xref: /openbmc/linux/drivers/block/rbd.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
120 
121 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
122 				 RBD_FEATURE_STRIPINGV2 |	\
123 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
124 				 RBD_FEATURE_DATA_POOL |	\
125 				 RBD_FEATURE_OPERATIONS)
126 
127 /* Features supported by this (client software) implementation. */
128 
129 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
130 
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN		32
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	s64 data_pool_id;
147 	u64 features;		/* Might be changeable someday? */
148 
149 	/* The remaining fields need to be updated occasionally */
150 	u64 image_size;
151 	struct ceph_snap_context *snapc;
152 	char *snap_names;	/* format 1 only */
153 	u64 *snap_sizes;	/* format 1 only */
154 };
155 
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182 	u64		pool_id;
183 	const char	*pool_name;
184 
185 	const char	*image_id;
186 	const char	*image_name;
187 
188 	u64		snap_id;
189 	const char	*snap_name;
190 
191 	struct kref	kref;
192 };
193 
194 /*
195  * an instance of the client.  multiple devices may share an rbd client.
196  */
197 struct rbd_client {
198 	struct ceph_client	*client;
199 	struct kref		kref;
200 	struct list_head	node;
201 };
202 
203 struct rbd_img_request;
204 
205 enum obj_request_type {
206 	OBJ_REQUEST_NODATA = 1,
207 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
208 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
209 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
210 };
211 
212 enum obj_operation_type {
213 	OBJ_OP_READ = 1,
214 	OBJ_OP_WRITE,
215 	OBJ_OP_DISCARD,
216 };
217 
218 /*
219  * Writes go through the following state machine to deal with
220  * layering:
221  *
222  *                       need copyup
223  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
224  *        |     ^                              |
225  *        v     \------------------------------/
226  *      done
227  *        ^
228  *        |
229  * RBD_OBJ_WRITE_FLAT
230  *
231  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
232  * there is a parent or not.
233  */
234 enum rbd_obj_write_state {
235 	RBD_OBJ_WRITE_FLAT = 1,
236 	RBD_OBJ_WRITE_GUARD,
237 	RBD_OBJ_WRITE_COPYUP,
238 };
239 
240 struct rbd_obj_request {
241 	struct ceph_object_extent ex;
242 	union {
243 		bool			tried_parent;	/* for reads */
244 		enum rbd_obj_write_state write_state;	/* for writes */
245 	};
246 
247 	struct rbd_img_request	*img_request;
248 	struct ceph_file_extent	*img_extents;
249 	u32			num_img_extents;
250 
251 	union {
252 		struct ceph_bio_iter	bio_pos;
253 		struct {
254 			struct ceph_bvec_iter	bvec_pos;
255 			u32			bvec_count;
256 			u32			bvec_idx;
257 		};
258 	};
259 	struct bio_vec		*copyup_bvecs;
260 	u32			copyup_bvec_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	struct kref		kref;
268 };
269 
270 enum img_req_flags {
271 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
272 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
273 };
274 
275 struct rbd_img_request {
276 	struct rbd_device	*rbd_dev;
277 	enum obj_operation_type	op_type;
278 	enum obj_request_type	data_type;
279 	unsigned long		flags;
280 	union {
281 		u64			snap_id;	/* for reads */
282 		struct ceph_snap_context *snapc;	/* for writes */
283 	};
284 	union {
285 		struct request		*rq;		/* block request */
286 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
287 	};
288 	spinlock_t		completion_lock;
289 	u64			xferred;/* aggregate bytes transferred */
290 	int			result;	/* first nonzero obj_request result */
291 
292 	struct list_head	object_extents;	/* obj_req.ex structs */
293 	u32			obj_request_count;
294 	u32			pending_count;
295 
296 	struct kref		kref;
297 };
298 
299 #define for_each_obj_request(ireq, oreq) \
300 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
301 #define for_each_obj_request_safe(ireq, oreq, n) \
302 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
303 
304 enum rbd_watch_state {
305 	RBD_WATCH_STATE_UNREGISTERED,
306 	RBD_WATCH_STATE_REGISTERED,
307 	RBD_WATCH_STATE_ERROR,
308 };
309 
310 enum rbd_lock_state {
311 	RBD_LOCK_STATE_UNLOCKED,
312 	RBD_LOCK_STATE_LOCKED,
313 	RBD_LOCK_STATE_RELEASING,
314 };
315 
316 /* WatchNotify::ClientId */
317 struct rbd_client_id {
318 	u64 gid;
319 	u64 handle;
320 };
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 };
326 
327 /*
328  * a single device
329  */
330 struct rbd_device {
331 	int			dev_id;		/* blkdev unique id */
332 
333 	int			major;		/* blkdev assigned major */
334 	int			minor;
335 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
336 
337 	u32			image_format;	/* Either 1 or 2 */
338 	struct rbd_client	*rbd_client;
339 
340 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
341 
342 	spinlock_t		lock;		/* queue, flags, open_count */
343 
344 	struct rbd_image_header	header;
345 	unsigned long		flags;		/* possibly lock protected */
346 	struct rbd_spec		*spec;
347 	struct rbd_options	*opts;
348 	char			*config_info;	/* add{,_single_major} string */
349 
350 	struct ceph_object_id	header_oid;
351 	struct ceph_object_locator header_oloc;
352 
353 	struct ceph_file_layout	layout;		/* used for all rbd requests */
354 
355 	struct mutex		watch_mutex;
356 	enum rbd_watch_state	watch_state;
357 	struct ceph_osd_linger_request *watch_handle;
358 	u64			watch_cookie;
359 	struct delayed_work	watch_dwork;
360 
361 	struct rw_semaphore	lock_rwsem;
362 	enum rbd_lock_state	lock_state;
363 	char			lock_cookie[32];
364 	struct rbd_client_id	owner_cid;
365 	struct work_struct	acquired_lock_work;
366 	struct work_struct	released_lock_work;
367 	struct delayed_work	lock_dwork;
368 	struct work_struct	unlock_work;
369 	wait_queue_head_t	lock_waitq;
370 
371 	struct workqueue_struct	*task_wq;
372 
373 	struct rbd_spec		*parent_spec;
374 	u64			parent_overlap;
375 	atomic_t		parent_ref;
376 	struct rbd_device	*parent;
377 
378 	/* Block layer tags. */
379 	struct blk_mq_tag_set	tag_set;
380 
381 	/* protects updating the header */
382 	struct rw_semaphore     header_rwsem;
383 
384 	struct rbd_mapping	mapping;
385 
386 	struct list_head	node;
387 
388 	/* sysfs related */
389 	struct device		dev;
390 	unsigned long		open_count;	/* protected by lock */
391 };
392 
393 /*
394  * Flag bits for rbd_dev->flags:
395  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
396  *   by rbd_dev->lock
397  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
398  */
399 enum rbd_dev_flags {
400 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
401 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
402 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
403 };
404 
405 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
406 
407 static LIST_HEAD(rbd_dev_list);    /* devices */
408 static DEFINE_SPINLOCK(rbd_dev_list_lock);
409 
410 static LIST_HEAD(rbd_client_list);		/* clients */
411 static DEFINE_SPINLOCK(rbd_client_list_lock);
412 
413 /* Slab caches for frequently-allocated structures */
414 
415 static struct kmem_cache	*rbd_img_request_cache;
416 static struct kmem_cache	*rbd_obj_request_cache;
417 
418 static int rbd_major;
419 static DEFINE_IDA(rbd_dev_id_ida);
420 
421 static struct workqueue_struct *rbd_wq;
422 
423 /*
424  * single-major requires >= 0.75 version of userspace rbd utility.
425  */
426 static bool single_major = true;
427 module_param(single_major, bool, 0444);
428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
429 
430 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
431 		       size_t count);
432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
433 			  size_t count);
434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
435 				    size_t count);
436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
437 				       size_t count);
438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
439 
440 static int rbd_dev_id_to_minor(int dev_id)
441 {
442 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
443 }
444 
445 static int minor_to_rbd_dev_id(int minor)
446 {
447 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
448 }
449 
450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
451 {
452 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
453 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
454 }
455 
456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
457 {
458 	bool is_lock_owner;
459 
460 	down_read(&rbd_dev->lock_rwsem);
461 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
462 	up_read(&rbd_dev->lock_rwsem);
463 	return is_lock_owner;
464 }
465 
466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
467 {
468 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
469 }
470 
471 static BUS_ATTR(add, 0200, NULL, rbd_add);
472 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
473 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
474 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
475 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
476 
477 static struct attribute *rbd_bus_attrs[] = {
478 	&bus_attr_add.attr,
479 	&bus_attr_remove.attr,
480 	&bus_attr_add_single_major.attr,
481 	&bus_attr_remove_single_major.attr,
482 	&bus_attr_supported_features.attr,
483 	NULL,
484 };
485 
486 static umode_t rbd_bus_is_visible(struct kobject *kobj,
487 				  struct attribute *attr, int index)
488 {
489 	if (!single_major &&
490 	    (attr == &bus_attr_add_single_major.attr ||
491 	     attr == &bus_attr_remove_single_major.attr))
492 		return 0;
493 
494 	return attr->mode;
495 }
496 
497 static const struct attribute_group rbd_bus_group = {
498 	.attrs = rbd_bus_attrs,
499 	.is_visible = rbd_bus_is_visible,
500 };
501 __ATTRIBUTE_GROUPS(rbd_bus);
502 
503 static struct bus_type rbd_bus_type = {
504 	.name		= "rbd",
505 	.bus_groups	= rbd_bus_groups,
506 };
507 
508 static void rbd_root_dev_release(struct device *dev)
509 {
510 }
511 
512 static struct device rbd_root_dev = {
513 	.init_name =    "rbd",
514 	.release =      rbd_root_dev_release,
515 };
516 
517 static __printf(2, 3)
518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
519 {
520 	struct va_format vaf;
521 	va_list args;
522 
523 	va_start(args, fmt);
524 	vaf.fmt = fmt;
525 	vaf.va = &args;
526 
527 	if (!rbd_dev)
528 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
529 	else if (rbd_dev->disk)
530 		printk(KERN_WARNING "%s: %s: %pV\n",
531 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
532 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
533 		printk(KERN_WARNING "%s: image %s: %pV\n",
534 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
535 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
536 		printk(KERN_WARNING "%s: id %s: %pV\n",
537 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
538 	else	/* punt */
539 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
540 			RBD_DRV_NAME, rbd_dev, &vaf);
541 	va_end(args);
542 }
543 
544 #ifdef RBD_DEBUG
545 #define rbd_assert(expr)						\
546 		if (unlikely(!(expr))) {				\
547 			printk(KERN_ERR "\nAssertion failure in %s() "	\
548 						"at line %d:\n\n"	\
549 					"\trbd_assert(%s);\n\n",	\
550 					__func__, __LINE__, #expr);	\
551 			BUG();						\
552 		}
553 #else /* !RBD_DEBUG */
554 #  define rbd_assert(expr)	((void) 0)
555 #endif /* !RBD_DEBUG */
556 
557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
558 
559 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
561 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
564 					u64 snap_id);
565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
566 				u8 *order, u64 *snap_size);
567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
568 		u64 *snap_features);
569 
570 static int rbd_open(struct block_device *bdev, fmode_t mode)
571 {
572 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
573 	bool removing = false;
574 
575 	spin_lock_irq(&rbd_dev->lock);
576 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
577 		removing = true;
578 	else
579 		rbd_dev->open_count++;
580 	spin_unlock_irq(&rbd_dev->lock);
581 	if (removing)
582 		return -ENOENT;
583 
584 	(void) get_device(&rbd_dev->dev);
585 
586 	return 0;
587 }
588 
589 static void rbd_release(struct gendisk *disk, fmode_t mode)
590 {
591 	struct rbd_device *rbd_dev = disk->private_data;
592 	unsigned long open_count_before;
593 
594 	spin_lock_irq(&rbd_dev->lock);
595 	open_count_before = rbd_dev->open_count--;
596 	spin_unlock_irq(&rbd_dev->lock);
597 	rbd_assert(open_count_before > 0);
598 
599 	put_device(&rbd_dev->dev);
600 }
601 
602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
603 {
604 	int ro;
605 
606 	if (get_user(ro, (int __user *)arg))
607 		return -EFAULT;
608 
609 	/* Snapshots can't be marked read-write */
610 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
611 		return -EROFS;
612 
613 	/* Let blkdev_roset() handle it */
614 	return -ENOTTY;
615 }
616 
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618 			unsigned int cmd, unsigned long arg)
619 {
620 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621 	int ret;
622 
623 	switch (cmd) {
624 	case BLKROSET:
625 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
626 		break;
627 	default:
628 		ret = -ENOTTY;
629 	}
630 
631 	return ret;
632 }
633 
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636 				unsigned int cmd, unsigned long arg)
637 {
638 	return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641 
642 static const struct block_device_operations rbd_bd_ops = {
643 	.owner			= THIS_MODULE,
644 	.open			= rbd_open,
645 	.release		= rbd_release,
646 	.ioctl			= rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648 	.compat_ioctl		= rbd_compat_ioctl,
649 #endif
650 };
651 
652 /*
653  * Initialize an rbd client instance.  Success or not, this function
654  * consumes ceph_opts.  Caller holds client_mutex.
655  */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658 	struct rbd_client *rbdc;
659 	int ret = -ENOMEM;
660 
661 	dout("%s:\n", __func__);
662 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663 	if (!rbdc)
664 		goto out_opt;
665 
666 	kref_init(&rbdc->kref);
667 	INIT_LIST_HEAD(&rbdc->node);
668 
669 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
670 	if (IS_ERR(rbdc->client))
671 		goto out_rbdc;
672 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673 
674 	ret = ceph_open_session(rbdc->client);
675 	if (ret < 0)
676 		goto out_client;
677 
678 	spin_lock(&rbd_client_list_lock);
679 	list_add_tail(&rbdc->node, &rbd_client_list);
680 	spin_unlock(&rbd_client_list_lock);
681 
682 	dout("%s: rbdc %p\n", __func__, rbdc);
683 
684 	return rbdc;
685 out_client:
686 	ceph_destroy_client(rbdc->client);
687 out_rbdc:
688 	kfree(rbdc);
689 out_opt:
690 	if (ceph_opts)
691 		ceph_destroy_options(ceph_opts);
692 	dout("%s: error %d\n", __func__, ret);
693 
694 	return ERR_PTR(ret);
695 }
696 
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699 	kref_get(&rbdc->kref);
700 
701 	return rbdc;
702 }
703 
704 /*
705  * Find a ceph client with specific addr and configuration.  If
706  * found, bump its reference count.
707  */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710 	struct rbd_client *client_node;
711 	bool found = false;
712 
713 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714 		return NULL;
715 
716 	spin_lock(&rbd_client_list_lock);
717 	list_for_each_entry(client_node, &rbd_client_list, node) {
718 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
719 			__rbd_get_client(client_node);
720 
721 			found = true;
722 			break;
723 		}
724 	}
725 	spin_unlock(&rbd_client_list_lock);
726 
727 	return found ? client_node : NULL;
728 }
729 
730 /*
731  * (Per device) rbd map options
732  */
733 enum {
734 	Opt_queue_depth,
735 	Opt_lock_timeout,
736 	Opt_last_int,
737 	/* int args above */
738 	Opt_last_string,
739 	/* string args above */
740 	Opt_read_only,
741 	Opt_read_write,
742 	Opt_lock_on_read,
743 	Opt_exclusive,
744 	Opt_notrim,
745 	Opt_err
746 };
747 
748 static match_table_t rbd_opts_tokens = {
749 	{Opt_queue_depth, "queue_depth=%d"},
750 	{Opt_lock_timeout, "lock_timeout=%d"},
751 	/* int args above */
752 	/* string args above */
753 	{Opt_read_only, "read_only"},
754 	{Opt_read_only, "ro"},		/* Alternate spelling */
755 	{Opt_read_write, "read_write"},
756 	{Opt_read_write, "rw"},		/* Alternate spelling */
757 	{Opt_lock_on_read, "lock_on_read"},
758 	{Opt_exclusive, "exclusive"},
759 	{Opt_notrim, "notrim"},
760 	{Opt_err, NULL}
761 };
762 
763 struct rbd_options {
764 	int	queue_depth;
765 	unsigned long	lock_timeout;
766 	bool	read_only;
767 	bool	lock_on_read;
768 	bool	exclusive;
769 	bool	trim;
770 };
771 
772 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
773 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
774 #define RBD_READ_ONLY_DEFAULT	false
775 #define RBD_LOCK_ON_READ_DEFAULT false
776 #define RBD_EXCLUSIVE_DEFAULT	false
777 #define RBD_TRIM_DEFAULT	true
778 
779 static int parse_rbd_opts_token(char *c, void *private)
780 {
781 	struct rbd_options *rbd_opts = private;
782 	substring_t argstr[MAX_OPT_ARGS];
783 	int token, intval, ret;
784 
785 	token = match_token(c, rbd_opts_tokens, argstr);
786 	if (token < Opt_last_int) {
787 		ret = match_int(&argstr[0], &intval);
788 		if (ret < 0) {
789 			pr_err("bad mount option arg (not int) at '%s'\n", c);
790 			return ret;
791 		}
792 		dout("got int token %d val %d\n", token, intval);
793 	} else if (token > Opt_last_int && token < Opt_last_string) {
794 		dout("got string token %d val %s\n", token, argstr[0].from);
795 	} else {
796 		dout("got token %d\n", token);
797 	}
798 
799 	switch (token) {
800 	case Opt_queue_depth:
801 		if (intval < 1) {
802 			pr_err("queue_depth out of range\n");
803 			return -EINVAL;
804 		}
805 		rbd_opts->queue_depth = intval;
806 		break;
807 	case Opt_lock_timeout:
808 		/* 0 is "wait forever" (i.e. infinite timeout) */
809 		if (intval < 0 || intval > INT_MAX / 1000) {
810 			pr_err("lock_timeout out of range\n");
811 			return -EINVAL;
812 		}
813 		rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000);
814 		break;
815 	case Opt_read_only:
816 		rbd_opts->read_only = true;
817 		break;
818 	case Opt_read_write:
819 		rbd_opts->read_only = false;
820 		break;
821 	case Opt_lock_on_read:
822 		rbd_opts->lock_on_read = true;
823 		break;
824 	case Opt_exclusive:
825 		rbd_opts->exclusive = true;
826 		break;
827 	case Opt_notrim:
828 		rbd_opts->trim = false;
829 		break;
830 	default:
831 		/* libceph prints "bad option" msg */
832 		return -EINVAL;
833 	}
834 
835 	return 0;
836 }
837 
838 static char* obj_op_name(enum obj_operation_type op_type)
839 {
840 	switch (op_type) {
841 	case OBJ_OP_READ:
842 		return "read";
843 	case OBJ_OP_WRITE:
844 		return "write";
845 	case OBJ_OP_DISCARD:
846 		return "discard";
847 	default:
848 		return "???";
849 	}
850 }
851 
852 /*
853  * Destroy ceph client
854  *
855  * Caller must hold rbd_client_list_lock.
856  */
857 static void rbd_client_release(struct kref *kref)
858 {
859 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
860 
861 	dout("%s: rbdc %p\n", __func__, rbdc);
862 	spin_lock(&rbd_client_list_lock);
863 	list_del(&rbdc->node);
864 	spin_unlock(&rbd_client_list_lock);
865 
866 	ceph_destroy_client(rbdc->client);
867 	kfree(rbdc);
868 }
869 
870 /*
871  * Drop reference to ceph client node. If it's not referenced anymore, release
872  * it.
873  */
874 static void rbd_put_client(struct rbd_client *rbdc)
875 {
876 	if (rbdc)
877 		kref_put(&rbdc->kref, rbd_client_release);
878 }
879 
880 static int wait_for_latest_osdmap(struct ceph_client *client)
881 {
882 	u64 newest_epoch;
883 	int ret;
884 
885 	ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
886 	if (ret)
887 		return ret;
888 
889 	if (client->osdc.osdmap->epoch >= newest_epoch)
890 		return 0;
891 
892 	ceph_osdc_maybe_request_map(&client->osdc);
893 	return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
894 				     client->options->mount_timeout);
895 }
896 
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904 	struct rbd_client *rbdc;
905 	int ret;
906 
907 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
908 	rbdc = rbd_client_find(ceph_opts);
909 	if (rbdc) {
910 		ceph_destroy_options(ceph_opts);
911 
912 		/*
913 		 * Using an existing client.  Make sure ->pg_pools is up to
914 		 * date before we look up the pool id in do_rbd_add().
