1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1ULL<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 126 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 127 128 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 129 RBD_FEATURE_STRIPINGV2 | \ 130 RBD_FEATURE_EXCLUSIVE_LOCK | \ 131 RBD_FEATURE_DATA_POOL) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 191 const char *image_id; 192 const char *image_name; 193 194 u64 snap_id; 195 const char *snap_name; 196 197 struct kref kref; 198 }; 199 200 /* 201 * an instance of the client. multiple devices may share an rbd client. 202 */ 203 struct rbd_client { 204 struct ceph_client *client; 205 struct kref kref; 206 struct list_head node; 207 }; 208 209 struct rbd_img_request; 210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 211 212 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 213 214 struct rbd_obj_request; 215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 219 }; 220 221 enum obj_operation_type { 222 OBJ_OP_WRITE, 223 OBJ_OP_READ, 224 OBJ_OP_DISCARD, 225 }; 226 227 enum obj_req_flags { 228 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 229 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 230 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 231 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 232 }; 233 234 struct rbd_obj_request { 235 u64 object_no; 236 u64 offset; /* object start byte */ 237 u64 length; /* bytes from offset */ 238 unsigned long flags; 239 240 /* 241 * An object request associated with an image will have its 242 * img_data flag set; a standalone object request will not. 243 * 244 * A standalone object request will have which == BAD_WHICH 245 * and a null obj_request pointer. 246 * 247 * An object request initiated in support of a layered image 248 * object (to check for its existence before a write) will 249 * have which == BAD_WHICH and a non-null obj_request pointer. 250 * 251 * Finally, an object request for rbd image data will have 252 * which != BAD_WHICH, and will have a non-null img_request 253 * pointer. The value of which will be in the range 254 * 0..(img_request->obj_request_count-1). 255 */ 256 union { 257 struct rbd_obj_request *obj_request; /* STAT op */ 258 struct { 259 struct rbd_img_request *img_request; 260 u64 img_offset; 261 /* links for img_request->obj_requests list */ 262 struct list_head links; 263 }; 264 }; 265 u32 which; /* posn image request list */ 266 267 enum obj_request_type type; 268 union { 269 struct bio *bio_list; 270 struct { 271 struct page **pages; 272 u32 page_count; 273 }; 274 }; 275 struct page **copyup_pages; 276 u32 copyup_page_count; 277 278 struct ceph_osd_request *osd_req; 279 280 u64 xferred; /* bytes transferred */ 281 int result; 282 283 rbd_obj_callback_t callback; 284 struct completion completion; 285 286 struct kref kref; 287 }; 288 289 enum img_req_flags { 290 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 291 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 292 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 293 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 294 }; 295 296 struct rbd_img_request { 297 struct rbd_device *rbd_dev; 298 u64 offset; /* starting image byte offset */ 299 u64 length; /* byte count from offset */ 300 unsigned long flags; 301 union { 302 u64 snap_id; /* for reads */ 303 struct ceph_snap_context *snapc; /* for writes */ 304 }; 305 union { 306 struct request *rq; /* block request */ 307 struct rbd_obj_request *obj_request; /* obj req initiator */ 308 }; 309 struct page **copyup_pages; 310 u32 copyup_page_count; 311 spinlock_t completion_lock;/* protects next_completion */ 312 u32 next_completion; 313 rbd_img_callback_t callback; 314 u64 xferred;/* aggregate bytes transferred */ 315 int result; /* first nonzero obj_request result */ 316 317 u32 obj_request_count; 318 struct list_head obj_requests; /* rbd_obj_request structs */ 319 320 struct kref kref; 321 }; 322 323 #define for_each_obj_request(ireq, oreq) \ 324 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 325 #define for_each_obj_request_from(ireq, oreq) \ 326 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 327 #define for_each_obj_request_safe(ireq, oreq, n) \ 328 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 329 330 enum rbd_watch_state { 331 RBD_WATCH_STATE_UNREGISTERED, 332 RBD_WATCH_STATE_REGISTERED, 333 RBD_WATCH_STATE_ERROR, 334 }; 335 336 enum rbd_lock_state { 337 RBD_LOCK_STATE_UNLOCKED, 338 RBD_LOCK_STATE_LOCKED, 339 RBD_LOCK_STATE_RELEASING, 340 }; 341 342 /* WatchNotify::ClientId */ 343 struct rbd_client_id { 344 u64 gid; 345 u64 handle; 346 }; 347 348 struct rbd_mapping { 349 u64 size; 350 u64 features; 351 bool read_only; 352 }; 353 354 /* 355 * a single device 356 */ 357 struct rbd_device { 358 int dev_id; /* blkdev unique id */ 359 360 int major; /* blkdev assigned major */ 361 int minor; 362 struct gendisk *disk; /* blkdev's gendisk and rq */ 363 364 u32 image_format; /* Either 1 or 2 */ 365 struct rbd_client *rbd_client; 366 367 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 368 369 spinlock_t lock; /* queue, flags, open_count */ 370 371 struct rbd_image_header header; 372 unsigned long flags; /* possibly lock protected */ 373 struct rbd_spec *spec; 374 struct rbd_options *opts; 375 char *config_info; /* add{,_single_major} string */ 376 377 struct ceph_object_id header_oid; 378 struct ceph_object_locator header_oloc; 379 380 struct ceph_file_layout layout; /* used for all rbd requests */ 381 382 struct mutex watch_mutex; 383 enum rbd_watch_state watch_state; 384 struct ceph_osd_linger_request *watch_handle; 385 u64 watch_cookie; 386 struct delayed_work watch_dwork; 387 388 struct rw_semaphore lock_rwsem; 389 enum rbd_lock_state lock_state; 390 char lock_cookie[32]; 391 struct rbd_client_id owner_cid; 392 struct work_struct acquired_lock_work; 393 struct work_struct released_lock_work; 394 struct delayed_work lock_dwork; 395 struct work_struct unlock_work; 396 wait_queue_head_t lock_waitq; 397 398 struct workqueue_struct *task_wq; 399 400 struct rbd_spec *parent_spec; 401 u64 parent_overlap; 402 atomic_t parent_ref; 403 struct rbd_device *parent; 404 405 /* Block layer tags. */ 406 struct blk_mq_tag_set tag_set; 407 408 /* protects updating the header */ 409 struct rw_semaphore header_rwsem; 410 411 struct rbd_mapping mapping; 412 413 struct list_head node; 414 415 /* sysfs related */ 416 struct device dev; 417 unsigned long open_count; /* protected by lock */ 418 }; 419 420 /* 421 * Flag bits for rbd_dev->flags: 422 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 423 * by rbd_dev->lock 424 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 425 */ 426 enum rbd_dev_flags { 427 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 428 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 429 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 430 }; 431 432 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 433 434 static LIST_HEAD(rbd_dev_list); /* devices */ 435 static DEFINE_SPINLOCK(rbd_dev_list_lock); 436 437 static LIST_HEAD(rbd_client_list); /* clients */ 438 static DEFINE_SPINLOCK(rbd_client_list_lock); 439 440 /* Slab caches for frequently-allocated structures */ 441 442 static struct kmem_cache *rbd_img_request_cache; 443 static struct kmem_cache *rbd_obj_request_cache; 444 445 static int rbd_major; 446 static DEFINE_IDA(rbd_dev_id_ida); 447 448 static struct workqueue_struct *rbd_wq; 449 450 /* 451 * Default to false for now, as single-major requires >= 0.75 version of 452 * userspace rbd utility. 453 */ 454 static bool single_major = false; 455 module_param(single_major, bool, S_IRUGO); 456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 457 458 static int rbd_img_request_submit(struct rbd_img_request *img_request); 459 460 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 461 size_t count); 462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 463 size_t count); 464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 465 size_t count); 466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 467 size_t count); 468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 469 static void rbd_spec_put(struct rbd_spec *spec); 470 471 static int rbd_dev_id_to_minor(int dev_id) 472 { 473 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 474 } 475 476 static int minor_to_rbd_dev_id(int minor) 477 { 478 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 479 } 480 481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 482 { 483 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 484 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 485 } 486 487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 488 { 489 bool is_lock_owner; 490 491 down_read(&rbd_dev->lock_rwsem); 492 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 493 up_read(&rbd_dev->lock_rwsem); 494 return is_lock_owner; 495 } 496 497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 498 { 499 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 500 } 501 502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL); 507 508 static struct attribute *rbd_bus_attrs[] = { 509 &bus_attr_add.attr, 510 &bus_attr_remove.attr, 511 &bus_attr_add_single_major.attr, 512 &bus_attr_remove_single_major.attr, 513 &bus_attr_supported_features.attr, 514 NULL, 515 }; 516 517 static umode_t rbd_bus_is_visible(struct kobject *kobj, 518 struct attribute *attr, int index) 519 { 520 if (!single_major && 521 (attr == &bus_attr_add_single_major.attr || 522 attr == &bus_attr_remove_single_major.attr)) 523 return 0; 524 525 return attr->mode; 526 } 527 528 static const struct attribute_group rbd_bus_group = { 529 .attrs = rbd_bus_attrs, 530 .is_visible = rbd_bus_is_visible, 531 }; 532 __ATTRIBUTE_GROUPS(rbd_bus); 533 534 static struct bus_type rbd_bus_type = { 535 .name = "rbd", 536 .bus_groups = rbd_bus_groups, 537 }; 538 539 static void rbd_root_dev_release(struct device *dev) 540 { 541 } 542 543 static struct device rbd_root_dev = { 544 .init_name = "rbd", 545 .release = rbd_root_dev_release, 546 }; 547 548 static __printf(2, 3) 549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 550 { 551 struct va_format vaf; 552 va_list args; 553 554 va_start(args, fmt); 555 vaf.fmt = fmt; 556 vaf.va = &args; 557 558 if (!rbd_dev) 559 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 560 else if (rbd_dev->disk) 561 printk(KERN_WARNING "%s: %s: %pV\n", 562 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 563 else if (rbd_dev->spec && rbd_dev->spec->image_name) 564 printk(KERN_WARNING "%s: image %s: %pV\n", 565 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 566 else if (rbd_dev->spec && rbd_dev->spec->image_id) 567 printk(KERN_WARNING "%s: id %s: %pV\n", 568 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 569 else /* punt */ 570 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 571 RBD_DRV_NAME, rbd_dev, &vaf); 572 va_end(args); 573 } 574 575 #ifdef RBD_DEBUG 576 #define rbd_assert(expr) \ 577 if (unlikely(!(expr))) { \ 578 printk(KERN_ERR "\nAssertion failure in %s() " \ 579 "at line %d:\n\n" \ 580 "\trbd_assert(%s);\n\n", \ 581 __func__, __LINE__, #expr); \ 582 BUG(); \ 583 } 584 #else /* !RBD_DEBUG */ 585 # define rbd_assert(expr) ((void) 0) 586 #endif /* !RBD_DEBUG */ 587 588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 592 593 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 595 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 598 u64 snap_id); 599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 600 u8 *order, u64 *snap_size); 601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 602 u64 *snap_features); 603 604 static int rbd_open(struct block_device *bdev, fmode_t mode) 605 { 606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 607 bool removing = false; 608 609 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 610 return -EROFS; 611 612 spin_lock_irq(&rbd_dev->lock); 613 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 614 removing = true; 615 else 616 rbd_dev->open_count++; 617 spin_unlock_irq(&rbd_dev->lock); 618 if (removing) 619 return -ENOENT; 620 621 (void) get_device(&rbd_dev->dev); 622 623 return 0; 624 } 625 626 static void rbd_release(struct gendisk *disk, fmode_t mode) 627 { 628 struct rbd_device *rbd_dev = disk->private_data; 629 unsigned long open_count_before; 630 631 spin_lock_irq(&rbd_dev->lock); 632 open_count_before = rbd_dev->open_count--; 633 spin_unlock_irq(&rbd_dev->lock); 634 rbd_assert(open_count_before > 0); 635 636 put_device(&rbd_dev->dev); 637 } 638 639 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 640 { 641 int ret = 0; 642 int val; 643 bool ro; 644 bool ro_changed = false; 645 646 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 647 if (get_user(val, (int __user *)(arg))) 648 return -EFAULT; 649 650 ro = val ? true : false; 651 /* Snapshot doesn't allow to write*/ 652 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 653 return -EROFS; 654 655 spin_lock_irq(&rbd_dev->lock); 656 /* prevent others open this device */ 657 if (rbd_dev->open_count > 1) { 658 ret = -EBUSY; 659 goto out; 660 } 661 662 if (rbd_dev->mapping.read_only != ro) { 663 rbd_dev->mapping.read_only = ro; 664 ro_changed = true; 665 } 666 667 out: 668 spin_unlock_irq(&rbd_dev->lock); 669 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 670 if (ret == 0 && ro_changed) 671 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 672 673 return ret; 674 } 675 676 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 677 unsigned int cmd, unsigned long arg) 678 { 679 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 680 int ret = 0; 681 682 switch (cmd) { 683 case BLKROSET: 684 ret = rbd_ioctl_set_ro(rbd_dev, arg); 685 break; 686 default: 687 ret = -ENOTTY; 688 } 689 690 return ret; 691 } 692 693 #ifdef CONFIG_COMPAT 694 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 695 unsigned int cmd, unsigned long arg) 696 { 697 return rbd_ioctl(bdev, mode, cmd, arg); 698 } 699 #endif /* CONFIG_COMPAT */ 700 701 static const struct block_device_operations rbd_bd_ops = { 702 .owner = THIS_MODULE, 703 .open = rbd_open, 704 .release = rbd_release, 705 .ioctl = rbd_ioctl, 706 #ifdef CONFIG_COMPAT 707 .compat_ioctl = rbd_compat_ioctl, 708 #endif 709 }; 710 711 /* 712 * Initialize an rbd client instance. Success or not, this function 713 * consumes ceph_opts. Caller holds client_mutex. 714 */ 715 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 716 { 717 struct rbd_client *rbdc; 718 int ret = -ENOMEM; 719 720 dout("%s:\n", __func__); 721 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 722 if (!rbdc) 723 goto out_opt; 724 725 kref_init(&rbdc->kref); 726 INIT_LIST_HEAD(&rbdc->node); 727 728 rbdc->client = ceph_create_client(ceph_opts, rbdc); 729 if (IS_ERR(rbdc->client)) 730 goto out_rbdc; 731 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 732 733 ret = ceph_open_session(rbdc->client); 734 if (ret < 0) 735 goto out_client; 736 737 spin_lock(&rbd_client_list_lock); 738 list_add_tail(&rbdc->node, &rbd_client_list); 739 spin_unlock(&rbd_client_list_lock); 740 741 dout("%s: rbdc %p\n", __func__, rbdc); 742 743 return rbdc; 744 out_client: 745 ceph_destroy_client(rbdc->client); 746 out_rbdc: 747 kfree(rbdc); 748 out_opt: 749 if (ceph_opts) 750 ceph_destroy_options(ceph_opts); 751 dout("%s: error %d\n", __func__, ret); 752 753 return ERR_PTR(ret); 754 } 755 756 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 757 { 758 kref_get(&rbdc->kref); 759 760 return rbdc; 761 } 762 763 /* 764 * Find a ceph client with specific addr and configuration. If 765 * found, bump its reference count. 766 */ 767 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 768 { 769 struct rbd_client *client_node; 770 bool found = false; 771 772 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 773 return NULL; 774 775 spin_lock(&rbd_client_list_lock); 776 list_for_each_entry(client_node, &rbd_client_list, node) { 777 if (!ceph_compare_options(ceph_opts, client_node->client)) { 778 __rbd_get_client(client_node); 779 780 found = true; 781 break; 782 } 783 } 784 spin_unlock(&rbd_client_list_lock); 785 786 return found ? client_node : NULL; 787 } 788 789 /* 790 * (Per device) rbd map options 791 */ 792 enum { 793 Opt_queue_depth, 794 Opt_last_int, 795 /* int args above */ 796 Opt_last_string, 797 /* string args above */ 798 Opt_read_only, 799 Opt_read_write, 800 Opt_lock_on_read, 801 Opt_exclusive, 802 Opt_err 803 }; 804 805 static match_table_t rbd_opts_tokens = { 806 {Opt_queue_depth, "queue_depth=%d"}, 807 /* int args above */ 808 /* string args above */ 809 {Opt_read_only, "read_only"}, 810 {Opt_read_only, "ro"}, /* Alternate spelling */ 811 {Opt_read_write, "read_write"}, 812 {Opt_read_write, "rw"}, /* Alternate spelling */ 813 {Opt_lock_on_read, "lock_on_read"}, 814 {Opt_exclusive, "exclusive"}, 815 {Opt_err, NULL} 816 }; 817 818 struct rbd_options { 819 int queue_depth; 820 bool read_only; 821 bool lock_on_read; 822 bool exclusive; 823 }; 824 825 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 826 #define RBD_READ_ONLY_DEFAULT false 827 #define RBD_LOCK_ON_READ_DEFAULT false 828 #define RBD_EXCLUSIVE_DEFAULT false 829 830 static int parse_rbd_opts_token(char *c, void *private) 831 { 832 struct rbd_options *rbd_opts = private; 833 substring_t argstr[MAX_OPT_ARGS]; 834 int token, intval, ret; 835 836 token = match_token(c, rbd_opts_tokens, argstr); 837 if (token < Opt_last_int) { 838 ret = match_int(&argstr[0], &intval); 839 if (ret < 0) { 840 pr_err("bad mount option arg (not int) at '%s'\n", c); 841 return ret; 842 } 843 dout("got int token %d val %d\n", token, intval); 844 } else if (token > Opt_last_int && token < Opt_last_string) { 845 dout("got string token %d val %s\n", token, argstr[0].from); 846 } else { 847 dout("got token %d\n", token); 848 } 849 850 switch (token) { 851 case Opt_queue_depth: 852 if (intval < 1) { 853 pr_err("queue_depth out of range\n"); 854 return -EINVAL; 855 } 856 rbd_opts->queue_depth = intval; 857 break; 858 case Opt_read_only: 859 rbd_opts->read_only = true; 860 break; 861 case Opt_read_write: 862 rbd_opts->read_only = false; 863 break; 864 case Opt_lock_on_read: 865 rbd_opts->lock_on_read = true; 866 break; 867 case Opt_exclusive: 868 rbd_opts->exclusive = true; 869 break; 870 default: 871 /* libceph prints "bad option" msg */ 872 return -EINVAL; 873 } 874 875 return 0; 876 } 877 878 static char* obj_op_name(enum obj_operation_type op_type) 879 { 880 switch (op_type) { 881 case OBJ_OP_READ: 882 return "read"; 883 case OBJ_OP_WRITE: 884 return "write"; 885 case OBJ_OP_DISCARD: 886 return "discard"; 887 default: 888 return "???"; 889 } 890 } 891 892 /* 893 * Get a ceph client with specific addr and configuration, if one does 894 * not exist create it. Either way, ceph_opts is consumed by this 895 * function. 896 */ 897 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 898 { 899 struct rbd_client *rbdc; 900 901 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 902 rbdc = rbd_client_find(ceph_opts); 903 if (rbdc) /* using an existing client */ 904 ceph_destroy_options(ceph_opts); 905 else 906 rbdc = rbd_client_create(ceph_opts); 907 mutex_unlock(&client_mutex); 908 909 return rbdc; 910 } 911 912 /* 913 * Destroy ceph client 914 * 915 * Caller must hold rbd_client_list_lock. 916 */ 917 static void rbd_client_release(struct kref *kref) 918 { 919 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 920 921 dout("%s: rbdc %p\n", __func__, rbdc); 922 spin_lock(&rbd_client_list_lock); 923 list_del(&rbdc->node); 924 spin_unlock(&rbd_client_list_lock); 925 926 ceph_destroy_client(rbdc->client); 927 kfree(rbdc); 928 } 929 930 /* 931 * Drop reference to ceph client node. If it's not referenced anymore, release 932 * it. 933 */ 934 static void rbd_put_client(struct rbd_client *rbdc) 935 { 936 if (rbdc) 937 kref_put(&rbdc->kref, rbd_client_release); 938 } 939 940 static bool rbd_image_format_valid(u32 image_format) 941 { 942 return image_format == 1 || image_format == 2; 943 } 944 945 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 946 { 947 size_t size; 948 u32 snap_count; 949 950 /* The header has to start with the magic rbd header text */ 951 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 952 return false; 953 954 /* The bio layer requires at least sector-sized I/O */ 955 956 if (ondisk->options.order < SECTOR_SHIFT) 957 return false; 958 959 /* If we use u64 in a few spots we may be able to loosen this */ 960 961 if (ondisk->options.order > 8 * sizeof (int) - 1) 962 return false; 963 964 /* 965 * The size of a snapshot header has to fit in a size_t, and 966 * that limits the number of snapshots. 967 */ 968 snap_count = le32_to_cpu(ondisk->snap_count); 969 size = SIZE_MAX - sizeof (struct ceph_snap_context); 970 if (snap_count > size / sizeof (__le64)) 971 return false; 972 973 /* 974 * Not only that, but the size of the entire the snapshot 975 * header must also be representable in a size_t. 976 */ 977 size -= snap_count * sizeof (__le64); 978 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 979 return false; 980 981 return true; 982 } 983 984 /* 985 * returns the size of an object in the image 986 */ 987 static u32 rbd_obj_bytes(struct rbd_image_header *header) 988 { 989 return 1U << header->obj_order; 990 } 991 992 static void rbd_init_layout(struct rbd_device *rbd_dev) 993 { 994 if (rbd_dev->header.stripe_unit == 0 || 995 rbd_dev->header.stripe_count == 0) { 996 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 997 rbd_dev->header.stripe_count = 1; 998 } 999 1000 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 1001 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 1002 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 1003 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 1004 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 1005 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 1006 } 1007 1008 /* 1009 * Fill an rbd image header with information from the given format 1 1010 * on-disk header. 