  unlock_work);
4152 
4153 	down_write(&rbd_dev->lock_rwsem);
4154 	rbd_release_lock(rbd_dev);
4155 	up_write(&rbd_dev->lock_rwsem);
4156 }
4157 
4158 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4159 {
4160 	bool have_requests;
4161 
4162 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4163 	if (__rbd_is_lock_owner(rbd_dev))
4164 		return;
4165 
4166 	spin_lock(&rbd_dev->lock_lists_lock);
4167 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4168 	spin_unlock(&rbd_dev->lock_lists_lock);
4169 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4170 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4171 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4172 	}
4173 }
4174 
4175 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4176 				     void **p)
4177 {
4178 	struct rbd_client_id cid = { 0 };
4179 
4180 	if (struct_v >= 2) {
4181 		cid.gid = ceph_decode_64(p);
4182 		cid.handle = ceph_decode_64(p);
4183 	}
4184 
4185 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4186 	     cid.handle);
4187 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4188 		down_write(&rbd_dev->lock_rwsem);
4189 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4190 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4191 			     __func__, rbd_dev, cid.gid, cid.handle);
4192 		} else {
4193 			rbd_set_owner_cid(rbd_dev, &cid);
4194 		}
4195 		downgrade_write(&rbd_dev->lock_rwsem);
4196 	} else {
4197 		down_read(&rbd_dev->lock_rwsem);
4198 	}
4199 
4200 	maybe_kick_acquire(rbd_dev);
4201 	up_read(&rbd_dev->lock_rwsem);
4202 }
4203 
4204 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4205 				     void **p)
4206 {
4207 	struct rbd_client_id cid = { 0 };
4208 
4209 	if (struct_v >= 2) {
4210 		cid.gid = ceph_decode_64(p);
4211 		cid.handle = ceph_decode_64(p);
4212 	}
4213 
4214 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4215 	     cid.handle);
4216 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4217 		down_write(&rbd_dev->lock_rwsem);
4218 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4219 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4220 			     __func__, rbd_dev, cid.gid, cid.handle,
4221 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4222 		} else {
4223 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4224 		}
4225 		downgrade_write(&rbd_dev->lock_rwsem);
4226 	} else {
4227 		down_read(&rbd_dev->lock_rwsem);
4228 	}
4229 
4230 	maybe_kick_acquire(rbd_dev);
4231 	up_read(&rbd_dev->lock_rwsem);
4232 }
4233 
4234 /*
4235  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4236  * ResponseMessage is needed.
4237  */
4238 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4239 				   void **p)
4240 {
4241 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4242 	struct rbd_client_id cid = { 0 };
4243 	int result = 1;
4244 
4245 	if (struct_v >= 2) {
4246 		cid.gid = ceph_decode_64(p);
4247 		cid.handle = ceph_decode_64(p);
4248 	}
4249 
4250 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4251 	     cid.handle);
4252 	if (rbd_cid_equal(&cid, &my_cid))
4253 		return result;
4254 
4255 	down_read(&rbd_dev->lock_rwsem);
4256 	if (__rbd_is_lock_owner(rbd_dev)) {
4257 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4258 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4259 			goto out_unlock;
4260 
4261 		/*
4262 		 * encode ResponseMessage(0) so the peer can detect
4263 		 * a missing owner
4264 		 */
4265 		result = 0;
4266 
4267 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4268 			if (!rbd_dev->opts->exclusive) {
4269 				dout("%s rbd_dev %p queueing unlock_work\n",
4270 				     __func__, rbd_dev);
4271 				queue_work(rbd_dev->task_wq,
4272 					   &rbd_dev->unlock_work);
4273 			} else {
4274 				/* refuse to release the lock */
4275 				result = -EROFS;
4276 			}
4277 		}
4278 	}
4279 
4280 out_unlock:
4281 	up_read(&rbd_dev->lock_rwsem);
4282 	return result;
4283 }
4284 
4285 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4286 				     u64 notify_id, u64 cookie, s32 *result)
4287 {
4288 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4289 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4290 	int buf_size = sizeof(buf);
4291 	int ret;
4292 
4293 	if (result) {
4294 		void *p = buf;
4295 
4296 		/* encode ResponseMessage */
4297 		ceph_start_encoding(&p, 1, 1,
4298 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4299 		ceph_encode_32(&p, *result);
4300 	} else {
4301 		buf_size = 0;
4302 	}
4303 
4304 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4305 				   &rbd_dev->header_oloc, notify_id, cookie,
4306 				   buf, buf_size);
4307 	if (ret)
4308 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4309 }
4310 
4311 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4312 				   u64 cookie)
4313 {
4314 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4315 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4316 }
4317 
4318 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4319 					  u64 notify_id, u64 cookie, s32 result)
4320 {
4321 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4322 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4323 }
4324 
4325 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4326 			 u64 notifier_id, void *data, size_t data_len)
4327 {
4328 	struct rbd_device *rbd_dev = arg;
4329 	void *p = data;
4330 	void *const end = p + data_len;
4331 	u8 struct_v = 0;
4332 	u32 len;
4333 	u32 notify_op;
4334 	int ret;
4335 
4336 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4337 	     __func__, rbd_dev, cookie, notify_id, data_len);
4338 	if (data_len) {
4339 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4340 					  &struct_v, &len);
4341 		if (ret) {
4342 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4343 				 ret);
4344 			return;
4345 		}
4346 
4347 		notify_op = ceph_decode_32(&p);
4348 	} else {
4349 		/* legacy notification for header updates */
4350 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4351 		len = 0;
4352 	}
4353 
4354 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4355 	switch (notify_op) {
4356 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4357 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4358 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4359 		break;
4360 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4361 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4362 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4363 		break;
4364 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4365 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4366 		if (ret <= 0)
4367 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4368 						      cookie, ret);
4369 		else
4370 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4371 		break;
4372 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4373 		ret = rbd_dev_refresh(rbd_dev);
4374 		if (ret)
4375 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4376 
4377 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4378 		break;
4379 	default:
4380 		if (rbd_is_lock_owner(rbd_dev))
4381 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4382 						      cookie, -EOPNOTSUPP);
4383 		else
4384 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4385 		break;
4386 	}
4387 }
4388 
4389 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4390 
4391 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4392 {
4393 	struct rbd_device *rbd_dev = arg;
4394 
4395 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4396 
4397 	down_write(&rbd_dev->lock_rwsem);
4398 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4399 	up_write(&rbd_dev->lock_rwsem);
4400 
4401 	mutex_lock(&rbd_dev->watch_mutex);
4402 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4403 		__rbd_unregister_watch(rbd_dev);
4404 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4405 
4406 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4407 	}
4408 	mutex_unlock(&rbd_dev->watch_mutex);
4409 }
4410 
4411 /*
4412  * watch_mutex must be locked
4413  */
4414 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4415 {
4416 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4417 	struct ceph_osd_linger_request *handle;
4418 
4419 	rbd_assert(!rbd_dev->watch_handle);
4420 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4421 
4422 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4423 				 &rbd_dev->header_oloc, rbd_watch_cb,
4424 				 rbd_watch_errcb, rbd_dev);
4425 	if (IS_ERR(handle))
4426 		return PTR_ERR(handle);
4427 
4428 	rbd_dev->watch_handle = handle;
4429 	return 0;
4430 }
4431 
4432 /*
4433  * watch_mutex must be locked
4434  */
4435 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4436 {
4437 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4438 	int ret;
4439 
4440 	rbd_assert(rbd_dev->watch_handle);
4441 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4442 
4443 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4444 	if (ret)
4445 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4446 
4447 	rbd_dev->watch_handle = NULL;
4448 }
4449 
4450 static int rbd_register_watch(struct rbd_device *rbd_dev)
4451 {
4452 	int ret;
4453 
4454 	mutex_lock(&rbd_dev->watch_mutex);
4455 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4456 	ret = __rbd_register_watch(rbd_dev);
4457 	if (ret)
4458 		goto out;
4459 
4460 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4461 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4462 
4463 out:
4464 	mutex_unlock(&rbd_dev->watch_mutex);
4465 	return ret;
4466 }
4467 
4468 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4469 {
4470 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4471 
4472 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4473 	cancel_work_sync(&rbd_dev->released_lock_work);
4474 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4475 	cancel_work_sync(&rbd_dev->unlock_work);
4476 }
4477 
4478 /*
4479  * header_rwsem must not be held to avoid a deadlock with
4480  * rbd_dev_refresh() when flushing notifies.
4481  */
4482 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4483 {
4484 	cancel_tasks_sync(rbd_dev);
4485 
4486 	mutex_lock(&rbd_dev->watch_mutex);
4487 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4488 		__rbd_unregister_watch(rbd_dev);
4489 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4490 	mutex_unlock(&rbd_dev->watch_mutex);
4491 
4492 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4493 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4494 }
4495 
4496 /*
4497  * lock_rwsem must be held for write
4498  */
4499 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4500 {
4501 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4502 	char cookie[32];
4503 	int ret;
4504 
4505 	if (!rbd_quiesce_lock(rbd_dev))
4506 		return;
4507 
4508 	format_lock_cookie(rbd_dev, cookie);
4509 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4510 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4511 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4512 				  RBD_LOCK_TAG, cookie);
4513 	if (ret) {
4514 		if (ret != -EOPNOTSUPP)
4515 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4516 				 ret);
4517 
4518 		/*
4519 		 * Lock cookie cannot be updated on older OSDs, so do
4520 		 * a manual release and queue an acquire.
4521 		 */
4522 		__rbd_release_lock(rbd_dev);
4523 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4524 	} else {
4525 		__rbd_lock(rbd_dev, cookie);
4526 		wake_lock_waiters(rbd_dev, 0);
4527 	}
4528 }
4529 
4530 static void rbd_reregister_watch(struct work_struct *work)
4531 {
4532 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4533 					    struct rbd_device, watch_dwork);
4534 	int ret;
4535 
4536 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4537 
4538 	mutex_lock(&rbd_dev->watch_mutex);
4539 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4540 		mutex_unlock(&rbd_dev->watch_mutex);
4541 		return;
4542 	}
4543 
4544 	ret = __rbd_register_watch(rbd_dev);
4545 	if (ret) {
4546 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4547 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4548 			queue_delayed_work(rbd_dev->task_wq,
4549 					   &rbd_dev->watch_dwork,
4550 					   RBD_RETRY_DELAY);
4551 			mutex_unlock(&rbd_dev->watch_mutex);
4552 			return;
4553 		}
4554 
4555 		mutex_unlock(&rbd_dev->watch_mutex);
4556 		down_write(&rbd_dev->lock_rwsem);
4557 		wake_lock_waiters(rbd_dev, ret);
4558 		up_write(&rbd_dev->lock_rwsem);
4559 		return;
4560 	}
4561 
4562 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4563 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4564 	mutex_unlock(&rbd_dev->watch_mutex);
4565 
4566 	down_write(&rbd_dev->lock_rwsem);
4567 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4568 		rbd_reacquire_lock(rbd_dev);
4569 	up_write(&rbd_dev->lock_rwsem);
4570 
4571 	ret = rbd_dev_refresh(rbd_dev);
4572 	if (ret)
4573 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4574 }
4575 
4576 /*
4577  * Synchronous osd object method call.  Returns the number of bytes
4578  * returned in the outbound buffer, or a negative error code.
4579  */
4580 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4581 			     struct ceph_object_id *oid,
4582 			     struct ceph_object_locator *oloc,
4583 			     const char *method_name,
4584 			     const void *outbound,
4585 			     size_t outbound_size,
4586 			     void *inbound,
4587 			     size_t inbound_size)
4588 {
4589 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4590 	struct page *req_page = NULL;
4591 	struct page *reply_page;
4592 	int ret;
4593 
4594 	/*
4595 	 * Method calls are ultimately read operations.  The result
4596 	 * should placed into the inbound buffer provided.  They
4597 	 * also supply outbound data--parameters for the object
4598 	 * method.  Currently if this is present it will be a
4599 	 * snapshot id.
