xref: /openbmc/linux/drivers/block/rbd.c (revision ed1666f6)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
119 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
120 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
121 
122 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
123 				 RBD_FEATURE_STRIPINGV2 |	\
124 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
125 				 RBD_FEATURE_DEEP_FLATTEN |	\
126 				 RBD_FEATURE_DATA_POOL |	\
127 				 RBD_FEATURE_OPERATIONS)
128 
129 /* Features supported by this (client software) implementation. */
130 
131 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
132 
133 /*
134  * An RBD device name will be "rbd#", where the "rbd" comes from
135  * RBD_DRV_NAME above, and # is a unique integer identifier.
136  */
137 #define DEV_NAME_LEN		32
138 
139 /*
140  * block device image metadata (in-memory version)
141  */
142 struct rbd_image_header {
143 	/* These six fields never change for a given rbd image */
144 	char *object_prefix;
145 	__u8 obj_order;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	s64 data_pool_id;
149 	u64 features;		/* Might be changeable someday? */
150 
151 	/* The remaining fields need to be updated occasionally */
152 	u64 image_size;
153 	struct ceph_snap_context *snapc;
154 	char *snap_names;	/* format 1 only */
155 	u64 *snap_sizes;	/* format 1 only */
156 };
157 
158 /*
159  * An rbd image specification.
160  *
161  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
162  * identify an image.  Each rbd_dev structure includes a pointer to
163  * an rbd_spec structure that encapsulates this identity.
164  *
165  * Each of the id's in an rbd_spec has an associated name.  For a
166  * user-mapped image, the names are supplied and the id's associated
167  * with them are looked up.  For a layered image, a parent image is
168  * defined by the tuple, and the names are looked up.
169  *
170  * An rbd_dev structure contains a parent_spec pointer which is
171  * non-null if the image it represents is a child in a layered
172  * image.  This pointer will refer to the rbd_spec structure used
173  * by the parent rbd_dev for its own identity (i.e., the structure
174  * is shared between the parent and child).
175  *
176  * Since these structures are populated once, during the discovery
177  * phase of image construction, they are effectively immutable so
178  * we make no effort to synchronize access to them.
179  *
180  * Note that code herein does not assume the image name is known (it
181  * could be a null pointer).
182  */
183 struct rbd_spec {
184 	u64		pool_id;
185 	const char	*pool_name;
186 	const char	*pool_ns;	/* NULL if default, never "" */
187 
188 	const char	*image_id;
189 	const char	*image_name;
190 
191 	u64		snap_id;
192 	const char	*snap_name;
193 
194 	struct kref	kref;
195 };
196 
197 /*
198  * an instance of the client.  multiple devices may share an rbd client.
199  */
200 struct rbd_client {
201 	struct ceph_client	*client;
202 	struct kref		kref;
203 	struct list_head	node;
204 };
205 
206 struct rbd_img_request;
207 
208 enum obj_request_type {
209 	OBJ_REQUEST_NODATA = 1,
210 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
211 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
212 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
213 };
214 
215 enum obj_operation_type {
216 	OBJ_OP_READ = 1,
217 	OBJ_OP_WRITE,
218 	OBJ_OP_DISCARD,
219 	OBJ_OP_ZEROOUT,
220 };
221 
222 /*
223  * Writes go through the following state machine to deal with
224  * layering:
225  *
226  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
227  *            .                 |                                    .
228  *            .                 v                                    .
229  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
230  *            .                 |                    .               .
231  *            .                 v                    v (deep-copyup  .
232  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
233  * flattened) v                 |                    .               .
234  *            .                 v                    .               .
235  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
236  *                              |                        not needed) v
237  *                              v                                    .
238  *                            done . . . . . . . . . . . . . . . . . .
239  *                              ^
240  *                              |
241  *                     RBD_OBJ_WRITE_FLAT
242  *
243  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
244  * assert_exists guard is needed or not (in some cases it's not needed
245  * even if there is a parent).
246  */
247 enum rbd_obj_write_state {
248 	RBD_OBJ_WRITE_FLAT = 1,
249 	RBD_OBJ_WRITE_GUARD,
250 	RBD_OBJ_WRITE_READ_FROM_PARENT,
251 	RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC,
252 	RBD_OBJ_WRITE_COPYUP_OPS,
253 };
254 
255 struct rbd_obj_request {
256 	struct ceph_object_extent ex;
257 	union {
258 		bool			tried_parent;	/* for reads */
259 		enum rbd_obj_write_state write_state;	/* for writes */
260 	};
261 
262 	struct rbd_img_request	*img_request;
263 	struct ceph_file_extent	*img_extents;
264 	u32			num_img_extents;
265 
266 	union {
267 		struct ceph_bio_iter	bio_pos;
268 		struct {
269 			struct ceph_bvec_iter	bvec_pos;
270 			u32			bvec_count;
271 			u32			bvec_idx;
272 		};
273 	};
274 	struct bio_vec		*copyup_bvecs;
275 	u32			copyup_bvec_count;
276 
277 	struct ceph_osd_request	*osd_req;
278 
279 	u64			xferred;	/* bytes transferred */
280 	int			result;
281 
282 	struct kref		kref;
283 };
284 
285 enum img_req_flags {
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 };
289 
290 struct rbd_img_request {
291 	struct rbd_device	*rbd_dev;
292 	enum obj_operation_type	op_type;
293 	enum obj_request_type	data_type;
294 	unsigned long		flags;
295 	union {
296 		u64			snap_id;	/* for reads */
297 		struct ceph_snap_context *snapc;	/* for writes */
298 	};
299 	union {
300 		struct request		*rq;		/* block request */
301 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
302 	};
303 	spinlock_t		completion_lock;
304 	u64			xferred;/* aggregate bytes transferred */
305 	int			result;	/* first nonzero obj_request result */
306 
307 	struct list_head	object_extents;	/* obj_req.ex structs */
308 	u32			pending_count;
309 
310 	struct kref		kref;
311 };
312 
313 #define for_each_obj_request(ireq, oreq) \
314 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
315 #define for_each_obj_request_safe(ireq, oreq, n) \
316 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
317 
318 enum rbd_watch_state {
319 	RBD_WATCH_STATE_UNREGISTERED,
320 	RBD_WATCH_STATE_REGISTERED,
321 	RBD_WATCH_STATE_ERROR,
322 };
323 
324 enum rbd_lock_state {
325 	RBD_LOCK_STATE_UNLOCKED,
326 	RBD_LOCK_STATE_LOCKED,
327 	RBD_LOCK_STATE_RELEASING,
328 };
329 
330 /* WatchNotify::ClientId */
331 struct rbd_client_id {
332 	u64 gid;
333 	u64 handle;
334 };
335 
336 struct rbd_mapping {
337 	u64                     size;
338 	u64                     features;
339 };
340 
341 /*
342  * a single device
343  */
344 struct rbd_device {
345 	int			dev_id;		/* blkdev unique id */
346 
347 	int			major;		/* blkdev assigned major */
348 	int			minor;
349 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
350 
351 	u32			image_format;	/* Either 1 or 2 */
352 	struct rbd_client	*rbd_client;
353 
354 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
355 
356 	spinlock_t		lock;		/* queue, flags, open_count */
357 
358 	struct rbd_image_header	header;
359 	unsigned long		flags;		/* possibly lock protected */
360 	struct rbd_spec		*spec;
361 	struct rbd_options	*opts;
362 	char			*config_info;	/* add{,_single_major} string */
363 
364 	struct ceph_object_id	header_oid;
365 	struct ceph_object_locator header_oloc;
366 
367 	struct ceph_file_layout	layout;		/* used for all rbd requests */
368 
369 	struct mutex		watch_mutex;
370 	enum rbd_watch_state	watch_state;
371 	struct ceph_osd_linger_request *watch_handle;
372 	u64			watch_cookie;
373 	struct delayed_work	watch_dwork;
374 
375 	struct rw_semaphore	lock_rwsem;
376 	enum rbd_lock_state	lock_state;
377 	char			lock_cookie[32];
378 	struct rbd_client_id	owner_cid;
379 	struct work_struct	acquired_lock_work;
380 	struct work_struct	released_lock_work;
381 	struct delayed_work	lock_dwork;
382 	struct work_struct	unlock_work;
383 	wait_queue_head_t	lock_waitq;
384 
385 	struct workqueue_struct	*task_wq;
386 
387 	struct rbd_spec		*parent_spec;
388 	u64			parent_overlap;
389 	atomic_t		parent_ref;
390 	struct rbd_device	*parent;
391 
392 	/* Block layer tags. */
393 	struct blk_mq_tag_set	tag_set;
394 
395 	/* protects updating the header */
396 	struct rw_semaphore     header_rwsem;
397 
398 	struct rbd_mapping	mapping;
399 
400 	struct list_head	node;
401 
402 	/* sysfs related */
403 	struct device		dev;
404 	unsigned long		open_count;	/* protected by lock */
405 };
406 
407 /*
408  * Flag bits for rbd_dev->flags:
409  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
410  *   by rbd_dev->lock
411  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
412  */
413 enum rbd_dev_flags {
414 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
415 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
416 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
417 };
418 
419 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
420 
421 static LIST_HEAD(rbd_dev_list);    /* devices */
422 static DEFINE_SPINLOCK(rbd_dev_list_lock);
423 
424 static LIST_HEAD(rbd_client_list);		/* clients */
425 static DEFINE_SPINLOCK(rbd_client_list_lock);
426 
427 /* Slab caches for frequently-allocated structures */
428 
429 static struct kmem_cache	*rbd_img_request_cache;
430 static struct kmem_cache	*rbd_obj_request_cache;
431 
432 static int rbd_major;
433 static DEFINE_IDA(rbd_dev_id_ida);
434 
435 static struct workqueue_struct *rbd_wq;
436 
437 static struct ceph_snap_context rbd_empty_snapc = {
438 	.nref = REFCOUNT_INIT(1),
439 };
440 
441 /*
442  * single-major requires >= 0.75 version of userspace rbd utility.
443  */
444 static bool single_major = true;
445 module_param(single_major, bool, 0444);
446 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
447 
448 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
449 static ssize_t remove_store(struct bus_type *bus, const char *buf,
450 			    size_t count);
451 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
452 				      size_t count);
453 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
454 					 size_t count);
455 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
456 
457 static int rbd_dev_id_to_minor(int dev_id)
458 {
459 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
460 }
461 
462 static int minor_to_rbd_dev_id(int minor)
463 {
464 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
465 }
466 
467 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
468 {
469 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
470 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
471 }
472 
473 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
474 {
475 	bool is_lock_owner;
476 
477 	down_read(&rbd_dev->lock_rwsem);
478 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
479 	up_read(&rbd_dev->lock_rwsem);
480 	return is_lock_owner;
481 }
482 
483 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
484 {
485 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
486 }
487 
488 static BUS_ATTR_WO(add);
489 static BUS_ATTR_WO(remove);
490 static BUS_ATTR_WO(add_single_major);
491 static BUS_ATTR_WO(remove_single_major);
492 static BUS_ATTR_RO(supported_features);
493 
494 static struct attribute *rbd_bus_attrs[] = {
495 	&bus_attr_add.attr,
496 	&bus_attr_remove.attr,
497 	&bus_attr_add_single_major.attr,
498 	&bus_attr_remove_single_major.attr,
499 	&bus_attr_supported_features.attr,
500 	NULL,
501 };
502 
503 static umode_t rbd_bus_is_visible(struct kobject *kobj,
504 				  struct attribute *attr, int index)
505 {
506 	if (!single_major &&
507 	    (attr == &bus_attr_add_single_major.attr ||
508 	     attr == &bus_attr_remove_single_major.attr))
509 		return 0;
510 
511 	return attr->mode;
512 }
513 
514 static const struct attribute_group rbd_bus_group = {
515 	.attrs = rbd_bus_attrs,
516 	.is_visible = rbd_bus_is_visible,
517 };
518 __ATTRIBUTE_GROUPS(rbd_bus);
519 
520 static struct bus_type rbd_bus_type = {
521 	.name		= "rbd",
522 	.bus_groups	= rbd_bus_groups,
523 };
524 
525 static void rbd_root_dev_release(struct device *dev)
526 {
527 }
528 
529 static struct device rbd_root_dev = {
530 	.init_name =    "rbd",
531 	.release =      rbd_root_dev_release,
532 };
533 
534 static __printf(2, 3)
535 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
536 {
537 	struct va_format vaf;
538 	va_list args;
539 
540 	va_start(args, fmt);
541 	vaf.fmt = fmt;
542 	vaf.va = &args;
543 
544 	if (!rbd_dev)
545 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
546 	else if (rbd_dev->disk)
547 		printk(KERN_WARNING "%s: %s: %pV\n",
548 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
549 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
550 		printk(KERN_WARNING "%s: image %s: %pV\n",
551 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
552 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
553 		printk(KERN_WARNING "%s: id %s: %pV\n",
554 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
555 	else	/* punt */
556 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
557 			RBD_DRV_NAME, rbd_dev, &vaf);
558 	va_end(args);
559 }
560 
561 #ifdef RBD_DEBUG
562 #define rbd_assert(expr)						\
563 		if (unlikely(!(expr))) {				\
564 			printk(KERN_ERR "\nAssertion failure in %s() "	\
565 						"at line %d:\n\n"	\
566 					"\trbd_assert(%s);\n\n",	\
567 					__func__, __LINE__, #expr);	\
568 			BUG();						\
569 		}
570 #else /* !RBD_DEBUG */
571 #  define rbd_assert(expr)	((void) 0)
572 #endif /* !RBD_DEBUG */
573 
574 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
575 
576 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
577 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
578 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
579 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
580 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
581 					u64 snap_id);
582 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
583 				u8 *order, u64 *snap_size);
584 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
585 		u64 *snap_features);
586 
587 static int rbd_open(struct block_device *bdev, fmode_t mode)
588 {
589 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
590 	bool removing = false;
591 
592 	spin_lock_irq(&rbd_dev->lock);
593 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
594 		removing = true;
595 	else
596 		rbd_dev->open_count++;
597 	spin_unlock_irq(&rbd_dev->lock);
598 	if (removing)
599 		return -ENOENT;
600 
601 	(void) get_device(&rbd_dev->dev);
602 
603 	return 0;
604 }
605 
606 static void rbd_release(struct gendisk *disk, fmode_t mode)
607 {
608 	struct rbd_device *rbd_dev = disk->private_data;
609 	unsigned long open_count_before;
610 
611 	spin_lock_irq(&rbd_dev->lock);
612 	open_count_before = rbd_dev->open_count--;
613 	spin_unlock_irq(&rbd_dev->lock);
614 	rbd_assert(open_count_before > 0);
615 
616 	put_device(&rbd_dev->dev);
617 }
618 
619 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
620 {
621 	int ro;
622 
623 	if (get_user(ro, (int __user *)arg))
624 		return -EFAULT;
625 
626 	/* Snapshots can't be marked read-write */
627 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
628 		return -EROFS;
629 
630 	/* Let blkdev_roset() handle it */
631 	return -ENOTTY;
632 }
633 
634 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
635 			unsigned int cmd, unsigned long arg)
636 {
637 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
638 	int ret;
639 
640 	switch (cmd) {
641 	case BLKROSET:
642 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
643 		break;
644 	default:
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 #ifdef CONFIG_COMPAT
652 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
653 				unsigned int cmd, unsigned long arg)
654 {
655 	return rbd_ioctl(bdev, mode, cmd, arg);
656 }
657 #endif /* CONFIG_COMPAT */
658 
659 static const struct block_device_operations rbd_bd_ops = {
660 	.owner			= THIS_MODULE,
661 	.open			= rbd_open,
662 	.release		= rbd_release,
663 	.ioctl			= rbd_ioctl,
664 #ifdef CONFIG_COMPAT
665 	.compat_ioctl		= rbd_compat_ioctl,
666 #endif
667 };
668 
669 /*
670  * Initialize an rbd client instance.  Success or not, this function
671  * consumes ceph_opts.  Caller holds client_mutex.
672  */
673 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
674 {
675 	struct rbd_client *rbdc;
676 	int ret = -ENOMEM;
677 
678 	dout("%s:\n", __func__);
679 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
680 	if (!rbdc)
681 		goto out_opt;
682 
683 	kref_init(&rbdc->kref);
684 	INIT_LIST_HEAD(&rbdc->node);
685 
686 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
687 	if (IS_ERR(rbdc->client))
688 		goto out_rbdc;
689 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
690 
691 	ret = ceph_open_session(rbdc->client);
692 	if (ret < 0)
693 		goto out_client;
694 
695 	spin_lock(&rbd_client_list_lock);
696 	list_add_tail(&rbdc->node, &rbd_client_list);
697 	spin_unlock(&rbd_client_list_lock);
698 
699 	dout("%s: rbdc %p\n", __func__, rbdc);
700 
701 	return rbdc;
702 out_client:
703 	ceph_destroy_client(rbdc->client);
704 out_rbdc:
705 	kfree(rbdc);
706 out_opt:
707 	if (ceph_opts)
708 		ceph_destroy_options(ceph_opts);
709 	dout("%s: error %d\n", __func__, ret);
710 
711 	return ERR_PTR(ret);
712 }
713 
714 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
715 {
716 	kref_get(&rbdc->kref);
717 
718 	return rbdc;
719 }
720 
721 /*
722  * Find a ceph client with specific addr and configuration.  If
723  * found, bump its reference count.
724  */
725 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
726 {
727 	struct rbd_client *client_node;
728 	bool found = false;
729 
730 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
731 		return NULL;
732 
733 	spin_lock(&rbd_client_list_lock);
734 	list_for_each_entry(client_node, &rbd_client_list, node) {
735 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
736 			__rbd_get_client(client_node);
737 
738 			found = true;
739 			break;
740 		}
741 	}
742 	spin_unlock(&rbd_client_list_lock);
743 
744 	return found ? client_node : NULL;
745 }
746 
747 /*
748  * (Per device) rbd map options
749  */
750 enum {
751 	Opt_queue_depth,
752 	Opt_alloc_size,
753 	Opt_lock_timeout,
754 	Opt_last_int,
755 	/* int args above */
756 	Opt_pool_ns,
757 	Opt_last_string,
758 	/* string args above */
759 	Opt_read_only,
760 	Opt_read_write,
761 	Opt_lock_on_read,
762 	Opt_exclusive,
763 	Opt_notrim,
764 	Opt_err
765 };
766 
767 static match_table_t rbd_opts_tokens = {
768 	{Opt_queue_depth, "queue_depth=%d"},
769 	{Opt_alloc_size, "alloc_size=%d"},
770 	{Opt_lock_timeout, "lock_timeout=%d"},
771 	/* int args above */
772 	{Opt_pool_ns, "_pool_ns=%s"},
773 	/* string args above */
774 	{Opt_read_only, "read_only"},
775 	{Opt_read_only, "ro"},		/* Alternate spelling */
776 	{Opt_read_write, "read_write"},
777 	{Opt_read_write, "rw"},		/* Alternate spelling */
778 	{Opt_lock_on_read, "lock_on_read"},
779 	{Opt_exclusive, "exclusive"},
780 	{Opt_notrim, "notrim"},
781 	{Opt_err, NULL}
782 };
783 
784 struct rbd_options {
785 	int	queue_depth;
786 	int	alloc_size;
787 	unsigned long	lock_timeout;
788 	bool	read_only;
789 	bool	lock_on_read;
790 	bool	exclusive;
791 	bool	trim;
792 };
793 
794 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
795 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
796 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
797 #define RBD_READ_ONLY_DEFAULT	false
798 #define RBD_LOCK_ON_READ_DEFAULT false
799 #define RBD_EXCLUSIVE_DEFAULT	false
800 #define RBD_TRIM_DEFAULT	true
801 
802 struct parse_rbd_opts_ctx {
803 	struct rbd_spec		*spec;
804 	struct rbd_options	*opts;
805 };
806 
807 static int parse_rbd_opts_token(char *c, void *private)
808 {
809 	struct parse_rbd_opts_ctx *pctx = private;
810 	substring_t argstr[MAX_OPT_ARGS];
811 	int token, intval, ret;
812 
813 	token = match_token(c, rbd_opts_tokens, argstr);
814 	if (token < Opt_last_int) {
815 		ret = match_int(&argstr[0], &intval);
816 		if (ret < 0) {
817 			pr_err("bad option arg (not int) at '%s'\n", c);
818 			return ret;
819 		}
820 		dout("got int token %d val %d\n", token, intval);
821 	} else if (token > Opt_last_int && token < Opt_last_string) {
822 		dout("got string token %d val %s\n", token, argstr[0].from);
823 	} else {
824 		dout("got token %d\n", token);
825 	}
826 
827 	switch (token) {
828 	case Opt_queue_depth:
829 		if (intval < 1) {
830 			pr_err("queue_depth out of range\n");
831 			return -EINVAL;
832 		}
833 		pctx->opts->queue_depth = intval;
834 		break;
835 	case Opt_alloc_size:
836 		if (intval < 1) {
837 			pr_err("alloc_size out of range\n");
838 			return -EINVAL;
839 		}
840 		if (!is_power_of_2(intval)) {
841 			pr_err("alloc_size must be a power of 2\n");
842 			return -EINVAL;
843 		}
844 		pctx->opts->alloc_size = intval;
845 		break;
846 	case Opt_lock_timeout:
847 		/* 0 is "wait forever" (i.e. infinite timeout) */
848 		if (intval < 0 || intval > INT_MAX / 1000) {
849 			pr_err("lock_timeout out of range\n");
850 			return -EINVAL;
851 		}
852 		pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
853 		break;
854 	case Opt_pool_ns:
855 		kfree(pctx->spec->pool_ns);
856 		pctx->spec->pool_ns = match_strdup(argstr);
857 		if (!pctx->spec->pool_ns)
858 			return -ENOMEM;
859 		break;
860 	case Opt_read_only:
861 		pctx->opts->read_only = true;
862 		break;
863 	case Opt_read_write:
864 		pctx->opts->read_only = false;
865 		break;
866 	case Opt_lock_on_read:
867 		pctx->opts->lock_on_read = true;
868 		break;
869 	case Opt_exclusive:
870 		pctx->opts->exclusive = true;
871 		break;
872 	case Opt_notrim:
873 		pctx->opts->trim = false;
874 		break;
875 	default:
876 		/* libceph prints "bad option" msg */
877 		return -EINVAL;
878 	}
879 
880 	return 0;
881 }
882 
883 static char* obj_op_name(enum obj_operation_type op_type)
884 {
885 	switch (op_type) {
886 	case OBJ_OP_READ:
887 		return "read";
888 	case OBJ_OP_WRITE:
889 		return "write";
890 	case OBJ_OP_DISCARD:
891 		return "discard";
892 	case OBJ_OP_ZEROOUT:
893 		return "zeroout";
894 	default:
895 		return "???";
896 	}
897 }
898 
899 /*
900  * Destroy ceph client
901  *
902  * Caller must hold rbd_client_list_lock.