1011 */ 1012 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1013 struct rbd_image_header_ondisk *ondisk) 1014 { 1015 struct rbd_image_header *header = &rbd_dev->header; 1016 bool first_time = header->object_prefix == NULL; 1017 struct ceph_snap_context *snapc; 1018 char *object_prefix = NULL; 1019 char *snap_names = NULL; 1020 u64 *snap_sizes = NULL; 1021 u32 snap_count; 1022 int ret = -ENOMEM; 1023 u32 i; 1024 1025 /* Allocate this now to avoid having to handle failure below */ 1026 1027 if (first_time) { 1028 object_prefix = kstrndup(ondisk->object_prefix, 1029 sizeof(ondisk->object_prefix), 1030 GFP_KERNEL); 1031 if (!object_prefix) 1032 return -ENOMEM; 1033 } 1034 1035 /* Allocate the snapshot context and fill it in */ 1036 1037 snap_count = le32_to_cpu(ondisk->snap_count); 1038 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1039 if (!snapc) 1040 goto out_err; 1041 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1042 if (snap_count) { 1043 struct rbd_image_snap_ondisk *snaps; 1044 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1045 1046 /* We'll keep a copy of the snapshot names... */ 1047 1048 if (snap_names_len > (u64)SIZE_MAX) 1049 goto out_2big; 1050 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1051 if (!snap_names) 1052 goto out_err; 1053 1054 /* ...as well as the array of their sizes. */ 1055 snap_sizes = kmalloc_array(snap_count, 1056 sizeof(*header->snap_sizes), 1057 GFP_KERNEL); 1058 if (!snap_sizes) 1059 goto out_err; 1060 1061 /* 1062 * Copy the names, and fill in each snapshot's id 1063 * and size. 1064 * 1065 * Note that rbd_dev_v1_header_info() guarantees the 1066 * ondisk buffer we're working with has 1067 * snap_names_len bytes beyond the end of the 1068 * snapshot id array, this memcpy() is safe. 1069 */ 1070 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1071 snaps = ondisk->snaps; 1072 for (i = 0; i < snap_count; i++) { 1073 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1074 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1075 } 1076 } 1077 1078 /* We won't fail any more, fill in the header */ 1079 1080 if (first_time) { 1081 header->object_prefix = object_prefix; 1082 header->obj_order = ondisk->options.order; 1083 rbd_init_layout(rbd_dev); 1084 } else { 1085 ceph_put_snap_context(header->snapc); 1086 kfree(header->snap_names); 1087 kfree(header->snap_sizes); 1088 } 1089 1090 /* The remaining fields always get updated (when we refresh) */ 1091 1092 header->image_size = le64_to_cpu(ondisk->image_size); 1093 header->snapc = snapc; 1094 header->snap_names = snap_names; 1095 header->snap_sizes = snap_sizes; 1096 1097 return 0; 1098 out_2big: 1099 ret = -EIO; 1100 out_err: 1101 kfree(snap_sizes); 1102 kfree(snap_names); 1103 ceph_put_snap_context(snapc); 1104 kfree(object_prefix); 1105 1106 return ret; 1107 } 1108 1109 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1110 { 1111 const char *snap_name; 1112 1113 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1114 1115 /* Skip over names until we find the one we are looking for */ 1116 1117 snap_name = rbd_dev->header.snap_names; 1118 while (which--) 1119 snap_name += strlen(snap_name) + 1; 1120 1121 return kstrdup(snap_name, GFP_KERNEL); 1122 } 1123 1124 /* 1125 * Snapshot id comparison function for use with qsort()/bsearch(). 1126 * Note that result is for snapshots in *descending* order. 1127 */ 1128 static int snapid_compare_reverse(const void *s1, const void *s2) 1129 { 1130 u64 snap_id1 = *(u64 *)s1; 1131 u64 snap_id2 = *(u64 *)s2; 1132 1133 if (snap_id1 < snap_id2) 1134 return 1; 1135 return snap_id1 == snap_id2 ? 0 : -1; 1136 } 1137 1138 /* 1139 * Search a snapshot context to see if the given snapshot id is 1140 * present. 1141 * 1142 * Returns the position of the snapshot id in the array if it's found, 1143 * or BAD_SNAP_INDEX otherwise. 1144 * 1145 * Note: The snapshot array is in kept sorted (by the osd) in 1146 * reverse order, highest snapshot id first. 1147 */ 1148 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1149 { 1150 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1151 u64 *found; 1152 1153 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1154 sizeof (snap_id), snapid_compare_reverse); 1155 1156 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1157 } 1158 1159 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1160 u64 snap_id) 1161 { 1162 u32 which; 1163 const char *snap_name; 1164 1165 which = rbd_dev_snap_index(rbd_dev, snap_id); 1166 if (which == BAD_SNAP_INDEX) 1167 return ERR_PTR(-ENOENT); 1168 1169 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1170 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1171 } 1172 1173 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1174 { 1175 if (snap_id == CEPH_NOSNAP) 1176 return RBD_SNAP_HEAD_NAME; 1177 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (rbd_dev->image_format == 1) 1180 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1181 1182 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1183 } 1184 1185 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1186 u64 *snap_size) 1187 { 1188 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1189 if (snap_id == CEPH_NOSNAP) { 1190 *snap_size = rbd_dev->header.image_size; 1191 } else if (rbd_dev->image_format == 1) { 1192 u32 which; 1193 1194 which = rbd_dev_snap_index(rbd_dev, snap_id); 1195 if (which == BAD_SNAP_INDEX) 1196 return -ENOENT; 1197 1198 *snap_size = rbd_dev->header.snap_sizes[which]; 1199 } else { 1200 u64 size = 0; 1201 int ret; 1202 1203 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1204 if (ret) 1205 return ret; 1206 1207 *snap_size = size; 1208 } 1209 return 0; 1210 } 1211 1212 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1213 u64 *snap_features) 1214 { 1215 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1216 if (snap_id == CEPH_NOSNAP) { 1217 *snap_features = rbd_dev->header.features; 1218 } else if (rbd_dev->image_format == 1) { 1219 *snap_features = 0; /* No features for format 1 */ 1220 } else { 1221 u64 features = 0; 1222 int ret; 1223 1224 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1225 if (ret) 1226 return ret; 1227 1228 *snap_features = features; 1229 } 1230 return 0; 1231 } 1232 1233 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1234 { 1235 u64 snap_id = rbd_dev->spec->snap_id; 1236 u64 size = 0; 1237 u64 features = 0; 1238 int ret; 1239 1240 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1241 if (ret) 1242 return ret; 1243 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1244 if (ret) 1245 return ret; 1246 1247 rbd_dev->mapping.size = size; 1248 rbd_dev->mapping.features = features; 1249 1250 return 0; 1251 } 1252 1253 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1254 { 1255 rbd_dev->mapping.size = 0; 1256 rbd_dev->mapping.features = 0; 1257 } 1258 1259 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1260 { 1261 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1262 1263 return offset & (segment_size - 1); 1264 } 1265 1266 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1267 u64 offset, u64 length) 1268 { 1269 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1270 1271 offset &= segment_size - 1; 1272 1273 rbd_assert(length <= U64_MAX - offset); 1274 if (offset + length > segment_size) 1275 length = segment_size - offset; 1276 1277 return length; 1278 } 1279 1280 /* 1281 * bio helpers 1282 */ 1283 1284 static void bio_chain_put(struct bio *chain) 1285 { 1286 struct bio *tmp; 1287 1288 while (chain) { 1289 tmp = chain; 1290 chain = chain->bi_next; 1291 bio_put(tmp); 1292 } 1293 } 1294 1295 /* 1296 * zeros a bio chain, starting at specific offset 1297 */ 1298 static void zero_bio_chain(struct bio *chain, int start_ofs) 1299 { 1300 struct bio_vec bv; 1301 struct bvec_iter iter; 1302 unsigned long flags; 1303 void *buf; 1304 int pos = 0; 1305 1306 while (chain) { 1307 bio_for_each_segment(bv, chain, iter) { 1308 if (pos + bv.bv_len > start_ofs) { 1309 int remainder = max(start_ofs - pos, 0); 1310 buf = bvec_kmap_irq(&bv, &flags); 1311 memset(buf + remainder, 0, 1312 bv.bv_len - remainder); 1313 flush_dcache_page(bv.bv_page); 1314 bvec_kunmap_irq(buf, &flags); 1315 } 1316 pos += bv.bv_len; 1317 } 1318 1319 chain = chain->bi_next; 1320 } 1321 } 1322 1323 /* 1324 * similar to zero_bio_chain(), zeros data defined by a page array, 1325 * starting at the given byte offset from the start of the array and 1326 * continuing up to the given end offset. The pages array is 1327 * assumed to be big enough to hold all bytes up to the end. 1328 */ 1329 static void zero_pages(struct page **pages, u64 offset, u64 end) 1330 { 1331 struct page **page = &pages[offset >> PAGE_SHIFT]; 1332 1333 rbd_assert(end > offset); 1334 rbd_assert(end - offset <= (u64)SIZE_MAX); 1335 while (offset < end) { 1336 size_t page_offset; 1337 size_t length; 1338 unsigned long flags; 1339 void *kaddr; 1340 1341 page_offset = offset & ~PAGE_MASK; 1342 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1343 local_irq_save(flags); 1344 kaddr = kmap_atomic(*page); 1345 memset(kaddr + page_offset, 0, length); 1346 flush_dcache_page(*page); 1347 kunmap_atomic(kaddr); 1348 local_irq_restore(flags); 1349 1350 offset += length; 1351 page++; 1352 } 1353 } 1354 1355 /* 1356 * Clone a portion of a bio, starting at the given byte offset 1357 * and continuing for the number of bytes indicated. 1358 */ 1359 static struct bio *bio_clone_range(struct bio *bio_src, 1360 unsigned int offset, 1361 unsigned int len, 1362 gfp_t gfpmask) 1363 { 1364 struct bio *bio; 1365 1366 bio = bio_clone(bio_src, gfpmask); 1367 if (!bio) 1368 return NULL; /* ENOMEM */ 1369 1370 bio_advance(bio, offset); 1371 bio->bi_iter.bi_size = len; 1372 1373 return bio; 1374 } 1375 1376 /* 1377 * Clone a portion of a bio chain, starting at the given byte offset 1378 * into the first bio in the source chain and continuing for the 1379 * number of bytes indicated. The result is another bio chain of 1380 * exactly the given length, or a null pointer on error. 1381 * 1382 * The bio_src and offset parameters are both in-out. On entry they 1383 * refer to the first source bio and the offset into that bio where 1384 * the start of data to be cloned is located. 1385 * 1386 * On return, bio_src is updated to refer to the bio in the source 1387 * chain that contains first un-cloned byte, and *offset will 1388 * contain the offset of that byte within that bio. 1389 */ 1390 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1391 unsigned int *offset, 1392 unsigned int len, 1393 gfp_t gfpmask) 1394 { 1395 struct bio *bi = *bio_src; 1396 unsigned int off = *offset; 1397 struct bio *chain = NULL; 1398 struct bio **end; 1399 1400 /* Build up a chain of clone bios up to the limit */ 1401 1402 if (!bi || off >= bi->bi_iter.bi_size || !len) 1403 return NULL; /* Nothing to clone */ 1404 1405 end = &chain; 1406 while (len) { 1407 unsigned int bi_size; 1408 struct bio *bio; 1409 1410 if (!bi) { 1411 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1412 goto out_err; /* EINVAL; ran out of bio's */ 1413 } 1414 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1415 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1416 if (!bio) 1417 goto out_err; /* ENOMEM */ 1418 1419 *end = bio; 1420 end = &bio->bi_next; 1421 1422 off += bi_size; 1423 if (off == bi->bi_iter.bi_size) { 1424 bi = bi->bi_next; 1425 off = 0; 1426 } 1427 len -= bi_size; 1428 } 1429 *bio_src = bi; 1430 *offset = off; 1431 1432 return chain; 1433 out_err: 1434 bio_chain_put(chain); 1435 1436 return NULL; 1437 } 1438 1439 /* 1440 * The default/initial value for all object request flags is 0. For 1441 * each flag, once its value is set to 1 it is never reset to 0 1442 * again. 1443 */ 1444 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1445 { 1446 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1447 struct rbd_device *rbd_dev; 1448 1449 rbd_dev = obj_request->img_request->rbd_dev; 1450 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1451 obj_request); 1452 } 1453 } 1454 1455 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1456 { 1457 smp_mb(); 1458 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1459 } 1460 1461 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1462 { 1463 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1464 struct rbd_device *rbd_dev = NULL; 1465 1466 if (obj_request_img_data_test(obj_request)) 1467 rbd_dev = obj_request->img_request->rbd_dev; 1468 rbd_warn(rbd_dev, "obj_request %p already marked done", 1469 obj_request); 1470 } 1471 } 1472 1473 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1474 { 1475 smp_mb(); 1476 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1477 } 1478 1479 /* 1480 * This sets the KNOWN flag after (possibly) setting the EXISTS 1481 * flag. The latter is set based on the "exists" value provided. 1482 * 1483 * Note that for our purposes once an object exists it never goes 1484 * away again. It's possible that the response from two existence 1485 * checks are separated by the creation of the target object, and 1486 * the first ("doesn't exist") response arrives *after* the second 1487 * ("does exist"). In that case we ignore the second one. 1488 */ 1489 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1490 bool exists) 1491 { 1492 if (exists) 1493 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1494 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1495 smp_mb(); 1496 } 1497 1498 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1499 { 1500 smp_mb(); 1501 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1502 } 1503 1504 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1505 { 1506 smp_mb(); 1507 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1508 } 1509 1510 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1511 { 1512 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1513 1514 return obj_request->img_offset < 1515 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1516 } 1517 1518 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1519 { 1520 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1521 kref_read(&obj_request->kref)); 1522 kref_get(&obj_request->kref); 1523 } 1524 1525 static void rbd_obj_request_destroy(struct kref *kref); 1526 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1527 { 1528 rbd_assert(obj_request != NULL); 1529 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1530 kref_read(&obj_request->kref)); 1531 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1532 } 1533 1534 static void rbd_img_request_get(struct rbd_img_request *img_request) 1535 { 1536 dout("%s: img %p (was %d)\n", __func__, img_request, 1537 kref_read(&img_request->kref)); 1538 kref_get(&img_request->kref); 1539 } 1540 1541 static bool img_request_child_test(struct rbd_img_request *img_request); 1542 static void rbd_parent_request_destroy(struct kref *kref); 1543 static void rbd_img_request_destroy(struct kref *kref); 1544 static void rbd_img_request_put(struct rbd_img_request *img_request) 1545 { 1546 rbd_assert(img_request != NULL); 1547 dout("%s: img %p (was %d)\n", __func__, img_request, 1548 kref_read(&img_request->kref)); 1549 if (img_request_child_test(img_request)) 1550 kref_put(&img_request->kref, rbd_parent_request_destroy); 1551 else 1552 kref_put(&img_request->kref, rbd_img_request_destroy); 1553 } 1554 1555 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1556 struct rbd_obj_request *obj_request) 1557 { 1558 rbd_assert(obj_request->img_request == NULL); 1559 1560 /* Image request now owns object's original reference */ 1561 obj_request->img_request = img_request; 1562 obj_request->which = img_request->obj_request_count; 1563 rbd_assert(!obj_request_img_data_test(obj_request)); 1564 obj_request_img_data_set(obj_request); 1565 rbd_assert(obj_request->which != BAD_WHICH); 1566 img_request->obj_request_count++; 1567 list_add_tail(&obj_request->links, &img_request->obj_requests); 1568 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1569 obj_request->which); 1570 } 1571 1572 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1573 struct rbd_obj_request *obj_request) 1574 { 1575 rbd_assert(obj_request->which != BAD_WHICH); 1576 1577 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1578 obj_request->which); 1579 list_del(&obj_request->links); 1580 rbd_assert(img_request->obj_request_count > 0); 1581 img_request->obj_request_count--; 1582 rbd_assert(obj_request->which == img_request->obj_request_count); 1583 obj_request->which = BAD_WHICH; 1584 rbd_assert(obj_request_img_data_test(obj_request)); 1585 rbd_assert(obj_request->img_request == img_request); 1586 obj_request->img_request = NULL; 1587 obj_request->callback = NULL; 1588 rbd_obj_request_put(obj_request); 1589 } 1590 1591 static bool obj_request_type_valid(enum obj_request_type type) 1592 { 1593 switch (type) { 1594 case OBJ_REQUEST_NODATA: 1595 case OBJ_REQUEST_BIO: 1596 case OBJ_REQUEST_PAGES: 1597 return true; 1598 default: 1599 return false; 1600 } 1601 } 1602 1603 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1604 1605 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1606 { 1607 struct ceph_osd_request *osd_req = obj_request->osd_req; 1608 1609 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1610 obj_request, obj_request->object_no, obj_request->offset, 1611 obj_request->length, osd_req); 1612 if (obj_request_img_data_test(obj_request)) { 1613 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1614 rbd_img_request_get(obj_request->img_request); 1615 } 1616 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1617 } 1618 1619 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1620 { 1621 1622 dout("%s: img %p\n", __func__, img_request); 1623 1624 /* 1625 * If no error occurred, compute the aggregate transfer 1626 * count for the image request. We could instead use 1627 * atomic64_cmpxchg() to update it as each object request 1628 * completes; not clear which way is better off hand. 1629 */ 1630 if (!img_request->result) { 1631 struct rbd_obj_request *obj_request; 1632 u64 xferred = 0; 1633 1634 for_each_obj_request(img_request, obj_request) 1635 xferred += obj_request->xferred; 1636 img_request->xferred = xferred; 1637 } 1638 1639 if (img_request->callback) 1640 img_request->callback(img_request); 1641 else 1642 rbd_img_request_put(img_request); 1643 } 1644 1645 /* 1646 * The default/initial value for all image request flags is 0. Each 1647 * is conditionally set to 1 at image request initialization time 1648 * and currently never change thereafter. 1649 */ 1650 static void img_request_write_set(struct rbd_img_request *img_request) 1651 { 1652 set_bit(IMG_REQ_WRITE, &img_request->flags); 1653 smp_mb(); 1654 } 1655 1656 static bool img_request_write_test(struct rbd_img_request *img_request) 1657 { 1658 smp_mb(); 1659 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1660 } 1661 1662 /* 1663 * Set the discard flag when the img_request is an discard request 1664 */ 1665 static void img_request_discard_set(struct rbd_img_request *img_request) 1666 { 1667 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1668 smp_mb(); 1669 } 1670 1671 static bool img_request_discard_test(struct rbd_img_request *img_request) 1672 { 1673 smp_mb(); 1674 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1675 } 1676 1677 static void img_request_child_set(struct rbd_img_request *img_request) 1678 { 1679 set_bit(IMG_REQ_CHILD, &img_request->flags); 1680 smp_mb(); 1681 } 1682 1683 static void img_request_child_clear(struct rbd_img_request *img_request) 1684 { 1685 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1686 smp_mb(); 1687 } 1688 1689 static bool img_request_child_test(struct rbd_img_request *img_request) 1690 { 1691 smp_mb(); 1692 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1693 } 1694 1695 static void img_request_layered_set(struct rbd_img_request *img_request) 1696 { 1697 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1698 smp_mb(); 1699 } 1700 1701 static void img_request_layered_clear(struct rbd_img_request *img_request) 1702 { 1703 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1704 smp_mb(); 1705 } 1706 1707 static bool img_request_layered_test(struct rbd_img_request *img_request) 1708 { 1709 smp_mb(); 1710 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1711 } 1712 1713 static enum obj_operation_type 1714 rbd_img_request_op_type(struct rbd_img_request *img_request) 1715 { 1716 if (img_request_write_test(img_request)) 1717 return OBJ_OP_WRITE; 1718 else if (img_request_discard_test(img_request)) 1719 return OBJ_OP_DISCARD; 1720 else 1721 return OBJ_OP_READ; 1722 } 1723 1724 static void 1725 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1726 { 1727 u64 xferred = obj_request->xferred; 1728 u64 length = obj_request->length; 1729 1730 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1731 obj_request, obj_request->img_request, obj_request->result, 1732 xferred, length); 1733 /* 1734 * ENOENT means a hole in the image. We zero-fill the entire 1735 * length of the request. A short read also implies zero-fill 1736 * to the end of the request. An error requires the whole 1737 * length of the request to be reported finished with an error 1738 * to the block layer. In each case we update the xferred 1739 * count to indicate the whole request was satisfied. 1740 */ 1741 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1742 if (obj_request->result == -ENOENT) { 1743 if (obj_request->type == OBJ_REQUEST_BIO) 1744 zero_bio_chain(obj_request->bio_list, 0); 1745 else 1746 zero_pages(obj_request->pages, 0, length); 1747 obj_request->result = 0; 1748 } else if (xferred < length && !obj_request->result) { 1749 if (obj_request->type == OBJ_REQUEST_BIO) 1750 zero_bio_chain(obj_request->bio_list, xferred); 1751 else 1752 zero_pages(obj_request->pages, xferred, length); 1753 } 1754 obj_request->xferred = length; 1755 obj_request_done_set(obj_request); 1756 } 1757 1758 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1759 { 1760 dout("%s: obj %p cb %p\n", __func__, obj_request, 1761 obj_request->callback); 1762 if (obj_request->callback) 1763 obj_request->callback(obj_request); 1764 else 1765 complete_all(&obj_request->completion); 1766 } 1767 1768 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1769 { 1770 obj_request->result = err; 1771 obj_request->xferred = 0; 1772 /* 1773 * kludge - mirror rbd_obj_request_submit() to match a put in 1774 * rbd_img_obj_callback() 1775 */ 1776 if (obj_request_img_data_test(obj_request)) { 1777 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1778 rbd_img_request_get(obj_request->img_request); 1779 } 1780 obj_request_done_set(obj_request); 1781 rbd_obj_request_complete(obj_request); 1782 } 1783 1784 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1785 { 1786 struct rbd_img_request *img_request = NULL; 1787 struct rbd_device *rbd_dev = NULL; 1788 bool layered = false; 1789 1790 if (obj_request_img_data_test(obj_request)) { 1791 img_request = obj_request->img_request; 1792 layered = img_request && img_request_layered_test(img_request); 1793 rbd_dev = img_request->rbd_dev; 1794 } 1795 1796 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1797 obj_request, img_request, obj_request->result, 1798 obj_request->xferred, obj_request->length); 1799 if (layered && obj_request->result == -ENOENT && 1800 obj_request->img_offset < rbd_dev->parent_overlap) 1801 rbd_img_parent_read(obj_request); 1802 else if (img_request) 1803 rbd_img_obj_request_read_callback(obj_request); 1804 else 1805 obj_request_done_set(obj_request); 1806 } 1807 1808 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1809 { 1810 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1811 obj_request->result, obj_request->length); 1812 /* 1813 * There is no such thing as a successful short write. Set 1814 * it to our originally-requested length. 