xref: /openbmc/linux/drivers/block/rbd.c (revision cdfce539)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 
45 #include "rbd_types.h"
46 
47 #define RBD_DEBUG	/* Activate rbd_assert() calls */
48 
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define	SECTOR_SHIFT	9
56 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
57 
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 	unsigned int counter;
67 
68 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 	if (counter <= (unsigned int)INT_MAX)
70 		return (int)counter;
71 
72 	atomic_dec(v);
73 
74 	return -EINVAL;
75 }
76 
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 	int counter;
81 
82 	counter = atomic_dec_return(v);
83 	if (counter >= 0)
84 		return counter;
85 
86 	atomic_inc(v);
87 
88 	return -EINVAL;
89 }
90 
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93 
94 #define RBD_MINORS_PER_MAJOR	256		/* max minors per blkdev */
95 
96 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
97 #define RBD_MAX_SNAP_NAME_LEN	\
98 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99 
100 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
101 
102 #define RBD_SNAP_HEAD_NAME	"-"
103 
104 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
105 
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX	64
109 
110 #define RBD_OBJ_PREFIX_LEN_MAX	64
111 
112 /* Feature bits */
113 
114 #define RBD_FEATURE_LAYERING	(1<<0)
115 #define RBD_FEATURE_STRIPINGV2	(1<<1)
116 #define RBD_FEATURES_ALL \
117 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118 
119 /* Features supported by this (client software) implementation. */
120 
121 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
122 
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN		32
130 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
131 
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136 	/* These six fields never change for a given rbd image */
137 	char *object_prefix;
138 	__u8 obj_order;
139 	__u8 crypt_type;
140 	__u8 comp_type;
141 	u64 stripe_unit;
142 	u64 stripe_count;
143 	u64 features;		/* Might be changeable someday? */
144 
145 	/* The remaining fields need to be updated occasionally */
146 	u64 image_size;
147 	struct ceph_snap_context *snapc;
148 	char *snap_names;	/* format 1 only */
149 	u64 *snap_sizes;	/* format 1 only */
150 };
151 
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178 	u64		pool_id;
179 	const char	*pool_name;
180 
181 	const char	*image_id;
182 	const char	*image_name;
183 
184 	u64		snap_id;
185 	const char	*snap_name;
186 
187 	struct kref	kref;
188 };
189 
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194 	struct ceph_client	*client;
195 	struct kref		kref;
196 	struct list_head	node;
197 };
198 
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201 
202 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
203 
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206 
207 enum obj_request_type {
208 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210 
211 enum obj_req_flags {
212 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
213 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
214 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
215 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
216 };
217 
218 struct rbd_obj_request {
219 	const char		*object_name;
220 	u64			offset;		/* object start byte */
221 	u64			length;		/* bytes from offset */
222 	unsigned long		flags;
223 
224 	/*
225 	 * An object request associated with an image will have its
226 	 * img_data flag set; a standalone object request will not.
227 	 *
228 	 * A standalone object request will have which == BAD_WHICH
229 	 * and a null obj_request pointer.
230 	 *
231 	 * An object request initiated in support of a layered image
232 	 * object (to check for its existence before a write) will
233 	 * have which == BAD_WHICH and a non-null obj_request pointer.
234 	 *
235 	 * Finally, an object request for rbd image data will have
236 	 * which != BAD_WHICH, and will have a non-null img_request
237 	 * pointer.  The value of which will be in the range
238 	 * 0..(img_request->obj_request_count-1).
239 	 */
240 	union {
241 		struct rbd_obj_request	*obj_request;	/* STAT op */
242 		struct {
243 			struct rbd_img_request	*img_request;
244 			u64			img_offset;
245 			/* links for img_request->obj_requests list */
246 			struct list_head	links;
247 		};
248 	};
249 	u32			which;		/* posn image request list */
250 
251 	enum obj_request_type	type;
252 	union {
253 		struct bio	*bio_list;
254 		struct {
255 			struct page	**pages;
256 			u32		page_count;
257 		};
258 	};
259 	struct page		**copyup_pages;
260 	u32			copyup_page_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	rbd_obj_callback_t	callback;
268 	struct completion	completion;
269 
270 	struct kref		kref;
271 };
272 
273 enum img_req_flags {
274 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
275 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
276 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
277 };
278 
279 struct rbd_img_request {
280 	struct rbd_device	*rbd_dev;
281 	u64			offset;	/* starting image byte offset */
282 	u64			length;	/* byte count from offset */
283 	unsigned long		flags;
284 	union {
285 		u64			snap_id;	/* for reads */
286 		struct ceph_snap_context *snapc;	/* for writes */
287 	};
288 	union {
289 		struct request		*rq;		/* block request */
290 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
291 	};
292 	struct page		**copyup_pages;
293 	u32			copyup_page_count;
294 	spinlock_t		completion_lock;/* protects next_completion */
295 	u32			next_completion;
296 	rbd_img_callback_t	callback;
297 	u64			xferred;/* aggregate bytes transferred */
298 	int			result;	/* first nonzero obj_request result */
299 
300 	u32			obj_request_count;
301 	struct list_head	obj_requests;	/* rbd_obj_request structs */
302 
303 	struct kref		kref;
304 };
305 
306 #define for_each_obj_request(ireq, oreq) \
307 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312 
313 struct rbd_mapping {
314 	u64                     size;
315 	u64                     features;
316 	bool			read_only;
317 };
318 
319 /*
320  * a single device
321  */
322 struct rbd_device {
323 	int			dev_id;		/* blkdev unique id */
324 
325 	int			major;		/* blkdev assigned major */
326 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
327 
328 	u32			image_format;	/* Either 1 or 2 */
329 	struct rbd_client	*rbd_client;
330 
331 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332 
333 	spinlock_t		lock;		/* queue, flags, open_count */
334 
335 	struct rbd_image_header	header;
336 	unsigned long		flags;		/* possibly lock protected */
337 	struct rbd_spec		*spec;
338 
339 	char			*header_name;
340 
341 	struct ceph_file_layout	layout;
342 
343 	struct ceph_osd_event   *watch_event;
344 	struct rbd_obj_request	*watch_request;
345 
346 	struct rbd_spec		*parent_spec;
347 	u64			parent_overlap;
348 	atomic_t		parent_ref;
349 	struct rbd_device	*parent;
350 
351 	/* protects updating the header */
352 	struct rw_semaphore     header_rwsem;
353 
354 	struct rbd_mapping	mapping;
355 
356 	struct list_head	node;
357 
358 	/* sysfs related */
359 	struct device		dev;
360 	unsigned long		open_count;	/* protected by lock */
361 };
362 
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
372 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
373 };
374 
375 static DEFINE_MUTEX(ctl_mutex);	  /* Serialize open/close/setup/teardown */
376 
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379 
380 static LIST_HEAD(rbd_client_list);		/* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382 
383 /* Slab caches for frequently-allocated structures */
384 
385 static struct kmem_cache	*rbd_img_request_cache;
386 static struct kmem_cache	*rbd_obj_request_cache;
387 static struct kmem_cache	*rbd_segment_name_cache;
388 
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390 
391 static void rbd_dev_device_release(struct device *dev);
392 
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 		       size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 			  size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399 
400 static struct bus_attribute rbd_bus_attrs[] = {
401 	__ATTR(add, S_IWUSR, NULL, rbd_add),
402 	__ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 	__ATTR_NULL
404 };
405 
406 static struct bus_type rbd_bus_type = {
407 	.name		= "rbd",
408 	.bus_attrs	= rbd_bus_attrs,
409 };
410 
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414 
415 static struct device rbd_root_dev = {
416 	.init_name =    "rbd",
417 	.release =      rbd_root_dev_release,
418 };
419 
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 	struct va_format vaf;
424 	va_list args;
425 
426 	va_start(args, fmt);
427 	vaf.fmt = fmt;
428 	vaf.va = &args;
429 
430 	if (!rbd_dev)
431 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 	else if (rbd_dev->disk)
433 		printk(KERN_WARNING "%s: %s: %pV\n",
434 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 		printk(KERN_WARNING "%s: image %s: %pV\n",
437 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 		printk(KERN_WARNING "%s: id %s: %pV\n",
440 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 	else	/* punt */
442 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 			RBD_DRV_NAME, rbd_dev, &vaf);
444 	va_end(args);
445 }
446 
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)						\
449 		if (unlikely(!(expr))) {				\
450 			printk(KERN_ERR "\nAssertion failure in %s() "	\
451 						"at line %d:\n\n"	\
452 					"\trbd_assert(%s);\n\n",	\
453 					__func__, __LINE__, #expr);	\
454 			BUG();						\
455 		}
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)	((void) 0)
458 #endif /* !RBD_DEBUG */
459 
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463 
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 					u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 				u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 		u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474 
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 	bool removing = false;
479 
480 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 		return -EROFS;
482 
483 	spin_lock_irq(&rbd_dev->lock);
484 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 		removing = true;
486 	else
487 		rbd_dev->open_count++;
488 	spin_unlock_irq(&rbd_dev->lock);
489 	if (removing)
490 		return -ENOENT;
491 
492 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 	(void) get_device(&rbd_dev->dev);
494 	set_device_ro(bdev, rbd_dev->mapping.read_only);
495 	mutex_unlock(&ctl_mutex);
496 
497 	return 0;
498 }
499 
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 	struct rbd_device *rbd_dev = disk->private_data;
503 	unsigned long open_count_before;
504 
505 	spin_lock_irq(&rbd_dev->lock);
506 	open_count_before = rbd_dev->open_count--;
507 	spin_unlock_irq(&rbd_dev->lock);
508 	rbd_assert(open_count_before > 0);
509 
510 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 	put_device(&rbd_dev->dev);
512 	mutex_unlock(&ctl_mutex);
513 }
514 
515 static const struct block_device_operations rbd_bd_ops = {
516 	.owner			= THIS_MODULE,
517 	.open			= rbd_open,
518 	.release		= rbd_release,
519 };
520 
521 /*
522  * Initialize an rbd client instance.
523  * We own *ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 	struct rbd_client *rbdc;
528 	int ret = -ENOMEM;
529 
530 	dout("%s:\n", __func__);
531 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 	if (!rbdc)
533 		goto out_opt;
534 
535 	kref_init(&rbdc->kref);
536 	INIT_LIST_HEAD(&rbdc->node);
537 
538 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539 
540 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 	if (IS_ERR(rbdc->client))
542 		goto out_mutex;
543 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544 
545 	ret = ceph_open_session(rbdc->client);
546 	if (ret < 0)
547 		goto out_err;
548 
549 	spin_lock(&rbd_client_list_lock);
550 	list_add_tail(&rbdc->node, &rbd_client_list);
551 	spin_unlock(&rbd_client_list_lock);
552 
553 	mutex_unlock(&ctl_mutex);
554 	dout("%s: rbdc %p\n", __func__, rbdc);
555 
556 	return rbdc;
557 
558 out_err:
559 	ceph_destroy_client(rbdc->client);
560 out_mutex:
561 	mutex_unlock(&ctl_mutex);
562 	kfree(rbdc);
563 out_opt:
564 	if (ceph_opts)
565 		ceph_destroy_options(ceph_opts);
566 	dout("%s: error %d\n", __func__, ret);
567 
568 	return ERR_PTR(ret);
569 }
570 
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 	kref_get(&rbdc->kref);
574 
575 	return rbdc;
576 }
577 
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 	struct rbd_client *client_node;
585 	bool found = false;
586 
587 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 		return NULL;
589 
590 	spin_lock(&rbd_client_list_lock);
591 	list_for_each_entry(client_node, &rbd_client_list, node) {
592 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 			__rbd_get_client(client_node);
594 
595 			found = true;
596 			break;
597 		}
598 	}
599 	spin_unlock(&rbd_client_list_lock);
600 
601 	return found ? client_node : NULL;
602 }
603 
604 /*
605  * mount options
606  */
607 enum {
608 	Opt_last_int,
609 	/* int args above */
610 	Opt_last_string,
611 	/* string args above */
612 	Opt_read_only,
613 	Opt_read_write,
614 	/* Boolean args above */
615 	Opt_last_bool,
616 };
617 
618 static match_table_t rbd_opts_tokens = {
619 	/* int args above */
620 	/* string args above */
621 	{Opt_read_only, "read_only"},
622 	{Opt_read_only, "ro"},		/* Alternate spelling */
623 	{Opt_read_write, "read_write"},
624 	{Opt_read_write, "rw"},		/* Alternate spelling */
625 	/* Boolean args above */
626 	{-1, NULL}
627 };
628 
629 struct rbd_options {
630 	bool	read_only;
631 };
632 
633 #define RBD_READ_ONLY_DEFAULT	false
634 
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 	struct rbd_options *rbd_opts = private;
638 	substring_t argstr[MAX_OPT_ARGS];
639 	int token, intval, ret;
640 
641 	token = match_token(c, rbd_opts_tokens, argstr);
642 	if (token < 0)
643 		return -EINVAL;
644 
645 	if (token < Opt_last_int) {
646 		ret = match_int(&argstr[0], &intval);
647 		if (ret < 0) {
648 			pr_err("bad mount option arg (not int) "
649 			       "at '%s'\n", c);
650 			return ret;
651 		}
652 		dout("got int token %d val %d\n", token, intval);
653 	} else if (token > Opt_last_int && token < Opt_last_string) {
654 		dout("got string token %d val %s\n", token,
655 		     argstr[0].from);
656 	} else if (token > Opt_last_string && token < Opt_last_bool) {
657 		dout("got Boolean token %d\n", token);
658 	} else {
659 		dout("got token %d\n", token);
660 	}
661 
662 	switch (token) {
663 	case Opt_read_only:
664 		rbd_opts->read_only = true;
665 		break;
666 	case Opt_read_write:
667 		rbd_opts->read_only = false;
668 		break;
669 	default:
670 		rbd_assert(false);
671 		break;
672 	}
673 	return 0;
674 }
675 
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.
679  */
680 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
681 {
682 	struct rbd_client *rbdc;
683 
684 	rbdc = rbd_client_find(ceph_opts);
685 	if (rbdc)	/* using an existing client */
686 		ceph_destroy_options(ceph_opts);
687 	else
688 		rbdc = rbd_client_create(ceph_opts);
689 
690 	return rbdc;
691 }
692 
693 /*
694  * Destroy ceph client
695  *
696  * Caller must hold rbd_client_list_lock.
697  */
698 static void rbd_client_release(struct kref *kref)
699 {
700 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
701 
702 	dout("%s: rbdc %p\n", __func__, rbdc);
703 	spin_lock(&rbd_client_list_lock);
704 	list_del(&rbdc->node);
705 	spin_unlock(&rbd_client_list_lock);
706 
707 	ceph_destroy_client(rbdc->client);
708 	kfree(rbdc);
709 }
710 
711 /*
712  * Drop reference to ceph client node. If it's not referenced anymore, release
713  * it.
714  */
715 static void rbd_put_client(struct rbd_client *rbdc)
716 {
717 	if (rbdc)
718 		kref_put(&rbdc->kref, rbd_client_release);
719 }
720 
721 static bool rbd_image_format_valid(u32 image_format)
722 {
723 	return image_format == 1 || image_format == 2;
724 }
725 
726 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
727 {
728 	size_t size;
729 	u32 snap_count;
730 
731 	/* The header has to start with the magic rbd header text */
732 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
733 		return false;
734 
735 	/* The bio layer requires at least sector-sized I/O */
736 
737 	if (ondisk->options.order < SECTOR_SHIFT)
738 		return false;
739 
740 	/* If we use u64 in a few spots we may be able to loosen this */
741 
742 	if (ondisk->options.order > 8 * sizeof (int) - 1)
743 		return false;
744 
745 	/*
746 	 * The size of a snapshot header has to fit in a size_t, and
747 	 * that limits the number of snapshots.
748 	 */
749 	snap_count = le32_to_cpu(ondisk->snap_count);
750 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
751 	if (snap_count > size / sizeof (__le64))
752 		return false;
753 
754 	/*
755 	 * Not only that, but the size of the entire the snapshot
756 	 * header must also be representable in a size_t.
757 	 */
758 	size -= snap_count * sizeof (__le64);
759 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
760 		return false;
761 
762 	return true;
763 }
764 
765 /*
766  * Fill an rbd image header with information from the given format 1
767  * on-disk header.
768  */
769 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
770 				 struct rbd_image_header_ondisk *ondisk)
771 {
772 	struct rbd_image_header *header = &rbd_dev->header;
773 	bool first_time = header->object_prefix == NULL;
774 	struct ceph_snap_context *snapc;
775 	char *object_prefix = NULL;
776 	char *snap_names = NULL;
777 	u64 *snap_sizes = NULL;
778 	u32 snap_count;
779 	size_t size;
780 	int ret = -ENOMEM;
781 	u32 i;
782 
783 	/* Allocate this now to avoid having to handle failure below */
784 
785 	if (first_time) {
786 		size_t len;
787 
788 		len = strnlen(ondisk->object_prefix,
789 				sizeof (ondisk->object_prefix));
790 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
791 		if (!object_prefix)
792 			return -ENOMEM;
793 		memcpy(object_prefix, ondisk->object_prefix, len);
794 		object_prefix[len] = '\0';
795 	}
796 
797 	/* Allocate the snapshot context and fill it in */
798 
799 	snap_count = le32_to_cpu(ondisk->snap_count);
800 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
801 	if (!snapc)
802 		goto out_err;
803 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
804 	if (snap_count) {
805 		struct rbd_image_snap_ondisk *snaps;
806 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
807 
808 		/* We'll keep a copy of the snapshot names... */
809 
810 		if (snap_names_len > (u64)SIZE_MAX)
811 			goto out_2big;
812 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
813 		if (!snap_names)
814 			goto out_err;
815 
816 		/* ...as well as the array of their sizes. */
817 
818 		size = snap_count * sizeof (*header->snap_sizes);
819 		snap_sizes = kmalloc(size, GFP_KERNEL);
820 		if (!snap_sizes)
821 			goto out_err;
822 
823 		/*
824 		 * Copy the names, and fill in each snapshot's id
825 		 * and size.
826 		 *
827 		 * Note that rbd_dev_v1_header_info() guarantees the
828 		 * ondisk buffer we're working with has
829 		 * snap_names_len bytes beyond the end of the
830 		 * snapshot id array, this memcpy() is safe.
831 		 */
832 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
833 		snaps = ondisk->snaps;
834 		for (i = 0; i < snap_count; i++) {
835 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
836 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
837 		}
838 	}
839 
840 	/* We won't fail any more, fill in the header */
841 
842 	down_write(&rbd_dev->header_rwsem);
843 	if (first_time) {
844 		header->object_prefix = object_prefix;
845 		header->obj_order = ondisk->options.order;
846 		header->crypt_type = ondisk->options.crypt_type;
847 		header->comp_type = ondisk->options.comp_type;
848 		/* The rest aren't used for format 1 images */
849 		header->stripe_unit = 0;
850 		header->stripe_count = 0;
851 		header->features = 0;
852 	} else {
853 		ceph_put_snap_context(header->snapc);
854 		kfree(header->snap_names);
855 		kfree(header->snap_sizes);
856 	}
857 
858 	/* The remaining fields always get updated (when we refresh) */
859 
860 	header->image_size = le64_to_cpu(ondisk->image_size);
861 	header->snapc = snapc;
862 	header->snap_names = snap_names;
863 	header->snap_sizes = snap_sizes;
864 
865 	/* Make sure mapping size is consistent with header info */
866 
867 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
868 		if (rbd_dev->mapping.size != header->image_size)
869 			rbd_dev->mapping.size = header->image_size;
870 
871 	up_write(&rbd_dev->header_rwsem);
872 
873 	return 0;
874 out_2big:
875 	ret = -EIO;
876 out_err:
877 	kfree(snap_sizes);
878 	kfree(snap_names);
879 	ceph_put_snap_context(snapc);
880 	kfree(object_prefix);
881 
882 	return ret;
883 }
884 
885 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
886 {
887 	const char *snap_name;
888 
889 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
890 
891 	/* Skip over names until we find the one we are looking for */
892 
893 	snap_name = rbd_dev->header.snap_names;
894 	while (which--)
895 		snap_name += strlen(snap_name) + 1;
896 
897 	return kstrdup(snap_name, GFP_KERNEL);
898 }
899 
900 /*
901  * Snapshot id comparison function for use with qsort()/bsearch().
