xref: /openbmc/linux/drivers/block/rbd.c (revision e8f6f3b4)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_WRITE,
215 	OBJ_OP_READ,
216 	OBJ_OP_DISCARD,
217 };
218 
219 enum obj_req_flags {
220 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
221 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
222 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
223 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
224 };
225 
226 struct rbd_obj_request {
227 	const char		*object_name;
228 	u64			offset;		/* object start byte */
229 	u64			length;		/* bytes from offset */
230 	unsigned long		flags;
231 
232 	/*
233 	 * An object request associated with an image will have its
234 	 * img_data flag set; a standalone object request will not.
235 	 *
236 	 * A standalone object request will have which == BAD_WHICH
237 	 * and a null obj_request pointer.
238 	 *
239 	 * An object request initiated in support of a layered image
240 	 * object (to check for its existence before a write) will
241 	 * have which == BAD_WHICH and a non-null obj_request pointer.
242 	 *
243 	 * Finally, an object request for rbd image data will have
244 	 * which != BAD_WHICH, and will have a non-null img_request
245 	 * pointer.  The value of which will be in the range
246 	 * 0..(img_request->obj_request_count-1).
247 	 */
248 	union {
249 		struct rbd_obj_request	*obj_request;	/* STAT op */
250 		struct {
251 			struct rbd_img_request	*img_request;
252 			u64			img_offset;
253 			/* links for img_request->obj_requests list */
254 			struct list_head	links;
255 		};
256 	};
257 	u32			which;		/* posn image request list */
258 
259 	enum obj_request_type	type;
260 	union {
261 		struct bio	*bio_list;
262 		struct {
263 			struct page	**pages;
264 			u32		page_count;
265 		};
266 	};
267 	struct page		**copyup_pages;
268 	u32			copyup_page_count;
269 
270 	struct ceph_osd_request	*osd_req;
271 
272 	u64			xferred;	/* bytes transferred */
273 	int			result;
274 
275 	rbd_obj_callback_t	callback;
276 	struct completion	completion;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 	bool			read_only;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	struct list_head	rq_queue;	/* incoming rq queue */
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 	struct work_struct	rq_work;
346 
347 	struct rbd_image_header	header;
348 	unsigned long		flags;		/* possibly lock protected */
349 	struct rbd_spec		*spec;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* protects updating the header */
364 	struct rw_semaphore     header_rwsem;
365 
366 	struct rbd_mapping	mapping;
367 
368 	struct list_head	node;
369 
370 	/* sysfs related */
371 	struct device		dev;
372 	unsigned long		open_count;	/* protected by lock */
373 };
374 
375 /*
376  * Flag bits for rbd_dev->flags.  If atomicity is required,
377  * rbd_dev->lock is used to protect access.
378  *
379  * Currently, only the "removing" flag (which is coupled with the
380  * "open_count" field) requires atomic access.
381  */
382 enum rbd_dev_flags {
383 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
384 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
385 };
386 
387 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
388 
389 static LIST_HEAD(rbd_dev_list);    /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391 
392 static LIST_HEAD(rbd_client_list);		/* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394 
395 /* Slab caches for frequently-allocated structures */
396 
397 static struct kmem_cache	*rbd_img_request_cache;
398 static struct kmem_cache	*rbd_obj_request_cache;
399 static struct kmem_cache	*rbd_segment_name_cache;
400 
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403 
404 static struct workqueue_struct *rbd_wq;
405 
406 /*
407  * Default to false for now, as single-major requires >= 0.75 version of
408  * userspace rbd utility.
409  */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413 
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415 
416 static void rbd_dev_device_release(struct device *dev);
417 
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 		       size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 			  size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 				    size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 				       size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428 
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433 
434 static int minor_to_rbd_dev_id(int minor)
435 {
436 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438 
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443 
444 static struct attribute *rbd_bus_attrs[] = {
445 	&bus_attr_add.attr,
446 	&bus_attr_remove.attr,
447 	&bus_attr_add_single_major.attr,
448 	&bus_attr_remove_single_major.attr,
449 	NULL,
450 };
451 
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 				  struct attribute *attr, int index)
454 {
455 	if (!single_major &&
456 	    (attr == &bus_attr_add_single_major.attr ||
457 	     attr == &bus_attr_remove_single_major.attr))
458 		return 0;
459 
460 	return attr->mode;
461 }
462 
463 static const struct attribute_group rbd_bus_group = {
464 	.attrs = rbd_bus_attrs,
465 	.is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468 
469 static struct bus_type rbd_bus_type = {
470 	.name		= "rbd",
471 	.bus_groups	= rbd_bus_groups,
472 };
473 
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477 
478 static struct device rbd_root_dev = {
479 	.init_name =    "rbd",
480 	.release =      rbd_root_dev_release,
481 };
482 
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 	struct va_format vaf;
487 	va_list args;
488 
489 	va_start(args, fmt);
490 	vaf.fmt = fmt;
491 	vaf.va = &args;
492 
493 	if (!rbd_dev)
494 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 	else if (rbd_dev->disk)
496 		printk(KERN_WARNING "%s: %s: %pV\n",
497 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 		printk(KERN_WARNING "%s: image %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 		printk(KERN_WARNING "%s: id %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 	else	/* punt */
505 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 			RBD_DRV_NAME, rbd_dev, &vaf);
507 	va_end(args);
508 }
509 
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr)						\
512 		if (unlikely(!(expr))) {				\
513 			printk(KERN_ERR "\nAssertion failure in %s() "	\
514 						"at line %d:\n\n"	\
515 					"\trbd_assert(%s);\n\n",	\
516 					__func__, __LINE__, #expr);	\
517 			BUG();						\
518 		}
519 #else /* !RBD_DEBUG */
520 #  define rbd_assert(expr)	((void) 0)
521 #endif /* !RBD_DEBUG */
522 
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526 
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 					u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534 				u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 		u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538 
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542 	bool removing = false;
543 
544 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545 		return -EROFS;
546 
547 	spin_lock_irq(&rbd_dev->lock);
548 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549 		removing = true;
550 	else
551 		rbd_dev->open_count++;
552 	spin_unlock_irq(&rbd_dev->lock);
553 	if (removing)
554 		return -ENOENT;
555 
556 	(void) get_device(&rbd_dev->dev);
557 
558 	return 0;
559 }
560 
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563 	struct rbd_device *rbd_dev = disk->private_data;
564 	unsigned long open_count_before;
565 
566 	spin_lock_irq(&rbd_dev->lock);
567 	open_count_before = rbd_dev->open_count--;
568 	spin_unlock_irq(&rbd_dev->lock);
569 	rbd_assert(open_count_before > 0);
570 
571 	put_device(&rbd_dev->dev);
572 }
573 
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576 	int ret = 0;
577 	int val;
578 	bool ro;
579 	bool ro_changed = false;
580 
581 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
582 	if (get_user(val, (int __user *)(arg)))
583 		return -EFAULT;
584 
585 	ro = val ? true : false;
586 	/* Snapshot doesn't allow to write*/
587 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588 		return -EROFS;
589 
590 	spin_lock_irq(&rbd_dev->lock);
591 	/* prevent others open this device */
592 	if (rbd_dev->open_count > 1) {
593 		ret = -EBUSY;
594 		goto out;
595 	}
596 
597 	if (rbd_dev->mapping.read_only != ro) {
598 		rbd_dev->mapping.read_only = ro;
599 		ro_changed = true;
600 	}
601 
602 out:
603 	spin_unlock_irq(&rbd_dev->lock);
604 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605 	if (ret == 0 && ro_changed)
606 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607 
608 	return ret;
609 }
610 
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612 			unsigned int cmd, unsigned long arg)
613 {
614 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615 	int ret = 0;
616 
617 	switch (cmd) {
618 	case BLKROSET:
619 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
620 		break;
621 	default:
622 		ret = -ENOTTY;
623 	}
624 
625 	return ret;
626 }
627 
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630 				unsigned int cmd, unsigned long arg)
631 {
632 	return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635 
636 static const struct block_device_operations rbd_bd_ops = {
637 	.owner			= THIS_MODULE,
638 	.open			= rbd_open,
639 	.release		= rbd_release,
640 	.ioctl			= rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642 	.compat_ioctl		= rbd_compat_ioctl,
643 #endif
644 };
645 
646 /*
647  * Initialize an rbd client instance.  Success or not, this function
648  * consumes ceph_opts.  Caller holds client_mutex.
649  */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652 	struct rbd_client *rbdc;
653 	int ret = -ENOMEM;
654 
655 	dout("%s:\n", __func__);
656 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657 	if (!rbdc)
658 		goto out_opt;
659 
660 	kref_init(&rbdc->kref);
661 	INIT_LIST_HEAD(&rbdc->node);
662 
663 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664 	if (IS_ERR(rbdc->client))
665 		goto out_rbdc;
666 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667 
668 	ret = ceph_open_session(rbdc->client);
669 	if (ret < 0)
670 		goto out_client;
671 
672 	spin_lock(&rbd_client_list_lock);
673 	list_add_tail(&rbdc->node, &rbd_client_list);
674 	spin_unlock(&rbd_client_list_lock);
675 
676 	dout("%s: rbdc %p\n", __func__, rbdc);
677 
678 	return rbdc;
679 out_client:
680 	ceph_destroy_client(rbdc->client);
681 out_rbdc:
682 	kfree(rbdc);
683 out_opt:
684 	if (ceph_opts)
685 		ceph_destroy_options(ceph_opts);
686 	dout("%s: error %d\n", __func__, ret);
687 
688 	return ERR_PTR(ret);
689 }
690 
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693 	kref_get(&rbdc->kref);
694 
695 	return rbdc;
696 }
697 
698 /*
699  * Find a ceph client with specific addr and configuration.  If
700  * found, bump its reference count.
701  */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704 	struct rbd_client *client_node;
705 	bool found = false;
706 
707 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708 		return NULL;
709 
710 	spin_lock(&rbd_client_list_lock);
711 	list_for_each_entry(client_node, &rbd_client_list, node) {
712 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
713 			__rbd_get_client(client_node);
714 
715 			found = true;
716 			break;
717 		}
718 	}
719 	spin_unlock(&rbd_client_list_lock);
720 
721 	return found ? client_node : NULL;
722 }
723 
724 /*
725  * mount options
726  */
727 enum {
728 	Opt_last_int,
729 	/* int args above */
730 	Opt_last_string,
731 	/* string args above */
732 	Opt_read_only,
733 	Opt_read_write,
734 	/* Boolean args above */
735 	Opt_last_bool,
736 };
737 
738 static match_table_t rbd_opts_tokens = {
739 	/* int args above */
740 	/* string args above */
741 	{Opt_read_only, "read_only"},
742 	{Opt_read_only, "ro"},		/* Alternate spelling */
743 	{Opt_read_write, "read_write"},
744 	{Opt_read_write, "rw"},		/* Alternate spelling */
745 	/* Boolean args above */
746 	{-1, NULL}
747 };
748 
749 struct rbd_options {
750 	bool	read_only;
751 };
752 
753 #define RBD_READ_ONLY_DEFAULT	false
754 
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757 	struct rbd_options *rbd_opts = private;
758 	substring_t argstr[MAX_OPT_ARGS];
759 	int token, intval, ret;
760 
761 	token = match_token(c, rbd_opts_tokens, argstr);
762 	if (token < 0)
763 		return -EINVAL;
764 
765 	if (token < Opt_last_int) {
766 		ret = match_int(&argstr[0], &intval);
767 		if (ret < 0) {
768 			pr_err("bad mount option arg (not int) "
769 			       "at '%s'\n", c);
770 			return ret;
771 		}
772 		dout("got int token %d val %d\n", token, intval);
773 	} else if (token > Opt_last_int && token < Opt_last_string) {
774 		dout("got string token %d val %s\n", token,
775 		     argstr[0].from);
776 	} else if (token > Opt_last_string && token < Opt_last_bool) {
777 		dout("got Boolean token %d\n", token);
778 	} else {
779 		dout("got token %d\n", token);
780 	}
781 
782 	switch (token) {
783 	case Opt_read_only:
784 		rbd_opts->read_only = true;
785 		break;
786 	case Opt_read_write:
787 		rbd_opts->read_only = false;
788 		break;
789 	default:
790 		rbd_assert(false);
791 		break;
792 	}
793 	return 0;
794 }
795 
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798 	switch (op_type) {
799 	case OBJ_OP_READ:
800 		return "read";
801 	case OBJ_OP_WRITE:
802 		return "write";
803 	case OBJ_OP_DISCARD:
804 		return "discard";
805 	default:
806 		return "???";
807 	}
808 }
809 
810 /*
811  * Get a ceph client with specific addr and configuration, if one does
812  * not exist create it.  Either way, ceph_opts is consumed by this
813  * function.
814  */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817 	struct rbd_client *rbdc;
818 
819 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820 	rbdc = rbd_client_find(ceph_opts);
821 	if (rbdc)	/* using an existing client */
822 		ceph_destroy_options(ceph_opts);
823 	else
824 		rbdc = rbd_client_create(ceph_opts);
825 	mutex_unlock(&client_mutex);
826 
827 	return rbdc;
828 }
829 
830 /*
831  * Destroy ceph client
832  *
833  * Caller must hold rbd_client_list_lock.
834  */
835 static void rbd_client_release(struct kref *kref)
836 {
837 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838 
839 	dout("%s: rbdc %p\n", __func__, rbdc);
840 	spin_lock(&rbd_client_list_lock);
841 	list_del(&rbdc->node);
842 	spin_unlock(&rbd_client_list_lock);
843 
844 	ceph_destroy_client(rbdc->client);
845 	kfree(rbdc);
846 }
847 
848 /*
849  * Drop reference to ceph client node. If it's not referenced anymore, release
850  * it.
851  */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854 	if (rbdc)
855 		kref_put(&rbdc->kref, rbd_client_release);
856 }
857 
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860 	return image_format == 1 || image_format == 2;
861 }
862 
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865 	size_t size;
866 	u32 snap_count;
867 
868 	/* The header has to start with the magic rbd header text */
869 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870 		return false;
871 
872 	/* The bio layer requires at least sector-sized I/O */
873 
874 	if (ondisk->options.order < SECTOR_SHIFT)
875 		return false;
876 
877 	/* If we use u64 in a few spots we may be able to loosen this */
878 
879 	if (ondisk->options.order > 8 * sizeof (int) - 1)
880 		return false;
881 
882 	/*
883 	 * The size of a snapshot header has to fit in a size_t, and
884 	 * that limits the number of snapshots.
885 	 */
886 	snap_count = le32_to_cpu(ondisk->snap_count);
887 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
888 	if (snap_count > size / sizeof (__le64))
889 		return false;
890 
891 	/*
892 	 * Not only that, but the size of the entire the snapshot
893 	 * header must also be representable in a size_t.
894 	 */
895 	size -= snap_count * sizeof (__le64);
896 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897 		return false;
898 
899 	return true;
900 }
901 
902 /*
903  * Fill an rbd image header with information from the given format 1
904  * on-disk header.
905  */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907 				 struct rbd_image_header_ondisk *ondisk)
908 {
909 	struct rbd_image_header *header = &rbd_dev->header;
910 	bool first_time = header->object_prefix == NULL;
911 	struct ceph_snap_context *snapc;
912 	char *object_prefix = NULL;
913 	char *snap_names = NULL;
914 	u64 *snap_sizes = NULL;
915 	u32 snap_count;
916 	size_t size;
917 	int ret = -ENOMEM;
918 	u32 i;
919 
920 	/* Allocate this now to avoid having to handle failure below */
921 
922 	if (first_time) {
923 		size_t len;
924 
925 		len = strnlen(ondisk->object_prefix,
926 				sizeof (ondisk->object_prefix));
927 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
928 		if (!object_prefix)
929 			return -ENOMEM;
930 		memcpy(object_prefix, ondisk->object_prefix, len);
931 		object_prefix[len] = '\0';
932 	}
933 
934 	/* Allocate the snapshot context and fill it in */
935 
936 	snap_count = le32_to_cpu(ondisk->snap_count);
937 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938 	if (!snapc)
939 		goto out_err;
940 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 	if (snap_count) {
942 		struct rbd_image_snap_ondisk *snaps;
943 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944 
945 		/* We'll keep a copy of the snapshot names... */
946 
947 		if (snap_names_len > (u64)SIZE_MAX)
948 			goto out_2big;
949 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950 		if (!snap_names)
951 			goto out_err;
952 
953 		/* ...as well as the array of their sizes. */
954 
955 		size = snap_count * sizeof (*header->snap_sizes);
956 		snap_sizes = kmalloc(size, GFP_KERNEL);
957 		if (!snap_sizes)
958 			goto out_err;
959 
960 		/*
961 		 * Copy the names, and fill in each snapshot's id
962 		 * and size.
963 		 *
964 		 * Note that rbd_dev_v1_header_info() guarantees the
965 		 * ondisk buffer we're working with has
966 		 * snap_names_len bytes beyond the end of the
967 		 * snapshot id array, this memcpy() is safe.
968 		 */
969 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970 		snaps = ondisk->snaps;
971 		for (i = 0; i < snap_count; i++) {
972 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974 		}
975 	}
976 
977 	/* We won't fail any more, fill in the header */
978 
979 	if (first_time) {
980 		header->object_prefix = object_prefix;
981 		header->obj_order = ondisk->options.order;
982 		header->crypt_type = ondisk->options.crypt_type;
983 		header->comp_type = ondisk->options.comp_type;
984 		/* The rest aren't used for format 1 images */
985 		header->stripe_unit = 0;
986 		header->stripe_count = 0;
987 		header->features = 0;
988 	} else {
989 		ceph_put_snap_context(header->snapc);
990 		kfree(header->snap_names);
991 		kfree(header->snap_sizes);
992 	}
993 
994 	/* The remaining fields always get updated (when we refresh) */
995 
996 	header->image_size = le64_to_cpu(ondisk->image_size);
997 	header->snapc = snapc;
998 	header->snap_names = snap_names;
999 	header->snap_sizes = snap_sizes;
1000 
1001 	return 0;
1002 out_2big:
1003 	ret = -EIO;
1004 out_err:
1005 	kfree(snap_sizes);
1006 	kfree(snap_names);
1007 	ceph_put_snap_context(snapc);
1008 	kfree(object_prefix);
1009 
1010 	return ret;
1011 }
1012 
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015 	const char *snap_name;
1016 
1017 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018 
1019 	/* Skip over names until we find the one we are looking for */
1020 
1021 	snap_name = rbd_dev->header.snap_names;
1022 	while (which--)
1023 		snap_name += strlen(snap_name) + 1;
1024 
1025 	return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027 
1028 /*
1029  * Snapshot id comparison function for use with qsort()/bsearch().
1030  * Note that result is for snapshots in *descending* order.
1031  */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034 	u64 snap_id1 = *(u64 *)s1;
1035 	u64 snap_id2 = *(u64 *)s2;
1036 
1037 	if (snap_id1 < snap_id2)
1038 		return 1;
1039 	return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041 
1042 /*
1043  * Search a snapshot context to see if the given snapshot id is
1044  * present.
1045  *
1046  * Returns the position of the snapshot id in the array if it's found,
1047  * or BAD_SNAP_INDEX otherwise.
1048  *
1049  * Note: The snapshot array is in kept sorted (by the osd) in
1050  * reverse order, highest snapshot id first.
