xref: /openbmc/linux/drivers/block/rbd.c (revision d2a266fa)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *client_node;
760 	bool found = false;
761 
762 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
763 		return NULL;
764 
765 	spin_lock(&rbd_client_list_lock);
766 	list_for_each_entry(client_node, &rbd_client_list, node) {
767 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
768 			__rbd_get_client(client_node);
769 
770 			found = true;
771 			break;
772 		}
773 	}
774 	spin_unlock(&rbd_client_list_lock);
775 
776 	return found ? client_node : NULL;
777 }
778 
779 /*
780  * (Per device) rbd map options
781  */
782 enum {
783 	Opt_queue_depth,
784 	Opt_alloc_size,
785 	Opt_lock_timeout,
786 	/* int args above */
787 	Opt_pool_ns,
788 	Opt_compression_hint,
789 	/* string args above */
790 	Opt_read_only,
791 	Opt_read_write,
792 	Opt_lock_on_read,
793 	Opt_exclusive,
794 	Opt_notrim,
795 };
796 
797 enum {
798 	Opt_compression_hint_none,
799 	Opt_compression_hint_compressible,
800 	Opt_compression_hint_incompressible,
801 };
802 
803 static const struct constant_table rbd_param_compression_hint[] = {
804 	{"none",		Opt_compression_hint_none},
805 	{"compressible",	Opt_compression_hint_compressible},
806 	{"incompressible",	Opt_compression_hint_incompressible},
807 	{}
808 };
809 
810 static const struct fs_parameter_spec rbd_parameters[] = {
811 	fsparam_u32	("alloc_size",			Opt_alloc_size),
812 	fsparam_enum	("compression_hint",		Opt_compression_hint,
813 			 rbd_param_compression_hint),
814 	fsparam_flag	("exclusive",			Opt_exclusive),
815 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
816 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
817 	fsparam_flag	("notrim",			Opt_notrim),
818 	fsparam_string	("_pool_ns",			Opt_pool_ns),
819 	fsparam_u32	("queue_depth",			Opt_queue_depth),
820 	fsparam_flag	("read_only",			Opt_read_only),
821 	fsparam_flag	("read_write",			Opt_read_write),
822 	fsparam_flag	("ro",				Opt_read_only),
823 	fsparam_flag	("rw",				Opt_read_write),
824 	{}
825 };
826 
827 struct rbd_options {
828 	int	queue_depth;
829 	int	alloc_size;
830 	unsigned long	lock_timeout;
831 	bool	read_only;
832 	bool	lock_on_read;
833 	bool	exclusive;
834 	bool	trim;
835 
836 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
837 };
838 
839 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
840 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
841 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
842 #define RBD_READ_ONLY_DEFAULT	false
843 #define RBD_LOCK_ON_READ_DEFAULT false
844 #define RBD_EXCLUSIVE_DEFAULT	false
845 #define RBD_TRIM_DEFAULT	true
846 
847 struct rbd_parse_opts_ctx {
848 	struct rbd_spec		*spec;
849 	struct ceph_options	*copts;
850 	struct rbd_options	*opts;
851 };
852 
853 static char* obj_op_name(enum obj_operation_type op_type)
854 {
855 	switch (op_type) {
856 	case OBJ_OP_READ:
857 		return "read";
858 	case OBJ_OP_WRITE:
859 		return "write";
860 	case OBJ_OP_DISCARD:
861 		return "discard";
862 	case OBJ_OP_ZEROOUT:
863 		return "zeroout";
864 	default:
865 		return "???";
866 	}
867 }
868 
869 /*
870  * Destroy ceph client
871  *
872  * Caller must hold rbd_client_list_lock.
873  */
874 static void rbd_client_release(struct kref *kref)
875 {
876 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
877 
878 	dout("%s: rbdc %p\n", __func__, rbdc);
879 	spin_lock(&rbd_client_list_lock);
880 	list_del(&rbdc->node);
881 	spin_unlock(&rbd_client_list_lock);
882 
883 	ceph_destroy_client(rbdc->client);
884 	kfree(rbdc);
885 }
886 
887 /*
888  * Drop reference to ceph client node. If it's not referenced anymore, release
889  * it.
890  */
891 static void rbd_put_client(struct rbd_client *rbdc)
892 {
893 	if (rbdc)
894 		kref_put(&rbdc->kref, rbd_client_release);
895 }
896 
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904 	struct rbd_client *rbdc;
905 	int ret;
906 
907 	mutex_lock(&client_mutex);
908 	rbdc = rbd_client_find(ceph_opts);
909 	if (rbdc) {
910 		ceph_destroy_options(ceph_opts);
911 
912 		/*
913 		 * Using an existing client.  Make sure ->pg_pools is up to
914 		 * date before we look up the pool id in do_rbd_add().
915 		 */
916 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
917 					rbdc->client->options->mount_timeout);
918 		if (ret) {
919 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
920 			rbd_put_client(rbdc);
921 			rbdc = ERR_PTR(ret);
922 		}
923 	} else {
924 		rbdc = rbd_client_create(ceph_opts);
925 	}
926 	mutex_unlock(&client_mutex);
927 
928 	return rbdc;
929 }
930 
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933 	return image_format == 1 || image_format == 2;
934 }
935 
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938 	size_t size;
939 	u32 snap_count;
940 
941 	/* The header has to start with the magic rbd header text */
942 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943 		return false;
944 
945 	/* The bio layer requires at least sector-sized I/O */
946 
947 	if (ondisk->options.order < SECTOR_SHIFT)
948 		return false;
949 
950 	/* If we use u64 in a few spots we may be able to loosen this */
951 
952 	if (ondisk->options.order > 8 * sizeof (int) - 1)
953 		return false;
954 
955 	/*
956 	 * The size of a snapshot header has to fit in a size_t, and
957 	 * that limits the number of snapshots.
958 	 */
959 	snap_count = le32_to_cpu(ondisk->snap_count);
960 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 	if (snap_count > size / sizeof (__le64))
962 		return false;
963 
964 	/*
965 	 * Not only that, but the size of the entire the snapshot
966 	 * header must also be representable in a size_t.
967 	 */
968 	size -= snap_count * sizeof (__le64);
969 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970 		return false;
971 
972 	return true;
973 }
974 
975 /*
976  * returns the size of an object in the image
977  */
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 {
980 	return 1U << header->obj_order;
981 }
982 
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 {
985 	if (rbd_dev->header.stripe_unit == 0 ||
986 	    rbd_dev->header.stripe_count == 0) {
987 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988 		rbd_dev->header.stripe_count = 1;
989 	}
990 
991 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
997 }
998 
999 /*
1000  * Fill an rbd image header with information from the given format 1
1001  * on-disk header.
1002  */
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004 				 struct rbd_image_header_ondisk *ondisk)
1005 {
1006 	struct rbd_image_header *header = &rbd_dev->header;
1007 	bool first_time = header->object_prefix == NULL;
1008 	struct ceph_snap_context *snapc;
1009 	char *object_prefix = NULL;
1010 	char *snap_names = NULL;
1011 	u64 *snap_sizes = NULL;
1012 	u32 snap_count;
1013 	int ret = -ENOMEM;
1014 	u32 i;
1015 
1016 	/* Allocate this now to avoid having to handle failure below */
1017 
1018 	if (first_time) {
1019 		object_prefix = kstrndup(ondisk->object_prefix,
1020 					 sizeof(ondisk->object_prefix),
1021 					 GFP_KERNEL);
1022 		if (!object_prefix)
1023 			return -ENOMEM;
1024 	}
1025 
1026 	/* Allocate the snapshot context and fill it in */
1027 
1028 	snap_count = le32_to_cpu(ondisk->snap_count);
1029 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1030 	if (!snapc)
1031 		goto out_err;
1032 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033 	if (snap_count) {
1034 		struct rbd_image_snap_ondisk *snaps;
1035 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036 
1037 		/* We'll keep a copy of the snapshot names... */
1038 
1039 		if (snap_names_len > (u64)SIZE_MAX)
1040 			goto out_2big;
1041 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1042 		if (!snap_names)
1043 			goto out_err;
1044 
1045 		/* ...as well as the array of their sizes. */
1046 		snap_sizes = kmalloc_array(snap_count,
1047 					   sizeof(*header->snap_sizes),
1048 					   GFP_KERNEL);
1049 		if (!snap_sizes)
1050 			goto out_err;
1051 
1052 		/*
1053 		 * Copy the names, and fill in each snapshot's id
1054 		 * and size.
1055 		 *
1056 		 * Note that rbd_dev_v1_header_info() guarantees the
1057 		 * ondisk buffer we're working with has
1058 		 * snap_names_len bytes beyond the end of the
1059 		 * snapshot id array, this memcpy() is safe.
1060 		 */
1061 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062 		snaps = ondisk->snaps;
1063 		for (i = 0; i < snap_count; i++) {
1064 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1066 		}
1067 	}
1068 
1069 	/* We won't fail any more, fill in the header */
1070 
1071 	if (first_time) {
1072 		header->object_prefix = object_prefix;
1073 		header->obj_order = ondisk->options.order;
1074 		rbd_init_layout(rbd_dev);
1075 	} else {
1076 		ceph_put_snap_context(header->snapc);
1077 		kfree(header->snap_names);
1078 		kfree(header->snap_sizes);
1079 	}
1080 
1081 	/* The remaining fields always get updated (when we refresh) */
1082 
1083 	header->image_size = le64_to_cpu(ondisk->image_size);
1084 	header->snapc = snapc;
1085 	header->snap_names = snap_names;
1086 	header->snap_sizes = snap_sizes;
1087 
1088 	return 0;
1089 out_2big:
1090 	ret = -EIO;
1091 out_err:
1092 	kfree(snap_sizes);
1093 	kfree(snap_names);
1094 	ceph_put_snap_context(snapc);
1095 	kfree(object_prefix);
1096 
1097 	return ret;
1098 }
1099 
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 {
1102 	const char *snap_name;
1103 
1104 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105 
1106 	/* Skip over names until we find the one we are looking for */
1107 
1108 	snap_name = rbd_dev->header.snap_names;
1109 	while (which--)
1110 		snap_name += strlen(snap_name) + 1;
1111 
1112 	return kstrdup(snap_name, GFP_KERNEL);
1113 }
1114 
1115 /*
1116  * Snapshot id comparison function for use with qsort()/bsearch().
1117  * Note that result is for snapshots in *descending* order.
1118  */
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 {
1121 	u64 snap_id1 = *(u64 *)s1;
1122 	u64 snap_id2 = *(u64 *)s2;
1123 
1124 	if (snap_id1 < snap_id2)
1125 		return 1;
1126 	return snap_id1 == snap_id2 ? 0 : -1;
1127 }
1128 
1129 /*
1130  * Search a snapshot context to see if the given snapshot id is
1131  * present.
1132  *
1133  * Returns the position of the snapshot id in the array if it's found,
1134  * or BAD_SNAP_INDEX otherwise.
1135  *
1136  * Note: The snapshot array is in kept sorted (by the osd) in
1137  * reverse order, highest snapshot id first.
1138  */
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 {
1141 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1142 	u64 *found;
1143 
1144 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145 				sizeof (snap_id), snapid_compare_reverse);
1146 
1147 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1148 }
1149 
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1151 					u64 snap_id)
1152 {
1153 	u32 which;
1154 	const char *snap_name;
1155 
1156 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1157 	if (which == BAD_SNAP_INDEX)
1158 		return ERR_PTR(-ENOENT);
1159 
1160 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1162 }
1163 
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 {
1166 	if (snap_id == CEPH_NOSNAP)
1167 		return RBD_SNAP_HEAD_NAME;
1168 
1169 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170 	if (rbd_dev->image_format == 1)
1171 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172 
1173 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1174 }
1175 
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1177 				u64 *snap_size)
1178 {
1179 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180 	if (snap_id == CEPH_NOSNAP) {
1181 		*snap_size = rbd_dev->header.image_size;
1182 	} else if (rbd_dev->image_format == 1) {
1183 		u32 which;
1184 
1185 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1186 		if (which == BAD_SNAP_INDEX)
1187 			return -ENOENT;
1188 
1189 		*snap_size = rbd_dev->header.snap_sizes[which];
1190 	} else {
1191 		u64 size = 0;
1192 		int ret;
1193 
1194 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1195 		if (ret)
1196 			return ret;
1197 
1198 		*snap_size = size;
1199 	}
1200 	return 0;
1201 }
1202 
1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1204 {
1205 	u64 snap_id = rbd_dev->spec->snap_id;
1206 	u64 size = 0;
1207 	int ret;
1208 
1209 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1210 	if (ret)
1211 		return ret;
1212 
1213 	rbd_dev->mapping.size = size;
1214 	return 0;
1215 }
1216 
1217 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1218 {
1219 	rbd_dev->mapping.size = 0;
1220 }
1221 
1222 static void zero_bvec(struct bio_vec *bv)
1223 {
1224 	void *buf;
1225 	unsigned long flags;
1226 
1227 	buf = bvec_kmap_irq(bv, &flags);
1228 	memset(buf, 0, bv->bv_len);
1229 	flush_dcache_page(bv->bv_page);
1230 	bvec_kunmap_irq(buf, &flags);
1231 }
1232 
1233 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1234 {
1235 	struct ceph_bio_iter it = *bio_pos;
1236 
1237 	ceph_bio_iter_advance(&it, off);
1238 	ceph_bio_iter_advance_step(&it, bytes, ({
1239 		zero_bvec(&bv);
1240 	}));
1241 }
1242 
1243 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1244 {
1245 	struct ceph_bvec_iter it = *bvec_pos;
1246 
1247 	ceph_bvec_iter_advance(&it, off);
1248 	ceph_bvec_iter_advance_step(&it, bytes, ({
1249 		zero_bvec(&bv);
1250 	}));
1251 }
1252 
1253 /*
1254  * Zero a range in @obj_req data buffer defined by a bio (list) or
1255  * (private) bio_vec array.
1256  *
1257  * @off is relative to the start of the data buffer.
1258  */
1259 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1260 			       u32 bytes)
1261 {
1262 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1263 
1264 	switch (obj_req->img_request->data_type) {
1265 	case OBJ_REQUEST_BIO:
1266 		zero_bios(&obj_req->bio_pos, off, bytes);
1267 		break;
1268 	case OBJ_REQUEST_BVECS:
1269 	case OBJ_REQUEST_OWN_BVECS:
1270 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1271 		break;
1272 	default:
1273 		BUG();
1274 	}
1275 }
1276 
1277 static void rbd_obj_request_destroy(struct kref *kref);
1278 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1279 {
1280 	rbd_assert(obj_request != NULL);
1281 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1282 		kref_read(&obj_request->kref));
1283 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1284 }
1285 
1286 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1287 					struct rbd_obj_request *obj_request)
1288 {
1289 	rbd_assert(obj_request->img_request == NULL);
1290 
1291 	/* Image request now owns object's original reference */
1292 	obj_request->img_request = img_request;
1293 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1294 }
1295 
1296 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1297 					struct rbd_obj_request *obj_request)
1298 {
1299 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1300 	list_del(&obj_request->ex.oe_item);
1301 	rbd_assert(obj_request->img_request == img_request);
1302 	rbd_obj_request_put(obj_request);
1303 }
1304 
1305 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1306 {
1307 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1308 
1309 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1310 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1311 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1312 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1313 }
1314 
1315 /*
1316  * The default/initial value for all image request flags is 0.  Each
1317  * is conditionally set to 1 at image request initialization time
1318  * and currently never change thereafter.
1319  */
1320 static void img_request_layered_set(struct rbd_img_request *img_request)
1321 {
1322 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1323 }
1324 
1325 static bool img_request_layered_test(struct rbd_img_request *img_request)
1326 {
1327 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1328 }
1329 
1330 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1331 {
1332 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1333 
1334 	return !obj_req->ex.oe_off &&
1335 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1336 }
1337 
1338 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1339 {
1340 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1341 
1342 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1343 					rbd_dev->layout.object_size;
1344 }
1345 
1346 /*
1347  * Must be called after rbd_obj_calc_img_extents().
1348  */
1349 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1350 {
1351 	if (!obj_req->num_img_extents ||
1352 	    (rbd_obj_is_entire(obj_req) &&
1353 	     !obj_req->img_request->snapc->num_snaps))
1354 		return false;
1355 
1356 	return true;
1357 }
1358 
1359 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1360 {
1361 	return ceph_file_extents_bytes(obj_req->img_extents,
1362 				       obj_req->num_img_extents);
1363 }
1364 
1365 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1366 {
1367 	switch (img_req->op_type) {
1368 	case OBJ_OP_READ:
1369 		return false;
1370 	case OBJ_OP_WRITE:
1371 	case OBJ_OP_DISCARD:
1372 	case OBJ_OP_ZEROOUT:
1373 		return true;
1374 	default:
1375 		BUG();
1376 	}
1377 }
1378 
1379 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1380 {
1381 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1382 	int result;
1383 
1384 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1385 	     osd_req->r_result, obj_req);
1386 
1387 	/*
1388 	 * Writes aren't allowed to return a data payload.  In some
1389 	 * guarded write cases (e.g. stat + zero on an empty object)
1390 	 * a stat response makes it through, but we don't care.
1391 	 */
1392 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1393 		result = 0;
1394 	else
1395 		result = osd_req->r_result;
1396 
1397 	rbd_obj_handle_request(obj_req, result);
1398 }
1399 
1400 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1401 {
1402 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1403 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1404 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1405 
1406 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1407 	osd_req->r_snapid = obj_request->img_request->snap_id;
1408 }
1409 
1410 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1411 {
1412 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1413 
1414 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1415 	ktime_get_real_ts64(&osd_req->r_mtime);
1416 	osd_req->r_data_offset = obj_request->ex.oe_off;
1417 }
1418 
1419 static struct ceph_osd_request *
1420 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1421 			  struct ceph_snap_context *snapc, int num_ops)
1422 {
1423 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1424 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1425 	struct ceph_osd_request *req;
1426 	const char *name_format = rbd_dev->image_format == 1 ?
1427 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1428 	int ret;
1429 
1430 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1431 	if (!req)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1435 	req->r_callback = rbd_osd_req_callback;
1436 	req->r_priv = obj_req;
1437 
1438 	/*
1439 	 * Data objects may be stored in a separate pool, but always in
1440 	 * the same namespace in that pool as the header in its pool.
1441 	 */
1442 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1443 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1444 
1445 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1446 			       rbd_dev->header.object_prefix,
1447 			       obj_req->ex.oe_objno);
1448 	if (ret)
1449 		return ERR_PTR(ret);
1450 
1451 	return req;
1452 }
1453 
1454 static struct ceph_osd_request *
1455 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1456 {
1457 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1458 					 num_ops);
1459 }
1460 
1461 static struct rbd_obj_request *rbd_obj_request_create(void)
1462 {
1463 	struct rbd_obj_request *obj_request;
1464 
1465 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1466 	if (!obj_request)
1467 		return NULL;
1468 
1469 	ceph_object_extent_init(&obj_request->ex);
1470 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1471 	mutex_init(&obj_request->state_mutex);
1472 	kref_init(&obj_request->kref);
1473 
1474 	dout("%s %p\n", __func__, obj_request);
1475 	return obj_request;
1476 }
1477 
1478 static void rbd_obj_request_destroy(struct kref *kref)
1479 {
1480 	struct rbd_obj_request *obj_request;
1481 	struct ceph_osd_request *osd_req;
1482 	u32 i;
1483 
1484 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1485 
1486 	dout("%s: obj %p\n", __func__, obj_request);
1487 
1488 	while (!list_empty(&obj_request->osd_reqs)) {
1489 		osd_req = list_first_entry(&obj_request->osd_reqs,
1490 				    struct ceph_osd_request, r_private_item);
1491 		list_del_init(&osd_req->r_private_item);
1492 		ceph_osdc_put_request(osd_req);
1493 	}
1494 
1495 	switch (obj_request->img_request->data_type) {
1496 	case OBJ_REQUEST_NODATA:
1497 	case OBJ_REQUEST_BIO:
1498 	case OBJ_REQUEST_BVECS:
1499 		break;		/* Nothing to do */
1500 	case OBJ_REQUEST_OWN_BVECS:
1501 		kfree(obj_request->bvec_pos.bvecs);
1502 		break;
1503 	default:
1504 		BUG();
1505 	}
1506 
1507 	kfree(obj_request->img_extents);
1508 	if (obj_request->copyup_bvecs) {
1509 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1510 			if (obj_request->copyup_bvecs[i].bv_page)
1511 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1512 		}
1513 		kfree(obj_request->copyup_bvecs);
1514 	}
1515 
1516 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1517 }
1518 
1519 /* It's OK to call this for a device with no parent */
1520 
1521 static void rbd_spec_put(struct rbd_spec *spec);
1522 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1523 {
1524 	rbd_dev_remove_parent(rbd_dev);
1525 	rbd_spec_put(rbd_dev->parent_spec);
1526 	rbd_dev->parent_spec = NULL;
1527 	rbd_dev->parent_overlap = 0;
1528 }
1529 
1530 /*
1531  * Parent image reference counting is used to determine when an
1532  * image's parent fields can be safely torn down--after there are no
1533  * more in-flight requests to the parent image.  When the last
1534  * reference is dropped, cleaning them up is safe.
1535  */
1536 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1537 {
1538 	int counter;
1539 
1540 	if (!rbd_dev->parent_spec)
1541 		return;
1542 
1543 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1544 	if (counter > 0)
1545 		return;
1546 
1547 	/* Last reference; clean up parent data structures */
1548 
1549 	if (!counter)
1550 		rbd_dev_unparent(rbd_dev);
1551 	else
1552 		rbd_warn(rbd_dev, "parent reference underflow");
1553 }
1554 
1555 /*
1556  * If an image has a non-zero parent overlap, get a reference to its
1557  * parent.
1558  *
1559  * Returns true if the rbd device has a parent with a non-zero
1560  * overlap and a reference for it was successfully taken, or
1561  * false otherwise.
