xref: /openbmc/linux/drivers/block/rbd.c (revision f38cb9d9)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
664 {
665 	struct rbd_device *rbd_dev = disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	rbd_assert(obj_req->img_request->snapc);
1340 
1341 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1342 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1343 		     obj_req->ex.oe_objno);
1344 		return;
1345 	}
1346 
1347 	if (!obj_req->num_img_extents) {
1348 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1349 		     obj_req->ex.oe_objno);
1350 		return;
1351 	}
1352 
1353 	if (rbd_obj_is_entire(obj_req) &&
1354 	    !obj_req->img_request->snapc->num_snaps) {
1355 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1356 		     obj_req->ex.oe_objno);
1357 		return;
1358 	}
1359 
1360 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1361 }
1362 
1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1364 {
1365 	return ceph_file_extents_bytes(obj_req->img_extents,
1366 				       obj_req->num_img_extents);
1367 }
1368 
1369 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1370 {
1371 	switch (img_req->op_type) {
1372 	case OBJ_OP_READ:
1373 		return false;
1374 	case OBJ_OP_WRITE:
1375 	case OBJ_OP_DISCARD:
1376 	case OBJ_OP_ZEROOUT:
1377 		return true;
1378 	default:
1379 		BUG();
1380 	}
1381 }
1382 
1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1384 {
1385 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1386 	int result;
1387 
1388 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1389 	     osd_req->r_result, obj_req);
1390 
1391 	/*
1392 	 * Writes aren't allowed to return a data payload.  In some
1393 	 * guarded write cases (e.g. stat + zero on an empty object)
1394 	 * a stat response makes it through, but we don't care.
1395 	 */
1396 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1397 		result = 0;
1398 	else
1399 		result = osd_req->r_result;
1400 
1401 	rbd_obj_handle_request(obj_req, result);
1402 }
1403 
1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1405 {
1406 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1407 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1408 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1409 
1410 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1411 	osd_req->r_snapid = obj_request->img_request->snap_id;
1412 }
1413 
1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1415 {
1416 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1417 
1418 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1419 	ktime_get_real_ts64(&osd_req->r_mtime);
1420 	osd_req->r_data_offset = obj_request->ex.oe_off;
1421 }
1422 
1423 static struct ceph_osd_request *
1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1425 			  struct ceph_snap_context *snapc, int num_ops)
1426 {
1427 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1428 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1429 	struct ceph_osd_request *req;
1430 	const char *name_format = rbd_dev->image_format == 1 ?
1431 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1432 	int ret;
1433 
1434 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1435 	if (!req)
1436 		return ERR_PTR(-ENOMEM);
1437 
1438 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1439 	req->r_callback = rbd_osd_req_callback;
1440 	req->r_priv = obj_req;
1441 
1442 	/*
1443 	 * Data objects may be stored in a separate pool, but always in
1444 	 * the same namespace in that pool as the header in its pool.
1445 	 */
1446 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1447 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1448 
1449 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1450 			       rbd_dev->header.object_prefix,
1451 			       obj_req->ex.oe_objno);
1452 	if (ret)
1453 		return ERR_PTR(ret);
1454 
1455 	return req;
1456 }
1457 
1458 static struct ceph_osd_request *
1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1460 {
1461 	rbd_assert(obj_req->img_request->snapc);
1462 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1463 					 num_ops);
1464 }
1465 
1466 static struct rbd_obj_request *rbd_obj_request_create(void)
1467 {
1468 	struct rbd_obj_request *obj_request;
1469 
1470 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1471 	if (!obj_request)
1472 		return NULL;
1473 
1474 	ceph_object_extent_init(&obj_request->ex);
1475 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1476 	mutex_init(&obj_request->state_mutex);
1477 	kref_init(&obj_request->kref);
1478 
1479 	dout("%s %p\n", __func__, obj_request);
1480 	return obj_request;
1481 }
1482 
1483 static void rbd_obj_request_destroy(struct kref *kref)
1484 {
1485 	struct rbd_obj_request *obj_request;
1486 	struct ceph_osd_request *osd_req;
1487 	u32 i;
1488 
1489 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1490 
1491 	dout("%s: obj %p\n", __func__, obj_request);
1492 
1493 	while (!list_empty(&obj_request->osd_reqs)) {
1494 		osd_req = list_first_entry(&obj_request->osd_reqs,
1495 				    struct ceph_osd_request, r_private_item);
1496 		list_del_init(&osd_req->r_private_item);
1497 		ceph_osdc_put_request(osd_req);
1498 	}
1499 
1500 	switch (obj_request->img_request->data_type) {
1501 	case OBJ_REQUEST_NODATA:
1502 	case OBJ_REQUEST_BIO:
1503 	case OBJ_REQUEST_BVECS:
1504 		break;		/* Nothing to do */
1505 	case OBJ_REQUEST_OWN_BVECS:
1506 		kfree(obj_request->bvec_pos.bvecs);
1507 		break;
1508 	default:
1509 		BUG();
1510 	}
1511 
1512 	kfree(obj_request->img_extents);
1513 	if (obj_request->copyup_bvecs) {
1514 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1515 			if (obj_request->copyup_bvecs[i].bv_page)
1516 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1517 		}
1518 		kfree(obj_request->copyup_bvecs);
1519 	}
1520 
1521 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1522 }
1523 
1524 /* It's OK to call this for a device with no parent */
1525 
1526 static void rbd_spec_put(struct rbd_spec *spec);
1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1528 {
1529 	rbd_dev_remove_parent(rbd_dev);
1530 	rbd_spec_put(rbd_dev->parent_spec);
1531 	rbd_dev->parent_spec = NULL;
1532 	rbd_dev->parent_overlap = 0;
1533 }
1534 
1535 /*
1536  * Parent image reference counting is used to determine when an
1537  * image's parent fields can be safely torn down--after there are no
1538  * more in-flight requests to the parent image.  When the last
1539  * reference is dropped, cleaning them up is safe.
1540  */
1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1542 {
1543 	int counter;
1544 
1545 	if (!rbd_dev->parent_spec)
1546 		return;
1547 
1548 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1549 	if (counter > 0)
1550 		return;
1551 
1552 	/* Last reference; clean up parent data structures */
1553 
1554 	if (!counter)
1555 		rbd_dev_unparent(rbd_dev);
1556 	else
1557 		rbd_warn(rbd_dev, "parent reference underflow");
1558 }
1559 
1560 /*
1561  * If an image has a non-zero parent overlap, get a reference to its
1562  * parent.
1563  *
1564  * Returns true if the rbd device has a parent with a non-zero
1565  * overlap and a reference for it was successfully taken, or
1566  * false otherwise.
1567  */
1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1569 {
1570 	int counter = 0;
1571 
1572 	if (!rbd_dev->parent_spec)
1573 		return false;
1574 
1575 	if (rbd_dev->parent_overlap)
1576 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1577 
1578 	if (counter < 0)
1579 		rbd_warn(rbd_dev, "parent reference overflow");
1580 
1581 	return counter > 0;
1582 }
1583 
1584 static void rbd_img_request_init(struct rbd_img_request *img_request,
1585 				 struct rbd_device *rbd_dev,
1586 				 enum obj_operation_type op_type)
1587 {
1588 	memset(img_request, 0, sizeof(*img_request));
1589 
1590 	img_request->rbd_dev = rbd_dev;
1591 	img_request->op_type = op_type;
1592 
1593 	INIT_LIST_HEAD(&img_request->lock_item);
1594 	INIT_LIST_HEAD(&img_request->object_extents);
1595 	mutex_init(&img_request->state_mutex);
1596 }
1597 
1598 /*
1599  * Only snap_id is captured here, for reads.  For writes, snapshot
1600  * context is captured in rbd_img_object_requests() after exclusive
1601  * lock is ensured to be held.
1602  */
1603 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1604 {
1605 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1606 
1607 	lockdep_assert_held(&rbd_dev->header_rwsem);
1608 
1609 	if (!rbd_img_is_write(img_req))
1610 		img_req->snap_id = rbd_dev->spec->snap_id;
1611 
1612 	if (rbd_dev_parent_get(rbd_dev))
1613 		img_request_layered_set(img_req);
1614 }
1615 
1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1617 {
1618 	struct rbd_obj_request *obj_request;
1619 	struct rbd_obj_request *next_obj_request;
1620 
1621 	dout("%s: img %p\n", __func__, img_request);
1622 
1623 	WARN_ON(!list_empty(&img_request->lock_item));
1624 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1625 		rbd_img_obj_request_del(img_request, obj_request);
1626 
1627 	if (img_request_layered_test(img_request))
1628 		rbd_dev_parent_put(img_request->rbd_dev);
1629 
1630 	if (rbd_img_is_write(img_request))
1631 		ceph_put_snap_context(img_request->snapc);
1632 
1633 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1634 		kmem_cache_free(rbd_img_request_cache, img_request);
1635 }
1636 
1637 #define BITS_PER_OBJ	2
1638 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1639 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1640 
1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1642 				   u64 *index, u8 *shift)
1643 {
1644 	u32 off;
1645 
1646 	rbd_assert(objno < rbd_dev->object_map_size);
1647 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1648 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1649 }
1650 
1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1652 {
1653 	u64 index;
1654 	u8 shift;
1655 
1656 	lockdep_assert_held(&rbd_dev->object_map_lock);
1657 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1658 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1659 }
1660 
1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1662 {
1663 	u64 index;
1664 	u8 shift;
1665 	u8 *p;
1666 
1667 	lockdep_assert_held(&rbd_dev->object_map_lock);
1668 	rbd_assert(!(val & ~OBJ_MASK));
1669 
1670 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1671 	p = &rbd_dev->object_map[index];
1672 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1673 }
1674 
1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1676 {
1677 	u8 state;
1678 
1679 	spin_lock(&rbd_dev->object_map_lock);
1680 	state = __rbd_object_map_get(rbd_dev, objno);
1681 	spin_unlock(&rbd_dev->object_map_lock);
1682 	return state;
1683 }
1684 
1685 static bool use_object_map(struct rbd_device *rbd_dev)
1686 {
1687 	/*
1688 	 * An image mapped read-only can't use the object map -- it isn't
1689 	 * loaded because the header lock isn't acquired.  Someone else can
1690 	 * write to the image and update the object map behind our back.
1691 	 *
1692 	 * A snapshot can't be written to, so using the object map is always
1693 	 * safe.
1694 	 */
1695 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1696 		return false;
1697 
1698 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1699 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1700 }
1701 
1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1703 {
1704 	u8 state;
1705 
1706 	/* fall back to default logic if object map is disabled or invalid */
1707 	if (!use_object_map(rbd_dev))
1708 		return true;
1709 
1710 	state = rbd_object_map_get(rbd_dev, objno);
1711 	return state != OBJECT_NONEXISTENT;
1712 }
1713 
1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1715 				struct ceph_object_id *oid)
1716 {
1717 	if (snap_id == CEPH_NOSNAP)
1718 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1719 				rbd_dev->spec->image_id);
1720 	else
1721 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id, snap_id);
1723 }
1724 
1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1726 {
1727 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1728 	CEPH_DEFINE_OID_ONSTACK(oid);
1729 	u8 lock_type;
1730 	char *lock_tag;
1731 	struct ceph_locker *lockers;
1732 	u32 num_lockers;
1733 	bool broke_lock = false;
1734 	int ret;
1735 
1736 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1737 
1738 again:
1739 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1740 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1741 	if (ret != -EBUSY || broke_lock) {
1742 		if (ret == -EEXIST)
1743 			ret = 0; /* already locked by myself */
1744 		if (ret)
1745 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1746 		return ret;
1747 	}
1748 
1749 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1750 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1751 				 &lockers, &num_lockers);
1752 	if (ret) {
1753 		if (ret == -ENOENT)
1754 			goto again;
1755 
1756 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1757 		return ret;
1758 	}
1759 
1760 	kfree(lock_tag);
1761 	if (num_lockers == 0)
1762 		goto again;
1763 
1764 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1765 		 ENTITY_NAME(lockers[0].id.name));
1766 
1767 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1768 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1769 				  &lockers[0].id.name);
1770 	ceph_free_lockers(lockers, num_lockers);
1771 	if (ret) {
1772 		if (ret == -ENOENT)
1773 			goto again;
1774 
1775 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1776 		return ret;
1777 	}
1778 
1779 	broke_lock = true;
1780 	goto again;
1781 }
1782 
1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1784 {
1785 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1786 	CEPH_DEFINE_OID_ONSTACK(oid);
1787 	int ret;
1788 
1789 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1790 
1791 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1792 			      "");
1793 	if (ret && ret != -ENOENT)
1794 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1795 }
1796 
1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1798 {
1799 	u8 struct_v;
1800 	u32 struct_len;
1801 	u32 header_len;
1802 	void *header_end;
1803 	int ret;
1804 
1805 	ceph_decode_32_safe(p, end, header_len, e_inval);
1806 	header_end = *p + header_len;
1807 
1808 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1809 				  &struct_len);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1814 
1815 	*p = header_end;
1816 	return 0;
1817 
1818 e_inval:
1819 	return -EINVAL;
1820 }
1821 
1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1823 {
1824 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1825 	CEPH_DEFINE_OID_ONSTACK(oid);
1826 	struct page **pages;
1827 	void *p, *end;
1828 	size_t reply_len;
1829 	u64 num_objects;
1830 	u64 object_map_bytes;
1831 	u64 object_map_size;
1832 	int num_pages;
1833 	int ret;
1834 
1835 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1836 
1837 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1838 					   rbd_dev->mapping.size);
1839 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1840 					    BITS_PER_BYTE);
1841 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1842 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1843 	if (IS_ERR(pages))
1844 		return PTR_ERR(pages);
1845 
1846 	reply_len = num_pages * PAGE_SIZE;
1847 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1848 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1849 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1850 			     NULL, 0, pages, &reply_len);
1851 	if (ret)
1852 		goto out;
1853 
1854 	p = page_address(pages[0]);
1855 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1856 	ret = decode_object_map_header(&p, end, &object_map_size);
1857 	if (ret)
1858 		goto out;
1859 
1860 	if (object_map_size != num_objects) {
1861 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1862 			 object_map_size, num_objects);
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1868 		ret = -EINVAL;
1869 		goto out;
1870 	}
1871 
1872 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1873 	if (!rbd_dev->object_map) {
1874 		ret = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	rbd_dev->object_map_size = object_map_size;
1879 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1880 				   offset_in_page(p), object_map_bytes);
1881 
1882 out:
1883 	ceph_release_page_vector(pages, num_pages);
1884 	return ret;
1885 }
1886 
1887 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1888 {
1889 	kvfree(rbd_dev->object_map);
1890 	rbd_dev->object_map = NULL;
1891 	rbd_dev->object_map_size = 0;
1892 }
1893 
1894 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1895 {
1896 	int ret;
1897 
1898 	ret = __rbd_object_map_load(rbd_dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	ret = rbd_dev_v2_get_flags(rbd_dev);
1903 	if (ret) {
1904 		rbd_object_map_free(rbd_dev);
1905 		return ret;
1906 	}
1907 
1908 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1909 		rbd_warn(rbd_dev, "object map is invalid");
1910 
1911 	return 0;
1912 }
1913 
1914 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1915 {
1916 	int ret;
1917 
1918 	ret = rbd_object_map_lock(rbd_dev);
1919 	if (ret)
1920 		return ret;
1921 
1922 	ret = rbd_object_map_load(rbd_dev);
1923 	if (ret) {
1924 		rbd_object_map_unlock(rbd_dev);
1925 		return ret;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1932 {
1933 	rbd_object_map_free(rbd_dev);
1934 	rbd_object_map_unlock(rbd_dev);
1935 }
1936 
1937 /*
1938  * This function needs snap_id (or more precisely just something to
1939  * distinguish between HEAD and snapshot object maps), new_state and
1940  * current_state that were passed to rbd_object_map_update().
1941  *
1942  * To avoid allocating and stashing a context we piggyback on the OSD
1943  * request.  A HEAD update has two ops (assert_locked).  For new_state
1944  * and current_state we decode our own object_map_update op, encoded in
1945  * rbd_cls_object_map_update().
1946  */
1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1948 					struct ceph_osd_request *osd_req)
1949 {
1950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1951 	struct ceph_osd_data *osd_data;
1952 	u64 objno;
1953 	u8 state, new_state, current_state;
1954 	bool has_current_state;
1955 	void *p;
1956 
1957 	if (osd_req->r_result)
1958 		return osd_req->r_result;
1959 
1960 	/*
1961 	 * Nothing to do for a snapshot object map.
1962 	 */
1963 	if (osd_req->r_num_ops == 1)
1964 		return 0;
1965 
1966 	/*
1967 	 * Update in-memory HEAD object map.
1968 	 */
1969 	rbd_assert(osd_req->r_num_ops == 2);
1970 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1971 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1972 
1973 	p = page_address(osd_data->pages[0]);
1974 	objno = ceph_decode_64(&p);
1975 	rbd_assert(objno == obj_req->ex.oe_objno);
1976 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1977 	new_state = ceph_decode_8(&p);
1978 	has_current_state = ceph_decode_8(&p);
1979 	if (has_current_state)
1980 		current_state = ceph_decode_8(&p);
1981 
1982 	spin_lock(&rbd_dev->object_map_lock);
1983 	state = __rbd_object_map_get(rbd_dev, objno);
1984 	if (!has_current_state || current_state == state ||
1985 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1986 		__rbd_object_map_set(rbd_dev, objno, new_state);
1987 	spin_unlock(&rbd_dev->object_map_lock);
1988 
1989 	return 0;
1990 }
1991 
1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1993 {
1994 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1995 	int result;
1996 
1997 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1998 	     osd_req->r_result, obj_req);
1999 
2000 	result = rbd_object_map_update_finish(obj_req, osd_req);
2001 	rbd_obj_handle_request(obj_req, result);
2002 }
2003 
2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2005 {
2006 	u8 state = rbd_object_map_get(rbd_dev, objno);
2007 
2008 	if (state == new_state ||
2009 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2010 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2017 				     int which, u64 objno, u8 new_state,
2018 				     const u8 *current_state)
2019 {
2020 	struct page **pages;
2021 	void *p, *start;
2022 	int ret;
2023 
2024 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2025 	if (ret)
2026 		return ret;
2027 
2028 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2029 	if (IS_ERR(pages))
2030 		return PTR_ERR(pages);
2031 
2032 	p = start = page_address(pages[0]);
2033 	ceph_encode_64(&p, objno);
2034 	ceph_encode_64(&p, objno + 1);
2035 	ceph_encode_8(&p, new_state);
2036 	if (current_state) {
2037 		ceph_encode_8(&p, 1);
2038 		ceph_encode_8(&p, *current_state);
2039 	} else {
2040 		ceph_encode_8(&p, 0);
2041 	}
2042 
2043 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2044 					  false, true);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Return:
2050  *   0 - object map update sent
2051  *   1 - object map update isn't needed
2052  *  <0 - error
2053  */
2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2055 				 u8 new_state, const u8 *current_state)
2056 {
2057 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2059 	struct ceph_osd_request *req;
2060 	int num_ops = 1;
2061 	int which = 0;
2062 	int ret;
2063 
2064 	if (snap_id == CEPH_NOSNAP) {
2065 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2066 			return 1;
2067 
2068 		num_ops++; /* assert_locked */
2069 	}
2070 
2071 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2072 	if (!req)
2073 		return -ENOMEM;
2074 
2075 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2076 	req->r_callback = rbd_object_map_callback;
2077 	req->r_priv = obj_req;
2078 
2079 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2080 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2081 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2082 	ktime_get_real_ts64(&req->r_mtime);
2083 
2084 	if (snap_id == CEPH_NOSNAP) {
2085 		/*
2086 		 * Protect against possible race conditions during lock
2087 		 * ownership transitions.
2088 		 */
2089 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2090 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2096 					new_state, current_state);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2101 	if (ret)
2102 		return ret;
2103 
2104 	ceph_osdc_start_request(osdc, req);
2105 	return 0;
2106 }
2107 
2108 static void prune_extents(struct ceph_file_extent *img_extents,
2109 			  u32 *num_img_extents, u64 overlap)
2110 {
2111 	u32 cnt = *num_img_extents;
2112 
2113 	/* drop extents completely beyond the overlap */
2114 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2115 		cnt--;
2116 
2117 	if (cnt) {
2118 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2119 
2120 		/* trim final overlapping extent */
2121 		if (ex->fe_off + ex->fe_len > overlap)
2122 			ex->fe_len = overlap - ex->fe_off;
2123 	}
2124 
2125 	*num_img_extents = cnt;
2126 }
2127 
2128 /*
2129  * Determine the byte range(s) covered by either just the object extent
2130  * or the entire object in the parent image.