1051  */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055 	u64 *found;
1056 
1057 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058 				sizeof (snap_id), snapid_compare_reverse);
1059 
1060 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062 
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064 					u64 snap_id)
1065 {
1066 	u32 which;
1067 	const char *snap_name;
1068 
1069 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1070 	if (which == BAD_SNAP_INDEX)
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076 
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079 	if (snap_id == CEPH_NOSNAP)
1080 		return RBD_SNAP_HEAD_NAME;
1081 
1082 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083 	if (rbd_dev->image_format == 1)
1084 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085 
1086 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088 
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090 				u64 *snap_size)
1091 {
1092 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093 	if (snap_id == CEPH_NOSNAP) {
1094 		*snap_size = rbd_dev->header.image_size;
1095 	} else if (rbd_dev->image_format == 1) {
1096 		u32 which;
1097 
1098 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1099 		if (which == BAD_SNAP_INDEX)
1100 			return -ENOENT;
1101 
1102 		*snap_size = rbd_dev->header.snap_sizes[which];
1103 	} else {
1104 		u64 size = 0;
1105 		int ret;
1106 
1107 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108 		if (ret)
1109 			return ret;
1110 
1111 		*snap_size = size;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117 			u64 *snap_features)
1118 {
1119 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120 	if (snap_id == CEPH_NOSNAP) {
1121 		*snap_features = rbd_dev->header.features;
1122 	} else if (rbd_dev->image_format == 1) {
1123 		*snap_features = 0;	/* No features for format 1 */
1124 	} else {
1125 		u64 features = 0;
1126 		int ret;
1127 
1128 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129 		if (ret)
1130 			return ret;
1131 
1132 		*snap_features = features;
1133 	}
1134 	return 0;
1135 }
1136 
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139 	u64 snap_id = rbd_dev->spec->snap_id;
1140 	u64 size = 0;
1141 	u64 features = 0;
1142 	int ret;
1143 
1144 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145 	if (ret)
1146 		return ret;
1147 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148 	if (ret)
1149 		return ret;
1150 
1151 	rbd_dev->mapping.size = size;
1152 	rbd_dev->mapping.features = features;
1153 
1154 	return 0;
1155 }
1156 
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159 	rbd_dev->mapping.size = 0;
1160 	rbd_dev->mapping.features = 0;
1161 }
1162 
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165 	/* The explicit cast here is needed to drop the const qualifier */
1166 
1167 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169 
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172 	char *name;
1173 	u64 segment;
1174 	int ret;
1175 	char *name_format;
1176 
1177 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178 	if (!name)
1179 		return NULL;
1180 	segment = offset >> rbd_dev->header.obj_order;
1181 	name_format = "%s.%012llx";
1182 	if (rbd_dev->image_format == 2)
1183 		name_format = "%s.%016llx";
1184 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185 			rbd_dev->header.object_prefix, segment);
1186 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187 		pr_err("error formatting segment name for #%llu (%d)\n",
1188 			segment, ret);
1189 		rbd_segment_name_free(name);
1190 		name = NULL;
1191 	}
1192 
1193 	return name;
1194 }
1195 
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199 
1200 	return offset & (segment_size - 1);
1201 }
1202 
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204 				u64 offset, u64 length)
1205 {
1206 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207 
1208 	offset &= segment_size - 1;
1209 
1210 	rbd_assert(length <= U64_MAX - offset);
1211 	if (offset + length > segment_size)
1212 		length = segment_size - offset;
1213 
1214 	return length;
1215 }
1216 
1217 /*
1218  * returns the size of an object in the image
1219  */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222 	return 1 << header->obj_order;
1223 }
1224 
1225 /*
1226  * bio helpers
1227  */
1228 
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231 	struct bio *tmp;
1232 
1233 	while (chain) {
1234 		tmp = chain;
1235 		chain = chain->bi_next;
1236 		bio_put(tmp);
1237 	}
1238 }
1239 
1240 /*
1241  * zeros a bio chain, starting at specific offset
1242  */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245 	struct bio_vec bv;
1246 	struct bvec_iter iter;
1247 	unsigned long flags;
1248 	void *buf;
1249 	int pos = 0;
1250 
1251 	while (chain) {
1252 		bio_for_each_segment(bv, chain, iter) {
1253 			if (pos + bv.bv_len > start_ofs) {
1254 				int remainder = max(start_ofs - pos, 0);
1255 				buf = bvec_kmap_irq(&bv, &flags);
1256 				memset(buf + remainder, 0,
1257 				       bv.bv_len - remainder);
1258 				flush_dcache_page(bv.bv_page);
1259 				bvec_kunmap_irq(buf, &flags);
1260 			}
1261 			pos += bv.bv_len;
1262 		}
1263 
1264 		chain = chain->bi_next;
1265 	}
1266 }
1267 
1268 /*
1269  * similar to zero_bio_chain(), zeros data defined by a page array,
1270  * starting at the given byte offset from the start of the array and
1271  * continuing up to the given end offset.  The pages array is
1272  * assumed to be big enough to hold all bytes up to the end.
1273  */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276 	struct page **page = &pages[offset >> PAGE_SHIFT];
1277 
1278 	rbd_assert(end > offset);
1279 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1280 	while (offset < end) {
1281 		size_t page_offset;
1282 		size_t length;
1283 		unsigned long flags;
1284 		void *kaddr;
1285 
1286 		page_offset = offset & ~PAGE_MASK;
1287 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288 		local_irq_save(flags);
1289 		kaddr = kmap_atomic(*page);
1290 		memset(kaddr + page_offset, 0, length);
1291 		flush_dcache_page(*page);
1292 		kunmap_atomic(kaddr);
1293 		local_irq_restore(flags);
1294 
1295 		offset += length;
1296 		page++;
1297 	}
1298 }
1299 
1300 /*
1301  * Clone a portion of a bio, starting at the given byte offset
1302  * and continuing for the number of bytes indicated.
1303  */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305 					unsigned int offset,
1306 					unsigned int len,
1307 					gfp_t gfpmask)
1308 {
1309 	struct bio *bio;
1310 
1311 	bio = bio_clone(bio_src, gfpmask);
1312 	if (!bio)
1313 		return NULL;	/* ENOMEM */
1314 
1315 	bio_advance(bio, offset);
1316 	bio->bi_iter.bi_size = len;
1317 
1318 	return bio;
1319 }
1320 
1321 /*
1322  * Clone a portion of a bio chain, starting at the given byte offset
1323  * into the first bio in the source chain and continuing for the
1324  * number of bytes indicated.  The result is another bio chain of
1325  * exactly the given length, or a null pointer on error.
1326  *
1327  * The bio_src and offset parameters are both in-out.  On entry they
1328  * refer to the first source bio and the offset into that bio where
1329  * the start of data to be cloned is located.
1330  *
1331  * On return, bio_src is updated to refer to the bio in the source
1332  * chain that contains first un-cloned byte, and *offset will
1333  * contain the offset of that byte within that bio.
1334  */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336 					unsigned int *offset,
1337 					unsigned int len,
1338 					gfp_t gfpmask)
1339 {
1340 	struct bio *bi = *bio_src;
1341 	unsigned int off = *offset;
1342 	struct bio *chain = NULL;
1343 	struct bio **end;
1344 
1345 	/* Build up a chain of clone bios up to the limit */
1346 
1347 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1348 		return NULL;		/* Nothing to clone */
1349 
1350 	end = &chain;
1351 	while (len) {
1352 		unsigned int bi_size;
1353 		struct bio *bio;
1354 
1355 		if (!bi) {
1356 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357 			goto out_err;	/* EINVAL; ran out of bio's */
1358 		}
1359 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 		if (!bio)
1362 			goto out_err;	/* ENOMEM */
1363 
1364 		*end = bio;
1365 		end = &bio->bi_next;
1366 
1367 		off += bi_size;
1368 		if (off == bi->bi_iter.bi_size) {
1369 			bi = bi->bi_next;
1370 			off = 0;
1371 		}
1372 		len -= bi_size;
1373 	}
1374 	*bio_src = bi;
1375 	*offset = off;
1376 
1377 	return chain;
1378 out_err:
1379 	bio_chain_put(chain);
1380 
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * The default/initial value for all object request flags is 0.  For
1386  * each flag, once its value is set to 1 it is never reset to 0
1387  * again.
1388  */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392 		struct rbd_device *rbd_dev;
1393 
1394 		rbd_dev = obj_request->img_request->rbd_dev;
1395 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396 			obj_request);
1397 	}
1398 }
1399 
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402 	smp_mb();
1403 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405 
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409 		struct rbd_device *rbd_dev = NULL;
1410 
1411 		if (obj_request_img_data_test(obj_request))
1412 			rbd_dev = obj_request->img_request->rbd_dev;
1413 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1414 			obj_request);
1415 	}
1416 }
1417 
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420 	smp_mb();
1421 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423 
1424 /*
1425  * This sets the KNOWN flag after (possibly) setting the EXISTS
1426  * flag.  The latter is set based on the "exists" value provided.
1427  *
1428  * Note that for our purposes once an object exists it never goes
1429  * away again.  It's possible that the response from two existence
1430  * checks are separated by the creation of the target object, and
1431  * the first ("doesn't exist") response arrives *after* the second
1432  * ("does exist").  In that case we ignore the second one.
1433  */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435 				bool exists)
1436 {
1437 	if (exists)
1438 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440 	smp_mb();
1441 }
1442 
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445 	smp_mb();
1446 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448 
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458 
1459 	return obj_request->img_offset <
1460 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462 
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466 		atomic_read(&obj_request->kref.refcount));
1467 	kref_get(&obj_request->kref);
1468 }
1469 
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473 	rbd_assert(obj_request != NULL);
1474 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 		atomic_read(&obj_request->kref.refcount));
1476 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478 
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481 	dout("%s: img %p (was %d)\n", __func__, img_request,
1482 	     atomic_read(&img_request->kref.refcount));
1483 	kref_get(&img_request->kref);
1484 }
1485 
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491 	rbd_assert(img_request != NULL);
1492 	dout("%s: img %p (was %d)\n", __func__, img_request,
1493 		atomic_read(&img_request->kref.refcount));
1494 	if (img_request_child_test(img_request))
1495 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 	else
1497 		kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499 
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501 					struct rbd_obj_request *obj_request)
1502 {
1503 	rbd_assert(obj_request->img_request == NULL);
1504 
1505 	/* Image request now owns object's original reference */
1506 	obj_request->img_request = img_request;
1507 	obj_request->which = img_request->obj_request_count;
1508 	rbd_assert(!obj_request_img_data_test(obj_request));
1509 	obj_request_img_data_set(obj_request);
1510 	rbd_assert(obj_request->which != BAD_WHICH);
1511 	img_request->obj_request_count++;
1512 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1513 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514 		obj_request->which);
1515 }
1516 
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518 					struct rbd_obj_request *obj_request)
1519 {
1520 	rbd_assert(obj_request->which != BAD_WHICH);
1521 
1522 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 		obj_request->which);
1524 	list_del(&obj_request->links);
1525 	rbd_assert(img_request->obj_request_count > 0);
1526 	img_request->obj_request_count--;
1527 	rbd_assert(obj_request->which == img_request->obj_request_count);
1528 	obj_request->which = BAD_WHICH;
1529 	rbd_assert(obj_request_img_data_test(obj_request));
1530 	rbd_assert(obj_request->img_request == img_request);
1531 	obj_request->img_request = NULL;
1532 	obj_request->callback = NULL;
1533 	rbd_obj_request_put(obj_request);
1534 }
1535 
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538 	switch (type) {
1539 	case OBJ_REQUEST_NODATA:
1540 	case OBJ_REQUEST_BIO:
1541 	case OBJ_REQUEST_PAGES:
1542 		return true;
1543 	default:
1544 		return false;
1545 	}
1546 }
1547 
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549 				struct rbd_obj_request *obj_request)
1550 {
1551 	dout("%s %p\n", __func__, obj_request);
1552 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554 
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560 
1561 /*
1562  * Wait for an object request to complete.  If interrupted, cancel the
1563  * underlying osd request.
1564  */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567 	int ret;
1568 
1569 	dout("%s %p\n", __func__, obj_request);
1570 
1571 	ret = wait_for_completion_interruptible(&obj_request->completion);
1572 	if (ret < 0) {
1573 		dout("%s %p interrupted\n", __func__, obj_request);
1574 		rbd_obj_request_end(obj_request);
1575 		return ret;
1576 	}
1577 
1578 	dout("%s %p done\n", __func__, obj_request);
1579 	return 0;
1580 }
1581 
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584 
1585 	dout("%s: img %p\n", __func__, img_request);
1586 
1587 	/*
1588 	 * If no error occurred, compute the aggregate transfer
1589 	 * count for the image request.  We could instead use
1590 	 * atomic64_cmpxchg() to update it as each object request
1591 	 * completes; not clear which way is better off hand.
1592 	 */
1593 	if (!img_request->result) {
1594 		struct rbd_obj_request *obj_request;
1595 		u64 xferred = 0;
1596 
1597 		for_each_obj_request(img_request, obj_request)
1598 			xferred += obj_request->xferred;
1599 		img_request->xferred = xferred;
1600 	}
1601 
1602 	if (img_request->callback)
1603 		img_request->callback(img_request);
1604 	else
1605 		rbd_img_request_put(img_request);
1606 }
1607 
1608 /*
1609  * The default/initial value for all image request flags is 0.  Each
1610  * is conditionally set to 1 at image request initialization time
1611  * and currently never change thereafter.
1612  */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1616 	smp_mb();
1617 }
1618 
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621 	smp_mb();
1622 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624 
1625 /*
1626  * Set the discard flag when the img_request is an discard request
1627  */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631 	smp_mb();
1632 }
1633 
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636 	smp_mb();
1637 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639 
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1643 	smp_mb();
1644 }
1645 
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649 	smp_mb();
1650 }
1651 
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654 	smp_mb();
1655 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657 
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661 	smp_mb();
1662 }
1663 
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672 	smp_mb();
1673 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675 
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679 	if (img_request_write_test(img_request))
1680 		return OBJ_OP_WRITE;
1681 	else if (img_request_discard_test(img_request))
1682 		return OBJ_OP_DISCARD;
1683 	else
1684 		return OBJ_OP_READ;
1685 }
1686 
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690 	u64 xferred = obj_request->xferred;
1691 	u64 length = obj_request->length;
1692 
1693 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694 		obj_request, obj_request->img_request, obj_request->result,
1695 		xferred, length);
1696 	/*
1697 	 * ENOENT means a hole in the image.  We zero-fill the entire
1698 	 * length of the request.  A short read also implies zero-fill
1699 	 * to the end of the request.  An error requires the whole
1700 	 * length of the request to be reported finished with an error
1701 	 * to the block layer.  In each case we update the xferred
1702 	 * count to indicate the whole request was satisfied.
1703 	 */
1704 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705 	if (obj_request->result == -ENOENT) {
1706 		if (obj_request->type == OBJ_REQUEST_BIO)
1707 			zero_bio_chain(obj_request->bio_list, 0);
1708 		else
1709 			zero_pages(obj_request->pages, 0, length);
1710 		obj_request->result = 0;
1711 	} else if (xferred < length && !obj_request->result) {
1712 		if (obj_request->type == OBJ_REQUEST_BIO)
1713 			zero_bio_chain(obj_request->bio_list, xferred);
1714 		else
1715 			zero_pages(obj_request->pages, xferred, length);
1716 	}
1717 	obj_request->xferred = length;
1718 	obj_request_done_set(obj_request);
1719 }
1720 
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1724 		obj_request->callback);
1725 	if (obj_request->callback)
1726 		obj_request->callback(obj_request);
1727 	else
1728 		complete_all(&obj_request->completion);
1729 }
1730 
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733 	dout("%s: obj %p\n", __func__, obj_request);
1734 	obj_request_done_set(obj_request);
1735 }
1736 
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739 	struct rbd_img_request *img_request = NULL;
1740 	struct rbd_device *rbd_dev = NULL;
1741 	bool layered = false;
1742 
1743 	if (obj_request_img_data_test(obj_request)) {
1744 		img_request = obj_request->img_request;
1745 		layered = img_request && img_request_layered_test(img_request);
1746 		rbd_dev = img_request->rbd_dev;
1747 	}
1748 
1749 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750 		obj_request, img_request, obj_request->result,
1751 		obj_request->xferred, obj_request->length);
1752 	if (layered && obj_request->result == -ENOENT &&
1753 			obj_request->img_offset < rbd_dev->parent_overlap)
1754 		rbd_img_parent_read(obj_request);
1755 	else if (img_request)
1756 		rbd_img_obj_request_read_callback(obj_request);
1757 	else
1758 		obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764 		obj_request->result, obj_request->length);
1765 	/*
1766 	 * There is no such thing as a successful short write.  Set
1767 	 * it to our originally-requested length.
1768 	 */
1769 	obj_request->xferred = obj_request->length;
1770 	obj_request_done_set(obj_request);
1771 }
1772 
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776 		obj_request->result, obj_request->length);
1777 	/*
1778 	 * There is no such thing as a successful short discard.  Set
1779 	 * it to our originally-requested length.
1780 	 */
1781 	obj_request->xferred = obj_request->length;
1782 	/* discarding a non-existent object is not a problem */
1783 	if (obj_request->result == -ENOENT)
1784 		obj_request->result = 0;
1785 	obj_request_done_set(obj_request);
1786 }
1787 
1788 /*
1789  * For a simple stat call there's nothing to do.  We'll do more if
1790  * this is part of a write sequence for a layered image.
1791  */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794 	dout("%s: obj %p\n", __func__, obj_request);
1795 	obj_request_done_set(obj_request);
1796 }
1797 
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799 				struct ceph_msg *msg)
1800 {
1801 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1802 	u16 opcode;
1803 
1804 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805 	rbd_assert(osd_req == obj_request->osd_req);
1806 	if (obj_request_img_data_test(obj_request)) {
1807 		rbd_assert(obj_request->img_request);
1808 		rbd_assert(obj_request->which != BAD_WHICH);
1809 	} else {
1810 		rbd_assert(obj_request->which == BAD_WHICH);
1811 	}
1812 
1813 	if (osd_req->r_result < 0)
1814 		obj_request->result = osd_req->r_result;
1815 
1816 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817 
1818 	/*
1819 	 * We support a 64-bit length, but ultimately it has to be
1820 	 * passed to blk_end_request(), which takes an unsigned int.
1821 	 */
1822 	obj_request->xferred = osd_req->r_reply_op_len[0];
1823 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824 
1825 	opcode = osd_req->r_ops[0].op;
1826 	switch (opcode) {
1827 	case CEPH_OSD_OP_READ:
1828 		rbd_osd_read_callback(obj_request);
1829 		break;
1830 	case CEPH_OSD_OP_SETALLOCHINT:
1831 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 		/* fall through */
1833 	case CEPH_OSD_OP_WRITE:
1834 		rbd_osd_write_callback(obj_request);
1835 		break;
1836 	case CEPH_OSD_OP_STAT:
1837 		rbd_osd_stat_callback(obj_request);
1838 		break;
1839 	case CEPH_OSD_OP_DELETE:
1840 	case CEPH_OSD_OP_TRUNCATE:
1841 	case CEPH_OSD_OP_ZERO:
1842 		rbd_osd_discard_callback(obj_request);
1843 		break;
1844 	case CEPH_OSD_OP_CALL:
1845 	case CEPH_OSD_OP_NOTIFY_ACK:
1846 	case CEPH_OSD_OP_WATCH:
1847 		rbd_osd_trivial_callback(obj_request);
1848 		break;
1849 	default:
1850 		rbd_warn(NULL, "%s: unsupported op %hu",
1851 			obj_request->object_name, (unsigned short) opcode);
1852 		break;
1853 	}
1854 
1855 	if (obj_request_done_test(obj_request))
1856 		rbd_obj_request_complete(obj_request);
1857 }
1858 
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861 	struct rbd_img_request *img_request = obj_request->img_request;
1862 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1863 	u64 snap_id;
1864 
1865 	rbd_assert(osd_req != NULL);
1866 
1867 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868 	ceph_osdc_build_request(osd_req, obj_request->offset,
1869 			NULL, snap_id, NULL);
1870 }
1871 
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874 	struct rbd_img_request *img_request = obj_request->img_request;
1875 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 	struct ceph_snap_context *snapc;
1877 	struct timespec mtime = CURRENT_TIME;
1878 
1879 	rbd_assert(osd_req != NULL);
1880 
1881 	snapc = img_request ? img_request->snapc : NULL;
1882 	ceph_osdc_build_request(osd_req, obj_request->offset,
1883 			snapc, CEPH_NOSNAP, &mtime);
1884 }
1885 
1886 /*
1887  * Create an osd request.  A read request has one osd op (read).
