xref: /openbmc/linux/drivers/block/rbd.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697 	int ro;
698 
699 	if (get_user(ro, (int __user *)arg))
700 		return -EFAULT;
701 
702 	/*
703 	 * Both images mapped read-only and snapshots can't be marked
704 	 * read-write.
705 	 */
706 	if (!ro) {
707 		if (rbd_is_ro(rbd_dev))
708 			return -EROFS;
709 
710 		rbd_assert(!rbd_is_snap(rbd_dev));
711 	}
712 
713 	/* Let blkdev_roset() handle it */
714 	return -ENOTTY;
715 }
716 
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 			unsigned int cmd, unsigned long arg)
719 {
720 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721 	int ret;
722 
723 	switch (cmd) {
724 	case BLKROSET:
725 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
726 		break;
727 	default:
728 		ret = -ENOTTY;
729 	}
730 
731 	return ret;
732 }
733 
734 #ifdef CONFIG_COMPAT
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 				unsigned int cmd, unsigned long arg)
737 {
738 	return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741 
742 static const struct block_device_operations rbd_bd_ops = {
743 	.owner			= THIS_MODULE,
744 	.open			= rbd_open,
745 	.release		= rbd_release,
746 	.ioctl			= rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748 	.compat_ioctl		= rbd_compat_ioctl,
749 #endif
750 };
751 
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc;
759 	int ret = -ENOMEM;
760 
761 	dout("%s:\n", __func__);
762 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763 	if (!rbdc)
764 		goto out_opt;
765 
766 	kref_init(&rbdc->kref);
767 	INIT_LIST_HEAD(&rbdc->node);
768 
769 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 	if (IS_ERR(rbdc->client))
771 		goto out_rbdc;
772 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773 
774 	ret = ceph_open_session(rbdc->client);
775 	if (ret < 0)
776 		goto out_client;
777 
778 	spin_lock(&rbd_client_list_lock);
779 	list_add_tail(&rbdc->node, &rbd_client_list);
780 	spin_unlock(&rbd_client_list_lock);
781 
782 	dout("%s: rbdc %p\n", __func__, rbdc);
783 
784 	return rbdc;
785 out_client:
786 	ceph_destroy_client(rbdc->client);
787 out_rbdc:
788 	kfree(rbdc);
789 out_opt:
790 	if (ceph_opts)
791 		ceph_destroy_options(ceph_opts);
792 	dout("%s: error %d\n", __func__, ret);
793 
794 	return ERR_PTR(ret);
795 }
796 
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799 	kref_get(&rbdc->kref);
800 
801 	return rbdc;
802 }
803 
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810 	struct rbd_client *client_node;
811 	bool found = false;
812 
813 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814 		return NULL;
815 
816 	spin_lock(&rbd_client_list_lock);
817 	list_for_each_entry(client_node, &rbd_client_list, node) {
818 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 			__rbd_get_client(client_node);
820 
821 			found = true;
822 			break;
823 		}
824 	}
825 	spin_unlock(&rbd_client_list_lock);
826 
827 	return found ? client_node : NULL;
828 }
829 
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834 	Opt_queue_depth,
835 	Opt_alloc_size,
836 	Opt_lock_timeout,
837 	/* int args above */
838 	Opt_pool_ns,
839 	Opt_compression_hint,
840 	/* string args above */
841 	Opt_read_only,
842 	Opt_read_write,
843 	Opt_lock_on_read,
844 	Opt_exclusive,
845 	Opt_notrim,
846 };
847 
848 enum {
849 	Opt_compression_hint_none,
850 	Opt_compression_hint_compressible,
851 	Opt_compression_hint_incompressible,
852 };
853 
854 static const struct constant_table rbd_param_compression_hint[] = {
855 	{"none",		Opt_compression_hint_none},
856 	{"compressible",	Opt_compression_hint_compressible},
857 	{"incompressible",	Opt_compression_hint_incompressible},
858 	{}
859 };
860 
861 static const struct fs_parameter_spec rbd_parameters[] = {
862 	fsparam_u32	("alloc_size",			Opt_alloc_size),
863 	fsparam_enum	("compression_hint",		Opt_compression_hint,
864 			 rbd_param_compression_hint),
865 	fsparam_flag	("exclusive",			Opt_exclusive),
866 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
867 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
868 	fsparam_flag	("notrim",			Opt_notrim),
869 	fsparam_string	("_pool_ns",			Opt_pool_ns),
870 	fsparam_u32	("queue_depth",			Opt_queue_depth),
871 	fsparam_flag	("read_only",			Opt_read_only),
872 	fsparam_flag	("read_write",			Opt_read_write),
873 	fsparam_flag	("ro",				Opt_read_only),
874 	fsparam_flag	("rw",				Opt_read_write),
875 	{}
876 };
877 
878 struct rbd_options {
879 	int	queue_depth;
880 	int	alloc_size;
881 	unsigned long	lock_timeout;
882 	bool	read_only;
883 	bool	lock_on_read;
884 	bool	exclusive;
885 	bool	trim;
886 
887 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889 
890 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT	false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT	false
896 #define RBD_TRIM_DEFAULT	true
897 
898 struct rbd_parse_opts_ctx {
899 	struct rbd_spec		*spec;
900 	struct ceph_options	*copts;
901 	struct rbd_options	*opts;
902 };
903 
904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906 	switch (op_type) {
907 	case OBJ_OP_READ:
908 		return "read";
909 	case OBJ_OP_WRITE:
910 		return "write";
911 	case OBJ_OP_DISCARD:
912 		return "discard";
913 	case OBJ_OP_ZEROOUT:
914 		return "zeroout";
915 	default:
916 		return "???";
917 	}
918 }
919 
920 /*
921  * Destroy ceph client
922  *
923  * Caller must hold rbd_client_list_lock.
924  */
925 static void rbd_client_release(struct kref *kref)
926 {
927 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928 
929 	dout("%s: rbdc %p\n", __func__, rbdc);
930 	spin_lock(&rbd_client_list_lock);
931 	list_del(&rbdc->node);
932 	spin_unlock(&rbd_client_list_lock);
933 
934 	ceph_destroy_client(rbdc->client);
935 	kfree(rbdc);
936 }
937 
938 /*
939  * Drop reference to ceph client node. If it's not referenced anymore, release
940  * it.
941  */
942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944 	if (rbdc)
945 		kref_put(&rbdc->kref, rbd_client_release);
946 }
947 
948 /*
949  * Get a ceph client with specific addr and configuration, if one does
950  * not exist create it.  Either way, ceph_opts is consumed by this
951  * function.
952  */
953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955 	struct rbd_client *rbdc;
956 	int ret;
957 
958 	mutex_lock(&client_mutex);
959 	rbdc = rbd_client_find(ceph_opts);
960 	if (rbdc) {
961 		ceph_destroy_options(ceph_opts);
962 
963 		/*
964 		 * Using an existing client.  Make sure ->pg_pools is up to
965 		 * date before we look up the pool id in do_rbd_add().
966 		 */
967 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
968 					rbdc->client->options->mount_timeout);
969 		if (ret) {
970 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971 			rbd_put_client(rbdc);
972 			rbdc = ERR_PTR(ret);
973 		}
974 	} else {
975 		rbdc = rbd_client_create(ceph_opts);
976 	}
977 	mutex_unlock(&client_mutex);
978 
979 	return rbdc;
980 }
981 
982 static bool rbd_image_format_valid(u32 image_format)
983 {
984 	return image_format == 1 || image_format == 2;
985 }
986 
987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989 	size_t size;
990 	u32 snap_count;
991 
992 	/* The header has to start with the magic rbd header text */
993 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994 		return false;
995 
996 	/* The bio layer requires at least sector-sized I/O */
997 
998 	if (ondisk->options.order < SECTOR_SHIFT)
999 		return false;
1000 
1001 	/* If we use u64 in a few spots we may be able to loosen this */
1002 
1003 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1004 		return false;
1005 
1006 	/*
1007 	 * The size of a snapshot header has to fit in a size_t, and
1008 	 * that limits the number of snapshots.
1009 	 */
1010 	snap_count = le32_to_cpu(ondisk->snap_count);
1011 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012 	if (snap_count > size / sizeof (__le64))
1013 		return false;
1014 
1015 	/*
1016 	 * Not only that, but the size of the entire the snapshot
1017 	 * header must also be representable in a size_t.
1018 	 */
1019 	size -= snap_count * sizeof (__le64);
1020 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021 		return false;
1022 
1023 	return true;
1024 }
1025 
1026 /*
1027  * returns the size of an object in the image
1028  */
1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031 	return 1U << header->obj_order;
1032 }
1033 
1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036 	if (rbd_dev->header.stripe_unit == 0 ||
1037 	    rbd_dev->header.stripe_count == 0) {
1038 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039 		rbd_dev->header.stripe_count = 1;
1040 	}
1041 
1042 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049 
1050 /*
1051  * Fill an rbd image header with information from the given format 1
1052  * on-disk header.
1053  */
1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055 				 struct rbd_image_header_ondisk *ondisk)
1056 {
1057 	struct rbd_image_header *header = &rbd_dev->header;
1058 	bool first_time = header->object_prefix == NULL;
1059 	struct ceph_snap_context *snapc;
1060 	char *object_prefix = NULL;
1061 	char *snap_names = NULL;
1062 	u64 *snap_sizes = NULL;
1063 	u32 snap_count;
1064 	int ret = -ENOMEM;
1065 	u32 i;
1066 
1067 	/* Allocate this now to avoid having to handle failure below */
1068 
1069 	if (first_time) {
1070 		object_prefix = kstrndup(ondisk->object_prefix,
1071 					 sizeof(ondisk->object_prefix),
1072 					 GFP_KERNEL);
1073 		if (!object_prefix)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	/* Allocate the snapshot context and fill it in */
1078 
1079 	snap_count = le32_to_cpu(ondisk->snap_count);
1080 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081 	if (!snapc)
1082 		goto out_err;
1083 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084 	if (snap_count) {
1085 		struct rbd_image_snap_ondisk *snaps;
1086 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087 
1088 		/* We'll keep a copy of the snapshot names... */
1089 
1090 		if (snap_names_len > (u64)SIZE_MAX)
1091 			goto out_2big;
1092 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093 		if (!snap_names)
1094 			goto out_err;
1095 
1096 		/* ...as well as the array of their sizes. */
1097 		snap_sizes = kmalloc_array(snap_count,
1098 					   sizeof(*header->snap_sizes),
1099 					   GFP_KERNEL);
1100 		if (!snap_sizes)
1101 			goto out_err;
1102 
1103 		/*
1104 		 * Copy the names, and fill in each snapshot's id
1105 		 * and size.
1106 		 *
1107 		 * Note that rbd_dev_v1_header_info() guarantees the
1108 		 * ondisk buffer we're working with has
1109 		 * snap_names_len bytes beyond the end of the
1110 		 * snapshot id array, this memcpy() is safe.
1111 		 */
1112 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113 		snaps = ondisk->snaps;
1114 		for (i = 0; i < snap_count; i++) {
1115 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117 		}
1118 	}
1119 
1120 	/* We won't fail any more, fill in the header */
1121 
1122 	if (first_time) {
1123 		header->object_prefix = object_prefix;
1124 		header->obj_order = ondisk->options.order;
1125 		rbd_init_layout(rbd_dev);
1126 	} else {
1127 		ceph_put_snap_context(header->snapc);
1128 		kfree(header->snap_names);
1129 		kfree(header->snap_sizes);
1130 	}
1131 
1132 	/* The remaining fields always get updated (when we refresh) */
1133 
1134 	header->image_size = le64_to_cpu(ondisk->image_size);
1135 	header->snapc = snapc;
1136 	header->snap_names = snap_names;
1137 	header->snap_sizes = snap_sizes;
1138 
1139 	return 0;
1140 out_2big:
1141 	ret = -EIO;
1142 out_err:
1143 	kfree(snap_sizes);
1144 	kfree(snap_names);
1145 	ceph_put_snap_context(snapc);
1146 	kfree(object_prefix);
1147 
1148 	return ret;
1149 }
1150 
1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153 	const char *snap_name;
1154 
1155 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156 
1157 	/* Skip over names until we find the one we are looking for */
1158 
1159 	snap_name = rbd_dev->header.snap_names;
1160 	while (which--)
1161 		snap_name += strlen(snap_name) + 1;
1162 
1163 	return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165 
1166 /*
1167  * Snapshot id comparison function for use with qsort()/bsearch().
1168  * Note that result is for snapshots in *descending* order.
1169  */
1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172 	u64 snap_id1 = *(u64 *)s1;
1173 	u64 snap_id2 = *(u64 *)s2;
1174 
1175 	if (snap_id1 < snap_id2)
1176 		return 1;
1177 	return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179 
1180 /*
1181  * Search a snapshot context to see if the given snapshot id is
1182  * present.
1183  *
1184  * Returns the position of the snapshot id in the array if it's found,
1185  * or BAD_SNAP_INDEX otherwise.
1186  *
1187  * Note: The snapshot array is in kept sorted (by the osd) in
1188  * reverse order, highest snapshot id first.
1189  */
1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193 	u64 *found;
1194 
1195 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196 				sizeof (snap_id), snapid_compare_reverse);
1197 
1198 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200 
1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202 					u64 snap_id)
1203 {
1204 	u32 which;
1205 	const char *snap_name;
1206 
1207 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1208 	if (which == BAD_SNAP_INDEX)
1209 		return ERR_PTR(-ENOENT);
1210 
1211 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214 
1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217 	if (snap_id == CEPH_NOSNAP)
1218 		return RBD_SNAP_HEAD_NAME;
1219 
1220 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221 	if (rbd_dev->image_format == 1)
1222 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223 
1224 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226 
1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228 				u64 *snap_size)
1229 {
1230 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231 	if (snap_id == CEPH_NOSNAP) {
1232 		*snap_size = rbd_dev->header.image_size;
1233 	} else if (rbd_dev->image_format == 1) {
1234 		u32 which;
1235 
1236 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1237 		if (which == BAD_SNAP_INDEX)
1238 			return -ENOENT;
1239 
1240 		*snap_size = rbd_dev->header.snap_sizes[which];
1241 	} else {
1242 		u64 size = 0;
1243 		int ret;
1244 
1245 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246 		if (ret)
1247 			return ret;
1248 
1249 		*snap_size = size;
1250 	}
1251 	return 0;
1252 }
1253 
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256 	u64 snap_id = rbd_dev->spec->snap_id;
1257 	u64 size = 0;
1258 	int ret;
1259 
1260 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261 	if (ret)
1262 		return ret;
1263 
1264 	rbd_dev->mapping.size = size;
1265 	return 0;
1266 }
1267 
1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270 	rbd_dev->mapping.size = 0;
1271 }
1272 
1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275 	void *buf;
1276 	unsigned long flags;
1277 
1278 	buf = bvec_kmap_irq(bv, &flags);
1279 	memset(buf, 0, bv->bv_len);
1280 	flush_dcache_page(bv->bv_page);
1281 	bvec_kunmap_irq(buf, &flags);
1282 }
1283 
1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286 	struct ceph_bio_iter it = *bio_pos;
1287 
1288 	ceph_bio_iter_advance(&it, off);
1289 	ceph_bio_iter_advance_step(&it, bytes, ({
1290 		zero_bvec(&bv);
1291 	}));
1292 }
1293 
1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296 	struct ceph_bvec_iter it = *bvec_pos;
1297 
1298 	ceph_bvec_iter_advance(&it, off);
1299 	ceph_bvec_iter_advance_step(&it, bytes, ({
1300 		zero_bvec(&bv);
1301 	}));
1302 }
1303 
1304 /*
1305  * Zero a range in @obj_req data buffer defined by a bio (list) or
1306  * (private) bio_vec array.
1307  *
1308  * @off is relative to the start of the data buffer.
1309  */
1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311 			       u32 bytes)
1312 {
1313 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314 
1315 	switch (obj_req->img_request->data_type) {
1316 	case OBJ_REQUEST_BIO:
1317 		zero_bios(&obj_req->bio_pos, off, bytes);
1318 		break;
1319 	case OBJ_REQUEST_BVECS:
1320 	case OBJ_REQUEST_OWN_BVECS:
1321 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322 		break;
1323 	default:
1324 		BUG();
1325 	}
1326 }
1327 
1328 static void rbd_obj_request_destroy(struct kref *kref);
1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331 	rbd_assert(obj_request != NULL);
1332 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333 		kref_read(&obj_request->kref));
1334 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336 
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338 					struct rbd_obj_request *obj_request)
1339 {
1340 	rbd_assert(obj_request->img_request == NULL);
1341 
1342 	/* Image request now owns object's original reference */
1343 	obj_request->img_request = img_request;
1344 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346 
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348 					struct rbd_obj_request *obj_request)
1349 {
1350 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 	list_del(&obj_request->ex.oe_item);
1352 	rbd_assert(obj_request->img_request == img_request);
1353 	rbd_obj_request_put(obj_request);
1354 }
1355 
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1359 
1360 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1363 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365 
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375 
1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380 
1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384 
1385 	return !obj_req->ex.oe_off &&
1386 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388 
1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392 
1393 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394 					rbd_dev->layout.object_size;
1395 }
1396 
1397 /*
1398  * Must be called after rbd_obj_calc_img_extents().
1399  */
1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402 	if (!obj_req->num_img_extents ||
1403 	    (rbd_obj_is_entire(obj_req) &&
1404 	     !obj_req->img_request->snapc->num_snaps))
1405 		return false;
1406 
1407 	return true;
1408 }
1409 
1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412 	return ceph_file_extents_bytes(obj_req->img_extents,
1413 				       obj_req->num_img_extents);
1414 }
1415 
1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418 	switch (img_req->op_type) {
1419 	case OBJ_OP_READ:
1420 		return false;
1421 	case OBJ_OP_WRITE:
1422 	case OBJ_OP_DISCARD:
1423 	case OBJ_OP_ZEROOUT:
1424 		return true;
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1433 	int result;
1434 
1435 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436 	     osd_req->r_result, obj_req);
1437 
1438 	/*
1439 	 * Writes aren't allowed to return a data payload.  In some
1440 	 * guarded write cases (e.g. stat + zero on an empty object)
1441 	 * a stat response makes it through, but we don't care.
1442 	 */
1443 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444 		result = 0;
1445 	else
1446 		result = osd_req->r_result;
1447 
1448 	rbd_obj_handle_request(obj_req, result);
1449 }
1450 
1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1454 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1455 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1456 
1457 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1458 	osd_req->r_snapid = obj_request->img_request->snap_id;
1459 }
1460 
1461 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1462 {
1463 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1464 
1465 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1466 	ktime_get_real_ts64(&osd_req->r_mtime);
1467 	osd_req->r_data_offset = obj_request->ex.oe_off;
1468 }
1469 
1470 static struct ceph_osd_request *
1471 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1472 			  struct ceph_snap_context *snapc, int num_ops)
1473 {
1474 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1475 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1476 	struct ceph_osd_request *req;
1477 	const char *name_format = rbd_dev->image_format == 1 ?
1478 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1479 	int ret;
1480 
1481 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1482 	if (!req)
1483 		return ERR_PTR(-ENOMEM);
1484 
1485 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1486 	req->r_callback = rbd_osd_req_callback;
1487 	req->r_priv = obj_req;
1488 
1489 	/*
1490 	 * Data objects may be stored in a separate pool, but always in
1491 	 * the same namespace in that pool as the header in its pool.
1492 	 */
1493 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1494 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1495 
1496 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1497 			       rbd_dev->header.object_prefix,
1498 			       obj_req->ex.oe_objno);
1499 	if (ret)
1500 		return ERR_PTR(ret);
1501 
1502 	return req;
1503 }
1504 
1505 static struct ceph_osd_request *
1506 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1507 {
1508 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1509 					 num_ops);
1510 }
1511 
1512 static struct rbd_obj_request *rbd_obj_request_create(void)
1513 {
1514 	struct rbd_obj_request *obj_request;
1515 
1516 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1517 	if (!obj_request)
1518 		return NULL;
1519 
1520 	ceph_object_extent_init(&obj_request->ex);
1521 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1522 	mutex_init(&obj_request->state_mutex);
1523 	kref_init(&obj_request->kref);
1524 
1525 	dout("%s %p\n", __func__, obj_request);
1526 	return obj_request;
1527 }
1528 
1529 static void rbd_obj_request_destroy(struct kref *kref)
1530 {
1531 	struct rbd_obj_request *obj_request;
1532 	struct ceph_osd_request *osd_req;
1533 	u32 i;
1534 
1535 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1536 
1537 	dout("%s: obj %p\n", __func__, obj_request);
1538 
1539 	while (!list_empty(&obj_request->osd_reqs)) {
1540 		osd_req = list_first_entry(&obj_request->osd_reqs,
1541 				    struct ceph_osd_request, r_private_item);
1542 		list_del_init(&osd_req->r_private_item);
1543 		ceph_osdc_put_request(osd_req);
1544 	}
1545 
1546 	switch (obj_request->img_request->data_type) {
1547 	case OBJ_REQUEST_NODATA:
1548 	case OBJ_REQUEST_BIO:
1549 	case OBJ_REQUEST_BVECS:
1550 		break;		/* Nothing to do */
1551 	case OBJ_REQUEST_OWN_BVECS:
1552 		kfree(obj_request->bvec_pos.bvecs);
1553 		break;
1554 	default:
1555 		BUG();
1556 	}
1557 
1558 	kfree(obj_request->img_extents);
1559 	if (obj_request->copyup_bvecs) {
1560 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1561 			if (obj_request->copyup_bvecs[i].bv_page)
1562 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1563 		}
1564 		kfree(obj_request->copyup_bvecs);
1565 	}
1566 
1567 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1568 }
1569 
1570 /* It's OK to call this for a device with no parent */
1571 
1572 static void rbd_spec_put(struct rbd_spec *spec);
1573 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1574 {
1575 	rbd_dev_remove_parent(rbd_dev);
1576 	rbd_spec_put(rbd_dev->parent_spec);
1577 	rbd_dev->parent_spec = NULL;
1578 	rbd_dev->parent_overlap = 0;
1579 }
1580 
1581 /*
1582  * Parent image reference counting is used to determine when an
1583  * image's parent fields can be safely torn down--after there are no
1584  * more in-flight requests to the parent image.  When the last
1585  * reference is dropped, cleaning them up is safe.
1586  */
1587 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1588 {
1589 	int counter;
1590 
1591 	if (!rbd_dev->parent_spec)
1592 		return;
1593 
1594 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1595 	if (counter > 0)
1596 		return;
1597 
1598 	/* Last reference; clean up parent data structures */
1599 
1600 	if (!counter)
1601 		rbd_dev_unparent(rbd_dev);
1602 	else
1603 		rbd_warn(rbd_dev, "parent reference underflow");
1604 }
1605 
1606 /*
1607  * If an image has a non-zero parent overlap, get a reference to its
1608  * parent.
1609  *
1610  * Returns true if the rbd device has a parent with a non-zero
1611  * overlap and a reference for it was successfully taken, or
1612  * false otherwise.