915 		 */
916 		ret = wait_for_latest_osdmap(rbdc->client);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1203 			u64 *snap_features)
1204 {
1205 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1206 	if (snap_id == CEPH_NOSNAP) {
1207 		*snap_features = rbd_dev->header.features;
1208 	} else if (rbd_dev->image_format == 1) {
1209 		*snap_features = 0;	/* No features for format 1 */
1210 	} else {
1211 		u64 features = 0;
1212 		int ret;
1213 
1214 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1215 		if (ret)
1216 			return ret;
1217 
1218 		*snap_features = features;
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1224 {
1225 	u64 snap_id = rbd_dev->spec->snap_id;
1226 	u64 size = 0;
1227 	u64 features = 0;
1228 	int ret;
1229 
1230 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1231 	if (ret)
1232 		return ret;
1233 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1234 	if (ret)
1235 		return ret;
1236 
1237 	rbd_dev->mapping.size = size;
1238 	rbd_dev->mapping.features = features;
1239 
1240 	return 0;
1241 }
1242 
1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1244 {
1245 	rbd_dev->mapping.size = 0;
1246 	rbd_dev->mapping.features = 0;
1247 }
1248 
1249 static void zero_bvec(struct bio_vec *bv)
1250 {
1251 	void *buf;
1252 	unsigned long flags;
1253 
1254 	buf = bvec_kmap_irq(bv, &flags);
1255 	memset(buf, 0, bv->bv_len);
1256 	flush_dcache_page(bv->bv_page);
1257 	bvec_kunmap_irq(buf, &flags);
1258 }
1259 
1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1261 {
1262 	struct ceph_bio_iter it = *bio_pos;
1263 
1264 	ceph_bio_iter_advance(&it, off);
1265 	ceph_bio_iter_advance_step(&it, bytes, ({
1266 		zero_bvec(&bv);
1267 	}));
1268 }
1269 
1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1271 {
1272 	struct ceph_bvec_iter it = *bvec_pos;
1273 
1274 	ceph_bvec_iter_advance(&it, off);
1275 	ceph_bvec_iter_advance_step(&it, bytes, ({
1276 		zero_bvec(&bv);
1277 	}));
1278 }
1279 
1280 /*
1281  * Zero a range in @obj_req data buffer defined by a bio (list) or
1282  * (private) bio_vec array.
1283  *
1284  * @off is relative to the start of the data buffer.
1285  */
1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1287 			       u32 bytes)
1288 {
1289 	switch (obj_req->img_request->data_type) {
1290 	case OBJ_REQUEST_BIO:
1291 		zero_bios(&obj_req->bio_pos, off, bytes);
1292 		break;
1293 	case OBJ_REQUEST_BVECS:
1294 	case OBJ_REQUEST_OWN_BVECS:
1295 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1296 		break;
1297 	default:
1298 		rbd_assert(0);
1299 	}
1300 }
1301 
1302 static void rbd_obj_request_destroy(struct kref *kref);
1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1304 {
1305 	rbd_assert(obj_request != NULL);
1306 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1307 		kref_read(&obj_request->kref));
1308 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1309 }
1310 
1311 static void rbd_img_request_get(struct rbd_img_request *img_request)
1312 {
1313 	dout("%s: img %p (was %d)\n", __func__, img_request,
1314 	     kref_read(&img_request->kref));
1315 	kref_get(&img_request->kref);
1316 }
1317 
1318 static void rbd_img_request_destroy(struct kref *kref);
1319 static void rbd_img_request_put(struct rbd_img_request *img_request)
1320 {
1321 	rbd_assert(img_request != NULL);
1322 	dout("%s: img %p (was %d)\n", __func__, img_request,
1323 		kref_read(&img_request->kref));
1324 	kref_put(&img_request->kref, rbd_img_request_destroy);
1325 }
1326 
1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1328 					struct rbd_obj_request *obj_request)
1329 {
1330 	rbd_assert(obj_request->img_request == NULL);
1331 
1332 	/* Image request now owns object's original reference */
1333 	obj_request->img_request = img_request;
1334 	img_request->obj_request_count++;
1335 	img_request->pending_count++;
1336 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1337 }
1338 
1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1340 					struct rbd_obj_request *obj_request)
1341 {
1342 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1343 	list_del(&obj_request->ex.oe_item);
1344 	rbd_assert(img_request->obj_request_count > 0);
1345 	img_request->obj_request_count--;
1346 	rbd_assert(obj_request->img_request == img_request);
1347 	rbd_obj_request_put(obj_request);
1348 }
1349 
1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1351 {
1352 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1353 
1354 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1355 	     obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1356 	     obj_request->ex.oe_len, osd_req);
1357 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1358 }
1359 
1360 /*
1361  * The default/initial value for all image request flags is 0.  Each
1362  * is conditionally set to 1 at image request initialization time
1363  * and currently never change thereafter.
1364  */
1365 static void img_request_layered_set(struct rbd_img_request *img_request)
1366 {
1367 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1368 	smp_mb();
1369 }
1370 
1371 static void img_request_layered_clear(struct rbd_img_request *img_request)
1372 {
1373 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 	smp_mb();
1375 }
1376 
1377 static bool img_request_layered_test(struct rbd_img_request *img_request)
1378 {
1379 	smp_mb();
1380 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1381 }
1382 
1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1384 {
1385 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1386 
1387 	return !obj_req->ex.oe_off &&
1388 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1389 }
1390 
1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1392 {
1393 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1394 
1395 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1396 					rbd_dev->layout.object_size;
1397 }
1398 
1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1400 {
1401 	return ceph_file_extents_bytes(obj_req->img_extents,
1402 				       obj_req->num_img_extents);
1403 }
1404 
1405 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1406 {
1407 	switch (img_req->op_type) {
1408 	case OBJ_OP_READ:
1409 		return false;
1410 	case OBJ_OP_WRITE:
1411 	case OBJ_OP_DISCARD:
1412 		return true;
1413 	default:
1414 		BUG();
1415 	}
1416 }
1417 
1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1419 
1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1421 {
1422 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1423 
1424 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1425 	     osd_req->r_result, obj_req);
1426 	rbd_assert(osd_req == obj_req->osd_req);
1427 
1428 	obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1429 	if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1430 		obj_req->xferred = osd_req->r_result;
1431 	else
1432 		/*
1433 		 * Writes aren't allowed to return a data payload.  In some
1434 		 * guarded write cases (e.g. stat + zero on an empty object)
1435 		 * a stat response makes it through, but we don't care.
1436 		 */
1437 		obj_req->xferred = 0;
1438 
1439 	rbd_obj_handle_request(obj_req);
1440 }
1441 
1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1443 {
1444 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1445 
1446 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1447 	osd_req->r_snapid = obj_request->img_request->snap_id;
1448 }
1449 
1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1451 {
1452 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1453 
1454 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1455 	ktime_get_real_ts(&osd_req->r_mtime);
1456 	osd_req->r_data_offset = obj_request->ex.oe_off;
1457 }
1458 
1459 static struct ceph_osd_request *
1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1461 {
1462 	struct rbd_img_request *img_req = obj_req->img_request;
1463 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1464 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1465 	struct ceph_osd_request *req;
1466 	const char *name_format = rbd_dev->image_format == 1 ?
1467 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1468 
1469 	req = ceph_osdc_alloc_request(osdc,
1470 			(rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1471 			num_ops, false, GFP_NOIO);
1472 	if (!req)
1473 		return NULL;
1474 
1475 	req->r_callback = rbd_osd_req_callback;
1476 	req->r_priv = obj_req;
1477 
1478 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1479 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1480 			rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1481 		goto err_req;
1482 
1483 	if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1484 		goto err_req;
1485 
1486 	return req;
1487 
1488 err_req:
1489 	ceph_osdc_put_request(req);
1490 	return NULL;
1491 }
1492 
1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1494 {
1495 	ceph_osdc_put_request(osd_req);
1496 }
1497 
1498 static struct rbd_obj_request *rbd_obj_request_create(void)
1499 {
1500 	struct rbd_obj_request *obj_request;
1501 
1502 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1503 	if (!obj_request)
1504 		return NULL;
1505 
1506 	ceph_object_extent_init(&obj_request->ex);
1507 	kref_init(&obj_request->kref);
1508 
1509 	dout("%s %p\n", __func__, obj_request);
1510 	return obj_request;
1511 }
1512 
1513 static void rbd_obj_request_destroy(struct kref *kref)
1514 {
1515 	struct rbd_obj_request *obj_request;
1516 	u32 i;
1517 
1518 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1519 
1520 	dout("%s: obj %p\n", __func__, obj_request);
1521 
1522 	if (obj_request->osd_req)
1523 		rbd_osd_req_destroy(obj_request->osd_req);
1524 
1525 	switch (obj_request->img_request->data_type) {
1526 	case OBJ_REQUEST_NODATA:
1527 	case OBJ_REQUEST_BIO:
1528 	case OBJ_REQUEST_BVECS:
1529 		break;		/* Nothing to do */
1530 	case OBJ_REQUEST_OWN_BVECS:
1531 		kfree(obj_request->bvec_pos.bvecs);
1532 		break;
1533 	default:
1534 		rbd_assert(0);
1535 	}
1536 
1537 	kfree(obj_request->img_extents);
1538 	if (obj_request->copyup_bvecs) {
1539 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1540 			if (obj_request->copyup_bvecs[i].bv_page)
1541 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1542 		}
1543 		kfree(obj_request->copyup_bvecs);
1544 	}
1545 
1546 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1547 }
1548 
1549 /* It's OK to call this for a device with no parent */
1550 
1551 static void rbd_spec_put(struct rbd_spec *spec);
1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1553 {
1554 	rbd_dev_remove_parent(rbd_dev);
1555 	rbd_spec_put(rbd_dev->parent_spec);
1556 	rbd_dev->parent_spec = NULL;
1557 	rbd_dev->parent_overlap = 0;
1558 }
1559 
1560 /*
1561  * Parent image reference counting is used to determine when an
1562  * image's parent fields can be safely torn down--after there are no
1563  * more in-flight requests to the parent image.  When the last
1564  * reference is dropped, cleaning them up is safe.
1565  */
1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1567 {
1568 	int counter;
1569 
1570 	if (!rbd_dev->parent_spec)
1571 		return;
1572 
1573 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1574 	if (counter > 0)
1575 		return;
1576 
1577 	/* Last reference; clean up parent data structures */
1578 
1579 	if (!counter)
1580 		rbd_dev_unparent(rbd_dev);
1581 	else
1582 		rbd_warn(rbd_dev, "parent reference underflow");
1583 }
1584 
1585 /*
1586  * If an image has a non-zero parent overlap, get a reference to its
1587  * parent.
1588  *
1589  * Returns true if the rbd device has a parent with a non-zero
1590  * overlap and a reference for it was successfully taken, or
1591  * false otherwise.
1592  */
1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1594 {
1595 	int counter = 0;
1596 
1597 	if (!rbd_dev->parent_spec)
1598 		return false;
1599 
1600 	down_read(&rbd_dev->header_rwsem);
1601 	if (rbd_dev->parent_overlap)
1602 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1603 	up_read(&rbd_dev->header_rwsem);
1604 
1605 	if (counter < 0)
1606 		rbd_warn(rbd_dev, "parent reference overflow");
1607 
1608 	return counter > 0;
1609 }
1610 
1611 /*
1612  * Caller is responsible for filling in the list of object requests
1613  * that comprises the image request, and the Linux request pointer
1614  * (if there is one).
1615  */
1616 static struct rbd_img_request *rbd_img_request_create(
1617 					struct rbd_device *rbd_dev,
1618 					enum obj_operation_type op_type,
1619 					struct ceph_snap_context *snapc)
1620 {
1621 	struct rbd_img_request *img_request;
1622 
1623 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1624 	if (!img_request)
1625 		return NULL;
1626 
1627 	img_request->rbd_dev = rbd_dev;
1628 	img_request->op_type = op_type;
1629 	if (!rbd_img_is_write(img_request))
1630 		img_request->snap_id = rbd_dev->spec->snap_id;
1631 	else
1632 		img_request->snapc = snapc;
1633 
1634 	if (rbd_dev_parent_get(rbd_dev))
1635 		img_request_layered_set(img_request);
1636 
1637 	spin_lock_init(&img_request->completion_lock);
1638 	INIT_LIST_HEAD(&img_request->object_extents);
1639 	kref_init(&img_request->kref);
1640 
1641 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1642 	     obj_op_name(op_type), img_request);
1643 	return img_request;
1644 }
1645 
1646 static void rbd_img_request_destroy(struct kref *kref)
1647 {
1648 	struct rbd_img_request *img_request;
1649 	struct rbd_obj_request *obj_request;
1650 	struct rbd_obj_request *next_obj_request;
1651 
1652 	img_request = container_of(kref, struct rbd_img_request, kref);
1653 
1654 	dout("%s: img %p\n", __func__, img_request);
1655 
1656 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1657 		rbd_img_obj_request_del(img_request, obj_request);
1658 	rbd_assert(img_request->obj_request_count == 0);
1659 
1660 	if (img_request_layered_test(img_request)) {
1661 		img_request_layered_clear(img_request);
1662 		rbd_dev_parent_put(img_request->rbd_dev);
1663 	}
1664 
1665 	if (rbd_img_is_write(img_request))
1666 		ceph_put_snap_context(img_request->snapc);
1667 
1668 	kmem_cache_free(rbd_img_request_cache, img_request);
1669 }
1670 
1671 static void prune_extents(struct ceph_file_extent *img_extents,
1672 			  u32 *num_img_extents, u64 overlap)
1673 {
1674 	u32 cnt = *num_img_extents;
1675 
1676 	/* drop extents completely beyond the overlap */
1677 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1678 		cnt--;
1679 
1680 	if (cnt) {
1681 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
1682 
1683 		/* trim final overlapping extent */
1684 		if (ex->fe_off + ex->fe_len > overlap)
1685 			ex->fe_len = overlap - ex->fe_off;
1686 	}
1687 
1688 	*num_img_extents = cnt;
1689 }
1690 
1691 /*
1692  * Determine the byte range(s) covered by either just the object extent
1693  * or the entire object in the parent image.
1694  */
1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1696 				    bool entire)
1697 {
1698 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1699 	int ret;
1700 
1701 	if (!rbd_dev->parent_overlap)
1702 		return 0;
1703 
1704 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1705 				  entire ? 0 : obj_req->ex.oe_off,
1706 				  entire ? rbd_dev->layout.object_size :
1707 							obj_req->ex.oe_len,
1708 				  &obj_req->img_extents,
1709 				  &obj_req->num_img_extents);
1710 	if (ret)
1711 		return ret;
1712 
1713 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1714 		      rbd_dev->parent_overlap);
1715 	return 0;
1716 }
1717 
1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1719 {
1720 	switch (obj_req->img_request->data_type) {
1721 	case OBJ_REQUEST_BIO:
1722 		osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1723 					       &obj_req->bio_pos,
1724 					       obj_req->ex.oe_len);
1725 		break;
1726 	case OBJ_REQUEST_BVECS:
1727 	case OBJ_REQUEST_OWN_BVECS:
1728 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1729 							obj_req->ex.oe_len);
1730 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1731 		osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1732 						    &obj_req->bvec_pos);
1733 		break;
1734 	default:
1735 		rbd_assert(0);
1736 	}
1737 }
1738 
1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1740 {
1741 	obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1742 	if (!obj_req->osd_req)
1743 		return -ENOMEM;
1744 
1745 	osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1746 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1747 	rbd_osd_req_setup_data(obj_req, 0);
1748 
1749 	rbd_osd_req_format_read(obj_req);
1750 	return 0;
1751 }
1752 
1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1754 				unsigned int which)
1755 {
1756 	struct page **pages;
1757 
1758 	/*
1759 	 * The response data for a STAT call consists of:
1760 	 *     le64 length;
1761 	 *     struct {
1762 	 *         le32 tv_sec;
1763 	 *         le32 tv_nsec;
1764 	 *     } mtime;
1765 	 */
1766 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
1767 	if (IS_ERR(pages))
1768 		return PTR_ERR(pages);
1769 
1770 	osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1771 	osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1772 				     8 + sizeof(struct ceph_timespec),
1773 				     0, false, true);
1774 	return 0;
1775 }
1776 
1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1778 				  unsigned int which)
1779 {
1780 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1781 	u16 opcode;
1782 
1783 	osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1784 				   rbd_dev->layout.object_size,
1785 				   rbd_dev->layout.object_size);
1786 
1787 	if (rbd_obj_is_entire(obj_req))
1788 		opcode = CEPH_OSD_OP_WRITEFULL;
1789 	else
1790 		opcode = CEPH_OSD_OP_WRITE;
1791 
1792 	osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1793 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1794 	rbd_osd_req_setup_data(obj_req, which++);
1795 
1796 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1797 	rbd_osd_req_format_write(obj_req);
1798 }
1799 
1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1801 {
1802 	unsigned int num_osd_ops, which = 0;
1803 	int ret;
1804 
1805 	/* reverse map the entire object onto the parent */
1806 	ret = rbd_obj_calc_img_extents(obj_req, true);
1807 	if (ret)
1808 		return ret;
1809 
1810 	if (obj_req->num_img_extents) {
1811 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1812 		num_osd_ops = 3; /* stat + setallochint + write/writefull */
1813 	} else {
1814 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1815 		num_osd_ops = 2; /* setallochint + write/writefull */
1816 	}
1817 
1818 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1819 	if (!obj_req->osd_req)
1820 		return -ENOMEM;
1821 
1822 	if (obj_req->num_img_extents) {
1823 		ret = __rbd_obj_setup_stat(obj_req, which++);
1824 		if (ret)
1825 			return ret;
1826 	}
1827 
1828 	__rbd_obj_setup_write(obj_req, which);
1829 	return 0;
1830 }
1831 
1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1833 				    unsigned int which)
1834 {
1835 	u16 opcode;
1836 
1837 	if (rbd_obj_is_entire(obj_req)) {
1838 		if (obj_req->num_img_extents) {
1839 			osd_req_op_init(obj_req->osd_req, which++,
1840 					CEPH_OSD_OP_CREATE, 0);
1841 			opcode = CEPH_OSD_OP_TRUNCATE;
1842 		} else {
1843 			osd_req_op_init(obj_req->osd_req, which++,
1844 					CEPH_OSD_OP_DELETE, 0);
1845 			opcode = 0;
1846 		}
1847 	} else if (rbd_obj_is_tail(obj_req)) {
1848 		opcode = CEPH_OSD_OP_TRUNCATE;
1849 	} else {
1850 		opcode = CEPH_OSD_OP_ZERO;
1851 	}
1852 
1853 	if (opcode)
1854 		osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1855 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
1856 				       0, 0);
1857 
1858 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1859 	rbd_osd_req_format_write(obj_req);
1860 }
1861 
1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1863 {
1864 	unsigned int num_osd_ops, which = 0;
1865 	int ret;
1866 
1867 	/* reverse map the entire object onto the parent */
1868 	ret = rbd_obj_calc_img_extents(obj_req, true);
1869 	if (ret)
1870 		return ret;
1871 
1872 	if (rbd_obj_is_entire(obj_req)) {
1873 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1874 		if (obj_req->num_img_extents)
1875 			num_osd_ops = 2; /* create + truncate */
1876 		else
1877 			num_osd_ops = 1; /* delete */
1878 	} else {
1879 		if (obj_req->num_img_extents) {
1880 			obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1881 			num_osd_ops = 2; /* stat + truncate/zero */
1882 		} else {
1883 			obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1884 			num_osd_ops = 1; /* truncate/zero */
1885 		}
1886 	}
1887 
1888 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1889 	if (!obj_req->osd_req)
1890 		return -ENOMEM;
1891 
1892 	if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1893 		ret = __rbd_obj_setup_stat(obj_req, which++);
1894 		if (ret)
1895 			return ret;
1896 	}
1897 
1898 	__rbd_obj_setup_discard(obj_req, which);
1899 	return 0;
1900 }
1901 
1902 /*
1903  * For each object request in @img_req, allocate an OSD request, add
1904  * individual OSD ops and prepare them for submission.  The number of
1905  * OSD ops depends on op_type and the overlap point (if any).