1888  * A write request has either one (watch) or two (hint+write) osd ops.
1889  * (All rbd data writes are prefixed with an allocation hint op, but
1890  * technically osd watch is a write request, hence this distinction.)
1891  */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893 					struct rbd_device *rbd_dev,
1894 					enum obj_operation_type op_type,
1895 					unsigned int num_ops,
1896 					struct rbd_obj_request *obj_request)
1897 {
1898 	struct ceph_snap_context *snapc = NULL;
1899 	struct ceph_osd_client *osdc;
1900 	struct ceph_osd_request *osd_req;
1901 
1902 	if (obj_request_img_data_test(obj_request) &&
1903 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904 		struct rbd_img_request *img_request = obj_request->img_request;
1905 		if (op_type == OBJ_OP_WRITE) {
1906 			rbd_assert(img_request_write_test(img_request));
1907 		} else {
1908 			rbd_assert(img_request_discard_test(img_request));
1909 		}
1910 		snapc = img_request->snapc;
1911 	}
1912 
1913 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914 
1915 	/* Allocate and initialize the request, for the num_ops ops */
1916 
1917 	osdc = &rbd_dev->rbd_client->client->osdc;
1918 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919 					  GFP_ATOMIC);
1920 	if (!osd_req)
1921 		return NULL;	/* ENOMEM */
1922 
1923 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 	else
1926 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927 
1928 	osd_req->r_callback = rbd_osd_req_callback;
1929 	osd_req->r_priv = obj_request;
1930 
1931 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933 
1934 	return osd_req;
1935 }
1936 
1937 /*
1938  * Create a copyup osd request based on the information in the object
1939  * request supplied.  A copyup request has two or three osd ops, a
1940  * copyup method call, potentially a hint op, and a write or truncate
1941  * or zero op.
1942  */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946 	struct rbd_img_request *img_request;
1947 	struct ceph_snap_context *snapc;
1948 	struct rbd_device *rbd_dev;
1949 	struct ceph_osd_client *osdc;
1950 	struct ceph_osd_request *osd_req;
1951 	int num_osd_ops = 3;
1952 
1953 	rbd_assert(obj_request_img_data_test(obj_request));
1954 	img_request = obj_request->img_request;
1955 	rbd_assert(img_request);
1956 	rbd_assert(img_request_write_test(img_request) ||
1957 			img_request_discard_test(img_request));
1958 
1959 	if (img_request_discard_test(img_request))
1960 		num_osd_ops = 2;
1961 
1962 	/* Allocate and initialize the request, for all the ops */
1963 
1964 	snapc = img_request->snapc;
1965 	rbd_dev = img_request->rbd_dev;
1966 	osdc = &rbd_dev->rbd_client->client->osdc;
1967 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968 						false, GFP_ATOMIC);
1969 	if (!osd_req)
1970 		return NULL;	/* ENOMEM */
1971 
1972 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973 	osd_req->r_callback = rbd_osd_req_callback;
1974 	osd_req->r_priv = obj_request;
1975 
1976 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978 
1979 	return osd_req;
1980 }
1981 
1982 
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985 	ceph_osdc_put_request(osd_req);
1986 }
1987 
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989 
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991 						u64 offset, u64 length,
1992 						enum obj_request_type type)
1993 {
1994 	struct rbd_obj_request *obj_request;
1995 	size_t size;
1996 	char *name;
1997 
1998 	rbd_assert(obj_request_type_valid(type));
1999 
2000 	size = strlen(object_name) + 1;
2001 	name = kmalloc(size, GFP_KERNEL);
2002 	if (!name)
2003 		return NULL;
2004 
2005 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006 	if (!obj_request) {
2007 		kfree(name);
2008 		return NULL;
2009 	}
2010 
2011 	obj_request->object_name = memcpy(name, object_name, size);
2012 	obj_request->offset = offset;
2013 	obj_request->length = length;
2014 	obj_request->flags = 0;
2015 	obj_request->which = BAD_WHICH;
2016 	obj_request->type = type;
2017 	INIT_LIST_HEAD(&obj_request->links);
2018 	init_completion(&obj_request->completion);
2019 	kref_init(&obj_request->kref);
2020 
2021 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022 		offset, length, (int)type, obj_request);
2023 
2024 	return obj_request;
2025 }
2026 
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029 	struct rbd_obj_request *obj_request;
2030 
2031 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2032 
2033 	dout("%s: obj %p\n", __func__, obj_request);
2034 
2035 	rbd_assert(obj_request->img_request == NULL);
2036 	rbd_assert(obj_request->which == BAD_WHICH);
2037 
2038 	if (obj_request->osd_req)
2039 		rbd_osd_req_destroy(obj_request->osd_req);
2040 
2041 	rbd_assert(obj_request_type_valid(obj_request->type));
2042 	switch (obj_request->type) {
2043 	case OBJ_REQUEST_NODATA:
2044 		break;		/* Nothing to do */
2045 	case OBJ_REQUEST_BIO:
2046 		if (obj_request->bio_list)
2047 			bio_chain_put(obj_request->bio_list);
2048 		break;
2049 	case OBJ_REQUEST_PAGES:
2050 		if (obj_request->pages)
2051 			ceph_release_page_vector(obj_request->pages,
2052 						obj_request->page_count);
2053 		break;
2054 	}
2055 
2056 	kfree(obj_request->object_name);
2057 	obj_request->object_name = NULL;
2058 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060 
2061 /* It's OK to call this for a device with no parent */
2062 
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066 	rbd_dev_remove_parent(rbd_dev);
2067 	rbd_spec_put(rbd_dev->parent_spec);
2068 	rbd_dev->parent_spec = NULL;
2069 	rbd_dev->parent_overlap = 0;
2070 }
2071 
2072 /*
2073  * Parent image reference counting is used to determine when an
2074  * image's parent fields can be safely torn down--after there are no
2075  * more in-flight requests to the parent image.  When the last
2076  * reference is dropped, cleaning them up is safe.
2077  */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080 	int counter;
2081 
2082 	if (!rbd_dev->parent_spec)
2083 		return;
2084 
2085 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086 	if (counter > 0)
2087 		return;
2088 
2089 	/* Last reference; clean up parent data structures */
2090 
2091 	if (!counter)
2092 		rbd_dev_unparent(rbd_dev);
2093 	else
2094 		rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096 
2097 /*
2098  * If an image has a non-zero parent overlap, get a reference to its
2099  * parent.
2100  *
2101  * We must get the reference before checking for the overlap to
2102  * coordinate properly with zeroing the parent overlap in
2103  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2104  * drop it again if there is no overlap.
2105  *
2106  * Returns true if the rbd device has a parent with a non-zero
2107  * overlap and a reference for it was successfully taken, or
2108  * false otherwise.
2109  */
2110 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2111 {
2112 	int counter;
2113 
2114 	if (!rbd_dev->parent_spec)
2115 		return false;
2116 
2117 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 	if (counter > 0 && rbd_dev->parent_overlap)
2119 		return true;
2120 
2121 	/* Image was flattened, but parent is not yet torn down */
2122 
2123 	if (counter < 0)
2124 		rbd_warn(rbd_dev, "parent reference overflow");
2125 
2126 	return false;
2127 }
2128 
2129 /*
2130  * Caller is responsible for filling in the list of object requests
2131  * that comprises the image request, and the Linux request pointer
2132  * (if there is one).
2133  */
2134 static struct rbd_img_request *rbd_img_request_create(
2135 					struct rbd_device *rbd_dev,
2136 					u64 offset, u64 length,
2137 					enum obj_operation_type op_type,
2138 					struct ceph_snap_context *snapc)
2139 {
2140 	struct rbd_img_request *img_request;
2141 
2142 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2143 	if (!img_request)
2144 		return NULL;
2145 
2146 	img_request->rq = NULL;
2147 	img_request->rbd_dev = rbd_dev;
2148 	img_request->offset = offset;
2149 	img_request->length = length;
2150 	img_request->flags = 0;
2151 	if (op_type == OBJ_OP_DISCARD) {
2152 		img_request_discard_set(img_request);
2153 		img_request->snapc = snapc;
2154 	} else if (op_type == OBJ_OP_WRITE) {
2155 		img_request_write_set(img_request);
2156 		img_request->snapc = snapc;
2157 	} else {
2158 		img_request->snap_id = rbd_dev->spec->snap_id;
2159 	}
2160 	if (rbd_dev_parent_get(rbd_dev))
2161 		img_request_layered_set(img_request);
2162 	spin_lock_init(&img_request->completion_lock);
2163 	img_request->next_completion = 0;
2164 	img_request->callback = NULL;
2165 	img_request->result = 0;
2166 	img_request->obj_request_count = 0;
2167 	INIT_LIST_HEAD(&img_request->obj_requests);
2168 	kref_init(&img_request->kref);
2169 
2170 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2171 		obj_op_name(op_type), offset, length, img_request);
2172 
2173 	return img_request;
2174 }
2175 
2176 static void rbd_img_request_destroy(struct kref *kref)
2177 {
2178 	struct rbd_img_request *img_request;
2179 	struct rbd_obj_request *obj_request;
2180 	struct rbd_obj_request *next_obj_request;
2181 
2182 	img_request = container_of(kref, struct rbd_img_request, kref);
2183 
2184 	dout("%s: img %p\n", __func__, img_request);
2185 
2186 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2187 		rbd_img_obj_request_del(img_request, obj_request);
2188 	rbd_assert(img_request->obj_request_count == 0);
2189 
2190 	if (img_request_layered_test(img_request)) {
2191 		img_request_layered_clear(img_request);
2192 		rbd_dev_parent_put(img_request->rbd_dev);
2193 	}
2194 
2195 	if (img_request_write_test(img_request) ||
2196 		img_request_discard_test(img_request))
2197 		ceph_put_snap_context(img_request->snapc);
2198 
2199 	kmem_cache_free(rbd_img_request_cache, img_request);
2200 }
2201 
2202 static struct rbd_img_request *rbd_parent_request_create(
2203 					struct rbd_obj_request *obj_request,
2204 					u64 img_offset, u64 length)
2205 {
2206 	struct rbd_img_request *parent_request;
2207 	struct rbd_device *rbd_dev;
2208 
2209 	rbd_assert(obj_request->img_request);
2210 	rbd_dev = obj_request->img_request->rbd_dev;
2211 
2212 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2213 						length, OBJ_OP_READ, NULL);
2214 	if (!parent_request)
2215 		return NULL;
2216 
2217 	img_request_child_set(parent_request);
2218 	rbd_obj_request_get(obj_request);
2219 	parent_request->obj_request = obj_request;
2220 
2221 	return parent_request;
2222 }
2223 
2224 static void rbd_parent_request_destroy(struct kref *kref)
2225 {
2226 	struct rbd_img_request *parent_request;
2227 	struct rbd_obj_request *orig_request;
2228 
2229 	parent_request = container_of(kref, struct rbd_img_request, kref);
2230 	orig_request = parent_request->obj_request;
2231 
2232 	parent_request->obj_request = NULL;
2233 	rbd_obj_request_put(orig_request);
2234 	img_request_child_clear(parent_request);
2235 
2236 	rbd_img_request_destroy(kref);
2237 }
2238 
2239 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2240 {
2241 	struct rbd_img_request *img_request;
2242 	unsigned int xferred;
2243 	int result;
2244 	bool more;
2245 
2246 	rbd_assert(obj_request_img_data_test(obj_request));
2247 	img_request = obj_request->img_request;
2248 
2249 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2250 	xferred = (unsigned int)obj_request->xferred;
2251 	result = obj_request->result;
2252 	if (result) {
2253 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2254 		enum obj_operation_type op_type;
2255 
2256 		if (img_request_discard_test(img_request))
2257 			op_type = OBJ_OP_DISCARD;
2258 		else if (img_request_write_test(img_request))
2259 			op_type = OBJ_OP_WRITE;
2260 		else
2261 			op_type = OBJ_OP_READ;
2262 
2263 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2264 			obj_op_name(op_type), obj_request->length,
2265 			obj_request->img_offset, obj_request->offset);
2266 		rbd_warn(rbd_dev, "  result %d xferred %x",
2267 			result, xferred);
2268 		if (!img_request->result)
2269 			img_request->result = result;
2270 	}
2271 
2272 	/* Image object requests don't own their page array */
2273 
2274 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2275 		obj_request->pages = NULL;
2276 		obj_request->page_count = 0;
2277 	}
2278 
2279 	if (img_request_child_test(img_request)) {
2280 		rbd_assert(img_request->obj_request != NULL);
2281 		more = obj_request->which < img_request->obj_request_count - 1;
2282 	} else {
2283 		rbd_assert(img_request->rq != NULL);
2284 		more = blk_end_request(img_request->rq, result, xferred);
2285 	}
2286 
2287 	return more;
2288 }
2289 
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292 	struct rbd_img_request *img_request;
2293 	u32 which = obj_request->which;
2294 	bool more = true;
2295 
2296 	rbd_assert(obj_request_img_data_test(obj_request));
2297 	img_request = obj_request->img_request;
2298 
2299 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300 	rbd_assert(img_request != NULL);
2301 	rbd_assert(img_request->obj_request_count > 0);
2302 	rbd_assert(which != BAD_WHICH);
2303 	rbd_assert(which < img_request->obj_request_count);
2304 
2305 	spin_lock_irq(&img_request->completion_lock);
2306 	if (which != img_request->next_completion)
2307 		goto out;
2308 
2309 	for_each_obj_request_from(img_request, obj_request) {
2310 		rbd_assert(more);
2311 		rbd_assert(which < img_request->obj_request_count);
2312 
2313 		if (!obj_request_done_test(obj_request))
2314 			break;
2315 		more = rbd_img_obj_end_request(obj_request);
2316 		which++;
2317 	}
2318 
2319 	rbd_assert(more ^ (which == img_request->obj_request_count));
2320 	img_request->next_completion = which;
2321 out:
2322 	spin_unlock_irq(&img_request->completion_lock);
2323 	rbd_img_request_put(img_request);
2324 
2325 	if (!more)
2326 		rbd_img_request_complete(img_request);
2327 }
2328 
2329 /*
2330  * Add individual osd ops to the given ceph_osd_request and prepare
2331  * them for submission. num_ops is the current number of
2332  * osd operations already to the object request.
2333  */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335 				struct ceph_osd_request *osd_request,
2336 				enum obj_operation_type op_type,
2337 				unsigned int num_ops)
2338 {
2339 	struct rbd_img_request *img_request = obj_request->img_request;
2340 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2341 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342 	u64 offset = obj_request->offset;
2343 	u64 length = obj_request->length;
2344 	u64 img_end;
2345 	u16 opcode;
2346 
2347 	if (op_type == OBJ_OP_DISCARD) {
2348 		if (!offset && length == object_size &&
2349 		    (!img_request_layered_test(img_request) ||
2350 		     !obj_request_overlaps_parent(obj_request))) {
2351 			opcode = CEPH_OSD_OP_DELETE;
2352 		} else if ((offset + length == object_size)) {
2353 			opcode = CEPH_OSD_OP_TRUNCATE;
2354 		} else {
2355 			down_read(&rbd_dev->header_rwsem);
2356 			img_end = rbd_dev->header.image_size;
2357 			up_read(&rbd_dev->header_rwsem);
2358 
2359 			if (obj_request->img_offset + length == img_end)
2360 				opcode = CEPH_OSD_OP_TRUNCATE;
2361 			else
2362 				opcode = CEPH_OSD_OP_ZERO;
2363 		}
2364 	} else if (op_type == OBJ_OP_WRITE) {
2365 		opcode = CEPH_OSD_OP_WRITE;
2366 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2367 					object_size, object_size);
2368 		num_ops++;
2369 	} else {
2370 		opcode = CEPH_OSD_OP_READ;
2371 	}
2372 
2373 	if (opcode == CEPH_OSD_OP_DELETE)
2374 		osd_req_op_init(osd_request, num_ops, opcode);
2375 	else
2376 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2377 				       offset, length, 0, 0);
2378 
2379 	if (obj_request->type == OBJ_REQUEST_BIO)
2380 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2381 					obj_request->bio_list, length);
2382 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2383 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2384 					obj_request->pages, length,
2385 					offset & ~PAGE_MASK, false, false);
2386 
2387 	/* Discards are also writes */
2388 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2389 		rbd_osd_req_format_write(obj_request);
2390 	else
2391 		rbd_osd_req_format_read(obj_request);
2392 }
2393 
2394 /*
2395  * Split up an image request into one or more object requests, each
2396  * to a different object.  The "type" parameter indicates whether
2397  * "data_desc" is the pointer to the head of a list of bio
2398  * structures, or the base of a page array.  In either case this
2399  * function assumes data_desc describes memory sufficient to hold
2400  * all data described by the image request.
2401  */
2402 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2403 					enum obj_request_type type,
2404 					void *data_desc)
2405 {
2406 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2407 	struct rbd_obj_request *obj_request = NULL;
2408 	struct rbd_obj_request *next_obj_request;
2409 	struct bio *bio_list = NULL;
2410 	unsigned int bio_offset = 0;
2411 	struct page **pages = NULL;
2412 	enum obj_operation_type op_type;
2413 	u64 img_offset;
2414 	u64 resid;
2415 
2416 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2417 		(int)type, data_desc);
2418 
2419 	img_offset = img_request->offset;
2420 	resid = img_request->length;
2421 	rbd_assert(resid > 0);
2422 	op_type = rbd_img_request_op_type(img_request);
2423 
2424 	if (type == OBJ_REQUEST_BIO) {
2425 		bio_list = data_desc;
2426 		rbd_assert(img_offset ==
2427 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2428 	} else if (type == OBJ_REQUEST_PAGES) {
2429 		pages = data_desc;
2430 	}
2431 
2432 	while (resid) {
2433 		struct ceph_osd_request *osd_req;
2434 		const char *object_name;
2435 		u64 offset;
2436 		u64 length;
2437 
2438 		object_name = rbd_segment_name(rbd_dev, img_offset);
2439 		if (!object_name)
2440 			goto out_unwind;
2441 		offset = rbd_segment_offset(rbd_dev, img_offset);
2442 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2443 		obj_request = rbd_obj_request_create(object_name,
2444 						offset, length, type);
2445 		/* object request has its own copy of the object name */
2446 		rbd_segment_name_free(object_name);
2447 		if (!obj_request)
2448 			goto out_unwind;
2449 
2450 		/*
2451 		 * set obj_request->img_request before creating the
2452 		 * osd_request so that it gets the right snapc
2453 		 */
2454 		rbd_img_obj_request_add(img_request, obj_request);
2455 
2456 		if (type == OBJ_REQUEST_BIO) {
2457 			unsigned int clone_size;
2458 
2459 			rbd_assert(length <= (u64)UINT_MAX);
2460 			clone_size = (unsigned int)length;
2461 			obj_request->bio_list =
2462 					bio_chain_clone_range(&bio_list,
2463 								&bio_offset,
2464 								clone_size,
2465 								GFP_ATOMIC);
2466 			if (!obj_request->bio_list)
2467 				goto out_unwind;
2468 		} else if (type == OBJ_REQUEST_PAGES) {
2469 			unsigned int page_count;
2470 
2471 			obj_request->pages = pages;
2472 			page_count = (u32)calc_pages_for(offset, length);
2473 			obj_request->page_count = page_count;
2474 			if ((offset + length) & ~PAGE_MASK)
2475 				page_count--;	/* more on last page */
2476 			pages += page_count;
2477 		}
2478 
2479 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2480 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2481 					obj_request);
2482 		if (!osd_req)
2483 			goto out_unwind;
2484 
2485 		obj_request->osd_req = osd_req;
2486 		obj_request->callback = rbd_img_obj_callback;
2487 		obj_request->img_offset = img_offset;
2488 
2489 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2490 
2491 		rbd_img_request_get(img_request);
2492 
2493 		img_offset += length;
2494 		resid -= length;
2495 	}
2496 
2497 	return 0;
2498 
2499 out_unwind:
2500 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2501 		rbd_img_obj_request_del(img_request, obj_request);
2502 
2503 	return -ENOMEM;
2504 }
2505 
2506 static void
2507 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2508 {
2509 	struct rbd_img_request *img_request;
2510 	struct rbd_device *rbd_dev;
2511 	struct page **pages;
2512 	u32 page_count;
2513 
2514 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2515 		obj_request->type == OBJ_REQUEST_NODATA);
2516 	rbd_assert(obj_request_img_data_test(obj_request));
2517 	img_request = obj_request->img_request;
2518 	rbd_assert(img_request);
2519 
2520 	rbd_dev = img_request->rbd_dev;
2521 	rbd_assert(rbd_dev);
2522 
2523 	pages = obj_request->copyup_pages;
2524 	rbd_assert(pages != NULL);
2525 	obj_request->copyup_pages = NULL;
2526 	page_count = obj_request->copyup_page_count;
2527 	rbd_assert(page_count);
2528 	obj_request->copyup_page_count = 0;
2529 	ceph_release_page_vector(pages, page_count);
2530 
2531 	/*
2532 	 * We want the transfer count to reflect the size of the
2533 	 * original write request.  There is no such thing as a
2534 	 * successful short write, so if the request was successful
2535 	 * we can just set it to the originally-requested length.