903  */
904 static void rbd_client_release(struct kref *kref)
905 {
906 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
907 
908 	dout("%s: rbdc %p\n", __func__, rbdc);
909 	spin_lock(&rbd_client_list_lock);
910 	list_del(&rbdc->node);
911 	spin_unlock(&rbd_client_list_lock);
912 
913 	ceph_destroy_client(rbdc->client);
914 	kfree(rbdc);
915 }
916 
917 /*
918  * Drop reference to ceph client node. If it's not referenced anymore, release
919  * it.
920  */
921 static void rbd_put_client(struct rbd_client *rbdc)
922 {
923 	if (rbdc)
924 		kref_put(&rbdc->kref, rbd_client_release);
925 }
926 
927 static int wait_for_latest_osdmap(struct ceph_client *client)
928 {
929 	u64 newest_epoch;
930 	int ret;
931 
932 	ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
933 	if (ret)
934 		return ret;
935 
936 	if (client->osdc.osdmap->epoch >= newest_epoch)
937 		return 0;
938 
939 	ceph_osdc_maybe_request_map(&client->osdc);
940 	return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
941 				     client->options->mount_timeout);
942 }
943 
944 /*
945  * Get a ceph client with specific addr and configuration, if one does
946  * not exist create it.  Either way, ceph_opts is consumed by this
947  * function.
948  */
949 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
950 {
951 	struct rbd_client *rbdc;
952 	int ret;
953 
954 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
955 	rbdc = rbd_client_find(ceph_opts);
956 	if (rbdc) {
957 		ceph_destroy_options(ceph_opts);
958 
959 		/*
960 		 * Using an existing client.  Make sure ->pg_pools is up to
961 		 * date before we look up the pool id in do_rbd_add().
962 		 */
963 		ret = wait_for_latest_osdmap(rbdc->client);
964 		if (ret) {
965 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
966 			rbd_put_client(rbdc);
967 			rbdc = ERR_PTR(ret);
968 		}
969 	} else {
970 		rbdc = rbd_client_create(ceph_opts);
971 	}
972 	mutex_unlock(&client_mutex);
973 
974 	return rbdc;
975 }
976 
977 static bool rbd_image_format_valid(u32 image_format)
978 {
979 	return image_format == 1 || image_format == 2;
980 }
981 
982 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
983 {
984 	size_t size;
985 	u32 snap_count;
986 
987 	/* The header has to start with the magic rbd header text */
988 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
989 		return false;
990 
991 	/* The bio layer requires at least sector-sized I/O */
992 
993 	if (ondisk->options.order < SECTOR_SHIFT)
994 		return false;
995 
996 	/* If we use u64 in a few spots we may be able to loosen this */
997 
998 	if (ondisk->options.order > 8 * sizeof (int) - 1)
999 		return false;
1000 
1001 	/*
1002 	 * The size of a snapshot header has to fit in a size_t, and
1003 	 * that limits the number of snapshots.
1004 	 */
1005 	snap_count = le32_to_cpu(ondisk->snap_count);
1006 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1007 	if (snap_count > size / sizeof (__le64))
1008 		return false;
1009 
1010 	/*
1011 	 * Not only that, but the size of the entire the snapshot
1012 	 * header must also be representable in a size_t.
1013 	 */
1014 	size -= snap_count * sizeof (__le64);
1015 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1016 		return false;
1017 
1018 	return true;
1019 }
1020 
1021 /*
1022  * returns the size of an object in the image
1023  */
1024 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1025 {
1026 	return 1U << header->obj_order;
1027 }
1028 
1029 static void rbd_init_layout(struct rbd_device *rbd_dev)
1030 {
1031 	if (rbd_dev->header.stripe_unit == 0 ||
1032 	    rbd_dev->header.stripe_count == 0) {
1033 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1034 		rbd_dev->header.stripe_count = 1;
1035 	}
1036 
1037 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1038 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1039 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1040 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1041 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1042 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1043 }
1044 
1045 /*
1046  * Fill an rbd image header with information from the given format 1
1047  * on-disk header.
1048  */
1049 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1050 				 struct rbd_image_header_ondisk *ondisk)
1051 {
1052 	struct rbd_image_header *header = &rbd_dev->header;
1053 	bool first_time = header->object_prefix == NULL;
1054 	struct ceph_snap_context *snapc;
1055 	char *object_prefix = NULL;
1056 	char *snap_names = NULL;
1057 	u64 *snap_sizes = NULL;
1058 	u32 snap_count;
1059 	int ret = -ENOMEM;
1060 	u32 i;
1061 
1062 	/* Allocate this now to avoid having to handle failure below */
1063 
1064 	if (first_time) {
1065 		object_prefix = kstrndup(ondisk->object_prefix,
1066 					 sizeof(ondisk->object_prefix),
1067 					 GFP_KERNEL);
1068 		if (!object_prefix)
1069 			return -ENOMEM;
1070 	}
1071 
1072 	/* Allocate the snapshot context and fill it in */
1073 
1074 	snap_count = le32_to_cpu(ondisk->snap_count);
1075 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1076 	if (!snapc)
1077 		goto out_err;
1078 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1079 	if (snap_count) {
1080 		struct rbd_image_snap_ondisk *snaps;
1081 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1082 
1083 		/* We'll keep a copy of the snapshot names... */
1084 
1085 		if (snap_names_len > (u64)SIZE_MAX)
1086 			goto out_2big;
1087 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1088 		if (!snap_names)
1089 			goto out_err;
1090 
1091 		/* ...as well as the array of their sizes. */
1092 		snap_sizes = kmalloc_array(snap_count,
1093 					   sizeof(*header->snap_sizes),
1094 					   GFP_KERNEL);
1095 		if (!snap_sizes)
1096 			goto out_err;
1097 
1098 		/*
1099 		 * Copy the names, and fill in each snapshot's id
1100 		 * and size.
1101 		 *
1102 		 * Note that rbd_dev_v1_header_info() guarantees the
1103 		 * ondisk buffer we're working with has
1104 		 * snap_names_len bytes beyond the end of the
1105 		 * snapshot id array, this memcpy() is safe.
1106 		 */
1107 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1108 		snaps = ondisk->snaps;
1109 		for (i = 0; i < snap_count; i++) {
1110 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1111 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1112 		}
1113 	}
1114 
1115 	/* We won't fail any more, fill in the header */
1116 
1117 	if (first_time) {
1118 		header->object_prefix = object_prefix;
1119 		header->obj_order = ondisk->options.order;
1120 		rbd_init_layout(rbd_dev);
1121 	} else {
1122 		ceph_put_snap_context(header->snapc);
1123 		kfree(header->snap_names);
1124 		kfree(header->snap_sizes);
1125 	}
1126 
1127 	/* The remaining fields always get updated (when we refresh) */
1128 
1129 	header->image_size = le64_to_cpu(ondisk->image_size);
1130 	header->snapc = snapc;
1131 	header->snap_names = snap_names;
1132 	header->snap_sizes = snap_sizes;
1133 
1134 	return 0;
1135 out_2big:
1136 	ret = -EIO;
1137 out_err:
1138 	kfree(snap_sizes);
1139 	kfree(snap_names);
1140 	ceph_put_snap_context(snapc);
1141 	kfree(object_prefix);
1142 
1143 	return ret;
1144 }
1145 
1146 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1147 {
1148 	const char *snap_name;
1149 
1150 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1151 
1152 	/* Skip over names until we find the one we are looking for */
1153 
1154 	snap_name = rbd_dev->header.snap_names;
1155 	while (which--)
1156 		snap_name += strlen(snap_name) + 1;
1157 
1158 	return kstrdup(snap_name, GFP_KERNEL);
1159 }
1160 
1161 /*
1162  * Snapshot id comparison function for use with qsort()/bsearch().
1163  * Note that result is for snapshots in *descending* order.
1164  */
1165 static int snapid_compare_reverse(const void *s1, const void *s2)
1166 {
1167 	u64 snap_id1 = *(u64 *)s1;
1168 	u64 snap_id2 = *(u64 *)s2;
1169 
1170 	if (snap_id1 < snap_id2)
1171 		return 1;
1172 	return snap_id1 == snap_id2 ? 0 : -1;
1173 }
1174 
1175 /*
1176  * Search a snapshot context to see if the given snapshot id is
1177  * present.
1178  *
1179  * Returns the position of the snapshot id in the array if it's found,
1180  * or BAD_SNAP_INDEX otherwise.
1181  *
1182  * Note: The snapshot array is in kept sorted (by the osd) in
1183  * reverse order, highest snapshot id first.
1184  */
1185 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1186 {
1187 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1188 	u64 *found;
1189 
1190 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1191 				sizeof (snap_id), snapid_compare_reverse);
1192 
1193 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1194 }
1195 
1196 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1197 					u64 snap_id)
1198 {
1199 	u32 which;
1200 	const char *snap_name;
1201 
1202 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1203 	if (which == BAD_SNAP_INDEX)
1204 		return ERR_PTR(-ENOENT);
1205 
1206 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1207 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1208 }
1209 
1210 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1211 {
1212 	if (snap_id == CEPH_NOSNAP)
1213 		return RBD_SNAP_HEAD_NAME;
1214 
1215 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1216 	if (rbd_dev->image_format == 1)
1217 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1218 
1219 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1220 }
1221 
1222 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1223 				u64 *snap_size)
1224 {
1225 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1226 	if (snap_id == CEPH_NOSNAP) {
1227 		*snap_size = rbd_dev->header.image_size;
1228 	} else if (rbd_dev->image_format == 1) {
1229 		u32 which;
1230 
1231 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1232 		if (which == BAD_SNAP_INDEX)
1233 			return -ENOENT;
1234 
1235 		*snap_size = rbd_dev->header.snap_sizes[which];
1236 	} else {
1237 		u64 size = 0;
1238 		int ret;
1239 
1240 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1241 		if (ret)
1242 			return ret;
1243 
1244 		*snap_size = size;
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1250 			u64 *snap_features)
1251 {
1252 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1253 	if (snap_id == CEPH_NOSNAP) {
1254 		*snap_features = rbd_dev->header.features;
1255 	} else if (rbd_dev->image_format == 1) {
1256 		*snap_features = 0;	/* No features for format 1 */
1257 	} else {
1258 		u64 features = 0;
1259 		int ret;
1260 
1261 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1262 		if (ret)
1263 			return ret;
1264 
1265 		*snap_features = features;
1266 	}
1267 	return 0;
1268 }
1269 
1270 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1271 {
1272 	u64 snap_id = rbd_dev->spec->snap_id;
1273 	u64 size = 0;
1274 	u64 features = 0;
1275 	int ret;
1276 
1277 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1278 	if (ret)
1279 		return ret;
1280 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1281 	if (ret)
1282 		return ret;
1283 
1284 	rbd_dev->mapping.size = size;
1285 	rbd_dev->mapping.features = features;
1286 
1287 	return 0;
1288 }
1289 
1290 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1291 {
1292 	rbd_dev->mapping.size = 0;
1293 	rbd_dev->mapping.features = 0;
1294 }
1295 
1296 static void zero_bvec(struct bio_vec *bv)
1297 {
1298 	void *buf;
1299 	unsigned long flags;
1300 
1301 	buf = bvec_kmap_irq(bv, &flags);
1302 	memset(buf, 0, bv->bv_len);
1303 	flush_dcache_page(bv->bv_page);
1304 	bvec_kunmap_irq(buf, &flags);
1305 }
1306 
1307 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1308 {
1309 	struct ceph_bio_iter it = *bio_pos;
1310 
1311 	ceph_bio_iter_advance(&it, off);
1312 	ceph_bio_iter_advance_step(&it, bytes, ({
1313 		zero_bvec(&bv);
1314 	}));
1315 }
1316 
1317 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1318 {
1319 	struct ceph_bvec_iter it = *bvec_pos;
1320 
1321 	ceph_bvec_iter_advance(&it, off);
1322 	ceph_bvec_iter_advance_step(&it, bytes, ({
1323 		zero_bvec(&bv);
1324 	}));
1325 }
1326 
1327 /*
1328  * Zero a range in @obj_req data buffer defined by a bio (list) or
1329  * (private) bio_vec array.
1330  *
1331  * @off is relative to the start of the data buffer.
1332  */
1333 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1334 			       u32 bytes)
1335 {
1336 	switch (obj_req->img_request->data_type) {
1337 	case OBJ_REQUEST_BIO:
1338 		zero_bios(&obj_req->bio_pos, off, bytes);
1339 		break;
1340 	case OBJ_REQUEST_BVECS:
1341 	case OBJ_REQUEST_OWN_BVECS:
1342 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1343 		break;
1344 	default:
1345 		rbd_assert(0);
1346 	}
1347 }
1348 
1349 static void rbd_obj_request_destroy(struct kref *kref);
1350 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1351 {
1352 	rbd_assert(obj_request != NULL);
1353 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1354 		kref_read(&obj_request->kref));
1355 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1356 }
1357 
1358 static void rbd_img_request_get(struct rbd_img_request *img_request)
1359 {
1360 	dout("%s: img %p (was %d)\n", __func__, img_request,
1361 	     kref_read(&img_request->kref));
1362 	kref_get(&img_request->kref);
1363 }
1364 
1365 static void rbd_img_request_destroy(struct kref *kref);
1366 static void rbd_img_request_put(struct rbd_img_request *img_request)
1367 {
1368 	rbd_assert(img_request != NULL);
1369 	dout("%s: img %p (was %d)\n", __func__, img_request,
1370 		kref_read(&img_request->kref));
1371 	kref_put(&img_request->kref, rbd_img_request_destroy);
1372 }
1373 
1374 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1375 					struct rbd_obj_request *obj_request)
1376 {
1377 	rbd_assert(obj_request->img_request == NULL);
1378 
1379 	/* Image request now owns object's original reference */
1380 	obj_request->img_request = img_request;
1381 	img_request->pending_count++;
1382 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1383 }
1384 
1385 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1386 					struct rbd_obj_request *obj_request)
1387 {
1388 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1389 	list_del(&obj_request->ex.oe_item);
1390 	rbd_assert(obj_request->img_request == img_request);
1391 	rbd_obj_request_put(obj_request);
1392 }
1393 
1394 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1395 {
1396 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1397 
1398 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1399 	     obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1400 	     obj_request->ex.oe_len, osd_req);
1401 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1402 }
1403 
1404 /*
1405  * The default/initial value for all image request flags is 0.  Each
1406  * is conditionally set to 1 at image request initialization time
1407  * and currently never change thereafter.
1408  */
1409 static void img_request_layered_set(struct rbd_img_request *img_request)
1410 {
1411 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1412 	smp_mb();
1413 }
1414 
1415 static void img_request_layered_clear(struct rbd_img_request *img_request)
1416 {
1417 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1418 	smp_mb();
1419 }
1420 
1421 static bool img_request_layered_test(struct rbd_img_request *img_request)
1422 {
1423 	smp_mb();
1424 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1425 }
1426 
1427 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1428 {
1429 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1430 
1431 	return !obj_req->ex.oe_off &&
1432 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1433 }
1434 
1435 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1436 {
1437 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1438 
1439 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1440 					rbd_dev->layout.object_size;
1441 }
1442 
1443 /*
1444  * Must be called after rbd_obj_calc_img_extents().
1445  */
1446 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1447 {
1448 	if (!obj_req->num_img_extents ||
1449 	    (rbd_obj_is_entire(obj_req) &&
1450 	     !obj_req->img_request->snapc->num_snaps))
1451 		return false;
1452 
1453 	return true;
1454 }
1455 
1456 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1457 {
1458 	return ceph_file_extents_bytes(obj_req->img_extents,
1459 				       obj_req->num_img_extents);
1460 }
1461 
1462 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1463 {
1464 	switch (img_req->op_type) {
1465 	case OBJ_OP_READ:
1466 		return false;
1467 	case OBJ_OP_WRITE:
1468 	case OBJ_OP_DISCARD:
1469 	case OBJ_OP_ZEROOUT:
1470 		return true;
1471 	default:
1472 		BUG();
1473 	}
1474 }
1475 
1476 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1477 
1478 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1479 {
1480 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1481 
1482 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1483 	     osd_req->r_result, obj_req);
1484 	rbd_assert(osd_req == obj_req->osd_req);
1485 
1486 	obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1487 	if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1488 		obj_req->xferred = osd_req->r_result;
1489 	else
1490 		/*
1491 		 * Writes aren't allowed to return a data payload.  In some
1492 		 * guarded write cases (e.g. stat + zero on an empty object)
1493 		 * a stat response makes it through, but we don't care.
1494 		 */
1495 		obj_req->xferred = 0;
1496 
1497 	rbd_obj_handle_request(obj_req);
1498 }
1499 
1500 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1501 {
1502 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1503 
1504 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1505 	osd_req->r_snapid = obj_request->img_request->snap_id;
1506 }
1507 
1508 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1509 {
1510 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1511 
1512 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1513 	ktime_get_real_ts64(&osd_req->r_mtime);
1514 	osd_req->r_data_offset = obj_request->ex.oe_off;
1515 }
1516 
1517 static struct ceph_osd_request *
1518 __rbd_osd_req_create(struct rbd_obj_request *obj_req,
1519 		     struct ceph_snap_context *snapc, unsigned int num_ops)
1520 {
1521 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1522 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1523 	struct ceph_osd_request *req;
1524 	const char *name_format = rbd_dev->image_format == 1 ?
1525 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1526 
1527 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1528 	if (!req)
1529 		return NULL;
1530 
1531 	req->r_callback = rbd_osd_req_callback;
1532 	req->r_priv = obj_req;
1533 
1534 	/*
1535 	 * Data objects may be stored in a separate pool, but always in
1536 	 * the same namespace in that pool as the header in its pool.
1537 	 */
1538 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1539 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1540 
1541 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1542 			rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1543 		goto err_req;
1544 
1545 	return req;
1546 
1547 err_req:
1548 	ceph_osdc_put_request(req);
1549 	return NULL;
1550 }
1551 
1552 static struct ceph_osd_request *
1553 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1554 {
1555 	return __rbd_osd_req_create(obj_req, obj_req->img_request->snapc,
1556 				    num_ops);
1557 }
1558 
1559 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1560 {
1561 	ceph_osdc_put_request(osd_req);
1562 }
1563 
1564 static struct rbd_obj_request *rbd_obj_request_create(void)
1565 {
1566 	struct rbd_obj_request *obj_request;
1567 
1568 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1569 	if (!obj_request)
1570 		return NULL;
1571 
1572 	ceph_object_extent_init(&obj_request->ex);
1573 	kref_init(&obj_request->kref);
1574 
1575 	dout("%s %p\n", __func__, obj_request);
1576 	return obj_request;
1577 }
1578 
1579 static void rbd_obj_request_destroy(struct kref *kref)
1580 {
1581 	struct rbd_obj_request *obj_request;
1582 	u32 i;
1583 
1584 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1585 
1586 	dout("%s: obj %p\n", __func__, obj_request);
1587 
1588 	if (obj_request->osd_req)
1589 		rbd_osd_req_destroy(obj_request->osd_req);
1590 
1591 	switch (obj_request->img_request->data_type) {
1592 	case OBJ_REQUEST_NODATA:
1593 	case OBJ_REQUEST_BIO:
1594 	case OBJ_REQUEST_BVECS:
1595 		break;		/* Nothing to do */
1596 	case OBJ_REQUEST_OWN_BVECS:
1597 		kfree(obj_request->bvec_pos.bvecs);
1598 		break;
1599 	default:
1600 		rbd_assert(0);
1601 	}
1602 
1603 	kfree(obj_request->img_extents);
1604 	if (obj_request->copyup_bvecs) {
1605 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1606 			if (obj_request->copyup_bvecs[i].bv_page)
1607 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1608 		}
1609 		kfree(obj_request->copyup_bvecs);
1610 	}
1611 
1612 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1613 }
1614 
1615 /* It's OK to call this for a device with no parent */
1616 
1617 static void rbd_spec_put(struct rbd_spec *spec);
1618 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1619 {
1620 	rbd_dev_remove_parent(rbd_dev);
1621 	rbd_spec_put(rbd_dev->parent_spec);
1622 	rbd_dev->parent_spec = NULL;
1623 	rbd_dev->parent_overlap = 0;
1624 }
1625 
1626 /*
1627  * Parent image reference counting is used to determine when an
1628  * image's parent fields can be safely torn down--after there are no
1629  * more in-flight requests to the parent image.  When the last
1630  * reference is dropped, cleaning them up is safe.
1631  */
1632 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1633 {
1634 	int counter;
1635 
1636 	if (!rbd_dev->parent_spec)
1637 		return;
1638 
1639 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1640 	if (counter > 0)
1641 		return;
1642 
1643 	/* Last reference; clean up parent data structures */
1644 
1645 	if (!counter)
1646 		rbd_dev_unparent(rbd_dev);
1647 	else
1648 		rbd_warn(rbd_dev, "parent reference underflow");
1649 }
1650 
1651 /*
1652  * If an image has a non-zero parent overlap, get a reference to its
1653  * parent.
1654  *
1655  * Returns true if the rbd device has a parent with a non-zero
1656  * overlap and a reference for it was successfully taken, or
1657  * false otherwise.
1658  */
1659 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1660 {
1661 	int counter = 0;
1662 
1663 	if (!rbd_dev->parent_spec)
1664 		return false;
1665 
1666 	down_read(&rbd_dev->header_rwsem);
1667 	if (rbd_dev->parent_overlap)
1668 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1669 	up_read(&rbd_dev->header_rwsem);
1670 
1671 	if (counter < 0)
1672 		rbd_warn(rbd_dev, "parent reference overflow");
1673 
1674 	return counter > 0;
1675 }
1676 
1677 /*
1678  * Caller is responsible for filling in the list of object requests
1679  * that comprises the image request, and the Linux request pointer
1680  * (if there is one).
