xref: /openbmc/linux/drivers/block/rbd.c (revision d3597236)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
100 #define RBD_MAX_SNAP_NAME_LEN	\
101 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 
103 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
104 
105 #define RBD_SNAP_HEAD_NAME	"-"
106 
107 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
108 
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX	64
112 
113 #define RBD_OBJ_PREFIX_LEN_MAX	64
114 
115 /* Feature bits */
116 
117 #define RBD_FEATURE_LAYERING	(1<<0)
118 #define RBD_FEATURE_STRIPINGV2	(1<<1)
119 #define RBD_FEATURES_ALL \
120 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 
122 /* Features supported by this (client software) implementation. */
123 
124 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
125 
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN		32
133 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
134 
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139 	/* These six fields never change for a given rbd image */
140 	char *object_prefix;
141 	__u8 obj_order;
142 	__u8 crypt_type;
143 	__u8 comp_type;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	const char		*object_name;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 	struct completion	completion;
278 
279 	struct kref		kref;
280 };
281 
282 enum img_req_flags {
283 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
284 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
285 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
286 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
287 };
288 
289 struct rbd_img_request {
290 	struct rbd_device	*rbd_dev;
291 	u64			offset;	/* starting image byte offset */
292 	u64			length;	/* byte count from offset */
293 	unsigned long		flags;
294 	union {
295 		u64			snap_id;	/* for reads */
296 		struct ceph_snap_context *snapc;	/* for writes */
297 	};
298 	union {
299 		struct request		*rq;		/* block request */
300 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
301 	};
302 	struct page		**copyup_pages;
303 	u32			copyup_page_count;
304 	spinlock_t		completion_lock;/* protects next_completion */
305 	u32			next_completion;
306 	rbd_img_callback_t	callback;
307 	u64			xferred;/* aggregate bytes transferred */
308 	int			result;	/* first nonzero obj_request result */
309 
310 	u32			obj_request_count;
311 	struct list_head	obj_requests;	/* rbd_obj_request structs */
312 
313 	struct kref		kref;
314 };
315 
316 #define for_each_obj_request(ireq, oreq) \
317 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 	bool			read_only;
327 };
328 
329 /*
330  * a single device
331  */
332 struct rbd_device {
333 	int			dev_id;		/* blkdev unique id */
334 
335 	int			major;		/* blkdev assigned major */
336 	int			minor;
337 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
338 
339 	u32			image_format;	/* Either 1 or 2 */
340 	struct rbd_client	*rbd_client;
341 
342 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 
346 	struct rbd_image_header	header;
347 	unsigned long		flags;		/* possibly lock protected */
348 	struct rbd_spec		*spec;
349 	struct rbd_options	*opts;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* Block layer tags. */
364 	struct blk_mq_tag_set	tag_set;
365 
366 	/* protects updating the header */
367 	struct rw_semaphore     header_rwsem;
368 
369 	struct rbd_mapping	mapping;
370 
371 	struct list_head	node;
372 
373 	/* sysfs related */
374 	struct device		dev;
375 	unsigned long		open_count;	/* protected by lock */
376 };
377 
378 /*
379  * Flag bits for rbd_dev->flags.  If atomicity is required,
380  * rbd_dev->lock is used to protect access.
381  *
382  * Currently, only the "removing" flag (which is coupled with the
383  * "open_count" field) requires atomic access.
384  */
385 enum rbd_dev_flags {
386 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
387 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
388 };
389 
390 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
391 
392 static LIST_HEAD(rbd_dev_list);    /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394 
395 static LIST_HEAD(rbd_client_list);		/* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397 
398 /* Slab caches for frequently-allocated structures */
399 
400 static struct kmem_cache	*rbd_img_request_cache;
401 static struct kmem_cache	*rbd_obj_request_cache;
402 static struct kmem_cache	*rbd_segment_name_cache;
403 
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406 
407 static struct workqueue_struct *rbd_wq;
408 
409 /*
410  * Default to false for now, as single-major requires >= 0.75 version of
411  * userspace rbd utility.
412  */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416 
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418 
419 static void rbd_dev_device_release(struct device *dev);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
527 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
528 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
529 
530 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
531 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
532 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
533 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
534 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
535 					u64 snap_id);
536 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
537 				u8 *order, u64 *snap_size);
538 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
539 		u64 *snap_features);
540 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
541 
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 	bool removing = false;
546 
547 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 		return -EROFS;
549 
550 	spin_lock_irq(&rbd_dev->lock);
551 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 		removing = true;
553 	else
554 		rbd_dev->open_count++;
555 	spin_unlock_irq(&rbd_dev->lock);
556 	if (removing)
557 		return -ENOENT;
558 
559 	(void) get_device(&rbd_dev->dev);
560 
561 	return 0;
562 }
563 
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 	struct rbd_device *rbd_dev = disk->private_data;
567 	unsigned long open_count_before;
568 
569 	spin_lock_irq(&rbd_dev->lock);
570 	open_count_before = rbd_dev->open_count--;
571 	spin_unlock_irq(&rbd_dev->lock);
572 	rbd_assert(open_count_before > 0);
573 
574 	put_device(&rbd_dev->dev);
575 }
576 
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 	int ret = 0;
580 	int val;
581 	bool ro;
582 	bool ro_changed = false;
583 
584 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
585 	if (get_user(val, (int __user *)(arg)))
586 		return -EFAULT;
587 
588 	ro = val ? true : false;
589 	/* Snapshot doesn't allow to write*/
590 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 		return -EROFS;
592 
593 	spin_lock_irq(&rbd_dev->lock);
594 	/* prevent others open this device */
595 	if (rbd_dev->open_count > 1) {
596 		ret = -EBUSY;
597 		goto out;
598 	}
599 
600 	if (rbd_dev->mapping.read_only != ro) {
601 		rbd_dev->mapping.read_only = ro;
602 		ro_changed = true;
603 	}
604 
605 out:
606 	spin_unlock_irq(&rbd_dev->lock);
607 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 	if (ret == 0 && ro_changed)
609 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610 
611 	return ret;
612 }
613 
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 			unsigned int cmd, unsigned long arg)
616 {
617 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 	int ret = 0;
619 
620 	switch (cmd) {
621 	case BLKROSET:
622 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 		break;
624 	default:
625 		ret = -ENOTTY;
626 	}
627 
628 	return ret;
629 }
630 
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 				unsigned int cmd, unsigned long arg)
634 {
635 	return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638 
639 static const struct block_device_operations rbd_bd_ops = {
640 	.owner			= THIS_MODULE,
641 	.open			= rbd_open,
642 	.release		= rbd_release,
643 	.ioctl			= rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 	.compat_ioctl		= rbd_compat_ioctl,
646 #endif
647 };
648 
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 	struct rbd_client *rbdc;
656 	int ret = -ENOMEM;
657 
658 	dout("%s:\n", __func__);
659 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 	if (!rbdc)
661 		goto out_opt;
662 
663 	kref_init(&rbdc->kref);
664 	INIT_LIST_HEAD(&rbdc->node);
665 
666 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 	if (IS_ERR(rbdc->client))
668 		goto out_rbdc;
669 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670 
671 	ret = ceph_open_session(rbdc->client);
672 	if (ret < 0)
673 		goto out_client;
674 
675 	spin_lock(&rbd_client_list_lock);
676 	list_add_tail(&rbdc->node, &rbd_client_list);
677 	spin_unlock(&rbd_client_list_lock);
678 
679 	dout("%s: rbdc %p\n", __func__, rbdc);
680 
681 	return rbdc;
682 out_client:
683 	ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 	kfree(rbdc);
686 out_opt:
687 	if (ceph_opts)
688 		ceph_destroy_options(ceph_opts);
689 	dout("%s: error %d\n", __func__, ret);
690 
691 	return ERR_PTR(ret);
692 }
693 
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 	kref_get(&rbdc->kref);
697 
698 	return rbdc;
699 }
700 
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *client_node;
708 	bool found = false;
709 
710 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 		return NULL;
712 
713 	spin_lock(&rbd_client_list_lock);
714 	list_for_each_entry(client_node, &rbd_client_list, node) {
715 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 			__rbd_get_client(client_node);
717 
718 			found = true;
719 			break;
720 		}
721 	}
722 	spin_unlock(&rbd_client_list_lock);
723 
724 	return found ? client_node : NULL;
725 }
726 
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731 	Opt_queue_depth,
732 	Opt_last_int,
733 	/* int args above */
734 	Opt_last_string,
735 	/* string args above */
736 	Opt_read_only,
737 	Opt_read_write,
738 	Opt_err
739 };
740 
741 static match_table_t rbd_opts_tokens = {
742 	{Opt_queue_depth, "queue_depth=%d"},
743 	/* int args above */
744 	/* string args above */
745 	{Opt_read_only, "read_only"},
746 	{Opt_read_only, "ro"},		/* Alternate spelling */
747 	{Opt_read_write, "read_write"},
748 	{Opt_read_write, "rw"},		/* Alternate spelling */
749 	{Opt_err, NULL}
750 };
751 
752 struct rbd_options {
753 	int	queue_depth;
754 	bool	read_only;
755 };
756 
757 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT	false
759 
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 	struct rbd_options *rbd_opts = private;
763 	substring_t argstr[MAX_OPT_ARGS];
764 	int token, intval, ret;
765 
766 	token = match_token(c, rbd_opts_tokens, argstr);
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) at '%s'\n", c);
771 			return ret;
772 		}
773 		dout("got int token %d val %d\n", token, intval);
774 	} else if (token > Opt_last_int && token < Opt_last_string) {
775 		dout("got string token %d val %s\n", token, argstr[0].from);
776 	} else {
777 		dout("got token %d\n", token);
778 	}
779 
780 	switch (token) {
781 	case Opt_queue_depth:
782 		if (intval < 1) {
783 			pr_err("queue_depth out of range\n");
784 			return -EINVAL;
785 		}
786 		rbd_opts->queue_depth = intval;
787 		break;
788 	case Opt_read_only:
789 		rbd_opts->read_only = true;
790 		break;
791 	case Opt_read_write:
792 		rbd_opts->read_only = false;
793 		break;
794 	default:
795 		/* libceph prints "bad option" msg */
796 		return -EINVAL;
797 	}
798 
799 	return 0;
800 }
801 
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 	switch (op_type) {
805 	case OBJ_OP_READ:
806 		return "read";
807 	case OBJ_OP_WRITE:
808 		return "write";
809 	case OBJ_OP_DISCARD:
810 		return "discard";
811 	default:
812 		return "???";
813 	}
814 }
815 
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 	struct rbd_client *rbdc;
824 
825 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 	rbdc = rbd_client_find(ceph_opts);
827 	if (rbdc)	/* using an existing client */
828 		ceph_destroy_options(ceph_opts);
829 	else
830 		rbdc = rbd_client_create(ceph_opts);
831 	mutex_unlock(&client_mutex);
832 
833 	return rbdc;
834 }
835 
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844 
845 	dout("%s: rbdc %p\n", __func__, rbdc);
846 	spin_lock(&rbd_client_list_lock);
847 	list_del(&rbdc->node);
848 	spin_unlock(&rbd_client_list_lock);
849 
850 	ceph_destroy_client(rbdc->client);
851 	kfree(rbdc);
852 }
853 
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 	if (rbdc)
861 		kref_put(&rbdc->kref, rbd_client_release);
862 }
863 
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 	return image_format == 1 || image_format == 2;
867 }
868 
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 	size_t size;
872 	u32 snap_count;
873 
874 	/* The header has to start with the magic rbd header text */
875 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 		return false;
877 
878 	/* The bio layer requires at least sector-sized I/O */
879 
880 	if (ondisk->options.order < SECTOR_SHIFT)
881 		return false;
882 
883 	/* If we use u64 in a few spots we may be able to loosen this */
884 
885 	if (ondisk->options.order > 8 * sizeof (int) - 1)
886 		return false;
887 
888 	/*
889 	 * The size of a snapshot header has to fit in a size_t, and
890 	 * that limits the number of snapshots.
891 	 */
892 	snap_count = le32_to_cpu(ondisk->snap_count);
893 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 	if (snap_count > size / sizeof (__le64))
895 		return false;
896 
897 	/*
898 	 * Not only that, but the size of the entire the snapshot
899 	 * header must also be representable in a size_t.
900 	 */
901 	size -= snap_count * sizeof (__le64);
902 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 		return false;
904 
905 	return true;
906 }
907 
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 				 struct rbd_image_header_ondisk *ondisk)
914 {
915 	struct rbd_image_header *header = &rbd_dev->header;
916 	bool first_time = header->object_prefix == NULL;
917 	struct ceph_snap_context *snapc;
918 	char *object_prefix = NULL;
919 	char *snap_names = NULL;
920 	u64 *snap_sizes = NULL;
921 	u32 snap_count;
922 	size_t size;
923 	int ret = -ENOMEM;
924 	u32 i;
925 
926 	/* Allocate this now to avoid having to handle failure below */
927 
928 	if (first_time) {
929 		size_t len;
930 
931 		len = strnlen(ondisk->object_prefix,
932 				sizeof (ondisk->object_prefix));
933 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 		if (!object_prefix)
935 			return -ENOMEM;
936 		memcpy(object_prefix, ondisk->object_prefix, len);
937 		object_prefix[len] = '\0';
938 	}
939 
940 	/* Allocate the snapshot context and fill it in */
941 
942 	snap_count = le32_to_cpu(ondisk->snap_count);
943 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 	if (!snapc)
945 		goto out_err;
946 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 	if (snap_count) {
948 		struct rbd_image_snap_ondisk *snaps;
949 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950 
951 		/* We'll keep a copy of the snapshot names... */
952 
953 		if (snap_names_len > (u64)SIZE_MAX)
954 			goto out_2big;
955 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 		if (!snap_names)
957 			goto out_err;
958 
959 		/* ...as well as the array of their sizes. */
960 
961 		size = snap_count * sizeof (*header->snap_sizes);
962 		snap_sizes = kmalloc(size, GFP_KERNEL);
963 		if (!snap_sizes)
964 			goto out_err;
965 
966 		/*
967 		 * Copy the names, and fill in each snapshot's id
968 		 * and size.
969 		 *
970 		 * Note that rbd_dev_v1_header_info() guarantees the
971 		 * ondisk buffer we're working with has
972 		 * snap_names_len bytes beyond the end of the
973 		 * snapshot id array, this memcpy() is safe.