902  * Note that result is for snapshots in *descending* order.
903  */
904 static int snapid_compare_reverse(const void *s1, const void *s2)
905 {
906 	u64 snap_id1 = *(u64 *)s1;
907 	u64 snap_id2 = *(u64 *)s2;
908 
909 	if (snap_id1 < snap_id2)
910 		return 1;
911 	return snap_id1 == snap_id2 ? 0 : -1;
912 }
913 
914 /*
915  * Search a snapshot context to see if the given snapshot id is
916  * present.
917  *
918  * Returns the position of the snapshot id in the array if it's found,
919  * or BAD_SNAP_INDEX otherwise.
920  *
921  * Note: The snapshot array is in kept sorted (by the osd) in
922  * reverse order, highest snapshot id first.
923  */
924 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
925 {
926 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
927 	u64 *found;
928 
929 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
930 				sizeof (snap_id), snapid_compare_reverse);
931 
932 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
933 }
934 
935 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
936 					u64 snap_id)
937 {
938 	u32 which;
939 
940 	which = rbd_dev_snap_index(rbd_dev, snap_id);
941 	if (which == BAD_SNAP_INDEX)
942 		return NULL;
943 
944 	return _rbd_dev_v1_snap_name(rbd_dev, which);
945 }
946 
947 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
948 {
949 	if (snap_id == CEPH_NOSNAP)
950 		return RBD_SNAP_HEAD_NAME;
951 
952 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
953 	if (rbd_dev->image_format == 1)
954 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
955 
956 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
957 }
958 
959 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
960 				u64 *snap_size)
961 {
962 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
963 	if (snap_id == CEPH_NOSNAP) {
964 		*snap_size = rbd_dev->header.image_size;
965 	} else if (rbd_dev->image_format == 1) {
966 		u32 which;
967 
968 		which = rbd_dev_snap_index(rbd_dev, snap_id);
969 		if (which == BAD_SNAP_INDEX)
970 			return -ENOENT;
971 
972 		*snap_size = rbd_dev->header.snap_sizes[which];
973 	} else {
974 		u64 size = 0;
975 		int ret;
976 
977 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
978 		if (ret)
979 			return ret;
980 
981 		*snap_size = size;
982 	}
983 	return 0;
984 }
985 
986 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
987 			u64 *snap_features)
988 {
989 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
990 	if (snap_id == CEPH_NOSNAP) {
991 		*snap_features = rbd_dev->header.features;
992 	} else if (rbd_dev->image_format == 1) {
993 		*snap_features = 0;	/* No features for format 1 */
994 	} else {
995 		u64 features = 0;
996 		int ret;
997 
998 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
999 		if (ret)
1000 			return ret;
1001 
1002 		*snap_features = features;
1003 	}
1004 	return 0;
1005 }
1006 
1007 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1008 {
1009 	u64 snap_id = rbd_dev->spec->snap_id;
1010 	u64 size = 0;
1011 	u64 features = 0;
1012 	int ret;
1013 
1014 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1015 	if (ret)
1016 		return ret;
1017 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1018 	if (ret)
1019 		return ret;
1020 
1021 	rbd_dev->mapping.size = size;
1022 	rbd_dev->mapping.features = features;
1023 
1024 	return 0;
1025 }
1026 
1027 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1028 {
1029 	rbd_dev->mapping.size = 0;
1030 	rbd_dev->mapping.features = 0;
1031 }
1032 
1033 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1034 {
1035 	char *name;
1036 	u64 segment;
1037 	int ret;
1038 
1039 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1040 	if (!name)
1041 		return NULL;
1042 	segment = offset >> rbd_dev->header.obj_order;
1043 	ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1044 			rbd_dev->header.object_prefix, segment);
1045 	if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1046 		pr_err("error formatting segment name for #%llu (%d)\n",
1047 			segment, ret);
1048 		kfree(name);
1049 		name = NULL;
1050 	}
1051 
1052 	return name;
1053 }
1054 
1055 static void rbd_segment_name_free(const char *name)
1056 {
1057 	/* The explicit cast here is needed to drop the const qualifier */
1058 
1059 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1060 }
1061 
1062 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1063 {
1064 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1065 
1066 	return offset & (segment_size - 1);
1067 }
1068 
1069 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1070 				u64 offset, u64 length)
1071 {
1072 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1073 
1074 	offset &= segment_size - 1;
1075 
1076 	rbd_assert(length <= U64_MAX - offset);
1077 	if (offset + length > segment_size)
1078 		length = segment_size - offset;
1079 
1080 	return length;
1081 }
1082 
1083 /*
1084  * returns the size of an object in the image
1085  */
1086 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1087 {
1088 	return 1 << header->obj_order;
1089 }
1090 
1091 /*
1092  * bio helpers
1093  */
1094 
1095 static void bio_chain_put(struct bio *chain)
1096 {
1097 	struct bio *tmp;
1098 
1099 	while (chain) {
1100 		tmp = chain;
1101 		chain = chain->bi_next;
1102 		bio_put(tmp);
1103 	}
1104 }
1105 
1106 /*
1107  * zeros a bio chain, starting at specific offset
1108  */
1109 static void zero_bio_chain(struct bio *chain, int start_ofs)
1110 {
1111 	struct bio_vec *bv;
1112 	unsigned long flags;
1113 	void *buf;
1114 	int i;
1115 	int pos = 0;
1116 
1117 	while (chain) {
1118 		bio_for_each_segment(bv, chain, i) {
1119 			if (pos + bv->bv_len > start_ofs) {
1120 				int remainder = max(start_ofs - pos, 0);
1121 				buf = bvec_kmap_irq(bv, &flags);
1122 				memset(buf + remainder, 0,
1123 				       bv->bv_len - remainder);
1124 				bvec_kunmap_irq(buf, &flags);
1125 			}
1126 			pos += bv->bv_len;
1127 		}
1128 
1129 		chain = chain->bi_next;
1130 	}
1131 }
1132 
1133 /*
1134  * similar to zero_bio_chain(), zeros data defined by a page array,
1135  * starting at the given byte offset from the start of the array and
1136  * continuing up to the given end offset.  The pages array is
1137  * assumed to be big enough to hold all bytes up to the end.
1138  */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141 	struct page **page = &pages[offset >> PAGE_SHIFT];
1142 
1143 	rbd_assert(end > offset);
1144 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1145 	while (offset < end) {
1146 		size_t page_offset;
1147 		size_t length;
1148 		unsigned long flags;
1149 		void *kaddr;
1150 
1151 		page_offset = (size_t)(offset & ~PAGE_MASK);
1152 		length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1153 		local_irq_save(flags);
1154 		kaddr = kmap_atomic(*page);
1155 		memset(kaddr + page_offset, 0, length);
1156 		kunmap_atomic(kaddr);
1157 		local_irq_restore(flags);
1158 
1159 		offset += length;
1160 		page++;
1161 	}
1162 }
1163 
1164 /*
1165  * Clone a portion of a bio, starting at the given byte offset
1166  * and continuing for the number of bytes indicated.
1167  */
1168 static struct bio *bio_clone_range(struct bio *bio_src,
1169 					unsigned int offset,
1170 					unsigned int len,
1171 					gfp_t gfpmask)
1172 {
1173 	struct bio_vec *bv;
1174 	unsigned int resid;
1175 	unsigned short idx;
1176 	unsigned int voff;
1177 	unsigned short end_idx;
1178 	unsigned short vcnt;
1179 	struct bio *bio;
1180 
1181 	/* Handle the easy case for the caller */
1182 
1183 	if (!offset && len == bio_src->bi_size)
1184 		return bio_clone(bio_src, gfpmask);
1185 
1186 	if (WARN_ON_ONCE(!len))
1187 		return NULL;
1188 	if (WARN_ON_ONCE(len > bio_src->bi_size))
1189 		return NULL;
1190 	if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1191 		return NULL;
1192 
1193 	/* Find first affected segment... */
1194 
1195 	resid = offset;
1196 	bio_for_each_segment(bv, bio_src, idx) {
1197 		if (resid < bv->bv_len)
1198 			break;
1199 		resid -= bv->bv_len;
1200 	}
1201 	voff = resid;
1202 
1203 	/* ...and the last affected segment */
1204 
1205 	resid += len;
1206 	__bio_for_each_segment(bv, bio_src, end_idx, idx) {
1207 		if (resid <= bv->bv_len)
1208 			break;
1209 		resid -= bv->bv_len;
1210 	}
1211 	vcnt = end_idx - idx + 1;
1212 
1213 	/* Build the clone */
1214 
1215 	bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1216 	if (!bio)
1217 		return NULL;	/* ENOMEM */
1218 
1219 	bio->bi_bdev = bio_src->bi_bdev;
1220 	bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1221 	bio->bi_rw = bio_src->bi_rw;
1222 	bio->bi_flags |= 1 << BIO_CLONED;
1223 
1224 	/*
1225 	 * Copy over our part of the bio_vec, then update the first
1226 	 * and last (or only) entries.
1227 	 */
1228 	memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1229 			vcnt * sizeof (struct bio_vec));
1230 	bio->bi_io_vec[0].bv_offset += voff;
1231 	if (vcnt > 1) {
1232 		bio->bi_io_vec[0].bv_len -= voff;
1233 		bio->bi_io_vec[vcnt - 1].bv_len = resid;
1234 	} else {
1235 		bio->bi_io_vec[0].bv_len = len;
1236 	}
1237 
1238 	bio->bi_vcnt = vcnt;
1239 	bio->bi_size = len;
1240 	bio->bi_idx = 0;
1241 
1242 	return bio;
1243 }
1244 
1245 /*
1246  * Clone a portion of a bio chain, starting at the given byte offset
1247  * into the first bio in the source chain and continuing for the
1248  * number of bytes indicated.  The result is another bio chain of
1249  * exactly the given length, or a null pointer on error.
1250  *
1251  * The bio_src and offset parameters are both in-out.  On entry they
1252  * refer to the first source bio and the offset into that bio where
1253  * the start of data to be cloned is located.
1254  *
1255  * On return, bio_src is updated to refer to the bio in the source
1256  * chain that contains first un-cloned byte, and *offset will
1257  * contain the offset of that byte within that bio.
1258  */
1259 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1260 					unsigned int *offset,
1261 					unsigned int len,
1262 					gfp_t gfpmask)
1263 {
1264 	struct bio *bi = *bio_src;
1265 	unsigned int off = *offset;
1266 	struct bio *chain = NULL;
1267 	struct bio **end;
1268 
1269 	/* Build up a chain of clone bios up to the limit */
1270 
1271 	if (!bi || off >= bi->bi_size || !len)
1272 		return NULL;		/* Nothing to clone */
1273 
1274 	end = &chain;
1275 	while (len) {
1276 		unsigned int bi_size;
1277 		struct bio *bio;
1278 
1279 		if (!bi) {
1280 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1281 			goto out_err;	/* EINVAL; ran out of bio's */
1282 		}
1283 		bi_size = min_t(unsigned int, bi->bi_size - off, len);
1284 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1285 		if (!bio)
1286 			goto out_err;	/* ENOMEM */
1287 
1288 		*end = bio;
1289 		end = &bio->bi_next;
1290 
1291 		off += bi_size;
1292 		if (off == bi->bi_size) {
1293 			bi = bi->bi_next;
1294 			off = 0;
1295 		}
1296 		len -= bi_size;
1297 	}
1298 	*bio_src = bi;
1299 	*offset = off;
1300 
1301 	return chain;
1302 out_err:
1303 	bio_chain_put(chain);
1304 
1305 	return NULL;
1306 }
1307 
1308 /*
1309  * The default/initial value for all object request flags is 0.  For
1310  * each flag, once its value is set to 1 it is never reset to 0
1311  * again.
1312  */
1313 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1314 {
1315 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1316 		struct rbd_device *rbd_dev;
1317 
1318 		rbd_dev = obj_request->img_request->rbd_dev;
1319 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1320 			obj_request);
1321 	}
1322 }
1323 
1324 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1325 {
1326 	smp_mb();
1327 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1328 }
1329 
1330 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1331 {
1332 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1333 		struct rbd_device *rbd_dev = NULL;
1334 
1335 		if (obj_request_img_data_test(obj_request))
1336 			rbd_dev = obj_request->img_request->rbd_dev;
1337 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1338 			obj_request);
1339 	}
1340 }
1341 
1342 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1343 {
1344 	smp_mb();
1345 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1346 }
1347 
1348 /*
1349  * This sets the KNOWN flag after (possibly) setting the EXISTS
1350  * flag.  The latter is set based on the "exists" value provided.
1351  *
1352  * Note that for our purposes once an object exists it never goes
1353  * away again.  It's possible that the response from two existence
1354  * checks are separated by the creation of the target object, and
1355  * the first ("doesn't exist") response arrives *after* the second
1356  * ("does exist").  In that case we ignore the second one.
1357  */
1358 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1359 				bool exists)
1360 {
1361 	if (exists)
1362 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1363 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1364 	smp_mb();
1365 }
1366 
1367 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1368 {
1369 	smp_mb();
1370 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1371 }
1372 
1373 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1374 {
1375 	smp_mb();
1376 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1377 }
1378 
1379 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1380 {
1381 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1382 		atomic_read(&obj_request->kref.refcount));
1383 	kref_get(&obj_request->kref);
1384 }
1385 
1386 static void rbd_obj_request_destroy(struct kref *kref);
1387 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1388 {
1389 	rbd_assert(obj_request != NULL);
1390 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391 		atomic_read(&obj_request->kref.refcount));
1392 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1393 }
1394 
1395 static bool img_request_child_test(struct rbd_img_request *img_request);
1396 static void rbd_parent_request_destroy(struct kref *kref);
1397 static void rbd_img_request_destroy(struct kref *kref);
1398 static void rbd_img_request_put(struct rbd_img_request *img_request)
1399 {
1400 	rbd_assert(img_request != NULL);
1401 	dout("%s: img %p (was %d)\n", __func__, img_request,
1402 		atomic_read(&img_request->kref.refcount));
1403 	if (img_request_child_test(img_request))
1404 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1405 	else
1406 		kref_put(&img_request->kref, rbd_img_request_destroy);
1407 }
1408 
1409 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1410 					struct rbd_obj_request *obj_request)
1411 {
1412 	rbd_assert(obj_request->img_request == NULL);
1413 
1414 	/* Image request now owns object's original reference */
1415 	obj_request->img_request = img_request;
1416 	obj_request->which = img_request->obj_request_count;
1417 	rbd_assert(!obj_request_img_data_test(obj_request));
1418 	obj_request_img_data_set(obj_request);
1419 	rbd_assert(obj_request->which != BAD_WHICH);
1420 	img_request->obj_request_count++;
1421 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1422 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1423 		obj_request->which);
1424 }
1425 
1426 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1427 					struct rbd_obj_request *obj_request)
1428 {
1429 	rbd_assert(obj_request->which != BAD_WHICH);
1430 
1431 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1432 		obj_request->which);
1433 	list_del(&obj_request->links);
1434 	rbd_assert(img_request->obj_request_count > 0);
1435 	img_request->obj_request_count--;
1436 	rbd_assert(obj_request->which == img_request->obj_request_count);
1437 	obj_request->which = BAD_WHICH;
1438 	rbd_assert(obj_request_img_data_test(obj_request));
1439 	rbd_assert(obj_request->img_request == img_request);
1440 	obj_request->img_request = NULL;
1441 	obj_request->callback = NULL;
1442 	rbd_obj_request_put(obj_request);
1443 }
1444 
1445 static bool obj_request_type_valid(enum obj_request_type type)
1446 {
1447 	switch (type) {
1448 	case OBJ_REQUEST_NODATA:
1449 	case OBJ_REQUEST_BIO:
1450 	case OBJ_REQUEST_PAGES:
1451 		return true;
1452 	default:
1453 		return false;
1454 	}
1455 }
1456 
1457 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1458 				struct rbd_obj_request *obj_request)
1459 {
1460 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1461 
1462 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1463 }
1464 
1465 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1466 {
1467 
1468 	dout("%s: img %p\n", __func__, img_request);
1469 
1470 	/*
1471 	 * If no error occurred, compute the aggregate transfer
1472 	 * count for the image request.  We could instead use
1473 	 * atomic64_cmpxchg() to update it as each object request
1474 	 * completes; not clear which way is better off hand.
1475 	 */
1476 	if (!img_request->result) {
1477 		struct rbd_obj_request *obj_request;
1478 		u64 xferred = 0;
1479 
1480 		for_each_obj_request(img_request, obj_request)
1481 			xferred += obj_request->xferred;
1482 		img_request->xferred = xferred;
1483 	}
1484 
1485 	if (img_request->callback)
1486 		img_request->callback(img_request);
1487 	else
1488 		rbd_img_request_put(img_request);
1489 }
1490 
1491 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1492 
1493 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1494 {
1495 	dout("%s: obj %p\n", __func__, obj_request);
1496 
1497 	return wait_for_completion_interruptible(&obj_request->completion);
1498 }
1499 
1500 /*
1501  * The default/initial value for all image request flags is 0.  Each
1502  * is conditionally set to 1 at image request initialization time
1503  * and currently never change thereafter.
1504  */
1505 static void img_request_write_set(struct rbd_img_request *img_request)
1506 {
1507 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1508 	smp_mb();
1509 }
1510 
1511 static bool img_request_write_test(struct rbd_img_request *img_request)
1512 {
1513 	smp_mb();
1514 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1515 }
1516 
1517 static void img_request_child_set(struct rbd_img_request *img_request)
1518 {
1519 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1520 	smp_mb();
1521 }
1522 
1523 static void img_request_child_clear(struct rbd_img_request *img_request)
1524 {
1525 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1526 	smp_mb();
1527 }
1528 
1529 static bool img_request_child_test(struct rbd_img_request *img_request)
1530 {
1531 	smp_mb();
1532 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1533 }
1534 
1535 static void img_request_layered_set(struct rbd_img_request *img_request)
1536 {
1537 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1538 	smp_mb();
1539 }
1540 
1541 static void img_request_layered_clear(struct rbd_img_request *img_request)
1542 {
1543 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1544 	smp_mb();
1545 }
1546 
1547 static bool img_request_layered_test(struct rbd_img_request *img_request)
1548 {
1549 	smp_mb();
1550 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1551 }
1552 
1553 static void
1554 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1555 {
1556 	u64 xferred = obj_request->xferred;
1557 	u64 length = obj_request->length;
1558 
1559 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1560 		obj_request, obj_request->img_request, obj_request->result,
1561 		xferred, length);
1562 	/*
1563 	 * ENOENT means a hole in the image.  We zero-fill the
1564 	 * entire length of the request.  A short read also implies
1565 	 * zero-fill to the end of the request.  Either way we
1566 	 * update the xferred count to indicate the whole request
1567 	 * was satisfied.