4600 	 */
4601 	if (outbound) {
4602 		if (outbound_size > PAGE_SIZE)
4603 			return -E2BIG;
4604 
4605 		req_page = alloc_page(GFP_KERNEL);
4606 		if (!req_page)
4607 			return -ENOMEM;
4608 
4609 		memcpy(page_address(req_page), outbound, outbound_size);
4610 	}
4611 
4612 	reply_page = alloc_page(GFP_KERNEL);
4613 	if (!reply_page) {
4614 		if (req_page)
4615 			__free_page(req_page);
4616 		return -ENOMEM;
4617 	}
4618 
4619 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4620 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4621 			     &reply_page, &inbound_size);
4622 	if (!ret) {
4623 		memcpy(inbound, page_address(reply_page), inbound_size);
4624 		ret = inbound_size;
4625 	}
4626 
4627 	if (req_page)
4628 		__free_page(req_page);
4629 	__free_page(reply_page);
4630 	return ret;
4631 }
4632 
4633 static void rbd_queue_workfn(struct work_struct *work)
4634 {
4635 	struct rbd_img_request *img_request =
4636 	    container_of(work, struct rbd_img_request, work);
4637 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4638 	enum obj_operation_type op_type = img_request->op_type;
4639 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4640 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4641 	u64 length = blk_rq_bytes(rq);
4642 	u64 mapping_size;
4643 	int result;
4644 
4645 	/* Ignore/skip any zero-length requests */
4646 	if (!length) {
4647 		dout("%s: zero-length request\n", __func__);
4648 		result = 0;
4649 		goto err_img_request;
4650 	}
4651 
4652 	blk_mq_start_request(rq);
4653 
4654 	down_read(&rbd_dev->header_rwsem);
4655 	mapping_size = rbd_dev->mapping.size;
4656 	rbd_img_capture_header(img_request);
4657 	up_read(&rbd_dev->header_rwsem);
4658 
4659 	if (offset + length > mapping_size) {
4660 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4661 			 length, mapping_size);
4662 		result = -EIO;
4663 		goto err_img_request;
4664 	}
4665 
4666 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4667 	     img_request, obj_op_name(op_type), offset, length);
4668 
4669 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4670 		result = rbd_img_fill_nodata(img_request, offset, length);
4671 	else
4672 		result = rbd_img_fill_from_bio(img_request, offset, length,
4673 					       rq->bio);
4674 	if (result)
4675 		goto err_img_request;
4676 
4677 	rbd_img_handle_request(img_request, 0);
4678 	return;
4679 
4680 err_img_request:
4681 	rbd_img_request_destroy(img_request);
4682 	if (result)
4683 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4684 			 obj_op_name(op_type), length, offset, result);
4685 	blk_mq_end_request(rq, errno_to_blk_status(result));
4686 }
4687 
4688 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4689 		const struct blk_mq_queue_data *bd)
4690 {
4691 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4692 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4693 	enum obj_operation_type op_type;
4694 
4695 	switch (req_op(bd->rq)) {
4696 	case REQ_OP_DISCARD:
4697 		op_type = OBJ_OP_DISCARD;
4698 		break;
4699 	case REQ_OP_WRITE_ZEROES:
4700 		op_type = OBJ_OP_ZEROOUT;
4701 		break;
4702 	case REQ_OP_WRITE:
4703 		op_type = OBJ_OP_WRITE;
4704 		break;
4705 	case REQ_OP_READ:
4706 		op_type = OBJ_OP_READ;
4707 		break;
4708 	default:
4709 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4710 		return BLK_STS_IOERR;
4711 	}
4712 
4713 	rbd_img_request_init(img_req, rbd_dev, op_type);
4714 
4715 	if (rbd_img_is_write(img_req)) {
4716 		if (rbd_is_ro(rbd_dev)) {
4717 			rbd_warn(rbd_dev, "%s on read-only mapping",
4718 				 obj_op_name(img_req->op_type));
4719 			return BLK_STS_IOERR;
4720 		}
4721 		rbd_assert(!rbd_is_snap(rbd_dev));
4722 	}
4723 
4724 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4725 	queue_work(rbd_wq, &img_req->work);
4726 	return BLK_STS_OK;
4727 }
4728 
4729 static void rbd_free_disk(struct rbd_device *rbd_dev)
4730 {
4731 	put_disk(rbd_dev->disk);
4732 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4733 	rbd_dev->disk = NULL;
4734 }
4735 
4736 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4737 			     struct ceph_object_id *oid,
4738 			     struct ceph_object_locator *oloc,
4739 			     void *buf, int buf_len)
4740 
4741 {
4742 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4743 	struct ceph_osd_request *req;
4744 	struct page **pages;
4745 	int num_pages = calc_pages_for(0, buf_len);
4746 	int ret;
4747 
4748 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4749 	if (!req)
4750 		return -ENOMEM;
4751 
4752 	ceph_oid_copy(&req->r_base_oid, oid);
4753 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4754 	req->r_flags = CEPH_OSD_FLAG_READ;
4755 
4756 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4757 	if (IS_ERR(pages)) {
4758 		ret = PTR_ERR(pages);
4759 		goto out_req;
4760 	}
4761 
4762 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4763 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4764 					 true);
4765 
4766 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4767 	if (ret)
4768 		goto out_req;
4769 
4770 	ceph_osdc_start_request(osdc, req);
4771 	ret = ceph_osdc_wait_request(osdc, req);
4772 	if (ret >= 0)
4773 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4774 
4775 out_req:
4776 	ceph_osdc_put_request(req);
4777 	return ret;
4778 }
4779 
4780 /*
4781  * Read the complete header for the given rbd device.  On successful
4782  * return, the rbd_dev->header field will contain up-to-date
4783  * information about the image.
4784  */
4785 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4786 {
4787 	struct rbd_image_header_ondisk *ondisk = NULL;
4788 	u32 snap_count = 0;
4789 	u64 names_size = 0;
4790 	u32 want_count;
4791 	int ret;
4792 
4793 	/*
4794 	 * The complete header will include an array of its 64-bit
4795 	 * snapshot ids, followed by the names of those snapshots as
4796 	 * a contiguous block of NUL-terminated strings.  Note that
4797 	 * the number of snapshots could change by the time we read
4798 	 * it in, in which case we re-read it.
4799 	 */
4800 	do {
4801 		size_t size;
4802 
4803 		kfree(ondisk);
4804 
4805 		size = sizeof (*ondisk);
4806 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4807 		size += names_size;
4808 		ondisk = kmalloc(size, GFP_KERNEL);
4809 		if (!ondisk)
4810 			return -ENOMEM;
4811 
4812 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4813 					&rbd_dev->header_oloc, ondisk, size);
4814 		if (ret < 0)
4815 			goto out;
4816 		if ((size_t)ret < size) {
4817 			ret = -ENXIO;
4818 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4819 				size, ret);
4820 			goto out;
4821 		}
4822 		if (!rbd_dev_ondisk_valid(ondisk)) {
4823 			ret = -ENXIO;
4824 			rbd_warn(rbd_dev, "invalid header");
4825 			goto out;
4826 		}
4827 
4828 		names_size = le64_to_cpu(ondisk->snap_names_len);
4829 		want_count = snap_count;
4830 		snap_count = le32_to_cpu(ondisk->snap_count);
4831 	} while (snap_count != want_count);
4832 
4833 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4834 out:
4835 	kfree(ondisk);
4836 
4837 	return ret;
4838 }
4839 
4840 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4841 {
4842 	sector_t size;
4843 
4844 	/*
4845 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4846 	 * try to update its size.  If REMOVING is set, updating size
4847 	 * is just useless work since the device can't be opened.
4848 	 */
4849 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4850 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4851 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4852 		dout("setting size to %llu sectors", (unsigned long long)size);
4853 		set_capacity_and_notify(rbd_dev->disk, size);
4854 	}
4855 }
4856 
4857 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4858 {
4859 	u64 mapping_size;
4860 	int ret;
4861 
4862 	down_write(&rbd_dev->header_rwsem);
4863 	mapping_size = rbd_dev->mapping.size;
4864 
4865 	ret = rbd_dev_header_info(rbd_dev);
4866 	if (ret)
4867 		goto out;
4868 
4869 	/*
4870 	 * If there is a parent, see if it has disappeared due to the
4871 	 * mapped image getting flattened.
4872 	 */
4873 	if (rbd_dev->parent) {
4874 		ret = rbd_dev_v2_parent_info(rbd_dev);
4875 		if (ret)
4876 			goto out;
4877 	}
4878 
4879 	rbd_assert(!rbd_is_snap(rbd_dev));
4880 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4881 
4882 out:
4883 	up_write(&rbd_dev->header_rwsem);
4884 	if (!ret && mapping_size != rbd_dev->mapping.size)
4885 		rbd_dev_update_size(rbd_dev);
4886 
4887 	return ret;
4888 }
4889 
4890 static const struct blk_mq_ops rbd_mq_ops = {
4891 	.queue_rq	= rbd_queue_rq,
4892 };
4893 
4894 static int rbd_init_disk(struct rbd_device *rbd_dev)
4895 {
4896 	struct gendisk *disk;
4897 	struct request_queue *q;
4898 	unsigned int objset_bytes =
4899 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4900 	int err;
4901 
4902 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4903 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4904 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4905 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4906 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4907 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4908 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4909 
4910 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4911 	if (err)
4912 		return err;
4913 
4914 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4915 	if (IS_ERR(disk)) {
4916 		err = PTR_ERR(disk);
4917 		goto out_tag_set;
4918 	}
4919 	q = disk->queue;
4920 
4921 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4922 		 rbd_dev->dev_id);
4923 	disk->major = rbd_dev->major;
4924 	disk->first_minor = rbd_dev->minor;
4925 	if (single_major)
4926 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4927 	else
4928 		disk->minors = RBD_MINORS_PER_MAJOR;
4929 	disk->fops = &rbd_bd_ops;
4930 	disk->private_data = rbd_dev;
4931 
4932 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4933 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4934 
4935 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4936 	q->limits.max_sectors = queue_max_hw_sectors(q);
4937 	blk_queue_max_segments(q, USHRT_MAX);
4938 	blk_queue_max_segment_size(q, UINT_MAX);
4939 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4940 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4941 
4942 	if (rbd_dev->opts->trim) {
4943 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4944 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4945 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4946 	}
4947 
4948 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4949 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4950 
4951 	rbd_dev->disk = disk;
4952 
4953 	return 0;
4954 out_tag_set:
4955 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4956 	return err;
4957 }
4958 
4959 /*
4960   sysfs
4961 */
4962 
4963 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4964 {
4965 	return container_of(dev, struct rbd_device, dev);
4966 }
4967 
4968 static ssize_t rbd_size_show(struct device *dev,
4969 			     struct device_attribute *attr, char *buf)
4970 {
4971 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4972 
4973 	return sprintf(buf, "%llu\n",
4974 		(unsigned long long)rbd_dev->mapping.size);
4975 }
4976 
4977 static ssize_t rbd_features_show(struct device *dev,
4978 			     struct device_attribute *attr, char *buf)
4979 {
4980 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4981 
4982 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
4983 }
4984 
4985 static ssize_t rbd_major_show(struct device *dev,
4986 			      struct device_attribute *attr, char *buf)
4987 {
4988 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4989 
4990 	if (rbd_dev->major)
4991 		return sprintf(buf, "%d\n", rbd_dev->major);
4992 
4993 	return sprintf(buf, "(none)\n");
4994 }
4995 
4996 static ssize_t rbd_minor_show(struct device *dev,
4997 			      struct device_attribute *attr, char *buf)
4998 {
4999 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5000 
5001 	return sprintf(buf, "%d\n", rbd_dev->minor);
5002 }
5003 
5004 static ssize_t rbd_client_addr_show(struct device *dev,
5005 				    struct device_attribute *attr, char *buf)
5006 {
5007 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5008 	struct ceph_entity_addr *client_addr =
5009 	    ceph_client_addr(rbd_dev->rbd_client->client);
5010 
5011 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5012 		       le32_to_cpu(client_addr->nonce));
5013 }
5014 
5015 static ssize_t rbd_client_id_show(struct device *dev,
5016 				  struct device_attribute *attr, char *buf)
5017 {
5018 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5019 
5020 	return sprintf(buf, "client%lld\n",
5021 		       ceph_client_gid(rbd_dev->rbd_client->client));
5022 }
5023 
5024 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5025 				     struct device_attribute *attr, char *buf)
5026 {
5027 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5028 
5029 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5030 }
5031 
5032 static ssize_t rbd_config_info_show(struct device *dev,
5033 				    struct device_attribute *attr, char *buf)
5034 {
5035 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5036 
5037 	if (!capable(CAP_SYS_ADMIN))
5038 		return -EPERM;
5039 
5040 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5041 }
5042 
5043 static ssize_t rbd_pool_show(struct device *dev,
5044 			     struct device_attribute *attr, char *buf)
5045 {
5046 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5047 
5048 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5049 }
5050 
5051 static ssize_t rbd_pool_id_show(struct device *dev,
5052 			     struct device_attribute *attr, char *buf)
5053 {
5054 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5055 
5056 	return sprintf(buf, "%llu\n",
5057 			(unsigned long long) rbd_dev->spec->pool_id);
5058 }
5059 
5060 static ssize_t rbd_pool_ns_show(struct device *dev,
5061 				struct device_attribute *attr, char *buf)
5062 {
5063 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5064 
5065 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5066 }
5067 
5068 static ssize_t rbd_name_show(struct device *dev,
5069 			     struct device_attribute *attr, char *buf)
5070 {
5071 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5072 
5073 	if (rbd_dev->spec->image_name)
5074 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5075 
5076 	return sprintf(buf, "(unknown)\n");
5077 }
5078 
5079 static ssize_t rbd_image_id_show(struct device *dev,
5080 			     struct device_attribute *attr, char *buf)
5081 {
5082 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5083 
5084 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5085 }
5086 
5087 /*
5088  * Shows the name of the currently-mapped snapshot (or
5089  * RBD_SNAP_HEAD_NAME for the base image).