974 		 */
975 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 		snaps = ondisk->snaps;
977 		for (i = 0; i < snap_count; i++) {
978 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 		}
981 	}
982 
983 	/* We won't fail any more, fill in the header */
984 
985 	if (first_time) {
986 		header->object_prefix = object_prefix;
987 		header->obj_order = ondisk->options.order;
988 		header->crypt_type = ondisk->options.crypt_type;
989 		header->comp_type = ondisk->options.comp_type;
990 		/* The rest aren't used for format 1 images */
991 		header->stripe_unit = 0;
992 		header->stripe_count = 0;
993 		header->features = 0;
994 	} else {
995 		ceph_put_snap_context(header->snapc);
996 		kfree(header->snap_names);
997 		kfree(header->snap_sizes);
998 	}
999 
1000 	/* The remaining fields always get updated (when we refresh) */
1001 
1002 	header->image_size = le64_to_cpu(ondisk->image_size);
1003 	header->snapc = snapc;
1004 	header->snap_names = snap_names;
1005 	header->snap_sizes = snap_sizes;
1006 
1007 	return 0;
1008 out_2big:
1009 	ret = -EIO;
1010 out_err:
1011 	kfree(snap_sizes);
1012 	kfree(snap_names);
1013 	ceph_put_snap_context(snapc);
1014 	kfree(object_prefix);
1015 
1016 	return ret;
1017 }
1018 
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 	const char *snap_name;
1022 
1023 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024 
1025 	/* Skip over names until we find the one we are looking for */
1026 
1027 	snap_name = rbd_dev->header.snap_names;
1028 	while (which--)
1029 		snap_name += strlen(snap_name) + 1;
1030 
1031 	return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033 
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 	u64 snap_id1 = *(u64 *)s1;
1041 	u64 snap_id2 = *(u64 *)s2;
1042 
1043 	if (snap_id1 < snap_id2)
1044 		return 1;
1045 	return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047 
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 	u64 *found;
1062 
1063 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 				sizeof (snap_id), snapid_compare_reverse);
1065 
1066 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068 
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 					u64 snap_id)
1071 {
1072 	u32 which;
1073 	const char *snap_name;
1074 
1075 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 	if (which == BAD_SNAP_INDEX)
1077 		return ERR_PTR(-ENOENT);
1078 
1079 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082 
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 	if (snap_id == CEPH_NOSNAP)
1086 		return RBD_SNAP_HEAD_NAME;
1087 
1088 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 	if (rbd_dev->image_format == 1)
1090 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091 
1092 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094 
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 				u64 *snap_size)
1097 {
1098 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 	if (snap_id == CEPH_NOSNAP) {
1100 		*snap_size = rbd_dev->header.image_size;
1101 	} else if (rbd_dev->image_format == 1) {
1102 		u32 which;
1103 
1104 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 		if (which == BAD_SNAP_INDEX)
1106 			return -ENOENT;
1107 
1108 		*snap_size = rbd_dev->header.snap_sizes[which];
1109 	} else {
1110 		u64 size = 0;
1111 		int ret;
1112 
1113 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 		if (ret)
1115 			return ret;
1116 
1117 		*snap_size = size;
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 			u64 *snap_features)
1124 {
1125 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 	if (snap_id == CEPH_NOSNAP) {
1127 		*snap_features = rbd_dev->header.features;
1128 	} else if (rbd_dev->image_format == 1) {
1129 		*snap_features = 0;	/* No features for format 1 */
1130 	} else {
1131 		u64 features = 0;
1132 		int ret;
1133 
1134 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 		if (ret)
1136 			return ret;
1137 
1138 		*snap_features = features;
1139 	}
1140 	return 0;
1141 }
1142 
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 	u64 snap_id = rbd_dev->spec->snap_id;
1146 	u64 size = 0;
1147 	u64 features = 0;
1148 	int ret;
1149 
1150 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 	if (ret)
1152 		return ret;
1153 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 	if (ret)
1155 		return ret;
1156 
1157 	rbd_dev->mapping.size = size;
1158 	rbd_dev->mapping.features = features;
1159 
1160 	return 0;
1161 }
1162 
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 	rbd_dev->mapping.size = 0;
1166 	rbd_dev->mapping.features = 0;
1167 }
1168 
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 	/* The explicit cast here is needed to drop the const qualifier */
1172 
1173 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175 
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 	char *name;
1179 	u64 segment;
1180 	int ret;
1181 	char *name_format;
1182 
1183 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 	if (!name)
1185 		return NULL;
1186 	segment = offset >> rbd_dev->header.obj_order;
1187 	name_format = "%s.%012llx";
1188 	if (rbd_dev->image_format == 2)
1189 		name_format = "%s.%016llx";
1190 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 			rbd_dev->header.object_prefix, segment);
1192 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 		pr_err("error formatting segment name for #%llu (%d)\n",
1194 			segment, ret);
1195 		rbd_segment_name_free(name);
1196 		name = NULL;
1197 	}
1198 
1199 	return name;
1200 }
1201 
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205 
1206 	return offset & (segment_size - 1);
1207 }
1208 
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 				u64 offset, u64 length)
1211 {
1212 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213 
1214 	offset &= segment_size - 1;
1215 
1216 	rbd_assert(length <= U64_MAX - offset);
1217 	if (offset + length > segment_size)
1218 		length = segment_size - offset;
1219 
1220 	return length;
1221 }
1222 
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 	return 1 << header->obj_order;
1229 }
1230 
1231 /*
1232  * bio helpers
1233  */
1234 
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 	struct bio *tmp;
1238 
1239 	while (chain) {
1240 		tmp = chain;
1241 		chain = chain->bi_next;
1242 		bio_put(tmp);
1243 	}
1244 }
1245 
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 	struct bio_vec bv;
1252 	struct bvec_iter iter;
1253 	unsigned long flags;
1254 	void *buf;
1255 	int pos = 0;
1256 
1257 	while (chain) {
1258 		bio_for_each_segment(bv, chain, iter) {
1259 			if (pos + bv.bv_len > start_ofs) {
1260 				int remainder = max(start_ofs - pos, 0);
1261 				buf = bvec_kmap_irq(&bv, &flags);
1262 				memset(buf + remainder, 0,
1263 				       bv.bv_len - remainder);
1264 				flush_dcache_page(bv.bv_page);
1265 				bvec_kunmap_irq(buf, &flags);
1266 			}
1267 			pos += bv.bv_len;
1268 		}
1269 
1270 		chain = chain->bi_next;
1271 	}
1272 }
1273 
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 	struct page **page = &pages[offset >> PAGE_SHIFT];
1283 
1284 	rbd_assert(end > offset);
1285 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 	while (offset < end) {
1287 		size_t page_offset;
1288 		size_t length;
1289 		unsigned long flags;
1290 		void *kaddr;
1291 
1292 		page_offset = offset & ~PAGE_MASK;
1293 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 		local_irq_save(flags);
1295 		kaddr = kmap_atomic(*page);
1296 		memset(kaddr + page_offset, 0, length);
1297 		flush_dcache_page(*page);
1298 		kunmap_atomic(kaddr);
1299 		local_irq_restore(flags);
1300 
1301 		offset += length;
1302 		page++;
1303 	}
1304 }
1305 
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 					unsigned int offset,
1312 					unsigned int len,
1313 					gfp_t gfpmask)
1314 {
1315 	struct bio *bio;
1316 
1317 	bio = bio_clone(bio_src, gfpmask);
1318 	if (!bio)
1319 		return NULL;	/* ENOMEM */
1320 
1321 	bio_advance(bio, offset);
1322 	bio->bi_iter.bi_size = len;
1323 
1324 	return bio;
1325 }
1326 
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 					unsigned int *offset,
1343 					unsigned int len,
1344 					gfp_t gfpmask)
1345 {
1346 	struct bio *bi = *bio_src;
1347 	unsigned int off = *offset;
1348 	struct bio *chain = NULL;
1349 	struct bio **end;
1350 
1351 	/* Build up a chain of clone bios up to the limit */
1352 
1353 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 		return NULL;		/* Nothing to clone */
1355 
1356 	end = &chain;
1357 	while (len) {
1358 		unsigned int bi_size;
1359 		struct bio *bio;
1360 
1361 		if (!bi) {
1362 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 			goto out_err;	/* EINVAL; ran out of bio's */
1364 		}
1365 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 		if (!bio)
1368 			goto out_err;	/* ENOMEM */
1369 
1370 		*end = bio;
1371 		end = &bio->bi_next;
1372 
1373 		off += bi_size;
1374 		if (off == bi->bi_iter.bi_size) {
1375 			bi = bi->bi_next;
1376 			off = 0;
1377 		}
1378 		len -= bi_size;
1379 	}
1380 	*bio_src = bi;
1381 	*offset = off;
1382 
1383 	return chain;
1384 out_err:
1385 	bio_chain_put(chain);
1386 
1387 	return NULL;
1388 }
1389 
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 		struct rbd_device *rbd_dev;
1399 
1400 		rbd_dev = obj_request->img_request->rbd_dev;
1401 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 			obj_request);
1403 	}
1404 }
1405 
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 	smp_mb();
1409 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411 
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 		struct rbd_device *rbd_dev = NULL;
1416 
1417 		if (obj_request_img_data_test(obj_request))
1418 			rbd_dev = obj_request->img_request->rbd_dev;
1419 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 			obj_request);
1421 	}
1422 }
1423 
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 	smp_mb();
1427 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429 
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 				bool exists)
1442 {
1443 	if (exists)
1444 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 	smp_mb();
1447 }
1448 
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 	smp_mb();
1458 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460 
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464 
1465 	return obj_request->img_offset <
1466 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468 
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 		atomic_read(&obj_request->kref.refcount));
1473 	kref_get(&obj_request->kref);
1474 }
1475 
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 	rbd_assert(obj_request != NULL);
1480 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 		atomic_read(&obj_request->kref.refcount));
1482 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484 
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 	dout("%s: img %p (was %d)\n", __func__, img_request,
1488 	     atomic_read(&img_request->kref.refcount));
1489 	kref_get(&img_request->kref);
1490 }
1491 
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 	rbd_assert(img_request != NULL);
1498 	dout("%s: img %p (was %d)\n", __func__, img_request,
1499 		atomic_read(&img_request->kref.refcount));
1500 	if (img_request_child_test(img_request))
1501 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 	else
1503 		kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505 
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 					struct rbd_obj_request *obj_request)
1508 {
1509 	rbd_assert(obj_request->img_request == NULL);
1510 
1511 	/* Image request now owns object's original reference */
1512 	obj_request->img_request = img_request;
1513 	obj_request->which = img_request->obj_request_count;
1514 	rbd_assert(!obj_request_img_data_test(obj_request));
1515 	obj_request_img_data_set(obj_request);
1516 	rbd_assert(obj_request->which != BAD_WHICH);
1517 	img_request->obj_request_count++;
1518 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 		obj_request->which);
1521 }
1522 
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 					struct rbd_obj_request *obj_request)
1525 {
1526 	rbd_assert(obj_request->which != BAD_WHICH);
1527 
1528 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 		obj_request->which);
1530 	list_del(&obj_request->links);
1531 	rbd_assert(img_request->obj_request_count > 0);
1532 	img_request->obj_request_count--;
1533 	rbd_assert(obj_request->which == img_request->obj_request_count);
1534 	obj_request->which = BAD_WHICH;
1535 	rbd_assert(obj_request_img_data_test(obj_request));
1536 	rbd_assert(obj_request->img_request == img_request);
1537 	obj_request->img_request = NULL;
1538 	obj_request->callback = NULL;
1539 	rbd_obj_request_put(obj_request);
1540 }
1541 
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 	switch (type) {
1545 	case OBJ_REQUEST_NODATA:
1546 	case OBJ_REQUEST_BIO:
1547 	case OBJ_REQUEST_PAGES:
1548 		return true;
1549 	default:
1550 		return false;
1551 	}
1552 }
1553 
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 				struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560 
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 	dout("%s %p\n", __func__, obj_request);
1564 	ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566 
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 				  unsigned long timeout)
1575 {
1576 	long ret;
1577 
1578 	dout("%s %p\n", __func__, obj_request);
1579 	ret = wait_for_completion_interruptible_timeout(
1580 					&obj_request->completion,
1581 					ceph_timeout_jiffies(timeout));
1582 	if (ret <= 0) {
1583 		if (ret == 0)
1584 			ret = -ETIMEDOUT;
1585 		rbd_obj_request_end(obj_request);
1586 	} else {
1587 		ret = 0;
1588 	}
1589 
1590 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 	return ret;
1592 }
1593 
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 	return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598 
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600 					unsigned long timeout)
1601 {
1602 	return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604 
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607 
1608 	dout("%s: img %p\n", __func__, img_request);
1609 
1610 	/*
1611 	 * If no error occurred, compute the aggregate transfer
1612 	 * count for the image request.  We could instead use
1613 	 * atomic64_cmpxchg() to update it as each object request
1614 	 * completes; not clear which way is better off hand.
1615 	 */
1616 	if (!img_request->result) {
1617 		struct rbd_obj_request *obj_request;
1618 		u64 xferred = 0;
1619 
1620 		for_each_obj_request(img_request, obj_request)
1621 			xferred += obj_request->xferred;
1622 		img_request->xferred = xferred;
1623 	}
1624 
1625 	if (img_request->callback)
1626 		img_request->callback(img_request);
1627 	else
1628 		rbd_img_request_put(img_request);
1629 }
1630 
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1639 	smp_mb();
1640 }
1641 
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644 	smp_mb();
1645 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647 
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654 	smp_mb();
1655 }
1656 
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659 	smp_mb();
1660 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662 
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1666 	smp_mb();
1667 }
1668 
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672 	smp_mb();
1673 }
1674 
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677 	smp_mb();
1678 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680 
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 	smp_mb();
1685 }
1686 
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690 	smp_mb();
1691 }
1692 
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695 	smp_mb();
1696 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698 
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702 	if (img_request_write_test(img_request))
1703 		return OBJ_OP_WRITE;
1704 	else if (img_request_discard_test(img_request))
1705 		return OBJ_OP_DISCARD;
1706 	else
1707 		return OBJ_OP_READ;
1708 }
1709 
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713 	u64 xferred = obj_request->xferred;
1714 	u64 length = obj_request->length;
1715 
1716 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717 		obj_request, obj_request->img_request, obj_request->result,
1718 		xferred, length);
1719 	/*
1720 	 * ENOENT means a hole in the image.  We zero-fill the entire
1721 	 * length of the request.  A short read also implies zero-fill
1722 	 * to the end of the request.  An error requires the whole
1723 	 * length of the request to be reported finished with an error
1724 	 * to the block layer.  In each case we update the xferred
1725 	 * count to indicate the whole request was satisfied.
1726 	 */
1727 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728 	if (obj_request->result == -ENOENT) {
1729 		if (obj_request->type == OBJ_REQUEST_BIO)
1730 			zero_bio_chain(obj_request->bio_list, 0);
1731 		else
1732 			zero_pages(obj_request->pages, 0, length);
1733 		obj_request->result = 0;
1734 	} else if (xferred < length && !obj_request->result) {
1735 		if (obj_request->type == OBJ_REQUEST_BIO)
1736 			zero_bio_chain(obj_request->bio_list, xferred);
1737 		else
1738 			zero_pages(obj_request->pages, xferred, length);
1739 	}
1740 	obj_request->xferred = length;
1741 	obj_request_done_set(obj_request);
1742 }
1743 
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1747 		obj_request->callback);
1748 	if (obj_request->callback)
1749 		obj_request->callback(obj_request);
1750 	else
1751 		complete_all(&obj_request->completion);
1752 }
1753 
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756 	dout("%s: obj %p\n", __func__, obj_request);
1757 	obj_request_done_set(obj_request);
1758 }
1759 
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762 	struct rbd_img_request *img_request = NULL;
1763 	struct rbd_device *rbd_dev = NULL;
1764 	bool layered = false;
1765 
1766 	if (obj_request_img_data_test(obj_request)) {
1767 		img_request = obj_request->img_request;
1768 		layered = img_request && img_request_layered_test(img_request);
1769 		rbd_dev = img_request->rbd_dev;
1770 	}
1771 
1772 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773 		obj_request, img_request, obj_request->result,
1774 		obj_request->xferred, obj_request->length);
1775 	if (layered && obj_request->result == -ENOENT &&
1776 			obj_request->img_offset < rbd_dev->parent_overlap)
1777 		rbd_img_parent_read(obj_request);
1778 	else if (img_request)
1779 		rbd_img_obj_request_read_callback(obj_request);
1780 	else
1781 		obj_request_done_set(obj_request);
1782 }
1783 
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 		obj_request->result, obj_request->length);
1788 	/*
1789 	 * There is no such thing as a successful short write.  Set
1790 	 * it to our originally-requested length.
1791 	 */
1792 	obj_request->xferred = obj_request->length;
1793 	obj_request_done_set(obj_request);
1794 }
1795 
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799 		obj_request->result, obj_request->length);
1800 	/*
1801 	 * There is no such thing as a successful short discard.  Set
1802 	 * it to our originally-requested length.
1803 	 */
1804 	obj_request->xferred = obj_request->length;
1805 	/* discarding a non-existent object is not a problem */
1806 	if (obj_request->result == -ENOENT)
1807 		obj_request->result = 0;
1808 	obj_request_done_set(obj_request);
1809 }
1810 
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817 	dout("%s: obj %p\n", __func__, obj_request);
1818 	obj_request_done_set(obj_request);
1819 }
1820 
1821 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1822 				struct ceph_msg *msg)
1823 {
1824 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1825 	u16 opcode;
1826 
1827 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1828 	rbd_assert(osd_req == obj_request->osd_req);
1829 	if (obj_request_img_data_test(obj_request)) {
1830 		rbd_assert(obj_request->img_request);
1831 		rbd_assert(obj_request->which != BAD_WHICH);
1832 	} else {
1833 		rbd_assert(obj_request->which == BAD_WHICH);
1834 	}
1835 
1836 	if (osd_req->r_result < 0)
1837 		obj_request->result = osd_req->r_result;
1838 
1839 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1840 
1841 	/*
1842 	 * We support a 64-bit length, but ultimately it has to be
1843 	 * passed to the block layer, which just supports a 32-bit
1844 	 * length field.
1845 	 */
1846 	obj_request->xferred = osd_req->r_reply_op_len[0];
1847 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1848 
1849 	opcode = osd_req->r_ops[0].op;
1850 	switch (opcode) {
1851 	case CEPH_OSD_OP_READ:
1852 		rbd_osd_read_callback(obj_request);
1853 		break;
1854 	case CEPH_OSD_OP_SETALLOCHINT:
1855 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1856 		/* fall through */
1857 	case CEPH_OSD_OP_WRITE:
1858 		rbd_osd_write_callback(obj_request);
1859 		break;
1860 	case CEPH_OSD_OP_STAT:
1861 		rbd_osd_stat_callback(obj_request);
1862 		break;
1863 	case CEPH_OSD_OP_DELETE:
1864 	case CEPH_OSD_OP_TRUNCATE:
1865 	case CEPH_OSD_OP_ZERO:
1866 		rbd_osd_discard_callback(obj_request);
1867 		break;
1868 	case CEPH_OSD_OP_CALL:
1869 	case CEPH_OSD_OP_NOTIFY_ACK:
1870 	case CEPH_OSD_OP_WATCH:
1871 		rbd_osd_trivial_callback(obj_request);
1872 		break;
1873 	default:
1874 		rbd_warn(NULL, "%s: unsupported op %hu",
1875 			obj_request->object_name, (unsigned short) opcode);
1876 		break;
1877 	}
1878 
1879 	if (obj_request_done_test(obj_request))
1880 		rbd_obj_request_complete(obj_request);
1881 }
1882 
1883 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1884 {
1885 	struct rbd_img_request *img_request = obj_request->img_request;
1886 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1887 	u64 snap_id;
1888 
1889 	rbd_assert(osd_req != NULL);
1890 
1891 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1892 	ceph_osdc_build_request(osd_req, obj_request->offset,
1893 			NULL, snap_id, NULL);
1894 }
1895 
1896 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1897 {
1898 	struct rbd_img_request *img_request = obj_request->img_request;
1899 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 	struct ceph_snap_context *snapc;
1901 	struct timespec mtime = CURRENT_TIME;
1902 
1903 	rbd_assert(osd_req != NULL);
1904 
1905 	snapc = img_request ? img_request->snapc : NULL;
1906 	ceph_osdc_build_request(osd_req, obj_request->offset,
1907 			snapc, CEPH_NOSNAP, &mtime);
1908 }
1909 
1910 /*
1911  * Create an osd request.  A read request has one osd op (read).
1912  * A write request has either one (watch) or two (hint+write) osd ops.
1913  * (All rbd data writes are prefixed with an allocation hint op, but
1914  * technically osd watch is a write request, hence this distinction.)
1915  */
1916 static struct ceph_osd_request *rbd_osd_req_create(
1917 					struct rbd_device *rbd_dev,
1918 					enum obj_operation_type op_type,
1919 					unsigned int num_ops,
1920 					struct rbd_obj_request *obj_request)
1921 {
1922 	struct ceph_snap_context *snapc = NULL;
1923 	struct ceph_osd_client *osdc;
1924 	struct ceph_osd_request *osd_req;
1925 
1926 	if (obj_request_img_data_test(obj_request) &&
1927 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1928 		struct rbd_img_request *img_request = obj_request->img_request;
1929 		if (op_type == OBJ_OP_WRITE) {
1930 			rbd_assert(img_request_write_test(img_request));
1931 		} else {
1932 			rbd_assert(img_request_discard_test(img_request));
1933 		}
1934 		snapc = img_request->snapc;
1935 	}
1936 
1937 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1938 
1939 	/* Allocate and initialize the request, for the num_ops ops */
1940 
1941 	osdc = &rbd_dev->rbd_client->client->osdc;
1942 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1943 					  GFP_ATOMIC);
1944 	if (!osd_req)
1945 		return NULL;	/* ENOMEM */
1946 
1947 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1948 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1949 	else
1950 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1951 
1952 	osd_req->r_callback = rbd_osd_req_callback;
1953 	osd_req->r_priv = obj_request;
1954 
1955 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1956 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1957 
1958 	return osd_req;
1959 }
1960 
1961 /*
1962  * Create a copyup osd request based on the information in the object
1963  * request supplied.  A copyup request has two or three osd ops, a
1964  * copyup method call, potentially a hint op, and a write or truncate
1965  * or zero op.