2131  */
2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2133 				    bool entire)
2134 {
2135 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2136 	int ret;
2137 
2138 	if (!rbd_dev->parent_overlap)
2139 		return 0;
2140 
2141 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2142 				  entire ? 0 : obj_req->ex.oe_off,
2143 				  entire ? rbd_dev->layout.object_size :
2144 							obj_req->ex.oe_len,
2145 				  &obj_req->img_extents,
2146 				  &obj_req->num_img_extents);
2147 	if (ret)
2148 		return ret;
2149 
2150 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2151 		      rbd_dev->parent_overlap);
2152 	return 0;
2153 }
2154 
2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2156 {
2157 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2158 
2159 	switch (obj_req->img_request->data_type) {
2160 	case OBJ_REQUEST_BIO:
2161 		osd_req_op_extent_osd_data_bio(osd_req, which,
2162 					       &obj_req->bio_pos,
2163 					       obj_req->ex.oe_len);
2164 		break;
2165 	case OBJ_REQUEST_BVECS:
2166 	case OBJ_REQUEST_OWN_BVECS:
2167 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2168 							obj_req->ex.oe_len);
2169 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2170 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2171 						    &obj_req->bvec_pos);
2172 		break;
2173 	default:
2174 		BUG();
2175 	}
2176 }
2177 
2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2179 {
2180 	struct page **pages;
2181 
2182 	/*
2183 	 * The response data for a STAT call consists of:
2184 	 *     le64 length;
2185 	 *     struct {
2186 	 *         le32 tv_sec;
2187 	 *         le32 tv_nsec;
2188 	 *     } mtime;
2189 	 */
2190 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2191 	if (IS_ERR(pages))
2192 		return PTR_ERR(pages);
2193 
2194 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2195 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2196 				     8 + sizeof(struct ceph_timespec),
2197 				     0, false, true);
2198 	return 0;
2199 }
2200 
2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2202 				u32 bytes)
2203 {
2204 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2205 	int ret;
2206 
2207 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2208 	if (ret)
2209 		return ret;
2210 
2211 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2212 					  obj_req->copyup_bvec_count, bytes);
2213 	return 0;
2214 }
2215 
2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2217 {
2218 	obj_req->read_state = RBD_OBJ_READ_START;
2219 	return 0;
2220 }
2221 
2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2223 				      int which)
2224 {
2225 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2226 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2227 	u16 opcode;
2228 
2229 	if (!use_object_map(rbd_dev) ||
2230 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2231 		osd_req_op_alloc_hint_init(osd_req, which++,
2232 					   rbd_dev->layout.object_size,
2233 					   rbd_dev->layout.object_size,
2234 					   rbd_dev->opts->alloc_hint_flags);
2235 	}
2236 
2237 	if (rbd_obj_is_entire(obj_req))
2238 		opcode = CEPH_OSD_OP_WRITEFULL;
2239 	else
2240 		opcode = CEPH_OSD_OP_WRITE;
2241 
2242 	osd_req_op_extent_init(osd_req, which, opcode,
2243 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2244 	rbd_osd_setup_data(osd_req, which);
2245 }
2246 
2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2248 {
2249 	int ret;
2250 
2251 	/* reverse map the entire object onto the parent */
2252 	ret = rbd_obj_calc_img_extents(obj_req, true);
2253 	if (ret)
2254 		return ret;
2255 
2256 	obj_req->write_state = RBD_OBJ_WRITE_START;
2257 	return 0;
2258 }
2259 
2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2261 {
2262 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2263 					  CEPH_OSD_OP_ZERO;
2264 }
2265 
2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2267 					int which)
2268 {
2269 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2270 
2271 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2272 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2273 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2274 	} else {
2275 		osd_req_op_extent_init(osd_req, which,
2276 				       truncate_or_zero_opcode(obj_req),
2277 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2278 				       0, 0);
2279 	}
2280 }
2281 
2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2283 {
2284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2285 	u64 off, next_off;
2286 	int ret;
2287 
2288 	/*
2289 	 * Align the range to alloc_size boundary and punt on discards
2290 	 * that are too small to free up any space.
2291 	 *
2292 	 * alloc_size == object_size && is_tail() is a special case for
2293 	 * filestore with filestore_punch_hole = false, needed to allow
2294 	 * truncate (in addition to delete).
2295 	 */
2296 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2297 	    !rbd_obj_is_tail(obj_req)) {
2298 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2299 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2300 				      rbd_dev->opts->alloc_size);
2301 		if (off >= next_off)
2302 			return 1;
2303 
2304 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2305 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2306 		     off, next_off - off);
2307 		obj_req->ex.oe_off = off;
2308 		obj_req->ex.oe_len = next_off - off;
2309 	}
2310 
2311 	/* reverse map the entire object onto the parent */
2312 	ret = rbd_obj_calc_img_extents(obj_req, true);
2313 	if (ret)
2314 		return ret;
2315 
2316 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2318 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2319 
2320 	obj_req->write_state = RBD_OBJ_WRITE_START;
2321 	return 0;
2322 }
2323 
2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2325 					int which)
2326 {
2327 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2328 	u16 opcode;
2329 
2330 	if (rbd_obj_is_entire(obj_req)) {
2331 		if (obj_req->num_img_extents) {
2332 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2333 				osd_req_op_init(osd_req, which++,
2334 						CEPH_OSD_OP_CREATE, 0);
2335 			opcode = CEPH_OSD_OP_TRUNCATE;
2336 		} else {
2337 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2338 			osd_req_op_init(osd_req, which++,
2339 					CEPH_OSD_OP_DELETE, 0);
2340 			opcode = 0;
2341 		}
2342 	} else {
2343 		opcode = truncate_or_zero_opcode(obj_req);
2344 	}
2345 
2346 	if (opcode)
2347 		osd_req_op_extent_init(osd_req, which, opcode,
2348 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2349 				       0, 0);
2350 }
2351 
2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2353 {
2354 	int ret;
2355 
2356 	/* reverse map the entire object onto the parent */
2357 	ret = rbd_obj_calc_img_extents(obj_req, true);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (!obj_req->num_img_extents) {
2362 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 		if (rbd_obj_is_entire(obj_req))
2364 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 	}
2366 
2367 	obj_req->write_state = RBD_OBJ_WRITE_START;
2368 	return 0;
2369 }
2370 
2371 static int count_write_ops(struct rbd_obj_request *obj_req)
2372 {
2373 	struct rbd_img_request *img_req = obj_req->img_request;
2374 
2375 	switch (img_req->op_type) {
2376 	case OBJ_OP_WRITE:
2377 		if (!use_object_map(img_req->rbd_dev) ||
2378 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2379 			return 2; /* setallochint + write/writefull */
2380 
2381 		return 1; /* write/writefull */
2382 	case OBJ_OP_DISCARD:
2383 		return 1; /* delete/truncate/zero */
2384 	case OBJ_OP_ZEROOUT:
2385 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2386 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2387 			return 2; /* create + truncate */
2388 
2389 		return 1; /* delete/truncate/zero */
2390 	default:
2391 		BUG();
2392 	}
2393 }
2394 
2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2396 				    int which)
2397 {
2398 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2399 
2400 	switch (obj_req->img_request->op_type) {
2401 	case OBJ_OP_WRITE:
2402 		__rbd_osd_setup_write_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_DISCARD:
2405 		__rbd_osd_setup_discard_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_ZEROOUT:
2408 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2409 		break;
2410 	default:
2411 		BUG();
2412 	}
2413 }
2414 
2415 /*
2416  * Prune the list of object requests (adjust offset and/or length, drop
2417  * redundant requests).  Prepare object request state machines and image
2418  * request state machine for execution.
2419  */
2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2421 {
2422 	struct rbd_obj_request *obj_req, *next_obj_req;
2423 	int ret;
2424 
2425 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2426 		switch (img_req->op_type) {
2427 		case OBJ_OP_READ:
2428 			ret = rbd_obj_init_read(obj_req);
2429 			break;
2430 		case OBJ_OP_WRITE:
2431 			ret = rbd_obj_init_write(obj_req);
2432 			break;
2433 		case OBJ_OP_DISCARD:
2434 			ret = rbd_obj_init_discard(obj_req);
2435 			break;
2436 		case OBJ_OP_ZEROOUT:
2437 			ret = rbd_obj_init_zeroout(obj_req);
2438 			break;
2439 		default:
2440 			BUG();
2441 		}
2442 		if (ret < 0)
2443 			return ret;
2444 		if (ret > 0) {
2445 			rbd_img_obj_request_del(img_req, obj_req);
2446 			continue;
2447 		}
2448 	}
2449 
2450 	img_req->state = RBD_IMG_START;
2451 	return 0;
2452 }
2453 
2454 union rbd_img_fill_iter {
2455 	struct ceph_bio_iter	bio_iter;
2456 	struct ceph_bvec_iter	bvec_iter;
2457 };
2458 
2459 struct rbd_img_fill_ctx {
2460 	enum obj_request_type	pos_type;
2461 	union rbd_img_fill_iter	*pos;
2462 	union rbd_img_fill_iter	iter;
2463 	ceph_object_extent_fn_t	set_pos_fn;
2464 	ceph_object_extent_fn_t	count_fn;
2465 	ceph_object_extent_fn_t	copy_fn;
2466 };
2467 
2468 static struct ceph_object_extent *alloc_object_extent(void *arg)
2469 {
2470 	struct rbd_img_request *img_req = arg;
2471 	struct rbd_obj_request *obj_req;
2472 
2473 	obj_req = rbd_obj_request_create();
2474 	if (!obj_req)
2475 		return NULL;
2476 
2477 	rbd_img_obj_request_add(img_req, obj_req);
2478 	return &obj_req->ex;
2479 }
2480 
2481 /*
2482  * While su != os && sc == 1 is technically not fancy (it's the same
2483  * layout as su == os && sc == 1), we can't use the nocopy path for it
2484  * because ->set_pos_fn() should be called only once per object.
2485  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2486  * treat su != os && sc == 1 as fancy.
2487  */
2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2489 {
2490 	return l->stripe_unit != l->object_size;
2491 }
2492 
2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2494 				       struct ceph_file_extent *img_extents,
2495 				       u32 num_img_extents,
2496 				       struct rbd_img_fill_ctx *fctx)
2497 {
2498 	u32 i;
2499 	int ret;
2500 
2501 	img_req->data_type = fctx->pos_type;
2502 
2503 	/*
2504 	 * Create object requests and set each object request's starting
2505 	 * position in the provided bio (list) or bio_vec array.
2506 	 */
2507 	fctx->iter = *fctx->pos;
2508 	for (i = 0; i < num_img_extents; i++) {
2509 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2510 					   img_extents[i].fe_off,
2511 					   img_extents[i].fe_len,
2512 					   &img_req->object_extents,
2513 					   alloc_object_extent, img_req,
2514 					   fctx->set_pos_fn, &fctx->iter);
2515 		if (ret)
2516 			return ret;
2517 	}
2518 
2519 	return __rbd_img_fill_request(img_req);
2520 }
2521 
2522 /*
2523  * Map a list of image extents to a list of object extents, create the
2524  * corresponding object requests (normally each to a different object,
2525  * but not always) and add them to @img_req.  For each object request,
2526  * set up its data descriptor to point to the corresponding chunk(s) of
2527  * @fctx->pos data buffer.
2528  *
2529  * Because ceph_file_to_extents() will merge adjacent object extents
2530  * together, each object request's data descriptor may point to multiple
2531  * different chunks of @fctx->pos data buffer.
2532  *
2533  * @fctx->pos data buffer is assumed to be large enough.
2534  */
2535 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2536 				struct ceph_file_extent *img_extents,
2537 				u32 num_img_extents,
2538 				struct rbd_img_fill_ctx *fctx)
2539 {
2540 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2541 	struct rbd_obj_request *obj_req;
2542 	u32 i;
2543 	int ret;
2544 
2545 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2546 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2547 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2548 						   num_img_extents, fctx);
2549 
2550 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2551 
2552 	/*
2553 	 * Create object requests and determine ->bvec_count for each object
2554 	 * request.  Note that ->bvec_count sum over all object requests may
2555 	 * be greater than the number of bio_vecs in the provided bio (list)
2556 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2557 	 * stripe unit boundaries.
2558 	 */
2559 	fctx->iter = *fctx->pos;
2560 	for (i = 0; i < num_img_extents; i++) {
2561 		ret = ceph_file_to_extents(&rbd_dev->layout,
2562 					   img_extents[i].fe_off,
2563 					   img_extents[i].fe_len,
2564 					   &img_req->object_extents,
2565 					   alloc_object_extent, img_req,
2566 					   fctx->count_fn, &fctx->iter);
2567 		if (ret)
2568 			return ret;
2569 	}
2570 
2571 	for_each_obj_request(img_req, obj_req) {
2572 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2573 					      sizeof(*obj_req->bvec_pos.bvecs),
2574 					      GFP_NOIO);
2575 		if (!obj_req->bvec_pos.bvecs)
2576 			return -ENOMEM;
2577 	}
2578 
2579 	/*
2580 	 * Fill in each object request's private bio_vec array, splitting and
2581 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2582 	 */
2583 	fctx->iter = *fctx->pos;
2584 	for (i = 0; i < num_img_extents; i++) {
2585 		ret = ceph_iterate_extents(&rbd_dev->layout,
2586 					   img_extents[i].fe_off,
2587 					   img_extents[i].fe_len,
2588 					   &img_req->object_extents,
2589 					   fctx->copy_fn, &fctx->iter);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	return __rbd_img_fill_request(img_req);
2595 }
2596 
2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2598 			       u64 off, u64 len)
2599 {
2600 	struct ceph_file_extent ex = { off, len };
2601 	union rbd_img_fill_iter dummy = {};
2602 	struct rbd_img_fill_ctx fctx = {
2603 		.pos_type = OBJ_REQUEST_NODATA,
2604 		.pos = &dummy,
2605 	};
2606 
2607 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2608 }
2609 
2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2611 {
2612 	struct rbd_obj_request *obj_req =
2613 	    container_of(ex, struct rbd_obj_request, ex);
2614 	struct ceph_bio_iter *it = arg;
2615 
2616 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2617 	obj_req->bio_pos = *it;
2618 	ceph_bio_iter_advance(it, bytes);
2619 }
2620 
2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2622 {
2623 	struct rbd_obj_request *obj_req =
2624 	    container_of(ex, struct rbd_obj_request, ex);
2625 	struct ceph_bio_iter *it = arg;
2626 
2627 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2628 	ceph_bio_iter_advance_step(it, bytes, ({
2629 		obj_req->bvec_count++;
2630 	}));
2631 
2632 }
2633 
2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2635 {
2636 	struct rbd_obj_request *obj_req =
2637 	    container_of(ex, struct rbd_obj_request, ex);
2638 	struct ceph_bio_iter *it = arg;
2639 
2640 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2641 	ceph_bio_iter_advance_step(it, bytes, ({
2642 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2643 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2644 	}));
2645 }
2646 
2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2648 				   struct ceph_file_extent *img_extents,
2649 				   u32 num_img_extents,
2650 				   struct ceph_bio_iter *bio_pos)
2651 {
2652 	struct rbd_img_fill_ctx fctx = {
2653 		.pos_type = OBJ_REQUEST_BIO,
2654 		.pos = (union rbd_img_fill_iter *)bio_pos,
2655 		.set_pos_fn = set_bio_pos,
2656 		.count_fn = count_bio_bvecs,
2657 		.copy_fn = copy_bio_bvecs,
2658 	};
2659 
2660 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2661 				    &fctx);
2662 }
2663 
2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2665 				 u64 off, u64 len, struct bio *bio)
2666 {
2667 	struct ceph_file_extent ex = { off, len };
2668 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2669 
2670 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2671 }
2672 
2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2674 {
2675 	struct rbd_obj_request *obj_req =
2676 	    container_of(ex, struct rbd_obj_request, ex);
2677 	struct ceph_bvec_iter *it = arg;
2678 
2679 	obj_req->bvec_pos = *it;
2680 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2681 	ceph_bvec_iter_advance(it, bytes);
2682 }
2683 
2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2685 {
2686 	struct rbd_obj_request *obj_req =
2687 	    container_of(ex, struct rbd_obj_request, ex);
2688 	struct ceph_bvec_iter *it = arg;
2689 
2690 	ceph_bvec_iter_advance_step(it, bytes, ({
2691 		obj_req->bvec_count++;
2692 	}));
2693 }
2694 
2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2696 {
2697 	struct rbd_obj_request *obj_req =
2698 	    container_of(ex, struct rbd_obj_request, ex);
2699 	struct ceph_bvec_iter *it = arg;
2700 
2701 	ceph_bvec_iter_advance_step(it, bytes, ({
2702 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2703 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2704 	}));
2705 }
2706 
2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2708 				     struct ceph_file_extent *img_extents,
2709 				     u32 num_img_extents,
2710 				     struct ceph_bvec_iter *bvec_pos)
2711 {
2712 	struct rbd_img_fill_ctx fctx = {
2713 		.pos_type = OBJ_REQUEST_BVECS,
2714 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2715 		.set_pos_fn = set_bvec_pos,
2716 		.count_fn = count_bvecs,
2717 		.copy_fn = copy_bvecs,
2718 	};
2719 
2720 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2721 				    &fctx);
2722 }
2723 
2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2725 				   struct ceph_file_extent *img_extents,
2726 				   u32 num_img_extents,
2727 				   struct bio_vec *bvecs)
2728 {
2729 	struct ceph_bvec_iter it = {
2730 		.bvecs = bvecs,
2731 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2732 							     num_img_extents) },
2733 	};
2734 
2735 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2736 					 &it);
2737 }
2738 
2739 static void rbd_img_handle_request_work(struct work_struct *work)
2740 {
2741 	struct rbd_img_request *img_req =
2742 	    container_of(work, struct rbd_img_request, work);
2743 
2744 	rbd_img_handle_request(img_req, img_req->work_result);
2745 }
2746 
2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2748 {
2749 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2750 	img_req->work_result = result;
2751 	queue_work(rbd_wq, &img_req->work);
2752 }
2753 
2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2755 {
2756 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2757 
2758 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2759 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2760 		return true;
2761 	}
2762 
2763 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2764 	     obj_req->ex.oe_objno);
2765 	return false;
2766 }
2767 
2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2769 {
2770 	struct ceph_osd_request *osd_req;
2771 	int ret;
2772 
2773 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2774 	if (IS_ERR(osd_req))
2775 		return PTR_ERR(osd_req);
2776 
2777 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2778 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2779 	rbd_osd_setup_data(osd_req, 0);
2780 	rbd_osd_format_read(osd_req);
2781 
2782 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2783 	if (ret)
2784 		return ret;
2785 
2786 	rbd_osd_submit(osd_req);
2787 	return 0;
2788 }
2789 
2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2791 {
2792 	struct rbd_img_request *img_req = obj_req->img_request;
2793 	struct rbd_device *parent = img_req->rbd_dev->parent;
2794 	struct rbd_img_request *child_img_req;
2795 	int ret;
2796 
2797 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2798 	if (!child_img_req)
2799 		return -ENOMEM;
2800 
2801 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2802 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2803 	child_img_req->obj_request = obj_req;
2804 
2805 	down_read(&parent->header_rwsem);
2806 	rbd_img_capture_header(child_img_req);
2807 	up_read(&parent->header_rwsem);
2808 
2809 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2810 	     obj_req);
2811 
2812 	if (!rbd_img_is_write(img_req)) {
2813 		switch (img_req->data_type) {
2814 		case OBJ_REQUEST_BIO:
2815 			ret = __rbd_img_fill_from_bio(child_img_req,
2816 						      obj_req->img_extents,
2817 						      obj_req->num_img_extents,
2818 						      &obj_req->bio_pos);
2819 			break;
2820 		case OBJ_REQUEST_BVECS:
2821 		case OBJ_REQUEST_OWN_BVECS:
2822 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2823 						      obj_req->img_extents,
2824 						      obj_req->num_img_extents,
2825 						      &obj_req->bvec_pos);
2826 			break;
2827 		default:
2828 			BUG();
2829 		}
2830 	} else {
2831 		ret = rbd_img_fill_from_bvecs(child_img_req,
2832 					      obj_req->img_extents,
2833 					      obj_req->num_img_extents,
2834 					      obj_req->copyup_bvecs);
2835 	}
2836 	if (ret) {
2837 		rbd_img_request_destroy(child_img_req);
2838 		return ret;
2839 	}
2840 
2841 	/* avoid parent chain recursion */
2842 	rbd_img_schedule(child_img_req, 0);
2843 	return 0;
2844 }
2845 
2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2847 {
2848 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2849 	int ret;
2850 
2851 again:
2852 	switch (obj_req->read_state) {
2853 	case RBD_OBJ_READ_START:
2854 		rbd_assert(!*result);
2855 
2856 		if (!rbd_obj_may_exist(obj_req)) {
2857 			*result = -ENOENT;
2858 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2859 			goto again;
2860 		}
2861 
2862 		ret = rbd_obj_read_object(obj_req);
2863 		if (ret) {
2864 			*result = ret;
2865 			return true;
2866 		}
2867 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2868 		return false;
2869 	case RBD_OBJ_READ_OBJECT:
2870 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2871 			/* reverse map this object extent onto the parent */
2872 			ret = rbd_obj_calc_img_extents(obj_req, false);
2873 			if (ret) {
2874 				*result = ret;
2875 				return true;
2876 			}
2877 			if (obj_req->num_img_extents) {
2878 				ret = rbd_obj_read_from_parent(obj_req);
2879 				if (ret) {
2880 					*result = ret;
2881 					return true;
2882 				}
2883 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2884 				return false;
2885 			}
2886 		}
2887 
2888 		/*
2889 		 * -ENOENT means a hole in the image -- zero-fill the entire
2890 		 * length of the request.  A short read also implies zero-fill
2891 		 * to the end of the request.
