xref: /openbmc/linux/drivers/block/rbd.c (revision d6e0cbb1)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	union {
341 		struct request		*rq;		/* block request */
342 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
343 	};
344 
345 	struct list_head	lock_item;
346 	struct list_head	object_extents;	/* obj_req.ex structs */
347 
348 	struct mutex		state_mutex;
349 	struct pending_result	pending;
350 	struct work_struct	work;
351 	int			work_result;
352 	struct kref		kref;
353 };
354 
355 #define for_each_obj_request(ireq, oreq) \
356 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
357 #define for_each_obj_request_safe(ireq, oreq, n) \
358 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
359 
360 enum rbd_watch_state {
361 	RBD_WATCH_STATE_UNREGISTERED,
362 	RBD_WATCH_STATE_REGISTERED,
363 	RBD_WATCH_STATE_ERROR,
364 };
365 
366 enum rbd_lock_state {
367 	RBD_LOCK_STATE_UNLOCKED,
368 	RBD_LOCK_STATE_LOCKED,
369 	RBD_LOCK_STATE_RELEASING,
370 };
371 
372 /* WatchNotify::ClientId */
373 struct rbd_client_id {
374 	u64 gid;
375 	u64 handle;
376 };
377 
378 struct rbd_mapping {
379 	u64                     size;
380 	u64                     features;
381 };
382 
383 /*
384  * a single device
385  */
386 struct rbd_device {
387 	int			dev_id;		/* blkdev unique id */
388 
389 	int			major;		/* blkdev assigned major */
390 	int			minor;
391 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
392 
393 	u32			image_format;	/* Either 1 or 2 */
394 	struct rbd_client	*rbd_client;
395 
396 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
397 
398 	spinlock_t		lock;		/* queue, flags, open_count */
399 
400 	struct rbd_image_header	header;
401 	unsigned long		flags;		/* possibly lock protected */
402 	struct rbd_spec		*spec;
403 	struct rbd_options	*opts;
404 	char			*config_info;	/* add{,_single_major} string */
405 
406 	struct ceph_object_id	header_oid;
407 	struct ceph_object_locator header_oloc;
408 
409 	struct ceph_file_layout	layout;		/* used for all rbd requests */
410 
411 	struct mutex		watch_mutex;
412 	enum rbd_watch_state	watch_state;
413 	struct ceph_osd_linger_request *watch_handle;
414 	u64			watch_cookie;
415 	struct delayed_work	watch_dwork;
416 
417 	struct rw_semaphore	lock_rwsem;
418 	enum rbd_lock_state	lock_state;
419 	char			lock_cookie[32];
420 	struct rbd_client_id	owner_cid;
421 	struct work_struct	acquired_lock_work;
422 	struct work_struct	released_lock_work;
423 	struct delayed_work	lock_dwork;
424 	struct work_struct	unlock_work;
425 	spinlock_t		lock_lists_lock;
426 	struct list_head	acquiring_list;
427 	struct list_head	running_list;
428 	struct completion	acquire_wait;
429 	int			acquire_err;
430 	struct completion	releasing_wait;
431 
432 	spinlock_t		object_map_lock;
433 	u8			*object_map;
434 	u64			object_map_size;	/* in objects */
435 	u64			object_map_flags;
436 
437 	struct workqueue_struct	*task_wq;
438 
439 	struct rbd_spec		*parent_spec;
440 	u64			parent_overlap;
441 	atomic_t		parent_ref;
442 	struct rbd_device	*parent;
443 
444 	/* Block layer tags. */
445 	struct blk_mq_tag_set	tag_set;
446 
447 	/* protects updating the header */
448 	struct rw_semaphore     header_rwsem;
449 
450 	struct rbd_mapping	mapping;
451 
452 	struct list_head	node;
453 
454 	/* sysfs related */
455 	struct device		dev;
456 	unsigned long		open_count;	/* protected by lock */
457 };
458 
459 /*
460  * Flag bits for rbd_dev->flags:
461  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
462  *   by rbd_dev->lock
463  */
464 enum rbd_dev_flags {
465 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
466 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
467 };
468 
469 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
470 
471 static LIST_HEAD(rbd_dev_list);    /* devices */
472 static DEFINE_SPINLOCK(rbd_dev_list_lock);
473 
474 static LIST_HEAD(rbd_client_list);		/* clients */
475 static DEFINE_SPINLOCK(rbd_client_list_lock);
476 
477 /* Slab caches for frequently-allocated structures */
478 
479 static struct kmem_cache	*rbd_img_request_cache;
480 static struct kmem_cache	*rbd_obj_request_cache;
481 
482 static int rbd_major;
483 static DEFINE_IDA(rbd_dev_id_ida);
484 
485 static struct workqueue_struct *rbd_wq;
486 
487 static struct ceph_snap_context rbd_empty_snapc = {
488 	.nref = REFCOUNT_INIT(1),
489 };
490 
491 /*
492  * single-major requires >= 0.75 version of userspace rbd utility.
493  */
494 static bool single_major = true;
495 module_param(single_major, bool, 0444);
496 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
497 
498 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
499 static ssize_t remove_store(struct bus_type *bus, const char *buf,
500 			    size_t count);
501 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
502 				      size_t count);
503 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
504 					 size_t count);
505 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
506 
507 static int rbd_dev_id_to_minor(int dev_id)
508 {
509 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
510 }
511 
512 static int minor_to_rbd_dev_id(int minor)
513 {
514 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
515 }
516 
517 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
518 {
519 	lockdep_assert_held(&rbd_dev->lock_rwsem);
520 
521 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
522 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
523 }
524 
525 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
526 {
527 	bool is_lock_owner;
528 
529 	down_read(&rbd_dev->lock_rwsem);
530 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
531 	up_read(&rbd_dev->lock_rwsem);
532 	return is_lock_owner;
533 }
534 
535 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
536 {
537 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
538 }
539 
540 static BUS_ATTR_WO(add);
541 static BUS_ATTR_WO(remove);
542 static BUS_ATTR_WO(add_single_major);
543 static BUS_ATTR_WO(remove_single_major);
544 static BUS_ATTR_RO(supported_features);
545 
546 static struct attribute *rbd_bus_attrs[] = {
547 	&bus_attr_add.attr,
548 	&bus_attr_remove.attr,
549 	&bus_attr_add_single_major.attr,
550 	&bus_attr_remove_single_major.attr,
551 	&bus_attr_supported_features.attr,
552 	NULL,
553 };
554 
555 static umode_t rbd_bus_is_visible(struct kobject *kobj,
556 				  struct attribute *attr, int index)
557 {
558 	if (!single_major &&
559 	    (attr == &bus_attr_add_single_major.attr ||
560 	     attr == &bus_attr_remove_single_major.attr))
561 		return 0;
562 
563 	return attr->mode;
564 }
565 
566 static const struct attribute_group rbd_bus_group = {
567 	.attrs = rbd_bus_attrs,
568 	.is_visible = rbd_bus_is_visible,
569 };
570 __ATTRIBUTE_GROUPS(rbd_bus);
571 
572 static struct bus_type rbd_bus_type = {
573 	.name		= "rbd",
574 	.bus_groups	= rbd_bus_groups,
575 };
576 
577 static void rbd_root_dev_release(struct device *dev)
578 {
579 }
580 
581 static struct device rbd_root_dev = {
582 	.init_name =    "rbd",
583 	.release =      rbd_root_dev_release,
584 };
585 
586 static __printf(2, 3)
587 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
588 {
589 	struct va_format vaf;
590 	va_list args;
591 
592 	va_start(args, fmt);
593 	vaf.fmt = fmt;
594 	vaf.va = &args;
595 
596 	if (!rbd_dev)
597 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
598 	else if (rbd_dev->disk)
599 		printk(KERN_WARNING "%s: %s: %pV\n",
600 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
601 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
602 		printk(KERN_WARNING "%s: image %s: %pV\n",
603 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
604 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
605 		printk(KERN_WARNING "%s: id %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
607 	else	/* punt */
608 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
609 			RBD_DRV_NAME, rbd_dev, &vaf);
610 	va_end(args);
611 }
612 
613 #ifdef RBD_DEBUG
614 #define rbd_assert(expr)						\
615 		if (unlikely(!(expr))) {				\
616 			printk(KERN_ERR "\nAssertion failure in %s() "	\
617 						"at line %d:\n\n"	\
618 					"\trbd_assert(%s);\n\n",	\
619 					__func__, __LINE__, #expr);	\
620 			BUG();						\
621 		}
622 #else /* !RBD_DEBUG */
623 #  define rbd_assert(expr)	((void) 0)
624 #endif /* !RBD_DEBUG */
625 
626 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
627 
628 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
629 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
630 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
631 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
632 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
633 					u64 snap_id);
634 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
635 				u8 *order, u64 *snap_size);
636 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
637 		u64 *snap_features);
638 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
639 
640 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
641 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
642 
643 /*
644  * Return true if nothing else is pending.
645  */
646 static bool pending_result_dec(struct pending_result *pending, int *result)
647 {
648 	rbd_assert(pending->num_pending > 0);
649 
650 	if (*result && !pending->result)
651 		pending->result = *result;
652 	if (--pending->num_pending)
653 		return false;
654 
655 	*result = pending->result;
656 	return true;
657 }
658 
659 static int rbd_open(struct block_device *bdev, fmode_t mode)
660 {
661 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
662 	bool removing = false;
663 
664 	spin_lock_irq(&rbd_dev->lock);
665 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
666 		removing = true;
667 	else
668 		rbd_dev->open_count++;
669 	spin_unlock_irq(&rbd_dev->lock);
670 	if (removing)
671 		return -ENOENT;
672 
673 	(void) get_device(&rbd_dev->dev);
674 
675 	return 0;
676 }
677 
678 static void rbd_release(struct gendisk *disk, fmode_t mode)
679 {
680 	struct rbd_device *rbd_dev = disk->private_data;
681 	unsigned long open_count_before;
682 
683 	spin_lock_irq(&rbd_dev->lock);
684 	open_count_before = rbd_dev->open_count--;
685 	spin_unlock_irq(&rbd_dev->lock);
686 	rbd_assert(open_count_before > 0);
687 
688 	put_device(&rbd_dev->dev);
689 }
690 
691 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
692 {
693 	int ro;
694 
695 	if (get_user(ro, (int __user *)arg))
696 		return -EFAULT;
697 
698 	/* Snapshots can't be marked read-write */
699 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
700 		return -EROFS;
701 
702 	/* Let blkdev_roset() handle it */
703 	return -ENOTTY;
704 }
705 
706 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
707 			unsigned int cmd, unsigned long arg)
708 {
709 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
710 	int ret;
711 
712 	switch (cmd) {
713 	case BLKROSET:
714 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
715 		break;
716 	default:
717 		ret = -ENOTTY;
718 	}
719 
720 	return ret;
721 }
722 
723 #ifdef CONFIG_COMPAT
724 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
725 				unsigned int cmd, unsigned long arg)
726 {
727 	return rbd_ioctl(bdev, mode, cmd, arg);
728 }
729 #endif /* CONFIG_COMPAT */
730 
731 static const struct block_device_operations rbd_bd_ops = {
732 	.owner			= THIS_MODULE,
733 	.open			= rbd_open,
734 	.release		= rbd_release,
735 	.ioctl			= rbd_ioctl,
736 #ifdef CONFIG_COMPAT
737 	.compat_ioctl		= rbd_compat_ioctl,
738 #endif
739 };
740 
741 /*
742  * Initialize an rbd client instance.  Success or not, this function
743  * consumes ceph_opts.  Caller holds client_mutex.
744  */
745 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
746 {
747 	struct rbd_client *rbdc;
748 	int ret = -ENOMEM;
749 
750 	dout("%s:\n", __func__);
751 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
752 	if (!rbdc)
753 		goto out_opt;
754 
755 	kref_init(&rbdc->kref);
756 	INIT_LIST_HEAD(&rbdc->node);
757 
758 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
759 	if (IS_ERR(rbdc->client))
760 		goto out_rbdc;
761 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
762 
763 	ret = ceph_open_session(rbdc->client);
764 	if (ret < 0)
765 		goto out_client;
766 
767 	spin_lock(&rbd_client_list_lock);
768 	list_add_tail(&rbdc->node, &rbd_client_list);
769 	spin_unlock(&rbd_client_list_lock);
770 
771 	dout("%s: rbdc %p\n", __func__, rbdc);
772 
773 	return rbdc;
774 out_client:
775 	ceph_destroy_client(rbdc->client);
776 out_rbdc:
777 	kfree(rbdc);
778 out_opt:
779 	if (ceph_opts)
780 		ceph_destroy_options(ceph_opts);
781 	dout("%s: error %d\n", __func__, ret);
782 
783 	return ERR_PTR(ret);
784 }
785 
786 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
787 {
788 	kref_get(&rbdc->kref);
789 
790 	return rbdc;
791 }
792 
793 /*
794  * Find a ceph client with specific addr and configuration.  If
795  * found, bump its reference count.
796  */
797 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
798 {
799 	struct rbd_client *client_node;
800 	bool found = false;
801 
802 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
803 		return NULL;
804 
805 	spin_lock(&rbd_client_list_lock);
806 	list_for_each_entry(client_node, &rbd_client_list, node) {
807 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
808 			__rbd_get_client(client_node);
809 
810 			found = true;
811 			break;
812 		}
813 	}
814 	spin_unlock(&rbd_client_list_lock);
815 
816 	return found ? client_node : NULL;
817 }
818 
819 /*
820  * (Per device) rbd map options
821  */
822 enum {
823 	Opt_queue_depth,
824 	Opt_alloc_size,
825 	Opt_lock_timeout,
826 	Opt_last_int,
827 	/* int args above */
828 	Opt_pool_ns,
829 	Opt_last_string,
830 	/* string args above */
831 	Opt_read_only,
832 	Opt_read_write,
833 	Opt_lock_on_read,
834 	Opt_exclusive,
835 	Opt_notrim,
836 	Opt_err
837 };
838 
839 static match_table_t rbd_opts_tokens = {
840 	{Opt_queue_depth, "queue_depth=%d"},
841 	{Opt_alloc_size, "alloc_size=%d"},
842 	{Opt_lock_timeout, "lock_timeout=%d"},
843 	/* int args above */
844 	{Opt_pool_ns, "_pool_ns=%s"},
845 	/* string args above */
846 	{Opt_read_only, "read_only"},
847 	{Opt_read_only, "ro"},		/* Alternate spelling */
848 	{Opt_read_write, "read_write"},
849 	{Opt_read_write, "rw"},		/* Alternate spelling */
850 	{Opt_lock_on_read, "lock_on_read"},
851 	{Opt_exclusive, "exclusive"},
852 	{Opt_notrim, "notrim"},
853 	{Opt_err, NULL}
854 };
855 
856 struct rbd_options {
857 	int	queue_depth;
858 	int	alloc_size;
859 	unsigned long	lock_timeout;
860 	bool	read_only;
861 	bool	lock_on_read;
862 	bool	exclusive;
863 	bool	trim;
864 };
865 
866 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
867 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
868 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
869 #define RBD_READ_ONLY_DEFAULT	false
870 #define RBD_LOCK_ON_READ_DEFAULT false
871 #define RBD_EXCLUSIVE_DEFAULT	false
872 #define RBD_TRIM_DEFAULT	true
873 
874 struct parse_rbd_opts_ctx {
875 	struct rbd_spec		*spec;
876 	struct rbd_options	*opts;
877 };
878 
879 static int parse_rbd_opts_token(char *c, void *private)
880 {
881 	struct parse_rbd_opts_ctx *pctx = private;
882 	substring_t argstr[MAX_OPT_ARGS];
883 	int token, intval, ret;
884 
885 	token = match_token(c, rbd_opts_tokens, argstr);
886 	if (token < Opt_last_int) {
887 		ret = match_int(&argstr[0], &intval);
888 		if (ret < 0) {
889 			pr_err("bad option arg (not int) at '%s'\n", c);
890 			return ret;
891 		}
892 		dout("got int token %d val %d\n", token, intval);
893 	} else if (token > Opt_last_int && token < Opt_last_string) {
894 		dout("got string token %d val %s\n", token, argstr[0].from);
895 	} else {
896 		dout("got token %d\n", token);
897 	}
898 
899 	switch (token) {
900 	case Opt_queue_depth:
901 		if (intval < 1) {
902 			pr_err("queue_depth out of range\n");
903 			return -EINVAL;
904 		}
905 		pctx->opts->queue_depth = intval;
906 		break;
907 	case Opt_alloc_size:
908 		if (intval < SECTOR_SIZE) {
909 			pr_err("alloc_size out of range\n");
910 			return -EINVAL;
911 		}
912 		if (!is_power_of_2(intval)) {
913 			pr_err("alloc_size must be a power of 2\n");
914 			return -EINVAL;
915 		}
916 		pctx->opts->alloc_size = intval;
917 		break;
918 	case Opt_lock_timeout:
919 		/* 0 is "wait forever" (i.e. infinite timeout) */
920 		if (intval < 0 || intval > INT_MAX / 1000) {
921 			pr_err("lock_timeout out of range\n");
922 			return -EINVAL;
923 		}
924 		pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
925 		break;
926 	case Opt_pool_ns:
927 		kfree(pctx->spec->pool_ns);
928 		pctx->spec->pool_ns = match_strdup(argstr);
929 		if (!pctx->spec->pool_ns)
930 			return -ENOMEM;
931 		break;
932 	case Opt_read_only:
933 		pctx->opts->read_only = true;
934 		break;
935 	case Opt_read_write:
936 		pctx->opts->read_only = false;
937 		break;
938 	case Opt_lock_on_read:
939 		pctx->opts->lock_on_read = true;
940 		break;
941 	case Opt_exclusive:
942 		pctx->opts->exclusive = true;
943 		break;
944 	case Opt_notrim:
945 		pctx->opts->trim = false;
946 		break;
947 	default:
948 		/* libceph prints "bad option" msg */
949 		return -EINVAL;
950 	}
951 
952 	return 0;
953 }
954 
955 static char* obj_op_name(enum obj_operation_type op_type)
956 {
957 	switch (op_type) {
958 	case OBJ_OP_READ:
959 		return "read";
960 	case OBJ_OP_WRITE:
961 		return "write";
962 	case OBJ_OP_DISCARD:
963 		return "discard";
964 	case OBJ_OP_ZEROOUT:
965 		return "zeroout";
966 	default:
967 		return "???";
968 	}
969 }
970 
971 /*
972  * Destroy ceph client
973  *
974  * Caller must hold rbd_client_list_lock.
975  */
976 static void rbd_client_release(struct kref *kref)
977 {
978 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
979 
980 	dout("%s: rbdc %p\n", __func__, rbdc);
981 	spin_lock(&rbd_client_list_lock);
982 	list_del(&rbdc->node);
983 	spin_unlock(&rbd_client_list_lock);
984 
985 	ceph_destroy_client(rbdc->client);
986 	kfree(rbdc);
987 }
988 
989 /*
990  * Drop reference to ceph client node. If it's not referenced anymore, release
991  * it.
992  */
993 static void rbd_put_client(struct rbd_client *rbdc)
994 {
995 	if (rbdc)
996 		kref_put(&rbdc->kref, rbd_client_release);
997 }
998 
999 /*
1000  * Get a ceph client with specific addr and configuration, if one does
1001  * not exist create it.  Either way, ceph_opts is consumed by this
1002  * function.
1003  */
1004 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
1005 {
1006 	struct rbd_client *rbdc;
1007 	int ret;
1008 
1009 	mutex_lock(&client_mutex);
1010 	rbdc = rbd_client_find(ceph_opts);
1011 	if (rbdc) {
1012 		ceph_destroy_options(ceph_opts);
1013 
1014 		/*
1015 		 * Using an existing client.  Make sure ->pg_pools is up to
1016 		 * date before we look up the pool id in do_rbd_add().
1017 		 */
1018 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
1019 					rbdc->client->options->mount_timeout);
1020 		if (ret) {
1021 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
1022 			rbd_put_client(rbdc);
1023 			rbdc = ERR_PTR(ret);
1024 		}
1025 	} else {
1026 		rbdc = rbd_client_create(ceph_opts);
1027 	}
1028 	mutex_unlock(&client_mutex);
1029 
1030 	return rbdc;
1031 }
1032 
1033 static bool rbd_image_format_valid(u32 image_format)
1034 {
1035 	return image_format == 1 || image_format == 2;
1036 }
1037 
1038 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
1039 {
1040 	size_t size;
1041 	u32 snap_count;
1042 
1043 	/* The header has to start with the magic rbd header text */
1044 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
1045 		return false;
1046 
1047 	/* The bio layer requires at least sector-sized I/O */
1048 
1049 	if (ondisk->options.order < SECTOR_SHIFT)
1050 		return false;
1051 
1052 	/* If we use u64 in a few spots we may be able to loosen this */
1053 
1054 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1055 		return false;
1056 
1057 	/*
1058 	 * The size of a snapshot header has to fit in a size_t, and
1059 	 * that limits the number of snapshots.
1060 	 */
1061 	snap_count = le32_to_cpu(ondisk->snap_count);
1062 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1063 	if (snap_count > size / sizeof (__le64))
1064 		return false;
1065 
1066 	/*
1067 	 * Not only that, but the size of the entire the snapshot
1068 	 * header must also be representable in a size_t.
1069 	 */
1070 	size -= snap_count * sizeof (__le64);
1071 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1072 		return false;
1073 
1074 	return true;
1075 }
1076 
1077 /*
1078  * returns the size of an object in the image
1079  */
1080 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1081 {
1082 	return 1U << header->obj_order;
1083 }
1084 
1085 static void rbd_init_layout(struct rbd_device *rbd_dev)
1086 {
1087 	if (rbd_dev->header.stripe_unit == 0 ||
1088 	    rbd_dev->header.stripe_count == 0) {
1089 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1090 		rbd_dev->header.stripe_count = 1;
1091 	}
1092 
1093 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1094 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1095 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1096 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1097 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1098 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1099 }
1100 
1101 /*
1102  * Fill an rbd image header with information from the given format 1
1103  * on-disk header.
1104  */
1105 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1106 				 struct rbd_image_header_ondisk *ondisk)
1107 {
1108 	struct rbd_image_header *header = &rbd_dev->header;
1109 	bool first_time = header->object_prefix == NULL;
1110 	struct ceph_snap_context *snapc;
1111 	char *object_prefix = NULL;
1112 	char *snap_names = NULL;
1113 	u64 *snap_sizes = NULL;
1114 	u32 snap_count;
1115 	int ret = -ENOMEM;
1116 	u32 i;
1117 
1118 	/* Allocate this now to avoid having to handle failure below */
1119 
1120 	if (first_time) {
1121 		object_prefix = kstrndup(ondisk->object_prefix,
1122 					 sizeof(ondisk->object_prefix),
1123 					 GFP_KERNEL);
1124 		if (!object_prefix)
1125 			return -ENOMEM;
1126 	}
1127 
1128 	/* Allocate the snapshot context and fill it in */
1129 
1130 	snap_count = le32_to_cpu(ondisk->snap_count);
1131 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1132 	if (!snapc)
1133 		goto out_err;
1134 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1135 	if (snap_count) {
1136 		struct rbd_image_snap_ondisk *snaps;
1137 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1138 
1139 		/* We'll keep a copy of the snapshot names... */
1140 
1141 		if (snap_names_len > (u64)SIZE_MAX)
1142 			goto out_2big;
1143 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1144 		if (!snap_names)
1145 			goto out_err;
1146 
1147 		/* ...as well as the array of their sizes. */
1148 		snap_sizes = kmalloc_array(snap_count,
1149 					   sizeof(*header->snap_sizes),
1150 					   GFP_KERNEL);
1151 		if (!snap_sizes)
1152 			goto out_err;
1153 
1154 		/*
1155 		 * Copy the names, and fill in each snapshot's id
1156 		 * and size.
1157 		 *
1158 		 * Note that rbd_dev_v1_header_info() guarantees the
1159 		 * ondisk buffer we're working with has
1160 		 * snap_names_len bytes beyond the end of the
1161 		 * snapshot id array, this memcpy() is safe.