1966  */
1967 static struct ceph_osd_request *
1968 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1969 {
1970 	struct rbd_img_request *img_request;
1971 	struct ceph_snap_context *snapc;
1972 	struct rbd_device *rbd_dev;
1973 	struct ceph_osd_client *osdc;
1974 	struct ceph_osd_request *osd_req;
1975 	int num_osd_ops = 3;
1976 
1977 	rbd_assert(obj_request_img_data_test(obj_request));
1978 	img_request = obj_request->img_request;
1979 	rbd_assert(img_request);
1980 	rbd_assert(img_request_write_test(img_request) ||
1981 			img_request_discard_test(img_request));
1982 
1983 	if (img_request_discard_test(img_request))
1984 		num_osd_ops = 2;
1985 
1986 	/* Allocate and initialize the request, for all the ops */
1987 
1988 	snapc = img_request->snapc;
1989 	rbd_dev = img_request->rbd_dev;
1990 	osdc = &rbd_dev->rbd_client->client->osdc;
1991 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1992 						false, GFP_ATOMIC);
1993 	if (!osd_req)
1994 		return NULL;	/* ENOMEM */
1995 
1996 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1997 	osd_req->r_callback = rbd_osd_req_callback;
1998 	osd_req->r_priv = obj_request;
1999 
2000 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2001 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2002 
2003 	return osd_req;
2004 }
2005 
2006 
2007 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2008 {
2009 	ceph_osdc_put_request(osd_req);
2010 }
2011 
2012 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2013 
2014 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2015 						u64 offset, u64 length,
2016 						enum obj_request_type type)
2017 {
2018 	struct rbd_obj_request *obj_request;
2019 	size_t size;
2020 	char *name;
2021 
2022 	rbd_assert(obj_request_type_valid(type));
2023 
2024 	size = strlen(object_name) + 1;
2025 	name = kmalloc(size, GFP_NOIO);
2026 	if (!name)
2027 		return NULL;
2028 
2029 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2030 	if (!obj_request) {
2031 		kfree(name);
2032 		return NULL;
2033 	}
2034 
2035 	obj_request->object_name = memcpy(name, object_name, size);
2036 	obj_request->offset = offset;
2037 	obj_request->length = length;
2038 	obj_request->flags = 0;
2039 	obj_request->which = BAD_WHICH;
2040 	obj_request->type = type;
2041 	INIT_LIST_HEAD(&obj_request->links);
2042 	init_completion(&obj_request->completion);
2043 	kref_init(&obj_request->kref);
2044 
2045 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2046 		offset, length, (int)type, obj_request);
2047 
2048 	return obj_request;
2049 }
2050 
2051 static void rbd_obj_request_destroy(struct kref *kref)
2052 {
2053 	struct rbd_obj_request *obj_request;
2054 
2055 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2056 
2057 	dout("%s: obj %p\n", __func__, obj_request);
2058 
2059 	rbd_assert(obj_request->img_request == NULL);
2060 	rbd_assert(obj_request->which == BAD_WHICH);
2061 
2062 	if (obj_request->osd_req)
2063 		rbd_osd_req_destroy(obj_request->osd_req);
2064 
2065 	rbd_assert(obj_request_type_valid(obj_request->type));
2066 	switch (obj_request->type) {
2067 	case OBJ_REQUEST_NODATA:
2068 		break;		/* Nothing to do */
2069 	case OBJ_REQUEST_BIO:
2070 		if (obj_request->bio_list)
2071 			bio_chain_put(obj_request->bio_list);
2072 		break;
2073 	case OBJ_REQUEST_PAGES:
2074 		if (obj_request->pages)
2075 			ceph_release_page_vector(obj_request->pages,
2076 						obj_request->page_count);
2077 		break;
2078 	}
2079 
2080 	kfree(obj_request->object_name);
2081 	obj_request->object_name = NULL;
2082 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2083 }
2084 
2085 /* It's OK to call this for a device with no parent */
2086 
2087 static void rbd_spec_put(struct rbd_spec *spec);
2088 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2089 {
2090 	rbd_dev_remove_parent(rbd_dev);
2091 	rbd_spec_put(rbd_dev->parent_spec);
2092 	rbd_dev->parent_spec = NULL;
2093 	rbd_dev->parent_overlap = 0;
2094 }
2095 
2096 /*
2097  * Parent image reference counting is used to determine when an
2098  * image's parent fields can be safely torn down--after there are no
2099  * more in-flight requests to the parent image.  When the last
2100  * reference is dropped, cleaning them up is safe.
2101  */
2102 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2103 {
2104 	int counter;
2105 
2106 	if (!rbd_dev->parent_spec)
2107 		return;
2108 
2109 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2110 	if (counter > 0)
2111 		return;
2112 
2113 	/* Last reference; clean up parent data structures */
2114 
2115 	if (!counter)
2116 		rbd_dev_unparent(rbd_dev);
2117 	else
2118 		rbd_warn(rbd_dev, "parent reference underflow");
2119 }
2120 
2121 /*
2122  * If an image has a non-zero parent overlap, get a reference to its
2123  * parent.
2124  *
2125  * Returns true if the rbd device has a parent with a non-zero
2126  * overlap and a reference for it was successfully taken, or
2127  * false otherwise.
2128  */
2129 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2130 {
2131 	int counter = 0;
2132 
2133 	if (!rbd_dev->parent_spec)
2134 		return false;
2135 
2136 	down_read(&rbd_dev->header_rwsem);
2137 	if (rbd_dev->parent_overlap)
2138 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2139 	up_read(&rbd_dev->header_rwsem);
2140 
2141 	if (counter < 0)
2142 		rbd_warn(rbd_dev, "parent reference overflow");
2143 
2144 	return counter > 0;
2145 }
2146 
2147 /*
2148  * Caller is responsible for filling in the list of object requests
2149  * that comprises the image request, and the Linux request pointer
2150  * (if there is one).
2151  */
2152 static struct rbd_img_request *rbd_img_request_create(
2153 					struct rbd_device *rbd_dev,
2154 					u64 offset, u64 length,
2155 					enum obj_operation_type op_type,
2156 					struct ceph_snap_context *snapc)
2157 {
2158 	struct rbd_img_request *img_request;
2159 
2160 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2161 	if (!img_request)
2162 		return NULL;
2163 
2164 	img_request->rq = NULL;
2165 	img_request->rbd_dev = rbd_dev;
2166 	img_request->offset = offset;
2167 	img_request->length = length;
2168 	img_request->flags = 0;
2169 	if (op_type == OBJ_OP_DISCARD) {
2170 		img_request_discard_set(img_request);
2171 		img_request->snapc = snapc;
2172 	} else if (op_type == OBJ_OP_WRITE) {
2173 		img_request_write_set(img_request);
2174 		img_request->snapc = snapc;
2175 	} else {
2176 		img_request->snap_id = rbd_dev->spec->snap_id;
2177 	}
2178 	if (rbd_dev_parent_get(rbd_dev))
2179 		img_request_layered_set(img_request);
2180 	spin_lock_init(&img_request->completion_lock);
2181 	img_request->next_completion = 0;
2182 	img_request->callback = NULL;
2183 	img_request->result = 0;
2184 	img_request->obj_request_count = 0;
2185 	INIT_LIST_HEAD(&img_request->obj_requests);
2186 	kref_init(&img_request->kref);
2187 
2188 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2189 		obj_op_name(op_type), offset, length, img_request);
2190 
2191 	return img_request;
2192 }
2193 
2194 static void rbd_img_request_destroy(struct kref *kref)
2195 {
2196 	struct rbd_img_request *img_request;
2197 	struct rbd_obj_request *obj_request;
2198 	struct rbd_obj_request *next_obj_request;
2199 
2200 	img_request = container_of(kref, struct rbd_img_request, kref);
2201 
2202 	dout("%s: img %p\n", __func__, img_request);
2203 
2204 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2205 		rbd_img_obj_request_del(img_request, obj_request);
2206 	rbd_assert(img_request->obj_request_count == 0);
2207 
2208 	if (img_request_layered_test(img_request)) {
2209 		img_request_layered_clear(img_request);
2210 		rbd_dev_parent_put(img_request->rbd_dev);
2211 	}
2212 
2213 	if (img_request_write_test(img_request) ||
2214 		img_request_discard_test(img_request))
2215 		ceph_put_snap_context(img_request->snapc);
2216 
2217 	kmem_cache_free(rbd_img_request_cache, img_request);
2218 }
2219 
2220 static struct rbd_img_request *rbd_parent_request_create(
2221 					struct rbd_obj_request *obj_request,
2222 					u64 img_offset, u64 length)
2223 {
2224 	struct rbd_img_request *parent_request;
2225 	struct rbd_device *rbd_dev;
2226 
2227 	rbd_assert(obj_request->img_request);
2228 	rbd_dev = obj_request->img_request->rbd_dev;
2229 
2230 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2231 						length, OBJ_OP_READ, NULL);
2232 	if (!parent_request)
2233 		return NULL;
2234 
2235 	img_request_child_set(parent_request);
2236 	rbd_obj_request_get(obj_request);
2237 	parent_request->obj_request = obj_request;
2238 
2239 	return parent_request;
2240 }
2241 
2242 static void rbd_parent_request_destroy(struct kref *kref)
2243 {
2244 	struct rbd_img_request *parent_request;
2245 	struct rbd_obj_request *orig_request;
2246 
2247 	parent_request = container_of(kref, struct rbd_img_request, kref);
2248 	orig_request = parent_request->obj_request;
2249 
2250 	parent_request->obj_request = NULL;
2251 	rbd_obj_request_put(orig_request);
2252 	img_request_child_clear(parent_request);
2253 
2254 	rbd_img_request_destroy(kref);
2255 }
2256 
2257 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2258 {
2259 	struct rbd_img_request *img_request;
2260 	unsigned int xferred;
2261 	int result;
2262 	bool more;
2263 
2264 	rbd_assert(obj_request_img_data_test(obj_request));
2265 	img_request = obj_request->img_request;
2266 
2267 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2268 	xferred = (unsigned int)obj_request->xferred;
2269 	result = obj_request->result;
2270 	if (result) {
2271 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2272 		enum obj_operation_type op_type;
2273 
2274 		if (img_request_discard_test(img_request))
2275 			op_type = OBJ_OP_DISCARD;
2276 		else if (img_request_write_test(img_request))
2277 			op_type = OBJ_OP_WRITE;
2278 		else
2279 			op_type = OBJ_OP_READ;
2280 
2281 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2282 			obj_op_name(op_type), obj_request->length,
2283 			obj_request->img_offset, obj_request->offset);
2284 		rbd_warn(rbd_dev, "  result %d xferred %x",
2285 			result, xferred);
2286 		if (!img_request->result)
2287 			img_request->result = result;
2288 		/*
2289 		 * Need to end I/O on the entire obj_request worth of
2290 		 * bytes in case of error.
2291 		 */
2292 		xferred = obj_request->length;
2293 	}
2294 
2295 	/* Image object requests don't own their page array */
2296 
2297 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2298 		obj_request->pages = NULL;
2299 		obj_request->page_count = 0;
2300 	}
2301 
2302 	if (img_request_child_test(img_request)) {
2303 		rbd_assert(img_request->obj_request != NULL);
2304 		more = obj_request->which < img_request->obj_request_count - 1;
2305 	} else {
2306 		rbd_assert(img_request->rq != NULL);
2307 
2308 		more = blk_update_request(img_request->rq, result, xferred);
2309 		if (!more)
2310 			__blk_mq_end_request(img_request->rq, result);
2311 	}
2312 
2313 	return more;
2314 }
2315 
2316 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2317 {
2318 	struct rbd_img_request *img_request;
2319 	u32 which = obj_request->which;
2320 	bool more = true;
2321 
2322 	rbd_assert(obj_request_img_data_test(obj_request));
2323 	img_request = obj_request->img_request;
2324 
2325 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2326 	rbd_assert(img_request != NULL);
2327 	rbd_assert(img_request->obj_request_count > 0);
2328 	rbd_assert(which != BAD_WHICH);
2329 	rbd_assert(which < img_request->obj_request_count);
2330 
2331 	spin_lock_irq(&img_request->completion_lock);
2332 	if (which != img_request->next_completion)
2333 		goto out;
2334 
2335 	for_each_obj_request_from(img_request, obj_request) {
2336 		rbd_assert(more);
2337 		rbd_assert(which < img_request->obj_request_count);
2338 
2339 		if (!obj_request_done_test(obj_request))
2340 			break;
2341 		more = rbd_img_obj_end_request(obj_request);
2342 		which++;
2343 	}
2344 
2345 	rbd_assert(more ^ (which == img_request->obj_request_count));
2346 	img_request->next_completion = which;
2347 out:
2348 	spin_unlock_irq(&img_request->completion_lock);
2349 	rbd_img_request_put(img_request);
2350 
2351 	if (!more)
2352 		rbd_img_request_complete(img_request);
2353 }
2354 
2355 /*
2356  * Add individual osd ops to the given ceph_osd_request and prepare
2357  * them for submission. num_ops is the current number of
2358  * osd operations already to the object request.
2359  */
2360 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2361 				struct ceph_osd_request *osd_request,
2362 				enum obj_operation_type op_type,
2363 				unsigned int num_ops)
2364 {
2365 	struct rbd_img_request *img_request = obj_request->img_request;
2366 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2367 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2368 	u64 offset = obj_request->offset;
2369 	u64 length = obj_request->length;
2370 	u64 img_end;
2371 	u16 opcode;
2372 
2373 	if (op_type == OBJ_OP_DISCARD) {
2374 		if (!offset && length == object_size &&
2375 		    (!img_request_layered_test(img_request) ||
2376 		     !obj_request_overlaps_parent(obj_request))) {
2377 			opcode = CEPH_OSD_OP_DELETE;
2378 		} else if ((offset + length == object_size)) {
2379 			opcode = CEPH_OSD_OP_TRUNCATE;
2380 		} else {
2381 			down_read(&rbd_dev->header_rwsem);
2382 			img_end = rbd_dev->header.image_size;
2383 			up_read(&rbd_dev->header_rwsem);
2384 
2385 			if (obj_request->img_offset + length == img_end)
2386 				opcode = CEPH_OSD_OP_TRUNCATE;
2387 			else
2388 				opcode = CEPH_OSD_OP_ZERO;
2389 		}
2390 	} else if (op_type == OBJ_OP_WRITE) {
2391 		opcode = CEPH_OSD_OP_WRITE;
2392 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2393 					object_size, object_size);
2394 		num_ops++;
2395 	} else {
2396 		opcode = CEPH_OSD_OP_READ;
2397 	}
2398 
2399 	if (opcode == CEPH_OSD_OP_DELETE)
2400 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2401 	else
2402 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2403 				       offset, length, 0, 0);
2404 
2405 	if (obj_request->type == OBJ_REQUEST_BIO)
2406 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2407 					obj_request->bio_list, length);
2408 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2409 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2410 					obj_request->pages, length,
2411 					offset & ~PAGE_MASK, false, false);
2412 
2413 	/* Discards are also writes */
2414 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2415 		rbd_osd_req_format_write(obj_request);
2416 	else
2417 		rbd_osd_req_format_read(obj_request);
2418 }
2419 
2420 /*
2421  * Split up an image request into one or more object requests, each
2422  * to a different object.  The "type" parameter indicates whether
2423  * "data_desc" is the pointer to the head of a list of bio
2424  * structures, or the base of a page array.  In either case this
2425  * function assumes data_desc describes memory sufficient to hold
2426  * all data described by the image request.
2427  */
2428 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2429 					enum obj_request_type type,
2430 					void *data_desc)
2431 {
2432 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2433 	struct rbd_obj_request *obj_request = NULL;
2434 	struct rbd_obj_request *next_obj_request;
2435 	struct bio *bio_list = NULL;
2436 	unsigned int bio_offset = 0;
2437 	struct page **pages = NULL;
2438 	enum obj_operation_type op_type;
2439 	u64 img_offset;
2440 	u64 resid;
2441 
2442 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2443 		(int)type, data_desc);
2444 
2445 	img_offset = img_request->offset;
2446 	resid = img_request->length;
2447 	rbd_assert(resid > 0);
2448 	op_type = rbd_img_request_op_type(img_request);
2449 
2450 	if (type == OBJ_REQUEST_BIO) {
2451 		bio_list = data_desc;
2452 		rbd_assert(img_offset ==
2453 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2454 	} else if (type == OBJ_REQUEST_PAGES) {
2455 		pages = data_desc;
2456 	}
2457 
2458 	while (resid) {
2459 		struct ceph_osd_request *osd_req;
2460 		const char *object_name;
2461 		u64 offset;
2462 		u64 length;
2463 
2464 		object_name = rbd_segment_name(rbd_dev, img_offset);
2465 		if (!object_name)
2466 			goto out_unwind;
2467 		offset = rbd_segment_offset(rbd_dev, img_offset);
2468 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2469 		obj_request = rbd_obj_request_create(object_name,
2470 						offset, length, type);
2471 		/* object request has its own copy of the object name */
2472 		rbd_segment_name_free(object_name);
2473 		if (!obj_request)
2474 			goto out_unwind;
2475 
2476 		/*
2477 		 * set obj_request->img_request before creating the
2478 		 * osd_request so that it gets the right snapc
2479 		 */
2480 		rbd_img_obj_request_add(img_request, obj_request);
2481 
2482 		if (type == OBJ_REQUEST_BIO) {
2483 			unsigned int clone_size;
2484 
2485 			rbd_assert(length <= (u64)UINT_MAX);
2486 			clone_size = (unsigned int)length;
2487 			obj_request->bio_list =
2488 					bio_chain_clone_range(&bio_list,
2489 								&bio_offset,
2490 								clone_size,
2491 								GFP_ATOMIC);
2492 			if (!obj_request->bio_list)
2493 				goto out_unwind;
2494 		} else if (type == OBJ_REQUEST_PAGES) {
2495 			unsigned int page_count;
2496 
2497 			obj_request->pages = pages;
2498 			page_count = (u32)calc_pages_for(offset, length);
2499 			obj_request->page_count = page_count;
2500 			if ((offset + length) & ~PAGE_MASK)
2501 				page_count--;	/* more on last page */
2502 			pages += page_count;
2503 		}
2504 
2505 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2506 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2507 					obj_request);
2508 		if (!osd_req)
2509 			goto out_unwind;
2510 
2511 		obj_request->osd_req = osd_req;
2512 		obj_request->callback = rbd_img_obj_callback;
2513 		obj_request->img_offset = img_offset;
2514 
2515 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2516 
2517 		rbd_img_request_get(img_request);
2518 
2519 		img_offset += length;
2520 		resid -= length;
2521 	}
2522 
2523 	return 0;
2524 
2525 out_unwind:
2526 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2527 		rbd_img_obj_request_del(img_request, obj_request);
2528 
2529 	return -ENOMEM;
2530 }
2531 
2532 static void
2533 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2534 {
2535 	struct rbd_img_request *img_request;
2536 	struct rbd_device *rbd_dev;
2537 	struct page **pages;
2538 	u32 page_count;
2539 
2540 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2541 		obj_request->type == OBJ_REQUEST_NODATA);
2542 	rbd_assert(obj_request_img_data_test(obj_request));
2543 	img_request = obj_request->img_request;
2544 	rbd_assert(img_request);
2545 
2546 	rbd_dev = img_request->rbd_dev;
2547 	rbd_assert(rbd_dev);
2548 
2549 	pages = obj_request->copyup_pages;
2550 	rbd_assert(pages != NULL);
2551 	obj_request->copyup_pages = NULL;
2552 	page_count = obj_request->copyup_page_count;
2553 	rbd_assert(page_count);
2554 	obj_request->copyup_page_count = 0;
2555 	ceph_release_page_vector(pages, page_count);
2556 
2557 	/*
2558 	 * We want the transfer count to reflect the size of the
2559 	 * original write request.  There is no such thing as a
2560 	 * successful short write, so if the request was successful
2561 	 * we can just set it to the originally-requested length.
2562 	 */
2563 	if (!obj_request->result)
2564 		obj_request->xferred = obj_request->length;
2565 
2566 	/* Finish up with the normal image object callback */
2567 
2568 	rbd_img_obj_callback(obj_request);
2569 }
2570 
2571 static void
2572 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2573 {
2574 	struct rbd_obj_request *orig_request;
2575 	struct ceph_osd_request *osd_req;
2576 	struct ceph_osd_client *osdc;
2577 	struct rbd_device *rbd_dev;
2578 	struct page **pages;
2579 	enum obj_operation_type op_type;
2580 	u32 page_count;
2581 	int img_result;
2582 	u64 parent_length;
2583 
2584 	rbd_assert(img_request_child_test(img_request));
2585 
2586 	/* First get what we need from the image request */
2587 
2588 	pages = img_request->copyup_pages;
2589 	rbd_assert(pages != NULL);
2590 	img_request->copyup_pages = NULL;
2591 	page_count = img_request->copyup_page_count;
2592 	rbd_assert(page_count);
2593 	img_request->copyup_page_count = 0;
2594 
2595 	orig_request = img_request->obj_request;
2596 	rbd_assert(orig_request != NULL);
2597 	rbd_assert(obj_request_type_valid(orig_request->type));
2598 	img_result = img_request->result;
2599 	parent_length = img_request->length;
2600 	rbd_assert(parent_length == img_request->xferred);
2601 	rbd_img_request_put(img_request);
2602 
2603 	rbd_assert(orig_request->img_request);
2604 	rbd_dev = orig_request->img_request->rbd_dev;
2605 	rbd_assert(rbd_dev);
2606 
2607 	/*
2608 	 * If the overlap has become 0 (most likely because the
2609 	 * image has been flattened) we need to free the pages
2610 	 * and re-submit the original write request.