2892 		 */
2893 		if (*result == -ENOENT) {
2894 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2895 			*result = 0;
2896 		} else if (*result >= 0) {
2897 			if (*result < obj_req->ex.oe_len)
2898 				rbd_obj_zero_range(obj_req, *result,
2899 						obj_req->ex.oe_len - *result);
2900 			else
2901 				rbd_assert(*result == obj_req->ex.oe_len);
2902 			*result = 0;
2903 		}
2904 		return true;
2905 	case RBD_OBJ_READ_PARENT:
2906 		/*
2907 		 * The parent image is read only up to the overlap -- zero-fill
2908 		 * from the overlap to the end of the request.
2909 		 */
2910 		if (!*result) {
2911 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2912 
2913 			if (obj_overlap < obj_req->ex.oe_len)
2914 				rbd_obj_zero_range(obj_req, obj_overlap,
2915 					    obj_req->ex.oe_len - obj_overlap);
2916 		}
2917 		return true;
2918 	default:
2919 		BUG();
2920 	}
2921 }
2922 
2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2924 {
2925 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2926 
2927 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2928 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2929 
2930 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2931 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2932 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2933 		return true;
2934 	}
2935 
2936 	return false;
2937 }
2938 
2939 /*
2940  * Return:
2941  *   0 - object map update sent
2942  *   1 - object map update isn't needed
2943  *  <0 - error
2944  */
2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2946 {
2947 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2948 	u8 new_state;
2949 
2950 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2951 		return 1;
2952 
2953 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2954 		new_state = OBJECT_PENDING;
2955 	else
2956 		new_state = OBJECT_EXISTS;
2957 
2958 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2959 }
2960 
2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2962 {
2963 	struct ceph_osd_request *osd_req;
2964 	int num_ops = count_write_ops(obj_req);
2965 	int which = 0;
2966 	int ret;
2967 
2968 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2969 		num_ops++; /* stat */
2970 
2971 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2972 	if (IS_ERR(osd_req))
2973 		return PTR_ERR(osd_req);
2974 
2975 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2976 		ret = rbd_osd_setup_stat(osd_req, which++);
2977 		if (ret)
2978 			return ret;
2979 	}
2980 
2981 	rbd_osd_setup_write_ops(osd_req, which);
2982 	rbd_osd_format_write(osd_req);
2983 
2984 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2985 	if (ret)
2986 		return ret;
2987 
2988 	rbd_osd_submit(osd_req);
2989 	return 0;
2990 }
2991 
2992 /*
2993  * copyup_bvecs pages are never highmem pages
2994  */
2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2996 {
2997 	struct ceph_bvec_iter it = {
2998 		.bvecs = bvecs,
2999 		.iter = { .bi_size = bytes },
3000 	};
3001 
3002 	ceph_bvec_iter_advance_step(&it, bytes, ({
3003 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3004 			return false;
3005 	}));
3006 	return true;
3007 }
3008 
3009 #define MODS_ONLY	U32_MAX
3010 
3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3012 				      u32 bytes)
3013 {
3014 	struct ceph_osd_request *osd_req;
3015 	int ret;
3016 
3017 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3018 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3019 
3020 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3021 	if (IS_ERR(osd_req))
3022 		return PTR_ERR(osd_req);
3023 
3024 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3025 	if (ret)
3026 		return ret;
3027 
3028 	rbd_osd_format_write(osd_req);
3029 
3030 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031 	if (ret)
3032 		return ret;
3033 
3034 	rbd_osd_submit(osd_req);
3035 	return 0;
3036 }
3037 
3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3039 					u32 bytes)
3040 {
3041 	struct ceph_osd_request *osd_req;
3042 	int num_ops = count_write_ops(obj_req);
3043 	int which = 0;
3044 	int ret;
3045 
3046 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3047 
3048 	if (bytes != MODS_ONLY)
3049 		num_ops++; /* copyup */
3050 
3051 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3052 	if (IS_ERR(osd_req))
3053 		return PTR_ERR(osd_req);
3054 
3055 	if (bytes != MODS_ONLY) {
3056 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 
3061 	rbd_osd_setup_write_ops(osd_req, which);
3062 	rbd_osd_format_write(osd_req);
3063 
3064 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3065 	if (ret)
3066 		return ret;
3067 
3068 	rbd_osd_submit(osd_req);
3069 	return 0;
3070 }
3071 
3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3073 {
3074 	u32 i;
3075 
3076 	rbd_assert(!obj_req->copyup_bvecs);
3077 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3078 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3079 					sizeof(*obj_req->copyup_bvecs),
3080 					GFP_NOIO);
3081 	if (!obj_req->copyup_bvecs)
3082 		return -ENOMEM;
3083 
3084 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3085 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3086 		struct page *page = alloc_page(GFP_NOIO);
3087 
3088 		if (!page)
3089 			return -ENOMEM;
3090 
3091 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3092 		obj_overlap -= len;
3093 	}
3094 
3095 	rbd_assert(!obj_overlap);
3096 	return 0;
3097 }
3098 
3099 /*
3100  * The target object doesn't exist.  Read the data for the entire
3101  * target object up to the overlap point (if any) from the parent,
3102  * so we can use it for a copyup.
3103  */
3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3105 {
3106 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3107 	int ret;
3108 
3109 	rbd_assert(obj_req->num_img_extents);
3110 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3111 		      rbd_dev->parent_overlap);
3112 	if (!obj_req->num_img_extents) {
3113 		/*
3114 		 * The overlap has become 0 (most likely because the
3115 		 * image has been flattened).  Re-submit the original write
3116 		 * request -- pass MODS_ONLY since the copyup isn't needed
3117 		 * anymore.
3118 		 */
3119 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3120 	}
3121 
3122 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3123 	if (ret)
3124 		return ret;
3125 
3126 	return rbd_obj_read_from_parent(obj_req);
3127 }
3128 
3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3130 {
3131 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3132 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3133 	u8 new_state;
3134 	u32 i;
3135 	int ret;
3136 
3137 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3138 
3139 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3140 		return;
3141 
3142 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3143 		return;
3144 
3145 	for (i = 0; i < snapc->num_snaps; i++) {
3146 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3147 		    i + 1 < snapc->num_snaps)
3148 			new_state = OBJECT_EXISTS_CLEAN;
3149 		else
3150 			new_state = OBJECT_EXISTS;
3151 
3152 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3153 					    new_state, NULL);
3154 		if (ret < 0) {
3155 			obj_req->pending.result = ret;
3156 			return;
3157 		}
3158 
3159 		rbd_assert(!ret);
3160 		obj_req->pending.num_pending++;
3161 	}
3162 }
3163 
3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3165 {
3166 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3167 	int ret;
3168 
3169 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3170 
3171 	/*
3172 	 * Only send non-zero copyup data to save some I/O and network
3173 	 * bandwidth -- zero copyup data is equivalent to the object not
3174 	 * existing.
3175 	 */
3176 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3177 		bytes = 0;
3178 
3179 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3180 		/*
3181 		 * Send a copyup request with an empty snapshot context to
3182 		 * deep-copyup the object through all existing snapshots.
3183 		 * A second request with the current snapshot context will be
3184 		 * sent for the actual modification.
3185 		 */
3186 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3187 		if (ret) {
3188 			obj_req->pending.result = ret;
3189 			return;
3190 		}
3191 
3192 		obj_req->pending.num_pending++;
3193 		bytes = MODS_ONLY;
3194 	}
3195 
3196 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3197 	if (ret) {
3198 		obj_req->pending.result = ret;
3199 		return;
3200 	}
3201 
3202 	obj_req->pending.num_pending++;
3203 }
3204 
3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3206 {
3207 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3208 	int ret;
3209 
3210 again:
3211 	switch (obj_req->copyup_state) {
3212 	case RBD_OBJ_COPYUP_START:
3213 		rbd_assert(!*result);
3214 
3215 		ret = rbd_obj_copyup_read_parent(obj_req);
3216 		if (ret) {
3217 			*result = ret;
3218 			return true;
3219 		}
3220 		if (obj_req->num_img_extents)
3221 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3222 		else
3223 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3224 		return false;
3225 	case RBD_OBJ_COPYUP_READ_PARENT:
3226 		if (*result)
3227 			return true;
3228 
3229 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3230 				  rbd_obj_img_extents_bytes(obj_req))) {
3231 			dout("%s %p detected zeros\n", __func__, obj_req);
3232 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3233 		}
3234 
3235 		rbd_obj_copyup_object_maps(obj_req);
3236 		if (!obj_req->pending.num_pending) {
3237 			*result = obj_req->pending.result;
3238 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3239 			goto again;
3240 		}
3241 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 		return false;
3243 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3244 		if (!pending_result_dec(&obj_req->pending, result))
3245 			return false;
3246 		fallthrough;
3247 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3248 		if (*result) {
3249 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3250 				 *result);
3251 			return true;
3252 		}
3253 
3254 		rbd_obj_copyup_write_object(obj_req);
3255 		if (!obj_req->pending.num_pending) {
3256 			*result = obj_req->pending.result;
3257 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3258 			goto again;
3259 		}
3260 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 		return false;
3262 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3263 		if (!pending_result_dec(&obj_req->pending, result))
3264 			return false;
3265 		fallthrough;
3266 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3267 		return true;
3268 	default:
3269 		BUG();
3270 	}
3271 }
3272 
3273 /*
3274  * Return:
3275  *   0 - object map update sent
3276  *   1 - object map update isn't needed
3277  *  <0 - error
3278  */
3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3280 {
3281 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282 	u8 current_state = OBJECT_PENDING;
3283 
3284 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3285 		return 1;
3286 
3287 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3288 		return 1;
3289 
3290 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3291 				     &current_state);
3292 }
3293 
3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3295 {
3296 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3297 	int ret;
3298 
3299 again:
3300 	switch (obj_req->write_state) {
3301 	case RBD_OBJ_WRITE_START:
3302 		rbd_assert(!*result);
3303 
3304 		rbd_obj_set_copyup_enabled(obj_req);
3305 		if (rbd_obj_write_is_noop(obj_req))
3306 			return true;
3307 
3308 		ret = rbd_obj_write_pre_object_map(obj_req);
3309 		if (ret < 0) {
3310 			*result = ret;
3311 			return true;
3312 		}
3313 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3314 		if (ret > 0)
3315 			goto again;
3316 		return false;
3317 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3318 		if (*result) {
3319 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3320 				 *result);
3321 			return true;
3322 		}
3323 		ret = rbd_obj_write_object(obj_req);
3324 		if (ret) {
3325 			*result = ret;
3326 			return true;
3327 		}
3328 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3329 		return false;
3330 	case RBD_OBJ_WRITE_OBJECT:
3331 		if (*result == -ENOENT) {
3332 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3333 				*result = 0;
3334 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3335 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3336 				goto again;
3337 			}
3338 			/*
3339 			 * On a non-existent object:
3340 			 *   delete - -ENOENT, truncate/zero - 0
3341 			 */
3342 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3343 				*result = 0;
3344 		}
3345 		if (*result)
3346 			return true;
3347 
3348 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3349 		goto again;
3350 	case __RBD_OBJ_WRITE_COPYUP:
3351 		if (!rbd_obj_advance_copyup(obj_req, result))
3352 			return false;
3353 		fallthrough;
3354 	case RBD_OBJ_WRITE_COPYUP:
3355 		if (*result) {
3356 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3357 			return true;
3358 		}
3359 		ret = rbd_obj_write_post_object_map(obj_req);
3360 		if (ret < 0) {
3361 			*result = ret;
3362 			return true;
3363 		}
3364 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3365 		if (ret > 0)
3366 			goto again;
3367 		return false;
3368 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3369 		if (*result)
3370 			rbd_warn(rbd_dev, "post object map update failed: %d",
3371 				 *result);
3372 		return true;
3373 	default:
3374 		BUG();
3375 	}
3376 }
3377 
3378 /*
3379  * Return true if @obj_req is completed.
3380  */
3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3382 				     int *result)
3383 {
3384 	struct rbd_img_request *img_req = obj_req->img_request;
3385 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3386 	bool done;
3387 
3388 	mutex_lock(&obj_req->state_mutex);
3389 	if (!rbd_img_is_write(img_req))
3390 		done = rbd_obj_advance_read(obj_req, result);
3391 	else
3392 		done = rbd_obj_advance_write(obj_req, result);
3393 	mutex_unlock(&obj_req->state_mutex);
3394 
3395 	if (done && *result) {
3396 		rbd_assert(*result < 0);
3397 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3398 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3399 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3400 	}
3401 	return done;
3402 }
3403 
3404 /*
3405  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3406  * recursion.
3407  */
3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3409 {
3410 	if (__rbd_obj_handle_request(obj_req, &result))
3411 		rbd_img_handle_request(obj_req->img_request, result);
3412 }
3413 
3414 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3415 {
3416 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3417 
3418 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3419 		return false;
3420 
3421 	if (rbd_is_ro(rbd_dev))
3422 		return false;
3423 
3424 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3425 	if (rbd_dev->opts->lock_on_read ||
3426 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3427 		return true;
3428 
3429 	return rbd_img_is_write(img_req);
3430 }
3431 
3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3433 {
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool locked;
3436 
3437 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3438 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3439 	spin_lock(&rbd_dev->lock_lists_lock);
3440 	rbd_assert(list_empty(&img_req->lock_item));
3441 	if (!locked)
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3443 	else
3444 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3445 	spin_unlock(&rbd_dev->lock_lists_lock);
3446 	return locked;
3447 }
3448 
3449 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 	bool need_wakeup;
3453 
3454 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3455 	spin_lock(&rbd_dev->lock_lists_lock);
3456 	rbd_assert(!list_empty(&img_req->lock_item));
3457 	list_del_init(&img_req->lock_item);
3458 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3459 		       list_empty(&rbd_dev->running_list));
3460 	spin_unlock(&rbd_dev->lock_lists_lock);
3461 	if (need_wakeup)
3462 		complete(&rbd_dev->releasing_wait);
3463 }
3464 
3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3466 {
3467 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3468 
3469 	if (!need_exclusive_lock(img_req))
3470 		return 1;
3471 
3472 	if (rbd_lock_add_request(img_req))
3473 		return 1;
3474 
3475 	if (rbd_dev->opts->exclusive) {
3476 		WARN_ON(1); /* lock got released? */
3477 		return -EROFS;
3478 	}
3479 
3480 	/*
3481 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 	 * and cancel_delayed_work() in wake_lock_waiters().
3483 	 */
3484 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 	return 0;
3487 }
3488 
3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 	struct rbd_obj_request *obj_req;
3493 
3494 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 	rbd_assert(!need_exclusive_lock(img_req) ||
3496 		   __rbd_is_lock_owner(rbd_dev));
3497 
3498 	if (rbd_img_is_write(img_req)) {
3499 		rbd_assert(!img_req->snapc);
3500 		down_read(&rbd_dev->header_rwsem);
3501 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502 		up_read(&rbd_dev->header_rwsem);
3503 	}
3504 
3505 	for_each_obj_request(img_req, obj_req) {
3506 		int result = 0;
3507 
3508 		if (__rbd_obj_handle_request(obj_req, &result)) {
3509 			if (result) {
3510 				img_req->pending.result = result;
3511 				return;
3512 			}
3513 		} else {
3514 			img_req->pending.num_pending++;
3515 		}
3516 	}
3517 }
3518 
3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520 {
3521 	int ret;
3522 
3523 again:
3524 	switch (img_req->state) {
3525 	case RBD_IMG_START:
3526 		rbd_assert(!*result);
3527 
3528 		ret = rbd_img_exclusive_lock(img_req);
3529 		if (ret < 0) {
3530 			*result = ret;
3531 			return true;
3532 		}
3533 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534 		if (ret > 0)
3535 			goto again;
3536 		return false;
3537 	case RBD_IMG_EXCLUSIVE_LOCK:
3538 		if (*result)
3539 			return true;
3540 
3541 		rbd_img_object_requests(img_req);
3542 		if (!img_req->pending.num_pending) {
3543 			*result = img_req->pending.result;
3544 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545 			goto again;
3546 		}
3547 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548 		return false;
3549 	case __RBD_IMG_OBJECT_REQUESTS:
3550 		if (!pending_result_dec(&img_req->pending, result))
3551 			return false;
3552 		fallthrough;
3553 	case RBD_IMG_OBJECT_REQUESTS:
3554 		return true;
3555 	default:
3556 		BUG();
3557 	}
3558 }
3559 
3560 /*
3561  * Return true if @img_req is completed.
3562  */
3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564 				     int *result)
3565 {
3566 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3567 	bool done;
3568 
3569 	if (need_exclusive_lock(img_req)) {
3570 		down_read(&rbd_dev->lock_rwsem);
3571 		mutex_lock(&img_req->state_mutex);
3572 		done = rbd_img_advance(img_req, result);
3573 		if (done)
3574 			rbd_lock_del_request(img_req);
3575 		mutex_unlock(&img_req->state_mutex);
3576 		up_read(&rbd_dev->lock_rwsem);
3577 	} else {
3578 		mutex_lock(&img_req->state_mutex);
3579 		done = rbd_img_advance(img_req, result);
3580 		mutex_unlock(&img_req->state_mutex);
3581 	}
3582 
3583 	if (done && *result) {
3584 		rbd_assert(*result < 0);
3585 		rbd_warn(rbd_dev, "%s%s result %d",
3586 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587 		      obj_op_name(img_req->op_type), *result);
3588 	}
3589 	return done;
3590 }
3591 
3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593 {
3594 again:
3595 	if (!__rbd_img_handle_request(img_req, &result))
3596 		return;
3597 
3598 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599 		struct rbd_obj_request *obj_req = img_req->obj_request;
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		if (__rbd_obj_handle_request(obj_req, &result)) {
3603 			img_req = obj_req->img_request;
3604 			goto again;
3605 		}
3606 	} else {
3607 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3608 
3609 		rbd_img_request_destroy(img_req);
3610 		blk_mq_end_request(rq, errno_to_blk_status(result));
3611 	}
3612 }
3613 
3614 static const struct rbd_client_id rbd_empty_cid;
3615 
3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617 			  const struct rbd_client_id *rhs)
3618 {
3619 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620 }
3621 
3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623 {
3624 	struct rbd_client_id cid;
3625 
3626 	mutex_lock(&rbd_dev->watch_mutex);
3627 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628 	cid.handle = rbd_dev->watch_cookie;
3629 	mutex_unlock(&rbd_dev->watch_mutex);
3630 	return cid;
3631 }
3632 
3633 /*
3634  * lock_rwsem must be held for write
3635  */
3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637 			      const struct rbd_client_id *cid)
3638 {
3639 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641 	     cid->gid, cid->handle);
3642 	rbd_dev->owner_cid = *cid; /* struct */
3643 }
3644 
3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646 {
3647 	mutex_lock(&rbd_dev->watch_mutex);
3648 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649 	mutex_unlock(&rbd_dev->watch_mutex);
3650 }
3651 
3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653 {
3654 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655 
3656 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657 	strcpy(rbd_dev->lock_cookie, cookie);
3658 	rbd_set_owner_cid(rbd_dev, &cid);
3659 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660 }
3661 
3662 /*
3663  * lock_rwsem must be held for write
3664  */
3665 static int rbd_lock(struct rbd_device *rbd_dev)
3666 {
3667 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668 	char cookie[32];
3669 	int ret;
3670 
3671 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672 		rbd_dev->lock_cookie[0] != '\0');
3673 
3674 	format_lock_cookie(rbd_dev, cookie);
3675 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677 			    RBD_LOCK_TAG, "", 0);
3678 	if (ret)
3679 		return ret;
3680 
3681 	__rbd_lock(rbd_dev, cookie);
3682 	return 0;
3683 }
3684 
3685 /*
3686  * lock_rwsem must be held for write
3687  */
3688 static void rbd_unlock(struct rbd_device *rbd_dev)
3689 {
3690 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691 	int ret;
3692 
3693 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694 		rbd_dev->lock_cookie[0] == '\0');
3695 
3696 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698 	if (ret && ret != -ENOENT)
3699 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700 
3701 	/* treat errors as the image is unlocked */
3702 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703 	rbd_dev->lock_cookie[0] = '\0';
3704 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706 }
3707 
3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709 				enum rbd_notify_op notify_op,
3710 				struct page ***preply_pages,
3711 				size_t *preply_len)
3712 {
3713 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716 	int buf_size = sizeof(buf);
3717 	void *p = buf;
3718 
3719 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720 
3721 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3722 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723 	ceph_encode_32(&p, notify_op);
3724 	ceph_encode_64(&p, cid.gid);
3725 	ceph_encode_64(&p, cid.handle);
3726 
3727 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728 				&rbd_dev->header_oloc, buf, buf_size,
3729 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730 }
3731 
3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733 			       enum rbd_notify_op notify_op)
3734 {
3735 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736 }
3737 
3738 static void rbd_notify_acquired_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  acquired_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744 }
3745 
3746 static void rbd_notify_released_lock(struct work_struct *work)
3747 {
3748 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749 						  released_lock_work);
3750 
3751 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752 }
3753 
3754 static int rbd_request_lock(struct rbd_device *rbd_dev)
3755 {
3756 	struct page **reply_pages;
3757 	size_t reply_len;
3758 	bool lock_owner_responded = false;
3759 	int ret;
3760 
3761 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762 
3763 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764 				   &reply_pages, &reply_len);
3765 	if (ret && ret != -ETIMEDOUT) {
3766 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767 		goto out;
3768 	}
3769 
3770 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771 		void *p = page_address(reply_pages[0]);
3772 		void *const end = p + reply_len;
3773 		u32 n;
3774 
3775 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776 		while (n--) {
3777 			u8 struct_v;
3778 			u32 len;
3779 
3780 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3781 			p += 8 + 8; /* skip gid and cookie */
3782 
3783 			ceph_decode_32_safe(&p, end, len, e_inval);
3784 			if (!len)
3785 				continue;
3786 
3787 			if (lock_owner_responded) {
3788 				rbd_warn(rbd_dev,
3789 					 "duplicate lock owners detected");
3790 				ret = -EIO;
3791 				goto out;
3792 			}
3793 
3794 			lock_owner_responded = true;
3795 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796 						  &struct_v, &len);
3797 			if (ret) {
3798 				rbd_warn(rbd_dev,
3799 					 "failed to decode ResponseMessage: %d",
3800 					 ret);
3801 				goto e_inval;
3802 			}
3803 
3804 			ret = ceph_decode_32(&p);
3805 		}
3806 	}
3807 
3808 	if (!lock_owner_responded) {
3809 		rbd_warn(rbd_dev, "no lock owners detected");
3810 		ret = -ETIMEDOUT;
3811 	}
3812 
3813 out:
3814 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815 	return ret;
3816 
3817 e_inval:
3818 	ret = -EINVAL;
3819 	goto out;
3820 }
3821 
3822 /*
3823  * Either image request state machine(s) or rbd_add_acquire_lock()
3824  * (i.e. "rbd map").