1562  */
1563 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1564 {
1565 	int counter = 0;
1566 
1567 	if (!rbd_dev->parent_spec)
1568 		return false;
1569 
1570 	if (rbd_dev->parent_overlap)
1571 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1572 
1573 	if (counter < 0)
1574 		rbd_warn(rbd_dev, "parent reference overflow");
1575 
1576 	return counter > 0;
1577 }
1578 
1579 static void rbd_img_request_init(struct rbd_img_request *img_request,
1580 				 struct rbd_device *rbd_dev,
1581 				 enum obj_operation_type op_type)
1582 {
1583 	memset(img_request, 0, sizeof(*img_request));
1584 
1585 	img_request->rbd_dev = rbd_dev;
1586 	img_request->op_type = op_type;
1587 
1588 	INIT_LIST_HEAD(&img_request->lock_item);
1589 	INIT_LIST_HEAD(&img_request->object_extents);
1590 	mutex_init(&img_request->state_mutex);
1591 }
1592 
1593 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1594 {
1595 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1596 
1597 	lockdep_assert_held(&rbd_dev->header_rwsem);
1598 
1599 	if (rbd_img_is_write(img_req))
1600 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1601 	else
1602 		img_req->snap_id = rbd_dev->spec->snap_id;
1603 
1604 	if (rbd_dev_parent_get(rbd_dev))
1605 		img_request_layered_set(img_req);
1606 }
1607 
1608 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1609 {
1610 	struct rbd_obj_request *obj_request;
1611 	struct rbd_obj_request *next_obj_request;
1612 
1613 	dout("%s: img %p\n", __func__, img_request);
1614 
1615 	WARN_ON(!list_empty(&img_request->lock_item));
1616 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1617 		rbd_img_obj_request_del(img_request, obj_request);
1618 
1619 	if (img_request_layered_test(img_request))
1620 		rbd_dev_parent_put(img_request->rbd_dev);
1621 
1622 	if (rbd_img_is_write(img_request))
1623 		ceph_put_snap_context(img_request->snapc);
1624 
1625 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1626 		kmem_cache_free(rbd_img_request_cache, img_request);
1627 }
1628 
1629 #define BITS_PER_OBJ	2
1630 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1631 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1632 
1633 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1634 				   u64 *index, u8 *shift)
1635 {
1636 	u32 off;
1637 
1638 	rbd_assert(objno < rbd_dev->object_map_size);
1639 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1640 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1641 }
1642 
1643 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1644 {
1645 	u64 index;
1646 	u8 shift;
1647 
1648 	lockdep_assert_held(&rbd_dev->object_map_lock);
1649 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1650 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1651 }
1652 
1653 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1654 {
1655 	u64 index;
1656 	u8 shift;
1657 	u8 *p;
1658 
1659 	lockdep_assert_held(&rbd_dev->object_map_lock);
1660 	rbd_assert(!(val & ~OBJ_MASK));
1661 
1662 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1663 	p = &rbd_dev->object_map[index];
1664 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1665 }
1666 
1667 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1668 {
1669 	u8 state;
1670 
1671 	spin_lock(&rbd_dev->object_map_lock);
1672 	state = __rbd_object_map_get(rbd_dev, objno);
1673 	spin_unlock(&rbd_dev->object_map_lock);
1674 	return state;
1675 }
1676 
1677 static bool use_object_map(struct rbd_device *rbd_dev)
1678 {
1679 	/*
1680 	 * An image mapped read-only can't use the object map -- it isn't
1681 	 * loaded because the header lock isn't acquired.  Someone else can
1682 	 * write to the image and update the object map behind our back.
1683 	 *
1684 	 * A snapshot can't be written to, so using the object map is always
1685 	 * safe.
1686 	 */
1687 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1688 		return false;
1689 
1690 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1691 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1692 }
1693 
1694 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696 	u8 state;
1697 
1698 	/* fall back to default logic if object map is disabled or invalid */
1699 	if (!use_object_map(rbd_dev))
1700 		return true;
1701 
1702 	state = rbd_object_map_get(rbd_dev, objno);
1703 	return state != OBJECT_NONEXISTENT;
1704 }
1705 
1706 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1707 				struct ceph_object_id *oid)
1708 {
1709 	if (snap_id == CEPH_NOSNAP)
1710 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1711 				rbd_dev->spec->image_id);
1712 	else
1713 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1714 				rbd_dev->spec->image_id, snap_id);
1715 }
1716 
1717 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1718 {
1719 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1720 	CEPH_DEFINE_OID_ONSTACK(oid);
1721 	u8 lock_type;
1722 	char *lock_tag;
1723 	struct ceph_locker *lockers;
1724 	u32 num_lockers;
1725 	bool broke_lock = false;
1726 	int ret;
1727 
1728 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1729 
1730 again:
1731 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1732 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1733 	if (ret != -EBUSY || broke_lock) {
1734 		if (ret == -EEXIST)
1735 			ret = 0; /* already locked by myself */
1736 		if (ret)
1737 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1738 		return ret;
1739 	}
1740 
1741 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1742 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1743 				 &lockers, &num_lockers);
1744 	if (ret) {
1745 		if (ret == -ENOENT)
1746 			goto again;
1747 
1748 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1749 		return ret;
1750 	}
1751 
1752 	kfree(lock_tag);
1753 	if (num_lockers == 0)
1754 		goto again;
1755 
1756 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1757 		 ENTITY_NAME(lockers[0].id.name));
1758 
1759 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1760 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1761 				  &lockers[0].id.name);
1762 	ceph_free_lockers(lockers, num_lockers);
1763 	if (ret) {
1764 		if (ret == -ENOENT)
1765 			goto again;
1766 
1767 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1768 		return ret;
1769 	}
1770 
1771 	broke_lock = true;
1772 	goto again;
1773 }
1774 
1775 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1776 {
1777 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1778 	CEPH_DEFINE_OID_ONSTACK(oid);
1779 	int ret;
1780 
1781 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1782 
1783 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1784 			      "");
1785 	if (ret && ret != -ENOENT)
1786 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1787 }
1788 
1789 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1790 {
1791 	u8 struct_v;
1792 	u32 struct_len;
1793 	u32 header_len;
1794 	void *header_end;
1795 	int ret;
1796 
1797 	ceph_decode_32_safe(p, end, header_len, e_inval);
1798 	header_end = *p + header_len;
1799 
1800 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1801 				  &struct_len);
1802 	if (ret)
1803 		return ret;
1804 
1805 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1806 
1807 	*p = header_end;
1808 	return 0;
1809 
1810 e_inval:
1811 	return -EINVAL;
1812 }
1813 
1814 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1815 {
1816 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1817 	CEPH_DEFINE_OID_ONSTACK(oid);
1818 	struct page **pages;
1819 	void *p, *end;
1820 	size_t reply_len;
1821 	u64 num_objects;
1822 	u64 object_map_bytes;
1823 	u64 object_map_size;
1824 	int num_pages;
1825 	int ret;
1826 
1827 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1828 
1829 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1830 					   rbd_dev->mapping.size);
1831 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1832 					    BITS_PER_BYTE);
1833 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1834 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1835 	if (IS_ERR(pages))
1836 		return PTR_ERR(pages);
1837 
1838 	reply_len = num_pages * PAGE_SIZE;
1839 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1840 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1841 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1842 			     NULL, 0, pages, &reply_len);
1843 	if (ret)
1844 		goto out;
1845 
1846 	p = page_address(pages[0]);
1847 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1848 	ret = decode_object_map_header(&p, end, &object_map_size);
1849 	if (ret)
1850 		goto out;
1851 
1852 	if (object_map_size != num_objects) {
1853 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1854 			 object_map_size, num_objects);
1855 		ret = -EINVAL;
1856 		goto out;
1857 	}
1858 
1859 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1860 		ret = -EINVAL;
1861 		goto out;
1862 	}
1863 
1864 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1865 	if (!rbd_dev->object_map) {
1866 		ret = -ENOMEM;
1867 		goto out;
1868 	}
1869 
1870 	rbd_dev->object_map_size = object_map_size;
1871 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1872 				   offset_in_page(p), object_map_bytes);
1873 
1874 out:
1875 	ceph_release_page_vector(pages, num_pages);
1876 	return ret;
1877 }
1878 
1879 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1880 {
1881 	kvfree(rbd_dev->object_map);
1882 	rbd_dev->object_map = NULL;
1883 	rbd_dev->object_map_size = 0;
1884 }
1885 
1886 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1887 {
1888 	int ret;
1889 
1890 	ret = __rbd_object_map_load(rbd_dev);
1891 	if (ret)
1892 		return ret;
1893 
1894 	ret = rbd_dev_v2_get_flags(rbd_dev);
1895 	if (ret) {
1896 		rbd_object_map_free(rbd_dev);
1897 		return ret;
1898 	}
1899 
1900 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1901 		rbd_warn(rbd_dev, "object map is invalid");
1902 
1903 	return 0;
1904 }
1905 
1906 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1907 {
1908 	int ret;
1909 
1910 	ret = rbd_object_map_lock(rbd_dev);
1911 	if (ret)
1912 		return ret;
1913 
1914 	ret = rbd_object_map_load(rbd_dev);
1915 	if (ret) {
1916 		rbd_object_map_unlock(rbd_dev);
1917 		return ret;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1924 {
1925 	rbd_object_map_free(rbd_dev);
1926 	rbd_object_map_unlock(rbd_dev);
1927 }
1928 
1929 /*
1930  * This function needs snap_id (or more precisely just something to
1931  * distinguish between HEAD and snapshot object maps), new_state and
1932  * current_state that were passed to rbd_object_map_update().
1933  *
1934  * To avoid allocating and stashing a context we piggyback on the OSD
1935  * request.  A HEAD update has two ops (assert_locked).  For new_state
1936  * and current_state we decode our own object_map_update op, encoded in
1937  * rbd_cls_object_map_update().
1938  */
1939 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1940 					struct ceph_osd_request *osd_req)
1941 {
1942 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1943 	struct ceph_osd_data *osd_data;
1944 	u64 objno;
1945 	u8 state, new_state, current_state;
1946 	bool has_current_state;
1947 	void *p;
1948 
1949 	if (osd_req->r_result)
1950 		return osd_req->r_result;
1951 
1952 	/*
1953 	 * Nothing to do for a snapshot object map.
1954 	 */
1955 	if (osd_req->r_num_ops == 1)
1956 		return 0;
1957 
1958 	/*
1959 	 * Update in-memory HEAD object map.
1960 	 */
1961 	rbd_assert(osd_req->r_num_ops == 2);
1962 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1963 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1964 
1965 	p = page_address(osd_data->pages[0]);
1966 	objno = ceph_decode_64(&p);
1967 	rbd_assert(objno == obj_req->ex.oe_objno);
1968 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1969 	new_state = ceph_decode_8(&p);
1970 	has_current_state = ceph_decode_8(&p);
1971 	if (has_current_state)
1972 		current_state = ceph_decode_8(&p);
1973 
1974 	spin_lock(&rbd_dev->object_map_lock);
1975 	state = __rbd_object_map_get(rbd_dev, objno);
1976 	if (!has_current_state || current_state == state ||
1977 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1978 		__rbd_object_map_set(rbd_dev, objno, new_state);
1979 	spin_unlock(&rbd_dev->object_map_lock);
1980 
1981 	return 0;
1982 }
1983 
1984 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1985 {
1986 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1987 	int result;
1988 
1989 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1990 	     osd_req->r_result, obj_req);
1991 
1992 	result = rbd_object_map_update_finish(obj_req, osd_req);
1993 	rbd_obj_handle_request(obj_req, result);
1994 }
1995 
1996 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1997 {
1998 	u8 state = rbd_object_map_get(rbd_dev, objno);
1999 
2000 	if (state == new_state ||
2001 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2002 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2003 		return false;
2004 
2005 	return true;
2006 }
2007 
2008 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2009 				     int which, u64 objno, u8 new_state,
2010 				     const u8 *current_state)
2011 {
2012 	struct page **pages;
2013 	void *p, *start;
2014 	int ret;
2015 
2016 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2017 	if (ret)
2018 		return ret;
2019 
2020 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2021 	if (IS_ERR(pages))
2022 		return PTR_ERR(pages);
2023 
2024 	p = start = page_address(pages[0]);
2025 	ceph_encode_64(&p, objno);
2026 	ceph_encode_64(&p, objno + 1);
2027 	ceph_encode_8(&p, new_state);
2028 	if (current_state) {
2029 		ceph_encode_8(&p, 1);
2030 		ceph_encode_8(&p, *current_state);
2031 	} else {
2032 		ceph_encode_8(&p, 0);
2033 	}
2034 
2035 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2036 					  false, true);
2037 	return 0;
2038 }
2039 
2040 /*
2041  * Return:
2042  *   0 - object map update sent
2043  *   1 - object map update isn't needed
2044  *  <0 - error
2045  */
2046 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2047 				 u8 new_state, const u8 *current_state)
2048 {
2049 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2050 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2051 	struct ceph_osd_request *req;
2052 	int num_ops = 1;
2053 	int which = 0;
2054 	int ret;
2055 
2056 	if (snap_id == CEPH_NOSNAP) {
2057 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2058 			return 1;
2059 
2060 		num_ops++; /* assert_locked */
2061 	}
2062 
2063 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2064 	if (!req)
2065 		return -ENOMEM;
2066 
2067 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2068 	req->r_callback = rbd_object_map_callback;
2069 	req->r_priv = obj_req;
2070 
2071 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2072 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2073 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2074 	ktime_get_real_ts64(&req->r_mtime);
2075 
2076 	if (snap_id == CEPH_NOSNAP) {
2077 		/*
2078 		 * Protect against possible race conditions during lock
2079 		 * ownership transitions.
2080 		 */
2081 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2082 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2083 		if (ret)
2084 			return ret;
2085 	}
2086 
2087 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2088 					new_state, current_state);
2089 	if (ret)
2090 		return ret;
2091 
2092 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2093 	if (ret)
2094 		return ret;
2095 
2096 	ceph_osdc_start_request(osdc, req, false);
2097 	return 0;
2098 }
2099 
2100 static void prune_extents(struct ceph_file_extent *img_extents,
2101 			  u32 *num_img_extents, u64 overlap)
2102 {
2103 	u32 cnt = *num_img_extents;
2104 
2105 	/* drop extents completely beyond the overlap */
2106 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2107 		cnt--;
2108 
2109 	if (cnt) {
2110 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2111 
2112 		/* trim final overlapping extent */
2113 		if (ex->fe_off + ex->fe_len > overlap)
2114 			ex->fe_len = overlap - ex->fe_off;
2115 	}
2116 
2117 	*num_img_extents = cnt;
2118 }
2119 
2120 /*
2121  * Determine the byte range(s) covered by either just the object extent
2122  * or the entire object in the parent image.
2123  */
2124 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2125 				    bool entire)
2126 {
2127 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2128 	int ret;
2129 
2130 	if (!rbd_dev->parent_overlap)
2131 		return 0;
2132 
2133 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2134 				  entire ? 0 : obj_req->ex.oe_off,
2135 				  entire ? rbd_dev->layout.object_size :
2136 							obj_req->ex.oe_len,
2137 				  &obj_req->img_extents,
2138 				  &obj_req->num_img_extents);
2139 	if (ret)
2140 		return ret;
2141 
2142 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2143 		      rbd_dev->parent_overlap);
2144 	return 0;
2145 }
2146 
2147 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2148 {
2149 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2150 
2151 	switch (obj_req->img_request->data_type) {
2152 	case OBJ_REQUEST_BIO:
2153 		osd_req_op_extent_osd_data_bio(osd_req, which,
2154 					       &obj_req->bio_pos,
2155 					       obj_req->ex.oe_len);
2156 		break;
2157 	case OBJ_REQUEST_BVECS:
2158 	case OBJ_REQUEST_OWN_BVECS:
2159 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2160 							obj_req->ex.oe_len);
2161 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2162 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2163 						    &obj_req->bvec_pos);
2164 		break;
2165 	default:
2166 		BUG();
2167 	}
2168 }
2169 
2170 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2171 {
2172 	struct page **pages;
2173 
2174 	/*
2175 	 * The response data for a STAT call consists of:
2176 	 *     le64 length;
2177 	 *     struct {
2178 	 *         le32 tv_sec;
2179 	 *         le32 tv_nsec;
2180 	 *     } mtime;
2181 	 */
2182 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2183 	if (IS_ERR(pages))
2184 		return PTR_ERR(pages);
2185 
2186 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2187 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2188 				     8 + sizeof(struct ceph_timespec),
2189 				     0, false, true);
2190 	return 0;
2191 }
2192 
2193 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2194 				u32 bytes)
2195 {
2196 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2197 	int ret;
2198 
2199 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2200 	if (ret)
2201 		return ret;
2202 
2203 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2204 					  obj_req->copyup_bvec_count, bytes);
2205 	return 0;
2206 }
2207 
2208 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2209 {
2210 	obj_req->read_state = RBD_OBJ_READ_START;
2211 	return 0;
2212 }
2213 
2214 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2215 				      int which)
2216 {
2217 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2218 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2219 	u16 opcode;
2220 
2221 	if (!use_object_map(rbd_dev) ||
2222 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2223 		osd_req_op_alloc_hint_init(osd_req, which++,
2224 					   rbd_dev->layout.object_size,
2225 					   rbd_dev->layout.object_size,
2226 					   rbd_dev->opts->alloc_hint_flags);
2227 	}
2228 
2229 	if (rbd_obj_is_entire(obj_req))
2230 		opcode = CEPH_OSD_OP_WRITEFULL;
2231 	else
2232 		opcode = CEPH_OSD_OP_WRITE;
2233 
2234 	osd_req_op_extent_init(osd_req, which, opcode,
2235 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2236 	rbd_osd_setup_data(osd_req, which);
2237 }
2238 
2239 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2240 {
2241 	int ret;
2242 
2243 	/* reverse map the entire object onto the parent */
2244 	ret = rbd_obj_calc_img_extents(obj_req, true);
2245 	if (ret)
2246 		return ret;
2247 
2248 	if (rbd_obj_copyup_enabled(obj_req))
2249 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2250 
2251 	obj_req->write_state = RBD_OBJ_WRITE_START;
2252 	return 0;
2253 }
2254 
2255 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2256 {
2257 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2258 					  CEPH_OSD_OP_ZERO;
2259 }
2260 
2261 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2262 					int which)
2263 {
2264 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2265 
2266 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2267 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2268 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2269 	} else {
2270 		osd_req_op_extent_init(osd_req, which,
2271 				       truncate_or_zero_opcode(obj_req),
2272 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2273 				       0, 0);
2274 	}
2275 }
2276 
2277 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2278 {
2279 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2280 	u64 off, next_off;
2281 	int ret;
2282 
2283 	/*
2284 	 * Align the range to alloc_size boundary and punt on discards
2285 	 * that are too small to free up any space.
2286 	 *
2287 	 * alloc_size == object_size && is_tail() is a special case for
2288 	 * filestore with filestore_punch_hole = false, needed to allow
2289 	 * truncate (in addition to delete).
2290 	 */
2291 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2292 	    !rbd_obj_is_tail(obj_req)) {
2293 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2294 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2295 				      rbd_dev->opts->alloc_size);
2296 		if (off >= next_off)
2297 			return 1;
2298 
2299 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2300 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2301 		     off, next_off - off);
2302 		obj_req->ex.oe_off = off;
2303 		obj_req->ex.oe_len = next_off - off;
2304 	}
2305 
2306 	/* reverse map the entire object onto the parent */
2307 	ret = rbd_obj_calc_img_extents(obj_req, true);
2308 	if (ret)
2309 		return ret;
2310 
2311 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2312 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2313 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2314 
2315 	obj_req->write_state = RBD_OBJ_WRITE_START;
2316 	return 0;
2317 }
2318 
2319 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2320 					int which)
2321 {
2322 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2323 	u16 opcode;
2324 
2325 	if (rbd_obj_is_entire(obj_req)) {
2326 		if (obj_req->num_img_extents) {
2327 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2328 				osd_req_op_init(osd_req, which++,
2329 						CEPH_OSD_OP_CREATE, 0);
2330 			opcode = CEPH_OSD_OP_TRUNCATE;
2331 		} else {
2332 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2333 			osd_req_op_init(osd_req, which++,
2334 					CEPH_OSD_OP_DELETE, 0);
2335 			opcode = 0;
2336 		}
2337 	} else {
2338 		opcode = truncate_or_zero_opcode(obj_req);
2339 	}
2340 
2341 	if (opcode)
2342 		osd_req_op_extent_init(osd_req, which, opcode,
2343 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2344 				       0, 0);
2345 }
2346 
2347 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2348 {
2349 	int ret;
2350 
2351 	/* reverse map the entire object onto the parent */
2352 	ret = rbd_obj_calc_img_extents(obj_req, true);
2353 	if (ret)
2354 		return ret;
2355 
2356 	if (rbd_obj_copyup_enabled(obj_req))
2357 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2358 	if (!obj_req->num_img_extents) {
2359 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2360 		if (rbd_obj_is_entire(obj_req))
2361 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2362 	}
2363 
2364 	obj_req->write_state = RBD_OBJ_WRITE_START;
2365 	return 0;
2366 }
2367 
2368 static int count_write_ops(struct rbd_obj_request *obj_req)
2369 {
2370 	struct rbd_img_request *img_req = obj_req->img_request;
2371 
2372 	switch (img_req->op_type) {
2373 	case OBJ_OP_WRITE:
2374 		if (!use_object_map(img_req->rbd_dev) ||
2375 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2376 			return 2; /* setallochint + write/writefull */
2377 
2378 		return 1; /* write/writefull */
2379 	case OBJ_OP_DISCARD:
2380 		return 1; /* delete/truncate/zero */
2381 	case OBJ_OP_ZEROOUT:
2382 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2383 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2384 			return 2; /* create + truncate */
2385 
2386 		return 1; /* delete/truncate/zero */
2387 	default:
2388 		BUG();
2389 	}
2390 }
2391 
2392 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2393 				    int which)
2394 {
2395 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2396 
2397 	switch (obj_req->img_request->op_type) {
2398 	case OBJ_OP_WRITE:
2399 		__rbd_osd_setup_write_ops(osd_req, which);
2400 		break;
2401 	case OBJ_OP_DISCARD:
2402 		__rbd_osd_setup_discard_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_ZEROOUT:
2405 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2406 		break;
2407 	default:
2408 		BUG();
2409 	}
2410 }
2411 
2412 /*
2413  * Prune the list of object requests (adjust offset and/or length, drop
2414  * redundant requests).  Prepare object request state machines and image
2415  * request state machine for execution.
2416  */
2417 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2418 {
2419 	struct rbd_obj_request *obj_req, *next_obj_req;
2420 	int ret;
2421 
2422 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2423 		switch (img_req->op_type) {
2424 		case OBJ_OP_READ:
2425 			ret = rbd_obj_init_read(obj_req);
2426 			break;
2427 		case OBJ_OP_WRITE:
2428 			ret = rbd_obj_init_write(obj_req);
2429 			break;
2430 		case OBJ_OP_DISCARD:
2431 			ret = rbd_obj_init_discard(obj_req);
2432 			break;
2433 		case OBJ_OP_ZEROOUT:
2434 			ret = rbd_obj_init_zeroout(obj_req);
2435 			break;
2436 		default:
2437 			BUG();
2438 		}
2439 		if (ret < 0)
2440 			return ret;
2441 		if (ret > 0) {
2442 			rbd_img_obj_request_del(img_req, obj_req);
2443 			continue;
2444 		}
2445 	}
2446 
2447 	img_req->state = RBD_IMG_START;
2448 	return 0;
2449 }
2450 
2451 union rbd_img_fill_iter {
2452 	struct ceph_bio_iter	bio_iter;
2453 	struct ceph_bvec_iter	bvec_iter;
2454 };
2455 
2456 struct rbd_img_fill_ctx {
2457 	enum obj_request_type	pos_type;
2458 	union rbd_img_fill_iter	*pos;
2459 	union rbd_img_fill_iter	iter;
2460 	ceph_object_extent_fn_t	set_pos_fn;
2461 	ceph_object_extent_fn_t	count_fn;
2462 	ceph_object_extent_fn_t	copy_fn;
2463 };
2464 
2465 static struct ceph_object_extent *alloc_object_extent(void *arg)
2466 {
2467 	struct rbd_img_request *img_req = arg;
2468 	struct rbd_obj_request *obj_req;
2469 
2470 	obj_req = rbd_obj_request_create();
2471 	if (!obj_req)
2472 		return NULL;
2473 
2474 	rbd_img_obj_request_add(img_req, obj_req);
2475 	return &obj_req->ex;
2476 }
2477 
2478 /*
2479  * While su != os && sc == 1 is technically not fancy (it's the same
2480  * layout as su == os && sc == 1), we can't use the nocopy path for it
2481  * because ->set_pos_fn() should be called only once per object.