1568 	 */
1569 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1570 	if (obj_request->result == -ENOENT) {
1571 		if (obj_request->type == OBJ_REQUEST_BIO)
1572 			zero_bio_chain(obj_request->bio_list, 0);
1573 		else
1574 			zero_pages(obj_request->pages, 0, length);
1575 		obj_request->result = 0;
1576 		obj_request->xferred = length;
1577 	} else if (xferred < length && !obj_request->result) {
1578 		if (obj_request->type == OBJ_REQUEST_BIO)
1579 			zero_bio_chain(obj_request->bio_list, xferred);
1580 		else
1581 			zero_pages(obj_request->pages, xferred, length);
1582 		obj_request->xferred = length;
1583 	}
1584 	obj_request_done_set(obj_request);
1585 }
1586 
1587 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1588 {
1589 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1590 		obj_request->callback);
1591 	if (obj_request->callback)
1592 		obj_request->callback(obj_request);
1593 	else
1594 		complete_all(&obj_request->completion);
1595 }
1596 
1597 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1598 {
1599 	dout("%s: obj %p\n", __func__, obj_request);
1600 	obj_request_done_set(obj_request);
1601 }
1602 
1603 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1604 {
1605 	struct rbd_img_request *img_request = NULL;
1606 	struct rbd_device *rbd_dev = NULL;
1607 	bool layered = false;
1608 
1609 	if (obj_request_img_data_test(obj_request)) {
1610 		img_request = obj_request->img_request;
1611 		layered = img_request && img_request_layered_test(img_request);
1612 		rbd_dev = img_request->rbd_dev;
1613 	}
1614 
1615 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1616 		obj_request, img_request, obj_request->result,
1617 		obj_request->xferred, obj_request->length);
1618 	if (layered && obj_request->result == -ENOENT &&
1619 			obj_request->img_offset < rbd_dev->parent_overlap)
1620 		rbd_img_parent_read(obj_request);
1621 	else if (img_request)
1622 		rbd_img_obj_request_read_callback(obj_request);
1623 	else
1624 		obj_request_done_set(obj_request);
1625 }
1626 
1627 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1628 {
1629 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1630 		obj_request->result, obj_request->length);
1631 	/*
1632 	 * There is no such thing as a successful short write.  Set
1633 	 * it to our originally-requested length.
1634 	 */
1635 	obj_request->xferred = obj_request->length;
1636 	obj_request_done_set(obj_request);
1637 }
1638 
1639 /*
1640  * For a simple stat call there's nothing to do.  We'll do more if
1641  * this is part of a write sequence for a layered image.
1642  */
1643 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1644 {
1645 	dout("%s: obj %p\n", __func__, obj_request);
1646 	obj_request_done_set(obj_request);
1647 }
1648 
1649 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1650 				struct ceph_msg *msg)
1651 {
1652 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1653 	u16 opcode;
1654 
1655 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1656 	rbd_assert(osd_req == obj_request->osd_req);
1657 	if (obj_request_img_data_test(obj_request)) {
1658 		rbd_assert(obj_request->img_request);
1659 		rbd_assert(obj_request->which != BAD_WHICH);
1660 	} else {
1661 		rbd_assert(obj_request->which == BAD_WHICH);
1662 	}
1663 
1664 	if (osd_req->r_result < 0)
1665 		obj_request->result = osd_req->r_result;
1666 
1667 	BUG_ON(osd_req->r_num_ops > 2);
1668 
1669 	/*
1670 	 * We support a 64-bit length, but ultimately it has to be
1671 	 * passed to blk_end_request(), which takes an unsigned int.
1672 	 */
1673 	obj_request->xferred = osd_req->r_reply_op_len[0];
1674 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1675 	opcode = osd_req->r_ops[0].op;
1676 	switch (opcode) {
1677 	case CEPH_OSD_OP_READ:
1678 		rbd_osd_read_callback(obj_request);
1679 		break;
1680 	case CEPH_OSD_OP_WRITE:
1681 		rbd_osd_write_callback(obj_request);
1682 		break;
1683 	case CEPH_OSD_OP_STAT:
1684 		rbd_osd_stat_callback(obj_request);
1685 		break;
1686 	case CEPH_OSD_OP_CALL:
1687 	case CEPH_OSD_OP_NOTIFY_ACK:
1688 	case CEPH_OSD_OP_WATCH:
1689 		rbd_osd_trivial_callback(obj_request);
1690 		break;
1691 	default:
1692 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1693 			obj_request->object_name, (unsigned short) opcode);
1694 		break;
1695 	}
1696 
1697 	if (obj_request_done_test(obj_request))
1698 		rbd_obj_request_complete(obj_request);
1699 }
1700 
1701 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1702 {
1703 	struct rbd_img_request *img_request = obj_request->img_request;
1704 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1705 	u64 snap_id;
1706 
1707 	rbd_assert(osd_req != NULL);
1708 
1709 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1710 	ceph_osdc_build_request(osd_req, obj_request->offset,
1711 			NULL, snap_id, NULL);
1712 }
1713 
1714 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1715 {
1716 	struct rbd_img_request *img_request = obj_request->img_request;
1717 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1718 	struct ceph_snap_context *snapc;
1719 	struct timespec mtime = CURRENT_TIME;
1720 
1721 	rbd_assert(osd_req != NULL);
1722 
1723 	snapc = img_request ? img_request->snapc : NULL;
1724 	ceph_osdc_build_request(osd_req, obj_request->offset,
1725 			snapc, CEPH_NOSNAP, &mtime);
1726 }
1727 
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729 					struct rbd_device *rbd_dev,
1730 					bool write_request,
1731 					struct rbd_obj_request *obj_request)
1732 {
1733 	struct ceph_snap_context *snapc = NULL;
1734 	struct ceph_osd_client *osdc;
1735 	struct ceph_osd_request *osd_req;
1736 
1737 	if (obj_request_img_data_test(obj_request)) {
1738 		struct rbd_img_request *img_request = obj_request->img_request;
1739 
1740 		rbd_assert(write_request ==
1741 				img_request_write_test(img_request));
1742 		if (write_request)
1743 			snapc = img_request->snapc;
1744 	}
1745 
1746 	/* Allocate and initialize the request, for the single op */
1747 
1748 	osdc = &rbd_dev->rbd_client->client->osdc;
1749 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1750 	if (!osd_req)
1751 		return NULL;	/* ENOMEM */
1752 
1753 	if (write_request)
1754 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1755 	else
1756 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1757 
1758 	osd_req->r_callback = rbd_osd_req_callback;
1759 	osd_req->r_priv = obj_request;
1760 
1761 	osd_req->r_oid_len = strlen(obj_request->object_name);
1762 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1763 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1764 
1765 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1766 
1767 	return osd_req;
1768 }
1769 
1770 /*
1771  * Create a copyup osd request based on the information in the
1772  * object request supplied.  A copyup request has two osd ops,
1773  * a copyup method call, and a "normal" write request.
1774  */
1775 static struct ceph_osd_request *
1776 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1777 {
1778 	struct rbd_img_request *img_request;
1779 	struct ceph_snap_context *snapc;
1780 	struct rbd_device *rbd_dev;
1781 	struct ceph_osd_client *osdc;
1782 	struct ceph_osd_request *osd_req;
1783 
1784 	rbd_assert(obj_request_img_data_test(obj_request));
1785 	img_request = obj_request->img_request;
1786 	rbd_assert(img_request);
1787 	rbd_assert(img_request_write_test(img_request));
1788 
1789 	/* Allocate and initialize the request, for the two ops */
1790 
1791 	snapc = img_request->snapc;
1792 	rbd_dev = img_request->rbd_dev;
1793 	osdc = &rbd_dev->rbd_client->client->osdc;
1794 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1795 	if (!osd_req)
1796 		return NULL;	/* ENOMEM */
1797 
1798 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1799 	osd_req->r_callback = rbd_osd_req_callback;
1800 	osd_req->r_priv = obj_request;
1801 
1802 	osd_req->r_oid_len = strlen(obj_request->object_name);
1803 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1804 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1805 
1806 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1807 
1808 	return osd_req;
1809 }
1810 
1811 
1812 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1813 {
1814 	ceph_osdc_put_request(osd_req);
1815 }
1816 
1817 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1818 
1819 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1820 						u64 offset, u64 length,
1821 						enum obj_request_type type)
1822 {
1823 	struct rbd_obj_request *obj_request;
1824 	size_t size;
1825 	char *name;
1826 
1827 	rbd_assert(obj_request_type_valid(type));
1828 
1829 	size = strlen(object_name) + 1;
1830 	name = kmalloc(size, GFP_KERNEL);
1831 	if (!name)
1832 		return NULL;
1833 
1834 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1835 	if (!obj_request) {
1836 		kfree(name);
1837 		return NULL;
1838 	}
1839 
1840 	obj_request->object_name = memcpy(name, object_name, size);
1841 	obj_request->offset = offset;
1842 	obj_request->length = length;
1843 	obj_request->flags = 0;
1844 	obj_request->which = BAD_WHICH;
1845 	obj_request->type = type;
1846 	INIT_LIST_HEAD(&obj_request->links);
1847 	init_completion(&obj_request->completion);
1848 	kref_init(&obj_request->kref);
1849 
1850 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1851 		offset, length, (int)type, obj_request);
1852 
1853 	return obj_request;
1854 }
1855 
1856 static void rbd_obj_request_destroy(struct kref *kref)
1857 {
1858 	struct rbd_obj_request *obj_request;
1859 
1860 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1861 
1862 	dout("%s: obj %p\n", __func__, obj_request);
1863 
1864 	rbd_assert(obj_request->img_request == NULL);
1865 	rbd_assert(obj_request->which == BAD_WHICH);
1866 
1867 	if (obj_request->osd_req)
1868 		rbd_osd_req_destroy(obj_request->osd_req);
1869 
1870 	rbd_assert(obj_request_type_valid(obj_request->type));
1871 	switch (obj_request->type) {
1872 	case OBJ_REQUEST_NODATA:
1873 		break;		/* Nothing to do */
1874 	case OBJ_REQUEST_BIO:
1875 		if (obj_request->bio_list)
1876 			bio_chain_put(obj_request->bio_list);
1877 		break;
1878 	case OBJ_REQUEST_PAGES:
1879 		if (obj_request->pages)
1880 			ceph_release_page_vector(obj_request->pages,
1881 						obj_request->page_count);
1882 		break;
1883 	}
1884 
1885 	kfree(obj_request->object_name);
1886 	obj_request->object_name = NULL;
1887 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1888 }
1889 
1890 /* It's OK to call this for a device with no parent */
1891 
1892 static void rbd_spec_put(struct rbd_spec *spec);
1893 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1894 {
1895 	rbd_dev_remove_parent(rbd_dev);
1896 	rbd_spec_put(rbd_dev->parent_spec);
1897 	rbd_dev->parent_spec = NULL;
1898 	rbd_dev->parent_overlap = 0;
1899 }
1900 
1901 /*
1902  * Parent image reference counting is used to determine when an
1903  * image's parent fields can be safely torn down--after there are no
1904  * more in-flight requests to the parent image.  When the last
1905  * reference is dropped, cleaning them up is safe.
1906  */
1907 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1908 {
1909 	int counter;
1910 
1911 	if (!rbd_dev->parent_spec)
1912 		return;
1913 
1914 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1915 	if (counter > 0)
1916 		return;
1917 
1918 	/* Last reference; clean up parent data structures */
1919 
1920 	if (!counter)
1921 		rbd_dev_unparent(rbd_dev);
1922 	else
1923 		rbd_warn(rbd_dev, "parent reference underflow\n");
1924 }
1925 
1926 /*
1927  * If an image has a non-zero parent overlap, get a reference to its
1928  * parent.
1929  *
1930  * We must get the reference before checking for the overlap to
1931  * coordinate properly with zeroing the parent overlap in
1932  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1933  * drop it again if there is no overlap.
1934  *
1935  * Returns true if the rbd device has a parent with a non-zero
1936  * overlap and a reference for it was successfully taken, or
1937  * false otherwise.
1938  */
1939 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1940 {
1941 	int counter;
1942 
1943 	if (!rbd_dev->parent_spec)
1944 		return false;
1945 
1946 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1947 	if (counter > 0 && rbd_dev->parent_overlap)
1948 		return true;
1949 
1950 	/* Image was flattened, but parent is not yet torn down */
1951 
1952 	if (counter < 0)
1953 		rbd_warn(rbd_dev, "parent reference overflow\n");
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  * Caller is responsible for filling in the list of object requests
1960  * that comprises the image request, and the Linux request pointer
1961  * (if there is one).
1962  */
1963 static struct rbd_img_request *rbd_img_request_create(
1964 					struct rbd_device *rbd_dev,
1965 					u64 offset, u64 length,
1966 					bool write_request)
1967 {
1968 	struct rbd_img_request *img_request;
1969 
1970 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1971 	if (!img_request)
1972 		return NULL;
1973 
1974 	if (write_request) {
1975 		down_read(&rbd_dev->header_rwsem);
1976 		ceph_get_snap_context(rbd_dev->header.snapc);
1977 		up_read(&rbd_dev->header_rwsem);
1978 	}
1979 
1980 	img_request->rq = NULL;
1981 	img_request->rbd_dev = rbd_dev;
1982 	img_request->offset = offset;
1983 	img_request->length = length;
1984 	img_request->flags = 0;
1985 	if (write_request) {
1986 		img_request_write_set(img_request);
1987 		img_request->snapc = rbd_dev->header.snapc;
1988 	} else {
1989 		img_request->snap_id = rbd_dev->spec->snap_id;
1990 	}
1991 	if (rbd_dev_parent_get(rbd_dev))
1992 		img_request_layered_set(img_request);
1993 	spin_lock_init(&img_request->completion_lock);
1994 	img_request->next_completion = 0;
1995 	img_request->callback = NULL;
1996 	img_request->result = 0;
1997 	img_request->obj_request_count = 0;
1998 	INIT_LIST_HEAD(&img_request->obj_requests);
1999 	kref_init(&img_request->kref);
2000 
2001 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2002 		write_request ? "write" : "read", offset, length,
2003 		img_request);
2004 
2005 	return img_request;
2006 }
2007 
2008 static void rbd_img_request_destroy(struct kref *kref)
2009 {
2010 	struct rbd_img_request *img_request;
2011 	struct rbd_obj_request *obj_request;
2012 	struct rbd_obj_request *next_obj_request;
2013 
2014 	img_request = container_of(kref, struct rbd_img_request, kref);
2015 
2016 	dout("%s: img %p\n", __func__, img_request);
2017 
2018 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2019 		rbd_img_obj_request_del(img_request, obj_request);
2020 	rbd_assert(img_request->obj_request_count == 0);
2021 
2022 	if (img_request_layered_test(img_request)) {
2023 		img_request_layered_clear(img_request);
2024 		rbd_dev_parent_put(img_request->rbd_dev);
2025 	}
2026 
2027 	if (img_request_write_test(img_request))
2028 		ceph_put_snap_context(img_request->snapc);
2029 
2030 	kmem_cache_free(rbd_img_request_cache, img_request);
2031 }
2032 
2033 static struct rbd_img_request *rbd_parent_request_create(
2034 					struct rbd_obj_request *obj_request,
2035 					u64 img_offset, u64 length)
2036 {
2037 	struct rbd_img_request *parent_request;
2038 	struct rbd_device *rbd_dev;
2039 
2040 	rbd_assert(obj_request->img_request);
2041 	rbd_dev = obj_request->img_request->rbd_dev;
2042 
2043 	parent_request = rbd_img_request_create(rbd_dev->parent,
2044 						img_offset, length, false);
2045 	if (!parent_request)
2046 		return NULL;
2047 
2048 	img_request_child_set(parent_request);
2049 	rbd_obj_request_get(obj_request);
2050 	parent_request->obj_request = obj_request;
2051 
2052 	return parent_request;
2053 }
2054 
2055 static void rbd_parent_request_destroy(struct kref *kref)
2056 {
2057 	struct rbd_img_request *parent_request;
2058 	struct rbd_obj_request *orig_request;
2059 
2060 	parent_request = container_of(kref, struct rbd_img_request, kref);
2061 	orig_request = parent_request->obj_request;
2062 
2063 	parent_request->obj_request = NULL;
2064 	rbd_obj_request_put(orig_request);
2065 	img_request_child_clear(parent_request);
2066 
2067 	rbd_img_request_destroy(kref);
2068 }
2069 
2070 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2071 {
2072 	struct rbd_img_request *img_request;
2073 	unsigned int xferred;
2074 	int result;
2075 	bool more;
2076 
2077 	rbd_assert(obj_request_img_data_test(obj_request));
2078 	img_request = obj_request->img_request;
2079 
2080 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2081 	xferred = (unsigned int)obj_request->xferred;
2082 	result = obj_request->result;
2083 	if (result) {
2084 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2085 
2086 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2087 			img_request_write_test(img_request) ? "write" : "read",
2088 			obj_request->length, obj_request->img_offset,
2089 			obj_request->offset);
2090 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2091 			result, xferred);
2092 		if (!img_request->result)
2093 			img_request->result = result;
2094 	}
2095 
2096 	/* Image object requests don't own their page array */
2097 
2098 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2099 		obj_request->pages = NULL;
2100 		obj_request->page_count = 0;
2101 	}
2102 
2103 	if (img_request_child_test(img_request)) {
2104 		rbd_assert(img_request->obj_request != NULL);
2105 		more = obj_request->which < img_request->obj_request_count - 1;
2106 	} else {
2107 		rbd_assert(img_request->rq != NULL);
2108 		more = blk_end_request(img_request->rq, result, xferred);
2109 	}
2110 
2111 	return more;
2112 }
2113 
2114 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2115 {
2116 	struct rbd_img_request *img_request;
2117 	u32 which = obj_request->which;
2118 	bool more = true;
2119 
2120 	rbd_assert(obj_request_img_data_test(obj_request));
2121 	img_request = obj_request->img_request;
2122 
2123 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2124 	rbd_assert(img_request != NULL);
2125 	rbd_assert(img_request->obj_request_count > 0);
2126 	rbd_assert(which != BAD_WHICH);
2127 	rbd_assert(which < img_request->obj_request_count);
2128 	rbd_assert(which >= img_request->next_completion);
2129 
2130 	spin_lock_irq(&img_request->completion_lock);
2131 	if (which != img_request->next_completion)
2132 		goto out;
2133 
2134 	for_each_obj_request_from(img_request, obj_request) {
2135 		rbd_assert(more);
2136 		rbd_assert(which < img_request->obj_request_count);
2137 
2138 		if (!obj_request_done_test(obj_request))
2139 			break;
2140 		more = rbd_img_obj_end_request(obj_request);
2141 		which++;
2142 	}
2143 
2144 	rbd_assert(more ^ (which == img_request->obj_request_count));
2145 	img_request->next_completion = which;
2146 out:
2147 	spin_unlock_irq(&img_request->completion_lock);
2148 
2149 	if (!more)
2150 		rbd_img_request_complete(img_request);
2151 }
2152 
2153 /*
2154  * Split up an image request into one or more object requests, each
2155  * to a different object.  The "type" parameter indicates whether
2156  * "data_desc" is the pointer to the head of a list of bio
2157  * structures, or the base of a page array.  In either case this
2158  * function assumes data_desc describes memory sufficient to hold
2159  * all data described by the image request.