3825  */
3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827 {
3828 	struct rbd_img_request *img_req;
3829 
3830 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832 
3833 	cancel_delayed_work(&rbd_dev->lock_dwork);
3834 	if (!completion_done(&rbd_dev->acquire_wait)) {
3835 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836 			   list_empty(&rbd_dev->running_list));
3837 		rbd_dev->acquire_err = result;
3838 		complete_all(&rbd_dev->acquire_wait);
3839 		return;
3840 	}
3841 
3842 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3843 		mutex_lock(&img_req->state_mutex);
3844 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3845 		rbd_img_schedule(img_req, result);
3846 		mutex_unlock(&img_req->state_mutex);
3847 	}
3848 
3849 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3850 }
3851 
3852 static void free_locker(struct ceph_locker *locker)
3853 {
3854 	if (locker)
3855 		ceph_free_lockers(locker, 1);
3856 }
3857 
3858 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3859 {
3860 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3861 	struct ceph_locker *lockers;
3862 	u32 num_lockers;
3863 	u8 lock_type;
3864 	char *lock_tag;
3865 	int ret;
3866 
3867 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3868 
3869 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3870 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3871 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3872 	if (ret) {
3873 		rbd_warn(rbd_dev, "failed to retrieve lockers: %d", ret);
3874 		return ERR_PTR(ret);
3875 	}
3876 
3877 	if (num_lockers == 0) {
3878 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3879 		lockers = NULL;
3880 		goto out;
3881 	}
3882 
3883 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3884 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3885 			 lock_tag);
3886 		goto err_busy;
3887 	}
3888 
3889 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3890 		rbd_warn(rbd_dev, "shared lock type detected");
3891 		goto err_busy;
3892 	}
3893 
3894 	WARN_ON(num_lockers != 1);
3895 	if (strncmp(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3896 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3897 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3898 			 lockers[0].id.cookie);
3899 		goto err_busy;
3900 	}
3901 
3902 out:
3903 	kfree(lock_tag);
3904 	return lockers;
3905 
3906 err_busy:
3907 	kfree(lock_tag);
3908 	ceph_free_lockers(lockers, num_lockers);
3909 	return ERR_PTR(-EBUSY);
3910 }
3911 
3912 static int find_watcher(struct rbd_device *rbd_dev,
3913 			const struct ceph_locker *locker)
3914 {
3915 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3916 	struct ceph_watch_item *watchers;
3917 	u32 num_watchers;
3918 	u64 cookie;
3919 	int i;
3920 	int ret;
3921 
3922 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3923 				      &rbd_dev->header_oloc, &watchers,
3924 				      &num_watchers);
3925 	if (ret)
3926 		return ret;
3927 
3928 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3929 	for (i = 0; i < num_watchers; i++) {
3930 		/*
3931 		 * Ignore addr->type while comparing.  This mimics
3932 		 * entity_addr_t::get_legacy_str() + strcmp().
3933 		 */
3934 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3935 					    &locker->info.addr) &&
3936 		    watchers[i].cookie == cookie) {
3937 			struct rbd_client_id cid = {
3938 				.gid = le64_to_cpu(watchers[i].name.num),
3939 				.handle = cookie,
3940 			};
3941 
3942 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3943 			     rbd_dev, cid.gid, cid.handle);
3944 			rbd_set_owner_cid(rbd_dev, &cid);
3945 			ret = 1;
3946 			goto out;
3947 		}
3948 	}
3949 
3950 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3951 	ret = 0;
3952 out:
3953 	kfree(watchers);
3954 	return ret;
3955 }
3956 
3957 /*
3958  * lock_rwsem must be held for write
3959  */
3960 static int rbd_try_lock(struct rbd_device *rbd_dev)
3961 {
3962 	struct ceph_client *client = rbd_dev->rbd_client->client;
3963 	struct ceph_locker *locker;
3964 	int ret;
3965 
3966 	for (;;) {
3967 		locker = NULL;
3968 
3969 		ret = rbd_lock(rbd_dev);
3970 		if (ret != -EBUSY)
3971 			goto out;
3972 
3973 		/* determine if the current lock holder is still alive */
3974 		locker = get_lock_owner_info(rbd_dev);
3975 		if (IS_ERR(locker)) {
3976 			ret = PTR_ERR(locker);
3977 			locker = NULL;
3978 			goto out;
3979 		}
3980 		if (!locker)
3981 			goto again;
3982 
3983 		ret = find_watcher(rbd_dev, locker);
3984 		if (ret)
3985 			goto out; /* request lock or error */
3986 
3987 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3988 			 ENTITY_NAME(locker->id.name));
3989 
3990 		ret = ceph_monc_blocklist_add(&client->monc,
3991 					      &locker->info.addr);
3992 		if (ret) {
3993 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
3994 				 ENTITY_NAME(locker->id.name), ret);
3995 			goto out;
3996 		}
3997 
3998 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3999 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4000 					  locker->id.cookie, &locker->id.name);
4001 		if (ret && ret != -ENOENT) {
4002 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4003 				 ret);
4004 			goto out;
4005 		}
4006 
4007 again:
4008 		free_locker(locker);
4009 	}
4010 
4011 out:
4012 	free_locker(locker);
4013 	return ret;
4014 }
4015 
4016 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4017 {
4018 	int ret;
4019 
4020 	ret = rbd_dev_refresh(rbd_dev);
4021 	if (ret)
4022 		return ret;
4023 
4024 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4025 		ret = rbd_object_map_open(rbd_dev);
4026 		if (ret)
4027 			return ret;
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 /*
4034  * Return:
4035  *   0 - lock acquired
4036  *   1 - caller should call rbd_request_lock()
4037  *  <0 - error
4038  */
4039 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4040 {
4041 	int ret;
4042 
4043 	down_read(&rbd_dev->lock_rwsem);
4044 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4045 	     rbd_dev->lock_state);
4046 	if (__rbd_is_lock_owner(rbd_dev)) {
4047 		up_read(&rbd_dev->lock_rwsem);
4048 		return 0;
4049 	}
4050 
4051 	up_read(&rbd_dev->lock_rwsem);
4052 	down_write(&rbd_dev->lock_rwsem);
4053 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4054 	     rbd_dev->lock_state);
4055 	if (__rbd_is_lock_owner(rbd_dev)) {
4056 		up_write(&rbd_dev->lock_rwsem);
4057 		return 0;
4058 	}
4059 
4060 	ret = rbd_try_lock(rbd_dev);
4061 	if (ret < 0) {
4062 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4063 		if (ret == -EBLOCKLISTED)
4064 			goto out;
4065 
4066 		ret = 1; /* request lock anyway */
4067 	}
4068 	if (ret > 0) {
4069 		up_write(&rbd_dev->lock_rwsem);
4070 		return ret;
4071 	}
4072 
4073 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4074 	rbd_assert(list_empty(&rbd_dev->running_list));
4075 
4076 	ret = rbd_post_acquire_action(rbd_dev);
4077 	if (ret) {
4078 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4079 		/*
4080 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4081 		 * rbd_lock_add_request() would let the request through,
4082 		 * assuming that e.g. object map is locked and loaded.
4083 		 */
4084 		rbd_unlock(rbd_dev);
4085 	}
4086 
4087 out:
4088 	wake_lock_waiters(rbd_dev, ret);
4089 	up_write(&rbd_dev->lock_rwsem);
4090 	return ret;
4091 }
4092 
4093 static void rbd_acquire_lock(struct work_struct *work)
4094 {
4095 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4096 					    struct rbd_device, lock_dwork);
4097 	int ret;
4098 
4099 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4100 again:
4101 	ret = rbd_try_acquire_lock(rbd_dev);
4102 	if (ret <= 0) {
4103 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4104 		return;
4105 	}
4106 
4107 	ret = rbd_request_lock(rbd_dev);
4108 	if (ret == -ETIMEDOUT) {
4109 		goto again; /* treat this as a dead client */
4110 	} else if (ret == -EROFS) {
4111 		rbd_warn(rbd_dev, "peer will not release lock");
4112 		down_write(&rbd_dev->lock_rwsem);
4113 		wake_lock_waiters(rbd_dev, ret);
4114 		up_write(&rbd_dev->lock_rwsem);
4115 	} else if (ret < 0) {
4116 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4117 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4118 				 RBD_RETRY_DELAY);
4119 	} else {
4120 		/*
4121 		 * lock owner acked, but resend if we don't see them
4122 		 * release the lock
4123 		 */
4124 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4125 		     rbd_dev);
4126 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4127 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4128 	}
4129 }
4130 
4131 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4132 {
4133 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4134 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4135 
4136 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4137 		return false;
4138 
4139 	/*
4140 	 * Ensure that all in-flight IO is flushed.
4141 	 */
4142 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4143 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4144 	if (list_empty(&rbd_dev->running_list))
4145 		return true;
4146 
4147 	up_write(&rbd_dev->lock_rwsem);
4148 	wait_for_completion(&rbd_dev->releasing_wait);
4149 
4150 	down_write(&rbd_dev->lock_rwsem);
4151 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4152 		return false;
4153 
4154 	rbd_assert(list_empty(&rbd_dev->running_list));
4155 	return true;
4156 }
4157 
4158 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4159 {
4160 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4161 		rbd_object_map_close(rbd_dev);
4162 }
4163 
4164 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4165 {
4166 	rbd_assert(list_empty(&rbd_dev->running_list));
4167 
4168 	rbd_pre_release_action(rbd_dev);
4169 	rbd_unlock(rbd_dev);
4170 }
4171 
4172 /*
4173  * lock_rwsem must be held for write
4174  */
4175 static void rbd_release_lock(struct rbd_device *rbd_dev)
4176 {
4177 	if (!rbd_quiesce_lock(rbd_dev))
4178 		return;
4179 
4180 	__rbd_release_lock(rbd_dev);
4181 
4182 	/*
4183 	 * Give others a chance to grab the lock - we would re-acquire
4184 	 * almost immediately if we got new IO while draining the running
4185 	 * list otherwise.  We need to ack our own notifications, so this
4186 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4187 	 * way of maybe_kick_acquire().
4188 	 */
4189 	cancel_delayed_work(&rbd_dev->lock_dwork);
4190 }
4191 
4192 static void rbd_release_lock_work(struct work_struct *work)
4193 {
4194 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4195 						  unlock_work);
4196 
4197 	down_write(&rbd_dev->lock_rwsem);
4198 	rbd_release_lock(rbd_dev);
4199 	up_write(&rbd_dev->lock_rwsem);
4200 }
4201 
4202 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4203 {
4204 	bool have_requests;
4205 
4206 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4207 	if (__rbd_is_lock_owner(rbd_dev))
4208 		return;
4209 
4210 	spin_lock(&rbd_dev->lock_lists_lock);
4211 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4212 	spin_unlock(&rbd_dev->lock_lists_lock);
4213 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4214 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4215 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4216 	}
4217 }
4218 
4219 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4220 				     void **p)
4221 {
4222 	struct rbd_client_id cid = { 0 };
4223 
4224 	if (struct_v >= 2) {
4225 		cid.gid = ceph_decode_64(p);
4226 		cid.handle = ceph_decode_64(p);
4227 	}
4228 
4229 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4230 	     cid.handle);
4231 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4232 		down_write(&rbd_dev->lock_rwsem);
4233 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4234 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4235 			     __func__, rbd_dev, cid.gid, cid.handle);
4236 		} else {
4237 			rbd_set_owner_cid(rbd_dev, &cid);
4238 		}
4239 		downgrade_write(&rbd_dev->lock_rwsem);
4240 	} else {
4241 		down_read(&rbd_dev->lock_rwsem);
4242 	}
4243 
4244 	maybe_kick_acquire(rbd_dev);
4245 	up_read(&rbd_dev->lock_rwsem);
4246 }
4247 
4248 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4249 				     void **p)
4250 {
4251 	struct rbd_client_id cid = { 0 };
4252 
4253 	if (struct_v >= 2) {
4254 		cid.gid = ceph_decode_64(p);
4255 		cid.handle = ceph_decode_64(p);
4256 	}
4257 
4258 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4259 	     cid.handle);
4260 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4261 		down_write(&rbd_dev->lock_rwsem);
4262 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4263 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4264 			     __func__, rbd_dev, cid.gid, cid.handle,
4265 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4266 		} else {
4267 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4268 		}
4269 		downgrade_write(&rbd_dev->lock_rwsem);
4270 	} else {
4271 		down_read(&rbd_dev->lock_rwsem);
4272 	}
4273 
4274 	maybe_kick_acquire(rbd_dev);
4275 	up_read(&rbd_dev->lock_rwsem);
4276 }
4277 
4278 /*
4279  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4280  * ResponseMessage is needed.
4281  */
4282 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4283 				   void **p)
4284 {
4285 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4286 	struct rbd_client_id cid = { 0 };
4287 	int result = 1;
4288 
4289 	if (struct_v >= 2) {
4290 		cid.gid = ceph_decode_64(p);
4291 		cid.handle = ceph_decode_64(p);
4292 	}
4293 
4294 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4295 	     cid.handle);
4296 	if (rbd_cid_equal(&cid, &my_cid))
4297 		return result;
4298 
4299 	down_read(&rbd_dev->lock_rwsem);
4300 	if (__rbd_is_lock_owner(rbd_dev)) {
4301 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4302 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4303 			goto out_unlock;
4304 
4305 		/*
4306 		 * encode ResponseMessage(0) so the peer can detect
4307 		 * a missing owner
4308 		 */
4309 		result = 0;
4310 
4311 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4312 			if (!rbd_dev->opts->exclusive) {
4313 				dout("%s rbd_dev %p queueing unlock_work\n",
4314 				     __func__, rbd_dev);
4315 				queue_work(rbd_dev->task_wq,
4316 					   &rbd_dev->unlock_work);
4317 			} else {
4318 				/* refuse to release the lock */
4319 				result = -EROFS;
4320 			}
4321 		}
4322 	}
4323 
4324 out_unlock:
4325 	up_read(&rbd_dev->lock_rwsem);
4326 	return result;
4327 }
4328 
4329 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4330 				     u64 notify_id, u64 cookie, s32 *result)
4331 {
4332 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4333 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4334 	int buf_size = sizeof(buf);
4335 	int ret;
4336 
4337 	if (result) {
4338 		void *p = buf;
4339 
4340 		/* encode ResponseMessage */
4341 		ceph_start_encoding(&p, 1, 1,
4342 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4343 		ceph_encode_32(&p, *result);
4344 	} else {
4345 		buf_size = 0;
4346 	}
4347 
4348 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4349 				   &rbd_dev->header_oloc, notify_id, cookie,
4350 				   buf, buf_size);
4351 	if (ret)
4352 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4353 }
4354 
4355 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4356 				   u64 cookie)
4357 {
4358 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4359 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4360 }
4361 
4362 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4363 					  u64 notify_id, u64 cookie, s32 result)
4364 {
4365 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4366 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4367 }
4368 
4369 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4370 			 u64 notifier_id, void *data, size_t data_len)
4371 {
4372 	struct rbd_device *rbd_dev = arg;
4373 	void *p = data;
4374 	void *const end = p + data_len;
4375 	u8 struct_v = 0;
4376 	u32 len;
4377 	u32 notify_op;
4378 	int ret;
4379 
4380 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4381 	     __func__, rbd_dev, cookie, notify_id, data_len);
4382 	if (data_len) {
4383 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4384 					  &struct_v, &len);
4385 		if (ret) {
4386 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4387 				 ret);
4388 			return;
4389 		}
4390 
4391 		notify_op = ceph_decode_32(&p);
4392 	} else {
4393 		/* legacy notification for header updates */
4394 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4395 		len = 0;
4396 	}
4397 
4398 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4399 	switch (notify_op) {
4400 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4401 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4402 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4403 		break;
4404 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4405 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4406 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4407 		break;
4408 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4409 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4410 		if (ret <= 0)
4411 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4412 						      cookie, ret);
4413 		else
4414 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4415 		break;
4416 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4417 		ret = rbd_dev_refresh(rbd_dev);
4418 		if (ret)
4419 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4420 
4421 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4422 		break;
4423 	default:
4424 		if (rbd_is_lock_owner(rbd_dev))
4425 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4426 						      cookie, -EOPNOTSUPP);
4427 		else
4428 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4429 		break;
4430 	}
4431 }
4432 
4433 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4434 
4435 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4436 {
4437 	struct rbd_device *rbd_dev = arg;
4438 
4439 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4440 
4441 	down_write(&rbd_dev->lock_rwsem);
4442 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4443 	up_write(&rbd_dev->lock_rwsem);
4444 
4445 	mutex_lock(&rbd_dev->watch_mutex);
4446 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4447 		__rbd_unregister_watch(rbd_dev);
4448 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4449 
4450 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4451 	}
4452 	mutex_unlock(&rbd_dev->watch_mutex);
4453 }
4454 
4455 /*
4456  * watch_mutex must be locked
4457  */
4458 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4459 {
4460 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4461 	struct ceph_osd_linger_request *handle;
4462 
4463 	rbd_assert(!rbd_dev->watch_handle);
4464 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4465 
4466 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4467 				 &rbd_dev->header_oloc, rbd_watch_cb,
4468 				 rbd_watch_errcb, rbd_dev);
4469 	if (IS_ERR(handle))
4470 		return PTR_ERR(handle);
4471 
4472 	rbd_dev->watch_handle = handle;
4473 	return 0;
4474 }
4475 
4476 /*
4477  * watch_mutex must be locked
4478  */
4479 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4480 {
4481 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4482 	int ret;
4483 
4484 	rbd_assert(rbd_dev->watch_handle);
4485 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4486 
4487 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4488 	if (ret)
4489 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4490 
4491 	rbd_dev->watch_handle = NULL;
4492 }
4493 
4494 static int rbd_register_watch(struct rbd_device *rbd_dev)
4495 {
4496 	int ret;
4497 
4498 	mutex_lock(&rbd_dev->watch_mutex);
4499 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4500 	ret = __rbd_register_watch(rbd_dev);
4501 	if (ret)
4502 		goto out;
4503 
4504 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4505 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4506 
4507 out:
4508 	mutex_unlock(&rbd_dev->watch_mutex);
4509 	return ret;
4510 }
4511 
4512 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4513 {
4514 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4515 
4516 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4517 	cancel_work_sync(&rbd_dev->released_lock_work);
4518 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4519 	cancel_work_sync(&rbd_dev->unlock_work);
4520 }
4521 
4522 /*
4523  * header_rwsem must not be held to avoid a deadlock with
4524  * rbd_dev_refresh() when flushing notifies.