1681  */
1682 static struct rbd_img_request *rbd_img_request_create(
1683 					struct rbd_device *rbd_dev,
1684 					enum obj_operation_type op_type,
1685 					struct ceph_snap_context *snapc)
1686 {
1687 	struct rbd_img_request *img_request;
1688 
1689 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1690 	if (!img_request)
1691 		return NULL;
1692 
1693 	img_request->rbd_dev = rbd_dev;
1694 	img_request->op_type = op_type;
1695 	if (!rbd_img_is_write(img_request))
1696 		img_request->snap_id = rbd_dev->spec->snap_id;
1697 	else
1698 		img_request->snapc = snapc;
1699 
1700 	if (rbd_dev_parent_get(rbd_dev))
1701 		img_request_layered_set(img_request);
1702 
1703 	spin_lock_init(&img_request->completion_lock);
1704 	INIT_LIST_HEAD(&img_request->object_extents);
1705 	kref_init(&img_request->kref);
1706 
1707 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1708 	     obj_op_name(op_type), img_request);
1709 	return img_request;
1710 }
1711 
1712 static void rbd_img_request_destroy(struct kref *kref)
1713 {
1714 	struct rbd_img_request *img_request;
1715 	struct rbd_obj_request *obj_request;
1716 	struct rbd_obj_request *next_obj_request;
1717 
1718 	img_request = container_of(kref, struct rbd_img_request, kref);
1719 
1720 	dout("%s: img %p\n", __func__, img_request);
1721 
1722 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1723 		rbd_img_obj_request_del(img_request, obj_request);
1724 
1725 	if (img_request_layered_test(img_request)) {
1726 		img_request_layered_clear(img_request);
1727 		rbd_dev_parent_put(img_request->rbd_dev);
1728 	}
1729 
1730 	if (rbd_img_is_write(img_request))
1731 		ceph_put_snap_context(img_request->snapc);
1732 
1733 	kmem_cache_free(rbd_img_request_cache, img_request);
1734 }
1735 
1736 static void prune_extents(struct ceph_file_extent *img_extents,
1737 			  u32 *num_img_extents, u64 overlap)
1738 {
1739 	u32 cnt = *num_img_extents;
1740 
1741 	/* drop extents completely beyond the overlap */
1742 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1743 		cnt--;
1744 
1745 	if (cnt) {
1746 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
1747 
1748 		/* trim final overlapping extent */
1749 		if (ex->fe_off + ex->fe_len > overlap)
1750 			ex->fe_len = overlap - ex->fe_off;
1751 	}
1752 
1753 	*num_img_extents = cnt;
1754 }
1755 
1756 /*
1757  * Determine the byte range(s) covered by either just the object extent
1758  * or the entire object in the parent image.
1759  */
1760 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1761 				    bool entire)
1762 {
1763 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1764 	int ret;
1765 
1766 	if (!rbd_dev->parent_overlap)
1767 		return 0;
1768 
1769 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1770 				  entire ? 0 : obj_req->ex.oe_off,
1771 				  entire ? rbd_dev->layout.object_size :
1772 							obj_req->ex.oe_len,
1773 				  &obj_req->img_extents,
1774 				  &obj_req->num_img_extents);
1775 	if (ret)
1776 		return ret;
1777 
1778 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1779 		      rbd_dev->parent_overlap);
1780 	return 0;
1781 }
1782 
1783 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1784 {
1785 	switch (obj_req->img_request->data_type) {
1786 	case OBJ_REQUEST_BIO:
1787 		osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1788 					       &obj_req->bio_pos,
1789 					       obj_req->ex.oe_len);
1790 		break;
1791 	case OBJ_REQUEST_BVECS:
1792 	case OBJ_REQUEST_OWN_BVECS:
1793 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1794 							obj_req->ex.oe_len);
1795 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1796 		osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1797 						    &obj_req->bvec_pos);
1798 		break;
1799 	default:
1800 		rbd_assert(0);
1801 	}
1802 }
1803 
1804 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1805 {
1806 	obj_req->osd_req = __rbd_osd_req_create(obj_req, NULL, 1);
1807 	if (!obj_req->osd_req)
1808 		return -ENOMEM;
1809 
1810 	osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1811 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1812 	rbd_osd_req_setup_data(obj_req, 0);
1813 
1814 	rbd_osd_req_format_read(obj_req);
1815 	return 0;
1816 }
1817 
1818 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1819 				unsigned int which)
1820 {
1821 	struct page **pages;
1822 
1823 	/*
1824 	 * The response data for a STAT call consists of:
1825 	 *     le64 length;
1826 	 *     struct {
1827 	 *         le32 tv_sec;
1828 	 *         le32 tv_nsec;
1829 	 *     } mtime;
1830 	 */
1831 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
1832 	if (IS_ERR(pages))
1833 		return PTR_ERR(pages);
1834 
1835 	osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1836 	osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1837 				     8 + sizeof(struct ceph_timespec),
1838 				     0, false, true);
1839 	return 0;
1840 }
1841 
1842 static int count_write_ops(struct rbd_obj_request *obj_req)
1843 {
1844 	return 2; /* setallochint + write/writefull */
1845 }
1846 
1847 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1848 				  unsigned int which)
1849 {
1850 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1851 	u16 opcode;
1852 
1853 	osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1854 				   rbd_dev->layout.object_size,
1855 				   rbd_dev->layout.object_size);
1856 
1857 	if (rbd_obj_is_entire(obj_req))
1858 		opcode = CEPH_OSD_OP_WRITEFULL;
1859 	else
1860 		opcode = CEPH_OSD_OP_WRITE;
1861 
1862 	osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1863 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1864 	rbd_osd_req_setup_data(obj_req, which++);
1865 
1866 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1867 	rbd_osd_req_format_write(obj_req);
1868 }
1869 
1870 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1871 {
1872 	unsigned int num_osd_ops, which = 0;
1873 	bool need_guard;
1874 	int ret;
1875 
1876 	/* reverse map the entire object onto the parent */
1877 	ret = rbd_obj_calc_img_extents(obj_req, true);
1878 	if (ret)
1879 		return ret;
1880 
1881 	need_guard = rbd_obj_copyup_enabled(obj_req);
1882 	num_osd_ops = need_guard + count_write_ops(obj_req);
1883 
1884 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1885 	if (!obj_req->osd_req)
1886 		return -ENOMEM;
1887 
1888 	if (need_guard) {
1889 		ret = __rbd_obj_setup_stat(obj_req, which++);
1890 		if (ret)
1891 			return ret;
1892 
1893 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1894 	} else {
1895 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1896 	}
1897 
1898 	__rbd_obj_setup_write(obj_req, which);
1899 	return 0;
1900 }
1901 
1902 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
1903 {
1904 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
1905 					  CEPH_OSD_OP_ZERO;
1906 }
1907 
1908 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1909 {
1910 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1911 	u64 off = obj_req->ex.oe_off;
1912 	u64 next_off = obj_req->ex.oe_off + obj_req->ex.oe_len;
1913 	int ret;
1914 
1915 	/*
1916 	 * Align the range to alloc_size boundary and punt on discards
1917 	 * that are too small to free up any space.
1918 	 *
1919 	 * alloc_size == object_size && is_tail() is a special case for
1920 	 * filestore with filestore_punch_hole = false, needed to allow
1921 	 * truncate (in addition to delete).
1922 	 */
1923 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
1924 	    !rbd_obj_is_tail(obj_req)) {
1925 		off = round_up(off, rbd_dev->opts->alloc_size);
1926 		next_off = round_down(next_off, rbd_dev->opts->alloc_size);
1927 		if (off >= next_off)
1928 			return 1;
1929 	}
1930 
1931 	/* reverse map the entire object onto the parent */
1932 	ret = rbd_obj_calc_img_extents(obj_req, true);
1933 	if (ret)
1934 		return ret;
1935 
1936 	obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1937 	if (!obj_req->osd_req)
1938 		return -ENOMEM;
1939 
1940 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
1941 		osd_req_op_init(obj_req->osd_req, 0, CEPH_OSD_OP_DELETE, 0);
1942 	} else {
1943 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
1944 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
1945 		     off, next_off - off);
1946 		osd_req_op_extent_init(obj_req->osd_req, 0,
1947 				       truncate_or_zero_opcode(obj_req),
1948 				       off, next_off - off, 0, 0);
1949 	}
1950 
1951 	obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1952 	rbd_osd_req_format_write(obj_req);
1953 	return 0;
1954 }
1955 
1956 static int count_zeroout_ops(struct rbd_obj_request *obj_req)
1957 {
1958 	int num_osd_ops;
1959 
1960 	if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
1961 	    !rbd_obj_copyup_enabled(obj_req))
1962 		num_osd_ops = 2; /* create + truncate */
1963 	else
1964 		num_osd_ops = 1; /* delete/truncate/zero */
1965 
1966 	return num_osd_ops;
1967 }
1968 
1969 static void __rbd_obj_setup_zeroout(struct rbd_obj_request *obj_req,
1970 				    unsigned int which)
1971 {
1972 	u16 opcode;
1973 
1974 	if (rbd_obj_is_entire(obj_req)) {
1975 		if (obj_req->num_img_extents) {
1976 			if (!rbd_obj_copyup_enabled(obj_req))
1977 				osd_req_op_init(obj_req->osd_req, which++,
1978 						CEPH_OSD_OP_CREATE, 0);
1979 			opcode = CEPH_OSD_OP_TRUNCATE;
1980 		} else {
1981 			osd_req_op_init(obj_req->osd_req, which++,
1982 					CEPH_OSD_OP_DELETE, 0);
1983 			opcode = 0;
1984 		}
1985 	} else {
1986 		opcode = truncate_or_zero_opcode(obj_req);
1987 	}
1988 
1989 	if (opcode)
1990 		osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1991 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
1992 				       0, 0);
1993 
1994 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1995 	rbd_osd_req_format_write(obj_req);
1996 }
1997 
1998 static int rbd_obj_setup_zeroout(struct rbd_obj_request *obj_req)
1999 {
2000 	unsigned int num_osd_ops, which = 0;
2001 	bool need_guard;
2002 	int ret;
2003 
2004 	/* reverse map the entire object onto the parent */
2005 	ret = rbd_obj_calc_img_extents(obj_req, true);
2006 	if (ret)
2007 		return ret;
2008 
2009 	need_guard = rbd_obj_copyup_enabled(obj_req);
2010 	num_osd_ops = need_guard + count_zeroout_ops(obj_req);
2011 
2012 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2013 	if (!obj_req->osd_req)
2014 		return -ENOMEM;
2015 
2016 	if (need_guard) {
2017 		ret = __rbd_obj_setup_stat(obj_req, which++);
2018 		if (ret)
2019 			return ret;
2020 
2021 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2022 	} else {
2023 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2024 	}
2025 
2026 	__rbd_obj_setup_zeroout(obj_req, which);
2027 	return 0;
2028 }
2029 
2030 /*
2031  * For each object request in @img_req, allocate an OSD request, add
2032  * individual OSD ops and prepare them for submission.  The number of
2033  * OSD ops depends on op_type and the overlap point (if any).
2034  */
2035 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2036 {
2037 	struct rbd_obj_request *obj_req, *next_obj_req;
2038 	int ret;
2039 
2040 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2041 		switch (img_req->op_type) {
2042 		case OBJ_OP_READ:
2043 			ret = rbd_obj_setup_read(obj_req);
2044 			break;
2045 		case OBJ_OP_WRITE:
2046 			ret = rbd_obj_setup_write(obj_req);
2047 			break;
2048 		case OBJ_OP_DISCARD:
2049 			ret = rbd_obj_setup_discard(obj_req);
2050 			break;
2051 		case OBJ_OP_ZEROOUT:
2052 			ret = rbd_obj_setup_zeroout(obj_req);
2053 			break;
2054 		default:
2055 			rbd_assert(0);
2056 		}
2057 		if (ret < 0)
2058 			return ret;
2059 		if (ret > 0) {
2060 			img_req->xferred += obj_req->ex.oe_len;
2061 			img_req->pending_count--;
2062 			rbd_img_obj_request_del(img_req, obj_req);
2063 			continue;
2064 		}
2065 
2066 		ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2067 		if (ret)
2068 			return ret;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 union rbd_img_fill_iter {
2075 	struct ceph_bio_iter	bio_iter;
2076 	struct ceph_bvec_iter	bvec_iter;
2077 };
2078 
2079 struct rbd_img_fill_ctx {
2080 	enum obj_request_type	pos_type;
2081 	union rbd_img_fill_iter	*pos;
2082 	union rbd_img_fill_iter	iter;
2083 	ceph_object_extent_fn_t	set_pos_fn;
2084 	ceph_object_extent_fn_t	count_fn;
2085 	ceph_object_extent_fn_t	copy_fn;
2086 };
2087 
2088 static struct ceph_object_extent *alloc_object_extent(void *arg)
2089 {
2090 	struct rbd_img_request *img_req = arg;
2091 	struct rbd_obj_request *obj_req;
2092 
2093 	obj_req = rbd_obj_request_create();
2094 	if (!obj_req)
2095 		return NULL;
2096 
2097 	rbd_img_obj_request_add(img_req, obj_req);
2098 	return &obj_req->ex;
2099 }
2100 
2101 /*
2102  * While su != os && sc == 1 is technically not fancy (it's the same
2103  * layout as su == os && sc == 1), we can't use the nocopy path for it
2104  * because ->set_pos_fn() should be called only once per object.
2105  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2106  * treat su != os && sc == 1 as fancy.
2107  */
2108 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2109 {
2110 	return l->stripe_unit != l->object_size;
2111 }
2112 
2113 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2114 				       struct ceph_file_extent *img_extents,
2115 				       u32 num_img_extents,
2116 				       struct rbd_img_fill_ctx *fctx)
2117 {
2118 	u32 i;
2119 	int ret;
2120 
2121 	img_req->data_type = fctx->pos_type;
2122 
2123 	/*
2124 	 * Create object requests and set each object request's starting
2125 	 * position in the provided bio (list) or bio_vec array.
2126 	 */
2127 	fctx->iter = *fctx->pos;
2128 	for (i = 0; i < num_img_extents; i++) {
2129 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2130 					   img_extents[i].fe_off,
2131 					   img_extents[i].fe_len,
2132 					   &img_req->object_extents,
2133 					   alloc_object_extent, img_req,
2134 					   fctx->set_pos_fn, &fctx->iter);
2135 		if (ret)
2136 			return ret;
2137 	}
2138 
2139 	return __rbd_img_fill_request(img_req);
2140 }
2141 
2142 /*
2143  * Map a list of image extents to a list of object extents, create the
2144  * corresponding object requests (normally each to a different object,
2145  * but not always) and add them to @img_req.  For each object request,
2146  * set up its data descriptor to point to the corresponding chunk(s) of
2147  * @fctx->pos data buffer.
2148  *
2149  * Because ceph_file_to_extents() will merge adjacent object extents
2150  * together, each object request's data descriptor may point to multiple
2151  * different chunks of @fctx->pos data buffer.
2152  *
2153  * @fctx->pos data buffer is assumed to be large enough.
2154  */
2155 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2156 				struct ceph_file_extent *img_extents,
2157 				u32 num_img_extents,
2158 				struct rbd_img_fill_ctx *fctx)
2159 {
2160 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2161 	struct rbd_obj_request *obj_req;
2162 	u32 i;
2163 	int ret;
2164 
2165 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2166 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2167 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2168 						   num_img_extents, fctx);
2169 
2170 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2171 
2172 	/*
2173 	 * Create object requests and determine ->bvec_count for each object
2174 	 * request.  Note that ->bvec_count sum over all object requests may
2175 	 * be greater than the number of bio_vecs in the provided bio (list)
2176 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2177 	 * stripe unit boundaries.
2178 	 */
2179 	fctx->iter = *fctx->pos;
2180 	for (i = 0; i < num_img_extents; i++) {
2181 		ret = ceph_file_to_extents(&rbd_dev->layout,
2182 					   img_extents[i].fe_off,
2183 					   img_extents[i].fe_len,
2184 					   &img_req->object_extents,
2185 					   alloc_object_extent, img_req,
2186 					   fctx->count_fn, &fctx->iter);
2187 		if (ret)
2188 			return ret;
2189 	}
2190 
2191 	for_each_obj_request(img_req, obj_req) {
2192 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2193 					      sizeof(*obj_req->bvec_pos.bvecs),
2194 					      GFP_NOIO);
2195 		if (!obj_req->bvec_pos.bvecs)
2196 			return -ENOMEM;
2197 	}
2198 
2199 	/*
2200 	 * Fill in each object request's private bio_vec array, splitting and
2201 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2202 	 */
2203 	fctx->iter = *fctx->pos;
2204 	for (i = 0; i < num_img_extents; i++) {
2205 		ret = ceph_iterate_extents(&rbd_dev->layout,
2206 					   img_extents[i].fe_off,
2207 					   img_extents[i].fe_len,
2208 					   &img_req->object_extents,
2209 					   fctx->copy_fn, &fctx->iter);
2210 		if (ret)
2211 			return ret;
2212 	}
2213 
2214 	return __rbd_img_fill_request(img_req);
2215 }
2216 
2217 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2218 			       u64 off, u64 len)
2219 {
2220 	struct ceph_file_extent ex = { off, len };
2221 	union rbd_img_fill_iter dummy;
2222 	struct rbd_img_fill_ctx fctx = {
2223 		.pos_type = OBJ_REQUEST_NODATA,
2224 		.pos = &dummy,
2225 	};
2226 
2227 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2228 }
2229 
2230 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2231 {
2232 	struct rbd_obj_request *obj_req =
2233 	    container_of(ex, struct rbd_obj_request, ex);
2234 	struct ceph_bio_iter *it = arg;
2235 
2236 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2237 	obj_req->bio_pos = *it;
2238 	ceph_bio_iter_advance(it, bytes);
2239 }
2240 
2241 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2242 {
2243 	struct rbd_obj_request *obj_req =
2244 	    container_of(ex, struct rbd_obj_request, ex);
2245 	struct ceph_bio_iter *it = arg;
2246 
2247 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2248 	ceph_bio_iter_advance_step(it, bytes, ({
2249 		obj_req->bvec_count++;
2250 	}));
2251 
2252 }
2253 
2254 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2255 {
2256 	struct rbd_obj_request *obj_req =
2257 	    container_of(ex, struct rbd_obj_request, ex);
2258 	struct ceph_bio_iter *it = arg;
2259 
2260 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2261 	ceph_bio_iter_advance_step(it, bytes, ({
2262 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2263 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2264 	}));
2265 }
2266 
2267 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2268 				   struct ceph_file_extent *img_extents,
2269 				   u32 num_img_extents,
2270 				   struct ceph_bio_iter *bio_pos)
2271 {
2272 	struct rbd_img_fill_ctx fctx = {
2273 		.pos_type = OBJ_REQUEST_BIO,
2274 		.pos = (union rbd_img_fill_iter *)bio_pos,
2275 		.set_pos_fn = set_bio_pos,
2276 		.count_fn = count_bio_bvecs,
2277 		.copy_fn = copy_bio_bvecs,
2278 	};
2279 
2280 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2281 				    &fctx);
2282 }
2283 
2284 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2285 				 u64 off, u64 len, struct bio *bio)
2286 {
2287 	struct ceph_file_extent ex = { off, len };
2288 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2289 
2290 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2291 }
2292 
2293 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2294 {
2295 	struct rbd_obj_request *obj_req =
2296 	    container_of(ex, struct rbd_obj_request, ex);
2297 	struct ceph_bvec_iter *it = arg;
2298 
2299 	obj_req->bvec_pos = *it;
2300 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2301 	ceph_bvec_iter_advance(it, bytes);
2302 }
2303 
2304 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2305 {
2306 	struct rbd_obj_request *obj_req =
2307 	    container_of(ex, struct rbd_obj_request, ex);
2308 	struct ceph_bvec_iter *it = arg;
2309 
2310 	ceph_bvec_iter_advance_step(it, bytes, ({
2311 		obj_req->bvec_count++;
2312 	}));
2313 }
2314 
2315 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2316 {
2317 	struct rbd_obj_request *obj_req =
2318 	    container_of(ex, struct rbd_obj_request, ex);
2319 	struct ceph_bvec_iter *it = arg;
2320 
2321 	ceph_bvec_iter_advance_step(it, bytes, ({
2322 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2323 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2324 	}));
2325 }
2326 
2327 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2328 				     struct ceph_file_extent *img_extents,
2329 				     u32 num_img_extents,
2330 				     struct ceph_bvec_iter *bvec_pos)
2331 {
2332 	struct rbd_img_fill_ctx fctx = {
2333 		.pos_type = OBJ_REQUEST_BVECS,
2334 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2335 		.set_pos_fn = set_bvec_pos,
2336 		.count_fn = count_bvecs,
2337 		.copy_fn = copy_bvecs,
2338 	};
2339 
2340 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2341 				    &fctx);
2342 }
2343 
2344 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2345 				   struct ceph_file_extent *img_extents,
2346 				   u32 num_img_extents,
2347 				   struct bio_vec *bvecs)
2348 {
2349 	struct ceph_bvec_iter it = {
2350 		.bvecs = bvecs,
2351 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2352 							     num_img_extents) },
2353 	};
2354 
2355 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2356 					 &it);
2357 }
2358 
2359 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2360 {
2361 	struct rbd_obj_request *obj_request;
2362 
2363 	dout("%s: img %p\n", __func__, img_request);
2364 
2365 	rbd_img_request_get(img_request);
2366 	for_each_obj_request(img_request, obj_request)
2367 		rbd_obj_request_submit(obj_request);
2368 
2369 	rbd_img_request_put(img_request);
2370 }
2371 
2372 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2373 {
2374 	struct rbd_img_request *img_req = obj_req->img_request;
2375 	struct rbd_img_request *child_img_req;
2376 	int ret;
2377 
2378 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2379 					       OBJ_OP_READ, NULL);
2380 	if (!child_img_req)
2381 		return -ENOMEM;
2382 
2383 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2384 	child_img_req->obj_request = obj_req;
2385 
2386 	if (!rbd_img_is_write(img_req)) {
2387 		switch (img_req->data_type) {
2388 		case OBJ_REQUEST_BIO:
2389 			ret = __rbd_img_fill_from_bio(child_img_req,
2390 						      obj_req->img_extents,
2391 						      obj_req->num_img_extents,
2392 						      &obj_req->bio_pos);
2393 			break;
2394 		case OBJ_REQUEST_BVECS:
2395 		case OBJ_REQUEST_OWN_BVECS:
2396 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2397 						      obj_req->img_extents,
2398 						      obj_req->num_img_extents,
2399 						      &obj_req->bvec_pos);
2400 			break;
2401 		default:
2402 			rbd_assert(0);
2403 		}
2404 	} else {
2405 		ret = rbd_img_fill_from_bvecs(child_img_req,
2406 					      obj_req->img_extents,
2407 					      obj_req->num_img_extents,
2408 					      obj_req->copyup_bvecs);
2409 	}
2410 	if (ret) {
2411 		rbd_img_request_put(child_img_req);
2412 		return ret;
2413 	}
2414 
2415 	rbd_img_request_submit(child_img_req);
2416 	return 0;
2417 }
2418 
2419 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2420 {
2421 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2422 	int ret;
2423 
2424 	if (obj_req->result == -ENOENT &&
2425 	    rbd_dev->parent_overlap && !obj_req->tried_parent) {
2426 		/* reverse map this object extent onto the parent */
2427 		ret = rbd_obj_calc_img_extents(obj_req, false);
2428 		if (ret) {
2429 			obj_req->result = ret;
2430 			return true;
2431 		}
2432 
2433 		if (obj_req->num_img_extents) {
2434 			obj_req->tried_parent = true;
2435 			ret = rbd_obj_read_from_parent(obj_req);
2436 			if (ret) {
2437 				obj_req->result = ret;
2438 				return true;
2439 			}
2440 			return false;
2441 		}
2442 	}
2443 
2444 	/*
2445 	 * -ENOENT means a hole in the image -- zero-fill the entire
2446 	 * length of the request.  A short read also implies zero-fill
2447 	 * to the end of the request.  In both cases we update xferred
2448 	 * count to indicate the whole request was satisfied.