5090  */
5091 static ssize_t rbd_snap_show(struct device *dev,
5092 			     struct device_attribute *attr,
5093 			     char *buf)
5094 {
5095 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096 
5097 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5098 }
5099 
5100 static ssize_t rbd_snap_id_show(struct device *dev,
5101 				struct device_attribute *attr, char *buf)
5102 {
5103 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104 
5105 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5106 }
5107 
5108 /*
5109  * For a v2 image, shows the chain of parent images, separated by empty
5110  * lines.  For v1 images or if there is no parent, shows "(no parent
5111  * image)".
5112  */
5113 static ssize_t rbd_parent_show(struct device *dev,
5114 			       struct device_attribute *attr,
5115 			       char *buf)
5116 {
5117 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5118 	ssize_t count = 0;
5119 
5120 	if (!rbd_dev->parent)
5121 		return sprintf(buf, "(no parent image)\n");
5122 
5123 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5124 		struct rbd_spec *spec = rbd_dev->parent_spec;
5125 
5126 		count += sprintf(&buf[count], "%s"
5127 			    "pool_id %llu\npool_name %s\n"
5128 			    "pool_ns %s\n"
5129 			    "image_id %s\nimage_name %s\n"
5130 			    "snap_id %llu\nsnap_name %s\n"
5131 			    "overlap %llu\n",
5132 			    !count ? "" : "\n", /* first? */
5133 			    spec->pool_id, spec->pool_name,
5134 			    spec->pool_ns ?: "",
5135 			    spec->image_id, spec->image_name ?: "(unknown)",
5136 			    spec->snap_id, spec->snap_name,
5137 			    rbd_dev->parent_overlap);
5138 	}
5139 
5140 	return count;
5141 }
5142 
5143 static ssize_t rbd_image_refresh(struct device *dev,
5144 				 struct device_attribute *attr,
5145 				 const char *buf,
5146 				 size_t size)
5147 {
5148 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5149 	int ret;
5150 
5151 	if (!capable(CAP_SYS_ADMIN))
5152 		return -EPERM;
5153 
5154 	ret = rbd_dev_refresh(rbd_dev);
5155 	if (ret)
5156 		return ret;
5157 
5158 	return size;
5159 }
5160 
5161 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5162 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5163 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5164 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5165 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5166 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5167 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5168 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5169 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5170 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5171 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5172 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5173 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5174 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5175 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5176 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5177 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5178 
5179 static struct attribute *rbd_attrs[] = {
5180 	&dev_attr_size.attr,
5181 	&dev_attr_features.attr,
5182 	&dev_attr_major.attr,
5183 	&dev_attr_minor.attr,
5184 	&dev_attr_client_addr.attr,
5185 	&dev_attr_client_id.attr,
5186 	&dev_attr_cluster_fsid.attr,
5187 	&dev_attr_config_info.attr,
5188 	&dev_attr_pool.attr,
5189 	&dev_attr_pool_id.attr,
5190 	&dev_attr_pool_ns.attr,
5191 	&dev_attr_name.attr,
5192 	&dev_attr_image_id.attr,
5193 	&dev_attr_current_snap.attr,
5194 	&dev_attr_snap_id.attr,
5195 	&dev_attr_parent.attr,
5196 	&dev_attr_refresh.attr,
5197 	NULL
5198 };
5199 
5200 static struct attribute_group rbd_attr_group = {
5201 	.attrs = rbd_attrs,
5202 };
5203 
5204 static const struct attribute_group *rbd_attr_groups[] = {
5205 	&rbd_attr_group,
5206 	NULL
5207 };
5208 
5209 static void rbd_dev_release(struct device *dev);
5210 
5211 static const struct device_type rbd_device_type = {
5212 	.name		= "rbd",
5213 	.groups		= rbd_attr_groups,
5214 	.release	= rbd_dev_release,
5215 };
5216 
5217 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5218 {
5219 	kref_get(&spec->kref);
5220 
5221 	return spec;
5222 }
5223 
5224 static void rbd_spec_free(struct kref *kref);
5225 static void rbd_spec_put(struct rbd_spec *spec)
5226 {
5227 	if (spec)
5228 		kref_put(&spec->kref, rbd_spec_free);
5229 }
5230 
5231 static struct rbd_spec *rbd_spec_alloc(void)
5232 {
5233 	struct rbd_spec *spec;
5234 
5235 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5236 	if (!spec)
5237 		return NULL;
5238 
5239 	spec->pool_id = CEPH_NOPOOL;
5240 	spec->snap_id = CEPH_NOSNAP;
5241 	kref_init(&spec->kref);
5242 
5243 	return spec;
5244 }
5245 
5246 static void rbd_spec_free(struct kref *kref)
5247 {
5248 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5249 
5250 	kfree(spec->pool_name);
5251 	kfree(spec->pool_ns);
5252 	kfree(spec->image_id);
5253 	kfree(spec->image_name);
5254 	kfree(spec->snap_name);
5255 	kfree(spec);
5256 }
5257 
5258 static void rbd_dev_free(struct rbd_device *rbd_dev)
5259 {
5260 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5261 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5262 
5263 	ceph_oid_destroy(&rbd_dev->header_oid);
5264 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5265 	kfree(rbd_dev->config_info);
5266 
5267 	rbd_put_client(rbd_dev->rbd_client);
5268 	rbd_spec_put(rbd_dev->spec);
5269 	kfree(rbd_dev->opts);
5270 	kfree(rbd_dev);
5271 }
5272 
5273 static void rbd_dev_release(struct device *dev)
5274 {
5275 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5276 	bool need_put = !!rbd_dev->opts;
5277 
5278 	if (need_put) {
5279 		destroy_workqueue(rbd_dev->task_wq);
5280 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5281 	}
5282 
5283 	rbd_dev_free(rbd_dev);
5284 
5285 	/*
5286 	 * This is racy, but way better than putting module outside of
5287 	 * the release callback.  The race window is pretty small, so
5288 	 * doing something similar to dm (dm-builtin.c) is overkill.
5289 	 */
5290 	if (need_put)
5291 		module_put(THIS_MODULE);
5292 }
5293 
5294 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5295 {
5296 	struct rbd_device *rbd_dev;
5297 
5298 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5299 	if (!rbd_dev)
5300 		return NULL;
5301 
5302 	spin_lock_init(&rbd_dev->lock);
5303 	INIT_LIST_HEAD(&rbd_dev->node);
5304 	init_rwsem(&rbd_dev->header_rwsem);
5305 
5306 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5307 	ceph_oid_init(&rbd_dev->header_oid);
5308 	rbd_dev->header_oloc.pool = spec->pool_id;
5309 	if (spec->pool_ns) {
5310 		WARN_ON(!*spec->pool_ns);
5311 		rbd_dev->header_oloc.pool_ns =
5312 		    ceph_find_or_create_string(spec->pool_ns,
5313 					       strlen(spec->pool_ns));
5314 	}
5315 
5316 	mutex_init(&rbd_dev->watch_mutex);
5317 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5318 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5319 
5320 	init_rwsem(&rbd_dev->lock_rwsem);
5321 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5322 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5323 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5324 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5325 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5326 	spin_lock_init(&rbd_dev->lock_lists_lock);
5327 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5328 	INIT_LIST_HEAD(&rbd_dev->running_list);
5329 	init_completion(&rbd_dev->acquire_wait);
5330 	init_completion(&rbd_dev->releasing_wait);
5331 
5332 	spin_lock_init(&rbd_dev->object_map_lock);
5333 
5334 	rbd_dev->dev.bus = &rbd_bus_type;
5335 	rbd_dev->dev.type = &rbd_device_type;
5336 	rbd_dev->dev.parent = &rbd_root_dev;
5337 	device_initialize(&rbd_dev->dev);
5338 
5339 	return rbd_dev;
5340 }
5341 
5342 /*
5343  * Create a mapping rbd_dev.
5344  */
5345 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5346 					 struct rbd_spec *spec,
5347 					 struct rbd_options *opts)
5348 {
5349 	struct rbd_device *rbd_dev;
5350 
5351 	rbd_dev = __rbd_dev_create(spec);
5352 	if (!rbd_dev)
5353 		return NULL;
5354 
5355 	/* get an id and fill in device name */
5356 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5357 					 minor_to_rbd_dev_id(1 << MINORBITS),
5358 					 GFP_KERNEL);
5359 	if (rbd_dev->dev_id < 0)
5360 		goto fail_rbd_dev;
5361 
5362 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5363 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5364 						   rbd_dev->name);
5365 	if (!rbd_dev->task_wq)
5366 		goto fail_dev_id;
5367 
5368 	/* we have a ref from do_rbd_add() */
5369 	__module_get(THIS_MODULE);
5370 
5371 	rbd_dev->rbd_client = rbdc;
5372 	rbd_dev->spec = spec;
5373 	rbd_dev->opts = opts;
5374 
5375 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5376 	return rbd_dev;
5377 
5378 fail_dev_id:
5379 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5380 fail_rbd_dev:
5381 	rbd_dev_free(rbd_dev);
5382 	return NULL;
5383 }
5384 
5385 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5386 {
5387 	if (rbd_dev)
5388 		put_device(&rbd_dev->dev);
5389 }
5390 
5391 /*
5392  * Get the size and object order for an image snapshot, or if
5393  * snap_id is CEPH_NOSNAP, gets this information for the base
5394  * image.