2160  */
2161 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2162 					enum obj_request_type type,
2163 					void *data_desc)
2164 {
2165 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2166 	struct rbd_obj_request *obj_request = NULL;
2167 	struct rbd_obj_request *next_obj_request;
2168 	bool write_request = img_request_write_test(img_request);
2169 	struct bio *bio_list;
2170 	unsigned int bio_offset = 0;
2171 	struct page **pages;
2172 	u64 img_offset;
2173 	u64 resid;
2174 	u16 opcode;
2175 
2176 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2177 		(int)type, data_desc);
2178 
2179 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2180 	img_offset = img_request->offset;
2181 	resid = img_request->length;
2182 	rbd_assert(resid > 0);
2183 
2184 	if (type == OBJ_REQUEST_BIO) {
2185 		bio_list = data_desc;
2186 		rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2187 	} else {
2188 		rbd_assert(type == OBJ_REQUEST_PAGES);
2189 		pages = data_desc;
2190 	}
2191 
2192 	while (resid) {
2193 		struct ceph_osd_request *osd_req;
2194 		const char *object_name;
2195 		u64 offset;
2196 		u64 length;
2197 
2198 		object_name = rbd_segment_name(rbd_dev, img_offset);
2199 		if (!object_name)
2200 			goto out_unwind;
2201 		offset = rbd_segment_offset(rbd_dev, img_offset);
2202 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2203 		obj_request = rbd_obj_request_create(object_name,
2204 						offset, length, type);
2205 		/* object request has its own copy of the object name */
2206 		rbd_segment_name_free(object_name);
2207 		if (!obj_request)
2208 			goto out_unwind;
2209 
2210 		if (type == OBJ_REQUEST_BIO) {
2211 			unsigned int clone_size;
2212 
2213 			rbd_assert(length <= (u64)UINT_MAX);
2214 			clone_size = (unsigned int)length;
2215 			obj_request->bio_list =
2216 					bio_chain_clone_range(&bio_list,
2217 								&bio_offset,
2218 								clone_size,
2219 								GFP_ATOMIC);
2220 			if (!obj_request->bio_list)
2221 				goto out_partial;
2222 		} else {
2223 			unsigned int page_count;
2224 
2225 			obj_request->pages = pages;
2226 			page_count = (u32)calc_pages_for(offset, length);
2227 			obj_request->page_count = page_count;
2228 			if ((offset + length) & ~PAGE_MASK)
2229 				page_count--;	/* more on last page */
2230 			pages += page_count;
2231 		}
2232 
2233 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2234 						obj_request);
2235 		if (!osd_req)
2236 			goto out_partial;
2237 		obj_request->osd_req = osd_req;
2238 		obj_request->callback = rbd_img_obj_callback;
2239 
2240 		osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2241 						0, 0);
2242 		if (type == OBJ_REQUEST_BIO)
2243 			osd_req_op_extent_osd_data_bio(osd_req, 0,
2244 					obj_request->bio_list, length);
2245 		else
2246 			osd_req_op_extent_osd_data_pages(osd_req, 0,
2247 					obj_request->pages, length,
2248 					offset & ~PAGE_MASK, false, false);
2249 
2250 		if (write_request)
2251 			rbd_osd_req_format_write(obj_request);
2252 		else
2253 			rbd_osd_req_format_read(obj_request);
2254 
2255 		obj_request->img_offset = img_offset;
2256 		rbd_img_obj_request_add(img_request, obj_request);
2257 
2258 		img_offset += length;
2259 		resid -= length;
2260 	}
2261 
2262 	return 0;
2263 
2264 out_partial:
2265 	rbd_obj_request_put(obj_request);
2266 out_unwind:
2267 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2268 		rbd_obj_request_put(obj_request);
2269 
2270 	return -ENOMEM;
2271 }
2272 
2273 static void
2274 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2275 {
2276 	struct rbd_img_request *img_request;
2277 	struct rbd_device *rbd_dev;
2278 	struct page **pages;
2279 	u32 page_count;
2280 
2281 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2282 	rbd_assert(obj_request_img_data_test(obj_request));
2283 	img_request = obj_request->img_request;
2284 	rbd_assert(img_request);
2285 
2286 	rbd_dev = img_request->rbd_dev;
2287 	rbd_assert(rbd_dev);
2288 
2289 	pages = obj_request->copyup_pages;
2290 	rbd_assert(pages != NULL);
2291 	obj_request->copyup_pages = NULL;
2292 	page_count = obj_request->copyup_page_count;
2293 	rbd_assert(page_count);
2294 	obj_request->copyup_page_count = 0;
2295 	ceph_release_page_vector(pages, page_count);
2296 
2297 	/*
2298 	 * We want the transfer count to reflect the size of the
2299 	 * original write request.  There is no such thing as a
2300 	 * successful short write, so if the request was successful
2301 	 * we can just set it to the originally-requested length.
2302 	 */
2303 	if (!obj_request->result)
2304 		obj_request->xferred = obj_request->length;
2305 
2306 	/* Finish up with the normal image object callback */
2307 
2308 	rbd_img_obj_callback(obj_request);
2309 }
2310 
2311 static void
2312 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2313 {
2314 	struct rbd_obj_request *orig_request;
2315 	struct ceph_osd_request *osd_req;
2316 	struct ceph_osd_client *osdc;
2317 	struct rbd_device *rbd_dev;
2318 	struct page **pages;
2319 	u32 page_count;
2320 	int img_result;
2321 	u64 parent_length;
2322 	u64 offset;
2323 	u64 length;
2324 
2325 	rbd_assert(img_request_child_test(img_request));
2326 
2327 	/* First get what we need from the image request */
2328 
2329 	pages = img_request->copyup_pages;
2330 	rbd_assert(pages != NULL);
2331 	img_request->copyup_pages = NULL;
2332 	page_count = img_request->copyup_page_count;
2333 	rbd_assert(page_count);
2334 	img_request->copyup_page_count = 0;
2335 
2336 	orig_request = img_request->obj_request;
2337 	rbd_assert(orig_request != NULL);
2338 	rbd_assert(obj_request_type_valid(orig_request->type));
2339 	img_result = img_request->result;
2340 	parent_length = img_request->length;
2341 	rbd_assert(parent_length == img_request->xferred);
2342 	rbd_img_request_put(img_request);
2343 
2344 	rbd_assert(orig_request->img_request);
2345 	rbd_dev = orig_request->img_request->rbd_dev;
2346 	rbd_assert(rbd_dev);
2347 
2348 	/*
2349 	 * If the overlap has become 0 (most likely because the
2350 	 * image has been flattened) we need to free the pages
2351 	 * and re-submit the original write request.
2352 	 */
2353 	if (!rbd_dev->parent_overlap) {
2354 		struct ceph_osd_client *osdc;
2355 
2356 		ceph_release_page_vector(pages, page_count);
2357 		osdc = &rbd_dev->rbd_client->client->osdc;
2358 		img_result = rbd_obj_request_submit(osdc, orig_request);
2359 		if (!img_result)
2360 			return;
2361 	}
2362 
2363 	if (img_result)
2364 		goto out_err;
2365 
2366 	/*
2367 	 * The original osd request is of no use to use any more.
2368 	 * We need a new one that can hold the two ops in a copyup
2369 	 * request.  Allocate the new copyup osd request for the
2370 	 * original request, and release the old one.
2371 	 */
2372 	img_result = -ENOMEM;
2373 	osd_req = rbd_osd_req_create_copyup(orig_request);
2374 	if (!osd_req)
2375 		goto out_err;
2376 	rbd_osd_req_destroy(orig_request->osd_req);
2377 	orig_request->osd_req = osd_req;
2378 	orig_request->copyup_pages = pages;
2379 	orig_request->copyup_page_count = page_count;
2380 
2381 	/* Initialize the copyup op */
2382 
2383 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2384 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2385 						false, false);
2386 
2387 	/* Then the original write request op */
2388 
2389 	offset = orig_request->offset;
2390 	length = orig_request->length;
2391 	osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2392 					offset, length, 0, 0);
2393 	if (orig_request->type == OBJ_REQUEST_BIO)
2394 		osd_req_op_extent_osd_data_bio(osd_req, 1,
2395 					orig_request->bio_list, length);
2396 	else
2397 		osd_req_op_extent_osd_data_pages(osd_req, 1,
2398 					orig_request->pages, length,
2399 					offset & ~PAGE_MASK, false, false);
2400 
2401 	rbd_osd_req_format_write(orig_request);
2402 
2403 	/* All set, send it off. */
2404 
2405 	orig_request->callback = rbd_img_obj_copyup_callback;
2406 	osdc = &rbd_dev->rbd_client->client->osdc;
2407 	img_result = rbd_obj_request_submit(osdc, orig_request);
2408 	if (!img_result)
2409 		return;
2410 out_err:
2411 	/* Record the error code and complete the request */
2412 
2413 	orig_request->result = img_result;
2414 	orig_request->xferred = 0;
2415 	obj_request_done_set(orig_request);
2416 	rbd_obj_request_complete(orig_request);
2417 }
2418 
2419 /*
2420  * Read from the parent image the range of data that covers the
2421  * entire target of the given object request.  This is used for
2422  * satisfying a layered image write request when the target of an
2423  * object request from the image request does not exist.
2424  *
2425  * A page array big enough to hold the returned data is allocated
2426  * and supplied to rbd_img_request_fill() as the "data descriptor."
2427  * When the read completes, this page array will be transferred to
2428  * the original object request for the copyup operation.
2429  *
2430  * If an error occurs, record it as the result of the original
2431  * object request and mark it done so it gets completed.
2432  */
2433 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2434 {
2435 	struct rbd_img_request *img_request = NULL;
2436 	struct rbd_img_request *parent_request = NULL;
2437 	struct rbd_device *rbd_dev;
2438 	u64 img_offset;
2439 	u64 length;
2440 	struct page **pages = NULL;
2441 	u32 page_count;
2442 	int result;
2443 
2444 	rbd_assert(obj_request_img_data_test(obj_request));
2445 	rbd_assert(obj_request_type_valid(obj_request->type));
2446 
2447 	img_request = obj_request->img_request;
2448 	rbd_assert(img_request != NULL);
2449 	rbd_dev = img_request->rbd_dev;
2450 	rbd_assert(rbd_dev->parent != NULL);
2451 
2452 	/*
2453 	 * Determine the byte range covered by the object in the
2454 	 * child image to which the original request was to be sent.
2455 	 */
2456 	img_offset = obj_request->img_offset - obj_request->offset;
2457 	length = (u64)1 << rbd_dev->header.obj_order;
2458 
2459 	/*
2460 	 * There is no defined parent data beyond the parent
2461 	 * overlap, so limit what we read at that boundary if
2462 	 * necessary.
2463 	 */
2464 	if (img_offset + length > rbd_dev->parent_overlap) {
2465 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2466 		length = rbd_dev->parent_overlap - img_offset;
2467 	}
2468 
2469 	/*
2470 	 * Allocate a page array big enough to receive the data read
2471 	 * from the parent.
2472 	 */
2473 	page_count = (u32)calc_pages_for(0, length);
2474 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2475 	if (IS_ERR(pages)) {
2476 		result = PTR_ERR(pages);
2477 		pages = NULL;
2478 		goto out_err;
2479 	}
2480 
2481 	result = -ENOMEM;
2482 	parent_request = rbd_parent_request_create(obj_request,
2483 						img_offset, length);
2484 	if (!parent_request)
2485 		goto out_err;
2486 
2487 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2488 	if (result)
2489 		goto out_err;
2490 	parent_request->copyup_pages = pages;
2491 	parent_request->copyup_page_count = page_count;
2492 
2493 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2494 	result = rbd_img_request_submit(parent_request);
2495 	if (!result)
2496 		return 0;
2497 
2498 	parent_request->copyup_pages = NULL;
2499 	parent_request->copyup_page_count = 0;
2500 	parent_request->obj_request = NULL;
2501 	rbd_obj_request_put(obj_request);
2502 out_err:
2503 	if (pages)
2504 		ceph_release_page_vector(pages, page_count);
2505 	if (parent_request)
2506 		rbd_img_request_put(parent_request);
2507 	obj_request->result = result;
2508 	obj_request->xferred = 0;
2509 	obj_request_done_set(obj_request);
2510 
2511 	return result;
2512 }
2513 
2514 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2515 {
2516 	struct rbd_obj_request *orig_request;
2517 	struct rbd_device *rbd_dev;
2518 	int result;
2519 
2520 	rbd_assert(!obj_request_img_data_test(obj_request));
2521 
2522 	/*
2523 	 * All we need from the object request is the original
2524 	 * request and the result of the STAT op.  Grab those, then
2525 	 * we're done with the request.
2526 	 */
2527 	orig_request = obj_request->obj_request;
2528 	obj_request->obj_request = NULL;
2529 	rbd_assert(orig_request);
2530 	rbd_assert(orig_request->img_request);
2531 
2532 	result = obj_request->result;
2533 	obj_request->result = 0;
2534 
2535 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2536 		obj_request, orig_request, result,
2537 		obj_request->xferred, obj_request->length);
2538 	rbd_obj_request_put(obj_request);
2539 
2540 	/*
2541 	 * If the overlap has become 0 (most likely because the
2542 	 * image has been flattened) we need to free the pages
2543 	 * and re-submit the original write request.
2544 	 */
2545 	rbd_dev = orig_request->img_request->rbd_dev;
2546 	if (!rbd_dev->parent_overlap) {
2547 		struct ceph_osd_client *osdc;
2548 
2549 		rbd_obj_request_put(orig_request);
2550 		osdc = &rbd_dev->rbd_client->client->osdc;
2551 		result = rbd_obj_request_submit(osdc, orig_request);
2552 		if (!result)
2553 			return;
2554 	}
2555 
2556 	/*
2557 	 * Our only purpose here is to determine whether the object
2558 	 * exists, and we don't want to treat the non-existence as
2559 	 * an error.  If something else comes back, transfer the
2560 	 * error to the original request and complete it now.
2561 	 */
2562 	if (!result) {
2563 		obj_request_existence_set(orig_request, true);
2564 	} else if (result == -ENOENT) {
2565 		obj_request_existence_set(orig_request, false);
2566 	} else if (result) {
2567 		orig_request->result = result;
2568 		goto out;
2569 	}
2570 
2571 	/*
2572 	 * Resubmit the original request now that we have recorded
2573 	 * whether the target object exists.
2574 	 */
2575 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2576 out:
2577 	if (orig_request->result)
2578 		rbd_obj_request_complete(orig_request);
2579 	rbd_obj_request_put(orig_request);
2580 }
2581 
2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2583 {
2584 	struct rbd_obj_request *stat_request;
2585 	struct rbd_device *rbd_dev;
2586 	struct ceph_osd_client *osdc;
2587 	struct page **pages = NULL;
2588 	u32 page_count;
2589 	size_t size;
2590 	int ret;
2591 
2592 	/*
2593 	 * The response data for a STAT call consists of:
2594 	 *     le64 length;
2595 	 *     struct {
2596 	 *         le32 tv_sec;
2597 	 *         le32 tv_nsec;
2598 	 *     } mtime;
2599 	 */
2600 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2601 	page_count = (u32)calc_pages_for(0, size);
2602 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2603 	if (IS_ERR(pages))
2604 		return PTR_ERR(pages);
2605 
2606 	ret = -ENOMEM;
2607 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2608 							OBJ_REQUEST_PAGES);
2609 	if (!stat_request)
2610 		goto out;
2611 
2612 	rbd_obj_request_get(obj_request);
2613 	stat_request->obj_request = obj_request;
2614 	stat_request->pages = pages;
2615 	stat_request->page_count = page_count;
2616 
2617 	rbd_assert(obj_request->img_request);
2618 	rbd_dev = obj_request->img_request->rbd_dev;
2619 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2620 						stat_request);
2621 	if (!stat_request->osd_req)
2622 		goto out;
2623 	stat_request->callback = rbd_img_obj_exists_callback;
2624 
2625 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2626 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2627 					false, false);
2628 	rbd_osd_req_format_read(stat_request);
2629 
2630 	osdc = &rbd_dev->rbd_client->client->osdc;
2631 	ret = rbd_obj_request_submit(osdc, stat_request);
2632 out:
2633 	if (ret)
2634 		rbd_obj_request_put(obj_request);
2635 
2636 	return ret;
2637 }
2638 
2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2640 {
2641 	struct rbd_img_request *img_request;
2642 	struct rbd_device *rbd_dev;
2643 	bool known;
2644 
2645 	rbd_assert(obj_request_img_data_test(obj_request));
2646 
2647 	img_request = obj_request->img_request;
2648 	rbd_assert(img_request);
2649 	rbd_dev = img_request->rbd_dev;
2650 
2651 	/*
2652 	 * Only writes to layered images need special handling.
2653 	 * Reads and non-layered writes are simple object requests.
2654 	 * Layered writes that start beyond the end of the overlap
2655 	 * with the parent have no parent data, so they too are
2656 	 * simple object requests.  Finally, if the target object is
2657 	 * known to already exist, its parent data has already been
2658 	 * copied, so a write to the object can also be handled as a
2659 	 * simple object request.
2660 	 */
2661 	if (!img_request_write_test(img_request) ||
2662 		!img_request_layered_test(img_request) ||
2663 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2664 		((known = obj_request_known_test(obj_request)) &&
2665 			obj_request_exists_test(obj_request))) {
2666 
2667 		struct rbd_device *rbd_dev;
2668 		struct ceph_osd_client *osdc;
2669 
2670 		rbd_dev = obj_request->img_request->rbd_dev;
2671 		osdc = &rbd_dev->rbd_client->client->osdc;
2672 
2673 		return rbd_obj_request_submit(osdc, obj_request);
2674 	}
2675 
2676 	/*
2677 	 * It's a layered write.  The target object might exist but
2678 	 * we may not know that yet.  If we know it doesn't exist,
2679 	 * start by reading the data for the full target object from
2680 	 * the parent so we can use it for a copyup to the target.
2681 	 */
2682 	if (known)
2683 		return rbd_img_obj_parent_read_full(obj_request);
2684 
2685 	/* We don't know whether the target exists.  Go find out. */
2686 
2687 	return rbd_img_obj_exists_submit(obj_request);
2688 }
2689 
2690 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2691 {
2692 	struct rbd_obj_request *obj_request;
2693 	struct rbd_obj_request *next_obj_request;
2694 
2695 	dout("%s: img %p\n", __func__, img_request);
2696 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2697 		int ret;
2698 
2699 		ret = rbd_img_obj_request_submit(obj_request);
2700 		if (ret)
2701 			return ret;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2708 {
2709 	struct rbd_obj_request *obj_request;
2710 	struct rbd_device *rbd_dev;
2711 	u64 obj_end;
2712 	u64 img_xferred;
2713 	int img_result;
2714 
2715 	rbd_assert(img_request_child_test(img_request));
2716 
2717 	/* First get what we need from the image request and release it */
2718 
2719 	obj_request = img_request->obj_request;
2720 	img_xferred = img_request->xferred;
2721 	img_result = img_request->result;
2722 	rbd_img_request_put(img_request);
2723 
2724 	/*
2725 	 * If the overlap has become 0 (most likely because the
2726 	 * image has been flattened) we need to re-submit the
2727 	 * original request.