1162 		 */
1163 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1164 		snaps = ondisk->snaps;
1165 		for (i = 0; i < snap_count; i++) {
1166 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1167 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1168 		}
1169 	}
1170 
1171 	/* We won't fail any more, fill in the header */
1172 
1173 	if (first_time) {
1174 		header->object_prefix = object_prefix;
1175 		header->obj_order = ondisk->options.order;
1176 		rbd_init_layout(rbd_dev);
1177 	} else {
1178 		ceph_put_snap_context(header->snapc);
1179 		kfree(header->snap_names);
1180 		kfree(header->snap_sizes);
1181 	}
1182 
1183 	/* The remaining fields always get updated (when we refresh) */
1184 
1185 	header->image_size = le64_to_cpu(ondisk->image_size);
1186 	header->snapc = snapc;
1187 	header->snap_names = snap_names;
1188 	header->snap_sizes = snap_sizes;
1189 
1190 	return 0;
1191 out_2big:
1192 	ret = -EIO;
1193 out_err:
1194 	kfree(snap_sizes);
1195 	kfree(snap_names);
1196 	ceph_put_snap_context(snapc);
1197 	kfree(object_prefix);
1198 
1199 	return ret;
1200 }
1201 
1202 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1203 {
1204 	const char *snap_name;
1205 
1206 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1207 
1208 	/* Skip over names until we find the one we are looking for */
1209 
1210 	snap_name = rbd_dev->header.snap_names;
1211 	while (which--)
1212 		snap_name += strlen(snap_name) + 1;
1213 
1214 	return kstrdup(snap_name, GFP_KERNEL);
1215 }
1216 
1217 /*
1218  * Snapshot id comparison function for use with qsort()/bsearch().
1219  * Note that result is for snapshots in *descending* order.
1220  */
1221 static int snapid_compare_reverse(const void *s1, const void *s2)
1222 {
1223 	u64 snap_id1 = *(u64 *)s1;
1224 	u64 snap_id2 = *(u64 *)s2;
1225 
1226 	if (snap_id1 < snap_id2)
1227 		return 1;
1228 	return snap_id1 == snap_id2 ? 0 : -1;
1229 }
1230 
1231 /*
1232  * Search a snapshot context to see if the given snapshot id is
1233  * present.
1234  *
1235  * Returns the position of the snapshot id in the array if it's found,
1236  * or BAD_SNAP_INDEX otherwise.
1237  *
1238  * Note: The snapshot array is in kept sorted (by the osd) in
1239  * reverse order, highest snapshot id first.
1240  */
1241 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1242 {
1243 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1244 	u64 *found;
1245 
1246 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1247 				sizeof (snap_id), snapid_compare_reverse);
1248 
1249 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1250 }
1251 
1252 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1253 					u64 snap_id)
1254 {
1255 	u32 which;
1256 	const char *snap_name;
1257 
1258 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1259 	if (which == BAD_SNAP_INDEX)
1260 		return ERR_PTR(-ENOENT);
1261 
1262 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1263 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1264 }
1265 
1266 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1267 {
1268 	if (snap_id == CEPH_NOSNAP)
1269 		return RBD_SNAP_HEAD_NAME;
1270 
1271 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1272 	if (rbd_dev->image_format == 1)
1273 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1274 
1275 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1276 }
1277 
1278 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1279 				u64 *snap_size)
1280 {
1281 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1282 	if (snap_id == CEPH_NOSNAP) {
1283 		*snap_size = rbd_dev->header.image_size;
1284 	} else if (rbd_dev->image_format == 1) {
1285 		u32 which;
1286 
1287 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1288 		if (which == BAD_SNAP_INDEX)
1289 			return -ENOENT;
1290 
1291 		*snap_size = rbd_dev->header.snap_sizes[which];
1292 	} else {
1293 		u64 size = 0;
1294 		int ret;
1295 
1296 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1297 		if (ret)
1298 			return ret;
1299 
1300 		*snap_size = size;
1301 	}
1302 	return 0;
1303 }
1304 
1305 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1306 			u64 *snap_features)
1307 {
1308 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1309 	if (snap_id == CEPH_NOSNAP) {
1310 		*snap_features = rbd_dev->header.features;
1311 	} else if (rbd_dev->image_format == 1) {
1312 		*snap_features = 0;	/* No features for format 1 */
1313 	} else {
1314 		u64 features = 0;
1315 		int ret;
1316 
1317 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1318 		if (ret)
1319 			return ret;
1320 
1321 		*snap_features = features;
1322 	}
1323 	return 0;
1324 }
1325 
1326 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1327 {
1328 	u64 snap_id = rbd_dev->spec->snap_id;
1329 	u64 size = 0;
1330 	u64 features = 0;
1331 	int ret;
1332 
1333 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1334 	if (ret)
1335 		return ret;
1336 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1337 	if (ret)
1338 		return ret;
1339 
1340 	rbd_dev->mapping.size = size;
1341 	rbd_dev->mapping.features = features;
1342 
1343 	return 0;
1344 }
1345 
1346 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1347 {
1348 	rbd_dev->mapping.size = 0;
1349 	rbd_dev->mapping.features = 0;
1350 }
1351 
1352 static void zero_bvec(struct bio_vec *bv)
1353 {
1354 	void *buf;
1355 	unsigned long flags;
1356 
1357 	buf = bvec_kmap_irq(bv, &flags);
1358 	memset(buf, 0, bv->bv_len);
1359 	flush_dcache_page(bv->bv_page);
1360 	bvec_kunmap_irq(buf, &flags);
1361 }
1362 
1363 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1364 {
1365 	struct ceph_bio_iter it = *bio_pos;
1366 
1367 	ceph_bio_iter_advance(&it, off);
1368 	ceph_bio_iter_advance_step(&it, bytes, ({
1369 		zero_bvec(&bv);
1370 	}));
1371 }
1372 
1373 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1374 {
1375 	struct ceph_bvec_iter it = *bvec_pos;
1376 
1377 	ceph_bvec_iter_advance(&it, off);
1378 	ceph_bvec_iter_advance_step(&it, bytes, ({
1379 		zero_bvec(&bv);
1380 	}));
1381 }
1382 
1383 /*
1384  * Zero a range in @obj_req data buffer defined by a bio (list) or
1385  * (private) bio_vec array.
1386  *
1387  * @off is relative to the start of the data buffer.
1388  */
1389 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1390 			       u32 bytes)
1391 {
1392 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1393 
1394 	switch (obj_req->img_request->data_type) {
1395 	case OBJ_REQUEST_BIO:
1396 		zero_bios(&obj_req->bio_pos, off, bytes);
1397 		break;
1398 	case OBJ_REQUEST_BVECS:
1399 	case OBJ_REQUEST_OWN_BVECS:
1400 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1401 		break;
1402 	default:
1403 		BUG();
1404 	}
1405 }
1406 
1407 static void rbd_obj_request_destroy(struct kref *kref);
1408 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1409 {
1410 	rbd_assert(obj_request != NULL);
1411 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1412 		kref_read(&obj_request->kref));
1413 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1414 }
1415 
1416 static void rbd_img_request_destroy(struct kref *kref);
1417 static void rbd_img_request_put(struct rbd_img_request *img_request)
1418 {
1419 	rbd_assert(img_request != NULL);
1420 	dout("%s: img %p (was %d)\n", __func__, img_request,
1421 		kref_read(&img_request->kref));
1422 	kref_put(&img_request->kref, rbd_img_request_destroy);
1423 }
1424 
1425 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1426 					struct rbd_obj_request *obj_request)
1427 {
1428 	rbd_assert(obj_request->img_request == NULL);
1429 
1430 	/* Image request now owns object's original reference */
1431 	obj_request->img_request = img_request;
1432 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1433 }
1434 
1435 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1436 					struct rbd_obj_request *obj_request)
1437 {
1438 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1439 	list_del(&obj_request->ex.oe_item);
1440 	rbd_assert(obj_request->img_request == img_request);
1441 	rbd_obj_request_put(obj_request);
1442 }
1443 
1444 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1445 {
1446 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1447 
1448 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1449 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1450 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1451 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1452 }
1453 
1454 /*
1455  * The default/initial value for all image request flags is 0.  Each
1456  * is conditionally set to 1 at image request initialization time
1457  * and currently never change thereafter.
1458  */
1459 static void img_request_layered_set(struct rbd_img_request *img_request)
1460 {
1461 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1462 	smp_mb();
1463 }
1464 
1465 static void img_request_layered_clear(struct rbd_img_request *img_request)
1466 {
1467 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1468 	smp_mb();
1469 }
1470 
1471 static bool img_request_layered_test(struct rbd_img_request *img_request)
1472 {
1473 	smp_mb();
1474 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1475 }
1476 
1477 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1478 {
1479 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1480 
1481 	return !obj_req->ex.oe_off &&
1482 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1483 }
1484 
1485 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1486 {
1487 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1488 
1489 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1490 					rbd_dev->layout.object_size;
1491 }
1492 
1493 /*
1494  * Must be called after rbd_obj_calc_img_extents().
1495  */
1496 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1497 {
1498 	if (!obj_req->num_img_extents ||
1499 	    (rbd_obj_is_entire(obj_req) &&
1500 	     !obj_req->img_request->snapc->num_snaps))
1501 		return false;
1502 
1503 	return true;
1504 }
1505 
1506 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1507 {
1508 	return ceph_file_extents_bytes(obj_req->img_extents,
1509 				       obj_req->num_img_extents);
1510 }
1511 
1512 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1513 {
1514 	switch (img_req->op_type) {
1515 	case OBJ_OP_READ:
1516 		return false;
1517 	case OBJ_OP_WRITE:
1518 	case OBJ_OP_DISCARD:
1519 	case OBJ_OP_ZEROOUT:
1520 		return true;
1521 	default:
1522 		BUG();
1523 	}
1524 }
1525 
1526 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1527 {
1528 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1529 	int result;
1530 
1531 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1532 	     osd_req->r_result, obj_req);
1533 
1534 	/*
1535 	 * Writes aren't allowed to return a data payload.  In some
1536 	 * guarded write cases (e.g. stat + zero on an empty object)
1537 	 * a stat response makes it through, but we don't care.
1538 	 */
1539 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1540 		result = 0;
1541 	else
1542 		result = osd_req->r_result;
1543 
1544 	rbd_obj_handle_request(obj_req, result);
1545 }
1546 
1547 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1548 {
1549 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1550 
1551 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1552 	osd_req->r_snapid = obj_request->img_request->snap_id;
1553 }
1554 
1555 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1556 {
1557 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1558 
1559 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1560 	ktime_get_real_ts64(&osd_req->r_mtime);
1561 	osd_req->r_data_offset = obj_request->ex.oe_off;
1562 }
1563 
1564 static struct ceph_osd_request *
1565 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1566 			  struct ceph_snap_context *snapc, int num_ops)
1567 {
1568 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1569 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1570 	struct ceph_osd_request *req;
1571 	const char *name_format = rbd_dev->image_format == 1 ?
1572 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1573 	int ret;
1574 
1575 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1576 	if (!req)
1577 		return ERR_PTR(-ENOMEM);
1578 
1579 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1580 	req->r_callback = rbd_osd_req_callback;
1581 	req->r_priv = obj_req;
1582 
1583 	/*
1584 	 * Data objects may be stored in a separate pool, but always in
1585 	 * the same namespace in that pool as the header in its pool.
1586 	 */
1587 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1588 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1589 
1590 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1591 			       rbd_dev->header.object_prefix,
1592 			       obj_req->ex.oe_objno);
1593 	if (ret)
1594 		return ERR_PTR(ret);
1595 
1596 	return req;
1597 }
1598 
1599 static struct ceph_osd_request *
1600 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1601 {
1602 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1603 					 num_ops);
1604 }
1605 
1606 static struct rbd_obj_request *rbd_obj_request_create(void)
1607 {
1608 	struct rbd_obj_request *obj_request;
1609 
1610 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1611 	if (!obj_request)
1612 		return NULL;
1613 
1614 	ceph_object_extent_init(&obj_request->ex);
1615 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1616 	mutex_init(&obj_request->state_mutex);
1617 	kref_init(&obj_request->kref);
1618 
1619 	dout("%s %p\n", __func__, obj_request);
1620 	return obj_request;
1621 }
1622 
1623 static void rbd_obj_request_destroy(struct kref *kref)
1624 {
1625 	struct rbd_obj_request *obj_request;
1626 	struct ceph_osd_request *osd_req;
1627 	u32 i;
1628 
1629 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1630 
1631 	dout("%s: obj %p\n", __func__, obj_request);
1632 
1633 	while (!list_empty(&obj_request->osd_reqs)) {
1634 		osd_req = list_first_entry(&obj_request->osd_reqs,
1635 				    struct ceph_osd_request, r_private_item);
1636 		list_del_init(&osd_req->r_private_item);
1637 		ceph_osdc_put_request(osd_req);
1638 	}
1639 
1640 	switch (obj_request->img_request->data_type) {
1641 	case OBJ_REQUEST_NODATA:
1642 	case OBJ_REQUEST_BIO:
1643 	case OBJ_REQUEST_BVECS:
1644 		break;		/* Nothing to do */
1645 	case OBJ_REQUEST_OWN_BVECS:
1646 		kfree(obj_request->bvec_pos.bvecs);
1647 		break;
1648 	default:
1649 		BUG();
1650 	}
1651 
1652 	kfree(obj_request->img_extents);
1653 	if (obj_request->copyup_bvecs) {
1654 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1655 			if (obj_request->copyup_bvecs[i].bv_page)
1656 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1657 		}
1658 		kfree(obj_request->copyup_bvecs);
1659 	}
1660 
1661 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1662 }
1663 
1664 /* It's OK to call this for a device with no parent */
1665 
1666 static void rbd_spec_put(struct rbd_spec *spec);
1667 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1668 {
1669 	rbd_dev_remove_parent(rbd_dev);
1670 	rbd_spec_put(rbd_dev->parent_spec);
1671 	rbd_dev->parent_spec = NULL;
1672 	rbd_dev->parent_overlap = 0;
1673 }
1674 
1675 /*
1676  * Parent image reference counting is used to determine when an
1677  * image's parent fields can be safely torn down--after there are no
1678  * more in-flight requests to the parent image.  When the last
1679  * reference is dropped, cleaning them up is safe.
1680  */
1681 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1682 {
1683 	int counter;
1684 
1685 	if (!rbd_dev->parent_spec)
1686 		return;
1687 
1688 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1689 	if (counter > 0)
1690 		return;
1691 
1692 	/* Last reference; clean up parent data structures */
1693 
1694 	if (!counter)
1695 		rbd_dev_unparent(rbd_dev);
1696 	else
1697 		rbd_warn(rbd_dev, "parent reference underflow");
1698 }
1699 
1700 /*
1701  * If an image has a non-zero parent overlap, get a reference to its
1702  * parent.
1703  *
1704  * Returns true if the rbd device has a parent with a non-zero
1705  * overlap and a reference for it was successfully taken, or
1706  * false otherwise.
1707  */
1708 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1709 {
1710 	int counter = 0;
1711 
1712 	if (!rbd_dev->parent_spec)
1713 		return false;
1714 
1715 	down_read(&rbd_dev->header_rwsem);
1716 	if (rbd_dev->parent_overlap)
1717 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1718 	up_read(&rbd_dev->header_rwsem);
1719 
1720 	if (counter < 0)
1721 		rbd_warn(rbd_dev, "parent reference overflow");
1722 
1723 	return counter > 0;
1724 }
1725 
1726 /*
1727  * Caller is responsible for filling in the list of object requests
1728  * that comprises the image request, and the Linux request pointer
1729  * (if there is one).
1730  */
1731 static struct rbd_img_request *rbd_img_request_create(
1732 					struct rbd_device *rbd_dev,
1733 					enum obj_operation_type op_type,
1734 					struct ceph_snap_context *snapc)
1735 {
1736 	struct rbd_img_request *img_request;
1737 
1738 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1739 	if (!img_request)
1740 		return NULL;
1741 
1742 	img_request->rbd_dev = rbd_dev;
1743 	img_request->op_type = op_type;
1744 	if (!rbd_img_is_write(img_request))
1745 		img_request->snap_id = rbd_dev->spec->snap_id;
1746 	else
1747 		img_request->snapc = snapc;
1748 
1749 	if (rbd_dev_parent_get(rbd_dev))
1750 		img_request_layered_set(img_request);
1751 
1752 	INIT_LIST_HEAD(&img_request->lock_item);
1753 	INIT_LIST_HEAD(&img_request->object_extents);
1754 	mutex_init(&img_request->state_mutex);
1755 	kref_init(&img_request->kref);
1756 
1757 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1758 	     obj_op_name(op_type), img_request);
1759 	return img_request;
1760 }
1761 
1762 static void rbd_img_request_destroy(struct kref *kref)
1763 {
1764 	struct rbd_img_request *img_request;
1765 	struct rbd_obj_request *obj_request;
1766 	struct rbd_obj_request *next_obj_request;
1767 
1768 	img_request = container_of(kref, struct rbd_img_request, kref);
1769 
1770 	dout("%s: img %p\n", __func__, img_request);
1771 
1772 	WARN_ON(!list_empty(&img_request->lock_item));
1773 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1774 		rbd_img_obj_request_del(img_request, obj_request);
1775 
1776 	if (img_request_layered_test(img_request)) {
1777 		img_request_layered_clear(img_request);
1778 		rbd_dev_parent_put(img_request->rbd_dev);
1779 	}
1780 
1781 	if (rbd_img_is_write(img_request))
1782 		ceph_put_snap_context(img_request->snapc);
1783 
1784 	kmem_cache_free(rbd_img_request_cache, img_request);
1785 }
1786 
1787 #define BITS_PER_OBJ	2
1788 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1789 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1790 
1791 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1792 				   u64 *index, u8 *shift)
1793 {
1794 	u32 off;
1795 
1796 	rbd_assert(objno < rbd_dev->object_map_size);
1797 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1798 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1799 }
1800 
1801 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1802 {
1803 	u64 index;
1804 	u8 shift;
1805 
1806 	lockdep_assert_held(&rbd_dev->object_map_lock);
1807 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1808 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1809 }
1810 
1811 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1812 {
1813 	u64 index;
1814 	u8 shift;
1815 	u8 *p;
1816 
1817 	lockdep_assert_held(&rbd_dev->object_map_lock);
1818 	rbd_assert(!(val & ~OBJ_MASK));
1819 
1820 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1821 	p = &rbd_dev->object_map[index];
1822 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1823 }
1824 
1825 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1826 {
1827 	u8 state;
1828 
1829 	spin_lock(&rbd_dev->object_map_lock);
1830 	state = __rbd_object_map_get(rbd_dev, objno);
1831 	spin_unlock(&rbd_dev->object_map_lock);
1832 	return state;
1833 }
1834 
1835 static bool use_object_map(struct rbd_device *rbd_dev)
1836 {
1837 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1838 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1839 }
1840 
1841 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1842 {
1843 	u8 state;
1844 
1845 	/* fall back to default logic if object map is disabled or invalid */
1846 	if (!use_object_map(rbd_dev))
1847 		return true;
1848 
1849 	state = rbd_object_map_get(rbd_dev, objno);
1850 	return state != OBJECT_NONEXISTENT;
1851 }
1852 
1853 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1854 				struct ceph_object_id *oid)
1855 {
1856 	if (snap_id == CEPH_NOSNAP)
1857 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1858 				rbd_dev->spec->image_id);
1859 	else
1860 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1861 				rbd_dev->spec->image_id, snap_id);
1862 }
1863 
1864 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1865 {
1866 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1867 	CEPH_DEFINE_OID_ONSTACK(oid);
1868 	u8 lock_type;
1869 	char *lock_tag;
1870 	struct ceph_locker *lockers;
1871 	u32 num_lockers;
1872 	bool broke_lock = false;
1873 	int ret;
1874 
1875 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1876 
1877 again:
1878 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1879 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1880 	if (ret != -EBUSY || broke_lock) {
1881 		if (ret == -EEXIST)
1882 			ret = 0; /* already locked by myself */
1883 		if (ret)
1884 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1885 		return ret;
1886 	}
1887 
1888 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1889 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1890 				 &lockers, &num_lockers);
1891 	if (ret) {
1892 		if (ret == -ENOENT)
1893 			goto again;
1894 
1895 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1896 		return ret;
1897 	}
1898 
1899 	kfree(lock_tag);
1900 	if (num_lockers == 0)
1901 		goto again;
1902 
1903 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1904 		 ENTITY_NAME(lockers[0].id.name));
1905 
1906 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1907 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1908 				  &lockers[0].id.name);
1909 	ceph_free_lockers(lockers, num_lockers);
1910 	if (ret) {
1911 		if (ret == -ENOENT)
1912 			goto again;
1913 
1914 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1915 		return ret;
1916 	}
1917 
1918 	broke_lock = true;
1919 	goto again;
1920 }
1921 
1922 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1923 {
1924 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1925 	CEPH_DEFINE_OID_ONSTACK(oid);
1926 	int ret;
1927 
1928 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1929 
1930 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1931 			      "");
1932 	if (ret && ret != -ENOENT)
1933 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1934 }
1935 
1936 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1937 {
1938 	u8 struct_v;
1939 	u32 struct_len;
1940 	u32 header_len;
1941 	void *header_end;
1942 	int ret;
1943 
1944 	ceph_decode_32_safe(p, end, header_len, e_inval);
1945 	header_end = *p + header_len;
1946 
1947 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1948 				  &struct_len);
1949 	if (ret)
1950 		return ret;
1951 
1952 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1953 
1954 	*p = header_end;
1955 	return 0;
1956 
1957 e_inval:
1958 	return -EINVAL;
1959 }
1960 
1961 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1962 {
1963 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1964 	CEPH_DEFINE_OID_ONSTACK(oid);
1965 	struct page **pages;
1966 	void *p, *end;
1967 	size_t reply_len;
1968 	u64 num_objects;
1969 	u64 object_map_bytes;
1970 	u64 object_map_size;
1971 	int num_pages;
1972 	int ret;
1973 
1974 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1975 
1976 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1977 					   rbd_dev->mapping.size);
1978 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1979 					    BITS_PER_BYTE);
1980 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1981 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1982 	if (IS_ERR(pages))
1983 		return PTR_ERR(pages);
1984 
1985 	reply_len = num_pages * PAGE_SIZE;
1986 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1987 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1988 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1989 			     NULL, 0, pages, &reply_len);
1990 	if (ret)
1991 		goto out;
1992 
1993 	p = page_address(pages[0]);
1994 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1995 	ret = decode_object_map_header(&p, end, &object_map_size);
1996 	if (ret)
1997 		goto out;
1998 
1999 	if (object_map_size != num_objects) {
2000 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
2001 			 object_map_size, num_objects);
2002 		ret = -EINVAL;
2003 		goto out;
2004 	}
2005 
2006 	if (offset_in_page(p) + object_map_bytes > reply_len) {
2007 		ret = -EINVAL;
2008 		goto out;
2009 	}
2010 
2011 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
2012 	if (!rbd_dev->object_map) {
2013 		ret = -ENOMEM;
2014 		goto out;
2015 	}
2016 
2017 	rbd_dev->object_map_size = object_map_size;
2018 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
2019 				   offset_in_page(p), object_map_bytes);
2020 
2021 out:
2022 	ceph_release_page_vector(pages, num_pages);
2023 	return ret;
2024 }
2025 
2026 static void rbd_object_map_free(struct rbd_device *rbd_dev)
2027 {
2028 	kvfree(rbd_dev->object_map);
2029 	rbd_dev->object_map = NULL;
2030 	rbd_dev->object_map_size = 0;
2031 }
2032 
2033 static int rbd_object_map_load(struct rbd_device *rbd_dev)
2034 {
2035 	int ret;
2036 
2037 	ret = __rbd_object_map_load(rbd_dev);
2038 	if (ret)
2039 		return ret;
2040 
2041 	ret = rbd_dev_v2_get_flags(rbd_dev);
2042 	if (ret) {
2043 		rbd_object_map_free(rbd_dev);
2044 		return ret;
2045 	}
2046 
2047 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
2048 		rbd_warn(rbd_dev, "object map is invalid");
2049 
2050 	return 0;
2051 }
2052 
2053 static int rbd_object_map_open(struct rbd_device *rbd_dev)
2054 {
2055 	int ret;
2056 
2057 	ret = rbd_object_map_lock(rbd_dev);
2058 	if (ret)
2059 		return ret;
2060 
2061 	ret = rbd_object_map_load(rbd_dev);
2062 	if (ret) {
2063 		rbd_object_map_unlock(rbd_dev);
2064 		return ret;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static void rbd_object_map_close(struct rbd_device *rbd_dev)
2071 {
2072 	rbd_object_map_free(rbd_dev);
2073 	rbd_object_map_unlock(rbd_dev);
2074 }
2075 
2076 /*
2077  * This function needs snap_id (or more precisely just something to
2078  * distinguish between HEAD and snapshot object maps), new_state and
2079  * current_state that were passed to rbd_object_map_update().
2080  *
2081  * To avoid allocating and stashing a context we piggyback on the OSD
2082  * request.  A HEAD update has two ops (assert_locked).  For new_state
2083  * and current_state we decode our own object_map_update op, encoded in
2084  * rbd_cls_object_map_update().
2085  */
2086 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2087 					struct ceph_osd_request *osd_req)
2088 {
2089 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2090 	struct ceph_osd_data *osd_data;
2091 	u64 objno;
2092 	u8 state, new_state, current_state;
2093 	bool has_current_state;
2094 	void *p;
2095 
2096 	if (osd_req->r_result)
2097 		return osd_req->r_result;
2098 
2099 	/*
2100 	 * Nothing to do for a snapshot object map.