4525  */
4526 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4527 {
4528 	cancel_tasks_sync(rbd_dev);
4529 
4530 	mutex_lock(&rbd_dev->watch_mutex);
4531 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4532 		__rbd_unregister_watch(rbd_dev);
4533 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4534 	mutex_unlock(&rbd_dev->watch_mutex);
4535 
4536 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4537 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4538 }
4539 
4540 /*
4541  * lock_rwsem must be held for write
4542  */
4543 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4544 {
4545 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4546 	char cookie[32];
4547 	int ret;
4548 
4549 	if (!rbd_quiesce_lock(rbd_dev))
4550 		return;
4551 
4552 	format_lock_cookie(rbd_dev, cookie);
4553 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4554 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4555 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4556 				  RBD_LOCK_TAG, cookie);
4557 	if (ret) {
4558 		if (ret != -EOPNOTSUPP)
4559 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4560 				 ret);
4561 
4562 		/*
4563 		 * Lock cookie cannot be updated on older OSDs, so do
4564 		 * a manual release and queue an acquire.
4565 		 */
4566 		__rbd_release_lock(rbd_dev);
4567 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4568 	} else {
4569 		__rbd_lock(rbd_dev, cookie);
4570 		wake_lock_waiters(rbd_dev, 0);
4571 	}
4572 }
4573 
4574 static void rbd_reregister_watch(struct work_struct *work)
4575 {
4576 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4577 					    struct rbd_device, watch_dwork);
4578 	int ret;
4579 
4580 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4581 
4582 	mutex_lock(&rbd_dev->watch_mutex);
4583 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4584 		mutex_unlock(&rbd_dev->watch_mutex);
4585 		return;
4586 	}
4587 
4588 	ret = __rbd_register_watch(rbd_dev);
4589 	if (ret) {
4590 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4591 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4592 			queue_delayed_work(rbd_dev->task_wq,
4593 					   &rbd_dev->watch_dwork,
4594 					   RBD_RETRY_DELAY);
4595 			mutex_unlock(&rbd_dev->watch_mutex);
4596 			return;
4597 		}
4598 
4599 		mutex_unlock(&rbd_dev->watch_mutex);
4600 		down_write(&rbd_dev->lock_rwsem);
4601 		wake_lock_waiters(rbd_dev, ret);
4602 		up_write(&rbd_dev->lock_rwsem);
4603 		return;
4604 	}
4605 
4606 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4607 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4608 	mutex_unlock(&rbd_dev->watch_mutex);
4609 
4610 	down_write(&rbd_dev->lock_rwsem);
4611 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4612 		rbd_reacquire_lock(rbd_dev);
4613 	up_write(&rbd_dev->lock_rwsem);
4614 
4615 	ret = rbd_dev_refresh(rbd_dev);
4616 	if (ret)
4617 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4618 }
4619 
4620 /*
4621  * Synchronous osd object method call.  Returns the number of bytes
4622  * returned in the outbound buffer, or a negative error code.
4623  */
4624 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4625 			     struct ceph_object_id *oid,
4626 			     struct ceph_object_locator *oloc,
4627 			     const char *method_name,
4628 			     const void *outbound,
4629 			     size_t outbound_size,
4630 			     void *inbound,
4631 			     size_t inbound_size)
4632 {
4633 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4634 	struct page *req_page = NULL;
4635 	struct page *reply_page;
4636 	int ret;
4637 
4638 	/*
4639 	 * Method calls are ultimately read operations.  The result
4640 	 * should placed into the inbound buffer provided.  They
4641 	 * also supply outbound data--parameters for the object
4642 	 * method.  Currently if this is present it will be a
4643 	 * snapshot id.
4644 	 */
4645 	if (outbound) {
4646 		if (outbound_size > PAGE_SIZE)
4647 			return -E2BIG;
4648 
4649 		req_page = alloc_page(GFP_KERNEL);
4650 		if (!req_page)
4651 			return -ENOMEM;
4652 
4653 		memcpy(page_address(req_page), outbound, outbound_size);
4654 	}
4655 
4656 	reply_page = alloc_page(GFP_KERNEL);
4657 	if (!reply_page) {
4658 		if (req_page)
4659 			__free_page(req_page);
4660 		return -ENOMEM;
4661 	}
4662 
4663 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4664 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4665 			     &reply_page, &inbound_size);
4666 	if (!ret) {
4667 		memcpy(inbound, page_address(reply_page), inbound_size);
4668 		ret = inbound_size;
4669 	}
4670 
4671 	if (req_page)
4672 		__free_page(req_page);
4673 	__free_page(reply_page);
4674 	return ret;
4675 }
4676 
4677 static void rbd_queue_workfn(struct work_struct *work)
4678 {
4679 	struct rbd_img_request *img_request =
4680 	    container_of(work, struct rbd_img_request, work);
4681 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4682 	enum obj_operation_type op_type = img_request->op_type;
4683 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4684 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4685 	u64 length = blk_rq_bytes(rq);
4686 	u64 mapping_size;
4687 	int result;
4688 
4689 	/* Ignore/skip any zero-length requests */
4690 	if (!length) {
4691 		dout("%s: zero-length request\n", __func__);
4692 		result = 0;
4693 		goto err_img_request;
4694 	}
4695 
4696 	blk_mq_start_request(rq);
4697 
4698 	down_read(&rbd_dev->header_rwsem);
4699 	mapping_size = rbd_dev->mapping.size;
4700 	rbd_img_capture_header(img_request);
4701 	up_read(&rbd_dev->header_rwsem);
4702 
4703 	if (offset + length > mapping_size) {
4704 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4705 			 length, mapping_size);
4706 		result = -EIO;
4707 		goto err_img_request;
4708 	}
4709 
4710 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4711 	     img_request, obj_op_name(op_type), offset, length);
4712 
4713 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4714 		result = rbd_img_fill_nodata(img_request, offset, length);
4715 	else
4716 		result = rbd_img_fill_from_bio(img_request, offset, length,
4717 					       rq->bio);
4718 	if (result)
4719 		goto err_img_request;
4720 
4721 	rbd_img_handle_request(img_request, 0);
4722 	return;
4723 
4724 err_img_request:
4725 	rbd_img_request_destroy(img_request);
4726 	if (result)
4727 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4728 			 obj_op_name(op_type), length, offset, result);
4729 	blk_mq_end_request(rq, errno_to_blk_status(result));
4730 }
4731 
4732 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4733 		const struct blk_mq_queue_data *bd)
4734 {
4735 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4736 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4737 	enum obj_operation_type op_type;
4738 
4739 	switch (req_op(bd->rq)) {
4740 	case REQ_OP_DISCARD:
4741 		op_type = OBJ_OP_DISCARD;
4742 		break;
4743 	case REQ_OP_WRITE_ZEROES:
4744 		op_type = OBJ_OP_ZEROOUT;
4745 		break;
4746 	case REQ_OP_WRITE:
4747 		op_type = OBJ_OP_WRITE;
4748 		break;
4749 	case REQ_OP_READ:
4750 		op_type = OBJ_OP_READ;
4751 		break;
4752 	default:
4753 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4754 		return BLK_STS_IOERR;
4755 	}
4756 
4757 	rbd_img_request_init(img_req, rbd_dev, op_type);
4758 
4759 	if (rbd_img_is_write(img_req)) {
4760 		if (rbd_is_ro(rbd_dev)) {
4761 			rbd_warn(rbd_dev, "%s on read-only mapping",
4762 				 obj_op_name(img_req->op_type));
4763 			return BLK_STS_IOERR;
4764 		}
4765 		rbd_assert(!rbd_is_snap(rbd_dev));
4766 	}
4767 
4768 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4769 	queue_work(rbd_wq, &img_req->work);
4770 	return BLK_STS_OK;
4771 }
4772 
4773 static void rbd_free_disk(struct rbd_device *rbd_dev)
4774 {
4775 	put_disk(rbd_dev->disk);
4776 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4777 	rbd_dev->disk = NULL;
4778 }
4779 
4780 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4781 			     struct ceph_object_id *oid,
4782 			     struct ceph_object_locator *oloc,
4783 			     void *buf, int buf_len)
4784 
4785 {
4786 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4787 	struct ceph_osd_request *req;
4788 	struct page **pages;
4789 	int num_pages = calc_pages_for(0, buf_len);
4790 	int ret;
4791 
4792 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4793 	if (!req)
4794 		return -ENOMEM;
4795 
4796 	ceph_oid_copy(&req->r_base_oid, oid);
4797 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4798 	req->r_flags = CEPH_OSD_FLAG_READ;
4799 
4800 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4801 	if (IS_ERR(pages)) {
4802 		ret = PTR_ERR(pages);
4803 		goto out_req;
4804 	}
4805 
4806 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4807 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4808 					 true);
4809 
4810 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4811 	if (ret)
4812 		goto out_req;
4813 
4814 	ceph_osdc_start_request(osdc, req);
4815 	ret = ceph_osdc_wait_request(osdc, req);
4816 	if (ret >= 0)
4817 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4818 
4819 out_req:
4820 	ceph_osdc_put_request(req);
4821 	return ret;
4822 }
4823 
4824 /*
4825  * Read the complete header for the given rbd device.  On successful
4826  * return, the rbd_dev->header field will contain up-to-date
4827  * information about the image.
4828  */
4829 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4830 {
4831 	struct rbd_image_header_ondisk *ondisk = NULL;
4832 	u32 snap_count = 0;
4833 	u64 names_size = 0;
4834 	u32 want_count;
4835 	int ret;
4836 
4837 	/*
4838 	 * The complete header will include an array of its 64-bit
4839 	 * snapshot ids, followed by the names of those snapshots as
4840 	 * a contiguous block of NUL-terminated strings.  Note that
4841 	 * the number of snapshots could change by the time we read
4842 	 * it in, in which case we re-read it.
4843 	 */
4844 	do {
4845 		size_t size;
4846 
4847 		kfree(ondisk);
4848 
4849 		size = sizeof (*ondisk);
4850 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4851 		size += names_size;
4852 		ondisk = kmalloc(size, GFP_KERNEL);
4853 		if (!ondisk)
4854 			return -ENOMEM;
4855 
4856 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4857 					&rbd_dev->header_oloc, ondisk, size);
4858 		if (ret < 0)
4859 			goto out;
4860 		if ((size_t)ret < size) {
4861 			ret = -ENXIO;
4862 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4863 				size, ret);
4864 			goto out;
4865 		}
4866 		if (!rbd_dev_ondisk_valid(ondisk)) {
4867 			ret = -ENXIO;
4868 			rbd_warn(rbd_dev, "invalid header");
4869 			goto out;
4870 		}
4871 
4872 		names_size = le64_to_cpu(ondisk->snap_names_len);
4873 		want_count = snap_count;
4874 		snap_count = le32_to_cpu(ondisk->snap_count);
4875 	} while (snap_count != want_count);
4876 
4877 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4878 out:
4879 	kfree(ondisk);
4880 
4881 	return ret;
4882 }
4883 
4884 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4885 {
4886 	sector_t size;
4887 
4888 	/*
4889 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4890 	 * try to update its size.  If REMOVING is set, updating size
4891 	 * is just useless work since the device can't be opened.
4892 	 */
4893 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4894 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4895 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4896 		dout("setting size to %llu sectors", (unsigned long long)size);
4897 		set_capacity_and_notify(rbd_dev->disk, size);
4898 	}
4899 }
4900 
4901 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4902 {
4903 	u64 mapping_size;
4904 	int ret;
4905 
4906 	down_write(&rbd_dev->header_rwsem);
4907 	mapping_size = rbd_dev->mapping.size;
4908 
4909 	ret = rbd_dev_header_info(rbd_dev);
4910 	if (ret)
4911 		goto out;
4912 
4913 	/*
4914 	 * If there is a parent, see if it has disappeared due to the
4915 	 * mapped image getting flattened.
4916 	 */
4917 	if (rbd_dev->parent) {
4918 		ret = rbd_dev_v2_parent_info(rbd_dev);
4919 		if (ret)
4920 			goto out;
4921 	}
4922 
4923 	rbd_assert(!rbd_is_snap(rbd_dev));
4924 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4925 
4926 out:
4927 	up_write(&rbd_dev->header_rwsem);
4928 	if (!ret && mapping_size != rbd_dev->mapping.size)
4929 		rbd_dev_update_size(rbd_dev);
4930 
4931 	return ret;
4932 }
4933 
4934 static const struct blk_mq_ops rbd_mq_ops = {
4935 	.queue_rq	= rbd_queue_rq,
4936 };
4937 
4938 static int rbd_init_disk(struct rbd_device *rbd_dev)
4939 {
4940 	struct gendisk *disk;
4941 	struct request_queue *q;
4942 	unsigned int objset_bytes =
4943 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4944 	int err;
4945 
4946 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4947 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4948 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4949 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4950 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4951 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4952 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4953 
4954 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4955 	if (err)
4956 		return err;
4957 
4958 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4959 	if (IS_ERR(disk)) {
4960 		err = PTR_ERR(disk);
4961 		goto out_tag_set;
4962 	}
4963 	q = disk->queue;
4964 
4965 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4966 		 rbd_dev->dev_id);
4967 	disk->major = rbd_dev->major;
4968 	disk->first_minor = rbd_dev->minor;
4969 	if (single_major)
4970 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4971 	else
4972 		disk->minors = RBD_MINORS_PER_MAJOR;
4973 	disk->fops = &rbd_bd_ops;
4974 	disk->private_data = rbd_dev;
4975 
4976 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4977 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4978 
4979 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4980 	q->limits.max_sectors = queue_max_hw_sectors(q);
4981 	blk_queue_max_segments(q, USHRT_MAX);
4982 	blk_queue_max_segment_size(q, UINT_MAX);
4983 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4984 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4985 
4986 	if (rbd_dev->opts->trim) {
4987 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4988 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4989 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4990 	}
4991 
4992 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4993 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4994 
4995 	rbd_dev->disk = disk;
4996 
4997 	return 0;
4998 out_tag_set:
4999 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5000 	return err;
5001 }
5002 
5003 /*
5004   sysfs
5005 */
5006 
5007 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5008 {
5009 	return container_of(dev, struct rbd_device, dev);
5010 }
5011 
5012 static ssize_t rbd_size_show(struct device *dev,
5013 			     struct device_attribute *attr, char *buf)
5014 {
5015 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5016 
5017 	return sprintf(buf, "%llu\n",
5018 		(unsigned long long)rbd_dev->mapping.size);
5019 }
5020 
5021 static ssize_t rbd_features_show(struct device *dev,
5022 			     struct device_attribute *attr, char *buf)
5023 {
5024 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5025 
5026 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5027 }
5028 
5029 static ssize_t rbd_major_show(struct device *dev,
5030 			      struct device_attribute *attr, char *buf)
5031 {
5032 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5033 
5034 	if (rbd_dev->major)
5035 		return sprintf(buf, "%d\n", rbd_dev->major);
5036 
5037 	return sprintf(buf, "(none)\n");
5038 }
5039 
5040 static ssize_t rbd_minor_show(struct device *dev,
5041 			      struct device_attribute *attr, char *buf)
5042 {
5043 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5044 
5045 	return sprintf(buf, "%d\n", rbd_dev->minor);
5046 }
5047 
5048 static ssize_t rbd_client_addr_show(struct device *dev,
5049 				    struct device_attribute *attr, char *buf)
5050 {
5051 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5052 	struct ceph_entity_addr *client_addr =
5053 	    ceph_client_addr(rbd_dev->rbd_client->client);
5054 
5055 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5056 		       le32_to_cpu(client_addr->nonce));
5057 }
5058 
5059 static ssize_t rbd_client_id_show(struct device *dev,
5060 				  struct device_attribute *attr, char *buf)
5061 {
5062 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5063 
5064 	return sprintf(buf, "client%lld\n",
5065 		       ceph_client_gid(rbd_dev->rbd_client->client));
5066 }
5067 
5068 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5069 				     struct device_attribute *attr, char *buf)
5070 {
5071 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5072 
5073 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5074 }
5075 
5076 static ssize_t rbd_config_info_show(struct device *dev,
5077 				    struct device_attribute *attr, char *buf)
5078 {
5079 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5080 
5081 	if (!capable(CAP_SYS_ADMIN))
5082 		return -EPERM;
5083 
5084 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5085 }
5086 
5087 static ssize_t rbd_pool_show(struct device *dev,
5088 			     struct device_attribute *attr, char *buf)
5089 {
5090 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5091 
5092 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5093 }
5094 
5095 static ssize_t rbd_pool_id_show(struct device *dev,
5096 			     struct device_attribute *attr, char *buf)
5097 {
5098 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5099 
5100 	return sprintf(buf, "%llu\n",
5101 			(unsigned long long) rbd_dev->spec->pool_id);
5102 }
5103 
5104 static ssize_t rbd_pool_ns_show(struct device *dev,
5105 				struct device_attribute *attr, char *buf)
5106 {
5107 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5108 
5109 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5110 }
5111 
5112 static ssize_t rbd_name_show(struct device *dev,
5113 			     struct device_attribute *attr, char *buf)
5114 {
5115 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5116 
5117 	if (rbd_dev->spec->image_name)
5118 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5119 
5120 	return sprintf(buf, "(unknown)\n");
5121 }
5122 
5123 static ssize_t rbd_image_id_show(struct device *dev,
5124 			     struct device_attribute *attr, char *buf)
5125 {
5126 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127 
5128 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5129 }
5130 
5131 /*
5132  * Shows the name of the currently-mapped snapshot (or
5133  * RBD_SNAP_HEAD_NAME for the base image).
5134  */
5135 static ssize_t rbd_snap_show(struct device *dev,
5136 			     struct device_attribute *attr,
5137 			     char *buf)
5138 {
5139 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5140 
5141 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5142 }
5143 
5144 static ssize_t rbd_snap_id_show(struct device *dev,
5145 				struct device_attribute *attr, char *buf)
5146 {
5147 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5148 
5149 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5150 }
5151 
5152 /*
5153  * For a v2 image, shows the chain of parent images, separated by empty
5154  * lines.  For v1 images or if there is no parent, shows "(no parent
5155  * image)".
5156  */
5157 static ssize_t rbd_parent_show(struct device *dev,
5158 			       struct device_attribute *attr,
5159 			       char *buf)
5160 {
5161 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5162 	ssize_t count = 0;
5163 
5164 	if (!rbd_dev->parent)
5165 		return sprintf(buf, "(no parent image)\n");
5166 
5167 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5168 		struct rbd_spec *spec = rbd_dev->parent_spec;
5169 
5170 		count += sprintf(&buf[count], "%s"
5171 			    "pool_id %llu\npool_name %s\n"
5172 			    "pool_ns %s\n"
5173 			    "image_id %s\nimage_name %s\n"
5174 			    "snap_id %llu\nsnap_name %s\n"
5175 			    "overlap %llu\n",
5176 			    !count ? "" : "\n", /* first? */
5177 			    spec->pool_id, spec->pool_name,
5178 			    spec->pool_ns ?: "",
5179 			    spec->image_id, spec->image_name ?: "(unknown)",
5180 			    spec->snap_id, spec->snap_name,
5181 			    rbd_dev->parent_overlap);
5182 	}
5183 
5184 	return count;
5185 }
5186 
5187 static ssize_t rbd_image_refresh(struct device *dev,
5188 				 struct device_attribute *attr,
5189 				 const char *buf,
5190 				 size_t size)
5191 {
5192 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5193 	int ret;
5194 
5195 	if (!capable(CAP_SYS_ADMIN))
5196 		return -EPERM;
5197 
5198 	ret = rbd_dev_refresh(rbd_dev);
5199 	if (ret)
5200 		return ret;
5201 
5202 	return size;
5203 }
5204 
5205 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5206 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5207 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5208 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5209 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5210 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5211 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5212 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5213 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5214 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5215 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5216 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5217 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5218 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5219 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5220 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5221 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5222 
5223 static struct attribute *rbd_attrs[] = {
5224 	&dev_attr_size.attr,
5225 	&dev_attr_features.attr,
5226 	&dev_attr_major.attr,
5227 	&dev_attr_minor.attr,
5228 	&dev_attr_client_addr.attr,
5229 	&dev_attr_client_id.attr,
5230 	&dev_attr_cluster_fsid.attr,
5231 	&dev_attr_config_info.attr,
5232 	&dev_attr_pool.attr,
5233 	&dev_attr_pool_id.attr,
5234 	&dev_attr_pool_ns.attr,
5235 	&dev_attr_name.attr,
5236 	&dev_attr_image_id.attr,
5237 	&dev_attr_current_snap.attr,
5238 	&dev_attr_snap_id.attr,
5239 	&dev_attr_parent.attr,
5240 	&dev_attr_refresh.attr,
5241 	NULL
5242 };
5243 
5244 static struct attribute_group rbd_attr_group = {
5245 	.attrs = rbd_attrs,
5246 };
5247 
5248 static const struct attribute_group *rbd_attr_groups[] = {
5249 	&rbd_attr_group,
5250 	NULL
5251 };
5252 
5253 static void rbd_dev_release(struct device *dev);
5254 
5255 static const struct device_type rbd_device_type = {
5256 	.name		= "rbd",
5257 	.groups		= rbd_attr_groups,
5258 	.release	= rbd_dev_release,
5259 };
5260 
5261 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5262 {
5263 	kref_get(&spec->kref);
5264 
5265 	return spec;
5266 }
5267 
5268 static void rbd_spec_free(struct kref *kref);
5269 static void rbd_spec_put(struct rbd_spec *spec)
5270 {
5271 	if (spec)
5272 		kref_put(&spec->kref, rbd_spec_free);
5273 }
5274 
5275 static struct rbd_spec *rbd_spec_alloc(void)
5276 {
5277 	struct rbd_spec *spec;
5278 
5279 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5280 	if (!spec)
5281 		return NULL;
5282 
5283 	spec->pool_id = CEPH_NOPOOL;
5284 	spec->snap_id = CEPH_NOSNAP;
5285 	kref_init(&spec->kref);
5286 
5287 	return spec;
5288 }
5289 
5290 static void rbd_spec_free(struct kref *kref)
5291 {
5292 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5293 
5294 	kfree(spec->pool_name);
5295 	kfree(spec->pool_ns);
5296 	kfree(spec->image_id);
5297 	kfree(spec->image_name);
5298 	kfree(spec->snap_name);
5299 	kfree(spec);
5300 }
5301 
5302 static void rbd_dev_free(struct rbd_device *rbd_dev)
5303 {
5304 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5305 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5306 
5307 	ceph_oid_destroy(&rbd_dev->header_oid);
5308 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5309 	kfree(rbd_dev->config_info);
5310 
5311 	rbd_put_client(rbd_dev->rbd_client);
5312 	rbd_spec_put(rbd_dev->spec);
5313 	kfree(rbd_dev->opts);
5314 	kfree(rbd_dev);
5315 }
5316 
5317 static void rbd_dev_release(struct device *dev)
5318 {
5319 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5320 	bool need_put = !!rbd_dev->opts;
5321 
5322 	if (need_put) {
5323 		destroy_workqueue(rbd_dev->task_wq);
5324 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5325 	}
5326 
5327 	rbd_dev_free(rbd_dev);
5328 
5329 	/*
5330 	 * This is racy, but way better than putting module outside of
5331 	 * the release callback.  The race window is pretty small, so
5332 	 * doing something similar to dm (dm-builtin.c) is overkill.