1613  */
1614 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1615 {
1616 	int counter = 0;
1617 
1618 	if (!rbd_dev->parent_spec)
1619 		return false;
1620 
1621 	if (rbd_dev->parent_overlap)
1622 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623 
1624 	if (counter < 0)
1625 		rbd_warn(rbd_dev, "parent reference overflow");
1626 
1627 	return counter > 0;
1628 }
1629 
1630 static void rbd_img_request_init(struct rbd_img_request *img_request,
1631 				 struct rbd_device *rbd_dev,
1632 				 enum obj_operation_type op_type)
1633 {
1634 	memset(img_request, 0, sizeof(*img_request));
1635 
1636 	img_request->rbd_dev = rbd_dev;
1637 	img_request->op_type = op_type;
1638 
1639 	INIT_LIST_HEAD(&img_request->lock_item);
1640 	INIT_LIST_HEAD(&img_request->object_extents);
1641 	mutex_init(&img_request->state_mutex);
1642 }
1643 
1644 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1645 {
1646 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1647 
1648 	lockdep_assert_held(&rbd_dev->header_rwsem);
1649 
1650 	if (rbd_img_is_write(img_req))
1651 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1652 	else
1653 		img_req->snap_id = rbd_dev->spec->snap_id;
1654 
1655 	if (rbd_dev_parent_get(rbd_dev))
1656 		img_request_layered_set(img_req);
1657 }
1658 
1659 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1660 {
1661 	struct rbd_obj_request *obj_request;
1662 	struct rbd_obj_request *next_obj_request;
1663 
1664 	dout("%s: img %p\n", __func__, img_request);
1665 
1666 	WARN_ON(!list_empty(&img_request->lock_item));
1667 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1668 		rbd_img_obj_request_del(img_request, obj_request);
1669 
1670 	if (img_request_layered_test(img_request))
1671 		rbd_dev_parent_put(img_request->rbd_dev);
1672 
1673 	if (rbd_img_is_write(img_request))
1674 		ceph_put_snap_context(img_request->snapc);
1675 
1676 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1677 		kmem_cache_free(rbd_img_request_cache, img_request);
1678 }
1679 
1680 #define BITS_PER_OBJ	2
1681 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1682 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1683 
1684 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1685 				   u64 *index, u8 *shift)
1686 {
1687 	u32 off;
1688 
1689 	rbd_assert(objno < rbd_dev->object_map_size);
1690 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1691 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1692 }
1693 
1694 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696 	u64 index;
1697 	u8 shift;
1698 
1699 	lockdep_assert_held(&rbd_dev->object_map_lock);
1700 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1701 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1702 }
1703 
1704 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1705 {
1706 	u64 index;
1707 	u8 shift;
1708 	u8 *p;
1709 
1710 	lockdep_assert_held(&rbd_dev->object_map_lock);
1711 	rbd_assert(!(val & ~OBJ_MASK));
1712 
1713 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1714 	p = &rbd_dev->object_map[index];
1715 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1716 }
1717 
1718 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1719 {
1720 	u8 state;
1721 
1722 	spin_lock(&rbd_dev->object_map_lock);
1723 	state = __rbd_object_map_get(rbd_dev, objno);
1724 	spin_unlock(&rbd_dev->object_map_lock);
1725 	return state;
1726 }
1727 
1728 static bool use_object_map(struct rbd_device *rbd_dev)
1729 {
1730 	/*
1731 	 * An image mapped read-only can't use the object map -- it isn't
1732 	 * loaded because the header lock isn't acquired.  Someone else can
1733 	 * write to the image and update the object map behind our back.
1734 	 *
1735 	 * A snapshot can't be written to, so using the object map is always
1736 	 * safe.
1737 	 */
1738 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1739 		return false;
1740 
1741 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1742 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1743 }
1744 
1745 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1746 {
1747 	u8 state;
1748 
1749 	/* fall back to default logic if object map is disabled or invalid */
1750 	if (!use_object_map(rbd_dev))
1751 		return true;
1752 
1753 	state = rbd_object_map_get(rbd_dev, objno);
1754 	return state != OBJECT_NONEXISTENT;
1755 }
1756 
1757 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1758 				struct ceph_object_id *oid)
1759 {
1760 	if (snap_id == CEPH_NOSNAP)
1761 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1762 				rbd_dev->spec->image_id);
1763 	else
1764 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1765 				rbd_dev->spec->image_id, snap_id);
1766 }
1767 
1768 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1769 {
1770 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1771 	CEPH_DEFINE_OID_ONSTACK(oid);
1772 	u8 lock_type;
1773 	char *lock_tag;
1774 	struct ceph_locker *lockers;
1775 	u32 num_lockers;
1776 	bool broke_lock = false;
1777 	int ret;
1778 
1779 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1780 
1781 again:
1782 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1783 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1784 	if (ret != -EBUSY || broke_lock) {
1785 		if (ret == -EEXIST)
1786 			ret = 0; /* already locked by myself */
1787 		if (ret)
1788 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1789 		return ret;
1790 	}
1791 
1792 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1793 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1794 				 &lockers, &num_lockers);
1795 	if (ret) {
1796 		if (ret == -ENOENT)
1797 			goto again;
1798 
1799 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1800 		return ret;
1801 	}
1802 
1803 	kfree(lock_tag);
1804 	if (num_lockers == 0)
1805 		goto again;
1806 
1807 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1808 		 ENTITY_NAME(lockers[0].id.name));
1809 
1810 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1811 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1812 				  &lockers[0].id.name);
1813 	ceph_free_lockers(lockers, num_lockers);
1814 	if (ret) {
1815 		if (ret == -ENOENT)
1816 			goto again;
1817 
1818 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1819 		return ret;
1820 	}
1821 
1822 	broke_lock = true;
1823 	goto again;
1824 }
1825 
1826 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1827 {
1828 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 	CEPH_DEFINE_OID_ONSTACK(oid);
1830 	int ret;
1831 
1832 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1833 
1834 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1835 			      "");
1836 	if (ret && ret != -ENOENT)
1837 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1838 }
1839 
1840 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1841 {
1842 	u8 struct_v;
1843 	u32 struct_len;
1844 	u32 header_len;
1845 	void *header_end;
1846 	int ret;
1847 
1848 	ceph_decode_32_safe(p, end, header_len, e_inval);
1849 	header_end = *p + header_len;
1850 
1851 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1852 				  &struct_len);
1853 	if (ret)
1854 		return ret;
1855 
1856 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1857 
1858 	*p = header_end;
1859 	return 0;
1860 
1861 e_inval:
1862 	return -EINVAL;
1863 }
1864 
1865 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1866 {
1867 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1868 	CEPH_DEFINE_OID_ONSTACK(oid);
1869 	struct page **pages;
1870 	void *p, *end;
1871 	size_t reply_len;
1872 	u64 num_objects;
1873 	u64 object_map_bytes;
1874 	u64 object_map_size;
1875 	int num_pages;
1876 	int ret;
1877 
1878 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1879 
1880 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1881 					   rbd_dev->mapping.size);
1882 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1883 					    BITS_PER_BYTE);
1884 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1885 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1886 	if (IS_ERR(pages))
1887 		return PTR_ERR(pages);
1888 
1889 	reply_len = num_pages * PAGE_SIZE;
1890 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1891 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1892 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1893 			     NULL, 0, pages, &reply_len);
1894 	if (ret)
1895 		goto out;
1896 
1897 	p = page_address(pages[0]);
1898 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1899 	ret = decode_object_map_header(&p, end, &object_map_size);
1900 	if (ret)
1901 		goto out;
1902 
1903 	if (object_map_size != num_objects) {
1904 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1905 			 object_map_size, num_objects);
1906 		ret = -EINVAL;
1907 		goto out;
1908 	}
1909 
1910 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1911 		ret = -EINVAL;
1912 		goto out;
1913 	}
1914 
1915 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1916 	if (!rbd_dev->object_map) {
1917 		ret = -ENOMEM;
1918 		goto out;
1919 	}
1920 
1921 	rbd_dev->object_map_size = object_map_size;
1922 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1923 				   offset_in_page(p), object_map_bytes);
1924 
1925 out:
1926 	ceph_release_page_vector(pages, num_pages);
1927 	return ret;
1928 }
1929 
1930 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1931 {
1932 	kvfree(rbd_dev->object_map);
1933 	rbd_dev->object_map = NULL;
1934 	rbd_dev->object_map_size = 0;
1935 }
1936 
1937 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1938 {
1939 	int ret;
1940 
1941 	ret = __rbd_object_map_load(rbd_dev);
1942 	if (ret)
1943 		return ret;
1944 
1945 	ret = rbd_dev_v2_get_flags(rbd_dev);
1946 	if (ret) {
1947 		rbd_object_map_free(rbd_dev);
1948 		return ret;
1949 	}
1950 
1951 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1952 		rbd_warn(rbd_dev, "object map is invalid");
1953 
1954 	return 0;
1955 }
1956 
1957 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1958 {
1959 	int ret;
1960 
1961 	ret = rbd_object_map_lock(rbd_dev);
1962 	if (ret)
1963 		return ret;
1964 
1965 	ret = rbd_object_map_load(rbd_dev);
1966 	if (ret) {
1967 		rbd_object_map_unlock(rbd_dev);
1968 		return ret;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1975 {
1976 	rbd_object_map_free(rbd_dev);
1977 	rbd_object_map_unlock(rbd_dev);
1978 }
1979 
1980 /*
1981  * This function needs snap_id (or more precisely just something to
1982  * distinguish between HEAD and snapshot object maps), new_state and
1983  * current_state that were passed to rbd_object_map_update().
1984  *
1985  * To avoid allocating and stashing a context we piggyback on the OSD
1986  * request.  A HEAD update has two ops (assert_locked).  For new_state
1987  * and current_state we decode our own object_map_update op, encoded in
1988  * rbd_cls_object_map_update().
1989  */
1990 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1991 					struct ceph_osd_request *osd_req)
1992 {
1993 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1994 	struct ceph_osd_data *osd_data;
1995 	u64 objno;
1996 	u8 state, new_state, current_state;
1997 	bool has_current_state;
1998 	void *p;
1999 
2000 	if (osd_req->r_result)
2001 		return osd_req->r_result;
2002 
2003 	/*
2004 	 * Nothing to do for a snapshot object map.
2005 	 */
2006 	if (osd_req->r_num_ops == 1)
2007 		return 0;
2008 
2009 	/*
2010 	 * Update in-memory HEAD object map.
2011 	 */
2012 	rbd_assert(osd_req->r_num_ops == 2);
2013 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2014 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2015 
2016 	p = page_address(osd_data->pages[0]);
2017 	objno = ceph_decode_64(&p);
2018 	rbd_assert(objno == obj_req->ex.oe_objno);
2019 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2020 	new_state = ceph_decode_8(&p);
2021 	has_current_state = ceph_decode_8(&p);
2022 	if (has_current_state)
2023 		current_state = ceph_decode_8(&p);
2024 
2025 	spin_lock(&rbd_dev->object_map_lock);
2026 	state = __rbd_object_map_get(rbd_dev, objno);
2027 	if (!has_current_state || current_state == state ||
2028 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2029 		__rbd_object_map_set(rbd_dev, objno, new_state);
2030 	spin_unlock(&rbd_dev->object_map_lock);
2031 
2032 	return 0;
2033 }
2034 
2035 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2036 {
2037 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2038 	int result;
2039 
2040 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2041 	     osd_req->r_result, obj_req);
2042 
2043 	result = rbd_object_map_update_finish(obj_req, osd_req);
2044 	rbd_obj_handle_request(obj_req, result);
2045 }
2046 
2047 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2048 {
2049 	u8 state = rbd_object_map_get(rbd_dev, objno);
2050 
2051 	if (state == new_state ||
2052 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2053 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2054 		return false;
2055 
2056 	return true;
2057 }
2058 
2059 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2060 				     int which, u64 objno, u8 new_state,
2061 				     const u8 *current_state)
2062 {
2063 	struct page **pages;
2064 	void *p, *start;
2065 	int ret;
2066 
2067 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2068 	if (ret)
2069 		return ret;
2070 
2071 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2072 	if (IS_ERR(pages))
2073 		return PTR_ERR(pages);
2074 
2075 	p = start = page_address(pages[0]);
2076 	ceph_encode_64(&p, objno);
2077 	ceph_encode_64(&p, objno + 1);
2078 	ceph_encode_8(&p, new_state);
2079 	if (current_state) {
2080 		ceph_encode_8(&p, 1);
2081 		ceph_encode_8(&p, *current_state);
2082 	} else {
2083 		ceph_encode_8(&p, 0);
2084 	}
2085 
2086 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2087 					  false, true);
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Return:
2093  *   0 - object map update sent
2094  *   1 - object map update isn't needed
2095  *  <0 - error
2096  */
2097 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2098 				 u8 new_state, const u8 *current_state)
2099 {
2100 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2101 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2102 	struct ceph_osd_request *req;
2103 	int num_ops = 1;
2104 	int which = 0;
2105 	int ret;
2106 
2107 	if (snap_id == CEPH_NOSNAP) {
2108 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2109 			return 1;
2110 
2111 		num_ops++; /* assert_locked */
2112 	}
2113 
2114 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2115 	if (!req)
2116 		return -ENOMEM;
2117 
2118 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2119 	req->r_callback = rbd_object_map_callback;
2120 	req->r_priv = obj_req;
2121 
2122 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2123 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2124 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2125 	ktime_get_real_ts64(&req->r_mtime);
2126 
2127 	if (snap_id == CEPH_NOSNAP) {
2128 		/*
2129 		 * Protect against possible race conditions during lock
2130 		 * ownership transitions.
2131 		 */
2132 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2133 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2134 		if (ret)
2135 			return ret;
2136 	}
2137 
2138 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2139 					new_state, current_state);
2140 	if (ret)
2141 		return ret;
2142 
2143 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2144 	if (ret)
2145 		return ret;
2146 
2147 	ceph_osdc_start_request(osdc, req, false);
2148 	return 0;
2149 }
2150 
2151 static void prune_extents(struct ceph_file_extent *img_extents,
2152 			  u32 *num_img_extents, u64 overlap)
2153 {
2154 	u32 cnt = *num_img_extents;
2155 
2156 	/* drop extents completely beyond the overlap */
2157 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2158 		cnt--;
2159 
2160 	if (cnt) {
2161 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2162 
2163 		/* trim final overlapping extent */
2164 		if (ex->fe_off + ex->fe_len > overlap)
2165 			ex->fe_len = overlap - ex->fe_off;
2166 	}
2167 
2168 	*num_img_extents = cnt;
2169 }
2170 
2171 /*
2172  * Determine the byte range(s) covered by either just the object extent
2173  * or the entire object in the parent image.
2174  */
2175 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2176 				    bool entire)
2177 {
2178 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2179 	int ret;
2180 
2181 	if (!rbd_dev->parent_overlap)
2182 		return 0;
2183 
2184 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2185 				  entire ? 0 : obj_req->ex.oe_off,
2186 				  entire ? rbd_dev->layout.object_size :
2187 							obj_req->ex.oe_len,
2188 				  &obj_req->img_extents,
2189 				  &obj_req->num_img_extents);
2190 	if (ret)
2191 		return ret;
2192 
2193 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2194 		      rbd_dev->parent_overlap);
2195 	return 0;
2196 }
2197 
2198 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2199 {
2200 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2201 
2202 	switch (obj_req->img_request->data_type) {
2203 	case OBJ_REQUEST_BIO:
2204 		osd_req_op_extent_osd_data_bio(osd_req, which,
2205 					       &obj_req->bio_pos,
2206 					       obj_req->ex.oe_len);
2207 		break;
2208 	case OBJ_REQUEST_BVECS:
2209 	case OBJ_REQUEST_OWN_BVECS:
2210 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2211 							obj_req->ex.oe_len);
2212 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2213 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2214 						    &obj_req->bvec_pos);
2215 		break;
2216 	default:
2217 		BUG();
2218 	}
2219 }
2220 
2221 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2222 {
2223 	struct page **pages;
2224 
2225 	/*
2226 	 * The response data for a STAT call consists of:
2227 	 *     le64 length;
2228 	 *     struct {
2229 	 *         le32 tv_sec;
2230 	 *         le32 tv_nsec;
2231 	 *     } mtime;
2232 	 */
2233 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2234 	if (IS_ERR(pages))
2235 		return PTR_ERR(pages);
2236 
2237 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2238 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2239 				     8 + sizeof(struct ceph_timespec),
2240 				     0, false, true);
2241 	return 0;
2242 }
2243 
2244 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2245 				u32 bytes)
2246 {
2247 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2248 	int ret;
2249 
2250 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2251 	if (ret)
2252 		return ret;
2253 
2254 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2255 					  obj_req->copyup_bvec_count, bytes);
2256 	return 0;
2257 }
2258 
2259 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2260 {
2261 	obj_req->read_state = RBD_OBJ_READ_START;
2262 	return 0;
2263 }
2264 
2265 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2266 				      int which)
2267 {
2268 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2269 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2270 	u16 opcode;
2271 
2272 	if (!use_object_map(rbd_dev) ||
2273 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2274 		osd_req_op_alloc_hint_init(osd_req, which++,
2275 					   rbd_dev->layout.object_size,
2276 					   rbd_dev->layout.object_size,
2277 					   rbd_dev->opts->alloc_hint_flags);
2278 	}
2279 
2280 	if (rbd_obj_is_entire(obj_req))
2281 		opcode = CEPH_OSD_OP_WRITEFULL;
2282 	else
2283 		opcode = CEPH_OSD_OP_WRITE;
2284 
2285 	osd_req_op_extent_init(osd_req, which, opcode,
2286 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2287 	rbd_osd_setup_data(osd_req, which);
2288 }
2289 
2290 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2291 {
2292 	int ret;
2293 
2294 	/* reverse map the entire object onto the parent */
2295 	ret = rbd_obj_calc_img_extents(obj_req, true);
2296 	if (ret)
2297 		return ret;
2298 
2299 	if (rbd_obj_copyup_enabled(obj_req))
2300 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2301 
2302 	obj_req->write_state = RBD_OBJ_WRITE_START;
2303 	return 0;
2304 }
2305 
2306 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2307 {
2308 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2309 					  CEPH_OSD_OP_ZERO;
2310 }
2311 
2312 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2313 					int which)
2314 {
2315 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2316 
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2318 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2319 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2320 	} else {
2321 		osd_req_op_extent_init(osd_req, which,
2322 				       truncate_or_zero_opcode(obj_req),
2323 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2324 				       0, 0);
2325 	}
2326 }
2327 
2328 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2329 {
2330 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2331 	u64 off, next_off;
2332 	int ret;
2333 
2334 	/*
2335 	 * Align the range to alloc_size boundary and punt on discards
2336 	 * that are too small to free up any space.
2337 	 *
2338 	 * alloc_size == object_size && is_tail() is a special case for
2339 	 * filestore with filestore_punch_hole = false, needed to allow
2340 	 * truncate (in addition to delete).
2341 	 */
2342 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2343 	    !rbd_obj_is_tail(obj_req)) {
2344 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2345 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2346 				      rbd_dev->opts->alloc_size);
2347 		if (off >= next_off)
2348 			return 1;
2349 
2350 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2351 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 		     off, next_off - off);
2353 		obj_req->ex.oe_off = off;
2354 		obj_req->ex.oe_len = next_off - off;
2355 	}
2356 
2357 	/* reverse map the entire object onto the parent */
2358 	ret = rbd_obj_calc_img_extents(obj_req, true);
2359 	if (ret)
2360 		return ret;
2361 
2362 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2364 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 
2366 	obj_req->write_state = RBD_OBJ_WRITE_START;
2367 	return 0;
2368 }
2369 
2370 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2371 					int which)
2372 {
2373 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2374 	u16 opcode;
2375 
2376 	if (rbd_obj_is_entire(obj_req)) {
2377 		if (obj_req->num_img_extents) {
2378 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2379 				osd_req_op_init(osd_req, which++,
2380 						CEPH_OSD_OP_CREATE, 0);
2381 			opcode = CEPH_OSD_OP_TRUNCATE;
2382 		} else {
2383 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2384 			osd_req_op_init(osd_req, which++,
2385 					CEPH_OSD_OP_DELETE, 0);
2386 			opcode = 0;
2387 		}
2388 	} else {
2389 		opcode = truncate_or_zero_opcode(obj_req);
2390 	}
2391 
2392 	if (opcode)
2393 		osd_req_op_extent_init(osd_req, which, opcode,
2394 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2395 				       0, 0);
2396 }
2397 
2398 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2399 {
2400 	int ret;
2401 
2402 	/* reverse map the entire object onto the parent */
2403 	ret = rbd_obj_calc_img_extents(obj_req, true);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (rbd_obj_copyup_enabled(obj_req))
2408 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2409 	if (!obj_req->num_img_extents) {
2410 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2411 		if (rbd_obj_is_entire(obj_req))
2412 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2413 	}
2414 
2415 	obj_req->write_state = RBD_OBJ_WRITE_START;
2416 	return 0;
2417 }
2418 
2419 static int count_write_ops(struct rbd_obj_request *obj_req)
2420 {
2421 	struct rbd_img_request *img_req = obj_req->img_request;
2422 
2423 	switch (img_req->op_type) {
2424 	case OBJ_OP_WRITE:
2425 		if (!use_object_map(img_req->rbd_dev) ||
2426 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2427 			return 2; /* setallochint + write/writefull */
2428 
2429 		return 1; /* write/writefull */
2430 	case OBJ_OP_DISCARD:
2431 		return 1; /* delete/truncate/zero */
2432 	case OBJ_OP_ZEROOUT:
2433 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2434 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2435 			return 2; /* create + truncate */
2436 
2437 		return 1; /* delete/truncate/zero */
2438 	default:
2439 		BUG();
2440 	}
2441 }
2442 
2443 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2444 				    int which)
2445 {
2446 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2447 
2448 	switch (obj_req->img_request->op_type) {
2449 	case OBJ_OP_WRITE:
2450 		__rbd_osd_setup_write_ops(osd_req, which);
2451 		break;
2452 	case OBJ_OP_DISCARD:
2453 		__rbd_osd_setup_discard_ops(osd_req, which);
2454 		break;
2455 	case OBJ_OP_ZEROOUT:
2456 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2457 		break;
2458 	default:
2459 		BUG();
2460 	}
2461 }
2462 
2463 /*
2464  * Prune the list of object requests (adjust offset and/or length, drop
2465  * redundant requests).  Prepare object request state machines and image
2466  * request state machine for execution.