1906  */
1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1908 {
1909 	struct rbd_obj_request *obj_req;
1910 	int ret;
1911 
1912 	for_each_obj_request(img_req, obj_req) {
1913 		switch (img_req->op_type) {
1914 		case OBJ_OP_READ:
1915 			ret = rbd_obj_setup_read(obj_req);
1916 			break;
1917 		case OBJ_OP_WRITE:
1918 			ret = rbd_obj_setup_write(obj_req);
1919 			break;
1920 		case OBJ_OP_DISCARD:
1921 			ret = rbd_obj_setup_discard(obj_req);
1922 			break;
1923 		default:
1924 			rbd_assert(0);
1925 		}
1926 		if (ret)
1927 			return ret;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 union rbd_img_fill_iter {
1934 	struct ceph_bio_iter	bio_iter;
1935 	struct ceph_bvec_iter	bvec_iter;
1936 };
1937 
1938 struct rbd_img_fill_ctx {
1939 	enum obj_request_type	pos_type;
1940 	union rbd_img_fill_iter	*pos;
1941 	union rbd_img_fill_iter	iter;
1942 	ceph_object_extent_fn_t	set_pos_fn;
1943 	ceph_object_extent_fn_t	count_fn;
1944 	ceph_object_extent_fn_t	copy_fn;
1945 };
1946 
1947 static struct ceph_object_extent *alloc_object_extent(void *arg)
1948 {
1949 	struct rbd_img_request *img_req = arg;
1950 	struct rbd_obj_request *obj_req;
1951 
1952 	obj_req = rbd_obj_request_create();
1953 	if (!obj_req)
1954 		return NULL;
1955 
1956 	rbd_img_obj_request_add(img_req, obj_req);
1957 	return &obj_req->ex;
1958 }
1959 
1960 /*
1961  * While su != os && sc == 1 is technically not fancy (it's the same
1962  * layout as su == os && sc == 1), we can't use the nocopy path for it
1963  * because ->set_pos_fn() should be called only once per object.
1964  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1965  * treat su != os && sc == 1 as fancy.
1966  */
1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1968 {
1969 	return l->stripe_unit != l->object_size;
1970 }
1971 
1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1973 				       struct ceph_file_extent *img_extents,
1974 				       u32 num_img_extents,
1975 				       struct rbd_img_fill_ctx *fctx)
1976 {
1977 	u32 i;
1978 	int ret;
1979 
1980 	img_req->data_type = fctx->pos_type;
1981 
1982 	/*
1983 	 * Create object requests and set each object request's starting
1984 	 * position in the provided bio (list) or bio_vec array.
1985 	 */
1986 	fctx->iter = *fctx->pos;
1987 	for (i = 0; i < num_img_extents; i++) {
1988 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
1989 					   img_extents[i].fe_off,
1990 					   img_extents[i].fe_len,
1991 					   &img_req->object_extents,
1992 					   alloc_object_extent, img_req,
1993 					   fctx->set_pos_fn, &fctx->iter);
1994 		if (ret)
1995 			return ret;
1996 	}
1997 
1998 	return __rbd_img_fill_request(img_req);
1999 }
2000 
2001 /*
2002  * Map a list of image extents to a list of object extents, create the
2003  * corresponding object requests (normally each to a different object,
2004  * but not always) and add them to @img_req.  For each object request,
2005  * set up its data descriptor to point to the corresponding chunk(s) of
2006  * @fctx->pos data buffer.
2007  *
2008  * Because ceph_file_to_extents() will merge adjacent object extents
2009  * together, each object request's data descriptor may point to multiple
2010  * different chunks of @fctx->pos data buffer.
2011  *
2012  * @fctx->pos data buffer is assumed to be large enough.
2013  */
2014 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2015 				struct ceph_file_extent *img_extents,
2016 				u32 num_img_extents,
2017 				struct rbd_img_fill_ctx *fctx)
2018 {
2019 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2020 	struct rbd_obj_request *obj_req;
2021 	u32 i;
2022 	int ret;
2023 
2024 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2025 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2026 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2027 						   num_img_extents, fctx);
2028 
2029 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2030 
2031 	/*
2032 	 * Create object requests and determine ->bvec_count for each object
2033 	 * request.  Note that ->bvec_count sum over all object requests may
2034 	 * be greater than the number of bio_vecs in the provided bio (list)
2035 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2036 	 * stripe unit boundaries.
2037 	 */
2038 	fctx->iter = *fctx->pos;
2039 	for (i = 0; i < num_img_extents; i++) {
2040 		ret = ceph_file_to_extents(&rbd_dev->layout,
2041 					   img_extents[i].fe_off,
2042 					   img_extents[i].fe_len,
2043 					   &img_req->object_extents,
2044 					   alloc_object_extent, img_req,
2045 					   fctx->count_fn, &fctx->iter);
2046 		if (ret)
2047 			return ret;
2048 	}
2049 
2050 	for_each_obj_request(img_req, obj_req) {
2051 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2052 					      sizeof(*obj_req->bvec_pos.bvecs),
2053 					      GFP_NOIO);
2054 		if (!obj_req->bvec_pos.bvecs)
2055 			return -ENOMEM;
2056 	}
2057 
2058 	/*
2059 	 * Fill in each object request's private bio_vec array, splitting and
2060 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2061 	 */
2062 	fctx->iter = *fctx->pos;
2063 	for (i = 0; i < num_img_extents; i++) {
2064 		ret = ceph_iterate_extents(&rbd_dev->layout,
2065 					   img_extents[i].fe_off,
2066 					   img_extents[i].fe_len,
2067 					   &img_req->object_extents,
2068 					   fctx->copy_fn, &fctx->iter);
2069 		if (ret)
2070 			return ret;
2071 	}
2072 
2073 	return __rbd_img_fill_request(img_req);
2074 }
2075 
2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2077 			       u64 off, u64 len)
2078 {
2079 	struct ceph_file_extent ex = { off, len };
2080 	union rbd_img_fill_iter dummy;
2081 	struct rbd_img_fill_ctx fctx = {
2082 		.pos_type = OBJ_REQUEST_NODATA,
2083 		.pos = &dummy,
2084 	};
2085 
2086 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2087 }
2088 
2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2090 {
2091 	struct rbd_obj_request *obj_req =
2092 	    container_of(ex, struct rbd_obj_request, ex);
2093 	struct ceph_bio_iter *it = arg;
2094 
2095 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2096 	obj_req->bio_pos = *it;
2097 	ceph_bio_iter_advance(it, bytes);
2098 }
2099 
2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2101 {
2102 	struct rbd_obj_request *obj_req =
2103 	    container_of(ex, struct rbd_obj_request, ex);
2104 	struct ceph_bio_iter *it = arg;
2105 
2106 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2107 	ceph_bio_iter_advance_step(it, bytes, ({
2108 		obj_req->bvec_count++;
2109 	}));
2110 
2111 }
2112 
2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2114 {
2115 	struct rbd_obj_request *obj_req =
2116 	    container_of(ex, struct rbd_obj_request, ex);
2117 	struct ceph_bio_iter *it = arg;
2118 
2119 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2120 	ceph_bio_iter_advance_step(it, bytes, ({
2121 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2122 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2123 	}));
2124 }
2125 
2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2127 				   struct ceph_file_extent *img_extents,
2128 				   u32 num_img_extents,
2129 				   struct ceph_bio_iter *bio_pos)
2130 {
2131 	struct rbd_img_fill_ctx fctx = {
2132 		.pos_type = OBJ_REQUEST_BIO,
2133 		.pos = (union rbd_img_fill_iter *)bio_pos,
2134 		.set_pos_fn = set_bio_pos,
2135 		.count_fn = count_bio_bvecs,
2136 		.copy_fn = copy_bio_bvecs,
2137 	};
2138 
2139 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2140 				    &fctx);
2141 }
2142 
2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2144 				 u64 off, u64 len, struct bio *bio)
2145 {
2146 	struct ceph_file_extent ex = { off, len };
2147 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2148 
2149 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2150 }
2151 
2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2153 {
2154 	struct rbd_obj_request *obj_req =
2155 	    container_of(ex, struct rbd_obj_request, ex);
2156 	struct ceph_bvec_iter *it = arg;
2157 
2158 	obj_req->bvec_pos = *it;
2159 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2160 	ceph_bvec_iter_advance(it, bytes);
2161 }
2162 
2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2164 {
2165 	struct rbd_obj_request *obj_req =
2166 	    container_of(ex, struct rbd_obj_request, ex);
2167 	struct ceph_bvec_iter *it = arg;
2168 
2169 	ceph_bvec_iter_advance_step(it, bytes, ({
2170 		obj_req->bvec_count++;
2171 	}));
2172 }
2173 
2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2175 {
2176 	struct rbd_obj_request *obj_req =
2177 	    container_of(ex, struct rbd_obj_request, ex);
2178 	struct ceph_bvec_iter *it = arg;
2179 
2180 	ceph_bvec_iter_advance_step(it, bytes, ({
2181 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2182 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2183 	}));
2184 }
2185 
2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2187 				     struct ceph_file_extent *img_extents,
2188 				     u32 num_img_extents,
2189 				     struct ceph_bvec_iter *bvec_pos)
2190 {
2191 	struct rbd_img_fill_ctx fctx = {
2192 		.pos_type = OBJ_REQUEST_BVECS,
2193 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2194 		.set_pos_fn = set_bvec_pos,
2195 		.count_fn = count_bvecs,
2196 		.copy_fn = copy_bvecs,
2197 	};
2198 
2199 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2200 				    &fctx);
2201 }
2202 
2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2204 				   struct ceph_file_extent *img_extents,
2205 				   u32 num_img_extents,
2206 				   struct bio_vec *bvecs)
2207 {
2208 	struct ceph_bvec_iter it = {
2209 		.bvecs = bvecs,
2210 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2211 							     num_img_extents) },
2212 	};
2213 
2214 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2215 					 &it);
2216 }
2217 
2218 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2219 {
2220 	struct rbd_obj_request *obj_request;
2221 
2222 	dout("%s: img %p\n", __func__, img_request);
2223 
2224 	rbd_img_request_get(img_request);
2225 	for_each_obj_request(img_request, obj_request)
2226 		rbd_obj_request_submit(obj_request);
2227 
2228 	rbd_img_request_put(img_request);
2229 }
2230 
2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2232 {
2233 	struct rbd_img_request *img_req = obj_req->img_request;
2234 	struct rbd_img_request *child_img_req;
2235 	int ret;
2236 
2237 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2238 					       OBJ_OP_READ, NULL);
2239 	if (!child_img_req)
2240 		return -ENOMEM;
2241 
2242 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2243 	child_img_req->obj_request = obj_req;
2244 
2245 	if (!rbd_img_is_write(img_req)) {
2246 		switch (img_req->data_type) {
2247 		case OBJ_REQUEST_BIO:
2248 			ret = __rbd_img_fill_from_bio(child_img_req,
2249 						      obj_req->img_extents,
2250 						      obj_req->num_img_extents,
2251 						      &obj_req->bio_pos);
2252 			break;
2253 		case OBJ_REQUEST_BVECS:
2254 		case OBJ_REQUEST_OWN_BVECS:
2255 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2256 						      obj_req->img_extents,
2257 						      obj_req->num_img_extents,
2258 						      &obj_req->bvec_pos);
2259 			break;
2260 		default:
2261 			rbd_assert(0);
2262 		}
2263 	} else {
2264 		ret = rbd_img_fill_from_bvecs(child_img_req,
2265 					      obj_req->img_extents,
2266 					      obj_req->num_img_extents,
2267 					      obj_req->copyup_bvecs);
2268 	}
2269 	if (ret) {
2270 		rbd_img_request_put(child_img_req);
2271 		return ret;
2272 	}
2273 
2274 	rbd_img_request_submit(child_img_req);
2275 	return 0;
2276 }
2277 
2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2279 {
2280 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2281 	int ret;
2282 
2283 	if (obj_req->result == -ENOENT &&
2284 	    rbd_dev->parent_overlap && !obj_req->tried_parent) {
2285 		/* reverse map this object extent onto the parent */
2286 		ret = rbd_obj_calc_img_extents(obj_req, false);
2287 		if (ret) {
2288 			obj_req->result = ret;
2289 			return true;
2290 		}
2291 
2292 		if (obj_req->num_img_extents) {
2293 			obj_req->tried_parent = true;
2294 			ret = rbd_obj_read_from_parent(obj_req);
2295 			if (ret) {
2296 				obj_req->result = ret;
2297 				return true;
2298 			}
2299 			return false;
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * -ENOENT means a hole in the image -- zero-fill the entire
2305 	 * length of the request.  A short read also implies zero-fill
2306 	 * to the end of the request.  In both cases we update xferred
2307 	 * count to indicate the whole request was satisfied.
2308 	 */
2309 	if (obj_req->result == -ENOENT ||
2310 	    (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2311 		rbd_assert(!obj_req->xferred || !obj_req->result);
2312 		rbd_obj_zero_range(obj_req, obj_req->xferred,
2313 				   obj_req->ex.oe_len - obj_req->xferred);
2314 		obj_req->result = 0;
2315 		obj_req->xferred = obj_req->ex.oe_len;
2316 	}
2317 
2318 	return true;
2319 }
2320 
2321 /*
2322  * copyup_bvecs pages are never highmem pages
2323  */
2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2325 {
2326 	struct ceph_bvec_iter it = {
2327 		.bvecs = bvecs,
2328 		.iter = { .bi_size = bytes },
2329 	};
2330 
2331 	ceph_bvec_iter_advance_step(&it, bytes, ({
2332 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2333 			       bv.bv_len))
2334 			return false;
2335 	}));
2336 	return true;
2337 }
2338 
2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2340 {
2341 	unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2342 	int ret;
2343 
2344 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2345 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2346 	rbd_osd_req_destroy(obj_req->osd_req);
2347 
2348 	/*
2349 	 * Create a copyup request with the same number of OSD ops as
2350 	 * the original request.  The original request was stat + op(s),
2351 	 * the new copyup request will be copyup + the same op(s).
2352 	 */
2353 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2354 	if (!obj_req->osd_req)
2355 		return -ENOMEM;
2356 
2357 	ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2358 				  "copyup");
2359 	if (ret)
2360 		return ret;
2361 
2362 	/*
2363 	 * Only send non-zero copyup data to save some I/O and network
2364 	 * bandwidth -- zero copyup data is equivalent to the object not
2365 	 * existing.
2366 	 */
2367 	if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2368 		dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2369 		bytes = 0;
2370 	}
2371 	osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2372 					  obj_req->copyup_bvecs,
2373 					  obj_req->copyup_bvec_count,
2374 					  bytes);
2375 
2376 	switch (obj_req->img_request->op_type) {
2377 	case OBJ_OP_WRITE:
2378 		__rbd_obj_setup_write(obj_req, 1);
2379 		break;
2380 	case OBJ_OP_DISCARD:
2381 		rbd_assert(!rbd_obj_is_entire(obj_req));
2382 		__rbd_obj_setup_discard(obj_req, 1);
2383 		break;
2384 	default:
2385 		rbd_assert(0);
2386 	}
2387 
2388 	rbd_obj_request_submit(obj_req);
2389 	return 0;
2390 }
2391 
2392 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2393 {
2394 	u32 i;
2395 
2396 	rbd_assert(!obj_req->copyup_bvecs);
2397 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2398 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2399 					sizeof(*obj_req->copyup_bvecs),
2400 					GFP_NOIO);
2401 	if (!obj_req->copyup_bvecs)
2402 		return -ENOMEM;
2403 
2404 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2405 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2406 
2407 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2408 		if (!obj_req->copyup_bvecs[i].bv_page)
2409 			return -ENOMEM;
2410 
2411 		obj_req->copyup_bvecs[i].bv_offset = 0;
2412 		obj_req->copyup_bvecs[i].bv_len = len;
2413 		obj_overlap -= len;
2414 	}
2415 
2416 	rbd_assert(!obj_overlap);
2417 	return 0;
2418 }
2419 
2420 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2421 {
2422 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2423 	int ret;
2424 
2425 	rbd_assert(obj_req->num_img_extents);
2426 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2427 		      rbd_dev->parent_overlap);
2428 	if (!obj_req->num_img_extents) {
2429 		/*
2430 		 * The overlap has become 0 (most likely because the
2431 		 * image has been flattened).  Use rbd_obj_issue_copyup()
2432 		 * to re-submit the original write request -- the copyup
2433 		 * operation itself will be a no-op, since someone must
2434 		 * have populated the child object while we weren't
2435 		 * looking.  Move to WRITE_FLAT state as we'll be done
2436 		 * with the operation once the null copyup completes.
2437 		 */
2438 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2439 		return rbd_obj_issue_copyup(obj_req, 0);
2440 	}
2441 
2442 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2443 	if (ret)
2444 		return ret;
2445 
2446 	obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2447 	return rbd_obj_read_from_parent(obj_req);
2448 }
2449 
2450 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2451 {
2452 	int ret;
2453 
2454 again:
2455 	switch (obj_req->write_state) {
2456 	case RBD_OBJ_WRITE_GUARD:
2457 		rbd_assert(!obj_req->xferred);
2458 		if (obj_req->result == -ENOENT) {
2459 			/*
2460 			 * The target object doesn't exist.  Read the data for
2461 			 * the entire target object up to the overlap point (if
2462 			 * any) from the parent, so we can use it for a copyup.
2463 			 */
2464 			ret = rbd_obj_handle_write_guard(obj_req);
2465 			if (ret) {
2466 				obj_req->result = ret;
2467 				return true;
2468 			}
2469 			return false;
2470 		}
2471 		/* fall through */
2472 	case RBD_OBJ_WRITE_FLAT:
2473 		if (!obj_req->result)
2474 			/*
2475 			 * There is no such thing as a successful short
2476 			 * write -- indicate the whole request was satisfied.
2477 			 */
2478 			obj_req->xferred = obj_req->ex.oe_len;
2479 		return true;
2480 	case RBD_OBJ_WRITE_COPYUP:
2481 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2482 		if (obj_req->result)
2483 			goto again;
2484 
2485 		rbd_assert(obj_req->xferred);
2486 		ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2487 		if (ret) {
2488 			obj_req->result = ret;
2489 			return true;
2490 		}
2491 		return false;
2492 	default:
2493 		BUG();
2494 	}
2495 }
2496 
2497 /*
2498  * Returns true if @obj_req is completed, or false otherwise.
2499  */
2500 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2501 {
2502 	switch (obj_req->img_request->op_type) {
2503 	case OBJ_OP_READ:
2504 		return rbd_obj_handle_read(obj_req);
2505 	case OBJ_OP_WRITE:
2506 		return rbd_obj_handle_write(obj_req);
2507 	case OBJ_OP_DISCARD:
2508 		if (rbd_obj_handle_write(obj_req)) {
2509 			/*
2510 			 * Hide -ENOENT from delete/truncate/zero -- discarding
2511 			 * a non-existent object is not a problem.