2536 	 */
2537 	if (!obj_request->result)
2538 		obj_request->xferred = obj_request->length;
2539 
2540 	/* Finish up with the normal image object callback */
2541 
2542 	rbd_img_obj_callback(obj_request);
2543 }
2544 
2545 static void
2546 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2547 {
2548 	struct rbd_obj_request *orig_request;
2549 	struct ceph_osd_request *osd_req;
2550 	struct ceph_osd_client *osdc;
2551 	struct rbd_device *rbd_dev;
2552 	struct page **pages;
2553 	enum obj_operation_type op_type;
2554 	u32 page_count;
2555 	int img_result;
2556 	u64 parent_length;
2557 
2558 	rbd_assert(img_request_child_test(img_request));
2559 
2560 	/* First get what we need from the image request */
2561 
2562 	pages = img_request->copyup_pages;
2563 	rbd_assert(pages != NULL);
2564 	img_request->copyup_pages = NULL;
2565 	page_count = img_request->copyup_page_count;
2566 	rbd_assert(page_count);
2567 	img_request->copyup_page_count = 0;
2568 
2569 	orig_request = img_request->obj_request;
2570 	rbd_assert(orig_request != NULL);
2571 	rbd_assert(obj_request_type_valid(orig_request->type));
2572 	img_result = img_request->result;
2573 	parent_length = img_request->length;
2574 	rbd_assert(parent_length == img_request->xferred);
2575 	rbd_img_request_put(img_request);
2576 
2577 	rbd_assert(orig_request->img_request);
2578 	rbd_dev = orig_request->img_request->rbd_dev;
2579 	rbd_assert(rbd_dev);
2580 
2581 	/*
2582 	 * If the overlap has become 0 (most likely because the
2583 	 * image has been flattened) we need to free the pages
2584 	 * and re-submit the original write request.
2585 	 */
2586 	if (!rbd_dev->parent_overlap) {
2587 		struct ceph_osd_client *osdc;
2588 
2589 		ceph_release_page_vector(pages, page_count);
2590 		osdc = &rbd_dev->rbd_client->client->osdc;
2591 		img_result = rbd_obj_request_submit(osdc, orig_request);
2592 		if (!img_result)
2593 			return;
2594 	}
2595 
2596 	if (img_result)
2597 		goto out_err;
2598 
2599 	/*
2600 	 * The original osd request is of no use to use any more.
2601 	 * We need a new one that can hold the three ops in a copyup
2602 	 * request.  Allocate the new copyup osd request for the
2603 	 * original request, and release the old one.
2604 	 */
2605 	img_result = -ENOMEM;
2606 	osd_req = rbd_osd_req_create_copyup(orig_request);
2607 	if (!osd_req)
2608 		goto out_err;
2609 	rbd_osd_req_destroy(orig_request->osd_req);
2610 	orig_request->osd_req = osd_req;
2611 	orig_request->copyup_pages = pages;
2612 	orig_request->copyup_page_count = page_count;
2613 
2614 	/* Initialize the copyup op */
2615 
2616 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2617 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2618 						false, false);
2619 
2620 	/* Add the other op(s) */
2621 
2622 	op_type = rbd_img_request_op_type(orig_request->img_request);
2623 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2624 
2625 	/* All set, send it off. */
2626 
2627 	orig_request->callback = rbd_img_obj_copyup_callback;
2628 	osdc = &rbd_dev->rbd_client->client->osdc;
2629 	img_result = rbd_obj_request_submit(osdc, orig_request);
2630 	if (!img_result)
2631 		return;
2632 out_err:
2633 	/* Record the error code and complete the request */
2634 
2635 	orig_request->result = img_result;
2636 	orig_request->xferred = 0;
2637 	obj_request_done_set(orig_request);
2638 	rbd_obj_request_complete(orig_request);
2639 }
2640 
2641 /*
2642  * Read from the parent image the range of data that covers the
2643  * entire target of the given object request.  This is used for
2644  * satisfying a layered image write request when the target of an
2645  * object request from the image request does not exist.
2646  *
2647  * A page array big enough to hold the returned data is allocated
2648  * and supplied to rbd_img_request_fill() as the "data descriptor."
2649  * When the read completes, this page array will be transferred to
2650  * the original object request for the copyup operation.
2651  *
2652  * If an error occurs, record it as the result of the original
2653  * object request and mark it done so it gets completed.
2654  */
2655 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2656 {
2657 	struct rbd_img_request *img_request = NULL;
2658 	struct rbd_img_request *parent_request = NULL;
2659 	struct rbd_device *rbd_dev;
2660 	u64 img_offset;
2661 	u64 length;
2662 	struct page **pages = NULL;
2663 	u32 page_count;
2664 	int result;
2665 
2666 	rbd_assert(obj_request_img_data_test(obj_request));
2667 	rbd_assert(obj_request_type_valid(obj_request->type));
2668 
2669 	img_request = obj_request->img_request;
2670 	rbd_assert(img_request != NULL);
2671 	rbd_dev = img_request->rbd_dev;
2672 	rbd_assert(rbd_dev->parent != NULL);
2673 
2674 	/*
2675 	 * Determine the byte range covered by the object in the
2676 	 * child image to which the original request was to be sent.
2677 	 */
2678 	img_offset = obj_request->img_offset - obj_request->offset;
2679 	length = (u64)1 << rbd_dev->header.obj_order;
2680 
2681 	/*
2682 	 * There is no defined parent data beyond the parent
2683 	 * overlap, so limit what we read at that boundary if
2684 	 * necessary.
2685 	 */
2686 	if (img_offset + length > rbd_dev->parent_overlap) {
2687 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2688 		length = rbd_dev->parent_overlap - img_offset;
2689 	}
2690 
2691 	/*
2692 	 * Allocate a page array big enough to receive the data read
2693 	 * from the parent.
2694 	 */
2695 	page_count = (u32)calc_pages_for(0, length);
2696 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2697 	if (IS_ERR(pages)) {
2698 		result = PTR_ERR(pages);
2699 		pages = NULL;
2700 		goto out_err;
2701 	}
2702 
2703 	result = -ENOMEM;
2704 	parent_request = rbd_parent_request_create(obj_request,
2705 						img_offset, length);
2706 	if (!parent_request)
2707 		goto out_err;
2708 
2709 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2710 	if (result)
2711 		goto out_err;
2712 	parent_request->copyup_pages = pages;
2713 	parent_request->copyup_page_count = page_count;
2714 
2715 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2716 	result = rbd_img_request_submit(parent_request);
2717 	if (!result)
2718 		return 0;
2719 
2720 	parent_request->copyup_pages = NULL;
2721 	parent_request->copyup_page_count = 0;
2722 	parent_request->obj_request = NULL;
2723 	rbd_obj_request_put(obj_request);
2724 out_err:
2725 	if (pages)
2726 		ceph_release_page_vector(pages, page_count);
2727 	if (parent_request)
2728 		rbd_img_request_put(parent_request);
2729 	obj_request->result = result;
2730 	obj_request->xferred = 0;
2731 	obj_request_done_set(obj_request);
2732 
2733 	return result;
2734 }
2735 
2736 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2737 {
2738 	struct rbd_obj_request *orig_request;
2739 	struct rbd_device *rbd_dev;
2740 	int result;
2741 
2742 	rbd_assert(!obj_request_img_data_test(obj_request));
2743 
2744 	/*
2745 	 * All we need from the object request is the original
2746 	 * request and the result of the STAT op.  Grab those, then
2747 	 * we're done with the request.
2748 	 */
2749 	orig_request = obj_request->obj_request;
2750 	obj_request->obj_request = NULL;
2751 	rbd_obj_request_put(orig_request);
2752 	rbd_assert(orig_request);
2753 	rbd_assert(orig_request->img_request);
2754 
2755 	result = obj_request->result;
2756 	obj_request->result = 0;
2757 
2758 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2759 		obj_request, orig_request, result,
2760 		obj_request->xferred, obj_request->length);
2761 	rbd_obj_request_put(obj_request);
2762 
2763 	/*
2764 	 * If the overlap has become 0 (most likely because the
2765 	 * image has been flattened) we need to free the pages
2766 	 * and re-submit the original write request.
2767 	 */
2768 	rbd_dev = orig_request->img_request->rbd_dev;
2769 	if (!rbd_dev->parent_overlap) {
2770 		struct ceph_osd_client *osdc;
2771 
2772 		osdc = &rbd_dev->rbd_client->client->osdc;
2773 		result = rbd_obj_request_submit(osdc, orig_request);
2774 		if (!result)
2775 			return;
2776 	}
2777 
2778 	/*
2779 	 * Our only purpose here is to determine whether the object
2780 	 * exists, and we don't want to treat the non-existence as
2781 	 * an error.  If something else comes back, transfer the
2782 	 * error to the original request and complete it now.
2783 	 */
2784 	if (!result) {
2785 		obj_request_existence_set(orig_request, true);
2786 	} else if (result == -ENOENT) {
2787 		obj_request_existence_set(orig_request, false);
2788 	} else if (result) {
2789 		orig_request->result = result;
2790 		goto out;
2791 	}
2792 
2793 	/*
2794 	 * Resubmit the original request now that we have recorded
2795 	 * whether the target object exists.
2796 	 */
2797 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2798 out:
2799 	if (orig_request->result)
2800 		rbd_obj_request_complete(orig_request);
2801 }
2802 
2803 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2804 {
2805 	struct rbd_obj_request *stat_request;
2806 	struct rbd_device *rbd_dev;
2807 	struct ceph_osd_client *osdc;
2808 	struct page **pages = NULL;
2809 	u32 page_count;
2810 	size_t size;
2811 	int ret;
2812 
2813 	/*
2814 	 * The response data for a STAT call consists of:
2815 	 *     le64 length;
2816 	 *     struct {
2817 	 *         le32 tv_sec;
2818 	 *         le32 tv_nsec;
2819 	 *     } mtime;
2820 	 */
2821 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2822 	page_count = (u32)calc_pages_for(0, size);
2823 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2824 	if (IS_ERR(pages))
2825 		return PTR_ERR(pages);
2826 
2827 	ret = -ENOMEM;
2828 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2829 							OBJ_REQUEST_PAGES);
2830 	if (!stat_request)
2831 		goto out;
2832 
2833 	rbd_obj_request_get(obj_request);
2834 	stat_request->obj_request = obj_request;
2835 	stat_request->pages = pages;
2836 	stat_request->page_count = page_count;
2837 
2838 	rbd_assert(obj_request->img_request);
2839 	rbd_dev = obj_request->img_request->rbd_dev;
2840 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2841 						   stat_request);
2842 	if (!stat_request->osd_req)
2843 		goto out;
2844 	stat_request->callback = rbd_img_obj_exists_callback;
2845 
2846 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2847 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2848 					false, false);
2849 	rbd_osd_req_format_read(stat_request);
2850 
2851 	osdc = &rbd_dev->rbd_client->client->osdc;
2852 	ret = rbd_obj_request_submit(osdc, stat_request);
2853 out:
2854 	if (ret)
2855 		rbd_obj_request_put(obj_request);
2856 
2857 	return ret;
2858 }
2859 
2860 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2861 {
2862 	struct rbd_img_request *img_request;
2863 	struct rbd_device *rbd_dev;
2864 
2865 	rbd_assert(obj_request_img_data_test(obj_request));
2866 
2867 	img_request = obj_request->img_request;
2868 	rbd_assert(img_request);
2869 	rbd_dev = img_request->rbd_dev;
2870 
2871 	/* Reads */
2872 	if (!img_request_write_test(img_request) &&
2873 	    !img_request_discard_test(img_request))
2874 		return true;
2875 
2876 	/* Non-layered writes */
2877 	if (!img_request_layered_test(img_request))
2878 		return true;
2879 
2880 	/*
2881 	 * Layered writes outside of the parent overlap range don't
2882 	 * share any data with the parent.
2883 	 */
2884 	if (!obj_request_overlaps_parent(obj_request))
2885 		return true;
2886 
2887 	/*
2888 	 * Entire-object layered writes - we will overwrite whatever
2889 	 * parent data there is anyway.
2890 	 */
2891 	if (!obj_request->offset &&
2892 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2893 		return true;
2894 
2895 	/*
2896 	 * If the object is known to already exist, its parent data has
2897 	 * already been copied.
2898 	 */
2899 	if (obj_request_known_test(obj_request) &&
2900 	    obj_request_exists_test(obj_request))
2901 		return true;
2902 
2903 	return false;
2904 }
2905 
2906 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2907 {
2908 	if (img_obj_request_simple(obj_request)) {
2909 		struct rbd_device *rbd_dev;
2910 		struct ceph_osd_client *osdc;
2911 
2912 		rbd_dev = obj_request->img_request->rbd_dev;
2913 		osdc = &rbd_dev->rbd_client->client->osdc;
2914 
2915 		return rbd_obj_request_submit(osdc, obj_request);
2916 	}
2917 
2918 	/*
2919 	 * It's a layered write.  The target object might exist but
2920 	 * we may not know that yet.  If we know it doesn't exist,
2921 	 * start by reading the data for the full target object from
2922 	 * the parent so we can use it for a copyup to the target.
2923 	 */
2924 	if (obj_request_known_test(obj_request))
2925 		return rbd_img_obj_parent_read_full(obj_request);
2926 
2927 	/* We don't know whether the target exists.  Go find out. */
2928 
2929 	return rbd_img_obj_exists_submit(obj_request);
2930 }
2931 
2932 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2933 {
2934 	struct rbd_obj_request *obj_request;
2935 	struct rbd_obj_request *next_obj_request;
2936 
2937 	dout("%s: img %p\n", __func__, img_request);
2938 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2939 		int ret;
2940 
2941 		ret = rbd_img_obj_request_submit(obj_request);
2942 		if (ret)
2943 			return ret;
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2950 {
2951 	struct rbd_obj_request *obj_request;
2952 	struct rbd_device *rbd_dev;
2953 	u64 obj_end;
2954 	u64 img_xferred;
2955 	int img_result;
2956 
2957 	rbd_assert(img_request_child_test(img_request));
2958 
2959 	/* First get what we need from the image request and release it */
2960 
2961 	obj_request = img_request->obj_request;
2962 	img_xferred = img_request->xferred;
2963 	img_result = img_request->result;
2964 	rbd_img_request_put(img_request);
2965 
2966 	/*
2967 	 * If the overlap has become 0 (most likely because the
2968 	 * image has been flattened) we need to re-submit the
2969 	 * original request.
2970 	 */
2971 	rbd_assert(obj_request);
2972 	rbd_assert(obj_request->img_request);
2973 	rbd_dev = obj_request->img_request->rbd_dev;
2974 	if (!rbd_dev->parent_overlap) {
2975 		struct ceph_osd_client *osdc;
2976 
2977 		osdc = &rbd_dev->rbd_client->client->osdc;
2978 		img_result = rbd_obj_request_submit(osdc, obj_request);
2979 		if (!img_result)
2980 			return;
2981 	}
2982 
2983 	obj_request->result = img_result;
2984 	if (obj_request->result)
2985 		goto out;
2986 
2987 	/*
2988 	 * We need to zero anything beyond the parent overlap
2989 	 * boundary.  Since rbd_img_obj_request_read_callback()
2990 	 * will zero anything beyond the end of a short read, an
2991 	 * easy way to do this is to pretend the data from the
2992 	 * parent came up short--ending at the overlap boundary.
2993 	 */
2994 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2995 	obj_end = obj_request->img_offset + obj_request->length;
2996 	if (obj_end > rbd_dev->parent_overlap) {
2997 		u64 xferred = 0;
2998 
2999 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3000 			xferred = rbd_dev->parent_overlap -
3001 					obj_request->img_offset;
3002 
3003 		obj_request->xferred = min(img_xferred, xferred);
3004 	} else {
3005 		obj_request->xferred = img_xferred;
3006 	}
3007 out:
3008 	rbd_img_obj_request_read_callback(obj_request);
3009 	rbd_obj_request_complete(obj_request);
3010 }
3011 
3012 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3013 {
3014 	struct rbd_img_request *img_request;
3015 	int result;
3016 
3017 	rbd_assert(obj_request_img_data_test(obj_request));
3018 	rbd_assert(obj_request->img_request != NULL);
3019 	rbd_assert(obj_request->result == (s32) -ENOENT);
3020 	rbd_assert(obj_request_type_valid(obj_request->type));
3021 
3022 	/* rbd_read_finish(obj_request, obj_request->length); */
3023 	img_request = rbd_parent_request_create(obj_request,
3024 						obj_request->img_offset,
3025 						obj_request->length);
3026 	result = -ENOMEM;
3027 	if (!img_request)
3028 		goto out_err;
3029 
3030 	if (obj_request->type == OBJ_REQUEST_BIO)
3031 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3032 						obj_request->bio_list);
3033 	else
3034 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3035 						obj_request->pages);
3036 	if (result)
3037 		goto out_err;
3038 
3039 	img_request->callback = rbd_img_parent_read_callback;
3040 	result = rbd_img_request_submit(img_request);
3041 	if (result)
3042 		goto out_err;
3043 
3044 	return;
3045 out_err:
3046 	if (img_request)
3047 		rbd_img_request_put(img_request);
3048 	obj_request->result = result;
3049 	obj_request->xferred = 0;
3050 	obj_request_done_set(obj_request);
3051 }
3052 
3053 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3054 {
3055 	struct rbd_obj_request *obj_request;
3056 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3057 	int ret;
3058 
3059 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3060 							OBJ_REQUEST_NODATA);
3061 	if (!obj_request)
3062 		return -ENOMEM;
3063 
3064 	ret = -ENOMEM;
3065 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3066 						  obj_request);
3067 	if (!obj_request->osd_req)
3068 		goto out;
3069 
3070 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3071 					notify_id, 0, 0);
3072 	rbd_osd_req_format_read(obj_request);
3073 
3074 	ret = rbd_obj_request_submit(osdc, obj_request);
3075 	if (ret)
3076 		goto out;
3077 	ret = rbd_obj_request_wait(obj_request);
3078 out:
3079 	rbd_obj_request_put(obj_request);
3080 
3081 	return ret;
3082 }
3083 
3084 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3085 {
3086 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3087 	int ret;
3088 
3089 	if (!rbd_dev)
3090 		return;
3091 
3092 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3093 		rbd_dev->header_name, (unsigned long long)notify_id,
3094 		(unsigned int)opcode);
3095 
3096 	/*
3097 	 * Until adequate refresh error handling is in place, there is
3098 	 * not much we can do here, except warn.