2467  */
2468 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2469 {
2470 	struct rbd_obj_request *obj_req, *next_obj_req;
2471 	int ret;
2472 
2473 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2474 		switch (img_req->op_type) {
2475 		case OBJ_OP_READ:
2476 			ret = rbd_obj_init_read(obj_req);
2477 			break;
2478 		case OBJ_OP_WRITE:
2479 			ret = rbd_obj_init_write(obj_req);
2480 			break;
2481 		case OBJ_OP_DISCARD:
2482 			ret = rbd_obj_init_discard(obj_req);
2483 			break;
2484 		case OBJ_OP_ZEROOUT:
2485 			ret = rbd_obj_init_zeroout(obj_req);
2486 			break;
2487 		default:
2488 			BUG();
2489 		}
2490 		if (ret < 0)
2491 			return ret;
2492 		if (ret > 0) {
2493 			rbd_img_obj_request_del(img_req, obj_req);
2494 			continue;
2495 		}
2496 	}
2497 
2498 	img_req->state = RBD_IMG_START;
2499 	return 0;
2500 }
2501 
2502 union rbd_img_fill_iter {
2503 	struct ceph_bio_iter	bio_iter;
2504 	struct ceph_bvec_iter	bvec_iter;
2505 };
2506 
2507 struct rbd_img_fill_ctx {
2508 	enum obj_request_type	pos_type;
2509 	union rbd_img_fill_iter	*pos;
2510 	union rbd_img_fill_iter	iter;
2511 	ceph_object_extent_fn_t	set_pos_fn;
2512 	ceph_object_extent_fn_t	count_fn;
2513 	ceph_object_extent_fn_t	copy_fn;
2514 };
2515 
2516 static struct ceph_object_extent *alloc_object_extent(void *arg)
2517 {
2518 	struct rbd_img_request *img_req = arg;
2519 	struct rbd_obj_request *obj_req;
2520 
2521 	obj_req = rbd_obj_request_create();
2522 	if (!obj_req)
2523 		return NULL;
2524 
2525 	rbd_img_obj_request_add(img_req, obj_req);
2526 	return &obj_req->ex;
2527 }
2528 
2529 /*
2530  * While su != os && sc == 1 is technically not fancy (it's the same
2531  * layout as su == os && sc == 1), we can't use the nocopy path for it
2532  * because ->set_pos_fn() should be called only once per object.
2533  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2534  * treat su != os && sc == 1 as fancy.
2535  */
2536 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2537 {
2538 	return l->stripe_unit != l->object_size;
2539 }
2540 
2541 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2542 				       struct ceph_file_extent *img_extents,
2543 				       u32 num_img_extents,
2544 				       struct rbd_img_fill_ctx *fctx)
2545 {
2546 	u32 i;
2547 	int ret;
2548 
2549 	img_req->data_type = fctx->pos_type;
2550 
2551 	/*
2552 	 * Create object requests and set each object request's starting
2553 	 * position in the provided bio (list) or bio_vec array.
2554 	 */
2555 	fctx->iter = *fctx->pos;
2556 	for (i = 0; i < num_img_extents; i++) {
2557 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2558 					   img_extents[i].fe_off,
2559 					   img_extents[i].fe_len,
2560 					   &img_req->object_extents,
2561 					   alloc_object_extent, img_req,
2562 					   fctx->set_pos_fn, &fctx->iter);
2563 		if (ret)
2564 			return ret;
2565 	}
2566 
2567 	return __rbd_img_fill_request(img_req);
2568 }
2569 
2570 /*
2571  * Map a list of image extents to a list of object extents, create the
2572  * corresponding object requests (normally each to a different object,
2573  * but not always) and add them to @img_req.  For each object request,
2574  * set up its data descriptor to point to the corresponding chunk(s) of
2575  * @fctx->pos data buffer.
2576  *
2577  * Because ceph_file_to_extents() will merge adjacent object extents
2578  * together, each object request's data descriptor may point to multiple
2579  * different chunks of @fctx->pos data buffer.
2580  *
2581  * @fctx->pos data buffer is assumed to be large enough.
2582  */
2583 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2584 				struct ceph_file_extent *img_extents,
2585 				u32 num_img_extents,
2586 				struct rbd_img_fill_ctx *fctx)
2587 {
2588 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2589 	struct rbd_obj_request *obj_req;
2590 	u32 i;
2591 	int ret;
2592 
2593 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2594 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2595 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2596 						   num_img_extents, fctx);
2597 
2598 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2599 
2600 	/*
2601 	 * Create object requests and determine ->bvec_count for each object
2602 	 * request.  Note that ->bvec_count sum over all object requests may
2603 	 * be greater than the number of bio_vecs in the provided bio (list)
2604 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2605 	 * stripe unit boundaries.
2606 	 */
2607 	fctx->iter = *fctx->pos;
2608 	for (i = 0; i < num_img_extents; i++) {
2609 		ret = ceph_file_to_extents(&rbd_dev->layout,
2610 					   img_extents[i].fe_off,
2611 					   img_extents[i].fe_len,
2612 					   &img_req->object_extents,
2613 					   alloc_object_extent, img_req,
2614 					   fctx->count_fn, &fctx->iter);
2615 		if (ret)
2616 			return ret;
2617 	}
2618 
2619 	for_each_obj_request(img_req, obj_req) {
2620 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2621 					      sizeof(*obj_req->bvec_pos.bvecs),
2622 					      GFP_NOIO);
2623 		if (!obj_req->bvec_pos.bvecs)
2624 			return -ENOMEM;
2625 	}
2626 
2627 	/*
2628 	 * Fill in each object request's private bio_vec array, splitting and
2629 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2630 	 */
2631 	fctx->iter = *fctx->pos;
2632 	for (i = 0; i < num_img_extents; i++) {
2633 		ret = ceph_iterate_extents(&rbd_dev->layout,
2634 					   img_extents[i].fe_off,
2635 					   img_extents[i].fe_len,
2636 					   &img_req->object_extents,
2637 					   fctx->copy_fn, &fctx->iter);
2638 		if (ret)
2639 			return ret;
2640 	}
2641 
2642 	return __rbd_img_fill_request(img_req);
2643 }
2644 
2645 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2646 			       u64 off, u64 len)
2647 {
2648 	struct ceph_file_extent ex = { off, len };
2649 	union rbd_img_fill_iter dummy = {};
2650 	struct rbd_img_fill_ctx fctx = {
2651 		.pos_type = OBJ_REQUEST_NODATA,
2652 		.pos = &dummy,
2653 	};
2654 
2655 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2656 }
2657 
2658 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660 	struct rbd_obj_request *obj_req =
2661 	    container_of(ex, struct rbd_obj_request, ex);
2662 	struct ceph_bio_iter *it = arg;
2663 
2664 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2665 	obj_req->bio_pos = *it;
2666 	ceph_bio_iter_advance(it, bytes);
2667 }
2668 
2669 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671 	struct rbd_obj_request *obj_req =
2672 	    container_of(ex, struct rbd_obj_request, ex);
2673 	struct ceph_bio_iter *it = arg;
2674 
2675 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2676 	ceph_bio_iter_advance_step(it, bytes, ({
2677 		obj_req->bvec_count++;
2678 	}));
2679 
2680 }
2681 
2682 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 {
2684 	struct rbd_obj_request *obj_req =
2685 	    container_of(ex, struct rbd_obj_request, ex);
2686 	struct ceph_bio_iter *it = arg;
2687 
2688 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2689 	ceph_bio_iter_advance_step(it, bytes, ({
2690 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2691 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2692 	}));
2693 }
2694 
2695 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2696 				   struct ceph_file_extent *img_extents,
2697 				   u32 num_img_extents,
2698 				   struct ceph_bio_iter *bio_pos)
2699 {
2700 	struct rbd_img_fill_ctx fctx = {
2701 		.pos_type = OBJ_REQUEST_BIO,
2702 		.pos = (union rbd_img_fill_iter *)bio_pos,
2703 		.set_pos_fn = set_bio_pos,
2704 		.count_fn = count_bio_bvecs,
2705 		.copy_fn = copy_bio_bvecs,
2706 	};
2707 
2708 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2709 				    &fctx);
2710 }
2711 
2712 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2713 				 u64 off, u64 len, struct bio *bio)
2714 {
2715 	struct ceph_file_extent ex = { off, len };
2716 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2717 
2718 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2719 }
2720 
2721 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2722 {
2723 	struct rbd_obj_request *obj_req =
2724 	    container_of(ex, struct rbd_obj_request, ex);
2725 	struct ceph_bvec_iter *it = arg;
2726 
2727 	obj_req->bvec_pos = *it;
2728 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2729 	ceph_bvec_iter_advance(it, bytes);
2730 }
2731 
2732 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2733 {
2734 	struct rbd_obj_request *obj_req =
2735 	    container_of(ex, struct rbd_obj_request, ex);
2736 	struct ceph_bvec_iter *it = arg;
2737 
2738 	ceph_bvec_iter_advance_step(it, bytes, ({
2739 		obj_req->bvec_count++;
2740 	}));
2741 }
2742 
2743 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2744 {
2745 	struct rbd_obj_request *obj_req =
2746 	    container_of(ex, struct rbd_obj_request, ex);
2747 	struct ceph_bvec_iter *it = arg;
2748 
2749 	ceph_bvec_iter_advance_step(it, bytes, ({
2750 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2751 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2752 	}));
2753 }
2754 
2755 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2756 				     struct ceph_file_extent *img_extents,
2757 				     u32 num_img_extents,
2758 				     struct ceph_bvec_iter *bvec_pos)
2759 {
2760 	struct rbd_img_fill_ctx fctx = {
2761 		.pos_type = OBJ_REQUEST_BVECS,
2762 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2763 		.set_pos_fn = set_bvec_pos,
2764 		.count_fn = count_bvecs,
2765 		.copy_fn = copy_bvecs,
2766 	};
2767 
2768 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2769 				    &fctx);
2770 }
2771 
2772 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2773 				   struct ceph_file_extent *img_extents,
2774 				   u32 num_img_extents,
2775 				   struct bio_vec *bvecs)
2776 {
2777 	struct ceph_bvec_iter it = {
2778 		.bvecs = bvecs,
2779 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2780 							     num_img_extents) },
2781 	};
2782 
2783 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2784 					 &it);
2785 }
2786 
2787 static void rbd_img_handle_request_work(struct work_struct *work)
2788 {
2789 	struct rbd_img_request *img_req =
2790 	    container_of(work, struct rbd_img_request, work);
2791 
2792 	rbd_img_handle_request(img_req, img_req->work_result);
2793 }
2794 
2795 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2796 {
2797 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2798 	img_req->work_result = result;
2799 	queue_work(rbd_wq, &img_req->work);
2800 }
2801 
2802 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2803 {
2804 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2805 
2806 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2807 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2808 		return true;
2809 	}
2810 
2811 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2812 	     obj_req->ex.oe_objno);
2813 	return false;
2814 }
2815 
2816 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2817 {
2818 	struct ceph_osd_request *osd_req;
2819 	int ret;
2820 
2821 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2822 	if (IS_ERR(osd_req))
2823 		return PTR_ERR(osd_req);
2824 
2825 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2826 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2827 	rbd_osd_setup_data(osd_req, 0);
2828 	rbd_osd_format_read(osd_req);
2829 
2830 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2831 	if (ret)
2832 		return ret;
2833 
2834 	rbd_osd_submit(osd_req);
2835 	return 0;
2836 }
2837 
2838 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2839 {
2840 	struct rbd_img_request *img_req = obj_req->img_request;
2841 	struct rbd_device *parent = img_req->rbd_dev->parent;
2842 	struct rbd_img_request *child_img_req;
2843 	int ret;
2844 
2845 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2846 	if (!child_img_req)
2847 		return -ENOMEM;
2848 
2849 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2850 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2851 	child_img_req->obj_request = obj_req;
2852 
2853 	down_read(&parent->header_rwsem);
2854 	rbd_img_capture_header(child_img_req);
2855 	up_read(&parent->header_rwsem);
2856 
2857 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2858 	     obj_req);
2859 
2860 	if (!rbd_img_is_write(img_req)) {
2861 		switch (img_req->data_type) {
2862 		case OBJ_REQUEST_BIO:
2863 			ret = __rbd_img_fill_from_bio(child_img_req,
2864 						      obj_req->img_extents,
2865 						      obj_req->num_img_extents,
2866 						      &obj_req->bio_pos);
2867 			break;
2868 		case OBJ_REQUEST_BVECS:
2869 		case OBJ_REQUEST_OWN_BVECS:
2870 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2871 						      obj_req->img_extents,
2872 						      obj_req->num_img_extents,
2873 						      &obj_req->bvec_pos);
2874 			break;
2875 		default:
2876 			BUG();
2877 		}
2878 	} else {
2879 		ret = rbd_img_fill_from_bvecs(child_img_req,
2880 					      obj_req->img_extents,
2881 					      obj_req->num_img_extents,
2882 					      obj_req->copyup_bvecs);
2883 	}
2884 	if (ret) {
2885 		rbd_img_request_destroy(child_img_req);
2886 		return ret;
2887 	}
2888 
2889 	/* avoid parent chain recursion */
2890 	rbd_img_schedule(child_img_req, 0);
2891 	return 0;
2892 }
2893 
2894 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2895 {
2896 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2897 	int ret;
2898 
2899 again:
2900 	switch (obj_req->read_state) {
2901 	case RBD_OBJ_READ_START:
2902 		rbd_assert(!*result);
2903 
2904 		if (!rbd_obj_may_exist(obj_req)) {
2905 			*result = -ENOENT;
2906 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2907 			goto again;
2908 		}
2909 
2910 		ret = rbd_obj_read_object(obj_req);
2911 		if (ret) {
2912 			*result = ret;
2913 			return true;
2914 		}
2915 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2916 		return false;
2917 	case RBD_OBJ_READ_OBJECT:
2918 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2919 			/* reverse map this object extent onto the parent */
2920 			ret = rbd_obj_calc_img_extents(obj_req, false);
2921 			if (ret) {
2922 				*result = ret;
2923 				return true;
2924 			}
2925 			if (obj_req->num_img_extents) {
2926 				ret = rbd_obj_read_from_parent(obj_req);
2927 				if (ret) {
2928 					*result = ret;
2929 					return true;
2930 				}
2931 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2932 				return false;
2933 			}
2934 		}
2935 
2936 		/*
2937 		 * -ENOENT means a hole in the image -- zero-fill the entire
2938 		 * length of the request.  A short read also implies zero-fill
2939 		 * to the end of the request.
2940 		 */
2941 		if (*result == -ENOENT) {
2942 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2943 			*result = 0;
2944 		} else if (*result >= 0) {
2945 			if (*result < obj_req->ex.oe_len)
2946 				rbd_obj_zero_range(obj_req, *result,
2947 						obj_req->ex.oe_len - *result);
2948 			else
2949 				rbd_assert(*result == obj_req->ex.oe_len);
2950 			*result = 0;
2951 		}
2952 		return true;
2953 	case RBD_OBJ_READ_PARENT:
2954 		/*
2955 		 * The parent image is read only up to the overlap -- zero-fill
2956 		 * from the overlap to the end of the request.
2957 		 */
2958 		if (!*result) {
2959 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2960 
2961 			if (obj_overlap < obj_req->ex.oe_len)
2962 				rbd_obj_zero_range(obj_req, obj_overlap,
2963 					    obj_req->ex.oe_len - obj_overlap);
2964 		}
2965 		return true;
2966 	default:
2967 		BUG();
2968 	}
2969 }
2970 
2971 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2972 {
2973 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2974 
2975 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2976 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2977 
2978 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2979 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2980 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2981 		return true;
2982 	}
2983 
2984 	return false;
2985 }
2986 
2987 /*
2988  * Return:
2989  *   0 - object map update sent
2990  *   1 - object map update isn't needed
2991  *  <0 - error
2992  */
2993 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2994 {
2995 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2996 	u8 new_state;
2997 
2998 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2999 		return 1;
3000 
3001 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3002 		new_state = OBJECT_PENDING;
3003 	else
3004 		new_state = OBJECT_EXISTS;
3005 
3006 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3007 }
3008 
3009 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3010 {
3011 	struct ceph_osd_request *osd_req;
3012 	int num_ops = count_write_ops(obj_req);
3013 	int which = 0;
3014 	int ret;
3015 
3016 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3017 		num_ops++; /* stat */
3018 
3019 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3020 	if (IS_ERR(osd_req))
3021 		return PTR_ERR(osd_req);
3022 
3023 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3024 		ret = rbd_osd_setup_stat(osd_req, which++);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	rbd_osd_setup_write_ops(osd_req, which);
3030 	rbd_osd_format_write(osd_req);
3031 
3032 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3033 	if (ret)
3034 		return ret;
3035 
3036 	rbd_osd_submit(osd_req);
3037 	return 0;
3038 }
3039 
3040 /*
3041  * copyup_bvecs pages are never highmem pages
3042  */
3043 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3044 {
3045 	struct ceph_bvec_iter it = {
3046 		.bvecs = bvecs,
3047 		.iter = { .bi_size = bytes },
3048 	};
3049 
3050 	ceph_bvec_iter_advance_step(&it, bytes, ({
3051 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3052 			       bv.bv_len))
3053 			return false;
3054 	}));
3055 	return true;
3056 }
3057 
3058 #define MODS_ONLY	U32_MAX
3059 
3060 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3061 				      u32 bytes)
3062 {
3063 	struct ceph_osd_request *osd_req;
3064 	int ret;
3065 
3066 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3067 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3068 
3069 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3070 	if (IS_ERR(osd_req))
3071 		return PTR_ERR(osd_req);
3072 
3073 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3074 	if (ret)
3075 		return ret;
3076 
3077 	rbd_osd_format_write(osd_req);
3078 
3079 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3080 	if (ret)
3081 		return ret;
3082 
3083 	rbd_osd_submit(osd_req);
3084 	return 0;
3085 }
3086 
3087 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3088 					u32 bytes)
3089 {
3090 	struct ceph_osd_request *osd_req;
3091 	int num_ops = count_write_ops(obj_req);
3092 	int which = 0;
3093 	int ret;
3094 
3095 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3096 
3097 	if (bytes != MODS_ONLY)
3098 		num_ops++; /* copyup */
3099 
3100 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3101 	if (IS_ERR(osd_req))
3102 		return PTR_ERR(osd_req);
3103 
3104 	if (bytes != MODS_ONLY) {
3105 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3106 		if (ret)
3107 			return ret;
3108 	}
3109 
3110 	rbd_osd_setup_write_ops(osd_req, which);
3111 	rbd_osd_format_write(osd_req);
3112 
3113 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3114 	if (ret)
3115 		return ret;
3116 
3117 	rbd_osd_submit(osd_req);
3118 	return 0;
3119 }
3120 
3121 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3122 {
3123 	u32 i;
3124 
3125 	rbd_assert(!obj_req->copyup_bvecs);
3126 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3127 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3128 					sizeof(*obj_req->copyup_bvecs),
3129 					GFP_NOIO);
3130 	if (!obj_req->copyup_bvecs)
3131 		return -ENOMEM;
3132 
3133 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3134 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3135 
3136 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3137 		if (!obj_req->copyup_bvecs[i].bv_page)
3138 			return -ENOMEM;
3139 
3140 		obj_req->copyup_bvecs[i].bv_offset = 0;
3141 		obj_req->copyup_bvecs[i].bv_len = len;
3142 		obj_overlap -= len;
3143 	}
3144 
3145 	rbd_assert(!obj_overlap);
3146 	return 0;
3147 }
3148 
3149 /*
3150  * The target object doesn't exist.  Read the data for the entire
3151  * target object up to the overlap point (if any) from the parent,
3152  * so we can use it for a copyup.
3153  */
3154 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3155 {
3156 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3157 	int ret;
3158 
3159 	rbd_assert(obj_req->num_img_extents);
3160 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3161 		      rbd_dev->parent_overlap);
3162 	if (!obj_req->num_img_extents) {
3163 		/*
3164 		 * The overlap has become 0 (most likely because the
3165 		 * image has been flattened).  Re-submit the original write
3166 		 * request -- pass MODS_ONLY since the copyup isn't needed
3167 		 * anymore.
3168 		 */
3169 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3170 	}
3171 
3172 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3173 	if (ret)
3174 		return ret;
3175 
3176 	return rbd_obj_read_from_parent(obj_req);
3177 }
3178 
3179 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3180 {
3181 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3182 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3183 	u8 new_state;
3184 	u32 i;
3185 	int ret;
3186 
3187 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188 
3189 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3190 		return;
3191 
3192 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3193 		return;
3194 
3195 	for (i = 0; i < snapc->num_snaps; i++) {
3196 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3197 		    i + 1 < snapc->num_snaps)
3198 			new_state = OBJECT_EXISTS_CLEAN;
3199 		else
3200 			new_state = OBJECT_EXISTS;
3201 
3202 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3203 					    new_state, NULL);
3204 		if (ret < 0) {
3205 			obj_req->pending.result = ret;
3206 			return;
3207 		}
3208 
3209 		rbd_assert(!ret);
3210 		obj_req->pending.num_pending++;
3211 	}
3212 }
3213 
3214 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3215 {
3216 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3217 	int ret;
3218 
3219 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3220 
3221 	/*
3222 	 * Only send non-zero copyup data to save some I/O and network
3223 	 * bandwidth -- zero copyup data is equivalent to the object not
3224 	 * existing.
3225 	 */
3226 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3227 		bytes = 0;
3228 
3229 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3230 		/*
3231 		 * Send a copyup request with an empty snapshot context to
3232 		 * deep-copyup the object through all existing snapshots.
3233 		 * A second request with the current snapshot context will be
3234 		 * sent for the actual modification.
3235 		 */
3236 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3237 		if (ret) {
3238 			obj_req->pending.result = ret;
3239 			return;
3240 		}
3241 
3242 		obj_req->pending.num_pending++;
3243 		bytes = MODS_ONLY;
3244 	}
3245 
3246 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3247 	if (ret) {
3248 		obj_req->pending.result = ret;
3249 		return;
3250 	}
3251 
3252 	obj_req->pending.num_pending++;
3253 }
3254 
3255 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3256 {
3257 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3258 	int ret;
3259 
3260 again:
3261 	switch (obj_req->copyup_state) {
3262 	case RBD_OBJ_COPYUP_START:
3263 		rbd_assert(!*result);
3264 
3265 		ret = rbd_obj_copyup_read_parent(obj_req);
3266 		if (ret) {
3267 			*result = ret;
3268 			return true;
3269 		}
3270 		if (obj_req->num_img_extents)
3271 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3272 		else
3273 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3274 		return false;
3275 	case RBD_OBJ_COPYUP_READ_PARENT:
3276 		if (*result)
3277 			return true;
3278 
3279 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3280 				  rbd_obj_img_extents_bytes(obj_req))) {
3281 			dout("%s %p detected zeros\n", __func__, obj_req);
3282 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3283 		}
3284 
3285 		rbd_obj_copyup_object_maps(obj_req);
3286 		if (!obj_req->pending.num_pending) {
3287 			*result = obj_req->pending.result;
3288 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3289 			goto again;
3290 		}
3291 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3292 		return false;
3293 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3294 		if (!pending_result_dec(&obj_req->pending, result))
3295 			return false;
3296 		fallthrough;
3297 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3298 		if (*result) {
3299 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3300 				 *result);
3301 			return true;
3302 		}
3303 
3304 		rbd_obj_copyup_write_object(obj_req);
3305 		if (!obj_req->pending.num_pending) {
3306 			*result = obj_req->pending.result;
3307 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3308 			goto again;
3309 		}
3310 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3311 		return false;
3312 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3313 		if (!pending_result_dec(&obj_req->pending, result))
3314 			return false;
3315 		fallthrough;
3316 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3317 		return true;
3318 	default:
3319 		BUG();
3320 	}
3321 }
3322 
3323 /*
3324  * Return:
3325  *   0 - object map update sent
3326  *   1 - object map update isn't needed
3327  *  <0 - error
3328  */
3329 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3330 {
3331 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3332 	u8 current_state = OBJECT_PENDING;
3333 
3334 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3335 		return 1;
3336 
3337 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3338 		return 1;
3339 
3340 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3341 				     &current_state);
3342 }
3343 
3344 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3345 {
3346 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3347 	int ret;
3348 
3349 again:
3350 	switch (obj_req->write_state) {
3351 	case RBD_OBJ_WRITE_START:
3352 		rbd_assert(!*result);
3353 
3354 		if (rbd_obj_write_is_noop(obj_req))
3355 			return true;
3356 
3357 		ret = rbd_obj_write_pre_object_map(obj_req);
3358 		if (ret < 0) {
3359 			*result = ret;
3360 			return true;
3361 		}
3362 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3363 		if (ret > 0)
3364 			goto again;
3365 		return false;
3366 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3367 		if (*result) {
3368 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3369 				 *result);
3370 			return true;
3371 		}
3372 		ret = rbd_obj_write_object(obj_req);
3373 		if (ret) {
3374 			*result = ret;
3375 			return true;
3376 		}
3377 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3378 		return false;
3379 	case RBD_OBJ_WRITE_OBJECT:
3380 		if (*result == -ENOENT) {
3381 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3382 				*result = 0;
3383 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3384 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3385 				goto again;
3386 			}
3387 			/*
3388 			 * On a non-existent object:
3389 			 *   delete - -ENOENT, truncate/zero - 0
3390 			 */
3391 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3392 				*result = 0;
3393 		}
3394 		if (*result)
3395 			return true;
3396 
3397 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3398 		goto again;
3399 	case __RBD_OBJ_WRITE_COPYUP:
3400 		if (!rbd_obj_advance_copyup(obj_req, result))
3401 			return false;
3402 		fallthrough;
3403 	case RBD_OBJ_WRITE_COPYUP:
3404 		if (*result) {
3405 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3406 			return true;
3407 		}
3408 		ret = rbd_obj_write_post_object_map(obj_req);
3409 		if (ret < 0) {
3410 			*result = ret;
3411 			return true;
3412 		}
3413 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3414 		if (ret > 0)
3415 			goto again;
3416 		return false;
3417 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3418 		if (*result)
3419 			rbd_warn(rbd_dev, "post object map update failed: %d",
3420 				 *result);
3421 		return true;
3422 	default:
3423 		BUG();
3424 	}
3425 }
3426 
3427 /*
3428  * Return true if @obj_req is completed.