2101 	 */
2102 	if (osd_req->r_num_ops == 1)
2103 		return 0;
2104 
2105 	/*
2106 	 * Update in-memory HEAD object map.
2107 	 */
2108 	rbd_assert(osd_req->r_num_ops == 2);
2109 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2110 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2111 
2112 	p = page_address(osd_data->pages[0]);
2113 	objno = ceph_decode_64(&p);
2114 	rbd_assert(objno == obj_req->ex.oe_objno);
2115 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2116 	new_state = ceph_decode_8(&p);
2117 	has_current_state = ceph_decode_8(&p);
2118 	if (has_current_state)
2119 		current_state = ceph_decode_8(&p);
2120 
2121 	spin_lock(&rbd_dev->object_map_lock);
2122 	state = __rbd_object_map_get(rbd_dev, objno);
2123 	if (!has_current_state || current_state == state ||
2124 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2125 		__rbd_object_map_set(rbd_dev, objno, new_state);
2126 	spin_unlock(&rbd_dev->object_map_lock);
2127 
2128 	return 0;
2129 }
2130 
2131 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2132 {
2133 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2134 	int result;
2135 
2136 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2137 	     osd_req->r_result, obj_req);
2138 
2139 	result = rbd_object_map_update_finish(obj_req, osd_req);
2140 	rbd_obj_handle_request(obj_req, result);
2141 }
2142 
2143 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2144 {
2145 	u8 state = rbd_object_map_get(rbd_dev, objno);
2146 
2147 	if (state == new_state ||
2148 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2149 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2150 		return false;
2151 
2152 	return true;
2153 }
2154 
2155 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2156 				     int which, u64 objno, u8 new_state,
2157 				     const u8 *current_state)
2158 {
2159 	struct page **pages;
2160 	void *p, *start;
2161 	int ret;
2162 
2163 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2164 	if (ret)
2165 		return ret;
2166 
2167 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2168 	if (IS_ERR(pages))
2169 		return PTR_ERR(pages);
2170 
2171 	p = start = page_address(pages[0]);
2172 	ceph_encode_64(&p, objno);
2173 	ceph_encode_64(&p, objno + 1);
2174 	ceph_encode_8(&p, new_state);
2175 	if (current_state) {
2176 		ceph_encode_8(&p, 1);
2177 		ceph_encode_8(&p, *current_state);
2178 	} else {
2179 		ceph_encode_8(&p, 0);
2180 	}
2181 
2182 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2183 					  false, true);
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Return:
2189  *   0 - object map update sent
2190  *   1 - object map update isn't needed
2191  *  <0 - error
2192  */
2193 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2194 				 u8 new_state, const u8 *current_state)
2195 {
2196 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2197 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2198 	struct ceph_osd_request *req;
2199 	int num_ops = 1;
2200 	int which = 0;
2201 	int ret;
2202 
2203 	if (snap_id == CEPH_NOSNAP) {
2204 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2205 			return 1;
2206 
2207 		num_ops++; /* assert_locked */
2208 	}
2209 
2210 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2211 	if (!req)
2212 		return -ENOMEM;
2213 
2214 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2215 	req->r_callback = rbd_object_map_callback;
2216 	req->r_priv = obj_req;
2217 
2218 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2219 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2220 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2221 	ktime_get_real_ts64(&req->r_mtime);
2222 
2223 	if (snap_id == CEPH_NOSNAP) {
2224 		/*
2225 		 * Protect against possible race conditions during lock
2226 		 * ownership transitions.
2227 		 */
2228 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2229 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2230 		if (ret)
2231 			return ret;
2232 	}
2233 
2234 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2235 					new_state, current_state);
2236 	if (ret)
2237 		return ret;
2238 
2239 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2240 	if (ret)
2241 		return ret;
2242 
2243 	ceph_osdc_start_request(osdc, req, false);
2244 	return 0;
2245 }
2246 
2247 static void prune_extents(struct ceph_file_extent *img_extents,
2248 			  u32 *num_img_extents, u64 overlap)
2249 {
2250 	u32 cnt = *num_img_extents;
2251 
2252 	/* drop extents completely beyond the overlap */
2253 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2254 		cnt--;
2255 
2256 	if (cnt) {
2257 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2258 
2259 		/* trim final overlapping extent */
2260 		if (ex->fe_off + ex->fe_len > overlap)
2261 			ex->fe_len = overlap - ex->fe_off;
2262 	}
2263 
2264 	*num_img_extents = cnt;
2265 }
2266 
2267 /*
2268  * Determine the byte range(s) covered by either just the object extent
2269  * or the entire object in the parent image.
2270  */
2271 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2272 				    bool entire)
2273 {
2274 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2275 	int ret;
2276 
2277 	if (!rbd_dev->parent_overlap)
2278 		return 0;
2279 
2280 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2281 				  entire ? 0 : obj_req->ex.oe_off,
2282 				  entire ? rbd_dev->layout.object_size :
2283 							obj_req->ex.oe_len,
2284 				  &obj_req->img_extents,
2285 				  &obj_req->num_img_extents);
2286 	if (ret)
2287 		return ret;
2288 
2289 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2290 		      rbd_dev->parent_overlap);
2291 	return 0;
2292 }
2293 
2294 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2295 {
2296 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2297 
2298 	switch (obj_req->img_request->data_type) {
2299 	case OBJ_REQUEST_BIO:
2300 		osd_req_op_extent_osd_data_bio(osd_req, which,
2301 					       &obj_req->bio_pos,
2302 					       obj_req->ex.oe_len);
2303 		break;
2304 	case OBJ_REQUEST_BVECS:
2305 	case OBJ_REQUEST_OWN_BVECS:
2306 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2307 							obj_req->ex.oe_len);
2308 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2309 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2310 						    &obj_req->bvec_pos);
2311 		break;
2312 	default:
2313 		BUG();
2314 	}
2315 }
2316 
2317 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2318 {
2319 	struct page **pages;
2320 
2321 	/*
2322 	 * The response data for a STAT call consists of:
2323 	 *     le64 length;
2324 	 *     struct {
2325 	 *         le32 tv_sec;
2326 	 *         le32 tv_nsec;
2327 	 *     } mtime;
2328 	 */
2329 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2330 	if (IS_ERR(pages))
2331 		return PTR_ERR(pages);
2332 
2333 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2334 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2335 				     8 + sizeof(struct ceph_timespec),
2336 				     0, false, true);
2337 	return 0;
2338 }
2339 
2340 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2341 				u32 bytes)
2342 {
2343 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2344 	int ret;
2345 
2346 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2347 	if (ret)
2348 		return ret;
2349 
2350 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2351 					  obj_req->copyup_bvec_count, bytes);
2352 	return 0;
2353 }
2354 
2355 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2356 {
2357 	obj_req->read_state = RBD_OBJ_READ_START;
2358 	return 0;
2359 }
2360 
2361 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2362 				      int which)
2363 {
2364 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2365 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2366 	u16 opcode;
2367 
2368 	if (!use_object_map(rbd_dev) ||
2369 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2370 		osd_req_op_alloc_hint_init(osd_req, which++,
2371 					   rbd_dev->layout.object_size,
2372 					   rbd_dev->layout.object_size);
2373 	}
2374 
2375 	if (rbd_obj_is_entire(obj_req))
2376 		opcode = CEPH_OSD_OP_WRITEFULL;
2377 	else
2378 		opcode = CEPH_OSD_OP_WRITE;
2379 
2380 	osd_req_op_extent_init(osd_req, which, opcode,
2381 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2382 	rbd_osd_setup_data(osd_req, which);
2383 }
2384 
2385 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2386 {
2387 	int ret;
2388 
2389 	/* reverse map the entire object onto the parent */
2390 	ret = rbd_obj_calc_img_extents(obj_req, true);
2391 	if (ret)
2392 		return ret;
2393 
2394 	if (rbd_obj_copyup_enabled(obj_req))
2395 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2396 
2397 	obj_req->write_state = RBD_OBJ_WRITE_START;
2398 	return 0;
2399 }
2400 
2401 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2402 {
2403 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2404 					  CEPH_OSD_OP_ZERO;
2405 }
2406 
2407 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2408 					int which)
2409 {
2410 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2411 
2412 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2413 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2414 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2415 	} else {
2416 		osd_req_op_extent_init(osd_req, which,
2417 				       truncate_or_zero_opcode(obj_req),
2418 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2419 				       0, 0);
2420 	}
2421 }
2422 
2423 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2424 {
2425 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2426 	u64 off, next_off;
2427 	int ret;
2428 
2429 	/*
2430 	 * Align the range to alloc_size boundary and punt on discards
2431 	 * that are too small to free up any space.
2432 	 *
2433 	 * alloc_size == object_size && is_tail() is a special case for
2434 	 * filestore with filestore_punch_hole = false, needed to allow
2435 	 * truncate (in addition to delete).
2436 	 */
2437 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2438 	    !rbd_obj_is_tail(obj_req)) {
2439 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2440 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2441 				      rbd_dev->opts->alloc_size);
2442 		if (off >= next_off)
2443 			return 1;
2444 
2445 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2446 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2447 		     off, next_off - off);
2448 		obj_req->ex.oe_off = off;
2449 		obj_req->ex.oe_len = next_off - off;
2450 	}
2451 
2452 	/* reverse map the entire object onto the parent */
2453 	ret = rbd_obj_calc_img_extents(obj_req, true);
2454 	if (ret)
2455 		return ret;
2456 
2457 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2458 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2459 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2460 
2461 	obj_req->write_state = RBD_OBJ_WRITE_START;
2462 	return 0;
2463 }
2464 
2465 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2466 					int which)
2467 {
2468 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2469 	u16 opcode;
2470 
2471 	if (rbd_obj_is_entire(obj_req)) {
2472 		if (obj_req->num_img_extents) {
2473 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2474 				osd_req_op_init(osd_req, which++,
2475 						CEPH_OSD_OP_CREATE, 0);
2476 			opcode = CEPH_OSD_OP_TRUNCATE;
2477 		} else {
2478 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2479 			osd_req_op_init(osd_req, which++,
2480 					CEPH_OSD_OP_DELETE, 0);
2481 			opcode = 0;
2482 		}
2483 	} else {
2484 		opcode = truncate_or_zero_opcode(obj_req);
2485 	}
2486 
2487 	if (opcode)
2488 		osd_req_op_extent_init(osd_req, which, opcode,
2489 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2490 				       0, 0);
2491 }
2492 
2493 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2494 {
2495 	int ret;
2496 
2497 	/* reverse map the entire object onto the parent */
2498 	ret = rbd_obj_calc_img_extents(obj_req, true);
2499 	if (ret)
2500 		return ret;
2501 
2502 	if (rbd_obj_copyup_enabled(obj_req))
2503 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2504 	if (!obj_req->num_img_extents) {
2505 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2506 		if (rbd_obj_is_entire(obj_req))
2507 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2508 	}
2509 
2510 	obj_req->write_state = RBD_OBJ_WRITE_START;
2511 	return 0;
2512 }
2513 
2514 static int count_write_ops(struct rbd_obj_request *obj_req)
2515 {
2516 	struct rbd_img_request *img_req = obj_req->img_request;
2517 
2518 	switch (img_req->op_type) {
2519 	case OBJ_OP_WRITE:
2520 		if (!use_object_map(img_req->rbd_dev) ||
2521 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2522 			return 2; /* setallochint + write/writefull */
2523 
2524 		return 1; /* write/writefull */
2525 	case OBJ_OP_DISCARD:
2526 		return 1; /* delete/truncate/zero */
2527 	case OBJ_OP_ZEROOUT:
2528 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2529 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2530 			return 2; /* create + truncate */
2531 
2532 		return 1; /* delete/truncate/zero */
2533 	default:
2534 		BUG();
2535 	}
2536 }
2537 
2538 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2539 				    int which)
2540 {
2541 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2542 
2543 	switch (obj_req->img_request->op_type) {
2544 	case OBJ_OP_WRITE:
2545 		__rbd_osd_setup_write_ops(osd_req, which);
2546 		break;
2547 	case OBJ_OP_DISCARD:
2548 		__rbd_osd_setup_discard_ops(osd_req, which);
2549 		break;
2550 	case OBJ_OP_ZEROOUT:
2551 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2552 		break;
2553 	default:
2554 		BUG();
2555 	}
2556 }
2557 
2558 /*
2559  * Prune the list of object requests (adjust offset and/or length, drop
2560  * redundant requests).  Prepare object request state machines and image
2561  * request state machine for execution.
2562  */
2563 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2564 {
2565 	struct rbd_obj_request *obj_req, *next_obj_req;
2566 	int ret;
2567 
2568 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2569 		switch (img_req->op_type) {
2570 		case OBJ_OP_READ:
2571 			ret = rbd_obj_init_read(obj_req);
2572 			break;
2573 		case OBJ_OP_WRITE:
2574 			ret = rbd_obj_init_write(obj_req);
2575 			break;
2576 		case OBJ_OP_DISCARD:
2577 			ret = rbd_obj_init_discard(obj_req);
2578 			break;
2579 		case OBJ_OP_ZEROOUT:
2580 			ret = rbd_obj_init_zeroout(obj_req);
2581 			break;
2582 		default:
2583 			BUG();
2584 		}
2585 		if (ret < 0)
2586 			return ret;
2587 		if (ret > 0) {
2588 			rbd_img_obj_request_del(img_req, obj_req);
2589 			continue;
2590 		}
2591 	}
2592 
2593 	img_req->state = RBD_IMG_START;
2594 	return 0;
2595 }
2596 
2597 union rbd_img_fill_iter {
2598 	struct ceph_bio_iter	bio_iter;
2599 	struct ceph_bvec_iter	bvec_iter;
2600 };
2601 
2602 struct rbd_img_fill_ctx {
2603 	enum obj_request_type	pos_type;
2604 	union rbd_img_fill_iter	*pos;
2605 	union rbd_img_fill_iter	iter;
2606 	ceph_object_extent_fn_t	set_pos_fn;
2607 	ceph_object_extent_fn_t	count_fn;
2608 	ceph_object_extent_fn_t	copy_fn;
2609 };
2610 
2611 static struct ceph_object_extent *alloc_object_extent(void *arg)
2612 {
2613 	struct rbd_img_request *img_req = arg;
2614 	struct rbd_obj_request *obj_req;
2615 
2616 	obj_req = rbd_obj_request_create();
2617 	if (!obj_req)
2618 		return NULL;
2619 
2620 	rbd_img_obj_request_add(img_req, obj_req);
2621 	return &obj_req->ex;
2622 }
2623 
2624 /*
2625  * While su != os && sc == 1 is technically not fancy (it's the same
2626  * layout as su == os && sc == 1), we can't use the nocopy path for it
2627  * because ->set_pos_fn() should be called only once per object.
2628  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2629  * treat su != os && sc == 1 as fancy.
2630  */
2631 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2632 {
2633 	return l->stripe_unit != l->object_size;
2634 }
2635 
2636 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2637 				       struct ceph_file_extent *img_extents,
2638 				       u32 num_img_extents,
2639 				       struct rbd_img_fill_ctx *fctx)
2640 {
2641 	u32 i;
2642 	int ret;
2643 
2644 	img_req->data_type = fctx->pos_type;
2645 
2646 	/*
2647 	 * Create object requests and set each object request's starting
2648 	 * position in the provided bio (list) or bio_vec array.
2649 	 */
2650 	fctx->iter = *fctx->pos;
2651 	for (i = 0; i < num_img_extents; i++) {
2652 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2653 					   img_extents[i].fe_off,
2654 					   img_extents[i].fe_len,
2655 					   &img_req->object_extents,
2656 					   alloc_object_extent, img_req,
2657 					   fctx->set_pos_fn, &fctx->iter);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 
2662 	return __rbd_img_fill_request(img_req);
2663 }
2664 
2665 /*
2666  * Map a list of image extents to a list of object extents, create the
2667  * corresponding object requests (normally each to a different object,
2668  * but not always) and add them to @img_req.  For each object request,
2669  * set up its data descriptor to point to the corresponding chunk(s) of
2670  * @fctx->pos data buffer.
2671  *
2672  * Because ceph_file_to_extents() will merge adjacent object extents
2673  * together, each object request's data descriptor may point to multiple
2674  * different chunks of @fctx->pos data buffer.
2675  *
2676  * @fctx->pos data buffer is assumed to be large enough.
2677  */
2678 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2679 				struct ceph_file_extent *img_extents,
2680 				u32 num_img_extents,
2681 				struct rbd_img_fill_ctx *fctx)
2682 {
2683 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2684 	struct rbd_obj_request *obj_req;
2685 	u32 i;
2686 	int ret;
2687 
2688 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2689 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2690 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2691 						   num_img_extents, fctx);
2692 
2693 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2694 
2695 	/*
2696 	 * Create object requests and determine ->bvec_count for each object
2697 	 * request.  Note that ->bvec_count sum over all object requests may
2698 	 * be greater than the number of bio_vecs in the provided bio (list)
2699 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2700 	 * stripe unit boundaries.
2701 	 */
2702 	fctx->iter = *fctx->pos;
2703 	for (i = 0; i < num_img_extents; i++) {
2704 		ret = ceph_file_to_extents(&rbd_dev->layout,
2705 					   img_extents[i].fe_off,
2706 					   img_extents[i].fe_len,
2707 					   &img_req->object_extents,
2708 					   alloc_object_extent, img_req,
2709 					   fctx->count_fn, &fctx->iter);
2710 		if (ret)
2711 			return ret;
2712 	}
2713 
2714 	for_each_obj_request(img_req, obj_req) {
2715 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2716 					      sizeof(*obj_req->bvec_pos.bvecs),
2717 					      GFP_NOIO);
2718 		if (!obj_req->bvec_pos.bvecs)
2719 			return -ENOMEM;
2720 	}
2721 
2722 	/*
2723 	 * Fill in each object request's private bio_vec array, splitting and
2724 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2725 	 */
2726 	fctx->iter = *fctx->pos;
2727 	for (i = 0; i < num_img_extents; i++) {
2728 		ret = ceph_iterate_extents(&rbd_dev->layout,
2729 					   img_extents[i].fe_off,
2730 					   img_extents[i].fe_len,
2731 					   &img_req->object_extents,
2732 					   fctx->copy_fn, &fctx->iter);
2733 		if (ret)
2734 			return ret;
2735 	}
2736 
2737 	return __rbd_img_fill_request(img_req);
2738 }
2739 
2740 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2741 			       u64 off, u64 len)
2742 {
2743 	struct ceph_file_extent ex = { off, len };
2744 	union rbd_img_fill_iter dummy;
2745 	struct rbd_img_fill_ctx fctx = {
2746 		.pos_type = OBJ_REQUEST_NODATA,
2747 		.pos = &dummy,
2748 	};
2749 
2750 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2751 }
2752 
2753 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2754 {
2755 	struct rbd_obj_request *obj_req =
2756 	    container_of(ex, struct rbd_obj_request, ex);
2757 	struct ceph_bio_iter *it = arg;
2758 
2759 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2760 	obj_req->bio_pos = *it;
2761 	ceph_bio_iter_advance(it, bytes);
2762 }
2763 
2764 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2765 {
2766 	struct rbd_obj_request *obj_req =
2767 	    container_of(ex, struct rbd_obj_request, ex);
2768 	struct ceph_bio_iter *it = arg;
2769 
2770 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2771 	ceph_bio_iter_advance_step(it, bytes, ({
2772 		obj_req->bvec_count++;
2773 	}));
2774 
2775 }
2776 
2777 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2778 {
2779 	struct rbd_obj_request *obj_req =
2780 	    container_of(ex, struct rbd_obj_request, ex);
2781 	struct ceph_bio_iter *it = arg;
2782 
2783 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2784 	ceph_bio_iter_advance_step(it, bytes, ({
2785 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2786 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2787 	}));
2788 }
2789 
2790 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2791 				   struct ceph_file_extent *img_extents,
2792 				   u32 num_img_extents,
2793 				   struct ceph_bio_iter *bio_pos)
2794 {
2795 	struct rbd_img_fill_ctx fctx = {
2796 		.pos_type = OBJ_REQUEST_BIO,
2797 		.pos = (union rbd_img_fill_iter *)bio_pos,
2798 		.set_pos_fn = set_bio_pos,
2799 		.count_fn = count_bio_bvecs,
2800 		.copy_fn = copy_bio_bvecs,
2801 	};
2802 
2803 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2804 				    &fctx);
2805 }
2806 
2807 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2808 				 u64 off, u64 len, struct bio *bio)
2809 {
2810 	struct ceph_file_extent ex = { off, len };
2811 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2812 
2813 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2814 }
2815 
2816 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2817 {
2818 	struct rbd_obj_request *obj_req =
2819 	    container_of(ex, struct rbd_obj_request, ex);
2820 	struct ceph_bvec_iter *it = arg;
2821 
2822 	obj_req->bvec_pos = *it;
2823 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2824 	ceph_bvec_iter_advance(it, bytes);
2825 }
2826 
2827 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2828 {
2829 	struct rbd_obj_request *obj_req =
2830 	    container_of(ex, struct rbd_obj_request, ex);
2831 	struct ceph_bvec_iter *it = arg;
2832 
2833 	ceph_bvec_iter_advance_step(it, bytes, ({
2834 		obj_req->bvec_count++;
2835 	}));
2836 }
2837 
2838 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2839 {
2840 	struct rbd_obj_request *obj_req =
2841 	    container_of(ex, struct rbd_obj_request, ex);
2842 	struct ceph_bvec_iter *it = arg;
2843 
2844 	ceph_bvec_iter_advance_step(it, bytes, ({
2845 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2846 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2847 	}));
2848 }
2849 
2850 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2851 				     struct ceph_file_extent *img_extents,
2852 				     u32 num_img_extents,
2853 				     struct ceph_bvec_iter *bvec_pos)
2854 {
2855 	struct rbd_img_fill_ctx fctx = {
2856 		.pos_type = OBJ_REQUEST_BVECS,
2857 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2858 		.set_pos_fn = set_bvec_pos,
2859 		.count_fn = count_bvecs,
2860 		.copy_fn = copy_bvecs,
2861 	};
2862 
2863 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2864 				    &fctx);
2865 }
2866 
2867 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2868 				   struct ceph_file_extent *img_extents,
2869 				   u32 num_img_extents,
2870 				   struct bio_vec *bvecs)
2871 {
2872 	struct ceph_bvec_iter it = {
2873 		.bvecs = bvecs,
2874 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2875 							     num_img_extents) },
2876 	};
2877 
2878 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2879 					 &it);
2880 }
2881 
2882 static void rbd_img_handle_request_work(struct work_struct *work)
2883 {
2884 	struct rbd_img_request *img_req =
2885 	    container_of(work, struct rbd_img_request, work);
2886 
2887 	rbd_img_handle_request(img_req, img_req->work_result);
2888 }
2889 
2890 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2891 {
2892 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2893 	img_req->work_result = result;
2894 	queue_work(rbd_wq, &img_req->work);
2895 }
2896 
2897 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2898 {
2899 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2900 
2901 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2902 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2903 		return true;
2904 	}
2905 
2906 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2907 	     obj_req->ex.oe_objno);
2908 	return false;
2909 }
2910 
2911 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2912 {
2913 	struct ceph_osd_request *osd_req;
2914 	int ret;
2915 
2916 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2917 	if (IS_ERR(osd_req))
2918 		return PTR_ERR(osd_req);
2919 
2920 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2921 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2922 	rbd_osd_setup_data(osd_req, 0);
2923 	rbd_osd_format_read(osd_req);
2924 
2925 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2926 	if (ret)
2927 		return ret;
2928 
2929 	rbd_osd_submit(osd_req);
2930 	return 0;
2931 }
2932 
2933 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2934 {
2935 	struct rbd_img_request *img_req = obj_req->img_request;
2936 	struct rbd_img_request *child_img_req;
2937 	int ret;
2938 
2939 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2940 					       OBJ_OP_READ, NULL);
2941 	if (!child_img_req)
2942 		return -ENOMEM;
2943 
2944 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2945 	child_img_req->obj_request = obj_req;
2946 
2947 	if (!rbd_img_is_write(img_req)) {
2948 		switch (img_req->data_type) {
2949 		case OBJ_REQUEST_BIO:
2950 			ret = __rbd_img_fill_from_bio(child_img_req,
2951 						      obj_req->img_extents,
2952 						      obj_req->num_img_extents,
2953 						      &obj_req->bio_pos);
2954 			break;
2955 		case OBJ_REQUEST_BVECS:
2956 		case OBJ_REQUEST_OWN_BVECS:
2957 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2958 						      obj_req->img_extents,
2959 						      obj_req->num_img_extents,
2960 						      &obj_req->bvec_pos);
2961 			break;
2962 		default:
2963 			BUG();
2964 		}
2965 	} else {
2966 		ret = rbd_img_fill_from_bvecs(child_img_req,
2967 					      obj_req->img_extents,
2968 					      obj_req->num_img_extents,
2969 					      obj_req->copyup_bvecs);
2970 	}
2971 	if (ret) {
2972 		rbd_img_request_put(child_img_req);
2973 		return ret;
2974 	}
2975 
2976 	/* avoid parent chain recursion */
2977 	rbd_img_schedule(child_img_req, 0);
2978 	return 0;
2979 }
2980 
2981 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2982 {
2983 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2984 	int ret;
2985 
2986 again:
2987 	switch (obj_req->read_state) {
2988 	case RBD_OBJ_READ_START:
2989 		rbd_assert(!*result);
2990 
2991 		if (!rbd_obj_may_exist(obj_req)) {
2992 			*result = -ENOENT;
2993 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2994 			goto again;
2995 		}
2996 
2997 		ret = rbd_obj_read_object(obj_req);
2998 		if (ret) {
2999 			*result = ret;
3000 			return true;
3001 		}
3002 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
3003 		return false;
3004 	case RBD_OBJ_READ_OBJECT:
3005 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
3006 			/* reverse map this object extent onto the parent */
3007 			ret = rbd_obj_calc_img_extents(obj_req, false);
3008 			if (ret) {
3009 				*result = ret;
3010 				return true;
3011 			}
3012 			if (obj_req->num_img_extents) {
3013 				ret = rbd_obj_read_from_parent(obj_req);
3014 				if (ret) {
3015 					*result = ret;
3016 					return true;
3017 				}
3018 				obj_req->read_state = RBD_OBJ_READ_PARENT;
3019 				return false;
3020 			}
3021 		}
3022 
3023 		/*
3024 		 * -ENOENT means a hole in the image -- zero-fill the entire
3025 		 * length of the request.  A short read also implies zero-fill
3026 		 * to the end of the request.