3099 	 *
3100 	 * See http://tracker.ceph.com/issues/5040
3101 	 */
3102 	ret = rbd_dev_refresh(rbd_dev);
3103 	if (ret)
3104 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3105 
3106 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3107 	if (ret)
3108 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3109 }
3110 
3111 /*
3112  * Send a (un)watch request and wait for the ack.  Return a request
3113  * with a ref held on success or error.
3114  */
3115 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3116 						struct rbd_device *rbd_dev,
3117 						bool watch)
3118 {
3119 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3120 	struct rbd_obj_request *obj_request;
3121 	int ret;
3122 
3123 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3124 					     OBJ_REQUEST_NODATA);
3125 	if (!obj_request)
3126 		return ERR_PTR(-ENOMEM);
3127 
3128 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3129 						  obj_request);
3130 	if (!obj_request->osd_req) {
3131 		ret = -ENOMEM;
3132 		goto out;
3133 	}
3134 
3135 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3136 			      rbd_dev->watch_event->cookie, 0, watch);
3137 	rbd_osd_req_format_write(obj_request);
3138 
3139 	if (watch)
3140 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3141 
3142 	ret = rbd_obj_request_submit(osdc, obj_request);
3143 	if (ret)
3144 		goto out;
3145 
3146 	ret = rbd_obj_request_wait(obj_request);
3147 	if (ret)
3148 		goto out;
3149 
3150 	ret = obj_request->result;
3151 	if (ret) {
3152 		if (watch)
3153 			rbd_obj_request_end(obj_request);
3154 		goto out;
3155 	}
3156 
3157 	return obj_request;
3158 
3159 out:
3160 	rbd_obj_request_put(obj_request);
3161 	return ERR_PTR(ret);
3162 }
3163 
3164 /*
3165  * Initiate a watch request, synchronously.
3166  */
3167 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3168 {
3169 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3170 	struct rbd_obj_request *obj_request;
3171 	int ret;
3172 
3173 	rbd_assert(!rbd_dev->watch_event);
3174 	rbd_assert(!rbd_dev->watch_request);
3175 
3176 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3177 				     &rbd_dev->watch_event);
3178 	if (ret < 0)
3179 		return ret;
3180 
3181 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3182 	if (IS_ERR(obj_request)) {
3183 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3184 		rbd_dev->watch_event = NULL;
3185 		return PTR_ERR(obj_request);
3186 	}
3187 
3188 	/*
3189 	 * A watch request is set to linger, so the underlying osd
3190 	 * request won't go away until we unregister it.  We retain
3191 	 * a pointer to the object request during that time (in
3192 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3193 	 * We'll drop that reference after we've unregistered it in
3194 	 * rbd_dev_header_unwatch_sync().
3195 	 */
3196 	rbd_dev->watch_request = obj_request;
3197 
3198 	return 0;
3199 }
3200 
3201 /*
3202  * Tear down a watch request, synchronously.
3203  */
3204 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3205 {
3206 	struct rbd_obj_request *obj_request;
3207 
3208 	rbd_assert(rbd_dev->watch_event);
3209 	rbd_assert(rbd_dev->watch_request);
3210 
3211 	rbd_obj_request_end(rbd_dev->watch_request);
3212 	rbd_obj_request_put(rbd_dev->watch_request);
3213 	rbd_dev->watch_request = NULL;
3214 
3215 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3216 	if (!IS_ERR(obj_request))
3217 		rbd_obj_request_put(obj_request);
3218 	else
3219 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3220 			 PTR_ERR(obj_request));
3221 
3222 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3223 	rbd_dev->watch_event = NULL;
3224 }
3225 
3226 /*
3227  * Synchronous osd object method call.  Returns the number of bytes
3228  * returned in the outbound buffer, or a negative error code.
3229  */
3230 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3231 			     const char *object_name,
3232 			     const char *class_name,
3233 			     const char *method_name,
3234 			     const void *outbound,
3235 			     size_t outbound_size,
3236 			     void *inbound,
3237 			     size_t inbound_size)
3238 {
3239 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240 	struct rbd_obj_request *obj_request;
3241 	struct page **pages;
3242 	u32 page_count;
3243 	int ret;
3244 
3245 	/*
3246 	 * Method calls are ultimately read operations.  The result
3247 	 * should placed into the inbound buffer provided.  They
3248 	 * also supply outbound data--parameters for the object
3249 	 * method.  Currently if this is present it will be a
3250 	 * snapshot id.
3251 	 */
3252 	page_count = (u32)calc_pages_for(0, inbound_size);
3253 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3254 	if (IS_ERR(pages))
3255 		return PTR_ERR(pages);
3256 
3257 	ret = -ENOMEM;
3258 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3259 							OBJ_REQUEST_PAGES);
3260 	if (!obj_request)
3261 		goto out;
3262 
3263 	obj_request->pages = pages;
3264 	obj_request->page_count = page_count;
3265 
3266 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3267 						  obj_request);
3268 	if (!obj_request->osd_req)
3269 		goto out;
3270 
3271 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3272 					class_name, method_name);
3273 	if (outbound_size) {
3274 		struct ceph_pagelist *pagelist;
3275 
3276 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3277 		if (!pagelist)
3278 			goto out;
3279 
3280 		ceph_pagelist_init(pagelist);
3281 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3282 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3283 						pagelist);
3284 	}
3285 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3286 					obj_request->pages, inbound_size,
3287 					0, false, false);
3288 	rbd_osd_req_format_read(obj_request);
3289 
3290 	ret = rbd_obj_request_submit(osdc, obj_request);
3291 	if (ret)
3292 		goto out;
3293 	ret = rbd_obj_request_wait(obj_request);
3294 	if (ret)
3295 		goto out;
3296 
3297 	ret = obj_request->result;
3298 	if (ret < 0)
3299 		goto out;
3300 
3301 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3302 	ret = (int)obj_request->xferred;
3303 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3304 out:
3305 	if (obj_request)
3306 		rbd_obj_request_put(obj_request);
3307 	else
3308 		ceph_release_page_vector(pages, page_count);
3309 
3310 	return ret;
3311 }
3312 
3313 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3314 {
3315 	struct rbd_img_request *img_request;
3316 	struct ceph_snap_context *snapc = NULL;
3317 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3318 	u64 length = blk_rq_bytes(rq);
3319 	enum obj_operation_type op_type;
3320 	u64 mapping_size;
3321 	int result;
3322 
3323 	if (rq->cmd_flags & REQ_DISCARD)
3324 		op_type = OBJ_OP_DISCARD;
3325 	else if (rq->cmd_flags & REQ_WRITE)
3326 		op_type = OBJ_OP_WRITE;
3327 	else
3328 		op_type = OBJ_OP_READ;
3329 
3330 	/* Ignore/skip any zero-length requests */
3331 
3332 	if (!length) {
3333 		dout("%s: zero-length request\n", __func__);
3334 		result = 0;
3335 		goto err_rq;
3336 	}
3337 
3338 	/* Only reads are allowed to a read-only device */
3339 
3340 	if (op_type != OBJ_OP_READ) {
3341 		if (rbd_dev->mapping.read_only) {
3342 			result = -EROFS;
3343 			goto err_rq;
3344 		}
3345 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3346 	}
3347 
3348 	/*
3349 	 * Quit early if the mapped snapshot no longer exists.  It's
3350 	 * still possible the snapshot will have disappeared by the
3351 	 * time our request arrives at the osd, but there's no sense in
3352 	 * sending it if we already know.
3353 	 */
3354 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3355 		dout("request for non-existent snapshot");
3356 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3357 		result = -ENXIO;
3358 		goto err_rq;
3359 	}
3360 
3361 	if (offset && length > U64_MAX - offset + 1) {
3362 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3363 			 length);
3364 		result = -EINVAL;
3365 		goto err_rq;	/* Shouldn't happen */
3366 	}
3367 
3368 	down_read(&rbd_dev->header_rwsem);
3369 	mapping_size = rbd_dev->mapping.size;
3370 	if (op_type != OBJ_OP_READ) {
3371 		snapc = rbd_dev->header.snapc;
3372 		ceph_get_snap_context(snapc);
3373 	}
3374 	up_read(&rbd_dev->header_rwsem);
3375 
3376 	if (offset + length > mapping_size) {
3377 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3378 			 length, mapping_size);
3379 		result = -EIO;
3380 		goto err_rq;
3381 	}
3382 
3383 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3384 					     snapc);
3385 	if (!img_request) {
3386 		result = -ENOMEM;
3387 		goto err_rq;
3388 	}
3389 	img_request->rq = rq;
3390 
3391 	if (op_type == OBJ_OP_DISCARD)
3392 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3393 					      NULL);
3394 	else
3395 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3396 					      rq->bio);
3397 	if (result)
3398 		goto err_img_request;
3399 
3400 	result = rbd_img_request_submit(img_request);
3401 	if (result)
3402 		goto err_img_request;
3403 
3404 	return;
3405 
3406 err_img_request:
3407 	rbd_img_request_put(img_request);
3408 err_rq:
3409 	if (result)
3410 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3411 			 obj_op_name(op_type), length, offset, result);
3412 	ceph_put_snap_context(snapc);
3413 	blk_end_request_all(rq, result);
3414 }
3415 
3416 static void rbd_request_workfn(struct work_struct *work)
3417 {
3418 	struct rbd_device *rbd_dev =
3419 	    container_of(work, struct rbd_device, rq_work);
3420 	struct request *rq, *next;
3421 	LIST_HEAD(requests);
3422 
3423 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3424 	list_splice_init(&rbd_dev->rq_queue, &requests);
3425 	spin_unlock_irq(&rbd_dev->lock);
3426 
3427 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3428 		list_del_init(&rq->queuelist);
3429 		rbd_handle_request(rbd_dev, rq);
3430 	}
3431 }
3432 
3433 /*
3434  * Called with q->queue_lock held and interrupts disabled, possibly on
3435  * the way to schedule().  Do not sleep here!
3436  */
3437 static void rbd_request_fn(struct request_queue *q)
3438 {
3439 	struct rbd_device *rbd_dev = q->queuedata;
3440 	struct request *rq;
3441 	int queued = 0;
3442 
3443 	rbd_assert(rbd_dev);
3444 
3445 	while ((rq = blk_fetch_request(q))) {
3446 		/* Ignore any non-FS requests that filter through. */
3447 		if (rq->cmd_type != REQ_TYPE_FS) {
3448 			dout("%s: non-fs request type %d\n", __func__,
3449 				(int) rq->cmd_type);
3450 			__blk_end_request_all(rq, 0);
3451 			continue;
3452 		}
3453 
3454 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3455 		queued++;
3456 	}
3457 
3458 	if (queued)
3459 		queue_work(rbd_wq, &rbd_dev->rq_work);
3460 }
3461 
3462 /*
3463  * a queue callback. Makes sure that we don't create a bio that spans across
3464  * multiple osd objects. One exception would be with a single page bios,
3465  * which we handle later at bio_chain_clone_range()
3466  */
3467 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3468 			  struct bio_vec *bvec)
3469 {
3470 	struct rbd_device *rbd_dev = q->queuedata;
3471 	sector_t sector_offset;
3472 	sector_t sectors_per_obj;
3473 	sector_t obj_sector_offset;
3474 	int ret;
3475 
3476 	/*
3477 	 * Find how far into its rbd object the partition-relative
3478 	 * bio start sector is to offset relative to the enclosing
3479 	 * device.
3480 	 */
3481 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3482 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3483 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3484 
3485 	/*
3486 	 * Compute the number of bytes from that offset to the end
3487 	 * of the object.  Account for what's already used by the bio.
3488 	 */
3489 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3490 	if (ret > bmd->bi_size)
3491 		ret -= bmd->bi_size;
3492 	else
3493 		ret = 0;
3494 
3495 	/*
3496 	 * Don't send back more than was asked for.  And if the bio
3497 	 * was empty, let the whole thing through because:  "Note
3498 	 * that a block device *must* allow a single page to be
3499 	 * added to an empty bio."
3500 	 */
3501 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3502 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3503 		ret = (int) bvec->bv_len;
3504 
3505 	return ret;
3506 }
3507 
3508 static void rbd_free_disk(struct rbd_device *rbd_dev)
3509 {
3510 	struct gendisk *disk = rbd_dev->disk;
3511 
3512 	if (!disk)
3513 		return;
3514 
3515 	rbd_dev->disk = NULL;
3516 	if (disk->flags & GENHD_FL_UP) {
3517 		del_gendisk(disk);
3518 		if (disk->queue)
3519 			blk_cleanup_queue(disk->queue);
3520 	}
3521 	put_disk(disk);
3522 }
3523 
3524 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3525 				const char *object_name,
3526 				u64 offset, u64 length, void *buf)
3527 
3528 {
3529 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3530 	struct rbd_obj_request *obj_request;
3531 	struct page **pages = NULL;
3532 	u32 page_count;
3533 	size_t size;
3534 	int ret;
3535 
3536 	page_count = (u32) calc_pages_for(offset, length);
3537 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3538 	if (IS_ERR(pages))
3539 		return PTR_ERR(pages);
3540 
3541 	ret = -ENOMEM;
3542 	obj_request = rbd_obj_request_create(object_name, offset, length,
3543 							OBJ_REQUEST_PAGES);
3544 	if (!obj_request)
3545 		goto out;
3546 
3547 	obj_request->pages = pages;
3548 	obj_request->page_count = page_count;
3549 
3550 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3551 						  obj_request);
3552 	if (!obj_request->osd_req)
3553 		goto out;
3554 
3555 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3556 					offset, length, 0, 0);
3557 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3558 					obj_request->pages,
3559 					obj_request->length,
3560 					obj_request->offset & ~PAGE_MASK,
3561 					false, false);
3562 	rbd_osd_req_format_read(obj_request);
3563 
3564 	ret = rbd_obj_request_submit(osdc, obj_request);
3565 	if (ret)
3566 		goto out;
3567 	ret = rbd_obj_request_wait(obj_request);
3568 	if (ret)
3569 		goto out;
3570 
3571 	ret = obj_request->result;
3572 	if (ret < 0)
3573 		goto out;
3574 
3575 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3576 	size = (size_t) obj_request->xferred;
3577 	ceph_copy_from_page_vector(pages, buf, 0, size);
3578 	rbd_assert(size <= (size_t)INT_MAX);
3579 	ret = (int)size;
3580 out:
3581 	if (obj_request)
3582 		rbd_obj_request_put(obj_request);
3583 	else
3584 		ceph_release_page_vector(pages, page_count);
3585 
3586 	return ret;
3587 }
3588 
3589 /*
3590  * Read the complete header for the given rbd device.  On successful
3591  * return, the rbd_dev->header field will contain up-to-date
3592  * information about the image.
3593  */
3594 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3595 {
3596 	struct rbd_image_header_ondisk *ondisk = NULL;
3597 	u32 snap_count = 0;
3598 	u64 names_size = 0;
3599 	u32 want_count;
3600 	int ret;
3601 
3602 	/*
3603 	 * The complete header will include an array of its 64-bit
3604 	 * snapshot ids, followed by the names of those snapshots as
3605 	 * a contiguous block of NUL-terminated strings.  Note that
3606 	 * the number of snapshots could change by the time we read
3607 	 * it in, in which case we re-read it.
3608 	 */
3609 	do {
3610 		size_t size;
3611 
3612 		kfree(ondisk);
3613 
3614 		size = sizeof (*ondisk);
3615 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3616 		size += names_size;
3617 		ondisk = kmalloc(size, GFP_KERNEL);
3618 		if (!ondisk)
3619 			return -ENOMEM;
3620 
3621 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3622 				       0, size, ondisk);
3623 		if (ret < 0)
3624 			goto out;
3625 		if ((size_t)ret < size) {
3626 			ret = -ENXIO;
3627 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3628 				size, ret);
3629 			goto out;
3630 		}
3631 		if (!rbd_dev_ondisk_valid(ondisk)) {
3632 			ret = -ENXIO;
3633 			rbd_warn(rbd_dev, "invalid header");
3634 			goto out;
3635 		}
3636 
3637 		names_size = le64_to_cpu(ondisk->snap_names_len);
3638 		want_count = snap_count;
3639 		snap_count = le32_to_cpu(ondisk->snap_count);
3640 	} while (snap_count != want_count);
3641 
3642 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3643 out:
3644 	kfree(ondisk);
3645 
3646 	return ret;
3647 }
3648 
3649 /*
3650  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3651  * has disappeared from the (just updated) snapshot context.
3652  */
3653 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3654 {
3655 	u64 snap_id;
3656 
3657 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3658 		return;
3659 
3660 	snap_id = rbd_dev->spec->snap_id;
3661 	if (snap_id == CEPH_NOSNAP)
3662 		return;
3663 
3664 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3665 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3666 }
3667 
3668 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3669 {
3670 	sector_t size;
3671 	bool removing;
3672 
3673 	/*
3674 	 * Don't hold the lock while doing disk operations,
3675 	 * or lock ordering will conflict with the bdev mutex via:
3676 	 * rbd_add() -> blkdev_get() -> rbd_open()
3677 	 */
3678 	spin_lock_irq(&rbd_dev->lock);
3679 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3680 	spin_unlock_irq(&rbd_dev->lock);
3681 	/*
3682 	 * If the device is being removed, rbd_dev->disk has
3683 	 * been destroyed, so don't try to update its size
3684 	 */
3685 	if (!removing) {
3686 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3687 		dout("setting size to %llu sectors", (unsigned long long)size);
3688 		set_capacity(rbd_dev->disk, size);
3689 		revalidate_disk(rbd_dev->disk);
3690 	}
3691 }
3692 
3693 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3694 {
3695 	u64 mapping_size;
3696 	int ret;
3697 
3698 	down_write(&rbd_dev->header_rwsem);
3699 	mapping_size = rbd_dev->mapping.size;
3700 
3701 	ret = rbd_dev_header_info(rbd_dev);
3702 	if (ret)
3703 		return ret;
3704 
3705 	/*
3706 	 * If there is a parent, see if it has disappeared due to the
3707 	 * mapped image getting flattened.
3708 	 */
3709 	if (rbd_dev->parent) {
3710 		ret = rbd_dev_v2_parent_info(rbd_dev);
3711 		if (ret)
3712 			return ret;
3713 	}
3714 
3715 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3716 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3717 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3718 	} else {
3719 		/* validate mapped snapshot's EXISTS flag */
3720 		rbd_exists_validate(rbd_dev);
3721 	}
3722 
3723 	up_write(&rbd_dev->header_rwsem);
3724 
3725 	if (mapping_size != rbd_dev->mapping.size)
3726 		rbd_dev_update_size(rbd_dev);
3727 
3728 	return 0;
3729 }
3730 
3731 static int rbd_init_disk(struct rbd_device *rbd_dev)
3732 {
3733 	struct gendisk *disk;
3734 	struct request_queue *q;
3735 	u64 segment_size;
3736 
3737 	/* create gendisk info */
3738 	disk = alloc_disk(single_major ?
3739 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3740 			  RBD_MINORS_PER_MAJOR);
3741 	if (!disk)
3742 		return -ENOMEM;
3743 
3744 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3745 		 rbd_dev->dev_id);
3746 	disk->major = rbd_dev->major;
3747 	disk->first_minor = rbd_dev->minor;
3748 	if (single_major)
3749 		disk->flags |= GENHD_FL_EXT_DEVT;
3750 	disk->fops = &rbd_bd_ops;
3751 	disk->private_data = rbd_dev;
3752 
3753 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3754 	if (!q)
3755 		goto out_disk;
3756 
3757 	/* We use the default size, but let's be explicit about it. */
3758 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3759 
3760 	/* set io sizes to object size */
3761 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3762 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3763 	blk_queue_max_segment_size(q, segment_size);
3764 	blk_queue_io_min(q, segment_size);
3765 	blk_queue_io_opt(q, segment_size);
3766 
3767 	/* enable the discard support */
3768 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3769 	q->limits.discard_granularity = segment_size;
3770 	q->limits.discard_alignment = segment_size;
3771 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3772 	q->limits.discard_zeroes_data = 1;
3773 
3774 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3775 	disk->queue = q;
3776 
3777 	q->queuedata = rbd_dev;
3778 
3779 	rbd_dev->disk = disk;
3780 
3781 	return 0;
3782 out_disk:
3783 	put_disk(disk);
3784 
3785 	return -ENOMEM;
3786 }
3787 
3788 /*
3789   sysfs
3790 */
3791 
3792 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3793 {
3794 	return container_of(dev, struct rbd_device, dev);
3795 }
3796 
3797 static ssize_t rbd_size_show(struct device *dev,
3798 			     struct device_attribute *attr, char *buf)
3799 {
3800 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3801 
3802 	return sprintf(buf, "%llu\n",
3803 		(unsigned long long)rbd_dev->mapping.size);
3804 }
3805 
3806 /*
3807  * Note this shows the features for whatever's mapped, which is not
3808  * necessarily the base image.
