1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 636 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 639 u64 snap_id); 640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 641 u8 *order, u64 *snap_size); 642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 643 644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 646 647 /* 648 * Return true if nothing else is pending. 649 */ 650 static bool pending_result_dec(struct pending_result *pending, int *result) 651 { 652 rbd_assert(pending->num_pending > 0); 653 654 if (*result && !pending->result) 655 pending->result = *result; 656 if (--pending->num_pending) 657 return false; 658 659 *result = pending->result; 660 return true; 661 } 662 663 static int rbd_open(struct gendisk *disk, blk_mode_t mode) 664 { 665 struct rbd_device *rbd_dev = disk->private_data; 666 bool removing = false; 667 668 spin_lock_irq(&rbd_dev->lock); 669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 670 removing = true; 671 else 672 rbd_dev->open_count++; 673 spin_unlock_irq(&rbd_dev->lock); 674 if (removing) 675 return -ENOENT; 676 677 (void) get_device(&rbd_dev->dev); 678 679 return 0; 680 } 681 682 static void rbd_release(struct gendisk *disk) 683 { 684 struct rbd_device *rbd_dev = disk->private_data; 685 unsigned long open_count_before; 686 687 spin_lock_irq(&rbd_dev->lock); 688 open_count_before = rbd_dev->open_count--; 689 spin_unlock_irq(&rbd_dev->lock); 690 rbd_assert(open_count_before > 0); 691 692 put_device(&rbd_dev->dev); 693 } 694 695 static const struct block_device_operations rbd_bd_ops = { 696 .owner = THIS_MODULE, 697 .open = rbd_open, 698 .release = rbd_release, 699 }; 700 701 /* 702 * Initialize an rbd client instance. Success or not, this function 703 * consumes ceph_opts. Caller holds client_mutex. 704 */ 705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 706 { 707 struct rbd_client *rbdc; 708 int ret = -ENOMEM; 709 710 dout("%s:\n", __func__); 711 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 712 if (!rbdc) 713 goto out_opt; 714 715 kref_init(&rbdc->kref); 716 INIT_LIST_HEAD(&rbdc->node); 717 718 rbdc->client = ceph_create_client(ceph_opts, rbdc); 719 if (IS_ERR(rbdc->client)) 720 goto out_rbdc; 721 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 722 723 ret = ceph_open_session(rbdc->client); 724 if (ret < 0) 725 goto out_client; 726 727 spin_lock(&rbd_client_list_lock); 728 list_add_tail(&rbdc->node, &rbd_client_list); 729 spin_unlock(&rbd_client_list_lock); 730 731 dout("%s: rbdc %p\n", __func__, rbdc); 732 733 return rbdc; 734 out_client: 735 ceph_destroy_client(rbdc->client); 736 out_rbdc: 737 kfree(rbdc); 738 out_opt: 739 if (ceph_opts) 740 ceph_destroy_options(ceph_opts); 741 dout("%s: error %d\n", __func__, ret); 742 743 return ERR_PTR(ret); 744 } 745 746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 747 { 748 kref_get(&rbdc->kref); 749 750 return rbdc; 751 } 752 753 /* 754 * Find a ceph client with specific addr and configuration. If 755 * found, bump its reference count. 756 */ 757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 758 { 759 struct rbd_client *rbdc = NULL, *iter; 760 761 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 762 return NULL; 763 764 spin_lock(&rbd_client_list_lock); 765 list_for_each_entry(iter, &rbd_client_list, node) { 766 if (!ceph_compare_options(ceph_opts, iter->client)) { 767 __rbd_get_client(iter); 768 769 rbdc = iter; 770 break; 771 } 772 } 773 spin_unlock(&rbd_client_list_lock); 774 775 return rbdc; 776 } 777 778 /* 779 * (Per device) rbd map options 780 */ 781 enum { 782 Opt_queue_depth, 783 Opt_alloc_size, 784 Opt_lock_timeout, 785 /* int args above */ 786 Opt_pool_ns, 787 Opt_compression_hint, 788 /* string args above */ 789 Opt_read_only, 790 Opt_read_write, 791 Opt_lock_on_read, 792 Opt_exclusive, 793 Opt_notrim, 794 }; 795 796 enum { 797 Opt_compression_hint_none, 798 Opt_compression_hint_compressible, 799 Opt_compression_hint_incompressible, 800 }; 801 802 static const struct constant_table rbd_param_compression_hint[] = { 803 {"none", Opt_compression_hint_none}, 804 {"compressible", Opt_compression_hint_compressible}, 805 {"incompressible", Opt_compression_hint_incompressible}, 806 {} 807 }; 808 809 static const struct fs_parameter_spec rbd_parameters[] = { 810 fsparam_u32 ("alloc_size", Opt_alloc_size), 811 fsparam_enum ("compression_hint", Opt_compression_hint, 812 rbd_param_compression_hint), 813 fsparam_flag ("exclusive", Opt_exclusive), 814 fsparam_flag ("lock_on_read", Opt_lock_on_read), 815 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 816 fsparam_flag ("notrim", Opt_notrim), 817 fsparam_string ("_pool_ns", Opt_pool_ns), 818 fsparam_u32 ("queue_depth", Opt_queue_depth), 819 fsparam_flag ("read_only", Opt_read_only), 820 fsparam_flag ("read_write", Opt_read_write), 821 fsparam_flag ("ro", Opt_read_only), 822 fsparam_flag ("rw", Opt_read_write), 823 {} 824 }; 825 826 struct rbd_options { 827 int queue_depth; 828 int alloc_size; 829 unsigned long lock_timeout; 830 bool read_only; 831 bool lock_on_read; 832 bool exclusive; 833 bool trim; 834 835 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 836 }; 837 838 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 839 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 840 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 841 #define RBD_READ_ONLY_DEFAULT false 842 #define RBD_LOCK_ON_READ_DEFAULT false 843 #define RBD_EXCLUSIVE_DEFAULT false 844 #define RBD_TRIM_DEFAULT true 845 846 struct rbd_parse_opts_ctx { 847 struct rbd_spec *spec; 848 struct ceph_options *copts; 849 struct rbd_options *opts; 850 }; 851 852 static char* obj_op_name(enum obj_operation_type op_type) 853 { 854 switch (op_type) { 855 case OBJ_OP_READ: 856 return "read"; 857 case OBJ_OP_WRITE: 858 return "write"; 859 case OBJ_OP_DISCARD: 860 return "discard"; 861 case