xref: /openbmc/linux/drivers/block/rbd.c (revision eb3fcf00)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
100 #define RBD_MAX_SNAP_NAME_LEN	\
101 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 
103 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
104 
105 #define RBD_SNAP_HEAD_NAME	"-"
106 
107 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
108 
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX	64
112 
113 #define RBD_OBJ_PREFIX_LEN_MAX	64
114 
115 /* Feature bits */
116 
117 #define RBD_FEATURE_LAYERING	(1<<0)
118 #define RBD_FEATURE_STRIPINGV2	(1<<1)
119 #define RBD_FEATURES_ALL \
120 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 
122 /* Features supported by this (client software) implementation. */
123 
124 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
125 
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN		32
133 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
134 
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139 	/* These six fields never change for a given rbd image */
140 	char *object_prefix;
141 	__u8 obj_order;
142 	__u8 crypt_type;
143 	__u8 comp_type;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	const char		*object_name;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 	struct completion	completion;
278 
279 	struct kref		kref;
280 };
281 
282 enum img_req_flags {
283 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
284 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
285 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
286 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
287 };
288 
289 struct rbd_img_request {
290 	struct rbd_device	*rbd_dev;
291 	u64			offset;	/* starting image byte offset */
292 	u64			length;	/* byte count from offset */
293 	unsigned long		flags;
294 	union {
295 		u64			snap_id;	/* for reads */
296 		struct ceph_snap_context *snapc;	/* for writes */
297 	};
298 	union {
299 		struct request		*rq;		/* block request */
300 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
301 	};
302 	struct page		**copyup_pages;
303 	u32			copyup_page_count;
304 	spinlock_t		completion_lock;/* protects next_completion */
305 	u32			next_completion;
306 	rbd_img_callback_t	callback;
307 	u64			xferred;/* aggregate bytes transferred */
308 	int			result;	/* first nonzero obj_request result */
309 
310 	u32			obj_request_count;
311 	struct list_head	obj_requests;	/* rbd_obj_request structs */
312 
313 	struct kref		kref;
314 };
315 
316 #define for_each_obj_request(ireq, oreq) \
317 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 	bool			read_only;
327 };
328 
329 /*
330  * a single device
331  */
332 struct rbd_device {
333 	int			dev_id;		/* blkdev unique id */
334 
335 	int			major;		/* blkdev assigned major */
336 	int			minor;
337 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
338 
339 	u32			image_format;	/* Either 1 or 2 */
340 	struct rbd_client	*rbd_client;
341 
342 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 
346 	struct rbd_image_header	header;
347 	unsigned long		flags;		/* possibly lock protected */
348 	struct rbd_spec		*spec;
349 	struct rbd_options	*opts;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* Block layer tags. */
364 	struct blk_mq_tag_set	tag_set;
365 
366 	/* protects updating the header */
367 	struct rw_semaphore     header_rwsem;
368 
369 	struct rbd_mapping	mapping;
370 
371 	struct list_head	node;
372 
373 	/* sysfs related */
374 	struct device		dev;
375 	unsigned long		open_count;	/* protected by lock */
376 };
377 
378 /*
379  * Flag bits for rbd_dev->flags.  If atomicity is required,
380  * rbd_dev->lock is used to protect access.
381  *
382  * Currently, only the "removing" flag (which is coupled with the
383  * "open_count" field) requires atomic access.
384  */
385 enum rbd_dev_flags {
386 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
387 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
388 };
389 
390 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
391 
392 static LIST_HEAD(rbd_dev_list);    /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394 
395 static LIST_HEAD(rbd_client_list);		/* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397 
398 /* Slab caches for frequently-allocated structures */
399 
400 static struct kmem_cache	*rbd_img_request_cache;
401 static struct kmem_cache	*rbd_obj_request_cache;
402 static struct kmem_cache	*rbd_segment_name_cache;
403 
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406 
407 static struct workqueue_struct *rbd_wq;
408 
409 /*
410  * Default to false for now, as single-major requires >= 0.75 version of
411  * userspace rbd utility.
412  */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416 
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418 
419 static void rbd_dev_device_release(struct device *dev);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530 
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 					u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 				u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 		u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542 
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546 	bool removing = false;
547 
548 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549 		return -EROFS;
550 
551 	spin_lock_irq(&rbd_dev->lock);
552 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553 		removing = true;
554 	else
555 		rbd_dev->open_count++;
556 	spin_unlock_irq(&rbd_dev->lock);
557 	if (removing)
558 		return -ENOENT;
559 
560 	(void) get_device(&rbd_dev->dev);
561 
562 	return 0;
563 }
564 
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567 	struct rbd_device *rbd_dev = disk->private_data;
568 	unsigned long open_count_before;
569 
570 	spin_lock_irq(&rbd_dev->lock);
571 	open_count_before = rbd_dev->open_count--;
572 	spin_unlock_irq(&rbd_dev->lock);
573 	rbd_assert(open_count_before > 0);
574 
575 	put_device(&rbd_dev->dev);
576 }
577 
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580 	int ret = 0;
581 	int val;
582 	bool ro;
583 	bool ro_changed = false;
584 
585 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
586 	if (get_user(val, (int __user *)(arg)))
587 		return -EFAULT;
588 
589 	ro = val ? true : false;
590 	/* Snapshot doesn't allow to write*/
591 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592 		return -EROFS;
593 
594 	spin_lock_irq(&rbd_dev->lock);
595 	/* prevent others open this device */
596 	if (rbd_dev->open_count > 1) {
597 		ret = -EBUSY;
598 		goto out;
599 	}
600 
601 	if (rbd_dev->mapping.read_only != ro) {
602 		rbd_dev->mapping.read_only = ro;
603 		ro_changed = true;
604 	}
605 
606 out:
607 	spin_unlock_irq(&rbd_dev->lock);
608 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 	if (ret == 0 && ro_changed)
610 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611 
612 	return ret;
613 }
614 
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616 			unsigned int cmd, unsigned long arg)
617 {
618 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619 	int ret = 0;
620 
621 	switch (cmd) {
622 	case BLKROSET:
623 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
624 		break;
625 	default:
626 		ret = -ENOTTY;
627 	}
628 
629 	return ret;
630 }
631 
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634 				unsigned int cmd, unsigned long arg)
635 {
636 	return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639 
640 static const struct block_device_operations rbd_bd_ops = {
641 	.owner			= THIS_MODULE,
642 	.open			= rbd_open,
643 	.release		= rbd_release,
644 	.ioctl			= rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646 	.compat_ioctl		= rbd_compat_ioctl,
647 #endif
648 };
649 
650 /*
651  * Initialize an rbd client instance.  Success or not, this function
652  * consumes ceph_opts.  Caller holds client_mutex.
653  */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656 	struct rbd_client *rbdc;
657 	int ret = -ENOMEM;
658 
659 	dout("%s:\n", __func__);
660 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661 	if (!rbdc)
662 		goto out_opt;
663 
664 	kref_init(&rbdc->kref);
665 	INIT_LIST_HEAD(&rbdc->node);
666 
667 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668 	if (IS_ERR(rbdc->client))
669 		goto out_rbdc;
670 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671 
672 	ret = ceph_open_session(rbdc->client);
673 	if (ret < 0)
674 		goto out_client;
675 
676 	spin_lock(&rbd_client_list_lock);
677 	list_add_tail(&rbdc->node, &rbd_client_list);
678 	spin_unlock(&rbd_client_list_lock);
679 
680 	dout("%s: rbdc %p\n", __func__, rbdc);
681 
682 	return rbdc;
683 out_client:
684 	ceph_destroy_client(rbdc->client);
685 out_rbdc:
686 	kfree(rbdc);
687 out_opt:
688 	if (ceph_opts)
689 		ceph_destroy_options(ceph_opts);
690 	dout("%s: error %d\n", __func__, ret);
691 
692 	return ERR_PTR(ret);
693 }
694 
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697 	kref_get(&rbdc->kref);
698 
699 	return rbdc;
700 }
701 
702 /*
703  * Find a ceph client with specific addr and configuration.  If
704  * found, bump its reference count.
705  */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708 	struct rbd_client *client_node;
709 	bool found = false;
710 
711 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712 		return NULL;
713 
714 	spin_lock(&rbd_client_list_lock);
715 	list_for_each_entry(client_node, &rbd_client_list, node) {
716 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
717 			__rbd_get_client(client_node);
718 
719 			found = true;
720 			break;
721 		}
722 	}
723 	spin_unlock(&rbd_client_list_lock);
724 
725 	return found ? client_node : NULL;
726 }
727 
728 /*
729  * (Per device) rbd map options
730  */
731 enum {
732 	Opt_queue_depth,
733 	Opt_last_int,
734 	/* int args above */
735 	Opt_last_string,
736 	/* string args above */
737 	Opt_read_only,
738 	Opt_read_write,
739 	Opt_err
740 };
741 
742 static match_table_t rbd_opts_tokens = {
743 	{Opt_queue_depth, "queue_depth=%d"},
744 	/* int args above */
745 	/* string args above */
746 	{Opt_read_only, "read_only"},
747 	{Opt_read_only, "ro"},		/* Alternate spelling */
748 	{Opt_read_write, "read_write"},
749 	{Opt_read_write, "rw"},		/* Alternate spelling */
750 	{Opt_err, NULL}
751 };
752 
753 struct rbd_options {
754 	int	queue_depth;
755 	bool	read_only;
756 };
757 
758 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT	false
760 
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763 	struct rbd_options *rbd_opts = private;
764 	substring_t argstr[MAX_OPT_ARGS];
765 	int token, intval, ret;
766 
767 	token = match_token(c, rbd_opts_tokens, argstr);
768 	if (token < Opt_last_int) {
769 		ret = match_int(&argstr[0], &intval);
770 		if (ret < 0) {
771 			pr_err("bad mount option arg (not int) at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token, argstr[0].from);
777 	} else {
778 		dout("got token %d\n", token);
779 	}
780 
781 	switch (token) {
782 	case Opt_queue_depth:
783 		if (intval < 1) {
784 			pr_err("queue_depth out of range\n");
785 			return -EINVAL;
786 		}
787 		rbd_opts->queue_depth = intval;
788 		break;
789 	case Opt_read_only:
790 		rbd_opts->read_only = true;
791 		break;
792 	case Opt_read_write:
793 		rbd_opts->read_only = false;
794 		break;
795 	default:
796 		/* libceph prints "bad option" msg */
797 		return -EINVAL;
798 	}
799 
800 	return 0;
801 }
802 
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805 	switch (op_type) {
806 	case OBJ_OP_READ:
807 		return "read";
808 	case OBJ_OP_WRITE:
809 		return "write";
810 	case OBJ_OP_DISCARD:
811 		return "discard";
812 	default:
813 		return "???";
814 	}
815 }
816 
817 /*
818  * Get a ceph client with specific addr and configuration, if one does
819  * not exist create it.  Either way, ceph_opts is consumed by this
820  * function.
821  */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824 	struct rbd_client *rbdc;
825 
826 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827 	rbdc = rbd_client_find(ceph_opts);
828 	if (rbdc)	/* using an existing client */
829 		ceph_destroy_options(ceph_opts);
830 	else
831 		rbdc = rbd_client_create(ceph_opts);
832 	mutex_unlock(&client_mutex);
833 
834 	return rbdc;
835 }
836 
837 /*
838  * Destroy ceph client
839  *
840  * Caller must hold rbd_client_list_lock.
841  */
842 static void rbd_client_release(struct kref *kref)
843 {
844 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845 
846 	dout("%s: rbdc %p\n", __func__, rbdc);
847 	spin_lock(&rbd_client_list_lock);
848 	list_del(&rbdc->node);
849 	spin_unlock(&rbd_client_list_lock);
850 
851 	ceph_destroy_client(rbdc->client);
852 	kfree(rbdc);
853 }
854 
855 /*
856  * Drop reference to ceph client node. If it's not referenced anymore, release
857  * it.
858  */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861 	if (rbdc)
862 		kref_put(&rbdc->kref, rbd_client_release);
863 }
864 
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867 	return image_format == 1 || image_format == 2;
868 }
869 
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872 	size_t size;
873 	u32 snap_count;
874 
875 	/* The header has to start with the magic rbd header text */
876 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877 		return false;
878 
879 	/* The bio layer requires at least sector-sized I/O */
880 
881 	if (ondisk->options.order < SECTOR_SHIFT)
882 		return false;
883 
884 	/* If we use u64 in a few spots we may be able to loosen this */
885 
886 	if (ondisk->options.order > 8 * sizeof (int) - 1)
887 		return false;
888 
889 	/*
890 	 * The size of a snapshot header has to fit in a size_t, and
891 	 * that limits the number of snapshots.
892 	 */
893 	snap_count = le32_to_cpu(ondisk->snap_count);
894 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
895 	if (snap_count > size / sizeof (__le64))
896 		return false;
897 
898 	/*
899 	 * Not only that, but the size of the entire the snapshot
900 	 * header must also be representable in a size_t.
901 	 */
902 	size -= snap_count * sizeof (__le64);
903 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904 		return false;
905 
906 	return true;
907 }
908 
909 /*
910  * Fill an rbd image header with information from the given format 1
911  * on-disk header.
912  */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914 				 struct rbd_image_header_ondisk *ondisk)
915 {
916 	struct rbd_image_header *header = &rbd_dev->header;
917 	bool first_time = header->object_prefix == NULL;
918 	struct ceph_snap_context *snapc;
919 	char *object_prefix = NULL;
920 	char *snap_names = NULL;
921 	u64 *snap_sizes = NULL;
922 	u32 snap_count;
923 	size_t size;
924 	int ret = -ENOMEM;
925 	u32 i;
926 
927 	/* Allocate this now to avoid having to handle failure below */
928 
929 	if (first_time) {
930 		size_t len;
931 
932 		len = strnlen(ondisk->object_prefix,
933 				sizeof (ondisk->object_prefix));
934 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
935 		if (!object_prefix)
936 			return -ENOMEM;
937 		memcpy(object_prefix, ondisk->object_prefix, len);
938 		object_prefix[len] = '\0';
939 	}
940 
941 	/* Allocate the snapshot context and fill it in */
942 
943 	snap_count = le32_to_cpu(ondisk->snap_count);
944 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945 	if (!snapc)
946 		goto out_err;
947 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
948 	if (snap_count) {
949 		struct rbd_image_snap_ondisk *snaps;
950 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951 
952 		/* We'll keep a copy of the snapshot names... */
953 
954 		if (snap_names_len > (u64)SIZE_MAX)
955 			goto out_2big;
956 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957 		if (!snap_names)
958 			goto out_err;
959 
960 		/* ...as well as the array of their sizes. */
961 
962 		size = snap_count * sizeof (*header->snap_sizes);
963 		snap_sizes = kmalloc(size, GFP_KERNEL);
964 		if (!snap_sizes)
965 			goto out_err;
966 
967 		/*
968 		 * Copy the names, and fill in each snapshot's id
969 		 * and size.
970 		 *
971 		 * Note that rbd_dev_v1_header_info() guarantees the
972 		 * ondisk buffer we're working with has
973 		 * snap_names_len bytes beyond the end of the
974 		 * snapshot id array, this memcpy() is safe.
975 		 */
976 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977 		snaps = ondisk->snaps;
978 		for (i = 0; i < snap_count; i++) {
979 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981 		}
982 	}
983 
984 	/* We won't fail any more, fill in the header */
985 
986 	if (first_time) {
987 		header->object_prefix = object_prefix;
988 		header->obj_order = ondisk->options.order;
989 		header->crypt_type = ondisk->options.crypt_type;
990 		header->comp_type = ondisk->options.comp_type;
991 		/* The rest aren't used for format 1 images */
992 		header->stripe_unit = 0;
993 		header->stripe_count = 0;
994 		header->features = 0;
995 	} else {
996 		ceph_put_snap_context(header->snapc);
997 		kfree(header->snap_names);
998 		kfree(header->snap_sizes);
999 	}
1000 
1001 	/* The remaining fields always get updated (when we refresh) */
1002 
1003 	header->image_size = le64_to_cpu(ondisk->image_size);
1004 	header->snapc = snapc;
1005 	header->snap_names = snap_names;
1006 	header->snap_sizes = snap_sizes;
1007 
1008 	return 0;
1009 out_2big:
1010 	ret = -EIO;
1011 out_err:
1012 	kfree(snap_sizes);
1013 	kfree(snap_names);
1014 	ceph_put_snap_context(snapc);
1015 	kfree(object_prefix);
1016 
1017 	return ret;
1018 }
1019 
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022 	const char *snap_name;
1023 
1024 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025 
1026 	/* Skip over names until we find the one we are looking for */
1027 
1028 	snap_name = rbd_dev->header.snap_names;
1029 	while (which--)
1030 		snap_name += strlen(snap_name) + 1;
1031 
1032 	return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034 
1035 /*
1036  * Snapshot id comparison function for use with qsort()/bsearch().
1037  * Note that result is for snapshots in *descending* order.
1038  */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041 	u64 snap_id1 = *(u64 *)s1;
1042 	u64 snap_id2 = *(u64 *)s2;
1043 
1044 	if (snap_id1 < snap_id2)
1045 		return 1;
1046 	return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048 
1049 /*
1050  * Search a snapshot context to see if the given snapshot id is
1051  * present.
1052  *
1053  * Returns the position of the snapshot id in the array if it's found,
1054  * or BAD_SNAP_INDEX otherwise.
1055  *
1056  * Note: The snapshot array is in kept sorted (by the osd) in
1057  * reverse order, highest snapshot id first.