2611 	 */
2612 	if (!rbd_dev->parent_overlap) {
2613 		struct ceph_osd_client *osdc;
2614 
2615 		ceph_release_page_vector(pages, page_count);
2616 		osdc = &rbd_dev->rbd_client->client->osdc;
2617 		img_result = rbd_obj_request_submit(osdc, orig_request);
2618 		if (!img_result)
2619 			return;
2620 	}
2621 
2622 	if (img_result)
2623 		goto out_err;
2624 
2625 	/*
2626 	 * The original osd request is of no use to use any more.
2627 	 * We need a new one that can hold the three ops in a copyup
2628 	 * request.  Allocate the new copyup osd request for the
2629 	 * original request, and release the old one.
2630 	 */
2631 	img_result = -ENOMEM;
2632 	osd_req = rbd_osd_req_create_copyup(orig_request);
2633 	if (!osd_req)
2634 		goto out_err;
2635 	rbd_osd_req_destroy(orig_request->osd_req);
2636 	orig_request->osd_req = osd_req;
2637 	orig_request->copyup_pages = pages;
2638 	orig_request->copyup_page_count = page_count;
2639 
2640 	/* Initialize the copyup op */
2641 
2642 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2643 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2644 						false, false);
2645 
2646 	/* Add the other op(s) */
2647 
2648 	op_type = rbd_img_request_op_type(orig_request->img_request);
2649 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2650 
2651 	/* All set, send it off. */
2652 
2653 	orig_request->callback = rbd_img_obj_copyup_callback;
2654 	osdc = &rbd_dev->rbd_client->client->osdc;
2655 	img_result = rbd_obj_request_submit(osdc, orig_request);
2656 	if (!img_result)
2657 		return;
2658 out_err:
2659 	/* Record the error code and complete the request */
2660 
2661 	orig_request->result = img_result;
2662 	orig_request->xferred = 0;
2663 	obj_request_done_set(orig_request);
2664 	rbd_obj_request_complete(orig_request);
2665 }
2666 
2667 /*
2668  * Read from the parent image the range of data that covers the
2669  * entire target of the given object request.  This is used for
2670  * satisfying a layered image write request when the target of an
2671  * object request from the image request does not exist.
2672  *
2673  * A page array big enough to hold the returned data is allocated
2674  * and supplied to rbd_img_request_fill() as the "data descriptor."
2675  * When the read completes, this page array will be transferred to
2676  * the original object request for the copyup operation.
2677  *
2678  * If an error occurs, record it as the result of the original
2679  * object request and mark it done so it gets completed.
2680  */
2681 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2682 {
2683 	struct rbd_img_request *img_request = NULL;
2684 	struct rbd_img_request *parent_request = NULL;
2685 	struct rbd_device *rbd_dev;
2686 	u64 img_offset;
2687 	u64 length;
2688 	struct page **pages = NULL;
2689 	u32 page_count;
2690 	int result;
2691 
2692 	rbd_assert(obj_request_img_data_test(obj_request));
2693 	rbd_assert(obj_request_type_valid(obj_request->type));
2694 
2695 	img_request = obj_request->img_request;
2696 	rbd_assert(img_request != NULL);
2697 	rbd_dev = img_request->rbd_dev;
2698 	rbd_assert(rbd_dev->parent != NULL);
2699 
2700 	/*
2701 	 * Determine the byte range covered by the object in the
2702 	 * child image to which the original request was to be sent.
2703 	 */
2704 	img_offset = obj_request->img_offset - obj_request->offset;
2705 	length = (u64)1 << rbd_dev->header.obj_order;
2706 
2707 	/*
2708 	 * There is no defined parent data beyond the parent
2709 	 * overlap, so limit what we read at that boundary if
2710 	 * necessary.
2711 	 */
2712 	if (img_offset + length > rbd_dev->parent_overlap) {
2713 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2714 		length = rbd_dev->parent_overlap - img_offset;
2715 	}
2716 
2717 	/*
2718 	 * Allocate a page array big enough to receive the data read
2719 	 * from the parent.
2720 	 */
2721 	page_count = (u32)calc_pages_for(0, length);
2722 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2723 	if (IS_ERR(pages)) {
2724 		result = PTR_ERR(pages);
2725 		pages = NULL;
2726 		goto out_err;
2727 	}
2728 
2729 	result = -ENOMEM;
2730 	parent_request = rbd_parent_request_create(obj_request,
2731 						img_offset, length);
2732 	if (!parent_request)
2733 		goto out_err;
2734 
2735 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2736 	if (result)
2737 		goto out_err;
2738 	parent_request->copyup_pages = pages;
2739 	parent_request->copyup_page_count = page_count;
2740 
2741 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2742 	result = rbd_img_request_submit(parent_request);
2743 	if (!result)
2744 		return 0;
2745 
2746 	parent_request->copyup_pages = NULL;
2747 	parent_request->copyup_page_count = 0;
2748 	parent_request->obj_request = NULL;
2749 	rbd_obj_request_put(obj_request);
2750 out_err:
2751 	if (pages)
2752 		ceph_release_page_vector(pages, page_count);
2753 	if (parent_request)
2754 		rbd_img_request_put(parent_request);
2755 	obj_request->result = result;
2756 	obj_request->xferred = 0;
2757 	obj_request_done_set(obj_request);
2758 
2759 	return result;
2760 }
2761 
2762 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2763 {
2764 	struct rbd_obj_request *orig_request;
2765 	struct rbd_device *rbd_dev;
2766 	int result;
2767 
2768 	rbd_assert(!obj_request_img_data_test(obj_request));
2769 
2770 	/*
2771 	 * All we need from the object request is the original
2772 	 * request and the result of the STAT op.  Grab those, then
2773 	 * we're done with the request.
2774 	 */
2775 	orig_request = obj_request->obj_request;
2776 	obj_request->obj_request = NULL;
2777 	rbd_obj_request_put(orig_request);
2778 	rbd_assert(orig_request);
2779 	rbd_assert(orig_request->img_request);
2780 
2781 	result = obj_request->result;
2782 	obj_request->result = 0;
2783 
2784 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2785 		obj_request, orig_request, result,
2786 		obj_request->xferred, obj_request->length);
2787 	rbd_obj_request_put(obj_request);
2788 
2789 	/*
2790 	 * If the overlap has become 0 (most likely because the
2791 	 * image has been flattened) we need to free the pages
2792 	 * and re-submit the original write request.
2793 	 */
2794 	rbd_dev = orig_request->img_request->rbd_dev;
2795 	if (!rbd_dev->parent_overlap) {
2796 		struct ceph_osd_client *osdc;
2797 
2798 		osdc = &rbd_dev->rbd_client->client->osdc;
2799 		result = rbd_obj_request_submit(osdc, orig_request);
2800 		if (!result)
2801 			return;
2802 	}
2803 
2804 	/*
2805 	 * Our only purpose here is to determine whether the object
2806 	 * exists, and we don't want to treat the non-existence as
2807 	 * an error.  If something else comes back, transfer the
2808 	 * error to the original request and complete it now.
2809 	 */
2810 	if (!result) {
2811 		obj_request_existence_set(orig_request, true);
2812 	} else if (result == -ENOENT) {
2813 		obj_request_existence_set(orig_request, false);
2814 	} else if (result) {
2815 		orig_request->result = result;
2816 		goto out;
2817 	}
2818 
2819 	/*
2820 	 * Resubmit the original request now that we have recorded
2821 	 * whether the target object exists.
2822 	 */
2823 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2824 out:
2825 	if (orig_request->result)
2826 		rbd_obj_request_complete(orig_request);
2827 }
2828 
2829 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2830 {
2831 	struct rbd_obj_request *stat_request;
2832 	struct rbd_device *rbd_dev;
2833 	struct ceph_osd_client *osdc;
2834 	struct page **pages = NULL;
2835 	u32 page_count;
2836 	size_t size;
2837 	int ret;
2838 
2839 	/*
2840 	 * The response data for a STAT call consists of:
2841 	 *     le64 length;
2842 	 *     struct {
2843 	 *         le32 tv_sec;
2844 	 *         le32 tv_nsec;
2845 	 *     } mtime;
2846 	 */
2847 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2848 	page_count = (u32)calc_pages_for(0, size);
2849 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2850 	if (IS_ERR(pages))
2851 		return PTR_ERR(pages);
2852 
2853 	ret = -ENOMEM;
2854 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2855 							OBJ_REQUEST_PAGES);
2856 	if (!stat_request)
2857 		goto out;
2858 
2859 	rbd_obj_request_get(obj_request);
2860 	stat_request->obj_request = obj_request;
2861 	stat_request->pages = pages;
2862 	stat_request->page_count = page_count;
2863 
2864 	rbd_assert(obj_request->img_request);
2865 	rbd_dev = obj_request->img_request->rbd_dev;
2866 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2867 						   stat_request);
2868 	if (!stat_request->osd_req)
2869 		goto out;
2870 	stat_request->callback = rbd_img_obj_exists_callback;
2871 
2872 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2873 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2874 					false, false);
2875 	rbd_osd_req_format_read(stat_request);
2876 
2877 	osdc = &rbd_dev->rbd_client->client->osdc;
2878 	ret = rbd_obj_request_submit(osdc, stat_request);
2879 out:
2880 	if (ret)
2881 		rbd_obj_request_put(obj_request);
2882 
2883 	return ret;
2884 }
2885 
2886 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2887 {
2888 	struct rbd_img_request *img_request;
2889 	struct rbd_device *rbd_dev;
2890 
2891 	rbd_assert(obj_request_img_data_test(obj_request));
2892 
2893 	img_request = obj_request->img_request;
2894 	rbd_assert(img_request);
2895 	rbd_dev = img_request->rbd_dev;
2896 
2897 	/* Reads */
2898 	if (!img_request_write_test(img_request) &&
2899 	    !img_request_discard_test(img_request))
2900 		return true;
2901 
2902 	/* Non-layered writes */
2903 	if (!img_request_layered_test(img_request))
2904 		return true;
2905 
2906 	/*
2907 	 * Layered writes outside of the parent overlap range don't
2908 	 * share any data with the parent.
2909 	 */
2910 	if (!obj_request_overlaps_parent(obj_request))
2911 		return true;
2912 
2913 	/*
2914 	 * Entire-object layered writes - we will overwrite whatever
2915 	 * parent data there is anyway.
2916 	 */
2917 	if (!obj_request->offset &&
2918 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2919 		return true;
2920 
2921 	/*
2922 	 * If the object is known to already exist, its parent data has
2923 	 * already been copied.
2924 	 */
2925 	if (obj_request_known_test(obj_request) &&
2926 	    obj_request_exists_test(obj_request))
2927 		return true;
2928 
2929 	return false;
2930 }
2931 
2932 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2933 {
2934 	if (img_obj_request_simple(obj_request)) {
2935 		struct rbd_device *rbd_dev;
2936 		struct ceph_osd_client *osdc;
2937 
2938 		rbd_dev = obj_request->img_request->rbd_dev;
2939 		osdc = &rbd_dev->rbd_client->client->osdc;
2940 
2941 		return rbd_obj_request_submit(osdc, obj_request);
2942 	}
2943 
2944 	/*
2945 	 * It's a layered write.  The target object might exist but
2946 	 * we may not know that yet.  If we know it doesn't exist,
2947 	 * start by reading the data for the full target object from
2948 	 * the parent so we can use it for a copyup to the target.
2949 	 */
2950 	if (obj_request_known_test(obj_request))
2951 		return rbd_img_obj_parent_read_full(obj_request);
2952 
2953 	/* We don't know whether the target exists.  Go find out. */
2954 
2955 	return rbd_img_obj_exists_submit(obj_request);
2956 }
2957 
2958 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2959 {
2960 	struct rbd_obj_request *obj_request;
2961 	struct rbd_obj_request *next_obj_request;
2962 
2963 	dout("%s: img %p\n", __func__, img_request);
2964 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2965 		int ret;
2966 
2967 		ret = rbd_img_obj_request_submit(obj_request);
2968 		if (ret)
2969 			return ret;
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2976 {
2977 	struct rbd_obj_request *obj_request;
2978 	struct rbd_device *rbd_dev;
2979 	u64 obj_end;
2980 	u64 img_xferred;
2981 	int img_result;
2982 
2983 	rbd_assert(img_request_child_test(img_request));
2984 
2985 	/* First get what we need from the image request and release it */
2986 
2987 	obj_request = img_request->obj_request;
2988 	img_xferred = img_request->xferred;
2989 	img_result = img_request->result;
2990 	rbd_img_request_put(img_request);
2991 
2992 	/*
2993 	 * If the overlap has become 0 (most likely because the
2994 	 * image has been flattened) we need to re-submit the
2995 	 * original request.
2996 	 */
2997 	rbd_assert(obj_request);
2998 	rbd_assert(obj_request->img_request);
2999 	rbd_dev = obj_request->img_request->rbd_dev;
3000 	if (!rbd_dev->parent_overlap) {
3001 		struct ceph_osd_client *osdc;
3002 
3003 		osdc = &rbd_dev->rbd_client->client->osdc;
3004 		img_result = rbd_obj_request_submit(osdc, obj_request);
3005 		if (!img_result)
3006 			return;
3007 	}
3008 
3009 	obj_request->result = img_result;
3010 	if (obj_request->result)
3011 		goto out;
3012 
3013 	/*
3014 	 * We need to zero anything beyond the parent overlap
3015 	 * boundary.  Since rbd_img_obj_request_read_callback()
3016 	 * will zero anything beyond the end of a short read, an
3017 	 * easy way to do this is to pretend the data from the
3018 	 * parent came up short--ending at the overlap boundary.
3019 	 */
3020 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3021 	obj_end = obj_request->img_offset + obj_request->length;
3022 	if (obj_end > rbd_dev->parent_overlap) {
3023 		u64 xferred = 0;
3024 
3025 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3026 			xferred = rbd_dev->parent_overlap -
3027 					obj_request->img_offset;
3028 
3029 		obj_request->xferred = min(img_xferred, xferred);
3030 	} else {
3031 		obj_request->xferred = img_xferred;
3032 	}
3033 out:
3034 	rbd_img_obj_request_read_callback(obj_request);
3035 	rbd_obj_request_complete(obj_request);
3036 }
3037 
3038 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3039 {
3040 	struct rbd_img_request *img_request;
3041 	int result;
3042 
3043 	rbd_assert(obj_request_img_data_test(obj_request));
3044 	rbd_assert(obj_request->img_request != NULL);
3045 	rbd_assert(obj_request->result == (s32) -ENOENT);
3046 	rbd_assert(obj_request_type_valid(obj_request->type));
3047 
3048 	/* rbd_read_finish(obj_request, obj_request->length); */
3049 	img_request = rbd_parent_request_create(obj_request,
3050 						obj_request->img_offset,
3051 						obj_request->length);
3052 	result = -ENOMEM;
3053 	if (!img_request)
3054 		goto out_err;
3055 
3056 	if (obj_request->type == OBJ_REQUEST_BIO)
3057 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3058 						obj_request->bio_list);
3059 	else
3060 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3061 						obj_request->pages);
3062 	if (result)
3063 		goto out_err;
3064 
3065 	img_request->callback = rbd_img_parent_read_callback;
3066 	result = rbd_img_request_submit(img_request);
3067 	if (result)
3068 		goto out_err;
3069 
3070 	return;
3071 out_err:
3072 	if (img_request)
3073 		rbd_img_request_put(img_request);
3074 	obj_request->result = result;
3075 	obj_request->xferred = 0;
3076 	obj_request_done_set(obj_request);
3077 }
3078 
3079 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3080 {
3081 	struct rbd_obj_request *obj_request;
3082 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3083 	int ret;
3084 
3085 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3086 							OBJ_REQUEST_NODATA);
3087 	if (!obj_request)
3088 		return -ENOMEM;
3089 
3090 	ret = -ENOMEM;
3091 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3092 						  obj_request);
3093 	if (!obj_request->osd_req)
3094 		goto out;
3095 
3096 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3097 					notify_id, 0, 0);
3098 	rbd_osd_req_format_read(obj_request);
3099 
3100 	ret = rbd_obj_request_submit(osdc, obj_request);
3101 	if (ret)
3102 		goto out;
3103 	ret = rbd_obj_request_wait(obj_request);
3104 out:
3105 	rbd_obj_request_put(obj_request);
3106 
3107 	return ret;
3108 }
3109 
3110 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3111 {
3112 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3113 	int ret;
3114 
3115 	if (!rbd_dev)
3116 		return;
3117 
3118 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3119 		rbd_dev->header_name, (unsigned long long)notify_id,
3120 		(unsigned int)opcode);
3121 
3122 	/*
3123 	 * Until adequate refresh error handling is in place, there is
3124 	 * not much we can do here, except warn.
3125 	 *
3126 	 * See http://tracker.ceph.com/issues/5040
3127 	 */
3128 	ret = rbd_dev_refresh(rbd_dev);
3129 	if (ret)
3130 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3131 
3132 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3133 	if (ret)
3134 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3135 }
3136 
3137 /*
3138  * Send a (un)watch request and wait for the ack.  Return a request
3139  * with a ref held on success or error.
3140  */
3141 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3142 						struct rbd_device *rbd_dev,
3143 						bool watch)
3144 {
3145 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3146 	struct ceph_options *opts = osdc->client->options;
3147 	struct rbd_obj_request *obj_request;
3148 	int ret;
3149 
3150 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3151 					     OBJ_REQUEST_NODATA);
3152 	if (!obj_request)
3153 		return ERR_PTR(-ENOMEM);
3154 
3155 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3156 						  obj_request);
3157 	if (!obj_request->osd_req) {
3158 		ret = -ENOMEM;
3159 		goto out;
3160 	}
3161 
3162 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3163 			      rbd_dev->watch_event->cookie, 0, watch);
3164 	rbd_osd_req_format_write(obj_request);
3165 
3166 	if (watch)
3167 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3168 
3169 	ret = rbd_obj_request_submit(osdc, obj_request);
3170 	if (ret)
3171 		goto out;
3172 
3173 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3174 	if (ret)
3175 		goto out;
3176 
3177 	ret = obj_request->result;
3178 	if (ret) {
3179 		if (watch)
3180 			rbd_obj_request_end(obj_request);
3181 		goto out;
3182 	}
3183 
3184 	return obj_request;
3185 
3186 out:
3187 	rbd_obj_request_put(obj_request);
3188 	return ERR_PTR(ret);
3189 }
3190 
3191 /*
3192  * Initiate a watch request, synchronously.