OBJ_OP_ZEROOUT: 862 return "zeroout"; 863 default: 864 return "???"; 865 } 866 } 867 868 /* 869 * Destroy ceph client 870 * 871 * Caller must hold rbd_client_list_lock. 872 */ 873 static void rbd_client_release(struct kref *kref) 874 { 875 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 876 877 dout("%s: rbdc %p\n", __func__, rbdc); 878 spin_lock(&rbd_client_list_lock); 879 list_del(&rbdc->node); 880 spin_unlock(&rbd_client_list_lock); 881 882 ceph_destroy_client(rbdc->client); 883 kfree(rbdc); 884 } 885 886 /* 887 * Drop reference to ceph client node. If it's not referenced anymore, release 888 * it. 889 */ 890 static void rbd_put_client(struct rbd_client *rbdc) 891 { 892 if (rbdc) 893 kref_put(&rbdc->kref, rbd_client_release); 894 } 895 896 /* 897 * Get a ceph client with specific addr and configuration, if one does 898 * not exist create it. Either way, ceph_opts is consumed by this 899 * function. 900 */ 901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 902 { 903 struct rbd_client *rbdc; 904 int ret; 905 906 mutex_lock(&client_mutex); 907 rbdc = rbd_client_find(ceph_opts); 908 if (rbdc) { 909 ceph_destroy_options(ceph_opts); 910 911 /* 912 * Using an existing client. Make sure ->pg_pools is up to 913 * date before we look up the pool id in do_rbd_add(). 914 */ 915 ret = ceph_wait_for_latest_osdmap(rbdc->client, 916 rbdc->client->options->mount_timeout); 917 if (ret) { 918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 919 rbd_put_client(rbdc); 920 rbdc = ERR_PTR(ret); 921 } 922 } else { 923 rbdc = rbd_client_create(ceph_opts); 924 } 925 mutex_unlock(&client_mutex); 926 927 return rbdc; 928 } 929 930 static bool rbd_image_format_valid(u32 image_format) 931 { 932 return image_format == 1 || image_format == 2; 933 } 934 935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 936 { 937 size_t size; 938 u32 snap_count; 939 940 /* The header has to start with the magic rbd header text */ 941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 942 return false; 943 944 /* The bio layer requires at least sector-sized I/O */ 945 946 if (ondisk->options.order < SECTOR_SHIFT) 947 return false; 948 949 /* If we use u64 in a few spots we may be able to loosen this */ 950 951 if (ondisk->options.order > 8 * sizeof (int) - 1) 952 return false; 953 954 /* 955 * The size of a snapshot header has to fit in a size_t, and 956 * that limits the number of snapshots. 957 */ 958 snap_count = le32_to_cpu(ondisk->snap_count); 959 size = SIZE_MAX - sizeof (struct ceph_snap_context); 960 if (snap_count > size / sizeof (__le64)) 961 return false; 962 963 /* 964 * Not only that, but the size of the entire the snapshot 965 * header must also be representable in a size_t. 966 */ 967 size -= snap_count * sizeof (__le64); 968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 969 return false; 970 971 return true; 972 } 973 974 /* 975 * returns the size of an object in the image 976 */ 977 static u32 rbd_obj_bytes(struct rbd_image_header *header) 978 { 979 return 1U << header->obj_order; 980 } 981 982 static void rbd_init_layout(struct rbd_device *rbd_dev) 983 { 984 if (rbd_dev->header.stripe_unit == 0 || 985 rbd_dev->header.stripe_count == 0) { 986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 987 rbd_dev->header.stripe_count = 1; 988 } 989 990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 996 } 997 998 /* 999 * Fill an rbd image header with information from the given format 1 1000 * on-disk header. 1001 */ 1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1003 struct rbd_image_header_ondisk *ondisk) 1004 { 1005 struct rbd_image_header *header = &rbd_dev->header; 1006 bool first_time = header->object_prefix == NULL; 1007 struct ceph_snap_context *snapc; 1008 char *object_prefix = NULL; 1009 char *snap_names = NULL; 1010 u64 *snap_sizes = NULL; 1011 u32 snap_count; 1012 int ret = -ENOMEM; 1013 u32 i; 1014 1015 /* Allocate this now to avoid having to handle failure below */ 1016 1017 if (first_time) { 1018 object_prefix = kstrndup(ondisk->object_prefix, 1019 sizeof(ondisk->object_prefix), 1020 GFP_KERNEL); 1021 if (!object_prefix) 1022 return -ENOMEM; 1023 } 1024 1025 /* Allocate the snapshot context and fill it in */ 1026 1027 snap_count = le32_to_cpu(ondisk->snap_count); 1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1029 if (!snapc) 1030 goto out_err; 1031 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1032 if (snap_count) { 1033 struct rbd_image_snap_ondisk *snaps; 1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1035 1036 /* We'll keep a copy of the snapshot names... */ 1037 1038 if (snap_names_len > (u64)SIZE_MAX) 1039 goto out_2big; 1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1041 if (!snap_names) 1042 goto out_err; 1043 1044 /* ...as well as the array of their sizes. */ 1045 snap_sizes = kmalloc_array(snap_count, 1046 sizeof(*header->snap_sizes), 1047 GFP_KERNEL); 1048 if (!snap_sizes) 1049 goto out_err; 1050 1051 /* 1052 * Copy the names, and fill in each snapshot's id 1053 * and size. 1054 * 1055 * Note that rbd_dev_v1_header_info() guarantees the 1056 * ondisk buffer we're working with has 1057 * snap_names_len bytes beyond the end of the 1058 * snapshot id array, this memcpy() is safe. 1059 */ 1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1061 snaps = ondisk->snaps; 1062 for (i = 0; i < snap_count; i++) { 1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1065 } 1066 } 1067 1068 /* We won't fail any more, fill in the header */ 1069 1070 if (first_time) { 1071 header->object_prefix = object_prefix; 1072 header->obj_order = ondisk->options.order; 1073 rbd_init_layout(rbd_dev); 1074 } else { 1075 ceph_put_snap_context(header->snapc); 1076 kfree(header->snap_names); 1077 kfree(header->snap_sizes); 1078 } 1079 1080 /* The remaining fields always get updated (when we refresh) */ 1081 1082 header->image_size = le64_to_cpu(ondisk->image_size); 1083 header->snapc = snapc; 1084 header->snap_names = snap_names; 1085 header->snap_sizes = snap_sizes; 1086 1087 return 0; 1088 out_2big: 1089 ret = -EIO; 1090 out_err: 1091 kfree(snap_sizes); 1092 kfree(snap_names); 1093 ceph_put_snap_context(snapc); 1094 kfree(object_prefix); 1095 1096 return ret; 1097 } 1098 1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1100 { 1101 const char *snap_name; 1102 1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1104 1105 /* Skip over names until we find the one we are looking for */ 1106 1107 snap_name = rbd_dev->header.snap_names; 1108 while (which--) 1109 snap_name += strlen(snap_name) + 1; 1110 1111 return kstrdup(snap_name, GFP_KERNEL); 1112 } 1113 1114 /* 1115 * Snapshot id comparison function for use with qsort()/bsearch(). 