3027 		 */
3028 		if (*result == -ENOENT) {
3029 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
3030 			*result = 0;
3031 		} else if (*result >= 0) {
3032 			if (*result < obj_req->ex.oe_len)
3033 				rbd_obj_zero_range(obj_req, *result,
3034 						obj_req->ex.oe_len - *result);
3035 			else
3036 				rbd_assert(*result == obj_req->ex.oe_len);
3037 			*result = 0;
3038 		}
3039 		return true;
3040 	case RBD_OBJ_READ_PARENT:
3041 		return true;
3042 	default:
3043 		BUG();
3044 	}
3045 }
3046 
3047 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
3048 {
3049 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3050 
3051 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
3052 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
3053 
3054 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
3055 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
3056 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
3057 		return true;
3058 	}
3059 
3060 	return false;
3061 }
3062 
3063 /*
3064  * Return:
3065  *   0 - object map update sent
3066  *   1 - object map update isn't needed
3067  *  <0 - error
3068  */
3069 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3070 {
3071 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3072 	u8 new_state;
3073 
3074 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3075 		return 1;
3076 
3077 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3078 		new_state = OBJECT_PENDING;
3079 	else
3080 		new_state = OBJECT_EXISTS;
3081 
3082 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3083 }
3084 
3085 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3086 {
3087 	struct ceph_osd_request *osd_req;
3088 	int num_ops = count_write_ops(obj_req);
3089 	int which = 0;
3090 	int ret;
3091 
3092 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3093 		num_ops++; /* stat */
3094 
3095 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3096 	if (IS_ERR(osd_req))
3097 		return PTR_ERR(osd_req);
3098 
3099 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3100 		ret = rbd_osd_setup_stat(osd_req, which++);
3101 		if (ret)
3102 			return ret;
3103 	}
3104 
3105 	rbd_osd_setup_write_ops(osd_req, which);
3106 	rbd_osd_format_write(osd_req);
3107 
3108 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3109 	if (ret)
3110 		return ret;
3111 
3112 	rbd_osd_submit(osd_req);
3113 	return 0;
3114 }
3115 
3116 /*
3117  * copyup_bvecs pages are never highmem pages
3118  */
3119 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3120 {
3121 	struct ceph_bvec_iter it = {
3122 		.bvecs = bvecs,
3123 		.iter = { .bi_size = bytes },
3124 	};
3125 
3126 	ceph_bvec_iter_advance_step(&it, bytes, ({
3127 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3128 			       bv.bv_len))
3129 			return false;
3130 	}));
3131 	return true;
3132 }
3133 
3134 #define MODS_ONLY	U32_MAX
3135 
3136 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3137 				      u32 bytes)
3138 {
3139 	struct ceph_osd_request *osd_req;
3140 	int ret;
3141 
3142 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3143 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3144 
3145 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3146 	if (IS_ERR(osd_req))
3147 		return PTR_ERR(osd_req);
3148 
3149 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3150 	if (ret)
3151 		return ret;
3152 
3153 	rbd_osd_format_write(osd_req);
3154 
3155 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3156 	if (ret)
3157 		return ret;
3158 
3159 	rbd_osd_submit(osd_req);
3160 	return 0;
3161 }
3162 
3163 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3164 					u32 bytes)
3165 {
3166 	struct ceph_osd_request *osd_req;
3167 	int num_ops = count_write_ops(obj_req);
3168 	int which = 0;
3169 	int ret;
3170 
3171 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3172 
3173 	if (bytes != MODS_ONLY)
3174 		num_ops++; /* copyup */
3175 
3176 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3177 	if (IS_ERR(osd_req))
3178 		return PTR_ERR(osd_req);
3179 
3180 	if (bytes != MODS_ONLY) {
3181 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3182 		if (ret)
3183 			return ret;
3184 	}
3185 
3186 	rbd_osd_setup_write_ops(osd_req, which);
3187 	rbd_osd_format_write(osd_req);
3188 
3189 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3190 	if (ret)
3191 		return ret;
3192 
3193 	rbd_osd_submit(osd_req);
3194 	return 0;
3195 }
3196 
3197 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3198 {
3199 	u32 i;
3200 
3201 	rbd_assert(!obj_req->copyup_bvecs);
3202 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3203 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3204 					sizeof(*obj_req->copyup_bvecs),
3205 					GFP_NOIO);
3206 	if (!obj_req->copyup_bvecs)
3207 		return -ENOMEM;
3208 
3209 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3210 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3211 
3212 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3213 		if (!obj_req->copyup_bvecs[i].bv_page)
3214 			return -ENOMEM;
3215 
3216 		obj_req->copyup_bvecs[i].bv_offset = 0;
3217 		obj_req->copyup_bvecs[i].bv_len = len;
3218 		obj_overlap -= len;
3219 	}
3220 
3221 	rbd_assert(!obj_overlap);
3222 	return 0;
3223 }
3224 
3225 /*
3226  * The target object doesn't exist.  Read the data for the entire
3227  * target object up to the overlap point (if any) from the parent,
3228  * so we can use it for a copyup.
3229  */
3230 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3231 {
3232 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3233 	int ret;
3234 
3235 	rbd_assert(obj_req->num_img_extents);
3236 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3237 		      rbd_dev->parent_overlap);
3238 	if (!obj_req->num_img_extents) {
3239 		/*
3240 		 * The overlap has become 0 (most likely because the
3241 		 * image has been flattened).  Re-submit the original write
3242 		 * request -- pass MODS_ONLY since the copyup isn't needed
3243 		 * anymore.
3244 		 */
3245 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3246 	}
3247 
3248 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3249 	if (ret)
3250 		return ret;
3251 
3252 	return rbd_obj_read_from_parent(obj_req);
3253 }
3254 
3255 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3256 {
3257 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3258 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3259 	u8 new_state;
3260 	u32 i;
3261 	int ret;
3262 
3263 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3264 
3265 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3266 		return;
3267 
3268 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3269 		return;
3270 
3271 	for (i = 0; i < snapc->num_snaps; i++) {
3272 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3273 		    i + 1 < snapc->num_snaps)
3274 			new_state = OBJECT_EXISTS_CLEAN;
3275 		else
3276 			new_state = OBJECT_EXISTS;
3277 
3278 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3279 					    new_state, NULL);
3280 		if (ret < 0) {
3281 			obj_req->pending.result = ret;
3282 			return;
3283 		}
3284 
3285 		rbd_assert(!ret);
3286 		obj_req->pending.num_pending++;
3287 	}
3288 }
3289 
3290 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3291 {
3292 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3293 	int ret;
3294 
3295 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3296 
3297 	/*
3298 	 * Only send non-zero copyup data to save some I/O and network
3299 	 * bandwidth -- zero copyup data is equivalent to the object not
3300 	 * existing.
3301 	 */
3302 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3303 		bytes = 0;
3304 
3305 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3306 		/*
3307 		 * Send a copyup request with an empty snapshot context to
3308 		 * deep-copyup the object through all existing snapshots.
3309 		 * A second request with the current snapshot context will be
3310 		 * sent for the actual modification.
3311 		 */
3312 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3313 		if (ret) {
3314 			obj_req->pending.result = ret;
3315 			return;
3316 		}
3317 
3318 		obj_req->pending.num_pending++;
3319 		bytes = MODS_ONLY;
3320 	}
3321 
3322 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3323 	if (ret) {
3324 		obj_req->pending.result = ret;
3325 		return;
3326 	}
3327 
3328 	obj_req->pending.num_pending++;
3329 }
3330 
3331 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3332 {
3333 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3334 	int ret;
3335 
3336 again:
3337 	switch (obj_req->copyup_state) {
3338 	case RBD_OBJ_COPYUP_START:
3339 		rbd_assert(!*result);
3340 
3341 		ret = rbd_obj_copyup_read_parent(obj_req);
3342 		if (ret) {
3343 			*result = ret;
3344 			return true;
3345 		}
3346 		if (obj_req->num_img_extents)
3347 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3348 		else
3349 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3350 		return false;
3351 	case RBD_OBJ_COPYUP_READ_PARENT:
3352 		if (*result)
3353 			return true;
3354 
3355 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3356 				  rbd_obj_img_extents_bytes(obj_req))) {
3357 			dout("%s %p detected zeros\n", __func__, obj_req);
3358 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3359 		}
3360 
3361 		rbd_obj_copyup_object_maps(obj_req);
3362 		if (!obj_req->pending.num_pending) {
3363 			*result = obj_req->pending.result;
3364 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3365 			goto again;
3366 		}
3367 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3368 		return false;
3369 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3370 		if (!pending_result_dec(&obj_req->pending, result))
3371 			return false;
3372 		/* fall through */
3373 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3374 		if (*result) {
3375 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3376 				 *result);
3377 			return true;
3378 		}
3379 
3380 		rbd_obj_copyup_write_object(obj_req);
3381 		if (!obj_req->pending.num_pending) {
3382 			*result = obj_req->pending.result;
3383 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3384 			goto again;
3385 		}
3386 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3387 		return false;
3388 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3389 		if (!pending_result_dec(&obj_req->pending, result))
3390 			return false;
3391 		/* fall through */
3392 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3393 		return true;
3394 	default:
3395 		BUG();
3396 	}
3397 }
3398 
3399 /*
3400  * Return:
3401  *   0 - object map update sent
3402  *   1 - object map update isn't needed
3403  *  <0 - error
3404  */
3405 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3406 {
3407 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3408 	u8 current_state = OBJECT_PENDING;
3409 
3410 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3411 		return 1;
3412 
3413 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3414 		return 1;
3415 
3416 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3417 				     &current_state);
3418 }
3419 
3420 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3421 {
3422 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3423 	int ret;
3424 
3425 again:
3426 	switch (obj_req->write_state) {
3427 	case RBD_OBJ_WRITE_START:
3428 		rbd_assert(!*result);
3429 
3430 		if (rbd_obj_write_is_noop(obj_req))
3431 			return true;
3432 
3433 		ret = rbd_obj_write_pre_object_map(obj_req);
3434 		if (ret < 0) {
3435 			*result = ret;
3436 			return true;
3437 		}
3438 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3439 		if (ret > 0)
3440 			goto again;
3441 		return false;
3442 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3443 		if (*result) {
3444 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3445 				 *result);
3446 			return true;
3447 		}
3448 		ret = rbd_obj_write_object(obj_req);
3449 		if (ret) {
3450 			*result = ret;
3451 			return true;
3452 		}
3453 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3454 		return false;
3455 	case RBD_OBJ_WRITE_OBJECT:
3456 		if (*result == -ENOENT) {
3457 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3458 				*result = 0;
3459 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3460 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3461 				goto again;
3462 			}
3463 			/*
3464 			 * On a non-existent object:
3465 			 *   delete - -ENOENT, truncate/zero - 0
3466 			 */
3467 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3468 				*result = 0;
3469 		}
3470 		if (*result)
3471 			return true;
3472 
3473 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3474 		goto again;
3475 	case __RBD_OBJ_WRITE_COPYUP:
3476 		if (!rbd_obj_advance_copyup(obj_req, result))
3477 			return false;
3478 		/* fall through */
3479 	case RBD_OBJ_WRITE_COPYUP:
3480 		if (*result) {
3481 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3482 			return true;
3483 		}
3484 		ret = rbd_obj_write_post_object_map(obj_req);
3485 		if (ret < 0) {
3486 			*result = ret;
3487 			return true;
3488 		}
3489 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3490 		if (ret > 0)
3491 			goto again;
3492 		return false;
3493 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3494 		if (*result)
3495 			rbd_warn(rbd_dev, "post object map update failed: %d",
3496 				 *result);
3497 		return true;
3498 	default:
3499 		BUG();
3500 	}
3501 }
3502 
3503 /*
3504  * Return true if @obj_req is completed.
3505  */
3506 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3507 				     int *result)
3508 {
3509 	struct rbd_img_request *img_req = obj_req->img_request;
3510 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3511 	bool done;
3512 
3513 	mutex_lock(&obj_req->state_mutex);
3514 	if (!rbd_img_is_write(img_req))
3515 		done = rbd_obj_advance_read(obj_req, result);
3516 	else
3517 		done = rbd_obj_advance_write(obj_req, result);
3518 	mutex_unlock(&obj_req->state_mutex);
3519 
3520 	if (done && *result) {
3521 		rbd_assert(*result < 0);
3522 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3523 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3524 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3525 	}
3526 	return done;
3527 }
3528 
3529 /*
3530  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3531  * recursion.
3532  */
3533 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3534 {
3535 	if (__rbd_obj_handle_request(obj_req, &result))
3536 		rbd_img_handle_request(obj_req->img_request, result);
3537 }
3538 
3539 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3540 {
3541 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3542 
3543 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3544 		return false;
3545 
3546 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3547 		return false;
3548 
3549 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3550 	if (rbd_dev->opts->lock_on_read ||
3551 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3552 		return true;
3553 
3554 	return rbd_img_is_write(img_req);
3555 }
3556 
3557 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3558 {
3559 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3560 	bool locked;
3561 
3562 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3563 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3564 	spin_lock(&rbd_dev->lock_lists_lock);
3565 	rbd_assert(list_empty(&img_req->lock_item));
3566 	if (!locked)
3567 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3568 	else
3569 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3570 	spin_unlock(&rbd_dev->lock_lists_lock);
3571 	return locked;
3572 }
3573 
3574 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3575 {
3576 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3577 	bool need_wakeup;
3578 
3579 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3580 	spin_lock(&rbd_dev->lock_lists_lock);
3581 	rbd_assert(!list_empty(&img_req->lock_item));
3582 	list_del_init(&img_req->lock_item);
3583 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3584 		       list_empty(&rbd_dev->running_list));
3585 	spin_unlock(&rbd_dev->lock_lists_lock);
3586 	if (need_wakeup)
3587 		complete(&rbd_dev->releasing_wait);
3588 }
3589 
3590 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3591 {
3592 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3593 
3594 	if (!need_exclusive_lock(img_req))
3595 		return 1;
3596 
3597 	if (rbd_lock_add_request(img_req))
3598 		return 1;
3599 
3600 	if (rbd_dev->opts->exclusive) {
3601 		WARN_ON(1); /* lock got released? */
3602 		return -EROFS;
3603 	}
3604 
3605 	/*
3606 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3607 	 * and cancel_delayed_work() in wake_lock_waiters().
3608 	 */
3609 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3610 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3611 	return 0;
3612 }
3613 
3614 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3615 {
3616 	struct rbd_obj_request *obj_req;
3617 
3618 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3619 
3620 	for_each_obj_request(img_req, obj_req) {
3621 		int result = 0;
3622 
3623 		if (__rbd_obj_handle_request(obj_req, &result)) {
3624 			if (result) {
3625 				img_req->pending.result = result;
3626 				return;
3627 			}
3628 		} else {
3629 			img_req->pending.num_pending++;
3630 		}
3631 	}
3632 }
3633 
3634 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3635 {
3636 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3637 	int ret;
3638 
3639 again:
3640 	switch (img_req->state) {
3641 	case RBD_IMG_START:
3642 		rbd_assert(!*result);
3643 
3644 		ret = rbd_img_exclusive_lock(img_req);
3645 		if (ret < 0) {
3646 			*result = ret;
3647 			return true;
3648 		}
3649 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3650 		if (ret > 0)
3651 			goto again;
3652 		return false;
3653 	case RBD_IMG_EXCLUSIVE_LOCK:
3654 		if (*result)
3655 			return true;
3656 
3657 		rbd_assert(!need_exclusive_lock(img_req) ||
3658 			   __rbd_is_lock_owner(rbd_dev));
3659 
3660 		rbd_img_object_requests(img_req);
3661 		if (!img_req->pending.num_pending) {
3662 			*result = img_req->pending.result;
3663 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3664 			goto again;
3665 		}
3666 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3667 		return false;
3668 	case __RBD_IMG_OBJECT_REQUESTS:
3669 		if (!pending_result_dec(&img_req->pending, result))
3670 			return false;
3671 		/* fall through */
3672 	case RBD_IMG_OBJECT_REQUESTS:
3673 		return true;
3674 	default:
3675 		BUG();
3676 	}
3677 }
3678 
3679 /*
3680  * Return true if @img_req is completed.
3681  */
3682 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3683 				     int *result)
3684 {
3685 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3686 	bool done;
3687 
3688 	if (need_exclusive_lock(img_req)) {
3689 		down_read(&rbd_dev->lock_rwsem);
3690 		mutex_lock(&img_req->state_mutex);
3691 		done = rbd_img_advance(img_req, result);
3692 		if (done)
3693 			rbd_lock_del_request(img_req);
3694 		mutex_unlock(&img_req->state_mutex);
3695 		up_read(&rbd_dev->lock_rwsem);
3696 	} else {
3697 		mutex_lock(&img_req->state_mutex);
3698 		done = rbd_img_advance(img_req, result);
3699 		mutex_unlock(&img_req->state_mutex);
3700 	}
3701 
3702 	if (done && *result) {
3703 		rbd_assert(*result < 0);
3704 		rbd_warn(rbd_dev, "%s%s result %d",
3705 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3706 		      obj_op_name(img_req->op_type), *result);
3707 	}
3708 	return done;
3709 }
3710 
3711 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3712 {
3713 again:
3714 	if (!__rbd_img_handle_request(img_req, &result))
3715 		return;
3716 
3717 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3718 		struct rbd_obj_request *obj_req = img_req->obj_request;
3719 
3720 		rbd_img_request_put(img_req);
3721 		if (__rbd_obj_handle_request(obj_req, &result)) {
3722 			img_req = obj_req->img_request;
3723 			goto again;
3724 		}
3725 	} else {
3726 		struct request *rq = img_req->rq;
3727 
3728 		rbd_img_request_put(img_req);
3729 		blk_mq_end_request(rq, errno_to_blk_status(result));
3730 	}
3731 }
3732 
3733 static const struct rbd_client_id rbd_empty_cid;
3734 
3735 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3736 			  const struct rbd_client_id *rhs)
3737 {
3738 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3739 }
3740 
3741 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3742 {
3743 	struct rbd_client_id cid;
3744 
3745 	mutex_lock(&rbd_dev->watch_mutex);
3746 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3747 	cid.handle = rbd_dev->watch_cookie;
3748 	mutex_unlock(&rbd_dev->watch_mutex);
3749 	return cid;
3750 }
3751 
3752 /*
3753  * lock_rwsem must be held for write
3754  */
3755 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3756 			      const struct rbd_client_id *cid)
3757 {
3758 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3759 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3760 	     cid->gid, cid->handle);
3761 	rbd_dev->owner_cid = *cid; /* struct */
3762 }
3763 
3764 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3765 {
3766 	mutex_lock(&rbd_dev->watch_mutex);
3767 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3768 	mutex_unlock(&rbd_dev->watch_mutex);
3769 }
3770 
3771 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3772 {
3773 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3774 
3775 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3776 	strcpy(rbd_dev->lock_cookie, cookie);
3777 	rbd_set_owner_cid(rbd_dev, &cid);
3778 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3779 }
3780 
3781 /*
3782  * lock_rwsem must be held for write
3783  */
3784 static int rbd_lock(struct rbd_device *rbd_dev)
3785 {
3786 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3787 	char cookie[32];
3788 	int ret;
3789 
3790 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3791 		rbd_dev->lock_cookie[0] != '\0');
3792 
3793 	format_lock_cookie(rbd_dev, cookie);
3794 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3795 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3796 			    RBD_LOCK_TAG, "", 0);
3797 	if (ret)
3798 		return ret;
3799 
3800 	__rbd_lock(rbd_dev, cookie);
3801 	return 0;
3802 }
3803 
3804 /*
3805  * lock_rwsem must be held for write
3806  */
3807 static void rbd_unlock(struct rbd_device *rbd_dev)
3808 {
3809 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3810 	int ret;
3811 
3812 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3813 		rbd_dev->lock_cookie[0] == '\0');
3814 
3815 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3816 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3817 	if (ret && ret != -ENOENT)
3818 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3819 
3820 	/* treat errors as the image is unlocked */
3821 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3822 	rbd_dev->lock_cookie[0] = '\0';
3823 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3824 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3825 }
3826 
3827 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3828 				enum rbd_notify_op notify_op,
3829 				struct page ***preply_pages,
3830 				size_t *preply_len)
3831 {
3832 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3833 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3834 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3835 	int buf_size = sizeof(buf);
3836 	void *p = buf;
3837 
3838 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3839 
3840 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3841 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3842 	ceph_encode_32(&p, notify_op);
3843 	ceph_encode_64(&p, cid.gid);
3844 	ceph_encode_64(&p, cid.handle);
3845 
3846 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3847 				&rbd_dev->header_oloc, buf, buf_size,
3848 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3849 }
3850 
3851 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3852 			       enum rbd_notify_op notify_op)
3853 {
3854 	struct page **reply_pages;
3855 	size_t reply_len;
3856 
3857 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3858 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3859 }
3860 
3861 static void rbd_notify_acquired_lock(struct work_struct *work)
3862 {
3863 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3864 						  acquired_lock_work);
3865 
3866 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3867 }
3868 
3869 static void rbd_notify_released_lock(struct work_struct *work)
3870 {
3871 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3872 						  released_lock_work);
3873 
3874 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3875 }
3876 
3877 static int rbd_request_lock(struct rbd_device *rbd_dev)
3878 {
3879 	struct page **reply_pages;
3880 	size_t reply_len;
3881 	bool lock_owner_responded = false;
3882 	int ret;
3883 
3884 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3885 
3886 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3887 				   &reply_pages, &reply_len);
3888 	if (ret && ret != -ETIMEDOUT) {
3889 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3890 		goto out;
3891 	}
3892 
3893 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3894 		void *p = page_address(reply_pages[0]);
3895 		void *const end = p + reply_len;
3896 		u32 n;
3897 
3898 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3899 		while (n--) {
3900 			u8 struct_v;
3901 			u32 len;
3902 
3903 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3904 			p += 8 + 8; /* skip gid and cookie */
3905 
3906 			ceph_decode_32_safe(&p, end, len, e_inval);
3907 			if (!len)
3908 				continue;
3909 
3910 			if (lock_owner_responded) {
3911 				rbd_warn(rbd_dev,
3912 					 "duplicate lock owners detected");
3913 				ret = -EIO;
3914 				goto out;
3915 			}
3916 
3917 			lock_owner_responded = true;
3918 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3919 						  &struct_v, &len);
3920 			if (ret) {
3921 				rbd_warn(rbd_dev,
3922 					 "failed to decode ResponseMessage: %d",
3923 					 ret);
3924 				goto e_inval;
3925 			}
3926 
3927 			ret = ceph_decode_32(&p);
3928 		}
3929 	}
3930 
3931 	if (!lock_owner_responded) {
3932 		rbd_warn(rbd_dev, "no lock owners detected");
3933 		ret = -ETIMEDOUT;
3934 	}
3935 
3936 out:
3937 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3938 	return ret;
3939 
3940 e_inval:
3941 	ret = -EINVAL;
3942 	goto out;
3943 }
3944 
3945 /*
3946  * Either image request state machine(s) or rbd_add_acquire_lock()
3947  * (i.e. "rbd map").