2449 	 */
2450 	if (obj_req->result == -ENOENT ||
2451 	    (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2452 		rbd_assert(!obj_req->xferred || !obj_req->result);
2453 		rbd_obj_zero_range(obj_req, obj_req->xferred,
2454 				   obj_req->ex.oe_len - obj_req->xferred);
2455 		obj_req->result = 0;
2456 		obj_req->xferred = obj_req->ex.oe_len;
2457 	}
2458 
2459 	return true;
2460 }
2461 
2462 /*
2463  * copyup_bvecs pages are never highmem pages
2464  */
2465 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2466 {
2467 	struct ceph_bvec_iter it = {
2468 		.bvecs = bvecs,
2469 		.iter = { .bi_size = bytes },
2470 	};
2471 
2472 	ceph_bvec_iter_advance_step(&it, bytes, ({
2473 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2474 			       bv.bv_len))
2475 			return false;
2476 	}));
2477 	return true;
2478 }
2479 
2480 #define MODS_ONLY	U32_MAX
2481 
2482 static int rbd_obj_issue_copyup_empty_snapc(struct rbd_obj_request *obj_req,
2483 					    u32 bytes)
2484 {
2485 	int ret;
2486 
2487 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2488 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2489 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
2490 	rbd_osd_req_destroy(obj_req->osd_req);
2491 
2492 	obj_req->osd_req = __rbd_osd_req_create(obj_req, &rbd_empty_snapc, 1);
2493 	if (!obj_req->osd_req)
2494 		return -ENOMEM;
2495 
2496 	ret = osd_req_op_cls_init(obj_req->osd_req, 0, "rbd", "copyup");
2497 	if (ret)
2498 		return ret;
2499 
2500 	osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2501 					  obj_req->copyup_bvecs,
2502 					  obj_req->copyup_bvec_count,
2503 					  bytes);
2504 	rbd_osd_req_format_write(obj_req);
2505 
2506 	ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2507 	if (ret)
2508 		return ret;
2509 
2510 	rbd_obj_request_submit(obj_req);
2511 	return 0;
2512 }
2513 
2514 static int rbd_obj_issue_copyup_ops(struct rbd_obj_request *obj_req, u32 bytes)
2515 {
2516 	struct rbd_img_request *img_req = obj_req->img_request;
2517 	unsigned int num_osd_ops = (bytes != MODS_ONLY);
2518 	unsigned int which = 0;
2519 	int ret;
2520 
2521 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2522 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT ||
2523 		   obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_CALL);
2524 	rbd_osd_req_destroy(obj_req->osd_req);
2525 
2526 	switch (img_req->op_type) {
2527 	case OBJ_OP_WRITE:
2528 		num_osd_ops += count_write_ops(obj_req);
2529 		break;
2530 	case OBJ_OP_ZEROOUT:
2531 		num_osd_ops += count_zeroout_ops(obj_req);
2532 		break;
2533 	default:
2534 		rbd_assert(0);
2535 	}
2536 
2537 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2538 	if (!obj_req->osd_req)
2539 		return -ENOMEM;
2540 
2541 	if (bytes != MODS_ONLY) {
2542 		ret = osd_req_op_cls_init(obj_req->osd_req, which, "rbd",
2543 					  "copyup");
2544 		if (ret)
2545 			return ret;
2546 
2547 		osd_req_op_cls_request_data_bvecs(obj_req->osd_req, which++,
2548 						  obj_req->copyup_bvecs,
2549 						  obj_req->copyup_bvec_count,
2550 						  bytes);
2551 	}
2552 
2553 	switch (img_req->op_type) {
2554 	case OBJ_OP_WRITE:
2555 		__rbd_obj_setup_write(obj_req, which);
2556 		break;
2557 	case OBJ_OP_ZEROOUT:
2558 		__rbd_obj_setup_zeroout(obj_req, which);
2559 		break;
2560 	default:
2561 		rbd_assert(0);
2562 	}
2563 
2564 	ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2565 	if (ret)
2566 		return ret;
2567 
2568 	rbd_obj_request_submit(obj_req);
2569 	return 0;
2570 }
2571 
2572 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2573 {
2574 	/*
2575 	 * Only send non-zero copyup data to save some I/O and network
2576 	 * bandwidth -- zero copyup data is equivalent to the object not
2577 	 * existing.
2578 	 */
2579 	if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2580 		dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2581 		bytes = 0;
2582 	}
2583 
2584 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
2585 		/*
2586 		 * Send a copyup request with an empty snapshot context to
2587 		 * deep-copyup the object through all existing snapshots.
2588 		 * A second request with the current snapshot context will be
2589 		 * sent for the actual modification.
2590 		 */
2591 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC;
2592 		return rbd_obj_issue_copyup_empty_snapc(obj_req, bytes);
2593 	}
2594 
2595 	obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2596 	return rbd_obj_issue_copyup_ops(obj_req, bytes);
2597 }
2598 
2599 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2600 {
2601 	u32 i;
2602 
2603 	rbd_assert(!obj_req->copyup_bvecs);
2604 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2605 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2606 					sizeof(*obj_req->copyup_bvecs),
2607 					GFP_NOIO);
2608 	if (!obj_req->copyup_bvecs)
2609 		return -ENOMEM;
2610 
2611 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2612 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2613 
2614 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2615 		if (!obj_req->copyup_bvecs[i].bv_page)
2616 			return -ENOMEM;
2617 
2618 		obj_req->copyup_bvecs[i].bv_offset = 0;
2619 		obj_req->copyup_bvecs[i].bv_len = len;
2620 		obj_overlap -= len;
2621 	}
2622 
2623 	rbd_assert(!obj_overlap);
2624 	return 0;
2625 }
2626 
2627 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2628 {
2629 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2630 	int ret;
2631 
2632 	rbd_assert(obj_req->num_img_extents);
2633 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2634 		      rbd_dev->parent_overlap);
2635 	if (!obj_req->num_img_extents) {
2636 		/*
2637 		 * The overlap has become 0 (most likely because the
2638 		 * image has been flattened).  Re-submit the original write
2639 		 * request -- pass MODS_ONLY since the copyup isn't needed
2640 		 * anymore.
2641 		 */
2642 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2643 		return rbd_obj_issue_copyup_ops(obj_req, MODS_ONLY);
2644 	}
2645 
2646 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2647 	if (ret)
2648 		return ret;
2649 
2650 	obj_req->write_state = RBD_OBJ_WRITE_READ_FROM_PARENT;
2651 	return rbd_obj_read_from_parent(obj_req);
2652 }
2653 
2654 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2655 {
2656 	int ret;
2657 
2658 	switch (obj_req->write_state) {
2659 	case RBD_OBJ_WRITE_GUARD:
2660 		rbd_assert(!obj_req->xferred);
2661 		if (obj_req->result == -ENOENT) {
2662 			/*
2663 			 * The target object doesn't exist.  Read the data for
2664 			 * the entire target object up to the overlap point (if
2665 			 * any) from the parent, so we can use it for a copyup.
2666 			 */
2667 			ret = rbd_obj_handle_write_guard(obj_req);
2668 			if (ret) {
2669 				obj_req->result = ret;
2670 				return true;
2671 			}
2672 			return false;
2673 		}
2674 		/* fall through */
2675 	case RBD_OBJ_WRITE_FLAT:
2676 	case RBD_OBJ_WRITE_COPYUP_OPS:
2677 		if (!obj_req->result)
2678 			/*
2679 			 * There is no such thing as a successful short
2680 			 * write -- indicate the whole request was satisfied.
2681 			 */
2682 			obj_req->xferred = obj_req->ex.oe_len;
2683 		return true;
2684 	case RBD_OBJ_WRITE_READ_FROM_PARENT:
2685 		if (obj_req->result)
2686 			return true;
2687 
2688 		rbd_assert(obj_req->xferred);
2689 		ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2690 		if (ret) {
2691 			obj_req->result = ret;
2692 			obj_req->xferred = 0;
2693 			return true;
2694 		}
2695 		return false;
2696 	case RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC:
2697 		if (obj_req->result)
2698 			return true;
2699 
2700 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2701 		ret = rbd_obj_issue_copyup_ops(obj_req, MODS_ONLY);
2702 		if (ret) {
2703 			obj_req->result = ret;
2704 			return true;
2705 		}
2706 		return false;
2707 	default:
2708 		BUG();
2709 	}
2710 }
2711 
2712 /*
2713  * Returns true if @obj_req is completed, or false otherwise.
2714  */
2715 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2716 {
2717 	switch (obj_req->img_request->op_type) {
2718 	case OBJ_OP_READ:
2719 		return rbd_obj_handle_read(obj_req);
2720 	case OBJ_OP_WRITE:
2721 		return rbd_obj_handle_write(obj_req);
2722 	case OBJ_OP_DISCARD:
2723 	case OBJ_OP_ZEROOUT:
2724 		if (rbd_obj_handle_write(obj_req)) {
2725 			/*
2726 			 * Hide -ENOENT from delete/truncate/zero -- discarding
2727 			 * a non-existent object is not a problem.
2728 			 */
2729 			if (obj_req->result == -ENOENT) {
2730 				obj_req->result = 0;
2731 				obj_req->xferred = obj_req->ex.oe_len;
2732 			}
2733 			return true;
2734 		}
2735 		return false;
2736 	default:
2737 		BUG();
2738 	}
2739 }
2740 
2741 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2742 {
2743 	struct rbd_img_request *img_req = obj_req->img_request;
2744 
2745 	rbd_assert((!obj_req->result &&
2746 		    obj_req->xferred == obj_req->ex.oe_len) ||
2747 		   (obj_req->result < 0 && !obj_req->xferred));
2748 	if (!obj_req->result) {
2749 		img_req->xferred += obj_req->xferred;
2750 		return;
2751 	}
2752 
2753 	rbd_warn(img_req->rbd_dev,
2754 		 "%s at objno %llu %llu~%llu result %d xferred %llu",
2755 		 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2756 		 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2757 		 obj_req->xferred);
2758 	if (!img_req->result) {
2759 		img_req->result = obj_req->result;
2760 		img_req->xferred = 0;
2761 	}
2762 }
2763 
2764 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2765 {
2766 	struct rbd_obj_request *obj_req = img_req->obj_request;
2767 
2768 	rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2769 	rbd_assert((!img_req->result &&
2770 		    img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2771 		   (img_req->result < 0 && !img_req->xferred));
2772 
2773 	obj_req->result = img_req->result;
2774 	obj_req->xferred = img_req->xferred;
2775 	rbd_img_request_put(img_req);
2776 }
2777 
2778 static void rbd_img_end_request(struct rbd_img_request *img_req)
2779 {
2780 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2781 	rbd_assert((!img_req->result &&
2782 		    img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2783 		   (img_req->result < 0 && !img_req->xferred));
2784 
2785 	blk_mq_end_request(img_req->rq,
2786 			   errno_to_blk_status(img_req->result));
2787 	rbd_img_request_put(img_req);
2788 }
2789 
2790 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2791 {
2792 	struct rbd_img_request *img_req;
2793 
2794 again:
2795 	if (!__rbd_obj_handle_request(obj_req))
2796 		return;
2797 
2798 	img_req = obj_req->img_request;
2799 	spin_lock(&img_req->completion_lock);
2800 	rbd_obj_end_request(obj_req);
2801 	rbd_assert(img_req->pending_count);
2802 	if (--img_req->pending_count) {
2803 		spin_unlock(&img_req->completion_lock);
2804 		return;
2805 	}
2806 
2807 	spin_unlock(&img_req->completion_lock);
2808 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2809 		obj_req = img_req->obj_request;
2810 		rbd_img_end_child_request(img_req);
2811 		goto again;
2812 	}
2813 	rbd_img_end_request(img_req);
2814 }
2815 
2816 static const struct rbd_client_id rbd_empty_cid;
2817 
2818 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2819 			  const struct rbd_client_id *rhs)
2820 {
2821 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2822 }
2823 
2824 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2825 {
2826 	struct rbd_client_id cid;
2827 
2828 	mutex_lock(&rbd_dev->watch_mutex);
2829 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2830 	cid.handle = rbd_dev->watch_cookie;
2831 	mutex_unlock(&rbd_dev->watch_mutex);
2832 	return cid;
2833 }
2834 
2835 /*
2836  * lock_rwsem must be held for write
2837  */
2838 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2839 			      const struct rbd_client_id *cid)
2840 {
2841 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2842 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2843 	     cid->gid, cid->handle);
2844 	rbd_dev->owner_cid = *cid; /* struct */
2845 }
2846 
2847 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2848 {
2849 	mutex_lock(&rbd_dev->watch_mutex);
2850 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2851 	mutex_unlock(&rbd_dev->watch_mutex);
2852 }
2853 
2854 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2855 {
2856 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2857 
2858 	strcpy(rbd_dev->lock_cookie, cookie);
2859 	rbd_set_owner_cid(rbd_dev, &cid);
2860 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2861 }
2862 
2863 /*
2864  * lock_rwsem must be held for write
2865  */
2866 static int rbd_lock(struct rbd_device *rbd_dev)
2867 {
2868 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2869 	char cookie[32];
2870 	int ret;
2871 
2872 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2873 		rbd_dev->lock_cookie[0] != '\0');
2874 
2875 	format_lock_cookie(rbd_dev, cookie);
2876 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2877 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2878 			    RBD_LOCK_TAG, "", 0);
2879 	if (ret)
2880 		return ret;
2881 
2882 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2883 	__rbd_lock(rbd_dev, cookie);
2884 	return 0;
2885 }
2886 
2887 /*
2888  * lock_rwsem must be held for write
2889  */
2890 static void rbd_unlock(struct rbd_device *rbd_dev)
2891 {
2892 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2893 	int ret;
2894 
2895 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2896 		rbd_dev->lock_cookie[0] == '\0');
2897 
2898 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2899 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
2900 	if (ret && ret != -ENOENT)
2901 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2902 
2903 	/* treat errors as the image is unlocked */
2904 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2905 	rbd_dev->lock_cookie[0] = '\0';
2906 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2907 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2908 }
2909 
2910 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2911 				enum rbd_notify_op notify_op,
2912 				struct page ***preply_pages,
2913 				size_t *preply_len)
2914 {
2915 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2916 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2917 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2918 	int buf_size = sizeof(buf);
2919 	void *p = buf;
2920 
2921 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2922 
2923 	/* encode *LockPayload NotifyMessage (op + ClientId) */
2924 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2925 	ceph_encode_32(&p, notify_op);
2926 	ceph_encode_64(&p, cid.gid);
2927 	ceph_encode_64(&p, cid.handle);
2928 
2929 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2930 				&rbd_dev->header_oloc, buf, buf_size,
2931 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2932 }
2933 
2934 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2935 			       enum rbd_notify_op notify_op)
2936 {
2937 	struct page **reply_pages;
2938 	size_t reply_len;
2939 
2940 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2941 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2942 }
2943 
2944 static void rbd_notify_acquired_lock(struct work_struct *work)
2945 {
2946 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2947 						  acquired_lock_work);
2948 
2949 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2950 }
2951 
2952 static void rbd_notify_released_lock(struct work_struct *work)
2953 {
2954 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2955 						  released_lock_work);
2956 
2957 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2958 }
2959 
2960 static int rbd_request_lock(struct rbd_device *rbd_dev)
2961 {
2962 	struct page **reply_pages;
2963 	size_t reply_len;
2964 	bool lock_owner_responded = false;
2965 	int ret;
2966 
2967 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2968 
2969 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2970 				   &reply_pages, &reply_len);
2971 	if (ret && ret != -ETIMEDOUT) {
2972 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2973 		goto out;
2974 	}
2975 
2976 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2977 		void *p = page_address(reply_pages[0]);
2978 		void *const end = p + reply_len;
2979 		u32 n;
2980 
2981 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2982 		while (n--) {
2983 			u8 struct_v;
2984 			u32 len;
2985 
2986 			ceph_decode_need(&p, end, 8 + 8, e_inval);
2987 			p += 8 + 8; /* skip gid and cookie */
2988 
2989 			ceph_decode_32_safe(&p, end, len, e_inval);
2990 			if (!len)
2991 				continue;
2992 
2993 			if (lock_owner_responded) {
2994 				rbd_warn(rbd_dev,
2995 					 "duplicate lock owners detected");
2996 				ret = -EIO;
2997 				goto out;
2998 			}
2999 
3000 			lock_owner_responded = true;
3001 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3002 						  &struct_v, &len);
3003 			if (ret) {
3004 				rbd_warn(rbd_dev,
3005 					 "failed to decode ResponseMessage: %d",
3006 					 ret);
3007 				goto e_inval;
3008 			}
3009 
3010 			ret = ceph_decode_32(&p);
3011 		}
3012 	}
3013 
3014 	if (!lock_owner_responded) {
3015 		rbd_warn(rbd_dev, "no lock owners detected");
3016 		ret = -ETIMEDOUT;
3017 	}
3018 
3019 out:
3020 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3021 	return ret;
3022 
3023 e_inval:
3024 	ret = -EINVAL;
3025 	goto out;
3026 }
3027 
3028 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3029 {
3030 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3031 
3032 	cancel_delayed_work(&rbd_dev->lock_dwork);
3033 	if (wake_all)
3034 		wake_up_all(&rbd_dev->lock_waitq);
3035 	else
3036 		wake_up(&rbd_dev->lock_waitq);
3037 }
3038 
3039 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3040 			       struct ceph_locker **lockers, u32 *num_lockers)
3041 {
3042 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3043 	u8 lock_type;
3044 	char *lock_tag;
3045 	int ret;
3046 
3047 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3048 
3049 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3050 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3051 				 &lock_type, &lock_tag, lockers, num_lockers);
3052 	if (ret)
3053 		return ret;
3054 
3055 	if (*num_lockers == 0) {
3056 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3057 		goto out;
3058 	}
3059 
3060 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3061 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3062 			 lock_tag);
3063 		ret = -EBUSY;
3064 		goto out;
3065 	}
3066 
3067 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3068 		rbd_warn(rbd_dev, "shared lock type detected");
3069 		ret = -EBUSY;
3070 		goto out;
3071 	}
3072 
3073 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3074 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3075 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3076 			 (*lockers)[0].id.cookie);
3077 		ret = -EBUSY;
3078 		goto out;
3079 	}
3080 
3081 out:
3082 	kfree(lock_tag);
3083 	return ret;
3084 }
3085 
3086 static int find_watcher(struct rbd_device *rbd_dev,
3087 			const struct ceph_locker *locker)
3088 {
3089 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3090 	struct ceph_watch_item *watchers;
3091 	u32 num_watchers;
3092 	u64 cookie;
3093 	int i;
3094 	int ret;
3095 
3096 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3097 				      &rbd_dev->header_oloc, &watchers,
3098 				      &num_watchers);
3099 	if (ret)
3100 		return ret;
3101 
3102 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3103 	for (i = 0; i < num_watchers; i++) {
3104 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3105 			    sizeof(locker->info.addr)) &&
3106 		    watchers[i].cookie == cookie) {
3107 			struct rbd_client_id cid = {
3108 				.gid = le64_to_cpu(watchers[i].name.num),
3109 				.handle = cookie,
3110 			};
3111 
3112 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3113 			     rbd_dev, cid.gid, cid.handle);
3114 			rbd_set_owner_cid(rbd_dev, &cid);
3115 			ret = 1;
3116 			goto out;
3117 		}
3118 	}
3119 
3120 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3121 	ret = 0;
3122 out:
3123 	kfree(watchers);
3124 	return ret;
3125 }
3126 
3127 /*
3128  * lock_rwsem must be held for write
3129  */
3130 static int rbd_try_lock(struct rbd_device *rbd_dev)
3131 {
3132 	struct ceph_client *client = rbd_dev->rbd_client->client;
3133 	struct ceph_locker *lockers;
3134 	u32 num_lockers;
3135 	int ret;
3136 
3137 	for (;;) {
3138 		ret = rbd_lock(rbd_dev);
3139 		if (ret != -EBUSY)
3140 			return ret;
3141 
3142 		/* determine if the current lock holder is still alive */
3143 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3144 		if (ret)
3145 			return ret;
3146 
3147 		if (num_lockers == 0)
3148 			goto again;
3149 
3150 		ret = find_watcher(rbd_dev, lockers);
3151 		if (ret) {
3152 			if (ret > 0)
3153 				ret = 0; /* have to request lock */
3154 			goto out;
3155 		}
3156 
3157 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3158 			 ENTITY_NAME(lockers[0].id.name));
3159 
3160 		ret = ceph_monc_blacklist_add(&client->monc,
3161 					      &lockers[0].info.addr);
3162 		if (ret) {
3163 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3164 				 ENTITY_NAME(lockers[0].id.name), ret);
3165 			goto out;
3166 		}
3167 
3168 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3169 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3170 					  lockers[0].id.cookie,
3171 					  &lockers[0].id.name);
3172 		if (ret && ret != -ENOENT)
3173 			goto out;
3174 
3175 again:
3176 		ceph_free_lockers(lockers, num_lockers);
3177 	}
3178 
3179 out:
3180 	ceph_free_lockers(lockers, num_lockers);
3181 	return ret;
3182 }
3183 
3184 /*
3185  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3186  */
3187 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3188 						int *pret)
3189 {
3190 	enum rbd_lock_state lock_state;
3191 
3192 	down_read(&rbd_dev->lock_rwsem);
3193 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3194 	     rbd_dev->lock_state);
3195 	if (__rbd_is_lock_owner(rbd_dev)) {
3196 		lock_state = rbd_dev->lock_state;
3197 		up_read(&rbd_dev->lock_rwsem);
3198 		return lock_state;
3199 	}
3200 
3201 	up_read(&rbd_dev->lock_rwsem);
3202 	down_write(&rbd_dev->lock_rwsem);
3203 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3204 	     rbd_dev->lock_state);
3205 	if (!__rbd_is_lock_owner(rbd_dev)) {
3206 		*pret = rbd_try_lock(rbd_dev);
3207 		if (*pret)
3208 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3209 	}
3210 
3211 	lock_state = rbd_dev->lock_state;
3212 	up_write(&rbd_dev->lock_rwsem);
3213 	return lock_state;
3214 }
3215 
3216 static void rbd_acquire_lock(struct work_struct *work)
3217 {
3218 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3219 					    struct rbd_device, lock_dwork);
3220 	enum rbd_lock_state lock_state;
3221 	int ret = 0;
3222 
3223 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3224 again:
3225 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3226 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3227 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3228 			wake_requests(rbd_dev, true);
3229 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3230 		     rbd_dev, lock_state, ret);
3231 		return;
3232 	}
3233 
3234 	ret = rbd_request_lock(rbd_dev);
3235 	if (ret == -ETIMEDOUT) {
3236 		goto again; /* treat this as a dead client */
3237 	} else if (ret == -EROFS) {
3238 		rbd_warn(rbd_dev, "peer will not release lock");
3239 		/*
3240 		 * If this is rbd_add_acquire_lock(), we want to fail
3241 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3242 		 * want to block.