1058  */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062 	u64 *found;
1063 
1064 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065 				sizeof (snap_id), snapid_compare_reverse);
1066 
1067 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069 
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071 					u64 snap_id)
1072 {
1073 	u32 which;
1074 	const char *snap_name;
1075 
1076 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 	if (which == BAD_SNAP_INDEX)
1078 		return ERR_PTR(-ENOENT);
1079 
1080 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083 
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086 	if (snap_id == CEPH_NOSNAP)
1087 		return RBD_SNAP_HEAD_NAME;
1088 
1089 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090 	if (rbd_dev->image_format == 1)
1091 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092 
1093 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095 
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097 				u64 *snap_size)
1098 {
1099 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100 	if (snap_id == CEPH_NOSNAP) {
1101 		*snap_size = rbd_dev->header.image_size;
1102 	} else if (rbd_dev->image_format == 1) {
1103 		u32 which;
1104 
1105 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1106 		if (which == BAD_SNAP_INDEX)
1107 			return -ENOENT;
1108 
1109 		*snap_size = rbd_dev->header.snap_sizes[which];
1110 	} else {
1111 		u64 size = 0;
1112 		int ret;
1113 
1114 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 		if (ret)
1116 			return ret;
1117 
1118 		*snap_size = size;
1119 	}
1120 	return 0;
1121 }
1122 
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124 			u64 *snap_features)
1125 {
1126 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127 	if (snap_id == CEPH_NOSNAP) {
1128 		*snap_features = rbd_dev->header.features;
1129 	} else if (rbd_dev->image_format == 1) {
1130 		*snap_features = 0;	/* No features for format 1 */
1131 	} else {
1132 		u64 features = 0;
1133 		int ret;
1134 
1135 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136 		if (ret)
1137 			return ret;
1138 
1139 		*snap_features = features;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146 	u64 snap_id = rbd_dev->spec->snap_id;
1147 	u64 size = 0;
1148 	u64 features = 0;
1149 	int ret;
1150 
1151 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152 	if (ret)
1153 		return ret;
1154 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155 	if (ret)
1156 		return ret;
1157 
1158 	rbd_dev->mapping.size = size;
1159 	rbd_dev->mapping.features = features;
1160 
1161 	return 0;
1162 }
1163 
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166 	rbd_dev->mapping.size = 0;
1167 	rbd_dev->mapping.features = 0;
1168 }
1169 
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172 	/* The explicit cast here is needed to drop the const qualifier */
1173 
1174 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176 
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179 	char *name;
1180 	u64 segment;
1181 	int ret;
1182 	char *name_format;
1183 
1184 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185 	if (!name)
1186 		return NULL;
1187 	segment = offset >> rbd_dev->header.obj_order;
1188 	name_format = "%s.%012llx";
1189 	if (rbd_dev->image_format == 2)
1190 		name_format = "%s.%016llx";
1191 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192 			rbd_dev->header.object_prefix, segment);
1193 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194 		pr_err("error formatting segment name for #%llu (%d)\n",
1195 			segment, ret);
1196 		rbd_segment_name_free(name);
1197 		name = NULL;
1198 	}
1199 
1200 	return name;
1201 }
1202 
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206 
1207 	return offset & (segment_size - 1);
1208 }
1209 
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211 				u64 offset, u64 length)
1212 {
1213 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214 
1215 	offset &= segment_size - 1;
1216 
1217 	rbd_assert(length <= U64_MAX - offset);
1218 	if (offset + length > segment_size)
1219 		length = segment_size - offset;
1220 
1221 	return length;
1222 }
1223 
1224 /*
1225  * returns the size of an object in the image
1226  */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229 	return 1 << header->obj_order;
1230 }
1231 
1232 /*
1233  * bio helpers
1234  */
1235 
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238 	struct bio *tmp;
1239 
1240 	while (chain) {
1241 		tmp = chain;
1242 		chain = chain->bi_next;
1243 		bio_put(tmp);
1244 	}
1245 }
1246 
1247 /*
1248  * zeros a bio chain, starting at specific offset
1249  */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252 	struct bio_vec bv;
1253 	struct bvec_iter iter;
1254 	unsigned long flags;
1255 	void *buf;
1256 	int pos = 0;
1257 
1258 	while (chain) {
1259 		bio_for_each_segment(bv, chain, iter) {
1260 			if (pos + bv.bv_len > start_ofs) {
1261 				int remainder = max(start_ofs - pos, 0);
1262 				buf = bvec_kmap_irq(&bv, &flags);
1263 				memset(buf + remainder, 0,
1264 				       bv.bv_len - remainder);
1265 				flush_dcache_page(bv.bv_page);
1266 				bvec_kunmap_irq(buf, &flags);
1267 			}
1268 			pos += bv.bv_len;
1269 		}
1270 
1271 		chain = chain->bi_next;
1272 	}
1273 }
1274 
1275 /*
1276  * similar to zero_bio_chain(), zeros data defined by a page array,
1277  * starting at the given byte offset from the start of the array and
1278  * continuing up to the given end offset.  The pages array is
1279  * assumed to be big enough to hold all bytes up to the end.
1280  */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283 	struct page **page = &pages[offset >> PAGE_SHIFT];
1284 
1285 	rbd_assert(end > offset);
1286 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1287 	while (offset < end) {
1288 		size_t page_offset;
1289 		size_t length;
1290 		unsigned long flags;
1291 		void *kaddr;
1292 
1293 		page_offset = offset & ~PAGE_MASK;
1294 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295 		local_irq_save(flags);
1296 		kaddr = kmap_atomic(*page);
1297 		memset(kaddr + page_offset, 0, length);
1298 		flush_dcache_page(*page);
1299 		kunmap_atomic(kaddr);
1300 		local_irq_restore(flags);
1301 
1302 		offset += length;
1303 		page++;
1304 	}
1305 }
1306 
1307 /*
1308  * Clone a portion of a bio, starting at the given byte offset
1309  * and continuing for the number of bytes indicated.
1310  */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312 					unsigned int offset,
1313 					unsigned int len,
1314 					gfp_t gfpmask)
1315 {
1316 	struct bio *bio;
1317 
1318 	bio = bio_clone(bio_src, gfpmask);
1319 	if (!bio)
1320 		return NULL;	/* ENOMEM */
1321 
1322 	bio_advance(bio, offset);
1323 	bio->bi_iter.bi_size = len;
1324 
1325 	return bio;
1326 }
1327 
1328 /*
1329  * Clone a portion of a bio chain, starting at the given byte offset
1330  * into the first bio in the source chain and continuing for the
1331  * number of bytes indicated.  The result is another bio chain of
1332  * exactly the given length, or a null pointer on error.
1333  *
1334  * The bio_src and offset parameters are both in-out.  On entry they
1335  * refer to the first source bio and the offset into that bio where
1336  * the start of data to be cloned is located.
1337  *
1338  * On return, bio_src is updated to refer to the bio in the source
1339  * chain that contains first un-cloned byte, and *offset will
1340  * contain the offset of that byte within that bio.
1341  */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343 					unsigned int *offset,
1344 					unsigned int len,
1345 					gfp_t gfpmask)
1346 {
1347 	struct bio *bi = *bio_src;
1348 	unsigned int off = *offset;
1349 	struct bio *chain = NULL;
1350 	struct bio **end;
1351 
1352 	/* Build up a chain of clone bios up to the limit */
1353 
1354 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1355 		return NULL;		/* Nothing to clone */
1356 
1357 	end = &chain;
1358 	while (len) {
1359 		unsigned int bi_size;
1360 		struct bio *bio;
1361 
1362 		if (!bi) {
1363 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364 			goto out_err;	/* EINVAL; ran out of bio's */
1365 		}
1366 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368 		if (!bio)
1369 			goto out_err;	/* ENOMEM */
1370 
1371 		*end = bio;
1372 		end = &bio->bi_next;
1373 
1374 		off += bi_size;
1375 		if (off == bi->bi_iter.bi_size) {
1376 			bi = bi->bi_next;
1377 			off = 0;
1378 		}
1379 		len -= bi_size;
1380 	}
1381 	*bio_src = bi;
1382 	*offset = off;
1383 
1384 	return chain;
1385 out_err:
1386 	bio_chain_put(chain);
1387 
1388 	return NULL;
1389 }
1390 
1391 /*
1392  * The default/initial value for all object request flags is 0.  For
1393  * each flag, once its value is set to 1 it is never reset to 0
1394  * again.
1395  */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399 		struct rbd_device *rbd_dev;
1400 
1401 		rbd_dev = obj_request->img_request->rbd_dev;
1402 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403 			obj_request);
1404 	}
1405 }
1406 
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409 	smp_mb();
1410 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412 
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416 		struct rbd_device *rbd_dev = NULL;
1417 
1418 		if (obj_request_img_data_test(obj_request))
1419 			rbd_dev = obj_request->img_request->rbd_dev;
1420 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1421 			obj_request);
1422 	}
1423 }
1424 
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427 	smp_mb();
1428 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430 
1431 /*
1432  * This sets the KNOWN flag after (possibly) setting the EXISTS
1433  * flag.  The latter is set based on the "exists" value provided.
1434  *
1435  * Note that for our purposes once an object exists it never goes
1436  * away again.  It's possible that the response from two existence
1437  * checks are separated by the creation of the target object, and
1438  * the first ("doesn't exist") response arrives *after* the second
1439  * ("does exist").  In that case we ignore the second one.
1440  */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442 				bool exists)
1443 {
1444 	if (exists)
1445 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447 	smp_mb();
1448 }
1449 
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452 	smp_mb();
1453 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455 
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458 	smp_mb();
1459 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461 
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465 
1466 	return obj_request->img_offset <
1467 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469 
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 		atomic_read(&obj_request->kref.refcount));
1474 	kref_get(&obj_request->kref);
1475 }
1476 
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480 	rbd_assert(obj_request != NULL);
1481 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482 		atomic_read(&obj_request->kref.refcount));
1483 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485 
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488 	dout("%s: img %p (was %d)\n", __func__, img_request,
1489 	     atomic_read(&img_request->kref.refcount));
1490 	kref_get(&img_request->kref);
1491 }
1492 
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498 	rbd_assert(img_request != NULL);
1499 	dout("%s: img %p (was %d)\n", __func__, img_request,
1500 		atomic_read(&img_request->kref.refcount));
1501 	if (img_request_child_test(img_request))
1502 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1503 	else
1504 		kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506 
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508 					struct rbd_obj_request *obj_request)
1509 {
1510 	rbd_assert(obj_request->img_request == NULL);
1511 
1512 	/* Image request now owns object's original reference */
1513 	obj_request->img_request = img_request;
1514 	obj_request->which = img_request->obj_request_count;
1515 	rbd_assert(!obj_request_img_data_test(obj_request));
1516 	obj_request_img_data_set(obj_request);
1517 	rbd_assert(obj_request->which != BAD_WHICH);
1518 	img_request->obj_request_count++;
1519 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1520 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 		obj_request->which);
1522 }
1523 
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525 					struct rbd_obj_request *obj_request)
1526 {
1527 	rbd_assert(obj_request->which != BAD_WHICH);
1528 
1529 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530 		obj_request->which);
1531 	list_del(&obj_request->links);
1532 	rbd_assert(img_request->obj_request_count > 0);
1533 	img_request->obj_request_count--;
1534 	rbd_assert(obj_request->which == img_request->obj_request_count);
1535 	obj_request->which = BAD_WHICH;
1536 	rbd_assert(obj_request_img_data_test(obj_request));
1537 	rbd_assert(obj_request->img_request == img_request);
1538 	obj_request->img_request = NULL;
1539 	obj_request->callback = NULL;
1540 	rbd_obj_request_put(obj_request);
1541 }
1542 
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545 	switch (type) {
1546 	case OBJ_REQUEST_NODATA:
1547 	case OBJ_REQUEST_BIO:
1548 	case OBJ_REQUEST_PAGES:
1549 		return true;
1550 	default:
1551 		return false;
1552 	}
1553 }
1554 
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556 				struct rbd_obj_request *obj_request)
1557 {
1558 	dout("%s %p\n", __func__, obj_request);
1559 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561 
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564 	dout("%s %p\n", __func__, obj_request);
1565 	ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567 
1568 /*
1569  * Wait for an object request to complete.  If interrupted, cancel the
1570  * underlying osd request.
1571  *
1572  * @timeout: in jiffies, 0 means "wait forever"
1573  */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575 				  unsigned long timeout)
1576 {
1577 	long ret;
1578 
1579 	dout("%s %p\n", __func__, obj_request);
1580 	ret = wait_for_completion_interruptible_timeout(
1581 					&obj_request->completion,
1582 					ceph_timeout_jiffies(timeout));
1583 	if (ret <= 0) {
1584 		if (ret == 0)
1585 			ret = -ETIMEDOUT;
1586 		rbd_obj_request_end(obj_request);
1587 	} else {
1588 		ret = 0;
1589 	}
1590 
1591 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592 	return ret;
1593 }
1594 
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597 	return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599 
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601 					unsigned long timeout)
1602 {
1603 	return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605 
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608 
1609 	dout("%s: img %p\n", __func__, img_request);
1610 
1611 	/*
1612 	 * If no error occurred, compute the aggregate transfer
1613 	 * count for the image request.  We could instead use
1614 	 * atomic64_cmpxchg() to update it as each object request
1615 	 * completes; not clear which way is better off hand.
1616 	 */
1617 	if (!img_request->result) {
1618 		struct rbd_obj_request *obj_request;
1619 		u64 xferred = 0;
1620 
1621 		for_each_obj_request(img_request, obj_request)
1622 			xferred += obj_request->xferred;
1623 		img_request->xferred = xferred;
1624 	}
1625 
1626 	if (img_request->callback)
1627 		img_request->callback(img_request);
1628 	else
1629 		rbd_img_request_put(img_request);
1630 }
1631 
1632 /*
1633  * The default/initial value for all image request flags is 0.  Each
1634  * is conditionally set to 1 at image request initialization time
1635  * and currently never change thereafter.
1636  */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1640 	smp_mb();
1641 }
1642 
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645 	smp_mb();
1646 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648 
1649 /*
1650  * Set the discard flag when the img_request is an discard request
1651  */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655 	smp_mb();
1656 }
1657 
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660 	smp_mb();
1661 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663 
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673 	smp_mb();
1674 }
1675 
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678 	smp_mb();
1679 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681 
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685 	smp_mb();
1686 }
1687 
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691 	smp_mb();
1692 }
1693 
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696 	smp_mb();
1697 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699 
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703 	if (img_request_write_test(img_request))
1704 		return OBJ_OP_WRITE;
1705 	else if (img_request_discard_test(img_request))
1706 		return OBJ_OP_DISCARD;
1707 	else
1708 		return OBJ_OP_READ;
1709 }
1710 
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714 	u64 xferred = obj_request->xferred;
1715 	u64 length = obj_request->length;
1716 
1717 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718 		obj_request, obj_request->img_request, obj_request->result,
1719 		xferred, length);
1720 	/*
1721 	 * ENOENT means a hole in the image.  We zero-fill the entire
1722 	 * length of the request.  A short read also implies zero-fill
1723 	 * to the end of the request.  An error requires the whole
1724 	 * length of the request to be reported finished with an error
1725 	 * to the block layer.  In each case we update the xferred
1726 	 * count to indicate the whole request was satisfied.
1727 	 */
1728 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729 	if (obj_request->result == -ENOENT) {
1730 		if (obj_request->type == OBJ_REQUEST_BIO)
1731 			zero_bio_chain(obj_request->bio_list, 0);
1732 		else
1733 			zero_pages(obj_request->pages, 0, length);
1734 		obj_request->result = 0;
1735 	} else if (xferred < length && !obj_request->result) {
1736 		if (obj_request->type == OBJ_REQUEST_BIO)
1737 			zero_bio_chain(obj_request->bio_list, xferred);
1738 		else
1739 			zero_pages(obj_request->pages, xferred, length);
1740 	}
1741 	obj_request->xferred = length;
1742 	obj_request_done_set(obj_request);
1743 }
1744 
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1748 		obj_request->callback);
1749 	if (obj_request->callback)
1750 		obj_request->callback(obj_request);
1751 	else
1752 		complete_all(&obj_request->completion);
1753 }
1754 
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757 	dout("%s: obj %p\n", __func__, obj_request);
1758 	obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	struct rbd_img_request *img_request = NULL;
1764 	struct rbd_device *rbd_dev = NULL;
1765 	bool layered = false;
1766 
1767 	if (obj_request_img_data_test(obj_request)) {
1768 		img_request = obj_request->img_request;
1769 		layered = img_request && img_request_layered_test(img_request);
1770 		rbd_dev = img_request->rbd_dev;
1771 	}
1772 
1773 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774 		obj_request, img_request, obj_request->result,
1775 		obj_request->xferred, obj_request->length);
1776 	if (layered && obj_request->result == -ENOENT &&
1777 			obj_request->img_offset < rbd_dev->parent_overlap)
1778 		rbd_img_parent_read(obj_request);
1779 	else if (img_request)
1780 		rbd_img_obj_request_read_callback(obj_request);
1781 	else
1782 		obj_request_done_set(obj_request);
1783 }
1784 
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788 		obj_request->result, obj_request->length);
1789 	/*
1790 	 * There is no such thing as a successful short write.  Set
1791 	 * it to our originally-requested length.
1792 	 */
1793 	obj_request->xferred = obj_request->length;
1794 	obj_request_done_set(obj_request);
1795 }
1796 
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800 		obj_request->result, obj_request->length);
1801 	/*
1802 	 * There is no such thing as a successful short discard.  Set
1803 	 * it to our originally-requested length.
1804 	 */
1805 	obj_request->xferred = obj_request->length;
1806 	/* discarding a non-existent object is not a problem */
1807 	if (obj_request->result == -ENOENT)
1808 		obj_request->result = 0;
1809 	obj_request_done_set(obj_request);
1810 }
1811 
1812 /*
1813  * For a simple stat call there's nothing to do.  We'll do more if
1814  * this is part of a write sequence for a layered image.
1815  */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818 	dout("%s: obj %p\n", __func__, obj_request);
1819 	obj_request_done_set(obj_request);
1820 }
1821 
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824 	dout("%s: obj %p\n", __func__, obj_request);
1825 
1826 	if (obj_request_img_data_test(obj_request))
1827 		rbd_osd_copyup_callback(obj_request);
1828 	else
1829 		obj_request_done_set(obj_request);
1830 }
1831 
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833 				struct ceph_msg *msg)
1834 {
1835 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1836 	u16 opcode;
1837 
1838 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839 	rbd_assert(osd_req == obj_request->osd_req);
1840 	if (obj_request_img_data_test(obj_request)) {
1841 		rbd_assert(obj_request->img_request);
1842 		rbd_assert(obj_request->which != BAD_WHICH);
1843 	} else {
1844 		rbd_assert(obj_request->which == BAD_WHICH);
1845 	}
1846 
1847 	if (osd_req->r_result < 0)
1848 		obj_request->result = osd_req->r_result;
1849 
1850 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1851 
1852 	/*
1853 	 * We support a 64-bit length, but ultimately it has to be
1854 	 * passed to the block layer, which just supports a 32-bit
1855 	 * length field.
1856 	 */
1857 	obj_request->xferred = osd_req->r_reply_op_len[0];
1858 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1859 
1860 	opcode = osd_req->r_ops[0].op;
1861 	switch (opcode) {
1862 	case CEPH_OSD_OP_READ:
1863 		rbd_osd_read_callback(obj_request);
1864 		break;
1865 	case CEPH_OSD_OP_SETALLOCHINT:
1866 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1867 		/* fall through */
1868 	case CEPH_OSD_OP_WRITE:
1869 		rbd_osd_write_callback(obj_request);
1870 		break;
1871 	case CEPH_OSD_OP_STAT:
1872 		rbd_osd_stat_callback(obj_request);
1873 		break;
1874 	case CEPH_OSD_OP_DELETE:
1875 	case CEPH_OSD_OP_TRUNCATE:
1876 	case CEPH_OSD_OP_ZERO:
1877 		rbd_osd_discard_callback(obj_request);
1878 		break;
1879 	case CEPH_OSD_OP_CALL:
1880 		rbd_osd_call_callback(obj_request);
1881 		break;
1882 	case CEPH_OSD_OP_NOTIFY_ACK:
1883 	case CEPH_OSD_OP_WATCH:
1884 		rbd_osd_trivial_callback(obj_request);
1885 		break;
1886 	default:
1887 		rbd_warn(NULL, "%s: unsupported op %hu",
1888 			obj_request->object_name, (unsigned short) opcode);
1889 		break;
1890 	}
1891 
1892 	if (obj_request_done_test(obj_request))
1893 		rbd_obj_request_complete(obj_request);
1894 }
1895 
1896 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1897 {
1898 	struct rbd_img_request *img_request = obj_request->img_request;
1899 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 	u64 snap_id;
1901 
1902 	rbd_assert(osd_req != NULL);
1903 
1904 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1905 	ceph_osdc_build_request(osd_req, obj_request->offset,
1906 			NULL, snap_id, NULL);
1907 }
1908 
1909 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1910 {
1911 	struct rbd_img_request *img_request = obj_request->img_request;
1912 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1913 	struct ceph_snap_context *snapc;
1914 	struct timespec mtime = CURRENT_TIME;
1915 
1916 	rbd_assert(osd_req != NULL);
1917 
1918 	snapc = img_request ? img_request->snapc : NULL;
1919 	ceph_osdc_build_request(osd_req, obj_request->offset,
1920 			snapc, CEPH_NOSNAP, &mtime);
1921 }
1922 
1923 /*
1924  * Create an osd request.  A read request has one osd op (read).
1925  * A write request has either one (watch) or two (hint+write) osd ops.