2728 	 */
2729 	rbd_assert(obj_request);
2730 	rbd_assert(obj_request->img_request);
2731 	rbd_dev = obj_request->img_request->rbd_dev;
2732 	if (!rbd_dev->parent_overlap) {
2733 		struct ceph_osd_client *osdc;
2734 
2735 		osdc = &rbd_dev->rbd_client->client->osdc;
2736 		img_result = rbd_obj_request_submit(osdc, obj_request);
2737 		if (!img_result)
2738 			return;
2739 	}
2740 
2741 	obj_request->result = img_result;
2742 	if (obj_request->result)
2743 		goto out;
2744 
2745 	/*
2746 	 * We need to zero anything beyond the parent overlap
2747 	 * boundary.  Since rbd_img_obj_request_read_callback()
2748 	 * will zero anything beyond the end of a short read, an
2749 	 * easy way to do this is to pretend the data from the
2750 	 * parent came up short--ending at the overlap boundary.
2751 	 */
2752 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2753 	obj_end = obj_request->img_offset + obj_request->length;
2754 	if (obj_end > rbd_dev->parent_overlap) {
2755 		u64 xferred = 0;
2756 
2757 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2758 			xferred = rbd_dev->parent_overlap -
2759 					obj_request->img_offset;
2760 
2761 		obj_request->xferred = min(img_xferred, xferred);
2762 	} else {
2763 		obj_request->xferred = img_xferred;
2764 	}
2765 out:
2766 	rbd_img_obj_request_read_callback(obj_request);
2767 	rbd_obj_request_complete(obj_request);
2768 }
2769 
2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2771 {
2772 	struct rbd_img_request *img_request;
2773 	int result;
2774 
2775 	rbd_assert(obj_request_img_data_test(obj_request));
2776 	rbd_assert(obj_request->img_request != NULL);
2777 	rbd_assert(obj_request->result == (s32) -ENOENT);
2778 	rbd_assert(obj_request_type_valid(obj_request->type));
2779 
2780 	/* rbd_read_finish(obj_request, obj_request->length); */
2781 	img_request = rbd_parent_request_create(obj_request,
2782 						obj_request->img_offset,
2783 						obj_request->length);
2784 	result = -ENOMEM;
2785 	if (!img_request)
2786 		goto out_err;
2787 
2788 	if (obj_request->type == OBJ_REQUEST_BIO)
2789 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790 						obj_request->bio_list);
2791 	else
2792 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2793 						obj_request->pages);
2794 	if (result)
2795 		goto out_err;
2796 
2797 	img_request->callback = rbd_img_parent_read_callback;
2798 	result = rbd_img_request_submit(img_request);
2799 	if (result)
2800 		goto out_err;
2801 
2802 	return;
2803 out_err:
2804 	if (img_request)
2805 		rbd_img_request_put(img_request);
2806 	obj_request->result = result;
2807 	obj_request->xferred = 0;
2808 	obj_request_done_set(obj_request);
2809 }
2810 
2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2812 {
2813 	struct rbd_obj_request *obj_request;
2814 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2815 	int ret;
2816 
2817 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2818 							OBJ_REQUEST_NODATA);
2819 	if (!obj_request)
2820 		return -ENOMEM;
2821 
2822 	ret = -ENOMEM;
2823 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2824 	if (!obj_request->osd_req)
2825 		goto out;
2826 	obj_request->callback = rbd_obj_request_put;
2827 
2828 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2829 					notify_id, 0, 0);
2830 	rbd_osd_req_format_read(obj_request);
2831 
2832 	ret = rbd_obj_request_submit(osdc, obj_request);
2833 out:
2834 	if (ret)
2835 		rbd_obj_request_put(obj_request);
2836 
2837 	return ret;
2838 }
2839 
2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2841 {
2842 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2843 	int ret;
2844 
2845 	if (!rbd_dev)
2846 		return;
2847 
2848 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2849 		rbd_dev->header_name, (unsigned long long)notify_id,
2850 		(unsigned int)opcode);
2851 	ret = rbd_dev_refresh(rbd_dev);
2852 	if (ret)
2853 		rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2854 
2855 	rbd_obj_notify_ack(rbd_dev, notify_id);
2856 }
2857 
2858 /*
2859  * Request sync osd watch/unwatch.  The value of "start" determines
2860  * whether a watch request is being initiated or torn down.
2861  */
2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2863 {
2864 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2865 	struct rbd_obj_request *obj_request;
2866 	int ret;
2867 
2868 	rbd_assert(start ^ !!rbd_dev->watch_event);
2869 	rbd_assert(start ^ !!rbd_dev->watch_request);
2870 
2871 	if (start) {
2872 		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2873 						&rbd_dev->watch_event);
2874 		if (ret < 0)
2875 			return ret;
2876 		rbd_assert(rbd_dev->watch_event != NULL);
2877 	}
2878 
2879 	ret = -ENOMEM;
2880 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2881 							OBJ_REQUEST_NODATA);
2882 	if (!obj_request)
2883 		goto out_cancel;
2884 
2885 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2886 	if (!obj_request->osd_req)
2887 		goto out_cancel;
2888 
2889 	if (start)
2890 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2891 	else
2892 		ceph_osdc_unregister_linger_request(osdc,
2893 					rbd_dev->watch_request->osd_req);
2894 
2895 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2896 				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2897 	rbd_osd_req_format_write(obj_request);
2898 
2899 	ret = rbd_obj_request_submit(osdc, obj_request);
2900 	if (ret)
2901 		goto out_cancel;
2902 	ret = rbd_obj_request_wait(obj_request);
2903 	if (ret)
2904 		goto out_cancel;
2905 	ret = obj_request->result;
2906 	if (ret)
2907 		goto out_cancel;
2908 
2909 	/*
2910 	 * A watch request is set to linger, so the underlying osd
2911 	 * request won't go away until we unregister it.  We retain
2912 	 * a pointer to the object request during that time (in
2913 	 * rbd_dev->watch_request), so we'll keep a reference to
2914 	 * it.  We'll drop that reference (below) after we've
2915 	 * unregistered it.
2916 	 */
2917 	if (start) {
2918 		rbd_dev->watch_request = obj_request;
2919 
2920 		return 0;
2921 	}
2922 
2923 	/* We have successfully torn down the watch request */
2924 
2925 	rbd_obj_request_put(rbd_dev->watch_request);
2926 	rbd_dev->watch_request = NULL;
2927 out_cancel:
2928 	/* Cancel the event if we're tearing down, or on error */
2929 	ceph_osdc_cancel_event(rbd_dev->watch_event);
2930 	rbd_dev->watch_event = NULL;
2931 	if (obj_request)
2932 		rbd_obj_request_put(obj_request);
2933 
2934 	return ret;
2935 }
2936 
2937 /*
2938  * Synchronous osd object method call.  Returns the number of bytes
2939  * returned in the outbound buffer, or a negative error code.
2940  */
2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2942 			     const char *object_name,
2943 			     const char *class_name,
2944 			     const char *method_name,
2945 			     const void *outbound,
2946 			     size_t outbound_size,
2947 			     void *inbound,
2948 			     size_t inbound_size)
2949 {
2950 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2951 	struct rbd_obj_request *obj_request;
2952 	struct page **pages;
2953 	u32 page_count;
2954 	int ret;
2955 
2956 	/*
2957 	 * Method calls are ultimately read operations.  The result
2958 	 * should placed into the inbound buffer provided.  They
2959 	 * also supply outbound data--parameters for the object
2960 	 * method.  Currently if this is present it will be a
2961 	 * snapshot id.
2962 	 */
2963 	page_count = (u32)calc_pages_for(0, inbound_size);
2964 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2965 	if (IS_ERR(pages))
2966 		return PTR_ERR(pages);
2967 
2968 	ret = -ENOMEM;
2969 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2970 							OBJ_REQUEST_PAGES);
2971 	if (!obj_request)
2972 		goto out;
2973 
2974 	obj_request->pages = pages;
2975 	obj_request->page_count = page_count;
2976 
2977 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2978 	if (!obj_request->osd_req)
2979 		goto out;
2980 
2981 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2982 					class_name, method_name);
2983 	if (outbound_size) {
2984 		struct ceph_pagelist *pagelist;
2985 
2986 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2987 		if (!pagelist)
2988 			goto out;
2989 
2990 		ceph_pagelist_init(pagelist);
2991 		ceph_pagelist_append(pagelist, outbound, outbound_size);
2992 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2993 						pagelist);
2994 	}
2995 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2996 					obj_request->pages, inbound_size,
2997 					0, false, false);
2998 	rbd_osd_req_format_read(obj_request);
2999 
3000 	ret = rbd_obj_request_submit(osdc, obj_request);
3001 	if (ret)
3002 		goto out;
3003 	ret = rbd_obj_request_wait(obj_request);
3004 	if (ret)
3005 		goto out;
3006 
3007 	ret = obj_request->result;
3008 	if (ret < 0)
3009 		goto out;
3010 
3011 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3012 	ret = (int)obj_request->xferred;
3013 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3014 out:
3015 	if (obj_request)
3016 		rbd_obj_request_put(obj_request);
3017 	else
3018 		ceph_release_page_vector(pages, page_count);
3019 
3020 	return ret;
3021 }
3022 
3023 static void rbd_request_fn(struct request_queue *q)
3024 		__releases(q->queue_lock) __acquires(q->queue_lock)
3025 {
3026 	struct rbd_device *rbd_dev = q->queuedata;
3027 	bool read_only = rbd_dev->mapping.read_only;
3028 	struct request *rq;
3029 	int result;
3030 
3031 	while ((rq = blk_fetch_request(q))) {
3032 		bool write_request = rq_data_dir(rq) == WRITE;
3033 		struct rbd_img_request *img_request;
3034 		u64 offset;
3035 		u64 length;
3036 
3037 		/* Ignore any non-FS requests that filter through. */
3038 
3039 		if (rq->cmd_type != REQ_TYPE_FS) {
3040 			dout("%s: non-fs request type %d\n", __func__,
3041 				(int) rq->cmd_type);
3042 			__blk_end_request_all(rq, 0);
3043 			continue;
3044 		}
3045 
3046 		/* Ignore/skip any zero-length requests */
3047 
3048 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3049 		length = (u64) blk_rq_bytes(rq);
3050 
3051 		if (!length) {
3052 			dout("%s: zero-length request\n", __func__);
3053 			__blk_end_request_all(rq, 0);
3054 			continue;
3055 		}
3056 
3057 		spin_unlock_irq(q->queue_lock);
3058 
3059 		/* Disallow writes to a read-only device */
3060 
3061 		if (write_request) {
3062 			result = -EROFS;
3063 			if (read_only)
3064 				goto end_request;
3065 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3066 		}
3067 
3068 		/*
3069 		 * Quit early if the mapped snapshot no longer
3070 		 * exists.  It's still possible the snapshot will
3071 		 * have disappeared by the time our request arrives
3072 		 * at the osd, but there's no sense in sending it if
3073 		 * we already know.
3074 		 */
3075 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3076 			dout("request for non-existent snapshot");
3077 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3078 			result = -ENXIO;
3079 			goto end_request;
3080 		}
3081 
3082 		result = -EINVAL;
3083 		if (offset && length > U64_MAX - offset + 1) {
3084 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3085 				offset, length);
3086 			goto end_request;	/* Shouldn't happen */
3087 		}
3088 
3089 		result = -EIO;
3090 		if (offset + length > rbd_dev->mapping.size) {
3091 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3092 				offset, length, rbd_dev->mapping.size);
3093 			goto end_request;
3094 		}
3095 
3096 		result = -ENOMEM;
3097 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3098 							write_request);
3099 		if (!img_request)
3100 			goto end_request;
3101 
3102 		img_request->rq = rq;
3103 
3104 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3105 						rq->bio);
3106 		if (!result)
3107 			result = rbd_img_request_submit(img_request);
3108 		if (result)
3109 			rbd_img_request_put(img_request);
3110 end_request:
3111 		spin_lock_irq(q->queue_lock);
3112 		if (result < 0) {
3113 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3114 				write_request ? "write" : "read",
3115 				length, offset, result);
3116 
3117 			__blk_end_request_all(rq, result);
3118 		}
3119 	}
3120 }
3121 
3122 /*
3123  * a queue callback. Makes sure that we don't create a bio that spans across
3124  * multiple osd objects. One exception would be with a single page bios,
3125  * which we handle later at bio_chain_clone_range()
3126  */
3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3128 			  struct bio_vec *bvec)
3129 {
3130 	struct rbd_device *rbd_dev = q->queuedata;
3131 	sector_t sector_offset;
3132 	sector_t sectors_per_obj;
3133 	sector_t obj_sector_offset;
3134 	int ret;
3135 
3136 	/*
3137 	 * Find how far into its rbd object the partition-relative
3138 	 * bio start sector is to offset relative to the enclosing
3139 	 * device.
3140 	 */
3141 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3142 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3143 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3144 
3145 	/*
3146 	 * Compute the number of bytes from that offset to the end
3147 	 * of the object.  Account for what's already used by the bio.
3148 	 */
3149 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3150 	if (ret > bmd->bi_size)
3151 		ret -= bmd->bi_size;
3152 	else
3153 		ret = 0;
3154 
3155 	/*
3156 	 * Don't send back more than was asked for.  And if the bio
3157 	 * was empty, let the whole thing through because:  "Note
3158 	 * that a block device *must* allow a single page to be
3159 	 * added to an empty bio."
3160 	 */
3161 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3162 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3163 		ret = (int) bvec->bv_len;
3164 
3165 	return ret;
3166 }
3167 
3168 static void rbd_free_disk(struct rbd_device *rbd_dev)
3169 {
3170 	struct gendisk *disk = rbd_dev->disk;
3171 
3172 	if (!disk)
3173 		return;
3174 
3175 	rbd_dev->disk = NULL;
3176 	if (disk->flags & GENHD_FL_UP) {
3177 		del_gendisk(disk);
3178 		if (disk->queue)
3179 			blk_cleanup_queue(disk->queue);
3180 	}
3181 	put_disk(disk);
3182 }
3183 
3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3185 				const char *object_name,
3186 				u64 offset, u64 length, void *buf)
3187 
3188 {
3189 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3190 	struct rbd_obj_request *obj_request;
3191 	struct page **pages = NULL;
3192 	u32 page_count;
3193 	size_t size;
3194 	int ret;
3195 
3196 	page_count = (u32) calc_pages_for(offset, length);
3197 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3198 	if (IS_ERR(pages))
3199 		ret = PTR_ERR(pages);
3200 
3201 	ret = -ENOMEM;
3202 	obj_request = rbd_obj_request_create(object_name, offset, length,
3203 							OBJ_REQUEST_PAGES);
3204 	if (!obj_request)
3205 		goto out;
3206 
3207 	obj_request->pages = pages;
3208 	obj_request->page_count = page_count;
3209 
3210 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3211 	if (!obj_request->osd_req)
3212 		goto out;
3213 
3214 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3215 					offset, length, 0, 0);
3216 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3217 					obj_request->pages,
3218 					obj_request->length,
3219 					obj_request->offset & ~PAGE_MASK,
3220 					false, false);
3221 	rbd_osd_req_format_read(obj_request);
3222 
3223 	ret = rbd_obj_request_submit(osdc, obj_request);
3224 	if (ret)
3225 		goto out;
3226 	ret = rbd_obj_request_wait(obj_request);
3227 	if (ret)
3228 		goto out;
3229 
3230 	ret = obj_request->result;
3231 	if (ret < 0)
3232 		goto out;
3233 
3234 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3235 	size = (size_t) obj_request->xferred;
3236 	ceph_copy_from_page_vector(pages, buf, 0, size);
3237 	rbd_assert(size <= (size_t)INT_MAX);
3238 	ret = (int)size;
3239 out:
3240 	if (obj_request)
3241 		rbd_obj_request_put(obj_request);
3242 	else
3243 		ceph_release_page_vector(pages, page_count);
3244 
3245 	return ret;
3246 }
3247 
3248 /*
3249  * Read the complete header for the given rbd device.  On successful
3250  * return, the rbd_dev->header field will contain up-to-date
3251  * information about the image.
3252  */
3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3254 {
3255 	struct rbd_image_header_ondisk *ondisk = NULL;
3256 	u32 snap_count = 0;
3257 	u64 names_size = 0;
3258 	u32 want_count;
3259 	int ret;
3260 
3261 	/*
3262 	 * The complete header will include an array of its 64-bit
3263 	 * snapshot ids, followed by the names of those snapshots as
3264 	 * a contiguous block of NUL-terminated strings.  Note that
3265 	 * the number of snapshots could change by the time we read
3266 	 * it in, in which case we re-read it.
3267 	 */
3268 	do {
3269 		size_t size;
3270 
3271 		kfree(ondisk);
3272 
3273 		size = sizeof (*ondisk);
3274 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3275 		size += names_size;
3276 		ondisk = kmalloc(size, GFP_KERNEL);
3277 		if (!ondisk)
3278 			return -ENOMEM;
3279 
3280 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3281 				       0, size, ondisk);
3282 		if (ret < 0)
3283 			goto out;
3284 		if ((size_t)ret < size) {
3285 			ret = -ENXIO;
3286 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3287 				size, ret);
3288 			goto out;
3289 		}
3290 		if (!rbd_dev_ondisk_valid(ondisk)) {
3291 			ret = -ENXIO;
3292 			rbd_warn(rbd_dev, "invalid header");
3293 			goto out;
3294 		}
3295 
3296 		names_size = le64_to_cpu(ondisk->snap_names_len);
3297 		want_count = snap_count;
3298 		snap_count = le32_to_cpu(ondisk->snap_count);
3299 	} while (snap_count != want_count);
3300 
3301 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3302 out:
3303 	kfree(ondisk);
3304 
3305 	return ret;
3306 }
3307 
3308 /*
3309  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3310  * has disappeared from the (just updated) snapshot context.