3429  */
3430 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3431 				     int *result)
3432 {
3433 	struct rbd_img_request *img_req = obj_req->img_request;
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool done;
3436 
3437 	mutex_lock(&obj_req->state_mutex);
3438 	if (!rbd_img_is_write(img_req))
3439 		done = rbd_obj_advance_read(obj_req, result);
3440 	else
3441 		done = rbd_obj_advance_write(obj_req, result);
3442 	mutex_unlock(&obj_req->state_mutex);
3443 
3444 	if (done && *result) {
3445 		rbd_assert(*result < 0);
3446 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3447 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3448 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3449 	}
3450 	return done;
3451 }
3452 
3453 /*
3454  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3455  * recursion.
3456  */
3457 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3458 {
3459 	if (__rbd_obj_handle_request(obj_req, &result))
3460 		rbd_img_handle_request(obj_req->img_request, result);
3461 }
3462 
3463 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3466 
3467 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3468 		return false;
3469 
3470 	if (rbd_is_ro(rbd_dev))
3471 		return false;
3472 
3473 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3474 	if (rbd_dev->opts->lock_on_read ||
3475 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3476 		return true;
3477 
3478 	return rbd_img_is_write(img_req);
3479 }
3480 
3481 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3482 {
3483 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3484 	bool locked;
3485 
3486 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3487 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3488 	spin_lock(&rbd_dev->lock_lists_lock);
3489 	rbd_assert(list_empty(&img_req->lock_item));
3490 	if (!locked)
3491 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3492 	else
3493 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3494 	spin_unlock(&rbd_dev->lock_lists_lock);
3495 	return locked;
3496 }
3497 
3498 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3499 {
3500 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3501 	bool need_wakeup;
3502 
3503 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3504 	spin_lock(&rbd_dev->lock_lists_lock);
3505 	rbd_assert(!list_empty(&img_req->lock_item));
3506 	list_del_init(&img_req->lock_item);
3507 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3508 		       list_empty(&rbd_dev->running_list));
3509 	spin_unlock(&rbd_dev->lock_lists_lock);
3510 	if (need_wakeup)
3511 		complete(&rbd_dev->releasing_wait);
3512 }
3513 
3514 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3515 {
3516 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3517 
3518 	if (!need_exclusive_lock(img_req))
3519 		return 1;
3520 
3521 	if (rbd_lock_add_request(img_req))
3522 		return 1;
3523 
3524 	if (rbd_dev->opts->exclusive) {
3525 		WARN_ON(1); /* lock got released? */
3526 		return -EROFS;
3527 	}
3528 
3529 	/*
3530 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3531 	 * and cancel_delayed_work() in wake_lock_waiters().
3532 	 */
3533 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3534 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3535 	return 0;
3536 }
3537 
3538 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3539 {
3540 	struct rbd_obj_request *obj_req;
3541 
3542 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3543 
3544 	for_each_obj_request(img_req, obj_req) {
3545 		int result = 0;
3546 
3547 		if (__rbd_obj_handle_request(obj_req, &result)) {
3548 			if (result) {
3549 				img_req->pending.result = result;
3550 				return;
3551 			}
3552 		} else {
3553 			img_req->pending.num_pending++;
3554 		}
3555 	}
3556 }
3557 
3558 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3559 {
3560 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3561 	int ret;
3562 
3563 again:
3564 	switch (img_req->state) {
3565 	case RBD_IMG_START:
3566 		rbd_assert(!*result);
3567 
3568 		ret = rbd_img_exclusive_lock(img_req);
3569 		if (ret < 0) {
3570 			*result = ret;
3571 			return true;
3572 		}
3573 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3574 		if (ret > 0)
3575 			goto again;
3576 		return false;
3577 	case RBD_IMG_EXCLUSIVE_LOCK:
3578 		if (*result)
3579 			return true;
3580 
3581 		rbd_assert(!need_exclusive_lock(img_req) ||
3582 			   __rbd_is_lock_owner(rbd_dev));
3583 
3584 		rbd_img_object_requests(img_req);
3585 		if (!img_req->pending.num_pending) {
3586 			*result = img_req->pending.result;
3587 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3588 			goto again;
3589 		}
3590 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3591 		return false;
3592 	case __RBD_IMG_OBJECT_REQUESTS:
3593 		if (!pending_result_dec(&img_req->pending, result))
3594 			return false;
3595 		fallthrough;
3596 	case RBD_IMG_OBJECT_REQUESTS:
3597 		return true;
3598 	default:
3599 		BUG();
3600 	}
3601 }
3602 
3603 /*
3604  * Return true if @img_req is completed.
3605  */
3606 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3607 				     int *result)
3608 {
3609 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3610 	bool done;
3611 
3612 	if (need_exclusive_lock(img_req)) {
3613 		down_read(&rbd_dev->lock_rwsem);
3614 		mutex_lock(&img_req->state_mutex);
3615 		done = rbd_img_advance(img_req, result);
3616 		if (done)
3617 			rbd_lock_del_request(img_req);
3618 		mutex_unlock(&img_req->state_mutex);
3619 		up_read(&rbd_dev->lock_rwsem);
3620 	} else {
3621 		mutex_lock(&img_req->state_mutex);
3622 		done = rbd_img_advance(img_req, result);
3623 		mutex_unlock(&img_req->state_mutex);
3624 	}
3625 
3626 	if (done && *result) {
3627 		rbd_assert(*result < 0);
3628 		rbd_warn(rbd_dev, "%s%s result %d",
3629 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3630 		      obj_op_name(img_req->op_type), *result);
3631 	}
3632 	return done;
3633 }
3634 
3635 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3636 {
3637 again:
3638 	if (!__rbd_img_handle_request(img_req, &result))
3639 		return;
3640 
3641 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3642 		struct rbd_obj_request *obj_req = img_req->obj_request;
3643 
3644 		rbd_img_request_destroy(img_req);
3645 		if (__rbd_obj_handle_request(obj_req, &result)) {
3646 			img_req = obj_req->img_request;
3647 			goto again;
3648 		}
3649 	} else {
3650 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3651 
3652 		rbd_img_request_destroy(img_req);
3653 		blk_mq_end_request(rq, errno_to_blk_status(result));
3654 	}
3655 }
3656 
3657 static const struct rbd_client_id rbd_empty_cid;
3658 
3659 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3660 			  const struct rbd_client_id *rhs)
3661 {
3662 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3663 }
3664 
3665 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3666 {
3667 	struct rbd_client_id cid;
3668 
3669 	mutex_lock(&rbd_dev->watch_mutex);
3670 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3671 	cid.handle = rbd_dev->watch_cookie;
3672 	mutex_unlock(&rbd_dev->watch_mutex);
3673 	return cid;
3674 }
3675 
3676 /*
3677  * lock_rwsem must be held for write
3678  */
3679 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3680 			      const struct rbd_client_id *cid)
3681 {
3682 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3683 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3684 	     cid->gid, cid->handle);
3685 	rbd_dev->owner_cid = *cid; /* struct */
3686 }
3687 
3688 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3689 {
3690 	mutex_lock(&rbd_dev->watch_mutex);
3691 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3692 	mutex_unlock(&rbd_dev->watch_mutex);
3693 }
3694 
3695 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3696 {
3697 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3698 
3699 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3700 	strcpy(rbd_dev->lock_cookie, cookie);
3701 	rbd_set_owner_cid(rbd_dev, &cid);
3702 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3703 }
3704 
3705 /*
3706  * lock_rwsem must be held for write
3707  */
3708 static int rbd_lock(struct rbd_device *rbd_dev)
3709 {
3710 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3711 	char cookie[32];
3712 	int ret;
3713 
3714 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3715 		rbd_dev->lock_cookie[0] != '\0');
3716 
3717 	format_lock_cookie(rbd_dev, cookie);
3718 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3720 			    RBD_LOCK_TAG, "", 0);
3721 	if (ret)
3722 		return ret;
3723 
3724 	__rbd_lock(rbd_dev, cookie);
3725 	return 0;
3726 }
3727 
3728 /*
3729  * lock_rwsem must be held for write
3730  */
3731 static void rbd_unlock(struct rbd_device *rbd_dev)
3732 {
3733 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3734 	int ret;
3735 
3736 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3737 		rbd_dev->lock_cookie[0] == '\0');
3738 
3739 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3740 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3741 	if (ret && ret != -ENOENT)
3742 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3743 
3744 	/* treat errors as the image is unlocked */
3745 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3746 	rbd_dev->lock_cookie[0] = '\0';
3747 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3748 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3749 }
3750 
3751 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3752 				enum rbd_notify_op notify_op,
3753 				struct page ***preply_pages,
3754 				size_t *preply_len)
3755 {
3756 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3757 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3758 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3759 	int buf_size = sizeof(buf);
3760 	void *p = buf;
3761 
3762 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3763 
3764 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3765 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3766 	ceph_encode_32(&p, notify_op);
3767 	ceph_encode_64(&p, cid.gid);
3768 	ceph_encode_64(&p, cid.handle);
3769 
3770 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3771 				&rbd_dev->header_oloc, buf, buf_size,
3772 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3773 }
3774 
3775 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3776 			       enum rbd_notify_op notify_op)
3777 {
3778 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3779 }
3780 
3781 static void rbd_notify_acquired_lock(struct work_struct *work)
3782 {
3783 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3784 						  acquired_lock_work);
3785 
3786 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3787 }
3788 
3789 static void rbd_notify_released_lock(struct work_struct *work)
3790 {
3791 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3792 						  released_lock_work);
3793 
3794 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3795 }
3796 
3797 static int rbd_request_lock(struct rbd_device *rbd_dev)
3798 {
3799 	struct page **reply_pages;
3800 	size_t reply_len;
3801 	bool lock_owner_responded = false;
3802 	int ret;
3803 
3804 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3805 
3806 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3807 				   &reply_pages, &reply_len);
3808 	if (ret && ret != -ETIMEDOUT) {
3809 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3810 		goto out;
3811 	}
3812 
3813 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3814 		void *p = page_address(reply_pages[0]);
3815 		void *const end = p + reply_len;
3816 		u32 n;
3817 
3818 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3819 		while (n--) {
3820 			u8 struct_v;
3821 			u32 len;
3822 
3823 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3824 			p += 8 + 8; /* skip gid and cookie */
3825 
3826 			ceph_decode_32_safe(&p, end, len, e_inval);
3827 			if (!len)
3828 				continue;
3829 
3830 			if (lock_owner_responded) {
3831 				rbd_warn(rbd_dev,
3832 					 "duplicate lock owners detected");
3833 				ret = -EIO;
3834 				goto out;
3835 			}
3836 
3837 			lock_owner_responded = true;
3838 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3839 						  &struct_v, &len);
3840 			if (ret) {
3841 				rbd_warn(rbd_dev,
3842 					 "failed to decode ResponseMessage: %d",
3843 					 ret);
3844 				goto e_inval;
3845 			}
3846 
3847 			ret = ceph_decode_32(&p);
3848 		}
3849 	}
3850 
3851 	if (!lock_owner_responded) {
3852 		rbd_warn(rbd_dev, "no lock owners detected");
3853 		ret = -ETIMEDOUT;
3854 	}
3855 
3856 out:
3857 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3858 	return ret;
3859 
3860 e_inval:
3861 	ret = -EINVAL;
3862 	goto out;
3863 }
3864 
3865 /*
3866  * Either image request state machine(s) or rbd_add_acquire_lock()
3867  * (i.e. "rbd map").
3868  */
3869 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3870 {
3871 	struct rbd_img_request *img_req;
3872 
3873 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3874 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3875 
3876 	cancel_delayed_work(&rbd_dev->lock_dwork);
3877 	if (!completion_done(&rbd_dev->acquire_wait)) {
3878 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3879 			   list_empty(&rbd_dev->running_list));
3880 		rbd_dev->acquire_err = result;
3881 		complete_all(&rbd_dev->acquire_wait);
3882 		return;
3883 	}
3884 
3885 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3886 		mutex_lock(&img_req->state_mutex);
3887 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3888 		rbd_img_schedule(img_req, result);
3889 		mutex_unlock(&img_req->state_mutex);
3890 	}
3891 
3892 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3893 }
3894 
3895 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3896 			       struct ceph_locker **lockers, u32 *num_lockers)
3897 {
3898 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3899 	u8 lock_type;
3900 	char *lock_tag;
3901 	int ret;
3902 
3903 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3904 
3905 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3906 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3907 				 &lock_type, &lock_tag, lockers, num_lockers);
3908 	if (ret)
3909 		return ret;
3910 
3911 	if (*num_lockers == 0) {
3912 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3913 		goto out;
3914 	}
3915 
3916 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3917 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3918 			 lock_tag);
3919 		ret = -EBUSY;
3920 		goto out;
3921 	}
3922 
3923 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3924 		rbd_warn(rbd_dev, "shared lock type detected");
3925 		ret = -EBUSY;
3926 		goto out;
3927 	}
3928 
3929 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3930 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3931 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3932 			 (*lockers)[0].id.cookie);
3933 		ret = -EBUSY;
3934 		goto out;
3935 	}
3936 
3937 out:
3938 	kfree(lock_tag);
3939 	return ret;
3940 }
3941 
3942 static int find_watcher(struct rbd_device *rbd_dev,
3943 			const struct ceph_locker *locker)
3944 {
3945 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3946 	struct ceph_watch_item *watchers;
3947 	u32 num_watchers;
3948 	u64 cookie;
3949 	int i;
3950 	int ret;
3951 
3952 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3953 				      &rbd_dev->header_oloc, &watchers,
3954 				      &num_watchers);
3955 	if (ret)
3956 		return ret;
3957 
3958 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3959 	for (i = 0; i < num_watchers; i++) {
3960 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3961 			    sizeof(locker->info.addr)) &&
3962 		    watchers[i].cookie == cookie) {
3963 			struct rbd_client_id cid = {
3964 				.gid = le64_to_cpu(watchers[i].name.num),
3965 				.handle = cookie,
3966 			};
3967 
3968 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3969 			     rbd_dev, cid.gid, cid.handle);
3970 			rbd_set_owner_cid(rbd_dev, &cid);
3971 			ret = 1;
3972 			goto out;
3973 		}
3974 	}
3975 
3976 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3977 	ret = 0;
3978 out:
3979 	kfree(watchers);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * lock_rwsem must be held for write
3985  */
3986 static int rbd_try_lock(struct rbd_device *rbd_dev)
3987 {
3988 	struct ceph_client *client = rbd_dev->rbd_client->client;
3989 	struct ceph_locker *lockers;
3990 	u32 num_lockers;
3991 	int ret;
3992 
3993 	for (;;) {
3994 		ret = rbd_lock(rbd_dev);
3995 		if (ret != -EBUSY)
3996 			return ret;
3997 
3998 		/* determine if the current lock holder is still alive */
3999 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4000 		if (ret)
4001 			return ret;
4002 
4003 		if (num_lockers == 0)
4004 			goto again;
4005 
4006 		ret = find_watcher(rbd_dev, lockers);
4007 		if (ret)
4008 			goto out; /* request lock or error */
4009 
4010 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4011 			 ENTITY_NAME(lockers[0].id.name));
4012 
4013 		ret = ceph_monc_blocklist_add(&client->monc,
4014 					      &lockers[0].info.addr);
4015 		if (ret) {
4016 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
4017 				 ENTITY_NAME(lockers[0].id.name), ret);
4018 			goto out;
4019 		}
4020 
4021 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4022 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4023 					  lockers[0].id.cookie,
4024 					  &lockers[0].id.name);
4025 		if (ret && ret != -ENOENT)
4026 			goto out;
4027 
4028 again:
4029 		ceph_free_lockers(lockers, num_lockers);
4030 	}
4031 
4032 out:
4033 	ceph_free_lockers(lockers, num_lockers);
4034 	return ret;
4035 }
4036 
4037 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4038 {
4039 	int ret;
4040 
4041 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4042 		ret = rbd_object_map_open(rbd_dev);
4043 		if (ret)
4044 			return ret;
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 /*
4051  * Return:
4052  *   0 - lock acquired
4053  *   1 - caller should call rbd_request_lock()
4054  *  <0 - error
4055  */
4056 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4057 {
4058 	int ret;
4059 
4060 	down_read(&rbd_dev->lock_rwsem);
4061 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4062 	     rbd_dev->lock_state);
4063 	if (__rbd_is_lock_owner(rbd_dev)) {
4064 		up_read(&rbd_dev->lock_rwsem);
4065 		return 0;
4066 	}
4067 
4068 	up_read(&rbd_dev->lock_rwsem);
4069 	down_write(&rbd_dev->lock_rwsem);
4070 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4071 	     rbd_dev->lock_state);
4072 	if (__rbd_is_lock_owner(rbd_dev)) {
4073 		up_write(&rbd_dev->lock_rwsem);
4074 		return 0;
4075 	}
4076 
4077 	ret = rbd_try_lock(rbd_dev);
4078 	if (ret < 0) {
4079 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4080 		if (ret == -EBLOCKLISTED)
4081 			goto out;
4082 
4083 		ret = 1; /* request lock anyway */
4084 	}
4085 	if (ret > 0) {
4086 		up_write(&rbd_dev->lock_rwsem);
4087 		return ret;
4088 	}
4089 
4090 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4091 	rbd_assert(list_empty(&rbd_dev->running_list));
4092 
4093 	ret = rbd_post_acquire_action(rbd_dev);
4094 	if (ret) {
4095 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4096 		/*
4097 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4098 		 * rbd_lock_add_request() would let the request through,
4099 		 * assuming that e.g. object map is locked and loaded.
4100 		 */
4101 		rbd_unlock(rbd_dev);
4102 	}
4103 
4104 out:
4105 	wake_lock_waiters(rbd_dev, ret);
4106 	up_write(&rbd_dev->lock_rwsem);
4107 	return ret;
4108 }
4109 
4110 static void rbd_acquire_lock(struct work_struct *work)
4111 {
4112 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4113 					    struct rbd_device, lock_dwork);
4114 	int ret;
4115 
4116 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4117 again:
4118 	ret = rbd_try_acquire_lock(rbd_dev);
4119 	if (ret <= 0) {
4120 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4121 		return;
4122 	}
4123 
4124 	ret = rbd_request_lock(rbd_dev);
4125 	if (ret == -ETIMEDOUT) {
4126 		goto again; /* treat this as a dead client */
4127 	} else if (ret == -EROFS) {
4128 		rbd_warn(rbd_dev, "peer will not release lock");
4129 		down_write(&rbd_dev->lock_rwsem);
4130 		wake_lock_waiters(rbd_dev, ret);
4131 		up_write(&rbd_dev->lock_rwsem);
4132 	} else if (ret < 0) {
4133 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4134 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4135 				 RBD_RETRY_DELAY);
4136 	} else {
4137 		/*
4138 		 * lock owner acked, but resend if we don't see them
4139 		 * release the lock
4140 		 */
4141 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4142 		     rbd_dev);
4143 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4144 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4145 	}
4146 }
4147 
4148 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4149 {
4150 	bool need_wait;
4151 
4152 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4153 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4154 
4155 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4156 		return false;
4157 
4158 	/*
4159 	 * Ensure that all in-flight IO is flushed.
4160 	 */
4161 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4162 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4163 	need_wait = !list_empty(&rbd_dev->running_list);
4164 	downgrade_write(&rbd_dev->lock_rwsem);
4165 	if (need_wait)
4166 		wait_for_completion(&rbd_dev->releasing_wait);
4167 	up_read(&rbd_dev->lock_rwsem);
4168 
4169 	down_write(&rbd_dev->lock_rwsem);
4170 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4171 		return false;
4172 
4173 	rbd_assert(list_empty(&rbd_dev->running_list));
4174 	return true;
4175 }
4176 
4177 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4178 {
4179 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4180 		rbd_object_map_close(rbd_dev);
4181 }
4182 
4183 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4184 {
4185 	rbd_assert(list_empty(&rbd_dev->running_list));
4186 
4187 	rbd_pre_release_action(rbd_dev);
4188 	rbd_unlock(rbd_dev);
4189 }
4190 
4191 /*
4192  * lock_rwsem must be held for write
4193  */
4194 static void rbd_release_lock(struct rbd_device *rbd_dev)
4195 {
4196 	if (!rbd_quiesce_lock(rbd_dev))
4197 		return;
4198 
4199 	__rbd_release_lock(rbd_dev);
4200 
4201 	/*
4202 	 * Give others a chance to grab the lock - we would re-acquire
4203 	 * almost immediately if we got new IO while draining the running
4204 	 * list otherwise.  We need to ack our own notifications, so this
4205 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4206 	 * way of maybe_kick_acquire().
