1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1ULL<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 126 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 127 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 128 129 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 130 RBD_FEATURE_STRIPINGV2 | \ 131 RBD_FEATURE_EXCLUSIVE_LOCK | \ 132 RBD_FEATURE_DATA_POOL | \ 133 RBD_FEATURE_OPERATIONS) 134 135 /* Features supported by this (client software) implementation. */ 136 137 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 138 139 /* 140 * An RBD device name will be "rbd#", where the "rbd" comes from 141 * RBD_DRV_NAME above, and # is a unique integer identifier. 142 */ 143 #define DEV_NAME_LEN 32 144 145 /* 146 * block device image metadata (in-memory version) 147 */ 148 struct rbd_image_header { 149 /* These six fields never change for a given rbd image */ 150 char *object_prefix; 151 __u8 obj_order; 152 u64 stripe_unit; 153 u64 stripe_count; 154 s64 data_pool_id; 155 u64 features; /* Might be changeable someday? */ 156 157 /* The remaining fields need to be updated occasionally */ 158 u64 image_size; 159 struct ceph_snap_context *snapc; 160 char *snap_names; /* format 1 only */ 161 u64 *snap_sizes; /* format 1 only */ 162 }; 163 164 /* 165 * An rbd image specification. 166 * 167 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 168 * identify an image. Each rbd_dev structure includes a pointer to 169 * an rbd_spec structure that encapsulates this identity. 170 * 171 * Each of the id's in an rbd_spec has an associated name. For a 172 * user-mapped image, the names are supplied and the id's associated 173 * with them are looked up. For a layered image, a parent image is 174 * defined by the tuple, and the names are looked up. 175 * 176 * An rbd_dev structure contains a parent_spec pointer which is 177 * non-null if the image it represents is a child in a layered 178 * image. This pointer will refer to the rbd_spec structure used 179 * by the parent rbd_dev for its own identity (i.e., the structure 180 * is shared between the parent and child). 181 * 182 * Since these structures are populated once, during the discovery 183 * phase of image construction, they are effectively immutable so 184 * we make no effort to synchronize access to them. 185 * 186 * Note that code herein does not assume the image name is known (it 187 * could be a null pointer). 188 */ 189 struct rbd_spec { 190 u64 pool_id; 191 const char *pool_name; 192 193 const char *image_id; 194 const char *image_name; 195 196 u64 snap_id; 197 const char *snap_name; 198 199 struct kref kref; 200 }; 201 202 /* 203 * an instance of the client. multiple devices may share an rbd client. 204 */ 205 struct rbd_client { 206 struct ceph_client *client; 207 struct kref kref; 208 struct list_head node; 209 }; 210 211 struct rbd_img_request; 212 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 213 214 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 215 216 struct rbd_obj_request; 217 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 218 219 enum obj_request_type { 220 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 221 }; 222 223 enum obj_operation_type { 224 OBJ_OP_WRITE, 225 OBJ_OP_READ, 226 OBJ_OP_DISCARD, 227 }; 228 229 enum obj_req_flags { 230 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 231 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 232 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 233 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 234 }; 235 236 struct rbd_obj_request { 237 u64 object_no; 238 u64 offset; /* object start byte */ 239 u64 length; /* bytes from offset */ 240 unsigned long flags; 241 242 /* 243 * An object request associated with an image will have its 244 * img_data flag set; a standalone object request will not. 245 * 246 * A standalone object request will have which == BAD_WHICH 247 * and a null obj_request pointer. 248 * 249 * An object request initiated in support of a layered image 250 * object (to check for its existence before a write) will 251 * have which == BAD_WHICH and a non-null obj_request pointer. 252 * 253 * Finally, an object request for rbd image data will have 254 * which != BAD_WHICH, and will have a non-null img_request 255 * pointer. The value of which will be in the range 256 * 0..(img_request->obj_request_count-1). 257 */ 258 union { 259 struct rbd_obj_request *obj_request; /* STAT op */ 260 struct { 261 struct rbd_img_request *img_request; 262 u64 img_offset; 263 /* links for img_request->obj_requests list */ 264 struct list_head links; 265 }; 266 }; 267 u32 which; /* posn image request list */ 268 269 enum obj_request_type type; 270 union { 271 struct bio *bio_list; 272 struct { 273 struct page **pages; 274 u32 page_count; 275 }; 276 }; 277 struct page **copyup_pages; 278 u32 copyup_page_count; 279 280 struct ceph_osd_request *osd_req; 281 282 u64 xferred; /* bytes transferred */ 283 int result; 284 285 rbd_obj_callback_t callback; 286 287 struct kref kref; 288 }; 289 290 enum img_req_flags { 291 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 292 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 293 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 294 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 295 }; 296 297 struct rbd_img_request { 298 struct rbd_device *rbd_dev; 299 u64 offset; /* starting image byte offset */ 300 u64 length; /* byte count from offset */ 301 unsigned long flags; 302 union { 303 u64 snap_id; /* for reads */ 304 struct ceph_snap_context *snapc; /* for writes */ 305 }; 306 union { 307 struct request *rq; /* block request */ 308 struct rbd_obj_request *obj_request; /* obj req initiator */ 309 }; 310 struct page **copyup_pages; 311 u32 copyup_page_count; 312 spinlock_t completion_lock;/* protects next_completion */ 313 u32 next_completion; 314 rbd_img_callback_t callback; 315 u64 xferred;/* aggregate bytes transferred */ 316 int result; /* first nonzero obj_request result */ 317 318 u32 obj_request_count; 319 struct list_head obj_requests; /* rbd_obj_request structs */ 320 321 struct kref kref; 322 }; 323 324 #define for_each_obj_request(ireq, oreq) \ 325 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 326 #define for_each_obj_request_from(ireq, oreq) \ 327 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 328 #define for_each_obj_request_safe(ireq, oreq, n) \ 329 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 330 331 enum rbd_watch_state { 332 RBD_WATCH_STATE_UNREGISTERED, 333 RBD_WATCH_STATE_REGISTERED, 334 RBD_WATCH_STATE_ERROR, 335 }; 336 337 enum rbd_lock_state { 338 RBD_LOCK_STATE_UNLOCKED, 339 RBD_LOCK_STATE_LOCKED, 340 RBD_LOCK_STATE_RELEASING, 341 }; 342 343 /* WatchNotify::ClientId */ 344 struct rbd_client_id { 345 u64 gid; 346 u64 handle; 347 }; 348 349 struct rbd_mapping { 350 u64 size; 351 u64 features; 352 }; 353 354 /* 355 * a single device 356 */ 357 struct rbd_device { 358 int dev_id; /* blkdev unique id */ 359 360 int major; /* blkdev assigned major */ 361 int minor; 362 struct gendisk *disk; /* blkdev's gendisk and rq */ 363 364 u32 image_format; /* Either 1 or 2 */ 365 struct rbd_client *rbd_client; 366 367 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 368 369 spinlock_t lock; /* queue, flags, open_count */ 370 371 struct rbd_image_header header; 372 unsigned long flags; /* possibly lock protected */ 373 struct rbd_spec *spec; 374 struct rbd_options *opts; 375 char *config_info; /* add{,_single_major} string */ 376 377 struct ceph_object_id header_oid; 378 struct ceph_object_locator header_oloc; 379 380 struct ceph_file_layout layout; /* used for all rbd requests */ 381 382 struct mutex watch_mutex; 383 enum rbd_watch_state watch_state; 384 struct ceph_osd_linger_request *watch_handle; 385 u64 watch_cookie; 386 struct delayed_work watch_dwork; 387 388 struct rw_semaphore lock_rwsem; 389 enum rbd_lock_state lock_state; 390 char lock_cookie[32]; 391 struct rbd_client_id owner_cid; 392 struct work_struct acquired_lock_work; 393 struct work_struct released_lock_work; 394 struct delayed_work lock_dwork; 395 struct work_struct unlock_work; 396 wait_queue_head_t lock_waitq; 397 398 struct workqueue_struct *task_wq; 399 400 struct rbd_spec *parent_spec; 401 u64 parent_overlap; 402 atomic_t parent_ref; 403 struct rbd_device *parent; 404 405 /* Block layer tags. */ 406 struct blk_mq_tag_set tag_set; 407 408 /* protects updating the header */ 409 struct rw_semaphore header_rwsem; 410 411 struct rbd_mapping mapping; 412 413 struct list_head node; 414 415 /* sysfs related */ 416 struct device dev; 417 unsigned long open_count; /* protected by lock */ 418 }; 419 420 /* 421 * Flag bits for rbd_dev->flags: 422 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 423 * by rbd_dev->lock 424 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 425 */ 426 enum rbd_dev_flags { 427 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 428 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 429 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 430 }; 431 432 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 433 434 static LIST_HEAD(rbd_dev_list); /* devices */ 435 static DEFINE_SPINLOCK(rbd_dev_list_lock); 436 437 static LIST_HEAD(rbd_client_list); /* clients */ 438 static DEFINE_SPINLOCK(rbd_client_list_lock); 439 440 /* Slab caches for frequently-allocated structures */ 441 442 static struct kmem_cache *rbd_img_request_cache; 443 static struct kmem_cache *rbd_obj_request_cache; 444 445 static struct bio_set *rbd_bio_clone; 446 447 static int rbd_major; 448 static DEFINE_IDA(rbd_dev_id_ida); 449 450 static struct workqueue_struct *rbd_wq; 451 452 /* 453 * single-major requires >= 0.75 version of userspace rbd utility. 454 */ 455 static bool single_major = true; 456 module_param(single_major, bool, S_IRUGO); 457 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 458 459 static int rbd_img_request_submit(struct rbd_img_request *img_request); 460 461 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 462 size_t count); 463 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 464 size_t count); 465 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 466 size_t count); 467 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 468 size_t count); 469 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 470 static void rbd_spec_put(struct rbd_spec *spec); 471 472 static int rbd_dev_id_to_minor(int dev_id) 473 { 474 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 475 } 476 477 static int minor_to_rbd_dev_id(int minor) 478 { 479 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 480 } 481 482 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 483 { 484 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 485 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 486 } 487 488 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 489 { 490 bool is_lock_owner; 491 492 down_read(&rbd_dev->lock_rwsem); 493 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 494 up_read(&rbd_dev->lock_rwsem); 495 return is_lock_owner; 496 } 497 498 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 499 { 500 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 501 } 502 503 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 504 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 505 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 506 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 507 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL); 508 509 static struct attribute *rbd_bus_attrs[] = { 510 &bus_attr_add.attr, 511 &bus_attr_remove.attr, 512 &bus_attr_add_single_major.attr, 513 &bus_attr_remove_single_major.attr, 514 &bus_attr_supported_features.attr, 515 NULL, 516 }; 517 518 static umode_t rbd_bus_is_visible(struct kobject *kobj, 519 struct attribute *attr, int index) 520 { 521 if (!single_major && 522 (attr == &bus_attr_add_single_major.attr || 523 attr == &bus_attr_remove_single_major.attr)) 524 return 0; 525 526 return attr->mode; 527 } 528 529 static const struct attribute_group rbd_bus_group = { 530 .attrs = rbd_bus_attrs, 531 .is_visible = rbd_bus_is_visible, 532 }; 533 __ATTRIBUTE_GROUPS(rbd_bus); 534 535 static struct bus_type rbd_bus_type = { 536 .name = "rbd", 537 .bus_groups = rbd_bus_groups, 538 }; 539 540 static void rbd_root_dev_release(struct device *dev) 541 { 542 } 543 544 static struct device rbd_root_dev = { 545 .init_name = "rbd", 546 .release = rbd_root_dev_release, 547 }; 548 549 static __printf(2, 3) 550 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 551 { 552 struct va_format vaf; 553 va_list args; 554 555 va_start(args, fmt); 556 vaf.fmt = fmt; 557 vaf.va = &args; 558 559 if (!rbd_dev) 560 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 561 else if (rbd_dev->disk) 562 printk(KERN_WARNING "%s: %s: %pV\n", 563 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 564 else if (rbd_dev->spec && rbd_dev->spec->image_name) 565 printk(KERN_WARNING "%s: image %s: %pV\n", 566 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 567 else if (rbd_dev->spec && rbd_dev->spec->image_id) 568 printk(KERN_WARNING "%s: id %s: %pV\n", 569 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 570 else /* punt */ 571 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 572 RBD_DRV_NAME, rbd_dev, &vaf); 573 va_end(args); 574 } 575 576 #ifdef RBD_DEBUG 577 #define rbd_assert(expr) \ 578 if (unlikely(!(expr))) { \ 579 printk(KERN_ERR "\nAssertion failure in %s() " \ 580 "at line %d:\n\n" \ 581 "\trbd_assert(%s);\n\n", \ 582 __func__, __LINE__, #expr); \ 583 BUG(); \ 584 } 585 #else /* !RBD_DEBUG */ 586 # define rbd_assert(expr) ((void) 0) 587 #endif /* !RBD_DEBUG */ 588 589 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 590 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 591 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 592 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 593 594 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 595 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 596 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 597 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 598 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 599 u64 snap_id); 600 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 601 u8 *order, u64 *snap_size); 602 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 603 u64 *snap_features); 604 605 static int rbd_open(struct block_device *bdev, fmode_t mode) 606 { 607 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 608 bool removing = false; 609 610 spin_lock_irq(&rbd_dev->lock); 611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 612 removing = true; 613 else 614 rbd_dev->open_count++; 615 spin_unlock_irq(&rbd_dev->lock); 616 if (removing) 617 return -ENOENT; 618 619 (void) get_device(&rbd_dev->dev); 620 621 return 0; 622 } 623 624 static void rbd_release(struct gendisk *disk, fmode_t mode) 625 { 626 struct rbd_device *rbd_dev = disk->private_data; 627 unsigned long open_count_before; 628 629 spin_lock_irq(&rbd_dev->lock); 630 open_count_before = rbd_dev->open_count--; 631 spin_unlock_irq(&rbd_dev->lock); 632 rbd_assert(open_count_before > 0); 633 634 put_device(&rbd_dev->dev); 635 } 636 637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 638 { 639 int ro; 640 641 if (get_user(ro, (int __user *)arg)) 642 return -EFAULT; 643 644 /* Snapshots can't be marked read-write */ 645 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 646 return -EROFS; 647 648 /* Let blkdev_roset() handle it */ 649 return -ENOTTY; 650 } 651 652 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 653 unsigned int cmd, unsigned long arg) 654 { 655 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 656 int ret; 657 658 switch (cmd) { 659 case BLKROSET: 660 ret = rbd_ioctl_set_ro(rbd_dev, arg); 661 break; 662 default: 663 ret = -ENOTTY; 664 } 665 666 return ret; 667 } 668 669 #ifdef CONFIG_COMPAT 670 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 671 unsigned int cmd, unsigned long arg) 672 { 673 return rbd_ioctl(bdev, mode, cmd, arg); 674 } 675 #endif /* CONFIG_COMPAT */ 676 677 static const struct block_device_operations rbd_bd_ops = { 678 .owner = THIS_MODULE, 679 .open = rbd_open, 680 .release = rbd_release, 681 .ioctl = rbd_ioctl, 682 #ifdef CONFIG_COMPAT 683 .compat_ioctl = rbd_compat_ioctl, 684 #endif 685 }; 686 687 /* 688 * Initialize an rbd client instance. Success or not, this function 689 * consumes ceph_opts. Caller holds client_mutex. 690 */ 691 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 692 { 693 struct rbd_client *rbdc; 694 int ret = -ENOMEM; 695 696 dout("%s:\n", __func__); 697 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 698 if (!rbdc) 699 goto out_opt; 700 701 kref_init(&rbdc->kref); 702 INIT_LIST_HEAD(&rbdc->node); 703 704 rbdc->client = ceph_create_client(ceph_opts, rbdc); 705 if (IS_ERR(rbdc->client)) 706 goto out_rbdc; 707 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 708 709 ret = ceph_open_session(rbdc->client); 710 if (ret < 0) 711 goto out_client; 712 713 spin_lock(&rbd_client_list_lock); 714 list_add_tail(&rbdc->node, &rbd_client_list); 715 spin_unlock(&rbd_client_list_lock); 716 717 dout("%s: rbdc %p\n", __func__, rbdc); 718 719 return rbdc; 720 out_client: 721 ceph_destroy_client(rbdc->client); 722 out_rbdc: 723 kfree(rbdc); 724 out_opt: 725 if (ceph_opts) 726 ceph_destroy_options(ceph_opts); 727 dout("%s: error %d\n", __func__, ret); 728 729 return ERR_PTR(ret); 730 } 731 732 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 733 { 734 kref_get(&rbdc->kref); 735 736 return rbdc; 737 } 738 739 /* 740 * Find a ceph client with specific addr and configuration. If 741 * found, bump its reference count. 742 */ 743 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 744 { 745 struct rbd_client *client_node; 746 bool found = false; 747 748 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 749 return NULL; 750 751 spin_lock(&rbd_client_list_lock); 752 list_for_each_entry(client_node, &rbd_client_list, node) { 753 if (!ceph_compare_options(ceph_opts, client_node->client)) { 754 __rbd_get_client(client_node); 755 756 found = true; 757 break; 758 } 759 } 760 spin_unlock(&rbd_client_list_lock); 761 762 return found ? client_node : NULL; 763 } 764 765 /* 766 * (Per device) rbd map options 767 */ 768 enum { 769 Opt_queue_depth, 770 Opt_last_int, 771 /* int args above */ 772 Opt_last_string, 773 /* string args above */ 774 Opt_read_only, 775 Opt_read_write, 776 Opt_lock_on_read, 777 Opt_exclusive, 778 Opt_err 779 }; 780 781 static match_table_t rbd_opts_tokens = { 782 {Opt_queue_depth, "queue_depth=%d"}, 783 /* int args above */ 784 /* string args above */ 785 {Opt_read_only, "read_only"}, 786 {Opt_read_only, "ro"}, /* Alternate spelling */ 787 {Opt_read_write, "read_write"}, 788 {Opt_read_write, "rw"}, /* Alternate spelling */ 789 {Opt_lock_on_read, "lock_on_read"}, 790 {Opt_exclusive, "exclusive"}, 791 {Opt_err, NULL} 792 }; 793 794 struct rbd_options { 795 int queue_depth; 796 bool read_only; 797 bool lock_on_read; 798 bool exclusive; 799 }; 800 801 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 802 #define RBD_READ_ONLY_DEFAULT false 803 #define RBD_LOCK_ON_READ_DEFAULT false 804 #define RBD_EXCLUSIVE_DEFAULT false 805 806 static int parse_rbd_opts_token(char *c, void *private) 807 { 808 struct rbd_options *rbd_opts = private; 809 substring_t argstr[MAX_OPT_ARGS]; 810 int token, intval, ret; 811 812 token = match_token(c, rbd_opts_tokens, argstr); 813 if (token < Opt_last_int) { 814 ret = match_int(&argstr[0], &intval); 815 if (ret < 0) { 816 pr_err("bad mount option arg (not int) at '%s'\n", c); 817 return ret; 818 } 819 dout("got int token %d val %d\n", token, intval); 820 } else if (token > Opt_last_int && token < Opt_last_string) { 821 dout("got string token %d val %s\n", token, argstr[0].from); 822 } else { 823 dout("got token %d\n", token); 824 } 825 826 switch (token) { 827 case Opt_queue_depth: 828 if (intval < 1) { 829 pr_err("queue_depth out of range\n"); 830 return -EINVAL; 831 } 832 rbd_opts->queue_depth = intval; 833 break; 834 case Opt_read_only: 835 rbd_opts->read_only = true; 836 break; 837 case Opt_read_write: 838 rbd_opts->read_only = false; 839 break; 840 case Opt_lock_on_read: 841 rbd_opts->lock_on_read = true; 842 break; 843 case Opt_exclusive: 844 rbd_opts->exclusive = true; 845 break; 846 default: 847 /* libceph prints "bad option" msg */ 848 return -EINVAL; 849 } 850 851 return 0; 852 } 853 854 static char* obj_op_name(enum obj_operation_type op_type) 855 { 856 switch (op_type) { 857 case OBJ_OP_READ: 858 return "read"; 859 case OBJ_OP_WRITE: 860 return "write"; 861 case OBJ_OP_DISCARD: 862 return "discard"; 863 default: 864 return "???"; 865 } 866 } 867 868 /* 869 * Get a ceph client with specific addr and configuration, if one does 870 * not exist create it. Either way, ceph_opts is consumed by this 871 * function. 872 */ 873 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 874 { 875 struct rbd_client *rbdc; 876 877 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 878 rbdc = rbd_client_find(ceph_opts); 879 if (rbdc) /* using an existing client */ 880 ceph_destroy_options(ceph_opts); 881 else 882 rbdc = rbd_client_create(ceph_opts); 883 mutex_unlock(&client_mutex); 884 885 return rbdc; 886 } 887 888 /* 889 * Destroy ceph client 890 * 891 * Caller must hold rbd_client_list_lock. 892 */ 893 static void rbd_client_release(struct kref *kref) 894 { 895 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 896 897 dout("%s: rbdc %p\n", __func__, rbdc); 898 spin_lock(&rbd_client_list_lock); 899 list_del(&rbdc->node); 900 spin_unlock(&rbd_client_list_lock); 901 902 ceph_destroy_client(rbdc->client); 903 kfree(rbdc); 904 } 905 906 /* 907 * Drop reference to ceph client node. If it's not referenced anymore, release 908 * it. 909 */ 910 static void rbd_put_client(struct rbd_client *rbdc) 911 { 912 if (rbdc) 913 kref_put(&rbdc->kref, rbd_client_release); 914 } 915 916 static bool rbd_image_format_valid(u32 image_format) 917 { 918 return image_format == 1 || image_format == 2; 919 } 920 921 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 922 { 923 size_t size; 924 u32 snap_count; 925 926 /* The header has to start with the magic rbd header text */ 927 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 928 return false; 929 930 /* The bio layer requires at least sector-sized I/O */ 931 932 if (ondisk->options.order < SECTOR_SHIFT) 933 return false; 934 935 /* If we use u64 in a few spots we may be able to loosen this */ 936 937 if (ondisk->options.order > 8 * sizeof (int) - 1) 938 return false; 939 940 /* 941 * The size of a snapshot header has to fit in a size_t, and 942 * that limits the number of snapshots. 