3948  */
3949 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3950 {
3951 	struct rbd_img_request *img_req;
3952 
3953 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3954 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3955 
3956 	cancel_delayed_work(&rbd_dev->lock_dwork);
3957 	if (!completion_done(&rbd_dev->acquire_wait)) {
3958 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3959 			   list_empty(&rbd_dev->running_list));
3960 		rbd_dev->acquire_err = result;
3961 		complete_all(&rbd_dev->acquire_wait);
3962 		return;
3963 	}
3964 
3965 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3966 		mutex_lock(&img_req->state_mutex);
3967 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3968 		rbd_img_schedule(img_req, result);
3969 		mutex_unlock(&img_req->state_mutex);
3970 	}
3971 
3972 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3973 }
3974 
3975 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3976 			       struct ceph_locker **lockers, u32 *num_lockers)
3977 {
3978 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3979 	u8 lock_type;
3980 	char *lock_tag;
3981 	int ret;
3982 
3983 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3984 
3985 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3986 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3987 				 &lock_type, &lock_tag, lockers, num_lockers);
3988 	if (ret)
3989 		return ret;
3990 
3991 	if (*num_lockers == 0) {
3992 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3993 		goto out;
3994 	}
3995 
3996 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3997 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3998 			 lock_tag);
3999 		ret = -EBUSY;
4000 		goto out;
4001 	}
4002 
4003 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
4004 		rbd_warn(rbd_dev, "shared lock type detected");
4005 		ret = -EBUSY;
4006 		goto out;
4007 	}
4008 
4009 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
4010 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
4011 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
4012 			 (*lockers)[0].id.cookie);
4013 		ret = -EBUSY;
4014 		goto out;
4015 	}
4016 
4017 out:
4018 	kfree(lock_tag);
4019 	return ret;
4020 }
4021 
4022 static int find_watcher(struct rbd_device *rbd_dev,
4023 			const struct ceph_locker *locker)
4024 {
4025 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4026 	struct ceph_watch_item *watchers;
4027 	u32 num_watchers;
4028 	u64 cookie;
4029 	int i;
4030 	int ret;
4031 
4032 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4033 				      &rbd_dev->header_oloc, &watchers,
4034 				      &num_watchers);
4035 	if (ret)
4036 		return ret;
4037 
4038 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4039 	for (i = 0; i < num_watchers; i++) {
4040 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
4041 			    sizeof(locker->info.addr)) &&
4042 		    watchers[i].cookie == cookie) {
4043 			struct rbd_client_id cid = {
4044 				.gid = le64_to_cpu(watchers[i].name.num),
4045 				.handle = cookie,
4046 			};
4047 
4048 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4049 			     rbd_dev, cid.gid, cid.handle);
4050 			rbd_set_owner_cid(rbd_dev, &cid);
4051 			ret = 1;
4052 			goto out;
4053 		}
4054 	}
4055 
4056 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4057 	ret = 0;
4058 out:
4059 	kfree(watchers);
4060 	return ret;
4061 }
4062 
4063 /*
4064  * lock_rwsem must be held for write
4065  */
4066 static int rbd_try_lock(struct rbd_device *rbd_dev)
4067 {
4068 	struct ceph_client *client = rbd_dev->rbd_client->client;
4069 	struct ceph_locker *lockers;
4070 	u32 num_lockers;
4071 	int ret;
4072 
4073 	for (;;) {
4074 		ret = rbd_lock(rbd_dev);
4075 		if (ret != -EBUSY)
4076 			return ret;
4077 
4078 		/* determine if the current lock holder is still alive */
4079 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4080 		if (ret)
4081 			return ret;
4082 
4083 		if (num_lockers == 0)
4084 			goto again;
4085 
4086 		ret = find_watcher(rbd_dev, lockers);
4087 		if (ret)
4088 			goto out; /* request lock or error */
4089 
4090 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4091 			 ENTITY_NAME(lockers[0].id.name));
4092 
4093 		ret = ceph_monc_blacklist_add(&client->monc,
4094 					      &lockers[0].info.addr);
4095 		if (ret) {
4096 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4097 				 ENTITY_NAME(lockers[0].id.name), ret);
4098 			goto out;
4099 		}
4100 
4101 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4102 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4103 					  lockers[0].id.cookie,
4104 					  &lockers[0].id.name);
4105 		if (ret && ret != -ENOENT)
4106 			goto out;
4107 
4108 again:
4109 		ceph_free_lockers(lockers, num_lockers);
4110 	}
4111 
4112 out:
4113 	ceph_free_lockers(lockers, num_lockers);
4114 	return ret;
4115 }
4116 
4117 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4118 {
4119 	int ret;
4120 
4121 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4122 		ret = rbd_object_map_open(rbd_dev);
4123 		if (ret)
4124 			return ret;
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 /*
4131  * Return:
4132  *   0 - lock acquired
4133  *   1 - caller should call rbd_request_lock()
4134  *  <0 - error
4135  */
4136 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4137 {
4138 	int ret;
4139 
4140 	down_read(&rbd_dev->lock_rwsem);
4141 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4142 	     rbd_dev->lock_state);
4143 	if (__rbd_is_lock_owner(rbd_dev)) {
4144 		up_read(&rbd_dev->lock_rwsem);
4145 		return 0;
4146 	}
4147 
4148 	up_read(&rbd_dev->lock_rwsem);
4149 	down_write(&rbd_dev->lock_rwsem);
4150 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4151 	     rbd_dev->lock_state);
4152 	if (__rbd_is_lock_owner(rbd_dev)) {
4153 		up_write(&rbd_dev->lock_rwsem);
4154 		return 0;
4155 	}
4156 
4157 	ret = rbd_try_lock(rbd_dev);
4158 	if (ret < 0) {
4159 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4160 		if (ret == -EBLACKLISTED)
4161 			goto out;
4162 
4163 		ret = 1; /* request lock anyway */
4164 	}
4165 	if (ret > 0) {
4166 		up_write(&rbd_dev->lock_rwsem);
4167 		return ret;
4168 	}
4169 
4170 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4171 	rbd_assert(list_empty(&rbd_dev->running_list));
4172 
4173 	ret = rbd_post_acquire_action(rbd_dev);
4174 	if (ret) {
4175 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4176 		/*
4177 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4178 		 * rbd_lock_add_request() would let the request through,
4179 		 * assuming that e.g. object map is locked and loaded.
4180 		 */
4181 		rbd_unlock(rbd_dev);
4182 	}
4183 
4184 out:
4185 	wake_lock_waiters(rbd_dev, ret);
4186 	up_write(&rbd_dev->lock_rwsem);
4187 	return ret;
4188 }
4189 
4190 static void rbd_acquire_lock(struct work_struct *work)
4191 {
4192 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4193 					    struct rbd_device, lock_dwork);
4194 	int ret;
4195 
4196 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4197 again:
4198 	ret = rbd_try_acquire_lock(rbd_dev);
4199 	if (ret <= 0) {
4200 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4201 		return;
4202 	}
4203 
4204 	ret = rbd_request_lock(rbd_dev);
4205 	if (ret == -ETIMEDOUT) {
4206 		goto again; /* treat this as a dead client */
4207 	} else if (ret == -EROFS) {
4208 		rbd_warn(rbd_dev, "peer will not release lock");
4209 		down_write(&rbd_dev->lock_rwsem);
4210 		wake_lock_waiters(rbd_dev, ret);
4211 		up_write(&rbd_dev->lock_rwsem);
4212 	} else if (ret < 0) {
4213 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4214 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4215 				 RBD_RETRY_DELAY);
4216 	} else {
4217 		/*
4218 		 * lock owner acked, but resend if we don't see them
4219 		 * release the lock
4220 		 */
4221 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
4222 		     rbd_dev);
4223 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4224 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4225 	}
4226 }
4227 
4228 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4229 {
4230 	bool need_wait;
4231 
4232 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4233 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4234 
4235 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4236 		return false;
4237 
4238 	/*
4239 	 * Ensure that all in-flight IO is flushed.
4240 	 */
4241 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4242 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4243 	need_wait = !list_empty(&rbd_dev->running_list);
4244 	downgrade_write(&rbd_dev->lock_rwsem);
4245 	if (need_wait)
4246 		wait_for_completion(&rbd_dev->releasing_wait);
4247 	up_read(&rbd_dev->lock_rwsem);
4248 
4249 	down_write(&rbd_dev->lock_rwsem);
4250 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4251 		return false;
4252 
4253 	rbd_assert(list_empty(&rbd_dev->running_list));
4254 	return true;
4255 }
4256 
4257 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4258 {
4259 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4260 		rbd_object_map_close(rbd_dev);
4261 }
4262 
4263 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4264 {
4265 	rbd_assert(list_empty(&rbd_dev->running_list));
4266 
4267 	rbd_pre_release_action(rbd_dev);
4268 	rbd_unlock(rbd_dev);
4269 }
4270 
4271 /*
4272  * lock_rwsem must be held for write
4273  */
4274 static void rbd_release_lock(struct rbd_device *rbd_dev)
4275 {
4276 	if (!rbd_quiesce_lock(rbd_dev))
4277 		return;
4278 
4279 	__rbd_release_lock(rbd_dev);
4280 
4281 	/*
4282 	 * Give others a chance to grab the lock - we would re-acquire
4283 	 * almost immediately if we got new IO while draining the running
4284 	 * list otherwise.  We need to ack our own notifications, so this
4285 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4286 	 * way of maybe_kick_acquire().
4287 	 */
4288 	cancel_delayed_work(&rbd_dev->lock_dwork);
4289 }
4290 
4291 static void rbd_release_lock_work(struct work_struct *work)
4292 {
4293 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4294 						  unlock_work);
4295 
4296 	down_write(&rbd_dev->lock_rwsem);
4297 	rbd_release_lock(rbd_dev);
4298 	up_write(&rbd_dev->lock_rwsem);
4299 }
4300 
4301 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4302 {
4303 	bool have_requests;
4304 
4305 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4306 	if (__rbd_is_lock_owner(rbd_dev))
4307 		return;
4308 
4309 	spin_lock(&rbd_dev->lock_lists_lock);
4310 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4311 	spin_unlock(&rbd_dev->lock_lists_lock);
4312 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4313 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4314 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4315 	}
4316 }
4317 
4318 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4319 				     void **p)
4320 {
4321 	struct rbd_client_id cid = { 0 };
4322 
4323 	if (struct_v >= 2) {
4324 		cid.gid = ceph_decode_64(p);
4325 		cid.handle = ceph_decode_64(p);
4326 	}
4327 
4328 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4329 	     cid.handle);
4330 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4331 		down_write(&rbd_dev->lock_rwsem);
4332 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4333 			/*
4334 			 * we already know that the remote client is
4335 			 * the owner
4336 			 */
4337 			up_write(&rbd_dev->lock_rwsem);
4338 			return;
4339 		}
4340 
4341 		rbd_set_owner_cid(rbd_dev, &cid);
4342 		downgrade_write(&rbd_dev->lock_rwsem);
4343 	} else {
4344 		down_read(&rbd_dev->lock_rwsem);
4345 	}
4346 
4347 	maybe_kick_acquire(rbd_dev);
4348 	up_read(&rbd_dev->lock_rwsem);
4349 }
4350 
4351 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4352 				     void **p)
4353 {
4354 	struct rbd_client_id cid = { 0 };
4355 
4356 	if (struct_v >= 2) {
4357 		cid.gid = ceph_decode_64(p);
4358 		cid.handle = ceph_decode_64(p);
4359 	}
4360 
4361 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4362 	     cid.handle);
4363 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4364 		down_write(&rbd_dev->lock_rwsem);
4365 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4366 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4367 			     __func__, rbd_dev, cid.gid, cid.handle,
4368 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4369 			up_write(&rbd_dev->lock_rwsem);
4370 			return;
4371 		}
4372 
4373 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4374 		downgrade_write(&rbd_dev->lock_rwsem);
4375 	} else {
4376 		down_read(&rbd_dev->lock_rwsem);
4377 	}
4378 
4379 	maybe_kick_acquire(rbd_dev);
4380 	up_read(&rbd_dev->lock_rwsem);
4381 }
4382 
4383 /*
4384  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4385  * ResponseMessage is needed.
4386  */
4387 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4388 				   void **p)
4389 {
4390 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4391 	struct rbd_client_id cid = { 0 };
4392 	int result = 1;
4393 
4394 	if (struct_v >= 2) {
4395 		cid.gid = ceph_decode_64(p);
4396 		cid.handle = ceph_decode_64(p);
4397 	}
4398 
4399 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4400 	     cid.handle);
4401 	if (rbd_cid_equal(&cid, &my_cid))
4402 		return result;
4403 
4404 	down_read(&rbd_dev->lock_rwsem);
4405 	if (__rbd_is_lock_owner(rbd_dev)) {
4406 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4407 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4408 			goto out_unlock;
4409 
4410 		/*
4411 		 * encode ResponseMessage(0) so the peer can detect
4412 		 * a missing owner
4413 		 */
4414 		result = 0;
4415 
4416 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4417 			if (!rbd_dev->opts->exclusive) {
4418 				dout("%s rbd_dev %p queueing unlock_work\n",
4419 				     __func__, rbd_dev);
4420 				queue_work(rbd_dev->task_wq,
4421 					   &rbd_dev->unlock_work);
4422 			} else {
4423 				/* refuse to release the lock */
4424 				result = -EROFS;
4425 			}
4426 		}
4427 	}
4428 
4429 out_unlock:
4430 	up_read(&rbd_dev->lock_rwsem);
4431 	return result;
4432 }
4433 
4434 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4435 				     u64 notify_id, u64 cookie, s32 *result)
4436 {
4437 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4438 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4439 	int buf_size = sizeof(buf);
4440 	int ret;
4441 
4442 	if (result) {
4443 		void *p = buf;
4444 
4445 		/* encode ResponseMessage */
4446 		ceph_start_encoding(&p, 1, 1,
4447 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4448 		ceph_encode_32(&p, *result);
4449 	} else {
4450 		buf_size = 0;
4451 	}
4452 
4453 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4454 				   &rbd_dev->header_oloc, notify_id, cookie,
4455 				   buf, buf_size);
4456 	if (ret)
4457 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4458 }
4459 
4460 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4461 				   u64 cookie)
4462 {
4463 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4464 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4465 }
4466 
4467 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4468 					  u64 notify_id, u64 cookie, s32 result)
4469 {
4470 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4471 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4472 }
4473 
4474 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4475 			 u64 notifier_id, void *data, size_t data_len)
4476 {
4477 	struct rbd_device *rbd_dev = arg;
4478 	void *p = data;
4479 	void *const end = p + data_len;
4480 	u8 struct_v = 0;
4481 	u32 len;
4482 	u32 notify_op;
4483 	int ret;
4484 
4485 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4486 	     __func__, rbd_dev, cookie, notify_id, data_len);
4487 	if (data_len) {
4488 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4489 					  &struct_v, &len);
4490 		if (ret) {
4491 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4492 				 ret);
4493 			return;
4494 		}
4495 
4496 		notify_op = ceph_decode_32(&p);
4497 	} else {
4498 		/* legacy notification for header updates */
4499 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4500 		len = 0;
4501 	}
4502 
4503 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4504 	switch (notify_op) {
4505 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4506 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4507 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4508 		break;
4509 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4510 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4511 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4512 		break;
4513 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4514 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4515 		if (ret <= 0)
4516 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4517 						      cookie, ret);
4518 		else
4519 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4520 		break;
4521 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4522 		ret = rbd_dev_refresh(rbd_dev);
4523 		if (ret)
4524 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4525 
4526 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4527 		break;
4528 	default:
4529 		if (rbd_is_lock_owner(rbd_dev))
4530 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4531 						      cookie, -EOPNOTSUPP);
4532 		else
4533 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4534 		break;
4535 	}
4536 }
4537 
4538 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4539 
4540 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4541 {
4542 	struct rbd_device *rbd_dev = arg;
4543 
4544 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4545 
4546 	down_write(&rbd_dev->lock_rwsem);
4547 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4548 	up_write(&rbd_dev->lock_rwsem);
4549 
4550 	mutex_lock(&rbd_dev->watch_mutex);
4551 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4552 		__rbd_unregister_watch(rbd_dev);
4553 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4554 
4555 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4556 	}
4557 	mutex_unlock(&rbd_dev->watch_mutex);
4558 }
4559 
4560 /*
4561  * watch_mutex must be locked
4562  */
4563 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4564 {
4565 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4566 	struct ceph_osd_linger_request *handle;
4567 
4568 	rbd_assert(!rbd_dev->watch_handle);
4569 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4570 
4571 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4572 				 &rbd_dev->header_oloc, rbd_watch_cb,
4573 				 rbd_watch_errcb, rbd_dev);
4574 	if (IS_ERR(handle))
4575 		return PTR_ERR(handle);
4576 
4577 	rbd_dev->watch_handle = handle;
4578 	return 0;
4579 }
4580 
4581 /*
4582  * watch_mutex must be locked
4583  */
4584 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4585 {
4586 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4587 	int ret;
4588 
4589 	rbd_assert(rbd_dev->watch_handle);
4590 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4591 
4592 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4593 	if (ret)
4594 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4595 
4596 	rbd_dev->watch_handle = NULL;
4597 }
4598 
4599 static int rbd_register_watch(struct rbd_device *rbd_dev)
4600 {
4601 	int ret;
4602 
4603 	mutex_lock(&rbd_dev->watch_mutex);
4604 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4605 	ret = __rbd_register_watch(rbd_dev);
4606 	if (ret)
4607 		goto out;
4608 
4609 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4610 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4611 
4612 out:
4613 	mutex_unlock(&rbd_dev->watch_mutex);
4614 	return ret;
4615 }
4616 
4617 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4618 {
4619 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4620 
4621 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4622 	cancel_work_sync(&rbd_dev->released_lock_work);
4623 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4624 	cancel_work_sync(&rbd_dev->unlock_work);
4625 }
4626 
4627 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4628 {
4629 	cancel_tasks_sync(rbd_dev);
4630 
4631 	mutex_lock(&rbd_dev->watch_mutex);
4632 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4633 		__rbd_unregister_watch(rbd_dev);
4634 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4635 	mutex_unlock(&rbd_dev->watch_mutex);
4636 
4637 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4638 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4639 }
4640 
4641 /*
4642  * lock_rwsem must be held for write
4643  */
4644 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4645 {
4646 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4647 	char cookie[32];
4648 	int ret;
4649 
4650 	if (!rbd_quiesce_lock(rbd_dev))
4651 		return;
4652 
4653 	format_lock_cookie(rbd_dev, cookie);
4654 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4655 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4656 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4657 				  RBD_LOCK_TAG, cookie);
4658 	if (ret) {
4659 		if (ret != -EOPNOTSUPP)
4660 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4661 				 ret);
4662 
4663 		/*
4664 		 * Lock cookie cannot be updated on older OSDs, so do
4665 		 * a manual release and queue an acquire.
4666 		 */
4667 		__rbd_release_lock(rbd_dev);
4668 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4669 	} else {
4670 		__rbd_lock(rbd_dev, cookie);
4671 		wake_lock_waiters(rbd_dev, 0);
4672 	}
4673 }
4674 
4675 static void rbd_reregister_watch(struct work_struct *work)
4676 {
4677 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4678 					    struct rbd_device, watch_dwork);
4679 	int ret;
4680 
4681 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4682 
4683 	mutex_lock(&rbd_dev->watch_mutex);
4684 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4685 		mutex_unlock(&rbd_dev->watch_mutex);
4686 		return;
4687 	}
4688 
4689 	ret = __rbd_register_watch(rbd_dev);
4690 	if (ret) {
4691 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4692 		if (ret != -EBLACKLISTED && ret != -ENOENT) {
4693 			queue_delayed_work(rbd_dev->task_wq,
4694 					   &rbd_dev->watch_dwork,
4695 					   RBD_RETRY_DELAY);
4696 			mutex_unlock(&rbd_dev->watch_mutex);
4697 			return;
4698 		}
4699 
4700 		mutex_unlock(&rbd_dev->watch_mutex);
4701 		down_write(&rbd_dev->lock_rwsem);
4702 		wake_lock_waiters(rbd_dev, ret);
4703 		up_write(&rbd_dev->lock_rwsem);
4704 		return;
4705 	}
4706 
4707 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4708 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4709 	mutex_unlock(&rbd_dev->watch_mutex);
4710 
4711 	down_write(&rbd_dev->lock_rwsem);
4712 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4713 		rbd_reacquire_lock(rbd_dev);
4714 	up_write(&rbd_dev->lock_rwsem);
4715 
4716 	ret = rbd_dev_refresh(rbd_dev);
4717 	if (ret)
4718 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4719 }
4720 
4721 /*
4722  * Synchronous osd object method call.  Returns the number of bytes
4723  * returned in the outbound buffer, or a negative error code.
4724  */
4725 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4726 			     struct ceph_object_id *oid,
4727 			     struct ceph_object_locator *oloc,
4728 			     const char *method_name,
4729 			     const void *outbound,
4730 			     size_t outbound_size,
4731 			     void *inbound,
4732 			     size_t inbound_size)
4733 {
4734 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4735 	struct page *req_page = NULL;
4736 	struct page *reply_page;
4737 	int ret;
4738 
4739 	/*
4740 	 * Method calls are ultimately read operations.  The result
4741 	 * should placed into the inbound buffer provided.  They
4742 	 * also supply outbound data--parameters for the object
4743 	 * method.  Currently if this is present it will be a
4744 	 * snapshot id.
4745 	 */
4746 	if (outbound) {
4747 		if (outbound_size > PAGE_SIZE)
4748 			return -E2BIG;
4749 
4750 		req_page = alloc_page(GFP_KERNEL);
4751 		if (!req_page)
4752 			return -ENOMEM;
4753 
4754 		memcpy(page_address(req_page), outbound, outbound_size);
4755 	}
4756 
4757 	reply_page = alloc_page(GFP_KERNEL);
4758 	if (!reply_page) {
4759 		if (req_page)
4760 			__free_page(req_page);
4761 		return -ENOMEM;
4762 	}
4763 
4764 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4765 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4766 			     &reply_page, &inbound_size);
4767 	if (!ret) {
4768 		memcpy(inbound, page_address(reply_page), inbound_size);
4769 		ret = inbound_size;
4770 	}
4771 
4772 	if (req_page)
4773 		__free_page(req_page);
4774 	__free_page(reply_page);
4775 	return ret;
4776 }
4777 
4778 static void rbd_queue_workfn(struct work_struct *work)
4779 {
4780 	struct request *rq = blk_mq_rq_from_pdu(work);
4781 	struct rbd_device *rbd_dev = rq->q->queuedata;
4782 	struct rbd_img_request *img_request;
4783 	struct ceph_snap_context *snapc = NULL;
4784 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4785 	u64 length = blk_rq_bytes(rq);
4786 	enum obj_operation_type op_type;
4787 	u64 mapping_size;
4788 	int result;
4789 
4790 	switch (req_op(rq)) {
4791 	case REQ_OP_DISCARD:
4792 		op_type = OBJ_OP_DISCARD;
4793 		break;
4794 	case REQ_OP_WRITE_ZEROES:
4795 		op_type = OBJ_OP_ZEROOUT;
4796 		break;
4797 	case REQ_OP_WRITE:
4798 		op_type = OBJ_OP_WRITE;
4799 		break;
4800 	case REQ_OP_READ:
4801 		op_type = OBJ_OP_READ;
4802 		break;
4803 	default:
4804 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4805 		result = -EIO;
4806 		goto err;
4807 	}
4808 
4809 	/* Ignore/skip any zero-length requests */
4810 
4811 	if (!length) {
4812 		dout("%s: zero-length request\n", __func__);
4813 		result = 0;
4814 		goto err_rq;
4815 	}
4816 
4817 	if (op_type != OBJ_OP_READ && rbd_dev->spec->snap_id != CEPH_NOSNAP) {
4818 		rbd_warn(rbd_dev, "%s on read-only snapshot",
4819 			 obj_op_name(op_type));
4820 		result = -EIO;
4821 		goto err;
4822 	}
4823 
4824 	/*
4825 	 * Quit early if the mapped snapshot no longer exists.  It's
4826 	 * still possible the snapshot will have disappeared by the
4827 	 * time our request arrives at the osd, but there's no sense in
4828 	 * sending it if we already know.