4207 	 */
4208 	cancel_delayed_work(&rbd_dev->lock_dwork);
4209 }
4210 
4211 static void rbd_release_lock_work(struct work_struct *work)
4212 {
4213 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4214 						  unlock_work);
4215 
4216 	down_write(&rbd_dev->lock_rwsem);
4217 	rbd_release_lock(rbd_dev);
4218 	up_write(&rbd_dev->lock_rwsem);
4219 }
4220 
4221 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4222 {
4223 	bool have_requests;
4224 
4225 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4226 	if (__rbd_is_lock_owner(rbd_dev))
4227 		return;
4228 
4229 	spin_lock(&rbd_dev->lock_lists_lock);
4230 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4231 	spin_unlock(&rbd_dev->lock_lists_lock);
4232 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4233 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4234 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4235 	}
4236 }
4237 
4238 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4239 				     void **p)
4240 {
4241 	struct rbd_client_id cid = { 0 };
4242 
4243 	if (struct_v >= 2) {
4244 		cid.gid = ceph_decode_64(p);
4245 		cid.handle = ceph_decode_64(p);
4246 	}
4247 
4248 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4249 	     cid.handle);
4250 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4251 		down_write(&rbd_dev->lock_rwsem);
4252 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4253 			/*
4254 			 * we already know that the remote client is
4255 			 * the owner
4256 			 */
4257 			up_write(&rbd_dev->lock_rwsem);
4258 			return;
4259 		}
4260 
4261 		rbd_set_owner_cid(rbd_dev, &cid);
4262 		downgrade_write(&rbd_dev->lock_rwsem);
4263 	} else {
4264 		down_read(&rbd_dev->lock_rwsem);
4265 	}
4266 
4267 	maybe_kick_acquire(rbd_dev);
4268 	up_read(&rbd_dev->lock_rwsem);
4269 }
4270 
4271 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4272 				     void **p)
4273 {
4274 	struct rbd_client_id cid = { 0 };
4275 
4276 	if (struct_v >= 2) {
4277 		cid.gid = ceph_decode_64(p);
4278 		cid.handle = ceph_decode_64(p);
4279 	}
4280 
4281 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4282 	     cid.handle);
4283 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4284 		down_write(&rbd_dev->lock_rwsem);
4285 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4286 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4287 			     __func__, rbd_dev, cid.gid, cid.handle,
4288 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4289 			up_write(&rbd_dev->lock_rwsem);
4290 			return;
4291 		}
4292 
4293 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4294 		downgrade_write(&rbd_dev->lock_rwsem);
4295 	} else {
4296 		down_read(&rbd_dev->lock_rwsem);
4297 	}
4298 
4299 	maybe_kick_acquire(rbd_dev);
4300 	up_read(&rbd_dev->lock_rwsem);
4301 }
4302 
4303 /*
4304  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4305  * ResponseMessage is needed.
4306  */
4307 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4308 				   void **p)
4309 {
4310 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4311 	struct rbd_client_id cid = { 0 };
4312 	int result = 1;
4313 
4314 	if (struct_v >= 2) {
4315 		cid.gid = ceph_decode_64(p);
4316 		cid.handle = ceph_decode_64(p);
4317 	}
4318 
4319 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4320 	     cid.handle);
4321 	if (rbd_cid_equal(&cid, &my_cid))
4322 		return result;
4323 
4324 	down_read(&rbd_dev->lock_rwsem);
4325 	if (__rbd_is_lock_owner(rbd_dev)) {
4326 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4327 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4328 			goto out_unlock;
4329 
4330 		/*
4331 		 * encode ResponseMessage(0) so the peer can detect
4332 		 * a missing owner
4333 		 */
4334 		result = 0;
4335 
4336 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4337 			if (!rbd_dev->opts->exclusive) {
4338 				dout("%s rbd_dev %p queueing unlock_work\n",
4339 				     __func__, rbd_dev);
4340 				queue_work(rbd_dev->task_wq,
4341 					   &rbd_dev->unlock_work);
4342 			} else {
4343 				/* refuse to release the lock */
4344 				result = -EROFS;
4345 			}
4346 		}
4347 	}
4348 
4349 out_unlock:
4350 	up_read(&rbd_dev->lock_rwsem);
4351 	return result;
4352 }
4353 
4354 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4355 				     u64 notify_id, u64 cookie, s32 *result)
4356 {
4357 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4358 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4359 	int buf_size = sizeof(buf);
4360 	int ret;
4361 
4362 	if (result) {
4363 		void *p = buf;
4364 
4365 		/* encode ResponseMessage */
4366 		ceph_start_encoding(&p, 1, 1,
4367 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4368 		ceph_encode_32(&p, *result);
4369 	} else {
4370 		buf_size = 0;
4371 	}
4372 
4373 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4374 				   &rbd_dev->header_oloc, notify_id, cookie,
4375 				   buf, buf_size);
4376 	if (ret)
4377 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4378 }
4379 
4380 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4381 				   u64 cookie)
4382 {
4383 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4384 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4385 }
4386 
4387 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4388 					  u64 notify_id, u64 cookie, s32 result)
4389 {
4390 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4391 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4392 }
4393 
4394 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4395 			 u64 notifier_id, void *data, size_t data_len)
4396 {
4397 	struct rbd_device *rbd_dev = arg;
4398 	void *p = data;
4399 	void *const end = p + data_len;
4400 	u8 struct_v = 0;
4401 	u32 len;
4402 	u32 notify_op;
4403 	int ret;
4404 
4405 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4406 	     __func__, rbd_dev, cookie, notify_id, data_len);
4407 	if (data_len) {
4408 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4409 					  &struct_v, &len);
4410 		if (ret) {
4411 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4412 				 ret);
4413 			return;
4414 		}
4415 
4416 		notify_op = ceph_decode_32(&p);
4417 	} else {
4418 		/* legacy notification for header updates */
4419 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4420 		len = 0;
4421 	}
4422 
4423 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4424 	switch (notify_op) {
4425 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4426 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4427 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4428 		break;
4429 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4430 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4431 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4432 		break;
4433 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4434 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4435 		if (ret <= 0)
4436 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4437 						      cookie, ret);
4438 		else
4439 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4440 		break;
4441 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4442 		ret = rbd_dev_refresh(rbd_dev);
4443 		if (ret)
4444 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4445 
4446 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4447 		break;
4448 	default:
4449 		if (rbd_is_lock_owner(rbd_dev))
4450 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4451 						      cookie, -EOPNOTSUPP);
4452 		else
4453 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4454 		break;
4455 	}
4456 }
4457 
4458 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4459 
4460 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4461 {
4462 	struct rbd_device *rbd_dev = arg;
4463 
4464 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4465 
4466 	down_write(&rbd_dev->lock_rwsem);
4467 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4468 	up_write(&rbd_dev->lock_rwsem);
4469 
4470 	mutex_lock(&rbd_dev->watch_mutex);
4471 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4472 		__rbd_unregister_watch(rbd_dev);
4473 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4474 
4475 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4476 	}
4477 	mutex_unlock(&rbd_dev->watch_mutex);
4478 }
4479 
4480 /*
4481  * watch_mutex must be locked
4482  */
4483 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4484 {
4485 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4486 	struct ceph_osd_linger_request *handle;
4487 
4488 	rbd_assert(!rbd_dev->watch_handle);
4489 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4490 
4491 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4492 				 &rbd_dev->header_oloc, rbd_watch_cb,
4493 				 rbd_watch_errcb, rbd_dev);
4494 	if (IS_ERR(handle))
4495 		return PTR_ERR(handle);
4496 
4497 	rbd_dev->watch_handle = handle;
4498 	return 0;
4499 }
4500 
4501 /*
4502  * watch_mutex must be locked
4503  */
4504 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4505 {
4506 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507 	int ret;
4508 
4509 	rbd_assert(rbd_dev->watch_handle);
4510 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4511 
4512 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4513 	if (ret)
4514 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4515 
4516 	rbd_dev->watch_handle = NULL;
4517 }
4518 
4519 static int rbd_register_watch(struct rbd_device *rbd_dev)
4520 {
4521 	int ret;
4522 
4523 	mutex_lock(&rbd_dev->watch_mutex);
4524 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4525 	ret = __rbd_register_watch(rbd_dev);
4526 	if (ret)
4527 		goto out;
4528 
4529 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4530 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4531 
4532 out:
4533 	mutex_unlock(&rbd_dev->watch_mutex);
4534 	return ret;
4535 }
4536 
4537 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4538 {
4539 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4540 
4541 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4542 	cancel_work_sync(&rbd_dev->released_lock_work);
4543 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4544 	cancel_work_sync(&rbd_dev->unlock_work);
4545 }
4546 
4547 /*
4548  * header_rwsem must not be held to avoid a deadlock with
4549  * rbd_dev_refresh() when flushing notifies.
4550  */
4551 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4552 {
4553 	cancel_tasks_sync(rbd_dev);
4554 
4555 	mutex_lock(&rbd_dev->watch_mutex);
4556 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4557 		__rbd_unregister_watch(rbd_dev);
4558 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4559 	mutex_unlock(&rbd_dev->watch_mutex);
4560 
4561 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4562 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4563 }
4564 
4565 /*
4566  * lock_rwsem must be held for write
4567  */
4568 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4569 {
4570 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4571 	char cookie[32];
4572 	int ret;
4573 
4574 	if (!rbd_quiesce_lock(rbd_dev))
4575 		return;
4576 
4577 	format_lock_cookie(rbd_dev, cookie);
4578 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4579 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4580 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4581 				  RBD_LOCK_TAG, cookie);
4582 	if (ret) {
4583 		if (ret != -EOPNOTSUPP)
4584 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4585 				 ret);
4586 
4587 		/*
4588 		 * Lock cookie cannot be updated on older OSDs, so do
4589 		 * a manual release and queue an acquire.
4590 		 */
4591 		__rbd_release_lock(rbd_dev);
4592 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4593 	} else {
4594 		__rbd_lock(rbd_dev, cookie);
4595 		wake_lock_waiters(rbd_dev, 0);
4596 	}
4597 }
4598 
4599 static void rbd_reregister_watch(struct work_struct *work)
4600 {
4601 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4602 					    struct rbd_device, watch_dwork);
4603 	int ret;
4604 
4605 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4606 
4607 	mutex_lock(&rbd_dev->watch_mutex);
4608 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4609 		mutex_unlock(&rbd_dev->watch_mutex);
4610 		return;
4611 	}
4612 
4613 	ret = __rbd_register_watch(rbd_dev);
4614 	if (ret) {
4615 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4616 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4617 			queue_delayed_work(rbd_dev->task_wq,
4618 					   &rbd_dev->watch_dwork,
4619 					   RBD_RETRY_DELAY);
4620 			mutex_unlock(&rbd_dev->watch_mutex);
4621 			return;
4622 		}
4623 
4624 		mutex_unlock(&rbd_dev->watch_mutex);
4625 		down_write(&rbd_dev->lock_rwsem);
4626 		wake_lock_waiters(rbd_dev, ret);
4627 		up_write(&rbd_dev->lock_rwsem);
4628 		return;
4629 	}
4630 
4631 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4632 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4633 	mutex_unlock(&rbd_dev->watch_mutex);
4634 
4635 	down_write(&rbd_dev->lock_rwsem);
4636 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4637 		rbd_reacquire_lock(rbd_dev);
4638 	up_write(&rbd_dev->lock_rwsem);
4639 
4640 	ret = rbd_dev_refresh(rbd_dev);
4641 	if (ret)
4642 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4643 }
4644 
4645 /*
4646  * Synchronous osd object method call.  Returns the number of bytes
4647  * returned in the outbound buffer, or a negative error code.
4648  */
4649 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4650 			     struct ceph_object_id *oid,
4651 			     struct ceph_object_locator *oloc,
4652 			     const char *method_name,
4653 			     const void *outbound,
4654 			     size_t outbound_size,
4655 			     void *inbound,
4656 			     size_t inbound_size)
4657 {
4658 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4659 	struct page *req_page = NULL;
4660 	struct page *reply_page;
4661 	int ret;
4662 
4663 	/*
4664 	 * Method calls are ultimately read operations.  The result
4665 	 * should placed into the inbound buffer provided.  They
4666 	 * also supply outbound data--parameters for the object
4667 	 * method.  Currently if this is present it will be a
4668 	 * snapshot id.
4669 	 */
4670 	if (outbound) {
4671 		if (outbound_size > PAGE_SIZE)
4672 			return -E2BIG;
4673 
4674 		req_page = alloc_page(GFP_KERNEL);
4675 		if (!req_page)
4676 			return -ENOMEM;
4677 
4678 		memcpy(page_address(req_page), outbound, outbound_size);
4679 	}
4680 
4681 	reply_page = alloc_page(GFP_KERNEL);
4682 	if (!reply_page) {
4683 		if (req_page)
4684 			__free_page(req_page);
4685 		return -ENOMEM;
4686 	}
4687 
4688 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4689 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4690 			     &reply_page, &inbound_size);
4691 	if (!ret) {
4692 		memcpy(inbound, page_address(reply_page), inbound_size);
4693 		ret = inbound_size;
4694 	}
4695 
4696 	if (req_page)
4697 		__free_page(req_page);
4698 	__free_page(reply_page);
4699 	return ret;
4700 }
4701 
4702 static void rbd_queue_workfn(struct work_struct *work)
4703 {
4704 	struct rbd_img_request *img_request =
4705 	    container_of(work, struct rbd_img_request, work);
4706 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4707 	enum obj_operation_type op_type = img_request->op_type;
4708 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4709 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4710 	u64 length = blk_rq_bytes(rq);
4711 	u64 mapping_size;
4712 	int result;
4713 
4714 	/* Ignore/skip any zero-length requests */
4715 	if (!length) {
4716 		dout("%s: zero-length request\n", __func__);
4717 		result = 0;
4718 		goto err_img_request;
4719 	}
4720 
4721 	blk_mq_start_request(rq);
4722 
4723 	down_read(&rbd_dev->header_rwsem);
4724 	mapping_size = rbd_dev->mapping.size;
4725 	rbd_img_capture_header(img_request);
4726 	up_read(&rbd_dev->header_rwsem);
4727 
4728 	if (offset + length > mapping_size) {
4729 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4730 			 length, mapping_size);
4731 		result = -EIO;
4732 		goto err_img_request;
4733 	}
4734 
4735 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4736 	     img_request, obj_op_name(op_type), offset, length);
4737 
4738 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4739 		result = rbd_img_fill_nodata(img_request, offset, length);
4740 	else
4741 		result = rbd_img_fill_from_bio(img_request, offset, length,
4742 					       rq->bio);
4743 	if (result)
4744 		goto err_img_request;
4745 
4746 	rbd_img_handle_request(img_request, 0);
4747 	return;
4748 
4749 err_img_request:
4750 	rbd_img_request_destroy(img_request);
4751 	if (result)
4752 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4753 			 obj_op_name(op_type), length, offset, result);
4754 	blk_mq_end_request(rq, errno_to_blk_status(result));
4755 }
4756 
4757 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4758 		const struct blk_mq_queue_data *bd)
4759 {
4760 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4761 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4762 	enum obj_operation_type op_type;
4763 
4764 	switch (req_op(bd->rq)) {
4765 	case REQ_OP_DISCARD:
4766 		op_type = OBJ_OP_DISCARD;
4767 		break;
4768 	case REQ_OP_WRITE_ZEROES:
4769 		op_type = OBJ_OP_ZEROOUT;
4770 		break;
4771 	case REQ_OP_WRITE:
4772 		op_type = OBJ_OP_WRITE;
4773 		break;
4774 	case REQ_OP_READ:
4775 		op_type = OBJ_OP_READ;
4776 		break;
4777 	default:
4778 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4779 		return BLK_STS_IOERR;
4780 	}
4781 
4782 	rbd_img_request_init(img_req, rbd_dev, op_type);
4783 
4784 	if (rbd_img_is_write(img_req)) {
4785 		if (rbd_is_ro(rbd_dev)) {
4786 			rbd_warn(rbd_dev, "%s on read-only mapping",
4787 				 obj_op_name(img_req->op_type));
4788 			return BLK_STS_IOERR;
4789 		}
4790 		rbd_assert(!rbd_is_snap(rbd_dev));
4791 	}
4792 
4793 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4794 	queue_work(rbd_wq, &img_req->work);
4795 	return BLK_STS_OK;
4796 }
4797 
4798 static void rbd_free_disk(struct rbd_device *rbd_dev)
4799 {
4800 	blk_cleanup_queue(rbd_dev->disk->queue);
4801 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4802 	put_disk(rbd_dev->disk);
4803 	rbd_dev->disk = NULL;
4804 }
4805 
4806 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4807 			     struct ceph_object_id *oid,
4808 			     struct ceph_object_locator *oloc,
4809 			     void *buf, int buf_len)
4810 
4811 {
4812 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4813 	struct ceph_osd_request *req;
4814 	struct page **pages;
4815 	int num_pages = calc_pages_for(0, buf_len);
4816 	int ret;
4817 
4818 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4819 	if (!req)
4820 		return -ENOMEM;
4821 
4822 	ceph_oid_copy(&req->r_base_oid, oid);
4823 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4824 	req->r_flags = CEPH_OSD_FLAG_READ;
4825 
4826 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4827 	if (IS_ERR(pages)) {
4828 		ret = PTR_ERR(pages);
4829 		goto out_req;
4830 	}
4831 
4832 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4833 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4834 					 true);
4835 
4836 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4837 	if (ret)
4838 		goto out_req;
4839 
4840 	ceph_osdc_start_request(osdc, req, false);
4841 	ret = ceph_osdc_wait_request(osdc, req);
4842 	if (ret >= 0)
4843 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4844 
4845 out_req:
4846 	ceph_osdc_put_request(req);
4847 	return ret;
4848 }
4849 
4850 /*
4851  * Read the complete header for the given rbd device.  On successful
4852  * return, the rbd_dev->header field will contain up-to-date
4853  * information about the image.
4854  */
4855 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4856 {
4857 	struct rbd_image_header_ondisk *ondisk = NULL;
4858 	u32 snap_count = 0;
4859 	u64 names_size = 0;
4860 	u32 want_count;
4861 	int ret;
4862 
4863 	/*
4864 	 * The complete header will include an array of its 64-bit
4865 	 * snapshot ids, followed by the names of those snapshots as
4866 	 * a contiguous block of NUL-terminated strings.  Note that
4867 	 * the number of snapshots could change by the time we read
4868 	 * it in, in which case we re-read it.
4869 	 */
4870 	do {
4871 		size_t size;
4872 
4873 		kfree(ondisk);
4874 
4875 		size = sizeof (*ondisk);
4876 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4877 		size += names_size;
4878 		ondisk = kmalloc(size, GFP_KERNEL);
4879 		if (!ondisk)
4880 			return -ENOMEM;
4881 
4882 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4883 					&rbd_dev->header_oloc, ondisk, size);
4884 		if (ret < 0)
4885 			goto out;
4886 		if ((size_t)ret < size) {
4887 			ret = -ENXIO;
4888 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4889 				size, ret);
4890 			goto out;
4891 		}
4892 		if (!rbd_dev_ondisk_valid(ondisk)) {
4893 			ret = -ENXIO;
4894 			rbd_warn(rbd_dev, "invalid header");
4895 			goto out;
4896 		}
4897 
4898 		names_size = le64_to_cpu(ondisk->snap_names_len);
4899 		want_count = snap_count;
4900 		snap_count = le32_to_cpu(ondisk->snap_count);
4901 	} while (snap_count != want_count);
4902 
4903 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4904 out:
4905 	kfree(ondisk);
4906 
4907 	return ret;
4908 }
4909 
4910 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4911 {
4912 	sector_t size;
4913 
4914 	/*
4915 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4916 	 * try to update its size.  If REMOVING is set, updating size
4917 	 * is just useless work since the device can't be opened.
4918 	 */
4919 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4920 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4921 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4922 		dout("setting size to %llu sectors", (unsigned long long)size);
4923 		set_capacity(rbd_dev->disk, size);
4924 		revalidate_disk_size(rbd_dev->disk, true);
4925 	}
4926 }
4927 
4928 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4929 {
4930 	u64 mapping_size;
4931 	int ret;
4932 
4933 	down_write(&rbd_dev->header_rwsem);
4934 	mapping_size = rbd_dev->mapping.size;
4935 
4936 	ret = rbd_dev_header_info(rbd_dev);
4937 	if (ret)
4938 		goto out;
4939 
4940 	/*
4941 	 * If there is a parent, see if it has disappeared due to the
4942 	 * mapped image getting flattened.
4943 	 */
4944 	if (rbd_dev->parent) {
4945 		ret = rbd_dev_v2_parent_info(rbd_dev);
4946 		if (ret)
4947 			goto out;
4948 	}
4949 
4950 	rbd_assert(!rbd_is_snap(rbd_dev));
4951 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4952 
4953 out:
4954 	up_write(&rbd_dev->header_rwsem);
4955 	if (!ret && mapping_size != rbd_dev->mapping.size)
4956 		rbd_dev_update_size(rbd_dev);
4957 
4958 	return ret;
4959 }
4960 
4961 static const struct blk_mq_ops rbd_mq_ops = {
4962 	.queue_rq	= rbd_queue_rq,
4963 };
4964 
4965 static int rbd_init_disk(struct rbd_device *rbd_dev)
4966 {
4967 	struct gendisk *disk;
4968 	struct request_queue *q;
4969 	unsigned int objset_bytes =
4970 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4971 	int err;
4972 
4973 	/* create gendisk info */
4974 	disk = alloc_disk(single_major ?
4975 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4976 			  RBD_MINORS_PER_MAJOR);
4977 	if (!disk)
4978 		return -ENOMEM;
4979 
4980 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4981 		 rbd_dev->dev_id);
4982 	disk->major = rbd_dev->major;
4983 	disk->first_minor = rbd_dev->minor;
4984 	if (single_major)
4985 		disk->flags |= GENHD_FL_EXT_DEVT;
4986 	disk->fops = &rbd_bd_ops;
4987 	disk->private_data = rbd_dev;
4988 
4989 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4990 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4991 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4992 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4993 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4994 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4995 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4996 
4997 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4998 	if (err)
4999 		goto out_disk;
5000 
5001 	q = blk_mq_init_queue(&rbd_dev->tag_set);
5002 	if (IS_ERR(q)) {
5003 		err = PTR_ERR(q);
5004 		goto out_tag_set;
5005 	}
5006 
5007 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5008 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5009 
5010 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5011 	q->limits.max_sectors = queue_max_hw_sectors(q);
5012 	blk_queue_max_segments(q, USHRT_MAX);
5013 	blk_queue_max_segment_size(q, UINT_MAX);
5014 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5015 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5016 
5017 	if (rbd_dev->opts->trim) {
5018 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5019 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5020 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5021 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5022 	}
5023 
5024 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5025 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5026 
5027 	/*
5028 	 * disk_release() expects a queue ref from add_disk() and will
5029 	 * put it.  Hold an extra ref until add_disk() is called.