1926  * (All rbd data writes are prefixed with an allocation hint op, but
1927  * technically osd watch is a write request, hence this distinction.)
1928  */
1929 static struct ceph_osd_request *rbd_osd_req_create(
1930 					struct rbd_device *rbd_dev,
1931 					enum obj_operation_type op_type,
1932 					unsigned int num_ops,
1933 					struct rbd_obj_request *obj_request)
1934 {
1935 	struct ceph_snap_context *snapc = NULL;
1936 	struct ceph_osd_client *osdc;
1937 	struct ceph_osd_request *osd_req;
1938 
1939 	if (obj_request_img_data_test(obj_request) &&
1940 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1941 		struct rbd_img_request *img_request = obj_request->img_request;
1942 		if (op_type == OBJ_OP_WRITE) {
1943 			rbd_assert(img_request_write_test(img_request));
1944 		} else {
1945 			rbd_assert(img_request_discard_test(img_request));
1946 		}
1947 		snapc = img_request->snapc;
1948 	}
1949 
1950 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1951 
1952 	/* Allocate and initialize the request, for the num_ops ops */
1953 
1954 	osdc = &rbd_dev->rbd_client->client->osdc;
1955 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1956 					  GFP_ATOMIC);
1957 	if (!osd_req)
1958 		return NULL;	/* ENOMEM */
1959 
1960 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1961 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1962 	else
1963 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1964 
1965 	osd_req->r_callback = rbd_osd_req_callback;
1966 	osd_req->r_priv = obj_request;
1967 
1968 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1969 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1970 
1971 	return osd_req;
1972 }
1973 
1974 /*
1975  * Create a copyup osd request based on the information in the object
1976  * request supplied.  A copyup request has two or three osd ops, a
1977  * copyup method call, potentially a hint op, and a write or truncate
1978  * or zero op.
1979  */
1980 static struct ceph_osd_request *
1981 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1982 {
1983 	struct rbd_img_request *img_request;
1984 	struct ceph_snap_context *snapc;
1985 	struct rbd_device *rbd_dev;
1986 	struct ceph_osd_client *osdc;
1987 	struct ceph_osd_request *osd_req;
1988 	int num_osd_ops = 3;
1989 
1990 	rbd_assert(obj_request_img_data_test(obj_request));
1991 	img_request = obj_request->img_request;
1992 	rbd_assert(img_request);
1993 	rbd_assert(img_request_write_test(img_request) ||
1994 			img_request_discard_test(img_request));
1995 
1996 	if (img_request_discard_test(img_request))
1997 		num_osd_ops = 2;
1998 
1999 	/* Allocate and initialize the request, for all the ops */
2000 
2001 	snapc = img_request->snapc;
2002 	rbd_dev = img_request->rbd_dev;
2003 	osdc = &rbd_dev->rbd_client->client->osdc;
2004 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2005 						false, GFP_ATOMIC);
2006 	if (!osd_req)
2007 		return NULL;	/* ENOMEM */
2008 
2009 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2010 	osd_req->r_callback = rbd_osd_req_callback;
2011 	osd_req->r_priv = obj_request;
2012 
2013 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2014 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2015 
2016 	return osd_req;
2017 }
2018 
2019 
2020 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2021 {
2022 	ceph_osdc_put_request(osd_req);
2023 }
2024 
2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2026 
2027 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2028 						u64 offset, u64 length,
2029 						enum obj_request_type type)
2030 {
2031 	struct rbd_obj_request *obj_request;
2032 	size_t size;
2033 	char *name;
2034 
2035 	rbd_assert(obj_request_type_valid(type));
2036 
2037 	size = strlen(object_name) + 1;
2038 	name = kmalloc(size, GFP_NOIO);
2039 	if (!name)
2040 		return NULL;
2041 
2042 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2043 	if (!obj_request) {
2044 		kfree(name);
2045 		return NULL;
2046 	}
2047 
2048 	obj_request->object_name = memcpy(name, object_name, size);
2049 	obj_request->offset = offset;
2050 	obj_request->length = length;
2051 	obj_request->flags = 0;
2052 	obj_request->which = BAD_WHICH;
2053 	obj_request->type = type;
2054 	INIT_LIST_HEAD(&obj_request->links);
2055 	init_completion(&obj_request->completion);
2056 	kref_init(&obj_request->kref);
2057 
2058 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2059 		offset, length, (int)type, obj_request);
2060 
2061 	return obj_request;
2062 }
2063 
2064 static void rbd_obj_request_destroy(struct kref *kref)
2065 {
2066 	struct rbd_obj_request *obj_request;
2067 
2068 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2069 
2070 	dout("%s: obj %p\n", __func__, obj_request);
2071 
2072 	rbd_assert(obj_request->img_request == NULL);
2073 	rbd_assert(obj_request->which == BAD_WHICH);
2074 
2075 	if (obj_request->osd_req)
2076 		rbd_osd_req_destroy(obj_request->osd_req);
2077 
2078 	rbd_assert(obj_request_type_valid(obj_request->type));
2079 	switch (obj_request->type) {
2080 	case OBJ_REQUEST_NODATA:
2081 		break;		/* Nothing to do */
2082 	case OBJ_REQUEST_BIO:
2083 		if (obj_request->bio_list)
2084 			bio_chain_put(obj_request->bio_list);
2085 		break;
2086 	case OBJ_REQUEST_PAGES:
2087 		if (obj_request->pages)
2088 			ceph_release_page_vector(obj_request->pages,
2089 						obj_request->page_count);
2090 		break;
2091 	}
2092 
2093 	kfree(obj_request->object_name);
2094 	obj_request->object_name = NULL;
2095 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2096 }
2097 
2098 /* It's OK to call this for a device with no parent */
2099 
2100 static void rbd_spec_put(struct rbd_spec *spec);
2101 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2102 {
2103 	rbd_dev_remove_parent(rbd_dev);
2104 	rbd_spec_put(rbd_dev->parent_spec);
2105 	rbd_dev->parent_spec = NULL;
2106 	rbd_dev->parent_overlap = 0;
2107 }
2108 
2109 /*
2110  * Parent image reference counting is used to determine when an
2111  * image's parent fields can be safely torn down--after there are no
2112  * more in-flight requests to the parent image.  When the last
2113  * reference is dropped, cleaning them up is safe.
2114  */
2115 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2116 {
2117 	int counter;
2118 
2119 	if (!rbd_dev->parent_spec)
2120 		return;
2121 
2122 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2123 	if (counter > 0)
2124 		return;
2125 
2126 	/* Last reference; clean up parent data structures */
2127 
2128 	if (!counter)
2129 		rbd_dev_unparent(rbd_dev);
2130 	else
2131 		rbd_warn(rbd_dev, "parent reference underflow");
2132 }
2133 
2134 /*
2135  * If an image has a non-zero parent overlap, get a reference to its
2136  * parent.
2137  *
2138  * Returns true if the rbd device has a parent with a non-zero
2139  * overlap and a reference for it was successfully taken, or
2140  * false otherwise.
2141  */
2142 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2143 {
2144 	int counter = 0;
2145 
2146 	if (!rbd_dev->parent_spec)
2147 		return false;
2148 
2149 	down_read(&rbd_dev->header_rwsem);
2150 	if (rbd_dev->parent_overlap)
2151 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2152 	up_read(&rbd_dev->header_rwsem);
2153 
2154 	if (counter < 0)
2155 		rbd_warn(rbd_dev, "parent reference overflow");
2156 
2157 	return counter > 0;
2158 }
2159 
2160 /*
2161  * Caller is responsible for filling in the list of object requests
2162  * that comprises the image request, and the Linux request pointer
2163  * (if there is one).
2164  */
2165 static struct rbd_img_request *rbd_img_request_create(
2166 					struct rbd_device *rbd_dev,
2167 					u64 offset, u64 length,
2168 					enum obj_operation_type op_type,
2169 					struct ceph_snap_context *snapc)
2170 {
2171 	struct rbd_img_request *img_request;
2172 
2173 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2174 	if (!img_request)
2175 		return NULL;
2176 
2177 	img_request->rq = NULL;
2178 	img_request->rbd_dev = rbd_dev;
2179 	img_request->offset = offset;
2180 	img_request->length = length;
2181 	img_request->flags = 0;
2182 	if (op_type == OBJ_OP_DISCARD) {
2183 		img_request_discard_set(img_request);
2184 		img_request->snapc = snapc;
2185 	} else if (op_type == OBJ_OP_WRITE) {
2186 		img_request_write_set(img_request);
2187 		img_request->snapc = snapc;
2188 	} else {
2189 		img_request->snap_id = rbd_dev->spec->snap_id;
2190 	}
2191 	if (rbd_dev_parent_get(rbd_dev))
2192 		img_request_layered_set(img_request);
2193 	spin_lock_init(&img_request->completion_lock);
2194 	img_request->next_completion = 0;
2195 	img_request->callback = NULL;
2196 	img_request->result = 0;
2197 	img_request->obj_request_count = 0;
2198 	INIT_LIST_HEAD(&img_request->obj_requests);
2199 	kref_init(&img_request->kref);
2200 
2201 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2202 		obj_op_name(op_type), offset, length, img_request);
2203 
2204 	return img_request;
2205 }
2206 
2207 static void rbd_img_request_destroy(struct kref *kref)
2208 {
2209 	struct rbd_img_request *img_request;
2210 	struct rbd_obj_request *obj_request;
2211 	struct rbd_obj_request *next_obj_request;
2212 
2213 	img_request = container_of(kref, struct rbd_img_request, kref);
2214 
2215 	dout("%s: img %p\n", __func__, img_request);
2216 
2217 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2218 		rbd_img_obj_request_del(img_request, obj_request);
2219 	rbd_assert(img_request->obj_request_count == 0);
2220 
2221 	if (img_request_layered_test(img_request)) {
2222 		img_request_layered_clear(img_request);
2223 		rbd_dev_parent_put(img_request->rbd_dev);
2224 	}
2225 
2226 	if (img_request_write_test(img_request) ||
2227 		img_request_discard_test(img_request))
2228 		ceph_put_snap_context(img_request->snapc);
2229 
2230 	kmem_cache_free(rbd_img_request_cache, img_request);
2231 }
2232 
2233 static struct rbd_img_request *rbd_parent_request_create(
2234 					struct rbd_obj_request *obj_request,
2235 					u64 img_offset, u64 length)
2236 {
2237 	struct rbd_img_request *parent_request;
2238 	struct rbd_device *rbd_dev;
2239 
2240 	rbd_assert(obj_request->img_request);
2241 	rbd_dev = obj_request->img_request->rbd_dev;
2242 
2243 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2244 						length, OBJ_OP_READ, NULL);
2245 	if (!parent_request)
2246 		return NULL;
2247 
2248 	img_request_child_set(parent_request);
2249 	rbd_obj_request_get(obj_request);
2250 	parent_request->obj_request = obj_request;
2251 
2252 	return parent_request;
2253 }
2254 
2255 static void rbd_parent_request_destroy(struct kref *kref)
2256 {
2257 	struct rbd_img_request *parent_request;
2258 	struct rbd_obj_request *orig_request;
2259 
2260 	parent_request = container_of(kref, struct rbd_img_request, kref);
2261 	orig_request = parent_request->obj_request;
2262 
2263 	parent_request->obj_request = NULL;
2264 	rbd_obj_request_put(orig_request);
2265 	img_request_child_clear(parent_request);
2266 
2267 	rbd_img_request_destroy(kref);
2268 }
2269 
2270 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2271 {
2272 	struct rbd_img_request *img_request;
2273 	unsigned int xferred;
2274 	int result;
2275 	bool more;
2276 
2277 	rbd_assert(obj_request_img_data_test(obj_request));
2278 	img_request = obj_request->img_request;
2279 
2280 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2281 	xferred = (unsigned int)obj_request->xferred;
2282 	result = obj_request->result;
2283 	if (result) {
2284 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2285 		enum obj_operation_type op_type;
2286 
2287 		if (img_request_discard_test(img_request))
2288 			op_type = OBJ_OP_DISCARD;
2289 		else if (img_request_write_test(img_request))
2290 			op_type = OBJ_OP_WRITE;
2291 		else
2292 			op_type = OBJ_OP_READ;
2293 
2294 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2295 			obj_op_name(op_type), obj_request->length,
2296 			obj_request->img_offset, obj_request->offset);
2297 		rbd_warn(rbd_dev, "  result %d xferred %x",
2298 			result, xferred);
2299 		if (!img_request->result)
2300 			img_request->result = result;
2301 		/*
2302 		 * Need to end I/O on the entire obj_request worth of
2303 		 * bytes in case of error.
2304 		 */
2305 		xferred = obj_request->length;
2306 	}
2307 
2308 	/* Image object requests don't own their page array */
2309 
2310 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2311 		obj_request->pages = NULL;
2312 		obj_request->page_count = 0;
2313 	}
2314 
2315 	if (img_request_child_test(img_request)) {
2316 		rbd_assert(img_request->obj_request != NULL);
2317 		more = obj_request->which < img_request->obj_request_count - 1;
2318 	} else {
2319 		rbd_assert(img_request->rq != NULL);
2320 
2321 		more = blk_update_request(img_request->rq, result, xferred);
2322 		if (!more)
2323 			__blk_mq_end_request(img_request->rq, result);
2324 	}
2325 
2326 	return more;
2327 }
2328 
2329 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2330 {
2331 	struct rbd_img_request *img_request;
2332 	u32 which = obj_request->which;
2333 	bool more = true;
2334 
2335 	rbd_assert(obj_request_img_data_test(obj_request));
2336 	img_request = obj_request->img_request;
2337 
2338 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2339 	rbd_assert(img_request != NULL);
2340 	rbd_assert(img_request->obj_request_count > 0);
2341 	rbd_assert(which != BAD_WHICH);
2342 	rbd_assert(which < img_request->obj_request_count);
2343 
2344 	spin_lock_irq(&img_request->completion_lock);
2345 	if (which != img_request->next_completion)
2346 		goto out;
2347 
2348 	for_each_obj_request_from(img_request, obj_request) {
2349 		rbd_assert(more);
2350 		rbd_assert(which < img_request->obj_request_count);
2351 
2352 		if (!obj_request_done_test(obj_request))
2353 			break;
2354 		more = rbd_img_obj_end_request(obj_request);
2355 		which++;
2356 	}
2357 
2358 	rbd_assert(more ^ (which == img_request->obj_request_count));
2359 	img_request->next_completion = which;
2360 out:
2361 	spin_unlock_irq(&img_request->completion_lock);
2362 	rbd_img_request_put(img_request);
2363 
2364 	if (!more)
2365 		rbd_img_request_complete(img_request);
2366 }
2367 
2368 /*
2369  * Add individual osd ops to the given ceph_osd_request and prepare
2370  * them for submission. num_ops is the current number of
2371  * osd operations already to the object request.
2372  */
2373 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2374 				struct ceph_osd_request *osd_request,
2375 				enum obj_operation_type op_type,
2376 				unsigned int num_ops)
2377 {
2378 	struct rbd_img_request *img_request = obj_request->img_request;
2379 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2380 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2381 	u64 offset = obj_request->offset;
2382 	u64 length = obj_request->length;
2383 	u64 img_end;
2384 	u16 opcode;
2385 
2386 	if (op_type == OBJ_OP_DISCARD) {
2387 		if (!offset && length == object_size &&
2388 		    (!img_request_layered_test(img_request) ||
2389 		     !obj_request_overlaps_parent(obj_request))) {
2390 			opcode = CEPH_OSD_OP_DELETE;
2391 		} else if ((offset + length == object_size)) {
2392 			opcode = CEPH_OSD_OP_TRUNCATE;
2393 		} else {
2394 			down_read(&rbd_dev->header_rwsem);
2395 			img_end = rbd_dev->header.image_size;
2396 			up_read(&rbd_dev->header_rwsem);
2397 
2398 			if (obj_request->img_offset + length == img_end)
2399 				opcode = CEPH_OSD_OP_TRUNCATE;
2400 			else
2401 				opcode = CEPH_OSD_OP_ZERO;
2402 		}
2403 	} else if (op_type == OBJ_OP_WRITE) {
2404 		opcode = CEPH_OSD_OP_WRITE;
2405 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2406 					object_size, object_size);
2407 		num_ops++;
2408 	} else {
2409 		opcode = CEPH_OSD_OP_READ;
2410 	}
2411 
2412 	if (opcode == CEPH_OSD_OP_DELETE)
2413 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2414 	else
2415 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2416 				       offset, length, 0, 0);
2417 
2418 	if (obj_request->type == OBJ_REQUEST_BIO)
2419 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2420 					obj_request->bio_list, length);
2421 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2422 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2423 					obj_request->pages, length,
2424 					offset & ~PAGE_MASK, false, false);
2425 
2426 	/* Discards are also writes */
2427 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2428 		rbd_osd_req_format_write(obj_request);
2429 	else
2430 		rbd_osd_req_format_read(obj_request);
2431 }
2432 
2433 /*
2434  * Split up an image request into one or more object requests, each
2435  * to a different object.  The "type" parameter indicates whether
2436  * "data_desc" is the pointer to the head of a list of bio
2437  * structures, or the base of a page array.  In either case this
2438  * function assumes data_desc describes memory sufficient to hold
2439  * all data described by the image request.
2440  */
2441 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2442 					enum obj_request_type type,
2443 					void *data_desc)
2444 {
2445 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2446 	struct rbd_obj_request *obj_request = NULL;
2447 	struct rbd_obj_request *next_obj_request;
2448 	struct bio *bio_list = NULL;
2449 	unsigned int bio_offset = 0;
2450 	struct page **pages = NULL;
2451 	enum obj_operation_type op_type;
2452 	u64 img_offset;
2453 	u64 resid;
2454 
2455 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2456 		(int)type, data_desc);
2457 
2458 	img_offset = img_request->offset;
2459 	resid = img_request->length;
2460 	rbd_assert(resid > 0);
2461 	op_type = rbd_img_request_op_type(img_request);
2462 
2463 	if (type == OBJ_REQUEST_BIO) {
2464 		bio_list = data_desc;
2465 		rbd_assert(img_offset ==
2466 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2467 	} else if (type == OBJ_REQUEST_PAGES) {
2468 		pages = data_desc;
2469 	}
2470 
2471 	while (resid) {
2472 		struct ceph_osd_request *osd_req;
2473 		const char *object_name;
2474 		u64 offset;
2475 		u64 length;
2476 
2477 		object_name = rbd_segment_name(rbd_dev, img_offset);
2478 		if (!object_name)
2479 			goto out_unwind;
2480 		offset = rbd_segment_offset(rbd_dev, img_offset);
2481 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2482 		obj_request = rbd_obj_request_create(object_name,
2483 						offset, length, type);
2484 		/* object request has its own copy of the object name */
2485 		rbd_segment_name_free(object_name);
2486 		if (!obj_request)
2487 			goto out_unwind;
2488 
2489 		/*
2490 		 * set obj_request->img_request before creating the
2491 		 * osd_request so that it gets the right snapc
2492 		 */
2493 		rbd_img_obj_request_add(img_request, obj_request);
2494 
2495 		if (type == OBJ_REQUEST_BIO) {
2496 			unsigned int clone_size;
2497 
2498 			rbd_assert(length <= (u64)UINT_MAX);
2499 			clone_size = (unsigned int)length;
2500 			obj_request->bio_list =
2501 					bio_chain_clone_range(&bio_list,
2502 								&bio_offset,
2503 								clone_size,
2504 								GFP_ATOMIC);
2505 			if (!obj_request->bio_list)
2506 				goto out_unwind;
2507 		} else if (type == OBJ_REQUEST_PAGES) {
2508 			unsigned int page_count;
2509 
2510 			obj_request->pages = pages;
2511 			page_count = (u32)calc_pages_for(offset, length);
2512 			obj_request->page_count = page_count;
2513 			if ((offset + length) & ~PAGE_MASK)
2514 				page_count--;	/* more on last page */
2515 			pages += page_count;
2516 		}
2517 
2518 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2519 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2520 					obj_request);
2521 		if (!osd_req)
2522 			goto out_unwind;
2523 
2524 		obj_request->osd_req = osd_req;
2525 		obj_request->callback = rbd_img_obj_callback;
2526 		obj_request->img_offset = img_offset;
2527 
2528 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2529 
2530 		rbd_img_request_get(img_request);
2531 
2532 		img_offset += length;
2533 		resid -= length;
2534 	}
2535 
2536 	return 0;
2537 
2538 out_unwind:
2539 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2540 		rbd_img_obj_request_del(img_request, obj_request);
2541 
2542 	return -ENOMEM;
2543 }
2544 
2545 static void
2546 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2547 {
2548 	struct rbd_img_request *img_request;
2549 	struct rbd_device *rbd_dev;
2550 	struct page **pages;
2551 	u32 page_count;
2552 
2553 	dout("%s: obj %p\n", __func__, obj_request);
2554 
2555 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2556 		obj_request->type == OBJ_REQUEST_NODATA);
2557 	rbd_assert(obj_request_img_data_test(obj_request));
2558 	img_request = obj_request->img_request;
2559 	rbd_assert(img_request);
2560 
2561 	rbd_dev = img_request->rbd_dev;
2562 	rbd_assert(rbd_dev);
2563 
2564 	pages = obj_request->copyup_pages;
2565 	rbd_assert(pages != NULL);
2566 	obj_request->copyup_pages = NULL;
2567 	page_count = obj_request->copyup_page_count;
2568 	rbd_assert(page_count);
2569 	obj_request->copyup_page_count = 0;
2570 	ceph_release_page_vector(pages, page_count);
2571 
2572 	/*
2573 	 * We want the transfer count to reflect the size of the
2574 	 * original write request.  There is no such thing as a
2575 	 * successful short write, so if the request was successful
2576 	 * we can just set it to the originally-requested length.