3193  */
3194 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3195 {
3196 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 	struct rbd_obj_request *obj_request;
3198 	int ret;
3199 
3200 	rbd_assert(!rbd_dev->watch_event);
3201 	rbd_assert(!rbd_dev->watch_request);
3202 
3203 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3204 				     &rbd_dev->watch_event);
3205 	if (ret < 0)
3206 		return ret;
3207 
3208 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3209 	if (IS_ERR(obj_request)) {
3210 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3211 		rbd_dev->watch_event = NULL;
3212 		return PTR_ERR(obj_request);
3213 	}
3214 
3215 	/*
3216 	 * A watch request is set to linger, so the underlying osd
3217 	 * request won't go away until we unregister it.  We retain
3218 	 * a pointer to the object request during that time (in
3219 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3220 	 * We'll drop that reference after we've unregistered it in
3221 	 * rbd_dev_header_unwatch_sync().
3222 	 */
3223 	rbd_dev->watch_request = obj_request;
3224 
3225 	return 0;
3226 }
3227 
3228 /*
3229  * Tear down a watch request, synchronously.
3230  */
3231 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3232 {
3233 	struct rbd_obj_request *obj_request;
3234 
3235 	rbd_assert(rbd_dev->watch_event);
3236 	rbd_assert(rbd_dev->watch_request);
3237 
3238 	rbd_obj_request_end(rbd_dev->watch_request);
3239 	rbd_obj_request_put(rbd_dev->watch_request);
3240 	rbd_dev->watch_request = NULL;
3241 
3242 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3243 	if (!IS_ERR(obj_request))
3244 		rbd_obj_request_put(obj_request);
3245 	else
3246 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3247 			 PTR_ERR(obj_request));
3248 
3249 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3250 	rbd_dev->watch_event = NULL;
3251 }
3252 
3253 /*
3254  * Synchronous osd object method call.  Returns the number of bytes
3255  * returned in the outbound buffer, or a negative error code.
3256  */
3257 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3258 			     const char *object_name,
3259 			     const char *class_name,
3260 			     const char *method_name,
3261 			     const void *outbound,
3262 			     size_t outbound_size,
3263 			     void *inbound,
3264 			     size_t inbound_size)
3265 {
3266 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3267 	struct rbd_obj_request *obj_request;
3268 	struct page **pages;
3269 	u32 page_count;
3270 	int ret;
3271 
3272 	/*
3273 	 * Method calls are ultimately read operations.  The result
3274 	 * should placed into the inbound buffer provided.  They
3275 	 * also supply outbound data--parameters for the object
3276 	 * method.  Currently if this is present it will be a
3277 	 * snapshot id.
3278 	 */
3279 	page_count = (u32)calc_pages_for(0, inbound_size);
3280 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3281 	if (IS_ERR(pages))
3282 		return PTR_ERR(pages);
3283 
3284 	ret = -ENOMEM;
3285 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3286 							OBJ_REQUEST_PAGES);
3287 	if (!obj_request)
3288 		goto out;
3289 
3290 	obj_request->pages = pages;
3291 	obj_request->page_count = page_count;
3292 
3293 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3294 						  obj_request);
3295 	if (!obj_request->osd_req)
3296 		goto out;
3297 
3298 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3299 					class_name, method_name);
3300 	if (outbound_size) {
3301 		struct ceph_pagelist *pagelist;
3302 
3303 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3304 		if (!pagelist)
3305 			goto out;
3306 
3307 		ceph_pagelist_init(pagelist);
3308 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3309 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3310 						pagelist);
3311 	}
3312 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3313 					obj_request->pages, inbound_size,
3314 					0, false, false);
3315 	rbd_osd_req_format_read(obj_request);
3316 
3317 	ret = rbd_obj_request_submit(osdc, obj_request);
3318 	if (ret)
3319 		goto out;
3320 	ret = rbd_obj_request_wait(obj_request);
3321 	if (ret)
3322 		goto out;
3323 
3324 	ret = obj_request->result;
3325 	if (ret < 0)
3326 		goto out;
3327 
3328 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3329 	ret = (int)obj_request->xferred;
3330 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3331 out:
3332 	if (obj_request)
3333 		rbd_obj_request_put(obj_request);
3334 	else
3335 		ceph_release_page_vector(pages, page_count);
3336 
3337 	return ret;
3338 }
3339 
3340 static void rbd_queue_workfn(struct work_struct *work)
3341 {
3342 	struct request *rq = blk_mq_rq_from_pdu(work);
3343 	struct rbd_device *rbd_dev = rq->q->queuedata;
3344 	struct rbd_img_request *img_request;
3345 	struct ceph_snap_context *snapc = NULL;
3346 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3347 	u64 length = blk_rq_bytes(rq);
3348 	enum obj_operation_type op_type;
3349 	u64 mapping_size;
3350 	int result;
3351 
3352 	if (rq->cmd_type != REQ_TYPE_FS) {
3353 		dout("%s: non-fs request type %d\n", __func__,
3354 			(int) rq->cmd_type);
3355 		result = -EIO;
3356 		goto err;
3357 	}
3358 
3359 	if (rq->cmd_flags & REQ_DISCARD)
3360 		op_type = OBJ_OP_DISCARD;
3361 	else if (rq->cmd_flags & REQ_WRITE)
3362 		op_type = OBJ_OP_WRITE;
3363 	else
3364 		op_type = OBJ_OP_READ;
3365 
3366 	/* Ignore/skip any zero-length requests */
3367 
3368 	if (!length) {
3369 		dout("%s: zero-length request\n", __func__);
3370 		result = 0;
3371 		goto err_rq;
3372 	}
3373 
3374 	/* Only reads are allowed to a read-only device */
3375 
3376 	if (op_type != OBJ_OP_READ) {
3377 		if (rbd_dev->mapping.read_only) {
3378 			result = -EROFS;
3379 			goto err_rq;
3380 		}
3381 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3382 	}
3383 
3384 	/*
3385 	 * Quit early if the mapped snapshot no longer exists.  It's
3386 	 * still possible the snapshot will have disappeared by the
3387 	 * time our request arrives at the osd, but there's no sense in
3388 	 * sending it if we already know.
3389 	 */
3390 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3391 		dout("request for non-existent snapshot");
3392 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3393 		result = -ENXIO;
3394 		goto err_rq;
3395 	}
3396 
3397 	if (offset && length > U64_MAX - offset + 1) {
3398 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3399 			 length);
3400 		result = -EINVAL;
3401 		goto err_rq;	/* Shouldn't happen */
3402 	}
3403 
3404 	blk_mq_start_request(rq);
3405 
3406 	down_read(&rbd_dev->header_rwsem);
3407 	mapping_size = rbd_dev->mapping.size;
3408 	if (op_type != OBJ_OP_READ) {
3409 		snapc = rbd_dev->header.snapc;
3410 		ceph_get_snap_context(snapc);
3411 	}
3412 	up_read(&rbd_dev->header_rwsem);
3413 
3414 	if (offset + length > mapping_size) {
3415 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3416 			 length, mapping_size);
3417 		result = -EIO;
3418 		goto err_rq;
3419 	}
3420 
3421 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3422 					     snapc);
3423 	if (!img_request) {
3424 		result = -ENOMEM;
3425 		goto err_rq;
3426 	}
3427 	img_request->rq = rq;
3428 
3429 	if (op_type == OBJ_OP_DISCARD)
3430 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3431 					      NULL);
3432 	else
3433 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3434 					      rq->bio);
3435 	if (result)
3436 		goto err_img_request;
3437 
3438 	result = rbd_img_request_submit(img_request);
3439 	if (result)
3440 		goto err_img_request;
3441 
3442 	return;
3443 
3444 err_img_request:
3445 	rbd_img_request_put(img_request);
3446 err_rq:
3447 	if (result)
3448 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3449 			 obj_op_name(op_type), length, offset, result);
3450 	ceph_put_snap_context(snapc);
3451 err:
3452 	blk_mq_end_request(rq, result);
3453 }
3454 
3455 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3456 		const struct blk_mq_queue_data *bd)
3457 {
3458 	struct request *rq = bd->rq;
3459 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3460 
3461 	queue_work(rbd_wq, work);
3462 	return BLK_MQ_RQ_QUEUE_OK;
3463 }
3464 
3465 /*
3466  * a queue callback. Makes sure that we don't create a bio that spans across
3467  * multiple osd objects. One exception would be with a single page bios,
3468  * which we handle later at bio_chain_clone_range()
3469  */
3470 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3471 			  struct bio_vec *bvec)
3472 {
3473 	struct rbd_device *rbd_dev = q->queuedata;
3474 	sector_t sector_offset;
3475 	sector_t sectors_per_obj;
3476 	sector_t obj_sector_offset;
3477 	int ret;
3478 
3479 	/*
3480 	 * Find how far into its rbd object the partition-relative
3481 	 * bio start sector is to offset relative to the enclosing
3482 	 * device.
3483 	 */
3484 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3485 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3486 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3487 
3488 	/*
3489 	 * Compute the number of bytes from that offset to the end
3490 	 * of the object.  Account for what's already used by the bio.
3491 	 */
3492 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3493 	if (ret > bmd->bi_size)
3494 		ret -= bmd->bi_size;
3495 	else
3496 		ret = 0;
3497 
3498 	/*
3499 	 * Don't send back more than was asked for.  And if the bio
3500 	 * was empty, let the whole thing through because:  "Note
3501 	 * that a block device *must* allow a single page to be
3502 	 * added to an empty bio."
3503 	 */
3504 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3505 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3506 		ret = (int) bvec->bv_len;
3507 
3508 	return ret;
3509 }
3510 
3511 static void rbd_free_disk(struct rbd_device *rbd_dev)
3512 {
3513 	struct gendisk *disk = rbd_dev->disk;
3514 
3515 	if (!disk)
3516 		return;
3517 
3518 	rbd_dev->disk = NULL;
3519 	if (disk->flags & GENHD_FL_UP) {
3520 		del_gendisk(disk);
3521 		if (disk->queue)
3522 			blk_cleanup_queue(disk->queue);
3523 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3524 	}
3525 	put_disk(disk);
3526 }
3527 
3528 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3529 				const char *object_name,
3530 				u64 offset, u64 length, void *buf)
3531 
3532 {
3533 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3534 	struct rbd_obj_request *obj_request;
3535 	struct page **pages = NULL;
3536 	u32 page_count;
3537 	size_t size;
3538 	int ret;
3539 
3540 	page_count = (u32) calc_pages_for(offset, length);
3541 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3542 	if (IS_ERR(pages))
3543 		return PTR_ERR(pages);
3544 
3545 	ret = -ENOMEM;
3546 	obj_request = rbd_obj_request_create(object_name, offset, length,
3547 							OBJ_REQUEST_PAGES);
3548 	if (!obj_request)
3549 		goto out;
3550 
3551 	obj_request->pages = pages;
3552 	obj_request->page_count = page_count;
3553 
3554 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3555 						  obj_request);
3556 	if (!obj_request->osd_req)
3557 		goto out;
3558 
3559 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3560 					offset, length, 0, 0);
3561 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3562 					obj_request->pages,
3563 					obj_request->length,
3564 					obj_request->offset & ~PAGE_MASK,
3565 					false, false);
3566 	rbd_osd_req_format_read(obj_request);
3567 
3568 	ret = rbd_obj_request_submit(osdc, obj_request);
3569 	if (ret)
3570 		goto out;
3571 	ret = rbd_obj_request_wait(obj_request);
3572 	if (ret)
3573 		goto out;
3574 
3575 	ret = obj_request->result;
3576 	if (ret < 0)
3577 		goto out;
3578 
3579 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3580 	size = (size_t) obj_request->xferred;
3581 	ceph_copy_from_page_vector(pages, buf, 0, size);
3582 	rbd_assert(size <= (size_t)INT_MAX);
3583 	ret = (int)size;
3584 out:
3585 	if (obj_request)
3586 		rbd_obj_request_put(obj_request);
3587 	else
3588 		ceph_release_page_vector(pages, page_count);
3589 
3590 	return ret;
3591 }
3592 
3593 /*
3594  * Read the complete header for the given rbd device.  On successful
3595  * return, the rbd_dev->header field will contain up-to-date
3596  * information about the image.
3597  */
3598 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3599 {
3600 	struct rbd_image_header_ondisk *ondisk = NULL;
3601 	u32 snap_count = 0;
3602 	u64 names_size = 0;
3603 	u32 want_count;
3604 	int ret;
3605 
3606 	/*
3607 	 * The complete header will include an array of its 64-bit
3608 	 * snapshot ids, followed by the names of those snapshots as
3609 	 * a contiguous block of NUL-terminated strings.  Note that
3610 	 * the number of snapshots could change by the time we read
3611 	 * it in, in which case we re-read it.
3612 	 */
3613 	do {
3614 		size_t size;
3615 
3616 		kfree(ondisk);
3617 
3618 		size = sizeof (*ondisk);
3619 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3620 		size += names_size;
3621 		ondisk = kmalloc(size, GFP_KERNEL);
3622 		if (!ondisk)
3623 			return -ENOMEM;
3624 
3625 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3626 				       0, size, ondisk);
3627 		if (ret < 0)
3628 			goto out;
3629 		if ((size_t)ret < size) {
3630 			ret = -ENXIO;
3631 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3632 				size, ret);
3633 			goto out;
3634 		}
3635 		if (!rbd_dev_ondisk_valid(ondisk)) {
3636 			ret = -ENXIO;
3637 			rbd_warn(rbd_dev, "invalid header");
3638 			goto out;
3639 		}
3640 
3641 		names_size = le64_to_cpu(ondisk->snap_names_len);
3642 		want_count = snap_count;
3643 		snap_count = le32_to_cpu(ondisk->snap_count);
3644 	} while (snap_count != want_count);
3645 
3646 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3647 out:
3648 	kfree(ondisk);
3649 
3650 	return ret;
3651 }
3652 
3653 /*
3654  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3655  * has disappeared from the (just updated) snapshot context.
3656  */
3657 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3658 {
3659 	u64 snap_id;
3660 
3661 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3662 		return;
3663 
3664 	snap_id = rbd_dev->spec->snap_id;
3665 	if (snap_id == CEPH_NOSNAP)
3666 		return;
3667 
3668 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3669 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3670 }
3671 
3672 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3673 {
3674 	sector_t size;
3675 	bool removing;
3676 
3677 	/*
3678 	 * Don't hold the lock while doing disk operations,
3679 	 * or lock ordering will conflict with the bdev mutex via:
3680 	 * rbd_add() -> blkdev_get() -> rbd_open()
3681 	 */
3682 	spin_lock_irq(&rbd_dev->lock);
3683 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3684 	spin_unlock_irq(&rbd_dev->lock);
3685 	/*
3686 	 * If the device is being removed, rbd_dev->disk has
3687 	 * been destroyed, so don't try to update its size
3688 	 */
3689 	if (!removing) {
3690 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3691 		dout("setting size to %llu sectors", (unsigned long long)size);
3692 		set_capacity(rbd_dev->disk, size);
3693 		revalidate_disk(rbd_dev->disk);
3694 	}
3695 }
3696 
3697 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3698 {
3699 	u64 mapping_size;
3700 	int ret;
3701 
3702 	down_write(&rbd_dev->header_rwsem);
3703 	mapping_size = rbd_dev->mapping.size;
3704 
3705 	ret = rbd_dev_header_info(rbd_dev);
3706 	if (ret)
3707 		goto out;
3708 
3709 	/*
3710 	 * If there is a parent, see if it has disappeared due to the
3711 	 * mapped image getting flattened.
3712 	 */
3713 	if (rbd_dev->parent) {
3714 		ret = rbd_dev_v2_parent_info(rbd_dev);
3715 		if (ret)
3716 			goto out;
3717 	}
3718 
3719 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3720 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3721 	} else {
3722 		/* validate mapped snapshot's EXISTS flag */
3723 		rbd_exists_validate(rbd_dev);
3724 	}
3725 
3726 out:
3727 	up_write(&rbd_dev->header_rwsem);
3728 	if (!ret && mapping_size != rbd_dev->mapping.size)
3729 		rbd_dev_update_size(rbd_dev);
3730 
3731 	return ret;
3732 }
3733 
3734 static int rbd_init_request(void *data, struct request *rq,
3735 		unsigned int hctx_idx, unsigned int request_idx,
3736 		unsigned int numa_node)
3737 {
3738 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3739 
3740 	INIT_WORK(work, rbd_queue_workfn);
3741 	return 0;
3742 }
3743 
3744 static struct blk_mq_ops rbd_mq_ops = {
3745 	.queue_rq	= rbd_queue_rq,
3746 	.map_queue	= blk_mq_map_queue,
3747 	.init_request	= rbd_init_request,
3748 };
3749 
3750 static int rbd_init_disk(struct rbd_device *rbd_dev)
3751 {
3752 	struct gendisk *disk;
3753 	struct request_queue *q;
3754 	u64 segment_size;
3755 	int err;
3756 
3757 	/* create gendisk info */
3758 	disk = alloc_disk(single_major ?
3759 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3760 			  RBD_MINORS_PER_MAJOR);
3761 	if (!disk)
3762 		return -ENOMEM;
3763 
3764 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3765 		 rbd_dev->dev_id);
3766 	disk->major = rbd_dev->major;
3767 	disk->first_minor = rbd_dev->minor;
3768 	if (single_major)
3769 		disk->flags |= GENHD_FL_EXT_DEVT;
3770 	disk->fops = &rbd_bd_ops;
3771 	disk->private_data = rbd_dev;
3772 
3773 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3774 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3775 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3776 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3777 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3778 	rbd_dev->tag_set.nr_hw_queues = 1;
3779 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3780 
3781 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3782 	if (err)
3783 		goto out_disk;
3784 
3785 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3786 	if (IS_ERR(q)) {
3787 		err = PTR_ERR(q);
3788 		goto out_tag_set;
3789 	}
3790 
3791 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3792 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3793 
3794 	/* set io sizes to object size */
3795 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3796 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3797 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3798 	blk_queue_max_segment_size(q, segment_size);
3799 	blk_queue_io_min(q, segment_size);
3800 	blk_queue_io_opt(q, segment_size);
3801 
3802 	/* enable the discard support */
3803 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3804 	q->limits.discard_granularity = segment_size;
3805 	q->limits.discard_alignment = segment_size;
3806 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3807 	q->limits.discard_zeroes_data = 1;
3808 
3809 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3810 	disk->queue = q;
3811 
3812 	q->queuedata = rbd_dev;
3813 
3814 	rbd_dev->disk = disk;
3815 
3816 	return 0;
3817 out_tag_set:
3818 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3819 out_disk:
3820 	put_disk(disk);
3821 	return err;
3822 }
3823 
3824 /*
3825   sysfs
3826 */
3827 
3828 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3829 {
3830 	return container_of(dev, struct rbd_device, dev);
3831 }
3832 
3833 static ssize_t rbd_size_show(struct device *dev,
3834 			     struct device_attribute *attr, char *buf)
3835 {
3836 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837 
3838 	return sprintf(buf, "%llu\n",
3839 		(unsigned long long)rbd_dev->mapping.size);
3840 }
3841 
3842 /*
3843  * Note this shows the features for whatever's mapped, which is not
3844  * necessarily the base image.