3243 		 */
3244 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3245 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3246 			/* wake "rbd map --exclusive" process */
3247 			wake_requests(rbd_dev, false);
3248 		}
3249 	} else if (ret < 0) {
3250 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3251 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3252 				 RBD_RETRY_DELAY);
3253 	} else {
3254 		/*
3255 		 * lock owner acked, but resend if we don't see them
3256 		 * release the lock
3257 		 */
3258 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3259 		     rbd_dev);
3260 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3261 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3262 	}
3263 }
3264 
3265 /*
3266  * lock_rwsem must be held for write
3267  */
3268 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3269 {
3270 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3271 	     rbd_dev->lock_state);
3272 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3273 		return false;
3274 
3275 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3276 	downgrade_write(&rbd_dev->lock_rwsem);
3277 	/*
3278 	 * Ensure that all in-flight IO is flushed.
3279 	 *
3280 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3281 	 * may be shared with other devices.
3282 	 */
3283 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3284 	up_read(&rbd_dev->lock_rwsem);
3285 
3286 	down_write(&rbd_dev->lock_rwsem);
3287 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3288 	     rbd_dev->lock_state);
3289 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3290 		return false;
3291 
3292 	rbd_unlock(rbd_dev);
3293 	/*
3294 	 * Give others a chance to grab the lock - we would re-acquire
3295 	 * almost immediately if we got new IO during ceph_osdc_sync()
3296 	 * otherwise.  We need to ack our own notifications, so this
3297 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3298 	 * after wake_requests() in rbd_handle_released_lock().
3299 	 */
3300 	cancel_delayed_work(&rbd_dev->lock_dwork);
3301 	return true;
3302 }
3303 
3304 static void rbd_release_lock_work(struct work_struct *work)
3305 {
3306 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3307 						  unlock_work);
3308 
3309 	down_write(&rbd_dev->lock_rwsem);
3310 	rbd_release_lock(rbd_dev);
3311 	up_write(&rbd_dev->lock_rwsem);
3312 }
3313 
3314 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3315 				     void **p)
3316 {
3317 	struct rbd_client_id cid = { 0 };
3318 
3319 	if (struct_v >= 2) {
3320 		cid.gid = ceph_decode_64(p);
3321 		cid.handle = ceph_decode_64(p);
3322 	}
3323 
3324 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3325 	     cid.handle);
3326 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3327 		down_write(&rbd_dev->lock_rwsem);
3328 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3329 			/*
3330 			 * we already know that the remote client is
3331 			 * the owner
3332 			 */
3333 			up_write(&rbd_dev->lock_rwsem);
3334 			return;
3335 		}
3336 
3337 		rbd_set_owner_cid(rbd_dev, &cid);
3338 		downgrade_write(&rbd_dev->lock_rwsem);
3339 	} else {
3340 		down_read(&rbd_dev->lock_rwsem);
3341 	}
3342 
3343 	if (!__rbd_is_lock_owner(rbd_dev))
3344 		wake_requests(rbd_dev, false);
3345 	up_read(&rbd_dev->lock_rwsem);
3346 }
3347 
3348 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3349 				     void **p)
3350 {
3351 	struct rbd_client_id cid = { 0 };
3352 
3353 	if (struct_v >= 2) {
3354 		cid.gid = ceph_decode_64(p);
3355 		cid.handle = ceph_decode_64(p);
3356 	}
3357 
3358 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3359 	     cid.handle);
3360 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3361 		down_write(&rbd_dev->lock_rwsem);
3362 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3363 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3364 			     __func__, rbd_dev, cid.gid, cid.handle,
3365 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3366 			up_write(&rbd_dev->lock_rwsem);
3367 			return;
3368 		}
3369 
3370 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3371 		downgrade_write(&rbd_dev->lock_rwsem);
3372 	} else {
3373 		down_read(&rbd_dev->lock_rwsem);
3374 	}
3375 
3376 	if (!__rbd_is_lock_owner(rbd_dev))
3377 		wake_requests(rbd_dev, false);
3378 	up_read(&rbd_dev->lock_rwsem);
3379 }
3380 
3381 /*
3382  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3383  * ResponseMessage is needed.
3384  */
3385 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3386 				   void **p)
3387 {
3388 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3389 	struct rbd_client_id cid = { 0 };
3390 	int result = 1;
3391 
3392 	if (struct_v >= 2) {
3393 		cid.gid = ceph_decode_64(p);
3394 		cid.handle = ceph_decode_64(p);
3395 	}
3396 
3397 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3398 	     cid.handle);
3399 	if (rbd_cid_equal(&cid, &my_cid))
3400 		return result;
3401 
3402 	down_read(&rbd_dev->lock_rwsem);
3403 	if (__rbd_is_lock_owner(rbd_dev)) {
3404 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3405 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3406 			goto out_unlock;
3407 
3408 		/*
3409 		 * encode ResponseMessage(0) so the peer can detect
3410 		 * a missing owner
3411 		 */
3412 		result = 0;
3413 
3414 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3415 			if (!rbd_dev->opts->exclusive) {
3416 				dout("%s rbd_dev %p queueing unlock_work\n",
3417 				     __func__, rbd_dev);
3418 				queue_work(rbd_dev->task_wq,
3419 					   &rbd_dev->unlock_work);
3420 			} else {
3421 				/* refuse to release the lock */
3422 				result = -EROFS;
3423 			}
3424 		}
3425 	}
3426 
3427 out_unlock:
3428 	up_read(&rbd_dev->lock_rwsem);
3429 	return result;
3430 }
3431 
3432 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3433 				     u64 notify_id, u64 cookie, s32 *result)
3434 {
3435 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3436 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3437 	int buf_size = sizeof(buf);
3438 	int ret;
3439 
3440 	if (result) {
3441 		void *p = buf;
3442 
3443 		/* encode ResponseMessage */
3444 		ceph_start_encoding(&p, 1, 1,
3445 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3446 		ceph_encode_32(&p, *result);
3447 	} else {
3448 		buf_size = 0;
3449 	}
3450 
3451 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3452 				   &rbd_dev->header_oloc, notify_id, cookie,
3453 				   buf, buf_size);
3454 	if (ret)
3455 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3456 }
3457 
3458 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3459 				   u64 cookie)
3460 {
3461 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3462 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3463 }
3464 
3465 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3466 					  u64 notify_id, u64 cookie, s32 result)
3467 {
3468 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3469 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3470 }
3471 
3472 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3473 			 u64 notifier_id, void *data, size_t data_len)
3474 {
3475 	struct rbd_device *rbd_dev = arg;
3476 	void *p = data;
3477 	void *const end = p + data_len;
3478 	u8 struct_v = 0;
3479 	u32 len;
3480 	u32 notify_op;
3481 	int ret;
3482 
3483 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3484 	     __func__, rbd_dev, cookie, notify_id, data_len);
3485 	if (data_len) {
3486 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3487 					  &struct_v, &len);
3488 		if (ret) {
3489 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3490 				 ret);
3491 			return;
3492 		}
3493 
3494 		notify_op = ceph_decode_32(&p);
3495 	} else {
3496 		/* legacy notification for header updates */
3497 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3498 		len = 0;
3499 	}
3500 
3501 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3502 	switch (notify_op) {
3503 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3504 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3505 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3506 		break;
3507 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3508 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3509 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3510 		break;
3511 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3512 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3513 		if (ret <= 0)
3514 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3515 						      cookie, ret);
3516 		else
3517 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3518 		break;
3519 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3520 		ret = rbd_dev_refresh(rbd_dev);
3521 		if (ret)
3522 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3523 
3524 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3525 		break;
3526 	default:
3527 		if (rbd_is_lock_owner(rbd_dev))
3528 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3529 						      cookie, -EOPNOTSUPP);
3530 		else
3531 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3532 		break;
3533 	}
3534 }
3535 
3536 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3537 
3538 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3539 {
3540 	struct rbd_device *rbd_dev = arg;
3541 
3542 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3543 
3544 	down_write(&rbd_dev->lock_rwsem);
3545 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3546 	up_write(&rbd_dev->lock_rwsem);
3547 
3548 	mutex_lock(&rbd_dev->watch_mutex);
3549 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3550 		__rbd_unregister_watch(rbd_dev);
3551 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3552 
3553 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3554 	}
3555 	mutex_unlock(&rbd_dev->watch_mutex);
3556 }
3557 
3558 /*
3559  * watch_mutex must be locked
3560  */
3561 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3562 {
3563 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3564 	struct ceph_osd_linger_request *handle;
3565 
3566 	rbd_assert(!rbd_dev->watch_handle);
3567 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3568 
3569 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3570 				 &rbd_dev->header_oloc, rbd_watch_cb,
3571 				 rbd_watch_errcb, rbd_dev);
3572 	if (IS_ERR(handle))
3573 		return PTR_ERR(handle);
3574 
3575 	rbd_dev->watch_handle = handle;
3576 	return 0;
3577 }
3578 
3579 /*
3580  * watch_mutex must be locked
3581  */
3582 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3583 {
3584 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3585 	int ret;
3586 
3587 	rbd_assert(rbd_dev->watch_handle);
3588 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3589 
3590 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3591 	if (ret)
3592 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3593 
3594 	rbd_dev->watch_handle = NULL;
3595 }
3596 
3597 static int rbd_register_watch(struct rbd_device *rbd_dev)
3598 {
3599 	int ret;
3600 
3601 	mutex_lock(&rbd_dev->watch_mutex);
3602 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3603 	ret = __rbd_register_watch(rbd_dev);
3604 	if (ret)
3605 		goto out;
3606 
3607 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3608 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3609 
3610 out:
3611 	mutex_unlock(&rbd_dev->watch_mutex);
3612 	return ret;
3613 }
3614 
3615 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3616 {
3617 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3618 
3619 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3620 	cancel_work_sync(&rbd_dev->released_lock_work);
3621 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3622 	cancel_work_sync(&rbd_dev->unlock_work);
3623 }
3624 
3625 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3626 {
3627 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3628 	cancel_tasks_sync(rbd_dev);
3629 
3630 	mutex_lock(&rbd_dev->watch_mutex);
3631 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3632 		__rbd_unregister_watch(rbd_dev);
3633 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3634 	mutex_unlock(&rbd_dev->watch_mutex);
3635 
3636 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3637 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3638 }
3639 
3640 /*
3641  * lock_rwsem must be held for write
3642  */
3643 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3644 {
3645 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3646 	char cookie[32];
3647 	int ret;
3648 
3649 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3650 
3651 	format_lock_cookie(rbd_dev, cookie);
3652 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3653 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3654 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3655 				  RBD_LOCK_TAG, cookie);
3656 	if (ret) {
3657 		if (ret != -EOPNOTSUPP)
3658 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3659 				 ret);
3660 
3661 		/*
3662 		 * Lock cookie cannot be updated on older OSDs, so do
3663 		 * a manual release and queue an acquire.
3664 		 */
3665 		if (rbd_release_lock(rbd_dev))
3666 			queue_delayed_work(rbd_dev->task_wq,
3667 					   &rbd_dev->lock_dwork, 0);
3668 	} else {
3669 		__rbd_lock(rbd_dev, cookie);
3670 	}
3671 }
3672 
3673 static void rbd_reregister_watch(struct work_struct *work)
3674 {
3675 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3676 					    struct rbd_device, watch_dwork);
3677 	int ret;
3678 
3679 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3680 
3681 	mutex_lock(&rbd_dev->watch_mutex);
3682 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3683 		mutex_unlock(&rbd_dev->watch_mutex);
3684 		return;
3685 	}
3686 
3687 	ret = __rbd_register_watch(rbd_dev);
3688 	if (ret) {
3689 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3690 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3691 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3692 			wake_requests(rbd_dev, true);
3693 		} else {
3694 			queue_delayed_work(rbd_dev->task_wq,
3695 					   &rbd_dev->watch_dwork,
3696 					   RBD_RETRY_DELAY);
3697 		}
3698 		mutex_unlock(&rbd_dev->watch_mutex);
3699 		return;
3700 	}
3701 
3702 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3703 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3704 	mutex_unlock(&rbd_dev->watch_mutex);
3705 
3706 	down_write(&rbd_dev->lock_rwsem);
3707 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3708 		rbd_reacquire_lock(rbd_dev);
3709 	up_write(&rbd_dev->lock_rwsem);
3710 
3711 	ret = rbd_dev_refresh(rbd_dev);
3712 	if (ret)
3713 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3714 }
3715 
3716 /*
3717  * Synchronous osd object method call.  Returns the number of bytes
3718  * returned in the outbound buffer, or a negative error code.
3719  */
3720 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3721 			     struct ceph_object_id *oid,
3722 			     struct ceph_object_locator *oloc,
3723 			     const char *method_name,
3724 			     const void *outbound,
3725 			     size_t outbound_size,
3726 			     void *inbound,
3727 			     size_t inbound_size)
3728 {
3729 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3730 	struct page *req_page = NULL;
3731 	struct page *reply_page;
3732 	int ret;
3733 
3734 	/*
3735 	 * Method calls are ultimately read operations.  The result
3736 	 * should placed into the inbound buffer provided.  They
3737 	 * also supply outbound data--parameters for the object
3738 	 * method.  Currently if this is present it will be a
3739 	 * snapshot id.
3740 	 */
3741 	if (outbound) {
3742 		if (outbound_size > PAGE_SIZE)
3743 			return -E2BIG;
3744 
3745 		req_page = alloc_page(GFP_KERNEL);
3746 		if (!req_page)
3747 			return -ENOMEM;
3748 
3749 		memcpy(page_address(req_page), outbound, outbound_size);
3750 	}
3751 
3752 	reply_page = alloc_page(GFP_KERNEL);
3753 	if (!reply_page) {
3754 		if (req_page)
3755 			__free_page(req_page);
3756 		return -ENOMEM;
3757 	}
3758 
3759 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3760 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3761 			     reply_page, &inbound_size);
3762 	if (!ret) {
3763 		memcpy(inbound, page_address(reply_page), inbound_size);
3764 		ret = inbound_size;
3765 	}
3766 
3767 	if (req_page)
3768 		__free_page(req_page);
3769 	__free_page(reply_page);
3770 	return ret;
3771 }
3772 
3773 /*
3774  * lock_rwsem must be held for read
3775  */
3776 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3777 {
3778 	DEFINE_WAIT(wait);
3779 	unsigned long timeout;
3780 	int ret = 0;
3781 
3782 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3783 		return -EBLACKLISTED;
3784 
3785 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3786 		return 0;
3787 
3788 	if (!may_acquire) {
3789 		rbd_warn(rbd_dev, "exclusive lock required");
3790 		return -EROFS;
3791 	}
3792 
3793 	do {
3794 		/*
3795 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3796 		 * and cancel_delayed_work() in wake_requests().
3797 		 */
3798 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3799 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3800 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3801 					  TASK_UNINTERRUPTIBLE);
3802 		up_read(&rbd_dev->lock_rwsem);
3803 		timeout = schedule_timeout(ceph_timeout_jiffies(
3804 						rbd_dev->opts->lock_timeout));
3805 		down_read(&rbd_dev->lock_rwsem);
3806 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3807 			ret = -EBLACKLISTED;
3808 			break;
3809 		}
3810 		if (!timeout) {
3811 			rbd_warn(rbd_dev, "timed out waiting for lock");
3812 			ret = -ETIMEDOUT;
3813 			break;
3814 		}
3815 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3816 
3817 	finish_wait(&rbd_dev->lock_waitq, &wait);
3818 	return ret;
3819 }
3820 
3821 static void rbd_queue_workfn(struct work_struct *work)
3822 {
3823 	struct request *rq = blk_mq_rq_from_pdu(work);
3824 	struct rbd_device *rbd_dev = rq->q->queuedata;
3825 	struct rbd_img_request *img_request;
3826 	struct ceph_snap_context *snapc = NULL;
3827 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3828 	u64 length = blk_rq_bytes(rq);
3829 	enum obj_operation_type op_type;
3830 	u64 mapping_size;
3831 	bool must_be_locked;
3832 	int result;
3833 
3834 	switch (req_op(rq)) {
3835 	case REQ_OP_DISCARD:
3836 		op_type = OBJ_OP_DISCARD;
3837 		break;
3838 	case REQ_OP_WRITE_ZEROES:
3839 		op_type = OBJ_OP_ZEROOUT;
3840 		break;
3841 	case REQ_OP_WRITE:
3842 		op_type = OBJ_OP_WRITE;
3843 		break;
3844 	case REQ_OP_READ:
3845 		op_type = OBJ_OP_READ;
3846 		break;
3847 	default:
3848 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3849 		result = -EIO;
3850 		goto err;
3851 	}
3852 
3853 	/* Ignore/skip any zero-length requests */
3854 
3855 	if (!length) {
3856 		dout("%s: zero-length request\n", __func__);
3857 		result = 0;
3858 		goto err_rq;
3859 	}
3860 
3861 	rbd_assert(op_type == OBJ_OP_READ ||
3862 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
3863 
3864 	/*
3865 	 * Quit early if the mapped snapshot no longer exists.  It's
3866 	 * still possible the snapshot will have disappeared by the
3867 	 * time our request arrives at the osd, but there's no sense in
3868 	 * sending it if we already know.
3869 	 */
3870 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3871 		dout("request for non-existent snapshot");
3872 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3873 		result = -ENXIO;
3874 		goto err_rq;
3875 	}
3876 
3877 	if (offset && length > U64_MAX - offset + 1) {
3878 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3879 			 length);
3880 		result = -EINVAL;
3881 		goto err_rq;	/* Shouldn't happen */
3882 	}
3883 
3884 	blk_mq_start_request(rq);
3885 
3886 	down_read(&rbd_dev->header_rwsem);
3887 	mapping_size = rbd_dev->mapping.size;
3888 	if (op_type != OBJ_OP_READ) {
3889 		snapc = rbd_dev->header.snapc;
3890 		ceph_get_snap_context(snapc);
3891 	}
3892 	up_read(&rbd_dev->header_rwsem);
3893 
3894 	if (offset + length > mapping_size) {
3895 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3896 			 length, mapping_size);
3897 		result = -EIO;
3898 		goto err_rq;
3899 	}
3900 
3901 	must_be_locked =
3902 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3903 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3904 	if (must_be_locked) {
3905 		down_read(&rbd_dev->lock_rwsem);
3906 		result = rbd_wait_state_locked(rbd_dev,
3907 					       !rbd_dev->opts->exclusive);
3908 		if (result)
3909 			goto err_unlock;
3910 	}
3911 
3912 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3913 	if (!img_request) {
3914 		result = -ENOMEM;
3915 		goto err_unlock;
3916 	}
3917 	img_request->rq = rq;
3918 	snapc = NULL; /* img_request consumes a ref */
3919 
3920 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
3921 		result = rbd_img_fill_nodata(img_request, offset, length);
3922 	else
3923 		result = rbd_img_fill_from_bio(img_request, offset, length,
3924 					       rq->bio);
3925 	if (result || !img_request->pending_count)
3926 		goto err_img_request;
3927 
3928 	rbd_img_request_submit(img_request);
3929 	if (must_be_locked)
3930 		up_read(&rbd_dev->lock_rwsem);
3931 	return;
3932 
3933 err_img_request:
3934 	rbd_img_request_put(img_request);
3935 err_unlock:
3936 	if (must_be_locked)
3937 		up_read(&rbd_dev->lock_rwsem);
3938 err_rq:
3939 	if (result)
3940 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3941 			 obj_op_name(op_type), length, offset, result);
3942 	ceph_put_snap_context(snapc);
3943 err:
3944 	blk_mq_end_request(rq, errno_to_blk_status(result));
3945 }
3946 
3947 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3948 		const struct blk_mq_queue_data *bd)
3949 {
3950 	struct request *rq = bd->rq;
3951 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3952 
3953 	queue_work(rbd_wq, work);
3954 	return BLK_STS_OK;
3955 }
3956 
3957 static void rbd_free_disk(struct rbd_device *rbd_dev)
3958 {
3959 	blk_cleanup_queue(rbd_dev->disk->queue);
3960 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3961 	put_disk(rbd_dev->disk);
3962 	rbd_dev->disk = NULL;
3963 }
3964 
3965 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3966 			     struct ceph_object_id *oid,
3967 			     struct ceph_object_locator *oloc,
3968 			     void *buf, int buf_len)
3969 
3970 {
3971 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3972 	struct ceph_osd_request *req;
3973 	struct page **pages;
3974 	int num_pages = calc_pages_for(0, buf_len);
3975 	int ret;
3976 
3977 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3978 	if (!req)
3979 		return -ENOMEM;
3980 
3981 	ceph_oid_copy(&req->r_base_oid, oid);
3982 	ceph_oloc_copy(&req->r_base_oloc, oloc);
3983 	req->r_flags = CEPH_OSD_FLAG_READ;
3984 
3985 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3986 	if (IS_ERR(pages)) {
3987 		ret = PTR_ERR(pages);
3988 		goto out_req;
3989 	}
3990 
3991 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3992 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3993 					 true);
3994 
3995 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3996 	if (ret)
3997 		goto out_req;
3998 
3999 	ceph_osdc_start_request(osdc, req, false);
4000 	ret = ceph_osdc_wait_request(osdc, req);
4001 	if (ret >= 0)
4002 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4003 
4004 out_req:
4005 	ceph_osdc_put_request(req);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * Read the complete header for the given rbd device.  On successful
4011  * return, the rbd_dev->header field will contain up-to-date
4012  * information about the image.
4013  */
4014 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4015 {
4016 	struct rbd_image_header_ondisk *ondisk = NULL;
4017 	u32 snap_count = 0;
4018 	u64 names_size = 0;
4019 	u32 want_count;
4020 	int ret;
4021 
4022 	/*
4023 	 * The complete header will include an array of its 64-bit
4024 	 * snapshot ids, followed by the names of those snapshots as
4025 	 * a contiguous block of NUL-terminated strings.  Note that
4026 	 * the number of snapshots could change by the time we read
4027 	 * it in, in which case we re-read it.
4028 	 */
4029 	do {
4030 		size_t size;
4031 
4032 		kfree(ondisk);
4033 
4034 		size = sizeof (*ondisk);
4035 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4036 		size += names_size;
4037 		ondisk = kmalloc(size, GFP_KERNEL);
4038 		if (!ondisk)
4039 			return -ENOMEM;
4040 
4041 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4042 					&rbd_dev->header_oloc, ondisk, size);
4043 		if (ret < 0)
4044 			goto out;
4045 		if ((size_t)ret < size) {
4046 			ret = -ENXIO;
4047 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4048 				size, ret);
4049 			goto out;
4050 		}
4051 		if (!rbd_dev_ondisk_valid(ondisk)) {
4052 			ret = -ENXIO;
4053 			rbd_warn(rbd_dev, "invalid header");
4054 			goto out;
4055 		}
4056 
4057 		names_size = le64_to_cpu(ondisk->snap_names_len);
4058 		want_count = snap_count;
4059 		snap_count = le32_to_cpu(ondisk->snap_count);
4060 	} while (snap_count != want_count);
4061 
4062 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4063 out:
4064 	kfree(ondisk);
4065 
4066 	return ret;
4067 }
4068 
4069 /*
4070  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4071  * has disappeared from the (just updated) snapshot context.