1116 * Note that result is for snapshots in *descending* order. 1117 */ 1118 static int snapid_compare_reverse(const void *s1, const void *s2) 1119 { 1120 u64 snap_id1 = *(u64 *)s1; 1121 u64 snap_id2 = *(u64 *)s2; 1122 1123 if (snap_id1 < snap_id2) 1124 return 1; 1125 return snap_id1 == snap_id2 ? 0 : -1; 1126 } 1127 1128 /* 1129 * Search a snapshot context to see if the given snapshot id is 1130 * present. 1131 * 1132 * Returns the position of the snapshot id in the array if it's found, 1133 * or BAD_SNAP_INDEX otherwise. 1134 * 1135 * Note: The snapshot array is in kept sorted (by the osd) in 1136 * reverse order, highest snapshot id first. 1137 */ 1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1139 { 1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1141 u64 *found; 1142 1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1144 sizeof (snap_id), snapid_compare_reverse); 1145 1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1147 } 1148 1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1150 u64 snap_id) 1151 { 1152 u32 which; 1153 const char *snap_name; 1154 1155 which = rbd_dev_snap_index(rbd_dev, snap_id); 1156 if (which == BAD_SNAP_INDEX) 1157 return ERR_PTR(-ENOENT); 1158 1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1161 } 1162 1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1164 { 1165 if (snap_id == CEPH_NOSNAP) 1166 return RBD_SNAP_HEAD_NAME; 1167 1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1169 if (rbd_dev->image_format == 1) 1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1171 1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1173 } 1174 1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1176 u64 *snap_size) 1177 { 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (snap_id == CEPH_NOSNAP) { 1180 *snap_size = rbd_dev->header.image_size; 1181 } else if (rbd_dev->image_format == 1) { 1182 u32 which; 1183 1184 which = rbd_dev_snap_index(rbd_dev, snap_id); 1185 if (which == BAD_SNAP_INDEX) 1186 return -ENOENT; 1187 1188 *snap_size = rbd_dev->header.snap_sizes[which]; 1189 } else { 1190 u64 size = 0; 1191 int ret; 1192 1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1194 if (ret) 1195 return ret; 1196 1197 *snap_size = size; 1198 } 1199 return 0; 1200 } 1201 1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1203 { 1204 u64 snap_id = rbd_dev->spec->snap_id; 1205 u64 size = 0; 1206 int ret; 1207 1208 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1209 if (ret) 1210 return ret; 1211 1212 rbd_dev->mapping.size = size; 1213 return 0; 1214 } 1215 1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1217 { 1218 rbd_dev->mapping.size = 0; 1219 } 1220 1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1222 { 1223 struct ceph_bio_iter it = *bio_pos; 1224 1225 ceph_bio_iter_advance(&it, off); 1226 ceph_bio_iter_advance_step(&it, bytes, ({ 1227 memzero_bvec(&bv); 1228 })); 1229 } 1230 1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1232 { 1233 struct ceph_bvec_iter it = *bvec_pos; 1234 1235 ceph_bvec_iter_advance(&it, off); 1236 ceph_bvec_iter_advance_step(&it, bytes, ({ 1237 memzero_bvec(&bv); 1238 })); 1239 } 1240 1241 /* 1242 * Zero a range in @obj_req data buffer defined by a bio (list) or 1243 * (private) bio_vec array. 1244 * 1245 * @off is relative to the start of the data buffer. 1246 */ 1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1248 u32 bytes) 1249 { 1250 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1251 1252 switch (obj_req->img_request->data_type) { 1253 case OBJ_REQUEST_BIO: 1254 zero_bios(&obj_req->bio_pos, off, bytes); 1255 break; 1256 case OBJ_REQUEST_BVECS: 1257 case OBJ_REQUEST_OWN_BVECS: 1258 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1259 break; 1260 default: 1261 BUG(); 1262 } 1263 } 1264 1265 static void rbd_obj_request_destroy(struct kref *kref); 1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1267 { 1268 rbd_assert(obj_request != NULL); 1269 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1270 kref_read(&obj_request->kref)); 1271 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1272 } 1273 1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1275 struct rbd_obj_request *obj_request) 1276 { 1277 rbd_assert(obj_request->img_request == NULL); 1278 1279 /* Image request now owns object's original reference */ 1280 obj_request->img_request = img_request; 1281 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1282 } 1283 1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1285 struct rbd_obj_request *obj_request) 1286 { 1287 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1288 list_del(&obj_request->ex.oe_item); 1289 rbd_assert(obj_request->img_request == img_request); 1290 rbd_obj_request_put(obj_request); 1291 } 1292 1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1294 { 1295 struct rbd_obj_request *obj_req = osd_req->r_priv; 1296 1297 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1298 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1299 obj_req->ex.oe_off, obj_req->ex.oe_len); 1300 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1301 } 1302 1303 /* 1304 * The default/initial value for all image request flags is 0. Each 1305 * is conditionally set to 1 at image request initialization time 1306 * and currently never change thereafter. 