2512 			 */
2513 			if (obj_req->result == -ENOENT) {
2514 				obj_req->result = 0;
2515 				obj_req->xferred = obj_req->ex.oe_len;
2516 			}
2517 			return true;
2518 		}
2519 		return false;
2520 	default:
2521 		BUG();
2522 	}
2523 }
2524 
2525 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2526 {
2527 	struct rbd_img_request *img_req = obj_req->img_request;
2528 
2529 	rbd_assert((!obj_req->result &&
2530 		    obj_req->xferred == obj_req->ex.oe_len) ||
2531 		   (obj_req->result < 0 && !obj_req->xferred));
2532 	if (!obj_req->result) {
2533 		img_req->xferred += obj_req->xferred;
2534 		return;
2535 	}
2536 
2537 	rbd_warn(img_req->rbd_dev,
2538 		 "%s at objno %llu %llu~%llu result %d xferred %llu",
2539 		 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2540 		 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2541 		 obj_req->xferred);
2542 	if (!img_req->result) {
2543 		img_req->result = obj_req->result;
2544 		img_req->xferred = 0;
2545 	}
2546 }
2547 
2548 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2549 {
2550 	struct rbd_obj_request *obj_req = img_req->obj_request;
2551 
2552 	rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2553 	rbd_assert((!img_req->result &&
2554 		    img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2555 		   (img_req->result < 0 && !img_req->xferred));
2556 
2557 	obj_req->result = img_req->result;
2558 	obj_req->xferred = img_req->xferred;
2559 	rbd_img_request_put(img_req);
2560 }
2561 
2562 static void rbd_img_end_request(struct rbd_img_request *img_req)
2563 {
2564 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2565 	rbd_assert((!img_req->result &&
2566 		    img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2567 		   (img_req->result < 0 && !img_req->xferred));
2568 
2569 	blk_mq_end_request(img_req->rq,
2570 			   errno_to_blk_status(img_req->result));
2571 	rbd_img_request_put(img_req);
2572 }
2573 
2574 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2575 {
2576 	struct rbd_img_request *img_req;
2577 
2578 again:
2579 	if (!__rbd_obj_handle_request(obj_req))
2580 		return;
2581 
2582 	img_req = obj_req->img_request;
2583 	spin_lock(&img_req->completion_lock);
2584 	rbd_obj_end_request(obj_req);
2585 	rbd_assert(img_req->pending_count);
2586 	if (--img_req->pending_count) {
2587 		spin_unlock(&img_req->completion_lock);
2588 		return;
2589 	}
2590 
2591 	spin_unlock(&img_req->completion_lock);
2592 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2593 		obj_req = img_req->obj_request;
2594 		rbd_img_end_child_request(img_req);
2595 		goto again;
2596 	}
2597 	rbd_img_end_request(img_req);
2598 }
2599 
2600 static const struct rbd_client_id rbd_empty_cid;
2601 
2602 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2603 			  const struct rbd_client_id *rhs)
2604 {
2605 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2606 }
2607 
2608 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2609 {
2610 	struct rbd_client_id cid;
2611 
2612 	mutex_lock(&rbd_dev->watch_mutex);
2613 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2614 	cid.handle = rbd_dev->watch_cookie;
2615 	mutex_unlock(&rbd_dev->watch_mutex);
2616 	return cid;
2617 }
2618 
2619 /*
2620  * lock_rwsem must be held for write
2621  */
2622 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2623 			      const struct rbd_client_id *cid)
2624 {
2625 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2626 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2627 	     cid->gid, cid->handle);
2628 	rbd_dev->owner_cid = *cid; /* struct */
2629 }
2630 
2631 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2632 {
2633 	mutex_lock(&rbd_dev->watch_mutex);
2634 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2635 	mutex_unlock(&rbd_dev->watch_mutex);
2636 }
2637 
2638 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2639 {
2640 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2641 
2642 	strcpy(rbd_dev->lock_cookie, cookie);
2643 	rbd_set_owner_cid(rbd_dev, &cid);
2644 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2645 }
2646 
2647 /*
2648  * lock_rwsem must be held for write
2649  */
2650 static int rbd_lock(struct rbd_device *rbd_dev)
2651 {
2652 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2653 	char cookie[32];
2654 	int ret;
2655 
2656 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2657 		rbd_dev->lock_cookie[0] != '\0');
2658 
2659 	format_lock_cookie(rbd_dev, cookie);
2660 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2661 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2662 			    RBD_LOCK_TAG, "", 0);
2663 	if (ret)
2664 		return ret;
2665 
2666 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2667 	__rbd_lock(rbd_dev, cookie);
2668 	return 0;
2669 }
2670 
2671 /*
2672  * lock_rwsem must be held for write
2673  */
2674 static void rbd_unlock(struct rbd_device *rbd_dev)
2675 {
2676 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2677 	int ret;
2678 
2679 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2680 		rbd_dev->lock_cookie[0] == '\0');
2681 
2682 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2683 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
2684 	if (ret && ret != -ENOENT)
2685 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2686 
2687 	/* treat errors as the image is unlocked */
2688 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2689 	rbd_dev->lock_cookie[0] = '\0';
2690 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2691 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2692 }
2693 
2694 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2695 				enum rbd_notify_op notify_op,
2696 				struct page ***preply_pages,
2697 				size_t *preply_len)
2698 {
2699 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2700 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2701 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2702 	int buf_size = sizeof(buf);
2703 	void *p = buf;
2704 
2705 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2706 
2707 	/* encode *LockPayload NotifyMessage (op + ClientId) */
2708 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2709 	ceph_encode_32(&p, notify_op);
2710 	ceph_encode_64(&p, cid.gid);
2711 	ceph_encode_64(&p, cid.handle);
2712 
2713 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2714 				&rbd_dev->header_oloc, buf, buf_size,
2715 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2716 }
2717 
2718 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2719 			       enum rbd_notify_op notify_op)
2720 {
2721 	struct page **reply_pages;
2722 	size_t reply_len;
2723 
2724 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2725 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2726 }
2727 
2728 static void rbd_notify_acquired_lock(struct work_struct *work)
2729 {
2730 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2731 						  acquired_lock_work);
2732 
2733 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2734 }
2735 
2736 static void rbd_notify_released_lock(struct work_struct *work)
2737 {
2738 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2739 						  released_lock_work);
2740 
2741 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2742 }
2743 
2744 static int rbd_request_lock(struct rbd_device *rbd_dev)
2745 {
2746 	struct page **reply_pages;
2747 	size_t reply_len;
2748 	bool lock_owner_responded = false;
2749 	int ret;
2750 
2751 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2752 
2753 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2754 				   &reply_pages, &reply_len);
2755 	if (ret && ret != -ETIMEDOUT) {
2756 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2757 		goto out;
2758 	}
2759 
2760 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2761 		void *p = page_address(reply_pages[0]);
2762 		void *const end = p + reply_len;
2763 		u32 n;
2764 
2765 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2766 		while (n--) {
2767 			u8 struct_v;
2768 			u32 len;
2769 
2770 			ceph_decode_need(&p, end, 8 + 8, e_inval);
2771 			p += 8 + 8; /* skip gid and cookie */
2772 
2773 			ceph_decode_32_safe(&p, end, len, e_inval);
2774 			if (!len)
2775 				continue;
2776 
2777 			if (lock_owner_responded) {
2778 				rbd_warn(rbd_dev,
2779 					 "duplicate lock owners detected");
2780 				ret = -EIO;
2781 				goto out;
2782 			}
2783 
2784 			lock_owner_responded = true;
2785 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2786 						  &struct_v, &len);
2787 			if (ret) {
2788 				rbd_warn(rbd_dev,
2789 					 "failed to decode ResponseMessage: %d",
2790 					 ret);
2791 				goto e_inval;
2792 			}
2793 
2794 			ret = ceph_decode_32(&p);
2795 		}
2796 	}
2797 
2798 	if (!lock_owner_responded) {
2799 		rbd_warn(rbd_dev, "no lock owners detected");
2800 		ret = -ETIMEDOUT;
2801 	}
2802 
2803 out:
2804 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2805 	return ret;
2806 
2807 e_inval:
2808 	ret = -EINVAL;
2809 	goto out;
2810 }
2811 
2812 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2813 {
2814 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2815 
2816 	cancel_delayed_work(&rbd_dev->lock_dwork);
2817 	if (wake_all)
2818 		wake_up_all(&rbd_dev->lock_waitq);
2819 	else
2820 		wake_up(&rbd_dev->lock_waitq);
2821 }
2822 
2823 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2824 			       struct ceph_locker **lockers, u32 *num_lockers)
2825 {
2826 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2827 	u8 lock_type;
2828 	char *lock_tag;
2829 	int ret;
2830 
2831 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2832 
2833 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2834 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2835 				 &lock_type, &lock_tag, lockers, num_lockers);
2836 	if (ret)
2837 		return ret;
2838 
2839 	if (*num_lockers == 0) {
2840 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2841 		goto out;
2842 	}
2843 
2844 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2845 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2846 			 lock_tag);
2847 		ret = -EBUSY;
2848 		goto out;
2849 	}
2850 
2851 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
2852 		rbd_warn(rbd_dev, "shared lock type detected");
2853 		ret = -EBUSY;
2854 		goto out;
2855 	}
2856 
2857 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2858 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
2859 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2860 			 (*lockers)[0].id.cookie);
2861 		ret = -EBUSY;
2862 		goto out;
2863 	}
2864 
2865 out:
2866 	kfree(lock_tag);
2867 	return ret;
2868 }
2869 
2870 static int find_watcher(struct rbd_device *rbd_dev,
2871 			const struct ceph_locker *locker)
2872 {
2873 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2874 	struct ceph_watch_item *watchers;
2875 	u32 num_watchers;
2876 	u64 cookie;
2877 	int i;
2878 	int ret;
2879 
2880 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2881 				      &rbd_dev->header_oloc, &watchers,
2882 				      &num_watchers);
2883 	if (ret)
2884 		return ret;
2885 
2886 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2887 	for (i = 0; i < num_watchers; i++) {
2888 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
2889 			    sizeof(locker->info.addr)) &&
2890 		    watchers[i].cookie == cookie) {
2891 			struct rbd_client_id cid = {
2892 				.gid = le64_to_cpu(watchers[i].name.num),
2893 				.handle = cookie,
2894 			};
2895 
2896 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2897 			     rbd_dev, cid.gid, cid.handle);
2898 			rbd_set_owner_cid(rbd_dev, &cid);
2899 			ret = 1;
2900 			goto out;
2901 		}
2902 	}
2903 
2904 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2905 	ret = 0;
2906 out:
2907 	kfree(watchers);
2908 	return ret;
2909 }
2910 
2911 /*
2912  * lock_rwsem must be held for write
2913  */
2914 static int rbd_try_lock(struct rbd_device *rbd_dev)
2915 {
2916 	struct ceph_client *client = rbd_dev->rbd_client->client;
2917 	struct ceph_locker *lockers;
2918 	u32 num_lockers;
2919 	int ret;
2920 
2921 	for (;;) {
2922 		ret = rbd_lock(rbd_dev);
2923 		if (ret != -EBUSY)
2924 			return ret;
2925 
2926 		/* determine if the current lock holder is still alive */
2927 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2928 		if (ret)
2929 			return ret;
2930 
2931 		if (num_lockers == 0)
2932 			goto again;
2933 
2934 		ret = find_watcher(rbd_dev, lockers);
2935 		if (ret) {
2936 			if (ret > 0)
2937 				ret = 0; /* have to request lock */
2938 			goto out;
2939 		}
2940 
2941 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2942 			 ENTITY_NAME(lockers[0].id.name));
2943 
2944 		ret = ceph_monc_blacklist_add(&client->monc,
2945 					      &lockers[0].info.addr);
2946 		if (ret) {
2947 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2948 				 ENTITY_NAME(lockers[0].id.name), ret);
2949 			goto out;
2950 		}
2951 
2952 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2953 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2954 					  lockers[0].id.cookie,
2955 					  &lockers[0].id.name);
2956 		if (ret && ret != -ENOENT)
2957 			goto out;
2958 
2959 again:
2960 		ceph_free_lockers(lockers, num_lockers);
2961 	}
2962 
2963 out:
2964 	ceph_free_lockers(lockers, num_lockers);
2965 	return ret;
2966 }
2967 
2968 /*
2969  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2970  */
2971 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2972 						int *pret)
2973 {
2974 	enum rbd_lock_state lock_state;
2975 
2976 	down_read(&rbd_dev->lock_rwsem);
2977 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2978 	     rbd_dev->lock_state);
2979 	if (__rbd_is_lock_owner(rbd_dev)) {
2980 		lock_state = rbd_dev->lock_state;
2981 		up_read(&rbd_dev->lock_rwsem);
2982 		return lock_state;
2983 	}
2984 
2985 	up_read(&rbd_dev->lock_rwsem);
2986 	down_write(&rbd_dev->lock_rwsem);
2987 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
2988 	     rbd_dev->lock_state);
2989 	if (!__rbd_is_lock_owner(rbd_dev)) {
2990 		*pret = rbd_try_lock(rbd_dev);
2991 		if (*pret)
2992 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
2993 	}
2994 
2995 	lock_state = rbd_dev->lock_state;
2996 	up_write(&rbd_dev->lock_rwsem);
2997 	return lock_state;
2998 }
2999 
3000 static void rbd_acquire_lock(struct work_struct *work)
3001 {
3002 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3003 					    struct rbd_device, lock_dwork);
3004 	enum rbd_lock_state lock_state;
3005 	int ret = 0;
3006 
3007 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3008 again:
3009 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3010 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3011 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3012 			wake_requests(rbd_dev, true);
3013 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3014 		     rbd_dev, lock_state, ret);
3015 		return;
3016 	}
3017 
3018 	ret = rbd_request_lock(rbd_dev);
3019 	if (ret == -ETIMEDOUT) {
3020 		goto again; /* treat this as a dead client */
3021 	} else if (ret == -EROFS) {
3022 		rbd_warn(rbd_dev, "peer will not release lock");
3023 		/*
3024 		 * If this is rbd_add_acquire_lock(), we want to fail
3025 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3026 		 * want to block.
3027 		 */
3028 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3029 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3030 			/* wake "rbd map --exclusive" process */
3031 			wake_requests(rbd_dev, false);
3032 		}
3033 	} else if (ret < 0) {
3034 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3035 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3036 				 RBD_RETRY_DELAY);
3037 	} else {
3038 		/*
3039 		 * lock owner acked, but resend if we don't see them
3040 		 * release the lock
3041 		 */
3042 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3043 		     rbd_dev);
3044 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3045 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3046 	}
3047 }
3048 
3049 /*
3050  * lock_rwsem must be held for write
3051  */
3052 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3053 {
3054 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3055 	     rbd_dev->lock_state);
3056 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3057 		return false;
3058 
3059 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3060 	downgrade_write(&rbd_dev->lock_rwsem);
3061 	/*
3062 	 * Ensure that all in-flight IO is flushed.
3063 	 *
3064 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3065 	 * may be shared with other devices.
3066 	 */
3067 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3068 	up_read(&rbd_dev->lock_rwsem);
3069 
3070 	down_write(&rbd_dev->lock_rwsem);
3071 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3072 	     rbd_dev->lock_state);
3073 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3074 		return false;
3075 
3076 	rbd_unlock(rbd_dev);
3077 	/*
3078 	 * Give others a chance to grab the lock - we would re-acquire
3079 	 * almost immediately if we got new IO during ceph_osdc_sync()
3080 	 * otherwise.  We need to ack our own notifications, so this
3081 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3082 	 * after wake_requests() in rbd_handle_released_lock().
3083 	 */
3084 	cancel_delayed_work(&rbd_dev->lock_dwork);
3085 	return true;
3086 }
3087 
3088 static void rbd_release_lock_work(struct work_struct *work)
3089 {
3090 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3091 						  unlock_work);
3092 
3093 	down_write(&rbd_dev->lock_rwsem);
3094 	rbd_release_lock(rbd_dev);
3095 	up_write(&rbd_dev->lock_rwsem);
3096 }
3097 
3098 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3099 				     void **p)
3100 {
3101 	struct rbd_client_id cid = { 0 };
3102 
3103 	if (struct_v >= 2) {
3104 		cid.gid = ceph_decode_64(p);
3105 		cid.handle = ceph_decode_64(p);
3106 	}
3107 
3108 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3109 	     cid.handle);
3110 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3111 		down_write(&rbd_dev->lock_rwsem);
3112 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3113 			/*
3114 			 * we already know that the remote client is
3115 			 * the owner
3116 			 */
3117 			up_write(&rbd_dev->lock_rwsem);
3118 			return;
3119 		}
3120 
3121 		rbd_set_owner_cid(rbd_dev, &cid);
3122 		downgrade_write(&rbd_dev->lock_rwsem);
3123 	} else {
3124 		down_read(&rbd_dev->lock_rwsem);
3125 	}
3126 
3127 	if (!__rbd_is_lock_owner(rbd_dev))
3128 		wake_requests(rbd_dev, false);
3129 	up_read(&rbd_dev->lock_rwsem);
3130 }
3131 
3132 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3133 				     void **p)
3134 {
3135 	struct rbd_client_id cid = { 0 };
3136 
3137 	if (struct_v >= 2) {
3138 		cid.gid = ceph_decode_64(p);
3139 		cid.handle = ceph_decode_64(p);
3140 	}
3141 
3142 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3143 	     cid.handle);
3144 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3145 		down_write(&rbd_dev->lock_rwsem);
3146 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3147 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3148 			     __func__, rbd_dev, cid.gid, cid.handle,
3149 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3150 			up_write(&rbd_dev->lock_rwsem);
3151 			return;
3152 		}
3153 
3154 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3155 		downgrade_write(&rbd_dev->lock_rwsem);
3156 	} else {
3157 		down_read(&rbd_dev->lock_rwsem);
3158 	}
3159 
3160 	if (!__rbd_is_lock_owner(rbd_dev))
3161 		wake_requests(rbd_dev, false);
3162 	up_read(&rbd_dev->lock_rwsem);
3163 }
3164 
3165 /*
3166  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3167  * ResponseMessage is needed.