1815 */ 1816 obj_request->xferred = obj_request->length; 1817 obj_request_done_set(obj_request); 1818 } 1819 1820 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1821 { 1822 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1823 obj_request->result, obj_request->length); 1824 /* 1825 * There is no such thing as a successful short discard. Set 1826 * it to our originally-requested length. 1827 */ 1828 obj_request->xferred = obj_request->length; 1829 /* discarding a non-existent object is not a problem */ 1830 if (obj_request->result == -ENOENT) 1831 obj_request->result = 0; 1832 obj_request_done_set(obj_request); 1833 } 1834 1835 /* 1836 * For a simple stat call there's nothing to do. We'll do more if 1837 * this is part of a write sequence for a layered image. 1838 */ 1839 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1840 { 1841 dout("%s: obj %p\n", __func__, obj_request); 1842 obj_request_done_set(obj_request); 1843 } 1844 1845 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1846 { 1847 dout("%s: obj %p\n", __func__, obj_request); 1848 1849 if (obj_request_img_data_test(obj_request)) 1850 rbd_osd_copyup_callback(obj_request); 1851 else 1852 obj_request_done_set(obj_request); 1853 } 1854 1855 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1856 { 1857 struct rbd_obj_request *obj_request = osd_req->r_priv; 1858 u16 opcode; 1859 1860 dout("%s: osd_req %p\n", __func__, osd_req); 1861 rbd_assert(osd_req == obj_request->osd_req); 1862 if (obj_request_img_data_test(obj_request)) { 1863 rbd_assert(obj_request->img_request); 1864 rbd_assert(obj_request->which != BAD_WHICH); 1865 } else { 1866 rbd_assert(obj_request->which == BAD_WHICH); 1867 } 1868 1869 if (osd_req->r_result < 0) 1870 obj_request->result = osd_req->r_result; 1871 1872 /* 1873 * We support a 64-bit length, but ultimately it has to be 1874 * passed to the block layer, which just supports a 32-bit 1875 * length field. 1876 */ 1877 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1878 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1879 1880 opcode = osd_req->r_ops[0].op; 1881 switch (opcode) { 1882 case CEPH_OSD_OP_READ: 1883 rbd_osd_read_callback(obj_request); 1884 break; 1885 case CEPH_OSD_OP_SETALLOCHINT: 1886 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1887 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1888 /* fall through */ 1889 case CEPH_OSD_OP_WRITE: 1890 case CEPH_OSD_OP_WRITEFULL: 1891 rbd_osd_write_callback(obj_request); 1892 break; 1893 case CEPH_OSD_OP_STAT: 1894 rbd_osd_stat_callback(obj_request); 1895 break; 1896 case CEPH_OSD_OP_DELETE: 1897 case CEPH_OSD_OP_TRUNCATE: 1898 case CEPH_OSD_OP_ZERO: 1899 rbd_osd_discard_callback(obj_request); 1900 break; 1901 case CEPH_OSD_OP_CALL: 1902 rbd_osd_call_callback(obj_request); 1903 break; 1904 default: 1905 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d", 1906 obj_request->object_no, opcode); 1907 break; 1908 } 1909 1910 if (obj_request_done_test(obj_request)) 1911 rbd_obj_request_complete(obj_request); 1912 } 1913 1914 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1915 { 1916 struct ceph_osd_request *osd_req = obj_request->osd_req; 1917 1918 rbd_assert(obj_request_img_data_test(obj_request)); 1919 osd_req->r_snapid = obj_request->img_request->snap_id; 1920 } 1921 1922 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1923 { 1924 struct ceph_osd_request *osd_req = obj_request->osd_req; 1925 1926 ktime_get_real_ts(&osd_req->r_mtime); 1927 osd_req->r_data_offset = obj_request->offset; 1928 } 1929 1930 static struct ceph_osd_request * 1931 __rbd_osd_req_create(struct rbd_device *rbd_dev, 1932 struct ceph_snap_context *snapc, 1933 int num_ops, unsigned int flags, 1934 struct rbd_obj_request *obj_request) 1935 { 1936 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1937 struct ceph_osd_request *req; 1938 const char *name_format = rbd_dev->image_format == 1 ? 1939 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1940 1941 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1942 if (!req) 1943 return NULL; 1944 1945 req->r_flags = flags; 1946 req->r_callback = rbd_osd_req_callback; 1947 req->r_priv = obj_request; 1948 1949 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1950 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1951 rbd_dev->header.object_prefix, obj_request->object_no)) 1952 goto err_req; 1953 1954 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1955 goto err_req; 1956 1957 return req; 1958 1959 err_req: 1960 ceph_osdc_put_request(req); 1961 return NULL; 1962 } 1963 1964 /* 1965 * Create an osd request. A read request has one osd op (read). 1966 * A write request has either one (watch) or two (hint+write) osd ops. 1967 * (All rbd data writes are prefixed with an allocation hint op, but 1968 * technically osd watch is a write request, hence this distinction.) 1969 */ 1970 static struct ceph_osd_request *rbd_osd_req_create( 1971 struct rbd_device *rbd_dev, 1972 enum obj_operation_type op_type, 1973 unsigned int num_ops, 1974 struct rbd_obj_request *obj_request) 1975 { 1976 struct ceph_snap_context *snapc = NULL; 1977 1978 if (obj_request_img_data_test(obj_request) && 1979 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1980 struct rbd_img_request *img_request = obj_request->img_request; 1981 if (op_type == OBJ_OP_WRITE) { 1982 rbd_assert(img_request_write_test(img_request)); 1983 } else { 1984 rbd_assert(img_request_discard_test(img_request)); 1985 } 1986 snapc = img_request->snapc; 1987 } 1988 1989 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1990 1991 return __rbd_osd_req_create(rbd_dev, snapc, num_ops, 1992 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ? 1993 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request); 1994 } 1995 1996 /* 1997 * Create a copyup osd request based on the information in the object 1998 * request supplied. A copyup request has two or three osd ops, a 1999 * copyup method call, potentially a hint op, and a write or truncate 2000 * or zero op. 2001 */ 2002 static struct ceph_osd_request * 2003 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 2004 { 2005 struct rbd_img_request *img_request; 2006 int num_osd_ops = 3; 2007 2008 rbd_assert(obj_request_img_data_test(obj_request)); 2009 img_request = obj_request->img_request; 2010 rbd_assert(img_request); 2011 rbd_assert(img_request_write_test(img_request) || 2012 img_request_discard_test(img_request)); 2013 2014 if (img_request_discard_test(img_request)) 2015 num_osd_ops = 2; 2016 2017 return __rbd_osd_req_create(img_request->rbd_dev, 2018 img_request->snapc, num_osd_ops, 2019 CEPH_OSD_FLAG_WRITE, obj_request); 2020 } 2021 2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2023 { 2024 ceph_osdc_put_request(osd_req); 2025 } 2026 2027 static struct rbd_obj_request * 2028 rbd_obj_request_create(enum obj_request_type type) 2029 { 2030 struct rbd_obj_request *obj_request; 2031 2032 rbd_assert(obj_request_type_valid(type)); 2033 2034 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2035 if (!obj_request) 2036 return NULL; 2037 2038 obj_request->which = BAD_WHICH; 2039 obj_request->type = type; 2040 INIT_LIST_HEAD(&obj_request->links); 2041 init_completion(&obj_request->completion); 2042 kref_init(&obj_request->kref); 2043 2044 dout("%s %p\n", __func__, obj_request); 2045 return obj_request; 2046 } 2047 2048 static void rbd_obj_request_destroy(struct kref *kref) 2049 { 2050 struct rbd_obj_request *obj_request; 2051 2052 obj_request = container_of(kref, struct rbd_obj_request, kref); 2053 2054 dout("%s: obj %p\n", __func__, obj_request); 2055 2056 rbd_assert(obj_request->img_request == NULL); 2057 rbd_assert(obj_request->which == BAD_WHICH); 2058 2059 if (obj_request->osd_req) 2060 rbd_osd_req_destroy(obj_request->osd_req); 2061 2062 rbd_assert(obj_request_type_valid(obj_request->type)); 2063 switch (obj_request->type) { 2064 case OBJ_REQUEST_NODATA: 2065 break; /* Nothing to do */ 2066 case OBJ_REQUEST_BIO: 2067 if (obj_request->bio_list) 2068 bio_chain_put(obj_request->bio_list); 2069 break; 2070 case OBJ_REQUEST_PAGES: 2071 /* img_data requests don't own their page array */ 2072 if (obj_request->pages && 2073 !obj_request_img_data_test(obj_request)) 2074 ceph_release_page_vector(obj_request->pages, 2075 obj_request->page_count); 2076 break; 2077 } 2078 2079 kmem_cache_free(rbd_obj_request_cache, obj_request); 2080 } 2081 2082 /* It's OK to call this for a device with no parent */ 2083 2084 static void rbd_spec_put(struct rbd_spec *spec); 2085 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2086 { 2087 rbd_dev_remove_parent(rbd_dev); 2088 rbd_spec_put(rbd_dev->parent_spec); 2089 rbd_dev->parent_spec = NULL; 2090 rbd_dev->parent_overlap = 0; 2091 } 2092 2093 /* 2094 * Parent image reference counting is used to determine when an 2095 * image's parent fields can be safely torn down--after there are no 2096 * more in-flight requests to the parent image. When the last 2097 * reference is dropped, cleaning them up is safe. 2098 */ 2099 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2100 { 2101 int counter; 2102 2103 if (!rbd_dev->parent_spec) 2104 return; 2105 2106 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2107 if (counter > 0) 2108 return; 2109 2110 /* Last reference; clean up parent data structures */ 2111 2112 if (!counter) 2113 rbd_dev_unparent(rbd_dev); 2114 else 2115 rbd_warn(rbd_dev, "parent reference underflow"); 2116 } 2117 2118 /* 2119 * If an image has a non-zero parent overlap, get a reference to its 2120 * parent. 2121 * 2122 * Returns true if the rbd device has a parent with a non-zero 2123 * overlap and a reference for it was successfully taken, or 2124 * false otherwise. 2125 */ 2126 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2127 { 2128 int counter = 0; 2129 2130 if (!rbd_dev->parent_spec) 2131 return false; 2132 2133 down_read(&rbd_dev->header_rwsem); 2134 if (rbd_dev->parent_overlap) 2135 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2136 up_read(&rbd_dev->header_rwsem); 2137 2138 if (counter < 0) 2139 rbd_warn(rbd_dev, "parent reference overflow"); 2140 2141 return counter > 0; 2142 } 2143 2144 /* 2145 * Caller is responsible for filling in the list of object requests 2146 * that comprises the image request, and the Linux request pointer 2147 * (if there is one). 2148 */ 2149 static struct rbd_img_request *rbd_img_request_create( 2150 struct rbd_device *rbd_dev, 2151 u64 offset, u64 length, 2152 enum obj_operation_type op_type, 2153 struct ceph_snap_context *snapc) 2154 { 2155 struct rbd_img_request *img_request; 2156 2157 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2158 if (!img_request) 2159 return NULL; 2160 2161 img_request->rq = NULL; 2162 img_request->rbd_dev = rbd_dev; 2163 img_request->offset = offset; 2164 img_request->length = length; 2165 img_request->flags = 0; 2166 if (op_type == OBJ_OP_DISCARD) { 2167 img_request_discard_set(img_request); 2168 img_request->snapc = snapc; 2169 } else if (op_type == OBJ_OP_WRITE) { 2170 img_request_write_set(img_request); 2171 img_request->snapc = snapc; 2172 } else { 2173 img_request->snap_id = rbd_dev->spec->snap_id; 2174 } 2175 if (rbd_dev_parent_get(rbd_dev)) 2176 img_request_layered_set(img_request); 2177 spin_lock_init(&img_request->completion_lock); 2178 img_request->next_completion = 0; 2179 img_request->callback = NULL; 2180 img_request->result = 0; 2181 img_request->obj_request_count = 0; 2182 INIT_LIST_HEAD(&img_request->obj_requests); 2183 kref_init(&img_request->kref); 2184 2185 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2186 obj_op_name(op_type), offset, length, img_request); 2187 2188 return img_request; 2189 } 2190 2191 static void rbd_img_request_destroy(struct kref *kref) 2192 { 2193 struct rbd_img_request *img_request; 2194 struct rbd_obj_request *obj_request; 2195 struct rbd_obj_request *next_obj_request; 2196 2197 img_request = container_of(kref, struct rbd_img_request, kref); 2198 2199 dout("%s: img %p\n", __func__, img_request); 2200 2201 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2202 rbd_img_obj_request_del(img_request, obj_request); 2203 rbd_assert(img_request->obj_request_count == 0); 2204 2205 if (img_request_layered_test(img_request)) { 2206 img_request_layered_clear(img_request); 2207 rbd_dev_parent_put(img_request->rbd_dev); 2208 } 2209 2210 if (img_request_write_test(img_request) || 2211 img_request_discard_test(img_request)) 2212 ceph_put_snap_context(img_request->snapc); 2213 2214 kmem_cache_free(rbd_img_request_cache, img_request); 2215 } 2216 2217 static struct rbd_img_request *rbd_parent_request_create( 2218 struct rbd_obj_request *obj_request, 2219 u64 img_offset, u64 length) 2220 { 2221 struct rbd_img_request *parent_request; 2222 struct rbd_device *rbd_dev; 2223 2224 rbd_assert(obj_request->img_request); 2225 rbd_dev = obj_request->img_request->rbd_dev; 2226 2227 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2228 length, OBJ_OP_READ, NULL); 2229 if (!parent_request) 2230 return NULL; 2231 2232 img_request_child_set(parent_request); 2233 rbd_obj_request_get(obj_request); 2234 parent_request->obj_request = obj_request; 2235 2236 return parent_request; 2237 } 2238 2239 static void rbd_parent_request_destroy(struct kref *kref) 2240 { 2241 struct rbd_img_request *parent_request; 2242 struct rbd_obj_request *orig_request; 2243 2244 parent_request = container_of(kref, struct rbd_img_request, kref); 2245 orig_request = parent_request->obj_request; 2246 2247 parent_request->obj_request = NULL; 2248 rbd_obj_request_put(orig_request); 2249 img_request_child_clear(parent_request); 2250 2251 rbd_img_request_destroy(kref); 2252 } 2253 2254 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2255 { 2256 struct rbd_img_request *img_request; 2257 unsigned int xferred; 2258 int result; 2259 bool more; 2260 2261 rbd_assert(obj_request_img_data_test(obj_request)); 2262 img_request = obj_request->img_request; 2263 2264 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2265 xferred = (unsigned int)obj_request->xferred; 2266 result = obj_request->result; 2267 if (result) { 2268 struct rbd_device *rbd_dev = img_request->rbd_dev; 2269 enum obj_operation_type op_type; 2270 2271 if (img_request_discard_test(img_request)) 2272 op_type = OBJ_OP_DISCARD; 2273 else if (img_request_write_test(img_request)) 2274 op_type = OBJ_OP_WRITE; 2275 else 2276 op_type = OBJ_OP_READ; 2277 2278 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2279 obj_op_name(op_type), obj_request->length, 2280 obj_request->img_offset, obj_request->offset); 2281 rbd_warn(rbd_dev, " result %d xferred %x", 2282 result, xferred); 2283 if (!img_request->result) 2284 img_request->result = result; 2285 /* 2286 * Need to end I/O on the entire obj_request worth of 2287 * bytes in case of error. 2288 */ 2289 xferred = obj_request->length; 2290 } 2291 2292 if (img_request_child_test(img_request)) { 2293 rbd_assert(img_request->obj_request != NULL); 2294 more = obj_request->which < img_request->obj_request_count - 1; 2295 } else { 2296 rbd_assert(img_request->rq != NULL); 2297 2298 more = blk_update_request(img_request->rq, result, xferred); 2299 if (!more) 2300 __blk_mq_end_request(img_request->rq, result); 2301 } 2302 2303 return more; 2304 } 2305 2306 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2307 { 2308 struct rbd_img_request *img_request; 2309 u32 which = obj_request->which; 2310 bool more = true; 2311 2312 rbd_assert(obj_request_img_data_test(obj_request)); 2313 img_request = obj_request->img_request; 2314 2315 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2316 rbd_assert(img_request != NULL); 2317 rbd_assert(img_request->obj_request_count > 0); 2318 rbd_assert(which != BAD_WHICH); 2319 rbd_assert(which < img_request->obj_request_count); 2320 2321 spin_lock_irq(&img_request->completion_lock); 2322 if (which != img_request->next_completion) 2323 goto out; 2324 2325 for_each_obj_request_from(img_request, obj_request) { 2326 rbd_assert(more); 2327 rbd_assert(which < img_request->obj_request_count); 2328 2329 if (!obj_request_done_test(obj_request)) 2330 break; 2331 more = rbd_img_obj_end_request(obj_request); 2332 which++; 2333 } 2334 2335 rbd_assert(more ^ (which == img_request->obj_request_count)); 2336 img_request->next_completion = which; 2337 out: 2338 spin_unlock_irq(&img_request->completion_lock); 2339 rbd_img_request_put(img_request); 2340 2341 if (!more) 2342 rbd_img_request_complete(img_request); 2343 } 2344 2345 /* 2346 * Add individual osd ops to the given ceph_osd_request and prepare 2347 * them for submission. num_ops is the current number of 2348 * osd operations already to the object request. 2349 */ 2350 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2351 struct ceph_osd_request *osd_request, 2352 enum obj_operation_type op_type, 2353 unsigned int num_ops) 2354 { 2355 struct rbd_img_request *img_request = obj_request->img_request; 2356 struct rbd_device *rbd_dev = img_request->rbd_dev; 2357 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2358 u64 offset = obj_request->offset; 2359 u64 length = obj_request->length; 2360 u64 img_end; 2361 u16 opcode; 2362 2363 if (op_type == OBJ_OP_DISCARD) { 2364 if (!offset && length == object_size && 2365 (!img_request_layered_test(img_request) || 2366 !obj_request_overlaps_parent(obj_request))) { 2367 opcode = CEPH_OSD_OP_DELETE; 2368 } else if ((offset + length == object_size)) { 2369 opcode = CEPH_OSD_OP_TRUNCATE; 2370 } else { 2371 down_read(&rbd_dev->header_rwsem); 2372 img_end = rbd_dev->header.image_size; 2373 up_read(&rbd_dev->header_rwsem); 2374 2375 if (obj_request->img_offset + length == img_end) 2376 opcode = CEPH_OSD_OP_TRUNCATE; 2377 else 2378 opcode = CEPH_OSD_OP_ZERO; 2379 } 2380 } else if (op_type == OBJ_OP_WRITE) { 2381 if (!offset && length == object_size) 2382 opcode = CEPH_OSD_OP_WRITEFULL; 2383 else 2384 opcode = CEPH_OSD_OP_WRITE; 2385 osd_req_op_alloc_hint_init(osd_request, num_ops, 2386 object_size, object_size); 2387 num_ops++; 2388 } else { 2389 opcode = CEPH_OSD_OP_READ; 2390 } 2391 2392 if (opcode == CEPH_OSD_OP_DELETE) 2393 osd_req_op_init(osd_request, num_ops, opcode, 0); 2394 else 2395 osd_req_op_extent_init(osd_request, num_ops, opcode, 2396 offset, length, 0, 0); 2397 2398 if (obj_request->type == OBJ_REQUEST_BIO) 2399 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2400 obj_request->bio_list, length); 2401 else if (obj_request->type == OBJ_REQUEST_PAGES) 2402 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2403 obj_request->pages, length, 2404 offset & ~PAGE_MASK, false, false); 2405 2406 /* Discards are also writes */ 2407 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2408 rbd_osd_req_format_write(obj_request); 2409 else 2410 rbd_osd_req_format_read(obj_request); 2411 } 2412 2413 /* 2414 * Split up an image request into one or more object requests, each 2415 * to a different object. The "type" parameter indicates whether 2416 * "data_desc" is the pointer to the head of a list of bio 2417 * structures, or the base of a page array. In either case this 2418 * function assumes data_desc describes memory sufficient to hold 2419 * all data described by the image request. 2420 */ 2421 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2422 enum obj_request_type type, 2423 void *data_desc) 2424 { 2425 struct rbd_device *rbd_dev = img_request->rbd_dev; 2426 struct rbd_obj_request *obj_request = NULL; 2427 struct rbd_obj_request *next_obj_request; 2428 struct bio *bio_list = NULL; 2429 unsigned int bio_offset = 0; 2430 struct page **pages = NULL; 2431 enum obj_operation_type op_type; 2432 u64 img_offset; 2433 u64 resid; 2434 2435 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2436 (int)type, data_desc); 2437 2438 img_offset = img_request->offset; 2439 resid = img_request->length; 2440 rbd_assert(resid > 0); 2441 op_type = rbd_img_request_op_type(img_request); 2442 2443 if (type == OBJ_REQUEST_BIO) { 2444 bio_list = data_desc; 2445 rbd_assert(img_offset == 2446 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2447 } else if (type == OBJ_REQUEST_PAGES) { 2448 pages = data_desc; 2449 } 2450 2451 while (resid) { 2452 struct ceph_osd_request *osd_req; 2453 u64 object_no = img_offset >> rbd_dev->header.obj_order; 2454 u64 offset = rbd_segment_offset(rbd_dev, img_offset); 2455 u64 length = rbd_segment_length(rbd_dev, img_offset, resid); 2456 2457 obj_request = rbd_obj_request_create(type); 2458 if (!obj_request) 2459 goto out_unwind; 2460 2461 obj_request->object_no = object_no; 2462 obj_request->offset = offset; 2463 obj_request->length = length; 2464 2465 /* 2466 * set obj_request->img_request before creating the 2467 * osd_request so that it gets the right snapc 2468 */ 2469 rbd_img_obj_request_add(img_request, obj_request); 2470 2471 if (type == OBJ_REQUEST_BIO) { 2472 unsigned int clone_size; 2473 2474 rbd_assert(length <= (u64)UINT_MAX); 2475 clone_size = (unsigned int)length; 2476 obj_request->bio_list = 2477 bio_chain_clone_range(&bio_list, 2478 &bio_offset, 2479 clone_size, 2480 GFP_NOIO); 2481 if (!obj_request->bio_list) 2482 goto out_unwind; 2483 } else if (type == OBJ_REQUEST_PAGES) { 2484 unsigned int page_count; 2485 2486 obj_request->pages = pages; 2487 page_count = (u32)calc_pages_for(offset, length); 2488 obj_request->page_count = page_count; 2489 if ((offset + length) & ~PAGE_MASK) 2490 page_count--; /* more on last page */ 2491 pages += page_count; 2492 } 2493 2494 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2495 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2496 obj_request); 2497 if (!osd_req) 2498 goto out_unwind; 2499 2500 obj_request->osd_req = osd_req; 2501 obj_request->callback = rbd_img_obj_callback; 2502 obj_request->img_offset = img_offset; 2503 2504 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2505 2506 img_offset += length; 2507 resid -= length; 2508 } 2509 2510 return 0; 2511 2512 out_unwind: 2513 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2514 rbd_img_obj_request_del(img_request, obj_request); 2515 2516 return -ENOMEM; 2517 } 2518 2519 static void 2520 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2521 { 2522 struct rbd_img_request *img_request; 2523 struct rbd_device *rbd_dev; 2524 struct page **pages; 2525 u32 page_count; 2526 2527 dout("%s: obj %p\n", __func__, obj_request); 2528 2529 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2530 obj_request->type == OBJ_REQUEST_NODATA); 2531 rbd_assert(obj_request_img_data_test(obj_request)); 2532 img_request = obj_request->img_request; 2533 rbd_assert(img_request); 2534 2535 rbd_dev = img_request->rbd_dev; 2536 rbd_assert(rbd_dev); 2537 2538 pages = obj_request->copyup_pages; 2539 rbd_assert(pages != NULL); 2540 obj_request->copyup_pages = NULL; 2541 page_count = obj_request->copyup_page_count; 2542 rbd_assert(page_count); 2543 obj_request->copyup_page_count = 0; 2544 ceph_release_page_vector(pages, page_count); 2545 2546 /* 2547 * We want the transfer count to reflect the size of the 2548 * original write request. There is no such thing as a 2549 * successful short write, so if the request was successful 2550 * we can just set it to the originally-requested length. 