1307 */ 1308 static void img_request_layered_set(struct rbd_img_request *img_request) 1309 { 1310 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1311 } 1312 1313 static bool img_request_layered_test(struct rbd_img_request *img_request) 1314 { 1315 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1316 } 1317 1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1319 { 1320 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1321 1322 return !obj_req->ex.oe_off && 1323 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1324 } 1325 1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1327 { 1328 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1329 1330 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1331 rbd_dev->layout.object_size; 1332 } 1333 1334 /* 1335 * Must be called after rbd_obj_calc_img_extents(). 1336 */ 1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1338 { 1339 rbd_assert(obj_req->img_request->snapc); 1340 1341 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1342 dout("%s %p objno %llu discard\n", __func__, obj_req, 1343 obj_req->ex.oe_objno); 1344 return; 1345 } 1346 1347 if (!obj_req->num_img_extents) { 1348 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1349 obj_req->ex.oe_objno); 1350 return; 1351 } 1352 1353 if (rbd_obj_is_entire(obj_req) && 1354 !obj_req->img_request->snapc->num_snaps) { 1355 dout("%s %p objno %llu entire\n", __func__, obj_req, 1356 obj_req->ex.oe_objno); 1357 return; 1358 } 1359 1360 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1361 } 1362 1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1364 { 1365 return ceph_file_extents_bytes(obj_req->img_extents, 1366 obj_req->num_img_extents); 1367 } 1368 1369 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1370 { 1371 switch (img_req->op_type) { 1372 case OBJ_OP_READ: 1373 return false; 1374 case OBJ_OP_WRITE: 1375 case OBJ_OP_DISCARD: 1376 case OBJ_OP_ZEROOUT: 1377 return true; 1378 default: 1379 BUG(); 1380 } 1381 } 1382 1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1384 { 1385 struct rbd_obj_request *obj_req = osd_req->r_priv; 1386 int result; 1387 1388 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1389 osd_req->r_result, obj_req); 1390 1391 /* 1392 * Writes aren't allowed to return a data payload. In some 1393 * guarded write cases (e.g. stat + zero on an empty object) 1394 * a stat response makes it through, but we don't care. 1395 */ 1396 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1397 result = 0; 1398 else 1399 result = osd_req->r_result; 1400 1401 rbd_obj_handle_request(obj_req, result); 1402 } 1403 1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1405 { 1406 struct rbd_obj_request *obj_request = osd_req->r_priv; 1407 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1408 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1409 1410 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1411 osd_req->r_snapid = obj_request->img_request->snap_id; 1412 } 1413 1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1415 { 1416 struct rbd_obj_request *obj_request = osd_req->r_priv; 1417 1418 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1419 ktime_get_real_ts64(&osd_req->r_mtime); 1420 osd_req->r_data_offset = obj_request->ex.oe_off; 1421 } 1422 1423 static struct ceph_osd_request * 1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1425 struct ceph_snap_context *snapc, int num_ops) 1426 { 1427 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1428 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1429 struct ceph_osd_request *req; 1430 const char *name_format = rbd_dev->image_format == 1 ? 1431 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1432 int ret; 1433 1434 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1435 if (!req) 1436 return ERR_PTR(-ENOMEM); 1437 1438 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1439 req->r_callback = rbd_osd_req_callback; 1440 req->r_priv = obj_req; 1441 1442 /* 1443 * Data objects may be stored in a separate pool, but always in 1444 * the same namespace in that pool as the header in its pool. 1445 */ 1446 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1447 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1448 1449 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1450 rbd_dev->header.object_prefix, 1451 obj_req->ex.oe_objno); 1452 if (ret) 1453 return ERR_PTR(ret); 1454 1455 return req; 1456 } 1457 1458 static struct ceph_osd_request * 1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1460 { 1461 rbd_assert(obj_req->img_request->snapc); 1462 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1463 num_ops); 1464 } 1465 1466 static struct rbd_obj_request *rbd_obj_request_create(void) 1467 { 1468 struct rbd_obj_request *obj_request; 1469 1470 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1471 if (!obj_request) 1472 return NULL; 1473 1474 ceph_object_extent_init(&obj_request->ex); 1475 INIT_LIST_HEAD(&obj_request->osd_reqs); 1476 mutex_init(&obj_request->state_mutex); 1477 kref_init(&obj_request->kref); 1478 1479 dout("%s %p\n", __func__, obj_request); 1480 return obj_request; 1481 } 1482 1483 static void rbd_obj_request_destroy(struct kref *kref) 1484 { 1485 struct rbd_obj_request *obj_request; 1486 struct ceph_osd_request *osd_req; 1487 u32 i; 1488 1489 obj_request = container_of(kref, struct rbd_obj_request, kref); 1490 1491 dout("%s: obj %p\n", __func__, obj_request); 1492 1493 while (!list_empty(&obj_request->osd_reqs)) { 1494 osd_req = list_first_entry(&obj_request->osd_reqs, 1495 struct ceph_osd_request, r_private_item); 1496 list_del_init(&osd_req->r_private_item); 