3845  */
3846 static ssize_t rbd_features_show(struct device *dev,
3847 			     struct device_attribute *attr, char *buf)
3848 {
3849 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3850 
3851 	return sprintf(buf, "0x%016llx\n",
3852 			(unsigned long long)rbd_dev->mapping.features);
3853 }
3854 
3855 static ssize_t rbd_major_show(struct device *dev,
3856 			      struct device_attribute *attr, char *buf)
3857 {
3858 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3859 
3860 	if (rbd_dev->major)
3861 		return sprintf(buf, "%d\n", rbd_dev->major);
3862 
3863 	return sprintf(buf, "(none)\n");
3864 }
3865 
3866 static ssize_t rbd_minor_show(struct device *dev,
3867 			      struct device_attribute *attr, char *buf)
3868 {
3869 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870 
3871 	return sprintf(buf, "%d\n", rbd_dev->minor);
3872 }
3873 
3874 static ssize_t rbd_client_id_show(struct device *dev,
3875 				  struct device_attribute *attr, char *buf)
3876 {
3877 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3878 
3879 	return sprintf(buf, "client%lld\n",
3880 			ceph_client_id(rbd_dev->rbd_client->client));
3881 }
3882 
3883 static ssize_t rbd_pool_show(struct device *dev,
3884 			     struct device_attribute *attr, char *buf)
3885 {
3886 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3887 
3888 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3889 }
3890 
3891 static ssize_t rbd_pool_id_show(struct device *dev,
3892 			     struct device_attribute *attr, char *buf)
3893 {
3894 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3895 
3896 	return sprintf(buf, "%llu\n",
3897 			(unsigned long long) rbd_dev->spec->pool_id);
3898 }
3899 
3900 static ssize_t rbd_name_show(struct device *dev,
3901 			     struct device_attribute *attr, char *buf)
3902 {
3903 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904 
3905 	if (rbd_dev->spec->image_name)
3906 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3907 
3908 	return sprintf(buf, "(unknown)\n");
3909 }
3910 
3911 static ssize_t rbd_image_id_show(struct device *dev,
3912 			     struct device_attribute *attr, char *buf)
3913 {
3914 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915 
3916 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3917 }
3918 
3919 /*
3920  * Shows the name of the currently-mapped snapshot (or
3921  * RBD_SNAP_HEAD_NAME for the base image).
3922  */
3923 static ssize_t rbd_snap_show(struct device *dev,
3924 			     struct device_attribute *attr,
3925 			     char *buf)
3926 {
3927 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3928 
3929 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3930 }
3931 
3932 /*
3933  * For a v2 image, shows the chain of parent images, separated by empty
3934  * lines.  For v1 images or if there is no parent, shows "(no parent
3935  * image)".
3936  */
3937 static ssize_t rbd_parent_show(struct device *dev,
3938 			       struct device_attribute *attr,
3939 			       char *buf)
3940 {
3941 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3942 	ssize_t count = 0;
3943 
3944 	if (!rbd_dev->parent)
3945 		return sprintf(buf, "(no parent image)\n");
3946 
3947 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3948 		struct rbd_spec *spec = rbd_dev->parent_spec;
3949 
3950 		count += sprintf(&buf[count], "%s"
3951 			    "pool_id %llu\npool_name %s\n"
3952 			    "image_id %s\nimage_name %s\n"
3953 			    "snap_id %llu\nsnap_name %s\n"
3954 			    "overlap %llu\n",
3955 			    !count ? "" : "\n", /* first? */
3956 			    spec->pool_id, spec->pool_name,
3957 			    spec->image_id, spec->image_name ?: "(unknown)",
3958 			    spec->snap_id, spec->snap_name,
3959 			    rbd_dev->parent_overlap);
3960 	}
3961 
3962 	return count;
3963 }
3964 
3965 static ssize_t rbd_image_refresh(struct device *dev,
3966 				 struct device_attribute *attr,
3967 				 const char *buf,
3968 				 size_t size)
3969 {
3970 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3971 	int ret;
3972 
3973 	ret = rbd_dev_refresh(rbd_dev);
3974 	if (ret)
3975 		return ret;
3976 
3977 	return size;
3978 }
3979 
3980 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3981 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3982 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3983 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3984 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3985 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3986 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3987 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3988 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3989 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3990 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3991 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3992 
3993 static struct attribute *rbd_attrs[] = {
3994 	&dev_attr_size.attr,
3995 	&dev_attr_features.attr,
3996 	&dev_attr_major.attr,
3997 	&dev_attr_minor.attr,
3998 	&dev_attr_client_id.attr,
3999 	&dev_attr_pool.attr,
4000 	&dev_attr_pool_id.attr,
4001 	&dev_attr_name.attr,
4002 	&dev_attr_image_id.attr,
4003 	&dev_attr_current_snap.attr,
4004 	&dev_attr_parent.attr,
4005 	&dev_attr_refresh.attr,
4006 	NULL
4007 };
4008 
4009 static struct attribute_group rbd_attr_group = {
4010 	.attrs = rbd_attrs,
4011 };
4012 
4013 static const struct attribute_group *rbd_attr_groups[] = {
4014 	&rbd_attr_group,
4015 	NULL
4016 };
4017 
4018 static void rbd_sysfs_dev_release(struct device *dev)
4019 {
4020 }
4021 
4022 static struct device_type rbd_device_type = {
4023 	.name		= "rbd",
4024 	.groups		= rbd_attr_groups,
4025 	.release	= rbd_sysfs_dev_release,
4026 };
4027 
4028 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4029 {
4030 	kref_get(&spec->kref);
4031 
4032 	return spec;
4033 }
4034 
4035 static void rbd_spec_free(struct kref *kref);
4036 static void rbd_spec_put(struct rbd_spec *spec)
4037 {
4038 	if (spec)
4039 		kref_put(&spec->kref, rbd_spec_free);
4040 }
4041 
4042 static struct rbd_spec *rbd_spec_alloc(void)
4043 {
4044 	struct rbd_spec *spec;
4045 
4046 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4047 	if (!spec)
4048 		return NULL;
4049 
4050 	spec->pool_id = CEPH_NOPOOL;
4051 	spec->snap_id = CEPH_NOSNAP;
4052 	kref_init(&spec->kref);
4053 
4054 	return spec;
4055 }
4056 
4057 static void rbd_spec_free(struct kref *kref)
4058 {
4059 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4060 
4061 	kfree(spec->pool_name);
4062 	kfree(spec->image_id);
4063 	kfree(spec->image_name);
4064 	kfree(spec->snap_name);
4065 	kfree(spec);
4066 }
4067 
4068 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4069 					 struct rbd_spec *spec,
4070 					 struct rbd_options *opts)
4071 {
4072 	struct rbd_device *rbd_dev;
4073 
4074 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4075 	if (!rbd_dev)
4076 		return NULL;
4077 
4078 	spin_lock_init(&rbd_dev->lock);
4079 	rbd_dev->flags = 0;
4080 	atomic_set(&rbd_dev->parent_ref, 0);
4081 	INIT_LIST_HEAD(&rbd_dev->node);
4082 	init_rwsem(&rbd_dev->header_rwsem);
4083 
4084 	rbd_dev->rbd_client = rbdc;
4085 	rbd_dev->spec = spec;
4086 	rbd_dev->opts = opts;
4087 
4088 	/* Initialize the layout used for all rbd requests */
4089 
4090 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4091 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4092 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4093 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4094 
4095 	return rbd_dev;
4096 }
4097 
4098 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4099 {
4100 	rbd_put_client(rbd_dev->rbd_client);
4101 	rbd_spec_put(rbd_dev->spec);
4102 	kfree(rbd_dev->opts);
4103 	kfree(rbd_dev);
4104 }
4105 
4106 /*
4107  * Get the size and object order for an image snapshot, or if
4108  * snap_id is CEPH_NOSNAP, gets this information for the base
4109  * image.
4110  */
4111 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4112 				u8 *order, u64 *snap_size)
4113 {
4114 	__le64 snapid = cpu_to_le64(snap_id);
4115 	int ret;
4116 	struct {
4117 		u8 order;
4118 		__le64 size;
4119 	} __attribute__ ((packed)) size_buf = { 0 };
4120 
4121 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122 				"rbd", "get_size",
4123 				&snapid, sizeof (snapid),
4124 				&size_buf, sizeof (size_buf));
4125 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4126 	if (ret < 0)
4127 		return ret;
4128 	if (ret < sizeof (size_buf))
4129 		return -ERANGE;
4130 
4131 	if (order) {
4132 		*order = size_buf.order;
4133 		dout("  order %u", (unsigned int)*order);
4134 	}
4135 	*snap_size = le64_to_cpu(size_buf.size);
4136 
4137 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4138 		(unsigned long long)snap_id,
4139 		(unsigned long long)*snap_size);
4140 
4141 	return 0;
4142 }
4143 
4144 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4145 {
4146 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4147 					&rbd_dev->header.obj_order,
4148 					&rbd_dev->header.image_size);
4149 }
4150 
4151 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4152 {
4153 	void *reply_buf;
4154 	int ret;
4155 	void *p;
4156 
4157 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4158 	if (!reply_buf)
4159 		return -ENOMEM;
4160 
4161 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4162 				"rbd", "get_object_prefix", NULL, 0,
4163 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4164 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4165 	if (ret < 0)
4166 		goto out;
4167 
4168 	p = reply_buf;
4169 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4170 						p + ret, NULL, GFP_NOIO);
4171 	ret = 0;
4172 
4173 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4174 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4175 		rbd_dev->header.object_prefix = NULL;
4176 	} else {
4177 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4178 	}
4179 out:
4180 	kfree(reply_buf);
4181 
4182 	return ret;
4183 }
4184 
4185 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4186 		u64 *snap_features)
4187 {
4188 	__le64 snapid = cpu_to_le64(snap_id);
4189 	struct {
4190 		__le64 features;
4191 		__le64 incompat;
4192 	} __attribute__ ((packed)) features_buf = { 0 };
4193 	u64 incompat;
4194 	int ret;
4195 
4196 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4197 				"rbd", "get_features",
4198 				&snapid, sizeof (snapid),
4199 				&features_buf, sizeof (features_buf));
4200 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4201 	if (ret < 0)
4202 		return ret;
4203 	if (ret < sizeof (features_buf))
4204 		return -ERANGE;
4205 
4206 	incompat = le64_to_cpu(features_buf.incompat);
4207 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4208 		return -ENXIO;
4209 
4210 	*snap_features = le64_to_cpu(features_buf.features);
4211 
4212 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4213 		(unsigned long long)snap_id,
4214 		(unsigned long long)*snap_features,
4215 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4216 
4217 	return 0;
4218 }
4219 
4220 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4221 {
4222 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4223 						&rbd_dev->header.features);
4224 }
4225 
4226 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4227 {
4228 	struct rbd_spec *parent_spec;
4229 	size_t size;
4230 	void *reply_buf = NULL;
4231 	__le64 snapid;
4232 	void *p;
4233 	void *end;
4234 	u64 pool_id;
4235 	char *image_id;
4236 	u64 snap_id;
4237 	u64 overlap;
4238 	int ret;
4239 
4240 	parent_spec = rbd_spec_alloc();
4241 	if (!parent_spec)
4242 		return -ENOMEM;
4243 
4244 	size = sizeof (__le64) +				/* pool_id */
4245 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4246 		sizeof (__le64) +				/* snap_id */
4247 		sizeof (__le64);				/* overlap */
4248 	reply_buf = kmalloc(size, GFP_KERNEL);
4249 	if (!reply_buf) {
4250 		ret = -ENOMEM;
4251 		goto out_err;
4252 	}
4253 
4254 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4255 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4256 				"rbd", "get_parent",
4257 				&snapid, sizeof (snapid),
4258 				reply_buf, size);
4259 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4260 	if (ret < 0)
4261 		goto out_err;
4262 
4263 	p = reply_buf;
4264 	end = reply_buf + ret;
4265 	ret = -ERANGE;
4266 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4267 	if (pool_id == CEPH_NOPOOL) {
4268 		/*
4269 		 * Either the parent never existed, or we have
4270 		 * record of it but the image got flattened so it no
4271 		 * longer has a parent.  When the parent of a
4272 		 * layered image disappears we immediately set the
4273 		 * overlap to 0.  The effect of this is that all new
4274 		 * requests will be treated as if the image had no
4275 		 * parent.
4276 		 */
4277 		if (rbd_dev->parent_overlap) {
4278 			rbd_dev->parent_overlap = 0;
4279 			rbd_dev_parent_put(rbd_dev);
4280 			pr_info("%s: clone image has been flattened\n",
4281 				rbd_dev->disk->disk_name);
4282 		}
4283 
4284 		goto out;	/* No parent?  No problem. */
4285 	}
4286 
4287 	/* The ceph file layout needs to fit pool id in 32 bits */
4288 
4289 	ret = -EIO;
4290 	if (pool_id > (u64)U32_MAX) {
4291 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4292 			(unsigned long long)pool_id, U32_MAX);
4293 		goto out_err;
4294 	}
4295 
4296 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4297 	if (IS_ERR(image_id)) {
4298 		ret = PTR_ERR(image_id);
4299 		goto out_err;
4300 	}
4301 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4302 	ceph_decode_64_safe(&p, end, overlap, out_err);
4303 
4304 	/*
4305 	 * The parent won't change (except when the clone is
4306 	 * flattened, already handled that).  So we only need to
4307 	 * record the parent spec we have not already done so.
4308 	 */
4309 	if (!rbd_dev->parent_spec) {
4310 		parent_spec->pool_id = pool_id;
4311 		parent_spec->image_id = image_id;
4312 		parent_spec->snap_id = snap_id;
4313 		rbd_dev->parent_spec = parent_spec;
4314 		parent_spec = NULL;	/* rbd_dev now owns this */
4315 	} else {
4316 		kfree(image_id);
4317 	}
4318 
4319 	/*
4320 	 * We always update the parent overlap.  If it's zero we issue
4321 	 * a warning, as we will proceed as if there was no parent.
4322 	 */
4323 	if (!overlap) {
4324 		if (parent_spec) {
4325 			/* refresh, careful to warn just once */
4326 			if (rbd_dev->parent_overlap)
4327 				rbd_warn(rbd_dev,
4328 				    "clone now standalone (overlap became 0)");
4329 		} else {
4330 			/* initial probe */
4331 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4332 		}
4333 	}
4334 	rbd_dev->parent_overlap = overlap;
4335 
4336 out:
4337 	ret = 0;
4338 out_err:
4339 	kfree(reply_buf);
4340 	rbd_spec_put(parent_spec);
4341 
4342 	return ret;
4343 }
4344 
4345 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4346 {
4347 	struct {
4348 		__le64 stripe_unit;
4349 		__le64 stripe_count;
4350 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4351 	size_t size = sizeof (striping_info_buf);
4352 	void *p;
4353 	u64 obj_size;
4354 	u64 stripe_unit;
4355 	u64 stripe_count;
4356 	int ret;
4357 
4358 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4359 				"rbd", "get_stripe_unit_count", NULL, 0,
4360 				(char *)&striping_info_buf, size);
4361 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4362 	if (ret < 0)
4363 		return ret;
4364 	if (ret < size)
4365 		return -ERANGE;
4366 
4367 	/*
4368 	 * We don't actually support the "fancy striping" feature
4369 	 * (STRIPINGV2) yet, but if the striping sizes are the
4370 	 * defaults the behavior is the same as before.  So find
4371 	 * out, and only fail if the image has non-default values.
4372 	 */
4373 	ret = -EINVAL;
4374 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4375 	p = &striping_info_buf;
4376 	stripe_unit = ceph_decode_64(&p);
4377 	if (stripe_unit != obj_size) {
4378 		rbd_warn(rbd_dev, "unsupported stripe unit "
4379 				"(got %llu want %llu)",
4380 				stripe_unit, obj_size);
4381 		return -EINVAL;
4382 	}
4383 	stripe_count = ceph_decode_64(&p);
4384 	if (stripe_count != 1) {
4385 		rbd_warn(rbd_dev, "unsupported stripe count "
4386 				"(got %llu want 1)", stripe_count);
4387 		return -EINVAL;
4388 	}
4389 	rbd_dev->header.stripe_unit = stripe_unit;
4390 	rbd_dev->header.stripe_count = stripe_count;
4391 
4392 	return 0;
4393 }
4394 
4395 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4396 {
4397 	size_t image_id_size;
4398 	char *image_id;
4399 	void *p;
4400 	void *end;
4401 	size_t size;
4402 	void *reply_buf = NULL;
4403 	size_t len = 0;
4404 	char *image_name = NULL;
4405 	int ret;
4406 
4407 	rbd_assert(!rbd_dev->spec->image_name);
4408 
4409 	len = strlen(rbd_dev->spec->image_id);
4410 	image_id_size = sizeof (__le32) + len;
4411 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4412 	if (!image_id)
4413 		return NULL;
4414 
4415 	p = image_id;
4416 	end = image_id + image_id_size;
4417 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4418 
4419 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4420 	reply_buf = kmalloc(size, GFP_KERNEL);
4421 	if (!reply_buf)
4422 		goto out;
4423 
4424 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4425 				"rbd", "dir_get_name",
4426 				image_id, image_id_size,
4427 				reply_buf, size);
4428 	if (ret < 0)
4429 		goto out;
4430 	p = reply_buf;
4431 	end = reply_buf + ret;
4432 
4433 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4434 	if (IS_ERR(image_name))
4435 		image_name = NULL;
4436 	else
4437 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4438 out:
4439 	kfree(reply_buf);
4440 	kfree(image_id);
4441 
4442 	return image_name;
4443 }
4444 
4445 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4446 {
4447 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4448 	const char *snap_name;
4449 	u32 which = 0;
4450 
4451 	/* Skip over names until we find the one we are looking for */
4452 
4453 	snap_name = rbd_dev->header.snap_names;
4454 	while (which < snapc->num_snaps) {
4455 		if (!strcmp(name, snap_name))
4456 			return snapc->snaps[which];
4457 		snap_name += strlen(snap_name) + 1;
4458 		which++;
4459 	}
4460 	return CEPH_NOSNAP;
4461 }
4462 
4463 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4464 {
4465 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4466 	u32 which;
4467 	bool found = false;
4468 	u64 snap_id;
4469 
4470 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4471 		const char *snap_name;
4472 
4473 		snap_id = snapc->snaps[which];
4474 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4475 		if (IS_ERR(snap_name)) {
4476 			/* ignore no-longer existing snapshots */
4477 			if (PTR_ERR(snap_name) == -ENOENT)
4478 				continue;
4479 			else
4480 				break;
4481 		}
4482 		found = !strcmp(name, snap_name);
4483 		kfree(snap_name);
4484 	}
4485 	return found ? snap_id : CEPH_NOSNAP;
4486 }
4487 
4488 /*
4489  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4490  * no snapshot by that name is found, or if an error occurs.
4491  */
4492 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4493 {
4494 	if (rbd_dev->image_format == 1)
4495 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4496 
4497 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4498 }
4499 
4500 /*
4501  * An image being mapped will have everything but the snap id.
4502  */
4503 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4504 {
4505 	struct rbd_spec *spec = rbd_dev->spec;
4506 
4507 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4508 	rbd_assert(spec->image_id && spec->image_name);
4509 	rbd_assert(spec->snap_name);
4510 
4511 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4512 		u64 snap_id;
4513 
4514 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4515 		if (snap_id == CEPH_NOSNAP)
4516 			return -ENOENT;
4517 
4518 		spec->snap_id = snap_id;
4519 	} else {
4520 		spec->snap_id = CEPH_NOSNAP;
4521 	}
4522 
4523 	return 0;
4524 }
4525 
4526 /*
4527  * A parent image will have all ids but none of the names.