5333 	 */
5334 	if (need_put)
5335 		module_put(THIS_MODULE);
5336 }
5337 
5338 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5339 {
5340 	struct rbd_device *rbd_dev;
5341 
5342 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5343 	if (!rbd_dev)
5344 		return NULL;
5345 
5346 	spin_lock_init(&rbd_dev->lock);
5347 	INIT_LIST_HEAD(&rbd_dev->node);
5348 	init_rwsem(&rbd_dev->header_rwsem);
5349 
5350 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5351 	ceph_oid_init(&rbd_dev->header_oid);
5352 	rbd_dev->header_oloc.pool = spec->pool_id;
5353 	if (spec->pool_ns) {
5354 		WARN_ON(!*spec->pool_ns);
5355 		rbd_dev->header_oloc.pool_ns =
5356 		    ceph_find_or_create_string(spec->pool_ns,
5357 					       strlen(spec->pool_ns));
5358 	}
5359 
5360 	mutex_init(&rbd_dev->watch_mutex);
5361 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5362 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5363 
5364 	init_rwsem(&rbd_dev->lock_rwsem);
5365 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5366 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5367 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5368 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5369 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5370 	spin_lock_init(&rbd_dev->lock_lists_lock);
5371 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5372 	INIT_LIST_HEAD(&rbd_dev->running_list);
5373 	init_completion(&rbd_dev->acquire_wait);
5374 	init_completion(&rbd_dev->releasing_wait);
5375 
5376 	spin_lock_init(&rbd_dev->object_map_lock);
5377 
5378 	rbd_dev->dev.bus = &rbd_bus_type;
5379 	rbd_dev->dev.type = &rbd_device_type;
5380 	rbd_dev->dev.parent = &rbd_root_dev;
5381 	device_initialize(&rbd_dev->dev);
5382 
5383 	return rbd_dev;
5384 }
5385 
5386 /*
5387  * Create a mapping rbd_dev.
5388  */
5389 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5390 					 struct rbd_spec *spec,
5391 					 struct rbd_options *opts)
5392 {
5393 	struct rbd_device *rbd_dev;
5394 
5395 	rbd_dev = __rbd_dev_create(spec);
5396 	if (!rbd_dev)
5397 		return NULL;
5398 
5399 	/* get an id and fill in device name */
5400 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5401 					 minor_to_rbd_dev_id(1 << MINORBITS),
5402 					 GFP_KERNEL);
5403 	if (rbd_dev->dev_id < 0)
5404 		goto fail_rbd_dev;
5405 
5406 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5407 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5408 						   rbd_dev->name);
5409 	if (!rbd_dev->task_wq)
5410 		goto fail_dev_id;
5411 
5412 	/* we have a ref from do_rbd_add() */
5413 	__module_get(THIS_MODULE);
5414 
5415 	rbd_dev->rbd_client = rbdc;
5416 	rbd_dev->spec = spec;
5417 	rbd_dev->opts = opts;
5418 
5419 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5420 	return rbd_dev;
5421 
5422 fail_dev_id:
5423 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5424 fail_rbd_dev:
5425 	rbd_dev_free(rbd_dev);
5426 	return NULL;
5427 }
5428 
5429 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5430 {
5431 	if (rbd_dev)
5432 		put_device(&rbd_dev->dev);
5433 }
5434 
5435 /*
5436  * Get the size and object order for an image snapshot, or if
5437  * snap_id is CEPH_NOSNAP, gets this information for the base
5438  * image.
5439  */
5440 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5441 				u8 *order, u64 *snap_size)
5442 {
5443 	__le64 snapid = cpu_to_le64(snap_id);
5444 	int ret;
5445 	struct {
5446 		u8 order;
5447 		__le64 size;
5448 	} __attribute__ ((packed)) size_buf = { 0 };
5449 
5450 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5451 				  &rbd_dev->header_oloc, "get_size",
5452 				  &snapid, sizeof(snapid),
5453 				  &size_buf, sizeof(size_buf));
5454 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5455 	if (ret < 0)
5456 		return ret;
5457 	if (ret < sizeof (size_buf))
5458 		return -ERANGE;
5459 
5460 	if (order) {
5461 		*order = size_buf.order;
5462 		dout("  order %u", (unsigned int)*order);
5463 	}
5464 	*snap_size = le64_to_cpu(size_buf.size);
5465 
5466 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5467 		(unsigned long long)snap_id,
5468 		(unsigned long long)*snap_size);
5469 
5470 	return 0;
5471 }
5472 
5473 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5474 {
5475 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5476 					&rbd_dev->header.obj_order,
5477 					&rbd_dev->header.image_size);
5478 }
5479 
5480 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5481 {
5482 	size_t size;
5483 	void *reply_buf;
5484 	int ret;
5485 	void *p;
5486 
5487 	/* Response will be an encoded string, which includes a length */
5488 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5489 	reply_buf = kzalloc(size, GFP_KERNEL);
5490 	if (!reply_buf)
5491 		return -ENOMEM;
5492 
5493 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5494 				  &rbd_dev->header_oloc, "get_object_prefix",
5495 				  NULL, 0, reply_buf, size);
5496 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5497 	if (ret < 0)
5498 		goto out;
5499 
5500 	p = reply_buf;
5501 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5502 						p + ret, NULL, GFP_NOIO);
5503 	ret = 0;
5504 
5505 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5506 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5507 		rbd_dev->header.object_prefix = NULL;
5508 	} else {
5509 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5510 	}
5511 out:
5512 	kfree(reply_buf);
5513 
5514 	return ret;
5515 }
5516 
5517 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5518 				     bool read_only, u64 *snap_features)
5519 {
5520 	struct {
5521 		__le64 snap_id;
5522 		u8 read_only;
5523 	} features_in;
5524 	struct {
5525 		__le64 features;
5526 		__le64 incompat;
5527 	} __attribute__ ((packed)) features_buf = { 0 };
5528 	u64 unsup;
5529 	int ret;
5530 
5531 	features_in.snap_id = cpu_to_le64(snap_id);
5532 	features_in.read_only = read_only;
5533 
5534 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535 				  &rbd_dev->header_oloc, "get_features",
5536 				  &features_in, sizeof(features_in),
5537 				  &features_buf, sizeof(features_buf));
5538 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 	if (ret < 0)
5540 		return ret;
5541 	if (ret < sizeof (features_buf))
5542 		return -ERANGE;
5543 
5544 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5545 	if (unsup) {
5546 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5547 			 unsup);
5548 		return -ENXIO;
5549 	}
5550 
5551 	*snap_features = le64_to_cpu(features_buf.features);
5552 
5553 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5554 		(unsigned long long)snap_id,
5555 		(unsigned long long)*snap_features,
5556 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5557 
5558 	return 0;
5559 }
5560 
5561 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5562 {
5563 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5564 					 rbd_is_ro(rbd_dev),
5565 					 &rbd_dev->header.features);
5566 }
5567 
5568 /*
5569  * These are generic image flags, but since they are used only for
5570  * object map, store them in rbd_dev->object_map_flags.
5571  *
5572  * For the same reason, this function is called only on object map
5573  * (re)load and not on header refresh.
5574  */
5575 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5576 {
5577 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5578 	__le64 flags;
5579 	int ret;
5580 
5581 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5582 				  &rbd_dev->header_oloc, "get_flags",
5583 				  &snapid, sizeof(snapid),
5584 				  &flags, sizeof(flags));
5585 	if (ret < 0)
5586 		return ret;
5587 	if (ret < sizeof(flags))
5588 		return -EBADMSG;
5589 
5590 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5591 	return 0;
5592 }
5593 
5594 struct parent_image_info {
5595 	u64		pool_id;
5596 	const char	*pool_ns;
5597 	const char	*image_id;
5598 	u64		snap_id;
5599 
5600 	bool		has_overlap;
5601 	u64		overlap;
5602 };
5603 
5604 /*
5605  * The caller is responsible for @pii.
5606  */
5607 static int decode_parent_image_spec(void **p, void *end,
5608 				    struct parent_image_info *pii)
5609 {
5610 	u8 struct_v;
5611 	u32 struct_len;
5612 	int ret;
5613 
5614 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5615 				  &struct_v, &struct_len);
5616 	if (ret)
5617 		return ret;
5618 
5619 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5620 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5621 	if (IS_ERR(pii->pool_ns)) {
5622 		ret = PTR_ERR(pii->pool_ns);
5623 		pii->pool_ns = NULL;
5624 		return ret;
5625 	}
5626 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5627 	if (IS_ERR(pii->image_id)) {
5628 		ret = PTR_ERR(pii->image_id);
5629 		pii->image_id = NULL;
5630 		return ret;
5631 	}
5632 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5633 	return 0;
5634 
5635 e_inval:
5636 	return -EINVAL;
5637 }
5638 
5639 static int __get_parent_info(struct rbd_device *rbd_dev,
5640 			     struct page *req_page,
5641 			     struct page *reply_page,
5642 			     struct parent_image_info *pii)
5643 {
5644 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5645 	size_t reply_len = PAGE_SIZE;
5646 	void *p, *end;
5647 	int ret;
5648 
5649 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5650 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5651 			     req_page, sizeof(u64), &reply_page, &reply_len);
5652 	if (ret)
5653 		return ret == -EOPNOTSUPP ? 1 : ret;
5654 
5655 	p = page_address(reply_page);
5656 	end = p + reply_len;
5657 	ret = decode_parent_image_spec(&p, end, pii);
5658 	if (ret)
5659 		return ret;
5660 
5661 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5662 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5663 			     req_page, sizeof(u64), &reply_page, &reply_len);
5664 	if (ret)
5665 		return ret;
5666 
5667 	p = page_address(reply_page);
5668 	end = p + reply_len;
5669 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5670 	if (pii->has_overlap)
5671 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5672 
5673 	return 0;
5674 
5675 e_inval:
5676 	return -EINVAL;
5677 }
5678 
5679 /*
5680  * The caller is responsible for @pii.
5681  */
5682 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5683 				    struct page *req_page,
5684 				    struct page *reply_page,
5685 				    struct parent_image_info *pii)
5686 {
5687 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5688 	size_t reply_len = PAGE_SIZE;
5689 	void *p, *end;
5690 	int ret;
5691 
5692 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5693 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5694 			     req_page, sizeof(u64), &reply_page, &reply_len);
5695 	if (ret)
5696 		return ret;
5697 
5698 	p = page_address(reply_page);
5699 	end = p + reply_len;
5700 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5701 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5702 	if (IS_ERR(pii->image_id)) {
5703 		ret = PTR_ERR(pii->image_id);
5704 		pii->image_id = NULL;
5705 		return ret;
5706 	}
5707 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5708 	pii->has_overlap = true;
5709 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5710 
5711 	return 0;
5712 
5713 e_inval:
5714 	return -EINVAL;
5715 }
5716 
5717 static int get_parent_info(struct rbd_device *rbd_dev,
5718 			   struct parent_image_info *pii)
5719 {
5720 	struct page *req_page, *reply_page;
5721 	void *p;
5722 	int ret;
5723 
5724 	req_page = alloc_page(GFP_KERNEL);
5725 	if (!req_page)
5726 		return -ENOMEM;
5727 
5728 	reply_page = alloc_page(GFP_KERNEL);
5729 	if (!reply_page) {
5730 		__free_page(req_page);
5731 		return -ENOMEM;
5732 	}
5733 
5734 	p = page_address(req_page);
5735 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5736 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5737 	if (ret > 0)
5738 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5739 					       pii);
5740 
5741 	__free_page(req_page);
5742 	__free_page(reply_page);
5743 	return ret;
5744 }
5745 
5746 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5747 {
5748 	struct rbd_spec *parent_spec;
5749 	struct parent_image_info pii = { 0 };
5750 	int ret;
5751 
5752 	parent_spec = rbd_spec_alloc();
5753 	if (!parent_spec)
5754 		return -ENOMEM;
5755 
5756 	ret = get_parent_info(rbd_dev, &pii);
5757 	if (ret)
5758 		goto out_err;
5759 
5760 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5761 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5762 	     pii.has_overlap, pii.overlap);
5763 
5764 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5765 		/*
5766 		 * Either the parent never existed, or we have
5767 		 * record of it but the image got flattened so it no
5768 		 * longer has a parent.  When the parent of a
5769 		 * layered image disappears we immediately set the
5770 		 * overlap to 0.  The effect of this is that all new
5771 		 * requests will be treated as if the image had no
5772 		 * parent.
5773 		 *
5774 		 * If !pii.has_overlap, the parent image spec is not
5775 		 * applicable.  It's there to avoid duplication in each
5776 		 * snapshot record.
5777 		 */
5778 		if (rbd_dev->parent_overlap) {
5779 			rbd_dev->parent_overlap = 0;
5780 			rbd_dev_parent_put(rbd_dev);
5781 			pr_info("%s: clone image has been flattened\n",
5782 				rbd_dev->disk->disk_name);
5783 		}
5784 
5785 		goto out;	/* No parent?  No problem. */
5786 	}
5787 
5788 	/* The ceph file layout needs to fit pool id in 32 bits */
5789 
5790 	ret = -EIO;
5791 	if (pii.pool_id > (u64)U32_MAX) {
5792 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5793 			(unsigned long long)pii.pool_id, U32_MAX);
5794 		goto out_err;
5795 	}
5796 
5797 	/*
5798 	 * The parent won't change (except when the clone is
5799 	 * flattened, already handled that).  So we only need to
5800 	 * record the parent spec we have not already done so.
5801 	 */
5802 	if (!rbd_dev->parent_spec) {
5803 		parent_spec->pool_id = pii.pool_id;
5804 		if (pii.pool_ns && *pii.pool_ns) {
5805 			parent_spec->pool_ns = pii.pool_ns;
5806 			pii.pool_ns = NULL;
5807 		}
5808 		parent_spec->image_id = pii.image_id;
5809 		pii.image_id = NULL;
5810 		parent_spec->snap_id = pii.snap_id;
5811 
5812 		rbd_dev->parent_spec = parent_spec;
5813 		parent_spec = NULL;	/* rbd_dev now owns this */
5814 	}
5815 
5816 	/*
5817 	 * We always update the parent overlap.  If it's zero we issue
5818 	 * a warning, as we will proceed as if there was no parent.
5819 	 */
5820 	if (!pii.overlap) {
5821 		if (parent_spec) {
5822 			/* refresh, careful to warn just once */
5823 			if (rbd_dev->parent_overlap)
5824 				rbd_warn(rbd_dev,
5825 				    "clone now standalone (overlap became 0)");
5826 		} else {
5827 			/* initial probe */
5828 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5829 		}
5830 	}
5831 	rbd_dev->parent_overlap = pii.overlap;
5832 
5833 out:
5834 	ret = 0;
5835 out_err:
5836 	kfree(pii.pool_ns);
5837 	kfree(pii.image_id);
5838 	rbd_spec_put(parent_spec);
5839 	return ret;
5840 }
5841 
5842 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5843 {
5844 	struct {
5845 		__le64 stripe_unit;
5846 		__le64 stripe_count;
5847 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5848 	size_t size = sizeof (striping_info_buf);
5849 	void *p;
5850 	int ret;
5851 
5852 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5853 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5854 				NULL, 0, &striping_info_buf, size);
5855 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5856 	if (ret < 0)
5857 		return ret;
5858 	if (ret < size)
5859 		return -ERANGE;
5860 
5861 	p = &striping_info_buf;
5862 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5863 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5864 	return 0;
5865 }
5866 
5867 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5868 {
5869 	__le64 data_pool_id;
5870 	int ret;
5871 
5872 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5873 				  &rbd_dev->header_oloc, "get_data_pool",
5874 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5875 	if (ret < 0)
5876 		return ret;
5877 	if (ret < sizeof(data_pool_id))
5878 		return -EBADMSG;
5879 
5880 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5881 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5882 	return 0;
5883 }
5884 
5885 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5886 {
5887 	CEPH_DEFINE_OID_ONSTACK(oid);
5888 	size_t image_id_size;
5889 	char *image_id;
5890 	void *p;
5891 	void *end;
5892 	size_t size;
5893 	void *reply_buf = NULL;
5894 	size_t len = 0;
5895 	char *image_name = NULL;
5896 	int ret;
5897 
5898 	rbd_assert(!rbd_dev->spec->image_name);
5899 
5900 	len = strlen(rbd_dev->spec->image_id);
5901 	image_id_size = sizeof (__le32) + len;
5902 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5903 	if (!image_id)
5904 		return NULL;
5905 
5906 	p = image_id;
5907 	end = image_id + image_id_size;
5908 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5909 
5910 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5911 	reply_buf = kmalloc(size, GFP_KERNEL);
5912 	if (!reply_buf)
5913 		goto out;
5914 
5915 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5916 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5917 				  "dir_get_name", image_id, image_id_size,
5918 				  reply_buf, size);
5919 	if (ret < 0)
5920 		goto out;
5921 	p = reply_buf;
5922 	end = reply_buf + ret;
5923 
5924 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5925 	if (IS_ERR(image_name))
5926 		image_name = NULL;
5927 	else
5928 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5929 out:
5930 	kfree(reply_buf);
5931 	kfree(image_id);
5932 
5933 	return image_name;
5934 }
5935 
5936 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5937 {
5938 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5939 	const char *snap_name;
5940 	u32 which = 0;
5941 
5942 	/* Skip over names until we find the one we are looking for */
5943 
5944 	snap_name = rbd_dev->header.snap_names;
5945 	while (which < snapc->num_snaps) {
5946 		if (!strcmp(name, snap_name))
5947 			return snapc->snaps[which];
5948 		snap_name += strlen(snap_name) + 1;
5949 		which++;
5950 	}
5951 	return CEPH_NOSNAP;
5952 }
5953 
5954 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5955 {
5956 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5957 	u32 which;
5958 	bool found = false;
5959 	u64 snap_id;
5960 
5961 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5962 		const char *snap_name;
5963 
5964 		snap_id = snapc->snaps[which];
5965 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5966 		if (IS_ERR(snap_name)) {
5967 			/* ignore no-longer existing snapshots */
5968 			if (PTR_ERR(snap_name) == -ENOENT)
5969 				continue;
5970 			else
5971 				break;
5972 		}
5973 		found = !strcmp(name, snap_name);
5974 		kfree(snap_name);
5975 	}
5976 	return found ? snap_id : CEPH_NOSNAP;
5977 }
5978 
5979 /*
5980  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5981  * no snapshot by that name is found, or if an error occurs.
5982  */
5983 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5984 {
5985 	if (rbd_dev->image_format == 1)
5986 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5987 
5988 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5989 }
5990 
5991 /*
5992  * An image being mapped will have everything but the snap id.