3809  */
3810 static ssize_t rbd_features_show(struct device *dev,
3811 			     struct device_attribute *attr, char *buf)
3812 {
3813 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3814 
3815 	return sprintf(buf, "0x%016llx\n",
3816 			(unsigned long long)rbd_dev->mapping.features);
3817 }
3818 
3819 static ssize_t rbd_major_show(struct device *dev,
3820 			      struct device_attribute *attr, char *buf)
3821 {
3822 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 
3824 	if (rbd_dev->major)
3825 		return sprintf(buf, "%d\n", rbd_dev->major);
3826 
3827 	return sprintf(buf, "(none)\n");
3828 }
3829 
3830 static ssize_t rbd_minor_show(struct device *dev,
3831 			      struct device_attribute *attr, char *buf)
3832 {
3833 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3834 
3835 	return sprintf(buf, "%d\n", rbd_dev->minor);
3836 }
3837 
3838 static ssize_t rbd_client_id_show(struct device *dev,
3839 				  struct device_attribute *attr, char *buf)
3840 {
3841 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3842 
3843 	return sprintf(buf, "client%lld\n",
3844 			ceph_client_id(rbd_dev->rbd_client->client));
3845 }
3846 
3847 static ssize_t rbd_pool_show(struct device *dev,
3848 			     struct device_attribute *attr, char *buf)
3849 {
3850 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851 
3852 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3853 }
3854 
3855 static ssize_t rbd_pool_id_show(struct device *dev,
3856 			     struct device_attribute *attr, char *buf)
3857 {
3858 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3859 
3860 	return sprintf(buf, "%llu\n",
3861 			(unsigned long long) rbd_dev->spec->pool_id);
3862 }
3863 
3864 static ssize_t rbd_name_show(struct device *dev,
3865 			     struct device_attribute *attr, char *buf)
3866 {
3867 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868 
3869 	if (rbd_dev->spec->image_name)
3870 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3871 
3872 	return sprintf(buf, "(unknown)\n");
3873 }
3874 
3875 static ssize_t rbd_image_id_show(struct device *dev,
3876 			     struct device_attribute *attr, char *buf)
3877 {
3878 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3879 
3880 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3881 }
3882 
3883 /*
3884  * Shows the name of the currently-mapped snapshot (or
3885  * RBD_SNAP_HEAD_NAME for the base image).
3886  */
3887 static ssize_t rbd_snap_show(struct device *dev,
3888 			     struct device_attribute *attr,
3889 			     char *buf)
3890 {
3891 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3892 
3893 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3894 }
3895 
3896 /*
3897  * For a v2 image, shows the chain of parent images, separated by empty
3898  * lines.  For v1 images or if there is no parent, shows "(no parent
3899  * image)".
3900  */
3901 static ssize_t rbd_parent_show(struct device *dev,
3902 			       struct device_attribute *attr,
3903 			       char *buf)
3904 {
3905 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3906 	ssize_t count = 0;
3907 
3908 	if (!rbd_dev->parent)
3909 		return sprintf(buf, "(no parent image)\n");
3910 
3911 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3912 		struct rbd_spec *spec = rbd_dev->parent_spec;
3913 
3914 		count += sprintf(&buf[count], "%s"
3915 			    "pool_id %llu\npool_name %s\n"
3916 			    "image_id %s\nimage_name %s\n"
3917 			    "snap_id %llu\nsnap_name %s\n"
3918 			    "overlap %llu\n",
3919 			    !count ? "" : "\n", /* first? */
3920 			    spec->pool_id, spec->pool_name,
3921 			    spec->image_id, spec->image_name ?: "(unknown)",
3922 			    spec->snap_id, spec->snap_name,
3923 			    rbd_dev->parent_overlap);
3924 	}
3925 
3926 	return count;
3927 }
3928 
3929 static ssize_t rbd_image_refresh(struct device *dev,
3930 				 struct device_attribute *attr,
3931 				 const char *buf,
3932 				 size_t size)
3933 {
3934 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3935 	int ret;
3936 
3937 	ret = rbd_dev_refresh(rbd_dev);
3938 	if (ret)
3939 		return ret;
3940 
3941 	return size;
3942 }
3943 
3944 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3945 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3946 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3947 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3948 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3949 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3950 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3951 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3952 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3953 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3954 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3955 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3956 
3957 static struct attribute *rbd_attrs[] = {
3958 	&dev_attr_size.attr,
3959 	&dev_attr_features.attr,
3960 	&dev_attr_major.attr,
3961 	&dev_attr_minor.attr,
3962 	&dev_attr_client_id.attr,
3963 	&dev_attr_pool.attr,
3964 	&dev_attr_pool_id.attr,
3965 	&dev_attr_name.attr,
3966 	&dev_attr_image_id.attr,
3967 	&dev_attr_current_snap.attr,
3968 	&dev_attr_parent.attr,
3969 	&dev_attr_refresh.attr,
3970 	NULL
3971 };
3972 
3973 static struct attribute_group rbd_attr_group = {
3974 	.attrs = rbd_attrs,
3975 };
3976 
3977 static const struct attribute_group *rbd_attr_groups[] = {
3978 	&rbd_attr_group,
3979 	NULL
3980 };
3981 
3982 static void rbd_sysfs_dev_release(struct device *dev)
3983 {
3984 }
3985 
3986 static struct device_type rbd_device_type = {
3987 	.name		= "rbd",
3988 	.groups		= rbd_attr_groups,
3989 	.release	= rbd_sysfs_dev_release,
3990 };
3991 
3992 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3993 {
3994 	kref_get(&spec->kref);
3995 
3996 	return spec;
3997 }
3998 
3999 static void rbd_spec_free(struct kref *kref);
4000 static void rbd_spec_put(struct rbd_spec *spec)
4001 {
4002 	if (spec)
4003 		kref_put(&spec->kref, rbd_spec_free);
4004 }
4005 
4006 static struct rbd_spec *rbd_spec_alloc(void)
4007 {
4008 	struct rbd_spec *spec;
4009 
4010 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4011 	if (!spec)
4012 		return NULL;
4013 
4014 	spec->pool_id = CEPH_NOPOOL;
4015 	spec->snap_id = CEPH_NOSNAP;
4016 	kref_init(&spec->kref);
4017 
4018 	return spec;
4019 }
4020 
4021 static void rbd_spec_free(struct kref *kref)
4022 {
4023 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4024 
4025 	kfree(spec->pool_name);
4026 	kfree(spec->image_id);
4027 	kfree(spec->image_name);
4028 	kfree(spec->snap_name);
4029 	kfree(spec);
4030 }
4031 
4032 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4033 				struct rbd_spec *spec)
4034 {
4035 	struct rbd_device *rbd_dev;
4036 
4037 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4038 	if (!rbd_dev)
4039 		return NULL;
4040 
4041 	spin_lock_init(&rbd_dev->lock);
4042 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
4043 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4044 	rbd_dev->flags = 0;
4045 	atomic_set(&rbd_dev->parent_ref, 0);
4046 	INIT_LIST_HEAD(&rbd_dev->node);
4047 	init_rwsem(&rbd_dev->header_rwsem);
4048 
4049 	rbd_dev->spec = spec;
4050 	rbd_dev->rbd_client = rbdc;
4051 
4052 	/* Initialize the layout used for all rbd requests */
4053 
4054 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4055 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4056 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4057 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4058 
4059 	return rbd_dev;
4060 }
4061 
4062 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4063 {
4064 	rbd_put_client(rbd_dev->rbd_client);
4065 	rbd_spec_put(rbd_dev->spec);
4066 	kfree(rbd_dev);
4067 }
4068 
4069 /*
4070  * Get the size and object order for an image snapshot, or if
4071  * snap_id is CEPH_NOSNAP, gets this information for the base
4072  * image.
4073  */
4074 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4075 				u8 *order, u64 *snap_size)
4076 {
4077 	__le64 snapid = cpu_to_le64(snap_id);
4078 	int ret;
4079 	struct {
4080 		u8 order;
4081 		__le64 size;
4082 	} __attribute__ ((packed)) size_buf = { 0 };
4083 
4084 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4085 				"rbd", "get_size",
4086 				&snapid, sizeof (snapid),
4087 				&size_buf, sizeof (size_buf));
4088 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4089 	if (ret < 0)
4090 		return ret;
4091 	if (ret < sizeof (size_buf))
4092 		return -ERANGE;
4093 
4094 	if (order) {
4095 		*order = size_buf.order;
4096 		dout("  order %u", (unsigned int)*order);
4097 	}
4098 	*snap_size = le64_to_cpu(size_buf.size);
4099 
4100 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4101 		(unsigned long long)snap_id,
4102 		(unsigned long long)*snap_size);
4103 
4104 	return 0;
4105 }
4106 
4107 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4108 {
4109 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4110 					&rbd_dev->header.obj_order,
4111 					&rbd_dev->header.image_size);
4112 }
4113 
4114 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4115 {
4116 	void *reply_buf;
4117 	int ret;
4118 	void *p;
4119 
4120 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4121 	if (!reply_buf)
4122 		return -ENOMEM;
4123 
4124 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4125 				"rbd", "get_object_prefix", NULL, 0,
4126 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4127 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4128 	if (ret < 0)
4129 		goto out;
4130 
4131 	p = reply_buf;
4132 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4133 						p + ret, NULL, GFP_NOIO);
4134 	ret = 0;
4135 
4136 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4137 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4138 		rbd_dev->header.object_prefix = NULL;
4139 	} else {
4140 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4141 	}
4142 out:
4143 	kfree(reply_buf);
4144 
4145 	return ret;
4146 }
4147 
4148 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4149 		u64 *snap_features)
4150 {
4151 	__le64 snapid = cpu_to_le64(snap_id);
4152 	struct {
4153 		__le64 features;
4154 		__le64 incompat;
4155 	} __attribute__ ((packed)) features_buf = { 0 };
4156 	u64 incompat;
4157 	int ret;
4158 
4159 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4160 				"rbd", "get_features",
4161 				&snapid, sizeof (snapid),
4162 				&features_buf, sizeof (features_buf));
4163 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4164 	if (ret < 0)
4165 		return ret;
4166 	if (ret < sizeof (features_buf))
4167 		return -ERANGE;
4168 
4169 	incompat = le64_to_cpu(features_buf.incompat);
4170 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4171 		return -ENXIO;
4172 
4173 	*snap_features = le64_to_cpu(features_buf.features);
4174 
4175 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4176 		(unsigned long long)snap_id,
4177 		(unsigned long long)*snap_features,
4178 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4179 
4180 	return 0;
4181 }
4182 
4183 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4184 {
4185 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4186 						&rbd_dev->header.features);
4187 }
4188 
4189 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4190 {
4191 	struct rbd_spec *parent_spec;
4192 	size_t size;
4193 	void *reply_buf = NULL;
4194 	__le64 snapid;
4195 	void *p;
4196 	void *end;
4197 	u64 pool_id;
4198 	char *image_id;
4199 	u64 snap_id;
4200 	u64 overlap;
4201 	int ret;
4202 
4203 	parent_spec = rbd_spec_alloc();
4204 	if (!parent_spec)
4205 		return -ENOMEM;
4206 
4207 	size = sizeof (__le64) +				/* pool_id */
4208 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4209 		sizeof (__le64) +				/* snap_id */
4210 		sizeof (__le64);				/* overlap */
4211 	reply_buf = kmalloc(size, GFP_KERNEL);
4212 	if (!reply_buf) {
4213 		ret = -ENOMEM;
4214 		goto out_err;
4215 	}
4216 
4217 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4218 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4219 				"rbd", "get_parent",
4220 				&snapid, sizeof (snapid),
4221 				reply_buf, size);
4222 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4223 	if (ret < 0)
4224 		goto out_err;
4225 
4226 	p = reply_buf;
4227 	end = reply_buf + ret;
4228 	ret = -ERANGE;
4229 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4230 	if (pool_id == CEPH_NOPOOL) {
4231 		/*
4232 		 * Either the parent never existed, or we have
4233 		 * record of it but the image got flattened so it no
4234 		 * longer has a parent.  When the parent of a
4235 		 * layered image disappears we immediately set the
4236 		 * overlap to 0.  The effect of this is that all new
4237 		 * requests will be treated as if the image had no
4238 		 * parent.
4239 		 */
4240 		if (rbd_dev->parent_overlap) {
4241 			rbd_dev->parent_overlap = 0;
4242 			smp_mb();
4243 			rbd_dev_parent_put(rbd_dev);
4244 			pr_info("%s: clone image has been flattened\n",
4245 				rbd_dev->disk->disk_name);
4246 		}
4247 
4248 		goto out;	/* No parent?  No problem. */
4249 	}
4250 
4251 	/* The ceph file layout needs to fit pool id in 32 bits */
4252 
4253 	ret = -EIO;
4254 	if (pool_id > (u64)U32_MAX) {
4255 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4256 			(unsigned long long)pool_id, U32_MAX);
4257 		goto out_err;
4258 	}
4259 
4260 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4261 	if (IS_ERR(image_id)) {
4262 		ret = PTR_ERR(image_id);
4263 		goto out_err;
4264 	}
4265 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4266 	ceph_decode_64_safe(&p, end, overlap, out_err);
4267 
4268 	/*
4269 	 * The parent won't change (except when the clone is
4270 	 * flattened, already handled that).  So we only need to
4271 	 * record the parent spec we have not already done so.
4272 	 */
4273 	if (!rbd_dev->parent_spec) {
4274 		parent_spec->pool_id = pool_id;
4275 		parent_spec->image_id = image_id;
4276 		parent_spec->snap_id = snap_id;
4277 		rbd_dev->parent_spec = parent_spec;
4278 		parent_spec = NULL;	/* rbd_dev now owns this */
4279 	} else {
4280 		kfree(image_id);
4281 	}
4282 
4283 	/*
4284 	 * We always update the parent overlap.  If it's zero we
4285 	 * treat it specially.
4286 	 */
4287 	rbd_dev->parent_overlap = overlap;
4288 	smp_mb();
4289 	if (!overlap) {
4290 
4291 		/* A null parent_spec indicates it's the initial probe */
4292 
4293 		if (parent_spec) {
4294 			/*
4295 			 * The overlap has become zero, so the clone
4296 			 * must have been resized down to 0 at some
4297 			 * point.  Treat this the same as a flatten.
4298 			 */
4299 			rbd_dev_parent_put(rbd_dev);
4300 			pr_info("%s: clone image now standalone\n",
4301 				rbd_dev->disk->disk_name);
4302 		} else {
4303 			/*
4304 			 * For the initial probe, if we find the
4305 			 * overlap is zero we just pretend there was
4306 			 * no parent image.
4307 			 */
4308 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4309 		}
4310 	}
4311 out:
4312 	ret = 0;
4313 out_err:
4314 	kfree(reply_buf);
4315 	rbd_spec_put(parent_spec);
4316 
4317 	return ret;
4318 }
4319 
4320 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4321 {
4322 	struct {
4323 		__le64 stripe_unit;
4324 		__le64 stripe_count;
4325 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4326 	size_t size = sizeof (striping_info_buf);
4327 	void *p;
4328 	u64 obj_size;
4329 	u64 stripe_unit;
4330 	u64 stripe_count;
4331 	int ret;
4332 
4333 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4334 				"rbd", "get_stripe_unit_count", NULL, 0,
4335 				(char *)&striping_info_buf, size);
4336 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4337 	if (ret < 0)
4338 		return ret;
4339 	if (ret < size)
4340 		return -ERANGE;
4341 
4342 	/*
4343 	 * We don't actually support the "fancy striping" feature
4344 	 * (STRIPINGV2) yet, but if the striping sizes are the
4345 	 * defaults the behavior is the same as before.  So find
4346 	 * out, and only fail if the image has non-default values.
4347 	 */
4348 	ret = -EINVAL;
4349 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4350 	p = &striping_info_buf;
4351 	stripe_unit = ceph_decode_64(&p);
4352 	if (stripe_unit != obj_size) {
4353 		rbd_warn(rbd_dev, "unsupported stripe unit "
4354 				"(got %llu want %llu)",
4355 				stripe_unit, obj_size);
4356 		return -EINVAL;
4357 	}
4358 	stripe_count = ceph_decode_64(&p);
4359 	if (stripe_count != 1) {
4360 		rbd_warn(rbd_dev, "unsupported stripe count "
4361 				"(got %llu want 1)", stripe_count);
4362 		return -EINVAL;
4363 	}
4364 	rbd_dev->header.stripe_unit = stripe_unit;
4365 	rbd_dev->header.stripe_count = stripe_count;
4366 
4367 	return 0;
4368 }
4369 
4370 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4371 {
4372 	size_t image_id_size;
4373 	char *image_id;
4374 	void *p;
4375 	void *end;
4376 	size_t size;
4377 	void *reply_buf = NULL;
4378 	size_t len = 0;
4379 	char *image_name = NULL;
4380 	int ret;
4381 
4382 	rbd_assert(!rbd_dev->spec->image_name);
4383 
4384 	len = strlen(rbd_dev->spec->image_id);
4385 	image_id_size = sizeof (__le32) + len;
4386 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4387 	if (!image_id)
4388 		return NULL;
4389 
4390 	p = image_id;
4391 	end = image_id + image_id_size;
4392 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4393 
4394 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4395 	reply_buf = kmalloc(size, GFP_KERNEL);
4396 	if (!reply_buf)
4397 		goto out;
4398 
4399 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4400 				"rbd", "dir_get_name",
4401 				image_id, image_id_size,
4402 				reply_buf, size);
4403 	if (ret < 0)
4404 		goto out;
4405 	p = reply_buf;
4406 	end = reply_buf + ret;
4407 
4408 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4409 	if (IS_ERR(image_name))
4410 		image_name = NULL;
4411 	else
4412 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4413 out:
4414 	kfree(reply_buf);
4415 	kfree(image_id);
4416 
4417 	return image_name;
4418 }
4419 
4420 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4421 {
4422 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4423 	const char *snap_name;
4424 	u32 which = 0;
4425 
4426 	/* Skip over names until we find the one we are looking for */
4427 
4428 	snap_name = rbd_dev->header.snap_names;
4429 	while (which < snapc->num_snaps) {
4430 		if (!strcmp(name, snap_name))
4431 			return snapc->snaps[which];
4432 		snap_name += strlen(snap_name) + 1;
4433 		which++;
4434 	}
4435 	return CEPH_NOSNAP;
4436 }
4437 
4438 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441 	u32 which;
4442 	bool found = false;
4443 	u64 snap_id;
4444 
4445 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4446 		const char *snap_name;
4447 
4448 		snap_id = snapc->snaps[which];
4449 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4450 		if (IS_ERR(snap_name)) {
4451 			/* ignore no-longer existing snapshots */
4452 			if (PTR_ERR(snap_name) == -ENOENT)
4453 				continue;
4454 			else
4455 				break;
4456 		}
4457 		found = !strcmp(name, snap_name);
4458 		kfree(snap_name);
4459 	}
4460 	return found ? snap_id : CEPH_NOSNAP;
4461 }
4462 
4463 /*
4464  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4465  * no snapshot by that name is found, or if an error occurs.