4528  *
4529  * All names in an rbd spec are dynamically allocated.  It's OK if we
4530  * can't figure out the name for an image id.
4531  */
4532 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4533 {
4534 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4535 	struct rbd_spec *spec = rbd_dev->spec;
4536 	const char *pool_name;
4537 	const char *image_name;
4538 	const char *snap_name;
4539 	int ret;
4540 
4541 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4542 	rbd_assert(spec->image_id);
4543 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4544 
4545 	/* Get the pool name; we have to make our own copy of this */
4546 
4547 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4548 	if (!pool_name) {
4549 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4550 		return -EIO;
4551 	}
4552 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4553 	if (!pool_name)
4554 		return -ENOMEM;
4555 
4556 	/* Fetch the image name; tolerate failure here */
4557 
4558 	image_name = rbd_dev_image_name(rbd_dev);
4559 	if (!image_name)
4560 		rbd_warn(rbd_dev, "unable to get image name");
4561 
4562 	/* Fetch the snapshot name */
4563 
4564 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4565 	if (IS_ERR(snap_name)) {
4566 		ret = PTR_ERR(snap_name);
4567 		goto out_err;
4568 	}
4569 
4570 	spec->pool_name = pool_name;
4571 	spec->image_name = image_name;
4572 	spec->snap_name = snap_name;
4573 
4574 	return 0;
4575 
4576 out_err:
4577 	kfree(image_name);
4578 	kfree(pool_name);
4579 	return ret;
4580 }
4581 
4582 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4583 {
4584 	size_t size;
4585 	int ret;
4586 	void *reply_buf;
4587 	void *p;
4588 	void *end;
4589 	u64 seq;
4590 	u32 snap_count;
4591 	struct ceph_snap_context *snapc;
4592 	u32 i;
4593 
4594 	/*
4595 	 * We'll need room for the seq value (maximum snapshot id),
4596 	 * snapshot count, and array of that many snapshot ids.
4597 	 * For now we have a fixed upper limit on the number we're
4598 	 * prepared to receive.
4599 	 */
4600 	size = sizeof (__le64) + sizeof (__le32) +
4601 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4602 	reply_buf = kzalloc(size, GFP_KERNEL);
4603 	if (!reply_buf)
4604 		return -ENOMEM;
4605 
4606 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4607 				"rbd", "get_snapcontext", NULL, 0,
4608 				reply_buf, size);
4609 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4610 	if (ret < 0)
4611 		goto out;
4612 
4613 	p = reply_buf;
4614 	end = reply_buf + ret;
4615 	ret = -ERANGE;
4616 	ceph_decode_64_safe(&p, end, seq, out);
4617 	ceph_decode_32_safe(&p, end, snap_count, out);
4618 
4619 	/*
4620 	 * Make sure the reported number of snapshot ids wouldn't go
4621 	 * beyond the end of our buffer.  But before checking that,
4622 	 * make sure the computed size of the snapshot context we
4623 	 * allocate is representable in a size_t.
4624 	 */
4625 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4626 				 / sizeof (u64)) {
4627 		ret = -EINVAL;
4628 		goto out;
4629 	}
4630 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4631 		goto out;
4632 	ret = 0;
4633 
4634 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4635 	if (!snapc) {
4636 		ret = -ENOMEM;
4637 		goto out;
4638 	}
4639 	snapc->seq = seq;
4640 	for (i = 0; i < snap_count; i++)
4641 		snapc->snaps[i] = ceph_decode_64(&p);
4642 
4643 	ceph_put_snap_context(rbd_dev->header.snapc);
4644 	rbd_dev->header.snapc = snapc;
4645 
4646 	dout("  snap context seq = %llu, snap_count = %u\n",
4647 		(unsigned long long)seq, (unsigned int)snap_count);
4648 out:
4649 	kfree(reply_buf);
4650 
4651 	return ret;
4652 }
4653 
4654 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4655 					u64 snap_id)
4656 {
4657 	size_t size;
4658 	void *reply_buf;
4659 	__le64 snapid;
4660 	int ret;
4661 	void *p;
4662 	void *end;
4663 	char *snap_name;
4664 
4665 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4666 	reply_buf = kmalloc(size, GFP_KERNEL);
4667 	if (!reply_buf)
4668 		return ERR_PTR(-ENOMEM);
4669 
4670 	snapid = cpu_to_le64(snap_id);
4671 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4672 				"rbd", "get_snapshot_name",
4673 				&snapid, sizeof (snapid),
4674 				reply_buf, size);
4675 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4676 	if (ret < 0) {
4677 		snap_name = ERR_PTR(ret);
4678 		goto out;
4679 	}
4680 
4681 	p = reply_buf;
4682 	end = reply_buf + ret;
4683 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4684 	if (IS_ERR(snap_name))
4685 		goto out;
4686 
4687 	dout("  snap_id 0x%016llx snap_name = %s\n",
4688 		(unsigned long long)snap_id, snap_name);
4689 out:
4690 	kfree(reply_buf);
4691 
4692 	return snap_name;
4693 }
4694 
4695 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4696 {
4697 	bool first_time = rbd_dev->header.object_prefix == NULL;
4698 	int ret;
4699 
4700 	ret = rbd_dev_v2_image_size(rbd_dev);
4701 	if (ret)
4702 		return ret;
4703 
4704 	if (first_time) {
4705 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4706 		if (ret)
4707 			return ret;
4708 	}
4709 
4710 	ret = rbd_dev_v2_snap_context(rbd_dev);
4711 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4712 
4713 	return ret;
4714 }
4715 
4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4717 {
4718 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4719 
4720 	if (rbd_dev->image_format == 1)
4721 		return rbd_dev_v1_header_info(rbd_dev);
4722 
4723 	return rbd_dev_v2_header_info(rbd_dev);
4724 }
4725 
4726 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4727 {
4728 	struct device *dev;
4729 	int ret;
4730 
4731 	dev = &rbd_dev->dev;
4732 	dev->bus = &rbd_bus_type;
4733 	dev->type = &rbd_device_type;
4734 	dev->parent = &rbd_root_dev;
4735 	dev->release = rbd_dev_device_release;
4736 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4737 	ret = device_register(dev);
4738 
4739 	return ret;
4740 }
4741 
4742 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4743 {
4744 	device_unregister(&rbd_dev->dev);
4745 }
4746 
4747 /*
4748  * Get a unique rbd identifier for the given new rbd_dev, and add
4749  * the rbd_dev to the global list.
4750  */
4751 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4752 {
4753 	int new_dev_id;
4754 
4755 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4756 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4757 				    GFP_KERNEL);
4758 	if (new_dev_id < 0)
4759 		return new_dev_id;
4760 
4761 	rbd_dev->dev_id = new_dev_id;
4762 
4763 	spin_lock(&rbd_dev_list_lock);
4764 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4765 	spin_unlock(&rbd_dev_list_lock);
4766 
4767 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4768 
4769 	return 0;
4770 }
4771 
4772 /*
4773  * Remove an rbd_dev from the global list, and record that its
4774  * identifier is no longer in use.
4775  */
4776 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4777 {
4778 	spin_lock(&rbd_dev_list_lock);
4779 	list_del_init(&rbd_dev->node);
4780 	spin_unlock(&rbd_dev_list_lock);
4781 
4782 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4783 
4784 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4785 }
4786 
4787 /*
4788  * Skips over white space at *buf, and updates *buf to point to the
4789  * first found non-space character (if any). Returns the length of
4790  * the token (string of non-white space characters) found.  Note
4791  * that *buf must be terminated with '\0'.
4792  */
4793 static inline size_t next_token(const char **buf)
4794 {
4795         /*
4796         * These are the characters that produce nonzero for
4797         * isspace() in the "C" and "POSIX" locales.
4798         */
4799         const char *spaces = " \f\n\r\t\v";
4800 
4801         *buf += strspn(*buf, spaces);	/* Find start of token */
4802 
4803 	return strcspn(*buf, spaces);   /* Return token length */
4804 }
4805 
4806 /*
4807  * Finds the next token in *buf, dynamically allocates a buffer big
4808  * enough to hold a copy of it, and copies the token into the new
4809  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4810  * that a duplicate buffer is created even for a zero-length token.
4811  *
4812  * Returns a pointer to the newly-allocated duplicate, or a null
4813  * pointer if memory for the duplicate was not available.  If
4814  * the lenp argument is a non-null pointer, the length of the token
4815  * (not including the '\0') is returned in *lenp.
4816  *
4817  * If successful, the *buf pointer will be updated to point beyond
4818  * the end of the found token.
4819  *
4820  * Note: uses GFP_KERNEL for allocation.
4821  */
4822 static inline char *dup_token(const char **buf, size_t *lenp)
4823 {
4824 	char *dup;
4825 	size_t len;
4826 
4827 	len = next_token(buf);
4828 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4829 	if (!dup)
4830 		return NULL;
4831 	*(dup + len) = '\0';
4832 	*buf += len;
4833 
4834 	if (lenp)
4835 		*lenp = len;
4836 
4837 	return dup;
4838 }
4839 
4840 /*
4841  * Parse the options provided for an "rbd add" (i.e., rbd image
4842  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4843  * and the data written is passed here via a NUL-terminated buffer.
4844  * Returns 0 if successful or an error code otherwise.
4845  *
4846  * The information extracted from these options is recorded in
4847  * the other parameters which return dynamically-allocated
4848  * structures:
4849  *  ceph_opts
4850  *      The address of a pointer that will refer to a ceph options
4851  *      structure.  Caller must release the returned pointer using
4852  *      ceph_destroy_options() when it is no longer needed.
4853  *  rbd_opts
4854  *	Address of an rbd options pointer.  Fully initialized by
4855  *	this function; caller must release with kfree().
4856  *  spec
4857  *	Address of an rbd image specification pointer.  Fully
4858  *	initialized by this function based on parsed options.
4859  *	Caller must release with rbd_spec_put().
4860  *
4861  * The options passed take this form:
4862  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4863  * where:
4864  *  <mon_addrs>
4865  *      A comma-separated list of one or more monitor addresses.
4866  *      A monitor address is an ip address, optionally followed
4867  *      by a port number (separated by a colon).
4868  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4869  *  <options>
4870  *      A comma-separated list of ceph and/or rbd options.
4871  *  <pool_name>
4872  *      The name of the rados pool containing the rbd image.
4873  *  <image_name>
4874  *      The name of the image in that pool to map.
4875  *  <snap_id>
4876  *      An optional snapshot id.  If provided, the mapping will
4877  *      present data from the image at the time that snapshot was
4878  *      created.  The image head is used if no snapshot id is
4879  *      provided.  Snapshot mappings are always read-only.
4880  */
4881 static int rbd_add_parse_args(const char *buf,
4882 				struct ceph_options **ceph_opts,
4883 				struct rbd_options **opts,
4884 				struct rbd_spec **rbd_spec)
4885 {
4886 	size_t len;
4887 	char *options;
4888 	const char *mon_addrs;
4889 	char *snap_name;
4890 	size_t mon_addrs_size;
4891 	struct rbd_spec *spec = NULL;
4892 	struct rbd_options *rbd_opts = NULL;
4893 	struct ceph_options *copts;
4894 	int ret;
4895 
4896 	/* The first four tokens are required */
4897 
4898 	len = next_token(&buf);
4899 	if (!len) {
4900 		rbd_warn(NULL, "no monitor address(es) provided");
4901 		return -EINVAL;
4902 	}
4903 	mon_addrs = buf;
4904 	mon_addrs_size = len + 1;
4905 	buf += len;
4906 
4907 	ret = -EINVAL;
4908 	options = dup_token(&buf, NULL);
4909 	if (!options)
4910 		return -ENOMEM;
4911 	if (!*options) {
4912 		rbd_warn(NULL, "no options provided");
4913 		goto out_err;
4914 	}
4915 
4916 	spec = rbd_spec_alloc();
4917 	if (!spec)
4918 		goto out_mem;
4919 
4920 	spec->pool_name = dup_token(&buf, NULL);
4921 	if (!spec->pool_name)
4922 		goto out_mem;
4923 	if (!*spec->pool_name) {
4924 		rbd_warn(NULL, "no pool name provided");
4925 		goto out_err;
4926 	}
4927 
4928 	spec->image_name = dup_token(&buf, NULL);
4929 	if (!spec->image_name)
4930 		goto out_mem;
4931 	if (!*spec->image_name) {
4932 		rbd_warn(NULL, "no image name provided");
4933 		goto out_err;
4934 	}
4935 
4936 	/*
4937 	 * Snapshot name is optional; default is to use "-"
4938 	 * (indicating the head/no snapshot).
4939 	 */
4940 	len = next_token(&buf);
4941 	if (!len) {
4942 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4943 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4944 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4945 		ret = -ENAMETOOLONG;
4946 		goto out_err;
4947 	}
4948 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4949 	if (!snap_name)
4950 		goto out_mem;
4951 	*(snap_name + len) = '\0';
4952 	spec->snap_name = snap_name;
4953 
4954 	/* Initialize all rbd options to the defaults */
4955 
4956 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4957 	if (!rbd_opts)
4958 		goto out_mem;
4959 
4960 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4961 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4962 
4963 	copts = ceph_parse_options(options, mon_addrs,
4964 					mon_addrs + mon_addrs_size - 1,
4965 					parse_rbd_opts_token, rbd_opts);
4966 	if (IS_ERR(copts)) {
4967 		ret = PTR_ERR(copts);
4968 		goto out_err;
4969 	}
4970 	kfree(options);
4971 
4972 	*ceph_opts = copts;
4973 	*opts = rbd_opts;
4974 	*rbd_spec = spec;
4975 
4976 	return 0;
4977 out_mem:
4978 	ret = -ENOMEM;
4979 out_err:
4980 	kfree(rbd_opts);
4981 	rbd_spec_put(spec);
4982 	kfree(options);
4983 
4984 	return ret;
4985 }
4986 
4987 /*
4988  * Return pool id (>= 0) or a negative error code.
4989  */
4990 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4991 {
4992 	struct ceph_options *opts = rbdc->client->options;
4993 	u64 newest_epoch;
4994 	int tries = 0;
4995 	int ret;
4996 
4997 again:
4998 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4999 	if (ret == -ENOENT && tries++ < 1) {
5000 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5001 					       &newest_epoch);
5002 		if (ret < 0)
5003 			return ret;
5004 
5005 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5006 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5007 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5008 						     newest_epoch,
5009 						     opts->mount_timeout);
5010 			goto again;
5011 		} else {
5012 			/* the osdmap we have is new enough */
5013 			return -ENOENT;
5014 		}
5015 	}
5016 
5017 	return ret;
5018 }
5019 
5020 /*
5021  * An rbd format 2 image has a unique identifier, distinct from the
5022  * name given to it by the user.  Internally, that identifier is
5023  * what's used to specify the names of objects related to the image.
5024  *
5025  * A special "rbd id" object is used to map an rbd image name to its
5026  * id.  If that object doesn't exist, then there is no v2 rbd image
5027  * with the supplied name.
5028  *
5029  * This function will record the given rbd_dev's image_id field if
5030  * it can be determined, and in that case will return 0.  If any
5031  * errors occur a negative errno will be returned and the rbd_dev's
5032  * image_id field will be unchanged (and should be NULL).
5033  */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036 	int ret;
5037 	size_t size;
5038 	char *object_name;
5039 	void *response;
5040 	char *image_id;
5041 
5042 	/*
5043 	 * When probing a parent image, the image id is already
5044 	 * known (and the image name likely is not).  There's no
5045 	 * need to fetch the image id again in this case.  We
5046 	 * do still need to set the image format though.
5047 	 */
5048 	if (rbd_dev->spec->image_id) {
5049 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050 
5051 		return 0;
5052 	}
5053 
5054 	/*
5055 	 * First, see if the format 2 image id file exists, and if
5056 	 * so, get the image's persistent id from it.
5057 	 */
5058 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059 	object_name = kmalloc(size, GFP_NOIO);
5060 	if (!object_name)
5061 		return -ENOMEM;
5062 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063 	dout("rbd id object name is %s\n", object_name);
5064 
5065 	/* Response will be an encoded string, which includes a length */
5066 
5067 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068 	response = kzalloc(size, GFP_NOIO);
5069 	if (!response) {
5070 		ret = -ENOMEM;
5071 		goto out;
5072 	}
5073 
5074 	/* If it doesn't exist we'll assume it's a format 1 image */
5075 
5076 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5077 				"rbd", "get_id", NULL, 0,
5078 				response, RBD_IMAGE_ID_LEN_MAX);
5079 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080 	if (ret == -ENOENT) {
5081 		image_id = kstrdup("", GFP_KERNEL);
5082 		ret = image_id ? 0 : -ENOMEM;
5083 		if (!ret)
5084 			rbd_dev->image_format = 1;
5085 	} else if (ret >= 0) {
5086 		void *p = response;
5087 
5088 		image_id = ceph_extract_encoded_string(&p, p + ret,
5089 						NULL, GFP_NOIO);
5090 		ret = PTR_ERR_OR_ZERO(image_id);
5091 		if (!ret)
5092 			rbd_dev->image_format = 2;
5093 	}
5094 
5095 	if (!ret) {
5096 		rbd_dev->spec->image_id = image_id;
5097 		dout("image_id is %s\n", image_id);
5098 	}
5099 out:
5100 	kfree(response);
5101 	kfree(object_name);
5102 
5103 	return ret;
5104 }
5105 
5106 /*
5107  * Undo whatever state changes are made by v1 or v2 header info
5108  * call.
5109  */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112 	struct rbd_image_header	*header;
5113 
5114 	rbd_dev_parent_put(rbd_dev);
5115 
5116 	/* Free dynamic fields from the header, then zero it out */
5117 
5118 	header = &rbd_dev->header;
5119 	ceph_put_snap_context(header->snapc);
5120 	kfree(header->snap_sizes);
5121 	kfree(header->snap_names);
5122 	kfree(header->object_prefix);
5123 	memset(header, 0, sizeof (*header));
5124 }
5125 
5126 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5127 {
5128 	int ret;
5129 
5130 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5131 	if (ret)
5132 		goto out_err;
5133 
5134 	/*
5135 	 * Get the and check features for the image.  Currently the
5136 	 * features are assumed to never change.
5137 	 */
5138 	ret = rbd_dev_v2_features(rbd_dev);
5139 	if (ret)
5140 		goto out_err;
5141 
5142 	/* If the image supports fancy striping, get its parameters */
5143 
5144 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5145 		ret = rbd_dev_v2_striping_info(rbd_dev);
5146 		if (ret < 0)
5147 			goto out_err;
5148 	}
5149 	/* No support for crypto and compression type format 2 images */
5150 
5151 	return 0;
5152 out_err:
5153 	rbd_dev->header.features = 0;
5154 	kfree(rbd_dev->header.object_prefix);
5155 	rbd_dev->header.object_prefix = NULL;
5156 
5157 	return ret;
5158 }
5159 
5160 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5161 {
5162 	struct rbd_device *parent = NULL;
5163 	struct rbd_spec *parent_spec;
5164 	struct rbd_client *rbdc;
5165 	int ret;
5166 
5167 	if (!rbd_dev->parent_spec)
5168 		return 0;
5169 	/*
5170 	 * We need to pass a reference to the client and the parent
5171 	 * spec when creating the parent rbd_dev.  Images related by
5172 	 * parent/child relationships always share both.