4829 	 */
4830 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4831 		dout("request for non-existent snapshot");
4832 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4833 		result = -ENXIO;
4834 		goto err_rq;
4835 	}
4836 
4837 	if (offset && length > U64_MAX - offset + 1) {
4838 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4839 			 length);
4840 		result = -EINVAL;
4841 		goto err_rq;	/* Shouldn't happen */
4842 	}
4843 
4844 	blk_mq_start_request(rq);
4845 
4846 	down_read(&rbd_dev->header_rwsem);
4847 	mapping_size = rbd_dev->mapping.size;
4848 	if (op_type != OBJ_OP_READ) {
4849 		snapc = rbd_dev->header.snapc;
4850 		ceph_get_snap_context(snapc);
4851 	}
4852 	up_read(&rbd_dev->header_rwsem);
4853 
4854 	if (offset + length > mapping_size) {
4855 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4856 			 length, mapping_size);
4857 		result = -EIO;
4858 		goto err_rq;
4859 	}
4860 
4861 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
4862 	if (!img_request) {
4863 		result = -ENOMEM;
4864 		goto err_rq;
4865 	}
4866 	img_request->rq = rq;
4867 	snapc = NULL; /* img_request consumes a ref */
4868 
4869 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4870 		result = rbd_img_fill_nodata(img_request, offset, length);
4871 	else
4872 		result = rbd_img_fill_from_bio(img_request, offset, length,
4873 					       rq->bio);
4874 	if (result)
4875 		goto err_img_request;
4876 
4877 	rbd_img_handle_request(img_request, 0);
4878 	return;
4879 
4880 err_img_request:
4881 	rbd_img_request_put(img_request);
4882 err_rq:
4883 	if (result)
4884 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4885 			 obj_op_name(op_type), length, offset, result);
4886 	ceph_put_snap_context(snapc);
4887 err:
4888 	blk_mq_end_request(rq, errno_to_blk_status(result));
4889 }
4890 
4891 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4892 		const struct blk_mq_queue_data *bd)
4893 {
4894 	struct request *rq = bd->rq;
4895 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4896 
4897 	queue_work(rbd_wq, work);
4898 	return BLK_STS_OK;
4899 }
4900 
4901 static void rbd_free_disk(struct rbd_device *rbd_dev)
4902 {
4903 	blk_cleanup_queue(rbd_dev->disk->queue);
4904 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4905 	put_disk(rbd_dev->disk);
4906 	rbd_dev->disk = NULL;
4907 }
4908 
4909 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4910 			     struct ceph_object_id *oid,
4911 			     struct ceph_object_locator *oloc,
4912 			     void *buf, int buf_len)
4913 
4914 {
4915 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4916 	struct ceph_osd_request *req;
4917 	struct page **pages;
4918 	int num_pages = calc_pages_for(0, buf_len);
4919 	int ret;
4920 
4921 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4922 	if (!req)
4923 		return -ENOMEM;
4924 
4925 	ceph_oid_copy(&req->r_base_oid, oid);
4926 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4927 	req->r_flags = CEPH_OSD_FLAG_READ;
4928 
4929 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4930 	if (IS_ERR(pages)) {
4931 		ret = PTR_ERR(pages);
4932 		goto out_req;
4933 	}
4934 
4935 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4936 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4937 					 true);
4938 
4939 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4940 	if (ret)
4941 		goto out_req;
4942 
4943 	ceph_osdc_start_request(osdc, req, false);
4944 	ret = ceph_osdc_wait_request(osdc, req);
4945 	if (ret >= 0)
4946 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4947 
4948 out_req:
4949 	ceph_osdc_put_request(req);
4950 	return ret;
4951 }
4952 
4953 /*
4954  * Read the complete header for the given rbd device.  On successful
4955  * return, the rbd_dev->header field will contain up-to-date
4956  * information about the image.
4957  */
4958 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4959 {
4960 	struct rbd_image_header_ondisk *ondisk = NULL;
4961 	u32 snap_count = 0;
4962 	u64 names_size = 0;
4963 	u32 want_count;
4964 	int ret;
4965 
4966 	/*
4967 	 * The complete header will include an array of its 64-bit
4968 	 * snapshot ids, followed by the names of those snapshots as
4969 	 * a contiguous block of NUL-terminated strings.  Note that
4970 	 * the number of snapshots could change by the time we read
4971 	 * it in, in which case we re-read it.
4972 	 */
4973 	do {
4974 		size_t size;
4975 
4976 		kfree(ondisk);
4977 
4978 		size = sizeof (*ondisk);
4979 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4980 		size += names_size;
4981 		ondisk = kmalloc(size, GFP_KERNEL);
4982 		if (!ondisk)
4983 			return -ENOMEM;
4984 
4985 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4986 					&rbd_dev->header_oloc, ondisk, size);
4987 		if (ret < 0)
4988 			goto out;
4989 		if ((size_t)ret < size) {
4990 			ret = -ENXIO;
4991 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4992 				size, ret);
4993 			goto out;
4994 		}
4995 		if (!rbd_dev_ondisk_valid(ondisk)) {
4996 			ret = -ENXIO;
4997 			rbd_warn(rbd_dev, "invalid header");
4998 			goto out;
4999 		}
5000 
5001 		names_size = le64_to_cpu(ondisk->snap_names_len);
5002 		want_count = snap_count;
5003 		snap_count = le32_to_cpu(ondisk->snap_count);
5004 	} while (snap_count != want_count);
5005 
5006 	ret = rbd_header_from_disk(rbd_dev, ondisk);
5007 out:
5008 	kfree(ondisk);
5009 
5010 	return ret;
5011 }
5012 
5013 /*
5014  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
5015  * has disappeared from the (just updated) snapshot context.
5016  */
5017 static void rbd_exists_validate(struct rbd_device *rbd_dev)
5018 {
5019 	u64 snap_id;
5020 
5021 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
5022 		return;
5023 
5024 	snap_id = rbd_dev->spec->snap_id;
5025 	if (snap_id == CEPH_NOSNAP)
5026 		return;
5027 
5028 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
5029 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5030 }
5031 
5032 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
5033 {
5034 	sector_t size;
5035 
5036 	/*
5037 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
5038 	 * try to update its size.  If REMOVING is set, updating size
5039 	 * is just useless work since the device can't be opened.
5040 	 */
5041 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
5042 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
5043 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
5044 		dout("setting size to %llu sectors", (unsigned long long)size);
5045 		set_capacity(rbd_dev->disk, size);
5046 		revalidate_disk(rbd_dev->disk);
5047 	}
5048 }
5049 
5050 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
5051 {
5052 	u64 mapping_size;
5053 	int ret;
5054 
5055 	down_write(&rbd_dev->header_rwsem);
5056 	mapping_size = rbd_dev->mapping.size;
5057 
5058 	ret = rbd_dev_header_info(rbd_dev);
5059 	if (ret)
5060 		goto out;
5061 
5062 	/*
5063 	 * If there is a parent, see if it has disappeared due to the
5064 	 * mapped image getting flattened.
5065 	 */
5066 	if (rbd_dev->parent) {
5067 		ret = rbd_dev_v2_parent_info(rbd_dev);
5068 		if (ret)
5069 			goto out;
5070 	}
5071 
5072 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
5073 		rbd_dev->mapping.size = rbd_dev->header.image_size;
5074 	} else {
5075 		/* validate mapped snapshot's EXISTS flag */
5076 		rbd_exists_validate(rbd_dev);
5077 	}
5078 
5079 out:
5080 	up_write(&rbd_dev->header_rwsem);
5081 	if (!ret && mapping_size != rbd_dev->mapping.size)
5082 		rbd_dev_update_size(rbd_dev);
5083 
5084 	return ret;
5085 }
5086 
5087 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
5088 		unsigned int hctx_idx, unsigned int numa_node)
5089 {
5090 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
5091 
5092 	INIT_WORK(work, rbd_queue_workfn);
5093 	return 0;
5094 }
5095 
5096 static const struct blk_mq_ops rbd_mq_ops = {
5097 	.queue_rq	= rbd_queue_rq,
5098 	.init_request	= rbd_init_request,
5099 };
5100 
5101 static int rbd_init_disk(struct rbd_device *rbd_dev)
5102 {
5103 	struct gendisk *disk;
5104 	struct request_queue *q;
5105 	unsigned int objset_bytes =
5106 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5107 	int err;
5108 
5109 	/* create gendisk info */
5110 	disk = alloc_disk(single_major ?
5111 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5112 			  RBD_MINORS_PER_MAJOR);
5113 	if (!disk)
5114 		return -ENOMEM;
5115 
5116 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5117 		 rbd_dev->dev_id);
5118 	disk->major = rbd_dev->major;
5119 	disk->first_minor = rbd_dev->minor;
5120 	if (single_major)
5121 		disk->flags |= GENHD_FL_EXT_DEVT;
5122 	disk->fops = &rbd_bd_ops;
5123 	disk->private_data = rbd_dev;
5124 
5125 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5126 	rbd_dev->tag_set.ops = &rbd_mq_ops;
5127 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5128 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5129 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5130 	rbd_dev->tag_set.nr_hw_queues = 1;
5131 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
5132 
5133 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5134 	if (err)
5135 		goto out_disk;
5136 
5137 	q = blk_mq_init_queue(&rbd_dev->tag_set);
5138 	if (IS_ERR(q)) {
5139 		err = PTR_ERR(q);
5140 		goto out_tag_set;
5141 	}
5142 
5143 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5144 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5145 
5146 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5147 	q->limits.max_sectors = queue_max_hw_sectors(q);
5148 	blk_queue_max_segments(q, USHRT_MAX);
5149 	blk_queue_max_segment_size(q, UINT_MAX);
5150 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5151 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5152 
5153 	if (rbd_dev->opts->trim) {
5154 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5155 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5156 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5157 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5158 	}
5159 
5160 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5161 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5162 
5163 	/*
5164 	 * disk_release() expects a queue ref from add_disk() and will
5165 	 * put it.  Hold an extra ref until add_disk() is called.
5166 	 */
5167 	WARN_ON(!blk_get_queue(q));
5168 	disk->queue = q;
5169 	q->queuedata = rbd_dev;
5170 
5171 	rbd_dev->disk = disk;
5172 
5173 	return 0;
5174 out_tag_set:
5175 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5176 out_disk:
5177 	put_disk(disk);
5178 	return err;
5179 }
5180 
5181 /*
5182   sysfs
5183 */
5184 
5185 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5186 {
5187 	return container_of(dev, struct rbd_device, dev);
5188 }
5189 
5190 static ssize_t rbd_size_show(struct device *dev,
5191 			     struct device_attribute *attr, char *buf)
5192 {
5193 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5194 
5195 	return sprintf(buf, "%llu\n",
5196 		(unsigned long long)rbd_dev->mapping.size);
5197 }
5198 
5199 /*
5200  * Note this shows the features for whatever's mapped, which is not
5201  * necessarily the base image.
5202  */
5203 static ssize_t rbd_features_show(struct device *dev,
5204 			     struct device_attribute *attr, char *buf)
5205 {
5206 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5207 
5208 	return sprintf(buf, "0x%016llx\n",
5209 			(unsigned long long)rbd_dev->mapping.features);
5210 }
5211 
5212 static ssize_t rbd_major_show(struct device *dev,
5213 			      struct device_attribute *attr, char *buf)
5214 {
5215 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5216 
5217 	if (rbd_dev->major)
5218 		return sprintf(buf, "%d\n", rbd_dev->major);
5219 
5220 	return sprintf(buf, "(none)\n");
5221 }
5222 
5223 static ssize_t rbd_minor_show(struct device *dev,
5224 			      struct device_attribute *attr, char *buf)
5225 {
5226 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5227 
5228 	return sprintf(buf, "%d\n", rbd_dev->minor);
5229 }
5230 
5231 static ssize_t rbd_client_addr_show(struct device *dev,
5232 				    struct device_attribute *attr, char *buf)
5233 {
5234 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5235 	struct ceph_entity_addr *client_addr =
5236 	    ceph_client_addr(rbd_dev->rbd_client->client);
5237 
5238 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5239 		       le32_to_cpu(client_addr->nonce));
5240 }
5241 
5242 static ssize_t rbd_client_id_show(struct device *dev,
5243 				  struct device_attribute *attr, char *buf)
5244 {
5245 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5246 
5247 	return sprintf(buf, "client%lld\n",
5248 		       ceph_client_gid(rbd_dev->rbd_client->client));
5249 }
5250 
5251 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5252 				     struct device_attribute *attr, char *buf)
5253 {
5254 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5255 
5256 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5257 }
5258 
5259 static ssize_t rbd_config_info_show(struct device *dev,
5260 				    struct device_attribute *attr, char *buf)
5261 {
5262 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5263 
5264 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5265 }
5266 
5267 static ssize_t rbd_pool_show(struct device *dev,
5268 			     struct device_attribute *attr, char *buf)
5269 {
5270 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5271 
5272 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5273 }
5274 
5275 static ssize_t rbd_pool_id_show(struct device *dev,
5276 			     struct device_attribute *attr, char *buf)
5277 {
5278 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5279 
5280 	return sprintf(buf, "%llu\n",
5281 			(unsigned long long) rbd_dev->spec->pool_id);
5282 }
5283 
5284 static ssize_t rbd_pool_ns_show(struct device *dev,
5285 				struct device_attribute *attr, char *buf)
5286 {
5287 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5288 
5289 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5290 }
5291 
5292 static ssize_t rbd_name_show(struct device *dev,
5293 			     struct device_attribute *attr, char *buf)
5294 {
5295 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5296 
5297 	if (rbd_dev->spec->image_name)
5298 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5299 
5300 	return sprintf(buf, "(unknown)\n");
5301 }
5302 
5303 static ssize_t rbd_image_id_show(struct device *dev,
5304 			     struct device_attribute *attr, char *buf)
5305 {
5306 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5307 
5308 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5309 }
5310 
5311 /*
5312  * Shows the name of the currently-mapped snapshot (or
5313  * RBD_SNAP_HEAD_NAME for the base image).
5314  */
5315 static ssize_t rbd_snap_show(struct device *dev,
5316 			     struct device_attribute *attr,
5317 			     char *buf)
5318 {
5319 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5320 
5321 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5322 }
5323 
5324 static ssize_t rbd_snap_id_show(struct device *dev,
5325 				struct device_attribute *attr, char *buf)
5326 {
5327 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5328 
5329 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5330 }
5331 
5332 /*
5333  * For a v2 image, shows the chain of parent images, separated by empty
5334  * lines.  For v1 images or if there is no parent, shows "(no parent
5335  * image)".
5336  */
5337 static ssize_t rbd_parent_show(struct device *dev,
5338 			       struct device_attribute *attr,
5339 			       char *buf)
5340 {
5341 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5342 	ssize_t count = 0;
5343 
5344 	if (!rbd_dev->parent)
5345 		return sprintf(buf, "(no parent image)\n");
5346 
5347 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5348 		struct rbd_spec *spec = rbd_dev->parent_spec;
5349 
5350 		count += sprintf(&buf[count], "%s"
5351 			    "pool_id %llu\npool_name %s\n"
5352 			    "pool_ns %s\n"
5353 			    "image_id %s\nimage_name %s\n"
5354 			    "snap_id %llu\nsnap_name %s\n"
5355 			    "overlap %llu\n",
5356 			    !count ? "" : "\n", /* first? */
5357 			    spec->pool_id, spec->pool_name,
5358 			    spec->pool_ns ?: "",
5359 			    spec->image_id, spec->image_name ?: "(unknown)",
5360 			    spec->snap_id, spec->snap_name,
5361 			    rbd_dev->parent_overlap);
5362 	}
5363 
5364 	return count;
5365 }
5366 
5367 static ssize_t rbd_image_refresh(struct device *dev,
5368 				 struct device_attribute *attr,
5369 				 const char *buf,
5370 				 size_t size)
5371 {
5372 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5373 	int ret;
5374 
5375 	ret = rbd_dev_refresh(rbd_dev);
5376 	if (ret)
5377 		return ret;
5378 
5379 	return size;
5380 }
5381 
5382 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5383 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5384 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5385 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5386 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5387 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5388 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5389 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5390 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5391 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5392 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5393 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5394 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5395 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5396 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5397 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5398 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5399 
5400 static struct attribute *rbd_attrs[] = {
5401 	&dev_attr_size.attr,
5402 	&dev_attr_features.attr,
5403 	&dev_attr_major.attr,
5404 	&dev_attr_minor.attr,
5405 	&dev_attr_client_addr.attr,
5406 	&dev_attr_client_id.attr,
5407 	&dev_attr_cluster_fsid.attr,
5408 	&dev_attr_config_info.attr,
5409 	&dev_attr_pool.attr,
5410 	&dev_attr_pool_id.attr,
5411 	&dev_attr_pool_ns.attr,
5412 	&dev_attr_name.attr,
5413 	&dev_attr_image_id.attr,
5414 	&dev_attr_current_snap.attr,
5415 	&dev_attr_snap_id.attr,
5416 	&dev_attr_parent.attr,
5417 	&dev_attr_refresh.attr,
5418 	NULL
5419 };
5420 
5421 static struct attribute_group rbd_attr_group = {
5422 	.attrs = rbd_attrs,
5423 };
5424 
5425 static const struct attribute_group *rbd_attr_groups[] = {
5426 	&rbd_attr_group,
5427 	NULL
5428 };
5429 
5430 static void rbd_dev_release(struct device *dev);
5431 
5432 static const struct device_type rbd_device_type = {
5433 	.name		= "rbd",
5434 	.groups		= rbd_attr_groups,
5435 	.release	= rbd_dev_release,
5436 };
5437 
5438 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5439 {
5440 	kref_get(&spec->kref);
5441 
5442 	return spec;
5443 }
5444 
5445 static void rbd_spec_free(struct kref *kref);
5446 static void rbd_spec_put(struct rbd_spec *spec)
5447 {
5448 	if (spec)
5449 		kref_put(&spec->kref, rbd_spec_free);
5450 }
5451 
5452 static struct rbd_spec *rbd_spec_alloc(void)
5453 {
5454 	struct rbd_spec *spec;
5455 
5456 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5457 	if (!spec)
5458 		return NULL;
5459 
5460 	spec->pool_id = CEPH_NOPOOL;
5461 	spec->snap_id = CEPH_NOSNAP;
5462 	kref_init(&spec->kref);
5463 
5464 	return spec;
5465 }
5466 
5467 static void rbd_spec_free(struct kref *kref)
5468 {
5469 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5470 
5471 	kfree(spec->pool_name);
5472 	kfree(spec->pool_ns);
5473 	kfree(spec->image_id);
5474 	kfree(spec->image_name);
5475 	kfree(spec->snap_name);
5476 	kfree(spec);
5477 }
5478 
5479 static void rbd_dev_free(struct rbd_device *rbd_dev)
5480 {
5481 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5482 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5483 
5484 	ceph_oid_destroy(&rbd_dev->header_oid);
5485 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5486 	kfree(rbd_dev->config_info);
5487 
5488 	rbd_put_client(rbd_dev->rbd_client);
5489 	rbd_spec_put(rbd_dev->spec);
5490 	kfree(rbd_dev->opts);
5491 	kfree(rbd_dev);
5492 }
5493 
5494 static void rbd_dev_release(struct device *dev)
5495 {
5496 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5497 	bool need_put = !!rbd_dev->opts;
5498 
5499 	if (need_put) {
5500 		destroy_workqueue(rbd_dev->task_wq);
5501 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5502 	}
5503 
5504 	rbd_dev_free(rbd_dev);
5505 
5506 	/*
5507 	 * This is racy, but way better than putting module outside of
5508 	 * the release callback.  The race window is pretty small, so
5509 	 * doing something similar to dm (dm-builtin.c) is overkill.
5510 	 */
5511 	if (need_put)
5512 		module_put(THIS_MODULE);
5513 }
5514 
5515 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5516 					   struct rbd_spec *spec)
5517 {
5518 	struct rbd_device *rbd_dev;
5519 
5520 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5521 	if (!rbd_dev)
5522 		return NULL;
5523 
5524 	spin_lock_init(&rbd_dev->lock);
5525 	INIT_LIST_HEAD(&rbd_dev->node);
5526 	init_rwsem(&rbd_dev->header_rwsem);
5527 
5528 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5529 	ceph_oid_init(&rbd_dev->header_oid);
5530 	rbd_dev->header_oloc.pool = spec->pool_id;
5531 	if (spec->pool_ns) {
5532 		WARN_ON(!*spec->pool_ns);
5533 		rbd_dev->header_oloc.pool_ns =
5534 		    ceph_find_or_create_string(spec->pool_ns,
5535 					       strlen(spec->pool_ns));
5536 	}
5537 
5538 	mutex_init(&rbd_dev->watch_mutex);
5539 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5540 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5541 
5542 	init_rwsem(&rbd_dev->lock_rwsem);
5543 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5544 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5545 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5546 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5547 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5548 	spin_lock_init(&rbd_dev->lock_lists_lock);
5549 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5550 	INIT_LIST_HEAD(&rbd_dev->running_list);
5551 	init_completion(&rbd_dev->acquire_wait);
5552 	init_completion(&rbd_dev->releasing_wait);
5553 
5554 	spin_lock_init(&rbd_dev->object_map_lock);
5555 
5556 	rbd_dev->dev.bus = &rbd_bus_type;
5557 	rbd_dev->dev.type = &rbd_device_type;
5558 	rbd_dev->dev.parent = &rbd_root_dev;
5559 	device_initialize(&rbd_dev->dev);
5560 
5561 	rbd_dev->rbd_client = rbdc;
5562 	rbd_dev->spec = spec;
5563 
5564 	return rbd_dev;
5565 }
5566 
5567 /*
5568  * Create a mapping rbd_dev.
5569  */
5570 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5571 					 struct rbd_spec *spec,
5572 					 struct rbd_options *opts)
5573 {
5574 	struct rbd_device *rbd_dev;
5575 
5576 	rbd_dev = __rbd_dev_create(rbdc, spec);
5577 	if (!rbd_dev)
5578 		return NULL;
5579 
5580 	rbd_dev->opts = opts;
5581 
5582 	/* get an id and fill in device name */
5583 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5584 					 minor_to_rbd_dev_id(1 << MINORBITS),
5585 					 GFP_KERNEL);
5586 	if (rbd_dev->dev_id < 0)
5587 		goto fail_rbd_dev;
5588 
5589 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5590 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5591 						   rbd_dev->name);
5592 	if (!rbd_dev->task_wq)
5593 		goto fail_dev_id;
5594 
5595 	/* we have a ref from do_rbd_add() */
5596 	__module_get(THIS_MODULE);
5597 
5598 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5599 	return rbd_dev;
5600 
5601 fail_dev_id:
5602 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5603 fail_rbd_dev:
5604 	rbd_dev_free(rbd_dev);
5605 	return NULL;
5606 }
5607 
5608 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5609 {
5610 	if (rbd_dev)
5611 		put_device(&rbd_dev->dev);
5612 }
5613 
5614 /*
5615  * Get the size and object order for an image snapshot, or if
5616  * snap_id is CEPH_NOSNAP, gets this information for the base
5617  * image.
5618  */
5619 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5620 				u8 *order, u64 *snap_size)
5621 {
5622 	__le64 snapid = cpu_to_le64(snap_id);
5623 	int ret;
5624 	struct {
5625 		u8 order;
5626 		__le64 size;
5627 	} __attribute__ ((packed)) size_buf = { 0 };
5628 
5629 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5630 				  &rbd_dev->header_oloc, "get_size",
5631 				  &snapid, sizeof(snapid),
5632 				  &size_buf, sizeof(size_buf));
5633 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5634 	if (ret < 0)
5635 		return ret;
5636 	if (ret < sizeof (size_buf))
5637 		return -ERANGE;
5638 
5639 	if (order) {
5640 		*order = size_buf.order;
5641 		dout("  order %u", (unsigned int)*order);
5642 	}
5643 	*snap_size = le64_to_cpu(size_buf.size);
5644 
5645 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5646 		(unsigned long long)snap_id,
5647 		(unsigned long long)*snap_size);
5648 
5649 	return 0;
5650 }
5651 
5652 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5653 {
5654 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5655 					&rbd_dev->header.obj_order,
5656 					&rbd_dev->header.image_size);
5657 }
5658 
5659 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5660 {
5661 	void *reply_buf;
5662 	int ret;
5663 	void *p;
5664 
5665 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5666 	if (!reply_buf)
5667 		return -ENOMEM;
5668 
5669 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5670 				  &rbd_dev->header_oloc, "get_object_prefix",
5671 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5672 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5673 	if (ret < 0)
5674 		goto out;
5675 
5676 	p = reply_buf;
5677 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5678 						p + ret, NULL, GFP_NOIO);
5679 	ret = 0;
5680 
5681 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5682 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5683 		rbd_dev->header.object_prefix = NULL;
5684 	} else {
5685 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5686 	}
5687 out:
5688 	kfree(reply_buf);
5689 
5690 	return ret;
5691 }
5692 
5693 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5694 		u64 *snap_features)
5695 {
5696 	__le64 snapid = cpu_to_le64(snap_id);
5697 	struct {
5698 		__le64 features;
5699 		__le64 incompat;
5700 	} __attribute__ ((packed)) features_buf = { 0 };
5701 	u64 unsup;
5702 	int ret;
5703 
5704 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5705 				  &rbd_dev->header_oloc, "get_features",
5706 				  &snapid, sizeof(snapid),
5707 				  &features_buf, sizeof(features_buf));
5708 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5709 	if (ret < 0)
5710 		return ret;
5711 	if (ret < sizeof (features_buf))
5712 		return -ERANGE;
5713 
5714 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5715 	if (unsup) {
5716 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5717 			 unsup);
5718 		return -ENXIO;
5719 	}
5720 
5721 	*snap_features = le64_to_cpu(features_buf.features);
5722 
5723 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5724 		(unsigned long long)snap_id,
5725 		(unsigned long long)*snap_features,
5726 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5727 
5728 	return 0;
5729 }
5730 
5731 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5732 {
5733 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5734 						&rbd_dev->header.features);
5735 }
5736 
5737 /*
5738  * These are generic image flags, but since they are used only for
5739  * object map, store them in rbd_dev->object_map_flags.