3168  */
3169 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3170 				   void **p)
3171 {
3172 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3173 	struct rbd_client_id cid = { 0 };
3174 	int result = 1;
3175 
3176 	if (struct_v >= 2) {
3177 		cid.gid = ceph_decode_64(p);
3178 		cid.handle = ceph_decode_64(p);
3179 	}
3180 
3181 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3182 	     cid.handle);
3183 	if (rbd_cid_equal(&cid, &my_cid))
3184 		return result;
3185 
3186 	down_read(&rbd_dev->lock_rwsem);
3187 	if (__rbd_is_lock_owner(rbd_dev)) {
3188 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3189 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3190 			goto out_unlock;
3191 
3192 		/*
3193 		 * encode ResponseMessage(0) so the peer can detect
3194 		 * a missing owner
3195 		 */
3196 		result = 0;
3197 
3198 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3199 			if (!rbd_dev->opts->exclusive) {
3200 				dout("%s rbd_dev %p queueing unlock_work\n",
3201 				     __func__, rbd_dev);
3202 				queue_work(rbd_dev->task_wq,
3203 					   &rbd_dev->unlock_work);
3204 			} else {
3205 				/* refuse to release the lock */
3206 				result = -EROFS;
3207 			}
3208 		}
3209 	}
3210 
3211 out_unlock:
3212 	up_read(&rbd_dev->lock_rwsem);
3213 	return result;
3214 }
3215 
3216 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3217 				     u64 notify_id, u64 cookie, s32 *result)
3218 {
3219 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3220 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3221 	int buf_size = sizeof(buf);
3222 	int ret;
3223 
3224 	if (result) {
3225 		void *p = buf;
3226 
3227 		/* encode ResponseMessage */
3228 		ceph_start_encoding(&p, 1, 1,
3229 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3230 		ceph_encode_32(&p, *result);
3231 	} else {
3232 		buf_size = 0;
3233 	}
3234 
3235 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3236 				   &rbd_dev->header_oloc, notify_id, cookie,
3237 				   buf, buf_size);
3238 	if (ret)
3239 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3240 }
3241 
3242 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3243 				   u64 cookie)
3244 {
3245 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3246 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3247 }
3248 
3249 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3250 					  u64 notify_id, u64 cookie, s32 result)
3251 {
3252 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3253 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3254 }
3255 
3256 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3257 			 u64 notifier_id, void *data, size_t data_len)
3258 {
3259 	struct rbd_device *rbd_dev = arg;
3260 	void *p = data;
3261 	void *const end = p + data_len;
3262 	u8 struct_v = 0;
3263 	u32 len;
3264 	u32 notify_op;
3265 	int ret;
3266 
3267 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3268 	     __func__, rbd_dev, cookie, notify_id, data_len);
3269 	if (data_len) {
3270 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3271 					  &struct_v, &len);
3272 		if (ret) {
3273 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3274 				 ret);
3275 			return;
3276 		}
3277 
3278 		notify_op = ceph_decode_32(&p);
3279 	} else {
3280 		/* legacy notification for header updates */
3281 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3282 		len = 0;
3283 	}
3284 
3285 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3286 	switch (notify_op) {
3287 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3288 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3289 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3290 		break;
3291 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3292 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3293 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3294 		break;
3295 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3296 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3297 		if (ret <= 0)
3298 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3299 						      cookie, ret);
3300 		else
3301 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3302 		break;
3303 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3304 		ret = rbd_dev_refresh(rbd_dev);
3305 		if (ret)
3306 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3307 
3308 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3309 		break;
3310 	default:
3311 		if (rbd_is_lock_owner(rbd_dev))
3312 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3313 						      cookie, -EOPNOTSUPP);
3314 		else
3315 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3316 		break;
3317 	}
3318 }
3319 
3320 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3321 
3322 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3323 {
3324 	struct rbd_device *rbd_dev = arg;
3325 
3326 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3327 
3328 	down_write(&rbd_dev->lock_rwsem);
3329 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3330 	up_write(&rbd_dev->lock_rwsem);
3331 
3332 	mutex_lock(&rbd_dev->watch_mutex);
3333 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3334 		__rbd_unregister_watch(rbd_dev);
3335 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3336 
3337 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3338 	}
3339 	mutex_unlock(&rbd_dev->watch_mutex);
3340 }
3341 
3342 /*
3343  * watch_mutex must be locked
3344  */
3345 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3346 {
3347 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3348 	struct ceph_osd_linger_request *handle;
3349 
3350 	rbd_assert(!rbd_dev->watch_handle);
3351 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3352 
3353 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3354 				 &rbd_dev->header_oloc, rbd_watch_cb,
3355 				 rbd_watch_errcb, rbd_dev);
3356 	if (IS_ERR(handle))
3357 		return PTR_ERR(handle);
3358 
3359 	rbd_dev->watch_handle = handle;
3360 	return 0;
3361 }
3362 
3363 /*
3364  * watch_mutex must be locked
3365  */
3366 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3367 {
3368 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3369 	int ret;
3370 
3371 	rbd_assert(rbd_dev->watch_handle);
3372 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3373 
3374 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3375 	if (ret)
3376 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3377 
3378 	rbd_dev->watch_handle = NULL;
3379 }
3380 
3381 static int rbd_register_watch(struct rbd_device *rbd_dev)
3382 {
3383 	int ret;
3384 
3385 	mutex_lock(&rbd_dev->watch_mutex);
3386 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3387 	ret = __rbd_register_watch(rbd_dev);
3388 	if (ret)
3389 		goto out;
3390 
3391 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3392 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3393 
3394 out:
3395 	mutex_unlock(&rbd_dev->watch_mutex);
3396 	return ret;
3397 }
3398 
3399 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3400 {
3401 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3402 
3403 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3404 	cancel_work_sync(&rbd_dev->released_lock_work);
3405 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3406 	cancel_work_sync(&rbd_dev->unlock_work);
3407 }
3408 
3409 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3410 {
3411 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3412 	cancel_tasks_sync(rbd_dev);
3413 
3414 	mutex_lock(&rbd_dev->watch_mutex);
3415 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3416 		__rbd_unregister_watch(rbd_dev);
3417 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3418 	mutex_unlock(&rbd_dev->watch_mutex);
3419 
3420 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3421 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3422 }
3423 
3424 /*
3425  * lock_rwsem must be held for write
3426  */
3427 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3428 {
3429 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3430 	char cookie[32];
3431 	int ret;
3432 
3433 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3434 
3435 	format_lock_cookie(rbd_dev, cookie);
3436 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3437 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3438 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3439 				  RBD_LOCK_TAG, cookie);
3440 	if (ret) {
3441 		if (ret != -EOPNOTSUPP)
3442 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3443 				 ret);
3444 
3445 		/*
3446 		 * Lock cookie cannot be updated on older OSDs, so do
3447 		 * a manual release and queue an acquire.
3448 		 */
3449 		if (rbd_release_lock(rbd_dev))
3450 			queue_delayed_work(rbd_dev->task_wq,
3451 					   &rbd_dev->lock_dwork, 0);
3452 	} else {
3453 		__rbd_lock(rbd_dev, cookie);
3454 	}
3455 }
3456 
3457 static void rbd_reregister_watch(struct work_struct *work)
3458 {
3459 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3460 					    struct rbd_device, watch_dwork);
3461 	int ret;
3462 
3463 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3464 
3465 	mutex_lock(&rbd_dev->watch_mutex);
3466 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3467 		mutex_unlock(&rbd_dev->watch_mutex);
3468 		return;
3469 	}
3470 
3471 	ret = __rbd_register_watch(rbd_dev);
3472 	if (ret) {
3473 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3474 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3475 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3476 			wake_requests(rbd_dev, true);
3477 		} else {
3478 			queue_delayed_work(rbd_dev->task_wq,
3479 					   &rbd_dev->watch_dwork,
3480 					   RBD_RETRY_DELAY);
3481 		}
3482 		mutex_unlock(&rbd_dev->watch_mutex);
3483 		return;
3484 	}
3485 
3486 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3487 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3488 	mutex_unlock(&rbd_dev->watch_mutex);
3489 
3490 	down_write(&rbd_dev->lock_rwsem);
3491 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3492 		rbd_reacquire_lock(rbd_dev);
3493 	up_write(&rbd_dev->lock_rwsem);
3494 
3495 	ret = rbd_dev_refresh(rbd_dev);
3496 	if (ret)
3497 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3498 }
3499 
3500 /*
3501  * Synchronous osd object method call.  Returns the number of bytes
3502  * returned in the outbound buffer, or a negative error code.
3503  */
3504 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3505 			     struct ceph_object_id *oid,
3506 			     struct ceph_object_locator *oloc,
3507 			     const char *method_name,
3508 			     const void *outbound,
3509 			     size_t outbound_size,
3510 			     void *inbound,
3511 			     size_t inbound_size)
3512 {
3513 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3514 	struct page *req_page = NULL;
3515 	struct page *reply_page;
3516 	int ret;
3517 
3518 	/*
3519 	 * Method calls are ultimately read operations.  The result
3520 	 * should placed into the inbound buffer provided.  They
3521 	 * also supply outbound data--parameters for the object
3522 	 * method.  Currently if this is present it will be a
3523 	 * snapshot id.
3524 	 */
3525 	if (outbound) {
3526 		if (outbound_size > PAGE_SIZE)
3527 			return -E2BIG;
3528 
3529 		req_page = alloc_page(GFP_KERNEL);
3530 		if (!req_page)
3531 			return -ENOMEM;
3532 
3533 		memcpy(page_address(req_page), outbound, outbound_size);
3534 	}
3535 
3536 	reply_page = alloc_page(GFP_KERNEL);
3537 	if (!reply_page) {
3538 		if (req_page)
3539 			__free_page(req_page);
3540 		return -ENOMEM;
3541 	}
3542 
3543 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3544 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3545 			     reply_page, &inbound_size);
3546 	if (!ret) {
3547 		memcpy(inbound, page_address(reply_page), inbound_size);
3548 		ret = inbound_size;
3549 	}
3550 
3551 	if (req_page)
3552 		__free_page(req_page);
3553 	__free_page(reply_page);
3554 	return ret;
3555 }
3556 
3557 /*
3558  * lock_rwsem must be held for read
3559  */
3560 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3561 {
3562 	DEFINE_WAIT(wait);
3563 	unsigned long timeout;
3564 	int ret = 0;
3565 
3566 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3567 		return -EBLACKLISTED;
3568 
3569 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3570 		return 0;
3571 
3572 	if (!may_acquire) {
3573 		rbd_warn(rbd_dev, "exclusive lock required");
3574 		return -EROFS;
3575 	}
3576 
3577 	do {
3578 		/*
3579 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3580 		 * and cancel_delayed_work() in wake_requests().
3581 		 */
3582 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3583 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3584 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3585 					  TASK_UNINTERRUPTIBLE);
3586 		up_read(&rbd_dev->lock_rwsem);
3587 		timeout = schedule_timeout(ceph_timeout_jiffies(
3588 						rbd_dev->opts->lock_timeout));
3589 		down_read(&rbd_dev->lock_rwsem);
3590 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3591 			ret = -EBLACKLISTED;
3592 			break;
3593 		}
3594 		if (!timeout) {
3595 			rbd_warn(rbd_dev, "timed out waiting for lock");
3596 			ret = -ETIMEDOUT;
3597 			break;
3598 		}
3599 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3600 
3601 	finish_wait(&rbd_dev->lock_waitq, &wait);
3602 	return ret;
3603 }
3604 
3605 static void rbd_queue_workfn(struct work_struct *work)
3606 {
3607 	struct request *rq = blk_mq_rq_from_pdu(work);
3608 	struct rbd_device *rbd_dev = rq->q->queuedata;
3609 	struct rbd_img_request *img_request;
3610 	struct ceph_snap_context *snapc = NULL;
3611 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3612 	u64 length = blk_rq_bytes(rq);
3613 	enum obj_operation_type op_type;
3614 	u64 mapping_size;
3615 	bool must_be_locked;
3616 	int result;
3617 
3618 	switch (req_op(rq)) {
3619 	case REQ_OP_DISCARD:
3620 	case REQ_OP_WRITE_ZEROES:
3621 		op_type = OBJ_OP_DISCARD;
3622 		break;
3623 	case REQ_OP_WRITE:
3624 		op_type = OBJ_OP_WRITE;
3625 		break;
3626 	case REQ_OP_READ:
3627 		op_type = OBJ_OP_READ;
3628 		break;
3629 	default:
3630 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3631 		result = -EIO;
3632 		goto err;
3633 	}
3634 
3635 	/* Ignore/skip any zero-length requests */
3636 
3637 	if (!length) {
3638 		dout("%s: zero-length request\n", __func__);
3639 		result = 0;
3640 		goto err_rq;
3641 	}
3642 
3643 	rbd_assert(op_type == OBJ_OP_READ ||
3644 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
3645 
3646 	/*
3647 	 * Quit early if the mapped snapshot no longer exists.  It's
3648 	 * still possible the snapshot will have disappeared by the
3649 	 * time our request arrives at the osd, but there's no sense in
3650 	 * sending it if we already know.
3651 	 */
3652 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3653 		dout("request for non-existent snapshot");
3654 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3655 		result = -ENXIO;
3656 		goto err_rq;
3657 	}
3658 
3659 	if (offset && length > U64_MAX - offset + 1) {
3660 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3661 			 length);
3662 		result = -EINVAL;
3663 		goto err_rq;	/* Shouldn't happen */
3664 	}
3665 
3666 	blk_mq_start_request(rq);
3667 
3668 	down_read(&rbd_dev->header_rwsem);
3669 	mapping_size = rbd_dev->mapping.size;
3670 	if (op_type != OBJ_OP_READ) {
3671 		snapc = rbd_dev->header.snapc;
3672 		ceph_get_snap_context(snapc);
3673 	}
3674 	up_read(&rbd_dev->header_rwsem);
3675 
3676 	if (offset + length > mapping_size) {
3677 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3678 			 length, mapping_size);
3679 		result = -EIO;
3680 		goto err_rq;
3681 	}
3682 
3683 	must_be_locked =
3684 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3685 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3686 	if (must_be_locked) {
3687 		down_read(&rbd_dev->lock_rwsem);
3688 		result = rbd_wait_state_locked(rbd_dev,
3689 					       !rbd_dev->opts->exclusive);
3690 		if (result)
3691 			goto err_unlock;
3692 	}
3693 
3694 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3695 	if (!img_request) {
3696 		result = -ENOMEM;
3697 		goto err_unlock;
3698 	}
3699 	img_request->rq = rq;
3700 	snapc = NULL; /* img_request consumes a ref */
3701 
3702 	if (op_type == OBJ_OP_DISCARD)
3703 		result = rbd_img_fill_nodata(img_request, offset, length);
3704 	else
3705 		result = rbd_img_fill_from_bio(img_request, offset, length,
3706 					       rq->bio);
3707 	if (result)
3708 		goto err_img_request;
3709 
3710 	rbd_img_request_submit(img_request);
3711 	if (must_be_locked)
3712 		up_read(&rbd_dev->lock_rwsem);
3713 	return;
3714 
3715 err_img_request:
3716 	rbd_img_request_put(img_request);
3717 err_unlock:
3718 	if (must_be_locked)
3719 		up_read(&rbd_dev->lock_rwsem);
3720 err_rq:
3721 	if (result)
3722 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3723 			 obj_op_name(op_type), length, offset, result);
3724 	ceph_put_snap_context(snapc);
3725 err:
3726 	blk_mq_end_request(rq, errno_to_blk_status(result));
3727 }
3728 
3729 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3730 		const struct blk_mq_queue_data *bd)
3731 {
3732 	struct request *rq = bd->rq;
3733 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3734 
3735 	queue_work(rbd_wq, work);
3736 	return BLK_STS_OK;
3737 }
3738 
3739 static void rbd_free_disk(struct rbd_device *rbd_dev)
3740 {
3741 	blk_cleanup_queue(rbd_dev->disk->queue);
3742 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3743 	put_disk(rbd_dev->disk);
3744 	rbd_dev->disk = NULL;
3745 }
3746 
3747 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3748 			     struct ceph_object_id *oid,
3749 			     struct ceph_object_locator *oloc,
3750 			     void *buf, int buf_len)
3751 
3752 {
3753 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3754 	struct ceph_osd_request *req;
3755 	struct page **pages;
3756 	int num_pages = calc_pages_for(0, buf_len);
3757 	int ret;
3758 
3759 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3760 	if (!req)
3761 		return -ENOMEM;
3762 
3763 	ceph_oid_copy(&req->r_base_oid, oid);
3764 	ceph_oloc_copy(&req->r_base_oloc, oloc);
3765 	req->r_flags = CEPH_OSD_FLAG_READ;
3766 
3767 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3768 	if (ret)
3769 		goto out_req;
3770 
3771 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3772 	if (IS_ERR(pages)) {
3773 		ret = PTR_ERR(pages);
3774 		goto out_req;
3775 	}
3776 
3777 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3778 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3779 					 true);
3780 
3781 	ceph_osdc_start_request(osdc, req, false);
3782 	ret = ceph_osdc_wait_request(osdc, req);
3783 	if (ret >= 0)
3784 		ceph_copy_from_page_vector(pages, buf, 0, ret);
3785 
3786 out_req:
3787 	ceph_osdc_put_request(req);
3788 	return ret;
3789 }
3790 
3791 /*
3792  * Read the complete header for the given rbd device.  On successful
3793  * return, the rbd_dev->header field will contain up-to-date
3794  * information about the image.
3795  */
3796 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3797 {
3798 	struct rbd_image_header_ondisk *ondisk = NULL;
3799 	u32 snap_count = 0;
3800 	u64 names_size = 0;
3801 	u32 want_count;
3802 	int ret;
3803 
3804 	/*
3805 	 * The complete header will include an array of its 64-bit
3806 	 * snapshot ids, followed by the names of those snapshots as
3807 	 * a contiguous block of NUL-terminated strings.  Note that
3808 	 * the number of snapshots could change by the time we read
3809 	 * it in, in which case we re-read it.
3810 	 */
3811 	do {
3812 		size_t size;
3813 
3814 		kfree(ondisk);
3815 
3816 		size = sizeof (*ondisk);
3817 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3818 		size += names_size;
3819 		ondisk = kmalloc(size, GFP_KERNEL);
3820 		if (!ondisk)
3821 			return -ENOMEM;
3822 
3823 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3824 					&rbd_dev->header_oloc, ondisk, size);
3825 		if (ret < 0)
3826 			goto out;
3827 		if ((size_t)ret < size) {
3828 			ret = -ENXIO;
3829 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3830 				size, ret);
3831 			goto out;
3832 		}
3833 		if (!rbd_dev_ondisk_valid(ondisk)) {
3834 			ret = -ENXIO;
3835 			rbd_warn(rbd_dev, "invalid header");
3836 			goto out;
3837 		}
3838 
3839 		names_size = le64_to_cpu(ondisk->snap_names_len);
3840 		want_count = snap_count;
3841 		snap_count = le32_to_cpu(ondisk->snap_count);
3842 	} while (snap_count != want_count);
3843 
3844 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3845 out:
3846 	kfree(ondisk);
3847 
3848 	return ret;
3849 }
3850 
3851 /*
3852  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3853  * has disappeared from the (just updated) snapshot context.
3854  */
3855 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3856 {
3857 	u64 snap_id;
3858 
3859 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3860 		return;
3861 
3862 	snap_id = rbd_dev->spec->snap_id;
3863 	if (snap_id == CEPH_NOSNAP)
3864 		return;
3865 
3866 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3867 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3868 }
3869 
3870 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3871 {
3872 	sector_t size;
3873 
3874 	/*
3875 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3876 	 * try to update its size.  If REMOVING is set, updating size
3877 	 * is just useless work since the device can't be opened.
3878 	 */
3879 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3880 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3881 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3882 		dout("setting size to %llu sectors", (unsigned long long)size);
3883 		set_capacity(rbd_dev->disk, size);
3884 		revalidate_disk(rbd_dev->disk);
3885 	}
3886 }
3887 
3888 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3889 {
3890 	u64 mapping_size;
3891 	int ret;
3892 
3893 	down_write(&rbd_dev->header_rwsem);
3894 	mapping_size = rbd_dev->mapping.size;
3895 
3896 	ret = rbd_dev_header_info(rbd_dev);
3897 	if (ret)
3898 		goto out;
3899 
3900 	/*
3901 	 * If there is a parent, see if it has disappeared due to the
3902 	 * mapped image getting flattened.
3903 	 */
3904 	if (rbd_dev->parent) {
3905 		ret = rbd_dev_v2_parent_info(rbd_dev);
3906 		if (ret)
3907 			goto out;
3908 	}
3909 
3910 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3911 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3912 	} else {
3913 		/* validate mapped snapshot's EXISTS flag */
3914 		rbd_exists_validate(rbd_dev);
3915 	}
3916 
3917 out:
3918 	up_write(&rbd_dev->header_rwsem);
3919 	if (!ret && mapping_size != rbd_dev->mapping.size)
3920 		rbd_dev_update_size(rbd_dev);
3921 
3922 	return ret;
3923 }
3924 
3925 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3926 		unsigned int hctx_idx, unsigned int numa_node)
3927 {
3928 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3929 
3930 	INIT_WORK(work, rbd_queue_workfn);
3931 	return 0;
3932 }
3933 
3934 static const struct blk_mq_ops rbd_mq_ops = {
3935 	.queue_rq	= rbd_queue_rq,
3936 	.init_request	= rbd_init_request,
3937 };
3938 
3939 static int rbd_init_disk(struct rbd_device *rbd_dev)
3940 {
3941 	struct gendisk *disk;
3942 	struct request_queue *q;
3943 	unsigned int objset_bytes =
3944 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3945 	int err;
3946 
3947 	/* create gendisk info */
3948 	disk = alloc_disk(single_major ?
3949 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3950 			  RBD_MINORS_PER_MAJOR);
3951 	if (!disk)
3952 		return -ENOMEM;
3953 
3954 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3955 		 rbd_dev->dev_id);
3956 	disk->major = rbd_dev->major;
3957 	disk->first_minor = rbd_dev->minor;
3958 	if (single_major)
3959 		disk->flags |= GENHD_FL_EXT_DEVT;
3960 	disk->fops = &rbd_bd_ops;
3961 	disk->private_data = rbd_dev;
3962 
3963 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3964 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3965 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3966 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3967 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3968 	rbd_dev->tag_set.nr_hw_queues = 1;
3969 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3970 
3971 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3972 	if (err)
3973 		goto out_disk;
3974 
3975 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3976 	if (IS_ERR(q)) {
3977 		err = PTR_ERR(q);
3978 		goto out_tag_set;
3979 	}
3980 
3981 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3982 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3983 
3984 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
3985 	q->limits.max_sectors = queue_max_hw_sectors(q);
3986 	blk_queue_max_segments(q, USHRT_MAX);
3987 	blk_queue_max_segment_size(q, UINT_MAX);
3988 	blk_queue_io_min(q, objset_bytes);
3989 	blk_queue_io_opt(q, objset_bytes);
3990 
3991 	if (rbd_dev->opts->trim) {
3992 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
3993 		q->limits.discard_granularity = objset_bytes;
3994 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
3995 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
3996 	}
3997 
3998 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3999 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4000 
4001 	/*
4002 	 * disk_release() expects a queue ref from add_disk() and will
4003 	 * put it.  Hold an extra ref until add_disk() is called.