2551 */ 2552 if (!obj_request->result) 2553 obj_request->xferred = obj_request->length; 2554 2555 obj_request_done_set(obj_request); 2556 } 2557 2558 static void 2559 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2560 { 2561 struct rbd_obj_request *orig_request; 2562 struct ceph_osd_request *osd_req; 2563 struct rbd_device *rbd_dev; 2564 struct page **pages; 2565 enum obj_operation_type op_type; 2566 u32 page_count; 2567 int img_result; 2568 u64 parent_length; 2569 2570 rbd_assert(img_request_child_test(img_request)); 2571 2572 /* First get what we need from the image request */ 2573 2574 pages = img_request->copyup_pages; 2575 rbd_assert(pages != NULL); 2576 img_request->copyup_pages = NULL; 2577 page_count = img_request->copyup_page_count; 2578 rbd_assert(page_count); 2579 img_request->copyup_page_count = 0; 2580 2581 orig_request = img_request->obj_request; 2582 rbd_assert(orig_request != NULL); 2583 rbd_assert(obj_request_type_valid(orig_request->type)); 2584 img_result = img_request->result; 2585 parent_length = img_request->length; 2586 rbd_assert(img_result || parent_length == img_request->xferred); 2587 rbd_img_request_put(img_request); 2588 2589 rbd_assert(orig_request->img_request); 2590 rbd_dev = orig_request->img_request->rbd_dev; 2591 rbd_assert(rbd_dev); 2592 2593 /* 2594 * If the overlap has become 0 (most likely because the 2595 * image has been flattened) we need to free the pages 2596 * and re-submit the original write request. 2597 */ 2598 if (!rbd_dev->parent_overlap) { 2599 ceph_release_page_vector(pages, page_count); 2600 rbd_obj_request_submit(orig_request); 2601 return; 2602 } 2603 2604 if (img_result) 2605 goto out_err; 2606 2607 /* 2608 * The original osd request is of no use to use any more. 2609 * We need a new one that can hold the three ops in a copyup 2610 * request. Allocate the new copyup osd request for the 2611 * original request, and release the old one. 2612 */ 2613 img_result = -ENOMEM; 2614 osd_req = rbd_osd_req_create_copyup(orig_request); 2615 if (!osd_req) 2616 goto out_err; 2617 rbd_osd_req_destroy(orig_request->osd_req); 2618 orig_request->osd_req = osd_req; 2619 orig_request->copyup_pages = pages; 2620 orig_request->copyup_page_count = page_count; 2621 2622 /* Initialize the copyup op */ 2623 2624 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2625 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2626 false, false); 2627 2628 /* Add the other op(s) */ 2629 2630 op_type = rbd_img_request_op_type(orig_request->img_request); 2631 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2632 2633 /* All set, send it off. */ 2634 2635 rbd_obj_request_submit(orig_request); 2636 return; 2637 2638 out_err: 2639 ceph_release_page_vector(pages, page_count); 2640 rbd_obj_request_error(orig_request, img_result); 2641 } 2642 2643 /* 2644 * Read from the parent image the range of data that covers the 2645 * entire target of the given object request. This is used for 2646 * satisfying a layered image write request when the target of an 2647 * object request from the image request does not exist. 2648 * 2649 * A page array big enough to hold the returned data is allocated 2650 * and supplied to rbd_img_request_fill() as the "data descriptor." 2651 * When the read completes, this page array will be transferred to 2652 * the original object request for the copyup operation. 2653 * 2654 * If an error occurs, it is recorded as the result of the original 2655 * object request in rbd_img_obj_exists_callback(). 2656 */ 2657 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2658 { 2659 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2660 struct rbd_img_request *parent_request = NULL; 2661 u64 img_offset; 2662 u64 length; 2663 struct page **pages = NULL; 2664 u32 page_count; 2665 int result; 2666 2667 rbd_assert(rbd_dev->parent != NULL); 2668 2669 /* 2670 * Determine the byte range covered by the object in the 2671 * child image to which the original request was to be sent. 2672 */ 2673 img_offset = obj_request->img_offset - obj_request->offset; 2674 length = rbd_obj_bytes(&rbd_dev->header); 2675 2676 /* 2677 * There is no defined parent data beyond the parent 2678 * overlap, so limit what we read at that boundary if 2679 * necessary. 2680 */ 2681 if (img_offset + length > rbd_dev->parent_overlap) { 2682 rbd_assert(img_offset < rbd_dev->parent_overlap); 2683 length = rbd_dev->parent_overlap - img_offset; 2684 } 2685 2686 /* 2687 * Allocate a page array big enough to receive the data read 2688 * from the parent. 2689 */ 2690 page_count = (u32)calc_pages_for(0, length); 2691 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2692 if (IS_ERR(pages)) { 2693 result = PTR_ERR(pages); 2694 pages = NULL; 2695 goto out_err; 2696 } 2697 2698 result = -ENOMEM; 2699 parent_request = rbd_parent_request_create(obj_request, 2700 img_offset, length); 2701 if (!parent_request) 2702 goto out_err; 2703 2704 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2705 if (result) 2706 goto out_err; 2707 2708 parent_request->copyup_pages = pages; 2709 parent_request->copyup_page_count = page_count; 2710 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2711 2712 result = rbd_img_request_submit(parent_request); 2713 if (!result) 2714 return 0; 2715 2716 parent_request->copyup_pages = NULL; 2717 parent_request->copyup_page_count = 0; 2718 parent_request->obj_request = NULL; 2719 rbd_obj_request_put(obj_request); 2720 out_err: 2721 if (pages) 2722 ceph_release_page_vector(pages, page_count); 2723 if (parent_request) 2724 rbd_img_request_put(parent_request); 2725 return result; 2726 } 2727 2728 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2729 { 2730 struct rbd_obj_request *orig_request; 2731 struct rbd_device *rbd_dev; 2732 int result; 2733 2734 rbd_assert(!obj_request_img_data_test(obj_request)); 2735 2736 /* 2737 * All we need from the object request is the original 2738 * request and the result of the STAT op. Grab those, then 2739 * we're done with the request. 2740 */ 2741 orig_request = obj_request->obj_request; 2742 obj_request->obj_request = NULL; 2743 rbd_obj_request_put(orig_request); 2744 rbd_assert(orig_request); 2745 rbd_assert(orig_request->img_request); 2746 2747 result = obj_request->result; 2748 obj_request->result = 0; 2749 2750 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2751 obj_request, orig_request, result, 2752 obj_request->xferred, obj_request->length); 2753 rbd_obj_request_put(obj_request); 2754 2755 /* 2756 * If the overlap has become 0 (most likely because the 2757 * image has been flattened) we need to re-submit the 2758 * original request. 2759 */ 2760 rbd_dev = orig_request->img_request->rbd_dev; 2761 if (!rbd_dev->parent_overlap) { 2762 rbd_obj_request_submit(orig_request); 2763 return; 2764 } 2765 2766 /* 2767 * Our only purpose here is to determine whether the object 2768 * exists, and we don't want to treat the non-existence as 2769 * an error. If something else comes back, transfer the 2770 * error to the original request and complete it now. 2771 */ 2772 if (!result) { 2773 obj_request_existence_set(orig_request, true); 2774 } else if (result == -ENOENT) { 2775 obj_request_existence_set(orig_request, false); 2776 } else { 2777 goto fail_orig_request; 2778 } 2779 2780 /* 2781 * Resubmit the original request now that we have recorded 2782 * whether the target object exists. 2783 */ 2784 result = rbd_img_obj_request_submit(orig_request); 2785 if (result) 2786 goto fail_orig_request; 2787 2788 return; 2789 2790 fail_orig_request: 2791 rbd_obj_request_error(orig_request, result); 2792 } 2793 2794 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2795 { 2796 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2797 struct rbd_obj_request *stat_request; 2798 struct page **pages; 2799 u32 page_count; 2800 size_t size; 2801 int ret; 2802 2803 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES); 2804 if (!stat_request) 2805 return -ENOMEM; 2806 2807 stat_request->object_no = obj_request->object_no; 2808 2809 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2810 stat_request); 2811 if (!stat_request->osd_req) { 2812 ret = -ENOMEM; 2813 goto fail_stat_request; 2814 } 2815 2816 /* 2817 * The response data for a STAT call consists of: 2818 * le64 length; 2819 * struct { 2820 * le32 tv_sec; 2821 * le32 tv_nsec; 2822 * } mtime; 2823 */ 2824 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2825 page_count = (u32)calc_pages_for(0, size); 2826 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2827 if (IS_ERR(pages)) { 2828 ret = PTR_ERR(pages); 2829 goto fail_stat_request; 2830 } 2831 2832 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2833 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2834 false, false); 2835 2836 rbd_obj_request_get(obj_request); 2837 stat_request->obj_request = obj_request; 2838 stat_request->pages = pages; 2839 stat_request->page_count = page_count; 2840 stat_request->callback = rbd_img_obj_exists_callback; 2841 2842 rbd_obj_request_submit(stat_request); 2843 return 0; 2844 2845 fail_stat_request: 2846 rbd_obj_request_put(stat_request); 2847 return ret; 2848 } 2849 2850 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2851 { 2852 struct rbd_img_request *img_request = obj_request->img_request; 2853 struct rbd_device *rbd_dev = img_request->rbd_dev; 2854 2855 /* Reads */ 2856 if (!img_request_write_test(img_request) && 2857 !img_request_discard_test(img_request)) 2858 return true; 2859 2860 /* Non-layered writes */ 2861 if (!img_request_layered_test(img_request)) 2862 return true; 2863 2864 /* 2865 * Layered writes outside of the parent overlap range don't 2866 * share any data with the parent. 2867 */ 2868 if (!obj_request_overlaps_parent(obj_request)) 2869 return true; 2870 2871 /* 2872 * Entire-object layered writes - we will overwrite whatever 2873 * parent data there is anyway. 2874 */ 2875 if (!obj_request->offset && 2876 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2877 return true; 2878 2879 /* 2880 * If the object is known to already exist, its parent data has 2881 * already been copied. 2882 */ 2883 if (obj_request_known_test(obj_request) && 2884 obj_request_exists_test(obj_request)) 2885 return true; 2886 2887 return false; 2888 } 2889 2890 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2891 { 2892 rbd_assert(obj_request_img_data_test(obj_request)); 2893 rbd_assert(obj_request_type_valid(obj_request->type)); 2894 rbd_assert(obj_request->img_request); 2895 2896 if (img_obj_request_simple(obj_request)) { 2897 rbd_obj_request_submit(obj_request); 2898 return 0; 2899 } 2900 2901 /* 2902 * It's a layered write. The target object might exist but 2903 * we may not know that yet. If we know it doesn't exist, 2904 * start by reading the data for the full target object from 2905 * the parent so we can use it for a copyup to the target. 2906 */ 2907 if (obj_request_known_test(obj_request)) 2908 return rbd_img_obj_parent_read_full(obj_request); 2909 2910 /* We don't know whether the target exists. Go find out. */ 2911 2912 return rbd_img_obj_exists_submit(obj_request); 2913 } 2914 2915 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2916 { 2917 struct rbd_obj_request *obj_request; 2918 struct rbd_obj_request *next_obj_request; 2919 int ret = 0; 2920 2921 dout("%s: img %p\n", __func__, img_request); 2922 2923 rbd_img_request_get(img_request); 2924 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2925 ret = rbd_img_obj_request_submit(obj_request); 2926 if (ret) 2927 goto out_put_ireq; 2928 } 2929 2930 out_put_ireq: 2931 rbd_img_request_put(img_request); 2932 return ret; 2933 } 2934 2935 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2936 { 2937 struct rbd_obj_request *obj_request; 2938 struct rbd_device *rbd_dev; 2939 u64 obj_end; 2940 u64 img_xferred; 2941 int img_result; 2942 2943 rbd_assert(img_request_child_test(img_request)); 2944 2945 /* First get what we need from the image request and release it */ 2946 2947 obj_request = img_request->obj_request; 2948 img_xferred = img_request->xferred; 2949 img_result = img_request->result; 2950 rbd_img_request_put(img_request); 2951 2952 /* 2953 * If the overlap has become 0 (most likely because the 2954 * image has been flattened) we need to re-submit the 2955 * original request. 2956 */ 2957 rbd_assert(obj_request); 2958 rbd_assert(obj_request->img_request); 2959 rbd_dev = obj_request->img_request->rbd_dev; 2960 if (!rbd_dev->parent_overlap) { 2961 rbd_obj_request_submit(obj_request); 2962 return; 2963 } 2964 2965 obj_request->result = img_result; 2966 if (obj_request->result) 2967 goto out; 2968 2969 /* 2970 * We need to zero anything beyond the parent overlap 2971 * boundary. Since rbd_img_obj_request_read_callback() 2972 * will zero anything beyond the end of a short read, an 2973 * easy way to do this is to pretend the data from the 2974 * parent came up short--ending at the overlap boundary. 2975 */ 2976 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2977 obj_end = obj_request->img_offset + obj_request->length; 2978 if (obj_end > rbd_dev->parent_overlap) { 2979 u64 xferred = 0; 2980 2981 if (obj_request->img_offset < rbd_dev->parent_overlap) 2982 xferred = rbd_dev->parent_overlap - 2983 obj_request->img_offset; 2984 2985 obj_request->xferred = min(img_xferred, xferred); 2986 } else { 2987 obj_request->xferred = img_xferred; 2988 } 2989 out: 2990 rbd_img_obj_request_read_callback(obj_request); 2991 rbd_obj_request_complete(obj_request); 2992 } 2993 2994 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2995 { 2996 struct rbd_img_request *img_request; 2997 int result; 2998 2999 rbd_assert(obj_request_img_data_test(obj_request)); 3000 rbd_assert(obj_request->img_request != NULL); 3001 rbd_assert(obj_request->result == (s32) -ENOENT); 3002 rbd_assert(obj_request_type_valid(obj_request->type)); 3003 3004 /* rbd_read_finish(obj_request, obj_request->length); */ 3005 img_request = rbd_parent_request_create(obj_request, 3006 obj_request->img_offset, 3007 obj_request->length); 3008 result = -ENOMEM; 3009 if (!img_request) 3010 goto out_err; 3011 3012 if (obj_request->type == OBJ_REQUEST_BIO) 3013 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3014 obj_request->bio_list); 3015 else 3016 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3017 obj_request->pages); 3018 if (result) 3019 goto out_err; 3020 3021 img_request->callback = rbd_img_parent_read_callback; 3022 result = rbd_img_request_submit(img_request); 3023 if (result) 3024 goto out_err; 3025 3026 return; 3027 out_err: 3028 if (img_request) 3029 rbd_img_request_put(img_request); 3030 obj_request->result = result; 3031 obj_request->xferred = 0; 3032 obj_request_done_set(obj_request); 3033 } 3034 3035 static const struct rbd_client_id rbd_empty_cid; 3036 3037 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3038 const struct rbd_client_id *rhs) 3039 { 3040 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3041 } 3042 3043 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3044 { 3045 struct rbd_client_id cid; 3046 3047 mutex_lock(&rbd_dev->watch_mutex); 3048 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3049 cid.handle = rbd_dev->watch_cookie; 3050 mutex_unlock(&rbd_dev->watch_mutex); 3051 return cid; 3052 } 3053 3054 /* 3055 * lock_rwsem must be held for write 3056 */ 3057 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3058 const struct rbd_client_id *cid) 3059 { 3060 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3061 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3062 cid->gid, cid->handle); 3063 rbd_dev->owner_cid = *cid; /* struct */ 3064 } 3065 3066 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3067 { 3068 mutex_lock(&rbd_dev->watch_mutex); 3069 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3070 mutex_unlock(&rbd_dev->watch_mutex); 3071 } 3072 3073 /* 3074 * lock_rwsem must be held for write 3075 */ 3076 static int rbd_lock(struct rbd_device *rbd_dev) 3077 { 3078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3079 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3080 char cookie[32]; 3081 int ret; 3082 3083 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3084 rbd_dev->lock_cookie[0] != '\0'); 3085 3086 format_lock_cookie(rbd_dev, cookie); 3087 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3088 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3089 RBD_LOCK_TAG, "", 0); 3090 if (ret) 3091 return ret; 3092 3093 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3094 strcpy(rbd_dev->lock_cookie, cookie); 3095 rbd_set_owner_cid(rbd_dev, &cid); 3096 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3097 return 0; 3098 } 3099 3100 /* 3101 * lock_rwsem must be held for write 3102 */ 3103 static void rbd_unlock(struct rbd_device *rbd_dev) 3104 { 3105 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3106 int ret; 3107 3108 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3109 rbd_dev->lock_cookie[0] == '\0'); 3110 3111 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3112 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3113 if (ret && ret != -ENOENT) 3114 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 3115 3116 /* treat errors as the image is unlocked */ 3117 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3118 rbd_dev->lock_cookie[0] = '\0'; 3119 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3120 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3121 } 3122 3123 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3124 enum rbd_notify_op notify_op, 3125 struct page ***preply_pages, 3126 size_t *preply_len) 3127 { 3128 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3129 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3130 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3131 char buf[buf_size]; 3132 void *p = buf; 3133 3134 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3135 3136 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3137 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3138 ceph_encode_32(&p, notify_op); 3139 ceph_encode_64(&p, cid.gid); 3140 ceph_encode_64(&p, cid.handle); 3141 3142 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3143 &rbd_dev->header_oloc, buf, buf_size, 3144 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3145 } 3146 3147 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3148 enum rbd_notify_op notify_op) 3149 { 3150 struct page **reply_pages; 3151 size_t reply_len; 3152 3153 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3154 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3155 } 3156 3157 static void rbd_notify_acquired_lock(struct work_struct *work) 3158 { 3159 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3160 acquired_lock_work); 3161 3162 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3163 } 3164 3165 static void rbd_notify_released_lock(struct work_struct *work) 3166 { 3167 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3168 released_lock_work); 3169 3170 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3171 } 3172 3173 static int rbd_request_lock(struct rbd_device *rbd_dev) 3174 { 3175 struct page **reply_pages; 3176 size_t reply_len; 3177 bool lock_owner_responded = false; 3178 int ret; 3179 3180 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3181 3182 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3183 &reply_pages, &reply_len); 3184 if (ret && ret != -ETIMEDOUT) { 3185 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3186 goto out; 3187 } 3188 3189 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3190 void *p = page_address(reply_pages[0]); 3191 void *const end = p + reply_len; 3192 u32 n; 3193 3194 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3195 while (n--) { 3196 u8 struct_v; 3197 u32 len; 3198 3199 ceph_decode_need(&p, end, 8 + 8, e_inval); 3200 p += 8 + 8; /* skip gid and cookie */ 3201 3202 ceph_decode_32_safe(&p, end, len, e_inval); 3203 if (!len) 3204 continue; 3205 3206 if (lock_owner_responded) { 3207 rbd_warn(rbd_dev, 3208 "duplicate lock owners detected"); 3209 ret = -EIO; 3210 goto out; 3211 } 3212 3213 lock_owner_responded = true; 3214 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3215 &struct_v, &len); 3216 if (ret) { 3217 rbd_warn(rbd_dev, 3218 "failed to decode ResponseMessage: %d", 3219 ret); 3220 goto e_inval; 3221 } 3222 3223 ret = ceph_decode_32(&p); 3224 } 3225 } 3226 3227 if (!lock_owner_responded) { 3228 rbd_warn(rbd_dev, "no lock owners detected"); 3229 ret = -ETIMEDOUT; 3230 } 3231 3232 out: 3233 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3234 return ret; 3235 3236 e_inval: 3237 ret = -EINVAL; 3238 goto out; 3239 } 3240 3241 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3242 { 3243 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3244 3245 cancel_delayed_work(&rbd_dev->lock_dwork); 3246 if (wake_all) 3247 wake_up_all(&rbd_dev->lock_waitq); 3248 else 3249 wake_up(&rbd_dev->lock_waitq); 3250 } 3251 3252 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3253 struct ceph_locker **lockers, u32 *num_lockers) 3254 { 3255 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3256 u8 lock_type; 3257 char *lock_tag; 3258 int ret; 3259 3260 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3261 3262 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3263 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3264 &lock_type, &lock_tag, lockers, num_lockers); 3265 if (ret) 3266 return ret; 3267 3268 if (*num_lockers == 0) { 3269 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3270 goto out; 3271 } 3272 3273 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3274 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3275 lock_tag); 3276 ret = -EBUSY; 