1497 ceph_osdc_put_request(osd_req); 1498 } 1499 1500 switch (obj_request->img_request->data_type) { 1501 case OBJ_REQUEST_NODATA: 1502 case OBJ_REQUEST_BIO: 1503 case OBJ_REQUEST_BVECS: 1504 break; /* Nothing to do */ 1505 case OBJ_REQUEST_OWN_BVECS: 1506 kfree(obj_request->bvec_pos.bvecs); 1507 break; 1508 default: 1509 BUG(); 1510 } 1511 1512 kfree(obj_request->img_extents); 1513 if (obj_request->copyup_bvecs) { 1514 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1515 if (obj_request->copyup_bvecs[i].bv_page) 1516 __free_page(obj_request->copyup_bvecs[i].bv_page); 1517 } 1518 kfree(obj_request->copyup_bvecs); 1519 } 1520 1521 kmem_cache_free(rbd_obj_request_cache, obj_request); 1522 } 1523 1524 /* It's OK to call this for a device with no parent */ 1525 1526 static void rbd_spec_put(struct rbd_spec *spec); 1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1528 { 1529 rbd_dev_remove_parent(rbd_dev); 1530 rbd_spec_put(rbd_dev->parent_spec); 1531 rbd_dev->parent_spec = NULL; 1532 rbd_dev->parent_overlap = 0; 1533 } 1534 1535 /* 1536 * Parent image reference counting is used to determine when an 1537 * image's parent fields can be safely torn down--after there are no 1538 * more in-flight requests to the parent image. When the last 1539 * reference is dropped, cleaning them up is safe. 1540 */ 1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1542 { 1543 int counter; 1544 1545 if (!rbd_dev->parent_spec) 1546 return; 1547 1548 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1549 if (counter > 0) 1550 return; 1551 1552 /* Last reference; clean up parent data structures */ 1553 1554 if (!counter) 1555 rbd_dev_unparent(rbd_dev); 1556 else 1557 rbd_warn(rbd_dev, "parent reference underflow"); 1558 } 1559 1560 /* 1561 * If an image has a non-zero parent overlap, get a reference to its 1562 * parent. 1563 * 1564 * Returns true if the rbd device has a parent with a non-zero 1565 * overlap and a reference for it was successfully taken, or 1566 * false otherwise. 1567 */ 1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1569 { 1570 int counter = 0; 1571 1572 if (!rbd_dev->parent_spec) 1573 return false; 1574 1575 if (rbd_dev->parent_overlap) 1576 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1577 1578 if (counter < 0) 1579 rbd_warn(rbd_dev, "parent reference overflow"); 1580 1581 return counter > 0; 1582 } 1583 1584 static void rbd_img_request_init(struct rbd_img_request *img_request, 1585 struct rbd_device *rbd_dev, 1586 enum obj_operation_type op_type) 1587 { 1588 memset(img_request, 0, sizeof(*img_request)); 1589 1590 img_request->rbd_dev = rbd_dev; 1591 img_request->op_type = op_type; 1592 1593 INIT_LIST_HEAD(&img_request->lock_item); 1594 INIT_LIST_HEAD(&img_request->object_extents); 1595 mutex_init(&img_request->state_mutex); 1596 } 1597 1598 /* 1599 * Only snap_id is captured here, for reads. For writes, snapshot 1600 * context is captured in rbd_img_object_requests() after exclusive 1601 * lock is ensured to be held. 1602 */ 1603 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1604 { 1605 struct rbd_device *rbd_dev = img_req->rbd_dev; 1606 1607 lockdep_assert_held(&rbd_dev->header_rwsem); 1608 1609 if (!rbd_img_is_write(img_req)) 1610 img_req->snap_id = rbd_dev->spec->snap_id; 1611 1612 if (rbd_dev_parent_get(rbd_dev)) 1613 img_request_layered_set(img_req); 1614 } 1615 1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1617 { 1618 struct rbd_obj_request *obj_request; 1619 struct rbd_obj_request *next_obj_request; 1620 1621 dout("%s: img %p\n", __func__, img_request); 1622 1623 WARN_ON(!list_empty(&img_request->lock_item)); 1624 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1625 rbd_img_obj_request_del(img_request, obj_request); 1626 1627 if (img_request_layered_test(img_request)) 1628 rbd_dev_parent_put(img_request->rbd_dev); 1629 1630 if (rbd_img_is_write(img_request)) 1631 ceph_put_snap_context(img_request->snapc); 1632 1633 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1634 kmem_cache_free(rbd_img_request_cache, img_request); 1635 } 1636 1637 #define BITS_PER_OBJ 2 1638 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1639 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1640 1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1642 u64 *index, u8 *shift) 1643 { 1644 u32 off; 1645 1646 rbd_assert(objno < rbd_dev->object_map_size); 1647 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1648 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1649 } 1650 1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1652 { 1653 u64 index; 1654 u8 shift; 1655 1656 lockdep_assert_held(&rbd_dev->object_map_lock); 1657 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1658 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1659 } 1660 1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1662 { 1663 u64 index; 1664 u8 shift; 1665 u8 *p; 1666 1667 lockdep_assert_held(&rbd_dev->object_map_lock); 1668 rbd_assert(!(val & ~OBJ_MASK)); 1669 1670 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1671 p = &rbd_dev->object_map[index]; 1672 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1673 } 1674 1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1676 { 1677 u8 state; 1678 1679 spin_lock(&rbd_dev->object_map_lock); 1680 state = __rbd_object_map_get(rbd_dev, objno); 1681 spin_unlock(&rbd_dev->object_map_lock); 1682 return state; 1683 } 1684 1685 static bool use_object_map(struct rbd_device *rbd_dev) 1686 { 1687 /* 1688 * An image mapped read-only can't use the object map -- it isn't 1689 * loaded because the header lock isn't acquired. Someone else can 1690 * write to the image and update the object map behind our back. 1691 * 1692 * A snapshot can't be written to, so using the object map is always 1693 * safe. 1694 */ 1695 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1696 