4466  */
4467 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4468 {
4469 	if (rbd_dev->image_format == 1)
4470 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4471 
4472 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4473 }
4474 
4475 /*
4476  * An image being mapped will have everything but the snap id.
4477  */
4478 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4479 {
4480 	struct rbd_spec *spec = rbd_dev->spec;
4481 
4482 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4483 	rbd_assert(spec->image_id && spec->image_name);
4484 	rbd_assert(spec->snap_name);
4485 
4486 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4487 		u64 snap_id;
4488 
4489 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4490 		if (snap_id == CEPH_NOSNAP)
4491 			return -ENOENT;
4492 
4493 		spec->snap_id = snap_id;
4494 	} else {
4495 		spec->snap_id = CEPH_NOSNAP;
4496 	}
4497 
4498 	return 0;
4499 }
4500 
4501 /*
4502  * A parent image will have all ids but none of the names.
4503  *
4504  * All names in an rbd spec are dynamically allocated.  It's OK if we
4505  * can't figure out the name for an image id.
4506  */
4507 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4508 {
4509 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4510 	struct rbd_spec *spec = rbd_dev->spec;
4511 	const char *pool_name;
4512 	const char *image_name;
4513 	const char *snap_name;
4514 	int ret;
4515 
4516 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4517 	rbd_assert(spec->image_id);
4518 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4519 
4520 	/* Get the pool name; we have to make our own copy of this */
4521 
4522 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4523 	if (!pool_name) {
4524 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4525 		return -EIO;
4526 	}
4527 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4528 	if (!pool_name)
4529 		return -ENOMEM;
4530 
4531 	/* Fetch the image name; tolerate failure here */
4532 
4533 	image_name = rbd_dev_image_name(rbd_dev);
4534 	if (!image_name)
4535 		rbd_warn(rbd_dev, "unable to get image name");
4536 
4537 	/* Fetch the snapshot name */
4538 
4539 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4540 	if (IS_ERR(snap_name)) {
4541 		ret = PTR_ERR(snap_name);
4542 		goto out_err;
4543 	}
4544 
4545 	spec->pool_name = pool_name;
4546 	spec->image_name = image_name;
4547 	spec->snap_name = snap_name;
4548 
4549 	return 0;
4550 
4551 out_err:
4552 	kfree(image_name);
4553 	kfree(pool_name);
4554 	return ret;
4555 }
4556 
4557 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4558 {
4559 	size_t size;
4560 	int ret;
4561 	void *reply_buf;
4562 	void *p;
4563 	void *end;
4564 	u64 seq;
4565 	u32 snap_count;
4566 	struct ceph_snap_context *snapc;
4567 	u32 i;
4568 
4569 	/*
4570 	 * We'll need room for the seq value (maximum snapshot id),
4571 	 * snapshot count, and array of that many snapshot ids.
4572 	 * For now we have a fixed upper limit on the number we're
4573 	 * prepared to receive.
4574 	 */
4575 	size = sizeof (__le64) + sizeof (__le32) +
4576 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4577 	reply_buf = kzalloc(size, GFP_KERNEL);
4578 	if (!reply_buf)
4579 		return -ENOMEM;
4580 
4581 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4582 				"rbd", "get_snapcontext", NULL, 0,
4583 				reply_buf, size);
4584 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4585 	if (ret < 0)
4586 		goto out;
4587 
4588 	p = reply_buf;
4589 	end = reply_buf + ret;
4590 	ret = -ERANGE;
4591 	ceph_decode_64_safe(&p, end, seq, out);
4592 	ceph_decode_32_safe(&p, end, snap_count, out);
4593 
4594 	/*
4595 	 * Make sure the reported number of snapshot ids wouldn't go
4596 	 * beyond the end of our buffer.  But before checking that,
4597 	 * make sure the computed size of the snapshot context we
4598 	 * allocate is representable in a size_t.
4599 	 */
4600 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4601 				 / sizeof (u64)) {
4602 		ret = -EINVAL;
4603 		goto out;
4604 	}
4605 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4606 		goto out;
4607 	ret = 0;
4608 
4609 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4610 	if (!snapc) {
4611 		ret = -ENOMEM;
4612 		goto out;
4613 	}
4614 	snapc->seq = seq;
4615 	for (i = 0; i < snap_count; i++)
4616 		snapc->snaps[i] = ceph_decode_64(&p);
4617 
4618 	ceph_put_snap_context(rbd_dev->header.snapc);
4619 	rbd_dev->header.snapc = snapc;
4620 
4621 	dout("  snap context seq = %llu, snap_count = %u\n",
4622 		(unsigned long long)seq, (unsigned int)snap_count);
4623 out:
4624 	kfree(reply_buf);
4625 
4626 	return ret;
4627 }
4628 
4629 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4630 					u64 snap_id)
4631 {
4632 	size_t size;
4633 	void *reply_buf;
4634 	__le64 snapid;
4635 	int ret;
4636 	void *p;
4637 	void *end;
4638 	char *snap_name;
4639 
4640 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4641 	reply_buf = kmalloc(size, GFP_KERNEL);
4642 	if (!reply_buf)
4643 		return ERR_PTR(-ENOMEM);
4644 
4645 	snapid = cpu_to_le64(snap_id);
4646 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4647 				"rbd", "get_snapshot_name",
4648 				&snapid, sizeof (snapid),
4649 				reply_buf, size);
4650 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4651 	if (ret < 0) {
4652 		snap_name = ERR_PTR(ret);
4653 		goto out;
4654 	}
4655 
4656 	p = reply_buf;
4657 	end = reply_buf + ret;
4658 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4659 	if (IS_ERR(snap_name))
4660 		goto out;
4661 
4662 	dout("  snap_id 0x%016llx snap_name = %s\n",
4663 		(unsigned long long)snap_id, snap_name);
4664 out:
4665 	kfree(reply_buf);
4666 
4667 	return snap_name;
4668 }
4669 
4670 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4671 {
4672 	bool first_time = rbd_dev->header.object_prefix == NULL;
4673 	int ret;
4674 
4675 	ret = rbd_dev_v2_image_size(rbd_dev);
4676 	if (ret)
4677 		return ret;
4678 
4679 	if (first_time) {
4680 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4681 		if (ret)
4682 			return ret;
4683 	}
4684 
4685 	ret = rbd_dev_v2_snap_context(rbd_dev);
4686 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4687 
4688 	return ret;
4689 }
4690 
4691 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4692 {
4693 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4694 
4695 	if (rbd_dev->image_format == 1)
4696 		return rbd_dev_v1_header_info(rbd_dev);
4697 
4698 	return rbd_dev_v2_header_info(rbd_dev);
4699 }
4700 
4701 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4702 {
4703 	struct device *dev;
4704 	int ret;
4705 
4706 	dev = &rbd_dev->dev;
4707 	dev->bus = &rbd_bus_type;
4708 	dev->type = &rbd_device_type;
4709 	dev->parent = &rbd_root_dev;
4710 	dev->release = rbd_dev_device_release;
4711 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4712 	ret = device_register(dev);
4713 
4714 	return ret;
4715 }
4716 
4717 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4718 {
4719 	device_unregister(&rbd_dev->dev);
4720 }
4721 
4722 /*
4723  * Get a unique rbd identifier for the given new rbd_dev, and add
4724  * the rbd_dev to the global list.
4725  */
4726 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4727 {
4728 	int new_dev_id;
4729 
4730 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4731 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4732 				    GFP_KERNEL);
4733 	if (new_dev_id < 0)
4734 		return new_dev_id;
4735 
4736 	rbd_dev->dev_id = new_dev_id;
4737 
4738 	spin_lock(&rbd_dev_list_lock);
4739 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4740 	spin_unlock(&rbd_dev_list_lock);
4741 
4742 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4743 
4744 	return 0;
4745 }
4746 
4747 /*
4748  * Remove an rbd_dev from the global list, and record that its
4749  * identifier is no longer in use.
4750  */
4751 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4752 {
4753 	spin_lock(&rbd_dev_list_lock);
4754 	list_del_init(&rbd_dev->node);
4755 	spin_unlock(&rbd_dev_list_lock);
4756 
4757 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4758 
4759 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4760 }
4761 
4762 /*
4763  * Skips over white space at *buf, and updates *buf to point to the
4764  * first found non-space character (if any). Returns the length of
4765  * the token (string of non-white space characters) found.  Note
4766  * that *buf must be terminated with '\0'.
4767  */
4768 static inline size_t next_token(const char **buf)
4769 {
4770         /*
4771         * These are the characters that produce nonzero for
4772         * isspace() in the "C" and "POSIX" locales.
4773         */
4774         const char *spaces = " \f\n\r\t\v";
4775 
4776         *buf += strspn(*buf, spaces);	/* Find start of token */
4777 
4778 	return strcspn(*buf, spaces);   /* Return token length */
4779 }
4780 
4781 /*
4782  * Finds the next token in *buf, and if the provided token buffer is
4783  * big enough, copies the found token into it.  The result, if
4784  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4785  * must be terminated with '\0' on entry.
4786  *
4787  * Returns the length of the token found (not including the '\0').
4788  * Return value will be 0 if no token is found, and it will be >=
4789  * token_size if the token would not fit.
4790  *
4791  * The *buf pointer will be updated to point beyond the end of the
4792  * found token.  Note that this occurs even if the token buffer is
4793  * too small to hold it.
4794  */
4795 static inline size_t copy_token(const char **buf,
4796 				char *token,
4797 				size_t token_size)
4798 {
4799         size_t len;
4800 
4801 	len = next_token(buf);
4802 	if (len < token_size) {
4803 		memcpy(token, *buf, len);
4804 		*(token + len) = '\0';
4805 	}
4806 	*buf += len;
4807 
4808         return len;
4809 }
4810 
4811 /*
4812  * Finds the next token in *buf, dynamically allocates a buffer big
4813  * enough to hold a copy of it, and copies the token into the new
4814  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4815  * that a duplicate buffer is created even for a zero-length token.
4816  *
4817  * Returns a pointer to the newly-allocated duplicate, or a null
4818  * pointer if memory for the duplicate was not available.  If
4819  * the lenp argument is a non-null pointer, the length of the token
4820  * (not including the '\0') is returned in *lenp.
4821  *
4822  * If successful, the *buf pointer will be updated to point beyond
4823  * the end of the found token.
4824  *
4825  * Note: uses GFP_KERNEL for allocation.
4826  */
4827 static inline char *dup_token(const char **buf, size_t *lenp)
4828 {
4829 	char *dup;
4830 	size_t len;
4831 
4832 	len = next_token(buf);
4833 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4834 	if (!dup)
4835 		return NULL;
4836 	*(dup + len) = '\0';
4837 	*buf += len;
4838 
4839 	if (lenp)
4840 		*lenp = len;
4841 
4842 	return dup;
4843 }
4844 
4845 /*
4846  * Parse the options provided for an "rbd add" (i.e., rbd image
4847  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4848  * and the data written is passed here via a NUL-terminated buffer.
4849  * Returns 0 if successful or an error code otherwise.
4850  *
4851  * The information extracted from these options is recorded in
4852  * the other parameters which return dynamically-allocated
4853  * structures:
4854  *  ceph_opts
4855  *      The address of a pointer that will refer to a ceph options
4856  *      structure.  Caller must release the returned pointer using
4857  *      ceph_destroy_options() when it is no longer needed.
4858  *  rbd_opts
4859  *	Address of an rbd options pointer.  Fully initialized by
4860  *	this function; caller must release with kfree().
4861  *  spec
4862  *	Address of an rbd image specification pointer.  Fully
4863  *	initialized by this function based on parsed options.
4864  *	Caller must release with rbd_spec_put().
4865  *
4866  * The options passed take this form:
4867  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4868  * where:
4869  *  <mon_addrs>
4870  *      A comma-separated list of one or more monitor addresses.
4871  *      A monitor address is an ip address, optionally followed
4872  *      by a port number (separated by a colon).
4873  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4874  *  <options>
4875  *      A comma-separated list of ceph and/or rbd options.
4876  *  <pool_name>
4877  *      The name of the rados pool containing the rbd image.
4878  *  <image_name>
4879  *      The name of the image in that pool to map.
4880  *  <snap_id>
4881  *      An optional snapshot id.  If provided, the mapping will
4882  *      present data from the image at the time that snapshot was
4883  *      created.  The image head is used if no snapshot id is
4884  *      provided.  Snapshot mappings are always read-only.
4885  */
4886 static int rbd_add_parse_args(const char *buf,
4887 				struct ceph_options **ceph_opts,
4888 				struct rbd_options **opts,
4889 				struct rbd_spec **rbd_spec)
4890 {
4891 	size_t len;
4892 	char *options;
4893 	const char *mon_addrs;
4894 	char *snap_name;
4895 	size_t mon_addrs_size;
4896 	struct rbd_spec *spec = NULL;
4897 	struct rbd_options *rbd_opts = NULL;
4898 	struct ceph_options *copts;
4899 	int ret;
4900 
4901 	/* The first four tokens are required */
4902 
4903 	len = next_token(&buf);
4904 	if (!len) {
4905 		rbd_warn(NULL, "no monitor address(es) provided");
4906 		return -EINVAL;
4907 	}
4908 	mon_addrs = buf;
4909 	mon_addrs_size = len + 1;
4910 	buf += len;
4911 
4912 	ret = -EINVAL;
4913 	options = dup_token(&buf, NULL);
4914 	if (!options)
4915 		return -ENOMEM;
4916 	if (!*options) {
4917 		rbd_warn(NULL, "no options provided");
4918 		goto out_err;
4919 	}
4920 
4921 	spec = rbd_spec_alloc();
4922 	if (!spec)
4923 		goto out_mem;
4924 
4925 	spec->pool_name = dup_token(&buf, NULL);
4926 	if (!spec->pool_name)
4927 		goto out_mem;
4928 	if (!*spec->pool_name) {
4929 		rbd_warn(NULL, "no pool name provided");
4930 		goto out_err;
4931 	}
4932 
4933 	spec->image_name = dup_token(&buf, NULL);
4934 	if (!spec->image_name)
4935 		goto out_mem;
4936 	if (!*spec->image_name) {
4937 		rbd_warn(NULL, "no image name provided");
4938 		goto out_err;
4939 	}
4940 
4941 	/*
4942 	 * Snapshot name is optional; default is to use "-"
4943 	 * (indicating the head/no snapshot).
4944 	 */
4945 	len = next_token(&buf);
4946 	if (!len) {
4947 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4948 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4949 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4950 		ret = -ENAMETOOLONG;
4951 		goto out_err;
4952 	}
4953 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4954 	if (!snap_name)
4955 		goto out_mem;
4956 	*(snap_name + len) = '\0';
4957 	spec->snap_name = snap_name;
4958 
4959 	/* Initialize all rbd options to the defaults */
4960 
4961 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4962 	if (!rbd_opts)
4963 		goto out_mem;
4964 
4965 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4966 
4967 	copts = ceph_parse_options(options, mon_addrs,
4968 					mon_addrs + mon_addrs_size - 1,
4969 					parse_rbd_opts_token, rbd_opts);
4970 	if (IS_ERR(copts)) {
4971 		ret = PTR_ERR(copts);
4972 		goto out_err;
4973 	}
4974 	kfree(options);
4975 
4976 	*ceph_opts = copts;
4977 	*opts = rbd_opts;
4978 	*rbd_spec = spec;
4979 
4980 	return 0;
4981 out_mem:
4982 	ret = -ENOMEM;
4983 out_err:
4984 	kfree(rbd_opts);
4985 	rbd_spec_put(spec);
4986 	kfree(options);
4987 
4988 	return ret;
4989 }
4990 
4991 /*
4992  * Return pool id (>= 0) or a negative error code.
4993  */
4994 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4995 {
4996 	u64 newest_epoch;
4997 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4998 	int tries = 0;
4999 	int ret;
5000 
5001 again:
5002 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5003 	if (ret == -ENOENT && tries++ < 1) {
5004 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5005 					       &newest_epoch);
5006 		if (ret < 0)
5007 			return ret;
5008 
5009 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5010 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5011 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5012 						     newest_epoch, timeout);
5013 			goto again;
5014 		} else {
5015 			/* the osdmap we have is new enough */
5016 			return -ENOENT;
5017 		}
5018 	}
5019 
5020 	return ret;
5021 }
5022 
5023 /*
5024  * An rbd format 2 image has a unique identifier, distinct from the
5025  * name given to it by the user.  Internally, that identifier is
5026  * what's used to specify the names of objects related to the image.
5027  *
5028  * A special "rbd id" object is used to map an rbd image name to its
5029  * id.  If that object doesn't exist, then there is no v2 rbd image
5030  * with the supplied name.
5031  *
5032  * This function will record the given rbd_dev's image_id field if
5033  * it can be determined, and in that case will return 0.  If any
5034  * errors occur a negative errno will be returned and the rbd_dev's
5035  * image_id field will be unchanged (and should be NULL).
5036  */
5037 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5038 {
5039 	int ret;
5040 	size_t size;
5041 	char *object_name;
5042 	void *response;
5043 	char *image_id;
5044 
5045 	/*
5046 	 * When probing a parent image, the image id is already
5047 	 * known (and the image name likely is not).  There's no
5048 	 * need to fetch the image id again in this case.  We
5049 	 * do still need to set the image format though.
5050 	 */
5051 	if (rbd_dev->spec->image_id) {
5052 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5053 
5054 		return 0;
5055 	}
5056 
5057 	/*
5058 	 * First, see if the format 2 image id file exists, and if
5059 	 * so, get the image's persistent id from it.
5060 	 */
5061 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5062 	object_name = kmalloc(size, GFP_NOIO);
5063 	if (!object_name)
5064 		return -ENOMEM;
5065 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5066 	dout("rbd id object name is %s\n", object_name);
5067 
5068 	/* Response will be an encoded string, which includes a length */
5069 
5070 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5071 	response = kzalloc(size, GFP_NOIO);
5072 	if (!response) {
5073 		ret = -ENOMEM;
5074 		goto out;
5075 	}
5076 
5077 	/* If it doesn't exist we'll assume it's a format 1 image */
5078 
5079 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5080 				"rbd", "get_id", NULL, 0,
5081 				response, RBD_IMAGE_ID_LEN_MAX);
5082 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5083 	if (ret == -ENOENT) {
5084 		image_id = kstrdup("", GFP_KERNEL);
5085 		ret = image_id ? 0 : -ENOMEM;
5086 		if (!ret)
5087 			rbd_dev->image_format = 1;
5088 	} else if (ret >= 0) {
5089 		void *p = response;
5090 
5091 		image_id = ceph_extract_encoded_string(&p, p + ret,
5092 						NULL, GFP_NOIO);
5093 		ret = PTR_ERR_OR_ZERO(image_id);
5094 		if (!ret)
5095 			rbd_dev->image_format = 2;
5096 	}
5097 
5098 	if (!ret) {
5099 		rbd_dev->spec->image_id = image_id;
5100 		dout("image_id is %s\n", image_id);
5101 	}
5102 out:
5103 	kfree(response);
5104 	kfree(object_name);
5105 
5106 	return ret;
5107 }
5108 
5109 /*
5110  * Undo whatever state changes are made by v1 or v2 header info
5111  * call.
5112  */
5113 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5114 {
5115 	struct rbd_image_header	*header;
5116 
5117 	/* Drop parent reference unless it's already been done (or none) */
5118 
5119 	if (rbd_dev->parent_overlap)
5120 		rbd_dev_parent_put(rbd_dev);
5121 
5122 	/* Free dynamic fields from the header, then zero it out */
5123 
5124 	header = &rbd_dev->header;
5125 	ceph_put_snap_context(header->snapc);
5126 	kfree(header->snap_sizes);
5127 	kfree(header->snap_names);
5128 	kfree(header->object_prefix);
5129 	memset(header, 0, sizeof (*header));
5130 }
5131 
5132 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5133 {
5134 	int ret;
5135 
5136 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5137 	if (ret)
5138 		goto out_err;
5139 
5140 	/*
5141 	 * Get the and check features for the image.  Currently the
5142 	 * features are assumed to never change.