2577 	 */
2578 	if (!obj_request->result)
2579 		obj_request->xferred = obj_request->length;
2580 
2581 	obj_request_done_set(obj_request);
2582 }
2583 
2584 static void
2585 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2586 {
2587 	struct rbd_obj_request *orig_request;
2588 	struct ceph_osd_request *osd_req;
2589 	struct ceph_osd_client *osdc;
2590 	struct rbd_device *rbd_dev;
2591 	struct page **pages;
2592 	enum obj_operation_type op_type;
2593 	u32 page_count;
2594 	int img_result;
2595 	u64 parent_length;
2596 
2597 	rbd_assert(img_request_child_test(img_request));
2598 
2599 	/* First get what we need from the image request */
2600 
2601 	pages = img_request->copyup_pages;
2602 	rbd_assert(pages != NULL);
2603 	img_request->copyup_pages = NULL;
2604 	page_count = img_request->copyup_page_count;
2605 	rbd_assert(page_count);
2606 	img_request->copyup_page_count = 0;
2607 
2608 	orig_request = img_request->obj_request;
2609 	rbd_assert(orig_request != NULL);
2610 	rbd_assert(obj_request_type_valid(orig_request->type));
2611 	img_result = img_request->result;
2612 	parent_length = img_request->length;
2613 	rbd_assert(parent_length == img_request->xferred);
2614 	rbd_img_request_put(img_request);
2615 
2616 	rbd_assert(orig_request->img_request);
2617 	rbd_dev = orig_request->img_request->rbd_dev;
2618 	rbd_assert(rbd_dev);
2619 
2620 	/*
2621 	 * If the overlap has become 0 (most likely because the
2622 	 * image has been flattened) we need to free the pages
2623 	 * and re-submit the original write request.
2624 	 */
2625 	if (!rbd_dev->parent_overlap) {
2626 		struct ceph_osd_client *osdc;
2627 
2628 		ceph_release_page_vector(pages, page_count);
2629 		osdc = &rbd_dev->rbd_client->client->osdc;
2630 		img_result = rbd_obj_request_submit(osdc, orig_request);
2631 		if (!img_result)
2632 			return;
2633 	}
2634 
2635 	if (img_result)
2636 		goto out_err;
2637 
2638 	/*
2639 	 * The original osd request is of no use to use any more.
2640 	 * We need a new one that can hold the three ops in a copyup
2641 	 * request.  Allocate the new copyup osd request for the
2642 	 * original request, and release the old one.
2643 	 */
2644 	img_result = -ENOMEM;
2645 	osd_req = rbd_osd_req_create_copyup(orig_request);
2646 	if (!osd_req)
2647 		goto out_err;
2648 	rbd_osd_req_destroy(orig_request->osd_req);
2649 	orig_request->osd_req = osd_req;
2650 	orig_request->copyup_pages = pages;
2651 	orig_request->copyup_page_count = page_count;
2652 
2653 	/* Initialize the copyup op */
2654 
2655 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2656 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2657 						false, false);
2658 
2659 	/* Add the other op(s) */
2660 
2661 	op_type = rbd_img_request_op_type(orig_request->img_request);
2662 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2663 
2664 	/* All set, send it off. */
2665 
2666 	osdc = &rbd_dev->rbd_client->client->osdc;
2667 	img_result = rbd_obj_request_submit(osdc, orig_request);
2668 	if (!img_result)
2669 		return;
2670 out_err:
2671 	/* Record the error code and complete the request */
2672 
2673 	orig_request->result = img_result;
2674 	orig_request->xferred = 0;
2675 	obj_request_done_set(orig_request);
2676 	rbd_obj_request_complete(orig_request);
2677 }
2678 
2679 /*
2680  * Read from the parent image the range of data that covers the
2681  * entire target of the given object request.  This is used for
2682  * satisfying a layered image write request when the target of an
2683  * object request from the image request does not exist.
2684  *
2685  * A page array big enough to hold the returned data is allocated
2686  * and supplied to rbd_img_request_fill() as the "data descriptor."
2687  * When the read completes, this page array will be transferred to
2688  * the original object request for the copyup operation.
2689  *
2690  * If an error occurs, record it as the result of the original
2691  * object request and mark it done so it gets completed.
2692  */
2693 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2694 {
2695 	struct rbd_img_request *img_request = NULL;
2696 	struct rbd_img_request *parent_request = NULL;
2697 	struct rbd_device *rbd_dev;
2698 	u64 img_offset;
2699 	u64 length;
2700 	struct page **pages = NULL;
2701 	u32 page_count;
2702 	int result;
2703 
2704 	rbd_assert(obj_request_img_data_test(obj_request));
2705 	rbd_assert(obj_request_type_valid(obj_request->type));
2706 
2707 	img_request = obj_request->img_request;
2708 	rbd_assert(img_request != NULL);
2709 	rbd_dev = img_request->rbd_dev;
2710 	rbd_assert(rbd_dev->parent != NULL);
2711 
2712 	/*
2713 	 * Determine the byte range covered by the object in the
2714 	 * child image to which the original request was to be sent.
2715 	 */
2716 	img_offset = obj_request->img_offset - obj_request->offset;
2717 	length = (u64)1 << rbd_dev->header.obj_order;
2718 
2719 	/*
2720 	 * There is no defined parent data beyond the parent
2721 	 * overlap, so limit what we read at that boundary if
2722 	 * necessary.
2723 	 */
2724 	if (img_offset + length > rbd_dev->parent_overlap) {
2725 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2726 		length = rbd_dev->parent_overlap - img_offset;
2727 	}
2728 
2729 	/*
2730 	 * Allocate a page array big enough to receive the data read
2731 	 * from the parent.
2732 	 */
2733 	page_count = (u32)calc_pages_for(0, length);
2734 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2735 	if (IS_ERR(pages)) {
2736 		result = PTR_ERR(pages);
2737 		pages = NULL;
2738 		goto out_err;
2739 	}
2740 
2741 	result = -ENOMEM;
2742 	parent_request = rbd_parent_request_create(obj_request,
2743 						img_offset, length);
2744 	if (!parent_request)
2745 		goto out_err;
2746 
2747 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2748 	if (result)
2749 		goto out_err;
2750 	parent_request->copyup_pages = pages;
2751 	parent_request->copyup_page_count = page_count;
2752 
2753 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2754 	result = rbd_img_request_submit(parent_request);
2755 	if (!result)
2756 		return 0;
2757 
2758 	parent_request->copyup_pages = NULL;
2759 	parent_request->copyup_page_count = 0;
2760 	parent_request->obj_request = NULL;
2761 	rbd_obj_request_put(obj_request);
2762 out_err:
2763 	if (pages)
2764 		ceph_release_page_vector(pages, page_count);
2765 	if (parent_request)
2766 		rbd_img_request_put(parent_request);
2767 	obj_request->result = result;
2768 	obj_request->xferred = 0;
2769 	obj_request_done_set(obj_request);
2770 
2771 	return result;
2772 }
2773 
2774 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2775 {
2776 	struct rbd_obj_request *orig_request;
2777 	struct rbd_device *rbd_dev;
2778 	int result;
2779 
2780 	rbd_assert(!obj_request_img_data_test(obj_request));
2781 
2782 	/*
2783 	 * All we need from the object request is the original
2784 	 * request and the result of the STAT op.  Grab those, then
2785 	 * we're done with the request.
2786 	 */
2787 	orig_request = obj_request->obj_request;
2788 	obj_request->obj_request = NULL;
2789 	rbd_obj_request_put(orig_request);
2790 	rbd_assert(orig_request);
2791 	rbd_assert(orig_request->img_request);
2792 
2793 	result = obj_request->result;
2794 	obj_request->result = 0;
2795 
2796 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2797 		obj_request, orig_request, result,
2798 		obj_request->xferred, obj_request->length);
2799 	rbd_obj_request_put(obj_request);
2800 
2801 	/*
2802 	 * If the overlap has become 0 (most likely because the
2803 	 * image has been flattened) we need to free the pages
2804 	 * and re-submit the original write request.
2805 	 */
2806 	rbd_dev = orig_request->img_request->rbd_dev;
2807 	if (!rbd_dev->parent_overlap) {
2808 		struct ceph_osd_client *osdc;
2809 
2810 		osdc = &rbd_dev->rbd_client->client->osdc;
2811 		result = rbd_obj_request_submit(osdc, orig_request);
2812 		if (!result)
2813 			return;
2814 	}
2815 
2816 	/*
2817 	 * Our only purpose here is to determine whether the object
2818 	 * exists, and we don't want to treat the non-existence as
2819 	 * an error.  If something else comes back, transfer the
2820 	 * error to the original request and complete it now.
2821 	 */
2822 	if (!result) {
2823 		obj_request_existence_set(orig_request, true);
2824 	} else if (result == -ENOENT) {
2825 		obj_request_existence_set(orig_request, false);
2826 	} else if (result) {
2827 		orig_request->result = result;
2828 		goto out;
2829 	}
2830 
2831 	/*
2832 	 * Resubmit the original request now that we have recorded
2833 	 * whether the target object exists.
2834 	 */
2835 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2836 out:
2837 	if (orig_request->result)
2838 		rbd_obj_request_complete(orig_request);
2839 }
2840 
2841 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2842 {
2843 	struct rbd_obj_request *stat_request;
2844 	struct rbd_device *rbd_dev;
2845 	struct ceph_osd_client *osdc;
2846 	struct page **pages = NULL;
2847 	u32 page_count;
2848 	size_t size;
2849 	int ret;
2850 
2851 	/*
2852 	 * The response data for a STAT call consists of:
2853 	 *     le64 length;
2854 	 *     struct {
2855 	 *         le32 tv_sec;
2856 	 *         le32 tv_nsec;
2857 	 *     } mtime;
2858 	 */
2859 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2860 	page_count = (u32)calc_pages_for(0, size);
2861 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2862 	if (IS_ERR(pages))
2863 		return PTR_ERR(pages);
2864 
2865 	ret = -ENOMEM;
2866 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2867 							OBJ_REQUEST_PAGES);
2868 	if (!stat_request)
2869 		goto out;
2870 
2871 	rbd_obj_request_get(obj_request);
2872 	stat_request->obj_request = obj_request;
2873 	stat_request->pages = pages;
2874 	stat_request->page_count = page_count;
2875 
2876 	rbd_assert(obj_request->img_request);
2877 	rbd_dev = obj_request->img_request->rbd_dev;
2878 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2879 						   stat_request);
2880 	if (!stat_request->osd_req)
2881 		goto out;
2882 	stat_request->callback = rbd_img_obj_exists_callback;
2883 
2884 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2885 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2886 					false, false);
2887 	rbd_osd_req_format_read(stat_request);
2888 
2889 	osdc = &rbd_dev->rbd_client->client->osdc;
2890 	ret = rbd_obj_request_submit(osdc, stat_request);
2891 out:
2892 	if (ret)
2893 		rbd_obj_request_put(obj_request);
2894 
2895 	return ret;
2896 }
2897 
2898 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2899 {
2900 	struct rbd_img_request *img_request;
2901 	struct rbd_device *rbd_dev;
2902 
2903 	rbd_assert(obj_request_img_data_test(obj_request));
2904 
2905 	img_request = obj_request->img_request;
2906 	rbd_assert(img_request);
2907 	rbd_dev = img_request->rbd_dev;
2908 
2909 	/* Reads */
2910 	if (!img_request_write_test(img_request) &&
2911 	    !img_request_discard_test(img_request))
2912 		return true;
2913 
2914 	/* Non-layered writes */
2915 	if (!img_request_layered_test(img_request))
2916 		return true;
2917 
2918 	/*
2919 	 * Layered writes outside of the parent overlap range don't
2920 	 * share any data with the parent.
2921 	 */
2922 	if (!obj_request_overlaps_parent(obj_request))
2923 		return true;
2924 
2925 	/*
2926 	 * Entire-object layered writes - we will overwrite whatever
2927 	 * parent data there is anyway.
2928 	 */
2929 	if (!obj_request->offset &&
2930 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2931 		return true;
2932 
2933 	/*
2934 	 * If the object is known to already exist, its parent data has
2935 	 * already been copied.
2936 	 */
2937 	if (obj_request_known_test(obj_request) &&
2938 	    obj_request_exists_test(obj_request))
2939 		return true;
2940 
2941 	return false;
2942 }
2943 
2944 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2945 {
2946 	if (img_obj_request_simple(obj_request)) {
2947 		struct rbd_device *rbd_dev;
2948 		struct ceph_osd_client *osdc;
2949 
2950 		rbd_dev = obj_request->img_request->rbd_dev;
2951 		osdc = &rbd_dev->rbd_client->client->osdc;
2952 
2953 		return rbd_obj_request_submit(osdc, obj_request);
2954 	}
2955 
2956 	/*
2957 	 * It's a layered write.  The target object might exist but
2958 	 * we may not know that yet.  If we know it doesn't exist,
2959 	 * start by reading the data for the full target object from
2960 	 * the parent so we can use it for a copyup to the target.
2961 	 */
2962 	if (obj_request_known_test(obj_request))
2963 		return rbd_img_obj_parent_read_full(obj_request);
2964 
2965 	/* We don't know whether the target exists.  Go find out. */
2966 
2967 	return rbd_img_obj_exists_submit(obj_request);
2968 }
2969 
2970 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2971 {
2972 	struct rbd_obj_request *obj_request;
2973 	struct rbd_obj_request *next_obj_request;
2974 
2975 	dout("%s: img %p\n", __func__, img_request);
2976 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2977 		int ret;
2978 
2979 		ret = rbd_img_obj_request_submit(obj_request);
2980 		if (ret)
2981 			return ret;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2988 {
2989 	struct rbd_obj_request *obj_request;
2990 	struct rbd_device *rbd_dev;
2991 	u64 obj_end;
2992 	u64 img_xferred;
2993 	int img_result;
2994 
2995 	rbd_assert(img_request_child_test(img_request));
2996 
2997 	/* First get what we need from the image request and release it */
2998 
2999 	obj_request = img_request->obj_request;
3000 	img_xferred = img_request->xferred;
3001 	img_result = img_request->result;
3002 	rbd_img_request_put(img_request);
3003 
3004 	/*
3005 	 * If the overlap has become 0 (most likely because the
3006 	 * image has been flattened) we need to re-submit the
3007 	 * original request.
3008 	 */
3009 	rbd_assert(obj_request);
3010 	rbd_assert(obj_request->img_request);
3011 	rbd_dev = obj_request->img_request->rbd_dev;
3012 	if (!rbd_dev->parent_overlap) {
3013 		struct ceph_osd_client *osdc;
3014 
3015 		osdc = &rbd_dev->rbd_client->client->osdc;
3016 		img_result = rbd_obj_request_submit(osdc, obj_request);
3017 		if (!img_result)
3018 			return;
3019 	}
3020 
3021 	obj_request->result = img_result;
3022 	if (obj_request->result)
3023 		goto out;
3024 
3025 	/*
3026 	 * We need to zero anything beyond the parent overlap
3027 	 * boundary.  Since rbd_img_obj_request_read_callback()
3028 	 * will zero anything beyond the end of a short read, an
3029 	 * easy way to do this is to pretend the data from the
3030 	 * parent came up short--ending at the overlap boundary.
3031 	 */
3032 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3033 	obj_end = obj_request->img_offset + obj_request->length;
3034 	if (obj_end > rbd_dev->parent_overlap) {
3035 		u64 xferred = 0;
3036 
3037 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3038 			xferred = rbd_dev->parent_overlap -
3039 					obj_request->img_offset;
3040 
3041 		obj_request->xferred = min(img_xferred, xferred);
3042 	} else {
3043 		obj_request->xferred = img_xferred;
3044 	}
3045 out:
3046 	rbd_img_obj_request_read_callback(obj_request);
3047 	rbd_obj_request_complete(obj_request);
3048 }
3049 
3050 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3051 {
3052 	struct rbd_img_request *img_request;
3053 	int result;
3054 
3055 	rbd_assert(obj_request_img_data_test(obj_request));
3056 	rbd_assert(obj_request->img_request != NULL);
3057 	rbd_assert(obj_request->result == (s32) -ENOENT);
3058 	rbd_assert(obj_request_type_valid(obj_request->type));
3059 
3060 	/* rbd_read_finish(obj_request, obj_request->length); */
3061 	img_request = rbd_parent_request_create(obj_request,
3062 						obj_request->img_offset,
3063 						obj_request->length);
3064 	result = -ENOMEM;
3065 	if (!img_request)
3066 		goto out_err;
3067 
3068 	if (obj_request->type == OBJ_REQUEST_BIO)
3069 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3070 						obj_request->bio_list);
3071 	else
3072 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3073 						obj_request->pages);
3074 	if (result)
3075 		goto out_err;
3076 
3077 	img_request->callback = rbd_img_parent_read_callback;
3078 	result = rbd_img_request_submit(img_request);
3079 	if (result)
3080 		goto out_err;
3081 
3082 	return;
3083 out_err:
3084 	if (img_request)
3085 		rbd_img_request_put(img_request);
3086 	obj_request->result = result;
3087 	obj_request->xferred = 0;
3088 	obj_request_done_set(obj_request);
3089 }
3090 
3091 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3092 {
3093 	struct rbd_obj_request *obj_request;
3094 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095 	int ret;
3096 
3097 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3098 							OBJ_REQUEST_NODATA);
3099 	if (!obj_request)
3100 		return -ENOMEM;
3101 
3102 	ret = -ENOMEM;
3103 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3104 						  obj_request);
3105 	if (!obj_request->osd_req)
3106 		goto out;
3107 
3108 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3109 					notify_id, 0, 0);
3110 	rbd_osd_req_format_read(obj_request);
3111 
3112 	ret = rbd_obj_request_submit(osdc, obj_request);
3113 	if (ret)
3114 		goto out;
3115 	ret = rbd_obj_request_wait(obj_request);
3116 out:
3117 	rbd_obj_request_put(obj_request);
3118 
3119 	return ret;
3120 }
3121 
3122 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3123 {
3124 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3125 	int ret;
3126 
3127 	if (!rbd_dev)
3128 		return;
3129 
3130 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3131 		rbd_dev->header_name, (unsigned long long)notify_id,
3132 		(unsigned int)opcode);
3133 
3134 	/*
3135 	 * Until adequate refresh error handling is in place, there is
3136 	 * not much we can do here, except warn.