943 */ 944 snap_count = le32_to_cpu(ondisk->snap_count); 945 size = SIZE_MAX - sizeof (struct ceph_snap_context); 946 if (snap_count > size / sizeof (__le64)) 947 return false; 948 949 /* 950 * Not only that, but the size of the entire the snapshot 951 * header must also be representable in a size_t. 952 */ 953 size -= snap_count * sizeof (__le64); 954 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 955 return false; 956 957 return true; 958 } 959 960 /* 961 * returns the size of an object in the image 962 */ 963 static u32 rbd_obj_bytes(struct rbd_image_header *header) 964 { 965 return 1U << header->obj_order; 966 } 967 968 static void rbd_init_layout(struct rbd_device *rbd_dev) 969 { 970 if (rbd_dev->header.stripe_unit == 0 || 971 rbd_dev->header.stripe_count == 0) { 972 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 973 rbd_dev->header.stripe_count = 1; 974 } 975 976 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 977 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 978 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 979 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 980 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 981 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 982 } 983 984 /* 985 * Fill an rbd image header with information from the given format 1 986 * on-disk header. 987 */ 988 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 989 struct rbd_image_header_ondisk *ondisk) 990 { 991 struct rbd_image_header *header = &rbd_dev->header; 992 bool first_time = header->object_prefix == NULL; 993 struct ceph_snap_context *snapc; 994 char *object_prefix = NULL; 995 char *snap_names = NULL; 996 u64 *snap_sizes = NULL; 997 u32 snap_count; 998 int ret = -ENOMEM; 999 u32 i; 1000 1001 /* Allocate this now to avoid having to handle failure below */ 1002 1003 if (first_time) { 1004 object_prefix = kstrndup(ondisk->object_prefix, 1005 sizeof(ondisk->object_prefix), 1006 GFP_KERNEL); 1007 if (!object_prefix) 1008 return -ENOMEM; 1009 } 1010 1011 /* Allocate the snapshot context and fill it in */ 1012 1013 snap_count = le32_to_cpu(ondisk->snap_count); 1014 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1015 if (!snapc) 1016 goto out_err; 1017 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1018 if (snap_count) { 1019 struct rbd_image_snap_ondisk *snaps; 1020 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1021 1022 /* We'll keep a copy of the snapshot names... */ 1023 1024 if (snap_names_len > (u64)SIZE_MAX) 1025 goto out_2big; 1026 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1027 if (!snap_names) 1028 goto out_err; 1029 1030 /* ...as well as the array of their sizes. */ 1031 snap_sizes = kmalloc_array(snap_count, 1032 sizeof(*header->snap_sizes), 1033 GFP_KERNEL); 1034 if (!snap_sizes) 1035 goto out_err; 1036 1037 /* 1038 * Copy the names, and fill in each snapshot's id 1039 * and size. 1040 * 1041 * Note that rbd_dev_v1_header_info() guarantees the 1042 * ondisk buffer we're working with has 1043 * snap_names_len bytes beyond the end of the 1044 * snapshot id array, this memcpy() is safe. 1045 */ 1046 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1047 snaps = ondisk->snaps; 1048 for (i = 0; i < snap_count; i++) { 1049 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1050 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1051 } 1052 } 1053 1054 /* We won't fail any more, fill in the header */ 1055 1056 if (first_time) { 1057 header->object_prefix = object_prefix; 1058 header->obj_order = ondisk->options.order; 1059 rbd_init_layout(rbd_dev); 1060 } else { 1061 ceph_put_snap_context(header->snapc); 1062 kfree(header->snap_names); 1063 kfree(header->snap_sizes); 1064 } 1065 1066 /* The remaining fields always get updated (when we refresh) */ 1067 1068 header->image_size = le64_to_cpu(ondisk->image_size); 1069 header->snapc = snapc; 1070 header->snap_names = snap_names; 1071 header->snap_sizes = snap_sizes; 1072 1073 return 0; 1074 out_2big: 1075 ret = -EIO; 1076 out_err: 1077 kfree(snap_sizes); 1078 kfree(snap_names); 1079 ceph_put_snap_context(snapc); 1080 kfree(object_prefix); 1081 1082 return ret; 1083 } 1084 1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1086 { 1087 const char *snap_name; 1088 1089 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1090 1091 /* Skip over names until we find the one we are looking for */ 1092 1093 snap_name = rbd_dev->header.snap_names; 1094 while (which--) 1095 snap_name += strlen(snap_name) + 1; 1096 1097 return kstrdup(snap_name, GFP_KERNEL); 1098 } 1099 1100 /* 1101 * Snapshot id comparison function for use with qsort()/bsearch(). 1102 * Note that result is for snapshots in *descending* order. 1103 */ 1104 static int snapid_compare_reverse(const void *s1, const void *s2) 1105 { 1106 u64 snap_id1 = *(u64 *)s1; 1107 u64 snap_id2 = *(u64 *)s2; 1108 1109 if (snap_id1 < snap_id2) 1110 return 1; 1111 return snap_id1 == snap_id2 ? 0 : -1; 1112 } 1113 1114 /* 1115 * Search a snapshot context to see if the given snapshot id is 1116 * present. 1117 * 1118 * Returns the position of the snapshot id in the array if it's found, 1119 * or BAD_SNAP_INDEX otherwise. 1120 * 1121 * Note: The snapshot array is in kept sorted (by the osd) in 1122 * reverse order, highest snapshot id first. 1123 */ 1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1125 { 1126 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1127 u64 *found; 1128 1129 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1130 sizeof (snap_id), snapid_compare_reverse); 1131 1132 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1133 } 1134 1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1136 u64 snap_id) 1137 { 1138 u32 which; 1139 const char *snap_name; 1140 1141 which = rbd_dev_snap_index(rbd_dev, snap_id); 1142 if (which == BAD_SNAP_INDEX) 1143 return ERR_PTR(-ENOENT); 1144 1145 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1146 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1147 } 1148 1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1150 { 1151 if (snap_id == CEPH_NOSNAP) 1152 return RBD_SNAP_HEAD_NAME; 1153 1154 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1155 if (rbd_dev->image_format == 1) 1156 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1157 1158 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1159 } 1160 1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1162 u64 *snap_size) 1163 { 1164 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1165 if (snap_id == CEPH_NOSNAP) { 1166 *snap_size = rbd_dev->header.image_size; 1167 } else if (rbd_dev->image_format == 1) { 1168 u32 which; 1169 1170 which = rbd_dev_snap_index(rbd_dev, snap_id); 1171 if (which == BAD_SNAP_INDEX) 1172 return -ENOENT; 1173 1174 *snap_size = rbd_dev->header.snap_sizes[which]; 1175 } else { 1176 u64 size = 0; 1177 int ret; 1178 1179 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1180 if (ret) 1181 return ret; 1182 1183 *snap_size = size; 1184 } 1185 return 0; 1186 } 1187 1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1189 u64 *snap_features) 1190 { 1191 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1192 if (snap_id == CEPH_NOSNAP) { 1193 *snap_features = rbd_dev->header.features; 1194 } else if (rbd_dev->image_format == 1) { 1195 *snap_features = 0; /* No features for format 1 */ 1196 } else { 1197 u64 features = 0; 1198 int ret; 1199 1200 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1201 if (ret) 1202 return ret; 1203 1204 *snap_features = features; 1205 } 1206 return 0; 1207 } 1208 1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1210 { 1211 u64 snap_id = rbd_dev->spec->snap_id; 1212 u64 size = 0; 1213 u64 features = 0; 1214 int ret; 1215 1216 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1217 if (ret) 1218 return ret; 1219 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1220 if (ret) 1221 return ret; 1222 1223 rbd_dev->mapping.size = size; 1224 rbd_dev->mapping.features = features; 1225 1226 return 0; 1227 } 1228 1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1230 { 1231 rbd_dev->mapping.size = 0; 1232 rbd_dev->mapping.features = 0; 1233 } 1234 1235 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1236 { 1237 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1238 1239 return offset & (segment_size - 1); 1240 } 1241 1242 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1243 u64 offset, u64 length) 1244 { 1245 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1246 1247 offset &= segment_size - 1; 1248 1249 rbd_assert(length <= U64_MAX - offset); 1250 if (offset + length > segment_size) 1251 length = segment_size - offset; 1252 1253 return length; 1254 } 1255 1256 /* 1257 * bio helpers 1258 */ 1259 1260 static void bio_chain_put(struct bio *chain) 1261 { 1262 struct bio *tmp; 1263 1264 while (chain) { 1265 tmp = chain; 1266 chain = chain->bi_next; 1267 bio_put(tmp); 1268 } 1269 } 1270 1271 /* 1272 * zeros a bio chain, starting at specific offset 1273 */ 1274 static void zero_bio_chain(struct bio *chain, int start_ofs) 1275 { 1276 struct bio_vec bv; 1277 struct bvec_iter iter; 1278 unsigned long flags; 1279 void *buf; 1280 int pos = 0; 1281 1282 while (chain) { 1283 bio_for_each_segment(bv, chain, iter) { 1284 if (pos + bv.bv_len > start_ofs) { 1285 int remainder = max(start_ofs - pos, 0); 1286 buf = bvec_kmap_irq(&bv, &flags); 1287 memset(buf + remainder, 0, 1288 bv.bv_len - remainder); 1289 flush_dcache_page(bv.bv_page); 1290 bvec_kunmap_irq(buf, &flags); 1291 } 1292 pos += bv.bv_len; 1293 } 1294 1295 chain = chain->bi_next; 1296 } 1297 } 1298 1299 /* 1300 * similar to zero_bio_chain(), zeros data defined by a page array, 1301 * starting at the given byte offset from the start of the array and 1302 * continuing up to the given end offset. The pages array is 1303 * assumed to be big enough to hold all bytes up to the end. 1304 */ 1305 static void zero_pages(struct page **pages, u64 offset, u64 end) 1306 { 1307 struct page **page = &pages[offset >> PAGE_SHIFT]; 1308 1309 rbd_assert(end > offset); 1310 rbd_assert(end - offset <= (u64)SIZE_MAX); 1311 while (offset < end) { 1312 size_t page_offset; 1313 size_t length; 1314 unsigned long flags; 1315 void *kaddr; 1316 1317 page_offset = offset & ~PAGE_MASK; 1318 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1319 local_irq_save(flags); 1320 kaddr = kmap_atomic(*page); 1321 memset(kaddr + page_offset, 0, length); 1322 flush_dcache_page(*page); 1323 kunmap_atomic(kaddr); 1324 local_irq_restore(flags); 1325 1326 offset += length; 1327 page++; 1328 } 1329 } 1330 1331 /* 1332 * Clone a portion of a bio, starting at the given byte offset 1333 * and continuing for the number of bytes indicated. 1334 */ 1335 static struct bio *bio_clone_range(struct bio *bio_src, 1336 unsigned int offset, 1337 unsigned int len, 1338 gfp_t gfpmask) 1339 { 1340 struct bio *bio; 1341 1342 bio = bio_clone_fast(bio_src, gfpmask, rbd_bio_clone); 1343 if (!bio) 1344 return NULL; /* ENOMEM */ 1345 1346 bio_advance(bio, offset); 1347 bio->bi_iter.bi_size = len; 1348 1349 return bio; 1350 } 1351 1352 /* 1353 * Clone a portion of a bio chain, starting at the given byte offset 1354 * into the first bio in the source chain and continuing for the 1355 * number of bytes indicated. The result is another bio chain of 1356 * exactly the given length, or a null pointer on error. 1357 * 1358 * The bio_src and offset parameters are both in-out. On entry they 1359 * refer to the first source bio and the offset into that bio where 1360 * the start of data to be cloned is located. 1361 * 1362 * On return, bio_src is updated to refer to the bio in the source 1363 * chain that contains first un-cloned byte, and *offset will 1364 * contain the offset of that byte within that bio. 1365 */ 1366 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1367 unsigned int *offset, 1368 unsigned int len, 1369 gfp_t gfpmask) 1370 { 1371 struct bio *bi = *bio_src; 1372 unsigned int off = *offset; 1373 struct bio *chain = NULL; 1374 struct bio **end; 1375 1376 /* Build up a chain of clone bios up to the limit */ 1377 1378 if (!bi || off >= bi->bi_iter.bi_size || !len) 1379 return NULL; /* Nothing to clone */ 1380 1381 end = &chain; 1382 while (len) { 1383 unsigned int bi_size; 1384 struct bio *bio; 1385 1386 if (!bi) { 1387 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1388 goto out_err; /* EINVAL; ran out of bio's */ 1389 } 1390 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1391 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1392 if (!bio) 1393 goto out_err; /* ENOMEM */ 1394 1395 *end = bio; 1396 end = &bio->bi_next; 1397 1398 off += bi_size; 1399 if (off == bi->bi_iter.bi_size) { 1400 bi = bi->bi_next; 1401 off = 0; 1402 } 1403 len -= bi_size; 1404 } 1405 *bio_src = bi; 1406 *offset = off; 1407 1408 return chain; 1409 out_err: 1410 bio_chain_put(chain); 1411 1412 return NULL; 1413 } 1414 1415 /* 1416 * The default/initial value for all object request flags is 0. For 1417 * each flag, once its value is set to 1 it is never reset to 0 1418 * again. 1419 */ 1420 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1421 { 1422 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1423 struct rbd_device *rbd_dev; 1424 1425 rbd_dev = obj_request->img_request->rbd_dev; 1426 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1427 obj_request); 1428 } 1429 } 1430 1431 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1432 { 1433 smp_mb(); 1434 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1435 } 1436 1437 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1438 { 1439 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1440 struct rbd_device *rbd_dev = NULL; 1441 1442 if (obj_request_img_data_test(obj_request)) 1443 rbd_dev = obj_request->img_request->rbd_dev; 1444 rbd_warn(rbd_dev, "obj_request %p already marked done", 1445 obj_request); 1446 } 1447 } 1448 1449 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1450 { 1451 smp_mb(); 1452 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1453 } 1454 1455 /* 1456 * This sets the KNOWN flag after (possibly) setting the EXISTS 1457 * flag. The latter is set based on the "exists" value provided. 1458 * 1459 * Note that for our purposes once an object exists it never goes 1460 * away again. It's possible that the response from two existence 1461 * checks are separated by the creation of the target object, and 1462 * the first ("doesn't exist") response arrives *after* the second 1463 * ("does exist"). In that case we ignore the second one. 1464 */ 1465 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1466 bool exists) 1467 { 1468 if (exists) 1469 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1470 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1471 smp_mb(); 1472 } 1473 1474 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1475 { 1476 smp_mb(); 1477 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1478 } 1479 1480 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1481 { 1482 smp_mb(); 1483 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1484 } 1485 1486 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1487 { 1488 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1489 1490 return obj_request->img_offset < 1491 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1492 } 1493 1494 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1495 { 1496 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1497 kref_read(&obj_request->kref)); 1498 kref_get(&obj_request->kref); 1499 } 1500 1501 static void rbd_obj_request_destroy(struct kref *kref); 1502 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1503 { 1504 rbd_assert(obj_request != NULL); 1505 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1506 kref_read(&obj_request->kref)); 1507 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1508 } 1509 1510 static void rbd_img_request_get(struct rbd_img_request *img_request) 1511 { 1512 dout("%s: img %p (was %d)\n", __func__, img_request, 1513 kref_read(&img_request->kref)); 1514 kref_get(&img_request->kref); 1515 } 1516 1517 static bool img_request_child_test(struct rbd_img_request *img_request); 1518 static void rbd_parent_request_destroy(struct kref *kref); 1519 static void rbd_img_request_destroy(struct kref *kref); 1520 static void rbd_img_request_put(struct rbd_img_request *img_request) 1521 { 1522 rbd_assert(img_request != NULL); 1523 dout("%s: img %p (was %d)\n", __func__, img_request, 1524 kref_read(&img_request->kref)); 1525 if (img_request_child_test(img_request)) 1526 kref_put(&img_request->kref, rbd_parent_request_destroy); 1527 else 1528 kref_put(&img_request->kref, rbd_img_request_destroy); 1529 } 1530 1531 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1532 struct rbd_obj_request *obj_request) 1533 { 1534 rbd_assert(obj_request->img_request == NULL); 1535 1536 /* Image request now owns object's original reference */ 1537 obj_request->img_request = img_request; 1538 obj_request->which = img_request->obj_request_count; 1539 rbd_assert(!obj_request_img_data_test(obj_request)); 1540 obj_request_img_data_set(obj_request); 1541 rbd_assert(obj_request->which != BAD_WHICH); 1542 img_request->obj_request_count++; 1543 list_add_tail(&obj_request->links, &img_request->obj_requests); 1544 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1545 obj_request->which); 1546 } 1547 1548 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1549 struct rbd_obj_request *obj_request) 1550 { 1551 rbd_assert(obj_request->which != BAD_WHICH); 1552 1553 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1554 obj_request->which); 1555 list_del(&obj_request->links); 1556 rbd_assert(img_request->obj_request_count > 0); 1557 img_request->obj_request_count--; 1558 rbd_assert(obj_request->which == img_request->obj_request_count); 1559 obj_request->which = BAD_WHICH; 1560 rbd_assert(obj_request_img_data_test(obj_request)); 1561 rbd_assert(obj_request->img_request == img_request); 1562 obj_request->img_request = NULL; 1563 obj_request->callback = NULL; 1564 rbd_obj_request_put(obj_request); 1565 } 1566 1567 static bool obj_request_type_valid(enum obj_request_type type) 1568 { 1569 switch (type) { 1570 case OBJ_REQUEST_NODATA: 1571 case OBJ_REQUEST_BIO: 1572 case OBJ_REQUEST_PAGES: 1573 return true; 1574 default: 1575 return false; 1576 } 1577 } 1578 1579 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1580 1581 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1582 { 1583 struct ceph_osd_request *osd_req = obj_request->osd_req; 1584 1585 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1586 obj_request, obj_request->object_no, obj_request->offset, 1587 obj_request->length, osd_req); 1588 if (obj_request_img_data_test(obj_request)) { 1589 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1590 rbd_img_request_get(obj_request->img_request); 1591 } 1592 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1593 } 1594 1595 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1596 { 1597 1598 dout("%s: img %p\n", __func__, img_request); 1599 1600 /* 1601 * If no error occurred, compute the aggregate transfer 1602 * count for the image request. We could instead use 1603 * atomic64_cmpxchg() to update it as each object request 1604 * completes; not clear which way is better off hand. 1605 */ 1606 if (!img_request->result) { 1607 struct rbd_obj_request *obj_request; 1608 u64 xferred = 0; 1609 1610 for_each_obj_request(img_request, obj_request) 1611 xferred += obj_request->xferred; 1612 img_request->xferred = xferred; 1613 } 1614 1615 if (img_request->callback) 1616 img_request->callback(img_request); 1617 else 1618 rbd_img_request_put(img_request); 1619 } 1620 1621 /* 1622 * The default/initial value for all image request flags is 0. Each 1623 * is conditionally set to 1 at image request initialization time 1624 * and currently never change thereafter. 1625 */ 1626 static void img_request_write_set(struct rbd_img_request *img_request) 1627 { 1628 set_bit(IMG_REQ_WRITE, &img_request->flags); 1629 smp_mb(); 1630 } 1631 1632 static bool img_request_write_test(struct rbd_img_request *img_request) 1633 { 1634 smp_mb(); 1635 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1636 } 1637 1638 /* 1639 * Set the discard flag when the img_request is an discard request 1640 */ 1641 static void img_request_discard_set(struct rbd_img_request *img_request) 1642 { 1643 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1644 smp_mb(); 1645 } 1646 1647 static bool img_request_discard_test(struct rbd_img_request *img_request) 1648 { 1649 smp_mb(); 1650 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1651 } 1652 1653 static void img_request_child_set(struct rbd_img_request *img_request) 1654 { 1655 set_bit(IMG_REQ_CHILD, &img_request->flags); 1656 smp_mb(); 1657 } 1658 1659 static void img_request_child_clear(struct rbd_img_request *img_request) 1660 { 1661 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1662 smp_mb(); 1663 } 1664 1665 static bool img_request_child_test(struct rbd_img_request *img_request) 1666 { 1667 smp_mb(); 1668 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1669 } 1670 1671 static void img_request_layered_set(struct rbd_img_request *img_request) 1672 { 1673 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1674 smp_mb(); 1675 } 1676 1677 static void img_request_layered_clear(struct rbd_img_request *img_request) 1678 { 1679 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1680 smp_mb(); 1681 } 1682 1683 static bool img_request_layered_test(struct rbd_img_request *img_request) 1684 { 1685 smp_mb(); 1686 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1687 } 1688 1689 static enum obj_operation_type 1690 rbd_img_request_op_type(struct rbd_img_request *img_request) 1691 { 1692 if (img_request_write_test(img_request)) 1693 return OBJ_OP_WRITE; 1694 else if (img_request_discard_test(img_request)) 1695 return OBJ_OP_DISCARD; 1696 else 1697 return OBJ_OP_READ; 1698 } 1699 1700 static void 1701 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1702 { 1703 u64 xferred = obj_request->xferred; 1704 u64 length = obj_request->length; 1705 1706 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1707 obj_request, obj_request->img_request, obj_request->result, 1708 xferred, length); 1709 /* 1710 * ENOENT means a hole in the image. We zero-fill the entire 1711 * length of the request. A short read also implies zero-fill 1712 * to the end of the request. An error requires the whole 1713 * length of the request to be reported finished with an error 1714 * to the block layer. In each case we update the xferred 1715 * count to indicate the whole request was satisfied. 