2482  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2483  * treat su != os && sc == 1 as fancy.
2484  */
2485 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2486 {
2487 	return l->stripe_unit != l->object_size;
2488 }
2489 
2490 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2491 				       struct ceph_file_extent *img_extents,
2492 				       u32 num_img_extents,
2493 				       struct rbd_img_fill_ctx *fctx)
2494 {
2495 	u32 i;
2496 	int ret;
2497 
2498 	img_req->data_type = fctx->pos_type;
2499 
2500 	/*
2501 	 * Create object requests and set each object request's starting
2502 	 * position in the provided bio (list) or bio_vec array.
2503 	 */
2504 	fctx->iter = *fctx->pos;
2505 	for (i = 0; i < num_img_extents; i++) {
2506 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2507 					   img_extents[i].fe_off,
2508 					   img_extents[i].fe_len,
2509 					   &img_req->object_extents,
2510 					   alloc_object_extent, img_req,
2511 					   fctx->set_pos_fn, &fctx->iter);
2512 		if (ret)
2513 			return ret;
2514 	}
2515 
2516 	return __rbd_img_fill_request(img_req);
2517 }
2518 
2519 /*
2520  * Map a list of image extents to a list of object extents, create the
2521  * corresponding object requests (normally each to a different object,
2522  * but not always) and add them to @img_req.  For each object request,
2523  * set up its data descriptor to point to the corresponding chunk(s) of
2524  * @fctx->pos data buffer.
2525  *
2526  * Because ceph_file_to_extents() will merge adjacent object extents
2527  * together, each object request's data descriptor may point to multiple
2528  * different chunks of @fctx->pos data buffer.
2529  *
2530  * @fctx->pos data buffer is assumed to be large enough.
2531  */
2532 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2533 				struct ceph_file_extent *img_extents,
2534 				u32 num_img_extents,
2535 				struct rbd_img_fill_ctx *fctx)
2536 {
2537 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2538 	struct rbd_obj_request *obj_req;
2539 	u32 i;
2540 	int ret;
2541 
2542 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2543 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2544 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2545 						   num_img_extents, fctx);
2546 
2547 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2548 
2549 	/*
2550 	 * Create object requests and determine ->bvec_count for each object
2551 	 * request.  Note that ->bvec_count sum over all object requests may
2552 	 * be greater than the number of bio_vecs in the provided bio (list)
2553 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2554 	 * stripe unit boundaries.
2555 	 */
2556 	fctx->iter = *fctx->pos;
2557 	for (i = 0; i < num_img_extents; i++) {
2558 		ret = ceph_file_to_extents(&rbd_dev->layout,
2559 					   img_extents[i].fe_off,
2560 					   img_extents[i].fe_len,
2561 					   &img_req->object_extents,
2562 					   alloc_object_extent, img_req,
2563 					   fctx->count_fn, &fctx->iter);
2564 		if (ret)
2565 			return ret;
2566 	}
2567 
2568 	for_each_obj_request(img_req, obj_req) {
2569 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2570 					      sizeof(*obj_req->bvec_pos.bvecs),
2571 					      GFP_NOIO);
2572 		if (!obj_req->bvec_pos.bvecs)
2573 			return -ENOMEM;
2574 	}
2575 
2576 	/*
2577 	 * Fill in each object request's private bio_vec array, splitting and
2578 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2579 	 */
2580 	fctx->iter = *fctx->pos;
2581 	for (i = 0; i < num_img_extents; i++) {
2582 		ret = ceph_iterate_extents(&rbd_dev->layout,
2583 					   img_extents[i].fe_off,
2584 					   img_extents[i].fe_len,
2585 					   &img_req->object_extents,
2586 					   fctx->copy_fn, &fctx->iter);
2587 		if (ret)
2588 			return ret;
2589 	}
2590 
2591 	return __rbd_img_fill_request(img_req);
2592 }
2593 
2594 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2595 			       u64 off, u64 len)
2596 {
2597 	struct ceph_file_extent ex = { off, len };
2598 	union rbd_img_fill_iter dummy = {};
2599 	struct rbd_img_fill_ctx fctx = {
2600 		.pos_type = OBJ_REQUEST_NODATA,
2601 		.pos = &dummy,
2602 	};
2603 
2604 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2605 }
2606 
2607 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2608 {
2609 	struct rbd_obj_request *obj_req =
2610 	    container_of(ex, struct rbd_obj_request, ex);
2611 	struct ceph_bio_iter *it = arg;
2612 
2613 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2614 	obj_req->bio_pos = *it;
2615 	ceph_bio_iter_advance(it, bytes);
2616 }
2617 
2618 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2619 {
2620 	struct rbd_obj_request *obj_req =
2621 	    container_of(ex, struct rbd_obj_request, ex);
2622 	struct ceph_bio_iter *it = arg;
2623 
2624 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2625 	ceph_bio_iter_advance_step(it, bytes, ({
2626 		obj_req->bvec_count++;
2627 	}));
2628 
2629 }
2630 
2631 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2632 {
2633 	struct rbd_obj_request *obj_req =
2634 	    container_of(ex, struct rbd_obj_request, ex);
2635 	struct ceph_bio_iter *it = arg;
2636 
2637 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2638 	ceph_bio_iter_advance_step(it, bytes, ({
2639 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2640 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2641 	}));
2642 }
2643 
2644 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2645 				   struct ceph_file_extent *img_extents,
2646 				   u32 num_img_extents,
2647 				   struct ceph_bio_iter *bio_pos)
2648 {
2649 	struct rbd_img_fill_ctx fctx = {
2650 		.pos_type = OBJ_REQUEST_BIO,
2651 		.pos = (union rbd_img_fill_iter *)bio_pos,
2652 		.set_pos_fn = set_bio_pos,
2653 		.count_fn = count_bio_bvecs,
2654 		.copy_fn = copy_bio_bvecs,
2655 	};
2656 
2657 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2658 				    &fctx);
2659 }
2660 
2661 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2662 				 u64 off, u64 len, struct bio *bio)
2663 {
2664 	struct ceph_file_extent ex = { off, len };
2665 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2666 
2667 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2668 }
2669 
2670 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2671 {
2672 	struct rbd_obj_request *obj_req =
2673 	    container_of(ex, struct rbd_obj_request, ex);
2674 	struct ceph_bvec_iter *it = arg;
2675 
2676 	obj_req->bvec_pos = *it;
2677 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2678 	ceph_bvec_iter_advance(it, bytes);
2679 }
2680 
2681 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2682 {
2683 	struct rbd_obj_request *obj_req =
2684 	    container_of(ex, struct rbd_obj_request, ex);
2685 	struct ceph_bvec_iter *it = arg;
2686 
2687 	ceph_bvec_iter_advance_step(it, bytes, ({
2688 		obj_req->bvec_count++;
2689 	}));
2690 }
2691 
2692 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2693 {
2694 	struct rbd_obj_request *obj_req =
2695 	    container_of(ex, struct rbd_obj_request, ex);
2696 	struct ceph_bvec_iter *it = arg;
2697 
2698 	ceph_bvec_iter_advance_step(it, bytes, ({
2699 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2700 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2701 	}));
2702 }
2703 
2704 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2705 				     struct ceph_file_extent *img_extents,
2706 				     u32 num_img_extents,
2707 				     struct ceph_bvec_iter *bvec_pos)
2708 {
2709 	struct rbd_img_fill_ctx fctx = {
2710 		.pos_type = OBJ_REQUEST_BVECS,
2711 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2712 		.set_pos_fn = set_bvec_pos,
2713 		.count_fn = count_bvecs,
2714 		.copy_fn = copy_bvecs,
2715 	};
2716 
2717 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2718 				    &fctx);
2719 }
2720 
2721 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2722 				   struct ceph_file_extent *img_extents,
2723 				   u32 num_img_extents,
2724 				   struct bio_vec *bvecs)
2725 {
2726 	struct ceph_bvec_iter it = {
2727 		.bvecs = bvecs,
2728 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2729 							     num_img_extents) },
2730 	};
2731 
2732 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2733 					 &it);
2734 }
2735 
2736 static void rbd_img_handle_request_work(struct work_struct *work)
2737 {
2738 	struct rbd_img_request *img_req =
2739 	    container_of(work, struct rbd_img_request, work);
2740 
2741 	rbd_img_handle_request(img_req, img_req->work_result);
2742 }
2743 
2744 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2745 {
2746 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2747 	img_req->work_result = result;
2748 	queue_work(rbd_wq, &img_req->work);
2749 }
2750 
2751 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2752 {
2753 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2754 
2755 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2756 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2757 		return true;
2758 	}
2759 
2760 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2761 	     obj_req->ex.oe_objno);
2762 	return false;
2763 }
2764 
2765 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2766 {
2767 	struct ceph_osd_request *osd_req;
2768 	int ret;
2769 
2770 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2771 	if (IS_ERR(osd_req))
2772 		return PTR_ERR(osd_req);
2773 
2774 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2775 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2776 	rbd_osd_setup_data(osd_req, 0);
2777 	rbd_osd_format_read(osd_req);
2778 
2779 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2780 	if (ret)
2781 		return ret;
2782 
2783 	rbd_osd_submit(osd_req);
2784 	return 0;
2785 }
2786 
2787 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2788 {
2789 	struct rbd_img_request *img_req = obj_req->img_request;
2790 	struct rbd_device *parent = img_req->rbd_dev->parent;
2791 	struct rbd_img_request *child_img_req;
2792 	int ret;
2793 
2794 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2795 	if (!child_img_req)
2796 		return -ENOMEM;
2797 
2798 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2799 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2800 	child_img_req->obj_request = obj_req;
2801 
2802 	down_read(&parent->header_rwsem);
2803 	rbd_img_capture_header(child_img_req);
2804 	up_read(&parent->header_rwsem);
2805 
2806 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2807 	     obj_req);
2808 
2809 	if (!rbd_img_is_write(img_req)) {
2810 		switch (img_req->data_type) {
2811 		case OBJ_REQUEST_BIO:
2812 			ret = __rbd_img_fill_from_bio(child_img_req,
2813 						      obj_req->img_extents,
2814 						      obj_req->num_img_extents,
2815 						      &obj_req->bio_pos);
2816 			break;
2817 		case OBJ_REQUEST_BVECS:
2818 		case OBJ_REQUEST_OWN_BVECS:
2819 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2820 						      obj_req->img_extents,
2821 						      obj_req->num_img_extents,
2822 						      &obj_req->bvec_pos);
2823 			break;
2824 		default:
2825 			BUG();
2826 		}
2827 	} else {
2828 		ret = rbd_img_fill_from_bvecs(child_img_req,
2829 					      obj_req->img_extents,
2830 					      obj_req->num_img_extents,
2831 					      obj_req->copyup_bvecs);
2832 	}
2833 	if (ret) {
2834 		rbd_img_request_destroy(child_img_req);
2835 		return ret;
2836 	}
2837 
2838 	/* avoid parent chain recursion */
2839 	rbd_img_schedule(child_img_req, 0);
2840 	return 0;
2841 }
2842 
2843 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2844 {
2845 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2846 	int ret;
2847 
2848 again:
2849 	switch (obj_req->read_state) {
2850 	case RBD_OBJ_READ_START:
2851 		rbd_assert(!*result);
2852 
2853 		if (!rbd_obj_may_exist(obj_req)) {
2854 			*result = -ENOENT;
2855 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2856 			goto again;
2857 		}
2858 
2859 		ret = rbd_obj_read_object(obj_req);
2860 		if (ret) {
2861 			*result = ret;
2862 			return true;
2863 		}
2864 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2865 		return false;
2866 	case RBD_OBJ_READ_OBJECT:
2867 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2868 			/* reverse map this object extent onto the parent */
2869 			ret = rbd_obj_calc_img_extents(obj_req, false);
2870 			if (ret) {
2871 				*result = ret;
2872 				return true;
2873 			}
2874 			if (obj_req->num_img_extents) {
2875 				ret = rbd_obj_read_from_parent(obj_req);
2876 				if (ret) {
2877 					*result = ret;
2878 					return true;
2879 				}
2880 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2881 				return false;
2882 			}
2883 		}
2884 
2885 		/*
2886 		 * -ENOENT means a hole in the image -- zero-fill the entire
2887 		 * length of the request.  A short read also implies zero-fill
2888 		 * to the end of the request.
2889 		 */
2890 		if (*result == -ENOENT) {
2891 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2892 			*result = 0;
2893 		} else if (*result >= 0) {
2894 			if (*result < obj_req->ex.oe_len)
2895 				rbd_obj_zero_range(obj_req, *result,
2896 						obj_req->ex.oe_len - *result);
2897 			else
2898 				rbd_assert(*result == obj_req->ex.oe_len);
2899 			*result = 0;
2900 		}
2901 		return true;
2902 	case RBD_OBJ_READ_PARENT:
2903 		/*
2904 		 * The parent image is read only up to the overlap -- zero-fill
2905 		 * from the overlap to the end of the request.
2906 		 */
2907 		if (!*result) {
2908 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2909 
2910 			if (obj_overlap < obj_req->ex.oe_len)
2911 				rbd_obj_zero_range(obj_req, obj_overlap,
2912 					    obj_req->ex.oe_len - obj_overlap);
2913 		}
2914 		return true;
2915 	default:
2916 		BUG();
2917 	}
2918 }
2919 
2920 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2921 {
2922 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2923 
2924 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2925 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2926 
2927 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2928 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2929 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2930 		return true;
2931 	}
2932 
2933 	return false;
2934 }
2935 
2936 /*
2937  * Return:
2938  *   0 - object map update sent
2939  *   1 - object map update isn't needed
2940  *  <0 - error
2941  */
2942 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2943 {
2944 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2945 	u8 new_state;
2946 
2947 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2948 		return 1;
2949 
2950 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2951 		new_state = OBJECT_PENDING;
2952 	else
2953 		new_state = OBJECT_EXISTS;
2954 
2955 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2956 }
2957 
2958 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2959 {
2960 	struct ceph_osd_request *osd_req;
2961 	int num_ops = count_write_ops(obj_req);
2962 	int which = 0;
2963 	int ret;
2964 
2965 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2966 		num_ops++; /* stat */
2967 
2968 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2969 	if (IS_ERR(osd_req))
2970 		return PTR_ERR(osd_req);
2971 
2972 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2973 		ret = rbd_osd_setup_stat(osd_req, which++);
2974 		if (ret)
2975 			return ret;
2976 	}
2977 
2978 	rbd_osd_setup_write_ops(osd_req, which);
2979 	rbd_osd_format_write(osd_req);
2980 
2981 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2982 	if (ret)
2983 		return ret;
2984 
2985 	rbd_osd_submit(osd_req);
2986 	return 0;
2987 }
2988 
2989 /*
2990  * copyup_bvecs pages are never highmem pages
2991  */
2992 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2993 {
2994 	struct ceph_bvec_iter it = {
2995 		.bvecs = bvecs,
2996 		.iter = { .bi_size = bytes },
2997 	};
2998 
2999 	ceph_bvec_iter_advance_step(&it, bytes, ({
3000 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3001 			       bv.bv_len))
3002 			return false;
3003 	}));
3004 	return true;
3005 }
3006 
3007 #define MODS_ONLY	U32_MAX
3008 
3009 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3010 				      u32 bytes)
3011 {
3012 	struct ceph_osd_request *osd_req;
3013 	int ret;
3014 
3015 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3016 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3017 
3018 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3019 	if (IS_ERR(osd_req))
3020 		return PTR_ERR(osd_req);
3021 
3022 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3023 	if (ret)
3024 		return ret;
3025 
3026 	rbd_osd_format_write(osd_req);
3027 
3028 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3029 	if (ret)
3030 		return ret;
3031 
3032 	rbd_osd_submit(osd_req);
3033 	return 0;
3034 }
3035 
3036 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3037 					u32 bytes)
3038 {
3039 	struct ceph_osd_request *osd_req;
3040 	int num_ops = count_write_ops(obj_req);
3041 	int which = 0;
3042 	int ret;
3043 
3044 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3045 
3046 	if (bytes != MODS_ONLY)
3047 		num_ops++; /* copyup */
3048 
3049 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3050 	if (IS_ERR(osd_req))
3051 		return PTR_ERR(osd_req);
3052 
3053 	if (bytes != MODS_ONLY) {
3054 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3055 		if (ret)
3056 			return ret;
3057 	}
3058 
3059 	rbd_osd_setup_write_ops(osd_req, which);
3060 	rbd_osd_format_write(osd_req);
3061 
3062 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3063 	if (ret)
3064 		return ret;
3065 
3066 	rbd_osd_submit(osd_req);
3067 	return 0;
3068 }
3069 
3070 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3071 {
3072 	u32 i;
3073 
3074 	rbd_assert(!obj_req->copyup_bvecs);
3075 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3076 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3077 					sizeof(*obj_req->copyup_bvecs),
3078 					GFP_NOIO);
3079 	if (!obj_req->copyup_bvecs)
3080 		return -ENOMEM;
3081 
3082 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3083 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3084 
3085 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3086 		if (!obj_req->copyup_bvecs[i].bv_page)
3087 			return -ENOMEM;
3088 
3089 		obj_req->copyup_bvecs[i].bv_offset = 0;
3090 		obj_req->copyup_bvecs[i].bv_len = len;
3091 		obj_overlap -= len;
3092 	}
3093 
3094 	rbd_assert(!obj_overlap);
3095 	return 0;
3096 }
3097 
3098 /*
3099  * The target object doesn't exist.  Read the data for the entire
3100  * target object up to the overlap point (if any) from the parent,
3101  * so we can use it for a copyup.
3102  */
3103 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3104 {
3105 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3106 	int ret;
3107 
3108 	rbd_assert(obj_req->num_img_extents);
3109 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3110 		      rbd_dev->parent_overlap);
3111 	if (!obj_req->num_img_extents) {
3112 		/*
3113 		 * The overlap has become 0 (most likely because the
3114 		 * image has been flattened).  Re-submit the original write
3115 		 * request -- pass MODS_ONLY since the copyup isn't needed
3116 		 * anymore.
3117 		 */
3118 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3119 	}
3120 
3121 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3122 	if (ret)
3123 		return ret;
3124 
3125 	return rbd_obj_read_from_parent(obj_req);
3126 }
3127 
3128 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3129 {
3130 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3131 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3132 	u8 new_state;
3133 	u32 i;
3134 	int ret;
3135 
3136 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3137 
3138 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3139 		return;
3140 
3141 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3142 		return;
3143 
3144 	for (i = 0; i < snapc->num_snaps; i++) {
3145 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3146 		    i + 1 < snapc->num_snaps)
3147 			new_state = OBJECT_EXISTS_CLEAN;
3148 		else
3149 			new_state = OBJECT_EXISTS;
3150 
3151 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3152 					    new_state, NULL);
3153 		if (ret < 0) {
3154 			obj_req->pending.result = ret;
3155 			return;
3156 		}
3157 
3158 		rbd_assert(!ret);
3159 		obj_req->pending.num_pending++;
3160 	}
3161 }
3162 
3163 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3164 {
3165 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3166 	int ret;
3167 
3168 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3169 
3170 	/*
3171 	 * Only send non-zero copyup data to save some I/O and network
3172 	 * bandwidth -- zero copyup data is equivalent to the object not
3173 	 * existing.
3174 	 */
3175 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3176 		bytes = 0;
3177 
3178 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3179 		/*
3180 		 * Send a copyup request with an empty snapshot context to
3181 		 * deep-copyup the object through all existing snapshots.
3182 		 * A second request with the current snapshot context will be
3183 		 * sent for the actual modification.
3184 		 */
3185 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3186 		if (ret) {
3187 			obj_req->pending.result = ret;
3188 			return;
3189 		}
3190 
3191 		obj_req->pending.num_pending++;
3192 		bytes = MODS_ONLY;
3193 	}
3194 
3195 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3196 	if (ret) {
3197 		obj_req->pending.result = ret;
3198 		return;
3199 	}
3200 
3201 	obj_req->pending.num_pending++;
3202 }
3203 
3204 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3205 {
3206 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3207 	int ret;
3208 
3209 again:
3210 	switch (obj_req->copyup_state) {
3211 	case RBD_OBJ_COPYUP_START:
3212 		rbd_assert(!*result);
3213 
3214 		ret = rbd_obj_copyup_read_parent(obj_req);
3215 		if (ret) {
3216 			*result = ret;
3217 			return true;
3218 		}
3219 		if (obj_req->num_img_extents)
3220 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3221 		else
3222 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3223 		return false;
3224 	case RBD_OBJ_COPYUP_READ_PARENT:
3225 		if (*result)
3226 			return true;
3227 
3228 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3229 				  rbd_obj_img_extents_bytes(obj_req))) {
3230 			dout("%s %p detected zeros\n", __func__, obj_req);
3231 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3232 		}
3233 
3234 		rbd_obj_copyup_object_maps(obj_req);
3235 		if (!obj_req->pending.num_pending) {
3236 			*result = obj_req->pending.result;
3237 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3238 			goto again;
3239 		}
3240 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3241 		return false;
3242 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3243 		if (!pending_result_dec(&obj_req->pending, result))
3244 			return false;
3245 		fallthrough;
3246 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 		if (*result) {
3248 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3249 				 *result);
3250 			return true;
3251 		}
3252 
3253 		rbd_obj_copyup_write_object(obj_req);
3254 		if (!obj_req->pending.num_pending) {
3255 			*result = obj_req->pending.result;
3256 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3257 			goto again;
3258 		}
3259 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3260 		return false;
3261 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3262 		if (!pending_result_dec(&obj_req->pending, result))
3263 			return false;
3264 		fallthrough;
3265 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 		return true;
3267 	default:
3268 		BUG();
3269 	}
3270 }
3271 
3272 /*
3273  * Return:
3274  *   0 - object map update sent
3275  *   1 - object map update isn't needed
3276  *  <0 - error
3277  */
3278 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3279 {
3280 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3281 	u8 current_state = OBJECT_PENDING;
3282 
3283 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3284 		return 1;
3285 
3286 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3287 		return 1;
3288 
3289 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3290 				     &current_state);
3291 }
3292 
3293 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3294 {
3295 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3296 	int ret;
3297 
3298 again:
3299 	switch (obj_req->write_state) {
3300 	case RBD_OBJ_WRITE_START:
3301 		rbd_assert(!*result);
3302 
3303 		if (rbd_obj_write_is_noop(obj_req))
3304 			return true;
3305 
3306 		ret = rbd_obj_write_pre_object_map(obj_req);
3307 		if (ret < 0) {
3308 			*result = ret;
3309 			return true;
3310 		}
3311 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3312 		if (ret > 0)
3313 			goto again;
3314 		return false;
3315 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3316 		if (*result) {
3317 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3318 				 *result);
3319 			return true;
3320 		}
3321 		ret = rbd_obj_write_object(obj_req);
3322 		if (ret) {
3323 			*result = ret;
3324 			return true;
3325 		}
3326 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3327 		return false;
3328 	case RBD_OBJ_WRITE_OBJECT:
3329 		if (*result == -ENOENT) {
3330 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3331 				*result = 0;
3332 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3333 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3334 				goto again;
3335 			}
3336 			/*
3337 			 * On a non-existent object:
3338 			 *   delete - -ENOENT, truncate/zero - 0
3339 			 */
3340 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3341 				*result = 0;
3342 		}
3343 		if (*result)
3344 			return true;
3345 
3346 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3347 		goto again;
3348 	case __RBD_OBJ_WRITE_COPYUP:
3349 		if (!rbd_obj_advance_copyup(obj_req, result))
3350 			return false;
3351 		fallthrough;
3352 	case RBD_OBJ_WRITE_COPYUP:
3353 		if (*result) {
3354 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3355 			return true;
3356 		}
3357 		ret = rbd_obj_write_post_object_map(obj_req);
3358 		if (ret < 0) {
3359 			*result = ret;
3360 			return true;
3361 		}
3362 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3363 		if (ret > 0)
3364 			goto again;
3365 		return false;
3366 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3367 		if (*result)
3368 			rbd_warn(rbd_dev, "post object map update failed: %d",
3369 				 *result);
3370 		return true;
3371 	default:
3372 		BUG();
3373 	}
3374 }
3375 
3376 /*
3377  * Return true if @obj_req is completed.