3277 goto out; 3278 } 3279 3280 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3281 rbd_warn(rbd_dev, "shared lock type detected"); 3282 ret = -EBUSY; 3283 goto out; 3284 } 3285 3286 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3287 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3288 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3289 (*lockers)[0].id.cookie); 3290 ret = -EBUSY; 3291 goto out; 3292 } 3293 3294 out: 3295 kfree(lock_tag); 3296 return ret; 3297 } 3298 3299 static int find_watcher(struct rbd_device *rbd_dev, 3300 const struct ceph_locker *locker) 3301 { 3302 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3303 struct ceph_watch_item *watchers; 3304 u32 num_watchers; 3305 u64 cookie; 3306 int i; 3307 int ret; 3308 3309 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3310 &rbd_dev->header_oloc, &watchers, 3311 &num_watchers); 3312 if (ret) 3313 return ret; 3314 3315 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3316 for (i = 0; i < num_watchers; i++) { 3317 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3318 sizeof(locker->info.addr)) && 3319 watchers[i].cookie == cookie) { 3320 struct rbd_client_id cid = { 3321 .gid = le64_to_cpu(watchers[i].name.num), 3322 .handle = cookie, 3323 }; 3324 3325 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3326 rbd_dev, cid.gid, cid.handle); 3327 rbd_set_owner_cid(rbd_dev, &cid); 3328 ret = 1; 3329 goto out; 3330 } 3331 } 3332 3333 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3334 ret = 0; 3335 out: 3336 kfree(watchers); 3337 return ret; 3338 } 3339 3340 /* 3341 * lock_rwsem must be held for write 3342 */ 3343 static int rbd_try_lock(struct rbd_device *rbd_dev) 3344 { 3345 struct ceph_client *client = rbd_dev->rbd_client->client; 3346 struct ceph_locker *lockers; 3347 u32 num_lockers; 3348 int ret; 3349 3350 for (;;) { 3351 ret = rbd_lock(rbd_dev); 3352 if (ret != -EBUSY) 3353 return ret; 3354 3355 /* determine if the current lock holder is still alive */ 3356 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3357 if (ret) 3358 return ret; 3359 3360 if (num_lockers == 0) 3361 goto again; 3362 3363 ret = find_watcher(rbd_dev, lockers); 3364 if (ret) { 3365 if (ret > 0) 3366 ret = 0; /* have to request lock */ 3367 goto out; 3368 } 3369 3370 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3371 ENTITY_NAME(lockers[0].id.name)); 3372 3373 ret = ceph_monc_blacklist_add(&client->monc, 3374 &lockers[0].info.addr); 3375 if (ret) { 3376 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3377 ENTITY_NAME(lockers[0].id.name), ret); 3378 goto out; 3379 } 3380 3381 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3382 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3383 lockers[0].id.cookie, 3384 &lockers[0].id.name); 3385 if (ret && ret != -ENOENT) 3386 goto out; 3387 3388 again: 3389 ceph_free_lockers(lockers, num_lockers); 3390 } 3391 3392 out: 3393 ceph_free_lockers(lockers, num_lockers); 3394 return ret; 3395 } 3396 3397 /* 3398 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3399 */ 3400 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3401 int *pret) 3402 { 3403 enum rbd_lock_state lock_state; 3404 3405 down_read(&rbd_dev->lock_rwsem); 3406 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3407 rbd_dev->lock_state); 3408 if (__rbd_is_lock_owner(rbd_dev)) { 3409 lock_state = rbd_dev->lock_state; 3410 up_read(&rbd_dev->lock_rwsem); 3411 return lock_state; 3412 } 3413 3414 up_read(&rbd_dev->lock_rwsem); 3415 down_write(&rbd_dev->lock_rwsem); 3416 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3417 rbd_dev->lock_state); 3418 if (!__rbd_is_lock_owner(rbd_dev)) { 3419 *pret = rbd_try_lock(rbd_dev); 3420 if (*pret) 3421 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3422 } 3423 3424 lock_state = rbd_dev->lock_state; 3425 up_write(&rbd_dev->lock_rwsem); 3426 return lock_state; 3427 } 3428 3429 static void rbd_acquire_lock(struct work_struct *work) 3430 { 3431 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3432 struct rbd_device, lock_dwork); 3433 enum rbd_lock_state lock_state; 3434 int ret; 3435 3436 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3437 again: 3438 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3439 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3440 if (lock_state == RBD_LOCK_STATE_LOCKED) 3441 wake_requests(rbd_dev, true); 3442 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3443 rbd_dev, lock_state, ret); 3444 return; 3445 } 3446 3447 ret = rbd_request_lock(rbd_dev); 3448 if (ret == -ETIMEDOUT) { 3449 goto again; /* treat this as a dead client */ 3450 } else if (ret == -EROFS) { 3451 rbd_warn(rbd_dev, "peer will not release lock"); 3452 /* 3453 * If this is rbd_add_acquire_lock(), we want to fail 3454 * immediately -- reuse BLACKLISTED flag. Otherwise we 3455 * want to block. 3456 */ 3457 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3458 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3459 /* wake "rbd map --exclusive" process */ 3460 wake_requests(rbd_dev, false); 3461 } 3462 } else if (ret < 0) { 3463 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3464 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3465 RBD_RETRY_DELAY); 3466 } else { 3467 /* 3468 * lock owner acked, but resend if we don't see them 3469 * release the lock 3470 */ 3471 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3472 rbd_dev); 3473 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3474 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3475 } 3476 } 3477 3478 /* 3479 * lock_rwsem must be held for write 3480 */ 3481 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3482 { 3483 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3484 rbd_dev->lock_state); 3485 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3486 return false; 3487 3488 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3489 downgrade_write(&rbd_dev->lock_rwsem); 3490 /* 3491 * Ensure that all in-flight IO is flushed. 3492 * 3493 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3494 * may be shared with other devices. 3495 */ 3496 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3497 up_read(&rbd_dev->lock_rwsem); 3498 3499 down_write(&rbd_dev->lock_rwsem); 3500 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3501 rbd_dev->lock_state); 3502 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3503 return false; 3504 3505 rbd_unlock(rbd_dev); 3506 /* 3507 * Give others a chance to grab the lock - we would re-acquire 3508 * almost immediately if we got new IO during ceph_osdc_sync() 3509 * otherwise. We need to ack our own notifications, so this 3510 * lock_dwork will be requeued from rbd_wait_state_locked() 3511 * after wake_requests() in rbd_handle_released_lock(). 3512 */ 3513 cancel_delayed_work(&rbd_dev->lock_dwork); 3514 return true; 3515 } 3516 3517 static void rbd_release_lock_work(struct work_struct *work) 3518 { 3519 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3520 unlock_work); 3521 3522 down_write(&rbd_dev->lock_rwsem); 3523 rbd_release_lock(rbd_dev); 3524 up_write(&rbd_dev->lock_rwsem); 3525 } 3526 3527 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3528 void **p) 3529 { 3530 struct rbd_client_id cid = { 0 }; 3531 3532 if (struct_v >= 2) { 3533 cid.gid = ceph_decode_64(p); 3534 cid.handle = ceph_decode_64(p); 3535 } 3536 3537 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3538 cid.handle); 3539 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3540 down_write(&rbd_dev->lock_rwsem); 3541 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3542 /* 3543 * we already know that the remote client is 3544 * the owner 3545 */ 3546 up_write(&rbd_dev->lock_rwsem); 3547 return; 3548 } 3549 3550 rbd_set_owner_cid(rbd_dev, &cid); 3551 downgrade_write(&rbd_dev->lock_rwsem); 3552 } else { 3553 down_read(&rbd_dev->lock_rwsem); 3554 } 3555 3556 if (!__rbd_is_lock_owner(rbd_dev)) 3557 wake_requests(rbd_dev, false); 3558 up_read(&rbd_dev->lock_rwsem); 3559 } 3560 3561 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3562 void **p) 3563 { 3564 struct rbd_client_id cid = { 0 }; 3565 3566 if (struct_v >= 2) { 3567 cid.gid = ceph_decode_64(p); 3568 cid.handle = ceph_decode_64(p); 3569 } 3570 3571 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3572 cid.handle); 3573 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3574 down_write(&rbd_dev->lock_rwsem); 3575 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3576 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3577 __func__, rbd_dev, cid.gid, cid.handle, 3578 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3579 up_write(&rbd_dev->lock_rwsem); 3580 return; 3581 } 3582 3583 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3584 downgrade_write(&rbd_dev->lock_rwsem); 3585 } else { 3586 down_read(&rbd_dev->lock_rwsem); 3587 } 3588 3589 if (!__rbd_is_lock_owner(rbd_dev)) 3590 wake_requests(rbd_dev, false); 3591 up_read(&rbd_dev->lock_rwsem); 3592 } 3593 3594 /* 3595 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3596 * ResponseMessage is needed. 3597 */ 3598 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3599 void **p) 3600 { 3601 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3602 struct rbd_client_id cid = { 0 }; 3603 int result = 1; 3604 3605 if (struct_v >= 2) { 3606 cid.gid = ceph_decode_64(p); 3607 cid.handle = ceph_decode_64(p); 3608 } 3609 3610 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3611 cid.handle); 3612 if (rbd_cid_equal(&cid, &my_cid)) 3613 return result; 3614 3615 down_read(&rbd_dev->lock_rwsem); 3616 if (__rbd_is_lock_owner(rbd_dev)) { 3617 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3618 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3619 goto out_unlock; 3620 3621 /* 3622 * encode ResponseMessage(0) so the peer can detect 3623 * a missing owner 3624 */ 3625 result = 0; 3626 3627 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3628 if (!rbd_dev->opts->exclusive) { 3629 dout("%s rbd_dev %p queueing unlock_work\n", 3630 __func__, rbd_dev); 3631 queue_work(rbd_dev->task_wq, 3632 &rbd_dev->unlock_work); 3633 } else { 3634 /* refuse to release the lock */ 3635 result = -EROFS; 3636 } 3637 } 3638 } 3639 3640 out_unlock: 3641 up_read(&rbd_dev->lock_rwsem); 3642 return result; 3643 } 3644 3645 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3646 u64 notify_id, u64 cookie, s32 *result) 3647 { 3648 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3649 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3650 char buf[buf_size]; 3651 int ret; 3652 3653 if (result) { 3654 void *p = buf; 3655 3656 /* encode ResponseMessage */ 3657 ceph_start_encoding(&p, 1, 1, 3658 buf_size - CEPH_ENCODING_START_BLK_LEN); 3659 ceph_encode_32(&p, *result); 3660 } else { 3661 buf_size = 0; 3662 } 3663 3664 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3665 &rbd_dev->header_oloc, notify_id, cookie, 3666 buf, buf_size); 3667 if (ret) 3668 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3669 } 3670 3671 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3672 u64 cookie) 3673 { 3674 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3675 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3676 } 3677 3678 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3679 u64 notify_id, u64 cookie, s32 result) 3680 { 3681 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3682 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3683 } 3684 3685 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3686 u64 notifier_id, void *data, size_t data_len) 3687 { 3688 struct rbd_device *rbd_dev = arg; 3689 void *p = data; 3690 void *const end = p + data_len; 3691 u8 struct_v = 0; 3692 u32 len; 3693 u32 notify_op; 3694 int ret; 3695 3696 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3697 __func__, rbd_dev, cookie, notify_id, data_len); 3698 if (data_len) { 3699 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3700 &struct_v, &len); 3701 if (ret) { 3702 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3703 ret); 3704 return; 3705 } 3706 3707 notify_op = ceph_decode_32(&p); 3708 } else { 3709 /* legacy notification for header updates */ 3710 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3711 len = 0; 3712 } 3713 3714 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3715 switch (notify_op) { 3716 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3717 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3718 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3719 break; 3720 case RBD_NOTIFY_OP_RELEASED_LOCK: 3721 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3722 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3723 break; 3724 case RBD_NOTIFY_OP_REQUEST_LOCK: 3725 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3726 if (ret <= 0) 3727 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3728 cookie, ret); 3729 else 3730 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3731 break; 3732 case RBD_NOTIFY_OP_HEADER_UPDATE: 3733 ret = rbd_dev_refresh(rbd_dev); 3734 if (ret) 3735 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3736 3737 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3738 break; 3739 default: 3740 if (rbd_is_lock_owner(rbd_dev)) 3741 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3742 cookie, -EOPNOTSUPP); 3743 else 3744 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3745 break; 3746 } 3747 } 3748 3749 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3750 3751 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3752 { 3753 struct rbd_device *rbd_dev = arg; 3754 3755 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3756 3757 down_write(&rbd_dev->lock_rwsem); 3758 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3759 up_write(&rbd_dev->lock_rwsem); 3760 3761 mutex_lock(&rbd_dev->watch_mutex); 3762 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3763 __rbd_unregister_watch(rbd_dev); 3764 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3765 3766 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3767 } 3768 mutex_unlock(&rbd_dev->watch_mutex); 3769 } 3770 3771 /* 3772 * watch_mutex must be locked 3773 */ 3774 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3775 { 3776 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3777 struct ceph_osd_linger_request *handle; 3778 3779 rbd_assert(!rbd_dev->watch_handle); 3780 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3781 3782 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3783 &rbd_dev->header_oloc, rbd_watch_cb, 3784 rbd_watch_errcb, rbd_dev); 3785 if (IS_ERR(handle)) 3786 return PTR_ERR(handle); 3787 3788 rbd_dev->watch_handle = handle; 3789 return 0; 3790 } 3791 3792 /* 3793 * watch_mutex must be locked 3794 */ 3795 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3796 { 3797 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3798 int ret; 3799 3800 rbd_assert(rbd_dev->watch_handle); 3801 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3802 3803 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3804 if (ret) 3805 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3806 3807 rbd_dev->watch_handle = NULL; 3808 } 3809 3810 static int rbd_register_watch(struct rbd_device *rbd_dev) 3811 { 3812 int ret; 3813 3814 mutex_lock(&rbd_dev->watch_mutex); 3815 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3816 ret = __rbd_register_watch(rbd_dev); 3817 if (ret) 3818 goto out; 3819 3820 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3821 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3822 3823 out: 3824 mutex_unlock(&rbd_dev->watch_mutex); 3825 return ret; 3826 } 3827 3828 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3829 { 3830 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3831 3832 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3833 cancel_work_sync(&rbd_dev->acquired_lock_work); 3834 cancel_work_sync(&rbd_dev->released_lock_work); 3835 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3836 cancel_work_sync(&rbd_dev->unlock_work); 3837 } 3838 3839 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3840 { 3841 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3842 cancel_tasks_sync(rbd_dev); 3843 3844 mutex_lock(&rbd_dev->watch_mutex); 3845 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3846 __rbd_unregister_watch(rbd_dev); 3847 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3848 mutex_unlock(&rbd_dev->watch_mutex); 3849 3850 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3851 } 3852 3853 /* 3854 * lock_rwsem must be held for write 3855 */ 3856 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3857 { 3858 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3859 char cookie[32]; 3860 int ret; 3861 3862 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3863 3864 format_lock_cookie(rbd_dev, cookie); 3865 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3866 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3867 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3868 RBD_LOCK_TAG, cookie); 3869 if (ret) { 3870 if (ret != -EOPNOTSUPP) 3871 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3872 ret); 3873 3874 /* 3875 * Lock cookie cannot be updated on older OSDs, so do 3876 * a manual release and queue an acquire. 3877 */ 3878 if (rbd_release_lock(rbd_dev)) 3879 queue_delayed_work(rbd_dev->task_wq, 3880 &rbd_dev->lock_dwork, 0); 3881 } else { 3882 strcpy(rbd_dev->lock_cookie, cookie); 3883 } 3884 } 3885 3886 static void rbd_reregister_watch(struct work_struct *work) 3887 { 3888 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3889 struct rbd_device, watch_dwork); 3890 int ret; 3891 3892 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3893 3894 mutex_lock(&rbd_dev->watch_mutex); 3895 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3896 mutex_unlock(&rbd_dev->watch_mutex); 3897 return; 3898 } 3899 3900 ret = __rbd_register_watch(rbd_dev); 3901 if (ret) { 3902 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3903 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3904 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3905 wake_requests(rbd_dev, true); 3906 } else { 3907 queue_delayed_work(rbd_dev->task_wq, 3908 &rbd_dev->watch_dwork, 3909 RBD_RETRY_DELAY); 3910 } 3911 mutex_unlock(&rbd_dev->watch_mutex); 3912 return; 3913 } 3914 3915 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3916 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3917 mutex_unlock(&rbd_dev->watch_mutex); 3918 3919 down_write(&rbd_dev->lock_rwsem); 3920 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3921 rbd_reacquire_lock(rbd_dev); 3922 up_write(&rbd_dev->lock_rwsem); 3923 3924 ret = rbd_dev_refresh(rbd_dev); 3925 if (ret) 3926 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3927 } 3928 3929 /* 3930 * Synchronous osd object method call. Returns the number of bytes 3931 * returned in the outbound buffer, or a negative error code. 3932 */ 3933 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3934 struct ceph_object_id *oid, 3935 struct ceph_object_locator *oloc, 3936 const char *method_name, 3937 const void *outbound, 3938 size_t outbound_size, 3939 void *inbound, 3940 size_t inbound_size) 3941 { 3942 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3943 struct page *req_page = NULL; 3944 struct page *reply_page; 3945 int ret; 3946 3947 /* 3948 * Method calls are ultimately read operations. The result 3949 * should placed into the inbound buffer provided. They 3950 * also supply outbound data--parameters for the object 3951 * method. Currently if this is present it will be a 3952 * snapshot id. 3953 */ 3954 if (outbound) { 3955 if (outbound_size > PAGE_SIZE) 3956 return -E2BIG; 3957 3958 req_page = alloc_page(GFP_KERNEL); 3959 if (!req_page) 3960 return -ENOMEM; 3961 3962 memcpy(page_address(req_page), outbound, outbound_size); 3963 } 3964 3965 reply_page = alloc_page(GFP_KERNEL); 3966 if (!reply_page) { 3967 if (req_page) 3968 __free_page(req_page); 3969 return -ENOMEM; 3970 } 3971 3972 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3973 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3974 reply_page, &inbound_size); 3975 if (!ret) { 3976 memcpy(inbound, page_address(reply_page), inbound_size); 3977 ret = inbound_size; 3978 } 3979 3980 if (req_page) 3981 __free_page(req_page); 3982 __free_page(reply_page); 3983 return ret; 3984 } 3985 3986 /* 3987 * lock_rwsem must be held for read 3988 */ 3989 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 3990 { 3991 DEFINE_WAIT(wait); 3992 3993 do { 3994 /* 3995 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3996 * and cancel_delayed_work() in wake_requests(). 