5395  */
5396 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5397 				u8 *order, u64 *snap_size)
5398 {
5399 	__le64 snapid = cpu_to_le64(snap_id);
5400 	int ret;
5401 	struct {
5402 		u8 order;
5403 		__le64 size;
5404 	} __attribute__ ((packed)) size_buf = { 0 };
5405 
5406 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5407 				  &rbd_dev->header_oloc, "get_size",
5408 				  &snapid, sizeof(snapid),
5409 				  &size_buf, sizeof(size_buf));
5410 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5411 	if (ret < 0)
5412 		return ret;
5413 	if (ret < sizeof (size_buf))
5414 		return -ERANGE;
5415 
5416 	if (order) {
5417 		*order = size_buf.order;
5418 		dout("  order %u", (unsigned int)*order);
5419 	}
5420 	*snap_size = le64_to_cpu(size_buf.size);
5421 
5422 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5423 		(unsigned long long)snap_id,
5424 		(unsigned long long)*snap_size);
5425 
5426 	return 0;
5427 }
5428 
5429 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5430 {
5431 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5432 					&rbd_dev->header.obj_order,
5433 					&rbd_dev->header.image_size);
5434 }
5435 
5436 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5437 {
5438 	size_t size;
5439 	void *reply_buf;
5440 	int ret;
5441 	void *p;
5442 
5443 	/* Response will be an encoded string, which includes a length */
5444 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5445 	reply_buf = kzalloc(size, GFP_KERNEL);
5446 	if (!reply_buf)
5447 		return -ENOMEM;
5448 
5449 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5450 				  &rbd_dev->header_oloc, "get_object_prefix",
5451 				  NULL, 0, reply_buf, size);
5452 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5453 	if (ret < 0)
5454 		goto out;
5455 
5456 	p = reply_buf;
5457 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5458 						p + ret, NULL, GFP_NOIO);
5459 	ret = 0;
5460 
5461 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5462 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5463 		rbd_dev->header.object_prefix = NULL;
5464 	} else {
5465 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5466 	}
5467 out:
5468 	kfree(reply_buf);
5469 
5470 	return ret;
5471 }
5472 
5473 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5474 				     bool read_only, u64 *snap_features)
5475 {
5476 	struct {
5477 		__le64 snap_id;
5478 		u8 read_only;
5479 	} features_in;
5480 	struct {
5481 		__le64 features;
5482 		__le64 incompat;
5483 	} __attribute__ ((packed)) features_buf = { 0 };
5484 	u64 unsup;
5485 	int ret;
5486 
5487 	features_in.snap_id = cpu_to_le64(snap_id);
5488 	features_in.read_only = read_only;
5489 
5490 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5491 				  &rbd_dev->header_oloc, "get_features",
5492 				  &features_in, sizeof(features_in),
5493 				  &features_buf, sizeof(features_buf));
5494 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5495 	if (ret < 0)
5496 		return ret;
5497 	if (ret < sizeof (features_buf))
5498 		return -ERANGE;
5499 
5500 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5501 	if (unsup) {
5502 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5503 			 unsup);
5504 		return -ENXIO;
5505 	}
5506 
5507 	*snap_features = le64_to_cpu(features_buf.features);
5508 
5509 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5510 		(unsigned long long)snap_id,
5511 		(unsigned long long)*snap_features,
5512 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5513 
5514 	return 0;
5515 }
5516 
5517 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5518 {
5519 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5520 					 rbd_is_ro(rbd_dev),
5521 					 &rbd_dev->header.features);
5522 }
5523 
5524 /*
5525  * These are generic image flags, but since they are used only for
5526  * object map, store them in rbd_dev->object_map_flags.
5527  *
5528  * For the same reason, this function is called only on object map
5529  * (re)load and not on header refresh.
5530  */
5531 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5532 {
5533 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5534 	__le64 flags;
5535 	int ret;
5536 
5537 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5538 				  &rbd_dev->header_oloc, "get_flags",
5539 				  &snapid, sizeof(snapid),
5540 				  &flags, sizeof(flags));
5541 	if (ret < 0)
5542 		return ret;
5543 	if (ret < sizeof(flags))
5544 		return -EBADMSG;
5545 
5546 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5547 	return 0;
5548 }
5549 
5550 struct parent_image_info {
5551 	u64		pool_id;
5552 	const char	*pool_ns;
5553 	const char	*image_id;
5554 	u64		snap_id;
5555 
5556 	bool		has_overlap;
5557 	u64		overlap;
5558 };
5559 
5560 /*
5561  * The caller is responsible for @pii.
5562  */
5563 static int decode_parent_image_spec(void **p, void *end,
5564 				    struct parent_image_info *pii)
5565 {
5566 	u8 struct_v;
5567 	u32 struct_len;
5568 	int ret;
5569 
5570 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5571 				  &struct_v, &struct_len);
5572 	if (ret)
5573 		return ret;
5574 
5575 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5576 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5577 	if (IS_ERR(pii->pool_ns)) {
5578 		ret = PTR_ERR(pii->pool_ns);
5579 		pii->pool_ns = NULL;
5580 		return ret;
5581 	}
5582 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5583 	if (IS_ERR(pii->image_id)) {
5584 		ret = PTR_ERR(pii->image_id);
5585 		pii->image_id = NULL;
5586 		return ret;
5587 	}
5588 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5589 	return 0;
5590 
5591 e_inval:
5592 	return -EINVAL;
5593 }
5594 
5595 static int __get_parent_info(struct rbd_device *rbd_dev,
5596 			     struct page *req_page,
5597 			     struct page *reply_page,
5598 			     struct parent_image_info *pii)
5599 {
5600 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5601 	size_t reply_len = PAGE_SIZE;
5602 	void *p, *end;
5603 	int ret;
5604 
5605 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5606 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5607 			     req_page, sizeof(u64), &reply_page, &reply_len);
5608 	if (ret)
5609 		return ret == -EOPNOTSUPP ? 1 : ret;
5610 
5611 	p = page_address(reply_page);
5612 	end = p + reply_len;
5613 	ret = decode_parent_image_spec(&p, end, pii);
5614 	if (ret)
5615 		return ret;
5616 
5617 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5618 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5619 			     req_page, sizeof(u64), &reply_page, &reply_len);
5620 	if (ret)
5621 		return ret;
5622 
5623 	p = page_address(reply_page);
5624 	end = p + reply_len;
5625 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5626 	if (pii->has_overlap)
5627 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5628 
5629 	return 0;
5630 
5631 e_inval:
5632 	return -EINVAL;
5633 }
5634 
5635 /*
5636  * The caller is responsible for @pii.
5637  */
5638 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5639 				    struct page *req_page,
5640 				    struct page *reply_page,
5641 				    struct parent_image_info *pii)
5642 {
5643 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5644 	size_t reply_len = PAGE_SIZE;
5645 	void *p, *end;
5646 	int ret;
5647 
5648 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5649 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5650 			     req_page, sizeof(u64), &reply_page, &reply_len);
5651 	if (ret)
5652 		return ret;
5653 
5654 	p = page_address(reply_page);
5655 	end = p + reply_len;
5656 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5657 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5658 	if (IS_ERR(pii->image_id)) {
5659 		ret = PTR_ERR(pii->image_id);
5660 		pii->image_id = NULL;
5661 		return ret;
5662 	}
5663 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5664 	pii->has_overlap = true;
5665 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5666 
5667 	return 0;
5668 
5669 e_inval:
5670 	return -EINVAL;
5671 }
5672 
5673 static int get_parent_info(struct rbd_device *rbd_dev,
5674 			   struct parent_image_info *pii)
5675 {
5676 	struct page *req_page, *reply_page;
5677 	void *p;
5678 	int ret;
5679 
5680 	req_page = alloc_page(GFP_KERNEL);
5681 	if (!req_page)
5682 		return -ENOMEM;
5683 
5684 	reply_page = alloc_page(GFP_KERNEL);
5685 	if (!reply_page) {
5686 		__free_page(req_page);
5687 		return -ENOMEM;
5688 	}
5689 
5690 	p = page_address(req_page);
5691 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5692 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5693 	if (ret > 0)
5694 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5695 					       pii);
5696 
5697 	__free_page(req_page);
5698 	__free_page(reply_page);
5699 	return ret;
5700 }
5701 
5702 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5703 {
5704 	struct rbd_spec *parent_spec;
5705 	struct parent_image_info pii = { 0 };
5706 	int ret;
5707 
5708 	parent_spec = rbd_spec_alloc();
5709 	if (!parent_spec)
5710 		return -ENOMEM;
5711 
5712 	ret = get_parent_info(rbd_dev, &pii);
5713 	if (ret)
5714 		goto out_err;
5715 
5716 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5717 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5718 	     pii.has_overlap, pii.overlap);
5719 
5720 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5721 		/*
5722 		 * Either the parent never existed, or we have
5723 		 * record of it but the image got flattened so it no
5724 		 * longer has a parent.  When the parent of a
5725 		 * layered image disappears we immediately set the
5726 		 * overlap to 0.  The effect of this is that all new
5727 		 * requests will be treated as if the image had no
5728 		 * parent.
5729 		 *
5730 		 * If !pii.has_overlap, the parent image spec is not
5731 		 * applicable.  It's there to avoid duplication in each
5732 		 * snapshot record.
5733 		 */
5734 		if (rbd_dev->parent_overlap) {
5735 			rbd_dev->parent_overlap = 0;
5736 			rbd_dev_parent_put(rbd_dev);
5737 			pr_info("%s: clone image has been flattened\n",
5738 				rbd_dev->disk->disk_name);
5739 		}
5740 
5741 		goto out;	/* No parent?  No problem. */
5742 	}
5743 
5744 	/* The ceph file layout needs to fit pool id in 32 bits */
5745 
5746 	ret = -EIO;
5747 	if (pii.pool_id > (u64)U32_MAX) {
5748 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5749 			(unsigned long long)pii.pool_id, U32_MAX);
5750 		goto out_err;
5751 	}
5752 
5753 	/*
5754 	 * The parent won't change (except when the clone is
5755 	 * flattened, already handled that).  So we only need to
5756 	 * record the parent spec we have not already done so.
5757 	 */
5758 	if (!rbd_dev->parent_spec) {
5759 		parent_spec->pool_id = pii.pool_id;
5760 		if (pii.pool_ns && *pii.pool_ns) {
5761 			parent_spec->pool_ns = pii.pool_ns;
5762 			pii.pool_ns = NULL;
5763 		}
5764 		parent_spec->image_id = pii.image_id;
5765 		pii.image_id = NULL;
5766 		parent_spec->snap_id = pii.snap_id;
5767 
5768 		rbd_dev->parent_spec = parent_spec;
5769 		parent_spec = NULL;	/* rbd_dev now owns this */
5770 	}
5771 
5772 	/*
5773 	 * We always update the parent overlap.  If it's zero we issue
5774 	 * a warning, as we will proceed as if there was no parent.