3378  */
3379 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3380 				     int *result)
3381 {
3382 	struct rbd_img_request *img_req = obj_req->img_request;
3383 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3384 	bool done;
3385 
3386 	mutex_lock(&obj_req->state_mutex);
3387 	if (!rbd_img_is_write(img_req))
3388 		done = rbd_obj_advance_read(obj_req, result);
3389 	else
3390 		done = rbd_obj_advance_write(obj_req, result);
3391 	mutex_unlock(&obj_req->state_mutex);
3392 
3393 	if (done && *result) {
3394 		rbd_assert(*result < 0);
3395 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3396 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3397 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3398 	}
3399 	return done;
3400 }
3401 
3402 /*
3403  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3404  * recursion.
3405  */
3406 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3407 {
3408 	if (__rbd_obj_handle_request(obj_req, &result))
3409 		rbd_img_handle_request(obj_req->img_request, result);
3410 }
3411 
3412 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3413 {
3414 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3415 
3416 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3417 		return false;
3418 
3419 	if (rbd_is_ro(rbd_dev))
3420 		return false;
3421 
3422 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3423 	if (rbd_dev->opts->lock_on_read ||
3424 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3425 		return true;
3426 
3427 	return rbd_img_is_write(img_req);
3428 }
3429 
3430 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3431 {
3432 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3433 	bool locked;
3434 
3435 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3436 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3437 	spin_lock(&rbd_dev->lock_lists_lock);
3438 	rbd_assert(list_empty(&img_req->lock_item));
3439 	if (!locked)
3440 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3441 	else
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3443 	spin_unlock(&rbd_dev->lock_lists_lock);
3444 	return locked;
3445 }
3446 
3447 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3448 {
3449 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3450 	bool need_wakeup;
3451 
3452 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3453 	spin_lock(&rbd_dev->lock_lists_lock);
3454 	rbd_assert(!list_empty(&img_req->lock_item));
3455 	list_del_init(&img_req->lock_item);
3456 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3457 		       list_empty(&rbd_dev->running_list));
3458 	spin_unlock(&rbd_dev->lock_lists_lock);
3459 	if (need_wakeup)
3460 		complete(&rbd_dev->releasing_wait);
3461 }
3462 
3463 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3466 
3467 	if (!need_exclusive_lock(img_req))
3468 		return 1;
3469 
3470 	if (rbd_lock_add_request(img_req))
3471 		return 1;
3472 
3473 	if (rbd_dev->opts->exclusive) {
3474 		WARN_ON(1); /* lock got released? */
3475 		return -EROFS;
3476 	}
3477 
3478 	/*
3479 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3480 	 * and cancel_delayed_work() in wake_lock_waiters().
3481 	 */
3482 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3483 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3484 	return 0;
3485 }
3486 
3487 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3488 {
3489 	struct rbd_obj_request *obj_req;
3490 
3491 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3492 
3493 	for_each_obj_request(img_req, obj_req) {
3494 		int result = 0;
3495 
3496 		if (__rbd_obj_handle_request(obj_req, &result)) {
3497 			if (result) {
3498 				img_req->pending.result = result;
3499 				return;
3500 			}
3501 		} else {
3502 			img_req->pending.num_pending++;
3503 		}
3504 	}
3505 }
3506 
3507 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3508 {
3509 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3510 	int ret;
3511 
3512 again:
3513 	switch (img_req->state) {
3514 	case RBD_IMG_START:
3515 		rbd_assert(!*result);
3516 
3517 		ret = rbd_img_exclusive_lock(img_req);
3518 		if (ret < 0) {
3519 			*result = ret;
3520 			return true;
3521 		}
3522 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3523 		if (ret > 0)
3524 			goto again;
3525 		return false;
3526 	case RBD_IMG_EXCLUSIVE_LOCK:
3527 		if (*result)
3528 			return true;
3529 
3530 		rbd_assert(!need_exclusive_lock(img_req) ||
3531 			   __rbd_is_lock_owner(rbd_dev));
3532 
3533 		rbd_img_object_requests(img_req);
3534 		if (!img_req->pending.num_pending) {
3535 			*result = img_req->pending.result;
3536 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3537 			goto again;
3538 		}
3539 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3540 		return false;
3541 	case __RBD_IMG_OBJECT_REQUESTS:
3542 		if (!pending_result_dec(&img_req->pending, result))
3543 			return false;
3544 		fallthrough;
3545 	case RBD_IMG_OBJECT_REQUESTS:
3546 		return true;
3547 	default:
3548 		BUG();
3549 	}
3550 }
3551 
3552 /*
3553  * Return true if @img_req is completed.
3554  */
3555 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3556 				     int *result)
3557 {
3558 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3559 	bool done;
3560 
3561 	if (need_exclusive_lock(img_req)) {
3562 		down_read(&rbd_dev->lock_rwsem);
3563 		mutex_lock(&img_req->state_mutex);
3564 		done = rbd_img_advance(img_req, result);
3565 		if (done)
3566 			rbd_lock_del_request(img_req);
3567 		mutex_unlock(&img_req->state_mutex);
3568 		up_read(&rbd_dev->lock_rwsem);
3569 	} else {
3570 		mutex_lock(&img_req->state_mutex);
3571 		done = rbd_img_advance(img_req, result);
3572 		mutex_unlock(&img_req->state_mutex);
3573 	}
3574 
3575 	if (done && *result) {
3576 		rbd_assert(*result < 0);
3577 		rbd_warn(rbd_dev, "%s%s result %d",
3578 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3579 		      obj_op_name(img_req->op_type), *result);
3580 	}
3581 	return done;
3582 }
3583 
3584 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3585 {
3586 again:
3587 	if (!__rbd_img_handle_request(img_req, &result))
3588 		return;
3589 
3590 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3591 		struct rbd_obj_request *obj_req = img_req->obj_request;
3592 
3593 		rbd_img_request_destroy(img_req);
3594 		if (__rbd_obj_handle_request(obj_req, &result)) {
3595 			img_req = obj_req->img_request;
3596 			goto again;
3597 		}
3598 	} else {
3599 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		blk_mq_end_request(rq, errno_to_blk_status(result));
3603 	}
3604 }
3605 
3606 static const struct rbd_client_id rbd_empty_cid;
3607 
3608 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3609 			  const struct rbd_client_id *rhs)
3610 {
3611 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3612 }
3613 
3614 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3615 {
3616 	struct rbd_client_id cid;
3617 
3618 	mutex_lock(&rbd_dev->watch_mutex);
3619 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3620 	cid.handle = rbd_dev->watch_cookie;
3621 	mutex_unlock(&rbd_dev->watch_mutex);
3622 	return cid;
3623 }
3624 
3625 /*
3626  * lock_rwsem must be held for write
3627  */
3628 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3629 			      const struct rbd_client_id *cid)
3630 {
3631 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3632 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3633 	     cid->gid, cid->handle);
3634 	rbd_dev->owner_cid = *cid; /* struct */
3635 }
3636 
3637 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3638 {
3639 	mutex_lock(&rbd_dev->watch_mutex);
3640 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3641 	mutex_unlock(&rbd_dev->watch_mutex);
3642 }
3643 
3644 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3645 {
3646 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3647 
3648 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3649 	strcpy(rbd_dev->lock_cookie, cookie);
3650 	rbd_set_owner_cid(rbd_dev, &cid);
3651 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3652 }
3653 
3654 /*
3655  * lock_rwsem must be held for write
3656  */
3657 static int rbd_lock(struct rbd_device *rbd_dev)
3658 {
3659 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3660 	char cookie[32];
3661 	int ret;
3662 
3663 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3664 		rbd_dev->lock_cookie[0] != '\0');
3665 
3666 	format_lock_cookie(rbd_dev, cookie);
3667 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3668 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3669 			    RBD_LOCK_TAG, "", 0);
3670 	if (ret)
3671 		return ret;
3672 
3673 	__rbd_lock(rbd_dev, cookie);
3674 	return 0;
3675 }
3676 
3677 /*
3678  * lock_rwsem must be held for write
3679  */
3680 static void rbd_unlock(struct rbd_device *rbd_dev)
3681 {
3682 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3683 	int ret;
3684 
3685 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3686 		rbd_dev->lock_cookie[0] == '\0');
3687 
3688 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3689 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3690 	if (ret && ret != -ENOENT)
3691 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3692 
3693 	/* treat errors as the image is unlocked */
3694 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3695 	rbd_dev->lock_cookie[0] = '\0';
3696 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3697 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3698 }
3699 
3700 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3701 				enum rbd_notify_op notify_op,
3702 				struct page ***preply_pages,
3703 				size_t *preply_len)
3704 {
3705 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3706 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3707 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3708 	int buf_size = sizeof(buf);
3709 	void *p = buf;
3710 
3711 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3712 
3713 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3714 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3715 	ceph_encode_32(&p, notify_op);
3716 	ceph_encode_64(&p, cid.gid);
3717 	ceph_encode_64(&p, cid.handle);
3718 
3719 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3720 				&rbd_dev->header_oloc, buf, buf_size,
3721 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3722 }
3723 
3724 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3725 			       enum rbd_notify_op notify_op)
3726 {
3727 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3728 }
3729 
3730 static void rbd_notify_acquired_lock(struct work_struct *work)
3731 {
3732 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3733 						  acquired_lock_work);
3734 
3735 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3736 }
3737 
3738 static void rbd_notify_released_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  released_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3744 }
3745 
3746 static int rbd_request_lock(struct rbd_device *rbd_dev)
3747 {
3748 	struct page **reply_pages;
3749 	size_t reply_len;
3750 	bool lock_owner_responded = false;
3751 	int ret;
3752 
3753 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3754 
3755 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3756 				   &reply_pages, &reply_len);
3757 	if (ret && ret != -ETIMEDOUT) {
3758 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3759 		goto out;
3760 	}
3761 
3762 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3763 		void *p = page_address(reply_pages[0]);
3764 		void *const end = p + reply_len;
3765 		u32 n;
3766 
3767 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3768 		while (n--) {
3769 			u8 struct_v;
3770 			u32 len;
3771 
3772 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3773 			p += 8 + 8; /* skip gid and cookie */
3774 
3775 			ceph_decode_32_safe(&p, end, len, e_inval);
3776 			if (!len)
3777 				continue;
3778 
3779 			if (lock_owner_responded) {
3780 				rbd_warn(rbd_dev,
3781 					 "duplicate lock owners detected");
3782 				ret = -EIO;
3783 				goto out;
3784 			}
3785 
3786 			lock_owner_responded = true;
3787 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3788 						  &struct_v, &len);
3789 			if (ret) {
3790 				rbd_warn(rbd_dev,
3791 					 "failed to decode ResponseMessage: %d",
3792 					 ret);
3793 				goto e_inval;
3794 			}
3795 
3796 			ret = ceph_decode_32(&p);
3797 		}
3798 	}
3799 
3800 	if (!lock_owner_responded) {
3801 		rbd_warn(rbd_dev, "no lock owners detected");
3802 		ret = -ETIMEDOUT;
3803 	}
3804 
3805 out:
3806 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3807 	return ret;
3808 
3809 e_inval:
3810 	ret = -EINVAL;
3811 	goto out;
3812 }
3813 
3814 /*
3815  * Either image request state machine(s) or rbd_add_acquire_lock()
3816  * (i.e. "rbd map").
3817  */
3818 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3819 {
3820 	struct rbd_img_request *img_req;
3821 
3822 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3823 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3824 
3825 	cancel_delayed_work(&rbd_dev->lock_dwork);
3826 	if (!completion_done(&rbd_dev->acquire_wait)) {
3827 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3828 			   list_empty(&rbd_dev->running_list));
3829 		rbd_dev->acquire_err = result;
3830 		complete_all(&rbd_dev->acquire_wait);
3831 		return;
3832 	}
3833 
3834 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3835 		mutex_lock(&img_req->state_mutex);
3836 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3837 		rbd_img_schedule(img_req, result);
3838 		mutex_unlock(&img_req->state_mutex);
3839 	}
3840 
3841 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3842 }
3843 
3844 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3845 			       struct ceph_locker **lockers, u32 *num_lockers)
3846 {
3847 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848 	u8 lock_type;
3849 	char *lock_tag;
3850 	int ret;
3851 
3852 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3853 
3854 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3855 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3856 				 &lock_type, &lock_tag, lockers, num_lockers);
3857 	if (ret)
3858 		return ret;
3859 
3860 	if (*num_lockers == 0) {
3861 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3862 		goto out;
3863 	}
3864 
3865 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3866 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3867 			 lock_tag);
3868 		ret = -EBUSY;
3869 		goto out;
3870 	}
3871 
3872 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3873 		rbd_warn(rbd_dev, "shared lock type detected");
3874 		ret = -EBUSY;
3875 		goto out;
3876 	}
3877 
3878 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3879 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3880 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3881 			 (*lockers)[0].id.cookie);
3882 		ret = -EBUSY;
3883 		goto out;
3884 	}
3885 
3886 out:
3887 	kfree(lock_tag);
3888 	return ret;
3889 }
3890 
3891 static int find_watcher(struct rbd_device *rbd_dev,
3892 			const struct ceph_locker *locker)
3893 {
3894 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3895 	struct ceph_watch_item *watchers;
3896 	u32 num_watchers;
3897 	u64 cookie;
3898 	int i;
3899 	int ret;
3900 
3901 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3902 				      &rbd_dev->header_oloc, &watchers,
3903 				      &num_watchers);
3904 	if (ret)
3905 		return ret;
3906 
3907 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3908 	for (i = 0; i < num_watchers; i++) {
3909 		/*
3910 		 * Ignore addr->type while comparing.  This mimics
3911 		 * entity_addr_t::get_legacy_str() + strcmp().
3912 		 */
3913 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3914 					    &locker->info.addr) &&
3915 		    watchers[i].cookie == cookie) {
3916 			struct rbd_client_id cid = {
3917 				.gid = le64_to_cpu(watchers[i].name.num),
3918 				.handle = cookie,
3919 			};
3920 
3921 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3922 			     rbd_dev, cid.gid, cid.handle);
3923 			rbd_set_owner_cid(rbd_dev, &cid);
3924 			ret = 1;
3925 			goto out;
3926 		}
3927 	}
3928 
3929 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3930 	ret = 0;
3931 out:
3932 	kfree(watchers);
3933 	return ret;
3934 }
3935 
3936 /*
3937  * lock_rwsem must be held for write
3938  */
3939 static int rbd_try_lock(struct rbd_device *rbd_dev)
3940 {
3941 	struct ceph_client *client = rbd_dev->rbd_client->client;
3942 	struct ceph_locker *lockers;
3943 	u32 num_lockers;
3944 	int ret;
3945 
3946 	for (;;) {
3947 		ret = rbd_lock(rbd_dev);
3948 		if (ret != -EBUSY)
3949 			return ret;
3950 
3951 		/* determine if the current lock holder is still alive */
3952 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3953 		if (ret)
3954 			return ret;
3955 
3956 		if (num_lockers == 0)
3957 			goto again;
3958 
3959 		ret = find_watcher(rbd_dev, lockers);
3960 		if (ret)
3961 			goto out; /* request lock or error */
3962 
3963 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3964 			 ENTITY_NAME(lockers[0].id.name));
3965 
3966 		ret = ceph_monc_blocklist_add(&client->monc,
3967 					      &lockers[0].info.addr);
3968 		if (ret) {
3969 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3970 				 ENTITY_NAME(lockers[0].id.name), ret);
3971 			goto out;
3972 		}
3973 
3974 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3975 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3976 					  lockers[0].id.cookie,
3977 					  &lockers[0].id.name);
3978 		if (ret && ret != -ENOENT)
3979 			goto out;
3980 
3981 again:
3982 		ceph_free_lockers(lockers, num_lockers);
3983 	}
3984 
3985 out:
3986 	ceph_free_lockers(lockers, num_lockers);
3987 	return ret;
3988 }
3989 
3990 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3991 {
3992 	int ret;
3993 
3994 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3995 		ret = rbd_object_map_open(rbd_dev);
3996 		if (ret)
3997 			return ret;
3998 	}
3999 
4000 	return 0;
4001 }
4002 
4003 /*
4004  * Return:
4005  *   0 - lock acquired
4006  *   1 - caller should call rbd_request_lock()
4007  *  <0 - error
4008  */
4009 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4010 {
4011 	int ret;
4012 
4013 	down_read(&rbd_dev->lock_rwsem);
4014 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4015 	     rbd_dev->lock_state);
4016 	if (__rbd_is_lock_owner(rbd_dev)) {
4017 		up_read(&rbd_dev->lock_rwsem);
4018 		return 0;
4019 	}
4020 
4021 	up_read(&rbd_dev->lock_rwsem);
4022 	down_write(&rbd_dev->lock_rwsem);
4023 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4024 	     rbd_dev->lock_state);
4025 	if (__rbd_is_lock_owner(rbd_dev)) {
4026 		up_write(&rbd_dev->lock_rwsem);
4027 		return 0;
4028 	}
4029 
4030 	ret = rbd_try_lock(rbd_dev);
4031 	if (ret < 0) {
4032 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4033 		if (ret == -EBLOCKLISTED)
4034 			goto out;
4035 
4036 		ret = 1; /* request lock anyway */
4037 	}
4038 	if (ret > 0) {
4039 		up_write(&rbd_dev->lock_rwsem);
4040 		return ret;
4041 	}
4042 
4043 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4044 	rbd_assert(list_empty(&rbd_dev->running_list));
4045 
4046 	ret = rbd_post_acquire_action(rbd_dev);
4047 	if (ret) {
4048 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4049 		/*
4050 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4051 		 * rbd_lock_add_request() would let the request through,
4052 		 * assuming that e.g. object map is locked and loaded.
4053 		 */
4054 		rbd_unlock(rbd_dev);
4055 	}
4056 
4057 out:
4058 	wake_lock_waiters(rbd_dev, ret);
4059 	up_write(&rbd_dev->lock_rwsem);
4060 	return ret;
4061 }
4062 
4063 static void rbd_acquire_lock(struct work_struct *work)
4064 {
4065 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4066 					    struct rbd_device, lock_dwork);
4067 	int ret;
4068 
4069 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4070 again:
4071 	ret = rbd_try_acquire_lock(rbd_dev);
4072 	if (ret <= 0) {
4073 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4074 		return;
4075 	}
4076 
4077 	ret = rbd_request_lock(rbd_dev);
4078 	if (ret == -ETIMEDOUT) {
4079 		goto again; /* treat this as a dead client */
4080 	} else if (ret == -EROFS) {
4081 		rbd_warn(rbd_dev, "peer will not release lock");
4082 		down_write(&rbd_dev->lock_rwsem);
4083 		wake_lock_waiters(rbd_dev, ret);
4084 		up_write(&rbd_dev->lock_rwsem);
4085 	} else if (ret < 0) {
4086 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4087 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4088 				 RBD_RETRY_DELAY);
4089 	} else {
4090 		/*
4091 		 * lock owner acked, but resend if we don't see them
4092 		 * release the lock
4093 		 */
4094 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4095 		     rbd_dev);
4096 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4097 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4098 	}
4099 }
4100 
4101 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4102 {
4103 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4104 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4105 
4106 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4107 		return false;
4108 
4109 	/*
4110 	 * Ensure that all in-flight IO is flushed.
4111 	 */
4112 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4113 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4114 	if (list_empty(&rbd_dev->running_list))
4115 		return true;
4116 
4117 	up_write(&rbd_dev->lock_rwsem);
4118 	wait_for_completion(&rbd_dev->releasing_wait);
4119 
4120 	down_write(&rbd_dev->lock_rwsem);
4121 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4122 		return false;
4123 
4124 	rbd_assert(list_empty(&rbd_dev->running_list));
4125 	return true;
4126 }
4127 
4128 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4129 {
4130 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4131 		rbd_object_map_close(rbd_dev);
4132 }
4133 
4134 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4135 {
4136 	rbd_assert(list_empty(&rbd_dev->running_list));
4137 
4138 	rbd_pre_release_action(rbd_dev);
4139 	rbd_unlock(rbd_dev);
4140 }
4141 
4142 /*
4143  * lock_rwsem must be held for write
4144  */
4145 static void rbd_release_lock(struct rbd_device *rbd_dev)
4146 {
4147 	if (!rbd_quiesce_lock(rbd_dev))
4148 		return;
4149 
4150 	__rbd_release_lock(rbd_dev);
4151 
4152 	/*
4153 	 * Give others a chance to grab the lock - we would re-acquire
4154 	 * almost immediately if we got new IO while draining the running
4155 	 * list otherwise.  We need to ack our own notifications, so this
4156 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4157 	 * way of maybe_kick_acquire().