5740  *
5741  * For the same reason, this function is called only on object map
5742  * (re)load and not on header refresh.
5743  */
5744 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5745 {
5746 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5747 	__le64 flags;
5748 	int ret;
5749 
5750 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5751 				  &rbd_dev->header_oloc, "get_flags",
5752 				  &snapid, sizeof(snapid),
5753 				  &flags, sizeof(flags));
5754 	if (ret < 0)
5755 		return ret;
5756 	if (ret < sizeof(flags))
5757 		return -EBADMSG;
5758 
5759 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5760 	return 0;
5761 }
5762 
5763 struct parent_image_info {
5764 	u64		pool_id;
5765 	const char	*pool_ns;
5766 	const char	*image_id;
5767 	u64		snap_id;
5768 
5769 	bool		has_overlap;
5770 	u64		overlap;
5771 };
5772 
5773 /*
5774  * The caller is responsible for @pii.
5775  */
5776 static int decode_parent_image_spec(void **p, void *end,
5777 				    struct parent_image_info *pii)
5778 {
5779 	u8 struct_v;
5780 	u32 struct_len;
5781 	int ret;
5782 
5783 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5784 				  &struct_v, &struct_len);
5785 	if (ret)
5786 		return ret;
5787 
5788 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5789 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5790 	if (IS_ERR(pii->pool_ns)) {
5791 		ret = PTR_ERR(pii->pool_ns);
5792 		pii->pool_ns = NULL;
5793 		return ret;
5794 	}
5795 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5796 	if (IS_ERR(pii->image_id)) {
5797 		ret = PTR_ERR(pii->image_id);
5798 		pii->image_id = NULL;
5799 		return ret;
5800 	}
5801 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5802 	return 0;
5803 
5804 e_inval:
5805 	return -EINVAL;
5806 }
5807 
5808 static int __get_parent_info(struct rbd_device *rbd_dev,
5809 			     struct page *req_page,
5810 			     struct page *reply_page,
5811 			     struct parent_image_info *pii)
5812 {
5813 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5814 	size_t reply_len = PAGE_SIZE;
5815 	void *p, *end;
5816 	int ret;
5817 
5818 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5819 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5820 			     req_page, sizeof(u64), &reply_page, &reply_len);
5821 	if (ret)
5822 		return ret == -EOPNOTSUPP ? 1 : ret;
5823 
5824 	p = page_address(reply_page);
5825 	end = p + reply_len;
5826 	ret = decode_parent_image_spec(&p, end, pii);
5827 	if (ret)
5828 		return ret;
5829 
5830 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5831 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5832 			     req_page, sizeof(u64), &reply_page, &reply_len);
5833 	if (ret)
5834 		return ret;
5835 
5836 	p = page_address(reply_page);
5837 	end = p + reply_len;
5838 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5839 	if (pii->has_overlap)
5840 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5841 
5842 	return 0;
5843 
5844 e_inval:
5845 	return -EINVAL;
5846 }
5847 
5848 /*
5849  * The caller is responsible for @pii.
5850  */
5851 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5852 				    struct page *req_page,
5853 				    struct page *reply_page,
5854 				    struct parent_image_info *pii)
5855 {
5856 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5857 	size_t reply_len = PAGE_SIZE;
5858 	void *p, *end;
5859 	int ret;
5860 
5861 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5862 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5863 			     req_page, sizeof(u64), &reply_page, &reply_len);
5864 	if (ret)
5865 		return ret;
5866 
5867 	p = page_address(reply_page);
5868 	end = p + reply_len;
5869 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5870 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5871 	if (IS_ERR(pii->image_id)) {
5872 		ret = PTR_ERR(pii->image_id);
5873 		pii->image_id = NULL;
5874 		return ret;
5875 	}
5876 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5877 	pii->has_overlap = true;
5878 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5879 
5880 	return 0;
5881 
5882 e_inval:
5883 	return -EINVAL;
5884 }
5885 
5886 static int get_parent_info(struct rbd_device *rbd_dev,
5887 			   struct parent_image_info *pii)
5888 {
5889 	struct page *req_page, *reply_page;
5890 	void *p;
5891 	int ret;
5892 
5893 	req_page = alloc_page(GFP_KERNEL);
5894 	if (!req_page)
5895 		return -ENOMEM;
5896 
5897 	reply_page = alloc_page(GFP_KERNEL);
5898 	if (!reply_page) {
5899 		__free_page(req_page);
5900 		return -ENOMEM;
5901 	}
5902 
5903 	p = page_address(req_page);
5904 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5905 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5906 	if (ret > 0)
5907 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5908 					       pii);
5909 
5910 	__free_page(req_page);
5911 	__free_page(reply_page);
5912 	return ret;
5913 }
5914 
5915 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5916 {
5917 	struct rbd_spec *parent_spec;
5918 	struct parent_image_info pii = { 0 };
5919 	int ret;
5920 
5921 	parent_spec = rbd_spec_alloc();
5922 	if (!parent_spec)
5923 		return -ENOMEM;
5924 
5925 	ret = get_parent_info(rbd_dev, &pii);
5926 	if (ret)
5927 		goto out_err;
5928 
5929 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5930 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5931 	     pii.has_overlap, pii.overlap);
5932 
5933 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5934 		/*
5935 		 * Either the parent never existed, or we have
5936 		 * record of it but the image got flattened so it no
5937 		 * longer has a parent.  When the parent of a
5938 		 * layered image disappears we immediately set the
5939 		 * overlap to 0.  The effect of this is that all new
5940 		 * requests will be treated as if the image had no
5941 		 * parent.
5942 		 *
5943 		 * If !pii.has_overlap, the parent image spec is not
5944 		 * applicable.  It's there to avoid duplication in each
5945 		 * snapshot record.
5946 		 */
5947 		if (rbd_dev->parent_overlap) {
5948 			rbd_dev->parent_overlap = 0;
5949 			rbd_dev_parent_put(rbd_dev);
5950 			pr_info("%s: clone image has been flattened\n",
5951 				rbd_dev->disk->disk_name);
5952 		}
5953 
5954 		goto out;	/* No parent?  No problem. */
5955 	}
5956 
5957 	/* The ceph file layout needs to fit pool id in 32 bits */
5958 
5959 	ret = -EIO;
5960 	if (pii.pool_id > (u64)U32_MAX) {
5961 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5962 			(unsigned long long)pii.pool_id, U32_MAX);
5963 		goto out_err;
5964 	}
5965 
5966 	/*
5967 	 * The parent won't change (except when the clone is
5968 	 * flattened, already handled that).  So we only need to
5969 	 * record the parent spec we have not already done so.
5970 	 */
5971 	if (!rbd_dev->parent_spec) {
5972 		parent_spec->pool_id = pii.pool_id;
5973 		if (pii.pool_ns && *pii.pool_ns) {
5974 			parent_spec->pool_ns = pii.pool_ns;
5975 			pii.pool_ns = NULL;
5976 		}
5977 		parent_spec->image_id = pii.image_id;
5978 		pii.image_id = NULL;
5979 		parent_spec->snap_id = pii.snap_id;
5980 
5981 		rbd_dev->parent_spec = parent_spec;
5982 		parent_spec = NULL;	/* rbd_dev now owns this */
5983 	}
5984 
5985 	/*
5986 	 * We always update the parent overlap.  If it's zero we issue
5987 	 * a warning, as we will proceed as if there was no parent.
5988 	 */
5989 	if (!pii.overlap) {
5990 		if (parent_spec) {
5991 			/* refresh, careful to warn just once */
5992 			if (rbd_dev->parent_overlap)
5993 				rbd_warn(rbd_dev,
5994 				    "clone now standalone (overlap became 0)");
5995 		} else {
5996 			/* initial probe */
5997 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5998 		}
5999 	}
6000 	rbd_dev->parent_overlap = pii.overlap;
6001 
6002 out:
6003 	ret = 0;
6004 out_err:
6005 	kfree(pii.pool_ns);
6006 	kfree(pii.image_id);
6007 	rbd_spec_put(parent_spec);
6008 	return ret;
6009 }
6010 
6011 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
6012 {
6013 	struct {
6014 		__le64 stripe_unit;
6015 		__le64 stripe_count;
6016 	} __attribute__ ((packed)) striping_info_buf = { 0 };
6017 	size_t size = sizeof (striping_info_buf);
6018 	void *p;
6019 	int ret;
6020 
6021 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6022 				&rbd_dev->header_oloc, "get_stripe_unit_count",
6023 				NULL, 0, &striping_info_buf, size);
6024 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6025 	if (ret < 0)
6026 		return ret;
6027 	if (ret < size)
6028 		return -ERANGE;
6029 
6030 	p = &striping_info_buf;
6031 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
6032 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
6033 	return 0;
6034 }
6035 
6036 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
6037 {
6038 	__le64 data_pool_id;
6039 	int ret;
6040 
6041 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6042 				  &rbd_dev->header_oloc, "get_data_pool",
6043 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
6044 	if (ret < 0)
6045 		return ret;
6046 	if (ret < sizeof(data_pool_id))
6047 		return -EBADMSG;
6048 
6049 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
6050 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
6051 	return 0;
6052 }
6053 
6054 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
6055 {
6056 	CEPH_DEFINE_OID_ONSTACK(oid);
6057 	size_t image_id_size;
6058 	char *image_id;
6059 	void *p;
6060 	void *end;
6061 	size_t size;
6062 	void *reply_buf = NULL;
6063 	size_t len = 0;
6064 	char *image_name = NULL;
6065 	int ret;
6066 
6067 	rbd_assert(!rbd_dev->spec->image_name);
6068 
6069 	len = strlen(rbd_dev->spec->image_id);
6070 	image_id_size = sizeof (__le32) + len;
6071 	image_id = kmalloc(image_id_size, GFP_KERNEL);
6072 	if (!image_id)
6073 		return NULL;
6074 
6075 	p = image_id;
6076 	end = image_id + image_id_size;
6077 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
6078 
6079 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
6080 	reply_buf = kmalloc(size, GFP_KERNEL);
6081 	if (!reply_buf)
6082 		goto out;
6083 
6084 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
6085 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6086 				  "dir_get_name", image_id, image_id_size,
6087 				  reply_buf, size);
6088 	if (ret < 0)
6089 		goto out;
6090 	p = reply_buf;
6091 	end = reply_buf + ret;
6092 
6093 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
6094 	if (IS_ERR(image_name))
6095 		image_name = NULL;
6096 	else
6097 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
6098 out:
6099 	kfree(reply_buf);
6100 	kfree(image_id);
6101 
6102 	return image_name;
6103 }
6104 
6105 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6106 {
6107 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6108 	const char *snap_name;
6109 	u32 which = 0;
6110 
6111 	/* Skip over names until we find the one we are looking for */
6112 
6113 	snap_name = rbd_dev->header.snap_names;
6114 	while (which < snapc->num_snaps) {
6115 		if (!strcmp(name, snap_name))
6116 			return snapc->snaps[which];
6117 		snap_name += strlen(snap_name) + 1;
6118 		which++;
6119 	}
6120 	return CEPH_NOSNAP;
6121 }
6122 
6123 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6124 {
6125 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6126 	u32 which;
6127 	bool found = false;
6128 	u64 snap_id;
6129 
6130 	for (which = 0; !found && which < snapc->num_snaps; which++) {
6131 		const char *snap_name;
6132 
6133 		snap_id = snapc->snaps[which];
6134 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6135 		if (IS_ERR(snap_name)) {
6136 			/* ignore no-longer existing snapshots */
6137 			if (PTR_ERR(snap_name) == -ENOENT)
6138 				continue;
6139 			else
6140 				break;
6141 		}
6142 		found = !strcmp(name, snap_name);
6143 		kfree(snap_name);
6144 	}
6145 	return found ? snap_id : CEPH_NOSNAP;
6146 }
6147 
6148 /*
6149  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6150  * no snapshot by that name is found, or if an error occurs.
6151  */
6152 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6153 {
6154 	if (rbd_dev->image_format == 1)
6155 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6156 
6157 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6158 }
6159 
6160 /*
6161  * An image being mapped will have everything but the snap id.
6162  */
6163 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6164 {
6165 	struct rbd_spec *spec = rbd_dev->spec;
6166 
6167 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6168 	rbd_assert(spec->image_id && spec->image_name);
6169 	rbd_assert(spec->snap_name);
6170 
6171 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6172 		u64 snap_id;
6173 
6174 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6175 		if (snap_id == CEPH_NOSNAP)
6176 			return -ENOENT;
6177 
6178 		spec->snap_id = snap_id;
6179 	} else {
6180 		spec->snap_id = CEPH_NOSNAP;
6181 	}
6182 
6183 	return 0;
6184 }
6185 
6186 /*
6187  * A parent image will have all ids but none of the names.
6188  *
6189  * All names in an rbd spec are dynamically allocated.  It's OK if we
6190  * can't figure out the name for an image id.
6191  */
6192 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6193 {
6194 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6195 	struct rbd_spec *spec = rbd_dev->spec;
6196 	const char *pool_name;
6197 	const char *image_name;
6198 	const char *snap_name;
6199 	int ret;
6200 
6201 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6202 	rbd_assert(spec->image_id);
6203 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6204 
6205 	/* Get the pool name; we have to make our own copy of this */
6206 
6207 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6208 	if (!pool_name) {
6209 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6210 		return -EIO;
6211 	}
6212 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6213 	if (!pool_name)
6214 		return -ENOMEM;
6215 
6216 	/* Fetch the image name; tolerate failure here */
6217 
6218 	image_name = rbd_dev_image_name(rbd_dev);
6219 	if (!image_name)
6220 		rbd_warn(rbd_dev, "unable to get image name");
6221 
6222 	/* Fetch the snapshot name */
6223 
6224 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6225 	if (IS_ERR(snap_name)) {
6226 		ret = PTR_ERR(snap_name);
6227 		goto out_err;
6228 	}
6229 
6230 	spec->pool_name = pool_name;
6231 	spec->image_name = image_name;
6232 	spec->snap_name = snap_name;
6233 
6234 	return 0;
6235 
6236 out_err:
6237 	kfree(image_name);
6238 	kfree(pool_name);
6239 	return ret;
6240 }
6241 
6242 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6243 {
6244 	size_t size;
6245 	int ret;
6246 	void *reply_buf;
6247 	void *p;
6248 	void *end;
6249 	u64 seq;
6250 	u32 snap_count;
6251 	struct ceph_snap_context *snapc;
6252 	u32 i;
6253 
6254 	/*
6255 	 * We'll need room for the seq value (maximum snapshot id),
6256 	 * snapshot count, and array of that many snapshot ids.
6257 	 * For now we have a fixed upper limit on the number we're
6258 	 * prepared to receive.
6259 	 */
6260 	size = sizeof (__le64) + sizeof (__le32) +
6261 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6262 	reply_buf = kzalloc(size, GFP_KERNEL);
6263 	if (!reply_buf)
6264 		return -ENOMEM;
6265 
6266 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6267 				  &rbd_dev->header_oloc, "get_snapcontext",
6268 				  NULL, 0, reply_buf, size);
6269 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6270 	if (ret < 0)
6271 		goto out;
6272 
6273 	p = reply_buf;
6274 	end = reply_buf + ret;
6275 	ret = -ERANGE;
6276 	ceph_decode_64_safe(&p, end, seq, out);
6277 	ceph_decode_32_safe(&p, end, snap_count, out);
6278 
6279 	/*
6280 	 * Make sure the reported number of snapshot ids wouldn't go
6281 	 * beyond the end of our buffer.  But before checking that,
6282 	 * make sure the computed size of the snapshot context we
6283 	 * allocate is representable in a size_t.
6284 	 */
6285 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6286 				 / sizeof (u64)) {
6287 		ret = -EINVAL;
6288 		goto out;
6289 	}
6290 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6291 		goto out;
6292 	ret = 0;
6293 
6294 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6295 	if (!snapc) {
6296 		ret = -ENOMEM;
6297 		goto out;
6298 	}
6299 	snapc->seq = seq;
6300 	for (i = 0; i < snap_count; i++)
6301 		snapc->snaps[i] = ceph_decode_64(&p);
6302 
6303 	ceph_put_snap_context(rbd_dev->header.snapc);
6304 	rbd_dev->header.snapc = snapc;
6305 
6306 	dout("  snap context seq = %llu, snap_count = %u\n",
6307 		(unsigned long long)seq, (unsigned int)snap_count);
6308 out:
6309 	kfree(reply_buf);
6310 
6311 	return ret;
6312 }
6313 
6314 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6315 					u64 snap_id)
6316 {
6317 	size_t size;
6318 	void *reply_buf;
6319 	__le64 snapid;
6320 	int ret;
6321 	void *p;
6322 	void *end;
6323 	char *snap_name;
6324 
6325 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6326 	reply_buf = kmalloc(size, GFP_KERNEL);
6327 	if (!reply_buf)
6328 		return ERR_PTR(-ENOMEM);
6329 
6330 	snapid = cpu_to_le64(snap_id);
6331 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6332 				  &rbd_dev->header_oloc, "get_snapshot_name",
6333 				  &snapid, sizeof(snapid), reply_buf, size);
6334 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6335 	if (ret < 0) {
6336 		snap_name = ERR_PTR(ret);
6337 		goto out;
6338 	}
6339 
6340 	p = reply_buf;
6341 	end = reply_buf + ret;
6342 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6343 	if (IS_ERR(snap_name))
6344 		goto out;
6345 
6346 	dout("  snap_id 0x%016llx snap_name = %s\n",
6347 		(unsigned long long)snap_id, snap_name);
6348 out:
6349 	kfree(reply_buf);
6350 
6351 	return snap_name;
6352 }
6353 
6354 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6355 {
6356 	bool first_time = rbd_dev->header.object_prefix == NULL;
6357 	int ret;
6358 
6359 	ret = rbd_dev_v2_image_size(rbd_dev);
6360 	if (ret)
6361 		return ret;
6362 
6363 	if (first_time) {
6364 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6365 		if (ret)
6366 			return ret;
6367 	}
6368 
6369 	ret = rbd_dev_v2_snap_context(rbd_dev);
6370 	if (ret && first_time) {
6371 		kfree(rbd_dev->header.object_prefix);
6372 		rbd_dev->header.object_prefix = NULL;
6373 	}
6374 
6375 	return ret;
6376 }
6377 
6378 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6379 {
6380 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6381 
6382 	if (rbd_dev->image_format == 1)
6383 		return rbd_dev_v1_header_info(rbd_dev);
6384 
6385 	return rbd_dev_v2_header_info(rbd_dev);
6386 }
6387 
6388 /*
6389  * Skips over white space at *buf, and updates *buf to point to the
6390  * first found non-space character (if any). Returns the length of
6391  * the token (string of non-white space characters) found.  Note
6392  * that *buf must be terminated with '\0'.
6393  */
6394 static inline size_t next_token(const char **buf)
6395 {
6396         /*
6397         * These are the characters that produce nonzero for
6398         * isspace() in the "C" and "POSIX" locales.
6399         */
6400         const char *spaces = " \f\n\r\t\v";
6401 
6402         *buf += strspn(*buf, spaces);	/* Find start of token */
6403 
6404 	return strcspn(*buf, spaces);   /* Return token length */
6405 }
6406 
6407 /*
6408  * Finds the next token in *buf, dynamically allocates a buffer big
6409  * enough to hold a copy of it, and copies the token into the new
6410  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6411  * that a duplicate buffer is created even for a zero-length token.
6412  *
6413  * Returns a pointer to the newly-allocated duplicate, or a null
6414  * pointer if memory for the duplicate was not available.  If
6415  * the lenp argument is a non-null pointer, the length of the token
6416  * (not including the '\0') is returned in *lenp.
6417  *
6418  * If successful, the *buf pointer will be updated to point beyond
6419  * the end of the found token.
6420  *
6421  * Note: uses GFP_KERNEL for allocation.
6422  */
6423 static inline char *dup_token(const char **buf, size_t *lenp)
6424 {
6425 	char *dup;
6426 	size_t len;
6427 
6428 	len = next_token(buf);
6429 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6430 	if (!dup)
6431 		return NULL;
6432 	*(dup + len) = '\0';
6433 	*buf += len;
6434 
6435 	if (lenp)
6436 		*lenp = len;
6437 
6438 	return dup;
6439 }
6440 
6441 /*
6442  * Parse the options provided for an "rbd add" (i.e., rbd image
6443  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6444  * and the data written is passed here via a NUL-terminated buffer.
6445  * Returns 0 if successful or an error code otherwise.
6446  *
6447  * The information extracted from these options is recorded in
6448  * the other parameters which return dynamically-allocated
6449  * structures:
6450  *  ceph_opts
6451  *      The address of a pointer that will refer to a ceph options
6452  *      structure.  Caller must release the returned pointer using
6453  *      ceph_destroy_options() when it is no longer needed.
6454  *  rbd_opts
6455  *	Address of an rbd options pointer.  Fully initialized by
6456  *	this function; caller must release with kfree().
6457  *  spec
6458  *	Address of an rbd image specification pointer.  Fully
6459  *	initialized by this function based on parsed options.
6460  *	Caller must release with rbd_spec_put().
6461  *
6462  * The options passed take this form:
6463  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6464  * where:
6465  *  <mon_addrs>
6466  *      A comma-separated list of one or more monitor addresses.
6467  *      A monitor address is an ip address, optionally followed
6468  *      by a port number (separated by a colon).
6469  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6470  *  <options>
6471  *      A comma-separated list of ceph and/or rbd options.
6472  *  <pool_name>
6473  *      The name of the rados pool containing the rbd image.
6474  *  <image_name>
6475  *      The name of the image in that pool to map.
6476  *  <snap_id>
6477  *      An optional snapshot id.  If provided, the mapping will
6478  *      present data from the image at the time that snapshot was
6479  *      created.  The image head is used if no snapshot id is
6480  *      provided.  Snapshot mappings are always read-only.
6481  */
6482 static int rbd_add_parse_args(const char *buf,
6483 				struct ceph_options **ceph_opts,
6484 				struct rbd_options **opts,
6485 				struct rbd_spec **rbd_spec)
6486 {
6487 	size_t len;
6488 	char *options;
6489 	const char *mon_addrs;
6490 	char *snap_name;
6491 	size_t mon_addrs_size;
6492 	struct parse_rbd_opts_ctx pctx = { 0 };
6493 	struct ceph_options *copts;
6494 	int ret;
6495 
6496 	/* The first four tokens are required */
6497 
6498 	len = next_token(&buf);
6499 	if (!len) {
6500 		rbd_warn(NULL, "no monitor address(es) provided");
6501 		return -EINVAL;
6502 	}
6503 	mon_addrs = buf;
6504 	mon_addrs_size = len + 1;
6505 	buf += len;
6506 
6507 	ret = -EINVAL;
6508 	options = dup_token(&buf, NULL);
6509 	if (!options)
6510 		return -ENOMEM;
6511 	if (!*options) {
6512 		rbd_warn(NULL, "no options provided");
6513 		goto out_err;
6514 	}
6515 
6516 	pctx.spec = rbd_spec_alloc();
6517 	if (!pctx.spec)
6518 		goto out_mem;
6519 
6520 	pctx.spec->pool_name = dup_token(&buf, NULL);
6521 	if (!pctx.spec->pool_name)
6522 		goto out_mem;
6523 	if (!*pctx.spec->pool_name) {
6524 		rbd_warn(NULL, "no pool name provided");
6525 		goto out_err;
6526 	}
6527 
6528 	pctx.spec->image_name = dup_token(&buf, NULL);
6529 	if (!pctx.spec->image_name)
6530 		goto out_mem;
6531 	if (!*pctx.spec->image_name) {
6532 		rbd_warn(NULL, "no image name provided");
6533 		goto out_err;
6534 	}
6535 
6536 	/*
6537 	 * Snapshot name is optional; default is to use "-"
6538 	 * (indicating the head/no snapshot).