4072  */
4073 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4074 {
4075 	u64 snap_id;
4076 
4077 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4078 		return;
4079 
4080 	snap_id = rbd_dev->spec->snap_id;
4081 	if (snap_id == CEPH_NOSNAP)
4082 		return;
4083 
4084 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4085 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4086 }
4087 
4088 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4089 {
4090 	sector_t size;
4091 
4092 	/*
4093 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4094 	 * try to update its size.  If REMOVING is set, updating size
4095 	 * is just useless work since the device can't be opened.
4096 	 */
4097 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4098 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4099 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4100 		dout("setting size to %llu sectors", (unsigned long long)size);
4101 		set_capacity(rbd_dev->disk, size);
4102 		revalidate_disk(rbd_dev->disk);
4103 	}
4104 }
4105 
4106 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4107 {
4108 	u64 mapping_size;
4109 	int ret;
4110 
4111 	down_write(&rbd_dev->header_rwsem);
4112 	mapping_size = rbd_dev->mapping.size;
4113 
4114 	ret = rbd_dev_header_info(rbd_dev);
4115 	if (ret)
4116 		goto out;
4117 
4118 	/*
4119 	 * If there is a parent, see if it has disappeared due to the
4120 	 * mapped image getting flattened.
4121 	 */
4122 	if (rbd_dev->parent) {
4123 		ret = rbd_dev_v2_parent_info(rbd_dev);
4124 		if (ret)
4125 			goto out;
4126 	}
4127 
4128 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4129 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4130 	} else {
4131 		/* validate mapped snapshot's EXISTS flag */
4132 		rbd_exists_validate(rbd_dev);
4133 	}
4134 
4135 out:
4136 	up_write(&rbd_dev->header_rwsem);
4137 	if (!ret && mapping_size != rbd_dev->mapping.size)
4138 		rbd_dev_update_size(rbd_dev);
4139 
4140 	return ret;
4141 }
4142 
4143 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4144 		unsigned int hctx_idx, unsigned int numa_node)
4145 {
4146 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4147 
4148 	INIT_WORK(work, rbd_queue_workfn);
4149 	return 0;
4150 }
4151 
4152 static const struct blk_mq_ops rbd_mq_ops = {
4153 	.queue_rq	= rbd_queue_rq,
4154 	.init_request	= rbd_init_request,
4155 };
4156 
4157 static int rbd_init_disk(struct rbd_device *rbd_dev)
4158 {
4159 	struct gendisk *disk;
4160 	struct request_queue *q;
4161 	unsigned int objset_bytes =
4162 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4163 	int err;
4164 
4165 	/* create gendisk info */
4166 	disk = alloc_disk(single_major ?
4167 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4168 			  RBD_MINORS_PER_MAJOR);
4169 	if (!disk)
4170 		return -ENOMEM;
4171 
4172 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4173 		 rbd_dev->dev_id);
4174 	disk->major = rbd_dev->major;
4175 	disk->first_minor = rbd_dev->minor;
4176 	if (single_major)
4177 		disk->flags |= GENHD_FL_EXT_DEVT;
4178 	disk->fops = &rbd_bd_ops;
4179 	disk->private_data = rbd_dev;
4180 
4181 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4182 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4183 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4184 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4185 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4186 	rbd_dev->tag_set.nr_hw_queues = 1;
4187 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4188 
4189 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4190 	if (err)
4191 		goto out_disk;
4192 
4193 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4194 	if (IS_ERR(q)) {
4195 		err = PTR_ERR(q);
4196 		goto out_tag_set;
4197 	}
4198 
4199 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4200 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4201 
4202 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4203 	q->limits.max_sectors = queue_max_hw_sectors(q);
4204 	blk_queue_max_segments(q, USHRT_MAX);
4205 	blk_queue_max_segment_size(q, UINT_MAX);
4206 	blk_queue_io_min(q, objset_bytes);
4207 	blk_queue_io_opt(q, objset_bytes);
4208 
4209 	if (rbd_dev->opts->trim) {
4210 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4211 		q->limits.discard_granularity = objset_bytes;
4212 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4213 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4214 	}
4215 
4216 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4217 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4218 
4219 	/*
4220 	 * disk_release() expects a queue ref from add_disk() and will
4221 	 * put it.  Hold an extra ref until add_disk() is called.
4222 	 */
4223 	WARN_ON(!blk_get_queue(q));
4224 	disk->queue = q;
4225 	q->queuedata = rbd_dev;
4226 
4227 	rbd_dev->disk = disk;
4228 
4229 	return 0;
4230 out_tag_set:
4231 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4232 out_disk:
4233 	put_disk(disk);
4234 	return err;
4235 }
4236 
4237 /*
4238   sysfs
4239 */
4240 
4241 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4242 {
4243 	return container_of(dev, struct rbd_device, dev);
4244 }
4245 
4246 static ssize_t rbd_size_show(struct device *dev,
4247 			     struct device_attribute *attr, char *buf)
4248 {
4249 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4250 
4251 	return sprintf(buf, "%llu\n",
4252 		(unsigned long long)rbd_dev->mapping.size);
4253 }
4254 
4255 /*
4256  * Note this shows the features for whatever's mapped, which is not
4257  * necessarily the base image.
4258  */
4259 static ssize_t rbd_features_show(struct device *dev,
4260 			     struct device_attribute *attr, char *buf)
4261 {
4262 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4263 
4264 	return sprintf(buf, "0x%016llx\n",
4265 			(unsigned long long)rbd_dev->mapping.features);
4266 }
4267 
4268 static ssize_t rbd_major_show(struct device *dev,
4269 			      struct device_attribute *attr, char *buf)
4270 {
4271 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4272 
4273 	if (rbd_dev->major)
4274 		return sprintf(buf, "%d\n", rbd_dev->major);
4275 
4276 	return sprintf(buf, "(none)\n");
4277 }
4278 
4279 static ssize_t rbd_minor_show(struct device *dev,
4280 			      struct device_attribute *attr, char *buf)
4281 {
4282 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4283 
4284 	return sprintf(buf, "%d\n", rbd_dev->minor);
4285 }
4286 
4287 static ssize_t rbd_client_addr_show(struct device *dev,
4288 				    struct device_attribute *attr, char *buf)
4289 {
4290 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4291 	struct ceph_entity_addr *client_addr =
4292 	    ceph_client_addr(rbd_dev->rbd_client->client);
4293 
4294 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4295 		       le32_to_cpu(client_addr->nonce));
4296 }
4297 
4298 static ssize_t rbd_client_id_show(struct device *dev,
4299 				  struct device_attribute *attr, char *buf)
4300 {
4301 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4302 
4303 	return sprintf(buf, "client%lld\n",
4304 		       ceph_client_gid(rbd_dev->rbd_client->client));
4305 }
4306 
4307 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4308 				     struct device_attribute *attr, char *buf)
4309 {
4310 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4311 
4312 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4313 }
4314 
4315 static ssize_t rbd_config_info_show(struct device *dev,
4316 				    struct device_attribute *attr, char *buf)
4317 {
4318 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4319 
4320 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4321 }
4322 
4323 static ssize_t rbd_pool_show(struct device *dev,
4324 			     struct device_attribute *attr, char *buf)
4325 {
4326 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4327 
4328 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4329 }
4330 
4331 static ssize_t rbd_pool_id_show(struct device *dev,
4332 			     struct device_attribute *attr, char *buf)
4333 {
4334 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4335 
4336 	return sprintf(buf, "%llu\n",
4337 			(unsigned long long) rbd_dev->spec->pool_id);
4338 }
4339 
4340 static ssize_t rbd_pool_ns_show(struct device *dev,
4341 				struct device_attribute *attr, char *buf)
4342 {
4343 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4344 
4345 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4346 }
4347 
4348 static ssize_t rbd_name_show(struct device *dev,
4349 			     struct device_attribute *attr, char *buf)
4350 {
4351 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4352 
4353 	if (rbd_dev->spec->image_name)
4354 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4355 
4356 	return sprintf(buf, "(unknown)\n");
4357 }
4358 
4359 static ssize_t rbd_image_id_show(struct device *dev,
4360 			     struct device_attribute *attr, char *buf)
4361 {
4362 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4363 
4364 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4365 }
4366 
4367 /*
4368  * Shows the name of the currently-mapped snapshot (or
4369  * RBD_SNAP_HEAD_NAME for the base image).
4370  */
4371 static ssize_t rbd_snap_show(struct device *dev,
4372 			     struct device_attribute *attr,
4373 			     char *buf)
4374 {
4375 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4376 
4377 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4378 }
4379 
4380 static ssize_t rbd_snap_id_show(struct device *dev,
4381 				struct device_attribute *attr, char *buf)
4382 {
4383 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4384 
4385 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4386 }
4387 
4388 /*
4389  * For a v2 image, shows the chain of parent images, separated by empty
4390  * lines.  For v1 images or if there is no parent, shows "(no parent
4391  * image)".
4392  */
4393 static ssize_t rbd_parent_show(struct device *dev,
4394 			       struct device_attribute *attr,
4395 			       char *buf)
4396 {
4397 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4398 	ssize_t count = 0;
4399 
4400 	if (!rbd_dev->parent)
4401 		return sprintf(buf, "(no parent image)\n");
4402 
4403 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4404 		struct rbd_spec *spec = rbd_dev->parent_spec;
4405 
4406 		count += sprintf(&buf[count], "%s"
4407 			    "pool_id %llu\npool_name %s\n"
4408 			    "pool_ns %s\n"
4409 			    "image_id %s\nimage_name %s\n"
4410 			    "snap_id %llu\nsnap_name %s\n"
4411 			    "overlap %llu\n",
4412 			    !count ? "" : "\n", /* first? */
4413 			    spec->pool_id, spec->pool_name,
4414 			    spec->pool_ns ?: "",
4415 			    spec->image_id, spec->image_name ?: "(unknown)",
4416 			    spec->snap_id, spec->snap_name,
4417 			    rbd_dev->parent_overlap);
4418 	}
4419 
4420 	return count;
4421 }
4422 
4423 static ssize_t rbd_image_refresh(struct device *dev,
4424 				 struct device_attribute *attr,
4425 				 const char *buf,
4426 				 size_t size)
4427 {
4428 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4429 	int ret;
4430 
4431 	ret = rbd_dev_refresh(rbd_dev);
4432 	if (ret)
4433 		return ret;
4434 
4435 	return size;
4436 }
4437 
4438 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4439 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4440 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4441 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4442 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4443 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4444 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4445 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4446 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4447 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4448 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4449 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4450 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4451 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4452 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4453 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4454 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4455 
4456 static struct attribute *rbd_attrs[] = {
4457 	&dev_attr_size.attr,
4458 	&dev_attr_features.attr,
4459 	&dev_attr_major.attr,
4460 	&dev_attr_minor.attr,
4461 	&dev_attr_client_addr.attr,
4462 	&dev_attr_client_id.attr,
4463 	&dev_attr_cluster_fsid.attr,
4464 	&dev_attr_config_info.attr,
4465 	&dev_attr_pool.attr,
4466 	&dev_attr_pool_id.attr,
4467 	&dev_attr_pool_ns.attr,
4468 	&dev_attr_name.attr,
4469 	&dev_attr_image_id.attr,
4470 	&dev_attr_current_snap.attr,
4471 	&dev_attr_snap_id.attr,
4472 	&dev_attr_parent.attr,
4473 	&dev_attr_refresh.attr,
4474 	NULL
4475 };
4476 
4477 static struct attribute_group rbd_attr_group = {
4478 	.attrs = rbd_attrs,
4479 };
4480 
4481 static const struct attribute_group *rbd_attr_groups[] = {
4482 	&rbd_attr_group,
4483 	NULL
4484 };
4485 
4486 static void rbd_dev_release(struct device *dev);
4487 
4488 static const struct device_type rbd_device_type = {
4489 	.name		= "rbd",
4490 	.groups		= rbd_attr_groups,
4491 	.release	= rbd_dev_release,
4492 };
4493 
4494 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4495 {
4496 	kref_get(&spec->kref);
4497 
4498 	return spec;
4499 }
4500 
4501 static void rbd_spec_free(struct kref *kref);
4502 static void rbd_spec_put(struct rbd_spec *spec)
4503 {
4504 	if (spec)
4505 		kref_put(&spec->kref, rbd_spec_free);
4506 }
4507 
4508 static struct rbd_spec *rbd_spec_alloc(void)
4509 {
4510 	struct rbd_spec *spec;
4511 
4512 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4513 	if (!spec)
4514 		return NULL;
4515 
4516 	spec->pool_id = CEPH_NOPOOL;
4517 	spec->snap_id = CEPH_NOSNAP;
4518 	kref_init(&spec->kref);
4519 
4520 	return spec;
4521 }
4522 
4523 static void rbd_spec_free(struct kref *kref)
4524 {
4525 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4526 
4527 	kfree(spec->pool_name);
4528 	kfree(spec->pool_ns);
4529 	kfree(spec->image_id);
4530 	kfree(spec->image_name);
4531 	kfree(spec->snap_name);
4532 	kfree(spec);
4533 }
4534 
4535 static void rbd_dev_free(struct rbd_device *rbd_dev)
4536 {
4537 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4538 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4539 
4540 	ceph_oid_destroy(&rbd_dev->header_oid);
4541 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4542 	kfree(rbd_dev->config_info);
4543 
4544 	rbd_put_client(rbd_dev->rbd_client);
4545 	rbd_spec_put(rbd_dev->spec);
4546 	kfree(rbd_dev->opts);
4547 	kfree(rbd_dev);
4548 }
4549 
4550 static void rbd_dev_release(struct device *dev)
4551 {
4552 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4553 	bool need_put = !!rbd_dev->opts;
4554 
4555 	if (need_put) {
4556 		destroy_workqueue(rbd_dev->task_wq);
4557 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4558 	}
4559 
4560 	rbd_dev_free(rbd_dev);
4561 
4562 	/*
4563 	 * This is racy, but way better than putting module outside of
4564 	 * the release callback.  The race window is pretty small, so
4565 	 * doing something similar to dm (dm-builtin.c) is overkill.
4566 	 */
4567 	if (need_put)
4568 		module_put(THIS_MODULE);
4569 }
4570 
4571 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4572 					   struct rbd_spec *spec)
4573 {
4574 	struct rbd_device *rbd_dev;
4575 
4576 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4577 	if (!rbd_dev)
4578 		return NULL;
4579 
4580 	spin_lock_init(&rbd_dev->lock);
4581 	INIT_LIST_HEAD(&rbd_dev->node);
4582 	init_rwsem(&rbd_dev->header_rwsem);
4583 
4584 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4585 	ceph_oid_init(&rbd_dev->header_oid);
4586 	rbd_dev->header_oloc.pool = spec->pool_id;
4587 	if (spec->pool_ns) {
4588 		WARN_ON(!*spec->pool_ns);
4589 		rbd_dev->header_oloc.pool_ns =
4590 		    ceph_find_or_create_string(spec->pool_ns,
4591 					       strlen(spec->pool_ns));
4592 	}
4593 
4594 	mutex_init(&rbd_dev->watch_mutex);
4595 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4596 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4597 
4598 	init_rwsem(&rbd_dev->lock_rwsem);
4599 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4600 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4601 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4602 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4603 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4604 	init_waitqueue_head(&rbd_dev->lock_waitq);
4605 
4606 	rbd_dev->dev.bus = &rbd_bus_type;
4607 	rbd_dev->dev.type = &rbd_device_type;
4608 	rbd_dev->dev.parent = &rbd_root_dev;
4609 	device_initialize(&rbd_dev->dev);
4610 
4611 	rbd_dev->rbd_client = rbdc;
4612 	rbd_dev->spec = spec;
4613 
4614 	return rbd_dev;
4615 }
4616 
4617 /*
4618  * Create a mapping rbd_dev.
4619  */
4620 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4621 					 struct rbd_spec *spec,
4622 					 struct rbd_options *opts)
4623 {
4624 	struct rbd_device *rbd_dev;
4625 
4626 	rbd_dev = __rbd_dev_create(rbdc, spec);
4627 	if (!rbd_dev)
4628 		return NULL;
4629 
4630 	rbd_dev->opts = opts;
4631 
4632 	/* get an id and fill in device name */
4633 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4634 					 minor_to_rbd_dev_id(1 << MINORBITS),
4635 					 GFP_KERNEL);
4636 	if (rbd_dev->dev_id < 0)
4637 		goto fail_rbd_dev;
4638 
4639 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4640 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4641 						   rbd_dev->name);
4642 	if (!rbd_dev->task_wq)
4643 		goto fail_dev_id;
4644 
4645 	/* we have a ref from do_rbd_add() */
4646 	__module_get(THIS_MODULE);
4647 
4648 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4649 	return rbd_dev;
4650 
4651 fail_dev_id:
4652 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4653 fail_rbd_dev:
4654 	rbd_dev_free(rbd_dev);
4655 	return NULL;
4656 }
4657 
4658 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4659 {
4660 	if (rbd_dev)
4661 		put_device(&rbd_dev->dev);
4662 }
4663 
4664 /*
4665  * Get the size and object order for an image snapshot, or if
4666  * snap_id is CEPH_NOSNAP, gets this information for the base
4667  * image.
4668  */
4669 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4670 				u8 *order, u64 *snap_size)
4671 {
4672 	__le64 snapid = cpu_to_le64(snap_id);
4673 	int ret;
4674 	struct {
4675 		u8 order;
4676 		__le64 size;
4677 	} __attribute__ ((packed)) size_buf = { 0 };
4678 
4679 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4680 				  &rbd_dev->header_oloc, "get_size",
4681 				  &snapid, sizeof(snapid),
4682 				  &size_buf, sizeof(size_buf));
4683 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4684 	if (ret < 0)
4685 		return ret;
4686 	if (ret < sizeof (size_buf))
4687 		return -ERANGE;
4688 
4689 	if (order) {
4690 		*order = size_buf.order;
4691 		dout("  order %u", (unsigned int)*order);
4692 	}
4693 	*snap_size = le64_to_cpu(size_buf.size);
4694 
4695 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4696 		(unsigned long long)snap_id,
4697 		(unsigned long long)*snap_size);
4698 
4699 	return 0;
4700 }
4701 
4702 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4703 {
4704 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4705 					&rbd_dev->header.obj_order,
4706 					&rbd_dev->header.image_size);
4707 }
4708 
4709 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4710 {
4711 	void *reply_buf;
4712 	int ret;
4713 	void *p;
4714 
4715 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4716 	if (!reply_buf)
4717 		return -ENOMEM;
4718 
4719 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4720 				  &rbd_dev->header_oloc, "get_object_prefix",
4721 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4722 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4723 	if (ret < 0)
4724 		goto out;
4725 
4726 	p = reply_buf;
4727 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4728 						p + ret, NULL, GFP_NOIO);
4729 	ret = 0;
4730 
4731 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4732 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4733 		rbd_dev->header.object_prefix = NULL;
4734 	} else {
4735 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4736 	}
4737 out:
4738 	kfree(reply_buf);
4739 
4740 	return ret;
4741 }
4742 
4743 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4744 		u64 *snap_features)
4745 {
4746 	__le64 snapid = cpu_to_le64(snap_id);
4747 	struct {
4748 		__le64 features;
4749 		__le64 incompat;
4750 	} __attribute__ ((packed)) features_buf = { 0 };
4751 	u64 unsup;
4752 	int ret;
4753 
4754 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4755 				  &rbd_dev->header_oloc, "get_features",
4756 				  &snapid, sizeof(snapid),
4757 				  &features_buf, sizeof(features_buf));
4758 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4759 	if (ret < 0)
4760 		return ret;
4761 	if (ret < sizeof (features_buf))
4762 		return -ERANGE;
4763 
4764 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4765 	if (unsup) {
4766 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4767 			 unsup);
4768 		return -ENXIO;
4769 	}
4770 
4771 	*snap_features = le64_to_cpu(features_buf.features);
4772 
4773 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4774 		(unsigned long long)snap_id,
4775 		(unsigned long long)*snap_features,
4776 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4777 
4778 	return 0;
4779 }
4780 
4781 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4782 {
4783 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4784 						&rbd_dev->header.features);
4785 }
4786 
4787 struct parent_image_info {
4788 	u64		pool_id;
4789 	const char	*pool_ns;
4790 	const char	*image_id;
4791 	u64		snap_id;
4792 
4793 	bool		has_overlap;
4794 	u64		overlap;
4795 };
4796 
4797 /*
4798  * The caller is responsible for @pii.
4799  */
4800 static int decode_parent_image_spec(void **p, void *end,
4801 				    struct parent_image_info *pii)
4802 {
4803 	u8 struct_v;
4804 	u32 struct_len;
4805 	int ret;
4806 
4807 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4808 				  &struct_v, &struct_len);
4809 	if (ret)
4810 		return ret;
4811 
4812 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4813 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4814 	if (IS_ERR(pii->pool_ns)) {
4815 		ret = PTR_ERR(pii->pool_ns);
4816 		pii->pool_ns = NULL;
4817 		return ret;
4818 	}
4819 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4820 	if (IS_ERR(pii->image_id)) {
4821 		ret = PTR_ERR(pii->image_id);
4822 		pii->image_id = NULL;
4823 		return ret;
4824 	}
4825 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4826 	return 0;
4827 
4828 e_inval:
4829 	return -EINVAL;
4830 }
4831 
4832 static int __get_parent_info(struct rbd_device *rbd_dev,
4833 			     struct page *req_page,
4834 			     struct page *reply_page,
4835 			     struct parent_image_info *pii)
4836 {
4837 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4838 	size_t reply_len = PAGE_SIZE;
4839 	void *p, *end;
4840 	int ret;
4841 
4842 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4843 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4844 			     req_page, sizeof(u64), reply_page, &reply_len);
4845 	if (ret)
4846 		return ret == -EOPNOTSUPP ? 1 : ret;
4847 
4848 	p = page_address(reply_page);
4849 	end = p + reply_len;
4850 	ret = decode_parent_image_spec(&p, end, pii);
4851 	if (ret)
4852 		return ret;
4853 
4854 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4855 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4856 			     req_page, sizeof(u64), reply_page, &reply_len);
4857 	if (ret)
4858 		return ret;
4859 
4860 	p = page_address(reply_page);
4861 	end = p + reply_len;
4862 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4863 	if (pii->has_overlap)
4864 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4865 
4866 	return 0;
4867 
4868 e_inval:
4869 	return -EINVAL;
4870 }
4871 
4872 /*
4873  * The caller is responsible for @pii.