5030 	 */
5031 	WARN_ON(!blk_get_queue(q));
5032 	disk->queue = q;
5033 	q->queuedata = rbd_dev;
5034 
5035 	rbd_dev->disk = disk;
5036 
5037 	return 0;
5038 out_tag_set:
5039 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5040 out_disk:
5041 	put_disk(disk);
5042 	return err;
5043 }
5044 
5045 /*
5046   sysfs
5047 */
5048 
5049 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5050 {
5051 	return container_of(dev, struct rbd_device, dev);
5052 }
5053 
5054 static ssize_t rbd_size_show(struct device *dev,
5055 			     struct device_attribute *attr, char *buf)
5056 {
5057 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5058 
5059 	return sprintf(buf, "%llu\n",
5060 		(unsigned long long)rbd_dev->mapping.size);
5061 }
5062 
5063 static ssize_t rbd_features_show(struct device *dev,
5064 			     struct device_attribute *attr, char *buf)
5065 {
5066 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067 
5068 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5069 }
5070 
5071 static ssize_t rbd_major_show(struct device *dev,
5072 			      struct device_attribute *attr, char *buf)
5073 {
5074 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5075 
5076 	if (rbd_dev->major)
5077 		return sprintf(buf, "%d\n", rbd_dev->major);
5078 
5079 	return sprintf(buf, "(none)\n");
5080 }
5081 
5082 static ssize_t rbd_minor_show(struct device *dev,
5083 			      struct device_attribute *attr, char *buf)
5084 {
5085 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5086 
5087 	return sprintf(buf, "%d\n", rbd_dev->minor);
5088 }
5089 
5090 static ssize_t rbd_client_addr_show(struct device *dev,
5091 				    struct device_attribute *attr, char *buf)
5092 {
5093 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5094 	struct ceph_entity_addr *client_addr =
5095 	    ceph_client_addr(rbd_dev->rbd_client->client);
5096 
5097 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5098 		       le32_to_cpu(client_addr->nonce));
5099 }
5100 
5101 static ssize_t rbd_client_id_show(struct device *dev,
5102 				  struct device_attribute *attr, char *buf)
5103 {
5104 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5105 
5106 	return sprintf(buf, "client%lld\n",
5107 		       ceph_client_gid(rbd_dev->rbd_client->client));
5108 }
5109 
5110 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5111 				     struct device_attribute *attr, char *buf)
5112 {
5113 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114 
5115 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5116 }
5117 
5118 static ssize_t rbd_config_info_show(struct device *dev,
5119 				    struct device_attribute *attr, char *buf)
5120 {
5121 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5122 
5123 	if (!capable(CAP_SYS_ADMIN))
5124 		return -EPERM;
5125 
5126 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5127 }
5128 
5129 static ssize_t rbd_pool_show(struct device *dev,
5130 			     struct device_attribute *attr, char *buf)
5131 {
5132 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5133 
5134 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5135 }
5136 
5137 static ssize_t rbd_pool_id_show(struct device *dev,
5138 			     struct device_attribute *attr, char *buf)
5139 {
5140 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5141 
5142 	return sprintf(buf, "%llu\n",
5143 			(unsigned long long) rbd_dev->spec->pool_id);
5144 }
5145 
5146 static ssize_t rbd_pool_ns_show(struct device *dev,
5147 				struct device_attribute *attr, char *buf)
5148 {
5149 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5150 
5151 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5152 }
5153 
5154 static ssize_t rbd_name_show(struct device *dev,
5155 			     struct device_attribute *attr, char *buf)
5156 {
5157 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5158 
5159 	if (rbd_dev->spec->image_name)
5160 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5161 
5162 	return sprintf(buf, "(unknown)\n");
5163 }
5164 
5165 static ssize_t rbd_image_id_show(struct device *dev,
5166 			     struct device_attribute *attr, char *buf)
5167 {
5168 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5169 
5170 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5171 }
5172 
5173 /*
5174  * Shows the name of the currently-mapped snapshot (or
5175  * RBD_SNAP_HEAD_NAME for the base image).
5176  */
5177 static ssize_t rbd_snap_show(struct device *dev,
5178 			     struct device_attribute *attr,
5179 			     char *buf)
5180 {
5181 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5182 
5183 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5184 }
5185 
5186 static ssize_t rbd_snap_id_show(struct device *dev,
5187 				struct device_attribute *attr, char *buf)
5188 {
5189 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5190 
5191 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5192 }
5193 
5194 /*
5195  * For a v2 image, shows the chain of parent images, separated by empty
5196  * lines.  For v1 images or if there is no parent, shows "(no parent
5197  * image)".
5198  */
5199 static ssize_t rbd_parent_show(struct device *dev,
5200 			       struct device_attribute *attr,
5201 			       char *buf)
5202 {
5203 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5204 	ssize_t count = 0;
5205 
5206 	if (!rbd_dev->parent)
5207 		return sprintf(buf, "(no parent image)\n");
5208 
5209 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5210 		struct rbd_spec *spec = rbd_dev->parent_spec;
5211 
5212 		count += sprintf(&buf[count], "%s"
5213 			    "pool_id %llu\npool_name %s\n"
5214 			    "pool_ns %s\n"
5215 			    "image_id %s\nimage_name %s\n"
5216 			    "snap_id %llu\nsnap_name %s\n"
5217 			    "overlap %llu\n",
5218 			    !count ? "" : "\n", /* first? */
5219 			    spec->pool_id, spec->pool_name,
5220 			    spec->pool_ns ?: "",
5221 			    spec->image_id, spec->image_name ?: "(unknown)",
5222 			    spec->snap_id, spec->snap_name,
5223 			    rbd_dev->parent_overlap);
5224 	}
5225 
5226 	return count;
5227 }
5228 
5229 static ssize_t rbd_image_refresh(struct device *dev,
5230 				 struct device_attribute *attr,
5231 				 const char *buf,
5232 				 size_t size)
5233 {
5234 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5235 	int ret;
5236 
5237 	if (!capable(CAP_SYS_ADMIN))
5238 		return -EPERM;
5239 
5240 	ret = rbd_dev_refresh(rbd_dev);
5241 	if (ret)
5242 		return ret;
5243 
5244 	return size;
5245 }
5246 
5247 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5248 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5249 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5250 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5251 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5252 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5253 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5254 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5255 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5256 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5257 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5258 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5259 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5260 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5261 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5262 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5263 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5264 
5265 static struct attribute *rbd_attrs[] = {
5266 	&dev_attr_size.attr,
5267 	&dev_attr_features.attr,
5268 	&dev_attr_major.attr,
5269 	&dev_attr_minor.attr,
5270 	&dev_attr_client_addr.attr,
5271 	&dev_attr_client_id.attr,
5272 	&dev_attr_cluster_fsid.attr,
5273 	&dev_attr_config_info.attr,
5274 	&dev_attr_pool.attr,
5275 	&dev_attr_pool_id.attr,
5276 	&dev_attr_pool_ns.attr,
5277 	&dev_attr_name.attr,
5278 	&dev_attr_image_id.attr,
5279 	&dev_attr_current_snap.attr,
5280 	&dev_attr_snap_id.attr,
5281 	&dev_attr_parent.attr,
5282 	&dev_attr_refresh.attr,
5283 	NULL
5284 };
5285 
5286 static struct attribute_group rbd_attr_group = {
5287 	.attrs = rbd_attrs,
5288 };
5289 
5290 static const struct attribute_group *rbd_attr_groups[] = {
5291 	&rbd_attr_group,
5292 	NULL
5293 };
5294 
5295 static void rbd_dev_release(struct device *dev);
5296 
5297 static const struct device_type rbd_device_type = {
5298 	.name		= "rbd",
5299 	.groups		= rbd_attr_groups,
5300 	.release	= rbd_dev_release,
5301 };
5302 
5303 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5304 {
5305 	kref_get(&spec->kref);
5306 
5307 	return spec;
5308 }
5309 
5310 static void rbd_spec_free(struct kref *kref);
5311 static void rbd_spec_put(struct rbd_spec *spec)
5312 {
5313 	if (spec)
5314 		kref_put(&spec->kref, rbd_spec_free);
5315 }
5316 
5317 static struct rbd_spec *rbd_spec_alloc(void)
5318 {
5319 	struct rbd_spec *spec;
5320 
5321 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5322 	if (!spec)
5323 		return NULL;
5324 
5325 	spec->pool_id = CEPH_NOPOOL;
5326 	spec->snap_id = CEPH_NOSNAP;
5327 	kref_init(&spec->kref);
5328 
5329 	return spec;
5330 }
5331 
5332 static void rbd_spec_free(struct kref *kref)
5333 {
5334 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5335 
5336 	kfree(spec->pool_name);
5337 	kfree(spec->pool_ns);
5338 	kfree(spec->image_id);
5339 	kfree(spec->image_name);
5340 	kfree(spec->snap_name);
5341 	kfree(spec);
5342 }
5343 
5344 static void rbd_dev_free(struct rbd_device *rbd_dev)
5345 {
5346 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5347 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5348 
5349 	ceph_oid_destroy(&rbd_dev->header_oid);
5350 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5351 	kfree(rbd_dev->config_info);
5352 
5353 	rbd_put_client(rbd_dev->rbd_client);
5354 	rbd_spec_put(rbd_dev->spec);
5355 	kfree(rbd_dev->opts);
5356 	kfree(rbd_dev);
5357 }
5358 
5359 static void rbd_dev_release(struct device *dev)
5360 {
5361 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5362 	bool need_put = !!rbd_dev->opts;
5363 
5364 	if (need_put) {
5365 		destroy_workqueue(rbd_dev->task_wq);
5366 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5367 	}
5368 
5369 	rbd_dev_free(rbd_dev);
5370 
5371 	/*
5372 	 * This is racy, but way better than putting module outside of
5373 	 * the release callback.  The race window is pretty small, so
5374 	 * doing something similar to dm (dm-builtin.c) is overkill.
5375 	 */
5376 	if (need_put)
5377 		module_put(THIS_MODULE);
5378 }
5379 
5380 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5381 					   struct rbd_spec *spec)
5382 {
5383 	struct rbd_device *rbd_dev;
5384 
5385 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5386 	if (!rbd_dev)
5387 		return NULL;
5388 
5389 	spin_lock_init(&rbd_dev->lock);
5390 	INIT_LIST_HEAD(&rbd_dev->node);
5391 	init_rwsem(&rbd_dev->header_rwsem);
5392 
5393 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5394 	ceph_oid_init(&rbd_dev->header_oid);
5395 	rbd_dev->header_oloc.pool = spec->pool_id;
5396 	if (spec->pool_ns) {
5397 		WARN_ON(!*spec->pool_ns);
5398 		rbd_dev->header_oloc.pool_ns =
5399 		    ceph_find_or_create_string(spec->pool_ns,
5400 					       strlen(spec->pool_ns));
5401 	}
5402 
5403 	mutex_init(&rbd_dev->watch_mutex);
5404 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5405 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5406 
5407 	init_rwsem(&rbd_dev->lock_rwsem);
5408 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5409 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5410 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5411 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5412 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5413 	spin_lock_init(&rbd_dev->lock_lists_lock);
5414 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5415 	INIT_LIST_HEAD(&rbd_dev->running_list);
5416 	init_completion(&rbd_dev->acquire_wait);
5417 	init_completion(&rbd_dev->releasing_wait);
5418 
5419 	spin_lock_init(&rbd_dev->object_map_lock);
5420 
5421 	rbd_dev->dev.bus = &rbd_bus_type;
5422 	rbd_dev->dev.type = &rbd_device_type;
5423 	rbd_dev->dev.parent = &rbd_root_dev;
5424 	device_initialize(&rbd_dev->dev);
5425 
5426 	rbd_dev->rbd_client = rbdc;
5427 	rbd_dev->spec = spec;
5428 
5429 	return rbd_dev;
5430 }
5431 
5432 /*
5433  * Create a mapping rbd_dev.
5434  */
5435 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5436 					 struct rbd_spec *spec,
5437 					 struct rbd_options *opts)
5438 {
5439 	struct rbd_device *rbd_dev;
5440 
5441 	rbd_dev = __rbd_dev_create(rbdc, spec);
5442 	if (!rbd_dev)
5443 		return NULL;
5444 
5445 	rbd_dev->opts = opts;
5446 
5447 	/* get an id and fill in device name */
5448 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5449 					 minor_to_rbd_dev_id(1 << MINORBITS),
5450 					 GFP_KERNEL);
5451 	if (rbd_dev->dev_id < 0)
5452 		goto fail_rbd_dev;
5453 
5454 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5455 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5456 						   rbd_dev->name);
5457 	if (!rbd_dev->task_wq)
5458 		goto fail_dev_id;
5459 
5460 	/* we have a ref from do_rbd_add() */
5461 	__module_get(THIS_MODULE);
5462 
5463 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5464 	return rbd_dev;
5465 
5466 fail_dev_id:
5467 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5468 fail_rbd_dev:
5469 	rbd_dev_free(rbd_dev);
5470 	return NULL;
5471 }
5472 
5473 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5474 {
5475 	if (rbd_dev)
5476 		put_device(&rbd_dev->dev);
5477 }
5478 
5479 /*
5480  * Get the size and object order for an image snapshot, or if
5481  * snap_id is CEPH_NOSNAP, gets this information for the base
5482  * image.
5483  */
5484 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5485 				u8 *order, u64 *snap_size)
5486 {
5487 	__le64 snapid = cpu_to_le64(snap_id);
5488 	int ret;
5489 	struct {
5490 		u8 order;
5491 		__le64 size;
5492 	} __attribute__ ((packed)) size_buf = { 0 };
5493 
5494 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5495 				  &rbd_dev->header_oloc, "get_size",
5496 				  &snapid, sizeof(snapid),
5497 				  &size_buf, sizeof(size_buf));
5498 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5499 	if (ret < 0)
5500 		return ret;
5501 	if (ret < sizeof (size_buf))
5502 		return -ERANGE;
5503 
5504 	if (order) {
5505 		*order = size_buf.order;
5506 		dout("  order %u", (unsigned int)*order);
5507 	}
5508 	*snap_size = le64_to_cpu(size_buf.size);
5509 
5510 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5511 		(unsigned long long)snap_id,
5512 		(unsigned long long)*snap_size);
5513 
5514 	return 0;
5515 }
5516 
5517 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5518 {
5519 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5520 					&rbd_dev->header.obj_order,
5521 					&rbd_dev->header.image_size);
5522 }
5523 
5524 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5525 {
5526 	size_t size;
5527 	void *reply_buf;
5528 	int ret;
5529 	void *p;
5530 
5531 	/* Response will be an encoded string, which includes a length */
5532 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5533 	reply_buf = kzalloc(size, GFP_KERNEL);
5534 	if (!reply_buf)
5535 		return -ENOMEM;
5536 
5537 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5538 				  &rbd_dev->header_oloc, "get_object_prefix",
5539 				  NULL, 0, reply_buf, size);
5540 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5541 	if (ret < 0)
5542 		goto out;
5543 
5544 	p = reply_buf;
5545 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5546 						p + ret, NULL, GFP_NOIO);
5547 	ret = 0;
5548 
5549 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5550 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5551 		rbd_dev->header.object_prefix = NULL;
5552 	} else {
5553 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5554 	}
5555 out:
5556 	kfree(reply_buf);
5557 
5558 	return ret;
5559 }
5560 
5561 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5562 				     bool read_only, u64 *snap_features)
5563 {
5564 	struct {
5565 		__le64 snap_id;
5566 		u8 read_only;
5567 	} features_in;
5568 	struct {
5569 		__le64 features;
5570 		__le64 incompat;
5571 	} __attribute__ ((packed)) features_buf = { 0 };
5572 	u64 unsup;
5573 	int ret;
5574 
5575 	features_in.snap_id = cpu_to_le64(snap_id);
5576 	features_in.read_only = read_only;
5577 
5578 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5579 				  &rbd_dev->header_oloc, "get_features",
5580 				  &features_in, sizeof(features_in),
5581 				  &features_buf, sizeof(features_buf));
5582 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5583 	if (ret < 0)
5584 		return ret;
5585 	if (ret < sizeof (features_buf))
5586 		return -ERANGE;
5587 
5588 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5589 	if (unsup) {
5590 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5591 			 unsup);
5592 		return -ENXIO;
5593 	}
5594 
5595 	*snap_features = le64_to_cpu(features_buf.features);
5596 
5597 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5598 		(unsigned long long)snap_id,
5599 		(unsigned long long)*snap_features,
5600 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5601 
5602 	return 0;
5603 }
5604 
5605 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5606 {
5607 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5608 					 rbd_is_ro(rbd_dev),
5609 					 &rbd_dev->header.features);
5610 }
5611 
5612 /*
5613  * These are generic image flags, but since they are used only for
5614  * object map, store them in rbd_dev->object_map_flags.
5615  *
5616  * For the same reason, this function is called only on object map
5617  * (re)load and not on header refresh.
5618  */
5619 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5620 {
5621 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5622 	__le64 flags;
5623 	int ret;
5624 
5625 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5626 				  &rbd_dev->header_oloc, "get_flags",
5627 				  &snapid, sizeof(snapid),
5628 				  &flags, sizeof(flags));
5629 	if (ret < 0)
5630 		return ret;
5631 	if (ret < sizeof(flags))
5632 		return -EBADMSG;
5633 
5634 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5635 	return 0;
5636 }
5637 
5638 struct parent_image_info {
5639 	u64		pool_id;
5640 	const char	*pool_ns;
5641 	const char	*image_id;
5642 	u64		snap_id;
5643 
5644 	bool		has_overlap;
5645 	u64		overlap;
5646 };
5647 
5648 /*
5649  * The caller is responsible for @pii.
5650  */
5651 static int decode_parent_image_spec(void **p, void *end,
5652 				    struct parent_image_info *pii)
5653 {
5654 	u8 struct_v;
5655 	u32 struct_len;
5656 	int ret;
5657 
5658 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5659 				  &struct_v, &struct_len);
5660 	if (ret)
5661 		return ret;
5662 
5663 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5664 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5665 	if (IS_ERR(pii->pool_ns)) {
5666 		ret = PTR_ERR(pii->pool_ns);
5667 		pii->pool_ns = NULL;
5668 		return ret;
5669 	}
5670 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5671 	if (IS_ERR(pii->image_id)) {
5672 		ret = PTR_ERR(pii->image_id);
5673 		pii->image_id = NULL;
5674 		return ret;
5675 	}
5676 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5677 	return 0;
5678 
5679 e_inval:
5680 	return -EINVAL;
5681 }
5682 
5683 static int __get_parent_info(struct rbd_device *rbd_dev,
5684 			     struct page *req_page,
5685 			     struct page *reply_page,
5686 			     struct parent_image_info *pii)
5687 {
5688 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5689 	size_t reply_len = PAGE_SIZE;
5690 	void *p, *end;
5691 	int ret;
5692 
5693 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5694 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5695 			     req_page, sizeof(u64), &reply_page, &reply_len);
5696 	if (ret)
5697 		return ret == -EOPNOTSUPP ? 1 : ret;
5698 
5699 	p = page_address(reply_page);
5700 	end = p + reply_len;
5701 	ret = decode_parent_image_spec(&p, end, pii);
5702 	if (ret)
5703 		return ret;
5704 
5705 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5706 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5707 			     req_page, sizeof(u64), &reply_page, &reply_len);
5708 	if (ret)
5709 		return ret;
5710 
5711 	p = page_address(reply_page);
5712 	end = p + reply_len;
5713 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5714 	if (pii->has_overlap)
5715 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5716 
5717 	return 0;
5718 
5719 e_inval:
5720 	return -EINVAL;
5721 }
5722 
5723 /*
5724  * The caller is responsible for @pii.
5725  */
5726 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5727 				    struct page *req_page,
5728 				    struct page *reply_page,
5729 				    struct parent_image_info *pii)
5730 {
5731 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5732 	size_t reply_len = PAGE_SIZE;
5733 	void *p, *end;
5734 	int ret;
5735 
5736 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5737 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5738 			     req_page, sizeof(u64), &reply_page, &reply_len);
5739 	if (ret)
5740 		return ret;
5741 
5742 	p = page_address(reply_page);
5743 	end = p + reply_len;
5744 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5745 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5746 	if (IS_ERR(pii->image_id)) {
5747 		ret = PTR_ERR(pii->image_id);
5748 		pii->image_id = NULL;
5749 		return ret;
5750 	}
5751 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5752 	pii->has_overlap = true;
5753 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5754 
5755 	return 0;
5756 
5757 e_inval:
5758 	return -EINVAL;
5759 }
5760 
5761 static int get_parent_info(struct rbd_device *rbd_dev,
5762 			   struct parent_image_info *pii)
5763 {
5764 	struct page *req_page, *reply_page;
5765 	void *p;
5766 	int ret;
5767 
5768 	req_page = alloc_page(GFP_KERNEL);
5769 	if (!req_page)
5770 		return -ENOMEM;
5771 
5772 	reply_page = alloc_page(GFP_KERNEL);
5773 	if (!reply_page) {
5774 		__free_page(req_page);
5775 		return -ENOMEM;
5776 	}
5777 
5778 	p = page_address(req_page);
5779 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5780 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5781 	if (ret > 0)
5782 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5783 					       pii);
5784 
5785 	__free_page(req_page);
5786 	__free_page(reply_page);
5787 	return ret;
5788 }
5789 
5790 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5791 {
5792 	struct rbd_spec *parent_spec;
5793 	struct parent_image_info pii = { 0 };
5794 	int ret;
5795 
5796 	parent_spec = rbd_spec_alloc();
5797 	if (!parent_spec)
5798 		return -ENOMEM;
5799 
5800 	ret = get_parent_info(rbd_dev, &pii);
5801 	if (ret)
5802 		goto out_err;
5803 
5804 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5805 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5806 	     pii.has_overlap, pii.overlap);
5807 
5808 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5809 		/*
5810 		 * Either the parent never existed, or we have
5811 		 * record of it but the image got flattened so it no
5812 		 * longer has a parent.  When the parent of a
5813 		 * layered image disappears we immediately set the
5814 		 * overlap to 0.  The effect of this is that all new
5815 		 * requests will be treated as if the image had no
5816 		 * parent.
5817 		 *
5818 		 * If !pii.has_overlap, the parent image spec is not
5819 		 * applicable.  It's there to avoid duplication in each
5820 		 * snapshot record.
5821 		 */
5822 		if (rbd_dev->parent_overlap) {
5823 			rbd_dev->parent_overlap = 0;
5824 			rbd_dev_parent_put(rbd_dev);
5825 			pr_info("%s: clone image has been flattened\n",
5826 				rbd_dev->disk->disk_name);
5827 		}
5828 
5829 		goto out;	/* No parent?  No problem. */
5830 	}
5831 
5832 	/* The ceph file layout needs to fit pool id in 32 bits */
5833 
5834 	ret = -EIO;
5835 	if (pii.pool_id > (u64)U32_MAX) {
5836 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5837 			(unsigned long long)pii.pool_id, U32_MAX);
5838 		goto out_err;
5839 	}
5840 
5841 	/*
5842 	 * The parent won't change (except when the clone is
5843 	 * flattened, already handled that).  So we only need to
5844 	 * record the parent spec we have not already done so.
5845 	 */
5846 	if (!rbd_dev->parent_spec) {
5847 		parent_spec->pool_id = pii.pool_id;
5848 		if (pii.pool_ns && *pii.pool_ns) {
5849 			parent_spec->pool_ns = pii.pool_ns;
5850 			pii.pool_ns = NULL;
5851 		}
5852 		parent_spec->image_id = pii.image_id;
5853 		pii.image_id = NULL;
5854 		parent_spec->snap_id = pii.snap_id;
5855 
5856 		rbd_dev->parent_spec = parent_spec;
5857 		parent_spec = NULL;	/* rbd_dev now owns this */
5858 	}
5859 
5860 	/*
5861 	 * We always update the parent overlap.  If it's zero we issue
5862 	 * a warning, as we will proceed as if there was no parent.