6539 	 */
6540 	len = next_token(&buf);
6541 	if (!len) {
6542 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6543 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6544 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6545 		ret = -ENAMETOOLONG;
6546 		goto out_err;
6547 	}
6548 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6549 	if (!snap_name)
6550 		goto out_mem;
6551 	*(snap_name + len) = '\0';
6552 	pctx.spec->snap_name = snap_name;
6553 
6554 	/* Initialize all rbd options to the defaults */
6555 
6556 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6557 	if (!pctx.opts)
6558 		goto out_mem;
6559 
6560 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6561 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6562 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6563 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6564 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6565 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6566 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6567 
6568 	copts = ceph_parse_options(options, mon_addrs,
6569 				   mon_addrs + mon_addrs_size - 1,
6570 				   parse_rbd_opts_token, &pctx);
6571 	if (IS_ERR(copts)) {
6572 		ret = PTR_ERR(copts);
6573 		goto out_err;
6574 	}
6575 	kfree(options);
6576 
6577 	*ceph_opts = copts;
6578 	*opts = pctx.opts;
6579 	*rbd_spec = pctx.spec;
6580 
6581 	return 0;
6582 out_mem:
6583 	ret = -ENOMEM;
6584 out_err:
6585 	kfree(pctx.opts);
6586 	rbd_spec_put(pctx.spec);
6587 	kfree(options);
6588 
6589 	return ret;
6590 }
6591 
6592 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6593 {
6594 	down_write(&rbd_dev->lock_rwsem);
6595 	if (__rbd_is_lock_owner(rbd_dev))
6596 		__rbd_release_lock(rbd_dev);
6597 	up_write(&rbd_dev->lock_rwsem);
6598 }
6599 
6600 /*
6601  * If the wait is interrupted, an error is returned even if the lock
6602  * was successfully acquired.  rbd_dev_image_unlock() will release it
6603  * if needed.
6604  */
6605 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6606 {
6607 	long ret;
6608 
6609 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6610 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6611 			return 0;
6612 
6613 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6614 		return -EINVAL;
6615 	}
6616 
6617 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6618 		return 0;
6619 
6620 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6621 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6622 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6623 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6624 	if (ret > 0)
6625 		ret = rbd_dev->acquire_err;
6626 	else if (!ret)
6627 		ret = -ETIMEDOUT;
6628 
6629 	if (ret) {
6630 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6631 		return ret;
6632 	}
6633 
6634 	/*
6635 	 * The lock may have been released by now, unless automatic lock
6636 	 * transitions are disabled.
6637 	 */
6638 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6639 	return 0;
6640 }
6641 
6642 /*
6643  * An rbd format 2 image has a unique identifier, distinct from the
6644  * name given to it by the user.  Internally, that identifier is
6645  * what's used to specify the names of objects related to the image.
6646  *
6647  * A special "rbd id" object is used to map an rbd image name to its
6648  * id.  If that object doesn't exist, then there is no v2 rbd image
6649  * with the supplied name.
6650  *
6651  * This function will record the given rbd_dev's image_id field if
6652  * it can be determined, and in that case will return 0.  If any
6653  * errors occur a negative errno will be returned and the rbd_dev's
6654  * image_id field will be unchanged (and should be NULL).
6655  */
6656 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6657 {
6658 	int ret;
6659 	size_t size;
6660 	CEPH_DEFINE_OID_ONSTACK(oid);
6661 	void *response;
6662 	char *image_id;
6663 
6664 	/*
6665 	 * When probing a parent image, the image id is already
6666 	 * known (and the image name likely is not).  There's no
6667 	 * need to fetch the image id again in this case.  We
6668 	 * do still need to set the image format though.
6669 	 */
6670 	if (rbd_dev->spec->image_id) {
6671 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6672 
6673 		return 0;
6674 	}
6675 
6676 	/*
6677 	 * First, see if the format 2 image id file exists, and if
6678 	 * so, get the image's persistent id from it.
6679 	 */
6680 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6681 			       rbd_dev->spec->image_name);
6682 	if (ret)
6683 		return ret;
6684 
6685 	dout("rbd id object name is %s\n", oid.name);
6686 
6687 	/* Response will be an encoded string, which includes a length */
6688 
6689 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6690 	response = kzalloc(size, GFP_NOIO);
6691 	if (!response) {
6692 		ret = -ENOMEM;
6693 		goto out;
6694 	}
6695 
6696 	/* If it doesn't exist we'll assume it's a format 1 image */
6697 
6698 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6699 				  "get_id", NULL, 0,
6700 				  response, RBD_IMAGE_ID_LEN_MAX);
6701 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6702 	if (ret == -ENOENT) {
6703 		image_id = kstrdup("", GFP_KERNEL);
6704 		ret = image_id ? 0 : -ENOMEM;
6705 		if (!ret)
6706 			rbd_dev->image_format = 1;
6707 	} else if (ret >= 0) {
6708 		void *p = response;
6709 
6710 		image_id = ceph_extract_encoded_string(&p, p + ret,
6711 						NULL, GFP_NOIO);
6712 		ret = PTR_ERR_OR_ZERO(image_id);
6713 		if (!ret)
6714 			rbd_dev->image_format = 2;
6715 	}
6716 
6717 	if (!ret) {
6718 		rbd_dev->spec->image_id = image_id;
6719 		dout("image_id is %s\n", image_id);
6720 	}
6721 out:
6722 	kfree(response);
6723 	ceph_oid_destroy(&oid);
6724 	return ret;
6725 }
6726 
6727 /*
6728  * Undo whatever state changes are made by v1 or v2 header info
6729  * call.
6730  */
6731 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6732 {
6733 	struct rbd_image_header	*header;
6734 
6735 	rbd_dev_parent_put(rbd_dev);
6736 	rbd_object_map_free(rbd_dev);
6737 	rbd_dev_mapping_clear(rbd_dev);
6738 
6739 	/* Free dynamic fields from the header, then zero it out */
6740 
6741 	header = &rbd_dev->header;
6742 	ceph_put_snap_context(header->snapc);
6743 	kfree(header->snap_sizes);
6744 	kfree(header->snap_names);
6745 	kfree(header->object_prefix);
6746 	memset(header, 0, sizeof (*header));
6747 }
6748 
6749 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6750 {
6751 	int ret;
6752 
6753 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6754 	if (ret)
6755 		goto out_err;
6756 
6757 	/*
6758 	 * Get the and check features for the image.  Currently the
6759 	 * features are assumed to never change.
6760 	 */
6761 	ret = rbd_dev_v2_features(rbd_dev);
6762 	if (ret)
6763 		goto out_err;
6764 
6765 	/* If the image supports fancy striping, get its parameters */
6766 
6767 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6768 		ret = rbd_dev_v2_striping_info(rbd_dev);
6769 		if (ret < 0)
6770 			goto out_err;
6771 	}
6772 
6773 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6774 		ret = rbd_dev_v2_data_pool(rbd_dev);
6775 		if (ret)
6776 			goto out_err;
6777 	}
6778 
6779 	rbd_init_layout(rbd_dev);
6780 	return 0;
6781 
6782 out_err:
6783 	rbd_dev->header.features = 0;
6784 	kfree(rbd_dev->header.object_prefix);
6785 	rbd_dev->header.object_prefix = NULL;
6786 	return ret;
6787 }
6788 
6789 /*
6790  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6791  * rbd_dev_image_probe() recursion depth, which means it's also the
6792  * length of the already discovered part of the parent chain.
6793  */
6794 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6795 {
6796 	struct rbd_device *parent = NULL;
6797 	int ret;
6798 
6799 	if (!rbd_dev->parent_spec)
6800 		return 0;
6801 
6802 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6803 		pr_info("parent chain is too long (%d)\n", depth);
6804 		ret = -EINVAL;
6805 		goto out_err;
6806 	}
6807 
6808 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6809 	if (!parent) {
6810 		ret = -ENOMEM;
6811 		goto out_err;
6812 	}
6813 
6814 	/*
6815 	 * Images related by parent/child relationships always share
6816 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6817 	 */
6818 	__rbd_get_client(rbd_dev->rbd_client);
6819 	rbd_spec_get(rbd_dev->parent_spec);
6820 
6821 	ret = rbd_dev_image_probe(parent, depth);
6822 	if (ret < 0)
6823 		goto out_err;
6824 
6825 	rbd_dev->parent = parent;
6826 	atomic_set(&rbd_dev->parent_ref, 1);
6827 	return 0;
6828 
6829 out_err:
6830 	rbd_dev_unparent(rbd_dev);
6831 	rbd_dev_destroy(parent);
6832 	return ret;
6833 }
6834 
6835 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6836 {
6837 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6838 	rbd_free_disk(rbd_dev);
6839 	if (!single_major)
6840 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6841 }
6842 
6843 /*
6844  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6845  * upon return.
6846  */
6847 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6848 {
6849 	int ret;
6850 
6851 	/* Record our major and minor device numbers. */
6852 
6853 	if (!single_major) {
6854 		ret = register_blkdev(0, rbd_dev->name);
6855 		if (ret < 0)
6856 			goto err_out_unlock;
6857 
6858 		rbd_dev->major = ret;
6859 		rbd_dev->minor = 0;
6860 	} else {
6861 		rbd_dev->major = rbd_major;
6862 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6863 	}
6864 
6865 	/* Set up the blkdev mapping. */
6866 
6867 	ret = rbd_init_disk(rbd_dev);
6868 	if (ret)
6869 		goto err_out_blkdev;
6870 
6871 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6872 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
6873 
6874 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6875 	if (ret)
6876 		goto err_out_disk;
6877 
6878 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6879 	up_write(&rbd_dev->header_rwsem);
6880 	return 0;
6881 
6882 err_out_disk:
6883 	rbd_free_disk(rbd_dev);
6884 err_out_blkdev:
6885 	if (!single_major)
6886 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6887 err_out_unlock:
6888 	up_write(&rbd_dev->header_rwsem);
6889 	return ret;
6890 }
6891 
6892 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6893 {
6894 	struct rbd_spec *spec = rbd_dev->spec;
6895 	int ret;
6896 
6897 	/* Record the header object name for this rbd image. */
6898 
6899 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6900 	if (rbd_dev->image_format == 1)
6901 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6902 				       spec->image_name, RBD_SUFFIX);
6903 	else
6904 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6905 				       RBD_HEADER_PREFIX, spec->image_id);
6906 
6907 	return ret;
6908 }
6909 
6910 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6911 {
6912 	rbd_dev_unprobe(rbd_dev);
6913 	if (rbd_dev->opts)
6914 		rbd_unregister_watch(rbd_dev);
6915 	rbd_dev->image_format = 0;
6916 	kfree(rbd_dev->spec->image_id);
6917 	rbd_dev->spec->image_id = NULL;
6918 }
6919 
6920 /*
6921  * Probe for the existence of the header object for the given rbd
6922  * device.  If this image is the one being mapped (i.e., not a
6923  * parent), initiate a watch on its header object before using that
6924  * object to get detailed information about the rbd image.
6925  */
6926 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6927 {
6928 	int ret;
6929 
6930 	/*
6931 	 * Get the id from the image id object.  Unless there's an
6932 	 * error, rbd_dev->spec->image_id will be filled in with
6933 	 * a dynamically-allocated string, and rbd_dev->image_format
6934 	 * will be set to either 1 or 2.
6935 	 */
6936 	ret = rbd_dev_image_id(rbd_dev);
6937 	if (ret)
6938 		return ret;
6939 
6940 	ret = rbd_dev_header_name(rbd_dev);
6941 	if (ret)
6942 		goto err_out_format;
6943 
6944 	if (!depth) {
6945 		ret = rbd_register_watch(rbd_dev);
6946 		if (ret) {
6947 			if (ret == -ENOENT)
6948 				pr_info("image %s/%s%s%s does not exist\n",
6949 					rbd_dev->spec->pool_name,
6950 					rbd_dev->spec->pool_ns ?: "",
6951 					rbd_dev->spec->pool_ns ? "/" : "",
6952 					rbd_dev->spec->image_name);
6953 			goto err_out_format;
6954 		}
6955 	}
6956 
6957 	ret = rbd_dev_header_info(rbd_dev);
6958 	if (ret)
6959 		goto err_out_watch;
6960 
6961 	/*
6962 	 * If this image is the one being mapped, we have pool name and
6963 	 * id, image name and id, and snap name - need to fill snap id.
6964 	 * Otherwise this is a parent image, identified by pool, image
6965 	 * and snap ids - need to fill in names for those ids.
6966 	 */
6967 	if (!depth)
6968 		ret = rbd_spec_fill_snap_id(rbd_dev);
6969 	else
6970 		ret = rbd_spec_fill_names(rbd_dev);
6971 	if (ret) {
6972 		if (ret == -ENOENT)
6973 			pr_info("snap %s/%s%s%s@%s does not exist\n",
6974 				rbd_dev->spec->pool_name,
6975 				rbd_dev->spec->pool_ns ?: "",
6976 				rbd_dev->spec->pool_ns ? "/" : "",
6977 				rbd_dev->spec->image_name,
6978 				rbd_dev->spec->snap_name);
6979 		goto err_out_probe;
6980 	}
6981 
6982 	ret = rbd_dev_mapping_set(rbd_dev);
6983 	if (ret)
6984 		goto err_out_probe;
6985 
6986 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP &&
6987 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6988 		ret = rbd_object_map_load(rbd_dev);
6989 		if (ret)
6990 			goto err_out_probe;
6991 	}
6992 
6993 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6994 		ret = rbd_dev_v2_parent_info(rbd_dev);
6995 		if (ret)
6996 			goto err_out_probe;
6997 	}
6998 
6999 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7000 	if (ret)
7001 		goto err_out_probe;
7002 
7003 	dout("discovered format %u image, header name is %s\n",
7004 		rbd_dev->image_format, rbd_dev->header_oid.name);
7005 	return 0;
7006 
7007 err_out_probe:
7008 	rbd_dev_unprobe(rbd_dev);
7009 err_out_watch:
7010 	if (!depth)
7011 		rbd_unregister_watch(rbd_dev);
7012 err_out_format:
7013 	rbd_dev->image_format = 0;
7014 	kfree(rbd_dev->spec->image_id);
7015 	rbd_dev->spec->image_id = NULL;
7016 	return ret;
7017 }
7018 
7019 static ssize_t do_rbd_add(struct bus_type *bus,
7020 			  const char *buf,
7021 			  size_t count)
7022 {
7023 	struct rbd_device *rbd_dev = NULL;
7024 	struct ceph_options *ceph_opts = NULL;
7025 	struct rbd_options *rbd_opts = NULL;
7026 	struct rbd_spec *spec = NULL;
7027 	struct rbd_client *rbdc;
7028 	int rc;
7029 
7030 	if (!try_module_get(THIS_MODULE))
7031 		return -ENODEV;
7032 
7033 	/* parse add command */
7034 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7035 	if (rc < 0)
7036 		goto out;
7037 
7038 	rbdc = rbd_get_client(ceph_opts);
7039 	if (IS_ERR(rbdc)) {
7040 		rc = PTR_ERR(rbdc);
7041 		goto err_out_args;
7042 	}
7043 
7044 	/* pick the pool */
7045 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7046 	if (rc < 0) {
7047 		if (rc == -ENOENT)
7048 			pr_info("pool %s does not exist\n", spec->pool_name);
7049 		goto err_out_client;
7050 	}
7051 	spec->pool_id = (u64)rc;
7052 
7053 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7054 	if (!rbd_dev) {
7055 		rc = -ENOMEM;
7056 		goto err_out_client;
7057 	}
7058 	rbdc = NULL;		/* rbd_dev now owns this */
7059 	spec = NULL;		/* rbd_dev now owns this */
7060 	rbd_opts = NULL;	/* rbd_dev now owns this */
7061 
7062 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7063 	if (!rbd_dev->config_info) {
7064 		rc = -ENOMEM;
7065 		goto err_out_rbd_dev;
7066 	}
7067 
7068 	down_write(&rbd_dev->header_rwsem);
7069 	rc = rbd_dev_image_probe(rbd_dev, 0);
7070 	if (rc < 0) {
7071 		up_write(&rbd_dev->header_rwsem);
7072 		goto err_out_rbd_dev;
7073 	}
7074 
7075 	/* If we are mapping a snapshot it must be marked read-only */
7076 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
7077 		rbd_dev->opts->read_only = true;
7078 
7079 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7080 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7081 			 rbd_dev->layout.object_size);
7082 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7083 	}
7084 
7085 	rc = rbd_dev_device_setup(rbd_dev);
7086 	if (rc)
7087 		goto err_out_image_probe;
7088 
7089 	rc = rbd_add_acquire_lock(rbd_dev);
7090 	if (rc)
7091 		goto err_out_image_lock;
7092 
7093 	/* Everything's ready.  Announce the disk to the world. */
7094 
7095 	rc = device_add(&rbd_dev->dev);
7096 	if (rc)
7097 		goto err_out_image_lock;
7098 
7099 	add_disk(rbd_dev->disk);
7100 	/* see rbd_init_disk() */
7101 	blk_put_queue(rbd_dev->disk->queue);
7102 
7103 	spin_lock(&rbd_dev_list_lock);
7104 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7105 	spin_unlock(&rbd_dev_list_lock);
7106 
7107 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7108 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7109 		rbd_dev->header.features);
7110 	rc = count;
7111 out:
7112 	module_put(THIS_MODULE);
7113 	return rc;
7114 
7115 err_out_image_lock:
7116 	rbd_dev_image_unlock(rbd_dev);
7117 	rbd_dev_device_release(rbd_dev);
7118 err_out_image_probe:
7119 	rbd_dev_image_release(rbd_dev);
7120 err_out_rbd_dev:
7121 	rbd_dev_destroy(rbd_dev);
7122 err_out_client:
7123 	rbd_put_client(rbdc);
7124 err_out_args:
7125 	rbd_spec_put(spec);
7126 	kfree(rbd_opts);
7127 	goto out;
7128 }
7129 
7130 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7131 {
7132 	if (single_major)
7133 		return -EINVAL;
7134 
7135 	return do_rbd_add(bus, buf, count);
7136 }
7137 
7138 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7139 				      size_t count)
7140 {
7141 	return do_rbd_add(bus, buf, count);
7142 }
7143 
7144 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7145 {
7146 	while (rbd_dev->parent) {
7147 		struct rbd_device *first = rbd_dev;
7148 		struct rbd_device *second = first->parent;
7149 		struct rbd_device *third;
7150 
7151 		/*
7152 		 * Follow to the parent with no grandparent and
7153 		 * remove it.
7154 		 */
7155 		while (second && (third = second->parent)) {
7156 			first = second;
7157 			second = third;
7158 		}
7159 		rbd_assert(second);
7160 		rbd_dev_image_release(second);
7161 		rbd_dev_destroy(second);
7162 		first->parent = NULL;
7163 		first->parent_overlap = 0;
7164 
7165 		rbd_assert(first->parent_spec);
7166 		rbd_spec_put(first->parent_spec);
7167 		first->parent_spec = NULL;
7168 	}
7169 }
7170 
7171 static ssize_t do_rbd_remove(struct bus_type *bus,
7172 			     const char *buf,
7173 			     size_t count)
7174 {
7175 	struct rbd_device *rbd_dev = NULL;
7176 	struct list_head *tmp;
7177 	int dev_id;
7178 	char opt_buf[6];
7179 	bool force = false;
7180 	int ret;
7181 
7182 	dev_id = -1;
7183 	opt_buf[0] = '\0';
7184 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7185 	if (dev_id < 0) {
7186 		pr_err("dev_id out of range\n");
7187 		return -EINVAL;
7188 	}
7189 	if (opt_buf[0] != '\0') {
7190 		if (!strcmp(opt_buf, "force")) {
7191 			force = true;
7192 		} else {
7193 			pr_err("bad remove option at '%s'\n", opt_buf);
7194 			return -EINVAL;
7195 		}
7196 	}
7197 
7198 	ret = -ENOENT;
7199 	spin_lock(&rbd_dev_list_lock);
7200 	list_for_each(tmp, &rbd_dev_list) {
7201 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7202 		if (rbd_dev->dev_id == dev_id) {
7203 			ret = 0;
7204 			break;
7205 		}
7206 	}
7207 	if (!ret) {
7208 		spin_lock_irq(&rbd_dev->lock);
7209 		if (rbd_dev->open_count && !force)
7210 			ret = -EBUSY;
7211 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7212 					  &rbd_dev->flags))
7213 			ret = -EINPROGRESS;
7214 		spin_unlock_irq(&rbd_dev->lock);
7215 	}
7216 	spin_unlock(&rbd_dev_list_lock);
7217 	if (ret)
7218 		return ret;
7219 
7220 	if (force) {
7221 		/*
7222 		 * Prevent new IO from being queued and wait for existing
7223 		 * IO to complete/fail.
7224 		 */
7225 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7226 		blk_set_queue_dying(rbd_dev->disk->queue);
7227 	}
7228 
7229 	del_gendisk(rbd_dev->disk);
7230 	spin_lock(&rbd_dev_list_lock);
7231 	list_del_init(&rbd_dev->node);
7232 	spin_unlock(&rbd_dev_list_lock);
7233 	device_del(&rbd_dev->dev);
7234 
7235 	rbd_dev_image_unlock(rbd_dev);
7236 	rbd_dev_device_release(rbd_dev);
7237 	rbd_dev_image_release(rbd_dev);
7238 	rbd_dev_destroy(rbd_dev);
7239 	return count;
7240 }
7241 
7242 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7243 {
7244 	if (single_major)
7245 		return -EINVAL;
7246 
7247 	return do_rbd_remove(bus, buf, count);
7248 }
7249 
7250 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7251 					 size_t count)
7252 {
7253 	return do_rbd_remove(bus, buf, count);
7254 }
7255 
7256 /*
7257  * create control files in sysfs
7258  * /sys/bus/rbd/...
7259  */
7260 static int __init rbd_sysfs_init(void)
7261 {
7262 	int ret;
7263 
7264 	ret = device_register(&rbd_root_dev);
7265 	if (ret < 0)
7266 		return ret;
7267 
7268 	ret = bus_register(&rbd_bus_type);
7269 	if (ret < 0)
7270 		device_unregister(&rbd_root_dev);
7271 
7272 	return ret;
7273 }
7274 
7275 static void __exit rbd_sysfs_cleanup(void)
7276 {
7277 	bus_unregister(&rbd_bus_type);
7278 	device_unregister(&rbd_root_dev);
7279 }
7280 
7281 static int __init rbd_slab_init(void)
7282 {
7283 	rbd_assert(!rbd_img_request_cache);
7284 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7285 	if (!rbd_img_request_cache)
7286 		return -ENOMEM;
7287 
7288 	rbd_assert(!rbd_obj_request_cache);
7289 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7290 	if (!rbd_obj_request_cache)
7291 		goto out_err;
7292 
7293 	return 0;
7294 
7295 out_err:
7296 	kmem_cache_destroy(rbd_img_request_cache);
7297 	rbd_img_request_cache = NULL;
7298 	return -ENOMEM;
7299 }
7300 
7301 static void rbd_slab_exit(void)
7302 {
7303 	rbd_assert(rbd_obj_request_cache);
7304 	kmem_cache_destroy(rbd_obj_request_cache);
7305 	rbd_obj_request_cache = NULL;
7306 
7307 	rbd_assert(rbd_img_request_cache);
7308 	kmem_cache_destroy(rbd_img_request_cache);
7309 	rbd_img_request_cache = NULL;
7310 }
7311 
7312 static int __init rbd_init(void)
7313 {
7314 	int rc;
7315 
7316 	if (!libceph_compatible(NULL)) {
7317 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7318 		return -EINVAL;
7319 	}
7320 
7321 	rc = rbd_slab_init();
7322 	if (rc)
7323 		return rc;
7324 
7325 	/*
7326 	 * The number of active work items is limited by the number of
7327 	 * rbd devices * queue depth, so leave @max_active at default.
7328 	 */
7329 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7330 	if (!rbd_wq) {
7331 		rc = -ENOMEM;
7332 		goto err_out_slab;
7333 	}
7334 
7335 	if (single_major) {
7336 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7337 		if (rbd_major < 0) {
7338 			rc = rbd_major;
7339 			goto err_out_wq;
7340 		}
7341 	}
7342 
7343 	rc = rbd_sysfs_init();
7344 	if (rc)
7345 		goto err_out_blkdev;
7346 
7347 	if (single_major)
7348 		pr_info("loaded (major %d)\n", rbd_major);
7349 	else
7350 		pr_info("loaded\n");
7351 
7352 	return 0;
7353 
7354 err_out_blkdev:
7355 	if (single_major)
7356 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7357 err_out_wq:
7358 	destroy_workqueue(rbd_wq);
7359 err_out_slab:
7360 	rbd_slab_exit();
7361 	return rc;
7362 }
7363 
7364 static void __exit rbd_exit(void)
7365 {
7366 	ida_destroy(&rbd_dev_id_ida);
7367 	rbd_sysfs_cleanup();
7368 	if (single_major)
7369 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7370 	destroy_workqueue(rbd_wq);
7371 	rbd_slab_exit();
7372 }
7373 
7374 module_init(rbd_init);
7375 module_exit(rbd_exit);
7376 
7377 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7378 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7379 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7380 /* following authorship retained from original osdblk.c */
7381 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7382 
7383 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7384 MODULE_LICENSE("GPL");
7385