3997 */ 3998 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3999 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4000 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 4001 TASK_UNINTERRUPTIBLE); 4002 up_read(&rbd_dev->lock_rwsem); 4003 schedule(); 4004 down_read(&rbd_dev->lock_rwsem); 4005 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4006 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 4007 4008 finish_wait(&rbd_dev->lock_waitq, &wait); 4009 } 4010 4011 static void rbd_queue_workfn(struct work_struct *work) 4012 { 4013 struct request *rq = blk_mq_rq_from_pdu(work); 4014 struct rbd_device *rbd_dev = rq->q->queuedata; 4015 struct rbd_img_request *img_request; 4016 struct ceph_snap_context *snapc = NULL; 4017 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4018 u64 length = blk_rq_bytes(rq); 4019 enum obj_operation_type op_type; 4020 u64 mapping_size; 4021 bool must_be_locked; 4022 int result; 4023 4024 switch (req_op(rq)) { 4025 case REQ_OP_DISCARD: 4026 case REQ_OP_WRITE_ZEROES: 4027 op_type = OBJ_OP_DISCARD; 4028 break; 4029 case REQ_OP_WRITE: 4030 op_type = OBJ_OP_WRITE; 4031 break; 4032 case REQ_OP_READ: 4033 op_type = OBJ_OP_READ; 4034 break; 4035 default: 4036 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 4037 result = -EIO; 4038 goto err; 4039 } 4040 4041 /* Ignore/skip any zero-length requests */ 4042 4043 if (!length) { 4044 dout("%s: zero-length request\n", __func__); 4045 result = 0; 4046 goto err_rq; 4047 } 4048 4049 /* Only reads are allowed to a read-only device */ 4050 4051 if (op_type != OBJ_OP_READ) { 4052 if (rbd_dev->mapping.read_only) { 4053 result = -EROFS; 4054 goto err_rq; 4055 } 4056 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 4057 } 4058 4059 /* 4060 * Quit early if the mapped snapshot no longer exists. It's 4061 * still possible the snapshot will have disappeared by the 4062 * time our request arrives at the osd, but there's no sense in 4063 * sending it if we already know. 4064 */ 4065 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4066 dout("request for non-existent snapshot"); 4067 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4068 result = -ENXIO; 4069 goto err_rq; 4070 } 4071 4072 if (offset && length > U64_MAX - offset + 1) { 4073 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4074 length); 4075 result = -EINVAL; 4076 goto err_rq; /* Shouldn't happen */ 4077 } 4078 4079 blk_mq_start_request(rq); 4080 4081 down_read(&rbd_dev->header_rwsem); 4082 mapping_size = rbd_dev->mapping.size; 4083 if (op_type != OBJ_OP_READ) { 4084 snapc = rbd_dev->header.snapc; 4085 ceph_get_snap_context(snapc); 4086 } 4087 up_read(&rbd_dev->header_rwsem); 4088 4089 if (offset + length > mapping_size) { 4090 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4091 length, mapping_size); 4092 result = -EIO; 4093 goto err_rq; 4094 } 4095 4096 must_be_locked = 4097 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 4098 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 4099 if (must_be_locked) { 4100 down_read(&rbd_dev->lock_rwsem); 4101 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4102 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4103 if (rbd_dev->opts->exclusive) { 4104 rbd_warn(rbd_dev, "exclusive lock required"); 4105 result = -EROFS; 4106 goto err_unlock; 4107 } 4108 rbd_wait_state_locked(rbd_dev); 4109 } 4110 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4111 result = -EBLACKLISTED; 4112 goto err_unlock; 4113 } 4114 } 4115 4116 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4117 snapc); 4118 if (!img_request) { 4119 result = -ENOMEM; 4120 goto err_unlock; 4121 } 4122 img_request->rq = rq; 4123 snapc = NULL; /* img_request consumes a ref */ 4124 4125 if (op_type == OBJ_OP_DISCARD) 4126 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4127 NULL); 4128 else 4129 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4130 rq->bio); 4131 if (result) 4132 goto err_img_request; 4133 4134 result = rbd_img_request_submit(img_request); 4135 if (result) 4136 goto err_img_request; 4137 4138 if (must_be_locked) 4139 up_read(&rbd_dev->lock_rwsem); 4140 return; 4141 4142 err_img_request: 4143 rbd_img_request_put(img_request); 4144 err_unlock: 4145 if (must_be_locked) 4146 up_read(&rbd_dev->lock_rwsem); 4147 err_rq: 4148 if (result) 4149 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4150 obj_op_name(op_type), length, offset, result); 4151 ceph_put_snap_context(snapc); 4152 err: 4153 blk_mq_end_request(rq, result); 4154 } 4155 4156 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4157 const struct blk_mq_queue_data *bd) 4158 { 4159 struct request *rq = bd->rq; 4160 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4161 4162 queue_work(rbd_wq, work); 4163 return BLK_MQ_RQ_QUEUE_OK; 4164 } 4165 4166 static void rbd_free_disk(struct rbd_device *rbd_dev) 4167 { 4168 blk_cleanup_queue(rbd_dev->disk->queue); 4169 blk_mq_free_tag_set(&rbd_dev->tag_set); 4170 put_disk(rbd_dev->disk); 4171 rbd_dev->disk = NULL; 4172 } 4173 4174 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4175 struct ceph_object_id *oid, 4176 struct ceph_object_locator *oloc, 4177 void *buf, int buf_len) 4178 4179 { 4180 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4181 struct ceph_osd_request *req; 4182 struct page **pages; 4183 int num_pages = calc_pages_for(0, buf_len); 4184 int ret; 4185 4186 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4187 if (!req) 4188 return -ENOMEM; 4189 4190 ceph_oid_copy(&req->r_base_oid, oid); 4191 ceph_oloc_copy(&req->r_base_oloc, oloc); 4192 req->r_flags = CEPH_OSD_FLAG_READ; 4193 4194 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4195 if (ret) 4196 goto out_req; 4197 4198 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4199 if (IS_ERR(pages)) { 4200 ret = PTR_ERR(pages); 4201 goto out_req; 4202 } 4203 4204 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4205 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4206 true); 4207 4208 ceph_osdc_start_request(osdc, req, false); 4209 ret = ceph_osdc_wait_request(osdc, req); 4210 if (ret >= 0) 4211 ceph_copy_from_page_vector(pages, buf, 0, ret); 4212 4213 out_req: 4214 ceph_osdc_put_request(req); 4215 return ret; 4216 } 4217 4218 /* 4219 * Read the complete header for the given rbd device. On successful 4220 * return, the rbd_dev->header field will contain up-to-date 4221 * information about the image. 4222 */ 4223 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4224 { 4225 struct rbd_image_header_ondisk *ondisk = NULL; 4226 u32 snap_count = 0; 4227 u64 names_size = 0; 4228 u32 want_count; 4229 int ret; 4230 4231 /* 4232 * The complete header will include an array of its 64-bit 4233 * snapshot ids, followed by the names of those snapshots as 4234 * a contiguous block of NUL-terminated strings. Note that 4235 * the number of snapshots could change by the time we read 4236 * it in, in which case we re-read it. 4237 */ 4238 do { 4239 size_t size; 4240 4241 kfree(ondisk); 4242 4243 size = sizeof (*ondisk); 4244 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4245 size += names_size; 4246 ondisk = kmalloc(size, GFP_KERNEL); 4247 if (!ondisk) 4248 return -ENOMEM; 4249 4250 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4251 &rbd_dev->header_oloc, ondisk, size); 4252 if (ret < 0) 4253 goto out; 4254 if ((size_t)ret < size) { 4255 ret = -ENXIO; 4256 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4257 size, ret); 4258 goto out; 4259 } 4260 if (!rbd_dev_ondisk_valid(ondisk)) { 4261 ret = -ENXIO; 4262 rbd_warn(rbd_dev, "invalid header"); 4263 goto out; 4264 } 4265 4266 names_size = le64_to_cpu(ondisk->snap_names_len); 4267 want_count = snap_count; 4268 snap_count = le32_to_cpu(ondisk->snap_count); 4269 } while (snap_count != want_count); 4270 4271 ret = rbd_header_from_disk(rbd_dev, ondisk); 4272 out: 4273 kfree(ondisk); 4274 4275 return ret; 4276 } 4277 4278 /* 4279 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4280 * has disappeared from the (just updated) snapshot context. 4281 */ 4282 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4283 { 4284 u64 snap_id; 4285 4286 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4287 return; 4288 4289 snap_id = rbd_dev->spec->snap_id; 4290 if (snap_id == CEPH_NOSNAP) 4291 return; 4292 4293 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4294 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4295 } 4296 4297 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4298 { 4299 sector_t size; 4300 4301 /* 4302 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4303 * try to update its size. If REMOVING is set, updating size 4304 * is just useless work since the device can't be opened. 4305 */ 4306 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4307 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4308 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4309 dout("setting size to %llu sectors", (unsigned long long)size); 4310 set_capacity(rbd_dev->disk, size); 4311 revalidate_disk(rbd_dev->disk); 4312 } 4313 } 4314 4315 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4316 { 4317 u64 mapping_size; 4318 int ret; 4319 4320 down_write(&rbd_dev->header_rwsem); 4321 mapping_size = rbd_dev->mapping.size; 4322 4323 ret = rbd_dev_header_info(rbd_dev); 4324 if (ret) 4325 goto out; 4326 4327 /* 4328 * If there is a parent, see if it has disappeared due to the 4329 * mapped image getting flattened. 4330 */ 4331 if (rbd_dev->parent) { 4332 ret = rbd_dev_v2_parent_info(rbd_dev); 4333 if (ret) 4334 goto out; 4335 } 4336 4337 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4338 rbd_dev->mapping.size = rbd_dev->header.image_size; 4339 } else { 4340 /* validate mapped snapshot's EXISTS flag */ 4341 rbd_exists_validate(rbd_dev); 4342 } 4343 4344 out: 4345 up_write(&rbd_dev->header_rwsem); 4346 if (!ret && mapping_size != rbd_dev->mapping.size) 4347 rbd_dev_update_size(rbd_dev); 4348 4349 return ret; 4350 } 4351 4352 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 4353 unsigned int hctx_idx, unsigned int numa_node) 4354 { 4355 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4356 4357 INIT_WORK(work, rbd_queue_workfn); 4358 return 0; 4359 } 4360 4361 static const struct blk_mq_ops rbd_mq_ops = { 4362 .queue_rq = rbd_queue_rq, 4363 .init_request = rbd_init_request, 4364 }; 4365 4366 static int rbd_init_disk(struct rbd_device *rbd_dev) 4367 { 4368 struct gendisk *disk; 4369 struct request_queue *q; 4370 u64 segment_size; 4371 int err; 4372 4373 /* create gendisk info */ 4374 disk = alloc_disk(single_major ? 4375 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4376 RBD_MINORS_PER_MAJOR); 4377 if (!disk) 4378 return -ENOMEM; 4379 4380 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4381 rbd_dev->dev_id); 4382 disk->major = rbd_dev->major; 4383 disk->first_minor = rbd_dev->minor; 4384 if (single_major) 4385 disk->flags |= GENHD_FL_EXT_DEVT; 4386 disk->fops = &rbd_bd_ops; 4387 disk->private_data = rbd_dev; 4388 4389 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4390 rbd_dev->tag_set.ops = &rbd_mq_ops; 4391 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4392 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4393 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4394 rbd_dev->tag_set.nr_hw_queues = 1; 4395 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4396 4397 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4398 if (err) 4399 goto out_disk; 4400 4401 q = blk_mq_init_queue(&rbd_dev->tag_set); 4402 if (IS_ERR(q)) { 4403 err = PTR_ERR(q); 4404 goto out_tag_set; 4405 } 4406 4407 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4408 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4409 4410 /* set io sizes to object size */ 4411 segment_size = rbd_obj_bytes(&rbd_dev->header); 4412 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4413 q->limits.max_sectors = queue_max_hw_sectors(q); 4414 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 4415 blk_queue_max_segment_size(q, segment_size); 4416 blk_queue_io_min(q, segment_size); 4417 blk_queue_io_opt(q, segment_size); 4418 4419 /* enable the discard support */ 4420 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4421 q->limits.discard_granularity = segment_size; 4422 q->limits.discard_alignment = segment_size; 4423 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4424 blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE); 4425 4426 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4427 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4428 4429 /* 4430 * disk_release() expects a queue ref from add_disk() and will 4431 * put it. Hold an extra ref until add_disk() is called. 4432 */ 4433 WARN_ON(!blk_get_queue(q)); 4434 disk->queue = q; 4435 q->queuedata = rbd_dev; 4436 4437 rbd_dev->disk = disk; 4438 4439 return 0; 4440 out_tag_set: 4441 blk_mq_free_tag_set(&rbd_dev->tag_set); 4442 out_disk: 4443 put_disk(disk); 4444 return err; 4445 } 4446 4447 /* 4448 sysfs 4449 */ 4450 4451 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4452 { 4453 return container_of(dev, struct rbd_device, dev); 4454 } 4455 4456 static ssize_t rbd_size_show(struct device *dev, 4457 struct device_attribute *attr, char *buf) 4458 { 4459 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4460 4461 return sprintf(buf, "%llu\n", 4462 (unsigned long long)rbd_dev->mapping.size); 4463 } 4464 4465 /* 4466 * Note this shows the features for whatever's mapped, which is not 4467 * necessarily the base image. 4468 */ 4469 static ssize_t rbd_features_show(struct device *dev, 4470 struct device_attribute *attr, char *buf) 4471 { 4472 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4473 4474 return sprintf(buf, "0x%016llx\n", 4475 (unsigned long long)rbd_dev->mapping.features); 4476 } 4477 4478 static ssize_t rbd_major_show(struct device *dev, 4479 struct device_attribute *attr, char *buf) 4480 { 4481 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4482 4483 if (rbd_dev->major) 4484 return sprintf(buf, "%d\n", rbd_dev->major); 4485 4486 return sprintf(buf, "(none)\n"); 4487 } 4488 4489 static ssize_t rbd_minor_show(struct device *dev, 4490 struct device_attribute *attr, char *buf) 4491 { 4492 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4493 4494 return sprintf(buf, "%d\n", rbd_dev->minor); 4495 } 4496 4497 static ssize_t rbd_client_addr_show(struct device *dev, 4498 struct device_attribute *attr, char *buf) 4499 { 4500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4501 struct ceph_entity_addr *client_addr = 4502 ceph_client_addr(rbd_dev->rbd_client->client); 4503 4504 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4505 le32_to_cpu(client_addr->nonce)); 4506 } 4507 4508 static ssize_t rbd_client_id_show(struct device *dev, 4509 struct device_attribute *attr, char *buf) 4510 { 4511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4512 4513 return sprintf(buf, "client%lld\n", 4514 ceph_client_gid(rbd_dev->rbd_client->client)); 4515 } 4516 4517 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4518 struct device_attribute *attr, char *buf) 4519 { 4520 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4521 4522 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4523 } 4524 4525 static ssize_t rbd_config_info_show(struct device *dev, 4526 struct device_attribute *attr, char *buf) 4527 { 4528 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4529 4530 return sprintf(buf, "%s\n", rbd_dev->config_info); 4531 } 4532 4533 static ssize_t rbd_pool_show(struct device *dev, 4534 struct device_attribute *attr, char *buf) 4535 { 4536 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4537 4538 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4539 } 4540 4541 static ssize_t rbd_pool_id_show(struct device *dev, 4542 struct device_attribute *attr, char *buf) 4543 { 4544 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4545 4546 return sprintf(buf, "%llu\n", 4547 (unsigned long long) rbd_dev->spec->pool_id); 4548 } 4549 4550 static ssize_t rbd_name_show(struct device *dev, 4551 struct device_attribute *attr, char *buf) 4552 { 4553 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4554 4555 if (rbd_dev->spec->image_name) 4556 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4557 4558 return sprintf(buf, "(unknown)\n"); 4559 } 4560 4561 static ssize_t rbd_image_id_show(struct device *dev, 4562 struct device_attribute *attr, char *buf) 4563 { 4564 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4565 4566 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4567 } 4568 4569 /* 4570 * Shows the name of the currently-mapped snapshot (or 4571 * RBD_SNAP_HEAD_NAME for the base image). 4572 */ 4573 static ssize_t rbd_snap_show(struct device *dev, 4574 struct device_attribute *attr, 4575 char *buf) 4576 { 4577 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4578 4579 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4580 } 4581 4582 static ssize_t rbd_snap_id_show(struct device *dev, 4583 struct device_attribute *attr, char *buf) 4584 { 4585 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4586 4587 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4588 } 4589 4590 /* 4591 * For a v2 image, shows the chain of parent images, separated by empty 4592 * lines. For v1 images or if there is no parent, shows "(no parent 4593 * image)". 4594 */ 4595 static ssize_t rbd_parent_show(struct device *dev, 4596 struct device_attribute *attr, 4597 char *buf) 4598 { 4599 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4600 ssize_t count = 0; 4601 4602 if (!rbd_dev->parent) 4603 return sprintf(buf, "(no parent image)\n"); 4604 4605 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4606 struct rbd_spec *spec = rbd_dev->parent_spec; 4607 4608 count += sprintf(&buf[count], "%s" 4609 "pool_id %llu\npool_name %s\n" 4610 "image_id %s\nimage_name %s\n" 4611 "snap_id %llu\nsnap_name %s\n" 4612 "overlap %llu\n", 4613 !count ? "" : "\n", /* first? */ 4614 spec->pool_id, spec->pool_name, 4615 spec->image_id, spec->image_name ?: "(unknown)", 4616 spec->snap_id, spec->snap_name, 4617 rbd_dev->parent_overlap); 4618 } 4619 4620 return count; 4621 } 4622 4623 static ssize_t rbd_image_refresh(struct device *dev, 4624 struct device_attribute *attr, 4625 const char *buf, 4626 size_t size) 4627 { 4628 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4629 int ret; 4630 4631 ret = rbd_dev_refresh(rbd_dev); 4632 if (ret) 4633 return ret; 4634 4635 return size; 4636 } 4637 4638 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4639 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4640 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4641 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4642 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4643 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4644 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4645 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4646 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4647 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4648 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4649 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4650 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4651 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4652 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4653 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4654 4655 static struct attribute *rbd_attrs[] = { 4656 &dev_attr_size.attr, 4657 &dev_attr_features.attr, 4658 &dev_attr_major.attr, 4659 &dev_attr_minor.attr, 4660 &dev_attr_client_addr.attr, 4661 &dev_attr_client_id.attr, 4662 &dev_attr_cluster_fsid.attr, 4663 &dev_attr_config_info.attr, 4664 &dev_attr_pool.attr, 4665 &dev_attr_pool_id.attr, 4666 &dev_attr_name.attr, 4667 &dev_attr_image_id.attr, 4668 &dev_attr_current_snap.attr, 4669 &dev_attr_snap_id.attr, 4670 &dev_attr_parent.attr, 4671 &dev_attr_refresh.attr, 4672 NULL 4673 }; 4674 4675 static struct attribute_group rbd_attr_group = { 4676 .attrs = rbd_attrs, 4677 }; 4678 4679 static const struct attribute_group *rbd_attr_groups[] = { 4680 &rbd_attr_group, 4681 NULL 4682 }; 4683 4684 static void rbd_dev_release(struct device *dev); 4685 4686 static const struct device_type rbd_device_type = { 4687 .name = "rbd", 4688 .groups = rbd_attr_groups, 4689 .release = rbd_dev_release, 4690 }; 4691 4692 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4693 { 4694 kref_get(&spec->kref); 4695 4696 return spec; 4697 } 4698 4699 static void rbd_spec_free(struct kref *kref); 4700 static void rbd_spec_put(struct rbd_spec *spec) 4701 { 4702 if (spec) 4703 kref_put(&spec->kref, rbd_spec_free); 4704 } 4705 4706 static struct rbd_spec *rbd_spec_alloc(void) 4707 { 4708 struct rbd_spec *spec; 4709 4710 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4711 if (!spec) 4712 return NULL; 4713 4714 spec->pool_id = CEPH_NOPOOL; 4715 spec->snap_id = CEPH_NOSNAP; 4716 kref_init(&spec->kref); 4717 4718 return spec; 4719 } 4720 4721 static void rbd_spec_free(struct kref *kref) 4722 { 4723 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4724 4725 kfree(spec->pool_name); 4726 kfree(spec->image_id); 4727 kfree(spec->image_name); 4728 kfree(spec->snap_name); 4729 kfree(spec); 4730 } 4731 4732 static void rbd_dev_free(struct rbd_device *rbd_dev) 4733 { 4734 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4735 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4736 4737 ceph_oid_destroy(&rbd_dev->header_oid); 4738 ceph_oloc_destroy(&rbd_dev->header_oloc); 4739 kfree(rbd_dev->config_info); 4740 4741 rbd_put_client(rbd_dev->rbd_client); 4742 rbd_spec_put(rbd_dev->spec); 4743 kfree(rbd_dev->opts); 4744 kfree(rbd_dev); 4745 } 4746 4747 static void rbd_dev_release(struct device *dev) 4748 { 4749 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4750 bool need_put = !!rbd_dev->opts; 4751 4752 if (need_put) { 4753 destroy_workqueue(rbd_dev->task_wq); 4754 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4755 } 4756 4757 rbd_dev_free(rbd_dev); 4758 4759 /* 4760 * This is racy, but way better than putting module outside of 4761 * the release callback. The race window is pretty small, so 4762 * doing something similar to dm (dm-builtin.c) is overkill. 4763 */ 4764 if (need_put) 4765 module_put(THIS_MODULE); 4766 } 4767 4768 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4769 struct rbd_spec *spec) 4770 { 4771 struct rbd_device *rbd_dev; 4772 4773 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4774 if (!rbd_dev) 4775 return NULL; 4776 4777 spin_lock_init(&rbd_dev->lock); 4778 INIT_LIST_HEAD(&rbd_dev->node); 4779 init_rwsem(&rbd_dev->header_rwsem); 4780 4781 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4782 ceph_oid_init(&rbd_dev->header_oid); 4783 rbd_dev->header_oloc.pool = spec->pool_id; 4784 4785 mutex_init(&rbd_dev->watch_mutex); 4786 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4787 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4788 4789 init_rwsem(&rbd_dev->lock_rwsem); 4790 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4791 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4792 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4793 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4794 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4795 init_waitqueue_head(&rbd_dev->lock_waitq); 4796 4797 rbd_dev->dev.bus = &rbd_bus_type; 4798 rbd_dev->dev.type = &rbd_device_type; 4799 rbd_dev->dev.parent = &rbd_root_dev; 4800 device_initialize(&rbd_dev->dev); 4801 4802 rbd_dev->rbd_client = rbdc; 4803 rbd_dev->spec = spec; 4804 4805 return rbd_dev; 4806 } 4807 4808 /* 4809 * Create a mapping rbd_dev. 4810 */ 4811 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4812 struct rbd_spec *spec, 4813 struct rbd_options *opts) 4814 { 4815 struct rbd_device *rbd_dev; 4816 4817 rbd_dev = __rbd_dev_create(rbdc, spec); 4818 if (!rbd_dev) 4819 return NULL; 4820 4821 rbd_dev->opts = opts; 4822 4823 /* get an id and fill in device name */ 4824 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4825 minor_to_rbd_dev_id(1 << MINORBITS), 4826 GFP_KERNEL); 4827 if (rbd_dev->dev_id < 0) 4828 goto fail_rbd_dev; 4829 4830 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4831 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4832 rbd_dev->name); 4833 if (!rbd_dev->task_wq) 4834 goto fail_dev_id; 4835 4836 /* we have a ref from do_rbd_add() */ 4837 __module_get(THIS_MODULE); 4838 4839 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4840 return rbd_dev; 4841 4842 fail_dev_id: 4843 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4844 fail_rbd_dev: 4845 rbd_dev_free(rbd_dev); 4846 return NULL; 4847 } 4848 4849 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4850 { 4851 if (rbd_dev) 4852 put_device(&rbd_dev->dev); 4853 } 4854 4855 /* 4856 * Get the size and object order for an image snapshot, or if 4857 * snap_id is CEPH_NOSNAP, gets this information for the base 4858 * image. 