1716 */ 1717 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1718 if (obj_request->result == -ENOENT) { 1719 if (obj_request->type == OBJ_REQUEST_BIO) 1720 zero_bio_chain(obj_request->bio_list, 0); 1721 else 1722 zero_pages(obj_request->pages, 0, length); 1723 obj_request->result = 0; 1724 } else if (xferred < length && !obj_request->result) { 1725 if (obj_request->type == OBJ_REQUEST_BIO) 1726 zero_bio_chain(obj_request->bio_list, xferred); 1727 else 1728 zero_pages(obj_request->pages, xferred, length); 1729 } 1730 obj_request->xferred = length; 1731 obj_request_done_set(obj_request); 1732 } 1733 1734 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1735 { 1736 dout("%s: obj %p cb %p\n", __func__, obj_request, 1737 obj_request->callback); 1738 obj_request->callback(obj_request); 1739 } 1740 1741 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1742 { 1743 obj_request->result = err; 1744 obj_request->xferred = 0; 1745 /* 1746 * kludge - mirror rbd_obj_request_submit() to match a put in 1747 * rbd_img_obj_callback() 1748 */ 1749 if (obj_request_img_data_test(obj_request)) { 1750 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1751 rbd_img_request_get(obj_request->img_request); 1752 } 1753 obj_request_done_set(obj_request); 1754 rbd_obj_request_complete(obj_request); 1755 } 1756 1757 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1758 { 1759 struct rbd_img_request *img_request = NULL; 1760 struct rbd_device *rbd_dev = NULL; 1761 bool layered = false; 1762 1763 if (obj_request_img_data_test(obj_request)) { 1764 img_request = obj_request->img_request; 1765 layered = img_request && img_request_layered_test(img_request); 1766 rbd_dev = img_request->rbd_dev; 1767 } 1768 1769 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1770 obj_request, img_request, obj_request->result, 1771 obj_request->xferred, obj_request->length); 1772 if (layered && obj_request->result == -ENOENT && 1773 obj_request->img_offset < rbd_dev->parent_overlap) 1774 rbd_img_parent_read(obj_request); 1775 else if (img_request) 1776 rbd_img_obj_request_read_callback(obj_request); 1777 else 1778 obj_request_done_set(obj_request); 1779 } 1780 1781 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1782 { 1783 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1784 obj_request->result, obj_request->length); 1785 /* 1786 * There is no such thing as a successful short write. Set 1787 * it to our originally-requested length. 1788 */ 1789 obj_request->xferred = obj_request->length; 1790 obj_request_done_set(obj_request); 1791 } 1792 1793 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1794 { 1795 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1796 obj_request->result, obj_request->length); 1797 /* 1798 * There is no such thing as a successful short discard. Set 1799 * it to our originally-requested length. 1800 */ 1801 obj_request->xferred = obj_request->length; 1802 /* discarding a non-existent object is not a problem */ 1803 if (obj_request->result == -ENOENT) 1804 obj_request->result = 0; 1805 obj_request_done_set(obj_request); 1806 } 1807 1808 /* 1809 * For a simple stat call there's nothing to do. We'll do more if 1810 * this is part of a write sequence for a layered image. 1811 */ 1812 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1813 { 1814 dout("%s: obj %p\n", __func__, obj_request); 1815 obj_request_done_set(obj_request); 1816 } 1817 1818 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1819 { 1820 dout("%s: obj %p\n", __func__, obj_request); 1821 1822 if (obj_request_img_data_test(obj_request)) 1823 rbd_osd_copyup_callback(obj_request); 1824 else 1825 obj_request_done_set(obj_request); 1826 } 1827 1828 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1829 { 1830 struct rbd_obj_request *obj_request = osd_req->r_priv; 1831 u16 opcode; 1832 1833 dout("%s: osd_req %p\n", __func__, osd_req); 1834 rbd_assert(osd_req == obj_request->osd_req); 1835 if (obj_request_img_data_test(obj_request)) { 1836 rbd_assert(obj_request->img_request); 1837 rbd_assert(obj_request->which != BAD_WHICH); 1838 } else { 1839 rbd_assert(obj_request->which == BAD_WHICH); 1840 } 1841 1842 if (osd_req->r_result < 0) 1843 obj_request->result = osd_req->r_result; 1844 1845 /* 1846 * We support a 64-bit length, but ultimately it has to be 1847 * passed to the block layer, which just supports a 32-bit 1848 * length field. 1849 */ 1850 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1851 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1852 1853 opcode = osd_req->r_ops[0].op; 1854 switch (opcode) { 1855 case CEPH_OSD_OP_READ: 1856 rbd_osd_read_callback(obj_request); 1857 break; 1858 case CEPH_OSD_OP_SETALLOCHINT: 1859 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1860 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1861 /* fall through */ 1862 case CEPH_OSD_OP_WRITE: 1863 case CEPH_OSD_OP_WRITEFULL: 1864 rbd_osd_write_callback(obj_request); 1865 break; 1866 case CEPH_OSD_OP_STAT: 1867 rbd_osd_stat_callback(obj_request); 1868 break; 1869 case CEPH_OSD_OP_DELETE: 1870 case CEPH_OSD_OP_TRUNCATE: 1871 case CEPH_OSD_OP_ZERO: 1872 rbd_osd_discard_callback(obj_request); 1873 break; 1874 case CEPH_OSD_OP_CALL: 1875 rbd_osd_call_callback(obj_request); 1876 break; 1877 default: 1878 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d", 1879 obj_request->object_no, opcode); 1880 break; 1881 } 1882 1883 if (obj_request_done_test(obj_request)) 1884 rbd_obj_request_complete(obj_request); 1885 } 1886 1887 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1888 { 1889 struct ceph_osd_request *osd_req = obj_request->osd_req; 1890 1891 rbd_assert(obj_request_img_data_test(obj_request)); 1892 osd_req->r_snapid = obj_request->img_request->snap_id; 1893 } 1894 1895 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1896 { 1897 struct ceph_osd_request *osd_req = obj_request->osd_req; 1898 1899 ktime_get_real_ts(&osd_req->r_mtime); 1900 osd_req->r_data_offset = obj_request->offset; 1901 } 1902 1903 static struct ceph_osd_request * 1904 __rbd_osd_req_create(struct rbd_device *rbd_dev, 1905 struct ceph_snap_context *snapc, 1906 int num_ops, unsigned int flags, 1907 struct rbd_obj_request *obj_request) 1908 { 1909 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1910 struct ceph_osd_request *req; 1911 const char *name_format = rbd_dev->image_format == 1 ? 1912 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1913 1914 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1915 if (!req) 1916 return NULL; 1917 1918 req->r_flags = flags; 1919 req->r_callback = rbd_osd_req_callback; 1920 req->r_priv = obj_request; 1921 1922 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1923 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1924 rbd_dev->header.object_prefix, obj_request->object_no)) 1925 goto err_req; 1926 1927 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1928 goto err_req; 1929 1930 return req; 1931 1932 err_req: 1933 ceph_osdc_put_request(req); 1934 return NULL; 1935 } 1936 1937 /* 1938 * Create an osd request. A read request has one osd op (read). 1939 * A write request has either one (watch) or two (hint+write) osd ops. 1940 * (All rbd data writes are prefixed with an allocation hint op, but 1941 * technically osd watch is a write request, hence this distinction.) 1942 */ 1943 static struct ceph_osd_request *rbd_osd_req_create( 1944 struct rbd_device *rbd_dev, 1945 enum obj_operation_type op_type, 1946 unsigned int num_ops, 1947 struct rbd_obj_request *obj_request) 1948 { 1949 struct ceph_snap_context *snapc = NULL; 1950 1951 if (obj_request_img_data_test(obj_request) && 1952 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1953 struct rbd_img_request *img_request = obj_request->img_request; 1954 if (op_type == OBJ_OP_WRITE) { 1955 rbd_assert(img_request_write_test(img_request)); 1956 } else { 1957 rbd_assert(img_request_discard_test(img_request)); 1958 } 1959 snapc = img_request->snapc; 1960 } 1961 1962 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1963 1964 return __rbd_osd_req_create(rbd_dev, snapc, num_ops, 1965 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ? 1966 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request); 1967 } 1968 1969 /* 1970 * Create a copyup osd request based on the information in the object 1971 * request supplied. A copyup request has two or three osd ops, a 1972 * copyup method call, potentially a hint op, and a write or truncate 1973 * or zero op. 1974 */ 1975 static struct ceph_osd_request * 1976 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1977 { 1978 struct rbd_img_request *img_request; 1979 int num_osd_ops = 3; 1980 1981 rbd_assert(obj_request_img_data_test(obj_request)); 1982 img_request = obj_request->img_request; 1983 rbd_assert(img_request); 1984 rbd_assert(img_request_write_test(img_request) || 1985 img_request_discard_test(img_request)); 1986 1987 if (img_request_discard_test(img_request)) 1988 num_osd_ops = 2; 1989 1990 return __rbd_osd_req_create(img_request->rbd_dev, 1991 img_request->snapc, num_osd_ops, 1992 CEPH_OSD_FLAG_WRITE, obj_request); 1993 } 1994 1995 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1996 { 1997 ceph_osdc_put_request(osd_req); 1998 } 1999 2000 static struct rbd_obj_request * 2001 rbd_obj_request_create(enum obj_request_type type) 2002 { 2003 struct rbd_obj_request *obj_request; 2004 2005 rbd_assert(obj_request_type_valid(type)); 2006 2007 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2008 if (!obj_request) 2009 return NULL; 2010 2011 obj_request->which = BAD_WHICH; 2012 obj_request->type = type; 2013 INIT_LIST_HEAD(&obj_request->links); 2014 kref_init(&obj_request->kref); 2015 2016 dout("%s %p\n", __func__, obj_request); 2017 return obj_request; 2018 } 2019 2020 static void rbd_obj_request_destroy(struct kref *kref) 2021 { 2022 struct rbd_obj_request *obj_request; 2023 2024 obj_request = container_of(kref, struct rbd_obj_request, kref); 2025 2026 dout("%s: obj %p\n", __func__, obj_request); 2027 2028 rbd_assert(obj_request->img_request == NULL); 2029 rbd_assert(obj_request->which == BAD_WHICH); 2030 2031 if (obj_request->osd_req) 2032 rbd_osd_req_destroy(obj_request->osd_req); 2033 2034 rbd_assert(obj_request_type_valid(obj_request->type)); 2035 switch (obj_request->type) { 2036 case OBJ_REQUEST_NODATA: 2037 break; /* Nothing to do */ 2038 case OBJ_REQUEST_BIO: 2039 if (obj_request->bio_list) 2040 bio_chain_put(obj_request->bio_list); 2041 break; 2042 case OBJ_REQUEST_PAGES: 2043 /* img_data requests don't own their page array */ 2044 if (obj_request->pages && 2045 !obj_request_img_data_test(obj_request)) 2046 ceph_release_page_vector(obj_request->pages, 2047 obj_request->page_count); 2048 break; 2049 } 2050 2051 kmem_cache_free(rbd_obj_request_cache, obj_request); 2052 } 2053 2054 /* It's OK to call this for a device with no parent */ 2055 2056 static void rbd_spec_put(struct rbd_spec *spec); 2057 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2058 { 2059 rbd_dev_remove_parent(rbd_dev); 2060 rbd_spec_put(rbd_dev->parent_spec); 2061 rbd_dev->parent_spec = NULL; 2062 rbd_dev->parent_overlap = 0; 2063 } 2064 2065 /* 2066 * Parent image reference counting is used to determine when an 2067 * image's parent fields can be safely torn down--after there are no 2068 * more in-flight requests to the parent image. When the last 2069 * reference is dropped, cleaning them up is safe. 2070 */ 2071 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2072 { 2073 int counter; 2074 2075 if (!rbd_dev->parent_spec) 2076 return; 2077 2078 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2079 if (counter > 0) 2080 return; 2081 2082 /* Last reference; clean up parent data structures */ 2083 2084 if (!counter) 2085 rbd_dev_unparent(rbd_dev); 2086 else 2087 rbd_warn(rbd_dev, "parent reference underflow"); 2088 } 2089 2090 /* 2091 * If an image has a non-zero parent overlap, get a reference to its 2092 * parent. 2093 * 2094 * Returns true if the rbd device has a parent with a non-zero 2095 * overlap and a reference for it was successfully taken, or 2096 * false otherwise. 2097 */ 2098 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2099 { 2100 int counter = 0; 2101 2102 if (!rbd_dev->parent_spec) 2103 return false; 2104 2105 down_read(&rbd_dev->header_rwsem); 2106 if (rbd_dev->parent_overlap) 2107 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2108 up_read(&rbd_dev->header_rwsem); 2109 2110 if (counter < 0) 2111 rbd_warn(rbd_dev, "parent reference overflow"); 2112 2113 return counter > 0; 2114 } 2115 2116 /* 2117 * Caller is responsible for filling in the list of object requests 2118 * that comprises the image request, and the Linux request pointer 2119 * (if there is one). 2120 */ 2121 static struct rbd_img_request *rbd_img_request_create( 2122 struct rbd_device *rbd_dev, 2123 u64 offset, u64 length, 2124 enum obj_operation_type op_type, 2125 struct ceph_snap_context *snapc) 2126 { 2127 struct rbd_img_request *img_request; 2128 2129 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO); 2130 if (!img_request) 2131 return NULL; 2132 2133 img_request->rbd_dev = rbd_dev; 2134 img_request->offset = offset; 2135 img_request->length = length; 2136 if (op_type == OBJ_OP_DISCARD) { 2137 img_request_discard_set(img_request); 2138 img_request->snapc = snapc; 2139 } else if (op_type == OBJ_OP_WRITE) { 2140 img_request_write_set(img_request); 2141 img_request->snapc = snapc; 2142 } else { 2143 img_request->snap_id = rbd_dev->spec->snap_id; 2144 } 2145 if (rbd_dev_parent_get(rbd_dev)) 2146 img_request_layered_set(img_request); 2147 2148 spin_lock_init(&img_request->completion_lock); 2149 INIT_LIST_HEAD(&img_request->obj_requests); 2150 kref_init(&img_request->kref); 2151 2152 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2153 obj_op_name(op_type), offset, length, img_request); 2154 2155 return img_request; 2156 } 2157 2158 static void rbd_img_request_destroy(struct kref *kref) 2159 { 2160 struct rbd_img_request *img_request; 2161 struct rbd_obj_request *obj_request; 2162 struct rbd_obj_request *next_obj_request; 2163 2164 img_request = container_of(kref, struct rbd_img_request, kref); 2165 2166 dout("%s: img %p\n", __func__, img_request); 2167 2168 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2169 rbd_img_obj_request_del(img_request, obj_request); 2170 rbd_assert(img_request->obj_request_count == 0); 2171 2172 if (img_request_layered_test(img_request)) { 2173 img_request_layered_clear(img_request); 2174 rbd_dev_parent_put(img_request->rbd_dev); 2175 } 2176 2177 if (img_request_write_test(img_request) || 2178 img_request_discard_test(img_request)) 2179 ceph_put_snap_context(img_request->snapc); 2180 2181 kmem_cache_free(rbd_img_request_cache, img_request); 2182 } 2183 2184 static struct rbd_img_request *rbd_parent_request_create( 2185 struct rbd_obj_request *obj_request, 2186 u64 img_offset, u64 length) 2187 { 2188 struct rbd_img_request *parent_request; 2189 struct rbd_device *rbd_dev; 2190 2191 rbd_assert(obj_request->img_request); 2192 rbd_dev = obj_request->img_request->rbd_dev; 2193 2194 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2195 length, OBJ_OP_READ, NULL); 2196 if (!parent_request) 2197 return NULL; 2198 2199 img_request_child_set(parent_request); 2200 rbd_obj_request_get(obj_request); 2201 parent_request->obj_request = obj_request; 2202 2203 return parent_request; 2204 } 2205 2206 static void rbd_parent_request_destroy(struct kref *kref) 2207 { 2208 struct rbd_img_request *parent_request; 2209 struct rbd_obj_request *orig_request; 2210 2211 parent_request = container_of(kref, struct rbd_img_request, kref); 2212 orig_request = parent_request->obj_request; 2213 2214 parent_request->obj_request = NULL; 2215 rbd_obj_request_put(orig_request); 2216 img_request_child_clear(parent_request); 2217 2218 rbd_img_request_destroy(kref); 2219 } 2220 2221 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2222 { 2223 struct rbd_img_request *img_request; 2224 unsigned int xferred; 2225 int result; 2226 bool more; 2227 2228 rbd_assert(obj_request_img_data_test(obj_request)); 2229 img_request = obj_request->img_request; 2230 2231 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2232 xferred = (unsigned int)obj_request->xferred; 2233 result = obj_request->result; 2234 if (result) { 2235 struct rbd_device *rbd_dev = img_request->rbd_dev; 2236 enum obj_operation_type op_type; 2237 2238 if (img_request_discard_test(img_request)) 2239 op_type = OBJ_OP_DISCARD; 2240 else if (img_request_write_test(img_request)) 2241 op_type = OBJ_OP_WRITE; 2242 else 2243 op_type = OBJ_OP_READ; 2244 2245 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2246 obj_op_name(op_type), obj_request->length, 2247 obj_request->img_offset, obj_request->offset); 2248 rbd_warn(rbd_dev, " result %d xferred %x", 2249 result, xferred); 2250 if (!img_request->result) 2251 img_request->result = result; 2252 /* 2253 * Need to end I/O on the entire obj_request worth of 2254 * bytes in case of error. 2255 */ 2256 xferred = obj_request->length; 2257 } 2258 2259 if (img_request_child_test(img_request)) { 2260 rbd_assert(img_request->obj_request != NULL); 2261 more = obj_request->which < img_request->obj_request_count - 1; 2262 } else { 2263 blk_status_t status = errno_to_blk_status(result); 2264 2265 rbd_assert(img_request->rq != NULL); 2266 2267 more = blk_update_request(img_request->rq, status, xferred); 2268 if (!more) 2269 __blk_mq_end_request(img_request->rq, status); 2270 } 2271 2272 return more; 2273 } 2274 2275 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2276 { 2277 struct rbd_img_request *img_request; 2278 u32 which = obj_request->which; 2279 bool more = true; 2280 2281 rbd_assert(obj_request_img_data_test(obj_request)); 2282 img_request = obj_request->img_request; 2283 2284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2285 rbd_assert(img_request != NULL); 2286 rbd_assert(img_request->obj_request_count > 0); 2287 rbd_assert(which != BAD_WHICH); 2288 rbd_assert(which < img_request->obj_request_count); 2289 2290 spin_lock_irq(&img_request->completion_lock); 2291 if (which != img_request->next_completion) 2292 goto out; 2293 2294 for_each_obj_request_from(img_request, obj_request) { 2295 rbd_assert(more); 2296 rbd_assert(which < img_request->obj_request_count); 2297 2298 if (!obj_request_done_test(obj_request)) 2299 break; 2300 more = rbd_img_obj_end_request(obj_request); 2301 which++; 2302 } 2303 2304 rbd_assert(more ^ (which == img_request->obj_request_count)); 2305 img_request->next_completion = which; 2306 out: 2307 spin_unlock_irq(&img_request->completion_lock); 2308 rbd_img_request_put(img_request); 2309 2310 if (!more) 2311 rbd_img_request_complete(img_request); 2312 } 2313 2314 /* 2315 * Add individual osd ops to the given ceph_osd_request and prepare 2316 * them for submission. num_ops is the current number of 2317 * osd operations already to the object request. 2318 */ 2319 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2320 struct ceph_osd_request *osd_request, 2321 enum obj_operation_type op_type, 2322 unsigned int num_ops) 2323 { 2324 struct rbd_img_request *img_request = obj_request->img_request; 2325 struct rbd_device *rbd_dev = img_request->rbd_dev; 2326 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2327 u64 offset = obj_request->offset; 2328 u64 length = obj_request->length; 2329 u64 img_end; 2330 u16 opcode; 2331 2332 if (op_type == OBJ_OP_DISCARD) { 2333 if (!offset && length == object_size && 2334 (!img_request_layered_test(img_request) || 2335 !obj_request_overlaps_parent(obj_request))) { 2336 opcode = CEPH_OSD_OP_DELETE; 2337 } else if ((offset + length == object_size)) { 2338 opcode = CEPH_OSD_OP_TRUNCATE; 2339 } else { 2340 down_read(&rbd_dev->header_rwsem); 2341 img_end = rbd_dev->header.image_size; 2342 up_read(&rbd_dev->header_rwsem); 2343 2344 if (obj_request->img_offset + length == img_end) 2345 opcode = CEPH_OSD_OP_TRUNCATE; 2346 else 2347 opcode = CEPH_OSD_OP_ZERO; 2348 } 2349 } else if (op_type == OBJ_OP_WRITE) { 2350 if (!offset && length == object_size) 2351 opcode = CEPH_OSD_OP_WRITEFULL; 2352 else 2353 opcode = CEPH_OSD_OP_WRITE; 2354 osd_req_op_alloc_hint_init(osd_request, num_ops, 2355 object_size, object_size); 2356 num_ops++; 2357 } else { 2358 opcode = CEPH_OSD_OP_READ; 2359 } 2360 2361 if (opcode == CEPH_OSD_OP_DELETE) 2362 osd_req_op_init(osd_request, num_ops, opcode, 0); 2363 else 2364 osd_req_op_extent_init(osd_request, num_ops, opcode, 2365 offset, length, 0, 0); 2366 2367 if (obj_request->type == OBJ_REQUEST_BIO) 2368 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2369 obj_request->bio_list, length); 2370 else if (obj_request->type == OBJ_REQUEST_PAGES) 2371 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2372 obj_request->pages, length, 2373 offset & ~PAGE_MASK, false, false); 2374 2375 /* Discards are also writes */ 2376 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2377 rbd_osd_req_format_write(obj_request); 2378 else 2379 rbd_osd_req_format_read(obj_request); 2380 } 2381 2382 /* 2383 * Split up an image request into one or more object requests, each 2384 * to a different object. The "type" parameter indicates whether 2385 * "data_desc" is the pointer to the head of a list of bio 2386 * structures, or the base of a page array. In either case this 2387 * function assumes data_desc describes memory sufficient to hold 2388 * all data described by the image request. 