5775 	 */
5776 	if (!pii.overlap) {
5777 		if (parent_spec) {
5778 			/* refresh, careful to warn just once */
5779 			if (rbd_dev->parent_overlap)
5780 				rbd_warn(rbd_dev,
5781 				    "clone now standalone (overlap became 0)");
5782 		} else {
5783 			/* initial probe */
5784 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5785 		}
5786 	}
5787 	rbd_dev->parent_overlap = pii.overlap;
5788 
5789 out:
5790 	ret = 0;
5791 out_err:
5792 	kfree(pii.pool_ns);
5793 	kfree(pii.image_id);
5794 	rbd_spec_put(parent_spec);
5795 	return ret;
5796 }
5797 
5798 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5799 {
5800 	struct {
5801 		__le64 stripe_unit;
5802 		__le64 stripe_count;
5803 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5804 	size_t size = sizeof (striping_info_buf);
5805 	void *p;
5806 	int ret;
5807 
5808 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5809 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5810 				NULL, 0, &striping_info_buf, size);
5811 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5812 	if (ret < 0)
5813 		return ret;
5814 	if (ret < size)
5815 		return -ERANGE;
5816 
5817 	p = &striping_info_buf;
5818 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5819 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5820 	return 0;
5821 }
5822 
5823 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5824 {
5825 	__le64 data_pool_id;
5826 	int ret;
5827 
5828 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5829 				  &rbd_dev->header_oloc, "get_data_pool",
5830 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5831 	if (ret < 0)
5832 		return ret;
5833 	if (ret < sizeof(data_pool_id))
5834 		return -EBADMSG;
5835 
5836 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5837 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5838 	return 0;
5839 }
5840 
5841 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5842 {
5843 	CEPH_DEFINE_OID_ONSTACK(oid);
5844 	size_t image_id_size;
5845 	char *image_id;
5846 	void *p;
5847 	void *end;
5848 	size_t size;
5849 	void *reply_buf = NULL;
5850 	size_t len = 0;
5851 	char *image_name = NULL;
5852 	int ret;
5853 
5854 	rbd_assert(!rbd_dev->spec->image_name);
5855 
5856 	len = strlen(rbd_dev->spec->image_id);
5857 	image_id_size = sizeof (__le32) + len;
5858 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5859 	if (!image_id)
5860 		return NULL;
5861 
5862 	p = image_id;
5863 	end = image_id + image_id_size;
5864 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5865 
5866 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5867 	reply_buf = kmalloc(size, GFP_KERNEL);
5868 	if (!reply_buf)
5869 		goto out;
5870 
5871 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5872 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5873 				  "dir_get_name", image_id, image_id_size,
5874 				  reply_buf, size);
5875 	if (ret < 0)
5876 		goto out;
5877 	p = reply_buf;
5878 	end = reply_buf + ret;
5879 
5880 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5881 	if (IS_ERR(image_name))
5882 		image_name = NULL;
5883 	else
5884 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5885 out:
5886 	kfree(reply_buf);
5887 	kfree(image_id);
5888 
5889 	return image_name;
5890 }
5891 
5892 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5893 {
5894 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5895 	const char *snap_name;
5896 	u32 which = 0;
5897 
5898 	/* Skip over names until we find the one we are looking for */
5899 
5900 	snap_name = rbd_dev->header.snap_names;
5901 	while (which < snapc->num_snaps) {
5902 		if (!strcmp(name, snap_name))
5903 			return snapc->snaps[which];
5904 		snap_name += strlen(snap_name) + 1;
5905 		which++;
5906 	}
5907 	return CEPH_NOSNAP;
5908 }
5909 
5910 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5911 {
5912 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5913 	u32 which;
5914 	bool found = false;
5915 	u64 snap_id;
5916 
5917 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5918 		const char *snap_name;
5919 
5920 		snap_id = snapc->snaps[which];
5921 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5922 		if (IS_ERR(snap_name)) {
5923 			/* ignore no-longer existing snapshots */
5924 			if (PTR_ERR(snap_name) == -ENOENT)
5925 				continue;
5926 			else
5927 				break;
5928 		}
5929 		found = !strcmp(name, snap_name);
5930 		kfree(snap_name);
5931 	}
5932 	return found ? snap_id : CEPH_NOSNAP;
5933 }
5934 
5935 /*
5936  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5937  * no snapshot by that name is found, or if an error occurs.
5938  */
5939 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5940 {
5941 	if (rbd_dev->image_format == 1)
5942 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5943 
5944 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5945 }
5946 
5947 /*
5948  * An image being mapped will have everything but the snap id.
5949  */
5950 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5951 {
5952 	struct rbd_spec *spec = rbd_dev->spec;
5953 
5954 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5955 	rbd_assert(spec->image_id && spec->image_name);
5956 	rbd_assert(spec->snap_name);
5957 
5958 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5959 		u64 snap_id;
5960 
5961 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5962 		if (snap_id == CEPH_NOSNAP)
5963 			return -ENOENT;
5964 
5965 		spec->snap_id = snap_id;
5966 	} else {
5967 		spec->snap_id = CEPH_NOSNAP;
5968 	}
5969 
5970 	return 0;
5971 }
5972 
5973 /*
5974  * A parent image will have all ids but none of the names.
5975  *
5976  * All names in an rbd spec are dynamically allocated.  It's OK if we
5977  * can't figure out the name for an image id.
5978  */
5979 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5980 {
5981 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5982 	struct rbd_spec *spec = rbd_dev->spec;
5983 	const char *pool_name;
5984 	const char *image_name;
5985 	const char *snap_name;
5986 	int ret;
5987 
5988 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5989 	rbd_assert(spec->image_id);
5990 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5991 
5992 	/* Get the pool name; we have to make our own copy of this */
5993 
5994 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5995 	if (!pool_name) {
5996 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5997 		return -EIO;
5998 	}
5999 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6000 	if (!pool_name)
6001 		return -ENOMEM;
6002 
6003 	/* Fetch the image name; tolerate failure here */
6004 
6005 	image_name = rbd_dev_image_name(rbd_dev);
6006 	if (!image_name)
6007 		rbd_warn(rbd_dev, "unable to get image name");
6008 
6009 	/* Fetch the snapshot name */
6010 
6011 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6012 	if (IS_ERR(snap_name)) {
6013 		ret = PTR_ERR(snap_name);
6014 		goto out_err;
6015 	}
6016 
6017 	spec->pool_name = pool_name;
6018 	spec->image_name = image_name;
6019 	spec->snap_name = snap_name;
6020 
6021 	return 0;
6022 
6023 out_err:
6024 	kfree(image_name);
6025 	kfree(pool_name);
6026 	return ret;
6027 }
6028 
6029 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6030 {
6031 	size_t size;
6032 	int ret;
6033 	void *reply_buf;
6034 	void *p;
6035 	void *end;
6036 	u64 seq;
6037 	u32 snap_count;
6038 	struct ceph_snap_context *snapc;
6039 	u32 i;
6040 
6041 	/*
6042 	 * We'll need room for the seq value (maximum snapshot id),
6043 	 * snapshot count, and array of that many snapshot ids.
6044 	 * For now we have a fixed upper limit on the number we're
6045 	 * prepared to receive.
6046 	 */
6047 	size = sizeof (__le64) + sizeof (__le32) +
6048 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6049 	reply_buf = kzalloc(size, GFP_KERNEL);
6050 	if (!reply_buf)
6051 		return -ENOMEM;
6052 
6053 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6054 				  &rbd_dev->header_oloc, "get_snapcontext",
6055 				  NULL, 0, reply_buf, size);
6056 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6057 	if (ret < 0)
6058 		goto out;
6059 
6060 	p = reply_buf;
6061 	end = reply_buf + ret;
6062 	ret = -ERANGE;
6063 	ceph_decode_64_safe(&p, end, seq, out);
6064 	ceph_decode_32_safe(&p, end, snap_count, out);
6065 
6066 	/*
6067 	 * Make sure the reported number of snapshot ids wouldn't go
6068 	 * beyond the end of our buffer.  But before checking that,
6069 	 * make sure the computed size of the snapshot context we
6070 	 * allocate is representable in a size_t.
6071 	 */
6072 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6073 				 / sizeof (u64)) {
6074 		ret = -EINVAL;
6075 		goto out;
6076 	}
6077 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6078 		goto out;
6079 	ret = 0;
6080 
6081 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6082 	if (!snapc) {
6083 		ret = -ENOMEM;
6084 		goto out;
6085 	}
6086 	snapc->seq = seq;
6087 	for (i = 0; i < snap_count; i++)
6088 		snapc->snaps[i] = ceph_decode_64(&p);
6089 
6090 	ceph_put_snap_context(rbd_dev->header.snapc);
6091 	rbd_dev->header.snapc = snapc;
6092 
6093 	dout("  snap context seq = %llu, snap_count = %u\n",
6094 		(unsigned long long)seq, (unsigned int)snap_count);
6095 out:
6096 	kfree(reply_buf);
6097 
6098 	return ret;
6099 }
6100 
6101 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6102 					u64 snap_id)
6103 {
6104 	size_t size;
6105 	void *reply_buf;
6106 	__le64 snapid;
6107 	int ret;
6108 	void *p;
6109 	void *end;
6110 	char *snap_name;
6111 
6112 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6113 	reply_buf = kmalloc(size, GFP_KERNEL);
6114 	if (!reply_buf)
6115 		return ERR_PTR(-ENOMEM);
6116 
6117 	snapid = cpu_to_le64(snap_id);
6118 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6119 				  &rbd_dev->header_oloc, "get_snapshot_name",
6120 				  &snapid, sizeof(snapid), reply_buf, size);
6121 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6122 	if (ret < 0) {
6123 		snap_name = ERR_PTR(ret);
6124 		goto out;
6125 	}
6126 
6127 	p = reply_buf;
6128 	end = reply_buf + ret;
6129 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6130 	if (IS_ERR(snap_name))
6131 		goto out;
6132 
6133 	dout("  snap_id 0x%016llx snap_name = %s\n",
6134 		(unsigned long long)snap_id, snap_name);
6135 out:
6136 	kfree(reply_buf);
6137 
6138 	return snap_name;
6139 }
6140 
6141 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6142 {
6143 	bool first_time = rbd_dev->header.object_prefix == NULL;
6144 	int ret;
6145 
6146 	ret = rbd_dev_v2_image_size(rbd_dev);
6147 	if (ret)
6148 		return ret;
6149 
6150 	if (first_time) {
6151 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6152 		if (ret)
6153 			return ret;
6154 	}
6155 
6156 	ret = rbd_dev_v2_snap_context(rbd_dev);
6157 	if (ret && first_time) {
6158 		kfree(rbd_dev->header.object_prefix);
6159 		rbd_dev->header.object_prefix = NULL;
6160 	}
6161 
6162 	return ret;
6163 }
6164 
6165 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6166 {
6167 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6168 
6169 	if (rbd_dev->image_format == 1)
6170 		return rbd_dev_v1_header_info(rbd_dev);
6171 
6172 	return rbd_dev_v2_header_info(rbd_dev);
6173 }
6174 
6175 /*
6176  * Skips over white space at *buf, and updates *buf to point to the
6177  * first found non-space character (if any). Returns the length of
6178  * the token (string of non-white space characters) found.  Note
6179  * that *buf must be terminated with '\0'.
6180  */
6181 static inline size_t next_token(const char **buf)
6182 {
6183         /*
6184         * These are the characters that produce nonzero for
6185         * isspace() in the "C" and "POSIX" locales.
6186         */
6187 	static const char spaces[] = " \f\n\r\t\v";
6188 
6189         *buf += strspn(*buf, spaces);	/* Find start of token */
6190 
6191 	return strcspn(*buf, spaces);   /* Return token length */
6192 }
6193 
6194 /*
6195  * Finds the next token in *buf, dynamically allocates a buffer big
6196  * enough to hold a copy of it, and copies the token into the new
6197  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6198  * that a duplicate buffer is created even for a zero-length token.