4158 	 */
4159 	cancel_delayed_work(&rbd_dev->lock_dwork);
4160 }
4161 
4162 static void rbd_release_lock_work(struct work_struct *work)
4163 {
4164 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4165 						  unlock_work);
4166 
4167 	down_write(&rbd_dev->lock_rwsem);
4168 	rbd_release_lock(rbd_dev);
4169 	up_write(&rbd_dev->lock_rwsem);
4170 }
4171 
4172 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4173 {
4174 	bool have_requests;
4175 
4176 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4177 	if (__rbd_is_lock_owner(rbd_dev))
4178 		return;
4179 
4180 	spin_lock(&rbd_dev->lock_lists_lock);
4181 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4182 	spin_unlock(&rbd_dev->lock_lists_lock);
4183 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4184 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4185 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4186 	}
4187 }
4188 
4189 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4190 				     void **p)
4191 {
4192 	struct rbd_client_id cid = { 0 };
4193 
4194 	if (struct_v >= 2) {
4195 		cid.gid = ceph_decode_64(p);
4196 		cid.handle = ceph_decode_64(p);
4197 	}
4198 
4199 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4200 	     cid.handle);
4201 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4202 		down_write(&rbd_dev->lock_rwsem);
4203 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4204 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4205 			     __func__, rbd_dev, cid.gid, cid.handle);
4206 		} else {
4207 			rbd_set_owner_cid(rbd_dev, &cid);
4208 		}
4209 		downgrade_write(&rbd_dev->lock_rwsem);
4210 	} else {
4211 		down_read(&rbd_dev->lock_rwsem);
4212 	}
4213 
4214 	maybe_kick_acquire(rbd_dev);
4215 	up_read(&rbd_dev->lock_rwsem);
4216 }
4217 
4218 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4219 				     void **p)
4220 {
4221 	struct rbd_client_id cid = { 0 };
4222 
4223 	if (struct_v >= 2) {
4224 		cid.gid = ceph_decode_64(p);
4225 		cid.handle = ceph_decode_64(p);
4226 	}
4227 
4228 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4229 	     cid.handle);
4230 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4231 		down_write(&rbd_dev->lock_rwsem);
4232 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4233 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4234 			     __func__, rbd_dev, cid.gid, cid.handle,
4235 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4236 		} else {
4237 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4238 		}
4239 		downgrade_write(&rbd_dev->lock_rwsem);
4240 	} else {
4241 		down_read(&rbd_dev->lock_rwsem);
4242 	}
4243 
4244 	maybe_kick_acquire(rbd_dev);
4245 	up_read(&rbd_dev->lock_rwsem);
4246 }
4247 
4248 /*
4249  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4250  * ResponseMessage is needed.
4251  */
4252 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4253 				   void **p)
4254 {
4255 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4256 	struct rbd_client_id cid = { 0 };
4257 	int result = 1;
4258 
4259 	if (struct_v >= 2) {
4260 		cid.gid = ceph_decode_64(p);
4261 		cid.handle = ceph_decode_64(p);
4262 	}
4263 
4264 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4265 	     cid.handle);
4266 	if (rbd_cid_equal(&cid, &my_cid))
4267 		return result;
4268 
4269 	down_read(&rbd_dev->lock_rwsem);
4270 	if (__rbd_is_lock_owner(rbd_dev)) {
4271 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4272 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4273 			goto out_unlock;
4274 
4275 		/*
4276 		 * encode ResponseMessage(0) so the peer can detect
4277 		 * a missing owner
4278 		 */
4279 		result = 0;
4280 
4281 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4282 			if (!rbd_dev->opts->exclusive) {
4283 				dout("%s rbd_dev %p queueing unlock_work\n",
4284 				     __func__, rbd_dev);
4285 				queue_work(rbd_dev->task_wq,
4286 					   &rbd_dev->unlock_work);
4287 			} else {
4288 				/* refuse to release the lock */
4289 				result = -EROFS;
4290 			}
4291 		}
4292 	}
4293 
4294 out_unlock:
4295 	up_read(&rbd_dev->lock_rwsem);
4296 	return result;
4297 }
4298 
4299 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4300 				     u64 notify_id, u64 cookie, s32 *result)
4301 {
4302 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4303 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4304 	int buf_size = sizeof(buf);
4305 	int ret;
4306 
4307 	if (result) {
4308 		void *p = buf;
4309 
4310 		/* encode ResponseMessage */
4311 		ceph_start_encoding(&p, 1, 1,
4312 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4313 		ceph_encode_32(&p, *result);
4314 	} else {
4315 		buf_size = 0;
4316 	}
4317 
4318 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4319 				   &rbd_dev->header_oloc, notify_id, cookie,
4320 				   buf, buf_size);
4321 	if (ret)
4322 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4323 }
4324 
4325 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4326 				   u64 cookie)
4327 {
4328 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4329 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4330 }
4331 
4332 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4333 					  u64 notify_id, u64 cookie, s32 result)
4334 {
4335 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4336 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4337 }
4338 
4339 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4340 			 u64 notifier_id, void *data, size_t data_len)
4341 {
4342 	struct rbd_device *rbd_dev = arg;
4343 	void *p = data;
4344 	void *const end = p + data_len;
4345 	u8 struct_v = 0;
4346 	u32 len;
4347 	u32 notify_op;
4348 	int ret;
4349 
4350 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4351 	     __func__, rbd_dev, cookie, notify_id, data_len);
4352 	if (data_len) {
4353 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4354 					  &struct_v, &len);
4355 		if (ret) {
4356 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4357 				 ret);
4358 			return;
4359 		}
4360 
4361 		notify_op = ceph_decode_32(&p);
4362 	} else {
4363 		/* legacy notification for header updates */
4364 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4365 		len = 0;
4366 	}
4367 
4368 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4369 	switch (notify_op) {
4370 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4371 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4372 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4373 		break;
4374 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4375 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4376 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4377 		break;
4378 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4379 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4380 		if (ret <= 0)
4381 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4382 						      cookie, ret);
4383 		else
4384 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4385 		break;
4386 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4387 		ret = rbd_dev_refresh(rbd_dev);
4388 		if (ret)
4389 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4390 
4391 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4392 		break;
4393 	default:
4394 		if (rbd_is_lock_owner(rbd_dev))
4395 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4396 						      cookie, -EOPNOTSUPP);
4397 		else
4398 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4399 		break;
4400 	}
4401 }
4402 
4403 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4404 
4405 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4406 {
4407 	struct rbd_device *rbd_dev = arg;
4408 
4409 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4410 
4411 	down_write(&rbd_dev->lock_rwsem);
4412 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4413 	up_write(&rbd_dev->lock_rwsem);
4414 
4415 	mutex_lock(&rbd_dev->watch_mutex);
4416 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4417 		__rbd_unregister_watch(rbd_dev);
4418 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4419 
4420 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4421 	}
4422 	mutex_unlock(&rbd_dev->watch_mutex);
4423 }
4424 
4425 /*
4426  * watch_mutex must be locked
4427  */
4428 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4429 {
4430 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4431 	struct ceph_osd_linger_request *handle;
4432 
4433 	rbd_assert(!rbd_dev->watch_handle);
4434 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4435 
4436 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4437 				 &rbd_dev->header_oloc, rbd_watch_cb,
4438 				 rbd_watch_errcb, rbd_dev);
4439 	if (IS_ERR(handle))
4440 		return PTR_ERR(handle);
4441 
4442 	rbd_dev->watch_handle = handle;
4443 	return 0;
4444 }
4445 
4446 /*
4447  * watch_mutex must be locked
4448  */
4449 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4450 {
4451 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4452 	int ret;
4453 
4454 	rbd_assert(rbd_dev->watch_handle);
4455 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4456 
4457 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4458 	if (ret)
4459 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4460 
4461 	rbd_dev->watch_handle = NULL;
4462 }
4463 
4464 static int rbd_register_watch(struct rbd_device *rbd_dev)
4465 {
4466 	int ret;
4467 
4468 	mutex_lock(&rbd_dev->watch_mutex);
4469 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4470 	ret = __rbd_register_watch(rbd_dev);
4471 	if (ret)
4472 		goto out;
4473 
4474 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4475 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4476 
4477 out:
4478 	mutex_unlock(&rbd_dev->watch_mutex);
4479 	return ret;
4480 }
4481 
4482 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4483 {
4484 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4485 
4486 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4487 	cancel_work_sync(&rbd_dev->released_lock_work);
4488 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4489 	cancel_work_sync(&rbd_dev->unlock_work);
4490 }
4491 
4492 /*
4493  * header_rwsem must not be held to avoid a deadlock with
4494  * rbd_dev_refresh() when flushing notifies.
4495  */
4496 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4497 {
4498 	cancel_tasks_sync(rbd_dev);
4499 
4500 	mutex_lock(&rbd_dev->watch_mutex);
4501 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4502 		__rbd_unregister_watch(rbd_dev);
4503 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4504 	mutex_unlock(&rbd_dev->watch_mutex);
4505 
4506 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4507 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4508 }
4509 
4510 /*
4511  * lock_rwsem must be held for write
4512  */
4513 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4514 {
4515 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4516 	char cookie[32];
4517 	int ret;
4518 
4519 	if (!rbd_quiesce_lock(rbd_dev))
4520 		return;
4521 
4522 	format_lock_cookie(rbd_dev, cookie);
4523 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4524 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4525 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4526 				  RBD_LOCK_TAG, cookie);
4527 	if (ret) {
4528 		if (ret != -EOPNOTSUPP)
4529 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4530 				 ret);
4531 
4532 		/*
4533 		 * Lock cookie cannot be updated on older OSDs, so do
4534 		 * a manual release and queue an acquire.
4535 		 */
4536 		__rbd_release_lock(rbd_dev);
4537 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4538 	} else {
4539 		__rbd_lock(rbd_dev, cookie);
4540 		wake_lock_waiters(rbd_dev, 0);
4541 	}
4542 }
4543 
4544 static void rbd_reregister_watch(struct work_struct *work)
4545 {
4546 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4547 					    struct rbd_device, watch_dwork);
4548 	int ret;
4549 
4550 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4551 
4552 	mutex_lock(&rbd_dev->watch_mutex);
4553 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4554 		mutex_unlock(&rbd_dev->watch_mutex);
4555 		return;
4556 	}
4557 
4558 	ret = __rbd_register_watch(rbd_dev);
4559 	if (ret) {
4560 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4561 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4562 			queue_delayed_work(rbd_dev->task_wq,
4563 					   &rbd_dev->watch_dwork,
4564 					   RBD_RETRY_DELAY);
4565 			mutex_unlock(&rbd_dev->watch_mutex);
4566 			return;
4567 		}
4568 
4569 		mutex_unlock(&rbd_dev->watch_mutex);
4570 		down_write(&rbd_dev->lock_rwsem);
4571 		wake_lock_waiters(rbd_dev, ret);
4572 		up_write(&rbd_dev->lock_rwsem);
4573 		return;
4574 	}
4575 
4576 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4577 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4578 	mutex_unlock(&rbd_dev->watch_mutex);
4579 
4580 	down_write(&rbd_dev->lock_rwsem);
4581 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4582 		rbd_reacquire_lock(rbd_dev);
4583 	up_write(&rbd_dev->lock_rwsem);
4584 
4585 	ret = rbd_dev_refresh(rbd_dev);
4586 	if (ret)
4587 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4588 }
4589 
4590 /*
4591  * Synchronous osd object method call.  Returns the number of bytes
4592  * returned in the outbound buffer, or a negative error code.
4593  */
4594 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4595 			     struct ceph_object_id *oid,
4596 			     struct ceph_object_locator *oloc,
4597 			     const char *method_name,
4598 			     const void *outbound,
4599 			     size_t outbound_size,
4600 			     void *inbound,
4601 			     size_t inbound_size)
4602 {
4603 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4604 	struct page *req_page = NULL;
4605 	struct page *reply_page;
4606 	int ret;
4607 
4608 	/*
4609 	 * Method calls are ultimately read operations.  The result
4610 	 * should placed into the inbound buffer provided.  They
4611 	 * also supply outbound data--parameters for the object
4612 	 * method.  Currently if this is present it will be a
4613 	 * snapshot id.
4614 	 */
4615 	if (outbound) {
4616 		if (outbound_size > PAGE_SIZE)
4617 			return -E2BIG;
4618 
4619 		req_page = alloc_page(GFP_KERNEL);
4620 		if (!req_page)
4621 			return -ENOMEM;
4622 
4623 		memcpy(page_address(req_page), outbound, outbound_size);
4624 	}
4625 
4626 	reply_page = alloc_page(GFP_KERNEL);
4627 	if (!reply_page) {
4628 		if (req_page)
4629 			__free_page(req_page);
4630 		return -ENOMEM;
4631 	}
4632 
4633 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4634 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4635 			     &reply_page, &inbound_size);
4636 	if (!ret) {
4637 		memcpy(inbound, page_address(reply_page), inbound_size);
4638 		ret = inbound_size;
4639 	}
4640 
4641 	if (req_page)
4642 		__free_page(req_page);
4643 	__free_page(reply_page);
4644 	return ret;
4645 }
4646 
4647 static void rbd_queue_workfn(struct work_struct *work)
4648 {
4649 	struct rbd_img_request *img_request =
4650 	    container_of(work, struct rbd_img_request, work);
4651 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4652 	enum obj_operation_type op_type = img_request->op_type;
4653 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4654 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4655 	u64 length = blk_rq_bytes(rq);
4656 	u64 mapping_size;
4657 	int result;
4658 
4659 	/* Ignore/skip any zero-length requests */
4660 	if (!length) {
4661 		dout("%s: zero-length request\n", __func__);
4662 		result = 0;
4663 		goto err_img_request;
4664 	}
4665 
4666 	blk_mq_start_request(rq);
4667 
4668 	down_read(&rbd_dev->header_rwsem);
4669 	mapping_size = rbd_dev->mapping.size;
4670 	rbd_img_capture_header(img_request);
4671 	up_read(&rbd_dev->header_rwsem);
4672 
4673 	if (offset + length > mapping_size) {
4674 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4675 			 length, mapping_size);
4676 		result = -EIO;
4677 		goto err_img_request;
4678 	}
4679 
4680 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4681 	     img_request, obj_op_name(op_type), offset, length);
4682 
4683 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4684 		result = rbd_img_fill_nodata(img_request, offset, length);
4685 	else
4686 		result = rbd_img_fill_from_bio(img_request, offset, length,
4687 					       rq->bio);
4688 	if (result)
4689 		goto err_img_request;
4690 
4691 	rbd_img_handle_request(img_request, 0);
4692 	return;
4693 
4694 err_img_request:
4695 	rbd_img_request_destroy(img_request);
4696 	if (result)
4697 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4698 			 obj_op_name(op_type), length, offset, result);
4699 	blk_mq_end_request(rq, errno_to_blk_status(result));
4700 }
4701 
4702 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4703 		const struct blk_mq_queue_data *bd)
4704 {
4705 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4706 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4707 	enum obj_operation_type op_type;
4708 
4709 	switch (req_op(bd->rq)) {
4710 	case REQ_OP_DISCARD:
4711 		op_type = OBJ_OP_DISCARD;
4712 		break;
4713 	case REQ_OP_WRITE_ZEROES:
4714 		op_type = OBJ_OP_ZEROOUT;
4715 		break;
4716 	case REQ_OP_WRITE:
4717 		op_type = OBJ_OP_WRITE;
4718 		break;
4719 	case REQ_OP_READ:
4720 		op_type = OBJ_OP_READ;
4721 		break;
4722 	default:
4723 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4724 		return BLK_STS_IOERR;
4725 	}
4726 
4727 	rbd_img_request_init(img_req, rbd_dev, op_type);
4728 
4729 	if (rbd_img_is_write(img_req)) {
4730 		if (rbd_is_ro(rbd_dev)) {
4731 			rbd_warn(rbd_dev, "%s on read-only mapping",
4732 				 obj_op_name(img_req->op_type));
4733 			return BLK_STS_IOERR;
4734 		}
4735 		rbd_assert(!rbd_is_snap(rbd_dev));
4736 	}
4737 
4738 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4739 	queue_work(rbd_wq, &img_req->work);
4740 	return BLK_STS_OK;
4741 }
4742 
4743 static void rbd_free_disk(struct rbd_device *rbd_dev)
4744 {
4745 	blk_cleanup_disk(rbd_dev->disk);
4746 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4747 	rbd_dev->disk = NULL;
4748 }
4749 
4750 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4751 			     struct ceph_object_id *oid,
4752 			     struct ceph_object_locator *oloc,
4753 			     void *buf, int buf_len)
4754 
4755 {
4756 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4757 	struct ceph_osd_request *req;
4758 	struct page **pages;
4759 	int num_pages = calc_pages_for(0, buf_len);
4760 	int ret;
4761 
4762 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4763 	if (!req)
4764 		return -ENOMEM;
4765 
4766 	ceph_oid_copy(&req->r_base_oid, oid);
4767 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4768 	req->r_flags = CEPH_OSD_FLAG_READ;
4769 
4770 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4771 	if (IS_ERR(pages)) {
4772 		ret = PTR_ERR(pages);
4773 		goto out_req;
4774 	}
4775 
4776 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4777 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4778 					 true);
4779 
4780 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4781 	if (ret)
4782 		goto out_req;
4783 
4784 	ceph_osdc_start_request(osdc, req, false);
4785 	ret = ceph_osdc_wait_request(osdc, req);
4786 	if (ret >= 0)
4787 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4788 
4789 out_req:
4790 	ceph_osdc_put_request(req);
4791 	return ret;
4792 }
4793 
4794 /*
4795  * Read the complete header for the given rbd device.  On successful
4796  * return, the rbd_dev->header field will contain up-to-date
4797  * information about the image.
4798  */
4799 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4800 {
4801 	struct rbd_image_header_ondisk *ondisk = NULL;
4802 	u32 snap_count = 0;
4803 	u64 names_size = 0;
4804 	u32 want_count;
4805 	int ret;
4806 
4807 	/*
4808 	 * The complete header will include an array of its 64-bit
4809 	 * snapshot ids, followed by the names of those snapshots as
4810 	 * a contiguous block of NUL-terminated strings.  Note that
4811 	 * the number of snapshots could change by the time we read
4812 	 * it in, in which case we re-read it.
4813 	 */
4814 	do {
4815 		size_t size;
4816 
4817 		kfree(ondisk);
4818 
4819 		size = sizeof (*ondisk);
4820 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4821 		size += names_size;
4822 		ondisk = kmalloc(size, GFP_KERNEL);
4823 		if (!ondisk)
4824 			return -ENOMEM;
4825 
4826 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4827 					&rbd_dev->header_oloc, ondisk, size);
4828 		if (ret < 0)
4829 			goto out;
4830 		if ((size_t)ret < size) {
4831 			ret = -ENXIO;
4832 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4833 				size, ret);
4834 			goto out;
4835 		}
4836 		if (!rbd_dev_ondisk_valid(ondisk)) {
4837 			ret = -ENXIO;
4838 			rbd_warn(rbd_dev, "invalid header");
4839 			goto out;
4840 		}
4841 
4842 		names_size = le64_to_cpu(ondisk->snap_names_len);
4843 		want_count = snap_count;
4844 		snap_count = le32_to_cpu(ondisk->snap_count);
4845 	} while (snap_count != want_count);
4846 
4847 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4848 out:
4849 	kfree(ondisk);
4850 
4851 	return ret;
4852 }
4853 
4854 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4855 {
4856 	sector_t size;
4857 
4858 	/*
4859 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4860 	 * try to update its size.  If REMOVING is set, updating size
4861 	 * is just useless work since the device can't be opened.
4862 	 */
4863 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4864 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4865 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4866 		dout("setting size to %llu sectors", (unsigned long long)size);
4867 		set_capacity_and_notify(rbd_dev->disk, size);
4868 	}
4869 }
4870 
4871 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4872 {
4873 	u64 mapping_size;
4874 	int ret;
4875 
4876 	down_write(&rbd_dev->header_rwsem);
4877 	mapping_size = rbd_dev->mapping.size;
4878 
4879 	ret = rbd_dev_header_info(rbd_dev);
4880 	if (ret)
4881 		goto out;
4882 
4883 	/*
4884 	 * If there is a parent, see if it has disappeared due to the
4885 	 * mapped image getting flattened.
4886 	 */
4887 	if (rbd_dev->parent) {
4888 		ret = rbd_dev_v2_parent_info(rbd_dev);
4889 		if (ret)
4890 			goto out;
4891 	}
4892 
4893 	rbd_assert(!rbd_is_snap(rbd_dev));
4894 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4895 
4896 out:
4897 	up_write(&rbd_dev->header_rwsem);
4898 	if (!ret && mapping_size != rbd_dev->mapping.size)
4899 		rbd_dev_update_size(rbd_dev);
4900 
4901 	return ret;
4902 }
4903 
4904 static const struct blk_mq_ops rbd_mq_ops = {
4905 	.queue_rq	= rbd_queue_rq,
4906 };
4907 
4908 static int rbd_init_disk(struct rbd_device *rbd_dev)
4909 {
4910 	struct gendisk *disk;
4911 	struct request_queue *q;
4912 	unsigned int objset_bytes =
4913 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4914 	int err;
4915 
4916 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4917 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4918 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4919 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4920 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4921 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4922 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4923 
4924 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4925 	if (err)
4926 		return err;
4927 
4928 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4929 	if (IS_ERR(disk)) {
4930 		err = PTR_ERR(disk);
4931 		goto out_tag_set;
4932 	}
4933 	q = disk->queue;
4934 
4935 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4936 		 rbd_dev->dev_id);
4937 	disk->major = rbd_dev->major;
4938 	disk->first_minor = rbd_dev->minor;
4939 	if (single_major) {
4940 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4941 		disk->flags |= GENHD_FL_EXT_DEVT;
4942 	} else {
4943 		disk->minors = RBD_MINORS_PER_MAJOR;
4944 	}
4945 	disk->fops = &rbd_bd_ops;
4946 	disk->private_data = rbd_dev;
4947 
4948 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4949 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4950 
4951 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4952 	q->limits.max_sectors = queue_max_hw_sectors(q);
4953 	blk_queue_max_segments(q, USHRT_MAX);
4954 	blk_queue_max_segment_size(q, UINT_MAX);
4955 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4956 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4957 
4958 	if (rbd_dev->opts->trim) {
4959 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4960 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4961 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4962 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4963 	}
4964 
4965 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4966 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4967 
4968 	rbd_dev->disk = disk;
4969 
4970 	return 0;
4971 out_tag_set:
4972 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4973 	return err;
4974 }
4975 
4976 /*
4977   sysfs
4978 */
4979 
4980 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4981 {
4982 	return container_of(dev, struct rbd_device, dev);
4983 }
4984 
4985 static ssize_t rbd_size_show(struct device *dev,
4986 			     struct device_attribute *attr, char *buf)
4987 {
4988 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4989 
4990 	return sprintf(buf, "%llu\n",
4991 		(unsigned long long)rbd_dev->mapping.size);
4992 }
4993 
4994 static ssize_t rbd_features_show(struct device *dev,
4995 			     struct device_attribute *attr, char *buf)
4996 {
4997 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4998 
4999 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5000 }
5001 
5002 static ssize_t rbd_major_show(struct device *dev,
5003 			      struct device_attribute *attr, char *buf)
5004 {
5005 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5006 
5007 	if (rbd_dev->major)
5008 		return sprintf(buf, "%d\n", rbd_dev->major);
5009 
5010 	return sprintf(buf, "(none)\n");
5011 }
5012 
5013 static ssize_t rbd_minor_show(struct device *dev,
5014 			      struct device_attribute *attr, char *buf)
5015 {
5016 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5017 
5018 	return sprintf(buf, "%d\n", rbd_dev->minor);
5019 }
5020 
5021 static ssize_t rbd_client_addr_show(struct device *dev,
5022 				    struct device_attribute *attr, char *buf)
5023 {
5024 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5025 	struct ceph_entity_addr *client_addr =
5026 	    ceph_client_addr(rbd_dev->rbd_client->client);
5027 
5028 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5029 		       le32_to_cpu(client_addr->nonce));
5030 }
5031 
5032 static ssize_t rbd_client_id_show(struct device *dev,
5033 				  struct device_attribute *attr, char *buf)
5034 {
5035 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5036 
5037 	return sprintf(buf, "client%lld\n",
5038 		       ceph_client_gid(rbd_dev->rbd_client->client));
5039 }
5040 
5041 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5042 				     struct device_attribute *attr, char *buf)
5043 {
5044 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5045 
5046 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5047 }
5048 
5049 static ssize_t rbd_config_info_show(struct device *dev,
5050 				    struct device_attribute *attr, char *buf)
5051 {
5052 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5053 
5054 	if (!capable(CAP_SYS_ADMIN))
5055 		return -EPERM;
5056 
5057 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5058 }
5059 
5060 static ssize_t rbd_pool_show(struct device *dev,
5061 			     struct device_attribute *attr, char *buf)
5062 {
5063 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5064 
5065 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5066 }
5067 
5068 static ssize_t rbd_pool_id_show(struct device *dev,
5069 			     struct device_attribute *attr, char *buf)
5070 {
5071 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5072 
5073 	return sprintf(buf, "%llu\n",
5074 			(unsigned long long) rbd_dev->spec->pool_id);
5075 }
5076 
5077 static ssize_t rbd_pool_ns_show(struct device *dev,
5078 				struct device_attribute *attr, char *buf)
5079 {
5080 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5081 
5082 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5083 }
5084 
5085 static ssize_t rbd_name_show(struct device *dev,
5086 			     struct device_attribute *attr, char *buf)
5087 {
5088 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5089 
5090 	if (rbd_dev->spec->image_name)
5091 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5092 
5093 	return sprintf(buf, "(unknown)\n");
5094 }
5095 
5096 static ssize_t rbd_image_id_show(struct device *dev,
5097 			     struct device_attribute *attr, char *buf)
5098 {
5099 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5100 
5101 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5102 }
5103 
5104 /*
5105  * Shows the name of the currently-mapped snapshot (or
5106  * RBD_SNAP_HEAD_NAME for the base image).