return false; 1697 1698 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1699 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1700 } 1701 1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1703 { 1704 u8 state; 1705 1706 /* fall back to default logic if object map is disabled or invalid */ 1707 if (!use_object_map(rbd_dev)) 1708 return true; 1709 1710 state = rbd_object_map_get(rbd_dev, objno); 1711 return state != OBJECT_NONEXISTENT; 1712 } 1713 1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1715 struct ceph_object_id *oid) 1716 { 1717 if (snap_id == CEPH_NOSNAP) 1718 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1719 rbd_dev->spec->image_id); 1720 else 1721 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id, snap_id); 1723 } 1724 1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1726 { 1727 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1728 CEPH_DEFINE_OID_ONSTACK(oid); 1729 u8 lock_type; 1730 char *lock_tag; 1731 struct ceph_locker *lockers; 1732 u32 num_lockers; 1733 bool broke_lock = false; 1734 int ret; 1735 1736 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1737 1738 again: 1739 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1740 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1741 if (ret != -EBUSY || broke_lock) { 1742 if (ret == -EEXIST) 1743 ret = 0; /* already locked by myself */ 1744 if (ret) 1745 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1746 return ret; 1747 } 1748 1749 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1750 RBD_LOCK_NAME, &lock_type, &lock_tag, 1751 &lockers, &num_lockers); 1752 if (ret) { 1753 if (ret == -ENOENT) 1754 goto again; 1755 1756 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1757 return ret; 1758 } 1759 1760 kfree(lock_tag); 1761 if (num_lockers == 0) 1762 goto again; 1763 1764 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1765 ENTITY_NAME(lockers[0].id.name)); 1766 1767 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1768 RBD_LOCK_NAME, lockers[0].id.cookie, 1769 &lockers[0].id.name); 1770 ceph_free_lockers(lockers, num_lockers); 1771 if (ret) { 1772 if (ret == -ENOENT) 1773 goto again; 1774 1775 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1776 return ret; 1777 } 1778 1779 broke_lock = true; 1780 goto again; 1781 } 1782 1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1784 { 1785 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1786 CEPH_DEFINE_OID_ONSTACK(oid); 1787 int ret; 1788 1789 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1790 1791 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1792 ""); 1793 if (ret && ret != -ENOENT) 1794 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1795 } 1796 1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1798 { 1799 u8 struct_v; 1800 u32 struct_len; 1801 u32 header_len; 1802 void *header_end; 1803 int ret; 1804 1805 ceph_decode_32_safe(p, end, header_len, e_inval); 1806 header_end = *p + header_len; 1807 1808 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1809 &struct_len); 1810 if (ret) 1811 return ret; 1812 1813 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1814 1815 *p = header_end; 1816 return 0; 1817 1818 e_inval: 1819 return -EINVAL; 1820 } 1821 1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1823 { 1824 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1825 CEPH_DEFINE_OID_ONSTACK(oid); 1826 struct page **pages; 1827 void *p, *end; 1828 size_t reply_len; 1829 u64 num_objects; 1830 u64 object_map_bytes; 1831 u64 object_map_size; 1832 int num_pages; 1833 int ret; 1834 1835 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1836 1837 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1838 rbd_dev->mapping.size); 1839 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1840 BITS_PER_BYTE); 1841 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1843 if (IS_ERR(pages)) 1844 return PTR_ERR(pages); 1845 1846 reply_len = num_pages * PAGE_SIZE; 1847 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1848 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1849 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1850 NULL, 0, pages, &reply_len); 1851 if (ret) 1852 goto out; 1853 1854 p = page_address(pages[0]); 1855 end = p + min(reply_len, (size_t)PAGE_SIZE); 1856 ret = decode_object_map_header(&p, end, &object_map_size); 1857 if (ret) 1858 goto out; 1859 1860 if (object_map_size != num_objects) { 1861 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1862 object_map_size, num_objects); 1863 ret = -EINVAL; 1864 goto out; 1865 } 1866 1867 if (offset_in_page(p) + object_map_bytes > reply_len) { 1868 ret = -EINVAL; 1869 goto out; 1870 } 1871 1872 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1873 if (!rbd_dev->object_map) { 1874 ret = -ENOMEM; 1875 goto out; 1876 } 1877 1878 rbd_dev->object_map_size = object_map_size; 1879 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1880 offset_in_page(p), object_map_bytes); 1881 1882 out: 1883 ceph_release_page_vector(pages, num_pages); 1884 return ret; 1885 } 1886 1887 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1888 { 1889 kvfree(rbd_dev->object_map); 1890 rbd_dev->object_map = NULL; 1891 rbd_dev->object_map_size = 0; 1892 } 1893 1894 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1895 { 1896 int ret; 1897 1898 ret = __rbd_object_map_load(rbd_dev); 1899 if (ret) 1900 return ret; 1901 1902 ret = rbd_dev_v2_get_flags(rbd_dev); 1903 if (ret) { 1904 rbd_object_map_free(rbd_dev); 1905 return ret; 1906 } 1907 1908 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1909 rbd_warn(rbd_dev, "object map is invalid"); 1910 1911 return 0; 1912 } 1913 1914 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1915 { 1916 int ret; 1917 1918 ret = rbd_object_map_lock(rbd_dev); 1919 if (ret) 1920 return ret; 1921 1922 ret = rbd_object_map_load(rbd_dev); 1923 if (ret) { 1924 rbd_object_map_unlock(rbd_dev); 1925 return ret; 1926 } 1927 1928 return 0; 1929 } 1930 1931 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1932 { 1933 rbd_object_map_free(rbd_dev); 1934 rbd_object_map_unlock(rbd_dev); 1935 } 1936 1937 /* 1938 * This function needs snap_id (or more precisely just something to 1939 * distinguish between HEAD and snapshot object maps), new_state and 1940 * current_state that were passed to rbd_object_map_update(). 