3137 	 *
3138 	 * See http://tracker.ceph.com/issues/5040
3139 	 */
3140 	ret = rbd_dev_refresh(rbd_dev);
3141 	if (ret)
3142 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3143 
3144 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3145 	if (ret)
3146 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3147 }
3148 
3149 /*
3150  * Send a (un)watch request and wait for the ack.  Return a request
3151  * with a ref held on success or error.
3152  */
3153 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3154 						struct rbd_device *rbd_dev,
3155 						bool watch)
3156 {
3157 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3158 	struct ceph_options *opts = osdc->client->options;
3159 	struct rbd_obj_request *obj_request;
3160 	int ret;
3161 
3162 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3163 					     OBJ_REQUEST_NODATA);
3164 	if (!obj_request)
3165 		return ERR_PTR(-ENOMEM);
3166 
3167 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3168 						  obj_request);
3169 	if (!obj_request->osd_req) {
3170 		ret = -ENOMEM;
3171 		goto out;
3172 	}
3173 
3174 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3175 			      rbd_dev->watch_event->cookie, 0, watch);
3176 	rbd_osd_req_format_write(obj_request);
3177 
3178 	if (watch)
3179 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3180 
3181 	ret = rbd_obj_request_submit(osdc, obj_request);
3182 	if (ret)
3183 		goto out;
3184 
3185 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3186 	if (ret)
3187 		goto out;
3188 
3189 	ret = obj_request->result;
3190 	if (ret) {
3191 		if (watch)
3192 			rbd_obj_request_end(obj_request);
3193 		goto out;
3194 	}
3195 
3196 	return obj_request;
3197 
3198 out:
3199 	rbd_obj_request_put(obj_request);
3200 	return ERR_PTR(ret);
3201 }
3202 
3203 /*
3204  * Initiate a watch request, synchronously.
3205  */
3206 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3207 {
3208 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3209 	struct rbd_obj_request *obj_request;
3210 	int ret;
3211 
3212 	rbd_assert(!rbd_dev->watch_event);
3213 	rbd_assert(!rbd_dev->watch_request);
3214 
3215 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3216 				     &rbd_dev->watch_event);
3217 	if (ret < 0)
3218 		return ret;
3219 
3220 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3221 	if (IS_ERR(obj_request)) {
3222 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3223 		rbd_dev->watch_event = NULL;
3224 		return PTR_ERR(obj_request);
3225 	}
3226 
3227 	/*
3228 	 * A watch request is set to linger, so the underlying osd
3229 	 * request won't go away until we unregister it.  We retain
3230 	 * a pointer to the object request during that time (in
3231 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3232 	 * We'll drop that reference after we've unregistered it in
3233 	 * rbd_dev_header_unwatch_sync().
3234 	 */
3235 	rbd_dev->watch_request = obj_request;
3236 
3237 	return 0;
3238 }
3239 
3240 /*
3241  * Tear down a watch request, synchronously.
3242  */
3243 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3244 {
3245 	struct rbd_obj_request *obj_request;
3246 
3247 	rbd_assert(rbd_dev->watch_event);
3248 	rbd_assert(rbd_dev->watch_request);
3249 
3250 	rbd_obj_request_end(rbd_dev->watch_request);
3251 	rbd_obj_request_put(rbd_dev->watch_request);
3252 	rbd_dev->watch_request = NULL;
3253 
3254 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3255 	if (!IS_ERR(obj_request))
3256 		rbd_obj_request_put(obj_request);
3257 	else
3258 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3259 			 PTR_ERR(obj_request));
3260 
3261 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3262 	rbd_dev->watch_event = NULL;
3263 }
3264 
3265 /*
3266  * Synchronous osd object method call.  Returns the number of bytes
3267  * returned in the outbound buffer, or a negative error code.
3268  */
3269 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3270 			     const char *object_name,
3271 			     const char *class_name,
3272 			     const char *method_name,
3273 			     const void *outbound,
3274 			     size_t outbound_size,
3275 			     void *inbound,
3276 			     size_t inbound_size)
3277 {
3278 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3279 	struct rbd_obj_request *obj_request;
3280 	struct page **pages;
3281 	u32 page_count;
3282 	int ret;
3283 
3284 	/*
3285 	 * Method calls are ultimately read operations.  The result
3286 	 * should placed into the inbound buffer provided.  They
3287 	 * also supply outbound data--parameters for the object
3288 	 * method.  Currently if this is present it will be a
3289 	 * snapshot id.
3290 	 */
3291 	page_count = (u32)calc_pages_for(0, inbound_size);
3292 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3293 	if (IS_ERR(pages))
3294 		return PTR_ERR(pages);
3295 
3296 	ret = -ENOMEM;
3297 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3298 							OBJ_REQUEST_PAGES);
3299 	if (!obj_request)
3300 		goto out;
3301 
3302 	obj_request->pages = pages;
3303 	obj_request->page_count = page_count;
3304 
3305 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3306 						  obj_request);
3307 	if (!obj_request->osd_req)
3308 		goto out;
3309 
3310 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3311 					class_name, method_name);
3312 	if (outbound_size) {
3313 		struct ceph_pagelist *pagelist;
3314 
3315 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3316 		if (!pagelist)
3317 			goto out;
3318 
3319 		ceph_pagelist_init(pagelist);
3320 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3321 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3322 						pagelist);
3323 	}
3324 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3325 					obj_request->pages, inbound_size,
3326 					0, false, false);
3327 	rbd_osd_req_format_read(obj_request);
3328 
3329 	ret = rbd_obj_request_submit(osdc, obj_request);
3330 	if (ret)
3331 		goto out;
3332 	ret = rbd_obj_request_wait(obj_request);
3333 	if (ret)
3334 		goto out;
3335 
3336 	ret = obj_request->result;
3337 	if (ret < 0)
3338 		goto out;
3339 
3340 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3341 	ret = (int)obj_request->xferred;
3342 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3343 out:
3344 	if (obj_request)
3345 		rbd_obj_request_put(obj_request);
3346 	else
3347 		ceph_release_page_vector(pages, page_count);
3348 
3349 	return ret;
3350 }
3351 
3352 static void rbd_queue_workfn(struct work_struct *work)
3353 {
3354 	struct request *rq = blk_mq_rq_from_pdu(work);
3355 	struct rbd_device *rbd_dev = rq->q->queuedata;
3356 	struct rbd_img_request *img_request;
3357 	struct ceph_snap_context *snapc = NULL;
3358 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3359 	u64 length = blk_rq_bytes(rq);
3360 	enum obj_operation_type op_type;
3361 	u64 mapping_size;
3362 	int result;
3363 
3364 	if (rq->cmd_type != REQ_TYPE_FS) {
3365 		dout("%s: non-fs request type %d\n", __func__,
3366 			(int) rq->cmd_type);
3367 		result = -EIO;
3368 		goto err;
3369 	}
3370 
3371 	if (rq->cmd_flags & REQ_DISCARD)
3372 		op_type = OBJ_OP_DISCARD;
3373 	else if (rq->cmd_flags & REQ_WRITE)
3374 		op_type = OBJ_OP_WRITE;
3375 	else
3376 		op_type = OBJ_OP_READ;
3377 
3378 	/* Ignore/skip any zero-length requests */
3379 
3380 	if (!length) {
3381 		dout("%s: zero-length request\n", __func__);
3382 		result = 0;
3383 		goto err_rq;
3384 	}
3385 
3386 	/* Only reads are allowed to a read-only device */
3387 
3388 	if (op_type != OBJ_OP_READ) {
3389 		if (rbd_dev->mapping.read_only) {
3390 			result = -EROFS;
3391 			goto err_rq;
3392 		}
3393 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3394 	}
3395 
3396 	/*
3397 	 * Quit early if the mapped snapshot no longer exists.  It's
3398 	 * still possible the snapshot will have disappeared by the
3399 	 * time our request arrives at the osd, but there's no sense in
3400 	 * sending it if we already know.
3401 	 */
3402 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3403 		dout("request for non-existent snapshot");
3404 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3405 		result = -ENXIO;
3406 		goto err_rq;
3407 	}
3408 
3409 	if (offset && length > U64_MAX - offset + 1) {
3410 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3411 			 length);
3412 		result = -EINVAL;
3413 		goto err_rq;	/* Shouldn't happen */
3414 	}
3415 
3416 	blk_mq_start_request(rq);
3417 
3418 	down_read(&rbd_dev->header_rwsem);
3419 	mapping_size = rbd_dev->mapping.size;
3420 	if (op_type != OBJ_OP_READ) {
3421 		snapc = rbd_dev->header.snapc;
3422 		ceph_get_snap_context(snapc);
3423 	}
3424 	up_read(&rbd_dev->header_rwsem);
3425 
3426 	if (offset + length > mapping_size) {
3427 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3428 			 length, mapping_size);
3429 		result = -EIO;
3430 		goto err_rq;
3431 	}
3432 
3433 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3434 					     snapc);
3435 	if (!img_request) {
3436 		result = -ENOMEM;
3437 		goto err_rq;
3438 	}
3439 	img_request->rq = rq;
3440 
3441 	if (op_type == OBJ_OP_DISCARD)
3442 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3443 					      NULL);
3444 	else
3445 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3446 					      rq->bio);
3447 	if (result)
3448 		goto err_img_request;
3449 
3450 	result = rbd_img_request_submit(img_request);
3451 	if (result)
3452 		goto err_img_request;
3453 
3454 	return;
3455 
3456 err_img_request:
3457 	rbd_img_request_put(img_request);
3458 err_rq:
3459 	if (result)
3460 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3461 			 obj_op_name(op_type), length, offset, result);
3462 	ceph_put_snap_context(snapc);
3463 err:
3464 	blk_mq_end_request(rq, result);
3465 }
3466 
3467 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3468 		const struct blk_mq_queue_data *bd)
3469 {
3470 	struct request *rq = bd->rq;
3471 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3472 
3473 	queue_work(rbd_wq, work);
3474 	return BLK_MQ_RQ_QUEUE_OK;
3475 }
3476 
3477 static void rbd_free_disk(struct rbd_device *rbd_dev)
3478 {
3479 	struct gendisk *disk = rbd_dev->disk;
3480 
3481 	if (!disk)
3482 		return;
3483 
3484 	rbd_dev->disk = NULL;
3485 	if (disk->flags & GENHD_FL_UP) {
3486 		del_gendisk(disk);
3487 		if (disk->queue)
3488 			blk_cleanup_queue(disk->queue);
3489 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3490 	}
3491 	put_disk(disk);
3492 }
3493 
3494 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3495 				const char *object_name,
3496 				u64 offset, u64 length, void *buf)
3497 
3498 {
3499 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3500 	struct rbd_obj_request *obj_request;
3501 	struct page **pages = NULL;
3502 	u32 page_count;
3503 	size_t size;
3504 	int ret;
3505 
3506 	page_count = (u32) calc_pages_for(offset, length);
3507 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3508 	if (IS_ERR(pages))
3509 		return PTR_ERR(pages);
3510 
3511 	ret = -ENOMEM;
3512 	obj_request = rbd_obj_request_create(object_name, offset, length,
3513 							OBJ_REQUEST_PAGES);
3514 	if (!obj_request)
3515 		goto out;
3516 
3517 	obj_request->pages = pages;
3518 	obj_request->page_count = page_count;
3519 
3520 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3521 						  obj_request);
3522 	if (!obj_request->osd_req)
3523 		goto out;
3524 
3525 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3526 					offset, length, 0, 0);
3527 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3528 					obj_request->pages,
3529 					obj_request->length,
3530 					obj_request->offset & ~PAGE_MASK,
3531 					false, false);
3532 	rbd_osd_req_format_read(obj_request);
3533 
3534 	ret = rbd_obj_request_submit(osdc, obj_request);
3535 	if (ret)
3536 		goto out;
3537 	ret = rbd_obj_request_wait(obj_request);
3538 	if (ret)
3539 		goto out;
3540 
3541 	ret = obj_request->result;
3542 	if (ret < 0)
3543 		goto out;
3544 
3545 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3546 	size = (size_t) obj_request->xferred;
3547 	ceph_copy_from_page_vector(pages, buf, 0, size);
3548 	rbd_assert(size <= (size_t)INT_MAX);
3549 	ret = (int)size;
3550 out:
3551 	if (obj_request)
3552 		rbd_obj_request_put(obj_request);
3553 	else
3554 		ceph_release_page_vector(pages, page_count);
3555 
3556 	return ret;
3557 }
3558 
3559 /*
3560  * Read the complete header for the given rbd device.  On successful
3561  * return, the rbd_dev->header field will contain up-to-date
3562  * information about the image.
3563  */
3564 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3565 {
3566 	struct rbd_image_header_ondisk *ondisk = NULL;
3567 	u32 snap_count = 0;
3568 	u64 names_size = 0;
3569 	u32 want_count;
3570 	int ret;
3571 
3572 	/*
3573 	 * The complete header will include an array of its 64-bit
3574 	 * snapshot ids, followed by the names of those snapshots as
3575 	 * a contiguous block of NUL-terminated strings.  Note that
3576 	 * the number of snapshots could change by the time we read
3577 	 * it in, in which case we re-read it.
3578 	 */
3579 	do {
3580 		size_t size;
3581 
3582 		kfree(ondisk);
3583 
3584 		size = sizeof (*ondisk);
3585 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3586 		size += names_size;
3587 		ondisk = kmalloc(size, GFP_KERNEL);
3588 		if (!ondisk)
3589 			return -ENOMEM;
3590 
3591 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3592 				       0, size, ondisk);
3593 		if (ret < 0)
3594 			goto out;
3595 		if ((size_t)ret < size) {
3596 			ret = -ENXIO;
3597 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3598 				size, ret);
3599 			goto out;
3600 		}
3601 		if (!rbd_dev_ondisk_valid(ondisk)) {
3602 			ret = -ENXIO;
3603 			rbd_warn(rbd_dev, "invalid header");
3604 			goto out;
3605 		}
3606 
3607 		names_size = le64_to_cpu(ondisk->snap_names_len);
3608 		want_count = snap_count;
3609 		snap_count = le32_to_cpu(ondisk->snap_count);
3610 	} while (snap_count != want_count);
3611 
3612 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3613 out:
3614 	kfree(ondisk);
3615 
3616 	return ret;
3617 }
3618 
3619 /*
3620  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3621  * has disappeared from the (just updated) snapshot context.
3622  */
3623 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3624 {
3625 	u64 snap_id;
3626 
3627 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3628 		return;
3629 
3630 	snap_id = rbd_dev->spec->snap_id;
3631 	if (snap_id == CEPH_NOSNAP)
3632 		return;
3633 
3634 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3635 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3636 }
3637 
3638 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3639 {
3640 	sector_t size;
3641 	bool removing;
3642 
3643 	/*
3644 	 * Don't hold the lock while doing disk operations,
3645 	 * or lock ordering will conflict with the bdev mutex via:
3646 	 * rbd_add() -> blkdev_get() -> rbd_open()
3647 	 */
3648 	spin_lock_irq(&rbd_dev->lock);
3649 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3650 	spin_unlock_irq(&rbd_dev->lock);
3651 	/*
3652 	 * If the device is being removed, rbd_dev->disk has
3653 	 * been destroyed, so don't try to update its size
3654 	 */
3655 	if (!removing) {
3656 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3657 		dout("setting size to %llu sectors", (unsigned long long)size);
3658 		set_capacity(rbd_dev->disk, size);
3659 		revalidate_disk(rbd_dev->disk);
3660 	}
3661 }
3662 
3663 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3664 {
3665 	u64 mapping_size;
3666 	int ret;
3667 
3668 	down_write(&rbd_dev->header_rwsem);
3669 	mapping_size = rbd_dev->mapping.size;
3670 
3671 	ret = rbd_dev_header_info(rbd_dev);
3672 	if (ret)
3673 		goto out;
3674 
3675 	/*
3676 	 * If there is a parent, see if it has disappeared due to the
3677 	 * mapped image getting flattened.
3678 	 */
3679 	if (rbd_dev->parent) {
3680 		ret = rbd_dev_v2_parent_info(rbd_dev);
3681 		if (ret)
3682 			goto out;
3683 	}
3684 
3685 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3686 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3687 	} else {
3688 		/* validate mapped snapshot's EXISTS flag */
3689 		rbd_exists_validate(rbd_dev);
3690 	}
3691 
3692 out:
3693 	up_write(&rbd_dev->header_rwsem);
3694 	if (!ret && mapping_size != rbd_dev->mapping.size)
3695 		rbd_dev_update_size(rbd_dev);
3696 
3697 	return ret;
3698 }
3699 
3700 static int rbd_init_request(void *data, struct request *rq,
3701 		unsigned int hctx_idx, unsigned int request_idx,
3702 		unsigned int numa_node)
3703 {
3704 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3705 
3706 	INIT_WORK(work, rbd_queue_workfn);
3707 	return 0;
3708 }
3709 
3710 static struct blk_mq_ops rbd_mq_ops = {
3711 	.queue_rq	= rbd_queue_rq,
3712 	.map_queue	= blk_mq_map_queue,
3713 	.init_request	= rbd_init_request,
3714 };
3715 
3716 static int rbd_init_disk(struct rbd_device *rbd_dev)
3717 {
3718 	struct gendisk *disk;
3719 	struct request_queue *q;
3720 	u64 segment_size;
3721 	int err;
3722 
3723 	/* create gendisk info */
3724 	disk = alloc_disk(single_major ?
3725 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3726 			  RBD_MINORS_PER_MAJOR);
3727 	if (!disk)
3728 		return -ENOMEM;
3729 
3730 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3731 		 rbd_dev->dev_id);
3732 	disk->major = rbd_dev->major;
3733 	disk->first_minor = rbd_dev->minor;
3734 	if (single_major)
3735 		disk->flags |= GENHD_FL_EXT_DEVT;
3736 	disk->fops = &rbd_bd_ops;
3737 	disk->private_data = rbd_dev;
3738 
3739 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3740 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3741 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3742 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3743 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3744 	rbd_dev->tag_set.nr_hw_queues = 1;
3745 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3746 
3747 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3748 	if (err)
3749 		goto out_disk;
3750 
3751 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3752 	if (IS_ERR(q)) {
3753 		err = PTR_ERR(q);
3754 		goto out_tag_set;
3755 	}
3756 
3757 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3758 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3759 
3760 	/* set io sizes to object size */
3761 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3762 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3763 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3764 	blk_queue_max_segment_size(q, segment_size);
3765 	blk_queue_io_min(q, segment_size);
3766 	blk_queue_io_opt(q, segment_size);
3767 
3768 	/* enable the discard support */
3769 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3770 	q->limits.discard_granularity = segment_size;
3771 	q->limits.discard_alignment = segment_size;
3772 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3773 	q->limits.discard_zeroes_data = 1;
3774 
3775 	disk->queue = q;
3776 
3777 	q->queuedata = rbd_dev;
3778 
3779 	rbd_dev->disk = disk;
3780 
3781 	return 0;
3782 out_tag_set:
3783 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3784 out_disk:
3785 	put_disk(disk);
3786 	return err;
3787 }
3788 
3789 /*
3790   sysfs
3791 */
3792 
3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3794 {
3795 	return container_of(dev, struct rbd_device, dev);
3796 }
3797 
3798 static ssize_t rbd_size_show(struct device *dev,
3799 			     struct device_attribute *attr, char *buf)
3800 {
3801 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3802 
3803 	return sprintf(buf, "%llu\n",
3804 		(unsigned long long)rbd_dev->mapping.size);
3805 }
3806 
3807 /*
3808  * Note this shows the features for whatever's mapped, which is not
3809  * necessarily the base image.