2389 */ 2390 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2391 enum obj_request_type type, 2392 void *data_desc) 2393 { 2394 struct rbd_device *rbd_dev = img_request->rbd_dev; 2395 struct rbd_obj_request *obj_request = NULL; 2396 struct rbd_obj_request *next_obj_request; 2397 struct bio *bio_list = NULL; 2398 unsigned int bio_offset = 0; 2399 struct page **pages = NULL; 2400 enum obj_operation_type op_type; 2401 u64 img_offset; 2402 u64 resid; 2403 2404 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2405 (int)type, data_desc); 2406 2407 img_offset = img_request->offset; 2408 resid = img_request->length; 2409 rbd_assert(resid > 0); 2410 op_type = rbd_img_request_op_type(img_request); 2411 2412 if (type == OBJ_REQUEST_BIO) { 2413 bio_list = data_desc; 2414 rbd_assert(img_offset == 2415 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2416 } else if (type == OBJ_REQUEST_PAGES) { 2417 pages = data_desc; 2418 } 2419 2420 while (resid) { 2421 struct ceph_osd_request *osd_req; 2422 u64 object_no = img_offset >> rbd_dev->header.obj_order; 2423 u64 offset = rbd_segment_offset(rbd_dev, img_offset); 2424 u64 length = rbd_segment_length(rbd_dev, img_offset, resid); 2425 2426 obj_request = rbd_obj_request_create(type); 2427 if (!obj_request) 2428 goto out_unwind; 2429 2430 obj_request->object_no = object_no; 2431 obj_request->offset = offset; 2432 obj_request->length = length; 2433 2434 /* 2435 * set obj_request->img_request before creating the 2436 * osd_request so that it gets the right snapc 2437 */ 2438 rbd_img_obj_request_add(img_request, obj_request); 2439 2440 if (type == OBJ_REQUEST_BIO) { 2441 unsigned int clone_size; 2442 2443 rbd_assert(length <= (u64)UINT_MAX); 2444 clone_size = (unsigned int)length; 2445 obj_request->bio_list = 2446 bio_chain_clone_range(&bio_list, 2447 &bio_offset, 2448 clone_size, 2449 GFP_NOIO); 2450 if (!obj_request->bio_list) 2451 goto out_unwind; 2452 } else if (type == OBJ_REQUEST_PAGES) { 2453 unsigned int page_count; 2454 2455 obj_request->pages = pages; 2456 page_count = (u32)calc_pages_for(offset, length); 2457 obj_request->page_count = page_count; 2458 if ((offset + length) & ~PAGE_MASK) 2459 page_count--; /* more on last page */ 2460 pages += page_count; 2461 } 2462 2463 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2464 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2465 obj_request); 2466 if (!osd_req) 2467 goto out_unwind; 2468 2469 obj_request->osd_req = osd_req; 2470 obj_request->callback = rbd_img_obj_callback; 2471 obj_request->img_offset = img_offset; 2472 2473 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2474 2475 img_offset += length; 2476 resid -= length; 2477 } 2478 2479 return 0; 2480 2481 out_unwind: 2482 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2483 rbd_img_obj_request_del(img_request, obj_request); 2484 2485 return -ENOMEM; 2486 } 2487 2488 static void 2489 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2490 { 2491 struct rbd_img_request *img_request; 2492 struct rbd_device *rbd_dev; 2493 struct page **pages; 2494 u32 page_count; 2495 2496 dout("%s: obj %p\n", __func__, obj_request); 2497 2498 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2499 obj_request->type == OBJ_REQUEST_NODATA); 2500 rbd_assert(obj_request_img_data_test(obj_request)); 2501 img_request = obj_request->img_request; 2502 rbd_assert(img_request); 2503 2504 rbd_dev = img_request->rbd_dev; 2505 rbd_assert(rbd_dev); 2506 2507 pages = obj_request->copyup_pages; 2508 rbd_assert(pages != NULL); 2509 obj_request->copyup_pages = NULL; 2510 page_count = obj_request->copyup_page_count; 2511 rbd_assert(page_count); 2512 obj_request->copyup_page_count = 0; 2513 ceph_release_page_vector(pages, page_count); 2514 2515 /* 2516 * We want the transfer count to reflect the size of the 2517 * original write request. There is no such thing as a 2518 * successful short write, so if the request was successful 2519 * we can just set it to the originally-requested length. 2520 */ 2521 if (!obj_request->result) 2522 obj_request->xferred = obj_request->length; 2523 2524 obj_request_done_set(obj_request); 2525 } 2526 2527 static void 2528 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2529 { 2530 struct rbd_obj_request *orig_request; 2531 struct ceph_osd_request *osd_req; 2532 struct rbd_device *rbd_dev; 2533 struct page **pages; 2534 enum obj_operation_type op_type; 2535 u32 page_count; 2536 int img_result; 2537 u64 parent_length; 2538 2539 rbd_assert(img_request_child_test(img_request)); 2540 2541 /* First get what we need from the image request */ 2542 2543 pages = img_request->copyup_pages; 2544 rbd_assert(pages != NULL); 2545 img_request->copyup_pages = NULL; 2546 page_count = img_request->copyup_page_count; 2547 rbd_assert(page_count); 2548 img_request->copyup_page_count = 0; 2549 2550 orig_request = img_request->obj_request; 2551 rbd_assert(orig_request != NULL); 2552 rbd_assert(obj_request_type_valid(orig_request->type)); 2553 img_result = img_request->result; 2554 parent_length = img_request->length; 2555 rbd_assert(img_result || parent_length == img_request->xferred); 2556 rbd_img_request_put(img_request); 2557 2558 rbd_assert(orig_request->img_request); 2559 rbd_dev = orig_request->img_request->rbd_dev; 2560 rbd_assert(rbd_dev); 2561 2562 /* 2563 * If the overlap has become 0 (most likely because the 2564 * image has been flattened) we need to free the pages 2565 * and re-submit the original write request. 2566 */ 2567 if (!rbd_dev->parent_overlap) { 2568 ceph_release_page_vector(pages, page_count); 2569 rbd_obj_request_submit(orig_request); 2570 return; 2571 } 2572 2573 if (img_result) 2574 goto out_err; 2575 2576 /* 2577 * The original osd request is of no use to use any more. 2578 * We need a new one that can hold the three ops in a copyup 2579 * request. Allocate the new copyup osd request for the 2580 * original request, and release the old one. 2581 */ 2582 img_result = -ENOMEM; 2583 osd_req = rbd_osd_req_create_copyup(orig_request); 2584 if (!osd_req) 2585 goto out_err; 2586 rbd_osd_req_destroy(orig_request->osd_req); 2587 orig_request->osd_req = osd_req; 2588 orig_request->copyup_pages = pages; 2589 orig_request->copyup_page_count = page_count; 2590 2591 /* Initialize the copyup op */ 2592 2593 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2594 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2595 false, false); 2596 2597 /* Add the other op(s) */ 2598 2599 op_type = rbd_img_request_op_type(orig_request->img_request); 2600 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2601 2602 /* All set, send it off. */ 2603 2604 rbd_obj_request_submit(orig_request); 2605 return; 2606 2607 out_err: 2608 ceph_release_page_vector(pages, page_count); 2609 rbd_obj_request_error(orig_request, img_result); 2610 } 2611 2612 /* 2613 * Read from the parent image the range of data that covers the 2614 * entire target of the given object request. This is used for 2615 * satisfying a layered image write request when the target of an 2616 * object request from the image request does not exist. 2617 * 2618 * A page array big enough to hold the returned data is allocated 2619 * and supplied to rbd_img_request_fill() as the "data descriptor." 2620 * When the read completes, this page array will be transferred to 2621 * the original object request for the copyup operation. 2622 * 2623 * If an error occurs, it is recorded as the result of the original 2624 * object request in rbd_img_obj_exists_callback(). 2625 */ 2626 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2627 { 2628 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2629 struct rbd_img_request *parent_request = NULL; 2630 u64 img_offset; 2631 u64 length; 2632 struct page **pages = NULL; 2633 u32 page_count; 2634 int result; 2635 2636 rbd_assert(rbd_dev->parent != NULL); 2637 2638 /* 2639 * Determine the byte range covered by the object in the 2640 * child image to which the original request was to be sent. 2641 */ 2642 img_offset = obj_request->img_offset - obj_request->offset; 2643 length = rbd_obj_bytes(&rbd_dev->header); 2644 2645 /* 2646 * There is no defined parent data beyond the parent 2647 * overlap, so limit what we read at that boundary if 2648 * necessary. 2649 */ 2650 if (img_offset + length > rbd_dev->parent_overlap) { 2651 rbd_assert(img_offset < rbd_dev->parent_overlap); 2652 length = rbd_dev->parent_overlap - img_offset; 2653 } 2654 2655 /* 2656 * Allocate a page array big enough to receive the data read 2657 * from the parent. 2658 */ 2659 page_count = (u32)calc_pages_for(0, length); 2660 pages = ceph_alloc_page_vector(page_count, GFP_NOIO); 2661 if (IS_ERR(pages)) { 2662 result = PTR_ERR(pages); 2663 pages = NULL; 2664 goto out_err; 2665 } 2666 2667 result = -ENOMEM; 2668 parent_request = rbd_parent_request_create(obj_request, 2669 img_offset, length); 2670 if (!parent_request) 2671 goto out_err; 2672 2673 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2674 if (result) 2675 goto out_err; 2676 2677 parent_request->copyup_pages = pages; 2678 parent_request->copyup_page_count = page_count; 2679 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2680 2681 result = rbd_img_request_submit(parent_request); 2682 if (!result) 2683 return 0; 2684 2685 parent_request->copyup_pages = NULL; 2686 parent_request->copyup_page_count = 0; 2687 out_err: 2688 if (pages) 2689 ceph_release_page_vector(pages, page_count); 2690 if (parent_request) 2691 rbd_img_request_put(parent_request); 2692 return result; 2693 } 2694 2695 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2696 { 2697 struct rbd_obj_request *orig_request; 2698 struct rbd_device *rbd_dev; 2699 int result; 2700 2701 rbd_assert(!obj_request_img_data_test(obj_request)); 2702 2703 /* 2704 * All we need from the object request is the original 2705 * request and the result of the STAT op. Grab those, then 2706 * we're done with the request. 2707 */ 2708 orig_request = obj_request->obj_request; 2709 obj_request->obj_request = NULL; 2710 rbd_obj_request_put(orig_request); 2711 rbd_assert(orig_request); 2712 rbd_assert(orig_request->img_request); 2713 2714 result = obj_request->result; 2715 obj_request->result = 0; 2716 2717 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2718 obj_request, orig_request, result, 2719 obj_request->xferred, obj_request->length); 2720 rbd_obj_request_put(obj_request); 2721 2722 /* 2723 * If the overlap has become 0 (most likely because the 2724 * image has been flattened) we need to re-submit the 2725 * original request. 2726 */ 2727 rbd_dev = orig_request->img_request->rbd_dev; 2728 if (!rbd_dev->parent_overlap) { 2729 rbd_obj_request_submit(orig_request); 2730 return; 2731 } 2732 2733 /* 2734 * Our only purpose here is to determine whether the object 2735 * exists, and we don't want to treat the non-existence as 2736 * an error. If something else comes back, transfer the 2737 * error to the original request and complete it now. 2738 */ 2739 if (!result) { 2740 obj_request_existence_set(orig_request, true); 2741 } else if (result == -ENOENT) { 2742 obj_request_existence_set(orig_request, false); 2743 } else { 2744 goto fail_orig_request; 2745 } 2746 2747 /* 2748 * Resubmit the original request now that we have recorded 2749 * whether the target object exists. 2750 */ 2751 result = rbd_img_obj_request_submit(orig_request); 2752 if (result) 2753 goto fail_orig_request; 2754 2755 return; 2756 2757 fail_orig_request: 2758 rbd_obj_request_error(orig_request, result); 2759 } 2760 2761 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2762 { 2763 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2764 struct rbd_obj_request *stat_request; 2765 struct page **pages; 2766 u32 page_count; 2767 size_t size; 2768 int ret; 2769 2770 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES); 2771 if (!stat_request) 2772 return -ENOMEM; 2773 2774 stat_request->object_no = obj_request->object_no; 2775 2776 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2777 stat_request); 2778 if (!stat_request->osd_req) { 2779 ret = -ENOMEM; 2780 goto fail_stat_request; 2781 } 2782 2783 /* 2784 * The response data for a STAT call consists of: 2785 * le64 length; 2786 * struct { 2787 * le32 tv_sec; 2788 * le32 tv_nsec; 2789 * } mtime; 2790 */ 2791 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2792 page_count = (u32)calc_pages_for(0, size); 2793 pages = ceph_alloc_page_vector(page_count, GFP_NOIO); 2794 if (IS_ERR(pages)) { 2795 ret = PTR_ERR(pages); 2796 goto fail_stat_request; 2797 } 2798 2799 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2800 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2801 false, false); 2802 2803 rbd_obj_request_get(obj_request); 2804 stat_request->obj_request = obj_request; 2805 stat_request->pages = pages; 2806 stat_request->page_count = page_count; 2807 stat_request->callback = rbd_img_obj_exists_callback; 2808 2809 rbd_obj_request_submit(stat_request); 2810 return 0; 2811 2812 fail_stat_request: 2813 rbd_obj_request_put(stat_request); 2814 return ret; 2815 } 2816 2817 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2818 { 2819 struct rbd_img_request *img_request = obj_request->img_request; 2820 struct rbd_device *rbd_dev = img_request->rbd_dev; 2821 2822 /* Reads */ 2823 if (!img_request_write_test(img_request) && 2824 !img_request_discard_test(img_request)) 2825 return true; 2826 2827 /* Non-layered writes */ 2828 if (!img_request_layered_test(img_request)) 2829 return true; 2830 2831 /* 2832 * Layered writes outside of the parent overlap range don't 2833 * share any data with the parent. 2834 */ 2835 if (!obj_request_overlaps_parent(obj_request)) 2836 return true; 2837 2838 /* 2839 * Entire-object layered writes - we will overwrite whatever 2840 * parent data there is anyway. 2841 */ 2842 if (!obj_request->offset && 2843 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2844 return true; 2845 2846 /* 2847 * If the object is known to already exist, its parent data has 2848 * already been copied. 2849 */ 2850 if (obj_request_known_test(obj_request) && 2851 obj_request_exists_test(obj_request)) 2852 return true; 2853 2854 return false; 2855 } 2856 2857 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2858 { 2859 rbd_assert(obj_request_img_data_test(obj_request)); 2860 rbd_assert(obj_request_type_valid(obj_request->type)); 2861 rbd_assert(obj_request->img_request); 2862 2863 if (img_obj_request_simple(obj_request)) { 2864 rbd_obj_request_submit(obj_request); 2865 return 0; 2866 } 2867 2868 /* 2869 * It's a layered write. The target object might exist but 2870 * we may not know that yet. If we know it doesn't exist, 2871 * start by reading the data for the full target object from 2872 * the parent so we can use it for a copyup to the target. 2873 */ 2874 if (obj_request_known_test(obj_request)) 2875 return rbd_img_obj_parent_read_full(obj_request); 2876 2877 /* We don't know whether the target exists. Go find out. */ 2878 2879 return rbd_img_obj_exists_submit(obj_request); 2880 } 2881 2882 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2883 { 2884 struct rbd_obj_request *obj_request; 2885 struct rbd_obj_request *next_obj_request; 2886 int ret = 0; 2887 2888 dout("%s: img %p\n", __func__, img_request); 2889 2890 rbd_img_request_get(img_request); 2891 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2892 ret = rbd_img_obj_request_submit(obj_request); 2893 if (ret) 2894 goto out_put_ireq; 2895 } 2896 2897 out_put_ireq: 2898 rbd_img_request_put(img_request); 2899 return ret; 2900 } 2901 2902 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2903 { 2904 struct rbd_obj_request *obj_request; 2905 struct rbd_device *rbd_dev; 2906 u64 obj_end; 2907 u64 img_xferred; 2908 int img_result; 2909 2910 rbd_assert(img_request_child_test(img_request)); 2911 2912 /* First get what we need from the image request and release it */ 2913 2914 obj_request = img_request->obj_request; 2915 img_xferred = img_request->xferred; 2916 img_result = img_request->result; 2917 rbd_img_request_put(img_request); 2918 2919 /* 2920 * If the overlap has become 0 (most likely because the 2921 * image has been flattened) we need to re-submit the 2922 * original request. 2923 */ 2924 rbd_assert(obj_request); 2925 rbd_assert(obj_request->img_request); 2926 rbd_dev = obj_request->img_request->rbd_dev; 2927 if (!rbd_dev->parent_overlap) { 2928 rbd_obj_request_submit(obj_request); 2929 return; 2930 } 2931 2932 obj_request->result = img_result; 2933 if (obj_request->result) 2934 goto out; 2935 2936 /* 2937 * We need to zero anything beyond the parent overlap 2938 * boundary. Since rbd_img_obj_request_read_callback() 2939 * will zero anything beyond the end of a short read, an 2940 * easy way to do this is to pretend the data from the 2941 * parent came up short--ending at the overlap boundary. 2942 */ 2943 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2944 obj_end = obj_request->img_offset + obj_request->length; 2945 if (obj_end > rbd_dev->parent_overlap) { 2946 u64 xferred = 0; 2947 2948 if (obj_request->img_offset < rbd_dev->parent_overlap) 2949 xferred = rbd_dev->parent_overlap - 2950 obj_request->img_offset; 2951 2952 obj_request->xferred = min(img_xferred, xferred); 2953 } else { 2954 obj_request->xferred = img_xferred; 2955 } 2956 out: 2957 rbd_img_obj_request_read_callback(obj_request); 2958 rbd_obj_request_complete(obj_request); 2959 } 2960 2961 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2962 { 2963 struct rbd_img_request *img_request; 2964 int result; 2965 2966 rbd_assert(obj_request_img_data_test(obj_request)); 2967 rbd_assert(obj_request->img_request != NULL); 2968 rbd_assert(obj_request->result == (s32) -ENOENT); 2969 rbd_assert(obj_request_type_valid(obj_request->type)); 2970 2971 /* rbd_read_finish(obj_request, obj_request->length); */ 2972 img_request = rbd_parent_request_create(obj_request, 2973 obj_request->img_offset, 2974 obj_request->length); 2975 result = -ENOMEM; 2976 if (!img_request) 2977 goto out_err; 2978 2979 if (obj_request->type == OBJ_REQUEST_BIO) 2980 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2981 obj_request->bio_list); 2982 else 2983 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2984 obj_request->pages); 2985 if (result) 2986 goto out_err; 2987 2988 img_request->callback = rbd_img_parent_read_callback; 2989 result = rbd_img_request_submit(img_request); 2990 if (result) 2991 goto out_err; 2992 2993 return; 2994 out_err: 2995 if (img_request) 2996 rbd_img_request_put(img_request); 2997 obj_request->result = result; 2998 obj_request->xferred = 0; 2999 obj_request_done_set(obj_request); 3000 } 3001 3002 static const struct rbd_client_id rbd_empty_cid; 3003 3004 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3005 const struct rbd_client_id *rhs) 3006 { 3007 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3008 } 3009 3010 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3011 { 3012 struct rbd_client_id cid; 3013 3014 mutex_lock(&rbd_dev->watch_mutex); 3015 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3016 cid.handle = rbd_dev->watch_cookie; 3017 mutex_unlock(&rbd_dev->watch_mutex); 3018 return cid; 3019 } 3020 3021 /* 3022 * lock_rwsem must be held for write 3023 */ 3024 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3025 const struct rbd_client_id *cid) 3026 { 3027 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3028 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3029 cid->gid, cid->handle); 3030 rbd_dev->owner_cid = *cid; /* struct */ 3031 } 3032 3033 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3034 { 3035 mutex_lock(&rbd_dev->watch_mutex); 3036 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3037 mutex_unlock(&rbd_dev->watch_mutex); 3038 } 3039 3040 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3041 { 3042 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3043 3044 strcpy(rbd_dev->lock_cookie, cookie); 3045 rbd_set_owner_cid(rbd_dev, &cid); 3046 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3047 } 3048 3049 /* 3050 * lock_rwsem must be held for write 3051 */ 3052 static int rbd_lock(struct rbd_device *rbd_dev) 3053 { 3054 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3055 char cookie[32]; 3056 int ret; 3057 3058 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3059 rbd_dev->lock_cookie[0] != '\0'); 3060 3061 format_lock_cookie(rbd_dev, cookie); 3062 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3063 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3064 RBD_LOCK_TAG, "", 0); 3065 if (ret) 3066 return ret; 3067 3068 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3069 __rbd_lock(rbd_dev, cookie); 3070 return 0; 3071 } 3072 3073 /* 3074 * lock_rwsem must be held for write 3075 */ 3076 static void rbd_unlock(struct rbd_device *rbd_dev) 3077 { 3078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3079 int ret; 3080 3081 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3082 rbd_dev->lock_cookie[0] == '\0'); 3083 3084 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3085 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3086 if (ret && ret != -ENOENT) 3087 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 3088 3089 /* treat errors as the image is unlocked */ 3090 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3091 rbd_dev->lock_cookie[0] = '\0'; 3092 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3093 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3094 } 3095 3096 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3097 enum rbd_notify_op notify_op, 3098 struct page ***preply_pages, 3099 size_t *preply_len) 3100 { 3101 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3102 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3103 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3104 char buf[buf_size]; 3105 void *p = buf; 3106 3107 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3108 3109 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3110 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3111 ceph_encode_32(&p, notify_op); 3112 ceph_encode_64(&p, cid.gid); 3113 ceph_encode_64(&p, cid.handle); 3114 3115 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3116 &rbd_dev->header_oloc, buf, buf_size, 3117 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3118 } 3119 3120 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3121 enum rbd_notify_op notify_op) 3122 { 3123 struct page **reply_pages; 3124 size_t reply_len; 3125 3126 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3127 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3128 } 3129 3130 static void rbd_notify_acquired_lock(struct work_struct *work) 3131 { 3132 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3133 acquired_lock_work); 3134 3135 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3136 } 3137 3138 static void rbd_notify_released_lock(struct work_struct *work) 3139 { 3140 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3141 released_lock_work); 3142 3143 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3144 } 3145 3146 static int rbd_request_lock(struct rbd_device *rbd_dev) 3147 { 3148 struct page **reply_pages; 3149 size_t reply_len; 3150 bool lock_owner_responded = false; 3151 int ret; 3152 3153 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3154 3155 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3156 &reply_pages, &reply_len); 3157 if (ret && ret != -ETIMEDOUT) { 3158 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3159 goto out; 3160 } 3161 3162 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3163 void *p = page_address(reply_pages[0]); 3164 void *const end = p + reply_len; 3165 u32 n; 3166 3167 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3168 while (n--) { 3169 u8 struct_v; 3170 u32 len; 3171 3172 ceph_decode_need(&p, end, 8 + 8, e_inval); 3173 p += 8 + 8; /* skip gid and cookie */ 3174 3175 ceph_decode_32_safe(&p, end, len, e_inval); 3176 if (!len) 3177 continue; 3178 3179 if (lock_owner_responded) { 3180 rbd_warn(rbd_dev, 3181 "duplicate lock owners detected"); 3182 ret = -EIO; 3183 goto out; 3184 } 3185 3186 lock_owner_responded = true; 3187 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3188 &struct_v, &len); 3189 if (ret) { 3190 rbd_warn(rbd_dev, 3191 "failed to decode ResponseMessage: %d", 3192 ret); 3193 goto e_inval; 3194 } 3195 3196 ret = ceph_decode_32(&p); 3197 } 3198 } 3199 3200 if (!lock_owner_responded) { 3201 rbd_warn(rbd_dev, "no lock owners detected"); 3202 ret = -ETIMEDOUT; 3203 } 3204 3205 out: 3206 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3207 return ret; 3208 3209 e_inval: 3210 ret = -EINVAL; 3211 goto out; 3212 } 3213 3214 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3215 { 3216 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3217 3218 