5863 	 */
5864 	if (!pii.overlap) {
5865 		if (parent_spec) {
5866 			/* refresh, careful to warn just once */
5867 			if (rbd_dev->parent_overlap)
5868 				rbd_warn(rbd_dev,
5869 				    "clone now standalone (overlap became 0)");
5870 		} else {
5871 			/* initial probe */
5872 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5873 		}
5874 	}
5875 	rbd_dev->parent_overlap = pii.overlap;
5876 
5877 out:
5878 	ret = 0;
5879 out_err:
5880 	kfree(pii.pool_ns);
5881 	kfree(pii.image_id);
5882 	rbd_spec_put(parent_spec);
5883 	return ret;
5884 }
5885 
5886 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5887 {
5888 	struct {
5889 		__le64 stripe_unit;
5890 		__le64 stripe_count;
5891 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5892 	size_t size = sizeof (striping_info_buf);
5893 	void *p;
5894 	int ret;
5895 
5896 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5897 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5898 				NULL, 0, &striping_info_buf, size);
5899 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5900 	if (ret < 0)
5901 		return ret;
5902 	if (ret < size)
5903 		return -ERANGE;
5904 
5905 	p = &striping_info_buf;
5906 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5907 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5908 	return 0;
5909 }
5910 
5911 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5912 {
5913 	__le64 data_pool_id;
5914 	int ret;
5915 
5916 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5917 				  &rbd_dev->header_oloc, "get_data_pool",
5918 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5919 	if (ret < 0)
5920 		return ret;
5921 	if (ret < sizeof(data_pool_id))
5922 		return -EBADMSG;
5923 
5924 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5925 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5926 	return 0;
5927 }
5928 
5929 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5930 {
5931 	CEPH_DEFINE_OID_ONSTACK(oid);
5932 	size_t image_id_size;
5933 	char *image_id;
5934 	void *p;
5935 	void *end;
5936 	size_t size;
5937 	void *reply_buf = NULL;
5938 	size_t len = 0;
5939 	char *image_name = NULL;
5940 	int ret;
5941 
5942 	rbd_assert(!rbd_dev->spec->image_name);
5943 
5944 	len = strlen(rbd_dev->spec->image_id);
5945 	image_id_size = sizeof (__le32) + len;
5946 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5947 	if (!image_id)
5948 		return NULL;
5949 
5950 	p = image_id;
5951 	end = image_id + image_id_size;
5952 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5953 
5954 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5955 	reply_buf = kmalloc(size, GFP_KERNEL);
5956 	if (!reply_buf)
5957 		goto out;
5958 
5959 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5960 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5961 				  "dir_get_name", image_id, image_id_size,
5962 				  reply_buf, size);
5963 	if (ret < 0)
5964 		goto out;
5965 	p = reply_buf;
5966 	end = reply_buf + ret;
5967 
5968 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5969 	if (IS_ERR(image_name))
5970 		image_name = NULL;
5971 	else
5972 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5973 out:
5974 	kfree(reply_buf);
5975 	kfree(image_id);
5976 
5977 	return image_name;
5978 }
5979 
5980 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5981 {
5982 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5983 	const char *snap_name;
5984 	u32 which = 0;
5985 
5986 	/* Skip over names until we find the one we are looking for */
5987 
5988 	snap_name = rbd_dev->header.snap_names;
5989 	while (which < snapc->num_snaps) {
5990 		if (!strcmp(name, snap_name))
5991 			return snapc->snaps[which];
5992 		snap_name += strlen(snap_name) + 1;
5993 		which++;
5994 	}
5995 	return CEPH_NOSNAP;
5996 }
5997 
5998 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5999 {
6000 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6001 	u32 which;
6002 	bool found = false;
6003 	u64 snap_id;
6004 
6005 	for (which = 0; !found && which < snapc->num_snaps; which++) {
6006 		const char *snap_name;
6007 
6008 		snap_id = snapc->snaps[which];
6009 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6010 		if (IS_ERR(snap_name)) {
6011 			/* ignore no-longer existing snapshots */
6012 			if (PTR_ERR(snap_name) == -ENOENT)
6013 				continue;
6014 			else
6015 				break;
6016 		}
6017 		found = !strcmp(name, snap_name);
6018 		kfree(snap_name);
6019 	}
6020 	return found ? snap_id : CEPH_NOSNAP;
6021 }
6022 
6023 /*
6024  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6025  * no snapshot by that name is found, or if an error occurs.
6026  */
6027 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6028 {
6029 	if (rbd_dev->image_format == 1)
6030 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6031 
6032 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6033 }
6034 
6035 /*
6036  * An image being mapped will have everything but the snap id.
6037  */
6038 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6039 {
6040 	struct rbd_spec *spec = rbd_dev->spec;
6041 
6042 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6043 	rbd_assert(spec->image_id && spec->image_name);
6044 	rbd_assert(spec->snap_name);
6045 
6046 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6047 		u64 snap_id;
6048 
6049 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6050 		if (snap_id == CEPH_NOSNAP)
6051 			return -ENOENT;
6052 
6053 		spec->snap_id = snap_id;
6054 	} else {
6055 		spec->snap_id = CEPH_NOSNAP;
6056 	}
6057 
6058 	return 0;
6059 }
6060 
6061 /*
6062  * A parent image will have all ids but none of the names.
6063  *
6064  * All names in an rbd spec are dynamically allocated.  It's OK if we
6065  * can't figure out the name for an image id.
6066  */
6067 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6068 {
6069 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6070 	struct rbd_spec *spec = rbd_dev->spec;
6071 	const char *pool_name;
6072 	const char *image_name;
6073 	const char *snap_name;
6074 	int ret;
6075 
6076 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6077 	rbd_assert(spec->image_id);
6078 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6079 
6080 	/* Get the pool name; we have to make our own copy of this */
6081 
6082 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6083 	if (!pool_name) {
6084 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6085 		return -EIO;
6086 	}
6087 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6088 	if (!pool_name)
6089 		return -ENOMEM;
6090 
6091 	/* Fetch the image name; tolerate failure here */
6092 
6093 	image_name = rbd_dev_image_name(rbd_dev);
6094 	if (!image_name)
6095 		rbd_warn(rbd_dev, "unable to get image name");
6096 
6097 	/* Fetch the snapshot name */
6098 
6099 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6100 	if (IS_ERR(snap_name)) {
6101 		ret = PTR_ERR(snap_name);
6102 		goto out_err;
6103 	}
6104 
6105 	spec->pool_name = pool_name;
6106 	spec->image_name = image_name;
6107 	spec->snap_name = snap_name;
6108 
6109 	return 0;
6110 
6111 out_err:
6112 	kfree(image_name);
6113 	kfree(pool_name);
6114 	return ret;
6115 }
6116 
6117 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6118 {
6119 	size_t size;
6120 	int ret;
6121 	void *reply_buf;
6122 	void *p;
6123 	void *end;
6124 	u64 seq;
6125 	u32 snap_count;
6126 	struct ceph_snap_context *snapc;
6127 	u32 i;
6128 
6129 	/*
6130 	 * We'll need room for the seq value (maximum snapshot id),
6131 	 * snapshot count, and array of that many snapshot ids.
6132 	 * For now we have a fixed upper limit on the number we're
6133 	 * prepared to receive.
6134 	 */
6135 	size = sizeof (__le64) + sizeof (__le32) +
6136 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6137 	reply_buf = kzalloc(size, GFP_KERNEL);
6138 	if (!reply_buf)
6139 		return -ENOMEM;
6140 
6141 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6142 				  &rbd_dev->header_oloc, "get_snapcontext",
6143 				  NULL, 0, reply_buf, size);
6144 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6145 	if (ret < 0)
6146 		goto out;
6147 
6148 	p = reply_buf;
6149 	end = reply_buf + ret;
6150 	ret = -ERANGE;
6151 	ceph_decode_64_safe(&p, end, seq, out);
6152 	ceph_decode_32_safe(&p, end, snap_count, out);
6153 
6154 	/*
6155 	 * Make sure the reported number of snapshot ids wouldn't go
6156 	 * beyond the end of our buffer.  But before checking that,
6157 	 * make sure the computed size of the snapshot context we
6158 	 * allocate is representable in a size_t.
6159 	 */
6160 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6161 				 / sizeof (u64)) {
6162 		ret = -EINVAL;
6163 		goto out;
6164 	}
6165 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6166 		goto out;
6167 	ret = 0;
6168 
6169 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6170 	if (!snapc) {
6171 		ret = -ENOMEM;
6172 		goto out;
6173 	}
6174 	snapc->seq = seq;
6175 	for (i = 0; i < snap_count; i++)
6176 		snapc->snaps[i] = ceph_decode_64(&p);
6177 
6178 	ceph_put_snap_context(rbd_dev->header.snapc);
6179 	rbd_dev->header.snapc = snapc;
6180 
6181 	dout("  snap context seq = %llu, snap_count = %u\n",
6182 		(unsigned long long)seq, (unsigned int)snap_count);
6183 out:
6184 	kfree(reply_buf);
6185 
6186 	return ret;
6187 }
6188 
6189 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6190 					u64 snap_id)
6191 {
6192 	size_t size;
6193 	void *reply_buf;
6194 	__le64 snapid;
6195 	int ret;
6196 	void *p;
6197 	void *end;
6198 	char *snap_name;
6199 
6200 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6201 	reply_buf = kmalloc(size, GFP_KERNEL);
6202 	if (!reply_buf)
6203 		return ERR_PTR(-ENOMEM);
6204 
6205 	snapid = cpu_to_le64(snap_id);
6206 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6207 				  &rbd_dev->header_oloc, "get_snapshot_name",
6208 				  &snapid, sizeof(snapid), reply_buf, size);
6209 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6210 	if (ret < 0) {
6211 		snap_name = ERR_PTR(ret);
6212 		goto out;
6213 	}
6214 
6215 	p = reply_buf;
6216 	end = reply_buf + ret;
6217 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6218 	if (IS_ERR(snap_name))
6219 		goto out;
6220 
6221 	dout("  snap_id 0x%016llx snap_name = %s\n",
6222 		(unsigned long long)snap_id, snap_name);
6223 out:
6224 	kfree(reply_buf);
6225 
6226 	return snap_name;
6227 }
6228 
6229 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6230 {
6231 	bool first_time = rbd_dev->header.object_prefix == NULL;
6232 	int ret;
6233 
6234 	ret = rbd_dev_v2_image_size(rbd_dev);
6235 	if (ret)
6236 		return ret;
6237 
6238 	if (first_time) {
6239 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6240 		if (ret)
6241 			return ret;
6242 	}
6243 
6244 	ret = rbd_dev_v2_snap_context(rbd_dev);
6245 	if (ret && first_time) {
6246 		kfree(rbd_dev->header.object_prefix);
6247 		rbd_dev->header.object_prefix = NULL;
6248 	}
6249 
6250 	return ret;
6251 }
6252 
6253 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6254 {
6255 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6256 
6257 	if (rbd_dev->image_format == 1)
6258 		return rbd_dev_v1_header_info(rbd_dev);
6259 
6260 	return rbd_dev_v2_header_info(rbd_dev);
6261 }
6262 
6263 /*
6264  * Skips over white space at *buf, and updates *buf to point to the
6265  * first found non-space character (if any). Returns the length of
6266  * the token (string of non-white space characters) found.  Note
6267  * that *buf must be terminated with '\0'.
6268  */
6269 static inline size_t next_token(const char **buf)
6270 {
6271         /*
6272         * These are the characters that produce nonzero for
6273         * isspace() in the "C" and "POSIX" locales.
6274         */
6275         const char *spaces = " \f\n\r\t\v";
6276 
6277         *buf += strspn(*buf, spaces);	/* Find start of token */
6278 
6279 	return strcspn(*buf, spaces);   /* Return token length */
6280 }
6281 
6282 /*
6283  * Finds the next token in *buf, dynamically allocates a buffer big
6284  * enough to hold a copy of it, and copies the token into the new
6285  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6286  * that a duplicate buffer is created even for a zero-length token.
6287  *
6288  * Returns a pointer to the newly-allocated duplicate, or a null
6289  * pointer if memory for the duplicate was not available.  If
6290  * the lenp argument is a non-null pointer, the length of the token
6291  * (not including the '\0') is returned in *lenp.
6292  *
6293  * If successful, the *buf pointer will be updated to point beyond
6294  * the end of the found token.
6295  *
6296  * Note: uses GFP_KERNEL for allocation.
6297  */
6298 static inline char *dup_token(const char **buf, size_t *lenp)
6299 {
6300 	char *dup;
6301 	size_t len;
6302 
6303 	len = next_token(buf);
6304 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6305 	if (!dup)
6306 		return NULL;
6307 	*(dup + len) = '\0';
6308 	*buf += len;
6309 
6310 	if (lenp)
6311 		*lenp = len;
6312 
6313 	return dup;
6314 }
6315 
6316 static int rbd_parse_param(struct fs_parameter *param,
6317 			    struct rbd_parse_opts_ctx *pctx)
6318 {
6319 	struct rbd_options *opt = pctx->opts;
6320 	struct fs_parse_result result;
6321 	struct p_log log = {.prefix = "rbd"};
6322 	int token, ret;
6323 
6324 	ret = ceph_parse_param(param, pctx->copts, NULL);
6325 	if (ret != -ENOPARAM)
6326 		return ret;
6327 
6328 	token = __fs_parse(&log, rbd_parameters, param, &result);
6329 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6330 	if (token < 0) {
6331 		if (token == -ENOPARAM)
6332 			return inval_plog(&log, "Unknown parameter '%s'",
6333 					  param->key);
6334 		return token;
6335 	}
6336 
6337 	switch (token) {
6338 	case Opt_queue_depth:
6339 		if (result.uint_32 < 1)
6340 			goto out_of_range;
6341 		opt->queue_depth = result.uint_32;
6342 		break;
6343 	case Opt_alloc_size:
6344 		if (result.uint_32 < SECTOR_SIZE)
6345 			goto out_of_range;
6346 		if (!is_power_of_2(result.uint_32))
6347 			return inval_plog(&log, "alloc_size must be a power of 2");
6348 		opt->alloc_size = result.uint_32;
6349 		break;
6350 	case Opt_lock_timeout:
6351 		/* 0 is "wait forever" (i.e. infinite timeout) */
6352 		if (result.uint_32 > INT_MAX / 1000)
6353 			goto out_of_range;
6354 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6355 		break;
6356 	case Opt_pool_ns:
6357 		kfree(pctx->spec->pool_ns);
6358 		pctx->spec->pool_ns = param->string;
6359 		param->string = NULL;
6360 		break;
6361 	case Opt_compression_hint:
6362 		switch (result.uint_32) {
6363 		case Opt_compression_hint_none:
6364 			opt->alloc_hint_flags &=
6365 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6366 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6367 			break;
6368 		case Opt_compression_hint_compressible:
6369 			opt->alloc_hint_flags |=
6370 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371 			opt->alloc_hint_flags &=
6372 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6373 			break;
6374 		case Opt_compression_hint_incompressible:
6375 			opt->alloc_hint_flags |=
6376 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6377 			opt->alloc_hint_flags &=
6378 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6379 			break;
6380 		default:
6381 			BUG();
6382 		}
6383 		break;
6384 	case Opt_read_only:
6385 		opt->read_only = true;
6386 		break;
6387 	case Opt_read_write:
6388 		opt->read_only = false;
6389 		break;
6390 	case Opt_lock_on_read:
6391 		opt->lock_on_read = true;
6392 		break;
6393 	case Opt_exclusive:
6394 		opt->exclusive = true;
6395 		break;
6396 	case Opt_notrim:
6397 		opt->trim = false;
6398 		break;
6399 	default:
6400 		BUG();
6401 	}
6402 
6403 	return 0;
6404 
6405 out_of_range:
6406 	return inval_plog(&log, "%s out of range", param->key);
6407 }
6408 
6409 /*
6410  * This duplicates most of generic_parse_monolithic(), untying it from
6411  * fs_context and skipping standard superblock and security options.
6412  */
6413 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6414 {
6415 	char *key;
6416 	int ret = 0;
6417 
6418 	dout("%s '%s'\n", __func__, options);
6419 	while ((key = strsep(&options, ",")) != NULL) {
6420 		if (*key) {
6421 			struct fs_parameter param = {
6422 				.key	= key,
6423 				.type	= fs_value_is_flag,
6424 			};
6425 			char *value = strchr(key, '=');
6426 			size_t v_len = 0;
6427 
6428 			if (value) {
6429 				if (value == key)
6430 					continue;
6431 				*value++ = 0;
6432 				v_len = strlen(value);
6433 				param.string = kmemdup_nul(value, v_len,
6434 							   GFP_KERNEL);
6435 				if (!param.string)
6436 					return -ENOMEM;
6437 				param.type = fs_value_is_string;
6438 			}
6439 			param.size = v_len;
6440 
6441 			ret = rbd_parse_param(&param, pctx);
6442 			kfree(param.string);
6443 			if (ret)
6444 				break;
6445 		}
6446 	}
6447 
6448 	return ret;
6449 }
6450 
6451 /*
6452  * Parse the options provided for an "rbd add" (i.e., rbd image
6453  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6454  * and the data written is passed here via a NUL-terminated buffer.
6455  * Returns 0 if successful or an error code otherwise.
6456  *
6457  * The information extracted from these options is recorded in
6458  * the other parameters which return dynamically-allocated
6459  * structures:
6460  *  ceph_opts
6461  *      The address of a pointer that will refer to a ceph options
6462  *      structure.  Caller must release the returned pointer using
6463  *      ceph_destroy_options() when it is no longer needed.
6464  *  rbd_opts
6465  *	Address of an rbd options pointer.  Fully initialized by
6466  *	this function; caller must release with kfree().
6467  *  spec
6468  *	Address of an rbd image specification pointer.  Fully
6469  *	initialized by this function based on parsed options.
6470  *	Caller must release with rbd_spec_put().
6471  *
6472  * The options passed take this form:
6473  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6474  * where:
6475  *  <mon_addrs>
6476  *      A comma-separated list of one or more monitor addresses.
6477  *      A monitor address is an ip address, optionally followed
6478  *      by a port number (separated by a colon).
6479  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6480  *  <options>
6481  *      A comma-separated list of ceph and/or rbd options.
6482  *  <pool_name>
6483  *      The name of the rados pool containing the rbd image.
6484  *  <image_name>
6485  *      The name of the image in that pool to map.
6486  *  <snap_id>
6487  *      An optional snapshot id.  If provided, the mapping will
6488  *      present data from the image at the time that snapshot was
6489  *      created.  The image head is used if no snapshot id is
6490  *      provided.  Snapshot mappings are always read-only.
6491  */
6492 static int rbd_add_parse_args(const char *buf,
6493 				struct ceph_options **ceph_opts,
6494 				struct rbd_options **opts,
6495 				struct rbd_spec **rbd_spec)
6496 {
6497 	size_t len;
6498 	char *options;
6499 	const char *mon_addrs;
6500 	char *snap_name;
6501 	size_t mon_addrs_size;
6502 	struct rbd_parse_opts_ctx pctx = { 0 };
6503 	int ret;
6504 
6505 	/* The first four tokens are required */
6506 
6507 	len = next_token(&buf);
6508 	if (!len) {
6509 		rbd_warn(NULL, "no monitor address(es) provided");
6510 		return -EINVAL;
6511 	}
6512 	mon_addrs = buf;
6513 	mon_addrs_size = len;
6514 	buf += len;
6515 
6516 	ret = -EINVAL;
6517 	options = dup_token(&buf, NULL);
6518 	if (!options)
6519 		return -ENOMEM;
6520 	if (!*options) {
6521 		rbd_warn(NULL, "no options provided");
6522 		goto out_err;
6523 	}
6524 
6525 	pctx.spec = rbd_spec_alloc();
6526 	if (!pctx.spec)
6527 		goto out_mem;
6528 
6529 	pctx.spec->pool_name = dup_token(&buf, NULL);
6530 	if (!pctx.spec->pool_name)
6531 		goto out_mem;
6532 	if (!*pctx.spec->pool_name) {
6533 		rbd_warn(NULL, "no pool name provided");
6534 		goto out_err;
6535 	}
6536 
6537 	pctx.spec->image_name = dup_token(&buf, NULL);
6538 	if (!pctx.spec->image_name)
6539 		goto out_mem;
6540 	if (!*pctx.spec->image_name) {
6541 		rbd_warn(NULL, "no image name provided");
6542 		goto out_err;
6543 	}
6544 
6545 	/*
6546 	 * Snapshot name is optional; default is to use "-"
6547 	 * (indicating the head/no snapshot).
6548 	 */
6549 	len = next_token(&buf);
6550 	if (!len) {
6551 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6552 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6553 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6554 		ret = -ENAMETOOLONG;
6555 		goto out_err;
6556 	}
6557 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6558 	if (!snap_name)
6559 		goto out_mem;
6560 	*(snap_name + len) = '\0';
6561 	pctx.spec->snap_name = snap_name;
6562 
6563 	pctx.copts = ceph_alloc_options();
6564 	if (!pctx.copts)
6565 		goto out_mem;
6566 
6567 	/* Initialize all rbd options to the defaults */
6568 
6569 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6570 	if (!pctx.opts)
6571 		goto out_mem;
6572 
6573 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6574 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6575 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6576 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6577 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6578 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6579 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6580 
6581 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6582 	if (ret)
6583 		goto out_err;
6584 
6585 	ret = rbd_parse_options(options, &pctx);
6586 	if (ret)
6587 		goto out_err;
6588 
6589 	*ceph_opts = pctx.copts;
6590 	*opts = pctx.opts;
6591 	*rbd_spec = pctx.spec;
6592 	kfree(options);
6593 	return 0;
6594 
6595 out_mem:
6596 	ret = -ENOMEM;
6597 out_err:
6598 	kfree(pctx.opts);
6599 	ceph_destroy_options(pctx.copts);
6600 	rbd_spec_put(pctx.spec);
6601 	kfree(options);
6602 	return ret;
6603 }
6604 
6605 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6606 {
6607 	down_write(&rbd_dev->lock_rwsem);
6608 	if (__rbd_is_lock_owner(rbd_dev))
6609 		__rbd_release_lock(rbd_dev);
6610 	up_write(&rbd_dev->lock_rwsem);
6611 }
6612 
6613 /*
6614  * If the wait is interrupted, an error is returned even if the lock
6615  * was successfully acquired.  rbd_dev_image_unlock() will release it
6616  * if needed.
6617  */
6618 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6619 {
6620 	long ret;
6621 
6622 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6623 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6624 			return 0;
6625 
6626 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6627 		return -EINVAL;
6628 	}
6629 
6630 	if (rbd_is_ro(rbd_dev))
6631 		return 0;
6632 
6633 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6634 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6635 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6636 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6637 	if (ret > 0) {
6638 		ret = rbd_dev->acquire_err;
6639 	} else {
6640 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6641 		if (!ret)
6642 			ret = -ETIMEDOUT;
6643 	}
6644 
6645 	if (ret) {
6646 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6647 		return ret;
6648 	}
6649 
6650 	/*
6651 	 * The lock may have been released by now, unless automatic lock
6652 	 * transitions are disabled.
6653 	 */
6654 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6655 	return 0;
6656 }
6657 
6658 /*
6659  * An rbd format 2 image has a unique identifier, distinct from the
6660  * name given to it by the user.  Internally, that identifier is
6661  * what's used to specify the names of objects related to the image.