3810  */
3811 static ssize_t rbd_features_show(struct device *dev,
3812 			     struct device_attribute *attr, char *buf)
3813 {
3814 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815 
3816 	return sprintf(buf, "0x%016llx\n",
3817 			(unsigned long long)rbd_dev->mapping.features);
3818 }
3819 
3820 static ssize_t rbd_major_show(struct device *dev,
3821 			      struct device_attribute *attr, char *buf)
3822 {
3823 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824 
3825 	if (rbd_dev->major)
3826 		return sprintf(buf, "%d\n", rbd_dev->major);
3827 
3828 	return sprintf(buf, "(none)\n");
3829 }
3830 
3831 static ssize_t rbd_minor_show(struct device *dev,
3832 			      struct device_attribute *attr, char *buf)
3833 {
3834 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835 
3836 	return sprintf(buf, "%d\n", rbd_dev->minor);
3837 }
3838 
3839 static ssize_t rbd_client_id_show(struct device *dev,
3840 				  struct device_attribute *attr, char *buf)
3841 {
3842 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843 
3844 	return sprintf(buf, "client%lld\n",
3845 			ceph_client_id(rbd_dev->rbd_client->client));
3846 }
3847 
3848 static ssize_t rbd_pool_show(struct device *dev,
3849 			     struct device_attribute *attr, char *buf)
3850 {
3851 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852 
3853 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3854 }
3855 
3856 static ssize_t rbd_pool_id_show(struct device *dev,
3857 			     struct device_attribute *attr, char *buf)
3858 {
3859 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860 
3861 	return sprintf(buf, "%llu\n",
3862 			(unsigned long long) rbd_dev->spec->pool_id);
3863 }
3864 
3865 static ssize_t rbd_name_show(struct device *dev,
3866 			     struct device_attribute *attr, char *buf)
3867 {
3868 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869 
3870 	if (rbd_dev->spec->image_name)
3871 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3872 
3873 	return sprintf(buf, "(unknown)\n");
3874 }
3875 
3876 static ssize_t rbd_image_id_show(struct device *dev,
3877 			     struct device_attribute *attr, char *buf)
3878 {
3879 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880 
3881 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3882 }
3883 
3884 /*
3885  * Shows the name of the currently-mapped snapshot (or
3886  * RBD_SNAP_HEAD_NAME for the base image).
3887  */
3888 static ssize_t rbd_snap_show(struct device *dev,
3889 			     struct device_attribute *attr,
3890 			     char *buf)
3891 {
3892 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893 
3894 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3895 }
3896 
3897 /*
3898  * For a v2 image, shows the chain of parent images, separated by empty
3899  * lines.  For v1 images or if there is no parent, shows "(no parent
3900  * image)".
3901  */
3902 static ssize_t rbd_parent_show(struct device *dev,
3903 			       struct device_attribute *attr,
3904 			       char *buf)
3905 {
3906 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3907 	ssize_t count = 0;
3908 
3909 	if (!rbd_dev->parent)
3910 		return sprintf(buf, "(no parent image)\n");
3911 
3912 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3913 		struct rbd_spec *spec = rbd_dev->parent_spec;
3914 
3915 		count += sprintf(&buf[count], "%s"
3916 			    "pool_id %llu\npool_name %s\n"
3917 			    "image_id %s\nimage_name %s\n"
3918 			    "snap_id %llu\nsnap_name %s\n"
3919 			    "overlap %llu\n",
3920 			    !count ? "" : "\n", /* first? */
3921 			    spec->pool_id, spec->pool_name,
3922 			    spec->image_id, spec->image_name ?: "(unknown)",
3923 			    spec->snap_id, spec->snap_name,
3924 			    rbd_dev->parent_overlap);
3925 	}
3926 
3927 	return count;
3928 }
3929 
3930 static ssize_t rbd_image_refresh(struct device *dev,
3931 				 struct device_attribute *attr,
3932 				 const char *buf,
3933 				 size_t size)
3934 {
3935 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3936 	int ret;
3937 
3938 	ret = rbd_dev_refresh(rbd_dev);
3939 	if (ret)
3940 		return ret;
3941 
3942 	return size;
3943 }
3944 
3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3957 
3958 static struct attribute *rbd_attrs[] = {
3959 	&dev_attr_size.attr,
3960 	&dev_attr_features.attr,
3961 	&dev_attr_major.attr,
3962 	&dev_attr_minor.attr,
3963 	&dev_attr_client_id.attr,
3964 	&dev_attr_pool.attr,
3965 	&dev_attr_pool_id.attr,
3966 	&dev_attr_name.attr,
3967 	&dev_attr_image_id.attr,
3968 	&dev_attr_current_snap.attr,
3969 	&dev_attr_parent.attr,
3970 	&dev_attr_refresh.attr,
3971 	NULL
3972 };
3973 
3974 static struct attribute_group rbd_attr_group = {
3975 	.attrs = rbd_attrs,
3976 };
3977 
3978 static const struct attribute_group *rbd_attr_groups[] = {
3979 	&rbd_attr_group,
3980 	NULL
3981 };
3982 
3983 static void rbd_sysfs_dev_release(struct device *dev)
3984 {
3985 }
3986 
3987 static struct device_type rbd_device_type = {
3988 	.name		= "rbd",
3989 	.groups		= rbd_attr_groups,
3990 	.release	= rbd_sysfs_dev_release,
3991 };
3992 
3993 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3994 {
3995 	kref_get(&spec->kref);
3996 
3997 	return spec;
3998 }
3999 
4000 static void rbd_spec_free(struct kref *kref);
4001 static void rbd_spec_put(struct rbd_spec *spec)
4002 {
4003 	if (spec)
4004 		kref_put(&spec->kref, rbd_spec_free);
4005 }
4006 
4007 static struct rbd_spec *rbd_spec_alloc(void)
4008 {
4009 	struct rbd_spec *spec;
4010 
4011 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4012 	if (!spec)
4013 		return NULL;
4014 
4015 	spec->pool_id = CEPH_NOPOOL;
4016 	spec->snap_id = CEPH_NOSNAP;
4017 	kref_init(&spec->kref);
4018 
4019 	return spec;
4020 }
4021 
4022 static void rbd_spec_free(struct kref *kref)
4023 {
4024 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4025 
4026 	kfree(spec->pool_name);
4027 	kfree(spec->image_id);
4028 	kfree(spec->image_name);
4029 	kfree(spec->snap_name);
4030 	kfree(spec);
4031 }
4032 
4033 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4034 					 struct rbd_spec *spec,
4035 					 struct rbd_options *opts)
4036 {
4037 	struct rbd_device *rbd_dev;
4038 
4039 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4040 	if (!rbd_dev)
4041 		return NULL;
4042 
4043 	spin_lock_init(&rbd_dev->lock);
4044 	rbd_dev->flags = 0;
4045 	atomic_set(&rbd_dev->parent_ref, 0);
4046 	INIT_LIST_HEAD(&rbd_dev->node);
4047 	init_rwsem(&rbd_dev->header_rwsem);
4048 
4049 	rbd_dev->rbd_client = rbdc;
4050 	rbd_dev->spec = spec;
4051 	rbd_dev->opts = opts;
4052 
4053 	/* Initialize the layout used for all rbd requests */
4054 
4055 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4056 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4057 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4058 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4059 
4060 	return rbd_dev;
4061 }
4062 
4063 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4064 {
4065 	rbd_put_client(rbd_dev->rbd_client);
4066 	rbd_spec_put(rbd_dev->spec);
4067 	kfree(rbd_dev->opts);
4068 	kfree(rbd_dev);
4069 }
4070 
4071 /*
4072  * Get the size and object order for an image snapshot, or if
4073  * snap_id is CEPH_NOSNAP, gets this information for the base
4074  * image.
4075  */
4076 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4077 				u8 *order, u64 *snap_size)
4078 {
4079 	__le64 snapid = cpu_to_le64(snap_id);
4080 	int ret;
4081 	struct {
4082 		u8 order;
4083 		__le64 size;
4084 	} __attribute__ ((packed)) size_buf = { 0 };
4085 
4086 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4087 				"rbd", "get_size",
4088 				&snapid, sizeof (snapid),
4089 				&size_buf, sizeof (size_buf));
4090 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4091 	if (ret < 0)
4092 		return ret;
4093 	if (ret < sizeof (size_buf))
4094 		return -ERANGE;
4095 
4096 	if (order) {
4097 		*order = size_buf.order;
4098 		dout("  order %u", (unsigned int)*order);
4099 	}
4100 	*snap_size = le64_to_cpu(size_buf.size);
4101 
4102 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4103 		(unsigned long long)snap_id,
4104 		(unsigned long long)*snap_size);
4105 
4106 	return 0;
4107 }
4108 
4109 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4110 {
4111 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4112 					&rbd_dev->header.obj_order,
4113 					&rbd_dev->header.image_size);
4114 }
4115 
4116 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4117 {
4118 	void *reply_buf;
4119 	int ret;
4120 	void *p;
4121 
4122 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4123 	if (!reply_buf)
4124 		return -ENOMEM;
4125 
4126 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4127 				"rbd", "get_object_prefix", NULL, 0,
4128 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4129 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4130 	if (ret < 0)
4131 		goto out;
4132 
4133 	p = reply_buf;
4134 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4135 						p + ret, NULL, GFP_NOIO);
4136 	ret = 0;
4137 
4138 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4139 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4140 		rbd_dev->header.object_prefix = NULL;
4141 	} else {
4142 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4143 	}
4144 out:
4145 	kfree(reply_buf);
4146 
4147 	return ret;
4148 }
4149 
4150 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4151 		u64 *snap_features)
4152 {
4153 	__le64 snapid = cpu_to_le64(snap_id);
4154 	struct {
4155 		__le64 features;
4156 		__le64 incompat;
4157 	} __attribute__ ((packed)) features_buf = { 0 };
4158 	u64 incompat;
4159 	int ret;
4160 
4161 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4162 				"rbd", "get_features",
4163 				&snapid, sizeof (snapid),
4164 				&features_buf, sizeof (features_buf));
4165 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4166 	if (ret < 0)
4167 		return ret;
4168 	if (ret < sizeof (features_buf))
4169 		return -ERANGE;
4170 
4171 	incompat = le64_to_cpu(features_buf.incompat);
4172 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4173 		return -ENXIO;
4174 
4175 	*snap_features = le64_to_cpu(features_buf.features);
4176 
4177 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4178 		(unsigned long long)snap_id,
4179 		(unsigned long long)*snap_features,
4180 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4181 
4182 	return 0;
4183 }
4184 
4185 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4186 {
4187 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4188 						&rbd_dev->header.features);
4189 }
4190 
4191 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4192 {
4193 	struct rbd_spec *parent_spec;
4194 	size_t size;
4195 	void *reply_buf = NULL;
4196 	__le64 snapid;
4197 	void *p;
4198 	void *end;
4199 	u64 pool_id;
4200 	char *image_id;
4201 	u64 snap_id;
4202 	u64 overlap;
4203 	int ret;
4204 
4205 	parent_spec = rbd_spec_alloc();
4206 	if (!parent_spec)
4207 		return -ENOMEM;
4208 
4209 	size = sizeof (__le64) +				/* pool_id */
4210 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4211 		sizeof (__le64) +				/* snap_id */
4212 		sizeof (__le64);				/* overlap */
4213 	reply_buf = kmalloc(size, GFP_KERNEL);
4214 	if (!reply_buf) {
4215 		ret = -ENOMEM;
4216 		goto out_err;
4217 	}
4218 
4219 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4220 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4221 				"rbd", "get_parent",
4222 				&snapid, sizeof (snapid),
4223 				reply_buf, size);
4224 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4225 	if (ret < 0)
4226 		goto out_err;
4227 
4228 	p = reply_buf;
4229 	end = reply_buf + ret;
4230 	ret = -ERANGE;
4231 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4232 	if (pool_id == CEPH_NOPOOL) {
4233 		/*
4234 		 * Either the parent never existed, or we have
4235 		 * record of it but the image got flattened so it no
4236 		 * longer has a parent.  When the parent of a
4237 		 * layered image disappears we immediately set the
4238 		 * overlap to 0.  The effect of this is that all new
4239 		 * requests will be treated as if the image had no
4240 		 * parent.
4241 		 */
4242 		if (rbd_dev->parent_overlap) {
4243 			rbd_dev->parent_overlap = 0;
4244 			rbd_dev_parent_put(rbd_dev);
4245 			pr_info("%s: clone image has been flattened\n",
4246 				rbd_dev->disk->disk_name);
4247 		}
4248 
4249 		goto out;	/* No parent?  No problem. */
4250 	}
4251 
4252 	/* The ceph file layout needs to fit pool id in 32 bits */
4253 
4254 	ret = -EIO;
4255 	if (pool_id > (u64)U32_MAX) {
4256 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4257 			(unsigned long long)pool_id, U32_MAX);
4258 		goto out_err;
4259 	}
4260 
4261 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4262 	if (IS_ERR(image_id)) {
4263 		ret = PTR_ERR(image_id);
4264 		goto out_err;
4265 	}
4266 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4267 	ceph_decode_64_safe(&p, end, overlap, out_err);
4268 
4269 	/*
4270 	 * The parent won't change (except when the clone is
4271 	 * flattened, already handled that).  So we only need to
4272 	 * record the parent spec we have not already done so.
4273 	 */
4274 	if (!rbd_dev->parent_spec) {
4275 		parent_spec->pool_id = pool_id;
4276 		parent_spec->image_id = image_id;
4277 		parent_spec->snap_id = snap_id;
4278 		rbd_dev->parent_spec = parent_spec;
4279 		parent_spec = NULL;	/* rbd_dev now owns this */
4280 	} else {
4281 		kfree(image_id);
4282 	}
4283 
4284 	/*
4285 	 * We always update the parent overlap.  If it's zero we issue
4286 	 * a warning, as we will proceed as if there was no parent.
4287 	 */
4288 	if (!overlap) {
4289 		if (parent_spec) {
4290 			/* refresh, careful to warn just once */
4291 			if (rbd_dev->parent_overlap)
4292 				rbd_warn(rbd_dev,
4293 				    "clone now standalone (overlap became 0)");
4294 		} else {
4295 			/* initial probe */
4296 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4297 		}
4298 	}
4299 	rbd_dev->parent_overlap = overlap;
4300 
4301 out:
4302 	ret = 0;
4303 out_err:
4304 	kfree(reply_buf);
4305 	rbd_spec_put(parent_spec);
4306 
4307 	return ret;
4308 }
4309 
4310 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4311 {
4312 	struct {
4313 		__le64 stripe_unit;
4314 		__le64 stripe_count;
4315 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4316 	size_t size = sizeof (striping_info_buf);
4317 	void *p;
4318 	u64 obj_size;
4319 	u64 stripe_unit;
4320 	u64 stripe_count;
4321 	int ret;
4322 
4323 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4324 				"rbd", "get_stripe_unit_count", NULL, 0,
4325 				(char *)&striping_info_buf, size);
4326 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4327 	if (ret < 0)
4328 		return ret;
4329 	if (ret < size)
4330 		return -ERANGE;
4331 
4332 	/*
4333 	 * We don't actually support the "fancy striping" feature
4334 	 * (STRIPINGV2) yet, but if the striping sizes are the
4335 	 * defaults the behavior is the same as before.  So find
4336 	 * out, and only fail if the image has non-default values.
4337 	 */
4338 	ret = -EINVAL;
4339 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4340 	p = &striping_info_buf;
4341 	stripe_unit = ceph_decode_64(&p);
4342 	if (stripe_unit != obj_size) {
4343 		rbd_warn(rbd_dev, "unsupported stripe unit "
4344 				"(got %llu want %llu)",
4345 				stripe_unit, obj_size);
4346 		return -EINVAL;
4347 	}
4348 	stripe_count = ceph_decode_64(&p);
4349 	if (stripe_count != 1) {
4350 		rbd_warn(rbd_dev, "unsupported stripe count "
4351 				"(got %llu want 1)", stripe_count);
4352 		return -EINVAL;
4353 	}
4354 	rbd_dev->header.stripe_unit = stripe_unit;
4355 	rbd_dev->header.stripe_count = stripe_count;
4356 
4357 	return 0;
4358 }
4359 
4360 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4361 {
4362 	size_t image_id_size;
4363 	char *image_id;
4364 	void *p;
4365 	void *end;
4366 	size_t size;
4367 	void *reply_buf = NULL;
4368 	size_t len = 0;
4369 	char *image_name = NULL;
4370 	int ret;
4371 
4372 	rbd_assert(!rbd_dev->spec->image_name);
4373 
4374 	len = strlen(rbd_dev->spec->image_id);
4375 	image_id_size = sizeof (__le32) + len;
4376 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4377 	if (!image_id)
4378 		return NULL;
4379 
4380 	p = image_id;
4381 	end = image_id + image_id_size;
4382 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4383 
4384 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4385 	reply_buf = kmalloc(size, GFP_KERNEL);
4386 	if (!reply_buf)
4387 		goto out;
4388 
4389 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4390 				"rbd", "dir_get_name",
4391 				image_id, image_id_size,
4392 				reply_buf, size);
4393 	if (ret < 0)
4394 		goto out;
4395 	p = reply_buf;
4396 	end = reply_buf + ret;
4397 
4398 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4399 	if (IS_ERR(image_name))
4400 		image_name = NULL;
4401 	else
4402 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4403 out:
4404 	kfree(reply_buf);
4405 	kfree(image_id);
4406 
4407 	return image_name;
4408 }
4409 
4410 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4411 {
4412 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4413 	const char *snap_name;
4414 	u32 which = 0;
4415 
4416 	/* Skip over names until we find the one we are looking for */
4417 
4418 	snap_name = rbd_dev->header.snap_names;
4419 	while (which < snapc->num_snaps) {
4420 		if (!strcmp(name, snap_name))
4421 			return snapc->snaps[which];
4422 		snap_name += strlen(snap_name) + 1;
4423 		which++;
4424 	}
4425 	return CEPH_NOSNAP;
4426 }
4427 
4428 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4429 {
4430 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4431 	u32 which;
4432 	bool found = false;
4433 	u64 snap_id;
4434 
4435 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4436 		const char *snap_name;
4437 
4438 		snap_id = snapc->snaps[which];
4439 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4440 		if (IS_ERR(snap_name)) {
4441 			/* ignore no-longer existing snapshots */
4442 			if (PTR_ERR(snap_name) == -ENOENT)
4443 				continue;
4444 			else
4445 				break;
4446 		}
4447 		found = !strcmp(name, snap_name);
4448 		kfree(snap_name);
4449 	}
4450 	return found ? snap_id : CEPH_NOSNAP;
4451 }
4452 
4453 /*
4454  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4455  * no snapshot by that name is found, or if an error occurs.
4456  */
4457 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4458 {
4459 	if (rbd_dev->image_format == 1)
4460 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4461 
4462 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4463 }
4464 
4465 /*
4466  * An image being mapped will have everything but the snap id.