cancel_delayed_work(&rbd_dev->lock_dwork); 3219 if (wake_all) 3220 wake_up_all(&rbd_dev->lock_waitq); 3221 else 3222 wake_up(&rbd_dev->lock_waitq); 3223 } 3224 3225 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3226 struct ceph_locker **lockers, u32 *num_lockers) 3227 { 3228 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3229 u8 lock_type; 3230 char *lock_tag; 3231 int ret; 3232 3233 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3234 3235 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3236 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3237 &lock_type, &lock_tag, lockers, num_lockers); 3238 if (ret) 3239 return ret; 3240 3241 if (*num_lockers == 0) { 3242 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3243 goto out; 3244 } 3245 3246 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3247 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3248 lock_tag); 3249 ret = -EBUSY; 3250 goto out; 3251 } 3252 3253 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3254 rbd_warn(rbd_dev, "shared lock type detected"); 3255 ret = -EBUSY; 3256 goto out; 3257 } 3258 3259 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3260 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3261 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3262 (*lockers)[0].id.cookie); 3263 ret = -EBUSY; 3264 goto out; 3265 } 3266 3267 out: 3268 kfree(lock_tag); 3269 return ret; 3270 } 3271 3272 static int find_watcher(struct rbd_device *rbd_dev, 3273 const struct ceph_locker *locker) 3274 { 3275 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3276 struct ceph_watch_item *watchers; 3277 u32 num_watchers; 3278 u64 cookie; 3279 int i; 3280 int ret; 3281 3282 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3283 &rbd_dev->header_oloc, &watchers, 3284 &num_watchers); 3285 if (ret) 3286 return ret; 3287 3288 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3289 for (i = 0; i < num_watchers; i++) { 3290 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3291 sizeof(locker->info.addr)) && 3292 watchers[i].cookie == cookie) { 3293 struct rbd_client_id cid = { 3294 .gid = le64_to_cpu(watchers[i].name.num), 3295 .handle = cookie, 3296 }; 3297 3298 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3299 rbd_dev, cid.gid, cid.handle); 3300 rbd_set_owner_cid(rbd_dev, &cid); 3301 ret = 1; 3302 goto out; 3303 } 3304 } 3305 3306 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3307 ret = 0; 3308 out: 3309 kfree(watchers); 3310 return ret; 3311 } 3312 3313 /* 3314 * lock_rwsem must be held for write 3315 */ 3316 static int rbd_try_lock(struct rbd_device *rbd_dev) 3317 { 3318 struct ceph_client *client = rbd_dev->rbd_client->client; 3319 struct ceph_locker *lockers; 3320 u32 num_lockers; 3321 int ret; 3322 3323 for (;;) { 3324 ret = rbd_lock(rbd_dev); 3325 if (ret != -EBUSY) 3326 return ret; 3327 3328 /* determine if the current lock holder is still alive */ 3329 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3330 if (ret) 3331 return ret; 3332 3333 if (num_lockers == 0) 3334 goto again; 3335 3336 ret = find_watcher(rbd_dev, lockers); 3337 if (ret) { 3338 if (ret > 0) 3339 ret = 0; /* have to request lock */ 3340 goto out; 3341 } 3342 3343 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3344 ENTITY_NAME(lockers[0].id.name)); 3345 3346 ret = ceph_monc_blacklist_add(&client->monc, 3347 &lockers[0].info.addr); 3348 if (ret) { 3349 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3350 ENTITY_NAME(lockers[0].id.name), ret); 3351 goto out; 3352 } 3353 3354 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3355 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3356 lockers[0].id.cookie, 3357 &lockers[0].id.name); 3358 if (ret && ret != -ENOENT) 3359 goto out; 3360 3361 again: 3362 ceph_free_lockers(lockers, num_lockers); 3363 } 3364 3365 out: 3366 ceph_free_lockers(lockers, num_lockers); 3367 return ret; 3368 } 3369 3370 /* 3371 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3372 */ 3373 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3374 int *pret) 3375 { 3376 enum rbd_lock_state lock_state; 3377 3378 down_read(&rbd_dev->lock_rwsem); 3379 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3380 rbd_dev->lock_state); 3381 if (__rbd_is_lock_owner(rbd_dev)) { 3382 lock_state = rbd_dev->lock_state; 3383 up_read(&rbd_dev->lock_rwsem); 3384 return lock_state; 3385 } 3386 3387 up_read(&rbd_dev->lock_rwsem); 3388 down_write(&rbd_dev->lock_rwsem); 3389 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3390 rbd_dev->lock_state); 3391 if (!__rbd_is_lock_owner(rbd_dev)) { 3392 *pret = rbd_try_lock(rbd_dev); 3393 if (*pret) 3394 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3395 } 3396 3397 lock_state = rbd_dev->lock_state; 3398 up_write(&rbd_dev->lock_rwsem); 3399 return lock_state; 3400 } 3401 3402 static void rbd_acquire_lock(struct work_struct *work) 3403 { 3404 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3405 struct rbd_device, lock_dwork); 3406 enum rbd_lock_state lock_state; 3407 int ret = 0; 3408 3409 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3410 again: 3411 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3412 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3413 if (lock_state == RBD_LOCK_STATE_LOCKED) 3414 wake_requests(rbd_dev, true); 3415 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3416 rbd_dev, lock_state, ret); 3417 return; 3418 } 3419 3420 ret = rbd_request_lock(rbd_dev); 3421 if (ret == -ETIMEDOUT) { 3422 goto again; /* treat this as a dead client */ 3423 } else if (ret == -EROFS) { 3424 rbd_warn(rbd_dev, "peer will not release lock"); 3425 /* 3426 * If this is rbd_add_acquire_lock(), we want to fail 3427 * immediately -- reuse BLACKLISTED flag. Otherwise we 3428 * want to block. 3429 */ 3430 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3431 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3432 /* wake "rbd map --exclusive" process */ 3433 wake_requests(rbd_dev, false); 3434 } 3435 } else if (ret < 0) { 3436 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3437 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3438 RBD_RETRY_DELAY); 3439 } else { 3440 /* 3441 * lock owner acked, but resend if we don't see them 3442 * release the lock 3443 */ 3444 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3445 rbd_dev); 3446 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3447 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3448 } 3449 } 3450 3451 /* 3452 * lock_rwsem must be held for write 3453 */ 3454 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3455 { 3456 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3457 rbd_dev->lock_state); 3458 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3459 return false; 3460 3461 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3462 downgrade_write(&rbd_dev->lock_rwsem); 3463 /* 3464 * Ensure that all in-flight IO is flushed. 3465 * 3466 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3467 * may be shared with other devices. 3468 */ 3469 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3470 up_read(&rbd_dev->lock_rwsem); 3471 3472 down_write(&rbd_dev->lock_rwsem); 3473 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3474 rbd_dev->lock_state); 3475 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3476 return false; 3477 3478 rbd_unlock(rbd_dev); 3479 /* 3480 * Give others a chance to grab the lock - we would re-acquire 3481 * almost immediately if we got new IO during ceph_osdc_sync() 3482 * otherwise. We need to ack our own notifications, so this 3483 * lock_dwork will be requeued from rbd_wait_state_locked() 3484 * after wake_requests() in rbd_handle_released_lock(). 3485 */ 3486 cancel_delayed_work(&rbd_dev->lock_dwork); 3487 return true; 3488 } 3489 3490 static void rbd_release_lock_work(struct work_struct *work) 3491 { 3492 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3493 unlock_work); 3494 3495 down_write(&rbd_dev->lock_rwsem); 3496 rbd_release_lock(rbd_dev); 3497 up_write(&rbd_dev->lock_rwsem); 3498 } 3499 3500 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3501 void **p) 3502 { 3503 struct rbd_client_id cid = { 0 }; 3504 3505 if (struct_v >= 2) { 3506 cid.gid = ceph_decode_64(p); 3507 cid.handle = ceph_decode_64(p); 3508 } 3509 3510 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3511 cid.handle); 3512 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3513 down_write(&rbd_dev->lock_rwsem); 3514 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3515 /* 3516 * we already know that the remote client is 3517 * the owner 3518 */ 3519 up_write(&rbd_dev->lock_rwsem); 3520 return; 3521 } 3522 3523 rbd_set_owner_cid(rbd_dev, &cid); 3524 downgrade_write(&rbd_dev->lock_rwsem); 3525 } else { 3526 down_read(&rbd_dev->lock_rwsem); 3527 } 3528 3529 if (!__rbd_is_lock_owner(rbd_dev)) 3530 wake_requests(rbd_dev, false); 3531 up_read(&rbd_dev->lock_rwsem); 3532 } 3533 3534 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3535 void **p) 3536 { 3537 struct rbd_client_id cid = { 0 }; 3538 3539 if (struct_v >= 2) { 3540 cid.gid = ceph_decode_64(p); 3541 cid.handle = ceph_decode_64(p); 3542 } 3543 3544 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3545 cid.handle); 3546 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3547 down_write(&rbd_dev->lock_rwsem); 3548 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3549 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3550 __func__, rbd_dev, cid.gid, cid.handle, 3551 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3552 up_write(&rbd_dev->lock_rwsem); 3553 return; 3554 } 3555 3556 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3557 downgrade_write(&rbd_dev->lock_rwsem); 3558 } else { 3559 down_read(&rbd_dev->lock_rwsem); 3560 } 3561 3562 if (!__rbd_is_lock_owner(rbd_dev)) 3563 wake_requests(rbd_dev, false); 3564 up_read(&rbd_dev->lock_rwsem); 3565 } 3566 3567 /* 3568 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3569 * ResponseMessage is needed. 3570 */ 3571 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3572 void **p) 3573 { 3574 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3575 struct rbd_client_id cid = { 0 }; 3576 int result = 1; 3577 3578 if (struct_v >= 2) { 3579 cid.gid = ceph_decode_64(p); 3580 cid.handle = ceph_decode_64(p); 3581 } 3582 3583 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3584 cid.handle); 3585 if (rbd_cid_equal(&cid, &my_cid)) 3586 return result; 3587 3588 down_read(&rbd_dev->lock_rwsem); 3589 if (__rbd_is_lock_owner(rbd_dev)) { 3590 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3591 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3592 goto out_unlock; 3593 3594 /* 3595 * encode ResponseMessage(0) so the peer can detect 3596 * a missing owner 3597 */ 3598 result = 0; 3599 3600 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3601 if (!rbd_dev->opts->exclusive) { 3602 dout("%s rbd_dev %p queueing unlock_work\n", 3603 __func__, rbd_dev); 3604 queue_work(rbd_dev->task_wq, 3605 &rbd_dev->unlock_work); 3606 } else { 3607 /* refuse to release the lock */ 3608 result = -EROFS; 3609 } 3610 } 3611 } 3612 3613 out_unlock: 3614 up_read(&rbd_dev->lock_rwsem); 3615 return result; 3616 } 3617 3618 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3619 u64 notify_id, u64 cookie, s32 *result) 3620 { 3621 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3622 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3623 char buf[buf_size]; 3624 int ret; 3625 3626 if (result) { 3627 void *p = buf; 3628 3629 /* encode ResponseMessage */ 3630 ceph_start_encoding(&p, 1, 1, 3631 buf_size - CEPH_ENCODING_START_BLK_LEN); 3632 ceph_encode_32(&p, *result); 3633 } else { 3634 buf_size = 0; 3635 } 3636 3637 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3638 &rbd_dev->header_oloc, notify_id, cookie, 3639 buf, buf_size); 3640 if (ret) 3641 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3642 } 3643 3644 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3645 u64 cookie) 3646 { 3647 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3648 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3649 } 3650 3651 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3652 u64 notify_id, u64 cookie, s32 result) 3653 { 3654 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3655 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3656 } 3657 3658 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3659 u64 notifier_id, void *data, size_t data_len) 3660 { 3661 struct rbd_device *rbd_dev = arg; 3662 void *p = data; 3663 void *const end = p + data_len; 3664 u8 struct_v = 0; 3665 u32 len; 3666 u32 notify_op; 3667 int ret; 3668 3669 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3670 __func__, rbd_dev, cookie, notify_id, data_len); 3671 if (data_len) { 3672 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3673 &struct_v, &len); 3674 if (ret) { 3675 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3676 ret); 3677 return; 3678 } 3679 3680 notify_op = ceph_decode_32(&p); 3681 } else { 3682 /* legacy notification for header updates */ 3683 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3684 len = 0; 3685 } 3686 3687 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3688 switch (notify_op) { 3689 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3690 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3691 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3692 break; 3693 case RBD_NOTIFY_OP_RELEASED_LOCK: 3694 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3695 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3696 break; 3697 case RBD_NOTIFY_OP_REQUEST_LOCK: 3698 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3699 if (ret <= 0) 3700 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3701 cookie, ret); 3702 else 3703 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3704 break; 3705 case RBD_NOTIFY_OP_HEADER_UPDATE: 3706 ret = rbd_dev_refresh(rbd_dev); 3707 if (ret) 3708 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3709 3710 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3711 break; 3712 default: 3713 if (rbd_is_lock_owner(rbd_dev)) 3714 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3715 cookie, -EOPNOTSUPP); 3716 else 3717 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3718 break; 3719 } 3720 } 3721 3722 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3723 3724 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3725 { 3726 struct rbd_device *rbd_dev = arg; 3727 3728 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3729 3730 down_write(&rbd_dev->lock_rwsem); 3731 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3732 up_write(&rbd_dev->lock_rwsem); 3733 3734 mutex_lock(&rbd_dev->watch_mutex); 3735 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3736 __rbd_unregister_watch(rbd_dev); 3737 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3738 3739 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3740 } 3741 mutex_unlock(&rbd_dev->watch_mutex); 3742 } 3743 3744 /* 3745 * watch_mutex must be locked 3746 */ 3747 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3748 { 3749 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3750 struct ceph_osd_linger_request *handle; 3751 3752 rbd_assert(!rbd_dev->watch_handle); 3753 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3754 3755 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3756 &rbd_dev->header_oloc, rbd_watch_cb, 3757 rbd_watch_errcb, rbd_dev); 3758 if (IS_ERR(handle)) 3759 return PTR_ERR(handle); 3760 3761 rbd_dev->watch_handle = handle; 3762 return 0; 3763 } 3764 3765 /* 3766 * watch_mutex must be locked 3767 */ 3768 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3769 { 3770 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3771 int ret; 3772 3773 rbd_assert(rbd_dev->watch_handle); 3774 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3775 3776 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3777 if (ret) 3778 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3779 3780 rbd_dev->watch_handle = NULL; 3781 } 3782 3783 static int rbd_register_watch(struct rbd_device *rbd_dev) 3784 { 3785 int ret; 3786 3787 mutex_lock(&rbd_dev->watch_mutex); 3788 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3789 ret = __rbd_register_watch(rbd_dev); 3790 if (ret) 3791 goto out; 3792 3793 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3794 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3795 3796 out: 3797 mutex_unlock(&rbd_dev->watch_mutex); 3798 return ret; 3799 } 3800 3801 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3802 { 3803 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3804 3805 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3806 cancel_work_sync(&rbd_dev->acquired_lock_work); 3807 cancel_work_sync(&rbd_dev->released_lock_work); 3808 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3809 cancel_work_sync(&rbd_dev->unlock_work); 3810 } 3811 3812 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3813 { 3814 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3815 cancel_tasks_sync(rbd_dev); 3816 3817 mutex_lock(&rbd_dev->watch_mutex); 3818 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3819 __rbd_unregister_watch(rbd_dev); 3820 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3821 mutex_unlock(&rbd_dev->watch_mutex); 3822 3823 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3824 } 3825 3826 /* 3827 * lock_rwsem must be held for write 3828 */ 3829 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3830 { 3831 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3832 char cookie[32]; 3833 int ret; 3834 3835 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3836 3837 format_lock_cookie(rbd_dev, cookie); 3838 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3839 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3840 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3841 RBD_LOCK_TAG, cookie); 3842 if (ret) { 3843 if (ret != -EOPNOTSUPP) 3844 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3845 ret); 3846 3847 /* 3848 * Lock cookie cannot be updated on older OSDs, so do 3849 * a manual release and queue an acquire. 3850 */ 3851 if (rbd_release_lock(rbd_dev)) 3852 queue_delayed_work(rbd_dev->task_wq, 3853 &rbd_dev->lock_dwork, 0); 3854 } else { 3855 __rbd_lock(rbd_dev, cookie); 3856 } 3857 } 3858 3859 static void rbd_reregister_watch(struct work_struct *work) 3860 { 3861 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3862 struct rbd_device, watch_dwork); 3863 int ret; 3864 3865 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3866 3867 mutex_lock(&rbd_dev->watch_mutex); 3868 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3869 mutex_unlock(&rbd_dev->watch_mutex); 3870 return; 3871 } 3872 3873 ret = __rbd_register_watch(rbd_dev); 3874 if (ret) { 3875 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3876 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3877 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3878 wake_requests(rbd_dev, true); 3879 } else { 3880 queue_delayed_work(rbd_dev->task_wq, 3881 &rbd_dev->watch_dwork, 3882 RBD_RETRY_DELAY); 3883 } 3884 mutex_unlock(&rbd_dev->watch_mutex); 3885 return; 3886 } 3887 3888 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3889 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3890 mutex_unlock(&rbd_dev->watch_mutex); 3891 3892 down_write(&rbd_dev->lock_rwsem); 3893 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3894 rbd_reacquire_lock(rbd_dev); 3895 up_write(&rbd_dev->lock_rwsem); 3896 3897 ret = rbd_dev_refresh(rbd_dev); 3898 if (ret) 3899 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3900 } 3901 3902 /* 3903 * Synchronous osd object method call. Returns the number of bytes 3904 * returned in the outbound buffer, or a negative error code. 3905 */ 3906 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3907 struct ceph_object_id *oid, 3908 struct ceph_object_locator *oloc, 3909 const char *method_name, 3910 const void *outbound, 3911 size_t outbound_size, 3912 void *inbound, 3913 size_t inbound_size) 3914 { 3915 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3916 struct page *req_page = NULL; 3917 struct page *reply_page; 3918 int ret; 3919 3920 /* 3921 * Method calls are ultimately read operations. The result 3922 * should placed into the inbound buffer provided. They 3923 * also supply outbound data--parameters for the object 3924 * method. Currently if this is present it will be a 3925 * snapshot id. 3926 */ 3927 if (outbound) { 3928 if (outbound_size > PAGE_SIZE) 3929 return -E2BIG; 3930 3931 req_page = alloc_page(GFP_KERNEL); 3932 if (!req_page) 3933 return -ENOMEM; 3934 3935 memcpy(page_address(req_page), outbound, outbound_size); 3936 } 3937 3938 reply_page = alloc_page(GFP_KERNEL); 3939 if (!reply_page) { 3940 if (req_page) 3941 __free_page(req_page); 3942 return -ENOMEM; 3943 } 3944 3945 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3946 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3947 reply_page, &inbound_size); 3948 if (!ret) { 3949 memcpy(inbound, page_address(reply_page), inbound_size); 3950 ret = inbound_size; 3951 } 3952 3953 if (req_page) 3954 __free_page(req_page); 3955 __free_page(reply_page); 3956 return ret; 3957 } 3958 3959 /* 3960 * lock_rwsem must be held for read 3961 */ 3962 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 3963 { 3964 DEFINE_WAIT(wait); 3965 3966 do { 3967 /* 3968 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3969 * and cancel_delayed_work() in wake_requests(). 