5143 	 */
5144 	ret = rbd_dev_v2_features(rbd_dev);
5145 	if (ret)
5146 		goto out_err;
5147 
5148 	/* If the image supports fancy striping, get its parameters */
5149 
5150 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5151 		ret = rbd_dev_v2_striping_info(rbd_dev);
5152 		if (ret < 0)
5153 			goto out_err;
5154 	}
5155 	/* No support for crypto and compression type format 2 images */
5156 
5157 	return 0;
5158 out_err:
5159 	rbd_dev->header.features = 0;
5160 	kfree(rbd_dev->header.object_prefix);
5161 	rbd_dev->header.object_prefix = NULL;
5162 
5163 	return ret;
5164 }
5165 
5166 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5167 {
5168 	struct rbd_device *parent = NULL;
5169 	struct rbd_spec *parent_spec;
5170 	struct rbd_client *rbdc;
5171 	int ret;
5172 
5173 	if (!rbd_dev->parent_spec)
5174 		return 0;
5175 	/*
5176 	 * We need to pass a reference to the client and the parent
5177 	 * spec when creating the parent rbd_dev.  Images related by
5178 	 * parent/child relationships always share both.
5179 	 */
5180 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5181 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5182 
5183 	ret = -ENOMEM;
5184 	parent = rbd_dev_create(rbdc, parent_spec);
5185 	if (!parent)
5186 		goto out_err;
5187 
5188 	ret = rbd_dev_image_probe(parent, false);
5189 	if (ret < 0)
5190 		goto out_err;
5191 	rbd_dev->parent = parent;
5192 	atomic_set(&rbd_dev->parent_ref, 1);
5193 
5194 	return 0;
5195 out_err:
5196 	if (parent) {
5197 		rbd_dev_unparent(rbd_dev);
5198 		kfree(rbd_dev->header_name);
5199 		rbd_dev_destroy(parent);
5200 	} else {
5201 		rbd_put_client(rbdc);
5202 		rbd_spec_put(parent_spec);
5203 	}
5204 
5205 	return ret;
5206 }
5207 
5208 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5209 {
5210 	int ret;
5211 
5212 	/* Get an id and fill in device name. */
5213 
5214 	ret = rbd_dev_id_get(rbd_dev);
5215 	if (ret)
5216 		return ret;
5217 
5218 	BUILD_BUG_ON(DEV_NAME_LEN
5219 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5220 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5221 
5222 	/* Record our major and minor device numbers. */
5223 
5224 	if (!single_major) {
5225 		ret = register_blkdev(0, rbd_dev->name);
5226 		if (ret < 0)
5227 			goto err_out_id;
5228 
5229 		rbd_dev->major = ret;
5230 		rbd_dev->minor = 0;
5231 	} else {
5232 		rbd_dev->major = rbd_major;
5233 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5234 	}
5235 
5236 	/* Set up the blkdev mapping. */
5237 
5238 	ret = rbd_init_disk(rbd_dev);
5239 	if (ret)
5240 		goto err_out_blkdev;
5241 
5242 	ret = rbd_dev_mapping_set(rbd_dev);
5243 	if (ret)
5244 		goto err_out_disk;
5245 
5246 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5247 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5248 
5249 	ret = rbd_bus_add_dev(rbd_dev);
5250 	if (ret)
5251 		goto err_out_mapping;
5252 
5253 	/* Everything's ready.  Announce the disk to the world. */
5254 
5255 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5256 	add_disk(rbd_dev->disk);
5257 
5258 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5259 		(unsigned long long) rbd_dev->mapping.size);
5260 
5261 	return ret;
5262 
5263 err_out_mapping:
5264 	rbd_dev_mapping_clear(rbd_dev);
5265 err_out_disk:
5266 	rbd_free_disk(rbd_dev);
5267 err_out_blkdev:
5268 	if (!single_major)
5269 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5270 err_out_id:
5271 	rbd_dev_id_put(rbd_dev);
5272 	rbd_dev_mapping_clear(rbd_dev);
5273 
5274 	return ret;
5275 }
5276 
5277 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5278 {
5279 	struct rbd_spec *spec = rbd_dev->spec;
5280 	size_t size;
5281 
5282 	/* Record the header object name for this rbd image. */
5283 
5284 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5285 
5286 	if (rbd_dev->image_format == 1)
5287 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5288 	else
5289 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5290 
5291 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5292 	if (!rbd_dev->header_name)
5293 		return -ENOMEM;
5294 
5295 	if (rbd_dev->image_format == 1)
5296 		sprintf(rbd_dev->header_name, "%s%s",
5297 			spec->image_name, RBD_SUFFIX);
5298 	else
5299 		sprintf(rbd_dev->header_name, "%s%s",
5300 			RBD_HEADER_PREFIX, spec->image_id);
5301 	return 0;
5302 }
5303 
5304 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5305 {
5306 	rbd_dev_unprobe(rbd_dev);
5307 	kfree(rbd_dev->header_name);
5308 	rbd_dev->header_name = NULL;
5309 	rbd_dev->image_format = 0;
5310 	kfree(rbd_dev->spec->image_id);
5311 	rbd_dev->spec->image_id = NULL;
5312 
5313 	rbd_dev_destroy(rbd_dev);
5314 }
5315 
5316 /*
5317  * Probe for the existence of the header object for the given rbd
5318  * device.  If this image is the one being mapped (i.e., not a
5319  * parent), initiate a watch on its header object before using that
5320  * object to get detailed information about the rbd image.
5321  */
5322 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5323 {
5324 	int ret;
5325 
5326 	/*
5327 	 * Get the id from the image id object.  Unless there's an
5328 	 * error, rbd_dev->spec->image_id will be filled in with
5329 	 * a dynamically-allocated string, and rbd_dev->image_format
5330 	 * will be set to either 1 or 2.
5331 	 */
5332 	ret = rbd_dev_image_id(rbd_dev);
5333 	if (ret)
5334 		return ret;
5335 
5336 	ret = rbd_dev_header_name(rbd_dev);
5337 	if (ret)
5338 		goto err_out_format;
5339 
5340 	if (mapping) {
5341 		ret = rbd_dev_header_watch_sync(rbd_dev);
5342 		if (ret)
5343 			goto out_header_name;
5344 	}
5345 
5346 	ret = rbd_dev_header_info(rbd_dev);
5347 	if (ret)
5348 		goto err_out_watch;
5349 
5350 	/*
5351 	 * If this image is the one being mapped, we have pool name and
5352 	 * id, image name and id, and snap name - need to fill snap id.
5353 	 * Otherwise this is a parent image, identified by pool, image
5354 	 * and snap ids - need to fill in names for those ids.
5355 	 */
5356 	if (mapping)
5357 		ret = rbd_spec_fill_snap_id(rbd_dev);
5358 	else
5359 		ret = rbd_spec_fill_names(rbd_dev);
5360 	if (ret)
5361 		goto err_out_probe;
5362 
5363 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5364 		ret = rbd_dev_v2_parent_info(rbd_dev);
5365 		if (ret)
5366 			goto err_out_probe;
5367 
5368 		/*
5369 		 * Need to warn users if this image is the one being
5370 		 * mapped and has a parent.
5371 		 */
5372 		if (mapping && rbd_dev->parent_spec)
5373 			rbd_warn(rbd_dev,
5374 				 "WARNING: kernel layering is EXPERIMENTAL!");
5375 	}
5376 
5377 	ret = rbd_dev_probe_parent(rbd_dev);
5378 	if (ret)
5379 		goto err_out_probe;
5380 
5381 	dout("discovered format %u image, header name is %s\n",
5382 		rbd_dev->image_format, rbd_dev->header_name);
5383 	return 0;
5384 
5385 err_out_probe:
5386 	rbd_dev_unprobe(rbd_dev);
5387 err_out_watch:
5388 	if (mapping)
5389 		rbd_dev_header_unwatch_sync(rbd_dev);
5390 out_header_name:
5391 	kfree(rbd_dev->header_name);
5392 	rbd_dev->header_name = NULL;
5393 err_out_format:
5394 	rbd_dev->image_format = 0;
5395 	kfree(rbd_dev->spec->image_id);
5396 	rbd_dev->spec->image_id = NULL;
5397 	return ret;
5398 }
5399 
5400 static ssize_t do_rbd_add(struct bus_type *bus,
5401 			  const char *buf,
5402 			  size_t count)
5403 {
5404 	struct rbd_device *rbd_dev = NULL;
5405 	struct ceph_options *ceph_opts = NULL;
5406 	struct rbd_options *rbd_opts = NULL;
5407 	struct rbd_spec *spec = NULL;
5408 	struct rbd_client *rbdc;
5409 	bool read_only;
5410 	int rc = -ENOMEM;
5411 
5412 	if (!try_module_get(THIS_MODULE))
5413 		return -ENODEV;
5414 
5415 	/* parse add command */
5416 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5417 	if (rc < 0)
5418 		goto err_out_module;
5419 	read_only = rbd_opts->read_only;
5420 	kfree(rbd_opts);
5421 	rbd_opts = NULL;	/* done with this */
5422 
5423 	rbdc = rbd_get_client(ceph_opts);
5424 	if (IS_ERR(rbdc)) {
5425 		rc = PTR_ERR(rbdc);
5426 		goto err_out_args;
5427 	}
5428 
5429 	/* pick the pool */
5430 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5431 	if (rc < 0)
5432 		goto err_out_client;
5433 	spec->pool_id = (u64)rc;
5434 
5435 	/* The ceph file layout needs to fit pool id in 32 bits */
5436 
5437 	if (spec->pool_id > (u64)U32_MAX) {
5438 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5439 				(unsigned long long)spec->pool_id, U32_MAX);
5440 		rc = -EIO;
5441 		goto err_out_client;
5442 	}
5443 
5444 	rbd_dev = rbd_dev_create(rbdc, spec);
5445 	if (!rbd_dev)
5446 		goto err_out_client;
5447 	rbdc = NULL;		/* rbd_dev now owns this */
5448 	spec = NULL;		/* rbd_dev now owns this */
5449 
5450 	rc = rbd_dev_image_probe(rbd_dev, true);
5451 	if (rc < 0)
5452 		goto err_out_rbd_dev;
5453 
5454 	/* If we are mapping a snapshot it must be marked read-only */
5455 
5456 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5457 		read_only = true;
5458 	rbd_dev->mapping.read_only = read_only;
5459 
5460 	rc = rbd_dev_device_setup(rbd_dev);
5461 	if (rc) {
5462 		/*
5463 		 * rbd_dev_header_unwatch_sync() can't be moved into
5464 		 * rbd_dev_image_release() without refactoring, see
5465 		 * commit 1f3ef78861ac.
5466 		 */
5467 		rbd_dev_header_unwatch_sync(rbd_dev);
5468 		rbd_dev_image_release(rbd_dev);
5469 		goto err_out_module;
5470 	}
5471 
5472 	return count;
5473 
5474 err_out_rbd_dev:
5475 	rbd_dev_destroy(rbd_dev);
5476 err_out_client:
5477 	rbd_put_client(rbdc);
5478 err_out_args:
5479 	rbd_spec_put(spec);
5480 err_out_module:
5481 	module_put(THIS_MODULE);
5482 
5483 	dout("Error adding device %s\n", buf);
5484 
5485 	return (ssize_t)rc;
5486 }
5487 
5488 static ssize_t rbd_add(struct bus_type *bus,
5489 		       const char *buf,
5490 		       size_t count)
5491 {
5492 	if (single_major)
5493 		return -EINVAL;
5494 
5495 	return do_rbd_add(bus, buf, count);
5496 }
5497 
5498 static ssize_t rbd_add_single_major(struct bus_type *bus,
5499 				    const char *buf,
5500 				    size_t count)
5501 {
5502 	return do_rbd_add(bus, buf, count);
5503 }
5504 
5505 static void rbd_dev_device_release(struct device *dev)
5506 {
5507 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5508 
5509 	rbd_free_disk(rbd_dev);
5510 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5511 	rbd_dev_mapping_clear(rbd_dev);
5512 	if (!single_major)
5513 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5514 	rbd_dev_id_put(rbd_dev);
5515 	rbd_dev_mapping_clear(rbd_dev);
5516 }
5517 
5518 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5519 {
5520 	while (rbd_dev->parent) {
5521 		struct rbd_device *first = rbd_dev;
5522 		struct rbd_device *second = first->parent;
5523 		struct rbd_device *third;
5524 
5525 		/*
5526 		 * Follow to the parent with no grandparent and
5527 		 * remove it.
5528 		 */
5529 		while (second && (third = second->parent)) {
5530 			first = second;
5531 			second = third;
5532 		}
5533 		rbd_assert(second);
5534 		rbd_dev_image_release(second);
5535 		first->parent = NULL;
5536 		first->parent_overlap = 0;
5537 
5538 		rbd_assert(first->parent_spec);
5539 		rbd_spec_put(first->parent_spec);
5540 		first->parent_spec = NULL;
5541 	}
5542 }
5543 
5544 static ssize_t do_rbd_remove(struct bus_type *bus,
5545 			     const char *buf,
5546 			     size_t count)
5547 {
5548 	struct rbd_device *rbd_dev = NULL;
5549 	struct list_head *tmp;
5550 	int dev_id;
5551 	unsigned long ul;
5552 	bool already = false;
5553 	int ret;
5554 
5555 	ret = kstrtoul(buf, 10, &ul);
5556 	if (ret)
5557 		return ret;
5558 
5559 	/* convert to int; abort if we lost anything in the conversion */
5560 	dev_id = (int)ul;
5561 	if (dev_id != ul)
5562 		return -EINVAL;
5563 
5564 	ret = -ENOENT;
5565 	spin_lock(&rbd_dev_list_lock);
5566 	list_for_each(tmp, &rbd_dev_list) {
5567 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5568 		if (rbd_dev->dev_id == dev_id) {
5569 			ret = 0;
5570 			break;
5571 		}
5572 	}
5573 	if (!ret) {
5574 		spin_lock_irq(&rbd_dev->lock);
5575 		if (rbd_dev->open_count)
5576 			ret = -EBUSY;
5577 		else
5578 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5579 							&rbd_dev->flags);
5580 		spin_unlock_irq(&rbd_dev->lock);
5581 	}
5582 	spin_unlock(&rbd_dev_list_lock);
5583 	if (ret < 0 || already)
5584 		return ret;
5585 
5586 	rbd_dev_header_unwatch_sync(rbd_dev);
5587 	/*
5588 	 * flush remaining watch callbacks - these must be complete
5589 	 * before the osd_client is shutdown
5590 	 */
5591 	dout("%s: flushing notifies", __func__);
5592 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5593 
5594 	/*
5595 	 * Don't free anything from rbd_dev->disk until after all
5596 	 * notifies are completely processed. Otherwise
5597 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5598 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5599 	 */
5600 	rbd_bus_del_dev(rbd_dev);
5601 	rbd_dev_image_release(rbd_dev);
5602 	module_put(THIS_MODULE);
5603 
5604 	return count;
5605 }
5606 
5607 static ssize_t rbd_remove(struct bus_type *bus,
5608 			  const char *buf,
5609 			  size_t count)
5610 {
5611 	if (single_major)
5612 		return -EINVAL;
5613 
5614 	return do_rbd_remove(bus, buf, count);
5615 }
5616 
5617 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5618 				       const char *buf,
5619 				       size_t count)
5620 {
5621 	return do_rbd_remove(bus, buf, count);
5622 }
5623 
5624 /*
5625  * create control files in sysfs
5626  * /sys/bus/rbd/...
5627  */
5628 static int rbd_sysfs_init(void)
5629 {
5630 	int ret;
5631 
5632 	ret = device_register(&rbd_root_dev);
5633 	if (ret < 0)
5634 		return ret;
5635 
5636 	ret = bus_register(&rbd_bus_type);
5637 	if (ret < 0)
5638 		device_unregister(&rbd_root_dev);
5639 
5640 	return ret;
5641 }
5642 
5643 static void rbd_sysfs_cleanup(void)
5644 {
5645 	bus_unregister(&rbd_bus_type);
5646 	device_unregister(&rbd_root_dev);
5647 }
5648 
5649 static int rbd_slab_init(void)
5650 {
5651 	rbd_assert(!rbd_img_request_cache);
5652 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5653 					sizeof (struct rbd_img_request),
5654 					__alignof__(struct rbd_img_request),
5655 					0, NULL);
5656 	if (!rbd_img_request_cache)
5657 		return -ENOMEM;
5658 
5659 	rbd_assert(!rbd_obj_request_cache);
5660 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5661 					sizeof (struct rbd_obj_request),
5662 					__alignof__(struct rbd_obj_request),
5663 					0, NULL);
5664 	if (!rbd_obj_request_cache)
5665 		goto out_err;
5666 
5667 	rbd_assert(!rbd_segment_name_cache);
5668 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5669 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5670 	if (rbd_segment_name_cache)
5671 		return 0;
5672 out_err:
5673 	if (rbd_obj_request_cache) {
5674 		kmem_cache_destroy(rbd_obj_request_cache);
5675 		rbd_obj_request_cache = NULL;
5676 	}
5677 
5678 	kmem_cache_destroy(rbd_img_request_cache);
5679 	rbd_img_request_cache = NULL;
5680 
5681 	return -ENOMEM;
5682 }
5683 
5684 static void rbd_slab_exit(void)
5685 {
5686 	rbd_assert(rbd_segment_name_cache);
5687 	kmem_cache_destroy(rbd_segment_name_cache);
5688 	rbd_segment_name_cache = NULL;
5689 
5690 	rbd_assert(rbd_obj_request_cache);
5691 	kmem_cache_destroy(rbd_obj_request_cache);
5692 	rbd_obj_request_cache = NULL;
5693 
5694 	rbd_assert(rbd_img_request_cache);
5695 	kmem_cache_destroy(rbd_img_request_cache);
5696 	rbd_img_request_cache = NULL;
5697 }
5698 
5699 static int __init rbd_init(void)
5700 {
5701 	int rc;
5702 
5703 	if (!libceph_compatible(NULL)) {
5704 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5705 		return -EINVAL;
5706 	}
5707 
5708 	rc = rbd_slab_init();
5709 	if (rc)
5710 		return rc;
5711 
5712 	/*
5713 	 * The number of active work items is limited by the number of
5714 	 * rbd devices, so leave @max_active at default.
5715 	 */
5716 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5717 	if (!rbd_wq) {
5718 		rc = -ENOMEM;
5719 		goto err_out_slab;
5720 	}
5721 
5722 	if (single_major) {
5723 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5724 		if (rbd_major < 0) {
5725 			rc = rbd_major;
5726 			goto err_out_wq;
5727 		}
5728 	}
5729 
5730 	rc = rbd_sysfs_init();
5731 	if (rc)
5732 		goto err_out_blkdev;
5733 
5734 	if (single_major)
5735 		pr_info("loaded (major %d)\n", rbd_major);
5736 	else
5737 		pr_info("loaded\n");
5738 
5739 	return 0;
5740 
5741 err_out_blkdev:
5742 	if (single_major)
5743 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5744 err_out_wq:
5745 	destroy_workqueue(rbd_wq);
5746 err_out_slab:
5747 	rbd_slab_exit();
5748 	return rc;
5749 }
5750 
5751 static void __exit rbd_exit(void)
5752 {
5753 	ida_destroy(&rbd_dev_id_ida);
5754 	rbd_sysfs_cleanup();
5755 	if (single_major)
5756 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5757 	destroy_workqueue(rbd_wq);
5758 	rbd_slab_exit();
5759 }
5760 
5761 module_init(rbd_init);
5762 module_exit(rbd_exit);
5763 
5764 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5765 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5766 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5767 /* following authorship retained from original osdblk.c */
5768 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5769 
5770 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5771 MODULE_LICENSE("GPL");
5772