5107  */
5108 static ssize_t rbd_snap_show(struct device *dev,
5109 			     struct device_attribute *attr,
5110 			     char *buf)
5111 {
5112 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113 
5114 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5115 }
5116 
5117 static ssize_t rbd_snap_id_show(struct device *dev,
5118 				struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5123 }
5124 
5125 /*
5126  * For a v2 image, shows the chain of parent images, separated by empty
5127  * lines.  For v1 images or if there is no parent, shows "(no parent
5128  * image)".
5129  */
5130 static ssize_t rbd_parent_show(struct device *dev,
5131 			       struct device_attribute *attr,
5132 			       char *buf)
5133 {
5134 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5135 	ssize_t count = 0;
5136 
5137 	if (!rbd_dev->parent)
5138 		return sprintf(buf, "(no parent image)\n");
5139 
5140 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5141 		struct rbd_spec *spec = rbd_dev->parent_spec;
5142 
5143 		count += sprintf(&buf[count], "%s"
5144 			    "pool_id %llu\npool_name %s\n"
5145 			    "pool_ns %s\n"
5146 			    "image_id %s\nimage_name %s\n"
5147 			    "snap_id %llu\nsnap_name %s\n"
5148 			    "overlap %llu\n",
5149 			    !count ? "" : "\n", /* first? */
5150 			    spec->pool_id, spec->pool_name,
5151 			    spec->pool_ns ?: "",
5152 			    spec->image_id, spec->image_name ?: "(unknown)",
5153 			    spec->snap_id, spec->snap_name,
5154 			    rbd_dev->parent_overlap);
5155 	}
5156 
5157 	return count;
5158 }
5159 
5160 static ssize_t rbd_image_refresh(struct device *dev,
5161 				 struct device_attribute *attr,
5162 				 const char *buf,
5163 				 size_t size)
5164 {
5165 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5166 	int ret;
5167 
5168 	if (!capable(CAP_SYS_ADMIN))
5169 		return -EPERM;
5170 
5171 	ret = rbd_dev_refresh(rbd_dev);
5172 	if (ret)
5173 		return ret;
5174 
5175 	return size;
5176 }
5177 
5178 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5179 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5180 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5181 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5182 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5183 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5184 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5185 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5186 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5187 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5188 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5189 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5190 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5191 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5192 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5193 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5194 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5195 
5196 static struct attribute *rbd_attrs[] = {
5197 	&dev_attr_size.attr,
5198 	&dev_attr_features.attr,
5199 	&dev_attr_major.attr,
5200 	&dev_attr_minor.attr,
5201 	&dev_attr_client_addr.attr,
5202 	&dev_attr_client_id.attr,
5203 	&dev_attr_cluster_fsid.attr,
5204 	&dev_attr_config_info.attr,
5205 	&dev_attr_pool.attr,
5206 	&dev_attr_pool_id.attr,
5207 	&dev_attr_pool_ns.attr,
5208 	&dev_attr_name.attr,
5209 	&dev_attr_image_id.attr,
5210 	&dev_attr_current_snap.attr,
5211 	&dev_attr_snap_id.attr,
5212 	&dev_attr_parent.attr,
5213 	&dev_attr_refresh.attr,
5214 	NULL
5215 };
5216 
5217 static struct attribute_group rbd_attr_group = {
5218 	.attrs = rbd_attrs,
5219 };
5220 
5221 static const struct attribute_group *rbd_attr_groups[] = {
5222 	&rbd_attr_group,
5223 	NULL
5224 };
5225 
5226 static void rbd_dev_release(struct device *dev);
5227 
5228 static const struct device_type rbd_device_type = {
5229 	.name		= "rbd",
5230 	.groups		= rbd_attr_groups,
5231 	.release	= rbd_dev_release,
5232 };
5233 
5234 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5235 {
5236 	kref_get(&spec->kref);
5237 
5238 	return spec;
5239 }
5240 
5241 static void rbd_spec_free(struct kref *kref);
5242 static void rbd_spec_put(struct rbd_spec *spec)
5243 {
5244 	if (spec)
5245 		kref_put(&spec->kref, rbd_spec_free);
5246 }
5247 
5248 static struct rbd_spec *rbd_spec_alloc(void)
5249 {
5250 	struct rbd_spec *spec;
5251 
5252 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5253 	if (!spec)
5254 		return NULL;
5255 
5256 	spec->pool_id = CEPH_NOPOOL;
5257 	spec->snap_id = CEPH_NOSNAP;
5258 	kref_init(&spec->kref);
5259 
5260 	return spec;
5261 }
5262 
5263 static void rbd_spec_free(struct kref *kref)
5264 {
5265 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5266 
5267 	kfree(spec->pool_name);
5268 	kfree(spec->pool_ns);
5269 	kfree(spec->image_id);
5270 	kfree(spec->image_name);
5271 	kfree(spec->snap_name);
5272 	kfree(spec);
5273 }
5274 
5275 static void rbd_dev_free(struct rbd_device *rbd_dev)
5276 {
5277 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5278 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5279 
5280 	ceph_oid_destroy(&rbd_dev->header_oid);
5281 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5282 	kfree(rbd_dev->config_info);
5283 
5284 	rbd_put_client(rbd_dev->rbd_client);
5285 	rbd_spec_put(rbd_dev->spec);
5286 	kfree(rbd_dev->opts);
5287 	kfree(rbd_dev);
5288 }
5289 
5290 static void rbd_dev_release(struct device *dev)
5291 {
5292 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5293 	bool need_put = !!rbd_dev->opts;
5294 
5295 	if (need_put) {
5296 		destroy_workqueue(rbd_dev->task_wq);
5297 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5298 	}
5299 
5300 	rbd_dev_free(rbd_dev);
5301 
5302 	/*
5303 	 * This is racy, but way better than putting module outside of
5304 	 * the release callback.  The race window is pretty small, so
5305 	 * doing something similar to dm (dm-builtin.c) is overkill.
5306 	 */
5307 	if (need_put)
5308 		module_put(THIS_MODULE);
5309 }
5310 
5311 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5312 					   struct rbd_spec *spec)
5313 {
5314 	struct rbd_device *rbd_dev;
5315 
5316 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5317 	if (!rbd_dev)
5318 		return NULL;
5319 
5320 	spin_lock_init(&rbd_dev->lock);
5321 	INIT_LIST_HEAD(&rbd_dev->node);
5322 	init_rwsem(&rbd_dev->header_rwsem);
5323 
5324 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5325 	ceph_oid_init(&rbd_dev->header_oid);
5326 	rbd_dev->header_oloc.pool = spec->pool_id;
5327 	if (spec->pool_ns) {
5328 		WARN_ON(!*spec->pool_ns);
5329 		rbd_dev->header_oloc.pool_ns =
5330 		    ceph_find_or_create_string(spec->pool_ns,
5331 					       strlen(spec->pool_ns));
5332 	}
5333 
5334 	mutex_init(&rbd_dev->watch_mutex);
5335 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5336 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5337 
5338 	init_rwsem(&rbd_dev->lock_rwsem);
5339 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5340 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5341 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5342 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5343 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5344 	spin_lock_init(&rbd_dev->lock_lists_lock);
5345 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5346 	INIT_LIST_HEAD(&rbd_dev->running_list);
5347 	init_completion(&rbd_dev->acquire_wait);
5348 	init_completion(&rbd_dev->releasing_wait);
5349 
5350 	spin_lock_init(&rbd_dev->object_map_lock);
5351 
5352 	rbd_dev->dev.bus = &rbd_bus_type;
5353 	rbd_dev->dev.type = &rbd_device_type;
5354 	rbd_dev->dev.parent = &rbd_root_dev;
5355 	device_initialize(&rbd_dev->dev);
5356 
5357 	rbd_dev->rbd_client = rbdc;
5358 	rbd_dev->spec = spec;
5359 
5360 	return rbd_dev;
5361 }
5362 
5363 /*
5364  * Create a mapping rbd_dev.
5365  */
5366 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5367 					 struct rbd_spec *spec,
5368 					 struct rbd_options *opts)
5369 {
5370 	struct rbd_device *rbd_dev;
5371 
5372 	rbd_dev = __rbd_dev_create(rbdc, spec);
5373 	if (!rbd_dev)
5374 		return NULL;
5375 
5376 	rbd_dev->opts = opts;
5377 
5378 	/* get an id and fill in device name */
5379 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5380 					 minor_to_rbd_dev_id(1 << MINORBITS),
5381 					 GFP_KERNEL);
5382 	if (rbd_dev->dev_id < 0)
5383 		goto fail_rbd_dev;
5384 
5385 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5386 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5387 						   rbd_dev->name);
5388 	if (!rbd_dev->task_wq)
5389 		goto fail_dev_id;
5390 
5391 	/* we have a ref from do_rbd_add() */
5392 	__module_get(THIS_MODULE);
5393 
5394 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5395 	return rbd_dev;
5396 
5397 fail_dev_id:
5398 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5399 fail_rbd_dev:
5400 	rbd_dev_free(rbd_dev);
5401 	return NULL;
5402 }
5403 
5404 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5405 {
5406 	if (rbd_dev)
5407 		put_device(&rbd_dev->dev);
5408 }
5409 
5410 /*
5411  * Get the size and object order for an image snapshot, or if
5412  * snap_id is CEPH_NOSNAP, gets this information for the base
5413  * image.
5414  */
5415 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5416 				u8 *order, u64 *snap_size)
5417 {
5418 	__le64 snapid = cpu_to_le64(snap_id);
5419 	int ret;
5420 	struct {
5421 		u8 order;
5422 		__le64 size;
5423 	} __attribute__ ((packed)) size_buf = { 0 };
5424 
5425 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5426 				  &rbd_dev->header_oloc, "get_size",
5427 				  &snapid, sizeof(snapid),
5428 				  &size_buf, sizeof(size_buf));
5429 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5430 	if (ret < 0)
5431 		return ret;
5432 	if (ret < sizeof (size_buf))
5433 		return -ERANGE;
5434 
5435 	if (order) {
5436 		*order = size_buf.order;
5437 		dout("  order %u", (unsigned int)*order);
5438 	}
5439 	*snap_size = le64_to_cpu(size_buf.size);
5440 
5441 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5442 		(unsigned long long)snap_id,
5443 		(unsigned long long)*snap_size);
5444 
5445 	return 0;
5446 }
5447 
5448 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5449 {
5450 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5451 					&rbd_dev->header.obj_order,
5452 					&rbd_dev->header.image_size);
5453 }
5454 
5455 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5456 {
5457 	size_t size;
5458 	void *reply_buf;
5459 	int ret;
5460 	void *p;
5461 
5462 	/* Response will be an encoded string, which includes a length */
5463 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5464 	reply_buf = kzalloc(size, GFP_KERNEL);
5465 	if (!reply_buf)
5466 		return -ENOMEM;
5467 
5468 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5469 				  &rbd_dev->header_oloc, "get_object_prefix",
5470 				  NULL, 0, reply_buf, size);
5471 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5472 	if (ret < 0)
5473 		goto out;
5474 
5475 	p = reply_buf;
5476 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5477 						p + ret, NULL, GFP_NOIO);
5478 	ret = 0;
5479 
5480 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5481 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5482 		rbd_dev->header.object_prefix = NULL;
5483 	} else {
5484 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5485 	}
5486 out:
5487 	kfree(reply_buf);
5488 
5489 	return ret;
5490 }
5491 
5492 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5493 				     bool read_only, u64 *snap_features)
5494 {
5495 	struct {
5496 		__le64 snap_id;
5497 		u8 read_only;
5498 	} features_in;
5499 	struct {
5500 		__le64 features;
5501 		__le64 incompat;
5502 	} __attribute__ ((packed)) features_buf = { 0 };
5503 	u64 unsup;
5504 	int ret;
5505 
5506 	features_in.snap_id = cpu_to_le64(snap_id);
5507 	features_in.read_only = read_only;
5508 
5509 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5510 				  &rbd_dev->header_oloc, "get_features",
5511 				  &features_in, sizeof(features_in),
5512 				  &features_buf, sizeof(features_buf));
5513 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5514 	if (ret < 0)
5515 		return ret;
5516 	if (ret < sizeof (features_buf))
5517 		return -ERANGE;
5518 
5519 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5520 	if (unsup) {
5521 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5522 			 unsup);
5523 		return -ENXIO;
5524 	}
5525 
5526 	*snap_features = le64_to_cpu(features_buf.features);
5527 
5528 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5529 		(unsigned long long)snap_id,
5530 		(unsigned long long)*snap_features,
5531 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5532 
5533 	return 0;
5534 }
5535 
5536 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5537 {
5538 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5539 					 rbd_is_ro(rbd_dev),
5540 					 &rbd_dev->header.features);
5541 }
5542 
5543 /*
5544  * These are generic image flags, but since they are used only for
5545  * object map, store them in rbd_dev->object_map_flags.
5546  *
5547  * For the same reason, this function is called only on object map
5548  * (re)load and not on header refresh.
5549  */
5550 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5551 {
5552 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5553 	__le64 flags;
5554 	int ret;
5555 
5556 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5557 				  &rbd_dev->header_oloc, "get_flags",
5558 				  &snapid, sizeof(snapid),
5559 				  &flags, sizeof(flags));
5560 	if (ret < 0)
5561 		return ret;
5562 	if (ret < sizeof(flags))
5563 		return -EBADMSG;
5564 
5565 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5566 	return 0;
5567 }
5568 
5569 struct parent_image_info {
5570 	u64		pool_id;
5571 	const char	*pool_ns;
5572 	const char	*image_id;
5573 	u64		snap_id;
5574 
5575 	bool		has_overlap;
5576 	u64		overlap;
5577 };
5578 
5579 /*
5580  * The caller is responsible for @pii.
5581  */
5582 static int decode_parent_image_spec(void **p, void *end,
5583 				    struct parent_image_info *pii)
5584 {
5585 	u8 struct_v;
5586 	u32 struct_len;
5587 	int ret;
5588 
5589 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5590 				  &struct_v, &struct_len);
5591 	if (ret)
5592 		return ret;
5593 
5594 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5595 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5596 	if (IS_ERR(pii->pool_ns)) {
5597 		ret = PTR_ERR(pii->pool_ns);
5598 		pii->pool_ns = NULL;
5599 		return ret;
5600 	}
5601 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5602 	if (IS_ERR(pii->image_id)) {
5603 		ret = PTR_ERR(pii->image_id);
5604 		pii->image_id = NULL;
5605 		return ret;
5606 	}
5607 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5608 	return 0;
5609 
5610 e_inval:
5611 	return -EINVAL;
5612 }
5613 
5614 static int __get_parent_info(struct rbd_device *rbd_dev,
5615 			     struct page *req_page,
5616 			     struct page *reply_page,
5617 			     struct parent_image_info *pii)
5618 {
5619 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5620 	size_t reply_len = PAGE_SIZE;
5621 	void *p, *end;
5622 	int ret;
5623 
5624 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5625 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5626 			     req_page, sizeof(u64), &reply_page, &reply_len);
5627 	if (ret)
5628 		return ret == -EOPNOTSUPP ? 1 : ret;
5629 
5630 	p = page_address(reply_page);
5631 	end = p + reply_len;
5632 	ret = decode_parent_image_spec(&p, end, pii);
5633 	if (ret)
5634 		return ret;
5635 
5636 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5637 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5638 			     req_page, sizeof(u64), &reply_page, &reply_len);
5639 	if (ret)
5640 		return ret;
5641 
5642 	p = page_address(reply_page);
5643 	end = p + reply_len;
5644 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5645 	if (pii->has_overlap)
5646 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5647 
5648 	return 0;
5649 
5650 e_inval:
5651 	return -EINVAL;
5652 }
5653 
5654 /*
5655  * The caller is responsible for @pii.
5656  */
5657 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5658 				    struct page *req_page,
5659 				    struct page *reply_page,
5660 				    struct parent_image_info *pii)
5661 {
5662 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5663 	size_t reply_len = PAGE_SIZE;
5664 	void *p, *end;
5665 	int ret;
5666 
5667 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5668 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5669 			     req_page, sizeof(u64), &reply_page, &reply_len);
5670 	if (ret)
5671 		return ret;
5672 
5673 	p = page_address(reply_page);
5674 	end = p + reply_len;
5675 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5676 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5677 	if (IS_ERR(pii->image_id)) {
5678 		ret = PTR_ERR(pii->image_id);
5679 		pii->image_id = NULL;
5680 		return ret;
5681 	}
5682 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5683 	pii->has_overlap = true;
5684 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5685 
5686 	return 0;
5687 
5688 e_inval:
5689 	return -EINVAL;
5690 }
5691 
5692 static int get_parent_info(struct rbd_device *rbd_dev,
5693 			   struct parent_image_info *pii)
5694 {
5695 	struct page *req_page, *reply_page;
5696 	void *p;
5697 	int ret;
5698 
5699 	req_page = alloc_page(GFP_KERNEL);
5700 	if (!req_page)
5701 		return -ENOMEM;
5702 
5703 	reply_page = alloc_page(GFP_KERNEL);
5704 	if (!reply_page) {
5705 		__free_page(req_page);
5706 		return -ENOMEM;
5707 	}
5708 
5709 	p = page_address(req_page);
5710 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5711 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5712 	if (ret > 0)
5713 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5714 					       pii);
5715 
5716 	__free_page(req_page);
5717 	__free_page(reply_page);
5718 	return ret;
5719 }
5720 
5721 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5722 {
5723 	struct rbd_spec *parent_spec;
5724 	struct parent_image_info pii = { 0 };
5725 	int ret;
5726 
5727 	parent_spec = rbd_spec_alloc();
5728 	if (!parent_spec)
5729 		return -ENOMEM;
5730 
5731 	ret = get_parent_info(rbd_dev, &pii);
5732 	if (ret)
5733 		goto out_err;
5734 
5735 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5736 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5737 	     pii.has_overlap, pii.overlap);
5738 
5739 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5740 		/*
5741 		 * Either the parent never existed, or we have
5742 		 * record of it but the image got flattened so it no
5743 		 * longer has a parent.  When the parent of a
5744 		 * layered image disappears we immediately set the
5745 		 * overlap to 0.  The effect of this is that all new
5746 		 * requests will be treated as if the image had no
5747 		 * parent.
5748 		 *
5749 		 * If !pii.has_overlap, the parent image spec is not
5750 		 * applicable.  It's there to avoid duplication in each
5751 		 * snapshot record.
5752 		 */
5753 		if (rbd_dev->parent_overlap) {
5754 			rbd_dev->parent_overlap = 0;
5755 			rbd_dev_parent_put(rbd_dev);
5756 			pr_info("%s: clone image has been flattened\n",
5757 				rbd_dev->disk->disk_name);
5758 		}
5759 
5760 		goto out;	/* No parent?  No problem. */
5761 	}
5762 
5763 	/* The ceph file layout needs to fit pool id in 32 bits */
5764 
5765 	ret = -EIO;
5766 	if (pii.pool_id > (u64)U32_MAX) {
5767 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5768 			(unsigned long long)pii.pool_id, U32_MAX);
5769 		goto out_err;
5770 	}
5771 
5772 	/*
5773 	 * The parent won't change (except when the clone is
5774 	 * flattened, already handled that).  So we only need to
5775 	 * record the parent spec we have not already done so.
5776 	 */
5777 	if (!rbd_dev->parent_spec) {
5778 		parent_spec->pool_id = pii.pool_id;
5779 		if (pii.pool_ns && *pii.pool_ns) {
5780 			parent_spec->pool_ns = pii.pool_ns;
5781 			pii.pool_ns = NULL;
5782 		}
5783 		parent_spec->image_id = pii.image_id;
5784 		pii.image_id = NULL;
5785 		parent_spec->snap_id = pii.snap_id;
5786 
5787 		rbd_dev->parent_spec = parent_spec;
5788 		parent_spec = NULL;	/* rbd_dev now owns this */
5789 	}
5790 
5791 	/*
5792 	 * We always update the parent overlap.  If it's zero we issue
5793 	 * a warning, as we will proceed as if there was no parent.