3970 */ 3971 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3972 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3973 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3974 TASK_UNINTERRUPTIBLE); 3975 up_read(&rbd_dev->lock_rwsem); 3976 schedule(); 3977 down_read(&rbd_dev->lock_rwsem); 3978 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 3979 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 3980 3981 finish_wait(&rbd_dev->lock_waitq, &wait); 3982 } 3983 3984 static void rbd_queue_workfn(struct work_struct *work) 3985 { 3986 struct request *rq = blk_mq_rq_from_pdu(work); 3987 struct rbd_device *rbd_dev = rq->q->queuedata; 3988 struct rbd_img_request *img_request; 3989 struct ceph_snap_context *snapc = NULL; 3990 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3991 u64 length = blk_rq_bytes(rq); 3992 enum obj_operation_type op_type; 3993 u64 mapping_size; 3994 bool must_be_locked; 3995 int result; 3996 3997 switch (req_op(rq)) { 3998 case REQ_OP_DISCARD: 3999 case REQ_OP_WRITE_ZEROES: 4000 op_type = OBJ_OP_DISCARD; 4001 break; 4002 case REQ_OP_WRITE: 4003 op_type = OBJ_OP_WRITE; 4004 break; 4005 case REQ_OP_READ: 4006 op_type = OBJ_OP_READ; 4007 break; 4008 default: 4009 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 4010 result = -EIO; 4011 goto err; 4012 } 4013 4014 /* Ignore/skip any zero-length requests */ 4015 4016 if (!length) { 4017 dout("%s: zero-length request\n", __func__); 4018 result = 0; 4019 goto err_rq; 4020 } 4021 4022 rbd_assert(op_type == OBJ_OP_READ || 4023 rbd_dev->spec->snap_id == CEPH_NOSNAP); 4024 4025 /* 4026 * Quit early if the mapped snapshot no longer exists. It's 4027 * still possible the snapshot will have disappeared by the 4028 * time our request arrives at the osd, but there's no sense in 4029 * sending it if we already know. 4030 */ 4031 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4032 dout("request for non-existent snapshot"); 4033 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4034 result = -ENXIO; 4035 goto err_rq; 4036 } 4037 4038 if (offset && length > U64_MAX - offset + 1) { 4039 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4040 length); 4041 result = -EINVAL; 4042 goto err_rq; /* Shouldn't happen */ 4043 } 4044 4045 blk_mq_start_request(rq); 4046 4047 down_read(&rbd_dev->header_rwsem); 4048 mapping_size = rbd_dev->mapping.size; 4049 if (op_type != OBJ_OP_READ) { 4050 snapc = rbd_dev->header.snapc; 4051 ceph_get_snap_context(snapc); 4052 } 4053 up_read(&rbd_dev->header_rwsem); 4054 4055 if (offset + length > mapping_size) { 4056 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4057 length, mapping_size); 4058 result = -EIO; 4059 goto err_rq; 4060 } 4061 4062 must_be_locked = 4063 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 4064 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 4065 if (must_be_locked) { 4066 down_read(&rbd_dev->lock_rwsem); 4067 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4068 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4069 if (rbd_dev->opts->exclusive) { 4070 rbd_warn(rbd_dev, "exclusive lock required"); 4071 result = -EROFS; 4072 goto err_unlock; 4073 } 4074 rbd_wait_state_locked(rbd_dev); 4075 } 4076 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4077 result = -EBLACKLISTED; 4078 goto err_unlock; 4079 } 4080 } 4081 4082 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4083 snapc); 4084 if (!img_request) { 4085 result = -ENOMEM; 4086 goto err_unlock; 4087 } 4088 img_request->rq = rq; 4089 snapc = NULL; /* img_request consumes a ref */ 4090 4091 if (op_type == OBJ_OP_DISCARD) 4092 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4093 NULL); 4094 else 4095 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4096 rq->bio); 4097 if (result) 4098 goto err_img_request; 4099 4100 result = rbd_img_request_submit(img_request); 4101 if (result) 4102 goto err_img_request; 4103 4104 if (must_be_locked) 4105 up_read(&rbd_dev->lock_rwsem); 4106 return; 4107 4108 err_img_request: 4109 rbd_img_request_put(img_request); 4110 err_unlock: 4111 if (must_be_locked) 4112 up_read(&rbd_dev->lock_rwsem); 4113 err_rq: 4114 if (result) 4115 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4116 obj_op_name(op_type), length, offset, result); 4117 ceph_put_snap_context(snapc); 4118 err: 4119 blk_mq_end_request(rq, errno_to_blk_status(result)); 4120 } 4121 4122 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4123 const struct blk_mq_queue_data *bd) 4124 { 4125 struct request *rq = bd->rq; 4126 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4127 4128 queue_work(rbd_wq, work); 4129 return BLK_STS_OK; 4130 } 4131 4132 static void rbd_free_disk(struct rbd_device *rbd_dev) 4133 { 4134 blk_cleanup_queue(rbd_dev->disk->queue); 4135 blk_mq_free_tag_set(&rbd_dev->tag_set); 4136 put_disk(rbd_dev->disk); 4137 rbd_dev->disk = NULL; 4138 } 4139 4140 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4141 struct ceph_object_id *oid, 4142 struct ceph_object_locator *oloc, 4143 void *buf, int buf_len) 4144 4145 { 4146 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4147 struct ceph_osd_request *req; 4148 struct page **pages; 4149 int num_pages = calc_pages_for(0, buf_len); 4150 int ret; 4151 4152 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4153 if (!req) 4154 return -ENOMEM; 4155 4156 ceph_oid_copy(&req->r_base_oid, oid); 4157 ceph_oloc_copy(&req->r_base_oloc, oloc); 4158 req->r_flags = CEPH_OSD_FLAG_READ; 4159 4160 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4161 if (ret) 4162 goto out_req; 4163 4164 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4165 if (IS_ERR(pages)) { 4166 ret = PTR_ERR(pages); 4167 goto out_req; 4168 } 4169 4170 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4171 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4172 true); 4173 4174 ceph_osdc_start_request(osdc, req, false); 4175 ret = ceph_osdc_wait_request(osdc, req); 4176 if (ret >= 0) 4177 ceph_copy_from_page_vector(pages, buf, 0, ret); 4178 4179 out_req: 4180 ceph_osdc_put_request(req); 4181 return ret; 4182 } 4183 4184 /* 4185 * Read the complete header for the given rbd device. On successful 4186 * return, the rbd_dev->header field will contain up-to-date 4187 * information about the image. 4188 */ 4189 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4190 { 4191 struct rbd_image_header_ondisk *ondisk = NULL; 4192 u32 snap_count = 0; 4193 u64 names_size = 0; 4194 u32 want_count; 4195 int ret; 4196 4197 /* 4198 * The complete header will include an array of its 64-bit 4199 * snapshot ids, followed by the names of those snapshots as 4200 * a contiguous block of NUL-terminated strings. Note that 4201 * the number of snapshots could change by the time we read 4202 * it in, in which case we re-read it. 4203 */ 4204 do { 4205 size_t size; 4206 4207 kfree(ondisk); 4208 4209 size = sizeof (*ondisk); 4210 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4211 size += names_size; 4212 ondisk = kmalloc(size, GFP_KERNEL); 4213 if (!ondisk) 4214 return -ENOMEM; 4215 4216 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4217 &rbd_dev->header_oloc, ondisk, size); 4218 if (ret < 0) 4219 goto out; 4220 if ((size_t)ret < size) { 4221 ret = -ENXIO; 4222 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4223 size, ret); 4224 goto out; 4225 } 4226 if (!rbd_dev_ondisk_valid(ondisk)) { 4227 ret = -ENXIO; 4228 rbd_warn(rbd_dev, "invalid header"); 4229 goto out; 4230 } 4231 4232 names_size = le64_to_cpu(ondisk->snap_names_len); 4233 want_count = snap_count; 4234 snap_count = le32_to_cpu(ondisk->snap_count); 4235 } while (snap_count != want_count); 4236 4237 ret = rbd_header_from_disk(rbd_dev, ondisk); 4238 out: 4239 kfree(ondisk); 4240 4241 return ret; 4242 } 4243 4244 /* 4245 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4246 * has disappeared from the (just updated) snapshot context. 4247 */ 4248 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4249 { 4250 u64 snap_id; 4251 4252 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4253 return; 4254 4255 snap_id = rbd_dev->spec->snap_id; 4256 if (snap_id == CEPH_NOSNAP) 4257 return; 4258 4259 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4260 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4261 } 4262 4263 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4264 { 4265 sector_t size; 4266 4267 /* 4268 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4269 * try to update its size. If REMOVING is set, updating size 4270 * is just useless work since the device can't be opened. 4271 */ 4272 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4273 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4274 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4275 dout("setting size to %llu sectors", (unsigned long long)size); 4276 set_capacity(rbd_dev->disk, size); 4277 revalidate_disk(rbd_dev->disk); 4278 } 4279 } 4280 4281 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4282 { 4283 u64 mapping_size; 4284 int ret; 4285 4286 down_write(&rbd_dev->header_rwsem); 4287 mapping_size = rbd_dev->mapping.size; 4288 4289 ret = rbd_dev_header_info(rbd_dev); 4290 if (ret) 4291 goto out; 4292 4293 /* 4294 * If there is a parent, see if it has disappeared due to the 4295 * mapped image getting flattened. 4296 */ 4297 if (rbd_dev->parent) { 4298 ret = rbd_dev_v2_parent_info(rbd_dev); 4299 if (ret) 4300 goto out; 4301 } 4302 4303 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4304 rbd_dev->mapping.size = rbd_dev->header.image_size; 4305 } else { 4306 /* validate mapped snapshot's EXISTS flag */ 4307 rbd_exists_validate(rbd_dev); 4308 } 4309 4310 out: 4311 up_write(&rbd_dev->header_rwsem); 4312 if (!ret && mapping_size != rbd_dev->mapping.size) 4313 rbd_dev_update_size(rbd_dev); 4314 4315 return ret; 4316 } 4317 4318 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 4319 unsigned int hctx_idx, unsigned int numa_node) 4320 { 4321 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4322 4323 INIT_WORK(work, rbd_queue_workfn); 4324 return 0; 4325 } 4326 4327 static const struct blk_mq_ops rbd_mq_ops = { 4328 .queue_rq = rbd_queue_rq, 4329 .init_request = rbd_init_request, 4330 }; 4331 4332 static int rbd_init_disk(struct rbd_device *rbd_dev) 4333 { 4334 struct gendisk *disk; 4335 struct request_queue *q; 4336 u64 segment_size; 4337 int err; 4338 4339 /* create gendisk info */ 4340 disk = alloc_disk(single_major ? 4341 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4342 RBD_MINORS_PER_MAJOR); 4343 if (!disk) 4344 return -ENOMEM; 4345 4346 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4347 rbd_dev->dev_id); 4348 disk->major = rbd_dev->major; 4349 disk->first_minor = rbd_dev->minor; 4350 if (single_major) 4351 disk->flags |= GENHD_FL_EXT_DEVT; 4352 disk->fops = &rbd_bd_ops; 4353 disk->private_data = rbd_dev; 4354 4355 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4356 rbd_dev->tag_set.ops = &rbd_mq_ops; 4357 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4358 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4359 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4360 rbd_dev->tag_set.nr_hw_queues = 1; 4361 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4362 4363 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4364 if (err) 4365 goto out_disk; 4366 4367 q = blk_mq_init_queue(&rbd_dev->tag_set); 4368 if (IS_ERR(q)) { 4369 err = PTR_ERR(q); 4370 goto out_tag_set; 4371 } 4372 4373 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4374 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4375 4376 /* set io sizes to object size */ 4377 segment_size = rbd_obj_bytes(&rbd_dev->header); 4378 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4379 q->limits.max_sectors = queue_max_hw_sectors(q); 4380 blk_queue_max_segments(q, USHRT_MAX); 4381 blk_queue_max_segment_size(q, segment_size); 4382 blk_queue_io_min(q, segment_size); 4383 blk_queue_io_opt(q, segment_size); 4384 4385 /* enable the discard support */ 4386 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4387 q->limits.discard_granularity = segment_size; 4388 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4389 blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE); 4390 4391 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4392 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4393 4394 /* 4395 * disk_release() expects a queue ref from add_disk() and will 4396 * put it. Hold an extra ref until add_disk() is called. 4397 */ 4398 WARN_ON(!blk_get_queue(q)); 4399 disk->queue = q; 4400 q->queuedata = rbd_dev; 4401 4402 rbd_dev->disk = disk; 4403 4404 return 0; 4405 out_tag_set: 4406 blk_mq_free_tag_set(&rbd_dev->tag_set); 4407 out_disk: 4408 put_disk(disk); 4409 return err; 4410 } 4411 4412 /* 4413 sysfs 4414 */ 4415 4416 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4417 { 4418 return container_of(dev, struct rbd_device, dev); 4419 } 4420 4421 static ssize_t rbd_size_show(struct device *dev, 4422 struct device_attribute *attr, char *buf) 4423 { 4424 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4425 4426 return sprintf(buf, "%llu\n", 4427 (unsigned long long)rbd_dev->mapping.size); 4428 } 4429 4430 /* 4431 * Note this shows the features for whatever's mapped, which is not 4432 * necessarily the base image. 4433 */ 4434 static ssize_t rbd_features_show(struct device *dev, 4435 struct device_attribute *attr, char *buf) 4436 { 4437 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4438 4439 return sprintf(buf, "0x%016llx\n", 4440 (unsigned long long)rbd_dev->mapping.features); 4441 } 4442 4443 static ssize_t rbd_major_show(struct device *dev, 4444 struct device_attribute *attr, char *buf) 4445 { 4446 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4447 4448 if (rbd_dev->major) 4449 return sprintf(buf, "%d\n", rbd_dev->major); 4450 4451 return sprintf(buf, "(none)\n"); 4452 } 4453 4454 static ssize_t rbd_minor_show(struct device *dev, 4455 struct device_attribute *attr, char *buf) 4456 { 4457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4458 4459 return sprintf(buf, "%d\n", rbd_dev->minor); 4460 } 4461 4462 static ssize_t rbd_client_addr_show(struct device *dev, 4463 struct device_attribute *attr, char *buf) 4464 { 4465 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4466 struct ceph_entity_addr *client_addr = 4467 ceph_client_addr(rbd_dev->rbd_client->client); 4468 4469 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4470 le32_to_cpu(client_addr->nonce)); 4471 } 4472 4473 static ssize_t rbd_client_id_show(struct device *dev, 4474 struct device_attribute *attr, char *buf) 4475 { 4476 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4477 4478 return sprintf(buf, "client%lld\n", 4479 ceph_client_gid(rbd_dev->rbd_client->client)); 4480 } 4481 4482 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4483 struct device_attribute *attr, char *buf) 4484 { 4485 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4486 4487 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4488 } 4489 4490 static ssize_t rbd_config_info_show(struct device *dev, 4491 struct device_attribute *attr, char *buf) 4492 { 4493 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4494 4495 return sprintf(buf, "%s\n", rbd_dev->config_info); 4496 } 4497 4498 static ssize_t rbd_pool_show(struct device *dev, 4499 struct device_attribute *attr, char *buf) 4500 { 4501 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4502 4503 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4504 } 4505 4506 static ssize_t rbd_pool_id_show(struct device *dev, 4507 struct device_attribute *attr, char *buf) 4508 { 4509 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4510 4511 return sprintf(buf, "%llu\n", 4512 (unsigned long long) rbd_dev->spec->pool_id); 4513 } 4514 4515 static ssize_t rbd_name_show(struct device *dev, 4516 struct device_attribute *attr, char *buf) 4517 { 4518 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4519 4520 if (rbd_dev->spec->image_name) 4521 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4522 4523 return sprintf(buf, "(unknown)\n"); 4524 } 4525 4526 static ssize_t rbd_image_id_show(struct device *dev, 4527 struct device_attribute *attr, char *buf) 4528 { 4529 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4530 4531 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4532 } 4533 4534 /* 4535 * Shows the name of the currently-mapped snapshot (or 4536 * RBD_SNAP_HEAD_NAME for the base image). 4537 */ 4538 static ssize_t rbd_snap_show(struct device *dev, 4539 struct device_attribute *attr, 4540 char *buf) 4541 { 4542 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4543 4544 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4545 } 4546 4547 static ssize_t rbd_snap_id_show(struct device *dev, 4548 struct device_attribute *attr, char *buf) 4549 { 4550 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4551 4552 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4553 } 4554 4555 /* 4556 * For a v2 image, shows the chain of parent images, separated by empty 4557 * lines. For v1 images or if there is no parent, shows "(no parent 4558 * image)". 4559 */ 4560 static ssize_t rbd_parent_show(struct device *dev, 4561 struct device_attribute *attr, 4562 char *buf) 4563 { 4564 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4565 ssize_t count = 0; 4566 4567 if (!rbd_dev->parent) 4568 return sprintf(buf, "(no parent image)\n"); 4569 4570 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4571 struct rbd_spec *spec = rbd_dev->parent_spec; 4572 4573 count += sprintf(&buf[count], "%s" 4574 "pool_id %llu\npool_name %s\n" 4575 "image_id %s\nimage_name %s\n" 4576 "snap_id %llu\nsnap_name %s\n" 4577 "overlap %llu\n", 4578 !count ? "" : "\n", /* first? */ 4579 spec->pool_id, spec->pool_name, 4580 spec->image_id, spec->image_name ?: "(unknown)", 4581 spec->snap_id, spec->snap_name, 4582 rbd_dev->parent_overlap); 4583 } 4584 4585 return count; 4586 } 4587 4588 static ssize_t rbd_image_refresh(struct device *dev, 4589 struct device_attribute *attr, 4590 const char *buf, 4591 size_t size) 4592 { 4593 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4594 int ret; 4595 4596 ret = rbd_dev_refresh(rbd_dev); 4597 if (ret) 4598 return ret; 4599 4600 return size; 4601 } 4602 4603 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4604 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4605 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4606 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4607 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4608 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4609 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4610 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4611 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4612 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4613 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4614 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4615 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4616 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4617 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4618 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4619 4620 static struct attribute *rbd_attrs[] = { 4621 &dev_attr_size.attr, 4622 &dev_attr_features.attr, 4623 &dev_attr_major.attr, 4624 &dev_attr_minor.attr, 4625 &dev_attr_client_addr.attr, 4626 &dev_attr_client_id.attr, 4627 &dev_attr_cluster_fsid.attr, 4628 &dev_attr_config_info.attr, 4629 &dev_attr_pool.attr, 4630 &dev_attr_pool_id.attr, 4631 &dev_attr_name.attr, 4632 &dev_attr_image_id.attr, 4633 &dev_attr_current_snap.attr, 4634 &dev_attr_snap_id.attr, 4635 &dev_attr_parent.attr, 4636 &dev_attr_refresh.attr, 4637 NULL 4638 }; 4639 4640 static struct attribute_group rbd_attr_group = { 4641 .attrs = rbd_attrs, 4642 }; 4643 4644 static const struct attribute_group *rbd_attr_groups[] = { 4645 &rbd_attr_group, 4646 NULL 4647 }; 4648 4649 static void rbd_dev_release(struct device *dev); 4650 4651 static const struct device_type rbd_device_type = { 4652 .name = "rbd", 4653 .groups = rbd_attr_groups, 4654 .release = rbd_dev_release, 4655 }; 4656 4657 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4658 { 4659 kref_get(&spec->kref); 4660 4661 return spec; 4662 } 4663 4664 static void rbd_spec_free(struct kref *kref); 4665 static void rbd_spec_put(struct rbd_spec *spec) 4666 { 4667 if (spec) 4668 kref_put(&spec->kref, rbd_spec_free); 4669 } 4670 4671 static struct rbd_spec *rbd_spec_alloc(void) 4672 { 4673 struct rbd_spec *spec; 4674 4675 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4676 if (!spec) 4677 return NULL; 4678 4679 spec->pool_id = CEPH_NOPOOL; 4680 spec->snap_id = CEPH_NOSNAP; 4681 kref_init(&spec->kref); 4682 4683 return spec; 4684 } 4685 4686 static void rbd_spec_free(struct kref *kref) 4687 { 4688 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4689 4690 kfree(spec->pool_name); 4691 kfree(spec->image_id); 4692 kfree(spec->image_name); 4693 kfree(spec->snap_name); 4694 kfree(spec); 4695 } 4696 4697 static void rbd_dev_free(struct rbd_device *rbd_dev) 4698 { 4699 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4700 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4701 4702 ceph_oid_destroy(&rbd_dev->header_oid); 4703 ceph_oloc_destroy(&rbd_dev->header_oloc); 4704 kfree(rbd_dev->config_info); 4705 4706 rbd_put_client(rbd_dev->rbd_client); 4707 rbd_spec_put(rbd_dev->spec); 4708 kfree(rbd_dev->opts); 4709 kfree(rbd_dev); 4710 } 4711 4712 static void rbd_dev_release(struct device *dev) 4713 { 4714 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4715 bool need_put = !!rbd_dev->opts; 4716 4717 if (need_put) { 4718 destroy_workqueue(rbd_dev->task_wq); 4719 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4720 } 4721 4722 rbd_dev_free(rbd_dev); 4723 4724 /* 4725 * This is racy, but way better than putting module outside of 4726 * the release callback. The race window is pretty small, so 4727 * doing something similar to dm (dm-builtin.c) is overkill. 4728 */ 4729 if (need_put) 4730 module_put(THIS_MODULE); 4731 } 4732 4733 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4734 struct rbd_spec *spec) 4735 { 4736 struct rbd_device *rbd_dev; 4737 4738 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4739 if (!rbd_dev) 4740 return NULL; 4741 4742 spin_lock_init(&rbd_dev->lock); 4743 INIT_LIST_HEAD(&rbd_dev->node); 4744 init_rwsem(&rbd_dev->header_rwsem); 4745 4746 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4747 ceph_oid_init(&rbd_dev->header_oid); 4748 rbd_dev->header_oloc.pool = spec->pool_id; 4749 4750 mutex_init(&rbd_dev->watch_mutex); 4751 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4752 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4753 4754 init_rwsem(&rbd_dev->lock_rwsem); 4755 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4756 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4757 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4758 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4759 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4760 init_waitqueue_head(&rbd_dev->lock_waitq); 4761 4762 rbd_dev->dev.bus = &rbd_bus_type; 4763 rbd_dev->dev.type = &rbd_device_type; 4764 rbd_dev->dev.parent = &rbd_root_dev; 4765 device_initialize(&rbd_dev->dev); 4766 4767 rbd_dev->rbd_client = rbdc; 4768 rbd_dev->spec = spec; 4769 4770 return rbd_dev; 4771 } 4772 4773 /* 4774 * Create a mapping rbd_dev. 4775 */ 4776 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4777 struct rbd_spec *spec, 4778 struct rbd_options *opts) 4779 { 4780 struct rbd_device *rbd_dev; 4781 4782 rbd_dev = __rbd_dev_create(rbdc, spec); 4783 if (!rbd_dev) 4784 return NULL; 4785 4786 rbd_dev->opts = opts; 4787 4788 /* get an id and fill in device name */ 4789 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4790 minor_to_rbd_dev_id(1 << MINORBITS), 4791 GFP_KERNEL); 4792 if (rbd_dev->dev_id < 0) 4793 goto fail_rbd_dev; 4794 4795 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4796 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4797 rbd_dev->name); 4798 if (!rbd_dev->task_wq) 4799 goto fail_dev_id; 4800 4801 /* we have a ref from do_rbd_add() */ 4802 __module_get(THIS_MODULE); 4803 4804 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4805 return rbd_dev; 4806 4807 fail_dev_id: 4808 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4809 fail_rbd_dev: 4810 rbd_dev_free(rbd_dev); 4811 return NULL; 4812 } 4813 4814 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4815 { 4816 if (rbd_dev) 4817 put_device(&rbd_dev->dev); 4818 } 4819 4820 /* 4821 * Get the size and object order for an image snapshot, or if 4822 * snap_id is CEPH_NOSNAP, gets this information for the base 4823 * image. 