3311  */
3312 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3313 {
3314 	u64 snap_id;
3315 
3316 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3317 		return;
3318 
3319 	snap_id = rbd_dev->spec->snap_id;
3320 	if (snap_id == CEPH_NOSNAP)
3321 		return;
3322 
3323 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3324 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3325 }
3326 
3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3328 {
3329 	u64 mapping_size;
3330 	int ret;
3331 
3332 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3333 	mapping_size = rbd_dev->mapping.size;
3334 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3335 	if (rbd_dev->image_format == 1)
3336 		ret = rbd_dev_v1_header_info(rbd_dev);
3337 	else
3338 		ret = rbd_dev_v2_header_info(rbd_dev);
3339 
3340 	/* If it's a mapped snapshot, validate its EXISTS flag */
3341 
3342 	rbd_exists_validate(rbd_dev);
3343 	mutex_unlock(&ctl_mutex);
3344 	if (mapping_size != rbd_dev->mapping.size) {
3345 		sector_t size;
3346 
3347 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3348 		dout("setting size to %llu sectors", (unsigned long long)size);
3349 		set_capacity(rbd_dev->disk, size);
3350 		revalidate_disk(rbd_dev->disk);
3351 	}
3352 
3353 	return ret;
3354 }
3355 
3356 static int rbd_init_disk(struct rbd_device *rbd_dev)
3357 {
3358 	struct gendisk *disk;
3359 	struct request_queue *q;
3360 	u64 segment_size;
3361 
3362 	/* create gendisk info */
3363 	disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3364 	if (!disk)
3365 		return -ENOMEM;
3366 
3367 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3368 		 rbd_dev->dev_id);
3369 	disk->major = rbd_dev->major;
3370 	disk->first_minor = 0;
3371 	disk->fops = &rbd_bd_ops;
3372 	disk->private_data = rbd_dev;
3373 
3374 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3375 	if (!q)
3376 		goto out_disk;
3377 
3378 	/* We use the default size, but let's be explicit about it. */
3379 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3380 
3381 	/* set io sizes to object size */
3382 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3383 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3384 	blk_queue_max_segment_size(q, segment_size);
3385 	blk_queue_io_min(q, segment_size);
3386 	blk_queue_io_opt(q, segment_size);
3387 
3388 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3389 	disk->queue = q;
3390 
3391 	q->queuedata = rbd_dev;
3392 
3393 	rbd_dev->disk = disk;
3394 
3395 	return 0;
3396 out_disk:
3397 	put_disk(disk);
3398 
3399 	return -ENOMEM;
3400 }
3401 
3402 /*
3403   sysfs
3404 */
3405 
3406 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3407 {
3408 	return container_of(dev, struct rbd_device, dev);
3409 }
3410 
3411 static ssize_t rbd_size_show(struct device *dev,
3412 			     struct device_attribute *attr, char *buf)
3413 {
3414 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3415 
3416 	return sprintf(buf, "%llu\n",
3417 		(unsigned long long)rbd_dev->mapping.size);
3418 }
3419 
3420 /*
3421  * Note this shows the features for whatever's mapped, which is not
3422  * necessarily the base image.
3423  */
3424 static ssize_t rbd_features_show(struct device *dev,
3425 			     struct device_attribute *attr, char *buf)
3426 {
3427 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3428 
3429 	return sprintf(buf, "0x%016llx\n",
3430 			(unsigned long long)rbd_dev->mapping.features);
3431 }
3432 
3433 static ssize_t rbd_major_show(struct device *dev,
3434 			      struct device_attribute *attr, char *buf)
3435 {
3436 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3437 
3438 	if (rbd_dev->major)
3439 		return sprintf(buf, "%d\n", rbd_dev->major);
3440 
3441 	return sprintf(buf, "(none)\n");
3442 
3443 }
3444 
3445 static ssize_t rbd_client_id_show(struct device *dev,
3446 				  struct device_attribute *attr, char *buf)
3447 {
3448 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3449 
3450 	return sprintf(buf, "client%lld\n",
3451 			ceph_client_id(rbd_dev->rbd_client->client));
3452 }
3453 
3454 static ssize_t rbd_pool_show(struct device *dev,
3455 			     struct device_attribute *attr, char *buf)
3456 {
3457 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458 
3459 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3460 }
3461 
3462 static ssize_t rbd_pool_id_show(struct device *dev,
3463 			     struct device_attribute *attr, char *buf)
3464 {
3465 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466 
3467 	return sprintf(buf, "%llu\n",
3468 			(unsigned long long) rbd_dev->spec->pool_id);
3469 }
3470 
3471 static ssize_t rbd_name_show(struct device *dev,
3472 			     struct device_attribute *attr, char *buf)
3473 {
3474 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475 
3476 	if (rbd_dev->spec->image_name)
3477 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3478 
3479 	return sprintf(buf, "(unknown)\n");
3480 }
3481 
3482 static ssize_t rbd_image_id_show(struct device *dev,
3483 			     struct device_attribute *attr, char *buf)
3484 {
3485 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486 
3487 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3488 }
3489 
3490 /*
3491  * Shows the name of the currently-mapped snapshot (or
3492  * RBD_SNAP_HEAD_NAME for the base image).
3493  */
3494 static ssize_t rbd_snap_show(struct device *dev,
3495 			     struct device_attribute *attr,
3496 			     char *buf)
3497 {
3498 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3499 
3500 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3501 }
3502 
3503 /*
3504  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3505  * for the parent image.  If there is no parent, simply shows
3506  * "(no parent image)".
3507  */
3508 static ssize_t rbd_parent_show(struct device *dev,
3509 			     struct device_attribute *attr,
3510 			     char *buf)
3511 {
3512 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3513 	struct rbd_spec *spec = rbd_dev->parent_spec;
3514 	int count;
3515 	char *bufp = buf;
3516 
3517 	if (!spec)
3518 		return sprintf(buf, "(no parent image)\n");
3519 
3520 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3521 			(unsigned long long) spec->pool_id, spec->pool_name);
3522 	if (count < 0)
3523 		return count;
3524 	bufp += count;
3525 
3526 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3527 			spec->image_name ? spec->image_name : "(unknown)");
3528 	if (count < 0)
3529 		return count;
3530 	bufp += count;
3531 
3532 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3533 			(unsigned long long) spec->snap_id, spec->snap_name);
3534 	if (count < 0)
3535 		return count;
3536 	bufp += count;
3537 
3538 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3539 	if (count < 0)
3540 		return count;
3541 	bufp += count;
3542 
3543 	return (ssize_t) (bufp - buf);
3544 }
3545 
3546 static ssize_t rbd_image_refresh(struct device *dev,
3547 				 struct device_attribute *attr,
3548 				 const char *buf,
3549 				 size_t size)
3550 {
3551 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3552 	int ret;
3553 
3554 	ret = rbd_dev_refresh(rbd_dev);
3555 	if (ret)
3556 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3557 
3558 	return ret < 0 ? ret : size;
3559 }
3560 
3561 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3562 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3563 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3564 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3565 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3566 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3567 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3568 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3569 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3570 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3571 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3572 
3573 static struct attribute *rbd_attrs[] = {
3574 	&dev_attr_size.attr,
3575 	&dev_attr_features.attr,
3576 	&dev_attr_major.attr,
3577 	&dev_attr_client_id.attr,
3578 	&dev_attr_pool.attr,
3579 	&dev_attr_pool_id.attr,
3580 	&dev_attr_name.attr,
3581 	&dev_attr_image_id.attr,
3582 	&dev_attr_current_snap.attr,
3583 	&dev_attr_parent.attr,
3584 	&dev_attr_refresh.attr,
3585 	NULL
3586 };
3587 
3588 static struct attribute_group rbd_attr_group = {
3589 	.attrs = rbd_attrs,
3590 };
3591 
3592 static const struct attribute_group *rbd_attr_groups[] = {
3593 	&rbd_attr_group,
3594 	NULL
3595 };
3596 
3597 static void rbd_sysfs_dev_release(struct device *dev)
3598 {
3599 }
3600 
3601 static struct device_type rbd_device_type = {
3602 	.name		= "rbd",
3603 	.groups		= rbd_attr_groups,
3604 	.release	= rbd_sysfs_dev_release,
3605 };
3606 
3607 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3608 {
3609 	kref_get(&spec->kref);
3610 
3611 	return spec;
3612 }
3613 
3614 static void rbd_spec_free(struct kref *kref);
3615 static void rbd_spec_put(struct rbd_spec *spec)
3616 {
3617 	if (spec)
3618 		kref_put(&spec->kref, rbd_spec_free);
3619 }
3620 
3621 static struct rbd_spec *rbd_spec_alloc(void)
3622 {
3623 	struct rbd_spec *spec;
3624 
3625 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3626 	if (!spec)
3627 		return NULL;
3628 	kref_init(&spec->kref);
3629 
3630 	return spec;
3631 }
3632 
3633 static void rbd_spec_free(struct kref *kref)
3634 {
3635 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3636 
3637 	kfree(spec->pool_name);
3638 	kfree(spec->image_id);
3639 	kfree(spec->image_name);
3640 	kfree(spec->snap_name);
3641 	kfree(spec);
3642 }
3643 
3644 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3645 				struct rbd_spec *spec)
3646 {
3647 	struct rbd_device *rbd_dev;
3648 
3649 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3650 	if (!rbd_dev)
3651 		return NULL;
3652 
3653 	spin_lock_init(&rbd_dev->lock);
3654 	rbd_dev->flags = 0;
3655 	atomic_set(&rbd_dev->parent_ref, 0);
3656 	INIT_LIST_HEAD(&rbd_dev->node);
3657 	init_rwsem(&rbd_dev->header_rwsem);
3658 
3659 	rbd_dev->spec = spec;
3660 	rbd_dev->rbd_client = rbdc;
3661 
3662 	/* Initialize the layout used for all rbd requests */
3663 
3664 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3665 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3666 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3667 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3668 
3669 	return rbd_dev;
3670 }
3671 
3672 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3673 {
3674 	rbd_put_client(rbd_dev->rbd_client);
3675 	rbd_spec_put(rbd_dev->spec);
3676 	kfree(rbd_dev);
3677 }
3678 
3679 /*
3680  * Get the size and object order for an image snapshot, or if
3681  * snap_id is CEPH_NOSNAP, gets this information for the base
3682  * image.
3683  */
3684 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3685 				u8 *order, u64 *snap_size)
3686 {
3687 	__le64 snapid = cpu_to_le64(snap_id);
3688 	int ret;
3689 	struct {
3690 		u8 order;
3691 		__le64 size;
3692 	} __attribute__ ((packed)) size_buf = { 0 };
3693 
3694 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3695 				"rbd", "get_size",
3696 				&snapid, sizeof (snapid),
3697 				&size_buf, sizeof (size_buf));
3698 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3699 	if (ret < 0)
3700 		return ret;
3701 	if (ret < sizeof (size_buf))
3702 		return -ERANGE;
3703 
3704 	if (order)
3705 		*order = size_buf.order;
3706 	*snap_size = le64_to_cpu(size_buf.size);
3707 
3708 	dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3709 		(unsigned long long)snap_id, (unsigned int)*order,
3710 		(unsigned long long)*snap_size);
3711 
3712 	return 0;
3713 }
3714 
3715 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3716 {
3717 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3718 					&rbd_dev->header.obj_order,
3719 					&rbd_dev->header.image_size);
3720 }
3721 
3722 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3723 {
3724 	void *reply_buf;
3725 	int ret;
3726 	void *p;
3727 
3728 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3729 	if (!reply_buf)
3730 		return -ENOMEM;
3731 
3732 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3733 				"rbd", "get_object_prefix", NULL, 0,
3734 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3735 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3736 	if (ret < 0)
3737 		goto out;
3738 
3739 	p = reply_buf;
3740 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3741 						p + ret, NULL, GFP_NOIO);
3742 	ret = 0;
3743 
3744 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3745 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3746 		rbd_dev->header.object_prefix = NULL;
3747 	} else {
3748 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3749 	}
3750 out:
3751 	kfree(reply_buf);
3752 
3753 	return ret;
3754 }
3755 
3756 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3757 		u64 *snap_features)
3758 {
3759 	__le64 snapid = cpu_to_le64(snap_id);
3760 	struct {
3761 		__le64 features;
3762 		__le64 incompat;
3763 	} __attribute__ ((packed)) features_buf = { 0 };
3764 	u64 incompat;
3765 	int ret;
3766 
3767 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3768 				"rbd", "get_features",
3769 				&snapid, sizeof (snapid),
3770 				&features_buf, sizeof (features_buf));
3771 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3772 	if (ret < 0)
3773 		return ret;
3774 	if (ret < sizeof (features_buf))
3775 		return -ERANGE;
3776 
3777 	incompat = le64_to_cpu(features_buf.incompat);
3778 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3779 		return -ENXIO;
3780 
3781 	*snap_features = le64_to_cpu(features_buf.features);
3782 
3783 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3784 		(unsigned long long)snap_id,
3785 		(unsigned long long)*snap_features,
3786 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3787 
3788 	return 0;
3789 }
3790 
3791 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3792 {
3793 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3794 						&rbd_dev->header.features);
3795 }
3796 
3797 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3798 {
3799 	struct rbd_spec *parent_spec;
3800 	size_t size;
3801 	void *reply_buf = NULL;
3802 	__le64 snapid;
3803 	void *p;
3804 	void *end;
3805 	u64 pool_id;
3806 	char *image_id;
3807 	u64 overlap;
3808 	int ret;
3809 
3810 	parent_spec = rbd_spec_alloc();
3811 	if (!parent_spec)
3812 		return -ENOMEM;
3813 
3814 	size = sizeof (__le64) +				/* pool_id */
3815 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3816 		sizeof (__le64) +				/* snap_id */
3817 		sizeof (__le64);				/* overlap */
3818 	reply_buf = kmalloc(size, GFP_KERNEL);
3819 	if (!reply_buf) {
3820 		ret = -ENOMEM;
3821 		goto out_err;
3822 	}
3823 
3824 	snapid = cpu_to_le64(CEPH_NOSNAP);
3825 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3826 				"rbd", "get_parent",
3827 				&snapid, sizeof (snapid),
3828 				reply_buf, size);
3829 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3830 	if (ret < 0)
3831 		goto out_err;
3832 
3833 	p = reply_buf;
3834 	end = reply_buf + ret;
3835 	ret = -ERANGE;
3836 	ceph_decode_64_safe(&p, end, pool_id, out_err);
3837 	if (pool_id == CEPH_NOPOOL) {
3838 		/*
3839 		 * Either the parent never existed, or we have
3840 		 * record of it but the image got flattened so it no
3841 		 * longer has a parent.  When the parent of a
3842 		 * layered image disappears we immediately set the
3843 		 * overlap to 0.  The effect of this is that all new
3844 		 * requests will be treated as if the image had no
3845 		 * parent.
3846 		 */
3847 		if (rbd_dev->parent_overlap) {
3848 			rbd_dev->parent_overlap = 0;
3849 			smp_mb();
3850 			rbd_dev_parent_put(rbd_dev);
3851 			pr_info("%s: clone image has been flattened\n",
3852 				rbd_dev->disk->disk_name);
3853 		}
3854 
3855 		goto out;	/* No parent?  No problem. */
3856 	}
3857 
3858 	/* The ceph file layout needs to fit pool id in 32 bits */
3859 
3860 	ret = -EIO;
3861 	if (pool_id > (u64)U32_MAX) {
3862 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3863 			(unsigned long long)pool_id, U32_MAX);
3864 		goto out_err;
3865 	}
3866 	parent_spec->pool_id = pool_id;
3867 
3868 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3869 	if (IS_ERR(image_id)) {
3870 		ret = PTR_ERR(image_id);
3871 		goto out_err;
3872 	}
3873 	parent_spec->image_id = image_id;
3874 	ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3875 	ceph_decode_64_safe(&p, end, overlap, out_err);
3876 
3877 	if (overlap) {
3878 		rbd_spec_put(rbd_dev->parent_spec);
3879 		rbd_dev->parent_spec = parent_spec;
3880 		parent_spec = NULL;	/* rbd_dev now owns this */
3881 		rbd_dev->parent_overlap = overlap;
3882 	} else {
3883 		rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3884 	}
3885 out:
3886 	ret = 0;
3887 out_err:
3888 	kfree(reply_buf);
3889 	rbd_spec_put(parent_spec);
3890 
3891 	return ret;
3892 }
3893 
3894 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3895 {
3896 	struct {
3897 		__le64 stripe_unit;
3898 		__le64 stripe_count;
3899 	} __attribute__ ((packed)) striping_info_buf = { 0 };
3900 	size_t size = sizeof (striping_info_buf);
3901 	void *p;
3902 	u64 obj_size;
3903 	u64 stripe_unit;
3904 	u64 stripe_count;
3905 	int ret;
3906 
3907 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3908 				"rbd", "get_stripe_unit_count", NULL, 0,
3909 				(char *)&striping_info_buf, size);
3910 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3911 	if (ret < 0)
3912 		return ret;
3913 	if (ret < size)
3914 		return -ERANGE;
3915 
3916 	/*
3917 	 * We don't actually support the "fancy striping" feature
3918 	 * (STRIPINGV2) yet, but if the striping sizes are the
3919 	 * defaults the behavior is the same as before.  So find
3920 	 * out, and only fail if the image has non-default values.
3921 	 */
3922 	ret = -EINVAL;
3923 	obj_size = (u64)1 << rbd_dev->header.obj_order;
3924 	p = &striping_info_buf;
3925 	stripe_unit = ceph_decode_64(&p);
3926 	if (stripe_unit != obj_size) {
3927 		rbd_warn(rbd_dev, "unsupported stripe unit "
3928 				"(got %llu want %llu)",
3929 				stripe_unit, obj_size);
3930 		return -EINVAL;
3931 	}
3932 	stripe_count = ceph_decode_64(&p);
3933 	if (stripe_count != 1) {
3934 		rbd_warn(rbd_dev, "unsupported stripe count "
3935 				"(got %llu want 1)", stripe_count);
3936 		return -EINVAL;
3937 	}
3938 	rbd_dev->header.stripe_unit = stripe_unit;
3939 	rbd_dev->header.stripe_count = stripe_count;
3940 
3941 	return 0;
3942 }
3943 
3944 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3945 {
3946 	size_t image_id_size;
3947 	char *image_id;
3948 	void *p;
3949 	void *end;
3950 	size_t size;
3951 	void *reply_buf = NULL;
3952 	size_t len = 0;
3953 	char *image_name = NULL;
3954 	int ret;
3955 
3956 	rbd_assert(!rbd_dev->spec->image_name);
3957 
3958 	len = strlen(rbd_dev->spec->image_id);
3959 	image_id_size = sizeof (__le32) + len;
3960 	image_id = kmalloc(image_id_size, GFP_KERNEL);
3961 	if (!image_id)
3962 		return NULL;
3963 
3964 	p = image_id;
3965 	end = image_id + image_id_size;
3966 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3967 
3968 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3969 	reply_buf = kmalloc(size, GFP_KERNEL);
3970 	if (!reply_buf)
3971 		goto out;
3972 
3973 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3974 				"rbd", "dir_get_name",
3975 				image_id, image_id_size,
3976 				reply_buf, size);
3977 	if (ret < 0)
3978 		goto out;
3979 	p = reply_buf;
3980 	end = reply_buf + ret;
3981 
3982 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3983 	if (IS_ERR(image_name))
3984 		image_name = NULL;
3985 	else
3986 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3987 out:
3988 	kfree(reply_buf);
3989 	kfree(image_id);
3990 
3991 	return image_name;
3992 }
3993 
3994 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3995 {
3996 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3997 	const char *snap_name;
3998 	u32 which = 0;
3999 
4000 	/* Skip over names until we find the one we are looking for */
4001 
4002 	snap_name = rbd_dev->header.snap_names;
4003 	while (which < snapc->num_snaps) {
4004 		if (!strcmp(name, snap_name))
4005 			return snapc->snaps[which];
4006 		snap_name += strlen(snap_name) + 1;
4007 		which++;
4008 	}
4009 	return CEPH_NOSNAP;
4010 }
4011 
4012 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4013 {
4014 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4015 	u32 which;
4016 	bool found = false;
4017 	u64 snap_id;
4018 
4019 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4020 		const char *snap_name;
4021 
4022 		snap_id = snapc->snaps[which];
4023 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4024 		if (IS_ERR(snap_name))
4025 			break;
4026 		found = !strcmp(name, snap_name);
4027 		kfree(snap_name);
4028 	}
4029 	return found ? snap_id : CEPH_NOSNAP;
4030 }
4031 
4032 /*
4033  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4034  * no snapshot by that name is found, or if an error occurs.