6199  *
6200  * Returns a pointer to the newly-allocated duplicate, or a null
6201  * pointer if memory for the duplicate was not available.  If
6202  * the lenp argument is a non-null pointer, the length of the token
6203  * (not including the '\0') is returned in *lenp.
6204  *
6205  * If successful, the *buf pointer will be updated to point beyond
6206  * the end of the found token.
6207  *
6208  * Note: uses GFP_KERNEL for allocation.
6209  */
6210 static inline char *dup_token(const char **buf, size_t *lenp)
6211 {
6212 	char *dup;
6213 	size_t len;
6214 
6215 	len = next_token(buf);
6216 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6217 	if (!dup)
6218 		return NULL;
6219 	*(dup + len) = '\0';
6220 	*buf += len;
6221 
6222 	if (lenp)
6223 		*lenp = len;
6224 
6225 	return dup;
6226 }
6227 
6228 static int rbd_parse_param(struct fs_parameter *param,
6229 			    struct rbd_parse_opts_ctx *pctx)
6230 {
6231 	struct rbd_options *opt = pctx->opts;
6232 	struct fs_parse_result result;
6233 	struct p_log log = {.prefix = "rbd"};
6234 	int token, ret;
6235 
6236 	ret = ceph_parse_param(param, pctx->copts, NULL);
6237 	if (ret != -ENOPARAM)
6238 		return ret;
6239 
6240 	token = __fs_parse(&log, rbd_parameters, param, &result);
6241 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6242 	if (token < 0) {
6243 		if (token == -ENOPARAM)
6244 			return inval_plog(&log, "Unknown parameter '%s'",
6245 					  param->key);
6246 		return token;
6247 	}
6248 
6249 	switch (token) {
6250 	case Opt_queue_depth:
6251 		if (result.uint_32 < 1)
6252 			goto out_of_range;
6253 		opt->queue_depth = result.uint_32;
6254 		break;
6255 	case Opt_alloc_size:
6256 		if (result.uint_32 < SECTOR_SIZE)
6257 			goto out_of_range;
6258 		if (!is_power_of_2(result.uint_32))
6259 			return inval_plog(&log, "alloc_size must be a power of 2");
6260 		opt->alloc_size = result.uint_32;
6261 		break;
6262 	case Opt_lock_timeout:
6263 		/* 0 is "wait forever" (i.e. infinite timeout) */
6264 		if (result.uint_32 > INT_MAX / 1000)
6265 			goto out_of_range;
6266 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6267 		break;
6268 	case Opt_pool_ns:
6269 		kfree(pctx->spec->pool_ns);
6270 		pctx->spec->pool_ns = param->string;
6271 		param->string = NULL;
6272 		break;
6273 	case Opt_compression_hint:
6274 		switch (result.uint_32) {
6275 		case Opt_compression_hint_none:
6276 			opt->alloc_hint_flags &=
6277 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6278 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6279 			break;
6280 		case Opt_compression_hint_compressible:
6281 			opt->alloc_hint_flags |=
6282 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6283 			opt->alloc_hint_flags &=
6284 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6285 			break;
6286 		case Opt_compression_hint_incompressible:
6287 			opt->alloc_hint_flags |=
6288 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6289 			opt->alloc_hint_flags &=
6290 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6291 			break;
6292 		default:
6293 			BUG();
6294 		}
6295 		break;
6296 	case Opt_read_only:
6297 		opt->read_only = true;
6298 		break;
6299 	case Opt_read_write:
6300 		opt->read_only = false;
6301 		break;
6302 	case Opt_lock_on_read:
6303 		opt->lock_on_read = true;
6304 		break;
6305 	case Opt_exclusive:
6306 		opt->exclusive = true;
6307 		break;
6308 	case Opt_notrim:
6309 		opt->trim = false;
6310 		break;
6311 	default:
6312 		BUG();
6313 	}
6314 
6315 	return 0;
6316 
6317 out_of_range:
6318 	return inval_plog(&log, "%s out of range", param->key);
6319 }
6320 
6321 /*
6322  * This duplicates most of generic_parse_monolithic(), untying it from
6323  * fs_context and skipping standard superblock and security options.
6324  */
6325 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6326 {
6327 	char *key;
6328 	int ret = 0;
6329 
6330 	dout("%s '%s'\n", __func__, options);
6331 	while ((key = strsep(&options, ",")) != NULL) {
6332 		if (*key) {
6333 			struct fs_parameter param = {
6334 				.key	= key,
6335 				.type	= fs_value_is_flag,
6336 			};
6337 			char *value = strchr(key, '=');
6338 			size_t v_len = 0;
6339 
6340 			if (value) {
6341 				if (value == key)
6342 					continue;
6343 				*value++ = 0;
6344 				v_len = strlen(value);
6345 				param.string = kmemdup_nul(value, v_len,
6346 							   GFP_KERNEL);
6347 				if (!param.string)
6348 					return -ENOMEM;
6349 				param.type = fs_value_is_string;
6350 			}
6351 			param.size = v_len;
6352 
6353 			ret = rbd_parse_param(&param, pctx);
6354 			kfree(param.string);
6355 			if (ret)
6356 				break;
6357 		}
6358 	}
6359 
6360 	return ret;
6361 }
6362 
6363 /*
6364  * Parse the options provided for an "rbd add" (i.e., rbd image
6365  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6366  * and the data written is passed here via a NUL-terminated buffer.
6367  * Returns 0 if successful or an error code otherwise.
6368  *
6369  * The information extracted from these options is recorded in
6370  * the other parameters which return dynamically-allocated
6371  * structures:
6372  *  ceph_opts
6373  *      The address of a pointer that will refer to a ceph options
6374  *      structure.  Caller must release the returned pointer using
6375  *      ceph_destroy_options() when it is no longer needed.
6376  *  rbd_opts
6377  *	Address of an rbd options pointer.  Fully initialized by
6378  *	this function; caller must release with kfree().
6379  *  spec
6380  *	Address of an rbd image specification pointer.  Fully
6381  *	initialized by this function based on parsed options.
6382  *	Caller must release with rbd_spec_put().
6383  *
6384  * The options passed take this form:
6385  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6386  * where:
6387  *  <mon_addrs>
6388  *      A comma-separated list of one or more monitor addresses.
6389  *      A monitor address is an ip address, optionally followed
6390  *      by a port number (separated by a colon).
6391  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6392  *  <options>
6393  *      A comma-separated list of ceph and/or rbd options.
6394  *  <pool_name>
6395  *      The name of the rados pool containing the rbd image.
6396  *  <image_name>
6397  *      The name of the image in that pool to map.
6398  *  <snap_id>
6399  *      An optional snapshot id.  If provided, the mapping will
6400  *      present data from the image at the time that snapshot was
6401  *      created.  The image head is used if no snapshot id is
6402  *      provided.  Snapshot mappings are always read-only.
6403  */
6404 static int rbd_add_parse_args(const char *buf,
6405 				struct ceph_options **ceph_opts,
6406 				struct rbd_options **opts,
6407 				struct rbd_spec **rbd_spec)
6408 {
6409 	size_t len;
6410 	char *options;
6411 	const char *mon_addrs;
6412 	char *snap_name;
6413 	size_t mon_addrs_size;
6414 	struct rbd_parse_opts_ctx pctx = { 0 };
6415 	int ret;
6416 
6417 	/* The first four tokens are required */
6418 
6419 	len = next_token(&buf);
6420 	if (!len) {
6421 		rbd_warn(NULL, "no monitor address(es) provided");
6422 		return -EINVAL;
6423 	}
6424 	mon_addrs = buf;
6425 	mon_addrs_size = len;
6426 	buf += len;
6427 
6428 	ret = -EINVAL;
6429 	options = dup_token(&buf, NULL);
6430 	if (!options)
6431 		return -ENOMEM;
6432 	if (!*options) {
6433 		rbd_warn(NULL, "no options provided");
6434 		goto out_err;
6435 	}
6436 
6437 	pctx.spec = rbd_spec_alloc();
6438 	if (!pctx.spec)
6439 		goto out_mem;
6440 
6441 	pctx.spec->pool_name = dup_token(&buf, NULL);
6442 	if (!pctx.spec->pool_name)
6443 		goto out_mem;
6444 	if (!*pctx.spec->pool_name) {
6445 		rbd_warn(NULL, "no pool name provided");
6446 		goto out_err;
6447 	}
6448 
6449 	pctx.spec->image_name = dup_token(&buf, NULL);
6450 	if (!pctx.spec->image_name)
6451 		goto out_mem;
6452 	if (!*pctx.spec->image_name) {
6453 		rbd_warn(NULL, "no image name provided");
6454 		goto out_err;
6455 	}
6456 
6457 	/*
6458 	 * Snapshot name is optional; default is to use "-"
6459 	 * (indicating the head/no snapshot).
6460 	 */
6461 	len = next_token(&buf);
6462 	if (!len) {
6463 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6464 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6465 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6466 		ret = -ENAMETOOLONG;
6467 		goto out_err;
6468 	}
6469 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6470 	if (!snap_name)
6471 		goto out_mem;
6472 	*(snap_name + len) = '\0';
6473 	pctx.spec->snap_name = snap_name;
6474 
6475 	pctx.copts = ceph_alloc_options();
6476 	if (!pctx.copts)
6477 		goto out_mem;
6478 
6479 	/* Initialize all rbd options to the defaults */
6480 
6481 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6482 	if (!pctx.opts)
6483 		goto out_mem;
6484 
6485 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6486 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6487 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6488 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6489 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6490 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6491 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6492 
6493 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6494 				 ',');
6495 	if (ret)
6496 		goto out_err;
6497 
6498 	ret = rbd_parse_options(options, &pctx);
6499 	if (ret)
6500 		goto out_err;
6501 
6502 	*ceph_opts = pctx.copts;
6503 	*opts = pctx.opts;
6504 	*rbd_spec = pctx.spec;
6505 	kfree(options);
6506 	return 0;
6507 
6508 out_mem:
6509 	ret = -ENOMEM;
6510 out_err:
6511 	kfree(pctx.opts);
6512 	ceph_destroy_options(pctx.copts);
6513 	rbd_spec_put(pctx.spec);
6514 	kfree(options);
6515 	return ret;
6516 }
6517 
6518 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6519 {
6520 	down_write(&rbd_dev->lock_rwsem);
6521 	if (__rbd_is_lock_owner(rbd_dev))
6522 		__rbd_release_lock(rbd_dev);
6523 	up_write(&rbd_dev->lock_rwsem);
6524 }
6525 
6526 /*
6527  * If the wait is interrupted, an error is returned even if the lock
6528  * was successfully acquired.  rbd_dev_image_unlock() will release it
6529  * if needed.
6530  */
6531 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6532 {
6533 	long ret;
6534 
6535 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6536 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6537 			return 0;
6538 
6539 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6540 		return -EINVAL;
6541 	}
6542 
6543 	if (rbd_is_ro(rbd_dev))
6544 		return 0;
6545 
6546 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6547 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6548 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6549 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6550 	if (ret > 0) {
6551 		ret = rbd_dev->acquire_err;
6552 	} else {
6553 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6554 		if (!ret)
6555 			ret = -ETIMEDOUT;
6556 	}
6557 
6558 	if (ret) {
6559 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6560 		return ret;
6561 	}
6562 
6563 	/*
6564 	 * The lock may have been released by now, unless automatic lock
6565 	 * transitions are disabled.
6566 	 */
6567 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6568 	return 0;
6569 }
6570 
6571 /*
6572  * An rbd format 2 image has a unique identifier, distinct from the
6573  * name given to it by the user.  Internally, that identifier is
6574  * what's used to specify the names of objects related to the image.
6575  *
6576  * A special "rbd id" object is used to map an rbd image name to its
6577  * id.  If that object doesn't exist, then there is no v2 rbd image
6578  * with the supplied name.