1941 * 1942 * To avoid allocating and stashing a context we piggyback on the OSD 1943 * request. A HEAD update has two ops (assert_locked). For new_state 1944 * and current_state we decode our own object_map_update op, encoded in 1945 * rbd_cls_object_map_update(). 1946 */ 1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1948 struct ceph_osd_request *osd_req) 1949 { 1950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1951 struct ceph_osd_data *osd_data; 1952 u64 objno; 1953 u8 state, new_state, current_state; 1954 bool has_current_state; 1955 void *p; 1956 1957 if (osd_req->r_result) 1958 return osd_req->r_result; 1959 1960 /* 1961 * Nothing to do for a snapshot object map. 1962 */ 1963 if (osd_req->r_num_ops == 1) 1964 return 0; 1965 1966 /* 1967 * Update in-memory HEAD object map. 1968 */ 1969 rbd_assert(osd_req->r_num_ops == 2); 1970 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1971 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1972 1973 p = page_address(osd_data->pages[0]); 1974 objno = ceph_decode_64(&p); 1975 rbd_assert(objno == obj_req->ex.oe_objno); 1976 rbd_assert(ceph_decode_64(&p) == objno + 1); 1977 new_state = ceph_decode_8(&p); 1978 has_current_state = ceph_decode_8(&p); 1979 if (has_current_state) 1980 current_state = ceph_decode_8(&p); 1981 1982 spin_lock(&rbd_dev->object_map_lock); 1983 state = __rbd_object_map_get(rbd_dev, objno); 1984 if (!has_current_state || current_state == state || 1985 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1986 __rbd_object_map_set(rbd_dev, objno, new_state); 1987 spin_unlock(&rbd_dev->object_map_lock); 1988 1989 return 0; 1990 } 1991 1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1993 { 1994 struct rbd_obj_request *obj_req = osd_req->r_priv; 1995 int result; 1996 1997 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1998 osd_req->r_result, obj_req); 1999 2000 result = rbd_object_map_update_finish(obj_req, osd_req); 2001 rbd_obj_handle_request(obj_req, result); 2002 } 2003 2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2005 { 2006 u8 state = rbd_object_map_get(rbd_dev, objno); 2007 2008 if (state == new_state || 2009 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2010 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2017 int which, u64 objno, u8 new_state, 2018 const u8 *current_state) 2019 { 2020 struct page **pages; 2021 void *p, *start; 2022 int ret; 2023 2024 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2025 if (ret) 2026 return ret; 2027 2028 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2029 if (IS_ERR(pages)) 2030 return PTR_ERR(pages); 2031 2032 p = start = page_address(pages[0]); 2033 ceph_encode_64(&p, objno); 2034 ceph_encode_64(&p, objno + 1); 2035 ceph_encode_8(&p, new_state); 2036 if (current_state) { 2037 ceph_encode_8(&p, 1); 2038 ceph_encode_8(&p, *current_state); 2039 } else { 2040 ceph_encode_8(&p, 0); 2041 } 2042 2043 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2044 false, true); 2045 return 0; 2046 } 2047 2048 /* 2049 * Return: 2050 * 0 - object map update sent 2051 * 1 - object map update isn't needed 2052 * <0 - error 2053 */ 2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2055 u8 new_state, const u8 *current_state) 2056 { 2057 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2058 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2059 struct ceph_osd_request *req; 2060 int num_ops = 1; 2061 int which = 0; 2062 int ret; 2063 2064 if (snap_id == CEPH_NOSNAP) { 2065 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2066 return 1; 2067 2068 num_ops++; /* assert_locked */ 2069 } 2070 2071 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2072 if (!req) 2073 return -ENOMEM; 2074 2075 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2076 req->r_callback = rbd_object_map_callback; 2077 req->r_priv = obj_req; 2078 2079 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2080 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2081 req->r_flags = CEPH_OSD_FLAG_WRITE; 2082 ktime_get_real_ts64(&req->r_mtime); 2083 2084 if (snap_id == CEPH_NOSNAP) { 2085 /* 2086 * Protect against possible race conditions during lock 2087 * ownership transitions. 2088 */ 2089 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2090 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2091 if (ret) 2092 return ret; 2093 } 2094 2095 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2096 new_state, current_state); 2097 if (ret) 2098 return ret; 2099 2100 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2101 if (ret) 2102 return ret; 2103 2104 ceph_osdc_start_request(osdc, req); 2105 return 0; 2106 } 2107 2108 static void prune_extents(struct ceph_file_extent *img_extents, 2109 u32 *num_img_extents, u64 overlap) 2110 { 2111 u32 cnt = *num_img_extents; 2112 2113 /* drop extents completely beyond the overlap */ 2114 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2115 cnt--; 2116 2117 if (cnt) { 2118 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2119 2120 /* trim final overlapping extent */ 2121 if (ex->fe_off + ex->fe_len > overlap) 2122 ex->fe_len = overlap - ex->fe_off; 2123 } 2124 2125 *num_img_extents = cnt; 2126 } 2127 2128 /* 2129 * Determine the byte range(s) covered by either just the object extent 2130 * or the entire object in the parent image. 