4035  */
4036 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4037 {
4038 	if (rbd_dev->image_format == 1)
4039 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4040 
4041 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4042 }
4043 
4044 /*
4045  * When an rbd image has a parent image, it is identified by the
4046  * pool, image, and snapshot ids (not names).  This function fills
4047  * in the names for those ids.  (It's OK if we can't figure out the
4048  * name for an image id, but the pool and snapshot ids should always
4049  * exist and have names.)  All names in an rbd spec are dynamically
4050  * allocated.
4051  *
4052  * When an image being mapped (not a parent) is probed, we have the
4053  * pool name and pool id, image name and image id, and the snapshot
4054  * name.  The only thing we're missing is the snapshot id.
4055  */
4056 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4057 {
4058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4059 	struct rbd_spec *spec = rbd_dev->spec;
4060 	const char *pool_name;
4061 	const char *image_name;
4062 	const char *snap_name;
4063 	int ret;
4064 
4065 	/*
4066 	 * An image being mapped will have the pool name (etc.), but
4067 	 * we need to look up the snapshot id.
4068 	 */
4069 	if (spec->pool_name) {
4070 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4071 			u64 snap_id;
4072 
4073 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4074 			if (snap_id == CEPH_NOSNAP)
4075 				return -ENOENT;
4076 			spec->snap_id = snap_id;
4077 		} else {
4078 			spec->snap_id = CEPH_NOSNAP;
4079 		}
4080 
4081 		return 0;
4082 	}
4083 
4084 	/* Get the pool name; we have to make our own copy of this */
4085 
4086 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4087 	if (!pool_name) {
4088 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4089 		return -EIO;
4090 	}
4091 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4092 	if (!pool_name)
4093 		return -ENOMEM;
4094 
4095 	/* Fetch the image name; tolerate failure here */
4096 
4097 	image_name = rbd_dev_image_name(rbd_dev);
4098 	if (!image_name)
4099 		rbd_warn(rbd_dev, "unable to get image name");
4100 
4101 	/* Look up the snapshot name, and make a copy */
4102 
4103 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4104 	if (!snap_name) {
4105 		ret = -ENOMEM;
4106 		goto out_err;
4107 	}
4108 
4109 	spec->pool_name = pool_name;
4110 	spec->image_name = image_name;
4111 	spec->snap_name = snap_name;
4112 
4113 	return 0;
4114 out_err:
4115 	kfree(image_name);
4116 	kfree(pool_name);
4117 
4118 	return ret;
4119 }
4120 
4121 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4122 {
4123 	size_t size;
4124 	int ret;
4125 	void *reply_buf;
4126 	void *p;
4127 	void *end;
4128 	u64 seq;
4129 	u32 snap_count;
4130 	struct ceph_snap_context *snapc;
4131 	u32 i;
4132 
4133 	/*
4134 	 * We'll need room for the seq value (maximum snapshot id),
4135 	 * snapshot count, and array of that many snapshot ids.
4136 	 * For now we have a fixed upper limit on the number we're
4137 	 * prepared to receive.
4138 	 */
4139 	size = sizeof (__le64) + sizeof (__le32) +
4140 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4141 	reply_buf = kzalloc(size, GFP_KERNEL);
4142 	if (!reply_buf)
4143 		return -ENOMEM;
4144 
4145 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4146 				"rbd", "get_snapcontext", NULL, 0,
4147 				reply_buf, size);
4148 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4149 	if (ret < 0)
4150 		goto out;
4151 
4152 	p = reply_buf;
4153 	end = reply_buf + ret;
4154 	ret = -ERANGE;
4155 	ceph_decode_64_safe(&p, end, seq, out);
4156 	ceph_decode_32_safe(&p, end, snap_count, out);
4157 
4158 	/*
4159 	 * Make sure the reported number of snapshot ids wouldn't go
4160 	 * beyond the end of our buffer.  But before checking that,
4161 	 * make sure the computed size of the snapshot context we
4162 	 * allocate is representable in a size_t.
4163 	 */
4164 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4165 				 / sizeof (u64)) {
4166 		ret = -EINVAL;
4167 		goto out;
4168 	}
4169 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4170 		goto out;
4171 	ret = 0;
4172 
4173 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4174 	if (!snapc) {
4175 		ret = -ENOMEM;
4176 		goto out;
4177 	}
4178 	snapc->seq = seq;
4179 	for (i = 0; i < snap_count; i++)
4180 		snapc->snaps[i] = ceph_decode_64(&p);
4181 
4182 	ceph_put_snap_context(rbd_dev->header.snapc);
4183 	rbd_dev->header.snapc = snapc;
4184 
4185 	dout("  snap context seq = %llu, snap_count = %u\n",
4186 		(unsigned long long)seq, (unsigned int)snap_count);
4187 out:
4188 	kfree(reply_buf);
4189 
4190 	return ret;
4191 }
4192 
4193 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4194 					u64 snap_id)
4195 {
4196 	size_t size;
4197 	void *reply_buf;
4198 	__le64 snapid;
4199 	int ret;
4200 	void *p;
4201 	void *end;
4202 	char *snap_name;
4203 
4204 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4205 	reply_buf = kmalloc(size, GFP_KERNEL);
4206 	if (!reply_buf)
4207 		return ERR_PTR(-ENOMEM);
4208 
4209 	snapid = cpu_to_le64(snap_id);
4210 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4211 				"rbd", "get_snapshot_name",
4212 				&snapid, sizeof (snapid),
4213 				reply_buf, size);
4214 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4215 	if (ret < 0) {
4216 		snap_name = ERR_PTR(ret);
4217 		goto out;
4218 	}
4219 
4220 	p = reply_buf;
4221 	end = reply_buf + ret;
4222 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4223 	if (IS_ERR(snap_name))
4224 		goto out;
4225 
4226 	dout("  snap_id 0x%016llx snap_name = %s\n",
4227 		(unsigned long long)snap_id, snap_name);
4228 out:
4229 	kfree(reply_buf);
4230 
4231 	return snap_name;
4232 }
4233 
4234 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4235 {
4236 	bool first_time = rbd_dev->header.object_prefix == NULL;
4237 	int ret;
4238 
4239 	down_write(&rbd_dev->header_rwsem);
4240 
4241 	if (first_time) {
4242 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4243 		if (ret)
4244 			goto out;
4245 	}
4246 
4247 	/*
4248 	 * If the image supports layering, get the parent info.  We
4249 	 * need to probe the first time regardless.  Thereafter we
4250 	 * only need to if there's a parent, to see if it has
4251 	 * disappeared due to the mapped image getting flattened.
4252 	 */
4253 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4254 			(first_time || rbd_dev->parent_spec)) {
4255 		bool warn;
4256 
4257 		ret = rbd_dev_v2_parent_info(rbd_dev);
4258 		if (ret)
4259 			goto out;
4260 
4261 		/*
4262 		 * Print a warning if this is the initial probe and
4263 		 * the image has a parent.  Don't print it if the
4264 		 * image now being probed is itself a parent.  We
4265 		 * can tell at this point because we won't know its
4266 		 * pool name yet (just its pool id).
4267 		 */
4268 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4269 		if (first_time && warn)
4270 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4271 					"is EXPERIMENTAL!");
4272 	}
4273 
4274 	ret = rbd_dev_v2_image_size(rbd_dev);
4275 	if (ret)
4276 		goto out;
4277 
4278 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4279 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4280 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4281 
4282 	ret = rbd_dev_v2_snap_context(rbd_dev);
4283 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4284 out:
4285 	up_write(&rbd_dev->header_rwsem);
4286 
4287 	return ret;
4288 }
4289 
4290 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4291 {
4292 	struct device *dev;
4293 	int ret;
4294 
4295 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4296 
4297 	dev = &rbd_dev->dev;
4298 	dev->bus = &rbd_bus_type;
4299 	dev->type = &rbd_device_type;
4300 	dev->parent = &rbd_root_dev;
4301 	dev->release = rbd_dev_device_release;
4302 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4303 	ret = device_register(dev);
4304 
4305 	mutex_unlock(&ctl_mutex);
4306 
4307 	return ret;
4308 }
4309 
4310 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4311 {
4312 	device_unregister(&rbd_dev->dev);
4313 }
4314 
4315 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4316 
4317 /*
4318  * Get a unique rbd identifier for the given new rbd_dev, and add
4319  * the rbd_dev to the global list.  The minimum rbd id is 1.
4320  */
4321 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4322 {
4323 	rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4324 
4325 	spin_lock(&rbd_dev_list_lock);
4326 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4327 	spin_unlock(&rbd_dev_list_lock);
4328 	dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4329 		(unsigned long long) rbd_dev->dev_id);
4330 }
4331 
4332 /*
4333  * Remove an rbd_dev from the global list, and record that its
4334  * identifier is no longer in use.
4335  */
4336 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4337 {
4338 	struct list_head *tmp;
4339 	int rbd_id = rbd_dev->dev_id;
4340 	int max_id;
4341 
4342 	rbd_assert(rbd_id > 0);
4343 
4344 	dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4345 		(unsigned long long) rbd_dev->dev_id);
4346 	spin_lock(&rbd_dev_list_lock);
4347 	list_del_init(&rbd_dev->node);
4348 
4349 	/*
4350 	 * If the id being "put" is not the current maximum, there
4351 	 * is nothing special we need to do.
4352 	 */
4353 	if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4354 		spin_unlock(&rbd_dev_list_lock);
4355 		return;
4356 	}
4357 
4358 	/*
4359 	 * We need to update the current maximum id.  Search the
4360 	 * list to find out what it is.  We're more likely to find
4361 	 * the maximum at the end, so search the list backward.
4362 	 */
4363 	max_id = 0;
4364 	list_for_each_prev(tmp, &rbd_dev_list) {
4365 		struct rbd_device *rbd_dev;
4366 
4367 		rbd_dev = list_entry(tmp, struct rbd_device, node);
4368 		if (rbd_dev->dev_id > max_id)
4369 			max_id = rbd_dev->dev_id;
4370 	}
4371 	spin_unlock(&rbd_dev_list_lock);
4372 
4373 	/*
4374 	 * The max id could have been updated by rbd_dev_id_get(), in
4375 	 * which case it now accurately reflects the new maximum.
4376 	 * Be careful not to overwrite the maximum value in that
4377 	 * case.
4378 	 */
4379 	atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4380 	dout("  max dev id has been reset\n");
4381 }
4382 
4383 /*
4384  * Skips over white space at *buf, and updates *buf to point to the
4385  * first found non-space character (if any). Returns the length of
4386  * the token (string of non-white space characters) found.  Note
4387  * that *buf must be terminated with '\0'.
4388  */
4389 static inline size_t next_token(const char **buf)
4390 {
4391         /*
4392         * These are the characters that produce nonzero for
4393         * isspace() in the "C" and "POSIX" locales.
4394         */
4395         const char *spaces = " \f\n\r\t\v";
4396 
4397         *buf += strspn(*buf, spaces);	/* Find start of token */
4398 
4399 	return strcspn(*buf, spaces);   /* Return token length */
4400 }
4401 
4402 /*
4403  * Finds the next token in *buf, and if the provided token buffer is
4404  * big enough, copies the found token into it.  The result, if
4405  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4406  * must be terminated with '\0' on entry.
4407  *
4408  * Returns the length of the token found (not including the '\0').
4409  * Return value will be 0 if no token is found, and it will be >=
4410  * token_size if the token would not fit.
4411  *
4412  * The *buf pointer will be updated to point beyond the end of the
4413  * found token.  Note that this occurs even if the token buffer is
4414  * too small to hold it.
4415  */
4416 static inline size_t copy_token(const char **buf,
4417 				char *token,
4418 				size_t token_size)
4419 {
4420         size_t len;
4421 
4422 	len = next_token(buf);
4423 	if (len < token_size) {
4424 		memcpy(token, *buf, len);
4425 		*(token + len) = '\0';
4426 	}
4427 	*buf += len;
4428 
4429         return len;
4430 }
4431 
4432 /*
4433  * Finds the next token in *buf, dynamically allocates a buffer big
4434  * enough to hold a copy of it, and copies the token into the new
4435  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4436  * that a duplicate buffer is created even for a zero-length token.
4437  *
4438  * Returns a pointer to the newly-allocated duplicate, or a null
4439  * pointer if memory for the duplicate was not available.  If
4440  * the lenp argument is a non-null pointer, the length of the token
4441  * (not including the '\0') is returned in *lenp.
4442  *
4443  * If successful, the *buf pointer will be updated to point beyond
4444  * the end of the found token.
4445  *
4446  * Note: uses GFP_KERNEL for allocation.
4447  */
4448 static inline char *dup_token(const char **buf, size_t *lenp)
4449 {
4450 	char *dup;
4451 	size_t len;
4452 
4453 	len = next_token(buf);
4454 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4455 	if (!dup)
4456 		return NULL;
4457 	*(dup + len) = '\0';
4458 	*buf += len;
4459 
4460 	if (lenp)
4461 		*lenp = len;
4462 
4463 	return dup;
4464 }
4465 
4466 /*
4467  * Parse the options provided for an "rbd add" (i.e., rbd image
4468  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4469  * and the data written is passed here via a NUL-terminated buffer.
4470  * Returns 0 if successful or an error code otherwise.
4471  *
4472  * The information extracted from these options is recorded in
4473  * the other parameters which return dynamically-allocated
4474  * structures:
4475  *  ceph_opts
4476  *      The address of a pointer that will refer to a ceph options
4477  *      structure.  Caller must release the returned pointer using
4478  *      ceph_destroy_options() when it is no longer needed.
4479  *  rbd_opts
4480  *	Address of an rbd options pointer.  Fully initialized by
4481  *	this function; caller must release with kfree().
4482  *  spec
4483  *	Address of an rbd image specification pointer.  Fully
4484  *	initialized by this function based on parsed options.
4485  *	Caller must release with rbd_spec_put().
4486  *
4487  * The options passed take this form:
4488  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4489  * where:
4490  *  <mon_addrs>
4491  *      A comma-separated list of one or more monitor addresses.
4492  *      A monitor address is an ip address, optionally followed
4493  *      by a port number (separated by a colon).
4494  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4495  *  <options>
4496  *      A comma-separated list of ceph and/or rbd options.
4497  *  <pool_name>
4498  *      The name of the rados pool containing the rbd image.
4499  *  <image_name>
4500  *      The name of the image in that pool to map.
4501  *  <snap_id>
4502  *      An optional snapshot id.  If provided, the mapping will
4503  *      present data from the image at the time that snapshot was
4504  *      created.  The image head is used if no snapshot id is
4505  *      provided.  Snapshot mappings are always read-only.
4506  */
4507 static int rbd_add_parse_args(const char *buf,
4508 				struct ceph_options **ceph_opts,
4509 				struct rbd_options **opts,
4510 				struct rbd_spec **rbd_spec)
4511 {
4512 	size_t len;
4513 	char *options;
4514 	const char *mon_addrs;
4515 	char *snap_name;
4516 	size_t mon_addrs_size;
4517 	struct rbd_spec *spec = NULL;
4518 	struct rbd_options *rbd_opts = NULL;
4519 	struct ceph_options *copts;
4520 	int ret;
4521 
4522 	/* The first four tokens are required */
4523 
4524 	len = next_token(&buf);
4525 	if (!len) {
4526 		rbd_warn(NULL, "no monitor address(es) provided");
4527 		return -EINVAL;
4528 	}
4529 	mon_addrs = buf;
4530 	mon_addrs_size = len + 1;
4531 	buf += len;
4532 
4533 	ret = -EINVAL;
4534 	options = dup_token(&buf, NULL);
4535 	if (!options)
4536 		return -ENOMEM;
4537 	if (!*options) {
4538 		rbd_warn(NULL, "no options provided");
4539 		goto out_err;
4540 	}
4541 
4542 	spec = rbd_spec_alloc();
4543 	if (!spec)
4544 		goto out_mem;
4545 
4546 	spec->pool_name = dup_token(&buf, NULL);
4547 	if (!spec->pool_name)
4548 		goto out_mem;
4549 	if (!*spec->pool_name) {
4550 		rbd_warn(NULL, "no pool name provided");
4551 		goto out_err;
4552 	}
4553 
4554 	spec->image_name = dup_token(&buf, NULL);
4555 	if (!spec->image_name)
4556 		goto out_mem;
4557 	if (!*spec->image_name) {
4558 		rbd_warn(NULL, "no image name provided");
4559 		goto out_err;
4560 	}
4561 
4562 	/*
4563 	 * Snapshot name is optional; default is to use "-"
4564 	 * (indicating the head/no snapshot).
4565 	 */
4566 	len = next_token(&buf);
4567 	if (!len) {
4568 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4569 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4570 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4571 		ret = -ENAMETOOLONG;
4572 		goto out_err;
4573 	}
4574 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4575 	if (!snap_name)
4576 		goto out_mem;
4577 	*(snap_name + len) = '\0';
4578 	spec->snap_name = snap_name;
4579 
4580 	/* Initialize all rbd options to the defaults */
4581 
4582 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4583 	if (!rbd_opts)
4584 		goto out_mem;
4585 
4586 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4587 
4588 	copts = ceph_parse_options(options, mon_addrs,
4589 					mon_addrs + mon_addrs_size - 1,
4590 					parse_rbd_opts_token, rbd_opts);
4591 	if (IS_ERR(copts)) {
4592 		ret = PTR_ERR(copts);
4593 		goto out_err;
4594 	}
4595 	kfree(options);
4596 
4597 	*ceph_opts = copts;
4598 	*opts = rbd_opts;
4599 	*rbd_spec = spec;
4600 
4601 	return 0;
4602 out_mem:
4603 	ret = -ENOMEM;
4604 out_err:
4605 	kfree(rbd_opts);
4606 	rbd_spec_put(spec);
4607 	kfree(options);
4608 
4609 	return ret;
4610 }
4611 
4612 /*
4613  * An rbd format 2 image has a unique identifier, distinct from the
4614  * name given to it by the user.  Internally, that identifier is
4615  * what's used to specify the names of objects related to the image.
4616  *
4617  * A special "rbd id" object is used to map an rbd image name to its
4618  * id.  If that object doesn't exist, then there is no v2 rbd image
4619  * with the supplied name.
4620  *
4621  * This function will record the given rbd_dev's image_id field if
4622  * it can be determined, and in that case will return 0.  If any
4623  * errors occur a negative errno will be returned and the rbd_dev's
4624  * image_id field will be unchanged (and should be NULL).
4625  */
4626 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4627 {
4628 	int ret;
4629 	size_t size;
4630 	char *object_name;
4631 	void *response;
4632 	char *image_id;
4633 
4634 	/*
4635 	 * When probing a parent image, the image id is already
4636 	 * known (and the image name likely is not).  There's no
4637 	 * need to fetch the image id again in this case.  We
4638 	 * do still need to set the image format though.
4639 	 */
4640 	if (rbd_dev->spec->image_id) {
4641 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4642 
4643 		return 0;
4644 	}
4645 
4646 	/*
4647 	 * First, see if the format 2 image id file exists, and if
4648 	 * so, get the image's persistent id from it.