4467  */
4468 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4469 {
4470 	struct rbd_spec *spec = rbd_dev->spec;
4471 
4472 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4473 	rbd_assert(spec->image_id && spec->image_name);
4474 	rbd_assert(spec->snap_name);
4475 
4476 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4477 		u64 snap_id;
4478 
4479 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4480 		if (snap_id == CEPH_NOSNAP)
4481 			return -ENOENT;
4482 
4483 		spec->snap_id = snap_id;
4484 	} else {
4485 		spec->snap_id = CEPH_NOSNAP;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 /*
4492  * A parent image will have all ids but none of the names.
4493  *
4494  * All names in an rbd spec are dynamically allocated.  It's OK if we
4495  * can't figure out the name for an image id.
4496  */
4497 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4498 {
4499 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4500 	struct rbd_spec *spec = rbd_dev->spec;
4501 	const char *pool_name;
4502 	const char *image_name;
4503 	const char *snap_name;
4504 	int ret;
4505 
4506 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4507 	rbd_assert(spec->image_id);
4508 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4509 
4510 	/* Get the pool name; we have to make our own copy of this */
4511 
4512 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4513 	if (!pool_name) {
4514 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4515 		return -EIO;
4516 	}
4517 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4518 	if (!pool_name)
4519 		return -ENOMEM;
4520 
4521 	/* Fetch the image name; tolerate failure here */
4522 
4523 	image_name = rbd_dev_image_name(rbd_dev);
4524 	if (!image_name)
4525 		rbd_warn(rbd_dev, "unable to get image name");
4526 
4527 	/* Fetch the snapshot name */
4528 
4529 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4530 	if (IS_ERR(snap_name)) {
4531 		ret = PTR_ERR(snap_name);
4532 		goto out_err;
4533 	}
4534 
4535 	spec->pool_name = pool_name;
4536 	spec->image_name = image_name;
4537 	spec->snap_name = snap_name;
4538 
4539 	return 0;
4540 
4541 out_err:
4542 	kfree(image_name);
4543 	kfree(pool_name);
4544 	return ret;
4545 }
4546 
4547 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4548 {
4549 	size_t size;
4550 	int ret;
4551 	void *reply_buf;
4552 	void *p;
4553 	void *end;
4554 	u64 seq;
4555 	u32 snap_count;
4556 	struct ceph_snap_context *snapc;
4557 	u32 i;
4558 
4559 	/*
4560 	 * We'll need room for the seq value (maximum snapshot id),
4561 	 * snapshot count, and array of that many snapshot ids.
4562 	 * For now we have a fixed upper limit on the number we're
4563 	 * prepared to receive.
4564 	 */
4565 	size = sizeof (__le64) + sizeof (__le32) +
4566 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4567 	reply_buf = kzalloc(size, GFP_KERNEL);
4568 	if (!reply_buf)
4569 		return -ENOMEM;
4570 
4571 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4572 				"rbd", "get_snapcontext", NULL, 0,
4573 				reply_buf, size);
4574 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4575 	if (ret < 0)
4576 		goto out;
4577 
4578 	p = reply_buf;
4579 	end = reply_buf + ret;
4580 	ret = -ERANGE;
4581 	ceph_decode_64_safe(&p, end, seq, out);
4582 	ceph_decode_32_safe(&p, end, snap_count, out);
4583 
4584 	/*
4585 	 * Make sure the reported number of snapshot ids wouldn't go
4586 	 * beyond the end of our buffer.  But before checking that,
4587 	 * make sure the computed size of the snapshot context we
4588 	 * allocate is representable in a size_t.
4589 	 */
4590 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4591 				 / sizeof (u64)) {
4592 		ret = -EINVAL;
4593 		goto out;
4594 	}
4595 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4596 		goto out;
4597 	ret = 0;
4598 
4599 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4600 	if (!snapc) {
4601 		ret = -ENOMEM;
4602 		goto out;
4603 	}
4604 	snapc->seq = seq;
4605 	for (i = 0; i < snap_count; i++)
4606 		snapc->snaps[i] = ceph_decode_64(&p);
4607 
4608 	ceph_put_snap_context(rbd_dev->header.snapc);
4609 	rbd_dev->header.snapc = snapc;
4610 
4611 	dout("  snap context seq = %llu, snap_count = %u\n",
4612 		(unsigned long long)seq, (unsigned int)snap_count);
4613 out:
4614 	kfree(reply_buf);
4615 
4616 	return ret;
4617 }
4618 
4619 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4620 					u64 snap_id)
4621 {
4622 	size_t size;
4623 	void *reply_buf;
4624 	__le64 snapid;
4625 	int ret;
4626 	void *p;
4627 	void *end;
4628 	char *snap_name;
4629 
4630 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4631 	reply_buf = kmalloc(size, GFP_KERNEL);
4632 	if (!reply_buf)
4633 		return ERR_PTR(-ENOMEM);
4634 
4635 	snapid = cpu_to_le64(snap_id);
4636 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4637 				"rbd", "get_snapshot_name",
4638 				&snapid, sizeof (snapid),
4639 				reply_buf, size);
4640 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4641 	if (ret < 0) {
4642 		snap_name = ERR_PTR(ret);
4643 		goto out;
4644 	}
4645 
4646 	p = reply_buf;
4647 	end = reply_buf + ret;
4648 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4649 	if (IS_ERR(snap_name))
4650 		goto out;
4651 
4652 	dout("  snap_id 0x%016llx snap_name = %s\n",
4653 		(unsigned long long)snap_id, snap_name);
4654 out:
4655 	kfree(reply_buf);
4656 
4657 	return snap_name;
4658 }
4659 
4660 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4661 {
4662 	bool first_time = rbd_dev->header.object_prefix == NULL;
4663 	int ret;
4664 
4665 	ret = rbd_dev_v2_image_size(rbd_dev);
4666 	if (ret)
4667 		return ret;
4668 
4669 	if (first_time) {
4670 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4671 		if (ret)
4672 			return ret;
4673 	}
4674 
4675 	ret = rbd_dev_v2_snap_context(rbd_dev);
4676 	if (ret && first_time) {
4677 		kfree(rbd_dev->header.object_prefix);
4678 		rbd_dev->header.object_prefix = NULL;
4679 	}
4680 
4681 	return ret;
4682 }
4683 
4684 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4685 {
4686 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4687 
4688 	if (rbd_dev->image_format == 1)
4689 		return rbd_dev_v1_header_info(rbd_dev);
4690 
4691 	return rbd_dev_v2_header_info(rbd_dev);
4692 }
4693 
4694 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4695 {
4696 	struct device *dev;
4697 	int ret;
4698 
4699 	dev = &rbd_dev->dev;
4700 	dev->bus = &rbd_bus_type;
4701 	dev->type = &rbd_device_type;
4702 	dev->parent = &rbd_root_dev;
4703 	dev->release = rbd_dev_device_release;
4704 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4705 	ret = device_register(dev);
4706 
4707 	return ret;
4708 }
4709 
4710 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4711 {
4712 	device_unregister(&rbd_dev->dev);
4713 }
4714 
4715 /*
4716  * Get a unique rbd identifier for the given new rbd_dev, and add
4717  * the rbd_dev to the global list.
4718  */
4719 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4720 {
4721 	int new_dev_id;
4722 
4723 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4724 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4725 				    GFP_KERNEL);
4726 	if (new_dev_id < 0)
4727 		return new_dev_id;
4728 
4729 	rbd_dev->dev_id = new_dev_id;
4730 
4731 	spin_lock(&rbd_dev_list_lock);
4732 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4733 	spin_unlock(&rbd_dev_list_lock);
4734 
4735 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4736 
4737 	return 0;
4738 }
4739 
4740 /*
4741  * Remove an rbd_dev from the global list, and record that its
4742  * identifier is no longer in use.
4743  */
4744 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4745 {
4746 	spin_lock(&rbd_dev_list_lock);
4747 	list_del_init(&rbd_dev->node);
4748 	spin_unlock(&rbd_dev_list_lock);
4749 
4750 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4751 
4752 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4753 }
4754 
4755 /*
4756  * Skips over white space at *buf, and updates *buf to point to the
4757  * first found non-space character (if any). Returns the length of
4758  * the token (string of non-white space characters) found.  Note
4759  * that *buf must be terminated with '\0'.
4760  */
4761 static inline size_t next_token(const char **buf)
4762 {
4763         /*
4764         * These are the characters that produce nonzero for
4765         * isspace() in the "C" and "POSIX" locales.
4766         */
4767         const char *spaces = " \f\n\r\t\v";
4768 
4769         *buf += strspn(*buf, spaces);	/* Find start of token */
4770 
4771 	return strcspn(*buf, spaces);   /* Return token length */
4772 }
4773 
4774 /*
4775  * Finds the next token in *buf, dynamically allocates a buffer big
4776  * enough to hold a copy of it, and copies the token into the new
4777  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4778  * that a duplicate buffer is created even for a zero-length token.
4779  *
4780  * Returns a pointer to the newly-allocated duplicate, or a null
4781  * pointer if memory for the duplicate was not available.  If
4782  * the lenp argument is a non-null pointer, the length of the token
4783  * (not including the '\0') is returned in *lenp.
4784  *
4785  * If successful, the *buf pointer will be updated to point beyond
4786  * the end of the found token.
4787  *
4788  * Note: uses GFP_KERNEL for allocation.
4789  */
4790 static inline char *dup_token(const char **buf, size_t *lenp)
4791 {
4792 	char *dup;
4793 	size_t len;
4794 
4795 	len = next_token(buf);
4796 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4797 	if (!dup)
4798 		return NULL;
4799 	*(dup + len) = '\0';
4800 	*buf += len;
4801 
4802 	if (lenp)
4803 		*lenp = len;
4804 
4805 	return dup;
4806 }
4807 
4808 /*
4809  * Parse the options provided for an "rbd add" (i.e., rbd image
4810  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4811  * and the data written is passed here via a NUL-terminated buffer.
4812  * Returns 0 if successful or an error code otherwise.
4813  *
4814  * The information extracted from these options is recorded in
4815  * the other parameters which return dynamically-allocated
4816  * structures:
4817  *  ceph_opts
4818  *      The address of a pointer that will refer to a ceph options
4819  *      structure.  Caller must release the returned pointer using
4820  *      ceph_destroy_options() when it is no longer needed.
4821  *  rbd_opts
4822  *	Address of an rbd options pointer.  Fully initialized by
4823  *	this function; caller must release with kfree().
4824  *  spec
4825  *	Address of an rbd image specification pointer.  Fully
4826  *	initialized by this function based on parsed options.
4827  *	Caller must release with rbd_spec_put().
4828  *
4829  * The options passed take this form:
4830  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4831  * where:
4832  *  <mon_addrs>
4833  *      A comma-separated list of one or more monitor addresses.
4834  *      A monitor address is an ip address, optionally followed
4835  *      by a port number (separated by a colon).
4836  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4837  *  <options>
4838  *      A comma-separated list of ceph and/or rbd options.
4839  *  <pool_name>
4840  *      The name of the rados pool containing the rbd image.
4841  *  <image_name>
4842  *      The name of the image in that pool to map.
4843  *  <snap_id>
4844  *      An optional snapshot id.  If provided, the mapping will
4845  *      present data from the image at the time that snapshot was
4846  *      created.  The image head is used if no snapshot id is
4847  *      provided.  Snapshot mappings are always read-only.
4848  */
4849 static int rbd_add_parse_args(const char *buf,
4850 				struct ceph_options **ceph_opts,
4851 				struct rbd_options **opts,
4852 				struct rbd_spec **rbd_spec)
4853 {
4854 	size_t len;
4855 	char *options;
4856 	const char *mon_addrs;
4857 	char *snap_name;
4858 	size_t mon_addrs_size;
4859 	struct rbd_spec *spec = NULL;
4860 	struct rbd_options *rbd_opts = NULL;
4861 	struct ceph_options *copts;
4862 	int ret;
4863 
4864 	/* The first four tokens are required */
4865 
4866 	len = next_token(&buf);
4867 	if (!len) {
4868 		rbd_warn(NULL, "no monitor address(es) provided");
4869 		return -EINVAL;
4870 	}
4871 	mon_addrs = buf;
4872 	mon_addrs_size = len + 1;
4873 	buf += len;
4874 
4875 	ret = -EINVAL;
4876 	options = dup_token(&buf, NULL);
4877 	if (!options)
4878 		return -ENOMEM;
4879 	if (!*options) {
4880 		rbd_warn(NULL, "no options provided");
4881 		goto out_err;
4882 	}
4883 
4884 	spec = rbd_spec_alloc();
4885 	if (!spec)
4886 		goto out_mem;
4887 
4888 	spec->pool_name = dup_token(&buf, NULL);
4889 	if (!spec->pool_name)
4890 		goto out_mem;
4891 	if (!*spec->pool_name) {
4892 		rbd_warn(NULL, "no pool name provided");
4893 		goto out_err;
4894 	}
4895 
4896 	spec->image_name = dup_token(&buf, NULL);
4897 	if (!spec->image_name)
4898 		goto out_mem;
4899 	if (!*spec->image_name) {
4900 		rbd_warn(NULL, "no image name provided");
4901 		goto out_err;
4902 	}
4903 
4904 	/*
4905 	 * Snapshot name is optional; default is to use "-"
4906 	 * (indicating the head/no snapshot).
4907 	 */
4908 	len = next_token(&buf);
4909 	if (!len) {
4910 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4911 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4912 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4913 		ret = -ENAMETOOLONG;
4914 		goto out_err;
4915 	}
4916 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4917 	if (!snap_name)
4918 		goto out_mem;
4919 	*(snap_name + len) = '\0';
4920 	spec->snap_name = snap_name;
4921 
4922 	/* Initialize all rbd options to the defaults */
4923 
4924 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4925 	if (!rbd_opts)
4926 		goto out_mem;
4927 
4928 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4929 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4930 
4931 	copts = ceph_parse_options(options, mon_addrs,
4932 					mon_addrs + mon_addrs_size - 1,
4933 					parse_rbd_opts_token, rbd_opts);
4934 	if (IS_ERR(copts)) {
4935 		ret = PTR_ERR(copts);
4936 		goto out_err;
4937 	}
4938 	kfree(options);
4939 
4940 	*ceph_opts = copts;
4941 	*opts = rbd_opts;
4942 	*rbd_spec = spec;
4943 
4944 	return 0;
4945 out_mem:
4946 	ret = -ENOMEM;
4947 out_err:
4948 	kfree(rbd_opts);
4949 	rbd_spec_put(spec);
4950 	kfree(options);
4951 
4952 	return ret;
4953 }
4954 
4955 /*
4956  * Return pool id (>= 0) or a negative error code.
4957  */
4958 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4959 {
4960 	struct ceph_options *opts = rbdc->client->options;
4961 	u64 newest_epoch;
4962 	int tries = 0;
4963 	int ret;
4964 
4965 again:
4966 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4967 	if (ret == -ENOENT && tries++ < 1) {
4968 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4969 					       &newest_epoch);
4970 		if (ret < 0)
4971 			return ret;
4972 
4973 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4974 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4975 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4976 						     newest_epoch,
4977 						     opts->mount_timeout);
4978 			goto again;
4979 		} else {
4980 			/* the osdmap we have is new enough */
4981 			return -ENOENT;
4982 		}
4983 	}
4984 
4985 	return ret;
4986 }
4987 
4988 /*
4989  * An rbd format 2 image has a unique identifier, distinct from the
4990  * name given to it by the user.  Internally, that identifier is
4991  * what's used to specify the names of objects related to the image.
4992  *
4993  * A special "rbd id" object is used to map an rbd image name to its
4994  * id.  If that object doesn't exist, then there is no v2 rbd image
4995  * with the supplied name.
4996  *
4997  * This function will record the given rbd_dev's image_id field if
4998  * it can be determined, and in that case will return 0.  If any
4999  * errors occur a negative errno will be returned and the rbd_dev's
5000  * image_id field will be unchanged (and should be NULL).
5001  */
5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5003 {
5004 	int ret;
5005 	size_t size;
5006 	char *object_name;
5007 	void *response;
5008 	char *image_id;
5009 
5010 	/*
5011 	 * When probing a parent image, the image id is already
5012 	 * known (and the image name likely is not).  There's no
5013 	 * need to fetch the image id again in this case.  We
5014 	 * do still need to set the image format though.
5015 	 */
5016 	if (rbd_dev->spec->image_id) {
5017 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5018 
5019 		return 0;
5020 	}
5021 
5022 	/*
5023 	 * First, see if the format 2 image id file exists, and if
5024 	 * so, get the image's persistent id from it.
5025 	 */
5026 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5027 	object_name = kmalloc(size, GFP_NOIO);
5028 	if (!object_name)
5029 		return -ENOMEM;
5030 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5031 	dout("rbd id object name is %s\n", object_name);
5032 
5033 	/* Response will be an encoded string, which includes a length */
5034 
5035 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5036 	response = kzalloc(size, GFP_NOIO);
5037 	if (!response) {
5038 		ret = -ENOMEM;
5039 		goto out;
5040 	}
5041 
5042 	/* If it doesn't exist we'll assume it's a format 1 image */
5043 
5044 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5045 				"rbd", "get_id", NULL, 0,
5046 				response, RBD_IMAGE_ID_LEN_MAX);
5047 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5048 	if (ret == -ENOENT) {
5049 		image_id = kstrdup("", GFP_KERNEL);
5050 		ret = image_id ? 0 : -ENOMEM;
5051 		if (!ret)
5052 			rbd_dev->image_format = 1;
5053 	} else if (ret >= 0) {
5054 		void *p = response;
5055 
5056 		image_id = ceph_extract_encoded_string(&p, p + ret,
5057 						NULL, GFP_NOIO);
5058 		ret = PTR_ERR_OR_ZERO(image_id);
5059 		if (!ret)
5060 			rbd_dev->image_format = 2;
5061 	}
5062 
5063 	if (!ret) {
5064 		rbd_dev->spec->image_id = image_id;
5065 		dout("image_id is %s\n", image_id);
5066 	}
5067 out:
5068 	kfree(response);
5069 	kfree(object_name);
5070 
5071 	return ret;
5072 }
5073 
5074 /*
5075  * Undo whatever state changes are made by v1 or v2 header info
5076  * call.
5077  */
5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5079 {
5080 	struct rbd_image_header	*header;
5081 
5082 	rbd_dev_parent_put(rbd_dev);
5083 
5084 	/* Free dynamic fields from the header, then zero it out */
5085 
5086 	header = &rbd_dev->header;
5087 	ceph_put_snap_context(header->snapc);
5088 	kfree(header->snap_sizes);
5089 	kfree(header->snap_names);
5090 	kfree(header->object_prefix);
5091 	memset(header, 0, sizeof (*header));
5092 }
5093 
5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5095 {
5096 	int ret;
5097 
5098 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5099 	if (ret)
5100 		goto out_err;
5101 
5102 	/*
5103 	 * Get the and check features for the image.  Currently the
5104 	 * features are assumed to never change.
5105 	 */
5106 	ret = rbd_dev_v2_features(rbd_dev);
5107 	if (ret)
5108 		goto out_err;
5109 
5110 	/* If the image supports fancy striping, get its parameters */
5111 
5112 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5113 		ret = rbd_dev_v2_striping_info(rbd_dev);
5114 		if (ret < 0)
5115 			goto out_err;
5116 	}
5117 	/* No support for crypto and compression type format 2 images */
5118 
5119 	return 0;
5120 out_err:
5121 	rbd_dev->header.features = 0;
5122 	kfree(rbd_dev->header.object_prefix);
5123 	rbd_dev->header.object_prefix = NULL;
5124 
5125 	return ret;
5126 }
5127 
5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5129 {
5130 	struct rbd_device *parent = NULL;
5131 	struct rbd_spec *parent_spec;
5132 	struct rbd_client *rbdc;
5133 	int ret;
5134 
5135 	if (!rbd_dev->parent_spec)
5136 		return 0;
5137 	/*
5138 	 * We need to pass a reference to the client and the parent
5139 	 * spec when creating the parent rbd_dev.  Images related by
5140 	 * parent/child relationships always share both.