6579  *
6580  * This function will record the given rbd_dev's image_id field if
6581  * it can be determined, and in that case will return 0.  If any
6582  * errors occur a negative errno will be returned and the rbd_dev's
6583  * image_id field will be unchanged (and should be NULL).
6584  */
6585 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6586 {
6587 	int ret;
6588 	size_t size;
6589 	CEPH_DEFINE_OID_ONSTACK(oid);
6590 	void *response;
6591 	char *image_id;
6592 
6593 	/*
6594 	 * When probing a parent image, the image id is already
6595 	 * known (and the image name likely is not).  There's no
6596 	 * need to fetch the image id again in this case.  We
6597 	 * do still need to set the image format though.
6598 	 */
6599 	if (rbd_dev->spec->image_id) {
6600 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6601 
6602 		return 0;
6603 	}
6604 
6605 	/*
6606 	 * First, see if the format 2 image id file exists, and if
6607 	 * so, get the image's persistent id from it.
6608 	 */
6609 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6610 			       rbd_dev->spec->image_name);
6611 	if (ret)
6612 		return ret;
6613 
6614 	dout("rbd id object name is %s\n", oid.name);
6615 
6616 	/* Response will be an encoded string, which includes a length */
6617 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6618 	response = kzalloc(size, GFP_NOIO);
6619 	if (!response) {
6620 		ret = -ENOMEM;
6621 		goto out;
6622 	}
6623 
6624 	/* If it doesn't exist we'll assume it's a format 1 image */
6625 
6626 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6627 				  "get_id", NULL, 0,
6628 				  response, size);
6629 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6630 	if (ret == -ENOENT) {
6631 		image_id = kstrdup("", GFP_KERNEL);
6632 		ret = image_id ? 0 : -ENOMEM;
6633 		if (!ret)
6634 			rbd_dev->image_format = 1;
6635 	} else if (ret >= 0) {
6636 		void *p = response;
6637 
6638 		image_id = ceph_extract_encoded_string(&p, p + ret,
6639 						NULL, GFP_NOIO);
6640 		ret = PTR_ERR_OR_ZERO(image_id);
6641 		if (!ret)
6642 			rbd_dev->image_format = 2;
6643 	}
6644 
6645 	if (!ret) {
6646 		rbd_dev->spec->image_id = image_id;
6647 		dout("image_id is %s\n", image_id);
6648 	}
6649 out:
6650 	kfree(response);
6651 	ceph_oid_destroy(&oid);
6652 	return ret;
6653 }
6654 
6655 /*
6656  * Undo whatever state changes are made by v1 or v2 header info
6657  * call.
6658  */
6659 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6660 {
6661 	struct rbd_image_header	*header;
6662 
6663 	rbd_dev_parent_put(rbd_dev);
6664 	rbd_object_map_free(rbd_dev);
6665 	rbd_dev_mapping_clear(rbd_dev);
6666 
6667 	/* Free dynamic fields from the header, then zero it out */
6668 
6669 	header = &rbd_dev->header;
6670 	ceph_put_snap_context(header->snapc);
6671 	kfree(header->snap_sizes);
6672 	kfree(header->snap_names);
6673 	kfree(header->object_prefix);
6674 	memset(header, 0, sizeof (*header));
6675 }
6676 
6677 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6678 {
6679 	int ret;
6680 
6681 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6682 	if (ret)
6683 		goto out_err;
6684 
6685 	/*
6686 	 * Get the and check features for the image.  Currently the
6687 	 * features are assumed to never change.
6688 	 */
6689 	ret = rbd_dev_v2_features(rbd_dev);
6690 	if (ret)
6691 		goto out_err;
6692 
6693 	/* If the image supports fancy striping, get its parameters */
6694 
6695 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6696 		ret = rbd_dev_v2_striping_info(rbd_dev);
6697 		if (ret < 0)
6698 			goto out_err;
6699 	}
6700 
6701 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6702 		ret = rbd_dev_v2_data_pool(rbd_dev);
6703 		if (ret)
6704 			goto out_err;
6705 	}
6706 
6707 	rbd_init_layout(rbd_dev);
6708 	return 0;
6709 
6710 out_err:
6711 	rbd_dev->header.features = 0;
6712 	kfree(rbd_dev->header.object_prefix);
6713 	rbd_dev->header.object_prefix = NULL;
6714 	return ret;
6715 }
6716 
6717 /*
6718  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6719  * rbd_dev_image_probe() recursion depth, which means it's also the
6720  * length of the already discovered part of the parent chain.
6721  */
6722 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6723 {
6724 	struct rbd_device *parent = NULL;
6725 	int ret;
6726 
6727 	if (!rbd_dev->parent_spec)
6728 		return 0;
6729 
6730 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6731 		pr_info("parent chain is too long (%d)\n", depth);
6732 		ret = -EINVAL;
6733 		goto out_err;
6734 	}
6735 
6736 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6737 	if (!parent) {
6738 		ret = -ENOMEM;
6739 		goto out_err;
6740 	}
6741 
6742 	/*
6743 	 * Images related by parent/child relationships always share
6744 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6745 	 */
6746 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6747 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6748 
6749 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6750 
6751 	ret = rbd_dev_image_probe(parent, depth);
6752 	if (ret < 0)
6753 		goto out_err;
6754 
6755 	rbd_dev->parent = parent;
6756 	atomic_set(&rbd_dev->parent_ref, 1);
6757 	return 0;
6758 
6759 out_err:
6760 	rbd_dev_unparent(rbd_dev);
6761 	rbd_dev_destroy(parent);
6762 	return ret;
6763 }
6764 
6765 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6766 {
6767 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6768 	rbd_free_disk(rbd_dev);
6769 	if (!single_major)
6770 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6771 }
6772 
6773 /*
6774  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6775  * upon return.
6776  */
6777 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6778 {
6779 	int ret;
6780 
6781 	/* Record our major and minor device numbers. */
6782 
6783 	if (!single_major) {
6784 		ret = register_blkdev(0, rbd_dev->name);
6785 		if (ret < 0)
6786 			goto err_out_unlock;
6787 
6788 		rbd_dev->major = ret;
6789 		rbd_dev->minor = 0;
6790 	} else {
6791 		rbd_dev->major = rbd_major;
6792 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6793 	}
6794 
6795 	/* Set up the blkdev mapping. */
6796 
6797 	ret = rbd_init_disk(rbd_dev);
6798 	if (ret)
6799 		goto err_out_blkdev;
6800 
6801 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6802 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6803 
6804 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6805 	if (ret)
6806 		goto err_out_disk;
6807 
6808 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6809 	up_write(&rbd_dev->header_rwsem);
6810 	return 0;
6811 
6812 err_out_disk:
6813 	rbd_free_disk(rbd_dev);
6814 err_out_blkdev:
6815 	if (!single_major)
6816 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6817 err_out_unlock:
6818 	up_write(&rbd_dev->header_rwsem);
6819 	return ret;
6820 }
6821 
6822 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6823 {
6824 	struct rbd_spec *spec = rbd_dev->spec;
6825 	int ret;
6826 
6827 	/* Record the header object name for this rbd image. */
6828 
6829 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6830 	if (rbd_dev->image_format == 1)
6831 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6832 				       spec->image_name, RBD_SUFFIX);
6833 	else
6834 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6835 				       RBD_HEADER_PREFIX, spec->image_id);
6836 
6837 	return ret;
6838 }
6839 
6840 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6841 {
6842 	if (!is_snap) {
6843 		pr_info("image %s/%s%s%s does not exist\n",
6844 			rbd_dev->spec->pool_name,
6845 			rbd_dev->spec->pool_ns ?: "",
6846 			rbd_dev->spec->pool_ns ? "/" : "",
6847 			rbd_dev->spec->image_name);
6848 	} else {
6849 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6850 			rbd_dev->spec->pool_name,
6851 			rbd_dev->spec->pool_ns ?: "",
6852 			rbd_dev->spec->pool_ns ? "/" : "",
6853 			rbd_dev->spec->image_name,
6854 			rbd_dev->spec->snap_name);
6855 	}
6856 }
6857 
6858 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6859 {
6860 	if (!rbd_is_ro(rbd_dev))
6861 		rbd_unregister_watch(rbd_dev);
6862 
6863 	rbd_dev_unprobe(rbd_dev);
6864 	rbd_dev->image_format = 0;
6865 	kfree(rbd_dev->spec->image_id);
6866 	rbd_dev->spec->image_id = NULL;
6867 }
6868 
6869 /*
6870  * Probe for the existence of the header object for the given rbd
6871  * device.  If this image is the one being mapped (i.e., not a
6872  * parent), initiate a watch on its header object before using that
6873  * object to get detailed information about the rbd image.
6874  *
6875  * On success, returns with header_rwsem held for write if called
6876  * with @depth == 0.
6877  */
6878 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6879 {
6880 	bool need_watch = !rbd_is_ro(rbd_dev);
6881 	int ret;
6882 
6883 	/*
6884 	 * Get the id from the image id object.  Unless there's an
6885 	 * error, rbd_dev->spec->image_id will be filled in with
6886 	 * a dynamically-allocated string, and rbd_dev->image_format
6887 	 * will be set to either 1 or 2.
6888 	 */
6889 	ret = rbd_dev_image_id(rbd_dev);
6890 	if (ret)
6891 		return ret;
6892 
6893 	ret = rbd_dev_header_name(rbd_dev);
6894 	if (ret)
6895 		goto err_out_format;
6896 
6897 	if (need_watch) {
6898 		ret = rbd_register_watch(rbd_dev);
6899 		if (ret) {
6900 			if (ret == -ENOENT)
6901 				rbd_print_dne(rbd_dev, false);
6902 			goto err_out_format;
6903 		}
6904 	}
6905 
6906 	if (!depth)
6907 		down_write(&rbd_dev->header_rwsem);
6908 
6909 	ret = rbd_dev_header_info(rbd_dev);
6910 	if (ret) {
6911 		if (ret == -ENOENT && !need_watch)
6912 			rbd_print_dne(rbd_dev, false);
6913 		goto err_out_probe;
6914 	}
6915 
6916 	/*
6917 	 * If this image is the one being mapped, we have pool name and
6918 	 * id, image name and id, and snap name - need to fill snap id.
6919 	 * Otherwise this is a parent image, identified by pool, image
6920 	 * and snap ids - need to fill in names for those ids.