5794 	 */
5795 	if (!pii.overlap) {
5796 		if (parent_spec) {
5797 			/* refresh, careful to warn just once */
5798 			if (rbd_dev->parent_overlap)
5799 				rbd_warn(rbd_dev,
5800 				    "clone now standalone (overlap became 0)");
5801 		} else {
5802 			/* initial probe */
5803 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5804 		}
5805 	}
5806 	rbd_dev->parent_overlap = pii.overlap;
5807 
5808 out:
5809 	ret = 0;
5810 out_err:
5811 	kfree(pii.pool_ns);
5812 	kfree(pii.image_id);
5813 	rbd_spec_put(parent_spec);
5814 	return ret;
5815 }
5816 
5817 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5818 {
5819 	struct {
5820 		__le64 stripe_unit;
5821 		__le64 stripe_count;
5822 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5823 	size_t size = sizeof (striping_info_buf);
5824 	void *p;
5825 	int ret;
5826 
5827 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5828 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5829 				NULL, 0, &striping_info_buf, size);
5830 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5831 	if (ret < 0)
5832 		return ret;
5833 	if (ret < size)
5834 		return -ERANGE;
5835 
5836 	p = &striping_info_buf;
5837 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5838 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5839 	return 0;
5840 }
5841 
5842 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5843 {
5844 	__le64 data_pool_id;
5845 	int ret;
5846 
5847 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5848 				  &rbd_dev->header_oloc, "get_data_pool",
5849 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5850 	if (ret < 0)
5851 		return ret;
5852 	if (ret < sizeof(data_pool_id))
5853 		return -EBADMSG;
5854 
5855 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5856 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5857 	return 0;
5858 }
5859 
5860 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5861 {
5862 	CEPH_DEFINE_OID_ONSTACK(oid);
5863 	size_t image_id_size;
5864 	char *image_id;
5865 	void *p;
5866 	void *end;
5867 	size_t size;
5868 	void *reply_buf = NULL;
5869 	size_t len = 0;
5870 	char *image_name = NULL;
5871 	int ret;
5872 
5873 	rbd_assert(!rbd_dev->spec->image_name);
5874 
5875 	len = strlen(rbd_dev->spec->image_id);
5876 	image_id_size = sizeof (__le32) + len;
5877 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5878 	if (!image_id)
5879 		return NULL;
5880 
5881 	p = image_id;
5882 	end = image_id + image_id_size;
5883 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5884 
5885 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5886 	reply_buf = kmalloc(size, GFP_KERNEL);
5887 	if (!reply_buf)
5888 		goto out;
5889 
5890 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5891 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5892 				  "dir_get_name", image_id, image_id_size,
5893 				  reply_buf, size);
5894 	if (ret < 0)
5895 		goto out;
5896 	p = reply_buf;
5897 	end = reply_buf + ret;
5898 
5899 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5900 	if (IS_ERR(image_name))
5901 		image_name = NULL;
5902 	else
5903 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5904 out:
5905 	kfree(reply_buf);
5906 	kfree(image_id);
5907 
5908 	return image_name;
5909 }
5910 
5911 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5912 {
5913 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5914 	const char *snap_name;
5915 	u32 which = 0;
5916 
5917 	/* Skip over names until we find the one we are looking for */
5918 
5919 	snap_name = rbd_dev->header.snap_names;
5920 	while (which < snapc->num_snaps) {
5921 		if (!strcmp(name, snap_name))
5922 			return snapc->snaps[which];
5923 		snap_name += strlen(snap_name) + 1;
5924 		which++;
5925 	}
5926 	return CEPH_NOSNAP;
5927 }
5928 
5929 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5930 {
5931 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5932 	u32 which;
5933 	bool found = false;
5934 	u64 snap_id;
5935 
5936 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5937 		const char *snap_name;
5938 
5939 		snap_id = snapc->snaps[which];
5940 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5941 		if (IS_ERR(snap_name)) {
5942 			/* ignore no-longer existing snapshots */
5943 			if (PTR_ERR(snap_name) == -ENOENT)
5944 				continue;
5945 			else
5946 				break;
5947 		}
5948 		found = !strcmp(name, snap_name);
5949 		kfree(snap_name);
5950 	}
5951 	return found ? snap_id : CEPH_NOSNAP;
5952 }
5953 
5954 /*
5955  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5956  * no snapshot by that name is found, or if an error occurs.
5957  */
5958 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5959 {
5960 	if (rbd_dev->image_format == 1)
5961 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5962 
5963 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5964 }
5965 
5966 /*
5967  * An image being mapped will have everything but the snap id.
5968  */
5969 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5970 {
5971 	struct rbd_spec *spec = rbd_dev->spec;
5972 
5973 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5974 	rbd_assert(spec->image_id && spec->image_name);
5975 	rbd_assert(spec->snap_name);
5976 
5977 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5978 		u64 snap_id;
5979 
5980 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5981 		if (snap_id == CEPH_NOSNAP)
5982 			return -ENOENT;
5983 
5984 		spec->snap_id = snap_id;
5985 	} else {
5986 		spec->snap_id = CEPH_NOSNAP;
5987 	}
5988 
5989 	return 0;
5990 }
5991 
5992 /*
5993  * A parent image will have all ids but none of the names.
5994  *
5995  * All names in an rbd spec are dynamically allocated.  It's OK if we
5996  * can't figure out the name for an image id.
5997  */
5998 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5999 {
6000 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6001 	struct rbd_spec *spec = rbd_dev->spec;
6002 	const char *pool_name;
6003 	const char *image_name;
6004 	const char *snap_name;
6005 	int ret;
6006 
6007 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6008 	rbd_assert(spec->image_id);
6009 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6010 
6011 	/* Get the pool name; we have to make our own copy of this */
6012 
6013 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6014 	if (!pool_name) {
6015 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6016 		return -EIO;
6017 	}
6018 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6019 	if (!pool_name)
6020 		return -ENOMEM;
6021 
6022 	/* Fetch the image name; tolerate failure here */
6023 
6024 	image_name = rbd_dev_image_name(rbd_dev);
6025 	if (!image_name)
6026 		rbd_warn(rbd_dev, "unable to get image name");
6027 
6028 	/* Fetch the snapshot name */
6029 
6030 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6031 	if (IS_ERR(snap_name)) {
6032 		ret = PTR_ERR(snap_name);
6033 		goto out_err;
6034 	}
6035 
6036 	spec->pool_name = pool_name;
6037 	spec->image_name = image_name;
6038 	spec->snap_name = snap_name;
6039 
6040 	return 0;
6041 
6042 out_err:
6043 	kfree(image_name);
6044 	kfree(pool_name);
6045 	return ret;
6046 }
6047 
6048 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6049 {
6050 	size_t size;
6051 	int ret;
6052 	void *reply_buf;
6053 	void *p;
6054 	void *end;
6055 	u64 seq;
6056 	u32 snap_count;
6057 	struct ceph_snap_context *snapc;
6058 	u32 i;
6059 
6060 	/*
6061 	 * We'll need room for the seq value (maximum snapshot id),
6062 	 * snapshot count, and array of that many snapshot ids.
6063 	 * For now we have a fixed upper limit on the number we're
6064 	 * prepared to receive.
6065 	 */
6066 	size = sizeof (__le64) + sizeof (__le32) +
6067 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6068 	reply_buf = kzalloc(size, GFP_KERNEL);
6069 	if (!reply_buf)
6070 		return -ENOMEM;
6071 
6072 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6073 				  &rbd_dev->header_oloc, "get_snapcontext",
6074 				  NULL, 0, reply_buf, size);
6075 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6076 	if (ret < 0)
6077 		goto out;
6078 
6079 	p = reply_buf;
6080 	end = reply_buf + ret;
6081 	ret = -ERANGE;
6082 	ceph_decode_64_safe(&p, end, seq, out);
6083 	ceph_decode_32_safe(&p, end, snap_count, out);
6084 
6085 	/*
6086 	 * Make sure the reported number of snapshot ids wouldn't go
6087 	 * beyond the end of our buffer.  But before checking that,
6088 	 * make sure the computed size of the snapshot context we
6089 	 * allocate is representable in a size_t.
6090 	 */
6091 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6092 				 / sizeof (u64)) {
6093 		ret = -EINVAL;
6094 		goto out;
6095 	}
6096 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6097 		goto out;
6098 	ret = 0;
6099 
6100 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6101 	if (!snapc) {
6102 		ret = -ENOMEM;
6103 		goto out;
6104 	}
6105 	snapc->seq = seq;
6106 	for (i = 0; i < snap_count; i++)
6107 		snapc->snaps[i] = ceph_decode_64(&p);
6108 
6109 	ceph_put_snap_context(rbd_dev->header.snapc);
6110 	rbd_dev->header.snapc = snapc;
6111 
6112 	dout("  snap context seq = %llu, snap_count = %u\n",
6113 		(unsigned long long)seq, (unsigned int)snap_count);
6114 out:
6115 	kfree(reply_buf);
6116 
6117 	return ret;
6118 }
6119 
6120 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6121 					u64 snap_id)
6122 {
6123 	size_t size;
6124 	void *reply_buf;
6125 	__le64 snapid;
6126 	int ret;
6127 	void *p;
6128 	void *end;
6129 	char *snap_name;
6130 
6131 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6132 	reply_buf = kmalloc(size, GFP_KERNEL);
6133 	if (!reply_buf)
6134 		return ERR_PTR(-ENOMEM);
6135 
6136 	snapid = cpu_to_le64(snap_id);
6137 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6138 				  &rbd_dev->header_oloc, "get_snapshot_name",
6139 				  &snapid, sizeof(snapid), reply_buf, size);
6140 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6141 	if (ret < 0) {
6142 		snap_name = ERR_PTR(ret);
6143 		goto out;
6144 	}
6145 
6146 	p = reply_buf;
6147 	end = reply_buf + ret;
6148 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6149 	if (IS_ERR(snap_name))
6150 		goto out;
6151 
6152 	dout("  snap_id 0x%016llx snap_name = %s\n",
6153 		(unsigned long long)snap_id, snap_name);
6154 out:
6155 	kfree(reply_buf);
6156 
6157 	return snap_name;
6158 }
6159 
6160 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6161 {
6162 	bool first_time = rbd_dev->header.object_prefix == NULL;
6163 	int ret;
6164 
6165 	ret = rbd_dev_v2_image_size(rbd_dev);
6166 	if (ret)
6167 		return ret;
6168 
6169 	if (first_time) {
6170 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6171 		if (ret)
6172 			return ret;
6173 	}
6174 
6175 	ret = rbd_dev_v2_snap_context(rbd_dev);
6176 	if (ret && first_time) {
6177 		kfree(rbd_dev->header.object_prefix);
6178 		rbd_dev->header.object_prefix = NULL;
6179 	}
6180 
6181 	return ret;
6182 }
6183 
6184 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6185 {
6186 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6187 
6188 	if (rbd_dev->image_format == 1)
6189 		return rbd_dev_v1_header_info(rbd_dev);
6190 
6191 	return rbd_dev_v2_header_info(rbd_dev);
6192 }
6193 
6194 /*
6195  * Skips over white space at *buf, and updates *buf to point to the
6196  * first found non-space character (if any). Returns the length of
6197  * the token (string of non-white space characters) found.  Note
6198  * that *buf must be terminated with '\0'.
6199  */
6200 static inline size_t next_token(const char **buf)
6201 {
6202         /*
6203         * These are the characters that produce nonzero for
6204         * isspace() in the "C" and "POSIX" locales.
6205         */
6206         const char *spaces = " \f\n\r\t\v";
6207 
6208         *buf += strspn(*buf, spaces);	/* Find start of token */
6209 
6210 	return strcspn(*buf, spaces);   /* Return token length */
6211 }
6212 
6213 /*
6214  * Finds the next token in *buf, dynamically allocates a buffer big
6215  * enough to hold a copy of it, and copies the token into the new
6216  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6217  * that a duplicate buffer is created even for a zero-length token.
6218  *
6219  * Returns a pointer to the newly-allocated duplicate, or a null
6220  * pointer if memory for the duplicate was not available.  If
6221  * the lenp argument is a non-null pointer, the length of the token
6222  * (not including the '\0') is returned in *lenp.
6223  *
6224  * If successful, the *buf pointer will be updated to point beyond
6225  * the end of the found token.
6226  *
6227  * Note: uses GFP_KERNEL for allocation.
6228  */
6229 static inline char *dup_token(const char **buf, size_t *lenp)
6230 {
6231 	char *dup;
6232 	size_t len;
6233 
6234 	len = next_token(buf);
6235 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6236 	if (!dup)
6237 		return NULL;
6238 	*(dup + len) = '\0';
6239 	*buf += len;
6240 
6241 	if (lenp)
6242 		*lenp = len;
6243 
6244 	return dup;
6245 }
6246 
6247 static int rbd_parse_param(struct fs_parameter *param,
6248 			    struct rbd_parse_opts_ctx *pctx)
6249 {
6250 	struct rbd_options *opt = pctx->opts;
6251 	struct fs_parse_result result;
6252 	struct p_log log = {.prefix = "rbd"};
6253 	int token, ret;
6254 
6255 	ret = ceph_parse_param(param, pctx->copts, NULL);
6256 	if (ret != -ENOPARAM)
6257 		return ret;
6258 
6259 	token = __fs_parse(&log, rbd_parameters, param, &result);
6260 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6261 	if (token < 0) {
6262 		if (token == -ENOPARAM)
6263 			return inval_plog(&log, "Unknown parameter '%s'",
6264 					  param->key);
6265 		return token;
6266 	}
6267 
6268 	switch (token) {
6269 	case Opt_queue_depth:
6270 		if (result.uint_32 < 1)
6271 			goto out_of_range;
6272 		opt->queue_depth = result.uint_32;
6273 		break;
6274 	case Opt_alloc_size:
6275 		if (result.uint_32 < SECTOR_SIZE)
6276 			goto out_of_range;
6277 		if (!is_power_of_2(result.uint_32))
6278 			return inval_plog(&log, "alloc_size must be a power of 2");
6279 		opt->alloc_size = result.uint_32;
6280 		break;
6281 	case Opt_lock_timeout:
6282 		/* 0 is "wait forever" (i.e. infinite timeout) */
6283 		if (result.uint_32 > INT_MAX / 1000)
6284 			goto out_of_range;
6285 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6286 		break;
6287 	case Opt_pool_ns:
6288 		kfree(pctx->spec->pool_ns);
6289 		pctx->spec->pool_ns = param->string;
6290 		param->string = NULL;
6291 		break;
6292 	case Opt_compression_hint:
6293 		switch (result.uint_32) {
6294 		case Opt_compression_hint_none:
6295 			opt->alloc_hint_flags &=
6296 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6297 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6298 			break;
6299 		case Opt_compression_hint_compressible:
6300 			opt->alloc_hint_flags |=
6301 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6302 			opt->alloc_hint_flags &=
6303 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6304 			break;
6305 		case Opt_compression_hint_incompressible:
6306 			opt->alloc_hint_flags |=
6307 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6308 			opt->alloc_hint_flags &=
6309 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6310 			break;
6311 		default:
6312 			BUG();
6313 		}
6314 		break;
6315 	case Opt_read_only:
6316 		opt->read_only = true;
6317 		break;
6318 	case Opt_read_write:
6319 		opt->read_only = false;
6320 		break;
6321 	case Opt_lock_on_read:
6322 		opt->lock_on_read = true;
6323 		break;
6324 	case Opt_exclusive:
6325 		opt->exclusive = true;
6326 		break;
6327 	case Opt_notrim:
6328 		opt->trim = false;
6329 		break;
6330 	default:
6331 		BUG();
6332 	}
6333 
6334 	return 0;
6335 
6336 out_of_range:
6337 	return inval_plog(&log, "%s out of range", param->key);
6338 }
6339 
6340 /*
6341  * This duplicates most of generic_parse_monolithic(), untying it from
6342  * fs_context and skipping standard superblock and security options.
6343  */
6344 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6345 {
6346 	char *key;
6347 	int ret = 0;
6348 
6349 	dout("%s '%s'\n", __func__, options);
6350 	while ((key = strsep(&options, ",")) != NULL) {
6351 		if (*key) {
6352 			struct fs_parameter param = {
6353 				.key	= key,
6354 				.type	= fs_value_is_flag,
6355 			};
6356 			char *value = strchr(key, '=');
6357 			size_t v_len = 0;
6358 
6359 			if (value) {
6360 				if (value == key)
6361 					continue;
6362 				*value++ = 0;
6363 				v_len = strlen(value);
6364 				param.string = kmemdup_nul(value, v_len,
6365 							   GFP_KERNEL);
6366 				if (!param.string)
6367 					return -ENOMEM;
6368 				param.type = fs_value_is_string;
6369 			}
6370 			param.size = v_len;
6371 
6372 			ret = rbd_parse_param(&param, pctx);
6373 			kfree(param.string);
6374 			if (ret)
6375 				break;
6376 		}
6377 	}
6378 
6379 	return ret;
6380 }
6381 
6382 /*
6383  * Parse the options provided for an "rbd add" (i.e., rbd image
6384  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6385  * and the data written is passed here via a NUL-terminated buffer.
6386  * Returns 0 if successful or an error code otherwise.
6387  *
6388  * The information extracted from these options is recorded in
6389  * the other parameters which return dynamically-allocated
6390  * structures:
6391  *  ceph_opts
6392  *      The address of a pointer that will refer to a ceph options
6393  *      structure.  Caller must release the returned pointer using
6394  *      ceph_destroy_options() when it is no longer needed.
6395  *  rbd_opts
6396  *	Address of an rbd options pointer.  Fully initialized by
6397  *	this function; caller must release with kfree().
6398  *  spec
6399  *	Address of an rbd image specification pointer.  Fully
6400  *	initialized by this function based on parsed options.
6401  *	Caller must release with rbd_spec_put().
6402  *
6403  * The options passed take this form:
6404  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6405  * where:
6406  *  <mon_addrs>
6407  *      A comma-separated list of one or more monitor addresses.
6408  *      A monitor address is an ip address, optionally followed
6409  *      by a port number (separated by a colon).
6410  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6411  *  <options>
6412  *      A comma-separated list of ceph and/or rbd options.
6413  *  <pool_name>
6414  *      The name of the rados pool containing the rbd image.
6415  *  <image_name>
6416  *      The name of the image in that pool to map.
6417  *  <snap_id>
6418  *      An optional snapshot id.  If provided, the mapping will
6419  *      present data from the image at the time that snapshot was
6420  *      created.  The image head is used if no snapshot id is
6421  *      provided.  Snapshot mappings are always read-only.
6422  */
6423 static int rbd_add_parse_args(const char *buf,
6424 				struct ceph_options **ceph_opts,
6425 				struct rbd_options **opts,
6426 				struct rbd_spec **rbd_spec)
6427 {
6428 	size_t len;
6429 	char *options;
6430 	const char *mon_addrs;
6431 	char *snap_name;
6432 	size_t mon_addrs_size;
6433 	struct rbd_parse_opts_ctx pctx = { 0 };
6434 	int ret;
6435 
6436 	/* The first four tokens are required */
6437 
6438 	len = next_token(&buf);
6439 	if (!len) {
6440 		rbd_warn(NULL, "no monitor address(es) provided");
6441 		return -EINVAL;
6442 	}
6443 	mon_addrs = buf;
6444 	mon_addrs_size = len;
6445 	buf += len;
6446 
6447 	ret = -EINVAL;
6448 	options = dup_token(&buf, NULL);
6449 	if (!options)
6450 		return -ENOMEM;
6451 	if (!*options) {
6452 		rbd_warn(NULL, "no options provided");
6453 		goto out_err;
6454 	}
6455 
6456 	pctx.spec = rbd_spec_alloc();
6457 	if (!pctx.spec)
6458 		goto out_mem;
6459 
6460 	pctx.spec->pool_name = dup_token(&buf, NULL);
6461 	if (!pctx.spec->pool_name)
6462 		goto out_mem;
6463 	if (!*pctx.spec->pool_name) {
6464 		rbd_warn(NULL, "no pool name provided");
6465 		goto out_err;
6466 	}
6467 
6468 	pctx.spec->image_name = dup_token(&buf, NULL);
6469 	if (!pctx.spec->image_name)
6470 		goto out_mem;
6471 	if (!*pctx.spec->image_name) {
6472 		rbd_warn(NULL, "no image name provided");
6473 		goto out_err;
6474 	}
6475 
6476 	/*
6477 	 * Snapshot name is optional; default is to use "-"
6478 	 * (indicating the head/no snapshot).
6479 	 */
6480 	len = next_token(&buf);
6481 	if (!len) {
6482 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6483 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6484 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6485 		ret = -ENAMETOOLONG;
6486 		goto out_err;
6487 	}
6488 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6489 	if (!snap_name)
6490 		goto out_mem;
6491 	*(snap_name + len) = '\0';
6492 	pctx.spec->snap_name = snap_name;
6493 
6494 	pctx.copts = ceph_alloc_options();
6495 	if (!pctx.copts)
6496 		goto out_mem;
6497 
6498 	/* Initialize all rbd options to the defaults */
6499 
6500 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6501 	if (!pctx.opts)
6502 		goto out_mem;
6503 
6504 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6505 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6506 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6507 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6508 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6509 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6510 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6511 
6512 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6513 	if (ret)
6514 		goto out_err;
6515 
6516 	ret = rbd_parse_options(options, &pctx);
6517 	if (ret)
6518 		goto out_err;
6519 
6520 	*ceph_opts = pctx.copts;
6521 	*opts = pctx.opts;
6522 	*rbd_spec = pctx.spec;
6523 	kfree(options);
6524 	return 0;
6525 
6526 out_mem:
6527 	ret = -ENOMEM;
6528 out_err:
6529 	kfree(pctx.opts);
6530 	ceph_destroy_options(pctx.copts);
6531 	rbd_spec_put(pctx.spec);
6532 	kfree(options);
6533 	return ret;
6534 }
6535 
6536 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6537 {
6538 	down_write(&rbd_dev->lock_rwsem);
6539 	if (__rbd_is_lock_owner(rbd_dev))
6540 		__rbd_release_lock(rbd_dev);
6541 	up_write(&rbd_dev->lock_rwsem);
6542 }
6543 
6544 /*
6545  * If the wait is interrupted, an error is returned even if the lock
6546  * was successfully acquired.  rbd_dev_image_unlock() will release it
6547  * if needed.
6548  */
6549 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6550 {
6551 	long ret;
6552 
6553 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6554 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6555 			return 0;
6556 
6557 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6558 		return -EINVAL;
6559 	}
6560 
6561 	if (rbd_is_ro(rbd_dev))
6562 		return 0;
6563 
6564 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6565 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6566 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6567 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6568 	if (ret > 0) {
6569 		ret = rbd_dev->acquire_err;
6570 	} else {
6571 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6572 		if (!ret)
6573 			ret = -ETIMEDOUT;
6574 	}
6575 
6576 	if (ret) {
6577 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6578 		return ret;
6579 	}
6580 
6581 	/*
6582 	 * The lock may have been released by now, unless automatic lock
6583 	 * transitions are disabled.
6584 	 */
6585 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6586 	return 0;
6587 }
6588 
6589 /*
6590  * An rbd format 2 image has a unique identifier, distinct from the
6591  * name given to it by the user.  Internally, that identifier is
6592  * what's used to specify the names of objects related to the image.
6593  *
6594  * A special "rbd id" object is used to map an rbd image name to its
6595  * id.  If that object doesn't exist, then there is no v2 rbd image
6596  * with the supplied name.