4824 */ 4825 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4826 u8 *order, u64 *snap_size) 4827 { 4828 __le64 snapid = cpu_to_le64(snap_id); 4829 int ret; 4830 struct { 4831 u8 order; 4832 __le64 size; 4833 } __attribute__ ((packed)) size_buf = { 0 }; 4834 4835 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4836 &rbd_dev->header_oloc, "get_size", 4837 &snapid, sizeof(snapid), 4838 &size_buf, sizeof(size_buf)); 4839 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4840 if (ret < 0) 4841 return ret; 4842 if (ret < sizeof (size_buf)) 4843 return -ERANGE; 4844 4845 if (order) { 4846 *order = size_buf.order; 4847 dout(" order %u", (unsigned int)*order); 4848 } 4849 *snap_size = le64_to_cpu(size_buf.size); 4850 4851 dout(" snap_id 0x%016llx snap_size = %llu\n", 4852 (unsigned long long)snap_id, 4853 (unsigned long long)*snap_size); 4854 4855 return 0; 4856 } 4857 4858 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4859 { 4860 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4861 &rbd_dev->header.obj_order, 4862 &rbd_dev->header.image_size); 4863 } 4864 4865 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4866 { 4867 void *reply_buf; 4868 int ret; 4869 void *p; 4870 4871 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4872 if (!reply_buf) 4873 return -ENOMEM; 4874 4875 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4876 &rbd_dev->header_oloc, "get_object_prefix", 4877 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4878 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4879 if (ret < 0) 4880 goto out; 4881 4882 p = reply_buf; 4883 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4884 p + ret, NULL, GFP_NOIO); 4885 ret = 0; 4886 4887 if (IS_ERR(rbd_dev->header.object_prefix)) { 4888 ret = PTR_ERR(rbd_dev->header.object_prefix); 4889 rbd_dev->header.object_prefix = NULL; 4890 } else { 4891 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4892 } 4893 out: 4894 kfree(reply_buf); 4895 4896 return ret; 4897 } 4898 4899 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4900 u64 *snap_features) 4901 { 4902 __le64 snapid = cpu_to_le64(snap_id); 4903 struct { 4904 __le64 features; 4905 __le64 incompat; 4906 } __attribute__ ((packed)) features_buf = { 0 }; 4907 u64 unsup; 4908 int ret; 4909 4910 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4911 &rbd_dev->header_oloc, "get_features", 4912 &snapid, sizeof(snapid), 4913 &features_buf, sizeof(features_buf)); 4914 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4915 if (ret < 0) 4916 return ret; 4917 if (ret < sizeof (features_buf)) 4918 return -ERANGE; 4919 4920 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4921 if (unsup) { 4922 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4923 unsup); 4924 return -ENXIO; 4925 } 4926 4927 *snap_features = le64_to_cpu(features_buf.features); 4928 4929 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4930 (unsigned long long)snap_id, 4931 (unsigned long long)*snap_features, 4932 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4933 4934 return 0; 4935 } 4936 4937 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4938 { 4939 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4940 &rbd_dev->header.features); 4941 } 4942 4943 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4944 { 4945 struct rbd_spec *parent_spec; 4946 size_t size; 4947 void *reply_buf = NULL; 4948 __le64 snapid; 4949 void *p; 4950 void *end; 4951 u64 pool_id; 4952 char *image_id; 4953 u64 snap_id; 4954 u64 overlap; 4955 int ret; 4956 4957 parent_spec = rbd_spec_alloc(); 4958 if (!parent_spec) 4959 return -ENOMEM; 4960 4961 size = sizeof (__le64) + /* pool_id */ 4962 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4963 sizeof (__le64) + /* snap_id */ 4964 sizeof (__le64); /* overlap */ 4965 reply_buf = kmalloc(size, GFP_KERNEL); 4966 if (!reply_buf) { 4967 ret = -ENOMEM; 4968 goto out_err; 4969 } 4970 4971 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4972 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4973 &rbd_dev->header_oloc, "get_parent", 4974 &snapid, sizeof(snapid), reply_buf, size); 4975 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4976 if (ret < 0) 4977 goto out_err; 4978 4979 p = reply_buf; 4980 end = reply_buf + ret; 4981 ret = -ERANGE; 4982 ceph_decode_64_safe(&p, end, pool_id, out_err); 4983 if (pool_id == CEPH_NOPOOL) { 4984 /* 4985 * Either the parent never existed, or we have 4986 * record of it but the image got flattened so it no 4987 * longer has a parent. When the parent of a 4988 * layered image disappears we immediately set the 4989 * overlap to 0. The effect of this is that all new 4990 * requests will be treated as if the image had no 4991 * parent. 4992 */ 4993 if (rbd_dev->parent_overlap) { 4994 rbd_dev->parent_overlap = 0; 4995 rbd_dev_parent_put(rbd_dev); 4996 pr_info("%s: clone image has been flattened\n", 4997 rbd_dev->disk->disk_name); 4998 } 4999 5000 goto out; /* No parent? No problem. */ 5001 } 5002 5003 /* The ceph file layout needs to fit pool id in 32 bits */ 5004 5005 ret = -EIO; 5006 if (pool_id > (u64)U32_MAX) { 5007 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5008 (unsigned long long)pool_id, U32_MAX); 5009 goto out_err; 5010 } 5011 5012 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5013 if (IS_ERR(image_id)) { 5014 ret = PTR_ERR(image_id); 5015 goto out_err; 5016 } 5017 ceph_decode_64_safe(&p, end, snap_id, out_err); 5018 ceph_decode_64_safe(&p, end, overlap, out_err); 5019 5020 /* 5021 * The parent won't change (except when the clone is 5022 * flattened, already handled that). So we only need to 5023 * record the parent spec we have not already done so. 5024 */ 5025 if (!rbd_dev->parent_spec) { 5026 parent_spec->pool_id = pool_id; 5027 parent_spec->image_id = image_id; 5028 parent_spec->snap_id = snap_id; 5029 rbd_dev->parent_spec = parent_spec; 5030 parent_spec = NULL; /* rbd_dev now owns this */ 5031 } else { 5032 kfree(image_id); 5033 } 5034 5035 /* 5036 * We always update the parent overlap. If it's zero we issue 5037 * a warning, as we will proceed as if there was no parent. 5038 */ 5039 if (!overlap) { 5040 if (parent_spec) { 5041 /* refresh, careful to warn just once */ 5042 if (rbd_dev->parent_overlap) 5043 rbd_warn(rbd_dev, 5044 "clone now standalone (overlap became 0)"); 5045 } else { 5046 /* initial probe */ 5047 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5048 } 5049 } 5050 rbd_dev->parent_overlap = overlap; 5051 5052 out: 5053 ret = 0; 5054 out_err: 5055 kfree(reply_buf); 5056 rbd_spec_put(parent_spec); 5057 5058 return ret; 5059 } 5060 5061 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5062 { 5063 struct { 5064 __le64 stripe_unit; 5065 __le64 stripe_count; 5066 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5067 size_t size = sizeof (striping_info_buf); 5068 void *p; 5069 u64 obj_size; 5070 u64 stripe_unit; 5071 u64 stripe_count; 5072 int ret; 5073 5074 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5075 &rbd_dev->header_oloc, "get_stripe_unit_count", 5076 NULL, 0, &striping_info_buf, size); 5077 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5078 if (ret < 0) 5079 return ret; 5080 if (ret < size) 5081 return -ERANGE; 5082 5083 /* 5084 * We don't actually support the "fancy striping" feature 5085 * (STRIPINGV2) yet, but if the striping sizes are the 5086 * defaults the behavior is the same as before. So find 5087 * out, and only fail if the image has non-default values. 5088 */ 5089 ret = -EINVAL; 5090 obj_size = rbd_obj_bytes(&rbd_dev->header); 5091 p = &striping_info_buf; 5092 stripe_unit = ceph_decode_64(&p); 5093 if (stripe_unit != obj_size) { 5094 rbd_warn(rbd_dev, "unsupported stripe unit " 5095 "(got %llu want %llu)", 5096 stripe_unit, obj_size); 5097 return -EINVAL; 5098 } 5099 stripe_count = ceph_decode_64(&p); 5100 if (stripe_count != 1) { 5101 rbd_warn(rbd_dev, "unsupported stripe count " 5102 "(got %llu want 1)", stripe_count); 5103 return -EINVAL; 5104 } 5105 rbd_dev->header.stripe_unit = stripe_unit; 5106 rbd_dev->header.stripe_count = stripe_count; 5107 5108 return 0; 5109 } 5110 5111 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5112 { 5113 __le64 data_pool_id; 5114 int ret; 5115 5116 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5117 &rbd_dev->header_oloc, "get_data_pool", 5118 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5119 if (ret < 0) 5120 return ret; 5121 if (ret < sizeof(data_pool_id)) 5122 return -EBADMSG; 5123 5124 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5125 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5126 return 0; 5127 } 5128 5129 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5130 { 5131 CEPH_DEFINE_OID_ONSTACK(oid); 5132 size_t image_id_size; 5133 char *image_id; 5134 void *p; 5135 void *end; 5136 size_t size; 5137 void *reply_buf = NULL; 5138 size_t len = 0; 5139 char *image_name = NULL; 5140 int ret; 5141 5142 rbd_assert(!rbd_dev->spec->image_name); 5143 5144 len = strlen(rbd_dev->spec->image_id); 5145 image_id_size = sizeof (__le32) + len; 5146 image_id = kmalloc(image_id_size, GFP_KERNEL); 5147 if (!image_id) 5148 return NULL; 5149 5150 p = image_id; 5151 end = image_id + image_id_size; 5152 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5153 5154 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5155 reply_buf = kmalloc(size, GFP_KERNEL); 5156 if (!reply_buf) 5157 goto out; 5158 5159 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5160 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5161 "dir_get_name", image_id, image_id_size, 5162 reply_buf, size); 5163 if (ret < 0) 5164 goto out; 5165 p = reply_buf; 5166 end = reply_buf + ret; 5167 5168 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5169 if (IS_ERR(image_name)) 5170 image_name = NULL; 5171 else 5172 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5173 out: 5174 kfree(reply_buf); 5175 kfree(image_id); 5176 5177 return image_name; 5178 } 5179 5180 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5181 { 5182 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5183 const char *snap_name; 5184 u32 which = 0; 5185 5186 /* Skip over names until we find the one we are looking for */ 5187 5188 snap_name = rbd_dev->header.snap_names; 5189 while (which < snapc->num_snaps) { 5190 if (!strcmp(name, snap_name)) 5191 return snapc->snaps[which]; 5192 snap_name += strlen(snap_name) + 1; 5193 which++; 5194 } 5195 return CEPH_NOSNAP; 5196 } 5197 5198 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5199 { 5200 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5201 u32 which; 5202 bool found = false; 5203 u64 snap_id; 5204 5205 for (which = 0; !found && which < snapc->num_snaps; which++) { 5206 const char *snap_name; 5207 5208 snap_id = snapc->snaps[which]; 5209 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5210 if (IS_ERR(snap_name)) { 5211 /* ignore no-longer existing snapshots */ 5212 if (PTR_ERR(snap_name) == -ENOENT) 5213 continue; 5214 else 5215 break; 5216 } 5217 found = !strcmp(name, snap_name); 5218 kfree(snap_name); 5219 } 5220 return found ? snap_id : CEPH_NOSNAP; 5221 } 5222 5223 /* 5224 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5225 * no snapshot by that name is found, or if an error occurs. 5226 */ 5227 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5228 { 5229 if (rbd_dev->image_format == 1) 5230 return rbd_v1_snap_id_by_name(rbd_dev, name); 5231 5232 return rbd_v2_snap_id_by_name(rbd_dev, name); 5233 } 5234 5235 /* 5236 * An image being mapped will have everything but the snap id. 5237 */ 5238 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5239 { 5240 struct rbd_spec *spec = rbd_dev->spec; 5241 5242 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5243 rbd_assert(spec->image_id && spec->image_name); 5244 rbd_assert(spec->snap_name); 5245 5246 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5247 u64 snap_id; 5248 5249 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5250 if (snap_id == CEPH_NOSNAP) 5251 return -ENOENT; 5252 5253 spec->snap_id = snap_id; 5254 } else { 5255 spec->snap_id = CEPH_NOSNAP; 5256 } 5257 5258 return 0; 5259 } 5260 5261 /* 5262 * A parent image will have all ids but none of the names. 5263 * 5264 * All names in an rbd spec are dynamically allocated. It's OK if we 5265 * can't figure out the name for an image id. 5266 */ 5267 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5268 { 5269 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5270 struct rbd_spec *spec = rbd_dev->spec; 5271 const char *pool_name; 5272 const char *image_name; 5273 const char *snap_name; 5274 int ret; 5275 5276 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5277 rbd_assert(spec->image_id); 5278 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5279 5280 /* Get the pool name; we have to make our own copy of this */ 5281 5282 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5283 if (!pool_name) { 5284 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5285 return -EIO; 5286 } 5287 pool_name = kstrdup(pool_name, GFP_KERNEL); 5288 if (!pool_name) 5289 return -ENOMEM; 5290 5291 /* Fetch the image name; tolerate failure here */ 5292 5293 image_name = rbd_dev_image_name(rbd_dev); 5294 if (!image_name) 5295 rbd_warn(rbd_dev, "unable to get image name"); 5296 5297 /* Fetch the snapshot name */ 5298 5299 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5300 if (IS_ERR(snap_name)) { 5301 ret = PTR_ERR(snap_name); 5302 goto out_err; 5303 } 5304 5305 spec->pool_name = pool_name; 5306 spec->image_name = image_name; 5307 spec->snap_name = snap_name; 5308 5309 return 0; 5310 5311 out_err: 5312 kfree(image_name); 5313 kfree(pool_name); 5314 return ret; 5315 } 5316 5317 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5318 { 5319 size_t size; 5320 int ret; 5321 void *reply_buf; 5322 void *p; 5323 void *end; 5324 u64 seq; 5325 u32 snap_count; 5326 struct ceph_snap_context *snapc; 5327 u32 i; 5328 5329 /* 5330 * We'll need room for the seq value (maximum snapshot id), 5331 * snapshot count, and array of that many snapshot ids. 5332 * For now we have a fixed upper limit on the number we're 5333 * prepared to receive. 5334 */ 5335 size = sizeof (__le64) + sizeof (__le32) + 5336 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5337 reply_buf = kzalloc(size, GFP_KERNEL); 5338 if (!reply_buf) 5339 return -ENOMEM; 5340 5341 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5342 &rbd_dev->header_oloc, "get_snapcontext", 5343 NULL, 0, reply_buf, size); 5344 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5345 if (ret < 0) 5346 goto out; 5347 5348 p = reply_buf; 5349 end = reply_buf + ret; 5350 ret = -ERANGE; 5351 ceph_decode_64_safe(&p, end, seq, out); 5352 ceph_decode_32_safe(&p, end, snap_count, out); 5353 5354 /* 5355 * Make sure the reported number of snapshot ids wouldn't go 5356 * beyond the end of our buffer. But before checking that, 5357 * make sure the computed size of the snapshot context we 5358 * allocate is representable in a size_t. 5359 */ 5360 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5361 / sizeof (u64)) { 5362 ret = -EINVAL; 5363 goto out; 5364 } 5365 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5366 goto out; 5367 ret = 0; 5368 5369 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5370 if (!snapc) { 5371 ret = -ENOMEM; 5372 goto out; 5373 } 5374 snapc->seq = seq; 5375 for (i = 0; i < snap_count; i++) 5376 snapc->snaps[i] = ceph_decode_64(&p); 5377 5378 ceph_put_snap_context(rbd_dev->header.snapc); 5379 rbd_dev->header.snapc = snapc; 5380 5381 dout(" snap context seq = %llu, snap_count = %u\n", 5382 (unsigned long long)seq, (unsigned int)snap_count); 5383 out: 5384 kfree(reply_buf); 5385 5386 return ret; 5387 } 5388 5389 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5390 u64 snap_id) 5391 { 5392 size_t size; 5393 void *reply_buf; 5394 __le64 snapid; 5395 int ret; 5396 void *p; 5397 void *end; 5398 char *snap_name; 5399 5400 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5401 reply_buf = kmalloc(size, GFP_KERNEL); 5402 if (!reply_buf) 5403 return ERR_PTR(-ENOMEM); 5404 5405 snapid = cpu_to_le64(snap_id); 5406 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5407 &rbd_dev->header_oloc, "get_snapshot_name", 5408 &snapid, sizeof(snapid), reply_buf, size); 5409 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5410 if (ret < 0) { 5411 snap_name = ERR_PTR(ret); 5412 goto out; 5413 } 5414 5415 p = reply_buf; 5416 end = reply_buf + ret; 5417 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5418 if (IS_ERR(snap_name)) 5419 goto out; 5420 5421 dout(" snap_id 0x%016llx snap_name = %s\n", 5422 (unsigned long long)snap_id, snap_name); 5423 out: 5424 kfree(reply_buf); 5425 5426 return snap_name; 5427 } 5428 5429 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5430 { 5431 bool first_time = rbd_dev->header.object_prefix == NULL; 5432 int ret; 5433 5434 ret = rbd_dev_v2_image_size(rbd_dev); 5435 if (ret) 5436 return ret; 5437 5438 if (first_time) { 5439 ret = rbd_dev_v2_header_onetime(rbd_dev); 5440 if (ret) 5441 return ret; 5442 } 5443 5444 ret = rbd_dev_v2_snap_context(rbd_dev); 5445 if (ret && first_time) { 5446 kfree(rbd_dev->header.object_prefix); 5447 rbd_dev->header.object_prefix = NULL; 5448 } 5449 5450 return ret; 5451 } 5452 5453 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5454 { 5455 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5456 5457 if (rbd_dev->image_format == 1) 5458 return rbd_dev_v1_header_info(rbd_dev); 5459 5460 return rbd_dev_v2_header_info(rbd_dev); 5461 } 5462 5463 /* 5464 * Skips over white space at *buf, and updates *buf to point to the 5465 * first found non-space character (if any). Returns the length of 5466 * the token (string of non-white space characters) found. Note 5467 * that *buf must be terminated with '\0'. 5468 */ 5469 static inline size_t next_token(const char **buf) 5470 { 5471 /* 5472 * These are the characters that produce nonzero for 5473 * isspace() in the "C" and "POSIX" locales. 5474 */ 5475 const char *spaces = " \f\n\r\t\v"; 5476 5477 *buf += strspn(*buf, spaces); /* Find start of token */ 5478 5479 return strcspn(*buf, spaces); /* Return token length */ 5480 } 5481 5482 /* 5483 * Finds the next token in *buf, dynamically allocates a buffer big 5484 * enough to hold a copy of it, and copies the token into the new 5485 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5486 * that a duplicate buffer is created even for a zero-length token. 5487 * 5488 * Returns a pointer to the newly-allocated duplicate, or a null 5489 * pointer if memory for the duplicate was not available. If 5490 * the lenp argument is a non-null pointer, the length of the token 5491 * (not including the '\0') is returned in *lenp. 5492 * 5493 * If successful, the *buf pointer will be updated to point beyond 5494 * the end of the found token. 5495 * 5496 * Note: uses GFP_KERNEL for allocation. 5497 */ 5498 static inline char *dup_token(const char **buf, size_t *lenp) 5499 { 5500 char *dup; 5501 size_t len; 5502 5503 len = next_token(buf); 5504 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5505 if (!dup) 5506 return NULL; 5507 *(dup + len) = '\0'; 5508 *buf += len; 5509 5510 if (lenp) 5511 *lenp = len; 5512 5513 return dup; 5514 } 5515 5516 /* 5517 * Parse the options provided for an "rbd add" (i.e., rbd image 5518 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5519 * and the data written is passed here via a NUL-terminated buffer. 5520 * Returns 0 if successful or an error code otherwise. 5521 * 5522 * The information extracted from these options is recorded in 5523 * the other parameters which return dynamically-allocated 5524 * structures: 5525 * ceph_opts 5526 * The address of a pointer that will refer to a ceph options 5527 * structure. Caller must release the returned pointer using 5528 * ceph_destroy_options() when it is no longer needed. 5529 * rbd_opts 5530 * Address of an rbd options pointer. Fully initialized by 5531 * this function; caller must release with kfree(). 5532 * spec 5533 * Address of an rbd image specification pointer. Fully 5534 * initialized by this function based on parsed options. 5535 * Caller must release with rbd_spec_put(). 5536 * 5537 * The options passed take this form: 5538 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5539 * where: 5540 * <mon_addrs> 5541 * A comma-separated list of one or more monitor addresses. 5542 * A monitor address is an ip address, optionally followed 5543 * by a port number (separated by a colon). 5544 * I.e.: ip1[:port1][,ip2[:port2]...] 5545 * <options> 5546 * A comma-separated list of ceph and/or rbd options. 5547 * <pool_name> 5548 * The name of the rados pool containing the rbd image. 5549 * <image_name> 5550 * The name of the image in that pool to map. 5551 * <snap_id> 5552 * An optional snapshot id. If provided, the mapping will 5553 * present data from the image at the time that snapshot was 5554 * created. The image head is used if no snapshot id is 5555 * provided. Snapshot mappings are always read-only. 5556 */ 5557 static int rbd_add_parse_args(const char *buf, 5558 struct ceph_options **ceph_opts, 5559 struct rbd_options **opts, 5560 struct rbd_spec **rbd_spec) 5561 { 5562 size_t len; 5563 char *options; 5564 const char *mon_addrs; 5565 char *snap_name; 5566 size_t mon_addrs_size; 5567 struct rbd_spec *spec = NULL; 5568 struct rbd_options *rbd_opts = NULL; 5569 struct ceph_options *copts; 5570 int ret; 5571 5572 /* The first four tokens are required */ 5573 5574 len = next_token(&buf); 5575 if (!len) { 5576 rbd_warn(NULL, "no monitor address(es) provided"); 5577 return -EINVAL; 5578 } 5579 mon_addrs = buf; 5580 mon_addrs_size = len + 1; 5581 buf += len; 5582 5583 ret = -EINVAL; 5584 options = dup_token(&buf, NULL); 5585 if (!options) 5586 return -ENOMEM; 5587 if (!*options) { 5588 rbd_warn(NULL, "no options provided"); 5589 goto out_err; 5590 } 5591 5592 spec = rbd_spec_alloc(); 5593 if (!spec) 5594 goto out_mem; 5595 5596 spec->pool_name = dup_token(&buf, NULL); 5597 if (!spec->pool_name) 5598 goto out_mem; 5599 if (!*spec->pool_name) { 5600 rbd_warn(NULL, "no pool name provided"); 5601 goto out_err; 5602 } 5603 5604 spec->image_name = dup_token(&buf, NULL); 5605 if (!spec->image_name) 5606 goto out_mem; 5607 if (!*spec->image_name) { 5608 rbd_warn(NULL, "no image name provided"); 5609 goto out_err; 5610 } 5611 5612 /* 5613 * Snapshot name is optional; default is to use "-" 5614 * (indicating the head/no snapshot). 