4649 	 */
4650 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4651 	object_name = kmalloc(size, GFP_NOIO);
4652 	if (!object_name)
4653 		return -ENOMEM;
4654 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4655 	dout("rbd id object name is %s\n", object_name);
4656 
4657 	/* Response will be an encoded string, which includes a length */
4658 
4659 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4660 	response = kzalloc(size, GFP_NOIO);
4661 	if (!response) {
4662 		ret = -ENOMEM;
4663 		goto out;
4664 	}
4665 
4666 	/* If it doesn't exist we'll assume it's a format 1 image */
4667 
4668 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4669 				"rbd", "get_id", NULL, 0,
4670 				response, RBD_IMAGE_ID_LEN_MAX);
4671 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672 	if (ret == -ENOENT) {
4673 		image_id = kstrdup("", GFP_KERNEL);
4674 		ret = image_id ? 0 : -ENOMEM;
4675 		if (!ret)
4676 			rbd_dev->image_format = 1;
4677 	} else if (ret > sizeof (__le32)) {
4678 		void *p = response;
4679 
4680 		image_id = ceph_extract_encoded_string(&p, p + ret,
4681 						NULL, GFP_NOIO);
4682 		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4683 		if (!ret)
4684 			rbd_dev->image_format = 2;
4685 	} else {
4686 		ret = -EINVAL;
4687 	}
4688 
4689 	if (!ret) {
4690 		rbd_dev->spec->image_id = image_id;
4691 		dout("image_id is %s\n", image_id);
4692 	}
4693 out:
4694 	kfree(response);
4695 	kfree(object_name);
4696 
4697 	return ret;
4698 }
4699 
4700 /* Undo whatever state changes are made by v1 or v2 image probe */
4701 
4702 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4703 {
4704 	struct rbd_image_header	*header;
4705 
4706 	/* Drop parent reference unless it's already been done (or none) */
4707 
4708 	if (rbd_dev->parent_overlap)
4709 		rbd_dev_parent_put(rbd_dev);
4710 
4711 	/* Free dynamic fields from the header, then zero it out */
4712 
4713 	header = &rbd_dev->header;
4714 	ceph_put_snap_context(header->snapc);
4715 	kfree(header->snap_sizes);
4716 	kfree(header->snap_names);
4717 	kfree(header->object_prefix);
4718 	memset(header, 0, sizeof (*header));
4719 }
4720 
4721 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4722 {
4723 	int ret;
4724 
4725 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4726 	if (ret)
4727 		goto out_err;
4728 
4729 	/*
4730 	 * Get the and check features for the image.  Currently the
4731 	 * features are assumed to never change.
4732 	 */
4733 	ret = rbd_dev_v2_features(rbd_dev);
4734 	if (ret)
4735 		goto out_err;
4736 
4737 	/* If the image supports fancy striping, get its parameters */
4738 
4739 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4740 		ret = rbd_dev_v2_striping_info(rbd_dev);
4741 		if (ret < 0)
4742 			goto out_err;
4743 	}
4744 	/* No support for crypto and compression type format 2 images */
4745 
4746 	return 0;
4747 out_err:
4748 	rbd_dev->header.features = 0;
4749 	kfree(rbd_dev->header.object_prefix);
4750 	rbd_dev->header.object_prefix = NULL;
4751 
4752 	return ret;
4753 }
4754 
4755 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4756 {
4757 	struct rbd_device *parent = NULL;
4758 	struct rbd_spec *parent_spec;
4759 	struct rbd_client *rbdc;
4760 	int ret;
4761 
4762 	if (!rbd_dev->parent_spec)
4763 		return 0;
4764 	/*
4765 	 * We need to pass a reference to the client and the parent
4766 	 * spec when creating the parent rbd_dev.  Images related by
4767 	 * parent/child relationships always share both.
4768 	 */
4769 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4770 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4771 
4772 	ret = -ENOMEM;
4773 	parent = rbd_dev_create(rbdc, parent_spec);
4774 	if (!parent)
4775 		goto out_err;
4776 
4777 	ret = rbd_dev_image_probe(parent, false);
4778 	if (ret < 0)
4779 		goto out_err;
4780 	rbd_dev->parent = parent;
4781 	atomic_set(&rbd_dev->parent_ref, 1);
4782 
4783 	return 0;
4784 out_err:
4785 	if (parent) {
4786 		rbd_dev_unparent(rbd_dev);
4787 		kfree(rbd_dev->header_name);
4788 		rbd_dev_destroy(parent);
4789 	} else {
4790 		rbd_put_client(rbdc);
4791 		rbd_spec_put(parent_spec);
4792 	}
4793 
4794 	return ret;
4795 }
4796 
4797 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4798 {
4799 	int ret;
4800 
4801 	/* generate unique id: find highest unique id, add one */
4802 	rbd_dev_id_get(rbd_dev);
4803 
4804 	/* Fill in the device name, now that we have its id. */
4805 	BUILD_BUG_ON(DEV_NAME_LEN
4806 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4807 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4808 
4809 	/* Get our block major device number. */
4810 
4811 	ret = register_blkdev(0, rbd_dev->name);
4812 	if (ret < 0)
4813 		goto err_out_id;
4814 	rbd_dev->major = ret;
4815 
4816 	/* Set up the blkdev mapping. */
4817 
4818 	ret = rbd_init_disk(rbd_dev);
4819 	if (ret)
4820 		goto err_out_blkdev;
4821 
4822 	ret = rbd_dev_mapping_set(rbd_dev);
4823 	if (ret)
4824 		goto err_out_disk;
4825 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4826 
4827 	ret = rbd_bus_add_dev(rbd_dev);
4828 	if (ret)
4829 		goto err_out_mapping;
4830 
4831 	/* Everything's ready.  Announce the disk to the world. */
4832 
4833 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4834 	add_disk(rbd_dev->disk);
4835 
4836 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4837 		(unsigned long long) rbd_dev->mapping.size);
4838 
4839 	return ret;
4840 
4841 err_out_mapping:
4842 	rbd_dev_mapping_clear(rbd_dev);
4843 err_out_disk:
4844 	rbd_free_disk(rbd_dev);
4845 err_out_blkdev:
4846 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
4847 err_out_id:
4848 	rbd_dev_id_put(rbd_dev);
4849 	rbd_dev_mapping_clear(rbd_dev);
4850 
4851 	return ret;
4852 }
4853 
4854 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4855 {
4856 	struct rbd_spec *spec = rbd_dev->spec;
4857 	size_t size;
4858 
4859 	/* Record the header object name for this rbd image. */
4860 
4861 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4862 
4863 	if (rbd_dev->image_format == 1)
4864 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4865 	else
4866 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4867 
4868 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4869 	if (!rbd_dev->header_name)
4870 		return -ENOMEM;
4871 
4872 	if (rbd_dev->image_format == 1)
4873 		sprintf(rbd_dev->header_name, "%s%s",
4874 			spec->image_name, RBD_SUFFIX);
4875 	else
4876 		sprintf(rbd_dev->header_name, "%s%s",
4877 			RBD_HEADER_PREFIX, spec->image_id);
4878 	return 0;
4879 }
4880 
4881 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4882 {
4883 	rbd_dev_unprobe(rbd_dev);
4884 	kfree(rbd_dev->header_name);
4885 	rbd_dev->header_name = NULL;
4886 	rbd_dev->image_format = 0;
4887 	kfree(rbd_dev->spec->image_id);
4888 	rbd_dev->spec->image_id = NULL;
4889 
4890 	rbd_dev_destroy(rbd_dev);
4891 }
4892 
4893 /*
4894  * Probe for the existence of the header object for the given rbd
4895  * device.  If this image is the one being mapped (i.e., not a
4896  * parent), initiate a watch on its header object before using that
4897  * object to get detailed information about the rbd image.
4898  */
4899 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4900 {
4901 	int ret;
4902 	int tmp;
4903 
4904 	/*
4905 	 * Get the id from the image id object.  If it's not a
4906 	 * format 2 image, we'll get ENOENT back, and we'll assume
4907 	 * it's a format 1 image.
4908 	 */
4909 	ret = rbd_dev_image_id(rbd_dev);
4910 	if (ret)
4911 		return ret;
4912 	rbd_assert(rbd_dev->spec->image_id);
4913 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4914 
4915 	ret = rbd_dev_header_name(rbd_dev);
4916 	if (ret)
4917 		goto err_out_format;
4918 
4919 	if (mapping) {
4920 		ret = rbd_dev_header_watch_sync(rbd_dev, true);
4921 		if (ret)
4922 			goto out_header_name;
4923 	}
4924 
4925 	if (rbd_dev->image_format == 1)
4926 		ret = rbd_dev_v1_header_info(rbd_dev);
4927 	else
4928 		ret = rbd_dev_v2_header_info(rbd_dev);
4929 	if (ret)
4930 		goto err_out_watch;
4931 
4932 	ret = rbd_dev_spec_update(rbd_dev);
4933 	if (ret)
4934 		goto err_out_probe;
4935 
4936 	ret = rbd_dev_probe_parent(rbd_dev);
4937 	if (ret)
4938 		goto err_out_probe;
4939 
4940 	dout("discovered format %u image, header name is %s\n",
4941 		rbd_dev->image_format, rbd_dev->header_name);
4942 
4943 	return 0;
4944 err_out_probe:
4945 	rbd_dev_unprobe(rbd_dev);
4946 err_out_watch:
4947 	if (mapping) {
4948 		tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4949 		if (tmp)
4950 			rbd_warn(rbd_dev, "unable to tear down "
4951 					"watch request (%d)\n", tmp);
4952 	}
4953 out_header_name:
4954 	kfree(rbd_dev->header_name);
4955 	rbd_dev->header_name = NULL;
4956 err_out_format:
4957 	rbd_dev->image_format = 0;
4958 	kfree(rbd_dev->spec->image_id);
4959 	rbd_dev->spec->image_id = NULL;
4960 
4961 	dout("probe failed, returning %d\n", ret);
4962 
4963 	return ret;
4964 }
4965 
4966 static ssize_t rbd_add(struct bus_type *bus,
4967 		       const char *buf,
4968 		       size_t count)
4969 {
4970 	struct rbd_device *rbd_dev = NULL;
4971 	struct ceph_options *ceph_opts = NULL;
4972 	struct rbd_options *rbd_opts = NULL;
4973 	struct rbd_spec *spec = NULL;
4974 	struct rbd_client *rbdc;
4975 	struct ceph_osd_client *osdc;
4976 	bool read_only;
4977 	int rc = -ENOMEM;
4978 
4979 	if (!try_module_get(THIS_MODULE))
4980 		return -ENODEV;
4981 
4982 	/* parse add command */
4983 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4984 	if (rc < 0)
4985 		goto err_out_module;
4986 	read_only = rbd_opts->read_only;
4987 	kfree(rbd_opts);
4988 	rbd_opts = NULL;	/* done with this */
4989 
4990 	rbdc = rbd_get_client(ceph_opts);
4991 	if (IS_ERR(rbdc)) {
4992 		rc = PTR_ERR(rbdc);
4993 		goto err_out_args;
4994 	}
4995 	ceph_opts = NULL;	/* rbd_dev client now owns this */
4996 
4997 	/* pick the pool */
4998 	osdc = &rbdc->client->osdc;
4999 	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5000 	if (rc < 0)
5001 		goto err_out_client;
5002 	spec->pool_id = (u64)rc;
5003 
5004 	/* The ceph file layout needs to fit pool id in 32 bits */
5005 
5006 	if (spec->pool_id > (u64)U32_MAX) {
5007 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5008 				(unsigned long long)spec->pool_id, U32_MAX);
5009 		rc = -EIO;
5010 		goto err_out_client;
5011 	}
5012 
5013 	rbd_dev = rbd_dev_create(rbdc, spec);
5014 	if (!rbd_dev)
5015 		goto err_out_client;
5016 	rbdc = NULL;		/* rbd_dev now owns this */
5017 	spec = NULL;		/* rbd_dev now owns this */
5018 
5019 	rc = rbd_dev_image_probe(rbd_dev, true);
5020 	if (rc < 0)
5021 		goto err_out_rbd_dev;
5022 
5023 	/* If we are mapping a snapshot it must be marked read-only */
5024 
5025 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5026 		read_only = true;
5027 	rbd_dev->mapping.read_only = read_only;
5028 
5029 	rc = rbd_dev_device_setup(rbd_dev);
5030 	if (!rc)
5031 		return count;
5032 
5033 	rbd_dev_image_release(rbd_dev);
5034 err_out_rbd_dev:
5035 	rbd_dev_destroy(rbd_dev);
5036 err_out_client:
5037 	rbd_put_client(rbdc);
5038 err_out_args:
5039 	if (ceph_opts)
5040 		ceph_destroy_options(ceph_opts);
5041 	kfree(rbd_opts);
5042 	rbd_spec_put(spec);
5043 err_out_module:
5044 	module_put(THIS_MODULE);
5045 
5046 	dout("Error adding device %s\n", buf);
5047 
5048 	return (ssize_t)rc;
5049 }
5050 
5051 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5052 {
5053 	struct list_head *tmp;
5054 	struct rbd_device *rbd_dev;
5055 
5056 	spin_lock(&rbd_dev_list_lock);
5057 	list_for_each(tmp, &rbd_dev_list) {
5058 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5059 		if (rbd_dev->dev_id == dev_id) {
5060 			spin_unlock(&rbd_dev_list_lock);
5061 			return rbd_dev;
5062 		}
5063 	}
5064 	spin_unlock(&rbd_dev_list_lock);
5065 	return NULL;
5066 }
5067 
5068 static void rbd_dev_device_release(struct device *dev)
5069 {
5070 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5071 
5072 	rbd_free_disk(rbd_dev);
5073 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5074 	rbd_dev_mapping_clear(rbd_dev);
5075 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
5076 	rbd_dev->major = 0;
5077 	rbd_dev_id_put(rbd_dev);
5078 	rbd_dev_mapping_clear(rbd_dev);
5079 }
5080 
5081 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5082 {
5083 	while (rbd_dev->parent) {
5084 		struct rbd_device *first = rbd_dev;
5085 		struct rbd_device *second = first->parent;
5086 		struct rbd_device *third;
5087 
5088 		/*
5089 		 * Follow to the parent with no grandparent and
5090 		 * remove it.
5091 		 */
5092 		while (second && (third = second->parent)) {
5093 			first = second;
5094 			second = third;
5095 		}
5096 		rbd_assert(second);
5097 		rbd_dev_image_release(second);
5098 		first->parent = NULL;
5099 		first->parent_overlap = 0;
5100 
5101 		rbd_assert(first->parent_spec);
5102 		rbd_spec_put(first->parent_spec);
5103 		first->parent_spec = NULL;
5104 	}
5105 }
5106 
5107 static ssize_t rbd_remove(struct bus_type *bus,
5108 			  const char *buf,
5109 			  size_t count)
5110 {
5111 	struct rbd_device *rbd_dev = NULL;
5112 	int target_id;
5113 	unsigned long ul;
5114 	int ret;
5115 
5116 	ret = strict_strtoul(buf, 10, &ul);
5117 	if (ret)
5118 		return ret;
5119 
5120 	/* convert to int; abort if we lost anything in the conversion */
5121 	target_id = (int) ul;
5122 	if (target_id != ul)
5123 		return -EINVAL;
5124 
5125 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5126 
5127 	rbd_dev = __rbd_get_dev(target_id);
5128 	if (!rbd_dev) {
5129 		ret = -ENOENT;
5130 		goto done;
5131 	}
5132 
5133 	spin_lock_irq(&rbd_dev->lock);
5134 	if (rbd_dev->open_count)
5135 		ret = -EBUSY;
5136 	else
5137 		set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5138 	spin_unlock_irq(&rbd_dev->lock);
5139 	if (ret < 0)
5140 		goto done;
5141 	rbd_bus_del_dev(rbd_dev);
5142 	ret = rbd_dev_header_watch_sync(rbd_dev, false);
5143 	if (ret)
5144 		rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5145 	rbd_dev_image_release(rbd_dev);
5146 	module_put(THIS_MODULE);
5147 	ret = count;
5148 done:
5149 	mutex_unlock(&ctl_mutex);
5150 
5151 	return ret;
5152 }
5153 
5154 /*
5155  * create control files in sysfs
5156  * /sys/bus/rbd/...
5157  */
5158 static int rbd_sysfs_init(void)
5159 {
5160 	int ret;
5161 
5162 	ret = device_register(&rbd_root_dev);
5163 	if (ret < 0)
5164 		return ret;
5165 
5166 	ret = bus_register(&rbd_bus_type);
5167 	if (ret < 0)
5168 		device_unregister(&rbd_root_dev);
5169 
5170 	return ret;
5171 }
5172 
5173 static void rbd_sysfs_cleanup(void)
5174 {
5175 	bus_unregister(&rbd_bus_type);
5176 	device_unregister(&rbd_root_dev);
5177 }
5178 
5179 static int rbd_slab_init(void)
5180 {
5181 	rbd_assert(!rbd_img_request_cache);
5182 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5183 					sizeof (struct rbd_img_request),
5184 					__alignof__(struct rbd_img_request),
5185 					0, NULL);
5186 	if (!rbd_img_request_cache)
5187 		return -ENOMEM;
5188 
5189 	rbd_assert(!rbd_obj_request_cache);
5190 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5191 					sizeof (struct rbd_obj_request),
5192 					__alignof__(struct rbd_obj_request),
5193 					0, NULL);
5194 	if (!rbd_obj_request_cache)
5195 		goto out_err;
5196 
5197 	rbd_assert(!rbd_segment_name_cache);
5198 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5199 					MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5200 	if (rbd_segment_name_cache)
5201 		return 0;
5202 out_err:
5203 	if (rbd_obj_request_cache) {
5204 		kmem_cache_destroy(rbd_obj_request_cache);
5205 		rbd_obj_request_cache = NULL;
5206 	}
5207 
5208 	kmem_cache_destroy(rbd_img_request_cache);
5209 	rbd_img_request_cache = NULL;
5210 
5211 	return -ENOMEM;
5212 }
5213 
5214 static void rbd_slab_exit(void)
5215 {
5216 	rbd_assert(rbd_segment_name_cache);
5217 	kmem_cache_destroy(rbd_segment_name_cache);
5218 	rbd_segment_name_cache = NULL;
5219 
5220 	rbd_assert(rbd_obj_request_cache);
5221 	kmem_cache_destroy(rbd_obj_request_cache);
5222 	rbd_obj_request_cache = NULL;
5223 
5224 	rbd_assert(rbd_img_request_cache);
5225 	kmem_cache_destroy(rbd_img_request_cache);
5226 	rbd_img_request_cache = NULL;
5227 }
5228 
5229 static int __init rbd_init(void)
5230 {
5231 	int rc;
5232 
5233 	if (!libceph_compatible(NULL)) {
5234 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5235 
5236 		return -EINVAL;
5237 	}
5238 	rc = rbd_slab_init();
5239 	if (rc)
5240 		return rc;
5241 	rc = rbd_sysfs_init();
5242 	if (rc)
5243 		rbd_slab_exit();
5244 	else
5245 		pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5246 
5247 	return rc;
5248 }
5249 
5250 static void __exit rbd_exit(void)
5251 {
5252 	rbd_sysfs_cleanup();
5253 	rbd_slab_exit();
5254 }
5255 
5256 module_init(rbd_init);
5257 module_exit(rbd_exit);
5258 
5259 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5260 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5261 MODULE_DESCRIPTION("rados block device");
5262 
5263 /* following authorship retained from original osdblk.c */
5264 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5265 
5266 MODULE_LICENSE("GPL");
5267