5141 	 */
5142 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5143 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5144 
5145 	ret = -ENOMEM;
5146 	parent = rbd_dev_create(rbdc, parent_spec, NULL);
5147 	if (!parent)
5148 		goto out_err;
5149 
5150 	ret = rbd_dev_image_probe(parent, false);
5151 	if (ret < 0)
5152 		goto out_err;
5153 	rbd_dev->parent = parent;
5154 	atomic_set(&rbd_dev->parent_ref, 1);
5155 
5156 	return 0;
5157 out_err:
5158 	if (parent) {
5159 		rbd_dev_unparent(rbd_dev);
5160 		rbd_dev_destroy(parent);
5161 	} else {
5162 		rbd_put_client(rbdc);
5163 		rbd_spec_put(parent_spec);
5164 	}
5165 
5166 	return ret;
5167 }
5168 
5169 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5170 {
5171 	int ret;
5172 
5173 	/* Get an id and fill in device name. */
5174 
5175 	ret = rbd_dev_id_get(rbd_dev);
5176 	if (ret)
5177 		return ret;
5178 
5179 	BUILD_BUG_ON(DEV_NAME_LEN
5180 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5181 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5182 
5183 	/* Record our major and minor device numbers. */
5184 
5185 	if (!single_major) {
5186 		ret = register_blkdev(0, rbd_dev->name);
5187 		if (ret < 0)
5188 			goto err_out_id;
5189 
5190 		rbd_dev->major = ret;
5191 		rbd_dev->minor = 0;
5192 	} else {
5193 		rbd_dev->major = rbd_major;
5194 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5195 	}
5196 
5197 	/* Set up the blkdev mapping. */
5198 
5199 	ret = rbd_init_disk(rbd_dev);
5200 	if (ret)
5201 		goto err_out_blkdev;
5202 
5203 	ret = rbd_dev_mapping_set(rbd_dev);
5204 	if (ret)
5205 		goto err_out_disk;
5206 
5207 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5208 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5209 
5210 	ret = rbd_bus_add_dev(rbd_dev);
5211 	if (ret)
5212 		goto err_out_mapping;
5213 
5214 	/* Everything's ready.  Announce the disk to the world. */
5215 
5216 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5217 	add_disk(rbd_dev->disk);
5218 
5219 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5220 		(unsigned long long) rbd_dev->mapping.size);
5221 
5222 	return ret;
5223 
5224 err_out_mapping:
5225 	rbd_dev_mapping_clear(rbd_dev);
5226 err_out_disk:
5227 	rbd_free_disk(rbd_dev);
5228 err_out_blkdev:
5229 	if (!single_major)
5230 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5231 err_out_id:
5232 	rbd_dev_id_put(rbd_dev);
5233 	rbd_dev_mapping_clear(rbd_dev);
5234 
5235 	return ret;
5236 }
5237 
5238 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5239 {
5240 	struct rbd_spec *spec = rbd_dev->spec;
5241 	size_t size;
5242 
5243 	/* Record the header object name for this rbd image. */
5244 
5245 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5246 
5247 	if (rbd_dev->image_format == 1)
5248 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5249 	else
5250 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5251 
5252 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5253 	if (!rbd_dev->header_name)
5254 		return -ENOMEM;
5255 
5256 	if (rbd_dev->image_format == 1)
5257 		sprintf(rbd_dev->header_name, "%s%s",
5258 			spec->image_name, RBD_SUFFIX);
5259 	else
5260 		sprintf(rbd_dev->header_name, "%s%s",
5261 			RBD_HEADER_PREFIX, spec->image_id);
5262 	return 0;
5263 }
5264 
5265 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5266 {
5267 	rbd_dev_unprobe(rbd_dev);
5268 	kfree(rbd_dev->header_name);
5269 	rbd_dev->header_name = NULL;
5270 	rbd_dev->image_format = 0;
5271 	kfree(rbd_dev->spec->image_id);
5272 	rbd_dev->spec->image_id = NULL;
5273 
5274 	rbd_dev_destroy(rbd_dev);
5275 }
5276 
5277 /*
5278  * Probe for the existence of the header object for the given rbd
5279  * device.  If this image is the one being mapped (i.e., not a
5280  * parent), initiate a watch on its header object before using that
5281  * object to get detailed information about the rbd image.
5282  */
5283 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5284 {
5285 	int ret;
5286 
5287 	/*
5288 	 * Get the id from the image id object.  Unless there's an
5289 	 * error, rbd_dev->spec->image_id will be filled in with
5290 	 * a dynamically-allocated string, and rbd_dev->image_format
5291 	 * will be set to either 1 or 2.
5292 	 */
5293 	ret = rbd_dev_image_id(rbd_dev);
5294 	if (ret)
5295 		return ret;
5296 
5297 	ret = rbd_dev_header_name(rbd_dev);
5298 	if (ret)
5299 		goto err_out_format;
5300 
5301 	if (mapping) {
5302 		ret = rbd_dev_header_watch_sync(rbd_dev);
5303 		if (ret) {
5304 			if (ret == -ENOENT)
5305 				pr_info("image %s/%s does not exist\n",
5306 					rbd_dev->spec->pool_name,
5307 					rbd_dev->spec->image_name);
5308 			goto out_header_name;
5309 		}
5310 	}
5311 
5312 	ret = rbd_dev_header_info(rbd_dev);
5313 	if (ret)
5314 		goto err_out_watch;
5315 
5316 	/*
5317 	 * If this image is the one being mapped, we have pool name and
5318 	 * id, image name and id, and snap name - need to fill snap id.
5319 	 * Otherwise this is a parent image, identified by pool, image
5320 	 * and snap ids - need to fill in names for those ids.
5321 	 */
5322 	if (mapping)
5323 		ret = rbd_spec_fill_snap_id(rbd_dev);
5324 	else
5325 		ret = rbd_spec_fill_names(rbd_dev);
5326 	if (ret) {
5327 		if (ret == -ENOENT)
5328 			pr_info("snap %s/%s@%s does not exist\n",
5329 				rbd_dev->spec->pool_name,
5330 				rbd_dev->spec->image_name,
5331 				rbd_dev->spec->snap_name);
5332 		goto err_out_probe;
5333 	}
5334 
5335 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5336 		ret = rbd_dev_v2_parent_info(rbd_dev);
5337 		if (ret)
5338 			goto err_out_probe;
5339 
5340 		/*
5341 		 * Need to warn users if this image is the one being
5342 		 * mapped and has a parent.
5343 		 */
5344 		if (mapping && rbd_dev->parent_spec)
5345 			rbd_warn(rbd_dev,
5346 				 "WARNING: kernel layering is EXPERIMENTAL!");
5347 	}
5348 
5349 	ret = rbd_dev_probe_parent(rbd_dev);
5350 	if (ret)
5351 		goto err_out_probe;
5352 
5353 	dout("discovered format %u image, header name is %s\n",
5354 		rbd_dev->image_format, rbd_dev->header_name);
5355 	return 0;
5356 
5357 err_out_probe:
5358 	rbd_dev_unprobe(rbd_dev);
5359 err_out_watch:
5360 	if (mapping)
5361 		rbd_dev_header_unwatch_sync(rbd_dev);
5362 out_header_name:
5363 	kfree(rbd_dev->header_name);
5364 	rbd_dev->header_name = NULL;
5365 err_out_format:
5366 	rbd_dev->image_format = 0;
5367 	kfree(rbd_dev->spec->image_id);
5368 	rbd_dev->spec->image_id = NULL;
5369 	return ret;
5370 }
5371 
5372 static ssize_t do_rbd_add(struct bus_type *bus,
5373 			  const char *buf,
5374 			  size_t count)
5375 {
5376 	struct rbd_device *rbd_dev = NULL;
5377 	struct ceph_options *ceph_opts = NULL;
5378 	struct rbd_options *rbd_opts = NULL;
5379 	struct rbd_spec *spec = NULL;
5380 	struct rbd_client *rbdc;
5381 	bool read_only;
5382 	int rc = -ENOMEM;
5383 
5384 	if (!try_module_get(THIS_MODULE))
5385 		return -ENODEV;
5386 
5387 	/* parse add command */
5388 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5389 	if (rc < 0)
5390 		goto err_out_module;
5391 
5392 	rbdc = rbd_get_client(ceph_opts);
5393 	if (IS_ERR(rbdc)) {
5394 		rc = PTR_ERR(rbdc);
5395 		goto err_out_args;
5396 	}
5397 
5398 	/* pick the pool */
5399 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5400 	if (rc < 0) {
5401 		if (rc == -ENOENT)
5402 			pr_info("pool %s does not exist\n", spec->pool_name);
5403 		goto err_out_client;
5404 	}
5405 	spec->pool_id = (u64)rc;
5406 
5407 	/* The ceph file layout needs to fit pool id in 32 bits */
5408 
5409 	if (spec->pool_id > (u64)U32_MAX) {
5410 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5411 				(unsigned long long)spec->pool_id, U32_MAX);
5412 		rc = -EIO;
5413 		goto err_out_client;
5414 	}
5415 
5416 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5417 	if (!rbd_dev)
5418 		goto err_out_client;
5419 	rbdc = NULL;		/* rbd_dev now owns this */
5420 	spec = NULL;		/* rbd_dev now owns this */
5421 	rbd_opts = NULL;	/* rbd_dev now owns this */
5422 
5423 	rc = rbd_dev_image_probe(rbd_dev, true);
5424 	if (rc < 0)
5425 		goto err_out_rbd_dev;
5426 
5427 	/* If we are mapping a snapshot it must be marked read-only */
5428 
5429 	read_only = rbd_dev->opts->read_only;
5430 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5431 		read_only = true;
5432 	rbd_dev->mapping.read_only = read_only;
5433 
5434 	rc = rbd_dev_device_setup(rbd_dev);
5435 	if (rc) {
5436 		/*
5437 		 * rbd_dev_header_unwatch_sync() can't be moved into
5438 		 * rbd_dev_image_release() without refactoring, see
5439 		 * commit 1f3ef78861ac.
5440 		 */
5441 		rbd_dev_header_unwatch_sync(rbd_dev);
5442 		rbd_dev_image_release(rbd_dev);
5443 		goto err_out_module;
5444 	}
5445 
5446 	return count;
5447 
5448 err_out_rbd_dev:
5449 	rbd_dev_destroy(rbd_dev);
5450 err_out_client:
5451 	rbd_put_client(rbdc);
5452 err_out_args:
5453 	rbd_spec_put(spec);
5454 	kfree(rbd_opts);
5455 err_out_module:
5456 	module_put(THIS_MODULE);
5457 
5458 	dout("Error adding device %s\n", buf);
5459 
5460 	return (ssize_t)rc;
5461 }
5462 
5463 static ssize_t rbd_add(struct bus_type *bus,
5464 		       const char *buf,
5465 		       size_t count)
5466 {
5467 	if (single_major)
5468 		return -EINVAL;
5469 
5470 	return do_rbd_add(bus, buf, count);
5471 }
5472 
5473 static ssize_t rbd_add_single_major(struct bus_type *bus,
5474 				    const char *buf,
5475 				    size_t count)
5476 {
5477 	return do_rbd_add(bus, buf, count);
5478 }
5479 
5480 static void rbd_dev_device_release(struct device *dev)
5481 {
5482 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5483 
5484 	rbd_free_disk(rbd_dev);
5485 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5486 	rbd_dev_mapping_clear(rbd_dev);
5487 	if (!single_major)
5488 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5489 	rbd_dev_id_put(rbd_dev);
5490 	rbd_dev_mapping_clear(rbd_dev);
5491 }
5492 
5493 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5494 {
5495 	while (rbd_dev->parent) {
5496 		struct rbd_device *first = rbd_dev;
5497 		struct rbd_device *second = first->parent;
5498 		struct rbd_device *third;
5499 
5500 		/*
5501 		 * Follow to the parent with no grandparent and
5502 		 * remove it.
5503 		 */
5504 		while (second && (third = second->parent)) {
5505 			first = second;
5506 			second = third;
5507 		}
5508 		rbd_assert(second);
5509 		rbd_dev_image_release(second);
5510 		first->parent = NULL;
5511 		first->parent_overlap = 0;
5512 
5513 		rbd_assert(first->parent_spec);
5514 		rbd_spec_put(first->parent_spec);
5515 		first->parent_spec = NULL;
5516 	}
5517 }
5518 
5519 static ssize_t do_rbd_remove(struct bus_type *bus,
5520 			     const char *buf,
5521 			     size_t count)
5522 {
5523 	struct rbd_device *rbd_dev = NULL;
5524 	struct list_head *tmp;
5525 	int dev_id;
5526 	unsigned long ul;
5527 	bool already = false;
5528 	int ret;
5529 
5530 	ret = kstrtoul(buf, 10, &ul);
5531 	if (ret)
5532 		return ret;
5533 
5534 	/* convert to int; abort if we lost anything in the conversion */
5535 	dev_id = (int)ul;
5536 	if (dev_id != ul)
5537 		return -EINVAL;
5538 
5539 	ret = -ENOENT;
5540 	spin_lock(&rbd_dev_list_lock);
5541 	list_for_each(tmp, &rbd_dev_list) {
5542 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5543 		if (rbd_dev->dev_id == dev_id) {
5544 			ret = 0;
5545 			break;
5546 		}
5547 	}
5548 	if (!ret) {
5549 		spin_lock_irq(&rbd_dev->lock);
5550 		if (rbd_dev->open_count)
5551 			ret = -EBUSY;
5552 		else
5553 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5554 							&rbd_dev->flags);
5555 		spin_unlock_irq(&rbd_dev->lock);
5556 	}
5557 	spin_unlock(&rbd_dev_list_lock);
5558 	if (ret < 0 || already)
5559 		return ret;
5560 
5561 	rbd_dev_header_unwatch_sync(rbd_dev);
5562 	/*
5563 	 * flush remaining watch callbacks - these must be complete
5564 	 * before the osd_client is shutdown
5565 	 */
5566 	dout("%s: flushing notifies", __func__);
5567 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5568 
5569 	/*
5570 	 * Don't free anything from rbd_dev->disk until after all
5571 	 * notifies are completely processed. Otherwise
5572 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5573 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5574 	 */
5575 	rbd_bus_del_dev(rbd_dev);
5576 	rbd_dev_image_release(rbd_dev);
5577 	module_put(THIS_MODULE);
5578 
5579 	return count;
5580 }
5581 
5582 static ssize_t rbd_remove(struct bus_type *bus,
5583 			  const char *buf,
5584 			  size_t count)
5585 {
5586 	if (single_major)
5587 		return -EINVAL;
5588 
5589 	return do_rbd_remove(bus, buf, count);
5590 }
5591 
5592 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5593 				       const char *buf,
5594 				       size_t count)
5595 {
5596 	return do_rbd_remove(bus, buf, count);
5597 }
5598 
5599 /*
5600  * create control files in sysfs
5601  * /sys/bus/rbd/...
5602  */
5603 static int rbd_sysfs_init(void)
5604 {
5605 	int ret;
5606 
5607 	ret = device_register(&rbd_root_dev);
5608 	if (ret < 0)
5609 		return ret;
5610 
5611 	ret = bus_register(&rbd_bus_type);
5612 	if (ret < 0)
5613 		device_unregister(&rbd_root_dev);
5614 
5615 	return ret;
5616 }
5617 
5618 static void rbd_sysfs_cleanup(void)
5619 {
5620 	bus_unregister(&rbd_bus_type);
5621 	device_unregister(&rbd_root_dev);
5622 }
5623 
5624 static int rbd_slab_init(void)
5625 {
5626 	rbd_assert(!rbd_img_request_cache);
5627 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5628 					sizeof (struct rbd_img_request),
5629 					__alignof__(struct rbd_img_request),
5630 					0, NULL);
5631 	if (!rbd_img_request_cache)
5632 		return -ENOMEM;
5633 
5634 	rbd_assert(!rbd_obj_request_cache);
5635 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5636 					sizeof (struct rbd_obj_request),
5637 					__alignof__(struct rbd_obj_request),
5638 					0, NULL);
5639 	if (!rbd_obj_request_cache)
5640 		goto out_err;
5641 
5642 	rbd_assert(!rbd_segment_name_cache);
5643 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5644 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5645 	if (rbd_segment_name_cache)
5646 		return 0;
5647 out_err:
5648 	if (rbd_obj_request_cache) {
5649 		kmem_cache_destroy(rbd_obj_request_cache);
5650 		rbd_obj_request_cache = NULL;
5651 	}
5652 
5653 	kmem_cache_destroy(rbd_img_request_cache);
5654 	rbd_img_request_cache = NULL;
5655 
5656 	return -ENOMEM;
5657 }
5658 
5659 static void rbd_slab_exit(void)
5660 {
5661 	rbd_assert(rbd_segment_name_cache);
5662 	kmem_cache_destroy(rbd_segment_name_cache);
5663 	rbd_segment_name_cache = NULL;
5664 
5665 	rbd_assert(rbd_obj_request_cache);
5666 	kmem_cache_destroy(rbd_obj_request_cache);
5667 	rbd_obj_request_cache = NULL;
5668 
5669 	rbd_assert(rbd_img_request_cache);
5670 	kmem_cache_destroy(rbd_img_request_cache);
5671 	rbd_img_request_cache = NULL;
5672 }
5673 
5674 static int __init rbd_init(void)
5675 {
5676 	int rc;
5677 
5678 	if (!libceph_compatible(NULL)) {
5679 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5680 		return -EINVAL;
5681 	}
5682 
5683 	rc = rbd_slab_init();
5684 	if (rc)
5685 		return rc;
5686 
5687 	/*
5688 	 * The number of active work items is limited by the number of
5689 	 * rbd devices * queue depth, so leave @max_active at default.
5690 	 */
5691 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5692 	if (!rbd_wq) {
5693 		rc = -ENOMEM;
5694 		goto err_out_slab;
5695 	}
5696 
5697 	if (single_major) {
5698 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5699 		if (rbd_major < 0) {
5700 			rc = rbd_major;
5701 			goto err_out_wq;
5702 		}
5703 	}
5704 
5705 	rc = rbd_sysfs_init();
5706 	if (rc)
5707 		goto err_out_blkdev;
5708 
5709 	if (single_major)
5710 		pr_info("loaded (major %d)\n", rbd_major);
5711 	else
5712 		pr_info("loaded\n");
5713 
5714 	return 0;
5715 
5716 err_out_blkdev:
5717 	if (single_major)
5718 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5719 err_out_wq:
5720 	destroy_workqueue(rbd_wq);
5721 err_out_slab:
5722 	rbd_slab_exit();
5723 	return rc;
5724 }
5725 
5726 static void __exit rbd_exit(void)
5727 {
5728 	ida_destroy(&rbd_dev_id_ida);
5729 	rbd_sysfs_cleanup();
5730 	if (single_major)
5731 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5732 	destroy_workqueue(rbd_wq);
5733 	rbd_slab_exit();
5734 }
5735 
5736 module_init(rbd_init);
5737 module_exit(rbd_exit);
5738 
5739 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5740 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5741 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5742 /* following authorship retained from original osdblk.c */
5743 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5744 
5745 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5746 MODULE_LICENSE("GPL");
5747