4004 	 */
4005 	WARN_ON(!blk_get_queue(q));
4006 	disk->queue = q;
4007 	q->queuedata = rbd_dev;
4008 
4009 	rbd_dev->disk = disk;
4010 
4011 	return 0;
4012 out_tag_set:
4013 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4014 out_disk:
4015 	put_disk(disk);
4016 	return err;
4017 }
4018 
4019 /*
4020   sysfs
4021 */
4022 
4023 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4024 {
4025 	return container_of(dev, struct rbd_device, dev);
4026 }
4027 
4028 static ssize_t rbd_size_show(struct device *dev,
4029 			     struct device_attribute *attr, char *buf)
4030 {
4031 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4032 
4033 	return sprintf(buf, "%llu\n",
4034 		(unsigned long long)rbd_dev->mapping.size);
4035 }
4036 
4037 /*
4038  * Note this shows the features for whatever's mapped, which is not
4039  * necessarily the base image.
4040  */
4041 static ssize_t rbd_features_show(struct device *dev,
4042 			     struct device_attribute *attr, char *buf)
4043 {
4044 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4045 
4046 	return sprintf(buf, "0x%016llx\n",
4047 			(unsigned long long)rbd_dev->mapping.features);
4048 }
4049 
4050 static ssize_t rbd_major_show(struct device *dev,
4051 			      struct device_attribute *attr, char *buf)
4052 {
4053 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4054 
4055 	if (rbd_dev->major)
4056 		return sprintf(buf, "%d\n", rbd_dev->major);
4057 
4058 	return sprintf(buf, "(none)\n");
4059 }
4060 
4061 static ssize_t rbd_minor_show(struct device *dev,
4062 			      struct device_attribute *attr, char *buf)
4063 {
4064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4065 
4066 	return sprintf(buf, "%d\n", rbd_dev->minor);
4067 }
4068 
4069 static ssize_t rbd_client_addr_show(struct device *dev,
4070 				    struct device_attribute *attr, char *buf)
4071 {
4072 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4073 	struct ceph_entity_addr *client_addr =
4074 	    ceph_client_addr(rbd_dev->rbd_client->client);
4075 
4076 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4077 		       le32_to_cpu(client_addr->nonce));
4078 }
4079 
4080 static ssize_t rbd_client_id_show(struct device *dev,
4081 				  struct device_attribute *attr, char *buf)
4082 {
4083 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4084 
4085 	return sprintf(buf, "client%lld\n",
4086 		       ceph_client_gid(rbd_dev->rbd_client->client));
4087 }
4088 
4089 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4090 				     struct device_attribute *attr, char *buf)
4091 {
4092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4093 
4094 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4095 }
4096 
4097 static ssize_t rbd_config_info_show(struct device *dev,
4098 				    struct device_attribute *attr, char *buf)
4099 {
4100 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4101 
4102 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4103 }
4104 
4105 static ssize_t rbd_pool_show(struct device *dev,
4106 			     struct device_attribute *attr, char *buf)
4107 {
4108 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4109 
4110 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4111 }
4112 
4113 static ssize_t rbd_pool_id_show(struct device *dev,
4114 			     struct device_attribute *attr, char *buf)
4115 {
4116 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4117 
4118 	return sprintf(buf, "%llu\n",
4119 			(unsigned long long) rbd_dev->spec->pool_id);
4120 }
4121 
4122 static ssize_t rbd_name_show(struct device *dev,
4123 			     struct device_attribute *attr, char *buf)
4124 {
4125 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4126 
4127 	if (rbd_dev->spec->image_name)
4128 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4129 
4130 	return sprintf(buf, "(unknown)\n");
4131 }
4132 
4133 static ssize_t rbd_image_id_show(struct device *dev,
4134 			     struct device_attribute *attr, char *buf)
4135 {
4136 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4137 
4138 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4139 }
4140 
4141 /*
4142  * Shows the name of the currently-mapped snapshot (or
4143  * RBD_SNAP_HEAD_NAME for the base image).
4144  */
4145 static ssize_t rbd_snap_show(struct device *dev,
4146 			     struct device_attribute *attr,
4147 			     char *buf)
4148 {
4149 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4150 
4151 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4152 }
4153 
4154 static ssize_t rbd_snap_id_show(struct device *dev,
4155 				struct device_attribute *attr, char *buf)
4156 {
4157 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4158 
4159 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4160 }
4161 
4162 /*
4163  * For a v2 image, shows the chain of parent images, separated by empty
4164  * lines.  For v1 images or if there is no parent, shows "(no parent
4165  * image)".
4166  */
4167 static ssize_t rbd_parent_show(struct device *dev,
4168 			       struct device_attribute *attr,
4169 			       char *buf)
4170 {
4171 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4172 	ssize_t count = 0;
4173 
4174 	if (!rbd_dev->parent)
4175 		return sprintf(buf, "(no parent image)\n");
4176 
4177 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4178 		struct rbd_spec *spec = rbd_dev->parent_spec;
4179 
4180 		count += sprintf(&buf[count], "%s"
4181 			    "pool_id %llu\npool_name %s\n"
4182 			    "image_id %s\nimage_name %s\n"
4183 			    "snap_id %llu\nsnap_name %s\n"
4184 			    "overlap %llu\n",
4185 			    !count ? "" : "\n", /* first? */
4186 			    spec->pool_id, spec->pool_name,
4187 			    spec->image_id, spec->image_name ?: "(unknown)",
4188 			    spec->snap_id, spec->snap_name,
4189 			    rbd_dev->parent_overlap);
4190 	}
4191 
4192 	return count;
4193 }
4194 
4195 static ssize_t rbd_image_refresh(struct device *dev,
4196 				 struct device_attribute *attr,
4197 				 const char *buf,
4198 				 size_t size)
4199 {
4200 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4201 	int ret;
4202 
4203 	ret = rbd_dev_refresh(rbd_dev);
4204 	if (ret)
4205 		return ret;
4206 
4207 	return size;
4208 }
4209 
4210 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4211 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4212 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4213 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4214 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4215 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4216 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4217 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4218 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4219 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4220 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4221 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4222 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4223 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4224 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4225 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4226 
4227 static struct attribute *rbd_attrs[] = {
4228 	&dev_attr_size.attr,
4229 	&dev_attr_features.attr,
4230 	&dev_attr_major.attr,
4231 	&dev_attr_minor.attr,
4232 	&dev_attr_client_addr.attr,
4233 	&dev_attr_client_id.attr,
4234 	&dev_attr_cluster_fsid.attr,
4235 	&dev_attr_config_info.attr,
4236 	&dev_attr_pool.attr,
4237 	&dev_attr_pool_id.attr,
4238 	&dev_attr_name.attr,
4239 	&dev_attr_image_id.attr,
4240 	&dev_attr_current_snap.attr,
4241 	&dev_attr_snap_id.attr,
4242 	&dev_attr_parent.attr,
4243 	&dev_attr_refresh.attr,
4244 	NULL
4245 };
4246 
4247 static struct attribute_group rbd_attr_group = {
4248 	.attrs = rbd_attrs,
4249 };
4250 
4251 static const struct attribute_group *rbd_attr_groups[] = {
4252 	&rbd_attr_group,
4253 	NULL
4254 };
4255 
4256 static void rbd_dev_release(struct device *dev);
4257 
4258 static const struct device_type rbd_device_type = {
4259 	.name		= "rbd",
4260 	.groups		= rbd_attr_groups,
4261 	.release	= rbd_dev_release,
4262 };
4263 
4264 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4265 {
4266 	kref_get(&spec->kref);
4267 
4268 	return spec;
4269 }
4270 
4271 static void rbd_spec_free(struct kref *kref);
4272 static void rbd_spec_put(struct rbd_spec *spec)
4273 {
4274 	if (spec)
4275 		kref_put(&spec->kref, rbd_spec_free);
4276 }
4277 
4278 static struct rbd_spec *rbd_spec_alloc(void)
4279 {
4280 	struct rbd_spec *spec;
4281 
4282 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4283 	if (!spec)
4284 		return NULL;
4285 
4286 	spec->pool_id = CEPH_NOPOOL;
4287 	spec->snap_id = CEPH_NOSNAP;
4288 	kref_init(&spec->kref);
4289 
4290 	return spec;
4291 }
4292 
4293 static void rbd_spec_free(struct kref *kref)
4294 {
4295 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4296 
4297 	kfree(spec->pool_name);
4298 	kfree(spec->image_id);
4299 	kfree(spec->image_name);
4300 	kfree(spec->snap_name);
4301 	kfree(spec);
4302 }
4303 
4304 static void rbd_dev_free(struct rbd_device *rbd_dev)
4305 {
4306 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4307 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4308 
4309 	ceph_oid_destroy(&rbd_dev->header_oid);
4310 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4311 	kfree(rbd_dev->config_info);
4312 
4313 	rbd_put_client(rbd_dev->rbd_client);
4314 	rbd_spec_put(rbd_dev->spec);
4315 	kfree(rbd_dev->opts);
4316 	kfree(rbd_dev);
4317 }
4318 
4319 static void rbd_dev_release(struct device *dev)
4320 {
4321 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4322 	bool need_put = !!rbd_dev->opts;
4323 
4324 	if (need_put) {
4325 		destroy_workqueue(rbd_dev->task_wq);
4326 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4327 	}
4328 
4329 	rbd_dev_free(rbd_dev);
4330 
4331 	/*
4332 	 * This is racy, but way better than putting module outside of
4333 	 * the release callback.  The race window is pretty small, so
4334 	 * doing something similar to dm (dm-builtin.c) is overkill.
4335 	 */
4336 	if (need_put)
4337 		module_put(THIS_MODULE);
4338 }
4339 
4340 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4341 					   struct rbd_spec *spec)
4342 {
4343 	struct rbd_device *rbd_dev;
4344 
4345 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4346 	if (!rbd_dev)
4347 		return NULL;
4348 
4349 	spin_lock_init(&rbd_dev->lock);
4350 	INIT_LIST_HEAD(&rbd_dev->node);
4351 	init_rwsem(&rbd_dev->header_rwsem);
4352 
4353 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4354 	ceph_oid_init(&rbd_dev->header_oid);
4355 	rbd_dev->header_oloc.pool = spec->pool_id;
4356 
4357 	mutex_init(&rbd_dev->watch_mutex);
4358 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4359 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4360 
4361 	init_rwsem(&rbd_dev->lock_rwsem);
4362 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4363 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4364 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4365 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4366 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4367 	init_waitqueue_head(&rbd_dev->lock_waitq);
4368 
4369 	rbd_dev->dev.bus = &rbd_bus_type;
4370 	rbd_dev->dev.type = &rbd_device_type;
4371 	rbd_dev->dev.parent = &rbd_root_dev;
4372 	device_initialize(&rbd_dev->dev);
4373 
4374 	rbd_dev->rbd_client = rbdc;
4375 	rbd_dev->spec = spec;
4376 
4377 	return rbd_dev;
4378 }
4379 
4380 /*
4381  * Create a mapping rbd_dev.
4382  */
4383 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4384 					 struct rbd_spec *spec,
4385 					 struct rbd_options *opts)
4386 {
4387 	struct rbd_device *rbd_dev;
4388 
4389 	rbd_dev = __rbd_dev_create(rbdc, spec);
4390 	if (!rbd_dev)
4391 		return NULL;
4392 
4393 	rbd_dev->opts = opts;
4394 
4395 	/* get an id and fill in device name */
4396 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4397 					 minor_to_rbd_dev_id(1 << MINORBITS),
4398 					 GFP_KERNEL);
4399 	if (rbd_dev->dev_id < 0)
4400 		goto fail_rbd_dev;
4401 
4402 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4403 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4404 						   rbd_dev->name);
4405 	if (!rbd_dev->task_wq)
4406 		goto fail_dev_id;
4407 
4408 	/* we have a ref from do_rbd_add() */
4409 	__module_get(THIS_MODULE);
4410 
4411 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4412 	return rbd_dev;
4413 
4414 fail_dev_id:
4415 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4416 fail_rbd_dev:
4417 	rbd_dev_free(rbd_dev);
4418 	return NULL;
4419 }
4420 
4421 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4422 {
4423 	if (rbd_dev)
4424 		put_device(&rbd_dev->dev);
4425 }
4426 
4427 /*
4428  * Get the size and object order for an image snapshot, or if
4429  * snap_id is CEPH_NOSNAP, gets this information for the base
4430  * image.
4431  */
4432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4433 				u8 *order, u64 *snap_size)
4434 {
4435 	__le64 snapid = cpu_to_le64(snap_id);
4436 	int ret;
4437 	struct {
4438 		u8 order;
4439 		__le64 size;
4440 	} __attribute__ ((packed)) size_buf = { 0 };
4441 
4442 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4443 				  &rbd_dev->header_oloc, "get_size",
4444 				  &snapid, sizeof(snapid),
4445 				  &size_buf, sizeof(size_buf));
4446 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4447 	if (ret < 0)
4448 		return ret;
4449 	if (ret < sizeof (size_buf))
4450 		return -ERANGE;
4451 
4452 	if (order) {
4453 		*order = size_buf.order;
4454 		dout("  order %u", (unsigned int)*order);
4455 	}
4456 	*snap_size = le64_to_cpu(size_buf.size);
4457 
4458 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4459 		(unsigned long long)snap_id,
4460 		(unsigned long long)*snap_size);
4461 
4462 	return 0;
4463 }
4464 
4465 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4466 {
4467 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4468 					&rbd_dev->header.obj_order,
4469 					&rbd_dev->header.image_size);
4470 }
4471 
4472 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4473 {
4474 	void *reply_buf;
4475 	int ret;
4476 	void *p;
4477 
4478 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4479 	if (!reply_buf)
4480 		return -ENOMEM;
4481 
4482 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4483 				  &rbd_dev->header_oloc, "get_object_prefix",
4484 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4485 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4486 	if (ret < 0)
4487 		goto out;
4488 
4489 	p = reply_buf;
4490 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4491 						p + ret, NULL, GFP_NOIO);
4492 	ret = 0;
4493 
4494 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4495 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4496 		rbd_dev->header.object_prefix = NULL;
4497 	} else {
4498 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4499 	}
4500 out:
4501 	kfree(reply_buf);
4502 
4503 	return ret;
4504 }
4505 
4506 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4507 		u64 *snap_features)
4508 {
4509 	__le64 snapid = cpu_to_le64(snap_id);
4510 	struct {
4511 		__le64 features;
4512 		__le64 incompat;
4513 	} __attribute__ ((packed)) features_buf = { 0 };
4514 	u64 unsup;
4515 	int ret;
4516 
4517 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4518 				  &rbd_dev->header_oloc, "get_features",
4519 				  &snapid, sizeof(snapid),
4520 				  &features_buf, sizeof(features_buf));
4521 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4522 	if (ret < 0)
4523 		return ret;
4524 	if (ret < sizeof (features_buf))
4525 		return -ERANGE;
4526 
4527 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4528 	if (unsup) {
4529 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4530 			 unsup);
4531 		return -ENXIO;
4532 	}
4533 
4534 	*snap_features = le64_to_cpu(features_buf.features);
4535 
4536 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4537 		(unsigned long long)snap_id,
4538 		(unsigned long long)*snap_features,
4539 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4540 
4541 	return 0;
4542 }
4543 
4544 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4545 {
4546 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4547 						&rbd_dev->header.features);
4548 }
4549 
4550 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4551 {
4552 	struct rbd_spec *parent_spec;
4553 	size_t size;
4554 	void *reply_buf = NULL;
4555 	__le64 snapid;
4556 	void *p;
4557 	void *end;
4558 	u64 pool_id;
4559 	char *image_id;
4560 	u64 snap_id;
4561 	u64 overlap;
4562 	int ret;
4563 
4564 	parent_spec = rbd_spec_alloc();
4565 	if (!parent_spec)
4566 		return -ENOMEM;
4567 
4568 	size = sizeof (__le64) +				/* pool_id */
4569 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4570 		sizeof (__le64) +				/* snap_id */
4571 		sizeof (__le64);				/* overlap */
4572 	reply_buf = kmalloc(size, GFP_KERNEL);
4573 	if (!reply_buf) {
4574 		ret = -ENOMEM;
4575 		goto out_err;
4576 	}
4577 
4578 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4579 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4580 				  &rbd_dev->header_oloc, "get_parent",
4581 				  &snapid, sizeof(snapid), reply_buf, size);
4582 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4583 	if (ret < 0)
4584 		goto out_err;
4585 
4586 	p = reply_buf;
4587 	end = reply_buf + ret;
4588 	ret = -ERANGE;
4589 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4590 	if (pool_id == CEPH_NOPOOL) {
4591 		/*
4592 		 * Either the parent never existed, or we have
4593 		 * record of it but the image got flattened so it no
4594 		 * longer has a parent.  When the parent of a
4595 		 * layered image disappears we immediately set the
4596 		 * overlap to 0.  The effect of this is that all new
4597 		 * requests will be treated as if the image had no
4598 		 * parent.
4599 		 */
4600 		if (rbd_dev->parent_overlap) {
4601 			rbd_dev->parent_overlap = 0;
4602 			rbd_dev_parent_put(rbd_dev);
4603 			pr_info("%s: clone image has been flattened\n",
4604 				rbd_dev->disk->disk_name);
4605 		}
4606 
4607 		goto out;	/* No parent?  No problem. */
4608 	}
4609 
4610 	/* The ceph file layout needs to fit pool id in 32 bits */
4611 
4612 	ret = -EIO;
4613 	if (pool_id > (u64)U32_MAX) {
4614 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4615 			(unsigned long long)pool_id, U32_MAX);
4616 		goto out_err;
4617 	}
4618 
4619 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4620 	if (IS_ERR(image_id)) {
4621 		ret = PTR_ERR(image_id);
4622 		goto out_err;
4623 	}
4624 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4625 	ceph_decode_64_safe(&p, end, overlap, out_err);
4626 
4627 	/*
4628 	 * The parent won't change (except when the clone is
4629 	 * flattened, already handled that).  So we only need to
4630 	 * record the parent spec we have not already done so.
4631 	 */
4632 	if (!rbd_dev->parent_spec) {
4633 		parent_spec->pool_id = pool_id;
4634 		parent_spec->image_id = image_id;
4635 		parent_spec->snap_id = snap_id;
4636 		rbd_dev->parent_spec = parent_spec;
4637 		parent_spec = NULL;	/* rbd_dev now owns this */
4638 	} else {
4639 		kfree(image_id);
4640 	}
4641 
4642 	/*
4643 	 * We always update the parent overlap.  If it's zero we issue
4644 	 * a warning, as we will proceed as if there was no parent.