4874  */
4875 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4876 				    struct page *req_page,
4877 				    struct page *reply_page,
4878 				    struct parent_image_info *pii)
4879 {
4880 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4881 	size_t reply_len = PAGE_SIZE;
4882 	void *p, *end;
4883 	int ret;
4884 
4885 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4886 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4887 			     req_page, sizeof(u64), reply_page, &reply_len);
4888 	if (ret)
4889 		return ret;
4890 
4891 	p = page_address(reply_page);
4892 	end = p + reply_len;
4893 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4894 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4895 	if (IS_ERR(pii->image_id)) {
4896 		ret = PTR_ERR(pii->image_id);
4897 		pii->image_id = NULL;
4898 		return ret;
4899 	}
4900 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4901 	pii->has_overlap = true;
4902 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4903 
4904 	return 0;
4905 
4906 e_inval:
4907 	return -EINVAL;
4908 }
4909 
4910 static int get_parent_info(struct rbd_device *rbd_dev,
4911 			   struct parent_image_info *pii)
4912 {
4913 	struct page *req_page, *reply_page;
4914 	void *p;
4915 	int ret;
4916 
4917 	req_page = alloc_page(GFP_KERNEL);
4918 	if (!req_page)
4919 		return -ENOMEM;
4920 
4921 	reply_page = alloc_page(GFP_KERNEL);
4922 	if (!reply_page) {
4923 		__free_page(req_page);
4924 		return -ENOMEM;
4925 	}
4926 
4927 	p = page_address(req_page);
4928 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
4929 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4930 	if (ret > 0)
4931 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4932 					       pii);
4933 
4934 	__free_page(req_page);
4935 	__free_page(reply_page);
4936 	return ret;
4937 }
4938 
4939 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4940 {
4941 	struct rbd_spec *parent_spec;
4942 	struct parent_image_info pii = { 0 };
4943 	int ret;
4944 
4945 	parent_spec = rbd_spec_alloc();
4946 	if (!parent_spec)
4947 		return -ENOMEM;
4948 
4949 	ret = get_parent_info(rbd_dev, &pii);
4950 	if (ret)
4951 		goto out_err;
4952 
4953 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4954 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4955 	     pii.has_overlap, pii.overlap);
4956 
4957 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4958 		/*
4959 		 * Either the parent never existed, or we have
4960 		 * record of it but the image got flattened so it no
4961 		 * longer has a parent.  When the parent of a
4962 		 * layered image disappears we immediately set the
4963 		 * overlap to 0.  The effect of this is that all new
4964 		 * requests will be treated as if the image had no
4965 		 * parent.
4966 		 *
4967 		 * If !pii.has_overlap, the parent image spec is not
4968 		 * applicable.  It's there to avoid duplication in each
4969 		 * snapshot record.
4970 		 */
4971 		if (rbd_dev->parent_overlap) {
4972 			rbd_dev->parent_overlap = 0;
4973 			rbd_dev_parent_put(rbd_dev);
4974 			pr_info("%s: clone image has been flattened\n",
4975 				rbd_dev->disk->disk_name);
4976 		}
4977 
4978 		goto out;	/* No parent?  No problem. */
4979 	}
4980 
4981 	/* The ceph file layout needs to fit pool id in 32 bits */
4982 
4983 	ret = -EIO;
4984 	if (pii.pool_id > (u64)U32_MAX) {
4985 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4986 			(unsigned long long)pii.pool_id, U32_MAX);
4987 		goto out_err;
4988 	}
4989 
4990 	/*
4991 	 * The parent won't change (except when the clone is
4992 	 * flattened, already handled that).  So we only need to
4993 	 * record the parent spec we have not already done so.
4994 	 */
4995 	if (!rbd_dev->parent_spec) {
4996 		parent_spec->pool_id = pii.pool_id;
4997 		if (pii.pool_ns && *pii.pool_ns) {
4998 			parent_spec->pool_ns = pii.pool_ns;
4999 			pii.pool_ns = NULL;
5000 		}
5001 		parent_spec->image_id = pii.image_id;
5002 		pii.image_id = NULL;
5003 		parent_spec->snap_id = pii.snap_id;
5004 
5005 		rbd_dev->parent_spec = parent_spec;
5006 		parent_spec = NULL;	/* rbd_dev now owns this */
5007 	}
5008 
5009 	/*
5010 	 * We always update the parent overlap.  If it's zero we issue
5011 	 * a warning, as we will proceed as if there was no parent.
5012 	 */
5013 	if (!pii.overlap) {
5014 		if (parent_spec) {
5015 			/* refresh, careful to warn just once */
5016 			if (rbd_dev->parent_overlap)
5017 				rbd_warn(rbd_dev,
5018 				    "clone now standalone (overlap became 0)");
5019 		} else {
5020 			/* initial probe */
5021 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5022 		}
5023 	}
5024 	rbd_dev->parent_overlap = pii.overlap;
5025 
5026 out:
5027 	ret = 0;
5028 out_err:
5029 	kfree(pii.pool_ns);
5030 	kfree(pii.image_id);
5031 	rbd_spec_put(parent_spec);
5032 	return ret;
5033 }
5034 
5035 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5036 {
5037 	struct {
5038 		__le64 stripe_unit;
5039 		__le64 stripe_count;
5040 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5041 	size_t size = sizeof (striping_info_buf);
5042 	void *p;
5043 	int ret;
5044 
5045 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5046 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5047 				NULL, 0, &striping_info_buf, size);
5048 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5049 	if (ret < 0)
5050 		return ret;
5051 	if (ret < size)
5052 		return -ERANGE;
5053 
5054 	p = &striping_info_buf;
5055 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5056 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5057 	return 0;
5058 }
5059 
5060 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5061 {
5062 	__le64 data_pool_id;
5063 	int ret;
5064 
5065 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5066 				  &rbd_dev->header_oloc, "get_data_pool",
5067 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5068 	if (ret < 0)
5069 		return ret;
5070 	if (ret < sizeof(data_pool_id))
5071 		return -EBADMSG;
5072 
5073 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5074 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5075 	return 0;
5076 }
5077 
5078 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5079 {
5080 	CEPH_DEFINE_OID_ONSTACK(oid);
5081 	size_t image_id_size;
5082 	char *image_id;
5083 	void *p;
5084 	void *end;
5085 	size_t size;
5086 	void *reply_buf = NULL;
5087 	size_t len = 0;
5088 	char *image_name = NULL;
5089 	int ret;
5090 
5091 	rbd_assert(!rbd_dev->spec->image_name);
5092 
5093 	len = strlen(rbd_dev->spec->image_id);
5094 	image_id_size = sizeof (__le32) + len;
5095 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5096 	if (!image_id)
5097 		return NULL;
5098 
5099 	p = image_id;
5100 	end = image_id + image_id_size;
5101 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5102 
5103 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5104 	reply_buf = kmalloc(size, GFP_KERNEL);
5105 	if (!reply_buf)
5106 		goto out;
5107 
5108 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5109 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5110 				  "dir_get_name", image_id, image_id_size,
5111 				  reply_buf, size);
5112 	if (ret < 0)
5113 		goto out;
5114 	p = reply_buf;
5115 	end = reply_buf + ret;
5116 
5117 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5118 	if (IS_ERR(image_name))
5119 		image_name = NULL;
5120 	else
5121 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5122 out:
5123 	kfree(reply_buf);
5124 	kfree(image_id);
5125 
5126 	return image_name;
5127 }
5128 
5129 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5130 {
5131 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5132 	const char *snap_name;
5133 	u32 which = 0;
5134 
5135 	/* Skip over names until we find the one we are looking for */
5136 
5137 	snap_name = rbd_dev->header.snap_names;
5138 	while (which < snapc->num_snaps) {
5139 		if (!strcmp(name, snap_name))
5140 			return snapc->snaps[which];
5141 		snap_name += strlen(snap_name) + 1;
5142 		which++;
5143 	}
5144 	return CEPH_NOSNAP;
5145 }
5146 
5147 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5148 {
5149 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5150 	u32 which;
5151 	bool found = false;
5152 	u64 snap_id;
5153 
5154 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5155 		const char *snap_name;
5156 
5157 		snap_id = snapc->snaps[which];
5158 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5159 		if (IS_ERR(snap_name)) {
5160 			/* ignore no-longer existing snapshots */
5161 			if (PTR_ERR(snap_name) == -ENOENT)
5162 				continue;
5163 			else
5164 				break;
5165 		}
5166 		found = !strcmp(name, snap_name);
5167 		kfree(snap_name);
5168 	}
5169 	return found ? snap_id : CEPH_NOSNAP;
5170 }
5171 
5172 /*
5173  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5174  * no snapshot by that name is found, or if an error occurs.
5175  */
5176 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5177 {
5178 	if (rbd_dev->image_format == 1)
5179 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5180 
5181 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5182 }
5183 
5184 /*
5185  * An image being mapped will have everything but the snap id.
5186  */
5187 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5188 {
5189 	struct rbd_spec *spec = rbd_dev->spec;
5190 
5191 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5192 	rbd_assert(spec->image_id && spec->image_name);
5193 	rbd_assert(spec->snap_name);
5194 
5195 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5196 		u64 snap_id;
5197 
5198 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5199 		if (snap_id == CEPH_NOSNAP)
5200 			return -ENOENT;
5201 
5202 		spec->snap_id = snap_id;
5203 	} else {
5204 		spec->snap_id = CEPH_NOSNAP;
5205 	}
5206 
5207 	return 0;
5208 }
5209 
5210 /*
5211  * A parent image will have all ids but none of the names.
5212  *
5213  * All names in an rbd spec are dynamically allocated.  It's OK if we
5214  * can't figure out the name for an image id.
5215  */
5216 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5217 {
5218 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5219 	struct rbd_spec *spec = rbd_dev->spec;
5220 	const char *pool_name;
5221 	const char *image_name;
5222 	const char *snap_name;
5223 	int ret;
5224 
5225 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5226 	rbd_assert(spec->image_id);
5227 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5228 
5229 	/* Get the pool name; we have to make our own copy of this */
5230 
5231 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5232 	if (!pool_name) {
5233 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5234 		return -EIO;
5235 	}
5236 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5237 	if (!pool_name)
5238 		return -ENOMEM;
5239 
5240 	/* Fetch the image name; tolerate failure here */
5241 
5242 	image_name = rbd_dev_image_name(rbd_dev);
5243 	if (!image_name)
5244 		rbd_warn(rbd_dev, "unable to get image name");
5245 
5246 	/* Fetch the snapshot name */
5247 
5248 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5249 	if (IS_ERR(snap_name)) {
5250 		ret = PTR_ERR(snap_name);
5251 		goto out_err;
5252 	}
5253 
5254 	spec->pool_name = pool_name;
5255 	spec->image_name = image_name;
5256 	spec->snap_name = snap_name;
5257 
5258 	return 0;
5259 
5260 out_err:
5261 	kfree(image_name);
5262 	kfree(pool_name);
5263 	return ret;
5264 }
5265 
5266 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5267 {
5268 	size_t size;
5269 	int ret;
5270 	void *reply_buf;
5271 	void *p;
5272 	void *end;
5273 	u64 seq;
5274 	u32 snap_count;
5275 	struct ceph_snap_context *snapc;
5276 	u32 i;
5277 
5278 	/*
5279 	 * We'll need room for the seq value (maximum snapshot id),
5280 	 * snapshot count, and array of that many snapshot ids.
5281 	 * For now we have a fixed upper limit on the number we're
5282 	 * prepared to receive.
5283 	 */
5284 	size = sizeof (__le64) + sizeof (__le32) +
5285 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5286 	reply_buf = kzalloc(size, GFP_KERNEL);
5287 	if (!reply_buf)
5288 		return -ENOMEM;
5289 
5290 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5291 				  &rbd_dev->header_oloc, "get_snapcontext",
5292 				  NULL, 0, reply_buf, size);
5293 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5294 	if (ret < 0)
5295 		goto out;
5296 
5297 	p = reply_buf;
5298 	end = reply_buf + ret;
5299 	ret = -ERANGE;
5300 	ceph_decode_64_safe(&p, end, seq, out);
5301 	ceph_decode_32_safe(&p, end, snap_count, out);
5302 
5303 	/*
5304 	 * Make sure the reported number of snapshot ids wouldn't go
5305 	 * beyond the end of our buffer.  But before checking that,
5306 	 * make sure the computed size of the snapshot context we
5307 	 * allocate is representable in a size_t.
5308 	 */
5309 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5310 				 / sizeof (u64)) {
5311 		ret = -EINVAL;
5312 		goto out;
5313 	}
5314 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5315 		goto out;
5316 	ret = 0;
5317 
5318 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5319 	if (!snapc) {
5320 		ret = -ENOMEM;
5321 		goto out;
5322 	}
5323 	snapc->seq = seq;
5324 	for (i = 0; i < snap_count; i++)
5325 		snapc->snaps[i] = ceph_decode_64(&p);
5326 
5327 	ceph_put_snap_context(rbd_dev->header.snapc);
5328 	rbd_dev->header.snapc = snapc;
5329 
5330 	dout("  snap context seq = %llu, snap_count = %u\n",
5331 		(unsigned long long)seq, (unsigned int)snap_count);
5332 out:
5333 	kfree(reply_buf);
5334 
5335 	return ret;
5336 }
5337 
5338 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5339 					u64 snap_id)
5340 {
5341 	size_t size;
5342 	void *reply_buf;
5343 	__le64 snapid;
5344 	int ret;
5345 	void *p;
5346 	void *end;
5347 	char *snap_name;
5348 
5349 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5350 	reply_buf = kmalloc(size, GFP_KERNEL);
5351 	if (!reply_buf)
5352 		return ERR_PTR(-ENOMEM);
5353 
5354 	snapid = cpu_to_le64(snap_id);
5355 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5356 				  &rbd_dev->header_oloc, "get_snapshot_name",
5357 				  &snapid, sizeof(snapid), reply_buf, size);
5358 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5359 	if (ret < 0) {
5360 		snap_name = ERR_PTR(ret);
5361 		goto out;
5362 	}
5363 
5364 	p = reply_buf;
5365 	end = reply_buf + ret;
5366 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5367 	if (IS_ERR(snap_name))
5368 		goto out;
5369 
5370 	dout("  snap_id 0x%016llx snap_name = %s\n",
5371 		(unsigned long long)snap_id, snap_name);
5372 out:
5373 	kfree(reply_buf);
5374 
5375 	return snap_name;
5376 }
5377 
5378 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5379 {
5380 	bool first_time = rbd_dev->header.object_prefix == NULL;
5381 	int ret;
5382 
5383 	ret = rbd_dev_v2_image_size(rbd_dev);
5384 	if (ret)
5385 		return ret;
5386 
5387 	if (first_time) {
5388 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5389 		if (ret)
5390 			return ret;
5391 	}
5392 
5393 	ret = rbd_dev_v2_snap_context(rbd_dev);
5394 	if (ret && first_time) {
5395 		kfree(rbd_dev->header.object_prefix);
5396 		rbd_dev->header.object_prefix = NULL;
5397 	}
5398 
5399 	return ret;
5400 }
5401 
5402 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5403 {
5404 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5405 
5406 	if (rbd_dev->image_format == 1)
5407 		return rbd_dev_v1_header_info(rbd_dev);
5408 
5409 	return rbd_dev_v2_header_info(rbd_dev);
5410 }
5411 
5412 /*
5413  * Skips over white space at *buf, and updates *buf to point to the
5414  * first found non-space character (if any). Returns the length of
5415  * the token (string of non-white space characters) found.  Note
5416  * that *buf must be terminated with '\0'.
5417  */
5418 static inline size_t next_token(const char **buf)
5419 {
5420         /*
5421         * These are the characters that produce nonzero for
5422         * isspace() in the "C" and "POSIX" locales.
5423         */
5424         const char *spaces = " \f\n\r\t\v";
5425 
5426         *buf += strspn(*buf, spaces);	/* Find start of token */
5427 
5428 	return strcspn(*buf, spaces);   /* Return token length */
5429 }
5430 
5431 /*
5432  * Finds the next token in *buf, dynamically allocates a buffer big
5433  * enough to hold a copy of it, and copies the token into the new
5434  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5435  * that a duplicate buffer is created even for a zero-length token.
5436  *
5437  * Returns a pointer to the newly-allocated duplicate, or a null
5438  * pointer if memory for the duplicate was not available.  If
5439  * the lenp argument is a non-null pointer, the length of the token
5440  * (not including the '\0') is returned in *lenp.
5441  *
5442  * If successful, the *buf pointer will be updated to point beyond
5443  * the end of the found token.
5444  *
5445  * Note: uses GFP_KERNEL for allocation.
5446  */
5447 static inline char *dup_token(const char **buf, size_t *lenp)
5448 {
5449 	char *dup;
5450 	size_t len;
5451 
5452 	len = next_token(buf);
5453 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5454 	if (!dup)
5455 		return NULL;
5456 	*(dup + len) = '\0';
5457 	*buf += len;
5458 
5459 	if (lenp)
5460 		*lenp = len;
5461 
5462 	return dup;
5463 }
5464 
5465 /*
5466  * Parse the options provided for an "rbd add" (i.e., rbd image
5467  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5468  * and the data written is passed here via a NUL-terminated buffer.
5469  * Returns 0 if successful or an error code otherwise.
5470  *
5471  * The information extracted from these options is recorded in
5472  * the other parameters which return dynamically-allocated
5473  * structures:
5474  *  ceph_opts
5475  *      The address of a pointer that will refer to a ceph options
5476  *      structure.  Caller must release the returned pointer using
5477  *      ceph_destroy_options() when it is no longer needed.
5478  *  rbd_opts
5479  *	Address of an rbd options pointer.  Fully initialized by
5480  *	this function; caller must release with kfree().
5481  *  spec
5482  *	Address of an rbd image specification pointer.  Fully
5483  *	initialized by this function based on parsed options.
5484  *	Caller must release with rbd_spec_put().
5485  *
5486  * The options passed take this form:
5487  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5488  * where:
5489  *  <mon_addrs>
5490  *      A comma-separated list of one or more monitor addresses.
5491  *      A monitor address is an ip address, optionally followed
5492  *      by a port number (separated by a colon).
5493  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5494  *  <options>
5495  *      A comma-separated list of ceph and/or rbd options.
5496  *  <pool_name>
5497  *      The name of the rados pool containing the rbd image.
5498  *  <image_name>
5499  *      The name of the image in that pool to map.
5500  *  <snap_id>
5501  *      An optional snapshot id.  If provided, the mapping will
5502  *      present data from the image at the time that snapshot was
5503  *      created.  The image head is used if no snapshot id is
5504  *      provided.  Snapshot mappings are always read-only.
5505  */
5506 static int rbd_add_parse_args(const char *buf,
5507 				struct ceph_options **ceph_opts,
5508 				struct rbd_options **opts,
5509 				struct rbd_spec **rbd_spec)
5510 {
5511 	size_t len;
5512 	char *options;
5513 	const char *mon_addrs;
5514 	char *snap_name;
5515 	size_t mon_addrs_size;
5516 	struct parse_rbd_opts_ctx pctx = { 0 };
5517 	struct ceph_options *copts;
5518 	int ret;
5519 
5520 	/* The first four tokens are required */
5521 
5522 	len = next_token(&buf);
5523 	if (!len) {
5524 		rbd_warn(NULL, "no monitor address(es) provided");
5525 		return -EINVAL;
5526 	}
5527 	mon_addrs = buf;
5528 	mon_addrs_size = len + 1;
5529 	buf += len;
5530 
5531 	ret = -EINVAL;
5532 	options = dup_token(&buf, NULL);
5533 	if (!options)
5534 		return -ENOMEM;
5535 	if (!*options) {
5536 		rbd_warn(NULL, "no options provided");
5537 		goto out_err;
5538 	}
5539 
5540 	pctx.spec = rbd_spec_alloc();
5541 	if (!pctx.spec)
5542 		goto out_mem;
5543 
5544 	pctx.spec->pool_name = dup_token(&buf, NULL);
5545 	if (!pctx.spec->pool_name)
5546 		goto out_mem;
5547 	if (!*pctx.spec->pool_name) {
5548 		rbd_warn(NULL, "no pool name provided");
5549 		goto out_err;
5550 	}
5551 
5552 	pctx.spec->image_name = dup_token(&buf, NULL);
5553 	if (!pctx.spec->image_name)
5554 		goto out_mem;
5555 	if (!*pctx.spec->image_name) {
5556 		rbd_warn(NULL, "no image name provided");
5557 		goto out_err;
5558 	}
5559 
5560 	/*
5561 	 * Snapshot name is optional; default is to use "-"
5562 	 * (indicating the head/no snapshot).
5563 	 */
5564 	len = next_token(&buf);
5565 	if (!len) {
5566 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5567 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5568 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5569 		ret = -ENAMETOOLONG;
5570 		goto out_err;
5571 	}
5572 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5573 	if (!snap_name)
5574 		goto out_mem;
5575 	*(snap_name + len) = '\0';
5576 	pctx.spec->snap_name = snap_name;
5577 
5578 	/* Initialize all rbd options to the defaults */
5579 
5580 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5581 	if (!pctx.opts)
5582 		goto out_mem;
5583 
5584 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5585 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5586 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
5587 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5588 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5589 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5590 	pctx.opts->trim = RBD_TRIM_DEFAULT;
5591 
5592 	copts = ceph_parse_options(options, mon_addrs,
5593 				   mon_addrs + mon_addrs_size - 1,
5594 				   parse_rbd_opts_token, &pctx);
5595 	if (IS_ERR(copts)) {
5596 		ret = PTR_ERR(copts);
5597 		goto out_err;
5598 	}
5599 	kfree(options);
5600 
5601 	*ceph_opts = copts;
5602 	*opts = pctx.opts;
5603 	*rbd_spec = pctx.spec;
5604 
5605 	return 0;
5606 out_mem:
5607 	ret = -ENOMEM;
5608 out_err:
5609 	kfree(pctx.opts);
5610 	rbd_spec_put(pctx.spec);
5611 	kfree(options);
5612 
5613 	return ret;
5614 }
5615 
5616 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5617 {
5618 	down_write(&rbd_dev->lock_rwsem);
5619 	if (__rbd_is_lock_owner(rbd_dev))
5620 		rbd_unlock(rbd_dev);
5621 	up_write(&rbd_dev->lock_rwsem);
5622 }
5623 
5624 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5625 {
5626 	int ret;
5627 
5628 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5629 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5630 		return -EINVAL;
5631 	}
5632 
5633 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5634 	down_read(&rbd_dev->lock_rwsem);
5635 	ret = rbd_wait_state_locked(rbd_dev, true);
5636 	up_read(&rbd_dev->lock_rwsem);
5637 	if (ret) {
5638 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5639 		return -EROFS;
5640 	}
5641 
5642 	return 0;
5643 }
5644 
5645 /*
5646  * An rbd format 2 image has a unique identifier, distinct from the
5647  * name given to it by the user.  Internally, that identifier is
5648  * what's used to specify the names of objects related to the image.