6597  *
6598  * This function will record the given rbd_dev's image_id field if
6599  * it can be determined, and in that case will return 0.  If any
6600  * errors occur a negative errno will be returned and the rbd_dev's
6601  * image_id field will be unchanged (and should be NULL).
6602  */
6603 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6604 {
6605 	int ret;
6606 	size_t size;
6607 	CEPH_DEFINE_OID_ONSTACK(oid);
6608 	void *response;
6609 	char *image_id;
6610 
6611 	/*
6612 	 * When probing a parent image, the image id is already
6613 	 * known (and the image name likely is not).  There's no
6614 	 * need to fetch the image id again in this case.  We
6615 	 * do still need to set the image format though.
6616 	 */
6617 	if (rbd_dev->spec->image_id) {
6618 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6619 
6620 		return 0;
6621 	}
6622 
6623 	/*
6624 	 * First, see if the format 2 image id file exists, and if
6625 	 * so, get the image's persistent id from it.
6626 	 */
6627 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6628 			       rbd_dev->spec->image_name);
6629 	if (ret)
6630 		return ret;
6631 
6632 	dout("rbd id object name is %s\n", oid.name);
6633 
6634 	/* Response will be an encoded string, which includes a length */
6635 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6636 	response = kzalloc(size, GFP_NOIO);
6637 	if (!response) {
6638 		ret = -ENOMEM;
6639 		goto out;
6640 	}
6641 
6642 	/* If it doesn't exist we'll assume it's a format 1 image */
6643 
6644 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6645 				  "get_id", NULL, 0,
6646 				  response, size);
6647 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6648 	if (ret == -ENOENT) {
6649 		image_id = kstrdup("", GFP_KERNEL);
6650 		ret = image_id ? 0 : -ENOMEM;
6651 		if (!ret)
6652 			rbd_dev->image_format = 1;
6653 	} else if (ret >= 0) {
6654 		void *p = response;
6655 
6656 		image_id = ceph_extract_encoded_string(&p, p + ret,
6657 						NULL, GFP_NOIO);
6658 		ret = PTR_ERR_OR_ZERO(image_id);
6659 		if (!ret)
6660 			rbd_dev->image_format = 2;
6661 	}
6662 
6663 	if (!ret) {
6664 		rbd_dev->spec->image_id = image_id;
6665 		dout("image_id is %s\n", image_id);
6666 	}
6667 out:
6668 	kfree(response);
6669 	ceph_oid_destroy(&oid);
6670 	return ret;
6671 }
6672 
6673 /*
6674  * Undo whatever state changes are made by v1 or v2 header info
6675  * call.
6676  */
6677 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6678 {
6679 	struct rbd_image_header	*header;
6680 
6681 	rbd_dev_parent_put(rbd_dev);
6682 	rbd_object_map_free(rbd_dev);
6683 	rbd_dev_mapping_clear(rbd_dev);
6684 
6685 	/* Free dynamic fields from the header, then zero it out */
6686 
6687 	header = &rbd_dev->header;
6688 	ceph_put_snap_context(header->snapc);
6689 	kfree(header->snap_sizes);
6690 	kfree(header->snap_names);
6691 	kfree(header->object_prefix);
6692 	memset(header, 0, sizeof (*header));
6693 }
6694 
6695 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6696 {
6697 	int ret;
6698 
6699 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6700 	if (ret)
6701 		goto out_err;
6702 
6703 	/*
6704 	 * Get the and check features for the image.  Currently the
6705 	 * features are assumed to never change.
6706 	 */
6707 	ret = rbd_dev_v2_features(rbd_dev);
6708 	if (ret)
6709 		goto out_err;
6710 
6711 	/* If the image supports fancy striping, get its parameters */
6712 
6713 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6714 		ret = rbd_dev_v2_striping_info(rbd_dev);
6715 		if (ret < 0)
6716 			goto out_err;
6717 	}
6718 
6719 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6720 		ret = rbd_dev_v2_data_pool(rbd_dev);
6721 		if (ret)
6722 			goto out_err;
6723 	}
6724 
6725 	rbd_init_layout(rbd_dev);
6726 	return 0;
6727 
6728 out_err:
6729 	rbd_dev->header.features = 0;
6730 	kfree(rbd_dev->header.object_prefix);
6731 	rbd_dev->header.object_prefix = NULL;
6732 	return ret;
6733 }
6734 
6735 /*
6736  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6737  * rbd_dev_image_probe() recursion depth, which means it's also the
6738  * length of the already discovered part of the parent chain.
6739  */
6740 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6741 {
6742 	struct rbd_device *parent = NULL;
6743 	int ret;
6744 
6745 	if (!rbd_dev->parent_spec)
6746 		return 0;
6747 
6748 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6749 		pr_info("parent chain is too long (%d)\n", depth);
6750 		ret = -EINVAL;
6751 		goto out_err;
6752 	}
6753 
6754 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6755 	if (!parent) {
6756 		ret = -ENOMEM;
6757 		goto out_err;
6758 	}
6759 
6760 	/*
6761 	 * Images related by parent/child relationships always share
6762 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6763 	 */
6764 	__rbd_get_client(rbd_dev->rbd_client);
6765 	rbd_spec_get(rbd_dev->parent_spec);
6766 
6767 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6768 
6769 	ret = rbd_dev_image_probe(parent, depth);
6770 	if (ret < 0)
6771 		goto out_err;
6772 
6773 	rbd_dev->parent = parent;
6774 	atomic_set(&rbd_dev->parent_ref, 1);
6775 	return 0;
6776 
6777 out_err:
6778 	rbd_dev_unparent(rbd_dev);
6779 	rbd_dev_destroy(parent);
6780 	return ret;
6781 }
6782 
6783 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6784 {
6785 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6786 	rbd_free_disk(rbd_dev);
6787 	if (!single_major)
6788 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6789 }
6790 
6791 /*
6792  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6793  * upon return.
6794  */
6795 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6796 {
6797 	int ret;
6798 
6799 	/* Record our major and minor device numbers. */
6800 
6801 	if (!single_major) {
6802 		ret = register_blkdev(0, rbd_dev->name);
6803 		if (ret < 0)
6804 			goto err_out_unlock;
6805 
6806 		rbd_dev->major = ret;
6807 		rbd_dev->minor = 0;
6808 	} else {
6809 		rbd_dev->major = rbd_major;
6810 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6811 	}
6812 
6813 	/* Set up the blkdev mapping. */
6814 
6815 	ret = rbd_init_disk(rbd_dev);
6816 	if (ret)
6817 		goto err_out_blkdev;
6818 
6819 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6820 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6821 
6822 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6823 	if (ret)
6824 		goto err_out_disk;
6825 
6826 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6827 	up_write(&rbd_dev->header_rwsem);
6828 	return 0;
6829 
6830 err_out_disk:
6831 	rbd_free_disk(rbd_dev);
6832 err_out_blkdev:
6833 	if (!single_major)
6834 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6835 err_out_unlock:
6836 	up_write(&rbd_dev->header_rwsem);
6837 	return ret;
6838 }
6839 
6840 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6841 {
6842 	struct rbd_spec *spec = rbd_dev->spec;
6843 	int ret;
6844 
6845 	/* Record the header object name for this rbd image. */
6846 
6847 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6848 	if (rbd_dev->image_format == 1)
6849 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6850 				       spec->image_name, RBD_SUFFIX);
6851 	else
6852 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6853 				       RBD_HEADER_PREFIX, spec->image_id);
6854 
6855 	return ret;
6856 }
6857 
6858 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6859 {
6860 	if (!is_snap) {
6861 		pr_info("image %s/%s%s%s does not exist\n",
6862 			rbd_dev->spec->pool_name,
6863 			rbd_dev->spec->pool_ns ?: "",
6864 			rbd_dev->spec->pool_ns ? "/" : "",
6865 			rbd_dev->spec->image_name);
6866 	} else {
6867 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6868 			rbd_dev->spec->pool_name,
6869 			rbd_dev->spec->pool_ns ?: "",
6870 			rbd_dev->spec->pool_ns ? "/" : "",
6871 			rbd_dev->spec->image_name,
6872 			rbd_dev->spec->snap_name);
6873 	}
6874 }
6875 
6876 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6877 {
6878 	if (!rbd_is_ro(rbd_dev))
6879 		rbd_unregister_watch(rbd_dev);
6880 
6881 	rbd_dev_unprobe(rbd_dev);
6882 	rbd_dev->image_format = 0;
6883 	kfree(rbd_dev->spec->image_id);
6884 	rbd_dev->spec->image_id = NULL;
6885 }
6886 
6887 /*
6888  * Probe for the existence of the header object for the given rbd
6889  * device.  If this image is the one being mapped (i.e., not a
6890  * parent), initiate a watch on its header object before using that
6891  * object to get detailed information about the rbd image.
6892  *
6893  * On success, returns with header_rwsem held for write if called
6894  * with @depth == 0.
6895  */
6896 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6897 {
6898 	bool need_watch = !rbd_is_ro(rbd_dev);
6899 	int ret;
6900 
6901 	/*
6902 	 * Get the id from the image id object.  Unless there's an
6903 	 * error, rbd_dev->spec->image_id will be filled in with
6904 	 * a dynamically-allocated string, and rbd_dev->image_format
6905 	 * will be set to either 1 or 2.
6906 	 */
6907 	ret = rbd_dev_image_id(rbd_dev);
6908 	if (ret)
6909 		return ret;
6910 
6911 	ret = rbd_dev_header_name(rbd_dev);
6912 	if (ret)
6913 		goto err_out_format;
6914 
6915 	if (need_watch) {
6916 		ret = rbd_register_watch(rbd_dev);
6917 		if (ret) {
6918 			if (ret == -ENOENT)
6919 				rbd_print_dne(rbd_dev, false);
6920 			goto err_out_format;
6921 		}
6922 	}
6923 
6924 	if (!depth)
6925 		down_write(&rbd_dev->header_rwsem);
6926 
6927 	ret = rbd_dev_header_info(rbd_dev);
6928 	if (ret) {
6929 		if (ret == -ENOENT && !need_watch)
6930 			rbd_print_dne(rbd_dev, false);
6931 		goto err_out_probe;
6932 	}
6933 
6934 	/*
6935 	 * If this image is the one being mapped, we have pool name and
6936 	 * id, image name and id, and snap name - need to fill snap id.
6937 	 * Otherwise this is a parent image, identified by pool, image
6938 	 * and snap ids - need to fill in names for those ids.
6939 	 */
6940 	if (!depth)
6941 		ret = rbd_spec_fill_snap_id(rbd_dev);
6942 	else
6943 		ret = rbd_spec_fill_names(rbd_dev);
6944 	if (ret) {
6945 		if (ret == -ENOENT)
6946 			rbd_print_dne(rbd_dev, true);
6947 		goto err_out_probe;
6948 	}
6949 
6950 	ret = rbd_dev_mapping_set(rbd_dev);
6951 	if (ret)
6952 		goto err_out_probe;
6953 
6954 	if (rbd_is_snap(rbd_dev) &&
6955 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6956 		ret = rbd_object_map_load(rbd_dev);
6957 		if (ret)
6958 			goto err_out_probe;
6959 	}
6960 
6961 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6962 		ret = rbd_dev_v2_parent_info(rbd_dev);
6963 		if (ret)
6964 			goto err_out_probe;
6965 	}
6966 
6967 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6968 	if (ret)
6969 		goto err_out_probe;
6970 
6971 	dout("discovered format %u image, header name is %s\n",
6972 		rbd_dev->image_format, rbd_dev->header_oid.name);
6973 	return 0;
6974 
6975 err_out_probe:
6976 	if (!depth)
6977 		up_write(&rbd_dev->header_rwsem);
6978 	if (need_watch)
6979 		rbd_unregister_watch(rbd_dev);
6980 	rbd_dev_unprobe(rbd_dev);
6981 err_out_format:
6982 	rbd_dev->image_format = 0;
6983 	kfree(rbd_dev->spec->image_id);
6984 	rbd_dev->spec->image_id = NULL;
6985 	return ret;
6986 }
6987 
6988 static ssize_t do_rbd_add(struct bus_type *bus,
6989 			  const char *buf,
6990 			  size_t count)
6991 {
6992 	struct rbd_device *rbd_dev = NULL;
6993 	struct ceph_options *ceph_opts = NULL;
6994 	struct rbd_options *rbd_opts = NULL;
6995 	struct rbd_spec *spec = NULL;
6996 	struct rbd_client *rbdc;
6997 	int rc;
6998 
6999 	if (!capable(CAP_SYS_ADMIN))
7000 		return -EPERM;
7001 
7002 	if (!try_module_get(THIS_MODULE))
7003 		return -ENODEV;
7004 
7005 	/* parse add command */
7006 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7007 	if (rc < 0)
7008 		goto out;
7009 
7010 	rbdc = rbd_get_client(ceph_opts);
7011 	if (IS_ERR(rbdc)) {
7012 		rc = PTR_ERR(rbdc);
7013 		goto err_out_args;
7014 	}
7015 
7016 	/* pick the pool */
7017 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7018 	if (rc < 0) {
7019 		if (rc == -ENOENT)
7020 			pr_info("pool %s does not exist\n", spec->pool_name);
7021 		goto err_out_client;
7022 	}
7023 	spec->pool_id = (u64)rc;
7024 
7025 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7026 	if (!rbd_dev) {
7027 		rc = -ENOMEM;
7028 		goto err_out_client;
7029 	}
7030 	rbdc = NULL;		/* rbd_dev now owns this */
7031 	spec = NULL;		/* rbd_dev now owns this */
7032 	rbd_opts = NULL;	/* rbd_dev now owns this */
7033 
7034 	/* if we are mapping a snapshot it will be a read-only mapping */
7035 	if (rbd_dev->opts->read_only ||
7036 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7037 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7038 
7039 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7040 	if (!rbd_dev->config_info) {
7041 		rc = -ENOMEM;
7042 		goto err_out_rbd_dev;
7043 	}
7044 
7045 	rc = rbd_dev_image_probe(rbd_dev, 0);
7046 	if (rc < 0)
7047 		goto err_out_rbd_dev;
7048 
7049 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7050 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7051 			 rbd_dev->layout.object_size);
7052 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7053 	}
7054 
7055 	rc = rbd_dev_device_setup(rbd_dev);
7056 	if (rc)
7057 		goto err_out_image_probe;
7058 
7059 	rc = rbd_add_acquire_lock(rbd_dev);
7060 	if (rc)
7061 		goto err_out_image_lock;
7062 
7063 	/* Everything's ready.  Announce the disk to the world. */
7064 
7065 	rc = device_add(&rbd_dev->dev);
7066 	if (rc)
7067 		goto err_out_image_lock;
7068 
7069 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7070 
7071 	spin_lock(&rbd_dev_list_lock);
7072 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7073 	spin_unlock(&rbd_dev_list_lock);
7074 
7075 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7076 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7077 		rbd_dev->header.features);
7078 	rc = count;
7079 out:
7080 	module_put(THIS_MODULE);
7081 	return rc;
7082 
7083 err_out_image_lock:
7084 	rbd_dev_image_unlock(rbd_dev);
7085 	rbd_dev_device_release(rbd_dev);
7086 err_out_image_probe:
7087 	rbd_dev_image_release(rbd_dev);
7088 err_out_rbd_dev:
7089 	rbd_dev_destroy(rbd_dev);
7090 err_out_client:
7091 	rbd_put_client(rbdc);
7092 err_out_args:
7093 	rbd_spec_put(spec);
7094 	kfree(rbd_opts);
7095 	goto out;
7096 }
7097 
7098 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7099 {
7100 	if (single_major)
7101 		return -EINVAL;
7102 
7103 	return do_rbd_add(bus, buf, count);
7104 }
7105 
7106 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7107 				      size_t count)
7108 {
7109 	return do_rbd_add(bus, buf, count);
7110 }
7111 
7112 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7113 {
7114 	while (rbd_dev->parent) {
7115 		struct rbd_device *first = rbd_dev;
7116 		struct rbd_device *second = first->parent;
7117 		struct rbd_device *third;
7118 
7119 		/*
7120 		 * Follow to the parent with no grandparent and
7121 		 * remove it.
7122 		 */
7123 		while (second && (third = second->parent)) {
7124 			first = second;
7125 			second = third;
7126 		}
7127 		rbd_assert(second);
7128 		rbd_dev_image_release(second);
7129 		rbd_dev_destroy(second);
7130 		first->parent = NULL;
7131 		first->parent_overlap = 0;
7132 
7133 		rbd_assert(first->parent_spec);
7134 		rbd_spec_put(first->parent_spec);
7135 		first->parent_spec = NULL;
7136 	}
7137 }
7138 
7139 static ssize_t do_rbd_remove(struct bus_type *bus,
7140 			     const char *buf,
7141 			     size_t count)
7142 {
7143 	struct rbd_device *rbd_dev = NULL;
7144 	struct list_head *tmp;
7145 	int dev_id;
7146 	char opt_buf[6];
7147 	bool force = false;
7148 	int ret;
7149 
7150 	if (!capable(CAP_SYS_ADMIN))
7151 		return -EPERM;
7152 
7153 	dev_id = -1;
7154 	opt_buf[0] = '\0';
7155 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7156 	if (dev_id < 0) {
7157 		pr_err("dev_id out of range\n");
7158 		return -EINVAL;
7159 	}
7160 	if (opt_buf[0] != '\0') {
7161 		if (!strcmp(opt_buf, "force")) {
7162 			force = true;
7163 		} else {
7164 			pr_err("bad remove option at '%s'\n", opt_buf);
7165 			return -EINVAL;
7166 		}
7167 	}
7168 
7169 	ret = -ENOENT;
7170 	spin_lock(&rbd_dev_list_lock);
7171 	list_for_each(tmp, &rbd_dev_list) {
7172 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7173 		if (rbd_dev->dev_id == dev_id) {
7174 			ret = 0;
7175 			break;
7176 		}
7177 	}
7178 	if (!ret) {
7179 		spin_lock_irq(&rbd_dev->lock);
7180 		if (rbd_dev->open_count && !force)
7181 			ret = -EBUSY;
7182 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7183 					  &rbd_dev->flags))
7184 			ret = -EINPROGRESS;
7185 		spin_unlock_irq(&rbd_dev->lock);
7186 	}
7187 	spin_unlock(&rbd_dev_list_lock);
7188 	if (ret)
7189 		return ret;
7190 
7191 	if (force) {
7192 		/*
7193 		 * Prevent new IO from being queued and wait for existing
7194 		 * IO to complete/fail.
7195 		 */
7196 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7197 		blk_set_queue_dying(rbd_dev->disk->queue);
7198 	}
7199 
7200 	del_gendisk(rbd_dev->disk);
7201 	spin_lock(&rbd_dev_list_lock);
7202 	list_del_init(&rbd_dev->node);
7203 	spin_unlock(&rbd_dev_list_lock);
7204 	device_del(&rbd_dev->dev);
7205 
7206 	rbd_dev_image_unlock(rbd_dev);
7207 	rbd_dev_device_release(rbd_dev);
7208 	rbd_dev_image_release(rbd_dev);
7209 	rbd_dev_destroy(rbd_dev);
7210 	return count;
7211 }
7212 
7213 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7214 {
7215 	if (single_major)
7216 		return -EINVAL;
7217 
7218 	return do_rbd_remove(bus, buf, count);
7219 }
7220 
7221 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7222 					 size_t count)
7223 {
7224 	return do_rbd_remove(bus, buf, count);
7225 }
7226 
7227 /*
7228  * create control files in sysfs
7229  * /sys/bus/rbd/...
7230  */
7231 static int __init rbd_sysfs_init(void)
7232 {
7233 	int ret;
7234 
7235 	ret = device_register(&rbd_root_dev);
7236 	if (ret < 0)
7237 		return ret;
7238 
7239 	ret = bus_register(&rbd_bus_type);
7240 	if (ret < 0)
7241 		device_unregister(&rbd_root_dev);
7242 
7243 	return ret;
7244 }
7245 
7246 static void __exit rbd_sysfs_cleanup(void)
7247 {
7248 	bus_unregister(&rbd_bus_type);
7249 	device_unregister(&rbd_root_dev);
7250 }
7251 
7252 static int __init rbd_slab_init(void)
7253 {
7254 	rbd_assert(!rbd_img_request_cache);
7255 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7256 	if (!rbd_img_request_cache)
7257 		return -ENOMEM;
7258 
7259 	rbd_assert(!rbd_obj_request_cache);
7260 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7261 	if (!rbd_obj_request_cache)
7262 		goto out_err;
7263 
7264 	return 0;
7265 
7266 out_err:
7267 	kmem_cache_destroy(rbd_img_request_cache);
7268 	rbd_img_request_cache = NULL;
7269 	return -ENOMEM;
7270 }
7271 
7272 static void rbd_slab_exit(void)
7273 {
7274 	rbd_assert(rbd_obj_request_cache);
7275 	kmem_cache_destroy(rbd_obj_request_cache);
7276 	rbd_obj_request_cache = NULL;
7277 
7278 	rbd_assert(rbd_img_request_cache);
7279 	kmem_cache_destroy(rbd_img_request_cache);
7280 	rbd_img_request_cache = NULL;
7281 }
7282 
7283 static int __init rbd_init(void)
7284 {
7285 	int rc;
7286 
7287 	if (!libceph_compatible(NULL)) {
7288 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7289 		return -EINVAL;
7290 	}
7291 
7292 	rc = rbd_slab_init();
7293 	if (rc)
7294 		return rc;
7295 
7296 	/*
7297 	 * The number of active work items is limited by the number of
7298 	 * rbd devices * queue depth, so leave @max_active at default.
7299 	 */
7300 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7301 	if (!rbd_wq) {
7302 		rc = -ENOMEM;
7303 		goto err_out_slab;
7304 	}
7305 
7306 	if (single_major) {
7307 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7308 		if (rbd_major < 0) {
7309 			rc = rbd_major;
7310 			goto err_out_wq;
7311 		}
7312 	}
7313 
7314 	rc = rbd_sysfs_init();
7315 	if (rc)
7316 		goto err_out_blkdev;
7317 
7318 	if (single_major)
7319 		pr_info("loaded (major %d)\n", rbd_major);
7320 	else
7321 		pr_info("loaded\n");
7322 
7323 	return 0;
7324 
7325 err_out_blkdev:
7326 	if (single_major)
7327 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7328 err_out_wq:
7329 	destroy_workqueue(rbd_wq);
7330 err_out_slab:
7331 	rbd_slab_exit();
7332 	return rc;
7333 }
7334 
7335 static void __exit rbd_exit(void)
7336 {
7337 	ida_destroy(&rbd_dev_id_ida);
7338 	rbd_sysfs_cleanup();
7339 	if (single_major)
7340 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7341 	destroy_workqueue(rbd_wq);
7342 	rbd_slab_exit();
7343 }
7344 
7345 module_init(rbd_init);
7346 module_exit(rbd_exit);
7347 
7348 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7349 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7350 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7351 /* following authorship retained from original osdblk.c */
7352 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7353 
7354 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7355 MODULE_LICENSE("GPL");
7356