5993  */
5994 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5995 {
5996 	struct rbd_spec *spec = rbd_dev->spec;
5997 
5998 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5999 	rbd_assert(spec->image_id && spec->image_name);
6000 	rbd_assert(spec->snap_name);
6001 
6002 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6003 		u64 snap_id;
6004 
6005 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6006 		if (snap_id == CEPH_NOSNAP)
6007 			return -ENOENT;
6008 
6009 		spec->snap_id = snap_id;
6010 	} else {
6011 		spec->snap_id = CEPH_NOSNAP;
6012 	}
6013 
6014 	return 0;
6015 }
6016 
6017 /*
6018  * A parent image will have all ids but none of the names.
6019  *
6020  * All names in an rbd spec are dynamically allocated.  It's OK if we
6021  * can't figure out the name for an image id.
6022  */
6023 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6024 {
6025 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6026 	struct rbd_spec *spec = rbd_dev->spec;
6027 	const char *pool_name;
6028 	const char *image_name;
6029 	const char *snap_name;
6030 	int ret;
6031 
6032 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6033 	rbd_assert(spec->image_id);
6034 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6035 
6036 	/* Get the pool name; we have to make our own copy of this */
6037 
6038 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6039 	if (!pool_name) {
6040 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6041 		return -EIO;
6042 	}
6043 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6044 	if (!pool_name)
6045 		return -ENOMEM;
6046 
6047 	/* Fetch the image name; tolerate failure here */
6048 
6049 	image_name = rbd_dev_image_name(rbd_dev);
6050 	if (!image_name)
6051 		rbd_warn(rbd_dev, "unable to get image name");
6052 
6053 	/* Fetch the snapshot name */
6054 
6055 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6056 	if (IS_ERR(snap_name)) {
6057 		ret = PTR_ERR(snap_name);
6058 		goto out_err;
6059 	}
6060 
6061 	spec->pool_name = pool_name;
6062 	spec->image_name = image_name;
6063 	spec->snap_name = snap_name;
6064 
6065 	return 0;
6066 
6067 out_err:
6068 	kfree(image_name);
6069 	kfree(pool_name);
6070 	return ret;
6071 }
6072 
6073 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6074 {
6075 	size_t size;
6076 	int ret;
6077 	void *reply_buf;
6078 	void *p;
6079 	void *end;
6080 	u64 seq;
6081 	u32 snap_count;
6082 	struct ceph_snap_context *snapc;
6083 	u32 i;
6084 
6085 	/*
6086 	 * We'll need room for the seq value (maximum snapshot id),
6087 	 * snapshot count, and array of that many snapshot ids.
6088 	 * For now we have a fixed upper limit on the number we're
6089 	 * prepared to receive.
6090 	 */
6091 	size = sizeof (__le64) + sizeof (__le32) +
6092 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6093 	reply_buf = kzalloc(size, GFP_KERNEL);
6094 	if (!reply_buf)
6095 		return -ENOMEM;
6096 
6097 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6098 				  &rbd_dev->header_oloc, "get_snapcontext",
6099 				  NULL, 0, reply_buf, size);
6100 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6101 	if (ret < 0)
6102 		goto out;
6103 
6104 	p = reply_buf;
6105 	end = reply_buf + ret;
6106 	ret = -ERANGE;
6107 	ceph_decode_64_safe(&p, end, seq, out);
6108 	ceph_decode_32_safe(&p, end, snap_count, out);
6109 
6110 	/*
6111 	 * Make sure the reported number of snapshot ids wouldn't go
6112 	 * beyond the end of our buffer.  But before checking that,
6113 	 * make sure the computed size of the snapshot context we
6114 	 * allocate is representable in a size_t.
6115 	 */
6116 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6117 				 / sizeof (u64)) {
6118 		ret = -EINVAL;
6119 		goto out;
6120 	}
6121 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6122 		goto out;
6123 	ret = 0;
6124 
6125 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6126 	if (!snapc) {
6127 		ret = -ENOMEM;
6128 		goto out;
6129 	}
6130 	snapc->seq = seq;
6131 	for (i = 0; i < snap_count; i++)
6132 		snapc->snaps[i] = ceph_decode_64(&p);
6133 
6134 	ceph_put_snap_context(rbd_dev->header.snapc);
6135 	rbd_dev->header.snapc = snapc;
6136 
6137 	dout("  snap context seq = %llu, snap_count = %u\n",
6138 		(unsigned long long)seq, (unsigned int)snap_count);
6139 out:
6140 	kfree(reply_buf);
6141 
6142 	return ret;
6143 }
6144 
6145 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6146 					u64 snap_id)
6147 {
6148 	size_t size;
6149 	void *reply_buf;
6150 	__le64 snapid;
6151 	int ret;
6152 	void *p;
6153 	void *end;
6154 	char *snap_name;
6155 
6156 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6157 	reply_buf = kmalloc(size, GFP_KERNEL);
6158 	if (!reply_buf)
6159 		return ERR_PTR(-ENOMEM);
6160 
6161 	snapid = cpu_to_le64(snap_id);
6162 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6163 				  &rbd_dev->header_oloc, "get_snapshot_name",
6164 				  &snapid, sizeof(snapid), reply_buf, size);
6165 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6166 	if (ret < 0) {
6167 		snap_name = ERR_PTR(ret);
6168 		goto out;
6169 	}
6170 
6171 	p = reply_buf;
6172 	end = reply_buf + ret;
6173 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6174 	if (IS_ERR(snap_name))
6175 		goto out;
6176 
6177 	dout("  snap_id 0x%016llx snap_name = %s\n",
6178 		(unsigned long long)snap_id, snap_name);
6179 out:
6180 	kfree(reply_buf);
6181 
6182 	return snap_name;
6183 }
6184 
6185 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6186 {
6187 	bool first_time = rbd_dev->header.object_prefix == NULL;
6188 	int ret;
6189 
6190 	ret = rbd_dev_v2_image_size(rbd_dev);
6191 	if (ret)
6192 		return ret;
6193 
6194 	if (first_time) {
6195 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6196 		if (ret)
6197 			return ret;
6198 	}
6199 
6200 	ret = rbd_dev_v2_snap_context(rbd_dev);
6201 	if (ret && first_time) {
6202 		kfree(rbd_dev->header.object_prefix);
6203 		rbd_dev->header.object_prefix = NULL;
6204 	}
6205 
6206 	return ret;
6207 }
6208 
6209 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6210 {
6211 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6212 
6213 	if (rbd_dev->image_format == 1)
6214 		return rbd_dev_v1_header_info(rbd_dev);
6215 
6216 	return rbd_dev_v2_header_info(rbd_dev);
6217 }
6218 
6219 /*
6220  * Skips over white space at *buf, and updates *buf to point to the
6221  * first found non-space character (if any). Returns the length of
6222  * the token (string of non-white space characters) found.  Note
6223  * that *buf must be terminated with '\0'.
6224  */
6225 static inline size_t next_token(const char **buf)
6226 {
6227         /*
6228         * These are the characters that produce nonzero for
6229         * isspace() in the "C" and "POSIX" locales.
6230         */
6231 	static const char spaces[] = " \f\n\r\t\v";
6232 
6233         *buf += strspn(*buf, spaces);	/* Find start of token */
6234 
6235 	return strcspn(*buf, spaces);   /* Return token length */
6236 }
6237 
6238 /*
6239  * Finds the next token in *buf, dynamically allocates a buffer big
6240  * enough to hold a copy of it, and copies the token into the new
6241  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6242  * that a duplicate buffer is created even for a zero-length token.
6243  *
6244  * Returns a pointer to the newly-allocated duplicate, or a null
6245  * pointer if memory for the duplicate was not available.  If
6246  * the lenp argument is a non-null pointer, the length of the token
6247  * (not including the '\0') is returned in *lenp.
6248  *
6249  * If successful, the *buf pointer will be updated to point beyond
6250  * the end of the found token.
6251  *
6252  * Note: uses GFP_KERNEL for allocation.
6253  */
6254 static inline char *dup_token(const char **buf, size_t *lenp)
6255 {
6256 	char *dup;
6257 	size_t len;
6258 
6259 	len = next_token(buf);
6260 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6261 	if (!dup)
6262 		return NULL;
6263 	*(dup + len) = '\0';
6264 	*buf += len;
6265 
6266 	if (lenp)
6267 		*lenp = len;
6268 
6269 	return dup;
6270 }
6271 
6272 static int rbd_parse_param(struct fs_parameter *param,
6273 			    struct rbd_parse_opts_ctx *pctx)
6274 {
6275 	struct rbd_options *opt = pctx->opts;
6276 	struct fs_parse_result result;
6277 	struct p_log log = {.prefix = "rbd"};
6278 	int token, ret;
6279 
6280 	ret = ceph_parse_param(param, pctx->copts, NULL);
6281 	if (ret != -ENOPARAM)
6282 		return ret;
6283 
6284 	token = __fs_parse(&log, rbd_parameters, param, &result);
6285 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6286 	if (token < 0) {
6287 		if (token == -ENOPARAM)
6288 			return inval_plog(&log, "Unknown parameter '%s'",
6289 					  param->key);
6290 		return token;
6291 	}
6292 
6293 	switch (token) {
6294 	case Opt_queue_depth:
6295 		if (result.uint_32 < 1)
6296 			goto out_of_range;
6297 		opt->queue_depth = result.uint_32;
6298 		break;
6299 	case Opt_alloc_size:
6300 		if (result.uint_32 < SECTOR_SIZE)
6301 			goto out_of_range;
6302 		if (!is_power_of_2(result.uint_32))
6303 			return inval_plog(&log, "alloc_size must be a power of 2");
6304 		opt->alloc_size = result.uint_32;
6305 		break;
6306 	case Opt_lock_timeout:
6307 		/* 0 is "wait forever" (i.e. infinite timeout) */
6308 		if (result.uint_32 > INT_MAX / 1000)
6309 			goto out_of_range;
6310 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6311 		break;
6312 	case Opt_pool_ns:
6313 		kfree(pctx->spec->pool_ns);
6314 		pctx->spec->pool_ns = param->string;
6315 		param->string = NULL;
6316 		break;
6317 	case Opt_compression_hint:
6318 		switch (result.uint_32) {
6319 		case Opt_compression_hint_none:
6320 			opt->alloc_hint_flags &=
6321 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6322 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6323 			break;
6324 		case Opt_compression_hint_compressible:
6325 			opt->alloc_hint_flags |=
6326 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6327 			opt->alloc_hint_flags &=
6328 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6329 			break;
6330 		case Opt_compression_hint_incompressible:
6331 			opt->alloc_hint_flags |=
6332 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6333 			opt->alloc_hint_flags &=
6334 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6335 			break;
6336 		default:
6337 			BUG();
6338 		}
6339 		break;
6340 	case Opt_read_only:
6341 		opt->read_only = true;
6342 		break;
6343 	case Opt_read_write:
6344 		opt->read_only = false;
6345 		break;
6346 	case Opt_lock_on_read:
6347 		opt->lock_on_read = true;
6348 		break;
6349 	case Opt_exclusive:
6350 		opt->exclusive = true;
6351 		break;
6352 	case Opt_notrim:
6353 		opt->trim = false;
6354 		break;
6355 	default:
6356 		BUG();
6357 	}
6358 
6359 	return 0;
6360 
6361 out_of_range:
6362 	return inval_plog(&log, "%s out of range", param->key);
6363 }
6364 
6365 /*
6366  * This duplicates most of generic_parse_monolithic(), untying it from
6367  * fs_context and skipping standard superblock and security options.
6368  */
6369 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6370 {
6371 	char *key;
6372 	int ret = 0;
6373 
6374 	dout("%s '%s'\n", __func__, options);
6375 	while ((key = strsep(&options, ",")) != NULL) {
6376 		if (*key) {
6377 			struct fs_parameter param = {
6378 				.key	= key,
6379 				.type	= fs_value_is_flag,
6380 			};
6381 			char *value = strchr(key, '=');
6382 			size_t v_len = 0;
6383 
6384 			if (value) {
6385 				if (value == key)
6386 					continue;
6387 				*value++ = 0;
6388 				v_len = strlen(value);
6389 				param.string = kmemdup_nul(value, v_len,
6390 							   GFP_KERNEL);
6391 				if (!param.string)
6392 					return -ENOMEM;
6393 				param.type = fs_value_is_string;
6394 			}
6395 			param.size = v_len;
6396 
6397 			ret = rbd_parse_param(&param, pctx);
6398 			kfree(param.string);
6399 			if (ret)
6400 				break;
6401 		}
6402 	}
6403 
6404 	return ret;
6405 }
6406 
6407 /*
6408  * Parse the options provided for an "rbd add" (i.e., rbd image
6409  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6410  * and the data written is passed here via a NUL-terminated buffer.
6411  * Returns 0 if successful or an error code otherwise.
6412  *
6413  * The information extracted from these options is recorded in
6414  * the other parameters which return dynamically-allocated
6415  * structures:
6416  *  ceph_opts
6417  *      The address of a pointer that will refer to a ceph options
6418  *      structure.  Caller must release the returned pointer using
6419  *      ceph_destroy_options() when it is no longer needed.
6420  *  rbd_opts
6421  *	Address of an rbd options pointer.  Fully initialized by
6422  *	this function; caller must release with kfree().
6423  *  spec
6424  *	Address of an rbd image specification pointer.  Fully
6425  *	initialized by this function based on parsed options.
6426  *	Caller must release with rbd_spec_put().
6427  *
6428  * The options passed take this form:
6429  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6430  * where:
6431  *  <mon_addrs>
6432  *      A comma-separated list of one or more monitor addresses.
6433  *      A monitor address is an ip address, optionally followed
6434  *      by a port number (separated by a colon).
6435  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6436  *  <options>
6437  *      A comma-separated list of ceph and/or rbd options.
6438  *  <pool_name>
6439  *      The name of the rados pool containing the rbd image.
6440  *  <image_name>
6441  *      The name of the image in that pool to map.
6442  *  <snap_id>
6443  *      An optional snapshot id.  If provided, the mapping will
6444  *      present data from the image at the time that snapshot was
6445  *      created.  The image head is used if no snapshot id is
6446  *      provided.  Snapshot mappings are always read-only.
6447  */
6448 static int rbd_add_parse_args(const char *buf,
6449 				struct ceph_options **ceph_opts,
6450 				struct rbd_options **opts,
6451 				struct rbd_spec **rbd_spec)
6452 {
6453 	size_t len;
6454 	char *options;
6455 	const char *mon_addrs;
6456 	char *snap_name;
6457 	size_t mon_addrs_size;
6458 	struct rbd_parse_opts_ctx pctx = { 0 };
6459 	int ret;
6460 
6461 	/* The first four tokens are required */
6462 
6463 	len = next_token(&buf);
6464 	if (!len) {
6465 		rbd_warn(NULL, "no monitor address(es) provided");
6466 		return -EINVAL;
6467 	}
6468 	mon_addrs = buf;
6469 	mon_addrs_size = len;
6470 	buf += len;
6471 
6472 	ret = -EINVAL;
6473 	options = dup_token(&buf, NULL);
6474 	if (!options)
6475 		return -ENOMEM;
6476 	if (!*options) {
6477 		rbd_warn(NULL, "no options provided");
6478 		goto out_err;
6479 	}
6480 
6481 	pctx.spec = rbd_spec_alloc();
6482 	if (!pctx.spec)
6483 		goto out_mem;
6484 
6485 	pctx.spec->pool_name = dup_token(&buf, NULL);
6486 	if (!pctx.spec->pool_name)
6487 		goto out_mem;
6488 	if (!*pctx.spec->pool_name) {
6489 		rbd_warn(NULL, "no pool name provided");
6490 		goto out_err;
6491 	}
6492 
6493 	pctx.spec->image_name = dup_token(&buf, NULL);
6494 	if (!pctx.spec->image_name)
6495 		goto out_mem;
6496 	if (!*pctx.spec->image_name) {
6497 		rbd_warn(NULL, "no image name provided");
6498 		goto out_err;
6499 	}
6500 
6501 	/*
6502 	 * Snapshot name is optional; default is to use "-"
6503 	 * (indicating the head/no snapshot).
6504 	 */
6505 	len = next_token(&buf);
6506 	if (!len) {
6507 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6508 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6509 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6510 		ret = -ENAMETOOLONG;
6511 		goto out_err;
6512 	}
6513 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6514 	if (!snap_name)
6515 		goto out_mem;
6516 	*(snap_name + len) = '\0';
6517 	pctx.spec->snap_name = snap_name;
6518 
6519 	pctx.copts = ceph_alloc_options();
6520 	if (!pctx.copts)
6521 		goto out_mem;
6522 
6523 	/* Initialize all rbd options to the defaults */
6524 
6525 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6526 	if (!pctx.opts)
6527 		goto out_mem;
6528 
6529 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6530 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6531 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6532 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6533 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6534 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6535 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6536 
6537 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6538 				 ',');
6539 	if (ret)
6540 		goto out_err;
6541 
6542 	ret = rbd_parse_options(options, &pctx);
6543 	if (ret)
6544 		goto out_err;
6545 
6546 	*ceph_opts = pctx.copts;
6547 	*opts = pctx.opts;
6548 	*rbd_spec = pctx.spec;
6549 	kfree(options);
6550 	return 0;
6551 
6552 out_mem:
6553 	ret = -ENOMEM;
6554 out_err:
6555 	kfree(pctx.opts);
6556 	ceph_destroy_options(pctx.copts);
6557 	rbd_spec_put(pctx.spec);
6558 	kfree(options);
6559 	return ret;
6560 }
6561 
6562 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6563 {
6564 	down_write(&rbd_dev->lock_rwsem);
6565 	if (__rbd_is_lock_owner(rbd_dev))
6566 		__rbd_release_lock(rbd_dev);
6567 	up_write(&rbd_dev->lock_rwsem);
6568 }
6569 
6570 /*
6571  * If the wait is interrupted, an error is returned even if the lock
6572  * was successfully acquired.  rbd_dev_image_unlock() will release it
6573  * if needed.
6574  */
6575 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6576 {
6577 	long ret;
6578 
6579 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6580 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6581 			return 0;
6582 
6583 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6584 		return -EINVAL;
6585 	}
6586 
6587 	if (rbd_is_ro(rbd_dev))
6588 		return 0;
6589 
6590 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6591 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6592 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6593 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6594 	if (ret > 0) {
6595 		ret = rbd_dev->acquire_err;
6596 	} else {
6597 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6598 		if (!ret)
6599 			ret = -ETIMEDOUT;
6600 	}
6601 
6602 	if (ret) {
6603 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6604 		return ret;
6605 	}
6606 
6607 	/*
6608 	 * The lock may have been released by now, unless automatic lock
6609 	 * transitions are disabled.
6610 	 */
6611 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6612 	return 0;
6613 }
6614 
6615 /*
6616  * An rbd format 2 image has a unique identifier, distinct from the
6617  * name given to it by the user.  Internally, that identifier is
6618  * what's used to specify the names of objects related to the image.
6619  *
6620  * A special "rbd id" object is used to map an rbd image name to its
6621  * id.  If that object doesn't exist, then there is no v2 rbd image
6622  * with the supplied name.
6623  *
6624  * This function will record the given rbd_dev's image_id field if
6625  * it can be determined, and in that case will return 0.  If any
6626  * errors occur a negative errno will be returned and the rbd_dev's
6627  * image_id field will be unchanged (and should be NULL).
6628  */
6629 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6630 {
6631 	int ret;
6632 	size_t size;
6633 	CEPH_DEFINE_OID_ONSTACK(oid);
6634 	void *response;
6635 	char *image_id;
6636 
6637 	/*
6638 	 * When probing a parent image, the image id is already
6639 	 * known (and the image name likely is not).  There's no
6640 	 * need to fetch the image id again in this case.  We
6641 	 * do still need to set the image format though.
6642 	 */
6643 	if (rbd_dev->spec->image_id) {
6644 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6645 
6646 		return 0;
6647 	}
6648 
6649 	/*
6650 	 * First, see if the format 2 image id file exists, and if
6651 	 * so, get the image's persistent id from it.
6652 	 */
6653 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6654 			       rbd_dev->spec->image_name);
6655 	if (ret)
6656 		return ret;
6657 
6658 	dout("rbd id object name is %s\n", oid.name);
6659 
6660 	/* Response will be an encoded string, which includes a length */
6661 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6662 	response = kzalloc(size, GFP_NOIO);
6663 	if (!response) {
6664 		ret = -ENOMEM;
6665 		goto out;
6666 	}
6667 
6668 	/* If it doesn't exist we'll assume it's a format 1 image */
6669 
6670 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6671 				  "get_id", NULL, 0,
6672 				  response, size);
6673 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6674 	if (ret == -ENOENT) {
6675 		image_id = kstrdup("", GFP_KERNEL);
6676 		ret = image_id ? 0 : -ENOMEM;
6677 		if (!ret)
6678 			rbd_dev->image_format = 1;
6679 	} else if (ret >= 0) {
6680 		void *p = response;
6681 
6682 		image_id = ceph_extract_encoded_string(&p, p + ret,
6683 						NULL, GFP_NOIO);
6684 		ret = PTR_ERR_OR_ZERO(image_id);
6685 		if (!ret)
6686 			rbd_dev->image_format = 2;
6687 	}
6688 
6689 	if (!ret) {
6690 		rbd_dev->spec->image_id = image_id;
6691 		dout("image_id is %s\n", image_id);
6692 	}
6693 out:
6694 	kfree(response);
6695 	ceph_oid_destroy(&oid);
6696 	return ret;
6697 }
6698 
6699 /*
6700  * Undo whatever state changes are made by v1 or v2 header info
6701  * call.