5615 */ 5616 len = next_token(&buf); 5617 if (!len) { 5618 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5619 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5620 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5621 ret = -ENAMETOOLONG; 5622 goto out_err; 5623 } 5624 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5625 if (!snap_name) 5626 goto out_mem; 5627 *(snap_name + len) = '\0'; 5628 spec->snap_name = snap_name; 5629 5630 /* Initialize all rbd options to the defaults */ 5631 5632 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5633 if (!rbd_opts) 5634 goto out_mem; 5635 5636 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5637 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5638 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5639 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5640 5641 copts = ceph_parse_options(options, mon_addrs, 5642 mon_addrs + mon_addrs_size - 1, 5643 parse_rbd_opts_token, rbd_opts); 5644 if (IS_ERR(copts)) { 5645 ret = PTR_ERR(copts); 5646 goto out_err; 5647 } 5648 kfree(options); 5649 5650 *ceph_opts = copts; 5651 *opts = rbd_opts; 5652 *rbd_spec = spec; 5653 5654 return 0; 5655 out_mem: 5656 ret = -ENOMEM; 5657 out_err: 5658 kfree(rbd_opts); 5659 rbd_spec_put(spec); 5660 kfree(options); 5661 5662 return ret; 5663 } 5664 5665 /* 5666 * Return pool id (>= 0) or a negative error code. 5667 */ 5668 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5669 { 5670 struct ceph_options *opts = rbdc->client->options; 5671 u64 newest_epoch; 5672 int tries = 0; 5673 int ret; 5674 5675 again: 5676 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5677 if (ret == -ENOENT && tries++ < 1) { 5678 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5679 &newest_epoch); 5680 if (ret < 0) 5681 return ret; 5682 5683 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5684 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5685 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5686 newest_epoch, 5687 opts->mount_timeout); 5688 goto again; 5689 } else { 5690 /* the osdmap we have is new enough */ 5691 return -ENOENT; 5692 } 5693 } 5694 5695 return ret; 5696 } 5697 5698 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5699 { 5700 down_write(&rbd_dev->lock_rwsem); 5701 if (__rbd_is_lock_owner(rbd_dev)) 5702 rbd_unlock(rbd_dev); 5703 up_write(&rbd_dev->lock_rwsem); 5704 } 5705 5706 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5707 { 5708 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5709 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5710 return -EINVAL; 5711 } 5712 5713 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5714 down_read(&rbd_dev->lock_rwsem); 5715 rbd_wait_state_locked(rbd_dev); 5716 up_read(&rbd_dev->lock_rwsem); 5717 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 5718 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5719 return -EROFS; 5720 } 5721 5722 return 0; 5723 } 5724 5725 /* 5726 * An rbd format 2 image has a unique identifier, distinct from the 5727 * name given to it by the user. Internally, that identifier is 5728 * what's used to specify the names of objects related to the image. 5729 * 5730 * A special "rbd id" object is used to map an rbd image name to its 5731 * id. If that object doesn't exist, then there is no v2 rbd image 5732 * with the supplied name. 5733 * 5734 * This function will record the given rbd_dev's image_id field if 5735 * it can be determined, and in that case will return 0. If any 5736 * errors occur a negative errno will be returned and the rbd_dev's 5737 * image_id field will be unchanged (and should be NULL). 5738 */ 5739 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5740 { 5741 int ret; 5742 size_t size; 5743 CEPH_DEFINE_OID_ONSTACK(oid); 5744 void *response; 5745 char *image_id; 5746 5747 /* 5748 * When probing a parent image, the image id is already 5749 * known (and the image name likely is not). There's no 5750 * need to fetch the image id again in this case. We 5751 * do still need to set the image format though. 5752 */ 5753 if (rbd_dev->spec->image_id) { 5754 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5755 5756 return 0; 5757 } 5758 5759 /* 5760 * First, see if the format 2 image id file exists, and if 5761 * so, get the image's persistent id from it. 5762 */ 5763 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5764 rbd_dev->spec->image_name); 5765 if (ret) 5766 return ret; 5767 5768 dout("rbd id object name is %s\n", oid.name); 5769 5770 /* Response will be an encoded string, which includes a length */ 5771 5772 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5773 response = kzalloc(size, GFP_NOIO); 5774 if (!response) { 5775 ret = -ENOMEM; 5776 goto out; 5777 } 5778 5779 /* If it doesn't exist we'll assume it's a format 1 image */ 5780 5781 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5782 "get_id", NULL, 0, 5783 response, RBD_IMAGE_ID_LEN_MAX); 5784 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5785 if (ret == -ENOENT) { 5786 image_id = kstrdup("", GFP_KERNEL); 5787 ret = image_id ? 0 : -ENOMEM; 5788 if (!ret) 5789 rbd_dev->image_format = 1; 5790 } else if (ret >= 0) { 5791 void *p = response; 5792 5793 image_id = ceph_extract_encoded_string(&p, p + ret, 5794 NULL, GFP_NOIO); 5795 ret = PTR_ERR_OR_ZERO(image_id); 5796 if (!ret) 5797 rbd_dev->image_format = 2; 5798 } 5799 5800 if (!ret) { 5801 rbd_dev->spec->image_id = image_id; 5802 dout("image_id is %s\n", image_id); 5803 } 5804 out: 5805 kfree(response); 5806 ceph_oid_destroy(&oid); 5807 return ret; 5808 } 5809 5810 /* 5811 * Undo whatever state changes are made by v1 or v2 header info 5812 * call. 5813 */ 5814 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5815 { 5816 struct rbd_image_header *header; 5817 5818 rbd_dev_parent_put(rbd_dev); 5819 5820 /* Free dynamic fields from the header, then zero it out */ 5821 5822 header = &rbd_dev->header; 5823 ceph_put_snap_context(header->snapc); 5824 kfree(header->snap_sizes); 5825 kfree(header->snap_names); 5826 kfree(header->object_prefix); 5827 memset(header, 0, sizeof (*header)); 5828 } 5829 5830 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5831 { 5832 int ret; 5833 5834 ret = rbd_dev_v2_object_prefix(rbd_dev); 5835 if (ret) 5836 goto out_err; 5837 5838 /* 5839 * Get the and check features for the image. Currently the 5840 * features are assumed to never change. 5841 */ 5842 ret = rbd_dev_v2_features(rbd_dev); 5843 if (ret) 5844 goto out_err; 5845 5846 /* If the image supports fancy striping, get its parameters */ 5847 5848 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5849 ret = rbd_dev_v2_striping_info(rbd_dev); 5850 if (ret < 0) 5851 goto out_err; 5852 } 5853 5854 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5855 ret = rbd_dev_v2_data_pool(rbd_dev); 5856 if (ret) 5857 goto out_err; 5858 } 5859 5860 rbd_init_layout(rbd_dev); 5861 return 0; 5862 5863 out_err: 5864 rbd_dev->header.features = 0; 5865 kfree(rbd_dev->header.object_prefix); 5866 rbd_dev->header.object_prefix = NULL; 5867 return ret; 5868 } 5869 5870 /* 5871 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5872 * rbd_dev_image_probe() recursion depth, which means it's also the 5873 * length of the already discovered part of the parent chain. 5874 */ 5875 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5876 { 5877 struct rbd_device *parent = NULL; 5878 int ret; 5879 5880 if (!rbd_dev->parent_spec) 5881 return 0; 5882 5883 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5884 pr_info("parent chain is too long (%d)\n", depth); 5885 ret = -EINVAL; 5886 goto out_err; 5887 } 5888 5889 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5890 if (!parent) { 5891 ret = -ENOMEM; 5892 goto out_err; 5893 } 5894 5895 /* 5896 * Images related by parent/child relationships always share 5897 * rbd_client and spec/parent_spec, so bump their refcounts. 5898 */ 5899 __rbd_get_client(rbd_dev->rbd_client); 5900 rbd_spec_get(rbd_dev->parent_spec); 5901 5902 ret = rbd_dev_image_probe(parent, depth); 5903 if (ret < 0) 5904 goto out_err; 5905 5906 rbd_dev->parent = parent; 5907 atomic_set(&rbd_dev->parent_ref, 1); 5908 return 0; 5909 5910 out_err: 5911 rbd_dev_unparent(rbd_dev); 5912 rbd_dev_destroy(parent); 5913 return ret; 5914 } 5915 5916 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5917 { 5918 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5919 rbd_dev_mapping_clear(rbd_dev); 5920 rbd_free_disk(rbd_dev); 5921 if (!single_major) 5922 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5923 } 5924 5925 /* 5926 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5927 * upon return. 5928 */ 5929 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5930 { 5931 int ret; 5932 5933 /* Record our major and minor device numbers. */ 5934 5935 if (!single_major) { 5936 ret = register_blkdev(0, rbd_dev->name); 5937 if (ret < 0) 5938 goto err_out_unlock; 5939 5940 rbd_dev->major = ret; 5941 rbd_dev->minor = 0; 5942 } else { 5943 rbd_dev->major = rbd_major; 5944 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5945 } 5946 5947 /* Set up the blkdev mapping. */ 5948 5949 ret = rbd_init_disk(rbd_dev); 5950 if (ret) 5951 goto err_out_blkdev; 5952 5953 ret = rbd_dev_mapping_set(rbd_dev); 5954 if (ret) 5955 goto err_out_disk; 5956 5957 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5958 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 5959 5960 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5961 if (ret) 5962 goto err_out_mapping; 5963 5964 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5965 up_write(&rbd_dev->header_rwsem); 5966 return 0; 5967 5968 err_out_mapping: 5969 rbd_dev_mapping_clear(rbd_dev); 5970 err_out_disk: 5971 rbd_free_disk(rbd_dev); 5972 err_out_blkdev: 5973 if (!single_major) 5974 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5975 err_out_unlock: 5976 up_write(&rbd_dev->header_rwsem); 5977 return ret; 5978 } 5979 5980 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5981 { 5982 struct rbd_spec *spec = rbd_dev->spec; 5983 int ret; 5984 5985 /* Record the header object name for this rbd image. */ 5986 5987 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5988 if (rbd_dev->image_format == 1) 5989 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5990 spec->image_name, RBD_SUFFIX); 5991 else 5992 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5993 RBD_HEADER_PREFIX, spec->image_id); 5994 5995 return ret; 5996 } 5997 5998 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5999 { 6000 rbd_dev_unprobe(rbd_dev); 6001 if (rbd_dev->opts) 6002 rbd_unregister_watch(rbd_dev); 6003 rbd_dev->image_format = 0; 6004 kfree(rbd_dev->spec->image_id); 6005 rbd_dev->spec->image_id = NULL; 6006 } 6007 6008 /* 6009 * Probe for the existence of the header object for the given rbd 6010 * device. If this image is the one being mapped (i.e., not a 6011 * parent), initiate a watch on its header object before using that 6012 * object to get detailed information about the rbd image. 6013 */ 6014 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6015 { 6016 int ret; 6017 6018 /* 6019 * Get the id from the image id object. Unless there's an 6020 * error, rbd_dev->spec->image_id will be filled in with 6021 * a dynamically-allocated string, and rbd_dev->image_format 6022 * will be set to either 1 or 2. 6023 */ 6024 ret = rbd_dev_image_id(rbd_dev); 6025 if (ret) 6026 return ret; 6027 6028 ret = rbd_dev_header_name(rbd_dev); 6029 if (ret) 6030 goto err_out_format; 6031 6032 if (!depth) { 6033 ret = rbd_register_watch(rbd_dev); 6034 if (ret) { 6035 if (ret == -ENOENT) 6036 pr_info("image %s/%s does not exist\n", 6037 rbd_dev->spec->pool_name, 6038 rbd_dev->spec->image_name); 6039 goto err_out_format; 6040 } 6041 } 6042 6043 ret = rbd_dev_header_info(rbd_dev); 6044 if (ret) 6045 goto err_out_watch; 6046 6047 /* 6048 * If this image is the one being mapped, we have pool name and 6049 * id, image name and id, and snap name - need to fill snap id. 6050 * Otherwise this is a parent image, identified by pool, image 6051 * and snap ids - need to fill in names for those ids. 6052 */ 6053 if (!depth) 6054 ret = rbd_spec_fill_snap_id(rbd_dev); 6055 else 6056 ret = rbd_spec_fill_names(rbd_dev); 6057 if (ret) { 6058 if (ret == -ENOENT) 6059 pr_info("snap %s/%s@%s does not exist\n", 6060 rbd_dev->spec->pool_name, 6061 rbd_dev->spec->image_name, 6062 rbd_dev->spec->snap_name); 6063 goto err_out_probe; 6064 } 6065 6066 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6067 ret = rbd_dev_v2_parent_info(rbd_dev); 6068 if (ret) 6069 goto err_out_probe; 6070 6071 /* 6072 * Need to warn users if this image is the one being 6073 * mapped and has a parent. 6074 */ 6075 if (!depth && rbd_dev->parent_spec) 6076 rbd_warn(rbd_dev, 6077 "WARNING: kernel layering is EXPERIMENTAL!"); 6078 } 6079 6080 ret = rbd_dev_probe_parent(rbd_dev, depth); 6081 if (ret) 6082 goto err_out_probe; 6083 6084 dout("discovered format %u image, header name is %s\n", 6085 rbd_dev->image_format, rbd_dev->header_oid.name); 6086 return 0; 6087 6088 err_out_probe: 6089 rbd_dev_unprobe(rbd_dev); 6090 err_out_watch: 6091 if (!depth) 6092 rbd_unregister_watch(rbd_dev); 6093 err_out_format: 6094 rbd_dev->image_format = 0; 6095 kfree(rbd_dev->spec->image_id); 6096 rbd_dev->spec->image_id = NULL; 6097 return ret; 6098 } 6099 6100 static ssize_t do_rbd_add(struct bus_type *bus, 6101 const char *buf, 6102 size_t count) 6103 { 6104 struct rbd_device *rbd_dev = NULL; 6105 struct ceph_options *ceph_opts = NULL; 6106 struct rbd_options *rbd_opts = NULL; 6107 struct rbd_spec *spec = NULL; 6108 struct rbd_client *rbdc; 6109 int rc; 6110 6111 if (!try_module_get(THIS_MODULE)) 6112 return -ENODEV; 6113 6114 /* parse add command */ 6115 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6116 if (rc < 0) 6117 goto out; 6118 6119 rbdc = rbd_get_client(ceph_opts); 6120 if (IS_ERR(rbdc)) { 6121 rc = PTR_ERR(rbdc); 6122 goto err_out_args; 6123 } 6124 6125 /* pick the pool */ 6126 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6127 if (rc < 0) { 6128 if (rc == -ENOENT) 6129 pr_info("pool %s does not exist\n", spec->pool_name); 6130 goto err_out_client; 6131 } 6132 spec->pool_id = (u64)rc; 6133 6134 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6135 if (!rbd_dev) { 6136 rc = -ENOMEM; 6137 goto err_out_client; 6138 } 6139 rbdc = NULL; /* rbd_dev now owns this */ 6140 spec = NULL; /* rbd_dev now owns this */ 6141 rbd_opts = NULL; /* rbd_dev now owns this */ 6142 6143 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6144 if (!rbd_dev->config_info) { 6145 rc = -ENOMEM; 6146 goto err_out_rbd_dev; 6147 } 6148 6149 down_write(&rbd_dev->header_rwsem); 6150 rc = rbd_dev_image_probe(rbd_dev, 0); 6151 if (rc < 0) { 6152 up_write(&rbd_dev->header_rwsem); 6153 goto err_out_rbd_dev; 6154 } 6155 6156 /* If we are mapping a snapshot it must be marked read-only */ 6157 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6158 rbd_dev->opts->read_only = true; 6159 6160 rc = rbd_dev_device_setup(rbd_dev); 6161 if (rc) 6162 goto err_out_image_probe; 6163 6164 if (rbd_dev->opts->exclusive) { 6165 rc = rbd_add_acquire_lock(rbd_dev); 6166 if (rc) 6167 goto err_out_device_setup; 6168 } 6169 6170 /* Everything's ready. Announce the disk to the world. */ 6171 6172 rc = device_add(&rbd_dev->dev); 6173 if (rc) 6174 goto err_out_image_lock; 6175 6176 add_disk(rbd_dev->disk); 6177 /* see rbd_init_disk() */ 6178 blk_put_queue(rbd_dev->disk->queue); 6179 6180 spin_lock(&rbd_dev_list_lock); 6181 list_add_tail(&rbd_dev->node, &rbd_dev_list); 6182 spin_unlock(&rbd_dev_list_lock); 6183 6184 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 6185 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 6186 rbd_dev->header.features); 6187 rc = count; 6188 out: 6189 module_put(THIS_MODULE); 6190 return rc; 6191 6192 err_out_image_lock: 6193 rbd_dev_image_unlock(rbd_dev); 6194 err_out_device_setup: 6195 rbd_dev_device_release(rbd_dev); 6196 err_out_image_probe: 6197 rbd_dev_image_release(rbd_dev); 6198 err_out_rbd_dev: 6199 rbd_dev_destroy(rbd_dev); 6200 err_out_client: 6201 rbd_put_client(rbdc); 6202 err_out_args: 6203 rbd_spec_put(spec); 6204 kfree(rbd_opts); 6205 goto out; 6206 } 6207 6208 static ssize_t rbd_add(struct bus_type *bus, 6209 const char *buf, 6210 size_t count) 6211 { 6212 if (single_major) 6213 return -EINVAL; 6214 6215 return do_rbd_add(bus, buf, count); 6216 } 6217 6218 static ssize_t rbd_add_single_major(struct bus_type *bus, 6219 const char *buf, 6220 size_t count) 6221 { 6222 return do_rbd_add(bus, buf, count); 6223 } 6224 6225 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6226 { 6227 while (rbd_dev->parent) { 6228 struct rbd_device *first = rbd_dev; 6229 struct rbd_device *second = first->parent; 6230 struct rbd_device *third; 6231 6232 /* 6233 * Follow to the parent with no grandparent and 6234 * remove it. 6235 */ 6236 while (second && (third = second->parent)) { 6237 first = second; 6238 second = third; 6239 } 6240 rbd_assert(second); 6241 rbd_dev_image_release(second); 6242 rbd_dev_destroy(second); 6243 first->parent = NULL; 6244 first->parent_overlap = 0; 6245 6246 rbd_assert(first->parent_spec); 6247 rbd_spec_put(first->parent_spec); 6248 first->parent_spec = NULL; 6249 } 6250 } 6251 6252 static ssize_t do_rbd_remove(struct bus_type *bus, 6253 const char *buf, 6254 size_t count) 6255 { 6256 struct rbd_device *rbd_dev = NULL; 6257 struct list_head *tmp; 6258 int dev_id; 6259 char opt_buf[6]; 6260 bool already = false; 6261 bool force = false; 6262 int ret; 6263 6264 dev_id = -1; 6265 opt_buf[0] = '\0'; 6266 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6267 if (dev_id < 0) { 6268 pr_err("dev_id out of range\n"); 6269 return -EINVAL; 6270 } 6271 if (opt_buf[0] != '\0') { 6272 if (!strcmp(opt_buf, "force")) { 6273 force = true; 6274 } else { 6275 pr_err("bad remove option at '%s'\n", opt_buf); 6276 return -EINVAL; 6277 } 6278 } 6279 6280 ret = -ENOENT; 6281 spin_lock(&rbd_dev_list_lock); 6282 list_for_each(tmp, &rbd_dev_list) { 6283 rbd_dev = list_entry(tmp, struct rbd_device, node); 6284 if (rbd_dev->dev_id == dev_id) { 6285 ret = 0; 6286 break; 6287 } 6288 } 6289 if (!ret) { 6290 spin_lock_irq(&rbd_dev->lock); 6291 if (rbd_dev->open_count && !force) 6292 ret = -EBUSY; 6293 else 6294 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6295 &rbd_dev->flags); 6296 spin_unlock_irq(&rbd_dev->lock); 6297 } 6298 spin_unlock(&rbd_dev_list_lock); 6299 if (ret < 0 || already) 6300 return ret; 6301 6302 if (force) { 6303 /* 6304 * Prevent new IO from being queued and wait for existing 6305 * IO to complete/fail. 6306 */ 6307 blk_mq_freeze_queue(rbd_dev->disk->queue); 6308 blk_set_queue_dying(rbd_dev->disk->queue); 6309 } 6310 6311 del_gendisk(rbd_dev->disk); 6312 spin_lock(&rbd_dev_list_lock); 6313 list_del_init(&rbd_dev->node); 6314 spin_unlock(&rbd_dev_list_lock); 6315 device_del(&rbd_dev->dev); 6316 6317 rbd_dev_image_unlock(rbd_dev); 6318 rbd_dev_device_release(rbd_dev); 6319 rbd_dev_image_release(rbd_dev); 6320 rbd_dev_destroy(rbd_dev); 6321 return count; 6322 } 6323 6324 static ssize_t rbd_remove(struct bus_type *bus, 6325 const char *buf, 6326 size_t count) 6327 { 6328 if (single_major) 6329 return -EINVAL; 6330 6331 return do_rbd_remove(bus, buf, count); 6332 } 6333 6334 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6335 const char *buf, 6336 size_t count) 6337 { 6338 return do_rbd_remove(bus, buf, count); 6339 } 6340 6341 /* 6342 * create control files in sysfs 6343 * /sys/bus/rbd/... 6344 */ 6345 static int rbd_sysfs_init(void) 6346 { 6347 int ret; 6348 6349 ret = device_register(&rbd_root_dev); 6350 if (ret < 0) 6351 return ret; 6352 6353 ret = bus_register(&rbd_bus_type); 6354 if (ret < 0) 6355 device_unregister(&rbd_root_dev); 6356 6357 return ret; 6358 } 6359 6360 static void rbd_sysfs_cleanup(void) 6361 { 6362 bus_unregister(&rbd_bus_type); 6363 device_unregister(&rbd_root_dev); 6364 } 6365 6366 static int rbd_slab_init(void) 6367 { 6368 rbd_assert(!rbd_img_request_cache); 6369 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6370 if (!rbd_img_request_cache) 6371 return -ENOMEM; 6372 6373 rbd_assert(!rbd_obj_request_cache); 6374 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6375 if (!rbd_obj_request_cache) 6376 goto out_err; 6377 6378 rbd_assert(!rbd_bio_clone); 6379 rbd_bio_clone = bioset_create(BIO_POOL_SIZE, 0, 0); 6380 if (!rbd_bio_clone) 6381 goto out_err_clone; 6382 6383 return 0; 6384 6385 out_err_clone: 6386 kmem_cache_destroy(rbd_obj_request_cache); 6387 rbd_obj_request_cache = NULL; 6388 out_err: 6389 kmem_cache_destroy(rbd_img_request_cache); 6390 rbd_img_request_cache = NULL; 6391 return -ENOMEM; 6392 } 6393 6394 static void rbd_slab_exit(void) 6395 { 6396 rbd_assert(rbd_obj_request_cache); 6397 kmem_cache_destroy(rbd_obj_request_cache); 6398 rbd_obj_request_cache = NULL; 6399 6400 rbd_assert(rbd_img_request_cache); 6401 kmem_cache_destroy(rbd_img_request_cache); 6402 rbd_img_request_cache = NULL; 6403 6404 rbd_assert(rbd_bio_clone); 6405 bioset_free(rbd_bio_clone); 6406 rbd_bio_clone = NULL; 6407 } 6408 6409 static int __init rbd_init(void) 6410 { 6411 int rc; 6412 6413 if (!libceph_compatible(NULL)) { 6414 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6415 return -EINVAL; 6416 } 6417 6418 rc = rbd_slab_init(); 6419 if (rc) 6420 return rc; 6421 6422 /* 6423 * The number of active work items is limited by the number of 6424 * rbd devices * queue depth, so leave @max_active at default. 6425 */ 6426 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6427 if (!rbd_wq) { 6428 rc = -ENOMEM; 6429 goto err_out_slab; 6430 } 6431 6432 if (single_major) { 6433 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6434 if (rbd_major < 0) { 6435 rc = rbd_major; 6436 goto err_out_wq; 6437 } 6438 } 6439 6440 rc = rbd_sysfs_init(); 6441 if (rc) 6442 goto err_out_blkdev; 6443 6444 if (single_major) 6445 pr_info("loaded (major %d)\n", rbd_major); 6446 else 6447 pr_info("loaded\n"); 6448 6449 return 0; 6450 6451 err_out_blkdev: 6452 if (single_major) 6453 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6454 err_out_wq: 6455 destroy_workqueue(rbd_wq); 6456 err_out_slab: 6457 rbd_slab_exit(); 6458 return rc; 6459 } 6460 6461 static void __exit rbd_exit(void) 6462 { 6463 ida_destroy(&rbd_dev_id_ida); 6464 rbd_sysfs_cleanup(); 6465 if (single_major) 6466 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6467 destroy_workqueue(rbd_wq); 6468 rbd_slab_exit(); 6469 } 6470 6471 module_init(rbd_init); 6472 module_exit(rbd_exit); 6473 6474 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6475 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6476 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6477 /* following authorship retained from original osdblk.c */ 6478 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6479 6480 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6481 MODULE_LICENSE("GPL"); 6482