5649  *
5650  * A special "rbd id" object is used to map an rbd image name to its
5651  * id.  If that object doesn't exist, then there is no v2 rbd image
5652  * with the supplied name.
5653  *
5654  * This function will record the given rbd_dev's image_id field if
5655  * it can be determined, and in that case will return 0.  If any
5656  * errors occur a negative errno will be returned and the rbd_dev's
5657  * image_id field will be unchanged (and should be NULL).
5658  */
5659 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5660 {
5661 	int ret;
5662 	size_t size;
5663 	CEPH_DEFINE_OID_ONSTACK(oid);
5664 	void *response;
5665 	char *image_id;
5666 
5667 	/*
5668 	 * When probing a parent image, the image id is already
5669 	 * known (and the image name likely is not).  There's no
5670 	 * need to fetch the image id again in this case.  We
5671 	 * do still need to set the image format though.
5672 	 */
5673 	if (rbd_dev->spec->image_id) {
5674 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5675 
5676 		return 0;
5677 	}
5678 
5679 	/*
5680 	 * First, see if the format 2 image id file exists, and if
5681 	 * so, get the image's persistent id from it.
5682 	 */
5683 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5684 			       rbd_dev->spec->image_name);
5685 	if (ret)
5686 		return ret;
5687 
5688 	dout("rbd id object name is %s\n", oid.name);
5689 
5690 	/* Response will be an encoded string, which includes a length */
5691 
5692 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5693 	response = kzalloc(size, GFP_NOIO);
5694 	if (!response) {
5695 		ret = -ENOMEM;
5696 		goto out;
5697 	}
5698 
5699 	/* If it doesn't exist we'll assume it's a format 1 image */
5700 
5701 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5702 				  "get_id", NULL, 0,
5703 				  response, RBD_IMAGE_ID_LEN_MAX);
5704 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5705 	if (ret == -ENOENT) {
5706 		image_id = kstrdup("", GFP_KERNEL);
5707 		ret = image_id ? 0 : -ENOMEM;
5708 		if (!ret)
5709 			rbd_dev->image_format = 1;
5710 	} else if (ret >= 0) {
5711 		void *p = response;
5712 
5713 		image_id = ceph_extract_encoded_string(&p, p + ret,
5714 						NULL, GFP_NOIO);
5715 		ret = PTR_ERR_OR_ZERO(image_id);
5716 		if (!ret)
5717 			rbd_dev->image_format = 2;
5718 	}
5719 
5720 	if (!ret) {
5721 		rbd_dev->spec->image_id = image_id;
5722 		dout("image_id is %s\n", image_id);
5723 	}
5724 out:
5725 	kfree(response);
5726 	ceph_oid_destroy(&oid);
5727 	return ret;
5728 }
5729 
5730 /*
5731  * Undo whatever state changes are made by v1 or v2 header info
5732  * call.
5733  */
5734 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5735 {
5736 	struct rbd_image_header	*header;
5737 
5738 	rbd_dev_parent_put(rbd_dev);
5739 
5740 	/* Free dynamic fields from the header, then zero it out */
5741 
5742 	header = &rbd_dev->header;
5743 	ceph_put_snap_context(header->snapc);
5744 	kfree(header->snap_sizes);
5745 	kfree(header->snap_names);
5746 	kfree(header->object_prefix);
5747 	memset(header, 0, sizeof (*header));
5748 }
5749 
5750 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5751 {
5752 	int ret;
5753 
5754 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5755 	if (ret)
5756 		goto out_err;
5757 
5758 	/*
5759 	 * Get the and check features for the image.  Currently the
5760 	 * features are assumed to never change.
5761 	 */
5762 	ret = rbd_dev_v2_features(rbd_dev);
5763 	if (ret)
5764 		goto out_err;
5765 
5766 	/* If the image supports fancy striping, get its parameters */
5767 
5768 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5769 		ret = rbd_dev_v2_striping_info(rbd_dev);
5770 		if (ret < 0)
5771 			goto out_err;
5772 	}
5773 
5774 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5775 		ret = rbd_dev_v2_data_pool(rbd_dev);
5776 		if (ret)
5777 			goto out_err;
5778 	}
5779 
5780 	rbd_init_layout(rbd_dev);
5781 	return 0;
5782 
5783 out_err:
5784 	rbd_dev->header.features = 0;
5785 	kfree(rbd_dev->header.object_prefix);
5786 	rbd_dev->header.object_prefix = NULL;
5787 	return ret;
5788 }
5789 
5790 /*
5791  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5792  * rbd_dev_image_probe() recursion depth, which means it's also the
5793  * length of the already discovered part of the parent chain.
5794  */
5795 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5796 {
5797 	struct rbd_device *parent = NULL;
5798 	int ret;
5799 
5800 	if (!rbd_dev->parent_spec)
5801 		return 0;
5802 
5803 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5804 		pr_info("parent chain is too long (%d)\n", depth);
5805 		ret = -EINVAL;
5806 		goto out_err;
5807 	}
5808 
5809 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5810 	if (!parent) {
5811 		ret = -ENOMEM;
5812 		goto out_err;
5813 	}
5814 
5815 	/*
5816 	 * Images related by parent/child relationships always share
5817 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5818 	 */
5819 	__rbd_get_client(rbd_dev->rbd_client);
5820 	rbd_spec_get(rbd_dev->parent_spec);
5821 
5822 	ret = rbd_dev_image_probe(parent, depth);
5823 	if (ret < 0)
5824 		goto out_err;
5825 
5826 	rbd_dev->parent = parent;
5827 	atomic_set(&rbd_dev->parent_ref, 1);
5828 	return 0;
5829 
5830 out_err:
5831 	rbd_dev_unparent(rbd_dev);
5832 	rbd_dev_destroy(parent);
5833 	return ret;
5834 }
5835 
5836 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5837 {
5838 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5839 	rbd_dev_mapping_clear(rbd_dev);
5840 	rbd_free_disk(rbd_dev);
5841 	if (!single_major)
5842 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5843 }
5844 
5845 /*
5846  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5847  * upon return.
5848  */
5849 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5850 {
5851 	int ret;
5852 
5853 	/* Record our major and minor device numbers. */
5854 
5855 	if (!single_major) {
5856 		ret = register_blkdev(0, rbd_dev->name);
5857 		if (ret < 0)
5858 			goto err_out_unlock;
5859 
5860 		rbd_dev->major = ret;
5861 		rbd_dev->minor = 0;
5862 	} else {
5863 		rbd_dev->major = rbd_major;
5864 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5865 	}
5866 
5867 	/* Set up the blkdev mapping. */
5868 
5869 	ret = rbd_init_disk(rbd_dev);
5870 	if (ret)
5871 		goto err_out_blkdev;
5872 
5873 	ret = rbd_dev_mapping_set(rbd_dev);
5874 	if (ret)
5875 		goto err_out_disk;
5876 
5877 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5878 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5879 
5880 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5881 	if (ret)
5882 		goto err_out_mapping;
5883 
5884 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5885 	up_write(&rbd_dev->header_rwsem);
5886 	return 0;
5887 
5888 err_out_mapping:
5889 	rbd_dev_mapping_clear(rbd_dev);
5890 err_out_disk:
5891 	rbd_free_disk(rbd_dev);
5892 err_out_blkdev:
5893 	if (!single_major)
5894 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5895 err_out_unlock:
5896 	up_write(&rbd_dev->header_rwsem);
5897 	return ret;
5898 }
5899 
5900 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5901 {
5902 	struct rbd_spec *spec = rbd_dev->spec;
5903 	int ret;
5904 
5905 	/* Record the header object name for this rbd image. */
5906 
5907 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5908 	if (rbd_dev->image_format == 1)
5909 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5910 				       spec->image_name, RBD_SUFFIX);
5911 	else
5912 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5913 				       RBD_HEADER_PREFIX, spec->image_id);
5914 
5915 	return ret;
5916 }
5917 
5918 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5919 {
5920 	rbd_dev_unprobe(rbd_dev);
5921 	if (rbd_dev->opts)
5922 		rbd_unregister_watch(rbd_dev);
5923 	rbd_dev->image_format = 0;
5924 	kfree(rbd_dev->spec->image_id);
5925 	rbd_dev->spec->image_id = NULL;
5926 }
5927 
5928 /*
5929  * Probe for the existence of the header object for the given rbd
5930  * device.  If this image is the one being mapped (i.e., not a
5931  * parent), initiate a watch on its header object before using that
5932  * object to get detailed information about the rbd image.
5933  */
5934 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5935 {
5936 	int ret;
5937 
5938 	/*
5939 	 * Get the id from the image id object.  Unless there's an
5940 	 * error, rbd_dev->spec->image_id will be filled in with
5941 	 * a dynamically-allocated string, and rbd_dev->image_format
5942 	 * will be set to either 1 or 2.
5943 	 */
5944 	ret = rbd_dev_image_id(rbd_dev);
5945 	if (ret)
5946 		return ret;
5947 
5948 	ret = rbd_dev_header_name(rbd_dev);
5949 	if (ret)
5950 		goto err_out_format;
5951 
5952 	if (!depth) {
5953 		ret = rbd_register_watch(rbd_dev);
5954 		if (ret) {
5955 			if (ret == -ENOENT)
5956 				pr_info("image %s/%s%s%s does not exist\n",
5957 					rbd_dev->spec->pool_name,
5958 					rbd_dev->spec->pool_ns ?: "",
5959 					rbd_dev->spec->pool_ns ? "/" : "",
5960 					rbd_dev->spec->image_name);
5961 			goto err_out_format;
5962 		}
5963 	}
5964 
5965 	ret = rbd_dev_header_info(rbd_dev);
5966 	if (ret)
5967 		goto err_out_watch;
5968 
5969 	/*
5970 	 * If this image is the one being mapped, we have pool name and
5971 	 * id, image name and id, and snap name - need to fill snap id.
5972 	 * Otherwise this is a parent image, identified by pool, image
5973 	 * and snap ids - need to fill in names for those ids.
5974 	 */
5975 	if (!depth)
5976 		ret = rbd_spec_fill_snap_id(rbd_dev);
5977 	else
5978 		ret = rbd_spec_fill_names(rbd_dev);
5979 	if (ret) {
5980 		if (ret == -ENOENT)
5981 			pr_info("snap %s/%s%s%s@%s does not exist\n",
5982 				rbd_dev->spec->pool_name,
5983 				rbd_dev->spec->pool_ns ?: "",
5984 				rbd_dev->spec->pool_ns ? "/" : "",
5985 				rbd_dev->spec->image_name,
5986 				rbd_dev->spec->snap_name);
5987 		goto err_out_probe;
5988 	}
5989 
5990 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5991 		ret = rbd_dev_v2_parent_info(rbd_dev);
5992 		if (ret)
5993 			goto err_out_probe;
5994 	}
5995 
5996 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5997 	if (ret)
5998 		goto err_out_probe;
5999 
6000 	dout("discovered format %u image, header name is %s\n",
6001 		rbd_dev->image_format, rbd_dev->header_oid.name);
6002 	return 0;
6003 
6004 err_out_probe:
6005 	rbd_dev_unprobe(rbd_dev);
6006 err_out_watch:
6007 	if (!depth)
6008 		rbd_unregister_watch(rbd_dev);
6009 err_out_format:
6010 	rbd_dev->image_format = 0;
6011 	kfree(rbd_dev->spec->image_id);
6012 	rbd_dev->spec->image_id = NULL;
6013 	return ret;
6014 }
6015 
6016 static ssize_t do_rbd_add(struct bus_type *bus,
6017 			  const char *buf,
6018 			  size_t count)
6019 {
6020 	struct rbd_device *rbd_dev = NULL;
6021 	struct ceph_options *ceph_opts = NULL;
6022 	struct rbd_options *rbd_opts = NULL;
6023 	struct rbd_spec *spec = NULL;
6024 	struct rbd_client *rbdc;
6025 	int rc;
6026 
6027 	if (!try_module_get(THIS_MODULE))
6028 		return -ENODEV;
6029 
6030 	/* parse add command */
6031 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6032 	if (rc < 0)
6033 		goto out;
6034 
6035 	rbdc = rbd_get_client(ceph_opts);
6036 	if (IS_ERR(rbdc)) {
6037 		rc = PTR_ERR(rbdc);
6038 		goto err_out_args;
6039 	}
6040 
6041 	/* pick the pool */
6042 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
6043 	if (rc < 0) {
6044 		if (rc == -ENOENT)
6045 			pr_info("pool %s does not exist\n", spec->pool_name);
6046 		goto err_out_client;
6047 	}
6048 	spec->pool_id = (u64)rc;
6049 
6050 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6051 	if (!rbd_dev) {
6052 		rc = -ENOMEM;
6053 		goto err_out_client;
6054 	}
6055 	rbdc = NULL;		/* rbd_dev now owns this */
6056 	spec = NULL;		/* rbd_dev now owns this */
6057 	rbd_opts = NULL;	/* rbd_dev now owns this */
6058 
6059 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6060 	if (!rbd_dev->config_info) {
6061 		rc = -ENOMEM;
6062 		goto err_out_rbd_dev;
6063 	}
6064 
6065 	down_write(&rbd_dev->header_rwsem);
6066 	rc = rbd_dev_image_probe(rbd_dev, 0);
6067 	if (rc < 0) {
6068 		up_write(&rbd_dev->header_rwsem);
6069 		goto err_out_rbd_dev;
6070 	}
6071 
6072 	/* If we are mapping a snapshot it must be marked read-only */
6073 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6074 		rbd_dev->opts->read_only = true;
6075 
6076 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
6077 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
6078 			 rbd_dev->layout.object_size);
6079 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
6080 	}
6081 
6082 	rc = rbd_dev_device_setup(rbd_dev);
6083 	if (rc)
6084 		goto err_out_image_probe;
6085 
6086 	if (rbd_dev->opts->exclusive) {
6087 		rc = rbd_add_acquire_lock(rbd_dev);
6088 		if (rc)
6089 			goto err_out_device_setup;
6090 	}
6091 
6092 	/* Everything's ready.  Announce the disk to the world. */
6093 
6094 	rc = device_add(&rbd_dev->dev);
6095 	if (rc)
6096 		goto err_out_image_lock;
6097 
6098 	add_disk(rbd_dev->disk);
6099 	/* see rbd_init_disk() */
6100 	blk_put_queue(rbd_dev->disk->queue);
6101 
6102 	spin_lock(&rbd_dev_list_lock);
6103 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6104 	spin_unlock(&rbd_dev_list_lock);
6105 
6106 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6107 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6108 		rbd_dev->header.features);
6109 	rc = count;
6110 out:
6111 	module_put(THIS_MODULE);
6112 	return rc;
6113 
6114 err_out_image_lock:
6115 	rbd_dev_image_unlock(rbd_dev);
6116 err_out_device_setup:
6117 	rbd_dev_device_release(rbd_dev);
6118 err_out_image_probe:
6119 	rbd_dev_image_release(rbd_dev);
6120 err_out_rbd_dev:
6121 	rbd_dev_destroy(rbd_dev);
6122 err_out_client:
6123 	rbd_put_client(rbdc);
6124 err_out_args:
6125 	rbd_spec_put(spec);
6126 	kfree(rbd_opts);
6127 	goto out;
6128 }
6129 
6130 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
6131 {
6132 	if (single_major)
6133 		return -EINVAL;
6134 
6135 	return do_rbd_add(bus, buf, count);
6136 }
6137 
6138 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
6139 				      size_t count)
6140 {
6141 	return do_rbd_add(bus, buf, count);
6142 }
6143 
6144 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6145 {
6146 	while (rbd_dev->parent) {
6147 		struct rbd_device *first = rbd_dev;
6148 		struct rbd_device *second = first->parent;
6149 		struct rbd_device *third;
6150 
6151 		/*
6152 		 * Follow to the parent with no grandparent and
6153 		 * remove it.
6154 		 */
6155 		while (second && (third = second->parent)) {
6156 			first = second;
6157 			second = third;
6158 		}
6159 		rbd_assert(second);
6160 		rbd_dev_image_release(second);
6161 		rbd_dev_destroy(second);
6162 		first->parent = NULL;
6163 		first->parent_overlap = 0;
6164 
6165 		rbd_assert(first->parent_spec);
6166 		rbd_spec_put(first->parent_spec);
6167 		first->parent_spec = NULL;
6168 	}
6169 }
6170 
6171 static ssize_t do_rbd_remove(struct bus_type *bus,
6172 			     const char *buf,
6173 			     size_t count)
6174 {
6175 	struct rbd_device *rbd_dev = NULL;
6176 	struct list_head *tmp;
6177 	int dev_id;
6178 	char opt_buf[6];
6179 	bool force = false;
6180 	int ret;
6181 
6182 	dev_id = -1;
6183 	opt_buf[0] = '\0';
6184 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6185 	if (dev_id < 0) {
6186 		pr_err("dev_id out of range\n");
6187 		return -EINVAL;
6188 	}
6189 	if (opt_buf[0] != '\0') {
6190 		if (!strcmp(opt_buf, "force")) {
6191 			force = true;
6192 		} else {
6193 			pr_err("bad remove option at '%s'\n", opt_buf);
6194 			return -EINVAL;
6195 		}
6196 	}
6197 
6198 	ret = -ENOENT;
6199 	spin_lock(&rbd_dev_list_lock);
6200 	list_for_each(tmp, &rbd_dev_list) {
6201 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6202 		if (rbd_dev->dev_id == dev_id) {
6203 			ret = 0;
6204 			break;
6205 		}
6206 	}
6207 	if (!ret) {
6208 		spin_lock_irq(&rbd_dev->lock);
6209 		if (rbd_dev->open_count && !force)
6210 			ret = -EBUSY;
6211 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6212 					  &rbd_dev->flags))
6213 			ret = -EINPROGRESS;
6214 		spin_unlock_irq(&rbd_dev->lock);
6215 	}
6216 	spin_unlock(&rbd_dev_list_lock);
6217 	if (ret)
6218 		return ret;
6219 
6220 	if (force) {
6221 		/*
6222 		 * Prevent new IO from being queued and wait for existing
6223 		 * IO to complete/fail.
6224 		 */
6225 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6226 		blk_set_queue_dying(rbd_dev->disk->queue);
6227 	}
6228 
6229 	del_gendisk(rbd_dev->disk);
6230 	spin_lock(&rbd_dev_list_lock);
6231 	list_del_init(&rbd_dev->node);
6232 	spin_unlock(&rbd_dev_list_lock);
6233 	device_del(&rbd_dev->dev);
6234 
6235 	rbd_dev_image_unlock(rbd_dev);
6236 	rbd_dev_device_release(rbd_dev);
6237 	rbd_dev_image_release(rbd_dev);
6238 	rbd_dev_destroy(rbd_dev);
6239 	return count;
6240 }
6241 
6242 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
6243 {
6244 	if (single_major)
6245 		return -EINVAL;
6246 
6247 	return do_rbd_remove(bus, buf, count);
6248 }
6249 
6250 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
6251 					 size_t count)
6252 {
6253 	return do_rbd_remove(bus, buf, count);
6254 }
6255 
6256 /*
6257  * create control files in sysfs
6258  * /sys/bus/rbd/...
6259  */
6260 static int __init rbd_sysfs_init(void)
6261 {
6262 	int ret;
6263 
6264 	ret = device_register(&rbd_root_dev);
6265 	if (ret < 0)
6266 		return ret;
6267 
6268 	ret = bus_register(&rbd_bus_type);
6269 	if (ret < 0)
6270 		device_unregister(&rbd_root_dev);
6271 
6272 	return ret;
6273 }
6274 
6275 static void __exit rbd_sysfs_cleanup(void)
6276 {
6277 	bus_unregister(&rbd_bus_type);
6278 	device_unregister(&rbd_root_dev);
6279 }
6280 
6281 static int __init rbd_slab_init(void)
6282 {
6283 	rbd_assert(!rbd_img_request_cache);
6284 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6285 	if (!rbd_img_request_cache)
6286 		return -ENOMEM;
6287 
6288 	rbd_assert(!rbd_obj_request_cache);
6289 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6290 	if (!rbd_obj_request_cache)
6291 		goto out_err;
6292 
6293 	return 0;
6294 
6295 out_err:
6296 	kmem_cache_destroy(rbd_img_request_cache);
6297 	rbd_img_request_cache = NULL;
6298 	return -ENOMEM;
6299 }
6300 
6301 static void rbd_slab_exit(void)
6302 {
6303 	rbd_assert(rbd_obj_request_cache);
6304 	kmem_cache_destroy(rbd_obj_request_cache);
6305 	rbd_obj_request_cache = NULL;
6306 
6307 	rbd_assert(rbd_img_request_cache);
6308 	kmem_cache_destroy(rbd_img_request_cache);
6309 	rbd_img_request_cache = NULL;
6310 }
6311 
6312 static int __init rbd_init(void)
6313 {
6314 	int rc;
6315 
6316 	if (!libceph_compatible(NULL)) {
6317 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6318 		return -EINVAL;
6319 	}
6320 
6321 	rc = rbd_slab_init();
6322 	if (rc)
6323 		return rc;
6324 
6325 	/*
6326 	 * The number of active work items is limited by the number of
6327 	 * rbd devices * queue depth, so leave @max_active at default.
6328 	 */
6329 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6330 	if (!rbd_wq) {
6331 		rc = -ENOMEM;
6332 		goto err_out_slab;
6333 	}
6334 
6335 	if (single_major) {
6336 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6337 		if (rbd_major < 0) {
6338 			rc = rbd_major;
6339 			goto err_out_wq;
6340 		}
6341 	}
6342 
6343 	rc = rbd_sysfs_init();
6344 	if (rc)
6345 		goto err_out_blkdev;
6346 
6347 	if (single_major)
6348 		pr_info("loaded (major %d)\n", rbd_major);
6349 	else
6350 		pr_info("loaded\n");
6351 
6352 	return 0;
6353 
6354 err_out_blkdev:
6355 	if (single_major)
6356 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6357 err_out_wq:
6358 	destroy_workqueue(rbd_wq);
6359 err_out_slab:
6360 	rbd_slab_exit();
6361 	return rc;
6362 }
6363 
6364 static void __exit rbd_exit(void)
6365 {
6366 	ida_destroy(&rbd_dev_id_ida);
6367 	rbd_sysfs_cleanup();
6368 	if (single_major)
6369 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6370 	destroy_workqueue(rbd_wq);
6371 	rbd_slab_exit();
6372 }
6373 
6374 module_init(rbd_init);
6375 module_exit(rbd_exit);
6376 
6377 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6378 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6379 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6380 /* following authorship retained from original osdblk.c */
6381 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6382 
6383 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6384 MODULE_LICENSE("GPL");
6385