6702  */
6703 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6704 {
6705 	struct rbd_image_header	*header;
6706 
6707 	rbd_dev_parent_put(rbd_dev);
6708 	rbd_object_map_free(rbd_dev);
6709 	rbd_dev_mapping_clear(rbd_dev);
6710 
6711 	/* Free dynamic fields from the header, then zero it out */
6712 
6713 	header = &rbd_dev->header;
6714 	ceph_put_snap_context(header->snapc);
6715 	kfree(header->snap_sizes);
6716 	kfree(header->snap_names);
6717 	kfree(header->object_prefix);
6718 	memset(header, 0, sizeof (*header));
6719 }
6720 
6721 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6722 {
6723 	int ret;
6724 
6725 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6726 	if (ret)
6727 		goto out_err;
6728 
6729 	/*
6730 	 * Get the and check features for the image.  Currently the
6731 	 * features are assumed to never change.
6732 	 */
6733 	ret = rbd_dev_v2_features(rbd_dev);
6734 	if (ret)
6735 		goto out_err;
6736 
6737 	/* If the image supports fancy striping, get its parameters */
6738 
6739 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6740 		ret = rbd_dev_v2_striping_info(rbd_dev);
6741 		if (ret < 0)
6742 			goto out_err;
6743 	}
6744 
6745 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6746 		ret = rbd_dev_v2_data_pool(rbd_dev);
6747 		if (ret)
6748 			goto out_err;
6749 	}
6750 
6751 	rbd_init_layout(rbd_dev);
6752 	return 0;
6753 
6754 out_err:
6755 	rbd_dev->header.features = 0;
6756 	kfree(rbd_dev->header.object_prefix);
6757 	rbd_dev->header.object_prefix = NULL;
6758 	return ret;
6759 }
6760 
6761 /*
6762  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6763  * rbd_dev_image_probe() recursion depth, which means it's also the
6764  * length of the already discovered part of the parent chain.
6765  */
6766 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6767 {
6768 	struct rbd_device *parent = NULL;
6769 	int ret;
6770 
6771 	if (!rbd_dev->parent_spec)
6772 		return 0;
6773 
6774 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6775 		pr_info("parent chain is too long (%d)\n", depth);
6776 		ret = -EINVAL;
6777 		goto out_err;
6778 	}
6779 
6780 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6781 	if (!parent) {
6782 		ret = -ENOMEM;
6783 		goto out_err;
6784 	}
6785 
6786 	/*
6787 	 * Images related by parent/child relationships always share
6788 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6789 	 */
6790 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6791 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6792 
6793 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6794 
6795 	ret = rbd_dev_image_probe(parent, depth);
6796 	if (ret < 0)
6797 		goto out_err;
6798 
6799 	rbd_dev->parent = parent;
6800 	atomic_set(&rbd_dev->parent_ref, 1);
6801 	return 0;
6802 
6803 out_err:
6804 	rbd_dev_unparent(rbd_dev);
6805 	rbd_dev_destroy(parent);
6806 	return ret;
6807 }
6808 
6809 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6810 {
6811 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6812 	rbd_free_disk(rbd_dev);
6813 	if (!single_major)
6814 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6815 }
6816 
6817 /*
6818  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6819  * upon return.
6820  */
6821 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6822 {
6823 	int ret;
6824 
6825 	/* Record our major and minor device numbers. */
6826 
6827 	if (!single_major) {
6828 		ret = register_blkdev(0, rbd_dev->name);
6829 		if (ret < 0)
6830 			goto err_out_unlock;
6831 
6832 		rbd_dev->major = ret;
6833 		rbd_dev->minor = 0;
6834 	} else {
6835 		rbd_dev->major = rbd_major;
6836 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6837 	}
6838 
6839 	/* Set up the blkdev mapping. */
6840 
6841 	ret = rbd_init_disk(rbd_dev);
6842 	if (ret)
6843 		goto err_out_blkdev;
6844 
6845 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6846 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6847 
6848 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6849 	if (ret)
6850 		goto err_out_disk;
6851 
6852 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6853 	up_write(&rbd_dev->header_rwsem);
6854 	return 0;
6855 
6856 err_out_disk:
6857 	rbd_free_disk(rbd_dev);
6858 err_out_blkdev:
6859 	if (!single_major)
6860 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6861 err_out_unlock:
6862 	up_write(&rbd_dev->header_rwsem);
6863 	return ret;
6864 }
6865 
6866 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6867 {
6868 	struct rbd_spec *spec = rbd_dev->spec;
6869 	int ret;
6870 
6871 	/* Record the header object name for this rbd image. */
6872 
6873 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6874 	if (rbd_dev->image_format == 1)
6875 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6876 				       spec->image_name, RBD_SUFFIX);
6877 	else
6878 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6879 				       RBD_HEADER_PREFIX, spec->image_id);
6880 
6881 	return ret;
6882 }
6883 
6884 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6885 {
6886 	if (!is_snap) {
6887 		pr_info("image %s/%s%s%s does not exist\n",
6888 			rbd_dev->spec->pool_name,
6889 			rbd_dev->spec->pool_ns ?: "",
6890 			rbd_dev->spec->pool_ns ? "/" : "",
6891 			rbd_dev->spec->image_name);
6892 	} else {
6893 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6894 			rbd_dev->spec->pool_name,
6895 			rbd_dev->spec->pool_ns ?: "",
6896 			rbd_dev->spec->pool_ns ? "/" : "",
6897 			rbd_dev->spec->image_name,
6898 			rbd_dev->spec->snap_name);
6899 	}
6900 }
6901 
6902 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6903 {
6904 	if (!rbd_is_ro(rbd_dev))
6905 		rbd_unregister_watch(rbd_dev);
6906 
6907 	rbd_dev_unprobe(rbd_dev);
6908 	rbd_dev->image_format = 0;
6909 	kfree(rbd_dev->spec->image_id);
6910 	rbd_dev->spec->image_id = NULL;
6911 }
6912 
6913 /*
6914  * Probe for the existence of the header object for the given rbd
6915  * device.  If this image is the one being mapped (i.e., not a
6916  * parent), initiate a watch on its header object before using that
6917  * object to get detailed information about the rbd image.
6918  *
6919  * On success, returns with header_rwsem held for write if called
6920  * with @depth == 0.
6921  */
6922 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6923 {
6924 	bool need_watch = !rbd_is_ro(rbd_dev);
6925 	int ret;
6926 
6927 	/*
6928 	 * Get the id from the image id object.  Unless there's an
6929 	 * error, rbd_dev->spec->image_id will be filled in with
6930 	 * a dynamically-allocated string, and rbd_dev->image_format
6931 	 * will be set to either 1 or 2.
6932 	 */
6933 	ret = rbd_dev_image_id(rbd_dev);
6934 	if (ret)
6935 		return ret;
6936 
6937 	ret = rbd_dev_header_name(rbd_dev);
6938 	if (ret)
6939 		goto err_out_format;
6940 
6941 	if (need_watch) {
6942 		ret = rbd_register_watch(rbd_dev);
6943 		if (ret) {
6944 			if (ret == -ENOENT)
6945 				rbd_print_dne(rbd_dev, false);
6946 			goto err_out_format;
6947 		}
6948 	}
6949 
6950 	if (!depth)
6951 		down_write(&rbd_dev->header_rwsem);
6952 
6953 	ret = rbd_dev_header_info(rbd_dev);
6954 	if (ret) {
6955 		if (ret == -ENOENT && !need_watch)
6956 			rbd_print_dne(rbd_dev, false);
6957 		goto err_out_probe;
6958 	}
6959 
6960 	/*
6961 	 * If this image is the one being mapped, we have pool name and
6962 	 * id, image name and id, and snap name - need to fill snap id.
6963 	 * Otherwise this is a parent image, identified by pool, image
6964 	 * and snap ids - need to fill in names for those ids.
6965 	 */
6966 	if (!depth)
6967 		ret = rbd_spec_fill_snap_id(rbd_dev);
6968 	else
6969 		ret = rbd_spec_fill_names(rbd_dev);
6970 	if (ret) {
6971 		if (ret == -ENOENT)
6972 			rbd_print_dne(rbd_dev, true);
6973 		goto err_out_probe;
6974 	}
6975 
6976 	ret = rbd_dev_mapping_set(rbd_dev);
6977 	if (ret)
6978 		goto err_out_probe;
6979 
6980 	if (rbd_is_snap(rbd_dev) &&
6981 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6982 		ret = rbd_object_map_load(rbd_dev);
6983 		if (ret)
6984 			goto err_out_probe;
6985 	}
6986 
6987 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6988 		ret = rbd_dev_v2_parent_info(rbd_dev);
6989 		if (ret)
6990 			goto err_out_probe;
6991 	}
6992 
6993 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6994 	if (ret)
6995 		goto err_out_probe;
6996 
6997 	dout("discovered format %u image, header name is %s\n",
6998 		rbd_dev->image_format, rbd_dev->header_oid.name);
6999 	return 0;
7000 
7001 err_out_probe:
7002 	if (!depth)
7003 		up_write(&rbd_dev->header_rwsem);
7004 	if (need_watch)
7005 		rbd_unregister_watch(rbd_dev);
7006 	rbd_dev_unprobe(rbd_dev);
7007 err_out_format:
7008 	rbd_dev->image_format = 0;
7009 	kfree(rbd_dev->spec->image_id);
7010 	rbd_dev->spec->image_id = NULL;
7011 	return ret;
7012 }
7013 
7014 static ssize_t do_rbd_add(const char *buf, size_t count)
7015 {
7016 	struct rbd_device *rbd_dev = NULL;
7017 	struct ceph_options *ceph_opts = NULL;
7018 	struct rbd_options *rbd_opts = NULL;
7019 	struct rbd_spec *spec = NULL;
7020 	struct rbd_client *rbdc;
7021 	int rc;
7022 
7023 	if (!capable(CAP_SYS_ADMIN))
7024 		return -EPERM;
7025 
7026 	if (!try_module_get(THIS_MODULE))
7027 		return -ENODEV;
7028 
7029 	/* parse add command */
7030 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7031 	if (rc < 0)
7032 		goto out;
7033 
7034 	rbdc = rbd_get_client(ceph_opts);
7035 	if (IS_ERR(rbdc)) {
7036 		rc = PTR_ERR(rbdc);
7037 		goto err_out_args;
7038 	}
7039 
7040 	/* pick the pool */
7041 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7042 	if (rc < 0) {
7043 		if (rc == -ENOENT)
7044 			pr_info("pool %s does not exist\n", spec->pool_name);
7045 		goto err_out_client;
7046 	}
7047 	spec->pool_id = (u64)rc;
7048 
7049 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7050 	if (!rbd_dev) {
7051 		rc = -ENOMEM;
7052 		goto err_out_client;
7053 	}
7054 	rbdc = NULL;		/* rbd_dev now owns this */
7055 	spec = NULL;		/* rbd_dev now owns this */
7056 	rbd_opts = NULL;	/* rbd_dev now owns this */
7057 
7058 	/* if we are mapping a snapshot it will be a read-only mapping */
7059 	if (rbd_dev->opts->read_only ||
7060 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7061 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7062 
7063 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7064 	if (!rbd_dev->config_info) {
7065 		rc = -ENOMEM;
7066 		goto err_out_rbd_dev;
7067 	}
7068 
7069 	rc = rbd_dev_image_probe(rbd_dev, 0);
7070 	if (rc < 0)
7071 		goto err_out_rbd_dev;
7072 
7073 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7074 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7075 			 rbd_dev->layout.object_size);
7076 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7077 	}
7078 
7079 	rc = rbd_dev_device_setup(rbd_dev);
7080 	if (rc)
7081 		goto err_out_image_probe;
7082 
7083 	rc = rbd_add_acquire_lock(rbd_dev);
7084 	if (rc)
7085 		goto err_out_image_lock;
7086 
7087 	/* Everything's ready.  Announce the disk to the world. */
7088 
7089 	rc = device_add(&rbd_dev->dev);
7090 	if (rc)
7091 		goto err_out_image_lock;
7092 
7093 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7094 	if (rc)
7095 		goto err_out_cleanup_disk;
7096 
7097 	spin_lock(&rbd_dev_list_lock);
7098 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7099 	spin_unlock(&rbd_dev_list_lock);
7100 
7101 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7102 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7103 		rbd_dev->header.features);
7104 	rc = count;
7105 out:
7106 	module_put(THIS_MODULE);
7107 	return rc;
7108 
7109 err_out_cleanup_disk:
7110 	rbd_free_disk(rbd_dev);
7111 err_out_image_lock:
7112 	rbd_dev_image_unlock(rbd_dev);
7113 	rbd_dev_device_release(rbd_dev);
7114 err_out_image_probe:
7115 	rbd_dev_image_release(rbd_dev);
7116 err_out_rbd_dev:
7117 	rbd_dev_destroy(rbd_dev);
7118 err_out_client:
7119 	rbd_put_client(rbdc);
7120 err_out_args:
7121 	rbd_spec_put(spec);
7122 	kfree(rbd_opts);
7123 	goto out;
7124 }
7125 
7126 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7127 {
7128 	if (single_major)
7129 		return -EINVAL;
7130 
7131 	return do_rbd_add(buf, count);
7132 }
7133 
7134 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7135 				      size_t count)
7136 {
7137 	return do_rbd_add(buf, count);
7138 }
7139 
7140 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7141 {
7142 	while (rbd_dev->parent) {
7143 		struct rbd_device *first = rbd_dev;
7144 		struct rbd_device *second = first->parent;
7145 		struct rbd_device *third;
7146 
7147 		/*
7148 		 * Follow to the parent with no grandparent and
7149 		 * remove it.
7150 		 */
7151 		while (second && (third = second->parent)) {
7152 			first = second;
7153 			second = third;
7154 		}
7155 		rbd_assert(second);
7156 		rbd_dev_image_release(second);
7157 		rbd_dev_destroy(second);
7158 		first->parent = NULL;
7159 		first->parent_overlap = 0;
7160 
7161 		rbd_assert(first->parent_spec);
7162 		rbd_spec_put(first->parent_spec);
7163 		first->parent_spec = NULL;
7164 	}
7165 }
7166 
7167 static ssize_t do_rbd_remove(const char *buf, size_t count)
7168 {
7169 	struct rbd_device *rbd_dev = NULL;
7170 	struct list_head *tmp;
7171 	int dev_id;
7172 	char opt_buf[6];
7173 	bool force = false;
7174 	int ret;
7175 
7176 	if (!capable(CAP_SYS_ADMIN))
7177 		return -EPERM;
7178 
7179 	dev_id = -1;
7180 	opt_buf[0] = '\0';
7181 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7182 	if (dev_id < 0) {
7183 		pr_err("dev_id out of range\n");
7184 		return -EINVAL;
7185 	}
7186 	if (opt_buf[0] != '\0') {
7187 		if (!strcmp(opt_buf, "force")) {
7188 			force = true;
7189 		} else {
7190 			pr_err("bad remove option at '%s'\n", opt_buf);
7191 			return -EINVAL;
7192 		}
7193 	}
7194 
7195 	ret = -ENOENT;
7196 	spin_lock(&rbd_dev_list_lock);
7197 	list_for_each(tmp, &rbd_dev_list) {
7198 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7199 		if (rbd_dev->dev_id == dev_id) {
7200 			ret = 0;
7201 			break;
7202 		}
7203 	}
7204 	if (!ret) {
7205 		spin_lock_irq(&rbd_dev->lock);
7206 		if (rbd_dev->open_count && !force)
7207 			ret = -EBUSY;
7208 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7209 					  &rbd_dev->flags))
7210 			ret = -EINPROGRESS;
7211 		spin_unlock_irq(&rbd_dev->lock);
7212 	}
7213 	spin_unlock(&rbd_dev_list_lock);
7214 	if (ret)
7215 		return ret;
7216 
7217 	if (force) {
7218 		/*
7219 		 * Prevent new IO from being queued and wait for existing
7220 		 * IO to complete/fail.
7221 		 */
7222 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7223 		blk_mark_disk_dead(rbd_dev->disk);
7224 	}
7225 
7226 	del_gendisk(rbd_dev->disk);
7227 	spin_lock(&rbd_dev_list_lock);
7228 	list_del_init(&rbd_dev->node);
7229 	spin_unlock(&rbd_dev_list_lock);
7230 	device_del(&rbd_dev->dev);
7231 
7232 	rbd_dev_image_unlock(rbd_dev);
7233 	rbd_dev_device_release(rbd_dev);
7234 	rbd_dev_image_release(rbd_dev);
7235 	rbd_dev_destroy(rbd_dev);
7236 	return count;
7237 }
7238 
7239 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7240 {
7241 	if (single_major)
7242 		return -EINVAL;
7243 
7244 	return do_rbd_remove(buf, count);
7245 }
7246 
7247 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7248 					 size_t count)
7249 {
7250 	return do_rbd_remove(buf, count);
7251 }
7252 
7253 /*
7254  * create control files in sysfs
7255  * /sys/bus/rbd/...
7256  */
7257 static int __init rbd_sysfs_init(void)
7258 {
7259 	int ret;
7260 
7261 	ret = device_register(&rbd_root_dev);
7262 	if (ret < 0) {
7263 		put_device(&rbd_root_dev);
7264 		return ret;
7265 	}
7266 
7267 	ret = bus_register(&rbd_bus_type);
7268 	if (ret < 0)
7269 		device_unregister(&rbd_root_dev);
7270 
7271 	return ret;
7272 }
7273 
7274 static void __exit rbd_sysfs_cleanup(void)
7275 {
7276 	bus_unregister(&rbd_bus_type);
7277 	device_unregister(&rbd_root_dev);
7278 }
7279 
7280 static int __init rbd_slab_init(void)
7281 {
7282 	rbd_assert(!rbd_img_request_cache);
7283 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7284 	if (!rbd_img_request_cache)
7285 		return -ENOMEM;
7286 
7287 	rbd_assert(!rbd_obj_request_cache);
7288 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7289 	if (!rbd_obj_request_cache)
7290 		goto out_err;
7291 
7292 	return 0;
7293 
7294 out_err:
7295 	kmem_cache_destroy(rbd_img_request_cache);
7296 	rbd_img_request_cache = NULL;
7297 	return -ENOMEM;
7298 }
7299 
7300 static void rbd_slab_exit(void)
7301 {
7302 	rbd_assert(rbd_obj_request_cache);
7303 	kmem_cache_destroy(rbd_obj_request_cache);
7304 	rbd_obj_request_cache = NULL;
7305 
7306 	rbd_assert(rbd_img_request_cache);
7307 	kmem_cache_destroy(rbd_img_request_cache);
7308 	rbd_img_request_cache = NULL;
7309 }
7310 
7311 static int __init rbd_init(void)
7312 {
7313 	int rc;
7314 
7315 	if (!libceph_compatible(NULL)) {
7316 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7317 		return -EINVAL;
7318 	}
7319 
7320 	rc = rbd_slab_init();
7321 	if (rc)
7322 		return rc;
7323 
7324 	/*
7325 	 * The number of active work items is limited by the number of
7326 	 * rbd devices * queue depth, so leave @max_active at default.
7327 	 */
7328 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7329 	if (!rbd_wq) {
7330 		rc = -ENOMEM;
7331 		goto err_out_slab;
7332 	}
7333 
7334 	if (single_major) {
7335 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7336 		if (rbd_major < 0) {
7337 			rc = rbd_major;
7338 			goto err_out_wq;
7339 		}
7340 	}
7341 
7342 	rc = rbd_sysfs_init();
7343 	if (rc)
7344 		goto err_out_blkdev;
7345 
7346 	if (single_major)
7347 		pr_info("loaded (major %d)\n", rbd_major);
7348 	else
7349 		pr_info("loaded\n");
7350 
7351 	return 0;
7352 
7353 err_out_blkdev:
7354 	if (single_major)
7355 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7356 err_out_wq:
7357 	destroy_workqueue(rbd_wq);
7358 err_out_slab:
7359 	rbd_slab_exit();
7360 	return rc;
7361 }
7362 
7363 static void __exit rbd_exit(void)
7364 {
7365 	ida_destroy(&rbd_dev_id_ida);
7366 	rbd_sysfs_cleanup();
7367 	if (single_major)
7368 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7369 	destroy_workqueue(rbd_wq);
7370 	rbd_slab_exit();
7371 }
7372 
7373 module_init(rbd_init);
7374 module_exit(rbd_exit);
7375 
7376 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7377 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7378 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7379 /* following authorship retained from original osdblk.c */
7380 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7381 
7382 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7383 MODULE_LICENSE("GPL");
7384