4645 	 */
4646 	if (!overlap) {
4647 		if (parent_spec) {
4648 			/* refresh, careful to warn just once */
4649 			if (rbd_dev->parent_overlap)
4650 				rbd_warn(rbd_dev,
4651 				    "clone now standalone (overlap became 0)");
4652 		} else {
4653 			/* initial probe */
4654 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4655 		}
4656 	}
4657 	rbd_dev->parent_overlap = overlap;
4658 
4659 out:
4660 	ret = 0;
4661 out_err:
4662 	kfree(reply_buf);
4663 	rbd_spec_put(parent_spec);
4664 
4665 	return ret;
4666 }
4667 
4668 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4669 {
4670 	struct {
4671 		__le64 stripe_unit;
4672 		__le64 stripe_count;
4673 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4674 	size_t size = sizeof (striping_info_buf);
4675 	void *p;
4676 	int ret;
4677 
4678 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4679 				&rbd_dev->header_oloc, "get_stripe_unit_count",
4680 				NULL, 0, &striping_info_buf, size);
4681 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4682 	if (ret < 0)
4683 		return ret;
4684 	if (ret < size)
4685 		return -ERANGE;
4686 
4687 	p = &striping_info_buf;
4688 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4689 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
4690 	return 0;
4691 }
4692 
4693 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4694 {
4695 	__le64 data_pool_id;
4696 	int ret;
4697 
4698 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4699 				  &rbd_dev->header_oloc, "get_data_pool",
4700 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
4701 	if (ret < 0)
4702 		return ret;
4703 	if (ret < sizeof(data_pool_id))
4704 		return -EBADMSG;
4705 
4706 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4707 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4708 	return 0;
4709 }
4710 
4711 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4712 {
4713 	CEPH_DEFINE_OID_ONSTACK(oid);
4714 	size_t image_id_size;
4715 	char *image_id;
4716 	void *p;
4717 	void *end;
4718 	size_t size;
4719 	void *reply_buf = NULL;
4720 	size_t len = 0;
4721 	char *image_name = NULL;
4722 	int ret;
4723 
4724 	rbd_assert(!rbd_dev->spec->image_name);
4725 
4726 	len = strlen(rbd_dev->spec->image_id);
4727 	image_id_size = sizeof (__le32) + len;
4728 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4729 	if (!image_id)
4730 		return NULL;
4731 
4732 	p = image_id;
4733 	end = image_id + image_id_size;
4734 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4735 
4736 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4737 	reply_buf = kmalloc(size, GFP_KERNEL);
4738 	if (!reply_buf)
4739 		goto out;
4740 
4741 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4742 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4743 				  "dir_get_name", image_id, image_id_size,
4744 				  reply_buf, size);
4745 	if (ret < 0)
4746 		goto out;
4747 	p = reply_buf;
4748 	end = reply_buf + ret;
4749 
4750 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4751 	if (IS_ERR(image_name))
4752 		image_name = NULL;
4753 	else
4754 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4755 out:
4756 	kfree(reply_buf);
4757 	kfree(image_id);
4758 
4759 	return image_name;
4760 }
4761 
4762 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4763 {
4764 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4765 	const char *snap_name;
4766 	u32 which = 0;
4767 
4768 	/* Skip over names until we find the one we are looking for */
4769 
4770 	snap_name = rbd_dev->header.snap_names;
4771 	while (which < snapc->num_snaps) {
4772 		if (!strcmp(name, snap_name))
4773 			return snapc->snaps[which];
4774 		snap_name += strlen(snap_name) + 1;
4775 		which++;
4776 	}
4777 	return CEPH_NOSNAP;
4778 }
4779 
4780 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4781 {
4782 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4783 	u32 which;
4784 	bool found = false;
4785 	u64 snap_id;
4786 
4787 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4788 		const char *snap_name;
4789 
4790 		snap_id = snapc->snaps[which];
4791 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4792 		if (IS_ERR(snap_name)) {
4793 			/* ignore no-longer existing snapshots */
4794 			if (PTR_ERR(snap_name) == -ENOENT)
4795 				continue;
4796 			else
4797 				break;
4798 		}
4799 		found = !strcmp(name, snap_name);
4800 		kfree(snap_name);
4801 	}
4802 	return found ? snap_id : CEPH_NOSNAP;
4803 }
4804 
4805 /*
4806  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4807  * no snapshot by that name is found, or if an error occurs.
4808  */
4809 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4810 {
4811 	if (rbd_dev->image_format == 1)
4812 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4813 
4814 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4815 }
4816 
4817 /*
4818  * An image being mapped will have everything but the snap id.
4819  */
4820 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4821 {
4822 	struct rbd_spec *spec = rbd_dev->spec;
4823 
4824 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4825 	rbd_assert(spec->image_id && spec->image_name);
4826 	rbd_assert(spec->snap_name);
4827 
4828 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4829 		u64 snap_id;
4830 
4831 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4832 		if (snap_id == CEPH_NOSNAP)
4833 			return -ENOENT;
4834 
4835 		spec->snap_id = snap_id;
4836 	} else {
4837 		spec->snap_id = CEPH_NOSNAP;
4838 	}
4839 
4840 	return 0;
4841 }
4842 
4843 /*
4844  * A parent image will have all ids but none of the names.
4845  *
4846  * All names in an rbd spec are dynamically allocated.  It's OK if we
4847  * can't figure out the name for an image id.
4848  */
4849 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4850 {
4851 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4852 	struct rbd_spec *spec = rbd_dev->spec;
4853 	const char *pool_name;
4854 	const char *image_name;
4855 	const char *snap_name;
4856 	int ret;
4857 
4858 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4859 	rbd_assert(spec->image_id);
4860 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4861 
4862 	/* Get the pool name; we have to make our own copy of this */
4863 
4864 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4865 	if (!pool_name) {
4866 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4867 		return -EIO;
4868 	}
4869 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4870 	if (!pool_name)
4871 		return -ENOMEM;
4872 
4873 	/* Fetch the image name; tolerate failure here */
4874 
4875 	image_name = rbd_dev_image_name(rbd_dev);
4876 	if (!image_name)
4877 		rbd_warn(rbd_dev, "unable to get image name");
4878 
4879 	/* Fetch the snapshot name */
4880 
4881 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4882 	if (IS_ERR(snap_name)) {
4883 		ret = PTR_ERR(snap_name);
4884 		goto out_err;
4885 	}
4886 
4887 	spec->pool_name = pool_name;
4888 	spec->image_name = image_name;
4889 	spec->snap_name = snap_name;
4890 
4891 	return 0;
4892 
4893 out_err:
4894 	kfree(image_name);
4895 	kfree(pool_name);
4896 	return ret;
4897 }
4898 
4899 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4900 {
4901 	size_t size;
4902 	int ret;
4903 	void *reply_buf;
4904 	void *p;
4905 	void *end;
4906 	u64 seq;
4907 	u32 snap_count;
4908 	struct ceph_snap_context *snapc;
4909 	u32 i;
4910 
4911 	/*
4912 	 * We'll need room for the seq value (maximum snapshot id),
4913 	 * snapshot count, and array of that many snapshot ids.
4914 	 * For now we have a fixed upper limit on the number we're
4915 	 * prepared to receive.
4916 	 */
4917 	size = sizeof (__le64) + sizeof (__le32) +
4918 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4919 	reply_buf = kzalloc(size, GFP_KERNEL);
4920 	if (!reply_buf)
4921 		return -ENOMEM;
4922 
4923 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4924 				  &rbd_dev->header_oloc, "get_snapcontext",
4925 				  NULL, 0, reply_buf, size);
4926 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4927 	if (ret < 0)
4928 		goto out;
4929 
4930 	p = reply_buf;
4931 	end = reply_buf + ret;
4932 	ret = -ERANGE;
4933 	ceph_decode_64_safe(&p, end, seq, out);
4934 	ceph_decode_32_safe(&p, end, snap_count, out);
4935 
4936 	/*
4937 	 * Make sure the reported number of snapshot ids wouldn't go
4938 	 * beyond the end of our buffer.  But before checking that,
4939 	 * make sure the computed size of the snapshot context we
4940 	 * allocate is representable in a size_t.
4941 	 */
4942 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4943 				 / sizeof (u64)) {
4944 		ret = -EINVAL;
4945 		goto out;
4946 	}
4947 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4948 		goto out;
4949 	ret = 0;
4950 
4951 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4952 	if (!snapc) {
4953 		ret = -ENOMEM;
4954 		goto out;
4955 	}
4956 	snapc->seq = seq;
4957 	for (i = 0; i < snap_count; i++)
4958 		snapc->snaps[i] = ceph_decode_64(&p);
4959 
4960 	ceph_put_snap_context(rbd_dev->header.snapc);
4961 	rbd_dev->header.snapc = snapc;
4962 
4963 	dout("  snap context seq = %llu, snap_count = %u\n",
4964 		(unsigned long long)seq, (unsigned int)snap_count);
4965 out:
4966 	kfree(reply_buf);
4967 
4968 	return ret;
4969 }
4970 
4971 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4972 					u64 snap_id)
4973 {
4974 	size_t size;
4975 	void *reply_buf;
4976 	__le64 snapid;
4977 	int ret;
4978 	void *p;
4979 	void *end;
4980 	char *snap_name;
4981 
4982 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4983 	reply_buf = kmalloc(size, GFP_KERNEL);
4984 	if (!reply_buf)
4985 		return ERR_PTR(-ENOMEM);
4986 
4987 	snapid = cpu_to_le64(snap_id);
4988 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4989 				  &rbd_dev->header_oloc, "get_snapshot_name",
4990 				  &snapid, sizeof(snapid), reply_buf, size);
4991 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4992 	if (ret < 0) {
4993 		snap_name = ERR_PTR(ret);
4994 		goto out;
4995 	}
4996 
4997 	p = reply_buf;
4998 	end = reply_buf + ret;
4999 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5000 	if (IS_ERR(snap_name))
5001 		goto out;
5002 
5003 	dout("  snap_id 0x%016llx snap_name = %s\n",
5004 		(unsigned long long)snap_id, snap_name);
5005 out:
5006 	kfree(reply_buf);
5007 
5008 	return snap_name;
5009 }
5010 
5011 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5012 {
5013 	bool first_time = rbd_dev->header.object_prefix == NULL;
5014 	int ret;
5015 
5016 	ret = rbd_dev_v2_image_size(rbd_dev);
5017 	if (ret)
5018 		return ret;
5019 
5020 	if (first_time) {
5021 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5022 		if (ret)
5023 			return ret;
5024 	}
5025 
5026 	ret = rbd_dev_v2_snap_context(rbd_dev);
5027 	if (ret && first_time) {
5028 		kfree(rbd_dev->header.object_prefix);
5029 		rbd_dev->header.object_prefix = NULL;
5030 	}
5031 
5032 	return ret;
5033 }
5034 
5035 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5036 {
5037 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5038 
5039 	if (rbd_dev->image_format == 1)
5040 		return rbd_dev_v1_header_info(rbd_dev);
5041 
5042 	return rbd_dev_v2_header_info(rbd_dev);
5043 }
5044 
5045 /*
5046  * Skips over white space at *buf, and updates *buf to point to the
5047  * first found non-space character (if any). Returns the length of
5048  * the token (string of non-white space characters) found.  Note
5049  * that *buf must be terminated with '\0'.
5050  */
5051 static inline size_t next_token(const char **buf)
5052 {
5053         /*
5054         * These are the characters that produce nonzero for
5055         * isspace() in the "C" and "POSIX" locales.
5056         */
5057         const char *spaces = " \f\n\r\t\v";
5058 
5059         *buf += strspn(*buf, spaces);	/* Find start of token */
5060 
5061 	return strcspn(*buf, spaces);   /* Return token length */
5062 }
5063 
5064 /*
5065  * Finds the next token in *buf, dynamically allocates a buffer big
5066  * enough to hold a copy of it, and copies the token into the new
5067  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5068  * that a duplicate buffer is created even for a zero-length token.
5069  *
5070  * Returns a pointer to the newly-allocated duplicate, or a null
5071  * pointer if memory for the duplicate was not available.  If
5072  * the lenp argument is a non-null pointer, the length of the token
5073  * (not including the '\0') is returned in *lenp.
5074  *
5075  * If successful, the *buf pointer will be updated to point beyond
5076  * the end of the found token.
5077  *
5078  * Note: uses GFP_KERNEL for allocation.
5079  */
5080 static inline char *dup_token(const char **buf, size_t *lenp)
5081 {
5082 	char *dup;
5083 	size_t len;
5084 
5085 	len = next_token(buf);
5086 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5087 	if (!dup)
5088 		return NULL;
5089 	*(dup + len) = '\0';
5090 	*buf += len;
5091 
5092 	if (lenp)
5093 		*lenp = len;
5094 
5095 	return dup;
5096 }
5097 
5098 /*
5099  * Parse the options provided for an "rbd add" (i.e., rbd image
5100  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5101  * and the data written is passed here via a NUL-terminated buffer.
5102  * Returns 0 if successful or an error code otherwise.
5103  *
5104  * The information extracted from these options is recorded in
5105  * the other parameters which return dynamically-allocated
5106  * structures:
5107  *  ceph_opts
5108  *      The address of a pointer that will refer to a ceph options
5109  *      structure.  Caller must release the returned pointer using
5110  *      ceph_destroy_options() when it is no longer needed.
5111  *  rbd_opts
5112  *	Address of an rbd options pointer.  Fully initialized by
5113  *	this function; caller must release with kfree().
5114  *  spec
5115  *	Address of an rbd image specification pointer.  Fully
5116  *	initialized by this function based on parsed options.
5117  *	Caller must release with rbd_spec_put().
5118  *
5119  * The options passed take this form:
5120  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5121  * where:
5122  *  <mon_addrs>
5123  *      A comma-separated list of one or more monitor addresses.
5124  *      A monitor address is an ip address, optionally followed
5125  *      by a port number (separated by a colon).
5126  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5127  *  <options>
5128  *      A comma-separated list of ceph and/or rbd options.
5129  *  <pool_name>
5130  *      The name of the rados pool containing the rbd image.
5131  *  <image_name>
5132  *      The name of the image in that pool to map.
5133  *  <snap_id>
5134  *      An optional snapshot id.  If provided, the mapping will
5135  *      present data from the image at the time that snapshot was
5136  *      created.  The image head is used if no snapshot id is
5137  *      provided.  Snapshot mappings are always read-only.
5138  */
5139 static int rbd_add_parse_args(const char *buf,
5140 				struct ceph_options **ceph_opts,
5141 				struct rbd_options **opts,
5142 				struct rbd_spec **rbd_spec)
5143 {
5144 	size_t len;
5145 	char *options;
5146 	const char *mon_addrs;
5147 	char *snap_name;
5148 	size_t mon_addrs_size;
5149 	struct rbd_spec *spec = NULL;
5150 	struct rbd_options *rbd_opts = NULL;
5151 	struct ceph_options *copts;
5152 	int ret;
5153 
5154 	/* The first four tokens are required */
5155 
5156 	len = next_token(&buf);
5157 	if (!len) {
5158 		rbd_warn(NULL, "no monitor address(es) provided");
5159 		return -EINVAL;
5160 	}
5161 	mon_addrs = buf;
5162 	mon_addrs_size = len + 1;
5163 	buf += len;
5164 
5165 	ret = -EINVAL;
5166 	options = dup_token(&buf, NULL);
5167 	if (!options)
5168 		return -ENOMEM;
5169 	if (!*options) {
5170 		rbd_warn(NULL, "no options provided");
5171 		goto out_err;
5172 	}
5173 
5174 	spec = rbd_spec_alloc();
5175 	if (!spec)
5176 		goto out_mem;
5177 
5178 	spec->pool_name = dup_token(&buf, NULL);
5179 	if (!spec->pool_name)
5180 		goto out_mem;
5181 	if (!*spec->pool_name) {
5182 		rbd_warn(NULL, "no pool name provided");
5183 		goto out_err;
5184 	}
5185 
5186 	spec->image_name = dup_token(&buf, NULL);
5187 	if (!spec->image_name)
5188 		goto out_mem;
5189 	if (!*spec->image_name) {
5190 		rbd_warn(NULL, "no image name provided");
5191 		goto out_err;
5192 	}
5193 
5194 	/*
5195 	 * Snapshot name is optional; default is to use "-"
5196 	 * (indicating the head/no snapshot).
5197 	 */
5198 	len = next_token(&buf);
5199 	if (!len) {
5200 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5201 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5202 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5203 		ret = -ENAMETOOLONG;
5204 		goto out_err;
5205 	}
5206 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5207 	if (!snap_name)
5208 		goto out_mem;
5209 	*(snap_name + len) = '\0';
5210 	spec->snap_name = snap_name;
5211 
5212 	/* Initialize all rbd options to the defaults */
5213 
5214 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5215 	if (!rbd_opts)
5216 		goto out_mem;
5217 
5218 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5219 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5220 	rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5221 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5222 	rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5223 	rbd_opts->trim = RBD_TRIM_DEFAULT;
5224 
5225 	copts = ceph_parse_options(options, mon_addrs,
5226 					mon_addrs + mon_addrs_size - 1,
5227 					parse_rbd_opts_token, rbd_opts);
5228 	if (IS_ERR(copts)) {
5229 		ret = PTR_ERR(copts);
5230 		goto out_err;
5231 	}
5232 	kfree(options);
5233 
5234 	*ceph_opts = copts;
5235 	*opts = rbd_opts;
5236 	*rbd_spec = spec;
5237 
5238 	return 0;
5239 out_mem:
5240 	ret = -ENOMEM;
5241 out_err:
5242 	kfree(rbd_opts);
5243 	rbd_spec_put(spec);
5244 	kfree(options);
5245 
5246 	return ret;
5247 }
5248 
5249 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5250 {
5251 	down_write(&rbd_dev->lock_rwsem);
5252 	if (__rbd_is_lock_owner(rbd_dev))
5253 		rbd_unlock(rbd_dev);
5254 	up_write(&rbd_dev->lock_rwsem);
5255 }
5256 
5257 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5258 {
5259 	int ret;
5260 
5261 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5262 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5263 		return -EINVAL;
5264 	}
5265 
5266 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5267 	down_read(&rbd_dev->lock_rwsem);
5268 	ret = rbd_wait_state_locked(rbd_dev, true);
5269 	up_read(&rbd_dev->lock_rwsem);
5270 	if (ret) {
5271 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5272 		return -EROFS;
5273 	}
5274 
5275 	return 0;
5276 }
5277 
5278 /*
5279  * An rbd format 2 image has a unique identifier, distinct from the
5280  * name given to it by the user.  Internally, that identifier is
5281  * what's used to specify the names of objects related to the image.
5282  *
5283  * A special "rbd id" object is used to map an rbd image name to its
5284  * id.  If that object doesn't exist, then there is no v2 rbd image
5285  * with the supplied name.
5286  *
5287  * This function will record the given rbd_dev's image_id field if
5288  * it can be determined, and in that case will return 0.  If any
5289  * errors occur a negative errno will be returned and the rbd_dev's
5290  * image_id field will be unchanged (and should be NULL).
5291  */
5292 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5293 {
5294 	int ret;
5295 	size_t size;
5296 	CEPH_DEFINE_OID_ONSTACK(oid);
5297 	void *response;
5298 	char *image_id;
5299 
5300 	/*
5301 	 * When probing a parent image, the image id is already
5302 	 * known (and the image name likely is not).  There's no
5303 	 * need to fetch the image id again in this case.  We
5304 	 * do still need to set the image format though.
5305 	 */
5306 	if (rbd_dev->spec->image_id) {
5307 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5308 
5309 		return 0;
5310 	}
5311 
5312 	/*
5313 	 * First, see if the format 2 image id file exists, and if
5314 	 * so, get the image's persistent id from it.
5315 	 */
5316 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5317 			       rbd_dev->spec->image_name);
5318 	if (ret)
5319 		return ret;
5320 
5321 	dout("rbd id object name is %s\n", oid.name);
5322 
5323 	/* Response will be an encoded string, which includes a length */
5324 
5325 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5326 	response = kzalloc(size, GFP_NOIO);
5327 	if (!response) {
5328 		ret = -ENOMEM;
5329 		goto out;
5330 	}
5331 
5332 	/* If it doesn't exist we'll assume it's a format 1 image */
5333 
5334 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5335 				  "get_id", NULL, 0,
5336 				  response, RBD_IMAGE_ID_LEN_MAX);
5337 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5338 	if (ret == -ENOENT) {
5339 		image_id = kstrdup("", GFP_KERNEL);
5340 		ret = image_id ? 0 : -ENOMEM;
5341 		if (!ret)
5342 			rbd_dev->image_format = 1;
5343 	} else if (ret >= 0) {
5344 		void *p = response;
5345 
5346 		image_id = ceph_extract_encoded_string(&p, p + ret,
5347 						NULL, GFP_NOIO);
5348 		ret = PTR_ERR_OR_ZERO(image_id);
5349 		if (!ret)
5350 			rbd_dev->image_format = 2;
5351 	}
5352 
5353 	if (!ret) {
5354 		rbd_dev->spec->image_id = image_id;
5355 		dout("image_id is %s\n", image_id);
5356 	}
5357 out:
5358 	kfree(response);
5359 	ceph_oid_destroy(&oid);
5360 	return ret;
5361 }
5362 
5363 /*
5364  * Undo whatever state changes are made by v1 or v2 header info
5365  * call.