4859 */ 4860 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4861 u8 *order, u64 *snap_size) 4862 { 4863 __le64 snapid = cpu_to_le64(snap_id); 4864 int ret; 4865 struct { 4866 u8 order; 4867 __le64 size; 4868 } __attribute__ ((packed)) size_buf = { 0 }; 4869 4870 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4871 &rbd_dev->header_oloc, "get_size", 4872 &snapid, sizeof(snapid), 4873 &size_buf, sizeof(size_buf)); 4874 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4875 if (ret < 0) 4876 return ret; 4877 if (ret < sizeof (size_buf)) 4878 return -ERANGE; 4879 4880 if (order) { 4881 *order = size_buf.order; 4882 dout(" order %u", (unsigned int)*order); 4883 } 4884 *snap_size = le64_to_cpu(size_buf.size); 4885 4886 dout(" snap_id 0x%016llx snap_size = %llu\n", 4887 (unsigned long long)snap_id, 4888 (unsigned long long)*snap_size); 4889 4890 return 0; 4891 } 4892 4893 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4894 { 4895 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4896 &rbd_dev->header.obj_order, 4897 &rbd_dev->header.image_size); 4898 } 4899 4900 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4901 { 4902 void *reply_buf; 4903 int ret; 4904 void *p; 4905 4906 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4907 if (!reply_buf) 4908 return -ENOMEM; 4909 4910 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4911 &rbd_dev->header_oloc, "get_object_prefix", 4912 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4913 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4914 if (ret < 0) 4915 goto out; 4916 4917 p = reply_buf; 4918 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4919 p + ret, NULL, GFP_NOIO); 4920 ret = 0; 4921 4922 if (IS_ERR(rbd_dev->header.object_prefix)) { 4923 ret = PTR_ERR(rbd_dev->header.object_prefix); 4924 rbd_dev->header.object_prefix = NULL; 4925 } else { 4926 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4927 } 4928 out: 4929 kfree(reply_buf); 4930 4931 return ret; 4932 } 4933 4934 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4935 u64 *snap_features) 4936 { 4937 __le64 snapid = cpu_to_le64(snap_id); 4938 struct { 4939 __le64 features; 4940 __le64 incompat; 4941 } __attribute__ ((packed)) features_buf = { 0 }; 4942 u64 unsup; 4943 int ret; 4944 4945 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4946 &rbd_dev->header_oloc, "get_features", 4947 &snapid, sizeof(snapid), 4948 &features_buf, sizeof(features_buf)); 4949 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4950 if (ret < 0) 4951 return ret; 4952 if (ret < sizeof (features_buf)) 4953 return -ERANGE; 4954 4955 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4956 if (unsup) { 4957 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4958 unsup); 4959 return -ENXIO; 4960 } 4961 4962 *snap_features = le64_to_cpu(features_buf.features); 4963 4964 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4965 (unsigned long long)snap_id, 4966 (unsigned long long)*snap_features, 4967 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4968 4969 return 0; 4970 } 4971 4972 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4973 { 4974 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4975 &rbd_dev->header.features); 4976 } 4977 4978 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4979 { 4980 struct rbd_spec *parent_spec; 4981 size_t size; 4982 void *reply_buf = NULL; 4983 __le64 snapid; 4984 void *p; 4985 void *end; 4986 u64 pool_id; 4987 char *image_id; 4988 u64 snap_id; 4989 u64 overlap; 4990 int ret; 4991 4992 parent_spec = rbd_spec_alloc(); 4993 if (!parent_spec) 4994 return -ENOMEM; 4995 4996 size = sizeof (__le64) + /* pool_id */ 4997 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4998 sizeof (__le64) + /* snap_id */ 4999 sizeof (__le64); /* overlap */ 5000 reply_buf = kmalloc(size, GFP_KERNEL); 5001 if (!reply_buf) { 5002 ret = -ENOMEM; 5003 goto out_err; 5004 } 5005 5006 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5007 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5008 &rbd_dev->header_oloc, "get_parent", 5009 &snapid, sizeof(snapid), reply_buf, size); 5010 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5011 if (ret < 0) 5012 goto out_err; 5013 5014 p = reply_buf; 5015 end = reply_buf + ret; 5016 ret = -ERANGE; 5017 ceph_decode_64_safe(&p, end, pool_id, out_err); 5018 if (pool_id == CEPH_NOPOOL) { 5019 /* 5020 * Either the parent never existed, or we have 5021 * record of it but the image got flattened so it no 5022 * longer has a parent. When the parent of a 5023 * layered image disappears we immediately set the 5024 * overlap to 0. The effect of this is that all new 5025 * requests will be treated as if the image had no 5026 * parent. 5027 */ 5028 if (rbd_dev->parent_overlap) { 5029 rbd_dev->parent_overlap = 0; 5030 rbd_dev_parent_put(rbd_dev); 5031 pr_info("%s: clone image has been flattened\n", 5032 rbd_dev->disk->disk_name); 5033 } 5034 5035 goto out; /* No parent? No problem. */ 5036 } 5037 5038 /* The ceph file layout needs to fit pool id in 32 bits */ 5039 5040 ret = -EIO; 5041 if (pool_id > (u64)U32_MAX) { 5042 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5043 (unsigned long long)pool_id, U32_MAX); 5044 goto out_err; 5045 } 5046 5047 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5048 if (IS_ERR(image_id)) { 5049 ret = PTR_ERR(image_id); 5050 goto out_err; 5051 } 5052 ceph_decode_64_safe(&p, end, snap_id, out_err); 5053 ceph_decode_64_safe(&p, end, overlap, out_err); 5054 5055 /* 5056 * The parent won't change (except when the clone is 5057 * flattened, already handled that). So we only need to 5058 * record the parent spec we have not already done so. 5059 */ 5060 if (!rbd_dev->parent_spec) { 5061 parent_spec->pool_id = pool_id; 5062 parent_spec->image_id = image_id; 5063 parent_spec->snap_id = snap_id; 5064 rbd_dev->parent_spec = parent_spec; 5065 parent_spec = NULL; /* rbd_dev now owns this */ 5066 } else { 5067 kfree(image_id); 5068 } 5069 5070 /* 5071 * We always update the parent overlap. If it's zero we issue 5072 * a warning, as we will proceed as if there was no parent. 5073 */ 5074 if (!overlap) { 5075 if (parent_spec) { 5076 /* refresh, careful to warn just once */ 5077 if (rbd_dev->parent_overlap) 5078 rbd_warn(rbd_dev, 5079 "clone now standalone (overlap became 0)"); 5080 } else { 5081 /* initial probe */ 5082 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5083 } 5084 } 5085 rbd_dev->parent_overlap = overlap; 5086 5087 out: 5088 ret = 0; 5089 out_err: 5090 kfree(reply_buf); 5091 rbd_spec_put(parent_spec); 5092 5093 return ret; 5094 } 5095 5096 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5097 { 5098 struct { 5099 __le64 stripe_unit; 5100 __le64 stripe_count; 5101 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5102 size_t size = sizeof (striping_info_buf); 5103 void *p; 5104 u64 obj_size; 5105 u64 stripe_unit; 5106 u64 stripe_count; 5107 int ret; 5108 5109 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5110 &rbd_dev->header_oloc, "get_stripe_unit_count", 5111 NULL, 0, &striping_info_buf, size); 5112 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5113 if (ret < 0) 5114 return ret; 5115 if (ret < size) 5116 return -ERANGE; 5117 5118 /* 5119 * We don't actually support the "fancy striping" feature 5120 * (STRIPINGV2) yet, but if the striping sizes are the 5121 * defaults the behavior is the same as before. So find 5122 * out, and only fail if the image has non-default values. 5123 */ 5124 ret = -EINVAL; 5125 obj_size = rbd_obj_bytes(&rbd_dev->header); 5126 p = &striping_info_buf; 5127 stripe_unit = ceph_decode_64(&p); 5128 if (stripe_unit != obj_size) { 5129 rbd_warn(rbd_dev, "unsupported stripe unit " 5130 "(got %llu want %llu)", 5131 stripe_unit, obj_size); 5132 return -EINVAL; 5133 } 5134 stripe_count = ceph_decode_64(&p); 5135 if (stripe_count != 1) { 5136 rbd_warn(rbd_dev, "unsupported stripe count " 5137 "(got %llu want 1)", stripe_count); 5138 return -EINVAL; 5139 } 5140 rbd_dev->header.stripe_unit = stripe_unit; 5141 rbd_dev->header.stripe_count = stripe_count; 5142 5143 return 0; 5144 } 5145 5146 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5147 { 5148 __le64 data_pool_id; 5149 int ret; 5150 5151 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5152 &rbd_dev->header_oloc, "get_data_pool", 5153 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5154 if (ret < 0) 5155 return ret; 5156 if (ret < sizeof(data_pool_id)) 5157 return -EBADMSG; 5158 5159 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5160 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5161 return 0; 5162 } 5163 5164 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5165 { 5166 CEPH_DEFINE_OID_ONSTACK(oid); 5167 size_t image_id_size; 5168 char *image_id; 5169 void *p; 5170 void *end; 5171 size_t size; 5172 void *reply_buf = NULL; 5173 size_t len = 0; 5174 char *image_name = NULL; 5175 int ret; 5176 5177 rbd_assert(!rbd_dev->spec->image_name); 5178 5179 len = strlen(rbd_dev->spec->image_id); 5180 image_id_size = sizeof (__le32) + len; 5181 image_id = kmalloc(image_id_size, GFP_KERNEL); 5182 if (!image_id) 5183 return NULL; 5184 5185 p = image_id; 5186 end = image_id + image_id_size; 5187 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5188 5189 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5190 reply_buf = kmalloc(size, GFP_KERNEL); 5191 if (!reply_buf) 5192 goto out; 5193 5194 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5195 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5196 "dir_get_name", image_id, image_id_size, 5197 reply_buf, size); 5198 if (ret < 0) 5199 goto out; 5200 p = reply_buf; 5201 end = reply_buf + ret; 5202 5203 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5204 if (IS_ERR(image_name)) 5205 image_name = NULL; 5206 else 5207 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5208 out: 5209 kfree(reply_buf); 5210 kfree(image_id); 5211 5212 return image_name; 5213 } 5214 5215 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5216 { 5217 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5218 const char *snap_name; 5219 u32 which = 0; 5220 5221 /* Skip over names until we find the one we are looking for */ 5222 5223 snap_name = rbd_dev->header.snap_names; 5224 while (which < snapc->num_snaps) { 5225 if (!strcmp(name, snap_name)) 5226 return snapc->snaps[which]; 5227 snap_name += strlen(snap_name) + 1; 5228 which++; 5229 } 5230 return CEPH_NOSNAP; 5231 } 5232 5233 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5234 { 5235 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5236 u32 which; 5237 bool found = false; 5238 u64 snap_id; 5239 5240 for (which = 0; !found && which < snapc->num_snaps; which++) { 5241 const char *snap_name; 5242 5243 snap_id = snapc->snaps[which]; 5244 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5245 if (IS_ERR(snap_name)) { 5246 /* ignore no-longer existing snapshots */ 5247 if (PTR_ERR(snap_name) == -ENOENT) 5248 continue; 5249 else 5250 break; 5251 } 5252 found = !strcmp(name, snap_name); 5253 kfree(snap_name); 5254 } 5255 return found ? snap_id : CEPH_NOSNAP; 5256 } 5257 5258 /* 5259 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5260 * no snapshot by that name is found, or if an error occurs. 5261 */ 5262 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5263 { 5264 if (rbd_dev->image_format == 1) 5265 return rbd_v1_snap_id_by_name(rbd_dev, name); 5266 5267 return rbd_v2_snap_id_by_name(rbd_dev, name); 5268 } 5269 5270 /* 5271 * An image being mapped will have everything but the snap id. 5272 */ 5273 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5274 { 5275 struct rbd_spec *spec = rbd_dev->spec; 5276 5277 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5278 rbd_assert(spec->image_id && spec->image_name); 5279 rbd_assert(spec->snap_name); 5280 5281 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5282 u64 snap_id; 5283 5284 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5285 if (snap_id == CEPH_NOSNAP) 5286 return -ENOENT; 5287 5288 spec->snap_id = snap_id; 5289 } else { 5290 spec->snap_id = CEPH_NOSNAP; 5291 } 5292 5293 return 0; 5294 } 5295 5296 /* 5297 * A parent image will have all ids but none of the names. 5298 * 5299 * All names in an rbd spec are dynamically allocated. It's OK if we 5300 * can't figure out the name for an image id. 5301 */ 5302 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5303 { 5304 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5305 struct rbd_spec *spec = rbd_dev->spec; 5306 const char *pool_name; 5307 const char *image_name; 5308 const char *snap_name; 5309 int ret; 5310 5311 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5312 rbd_assert(spec->image_id); 5313 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5314 5315 /* Get the pool name; we have to make our own copy of this */ 5316 5317 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5318 if (!pool_name) { 5319 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5320 return -EIO; 5321 } 5322 pool_name = kstrdup(pool_name, GFP_KERNEL); 5323 if (!pool_name) 5324 return -ENOMEM; 5325 5326 /* Fetch the image name; tolerate failure here */ 5327 5328 image_name = rbd_dev_image_name(rbd_dev); 5329 if (!image_name) 5330 rbd_warn(rbd_dev, "unable to get image name"); 5331 5332 /* Fetch the snapshot name */ 5333 5334 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5335 if (IS_ERR(snap_name)) { 5336 ret = PTR_ERR(snap_name); 5337 goto out_err; 5338 } 5339 5340 spec->pool_name = pool_name; 5341 spec->image_name = image_name; 5342 spec->snap_name = snap_name; 5343 5344 return 0; 5345 5346 out_err: 5347 kfree(image_name); 5348 kfree(pool_name); 5349 return ret; 5350 } 5351 5352 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5353 { 5354 size_t size; 5355 int ret; 5356 void *reply_buf; 5357 void *p; 5358 void *end; 5359 u64 seq; 5360 u32 snap_count; 5361 struct ceph_snap_context *snapc; 5362 u32 i; 5363 5364 /* 5365 * We'll need room for the seq value (maximum snapshot id), 5366 * snapshot count, and array of that many snapshot ids. 5367 * For now we have a fixed upper limit on the number we're 5368 * prepared to receive. 5369 */ 5370 size = sizeof (__le64) + sizeof (__le32) + 5371 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5372 reply_buf = kzalloc(size, GFP_KERNEL); 5373 if (!reply_buf) 5374 return -ENOMEM; 5375 5376 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5377 &rbd_dev->header_oloc, "get_snapcontext", 5378 NULL, 0, reply_buf, size); 5379 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5380 if (ret < 0) 5381 goto out; 5382 5383 p = reply_buf; 5384 end = reply_buf + ret; 5385 ret = -ERANGE; 5386 ceph_decode_64_safe(&p, end, seq, out); 5387 ceph_decode_32_safe(&p, end, snap_count, out); 5388 5389 /* 5390 * Make sure the reported number of snapshot ids wouldn't go 5391 * beyond the end of our buffer. But before checking that, 5392 * make sure the computed size of the snapshot context we 5393 * allocate is representable in a size_t. 5394 */ 5395 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5396 / sizeof (u64)) { 5397 ret = -EINVAL; 5398 goto out; 5399 } 5400 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5401 goto out; 5402 ret = 0; 5403 5404 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5405 if (!snapc) { 5406 ret = -ENOMEM; 5407 goto out; 5408 } 5409 snapc->seq = seq; 5410 for (i = 0; i < snap_count; i++) 5411 snapc->snaps[i] = ceph_decode_64(&p); 5412 5413 ceph_put_snap_context(rbd_dev->header.snapc); 5414 rbd_dev->header.snapc = snapc; 5415 5416 dout(" snap context seq = %llu, snap_count = %u\n", 5417 (unsigned long long)seq, (unsigned int)snap_count); 5418 out: 5419 kfree(reply_buf); 5420 5421 return ret; 5422 } 5423 5424 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5425 u64 snap_id) 5426 { 5427 size_t size; 5428 void *reply_buf; 5429 __le64 snapid; 5430 int ret; 5431 void *p; 5432 void *end; 5433 char *snap_name; 5434 5435 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5436 reply_buf = kmalloc(size, GFP_KERNEL); 5437 if (!reply_buf) 5438 return ERR_PTR(-ENOMEM); 5439 5440 snapid = cpu_to_le64(snap_id); 5441 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5442 &rbd_dev->header_oloc, "get_snapshot_name", 5443 &snapid, sizeof(snapid), reply_buf, size); 5444 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5445 if (ret < 0) { 5446 snap_name = ERR_PTR(ret); 5447 goto out; 5448 } 5449 5450 p = reply_buf; 5451 end = reply_buf + ret; 5452 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5453 if (IS_ERR(snap_name)) 5454 goto out; 5455 5456 dout(" snap_id 0x%016llx snap_name = %s\n", 5457 (unsigned long long)snap_id, snap_name); 5458 out: 5459 kfree(reply_buf); 5460 5461 return snap_name; 5462 } 5463 5464 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5465 { 5466 bool first_time = rbd_dev->header.object_prefix == NULL; 5467 int ret; 5468 5469 ret = rbd_dev_v2_image_size(rbd_dev); 5470 if (ret) 5471 return ret; 5472 5473 if (first_time) { 5474 ret = rbd_dev_v2_header_onetime(rbd_dev); 5475 if (ret) 5476 return ret; 5477 } 5478 5479 ret = rbd_dev_v2_snap_context(rbd_dev); 5480 if (ret && first_time) { 5481 kfree(rbd_dev->header.object_prefix); 5482 rbd_dev->header.object_prefix = NULL; 5483 } 5484 5485 return ret; 5486 } 5487 5488 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5489 { 5490 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5491 5492 if (rbd_dev->image_format == 1) 5493 return rbd_dev_v1_header_info(rbd_dev); 5494 5495 return rbd_dev_v2_header_info(rbd_dev); 5496 } 5497 5498 /* 5499 * Skips over white space at *buf, and updates *buf to point to the 5500 * first found non-space character (if any). Returns the length of 5501 * the token (string of non-white space characters) found. Note 5502 * that *buf must be terminated with '\0'. 5503 */ 5504 static inline size_t next_token(const char **buf) 5505 { 5506 /* 5507 * These are the characters that produce nonzero for 5508 * isspace() in the "C" and "POSIX" locales. 5509 */ 5510 const char *spaces = " \f\n\r\t\v"; 5511 5512 *buf += strspn(*buf, spaces); /* Find start of token */ 5513 5514 return strcspn(*buf, spaces); /* Return token length */ 5515 } 5516 5517 /* 5518 * Finds the next token in *buf, dynamically allocates a buffer big 5519 * enough to hold a copy of it, and copies the token into the new 5520 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5521 * that a duplicate buffer is created even for a zero-length token. 5522 * 5523 * Returns a pointer to the newly-allocated duplicate, or a null 5524 * pointer if memory for the duplicate was not available. If 5525 * the lenp argument is a non-null pointer, the length of the token 5526 * (not including the '\0') is returned in *lenp. 5527 * 5528 * If successful, the *buf pointer will be updated to point beyond 5529 * the end of the found token. 5530 * 5531 * Note: uses GFP_KERNEL for allocation. 5532 */ 5533 static inline char *dup_token(const char **buf, size_t *lenp) 5534 { 5535 char *dup; 5536 size_t len; 5537 5538 len = next_token(buf); 5539 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5540 if (!dup) 5541 return NULL; 5542 *(dup + len) = '\0'; 5543 *buf += len; 5544 5545 if (lenp) 5546 *lenp = len; 5547 5548 return dup; 5549 } 5550 5551 /* 5552 * Parse the options provided for an "rbd add" (i.e., rbd image 5553 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5554 * and the data written is passed here via a NUL-terminated buffer. 5555 * Returns 0 if successful or an error code otherwise. 5556 * 5557 * The information extracted from these options is recorded in 5558 * the other parameters which return dynamically-allocated 5559 * structures: 5560 * ceph_opts 5561 * The address of a pointer that will refer to a ceph options 5562 * structure. Caller must release the returned pointer using 5563 * ceph_destroy_options() when it is no longer needed. 5564 * rbd_opts 5565 * Address of an rbd options pointer. Fully initialized by 5566 * this function; caller must release with kfree(). 5567 * spec 5568 * Address of an rbd image specification pointer. Fully 5569 * initialized by this function based on parsed options. 5570 * Caller must release with rbd_spec_put(). 5571 * 5572 * The options passed take this form: 5573 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5574 * where: 5575 * <mon_addrs> 5576 * A comma-separated list of one or more monitor addresses. 5577 * A monitor address is an ip address, optionally followed 5578 * by a port number (separated by a colon). 5579 * I.e.: ip1[:port1][,ip2[:port2]...] 5580 * <options> 5581 * A comma-separated list of ceph and/or rbd options. 5582 * <pool_name> 5583 * The name of the rados pool containing the rbd image. 5584 * <image_name> 5585 * The name of the image in that pool to map. 5586 * <snap_id> 5587 * An optional snapshot id. If provided, the mapping will 5588 * present data from the image at the time that snapshot was 5589 * created. The image head is used if no snapshot id is 5590 * provided. Snapshot mappings are always read-only. 5591 */ 5592 static int rbd_add_parse_args(const char *buf, 5593 struct ceph_options **ceph_opts, 5594 struct rbd_options **opts, 5595 struct rbd_spec **rbd_spec) 5596 { 5597 size_t len; 5598 char *options; 5599 const char *mon_addrs; 5600 char *snap_name; 5601 size_t mon_addrs_size; 5602 struct rbd_spec *spec = NULL; 5603 struct rbd_options *rbd_opts = NULL; 5604 struct ceph_options *copts; 5605 int ret; 5606 5607 /* The first four tokens are required */ 5608 5609 len = next_token(&buf); 5610 if (!len) { 5611 rbd_warn(NULL, "no monitor address(es) provided"); 5612 return -EINVAL; 5613 } 5614 mon_addrs = buf; 5615 mon_addrs_size = len + 1; 5616 buf += len; 5617 5618 ret = -EINVAL; 5619 options = dup_token(&buf, NULL); 5620 if (!options) 5621 return -ENOMEM; 5622 if (!*options) { 5623 rbd_warn(NULL, "no options provided"); 5624 goto out_err; 5625 } 5626 5627 spec = rbd_spec_alloc(); 5628 if (!spec) 5629 goto out_mem; 5630 5631 spec->pool_name = dup_token(&buf, NULL); 5632 if (!spec->pool_name) 5633 goto out_mem; 5634 if (!*spec->pool_name) { 5635 rbd_warn(NULL, "no pool name provided"); 5636 goto out_err; 5637 } 5638 5639 spec->image_name = dup_token(&buf, NULL); 5640 if (!spec->image_name) 5641 goto out_mem; 5642 if (!*spec->image_name) { 5643 rbd_warn(NULL, "no image name provided"); 5644 goto out_err; 5645 } 5646 5647 /* 5648 * Snapshot name is optional; default is to use "-" 5649 * (indicating the head/no snapshot). 