6921 	 */
6922 	if (!depth)
6923 		ret = rbd_spec_fill_snap_id(rbd_dev);
6924 	else
6925 		ret = rbd_spec_fill_names(rbd_dev);
6926 	if (ret) {
6927 		if (ret == -ENOENT)
6928 			rbd_print_dne(rbd_dev, true);
6929 		goto err_out_probe;
6930 	}
6931 
6932 	ret = rbd_dev_mapping_set(rbd_dev);
6933 	if (ret)
6934 		goto err_out_probe;
6935 
6936 	if (rbd_is_snap(rbd_dev) &&
6937 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6938 		ret = rbd_object_map_load(rbd_dev);
6939 		if (ret)
6940 			goto err_out_probe;
6941 	}
6942 
6943 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6944 		ret = rbd_dev_v2_parent_info(rbd_dev);
6945 		if (ret)
6946 			goto err_out_probe;
6947 	}
6948 
6949 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6950 	if (ret)
6951 		goto err_out_probe;
6952 
6953 	dout("discovered format %u image, header name is %s\n",
6954 		rbd_dev->image_format, rbd_dev->header_oid.name);
6955 	return 0;
6956 
6957 err_out_probe:
6958 	if (!depth)
6959 		up_write(&rbd_dev->header_rwsem);
6960 	if (need_watch)
6961 		rbd_unregister_watch(rbd_dev);
6962 	rbd_dev_unprobe(rbd_dev);
6963 err_out_format:
6964 	rbd_dev->image_format = 0;
6965 	kfree(rbd_dev->spec->image_id);
6966 	rbd_dev->spec->image_id = NULL;
6967 	return ret;
6968 }
6969 
6970 static ssize_t do_rbd_add(const char *buf, size_t count)
6971 {
6972 	struct rbd_device *rbd_dev = NULL;
6973 	struct ceph_options *ceph_opts = NULL;
6974 	struct rbd_options *rbd_opts = NULL;
6975 	struct rbd_spec *spec = NULL;
6976 	struct rbd_client *rbdc;
6977 	int rc;
6978 
6979 	if (!capable(CAP_SYS_ADMIN))
6980 		return -EPERM;
6981 
6982 	if (!try_module_get(THIS_MODULE))
6983 		return -ENODEV;
6984 
6985 	/* parse add command */
6986 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6987 	if (rc < 0)
6988 		goto out;
6989 
6990 	rbdc = rbd_get_client(ceph_opts);
6991 	if (IS_ERR(rbdc)) {
6992 		rc = PTR_ERR(rbdc);
6993 		goto err_out_args;
6994 	}
6995 
6996 	/* pick the pool */
6997 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
6998 	if (rc < 0) {
6999 		if (rc == -ENOENT)
7000 			pr_info("pool %s does not exist\n", spec->pool_name);
7001 		goto err_out_client;
7002 	}
7003 	spec->pool_id = (u64)rc;
7004 
7005 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7006 	if (!rbd_dev) {
7007 		rc = -ENOMEM;
7008 		goto err_out_client;
7009 	}
7010 	rbdc = NULL;		/* rbd_dev now owns this */
7011 	spec = NULL;		/* rbd_dev now owns this */
7012 	rbd_opts = NULL;	/* rbd_dev now owns this */
7013 
7014 	/* if we are mapping a snapshot it will be a read-only mapping */
7015 	if (rbd_dev->opts->read_only ||
7016 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7017 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7018 
7019 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7020 	if (!rbd_dev->config_info) {
7021 		rc = -ENOMEM;
7022 		goto err_out_rbd_dev;
7023 	}
7024 
7025 	rc = rbd_dev_image_probe(rbd_dev, 0);
7026 	if (rc < 0)
7027 		goto err_out_rbd_dev;
7028 
7029 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7030 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7031 			 rbd_dev->layout.object_size);
7032 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7033 	}
7034 
7035 	rc = rbd_dev_device_setup(rbd_dev);
7036 	if (rc)
7037 		goto err_out_image_probe;
7038 
7039 	rc = rbd_add_acquire_lock(rbd_dev);
7040 	if (rc)
7041 		goto err_out_image_lock;
7042 
7043 	/* Everything's ready.  Announce the disk to the world. */
7044 
7045 	rc = device_add(&rbd_dev->dev);
7046 	if (rc)
7047 		goto err_out_image_lock;
7048 
7049 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7050 	if (rc)
7051 		goto err_out_cleanup_disk;
7052 
7053 	spin_lock(&rbd_dev_list_lock);
7054 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7055 	spin_unlock(&rbd_dev_list_lock);
7056 
7057 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7058 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7059 		rbd_dev->header.features);
7060 	rc = count;
7061 out:
7062 	module_put(THIS_MODULE);
7063 	return rc;
7064 
7065 err_out_cleanup_disk:
7066 	rbd_free_disk(rbd_dev);
7067 err_out_image_lock:
7068 	rbd_dev_image_unlock(rbd_dev);
7069 	rbd_dev_device_release(rbd_dev);
7070 err_out_image_probe:
7071 	rbd_dev_image_release(rbd_dev);
7072 err_out_rbd_dev:
7073 	rbd_dev_destroy(rbd_dev);
7074 err_out_client:
7075 	rbd_put_client(rbdc);
7076 err_out_args:
7077 	rbd_spec_put(spec);
7078 	kfree(rbd_opts);
7079 	goto out;
7080 }
7081 
7082 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7083 {
7084 	if (single_major)
7085 		return -EINVAL;
7086 
7087 	return do_rbd_add(buf, count);
7088 }
7089 
7090 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7091 				      size_t count)
7092 {
7093 	return do_rbd_add(buf, count);
7094 }
7095 
7096 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7097 {
7098 	while (rbd_dev->parent) {
7099 		struct rbd_device *first = rbd_dev;
7100 		struct rbd_device *second = first->parent;
7101 		struct rbd_device *third;
7102 
7103 		/*
7104 		 * Follow to the parent with no grandparent and
7105 		 * remove it.
7106 		 */
7107 		while (second && (third = second->parent)) {
7108 			first = second;
7109 			second = third;
7110 		}
7111 		rbd_assert(second);
7112 		rbd_dev_image_release(second);
7113 		rbd_dev_destroy(second);
7114 		first->parent = NULL;
7115 		first->parent_overlap = 0;
7116 
7117 		rbd_assert(first->parent_spec);
7118 		rbd_spec_put(first->parent_spec);
7119 		first->parent_spec = NULL;
7120 	}
7121 }
7122 
7123 static ssize_t do_rbd_remove(const char *buf, size_t count)
7124 {
7125 	struct rbd_device *rbd_dev = NULL;
7126 	struct list_head *tmp;
7127 	int dev_id;
7128 	char opt_buf[6];
7129 	bool force = false;
7130 	int ret;
7131 
7132 	if (!capable(CAP_SYS_ADMIN))
7133 		return -EPERM;
7134 
7135 	dev_id = -1;
7136 	opt_buf[0] = '\0';
7137 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7138 	if (dev_id < 0) {
7139 		pr_err("dev_id out of range\n");
7140 		return -EINVAL;
7141 	}
7142 	if (opt_buf[0] != '\0') {
7143 		if (!strcmp(opt_buf, "force")) {
7144 			force = true;
7145 		} else {
7146 			pr_err("bad remove option at '%s'\n", opt_buf);
7147 			return -EINVAL;
7148 		}
7149 	}
7150 
7151 	ret = -ENOENT;
7152 	spin_lock(&rbd_dev_list_lock);
7153 	list_for_each(tmp, &rbd_dev_list) {
7154 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7155 		if (rbd_dev->dev_id == dev_id) {
7156 			ret = 0;
7157 			break;
7158 		}
7159 	}
7160 	if (!ret) {
7161 		spin_lock_irq(&rbd_dev->lock);
7162 		if (rbd_dev->open_count && !force)
7163 			ret = -EBUSY;
7164 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7165 					  &rbd_dev->flags))
7166 			ret = -EINPROGRESS;
7167 		spin_unlock_irq(&rbd_dev->lock);
7168 	}
7169 	spin_unlock(&rbd_dev_list_lock);
7170 	if (ret)
7171 		return ret;
7172 
7173 	if (force) {
7174 		/*
7175 		 * Prevent new IO from being queued and wait for existing
7176 		 * IO to complete/fail.
7177 		 */
7178 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7179 		blk_mark_disk_dead(rbd_dev->disk);
7180 	}
7181 
7182 	del_gendisk(rbd_dev->disk);
7183 	spin_lock(&rbd_dev_list_lock);
7184 	list_del_init(&rbd_dev->node);
7185 	spin_unlock(&rbd_dev_list_lock);
7186 	device_del(&rbd_dev->dev);
7187 
7188 	rbd_dev_image_unlock(rbd_dev);
7189 	rbd_dev_device_release(rbd_dev);
7190 	rbd_dev_image_release(rbd_dev);
7191 	rbd_dev_destroy(rbd_dev);
7192 	return count;
7193 }
7194 
7195 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7196 {
7197 	if (single_major)
7198 		return -EINVAL;
7199 
7200 	return do_rbd_remove(buf, count);
7201 }
7202 
7203 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7204 					 size_t count)
7205 {
7206 	return do_rbd_remove(buf, count);
7207 }
7208 
7209 /*
7210  * create control files in sysfs
7211  * /sys/bus/rbd/...
7212  */
7213 static int __init rbd_sysfs_init(void)
7214 {
7215 	int ret;
7216 
7217 	ret = device_register(&rbd_root_dev);
7218 	if (ret < 0) {
7219 		put_device(&rbd_root_dev);
7220 		return ret;
7221 	}
7222 
7223 	ret = bus_register(&rbd_bus_type);
7224 	if (ret < 0)
7225 		device_unregister(&rbd_root_dev);
7226 
7227 	return ret;
7228 }
7229 
7230 static void __exit rbd_sysfs_cleanup(void)
7231 {
7232 	bus_unregister(&rbd_bus_type);
7233 	device_unregister(&rbd_root_dev);
7234 }
7235 
7236 static int __init rbd_slab_init(void)
7237 {
7238 	rbd_assert(!rbd_img_request_cache);
7239 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7240 	if (!rbd_img_request_cache)
7241 		return -ENOMEM;
7242 
7243 	rbd_assert(!rbd_obj_request_cache);
7244 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7245 	if (!rbd_obj_request_cache)
7246 		goto out_err;
7247 
7248 	return 0;
7249 
7250 out_err:
7251 	kmem_cache_destroy(rbd_img_request_cache);
7252 	rbd_img_request_cache = NULL;
7253 	return -ENOMEM;
7254 }
7255 
7256 static void rbd_slab_exit(void)
7257 {
7258 	rbd_assert(rbd_obj_request_cache);
7259 	kmem_cache_destroy(rbd_obj_request_cache);
7260 	rbd_obj_request_cache = NULL;
7261 
7262 	rbd_assert(rbd_img_request_cache);
7263 	kmem_cache_destroy(rbd_img_request_cache);
7264 	rbd_img_request_cache = NULL;
7265 }
7266 
7267 static int __init rbd_init(void)
7268 {
7269 	int rc;
7270 
7271 	if (!libceph_compatible(NULL)) {
7272 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7273 		return -EINVAL;
7274 	}
7275 
7276 	rc = rbd_slab_init();
7277 	if (rc)
7278 		return rc;
7279 
7280 	/*
7281 	 * The number of active work items is limited by the number of
7282 	 * rbd devices * queue depth, so leave @max_active at default.
7283 	 */
7284 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7285 	if (!rbd_wq) {
7286 		rc = -ENOMEM;
7287 		goto err_out_slab;
7288 	}
7289 
7290 	if (single_major) {
7291 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7292 		if (rbd_major < 0) {
7293 			rc = rbd_major;
7294 			goto err_out_wq;
7295 		}
7296 	}
7297 
7298 	rc = rbd_sysfs_init();
7299 	if (rc)
7300 		goto err_out_blkdev;
7301 
7302 	if (single_major)
7303 		pr_info("loaded (major %d)\n", rbd_major);
7304 	else
7305 		pr_info("loaded\n");
7306 
7307 	return 0;
7308 
7309 err_out_blkdev:
7310 	if (single_major)
7311 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7312 err_out_wq:
7313 	destroy_workqueue(rbd_wq);
7314 err_out_slab:
7315 	rbd_slab_exit();
7316 	return rc;
7317 }
7318 
7319 static void __exit rbd_exit(void)
7320 {
7321 	ida_destroy(&rbd_dev_id_ida);
7322 	rbd_sysfs_cleanup();
7323 	if (single_major)
7324 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7325 	destroy_workqueue(rbd_wq);
7326 	rbd_slab_exit();
7327 }
7328 
7329 module_init(rbd_init);
7330 module_exit(rbd_exit);
7331 
7332 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7333 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7334 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7335 /* following authorship retained from original osdblk.c */
7336 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7337 
7338 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7339 MODULE_LICENSE("GPL");
7340