5366  */
5367 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5368 {
5369 	struct rbd_image_header	*header;
5370 
5371 	rbd_dev_parent_put(rbd_dev);
5372 
5373 	/* Free dynamic fields from the header, then zero it out */
5374 
5375 	header = &rbd_dev->header;
5376 	ceph_put_snap_context(header->snapc);
5377 	kfree(header->snap_sizes);
5378 	kfree(header->snap_names);
5379 	kfree(header->object_prefix);
5380 	memset(header, 0, sizeof (*header));
5381 }
5382 
5383 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5384 {
5385 	int ret;
5386 
5387 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5388 	if (ret)
5389 		goto out_err;
5390 
5391 	/*
5392 	 * Get the and check features for the image.  Currently the
5393 	 * features are assumed to never change.
5394 	 */
5395 	ret = rbd_dev_v2_features(rbd_dev);
5396 	if (ret)
5397 		goto out_err;
5398 
5399 	/* If the image supports fancy striping, get its parameters */
5400 
5401 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5402 		ret = rbd_dev_v2_striping_info(rbd_dev);
5403 		if (ret < 0)
5404 			goto out_err;
5405 	}
5406 
5407 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5408 		ret = rbd_dev_v2_data_pool(rbd_dev);
5409 		if (ret)
5410 			goto out_err;
5411 	}
5412 
5413 	rbd_init_layout(rbd_dev);
5414 	return 0;
5415 
5416 out_err:
5417 	rbd_dev->header.features = 0;
5418 	kfree(rbd_dev->header.object_prefix);
5419 	rbd_dev->header.object_prefix = NULL;
5420 	return ret;
5421 }
5422 
5423 /*
5424  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5425  * rbd_dev_image_probe() recursion depth, which means it's also the
5426  * length of the already discovered part of the parent chain.
5427  */
5428 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5429 {
5430 	struct rbd_device *parent = NULL;
5431 	int ret;
5432 
5433 	if (!rbd_dev->parent_spec)
5434 		return 0;
5435 
5436 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5437 		pr_info("parent chain is too long (%d)\n", depth);
5438 		ret = -EINVAL;
5439 		goto out_err;
5440 	}
5441 
5442 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5443 	if (!parent) {
5444 		ret = -ENOMEM;
5445 		goto out_err;
5446 	}
5447 
5448 	/*
5449 	 * Images related by parent/child relationships always share
5450 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5451 	 */
5452 	__rbd_get_client(rbd_dev->rbd_client);
5453 	rbd_spec_get(rbd_dev->parent_spec);
5454 
5455 	ret = rbd_dev_image_probe(parent, depth);
5456 	if (ret < 0)
5457 		goto out_err;
5458 
5459 	rbd_dev->parent = parent;
5460 	atomic_set(&rbd_dev->parent_ref, 1);
5461 	return 0;
5462 
5463 out_err:
5464 	rbd_dev_unparent(rbd_dev);
5465 	rbd_dev_destroy(parent);
5466 	return ret;
5467 }
5468 
5469 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5470 {
5471 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5472 	rbd_dev_mapping_clear(rbd_dev);
5473 	rbd_free_disk(rbd_dev);
5474 	if (!single_major)
5475 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5476 }
5477 
5478 /*
5479  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5480  * upon return.
5481  */
5482 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5483 {
5484 	int ret;
5485 
5486 	/* Record our major and minor device numbers. */
5487 
5488 	if (!single_major) {
5489 		ret = register_blkdev(0, rbd_dev->name);
5490 		if (ret < 0)
5491 			goto err_out_unlock;
5492 
5493 		rbd_dev->major = ret;
5494 		rbd_dev->minor = 0;
5495 	} else {
5496 		rbd_dev->major = rbd_major;
5497 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5498 	}
5499 
5500 	/* Set up the blkdev mapping. */
5501 
5502 	ret = rbd_init_disk(rbd_dev);
5503 	if (ret)
5504 		goto err_out_blkdev;
5505 
5506 	ret = rbd_dev_mapping_set(rbd_dev);
5507 	if (ret)
5508 		goto err_out_disk;
5509 
5510 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5511 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5512 
5513 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5514 	if (ret)
5515 		goto err_out_mapping;
5516 
5517 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5518 	up_write(&rbd_dev->header_rwsem);
5519 	return 0;
5520 
5521 err_out_mapping:
5522 	rbd_dev_mapping_clear(rbd_dev);
5523 err_out_disk:
5524 	rbd_free_disk(rbd_dev);
5525 err_out_blkdev:
5526 	if (!single_major)
5527 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5528 err_out_unlock:
5529 	up_write(&rbd_dev->header_rwsem);
5530 	return ret;
5531 }
5532 
5533 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5534 {
5535 	struct rbd_spec *spec = rbd_dev->spec;
5536 	int ret;
5537 
5538 	/* Record the header object name for this rbd image. */
5539 
5540 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5541 	if (rbd_dev->image_format == 1)
5542 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5543 				       spec->image_name, RBD_SUFFIX);
5544 	else
5545 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5546 				       RBD_HEADER_PREFIX, spec->image_id);
5547 
5548 	return ret;
5549 }
5550 
5551 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5552 {
5553 	rbd_dev_unprobe(rbd_dev);
5554 	if (rbd_dev->opts)
5555 		rbd_unregister_watch(rbd_dev);
5556 	rbd_dev->image_format = 0;
5557 	kfree(rbd_dev->spec->image_id);
5558 	rbd_dev->spec->image_id = NULL;
5559 }
5560 
5561 /*
5562  * Probe for the existence of the header object for the given rbd
5563  * device.  If this image is the one being mapped (i.e., not a
5564  * parent), initiate a watch on its header object before using that
5565  * object to get detailed information about the rbd image.
5566  */
5567 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5568 {
5569 	int ret;
5570 
5571 	/*
5572 	 * Get the id from the image id object.  Unless there's an
5573 	 * error, rbd_dev->spec->image_id will be filled in with
5574 	 * a dynamically-allocated string, and rbd_dev->image_format
5575 	 * will be set to either 1 or 2.
5576 	 */
5577 	ret = rbd_dev_image_id(rbd_dev);
5578 	if (ret)
5579 		return ret;
5580 
5581 	ret = rbd_dev_header_name(rbd_dev);
5582 	if (ret)
5583 		goto err_out_format;
5584 
5585 	if (!depth) {
5586 		ret = rbd_register_watch(rbd_dev);
5587 		if (ret) {
5588 			if (ret == -ENOENT)
5589 				pr_info("image %s/%s does not exist\n",
5590 					rbd_dev->spec->pool_name,
5591 					rbd_dev->spec->image_name);
5592 			goto err_out_format;
5593 		}
5594 	}
5595 
5596 	ret = rbd_dev_header_info(rbd_dev);
5597 	if (ret)
5598 		goto err_out_watch;
5599 
5600 	/*
5601 	 * If this image is the one being mapped, we have pool name and
5602 	 * id, image name and id, and snap name - need to fill snap id.
5603 	 * Otherwise this is a parent image, identified by pool, image
5604 	 * and snap ids - need to fill in names for those ids.
5605 	 */
5606 	if (!depth)
5607 		ret = rbd_spec_fill_snap_id(rbd_dev);
5608 	else
5609 		ret = rbd_spec_fill_names(rbd_dev);
5610 	if (ret) {
5611 		if (ret == -ENOENT)
5612 			pr_info("snap %s/%s@%s does not exist\n",
5613 				rbd_dev->spec->pool_name,
5614 				rbd_dev->spec->image_name,
5615 				rbd_dev->spec->snap_name);
5616 		goto err_out_probe;
5617 	}
5618 
5619 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5620 		ret = rbd_dev_v2_parent_info(rbd_dev);
5621 		if (ret)
5622 			goto err_out_probe;
5623 
5624 		/*
5625 		 * Need to warn users if this image is the one being
5626 		 * mapped and has a parent.
5627 		 */
5628 		if (!depth && rbd_dev->parent_spec)
5629 			rbd_warn(rbd_dev,
5630 				 "WARNING: kernel layering is EXPERIMENTAL!");
5631 	}
5632 
5633 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5634 	if (ret)
5635 		goto err_out_probe;
5636 
5637 	dout("discovered format %u image, header name is %s\n",
5638 		rbd_dev->image_format, rbd_dev->header_oid.name);
5639 	return 0;
5640 
5641 err_out_probe:
5642 	rbd_dev_unprobe(rbd_dev);
5643 err_out_watch:
5644 	if (!depth)
5645 		rbd_unregister_watch(rbd_dev);
5646 err_out_format:
5647 	rbd_dev->image_format = 0;
5648 	kfree(rbd_dev->spec->image_id);
5649 	rbd_dev->spec->image_id = NULL;
5650 	return ret;
5651 }
5652 
5653 static ssize_t do_rbd_add(struct bus_type *bus,
5654 			  const char *buf,
5655 			  size_t count)
5656 {
5657 	struct rbd_device *rbd_dev = NULL;
5658 	struct ceph_options *ceph_opts = NULL;
5659 	struct rbd_options *rbd_opts = NULL;
5660 	struct rbd_spec *spec = NULL;
5661 	struct rbd_client *rbdc;
5662 	int rc;
5663 
5664 	if (!try_module_get(THIS_MODULE))
5665 		return -ENODEV;
5666 
5667 	/* parse add command */
5668 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5669 	if (rc < 0)
5670 		goto out;
5671 
5672 	rbdc = rbd_get_client(ceph_opts);
5673 	if (IS_ERR(rbdc)) {
5674 		rc = PTR_ERR(rbdc);
5675 		goto err_out_args;
5676 	}
5677 
5678 	/* pick the pool */
5679 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5680 	if (rc < 0) {
5681 		if (rc == -ENOENT)
5682 			pr_info("pool %s does not exist\n", spec->pool_name);
5683 		goto err_out_client;
5684 	}
5685 	spec->pool_id = (u64)rc;
5686 
5687 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5688 	if (!rbd_dev) {
5689 		rc = -ENOMEM;
5690 		goto err_out_client;
5691 	}
5692 	rbdc = NULL;		/* rbd_dev now owns this */
5693 	spec = NULL;		/* rbd_dev now owns this */
5694 	rbd_opts = NULL;	/* rbd_dev now owns this */
5695 
5696 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5697 	if (!rbd_dev->config_info) {
5698 		rc = -ENOMEM;
5699 		goto err_out_rbd_dev;
5700 	}
5701 
5702 	down_write(&rbd_dev->header_rwsem);
5703 	rc = rbd_dev_image_probe(rbd_dev, 0);
5704 	if (rc < 0) {
5705 		up_write(&rbd_dev->header_rwsem);
5706 		goto err_out_rbd_dev;
5707 	}
5708 
5709 	/* If we are mapping a snapshot it must be marked read-only */
5710 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5711 		rbd_dev->opts->read_only = true;
5712 
5713 	rc = rbd_dev_device_setup(rbd_dev);
5714 	if (rc)
5715 		goto err_out_image_probe;
5716 
5717 	if (rbd_dev->opts->exclusive) {
5718 		rc = rbd_add_acquire_lock(rbd_dev);
5719 		if (rc)
5720 			goto err_out_device_setup;
5721 	}
5722 
5723 	/* Everything's ready.  Announce the disk to the world. */
5724 
5725 	rc = device_add(&rbd_dev->dev);
5726 	if (rc)
5727 		goto err_out_image_lock;
5728 
5729 	add_disk(rbd_dev->disk);
5730 	/* see rbd_init_disk() */
5731 	blk_put_queue(rbd_dev->disk->queue);
5732 
5733 	spin_lock(&rbd_dev_list_lock);
5734 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
5735 	spin_unlock(&rbd_dev_list_lock);
5736 
5737 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5738 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5739 		rbd_dev->header.features);
5740 	rc = count;
5741 out:
5742 	module_put(THIS_MODULE);
5743 	return rc;
5744 
5745 err_out_image_lock:
5746 	rbd_dev_image_unlock(rbd_dev);
5747 err_out_device_setup:
5748 	rbd_dev_device_release(rbd_dev);
5749 err_out_image_probe:
5750 	rbd_dev_image_release(rbd_dev);
5751 err_out_rbd_dev:
5752 	rbd_dev_destroy(rbd_dev);
5753 err_out_client:
5754 	rbd_put_client(rbdc);
5755 err_out_args:
5756 	rbd_spec_put(spec);
5757 	kfree(rbd_opts);
5758 	goto out;
5759 }
5760 
5761 static ssize_t rbd_add(struct bus_type *bus,
5762 		       const char *buf,
5763 		       size_t count)
5764 {
5765 	if (single_major)
5766 		return -EINVAL;
5767 
5768 	return do_rbd_add(bus, buf, count);
5769 }
5770 
5771 static ssize_t rbd_add_single_major(struct bus_type *bus,
5772 				    const char *buf,
5773 				    size_t count)
5774 {
5775 	return do_rbd_add(bus, buf, count);
5776 }
5777 
5778 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5779 {
5780 	while (rbd_dev->parent) {
5781 		struct rbd_device *first = rbd_dev;
5782 		struct rbd_device *second = first->parent;
5783 		struct rbd_device *third;
5784 
5785 		/*
5786 		 * Follow to the parent with no grandparent and
5787 		 * remove it.
5788 		 */
5789 		while (second && (third = second->parent)) {
5790 			first = second;
5791 			second = third;
5792 		}
5793 		rbd_assert(second);
5794 		rbd_dev_image_release(second);
5795 		rbd_dev_destroy(second);
5796 		first->parent = NULL;
5797 		first->parent_overlap = 0;
5798 
5799 		rbd_assert(first->parent_spec);
5800 		rbd_spec_put(first->parent_spec);
5801 		first->parent_spec = NULL;
5802 	}
5803 }
5804 
5805 static ssize_t do_rbd_remove(struct bus_type *bus,
5806 			     const char *buf,
5807 			     size_t count)
5808 {
5809 	struct rbd_device *rbd_dev = NULL;
5810 	struct list_head *tmp;
5811 	int dev_id;
5812 	char opt_buf[6];
5813 	bool already = false;
5814 	bool force = false;
5815 	int ret;
5816 
5817 	dev_id = -1;
5818 	opt_buf[0] = '\0';
5819 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
5820 	if (dev_id < 0) {
5821 		pr_err("dev_id out of range\n");
5822 		return -EINVAL;
5823 	}
5824 	if (opt_buf[0] != '\0') {
5825 		if (!strcmp(opt_buf, "force")) {
5826 			force = true;
5827 		} else {
5828 			pr_err("bad remove option at '%s'\n", opt_buf);
5829 			return -EINVAL;
5830 		}
5831 	}
5832 
5833 	ret = -ENOENT;
5834 	spin_lock(&rbd_dev_list_lock);
5835 	list_for_each(tmp, &rbd_dev_list) {
5836 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5837 		if (rbd_dev->dev_id == dev_id) {
5838 			ret = 0;
5839 			break;
5840 		}
5841 	}
5842 	if (!ret) {
5843 		spin_lock_irq(&rbd_dev->lock);
5844 		if (rbd_dev->open_count && !force)
5845 			ret = -EBUSY;
5846 		else
5847 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5848 							&rbd_dev->flags);
5849 		spin_unlock_irq(&rbd_dev->lock);
5850 	}
5851 	spin_unlock(&rbd_dev_list_lock);
5852 	if (ret < 0 || already)
5853 		return ret;
5854 
5855 	if (force) {
5856 		/*
5857 		 * Prevent new IO from being queued and wait for existing
5858 		 * IO to complete/fail.
5859 		 */
5860 		blk_mq_freeze_queue(rbd_dev->disk->queue);
5861 		blk_set_queue_dying(rbd_dev->disk->queue);
5862 	}
5863 
5864 	del_gendisk(rbd_dev->disk);
5865 	spin_lock(&rbd_dev_list_lock);
5866 	list_del_init(&rbd_dev->node);
5867 	spin_unlock(&rbd_dev_list_lock);
5868 	device_del(&rbd_dev->dev);
5869 
5870 	rbd_dev_image_unlock(rbd_dev);
5871 	rbd_dev_device_release(rbd_dev);
5872 	rbd_dev_image_release(rbd_dev);
5873 	rbd_dev_destroy(rbd_dev);
5874 	return count;
5875 }
5876 
5877 static ssize_t rbd_remove(struct bus_type *bus,
5878 			  const char *buf,
5879 			  size_t count)
5880 {
5881 	if (single_major)
5882 		return -EINVAL;
5883 
5884 	return do_rbd_remove(bus, buf, count);
5885 }
5886 
5887 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5888 				       const char *buf,
5889 				       size_t count)
5890 {
5891 	return do_rbd_remove(bus, buf, count);
5892 }
5893 
5894 /*
5895  * create control files in sysfs
5896  * /sys/bus/rbd/...
5897  */
5898 static int rbd_sysfs_init(void)
5899 {
5900 	int ret;
5901 
5902 	ret = device_register(&rbd_root_dev);
5903 	if (ret < 0)
5904 		return ret;
5905 
5906 	ret = bus_register(&rbd_bus_type);
5907 	if (ret < 0)
5908 		device_unregister(&rbd_root_dev);
5909 
5910 	return ret;
5911 }
5912 
5913 static void rbd_sysfs_cleanup(void)
5914 {
5915 	bus_unregister(&rbd_bus_type);
5916 	device_unregister(&rbd_root_dev);
5917 }
5918 
5919 static int rbd_slab_init(void)
5920 {
5921 	rbd_assert(!rbd_img_request_cache);
5922 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5923 	if (!rbd_img_request_cache)
5924 		return -ENOMEM;
5925 
5926 	rbd_assert(!rbd_obj_request_cache);
5927 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5928 	if (!rbd_obj_request_cache)
5929 		goto out_err;
5930 
5931 	return 0;
5932 
5933 out_err:
5934 	kmem_cache_destroy(rbd_img_request_cache);
5935 	rbd_img_request_cache = NULL;
5936 	return -ENOMEM;
5937 }
5938 
5939 static void rbd_slab_exit(void)
5940 {
5941 	rbd_assert(rbd_obj_request_cache);
5942 	kmem_cache_destroy(rbd_obj_request_cache);
5943 	rbd_obj_request_cache = NULL;
5944 
5945 	rbd_assert(rbd_img_request_cache);
5946 	kmem_cache_destroy(rbd_img_request_cache);
5947 	rbd_img_request_cache = NULL;
5948 }
5949 
5950 static int __init rbd_init(void)
5951 {
5952 	int rc;
5953 
5954 	if (!libceph_compatible(NULL)) {
5955 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5956 		return -EINVAL;
5957 	}
5958 
5959 	rc = rbd_slab_init();
5960 	if (rc)
5961 		return rc;
5962 
5963 	/*
5964 	 * The number of active work items is limited by the number of
5965 	 * rbd devices * queue depth, so leave @max_active at default.
5966 	 */
5967 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5968 	if (!rbd_wq) {
5969 		rc = -ENOMEM;
5970 		goto err_out_slab;
5971 	}
5972 
5973 	if (single_major) {
5974 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5975 		if (rbd_major < 0) {
5976 			rc = rbd_major;
5977 			goto err_out_wq;
5978 		}
5979 	}
5980 
5981 	rc = rbd_sysfs_init();
5982 	if (rc)
5983 		goto err_out_blkdev;
5984 
5985 	if (single_major)
5986 		pr_info("loaded (major %d)\n", rbd_major);
5987 	else
5988 		pr_info("loaded\n");
5989 
5990 	return 0;
5991 
5992 err_out_blkdev:
5993 	if (single_major)
5994 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5995 err_out_wq:
5996 	destroy_workqueue(rbd_wq);
5997 err_out_slab:
5998 	rbd_slab_exit();
5999 	return rc;
6000 }
6001 
6002 static void __exit rbd_exit(void)
6003 {
6004 	ida_destroy(&rbd_dev_id_ida);
6005 	rbd_sysfs_cleanup();
6006 	if (single_major)
6007 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6008 	destroy_workqueue(rbd_wq);
6009 	rbd_slab_exit();
6010 }
6011 
6012 module_init(rbd_init);
6013 module_exit(rbd_exit);
6014 
6015 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6016 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6017 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6018 /* following authorship retained from original osdblk.c */
6019 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6020 
6021 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6022 MODULE_LICENSE("GPL");
6023