5650 */ 5651 len = next_token(&buf); 5652 if (!len) { 5653 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5654 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5655 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5656 ret = -ENAMETOOLONG; 5657 goto out_err; 5658 } 5659 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5660 if (!snap_name) 5661 goto out_mem; 5662 *(snap_name + len) = '\0'; 5663 spec->snap_name = snap_name; 5664 5665 /* Initialize all rbd options to the defaults */ 5666 5667 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5668 if (!rbd_opts) 5669 goto out_mem; 5670 5671 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5672 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5673 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5674 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5675 5676 copts = ceph_parse_options(options, mon_addrs, 5677 mon_addrs + mon_addrs_size - 1, 5678 parse_rbd_opts_token, rbd_opts); 5679 if (IS_ERR(copts)) { 5680 ret = PTR_ERR(copts); 5681 goto out_err; 5682 } 5683 kfree(options); 5684 5685 *ceph_opts = copts; 5686 *opts = rbd_opts; 5687 *rbd_spec = spec; 5688 5689 return 0; 5690 out_mem: 5691 ret = -ENOMEM; 5692 out_err: 5693 kfree(rbd_opts); 5694 rbd_spec_put(spec); 5695 kfree(options); 5696 5697 return ret; 5698 } 5699 5700 /* 5701 * Return pool id (>= 0) or a negative error code. 5702 */ 5703 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5704 { 5705 struct ceph_options *opts = rbdc->client->options; 5706 u64 newest_epoch; 5707 int tries = 0; 5708 int ret; 5709 5710 again: 5711 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5712 if (ret == -ENOENT && tries++ < 1) { 5713 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5714 &newest_epoch); 5715 if (ret < 0) 5716 return ret; 5717 5718 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5719 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5720 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5721 newest_epoch, 5722 opts->mount_timeout); 5723 goto again; 5724 } else { 5725 /* the osdmap we have is new enough */ 5726 return -ENOENT; 5727 } 5728 } 5729 5730 return ret; 5731 } 5732 5733 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5734 { 5735 down_write(&rbd_dev->lock_rwsem); 5736 if (__rbd_is_lock_owner(rbd_dev)) 5737 rbd_unlock(rbd_dev); 5738 up_write(&rbd_dev->lock_rwsem); 5739 } 5740 5741 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5742 { 5743 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5744 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5745 return -EINVAL; 5746 } 5747 5748 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5749 down_read(&rbd_dev->lock_rwsem); 5750 rbd_wait_state_locked(rbd_dev); 5751 up_read(&rbd_dev->lock_rwsem); 5752 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 5753 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5754 return -EROFS; 5755 } 5756 5757 return 0; 5758 } 5759 5760 /* 5761 * An rbd format 2 image has a unique identifier, distinct from the 5762 * name given to it by the user. Internally, that identifier is 5763 * what's used to specify the names of objects related to the image. 5764 * 5765 * A special "rbd id" object is used to map an rbd image name to its 5766 * id. If that object doesn't exist, then there is no v2 rbd image 5767 * with the supplied name. 5768 * 5769 * This function will record the given rbd_dev's image_id field if 5770 * it can be determined, and in that case will return 0. If any 5771 * errors occur a negative errno will be returned and the rbd_dev's 5772 * image_id field will be unchanged (and should be NULL). 5773 */ 5774 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5775 { 5776 int ret; 5777 size_t size; 5778 CEPH_DEFINE_OID_ONSTACK(oid); 5779 void *response; 5780 char *image_id; 5781 5782 /* 5783 * When probing a parent image, the image id is already 5784 * known (and the image name likely is not). There's no 5785 * need to fetch the image id again in this case. We 5786 * do still need to set the image format though. 5787 */ 5788 if (rbd_dev->spec->image_id) { 5789 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5790 5791 return 0; 5792 } 5793 5794 /* 5795 * First, see if the format 2 image id file exists, and if 5796 * so, get the image's persistent id from it. 5797 */ 5798 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5799 rbd_dev->spec->image_name); 5800 if (ret) 5801 return ret; 5802 5803 dout("rbd id object name is %s\n", oid.name); 5804 5805 /* Response will be an encoded string, which includes a length */ 5806 5807 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5808 response = kzalloc(size, GFP_NOIO); 5809 if (!response) { 5810 ret = -ENOMEM; 5811 goto out; 5812 } 5813 5814 /* If it doesn't exist we'll assume it's a format 1 image */ 5815 5816 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5817 "get_id", NULL, 0, 5818 response, RBD_IMAGE_ID_LEN_MAX); 5819 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5820 if (ret == -ENOENT) { 5821 image_id = kstrdup("", GFP_KERNEL); 5822 ret = image_id ? 0 : -ENOMEM; 5823 if (!ret) 5824 rbd_dev->image_format = 1; 5825 } else if (ret >= 0) { 5826 void *p = response; 5827 5828 image_id = ceph_extract_encoded_string(&p, p + ret, 5829 NULL, GFP_NOIO); 5830 ret = PTR_ERR_OR_ZERO(image_id); 5831 if (!ret) 5832 rbd_dev->image_format = 2; 5833 } 5834 5835 if (!ret) { 5836 rbd_dev->spec->image_id = image_id; 5837 dout("image_id is %s\n", image_id); 5838 } 5839 out: 5840 kfree(response); 5841 ceph_oid_destroy(&oid); 5842 return ret; 5843 } 5844 5845 /* 5846 * Undo whatever state changes are made by v1 or v2 header info 5847 * call. 5848 */ 5849 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5850 { 5851 struct rbd_image_header *header; 5852 5853 rbd_dev_parent_put(rbd_dev); 5854 5855 /* Free dynamic fields from the header, then zero it out */ 5856 5857 header = &rbd_dev->header; 5858 ceph_put_snap_context(header->snapc); 5859 kfree(header->snap_sizes); 5860 kfree(header->snap_names); 5861 kfree(header->object_prefix); 5862 memset(header, 0, sizeof (*header)); 5863 } 5864 5865 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5866 { 5867 int ret; 5868 5869 ret = rbd_dev_v2_object_prefix(rbd_dev); 5870 if (ret) 5871 goto out_err; 5872 5873 /* 5874 * Get the and check features for the image. Currently the 5875 * features are assumed to never change. 5876 */ 5877 ret = rbd_dev_v2_features(rbd_dev); 5878 if (ret) 5879 goto out_err; 5880 5881 /* If the image supports fancy striping, get its parameters */ 5882 5883 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5884 ret = rbd_dev_v2_striping_info(rbd_dev); 5885 if (ret < 0) 5886 goto out_err; 5887 } 5888 5889 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5890 ret = rbd_dev_v2_data_pool(rbd_dev); 5891 if (ret) 5892 goto out_err; 5893 } 5894 5895 rbd_init_layout(rbd_dev); 5896 return 0; 5897 5898 out_err: 5899 rbd_dev->header.features = 0; 5900 kfree(rbd_dev->header.object_prefix); 5901 rbd_dev->header.object_prefix = NULL; 5902 return ret; 5903 } 5904 5905 /* 5906 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5907 * rbd_dev_image_probe() recursion depth, which means it's also the 5908 * length of the already discovered part of the parent chain. 5909 */ 5910 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5911 { 5912 struct rbd_device *parent = NULL; 5913 int ret; 5914 5915 if (!rbd_dev->parent_spec) 5916 return 0; 5917 5918 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5919 pr_info("parent chain is too long (%d)\n", depth); 5920 ret = -EINVAL; 5921 goto out_err; 5922 } 5923 5924 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5925 if (!parent) { 5926 ret = -ENOMEM; 5927 goto out_err; 5928 } 5929 5930 /* 5931 * Images related by parent/child relationships always share 5932 * rbd_client and spec/parent_spec, so bump their refcounts. 5933 */ 5934 __rbd_get_client(rbd_dev->rbd_client); 5935 rbd_spec_get(rbd_dev->parent_spec); 5936 5937 ret = rbd_dev_image_probe(parent, depth); 5938 if (ret < 0) 5939 goto out_err; 5940 5941 rbd_dev->parent = parent; 5942 atomic_set(&rbd_dev->parent_ref, 1); 5943 return 0; 5944 5945 out_err: 5946 rbd_dev_unparent(rbd_dev); 5947 rbd_dev_destroy(parent); 5948 return ret; 5949 } 5950 5951 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5952 { 5953 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5954 rbd_dev_mapping_clear(rbd_dev); 5955 rbd_free_disk(rbd_dev); 5956 if (!single_major) 5957 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5958 } 5959 5960 /* 5961 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5962 * upon return. 5963 */ 5964 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5965 { 5966 int ret; 5967 5968 /* Record our major and minor device numbers. */ 5969 5970 if (!single_major) { 5971 ret = register_blkdev(0, rbd_dev->name); 5972 if (ret < 0) 5973 goto err_out_unlock; 5974 5975 rbd_dev->major = ret; 5976 rbd_dev->minor = 0; 5977 } else { 5978 rbd_dev->major = rbd_major; 5979 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5980 } 5981 5982 /* Set up the blkdev mapping. */ 5983 5984 ret = rbd_init_disk(rbd_dev); 5985 if (ret) 5986 goto err_out_blkdev; 5987 5988 ret = rbd_dev_mapping_set(rbd_dev); 5989 if (ret) 5990 goto err_out_disk; 5991 5992 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5993 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5994 5995 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5996 if (ret) 5997 goto err_out_mapping; 5998 5999 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6000 up_write(&rbd_dev->header_rwsem); 6001 return 0; 6002 6003 err_out_mapping: 6004 rbd_dev_mapping_clear(rbd_dev); 6005 err_out_disk: 6006 rbd_free_disk(rbd_dev); 6007 err_out_blkdev: 6008 if (!single_major) 6009 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6010 err_out_unlock: 6011 up_write(&rbd_dev->header_rwsem); 6012 return ret; 6013 } 6014 6015 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6016 { 6017 struct rbd_spec *spec = rbd_dev->spec; 6018 int ret; 6019 6020 /* Record the header object name for this rbd image. */ 6021 6022 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6023 if (rbd_dev->image_format == 1) 6024 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6025 spec->image_name, RBD_SUFFIX); 6026 else 6027 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6028 RBD_HEADER_PREFIX, spec->image_id); 6029 6030 return ret; 6031 } 6032 6033 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6034 { 6035 rbd_dev_unprobe(rbd_dev); 6036 if (rbd_dev->opts) 6037 rbd_unregister_watch(rbd_dev); 6038 rbd_dev->image_format = 0; 6039 kfree(rbd_dev->spec->image_id); 6040 rbd_dev->spec->image_id = NULL; 6041 } 6042 6043 /* 6044 * Probe for the existence of the header object for the given rbd 6045 * device. If this image is the one being mapped (i.e., not a 6046 * parent), initiate a watch on its header object before using that 6047 * object to get detailed information about the rbd image. 6048 */ 6049 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6050 { 6051 int ret; 6052 6053 /* 6054 * Get the id from the image id object. Unless there's an 6055 * error, rbd_dev->spec->image_id will be filled in with 6056 * a dynamically-allocated string, and rbd_dev->image_format 6057 * will be set to either 1 or 2. 6058 */ 6059 ret = rbd_dev_image_id(rbd_dev); 6060 if (ret) 6061 return ret; 6062 6063 ret = rbd_dev_header_name(rbd_dev); 6064 if (ret) 6065 goto err_out_format; 6066 6067 if (!depth) { 6068 ret = rbd_register_watch(rbd_dev); 6069 if (ret) { 6070 if (ret == -ENOENT) 6071 pr_info("image %s/%s does not exist\n", 6072 rbd_dev->spec->pool_name, 6073 rbd_dev->spec->image_name); 6074 goto err_out_format; 6075 } 6076 } 6077 6078 ret = rbd_dev_header_info(rbd_dev); 6079 if (ret) 6080 goto err_out_watch; 6081 6082 /* 6083 * If this image is the one being mapped, we have pool name and 6084 * id, image name and id, and snap name - need to fill snap id. 6085 * Otherwise this is a parent image, identified by pool, image 6086 * and snap ids - need to fill in names for those ids. 6087 */ 6088 if (!depth) 6089 ret = rbd_spec_fill_snap_id(rbd_dev); 6090 else 6091 ret = rbd_spec_fill_names(rbd_dev); 6092 if (ret) { 6093 if (ret == -ENOENT) 6094 pr_info("snap %s/%s@%s does not exist\n", 6095 rbd_dev->spec->pool_name, 6096 rbd_dev->spec->image_name, 6097 rbd_dev->spec->snap_name); 6098 goto err_out_probe; 6099 } 6100 6101 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6102 ret = rbd_dev_v2_parent_info(rbd_dev); 6103 if (ret) 6104 goto err_out_probe; 6105 6106 /* 6107 * Need to warn users if this image is the one being 6108 * mapped and has a parent. 6109 */ 6110 if (!depth && rbd_dev->parent_spec) 6111 rbd_warn(rbd_dev, 6112 "WARNING: kernel layering is EXPERIMENTAL!"); 6113 } 6114 6115 ret = rbd_dev_probe_parent(rbd_dev, depth); 6116 if (ret) 6117 goto err_out_probe; 6118 6119 dout("discovered format %u image, header name is %s\n", 6120 rbd_dev->image_format, rbd_dev->header_oid.name); 6121 return 0; 6122 6123 err_out_probe: 6124 rbd_dev_unprobe(rbd_dev); 6125 err_out_watch: 6126 if (!depth) 6127 rbd_unregister_watch(rbd_dev); 6128 err_out_format: 6129 rbd_dev->image_format = 0; 6130 kfree(rbd_dev->spec->image_id); 6131 rbd_dev->spec->image_id = NULL; 6132 return ret; 6133 } 6134 6135 static ssize_t do_rbd_add(struct bus_type *bus, 6136 const char *buf, 6137 size_t count) 6138 { 6139 struct rbd_device *rbd_dev = NULL; 6140 struct ceph_options *ceph_opts = NULL; 6141 struct rbd_options *rbd_opts = NULL; 6142 struct rbd_spec *spec = NULL; 6143 struct rbd_client *rbdc; 6144 bool read_only; 6145 int rc; 6146 6147 if (!try_module_get(THIS_MODULE)) 6148 return -ENODEV; 6149 6150 /* parse add command */ 6151 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6152 if (rc < 0) 6153 goto out; 6154 6155 rbdc = rbd_get_client(ceph_opts); 6156 if (IS_ERR(rbdc)) { 6157 rc = PTR_ERR(rbdc); 6158 goto err_out_args; 6159 } 6160 6161 /* pick the pool */ 6162 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6163 if (rc < 0) { 6164 if (rc == -ENOENT) 6165 pr_info("pool %s does not exist\n", spec->pool_name); 6166 goto err_out_client; 6167 } 6168 spec->pool_id = (u64)rc; 6169 6170 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6171 if (!rbd_dev) { 6172 rc = -ENOMEM; 6173 goto err_out_client; 6174 } 6175 rbdc = NULL; /* rbd_dev now owns this */ 6176 spec = NULL; /* rbd_dev now owns this */ 6177 rbd_opts = NULL; /* rbd_dev now owns this */ 6178 6179 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6180 if (!rbd_dev->config_info) { 6181 rc = -ENOMEM; 6182 goto err_out_rbd_dev; 6183 } 6184 6185 down_write(&rbd_dev->header_rwsem); 6186 rc = rbd_dev_image_probe(rbd_dev, 0); 6187 if (rc < 0) { 6188 up_write(&rbd_dev->header_rwsem); 6189 goto err_out_rbd_dev; 6190 } 6191 6192 /* If we are mapping a snapshot it must be marked read-only */ 6193 6194 read_only = rbd_dev->opts->read_only; 6195 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6196 read_only = true; 6197 rbd_dev->mapping.read_only = read_only; 6198 6199 rc = rbd_dev_device_setup(rbd_dev); 6200 if (rc) 6201 goto err_out_image_probe; 6202 6203 if (rbd_dev->opts->exclusive) { 6204 rc = rbd_add_acquire_lock(rbd_dev); 6205 if (rc) 6206 goto err_out_device_setup; 6207 } 6208 6209 /* Everything's ready. Announce the disk to the world. */ 6210 6211 rc = device_add(&rbd_dev->dev); 6212 if (rc) 6213 goto err_out_image_lock; 6214 6215 add_disk(rbd_dev->disk); 6216 /* see rbd_init_disk() */ 6217 blk_put_queue(rbd_dev->disk->queue); 6218 6219 spin_lock(&rbd_dev_list_lock); 6220 list_add_tail(&rbd_dev->node, &rbd_dev_list); 6221 spin_unlock(&rbd_dev_list_lock); 6222 6223 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 6224 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 6225 rbd_dev->header.features); 6226 rc = count; 6227 out: 6228 module_put(THIS_MODULE); 6229 return rc; 6230 6231 err_out_image_lock: 6232 rbd_dev_image_unlock(rbd_dev); 6233 err_out_device_setup: 6234 rbd_dev_device_release(rbd_dev); 6235 err_out_image_probe: 6236 rbd_dev_image_release(rbd_dev); 6237 err_out_rbd_dev: 6238 rbd_dev_destroy(rbd_dev); 6239 err_out_client: 6240 rbd_put_client(rbdc); 6241 err_out_args: 6242 rbd_spec_put(spec); 6243 kfree(rbd_opts); 6244 goto out; 6245 } 6246 6247 static ssize_t rbd_add(struct bus_type *bus, 6248 const char *buf, 6249 size_t count) 6250 { 6251 if (single_major) 6252 return -EINVAL; 6253 6254 return do_rbd_add(bus, buf, count); 6255 } 6256 6257 static ssize_t rbd_add_single_major(struct bus_type *bus, 6258 const char *buf, 6259 size_t count) 6260 { 6261 return do_rbd_add(bus, buf, count); 6262 } 6263 6264 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6265 { 6266 while (rbd_dev->parent) { 6267 struct rbd_device *first = rbd_dev; 6268 struct rbd_device *second = first->parent; 6269 struct rbd_device *third; 6270 6271 /* 6272 * Follow to the parent with no grandparent and 6273 * remove it. 6274 */ 6275 while (second && (third = second->parent)) { 6276 first = second; 6277 second = third; 6278 } 6279 rbd_assert(second); 6280 rbd_dev_image_release(second); 6281 rbd_dev_destroy(second); 6282 first->parent = NULL; 6283 first->parent_overlap = 0; 6284 6285 rbd_assert(first->parent_spec); 6286 rbd_spec_put(first->parent_spec); 6287 first->parent_spec = NULL; 6288 } 6289 } 6290 6291 static ssize_t do_rbd_remove(struct bus_type *bus, 6292 const char *buf, 6293 size_t count) 6294 { 6295 struct rbd_device *rbd_dev = NULL; 6296 struct list_head *tmp; 6297 int dev_id; 6298 char opt_buf[6]; 6299 bool already = false; 6300 bool force = false; 6301 int ret; 6302 6303 dev_id = -1; 6304 opt_buf[0] = '\0'; 6305 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6306 if (dev_id < 0) { 6307 pr_err("dev_id out of range\n"); 6308 return -EINVAL; 6309 } 6310 if (opt_buf[0] != '\0') { 6311 if (!strcmp(opt_buf, "force")) { 6312 force = true; 6313 } else { 6314 pr_err("bad remove option at '%s'\n", opt_buf); 6315 return -EINVAL; 6316 } 6317 } 6318 6319 ret = -ENOENT; 6320 spin_lock(&rbd_dev_list_lock); 6321 list_for_each(tmp, &rbd_dev_list) { 6322 rbd_dev = list_entry(tmp, struct rbd_device, node); 6323 if (rbd_dev->dev_id == dev_id) { 6324 ret = 0; 6325 break; 6326 } 6327 } 6328 if (!ret) { 6329 spin_lock_irq(&rbd_dev->lock); 6330 if (rbd_dev->open_count && !force) 6331 ret = -EBUSY; 6332 else 6333 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6334 &rbd_dev->flags); 6335 spin_unlock_irq(&rbd_dev->lock); 6336 } 6337 spin_unlock(&rbd_dev_list_lock); 6338 if (ret < 0 || already) 6339 return ret; 6340 6341 if (force) { 6342 /* 6343 * Prevent new IO from being queued and wait for existing 6344 * IO to complete/fail. 6345 */ 6346 blk_mq_freeze_queue(rbd_dev->disk->queue); 6347 blk_set_queue_dying(rbd_dev->disk->queue); 6348 } 6349 6350 del_gendisk(rbd_dev->disk); 6351 spin_lock(&rbd_dev_list_lock); 6352 list_del_init(&rbd_dev->node); 6353 spin_unlock(&rbd_dev_list_lock); 6354 device_del(&rbd_dev->dev); 6355 6356 rbd_dev_image_unlock(rbd_dev); 6357 rbd_dev_device_release(rbd_dev); 6358 rbd_dev_image_release(rbd_dev); 6359 rbd_dev_destroy(rbd_dev); 6360 return count; 6361 } 6362 6363 static ssize_t rbd_remove(struct bus_type *bus, 6364 const char *buf, 6365 size_t count) 6366 { 6367 if (single_major) 6368 return -EINVAL; 6369 6370 return do_rbd_remove(bus, buf, count); 6371 } 6372 6373 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6374 const char *buf, 6375 size_t count) 6376 { 6377 return do_rbd_remove(bus, buf, count); 6378 } 6379 6380 /* 6381 * create control files in sysfs 6382 * /sys/bus/rbd/... 6383 */ 6384 static int rbd_sysfs_init(void) 6385 { 6386 int ret; 6387 6388 ret = device_register(&rbd_root_dev); 6389 if (ret < 0) 6390 return ret; 6391 6392 ret = bus_register(&rbd_bus_type); 6393 if (ret < 0) 6394 device_unregister(&rbd_root_dev); 6395 6396 return ret; 6397 } 6398 6399 static void rbd_sysfs_cleanup(void) 6400 { 6401 bus_unregister(&rbd_bus_type); 6402 device_unregister(&rbd_root_dev); 6403 } 6404 6405 static int rbd_slab_init(void) 6406 { 6407 rbd_assert(!rbd_img_request_cache); 6408 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6409 if (!rbd_img_request_cache) 6410 return -ENOMEM; 6411 6412 rbd_assert(!rbd_obj_request_cache); 6413 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6414 if (!rbd_obj_request_cache) 6415 goto out_err; 6416 6417 return 0; 6418 6419 out_err: 6420 kmem_cache_destroy(rbd_img_request_cache); 6421 rbd_img_request_cache = NULL; 6422 return -ENOMEM; 6423 } 6424 6425 static void rbd_slab_exit(void) 6426 { 6427 rbd_assert(rbd_obj_request_cache); 6428 kmem_cache_destroy(rbd_obj_request_cache); 6429 rbd_obj_request_cache = NULL; 6430 6431 rbd_assert(rbd_img_request_cache); 6432 kmem_cache_destroy(rbd_img_request_cache); 6433 rbd_img_request_cache = NULL; 6434 } 6435 6436 static int __init rbd_init(void) 6437 { 6438 int rc; 6439 6440 if (!libceph_compatible(NULL)) { 6441 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6442 return -EINVAL; 6443 } 6444 6445 rc = rbd_slab_init(); 6446 if (rc) 6447 return rc; 6448 6449 /* 6450 * The number of active work items is limited by the number of 6451 * rbd devices * queue depth, so leave @max_active at default. 6452 */ 6453 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6454 if (!rbd_wq) { 6455 rc = -ENOMEM; 6456 goto err_out_slab; 6457 } 6458 6459 if (single_major) { 6460 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6461 if (rbd_major < 0) { 6462 rc = rbd_major; 6463 goto err_out_wq; 6464 } 6465 } 6466 6467 rc = rbd_sysfs_init(); 6468 if (rc) 6469 goto err_out_blkdev; 6470 6471 if (single_major) 6472 pr_info("loaded (major %d)\n", rbd_major); 6473 else 6474 pr_info("loaded\n"); 6475 6476 return 0; 6477 6478 err_out_blkdev: 6479 if (single_major) 6480 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6481 err_out_wq: 6482 destroy_workqueue(rbd_wq); 6483 err_out_slab: 6484 rbd_slab_exit(); 6485 return rc; 6486 } 6487 6488 static void __exit rbd_exit(void) 6489 { 6490 ida_destroy(&rbd_dev_id_ida); 6491 rbd_sysfs_cleanup(); 6492 if (single_major) 6493 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6494 destroy_workqueue(rbd_wq); 6495 rbd_slab_exit(); 6496 } 6497 6498 module_init(rbd_init); 6499 module_exit(rbd_exit); 6500 6501 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6502 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6503 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6504 /* following authorship retained from original osdblk.c */ 6505 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6506 6507 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6508 MODULE_LICENSE("GPL"); 6509