6662  *
6663  * A special "rbd id" object is used to map an rbd image name to its
6664  * id.  If that object doesn't exist, then there is no v2 rbd image
6665  * with the supplied name.
6666  *
6667  * This function will record the given rbd_dev's image_id field if
6668  * it can be determined, and in that case will return 0.  If any
6669  * errors occur a negative errno will be returned and the rbd_dev's
6670  * image_id field will be unchanged (and should be NULL).
6671  */
6672 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6673 {
6674 	int ret;
6675 	size_t size;
6676 	CEPH_DEFINE_OID_ONSTACK(oid);
6677 	void *response;
6678 	char *image_id;
6679 
6680 	/*
6681 	 * When probing a parent image, the image id is already
6682 	 * known (and the image name likely is not).  There's no
6683 	 * need to fetch the image id again in this case.  We
6684 	 * do still need to set the image format though.
6685 	 */
6686 	if (rbd_dev->spec->image_id) {
6687 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6688 
6689 		return 0;
6690 	}
6691 
6692 	/*
6693 	 * First, see if the format 2 image id file exists, and if
6694 	 * so, get the image's persistent id from it.
6695 	 */
6696 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6697 			       rbd_dev->spec->image_name);
6698 	if (ret)
6699 		return ret;
6700 
6701 	dout("rbd id object name is %s\n", oid.name);
6702 
6703 	/* Response will be an encoded string, which includes a length */
6704 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6705 	response = kzalloc(size, GFP_NOIO);
6706 	if (!response) {
6707 		ret = -ENOMEM;
6708 		goto out;
6709 	}
6710 
6711 	/* If it doesn't exist we'll assume it's a format 1 image */
6712 
6713 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6714 				  "get_id", NULL, 0,
6715 				  response, size);
6716 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6717 	if (ret == -ENOENT) {
6718 		image_id = kstrdup("", GFP_KERNEL);
6719 		ret = image_id ? 0 : -ENOMEM;
6720 		if (!ret)
6721 			rbd_dev->image_format = 1;
6722 	} else if (ret >= 0) {
6723 		void *p = response;
6724 
6725 		image_id = ceph_extract_encoded_string(&p, p + ret,
6726 						NULL, GFP_NOIO);
6727 		ret = PTR_ERR_OR_ZERO(image_id);
6728 		if (!ret)
6729 			rbd_dev->image_format = 2;
6730 	}
6731 
6732 	if (!ret) {
6733 		rbd_dev->spec->image_id = image_id;
6734 		dout("image_id is %s\n", image_id);
6735 	}
6736 out:
6737 	kfree(response);
6738 	ceph_oid_destroy(&oid);
6739 	return ret;
6740 }
6741 
6742 /*
6743  * Undo whatever state changes are made by v1 or v2 header info
6744  * call.
6745  */
6746 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6747 {
6748 	struct rbd_image_header	*header;
6749 
6750 	rbd_dev_parent_put(rbd_dev);
6751 	rbd_object_map_free(rbd_dev);
6752 	rbd_dev_mapping_clear(rbd_dev);
6753 
6754 	/* Free dynamic fields from the header, then zero it out */
6755 
6756 	header = &rbd_dev->header;
6757 	ceph_put_snap_context(header->snapc);
6758 	kfree(header->snap_sizes);
6759 	kfree(header->snap_names);
6760 	kfree(header->object_prefix);
6761 	memset(header, 0, sizeof (*header));
6762 }
6763 
6764 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6765 {
6766 	int ret;
6767 
6768 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6769 	if (ret)
6770 		goto out_err;
6771 
6772 	/*
6773 	 * Get the and check features for the image.  Currently the
6774 	 * features are assumed to never change.
6775 	 */
6776 	ret = rbd_dev_v2_features(rbd_dev);
6777 	if (ret)
6778 		goto out_err;
6779 
6780 	/* If the image supports fancy striping, get its parameters */
6781 
6782 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6783 		ret = rbd_dev_v2_striping_info(rbd_dev);
6784 		if (ret < 0)
6785 			goto out_err;
6786 	}
6787 
6788 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6789 		ret = rbd_dev_v2_data_pool(rbd_dev);
6790 		if (ret)
6791 			goto out_err;
6792 	}
6793 
6794 	rbd_init_layout(rbd_dev);
6795 	return 0;
6796 
6797 out_err:
6798 	rbd_dev->header.features = 0;
6799 	kfree(rbd_dev->header.object_prefix);
6800 	rbd_dev->header.object_prefix = NULL;
6801 	return ret;
6802 }
6803 
6804 /*
6805  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6806  * rbd_dev_image_probe() recursion depth, which means it's also the
6807  * length of the already discovered part of the parent chain.
6808  */
6809 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6810 {
6811 	struct rbd_device *parent = NULL;
6812 	int ret;
6813 
6814 	if (!rbd_dev->parent_spec)
6815 		return 0;
6816 
6817 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6818 		pr_info("parent chain is too long (%d)\n", depth);
6819 		ret = -EINVAL;
6820 		goto out_err;
6821 	}
6822 
6823 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6824 	if (!parent) {
6825 		ret = -ENOMEM;
6826 		goto out_err;
6827 	}
6828 
6829 	/*
6830 	 * Images related by parent/child relationships always share
6831 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6832 	 */
6833 	__rbd_get_client(rbd_dev->rbd_client);
6834 	rbd_spec_get(rbd_dev->parent_spec);
6835 
6836 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6837 
6838 	ret = rbd_dev_image_probe(parent, depth);
6839 	if (ret < 0)
6840 		goto out_err;
6841 
6842 	rbd_dev->parent = parent;
6843 	atomic_set(&rbd_dev->parent_ref, 1);
6844 	return 0;
6845 
6846 out_err:
6847 	rbd_dev_unparent(rbd_dev);
6848 	rbd_dev_destroy(parent);
6849 	return ret;
6850 }
6851 
6852 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6853 {
6854 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6855 	rbd_free_disk(rbd_dev);
6856 	if (!single_major)
6857 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6858 }
6859 
6860 /*
6861  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6862  * upon return.
6863  */
6864 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6865 {
6866 	int ret;
6867 
6868 	/* Record our major and minor device numbers. */
6869 
6870 	if (!single_major) {
6871 		ret = register_blkdev(0, rbd_dev->name);
6872 		if (ret < 0)
6873 			goto err_out_unlock;
6874 
6875 		rbd_dev->major = ret;
6876 		rbd_dev->minor = 0;
6877 	} else {
6878 		rbd_dev->major = rbd_major;
6879 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6880 	}
6881 
6882 	/* Set up the blkdev mapping. */
6883 
6884 	ret = rbd_init_disk(rbd_dev);
6885 	if (ret)
6886 		goto err_out_blkdev;
6887 
6888 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6889 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6890 
6891 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6892 	if (ret)
6893 		goto err_out_disk;
6894 
6895 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6896 	up_write(&rbd_dev->header_rwsem);
6897 	return 0;
6898 
6899 err_out_disk:
6900 	rbd_free_disk(rbd_dev);
6901 err_out_blkdev:
6902 	if (!single_major)
6903 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6904 err_out_unlock:
6905 	up_write(&rbd_dev->header_rwsem);
6906 	return ret;
6907 }
6908 
6909 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6910 {
6911 	struct rbd_spec *spec = rbd_dev->spec;
6912 	int ret;
6913 
6914 	/* Record the header object name for this rbd image. */
6915 
6916 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6917 	if (rbd_dev->image_format == 1)
6918 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6919 				       spec->image_name, RBD_SUFFIX);
6920 	else
6921 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6922 				       RBD_HEADER_PREFIX, spec->image_id);
6923 
6924 	return ret;
6925 }
6926 
6927 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6928 {
6929 	if (!is_snap) {
6930 		pr_info("image %s/%s%s%s does not exist\n",
6931 			rbd_dev->spec->pool_name,
6932 			rbd_dev->spec->pool_ns ?: "",
6933 			rbd_dev->spec->pool_ns ? "/" : "",
6934 			rbd_dev->spec->image_name);
6935 	} else {
6936 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6937 			rbd_dev->spec->pool_name,
6938 			rbd_dev->spec->pool_ns ?: "",
6939 			rbd_dev->spec->pool_ns ? "/" : "",
6940 			rbd_dev->spec->image_name,
6941 			rbd_dev->spec->snap_name);
6942 	}
6943 }
6944 
6945 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6946 {
6947 	if (!rbd_is_ro(rbd_dev))
6948 		rbd_unregister_watch(rbd_dev);
6949 
6950 	rbd_dev_unprobe(rbd_dev);
6951 	rbd_dev->image_format = 0;
6952 	kfree(rbd_dev->spec->image_id);
6953 	rbd_dev->spec->image_id = NULL;
6954 }
6955 
6956 /*
6957  * Probe for the existence of the header object for the given rbd
6958  * device.  If this image is the one being mapped (i.e., not a
6959  * parent), initiate a watch on its header object before using that
6960  * object to get detailed information about the rbd image.
6961  *
6962  * On success, returns with header_rwsem held for write if called
6963  * with @depth == 0.
6964  */
6965 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6966 {
6967 	bool need_watch = !rbd_is_ro(rbd_dev);
6968 	int ret;
6969 
6970 	/*
6971 	 * Get the id from the image id object.  Unless there's an
6972 	 * error, rbd_dev->spec->image_id will be filled in with
6973 	 * a dynamically-allocated string, and rbd_dev->image_format
6974 	 * will be set to either 1 or 2.
6975 	 */
6976 	ret = rbd_dev_image_id(rbd_dev);
6977 	if (ret)
6978 		return ret;
6979 
6980 	ret = rbd_dev_header_name(rbd_dev);
6981 	if (ret)
6982 		goto err_out_format;
6983 
6984 	if (need_watch) {
6985 		ret = rbd_register_watch(rbd_dev);
6986 		if (ret) {
6987 			if (ret == -ENOENT)
6988 				rbd_print_dne(rbd_dev, false);
6989 			goto err_out_format;
6990 		}
6991 	}
6992 
6993 	if (!depth)
6994 		down_write(&rbd_dev->header_rwsem);
6995 
6996 	ret = rbd_dev_header_info(rbd_dev);
6997 	if (ret) {
6998 		if (ret == -ENOENT && !need_watch)
6999 			rbd_print_dne(rbd_dev, false);
7000 		goto err_out_probe;
7001 	}
7002 
7003 	/*
7004 	 * If this image is the one being mapped, we have pool name and
7005 	 * id, image name and id, and snap name - need to fill snap id.
7006 	 * Otherwise this is a parent image, identified by pool, image
7007 	 * and snap ids - need to fill in names for those ids.
7008 	 */
7009 	if (!depth)
7010 		ret = rbd_spec_fill_snap_id(rbd_dev);
7011 	else
7012 		ret = rbd_spec_fill_names(rbd_dev);
7013 	if (ret) {
7014 		if (ret == -ENOENT)
7015 			rbd_print_dne(rbd_dev, true);
7016 		goto err_out_probe;
7017 	}
7018 
7019 	ret = rbd_dev_mapping_set(rbd_dev);
7020 	if (ret)
7021 		goto err_out_probe;
7022 
7023 	if (rbd_is_snap(rbd_dev) &&
7024 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7025 		ret = rbd_object_map_load(rbd_dev);
7026 		if (ret)
7027 			goto err_out_probe;
7028 	}
7029 
7030 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7031 		ret = rbd_dev_v2_parent_info(rbd_dev);
7032 		if (ret)
7033 			goto err_out_probe;
7034 	}
7035 
7036 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7037 	if (ret)
7038 		goto err_out_probe;
7039 
7040 	dout("discovered format %u image, header name is %s\n",
7041 		rbd_dev->image_format, rbd_dev->header_oid.name);
7042 	return 0;
7043 
7044 err_out_probe:
7045 	if (!depth)
7046 		up_write(&rbd_dev->header_rwsem);
7047 	if (need_watch)
7048 		rbd_unregister_watch(rbd_dev);
7049 	rbd_dev_unprobe(rbd_dev);
7050 err_out_format:
7051 	rbd_dev->image_format = 0;
7052 	kfree(rbd_dev->spec->image_id);
7053 	rbd_dev->spec->image_id = NULL;
7054 	return ret;
7055 }
7056 
7057 static ssize_t do_rbd_add(struct bus_type *bus,
7058 			  const char *buf,
7059 			  size_t count)
7060 {
7061 	struct rbd_device *rbd_dev = NULL;
7062 	struct ceph_options *ceph_opts = NULL;
7063 	struct rbd_options *rbd_opts = NULL;
7064 	struct rbd_spec *spec = NULL;
7065 	struct rbd_client *rbdc;
7066 	int rc;
7067 
7068 	if (!capable(CAP_SYS_ADMIN))
7069 		return -EPERM;
7070 
7071 	if (!try_module_get(THIS_MODULE))
7072 		return -ENODEV;
7073 
7074 	/* parse add command */
7075 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7076 	if (rc < 0)
7077 		goto out;
7078 
7079 	rbdc = rbd_get_client(ceph_opts);
7080 	if (IS_ERR(rbdc)) {
7081 		rc = PTR_ERR(rbdc);
7082 		goto err_out_args;
7083 	}
7084 
7085 	/* pick the pool */
7086 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7087 	if (rc < 0) {
7088 		if (rc == -ENOENT)
7089 			pr_info("pool %s does not exist\n", spec->pool_name);
7090 		goto err_out_client;
7091 	}
7092 	spec->pool_id = (u64)rc;
7093 
7094 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7095 	if (!rbd_dev) {
7096 		rc = -ENOMEM;
7097 		goto err_out_client;
7098 	}
7099 	rbdc = NULL;		/* rbd_dev now owns this */
7100 	spec = NULL;		/* rbd_dev now owns this */
7101 	rbd_opts = NULL;	/* rbd_dev now owns this */
7102 
7103 	/* if we are mapping a snapshot it will be a read-only mapping */
7104 	if (rbd_dev->opts->read_only ||
7105 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7106 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7107 
7108 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7109 	if (!rbd_dev->config_info) {
7110 		rc = -ENOMEM;
7111 		goto err_out_rbd_dev;
7112 	}
7113 
7114 	rc = rbd_dev_image_probe(rbd_dev, 0);
7115 	if (rc < 0)
7116 		goto err_out_rbd_dev;
7117 
7118 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7119 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7120 			 rbd_dev->layout.object_size);
7121 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7122 	}
7123 
7124 	rc = rbd_dev_device_setup(rbd_dev);
7125 	if (rc)
7126 		goto err_out_image_probe;
7127 
7128 	rc = rbd_add_acquire_lock(rbd_dev);
7129 	if (rc)
7130 		goto err_out_image_lock;
7131 
7132 	/* Everything's ready.  Announce the disk to the world. */
7133 
7134 	rc = device_add(&rbd_dev->dev);
7135 	if (rc)
7136 		goto err_out_image_lock;
7137 
7138 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7139 	/* see rbd_init_disk() */
7140 	blk_put_queue(rbd_dev->disk->queue);
7141 
7142 	spin_lock(&rbd_dev_list_lock);
7143 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7144 	spin_unlock(&rbd_dev_list_lock);
7145 
7146 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7147 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7148 		rbd_dev->header.features);
7149 	rc = count;
7150 out:
7151 	module_put(THIS_MODULE);
7152 	return rc;
7153 
7154 err_out_image_lock:
7155 	rbd_dev_image_unlock(rbd_dev);
7156 	rbd_dev_device_release(rbd_dev);
7157 err_out_image_probe:
7158 	rbd_dev_image_release(rbd_dev);
7159 err_out_rbd_dev:
7160 	rbd_dev_destroy(rbd_dev);
7161 err_out_client:
7162 	rbd_put_client(rbdc);
7163 err_out_args:
7164 	rbd_spec_put(spec);
7165 	kfree(rbd_opts);
7166 	goto out;
7167 }
7168 
7169 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7170 {
7171 	if (single_major)
7172 		return -EINVAL;
7173 
7174 	return do_rbd_add(bus, buf, count);
7175 }
7176 
7177 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7178 				      size_t count)
7179 {
7180 	return do_rbd_add(bus, buf, count);
7181 }
7182 
7183 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7184 {
7185 	while (rbd_dev->parent) {
7186 		struct rbd_device *first = rbd_dev;
7187 		struct rbd_device *second = first->parent;
7188 		struct rbd_device *third;
7189 
7190 		/*
7191 		 * Follow to the parent with no grandparent and
7192 		 * remove it.
7193 		 */
7194 		while (second && (third = second->parent)) {
7195 			first = second;
7196 			second = third;
7197 		}
7198 		rbd_assert(second);
7199 		rbd_dev_image_release(second);
7200 		rbd_dev_destroy(second);
7201 		first->parent = NULL;
7202 		first->parent_overlap = 0;
7203 
7204 		rbd_assert(first->parent_spec);
7205 		rbd_spec_put(first->parent_spec);
7206 		first->parent_spec = NULL;
7207 	}
7208 }
7209 
7210 static ssize_t do_rbd_remove(struct bus_type *bus,
7211 			     const char *buf,
7212 			     size_t count)
7213 {
7214 	struct rbd_device *rbd_dev = NULL;
7215 	struct list_head *tmp;
7216 	int dev_id;
7217 	char opt_buf[6];
7218 	bool force = false;
7219 	int ret;
7220 
7221 	if (!capable(CAP_SYS_ADMIN))
7222 		return -EPERM;
7223 
7224 	dev_id = -1;
7225 	opt_buf[0] = '\0';
7226 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7227 	if (dev_id < 0) {
7228 		pr_err("dev_id out of range\n");
7229 		return -EINVAL;
7230 	}
7231 	if (opt_buf[0] != '\0') {
7232 		if (!strcmp(opt_buf, "force")) {
7233 			force = true;
7234 		} else {
7235 			pr_err("bad remove option at '%s'\n", opt_buf);
7236 			return -EINVAL;
7237 		}
7238 	}
7239 
7240 	ret = -ENOENT;
7241 	spin_lock(&rbd_dev_list_lock);
7242 	list_for_each(tmp, &rbd_dev_list) {
7243 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7244 		if (rbd_dev->dev_id == dev_id) {
7245 			ret = 0;
7246 			break;
7247 		}
7248 	}
7249 	if (!ret) {
7250 		spin_lock_irq(&rbd_dev->lock);
7251 		if (rbd_dev->open_count && !force)
7252 			ret = -EBUSY;
7253 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7254 					  &rbd_dev->flags))
7255 			ret = -EINPROGRESS;
7256 		spin_unlock_irq(&rbd_dev->lock);
7257 	}
7258 	spin_unlock(&rbd_dev_list_lock);
7259 	if (ret)
7260 		return ret;
7261 
7262 	if (force) {
7263 		/*
7264 		 * Prevent new IO from being queued and wait for existing
7265 		 * IO to complete/fail.
7266 		 */
7267 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7268 		blk_set_queue_dying(rbd_dev->disk->queue);
7269 	}
7270 
7271 	del_gendisk(rbd_dev->disk);
7272 	spin_lock(&rbd_dev_list_lock);
7273 	list_del_init(&rbd_dev->node);
7274 	spin_unlock(&rbd_dev_list_lock);
7275 	device_del(&rbd_dev->dev);
7276 
7277 	rbd_dev_image_unlock(rbd_dev);
7278 	rbd_dev_device_release(rbd_dev);
7279 	rbd_dev_image_release(rbd_dev);
7280 	rbd_dev_destroy(rbd_dev);
7281 	return count;
7282 }
7283 
7284 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7285 {
7286 	if (single_major)
7287 		return -EINVAL;
7288 
7289 	return do_rbd_remove(bus, buf, count);
7290 }
7291 
7292 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7293 					 size_t count)
7294 {
7295 	return do_rbd_remove(bus, buf, count);
7296 }
7297 
7298 /*
7299  * create control files in sysfs
7300  * /sys/bus/rbd/...
7301  */
7302 static int __init rbd_sysfs_init(void)
7303 {
7304 	int ret;
7305 
7306 	ret = device_register(&rbd_root_dev);
7307 	if (ret < 0)
7308 		return ret;
7309 
7310 	ret = bus_register(&rbd_bus_type);
7311 	if (ret < 0)
7312 		device_unregister(&rbd_root_dev);
7313 
7314 	return ret;
7315 }
7316 
7317 static void __exit rbd_sysfs_cleanup(void)
7318 {
7319 	bus_unregister(&rbd_bus_type);
7320 	device_unregister(&rbd_root_dev);
7321 }
7322 
7323 static int __init rbd_slab_init(void)
7324 {
7325 	rbd_assert(!rbd_img_request_cache);
7326 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7327 	if (!rbd_img_request_cache)
7328 		return -ENOMEM;
7329 
7330 	rbd_assert(!rbd_obj_request_cache);
7331 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7332 	if (!rbd_obj_request_cache)
7333 		goto out_err;
7334 
7335 	return 0;
7336 
7337 out_err:
7338 	kmem_cache_destroy(rbd_img_request_cache);
7339 	rbd_img_request_cache = NULL;
7340 	return -ENOMEM;
7341 }
7342 
7343 static void rbd_slab_exit(void)
7344 {
7345 	rbd_assert(rbd_obj_request_cache);
7346 	kmem_cache_destroy(rbd_obj_request_cache);
7347 	rbd_obj_request_cache = NULL;
7348 
7349 	rbd_assert(rbd_img_request_cache);
7350 	kmem_cache_destroy(rbd_img_request_cache);
7351 	rbd_img_request_cache = NULL;
7352 }
7353 
7354 static int __init rbd_init(void)
7355 {
7356 	int rc;
7357 
7358 	if (!libceph_compatible(NULL)) {
7359 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7360 		return -EINVAL;
7361 	}
7362 
7363 	rc = rbd_slab_init();
7364 	if (rc)
7365 		return rc;
7366 
7367 	/*
7368 	 * The number of active work items is limited by the number of
7369 	 * rbd devices * queue depth, so leave @max_active at default.
7370 	 */
7371 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7372 	if (!rbd_wq) {
7373 		rc = -ENOMEM;
7374 		goto err_out_slab;
7375 	}
7376 
7377 	if (single_major) {
7378 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7379 		if (rbd_major < 0) {
7380 			rc = rbd_major;
7381 			goto err_out_wq;
7382 		}
7383 	}
7384 
7385 	rc = rbd_sysfs_init();
7386 	if (rc)
7387 		goto err_out_blkdev;
7388 
7389 	if (single_major)
7390 		pr_info("loaded (major %d)\n", rbd_major);
7391 	else
7392 		pr_info("loaded\n");
7393 
7394 	return 0;
7395 
7396 err_out_blkdev:
7397 	if (single_major)
7398 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7399 err_out_wq:
7400 	destroy_workqueue(rbd_wq);
7401 err_out_slab:
7402 	rbd_slab_exit();
7403 	return rc;
7404 }
7405 
7406 static void __exit rbd_exit(void)
7407 {
7408 	ida_destroy(&rbd_dev_id_ida);
7409 	rbd_sysfs_cleanup();
7410 	if (single_major)
7411 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7412 	destroy_workqueue(rbd_wq);
7413 	rbd_slab_exit();
7414 }
7415 
7416 module_init(rbd_init);
7417 module_exit(rbd_exit);
7418 
7419 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7420 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7421 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7422 /* following authorship retained from original osdblk.c */
7423 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7424 
7425 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7426 MODULE_LICENSE("GPL");
7427