5173 	 */
5174 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5175 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5176 
5177 	ret = -ENOMEM;
5178 	parent = rbd_dev_create(rbdc, parent_spec, NULL);
5179 	if (!parent)
5180 		goto out_err;
5181 
5182 	ret = rbd_dev_image_probe(parent, false);
5183 	if (ret < 0)
5184 		goto out_err;
5185 	rbd_dev->parent = parent;
5186 	atomic_set(&rbd_dev->parent_ref, 1);
5187 
5188 	return 0;
5189 out_err:
5190 	if (parent) {
5191 		rbd_dev_unparent(rbd_dev);
5192 		kfree(rbd_dev->header_name);
5193 		rbd_dev_destroy(parent);
5194 	} else {
5195 		rbd_put_client(rbdc);
5196 		rbd_spec_put(parent_spec);
5197 	}
5198 
5199 	return ret;
5200 }
5201 
5202 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5203 {
5204 	int ret;
5205 
5206 	/* Get an id and fill in device name. */
5207 
5208 	ret = rbd_dev_id_get(rbd_dev);
5209 	if (ret)
5210 		return ret;
5211 
5212 	BUILD_BUG_ON(DEV_NAME_LEN
5213 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5214 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5215 
5216 	/* Record our major and minor device numbers. */
5217 
5218 	if (!single_major) {
5219 		ret = register_blkdev(0, rbd_dev->name);
5220 		if (ret < 0)
5221 			goto err_out_id;
5222 
5223 		rbd_dev->major = ret;
5224 		rbd_dev->minor = 0;
5225 	} else {
5226 		rbd_dev->major = rbd_major;
5227 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5228 	}
5229 
5230 	/* Set up the blkdev mapping. */
5231 
5232 	ret = rbd_init_disk(rbd_dev);
5233 	if (ret)
5234 		goto err_out_blkdev;
5235 
5236 	ret = rbd_dev_mapping_set(rbd_dev);
5237 	if (ret)
5238 		goto err_out_disk;
5239 
5240 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5241 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5242 
5243 	ret = rbd_bus_add_dev(rbd_dev);
5244 	if (ret)
5245 		goto err_out_mapping;
5246 
5247 	/* Everything's ready.  Announce the disk to the world. */
5248 
5249 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5250 	add_disk(rbd_dev->disk);
5251 
5252 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5253 		(unsigned long long) rbd_dev->mapping.size);
5254 
5255 	return ret;
5256 
5257 err_out_mapping:
5258 	rbd_dev_mapping_clear(rbd_dev);
5259 err_out_disk:
5260 	rbd_free_disk(rbd_dev);
5261 err_out_blkdev:
5262 	if (!single_major)
5263 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5264 err_out_id:
5265 	rbd_dev_id_put(rbd_dev);
5266 	rbd_dev_mapping_clear(rbd_dev);
5267 
5268 	return ret;
5269 }
5270 
5271 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5272 {
5273 	struct rbd_spec *spec = rbd_dev->spec;
5274 	size_t size;
5275 
5276 	/* Record the header object name for this rbd image. */
5277 
5278 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5279 
5280 	if (rbd_dev->image_format == 1)
5281 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5282 	else
5283 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5284 
5285 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5286 	if (!rbd_dev->header_name)
5287 		return -ENOMEM;
5288 
5289 	if (rbd_dev->image_format == 1)
5290 		sprintf(rbd_dev->header_name, "%s%s",
5291 			spec->image_name, RBD_SUFFIX);
5292 	else
5293 		sprintf(rbd_dev->header_name, "%s%s",
5294 			RBD_HEADER_PREFIX, spec->image_id);
5295 	return 0;
5296 }
5297 
5298 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5299 {
5300 	rbd_dev_unprobe(rbd_dev);
5301 	kfree(rbd_dev->header_name);
5302 	rbd_dev->header_name = NULL;
5303 	rbd_dev->image_format = 0;
5304 	kfree(rbd_dev->spec->image_id);
5305 	rbd_dev->spec->image_id = NULL;
5306 
5307 	rbd_dev_destroy(rbd_dev);
5308 }
5309 
5310 /*
5311  * Probe for the existence of the header object for the given rbd
5312  * device.  If this image is the one being mapped (i.e., not a
5313  * parent), initiate a watch on its header object before using that
5314  * object to get detailed information about the rbd image.
5315  */
5316 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5317 {
5318 	int ret;
5319 
5320 	/*
5321 	 * Get the id from the image id object.  Unless there's an
5322 	 * error, rbd_dev->spec->image_id will be filled in with
5323 	 * a dynamically-allocated string, and rbd_dev->image_format
5324 	 * will be set to either 1 or 2.
5325 	 */
5326 	ret = rbd_dev_image_id(rbd_dev);
5327 	if (ret)
5328 		return ret;
5329 
5330 	ret = rbd_dev_header_name(rbd_dev);
5331 	if (ret)
5332 		goto err_out_format;
5333 
5334 	if (mapping) {
5335 		ret = rbd_dev_header_watch_sync(rbd_dev);
5336 		if (ret) {
5337 			if (ret == -ENOENT)
5338 				pr_info("image %s/%s does not exist\n",
5339 					rbd_dev->spec->pool_name,
5340 					rbd_dev->spec->image_name);
5341 			goto out_header_name;
5342 		}
5343 	}
5344 
5345 	ret = rbd_dev_header_info(rbd_dev);
5346 	if (ret)
5347 		goto err_out_watch;
5348 
5349 	/*
5350 	 * If this image is the one being mapped, we have pool name and
5351 	 * id, image name and id, and snap name - need to fill snap id.
5352 	 * Otherwise this is a parent image, identified by pool, image
5353 	 * and snap ids - need to fill in names for those ids.
5354 	 */
5355 	if (mapping)
5356 		ret = rbd_spec_fill_snap_id(rbd_dev);
5357 	else
5358 		ret = rbd_spec_fill_names(rbd_dev);
5359 	if (ret) {
5360 		if (ret == -ENOENT)
5361 			pr_info("snap %s/%s@%s does not exist\n",
5362 				rbd_dev->spec->pool_name,
5363 				rbd_dev->spec->image_name,
5364 				rbd_dev->spec->snap_name);
5365 		goto err_out_probe;
5366 	}
5367 
5368 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5369 		ret = rbd_dev_v2_parent_info(rbd_dev);
5370 		if (ret)
5371 			goto err_out_probe;
5372 
5373 		/*
5374 		 * Need to warn users if this image is the one being
5375 		 * mapped and has a parent.
5376 		 */
5377 		if (mapping && rbd_dev->parent_spec)
5378 			rbd_warn(rbd_dev,
5379 				 "WARNING: kernel layering is EXPERIMENTAL!");
5380 	}
5381 
5382 	ret = rbd_dev_probe_parent(rbd_dev);
5383 	if (ret)
5384 		goto err_out_probe;
5385 
5386 	dout("discovered format %u image, header name is %s\n",
5387 		rbd_dev->image_format, rbd_dev->header_name);
5388 	return 0;
5389 
5390 err_out_probe:
5391 	rbd_dev_unprobe(rbd_dev);
5392 err_out_watch:
5393 	if (mapping)
5394 		rbd_dev_header_unwatch_sync(rbd_dev);
5395 out_header_name:
5396 	kfree(rbd_dev->header_name);
5397 	rbd_dev->header_name = NULL;
5398 err_out_format:
5399 	rbd_dev->image_format = 0;
5400 	kfree(rbd_dev->spec->image_id);
5401 	rbd_dev->spec->image_id = NULL;
5402 	return ret;
5403 }
5404 
5405 static ssize_t do_rbd_add(struct bus_type *bus,
5406 			  const char *buf,
5407 			  size_t count)
5408 {
5409 	struct rbd_device *rbd_dev = NULL;
5410 	struct ceph_options *ceph_opts = NULL;
5411 	struct rbd_options *rbd_opts = NULL;
5412 	struct rbd_spec *spec = NULL;
5413 	struct rbd_client *rbdc;
5414 	bool read_only;
5415 	int rc = -ENOMEM;
5416 
5417 	if (!try_module_get(THIS_MODULE))
5418 		return -ENODEV;
5419 
5420 	/* parse add command */
5421 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5422 	if (rc < 0)
5423 		goto err_out_module;
5424 
5425 	rbdc = rbd_get_client(ceph_opts);
5426 	if (IS_ERR(rbdc)) {
5427 		rc = PTR_ERR(rbdc);
5428 		goto err_out_args;
5429 	}
5430 
5431 	/* pick the pool */
5432 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5433 	if (rc < 0) {
5434 		if (rc == -ENOENT)
5435 			pr_info("pool %s does not exist\n", spec->pool_name);
5436 		goto err_out_client;
5437 	}
5438 	spec->pool_id = (u64)rc;
5439 
5440 	/* The ceph file layout needs to fit pool id in 32 bits */
5441 
5442 	if (spec->pool_id > (u64)U32_MAX) {
5443 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5444 				(unsigned long long)spec->pool_id, U32_MAX);
5445 		rc = -EIO;
5446 		goto err_out_client;
5447 	}
5448 
5449 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5450 	if (!rbd_dev)
5451 		goto err_out_client;
5452 	rbdc = NULL;		/* rbd_dev now owns this */
5453 	spec = NULL;		/* rbd_dev now owns this */
5454 	rbd_opts = NULL;	/* rbd_dev now owns this */
5455 
5456 	rc = rbd_dev_image_probe(rbd_dev, true);
5457 	if (rc < 0)
5458 		goto err_out_rbd_dev;
5459 
5460 	/* If we are mapping a snapshot it must be marked read-only */
5461 
5462 	read_only = rbd_dev->opts->read_only;
5463 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5464 		read_only = true;
5465 	rbd_dev->mapping.read_only = read_only;
5466 
5467 	rc = rbd_dev_device_setup(rbd_dev);
5468 	if (rc) {
5469 		/*
5470 		 * rbd_dev_header_unwatch_sync() can't be moved into
5471 		 * rbd_dev_image_release() without refactoring, see
5472 		 * commit 1f3ef78861ac.
5473 		 */
5474 		rbd_dev_header_unwatch_sync(rbd_dev);
5475 		rbd_dev_image_release(rbd_dev);
5476 		goto err_out_module;
5477 	}
5478 
5479 	return count;
5480 
5481 err_out_rbd_dev:
5482 	rbd_dev_destroy(rbd_dev);
5483 err_out_client:
5484 	rbd_put_client(rbdc);
5485 err_out_args:
5486 	rbd_spec_put(spec);
5487 	kfree(rbd_opts);
5488 err_out_module:
5489 	module_put(THIS_MODULE);
5490 
5491 	dout("Error adding device %s\n", buf);
5492 
5493 	return (ssize_t)rc;
5494 }
5495 
5496 static ssize_t rbd_add(struct bus_type *bus,
5497 		       const char *buf,
5498 		       size_t count)
5499 {
5500 	if (single_major)
5501 		return -EINVAL;
5502 
5503 	return do_rbd_add(bus, buf, count);
5504 }
5505 
5506 static ssize_t rbd_add_single_major(struct bus_type *bus,
5507 				    const char *buf,
5508 				    size_t count)
5509 {
5510 	return do_rbd_add(bus, buf, count);
5511 }
5512 
5513 static void rbd_dev_device_release(struct device *dev)
5514 {
5515 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5516 
5517 	rbd_free_disk(rbd_dev);
5518 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5519 	rbd_dev_mapping_clear(rbd_dev);
5520 	if (!single_major)
5521 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5522 	rbd_dev_id_put(rbd_dev);
5523 	rbd_dev_mapping_clear(rbd_dev);
5524 }
5525 
5526 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5527 {
5528 	while (rbd_dev->parent) {
5529 		struct rbd_device *first = rbd_dev;
5530 		struct rbd_device *second = first->parent;
5531 		struct rbd_device *third;
5532 
5533 		/*
5534 		 * Follow to the parent with no grandparent and
5535 		 * remove it.
5536 		 */
5537 		while (second && (third = second->parent)) {
5538 			first = second;
5539 			second = third;
5540 		}
5541 		rbd_assert(second);
5542 		rbd_dev_image_release(second);
5543 		first->parent = NULL;
5544 		first->parent_overlap = 0;
5545 
5546 		rbd_assert(first->parent_spec);
5547 		rbd_spec_put(first->parent_spec);
5548 		first->parent_spec = NULL;
5549 	}
5550 }
5551 
5552 static ssize_t do_rbd_remove(struct bus_type *bus,
5553 			     const char *buf,
5554 			     size_t count)
5555 {
5556 	struct rbd_device *rbd_dev = NULL;
5557 	struct list_head *tmp;
5558 	int dev_id;
5559 	unsigned long ul;
5560 	bool already = false;
5561 	int ret;
5562 
5563 	ret = kstrtoul(buf, 10, &ul);
5564 	if (ret)
5565 		return ret;
5566 
5567 	/* convert to int; abort if we lost anything in the conversion */
5568 	dev_id = (int)ul;
5569 	if (dev_id != ul)
5570 		return -EINVAL;
5571 
5572 	ret = -ENOENT;
5573 	spin_lock(&rbd_dev_list_lock);
5574 	list_for_each(tmp, &rbd_dev_list) {
5575 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5576 		if (rbd_dev->dev_id == dev_id) {
5577 			ret = 0;
5578 			break;
5579 		}
5580 	}
5581 	if (!ret) {
5582 		spin_lock_irq(&rbd_dev->lock);
5583 		if (rbd_dev->open_count)
5584 			ret = -EBUSY;
5585 		else
5586 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5587 							&rbd_dev->flags);
5588 		spin_unlock_irq(&rbd_dev->lock);
5589 	}
5590 	spin_unlock(&rbd_dev_list_lock);
5591 	if (ret < 0 || already)
5592 		return ret;
5593 
5594 	rbd_dev_header_unwatch_sync(rbd_dev);
5595 	/*
5596 	 * flush remaining watch callbacks - these must be complete
5597 	 * before the osd_client is shutdown
5598 	 */
5599 	dout("%s: flushing notifies", __func__);
5600 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5601 
5602 	/*
5603 	 * Don't free anything from rbd_dev->disk until after all
5604 	 * notifies are completely processed. Otherwise
5605 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5606 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5607 	 */
5608 	rbd_bus_del_dev(rbd_dev);
5609 	rbd_dev_image_release(rbd_dev);
5610 	module_put(THIS_MODULE);
5611 
5612 	return count;
5613 }
5614 
5615 static ssize_t rbd_remove(struct bus_type *bus,
5616 			  const char *buf,
5617 			  size_t count)
5618 {
5619 	if (single_major)
5620 		return -EINVAL;
5621 
5622 	return do_rbd_remove(bus, buf, count);
5623 }
5624 
5625 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5626 				       const char *buf,
5627 				       size_t count)
5628 {
5629 	return do_rbd_remove(bus, buf, count);
5630 }
5631 
5632 /*
5633  * create control files in sysfs
5634  * /sys/bus/rbd/...
5635  */
5636 static int rbd_sysfs_init(void)
5637 {
5638 	int ret;
5639 
5640 	ret = device_register(&rbd_root_dev);
5641 	if (ret < 0)
5642 		return ret;
5643 
5644 	ret = bus_register(&rbd_bus_type);
5645 	if (ret < 0)
5646 		device_unregister(&rbd_root_dev);
5647 
5648 	return ret;
5649 }
5650 
5651 static void rbd_sysfs_cleanup(void)
5652 {
5653 	bus_unregister(&rbd_bus_type);
5654 	device_unregister(&rbd_root_dev);
5655 }
5656 
5657 static int rbd_slab_init(void)
5658 {
5659 	rbd_assert(!rbd_img_request_cache);
5660 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5661 					sizeof (struct rbd_img_request),
5662 					__alignof__(struct rbd_img_request),
5663 					0, NULL);
5664 	if (!rbd_img_request_cache)
5665 		return -ENOMEM;
5666 
5667 	rbd_assert(!rbd_obj_request_cache);
5668 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5669 					sizeof (struct rbd_obj_request),
5670 					__alignof__(struct rbd_obj_request),
5671 					0, NULL);
5672 	if (!rbd_obj_request_cache)
5673 		goto out_err;
5674 
5675 	rbd_assert(!rbd_segment_name_cache);
5676 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5677 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5678 	if (rbd_segment_name_cache)
5679 		return 0;
5680 out_err:
5681 	if (rbd_obj_request_cache) {
5682 		kmem_cache_destroy(rbd_obj_request_cache);
5683 		rbd_obj_request_cache = NULL;
5684 	}
5685 
5686 	kmem_cache_destroy(rbd_img_request_cache);
5687 	rbd_img_request_cache = NULL;
5688 
5689 	return -ENOMEM;
5690 }
5691 
5692 static void rbd_slab_exit(void)
5693 {
5694 	rbd_assert(rbd_segment_name_cache);
5695 	kmem_cache_destroy(rbd_segment_name_cache);
5696 	rbd_segment_name_cache = NULL;
5697 
5698 	rbd_assert(rbd_obj_request_cache);
5699 	kmem_cache_destroy(rbd_obj_request_cache);
5700 	rbd_obj_request_cache = NULL;
5701 
5702 	rbd_assert(rbd_img_request_cache);
5703 	kmem_cache_destroy(rbd_img_request_cache);
5704 	rbd_img_request_cache = NULL;
5705 }
5706 
5707 static int __init rbd_init(void)
5708 {
5709 	int rc;
5710 
5711 	if (!libceph_compatible(NULL)) {
5712 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5713 		return -EINVAL;
5714 	}
5715 
5716 	rc = rbd_slab_init();
5717 	if (rc)
5718 		return rc;
5719 
5720 	/*
5721 	 * The number of active work items is limited by the number of
5722 	 * rbd devices * queue depth, so leave @max_active at default.
5723 	 */
5724 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5725 	if (!rbd_wq) {
5726 		rc = -ENOMEM;
5727 		goto err_out_slab;
5728 	}
5729 
5730 	if (single_major) {
5731 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5732 		if (rbd_major < 0) {
5733 			rc = rbd_major;
5734 			goto err_out_wq;
5735 		}
5736 	}
5737 
5738 	rc = rbd_sysfs_init();
5739 	if (rc)
5740 		goto err_out_blkdev;
5741 
5742 	if (single_major)
5743 		pr_info("loaded (major %d)\n", rbd_major);
5744 	else
5745 		pr_info("loaded\n");
5746 
5747 	return 0;
5748 
5749 err_out_blkdev:
5750 	if (single_major)
5751 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5752 err_out_wq:
5753 	destroy_workqueue(rbd_wq);
5754 err_out_slab:
5755 	rbd_slab_exit();
5756 	return rc;
5757 }
5758 
5759 static void __exit rbd_exit(void)
5760 {
5761 	ida_destroy(&rbd_dev_id_ida);
5762 	rbd_sysfs_cleanup();
5763 	if (single_major)
5764 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5765 	destroy_workqueue(rbd_wq);
5766 	rbd_slab_exit();
5767 }
5768 
5769 module_init(rbd_init);
5770 module_exit(rbd_exit);
5771 
5772 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5773 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5774 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5775 /* following authorship retained from original osdblk.c */
5776 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5777 
5778 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5779 MODULE_LICENSE("GPL");
5780