2131 */ 2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2133 bool entire) 2134 { 2135 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2136 int ret; 2137 2138 if (!rbd_dev->parent_overlap) 2139 return 0; 2140 2141 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2142 entire ? 0 : obj_req->ex.oe_off, 2143 entire ? rbd_dev->layout.object_size : 2144 obj_req->ex.oe_len, 2145 &obj_req->img_extents, 2146 &obj_req->num_img_extents); 2147 if (ret) 2148 return ret; 2149 2150 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2151 rbd_dev->parent_overlap); 2152 return 0; 2153 } 2154 2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2156 { 2157 struct rbd_obj_request *obj_req = osd_req->r_priv; 2158 2159 switch (obj_req->img_request->data_type) { 2160 case OBJ_REQUEST_BIO: 2161 osd_req_op_extent_osd_data_bio(osd_req, which, 2162 &obj_req->bio_pos, 2163 obj_req->ex.oe_len); 2164 break; 2165 case OBJ_REQUEST_BVECS: 2166 case OBJ_REQUEST_OWN_BVECS: 2167 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2168 obj_req->ex.oe_len); 2169 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2170 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2171 &obj_req->bvec_pos); 2172 break; 2173 default: 2174 BUG(); 2175 } 2176 } 2177 2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2179 { 2180 struct page **pages; 2181 2182 /* 2183 * The response data for a STAT call consists of: 2184 * le64 length; 2185 * struct { 2186 * le32 tv_sec; 2187 * le32 tv_nsec; 2188 * } mtime; 2189 */ 2190 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2191 if (IS_ERR(pages)) 2192 return PTR_ERR(pages); 2193 2194 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2195 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2196 8 + sizeof(struct ceph_timespec), 2197 0, false, true); 2198 return 0; 2199 } 2200 2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2202 u32 bytes) 2203 { 2204 struct rbd_obj_request *obj_req = osd_req->r_priv; 2205 int ret; 2206 2207 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2208 if (ret) 2209 return ret; 2210 2211 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2212 obj_req->copyup_bvec_count, bytes); 2213 return 0; 2214 } 2215 2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2217 { 2218 obj_req->read_state = RBD_OBJ_READ_START; 2219 return 0; 2220 } 2221 2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2223 int which) 2224 { 2225 struct rbd_obj_request *obj_req = osd_req->r_priv; 2226 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2227 u16 opcode; 2228 2229 if (!use_object_map(rbd_dev) || 2230 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2231 osd_req_op_alloc_hint_init(osd_req, which++, 2232 rbd_dev->layout.object_size, 2233 rbd_dev->layout.object_size, 2234 rbd_dev->opts->alloc_hint_flags); 2235 } 2236 2237 if (rbd_obj_is_entire(obj_req)) 2238 opcode = CEPH_OSD_OP_WRITEFULL; 2239 else 2240 opcode = CEPH_OSD_OP_WRITE; 2241 2242 osd_req_op_extent_init(osd_req, which, opcode, 2243 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2244 rbd_osd_setup_data(osd_req, which); 2245 } 2246 2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2248 { 2249 int ret; 2250 2251 /* reverse map the entire object onto the parent */ 2252 ret = rbd_obj_calc_img_extents(obj_req, true); 2253 if (ret) 2254 return ret; 2255 2256 obj_req->write_state = RBD_OBJ_WRITE_START; 2257 return 0; 2258 } 2259 2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2261 { 2262 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2263 CEPH_OSD_OP_ZERO; 2264 } 2265 2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2267 int which) 2268 { 2269 struct rbd_obj_request *obj_req = osd_req->r_priv; 2270 2271 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2272 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2273 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2274 } else { 2275 osd_req_op_extent_init(osd_req, which, 2276 truncate_or_zero_opcode(obj_req), 2277 obj_req->ex.oe_off, obj_req->ex.oe_len, 2278 0, 0); 2279 } 2280 } 2281 2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2283 { 2284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2285 u64 off, next_off; 2286 int ret; 2287 2288 /* 2289 * Align the range to alloc_size boundary and punt on discards 2290 * that are too small to free up any space. 2291 * 2292 * alloc_size == object_size && is_tail() is a special case for 2293 * filestore with filestore_punch_hole = false, needed to allow 2294 * truncate (in addition to delete). 2295 */ 2296 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2297 !rbd_obj_is_tail(obj_req)) { 2298 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2299 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2300 rbd_dev->opts->alloc_size); 2301 if (off >= next_off) 2302 return 1; 2303 2304 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2305 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2306 off, next_off - off); 2307 obj_req->ex.oe_off = off; 2308 obj_req->ex.oe_len = next_off - off; 2309 } 2310 2311 /* reverse map the entire object onto the parent */ 2312 ret = rbd_obj_calc_img_extents(obj_req, true); 2313 if (ret) 2314 return ret; 2315 2316 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2317 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2318 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2319 2320 obj_req->write_state = RBD_OBJ_WRITE_START; 2321 return 0; 2322 } 2323 2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2325 int which) 2326 { 2327 struct rbd_obj_request *obj_req = osd_req->r_priv; 2328 u16 opcode; 2329 2330 if (rbd_obj_is_entire(obj_req)) { 2331 if (obj_req->num_img_extents) { 2332 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2333 osd_req_op_init(osd_req, which++, 2334 CEPH_OSD_OP_CREATE, 0); 2335 opcode = CEPH_OSD_OP_TRUNCATE; 2336 } else { 2337 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2338 osd_req_op_init(osd_req, which++, 2339 CEPH_OSD_OP_DELETE, 0); 2340 opcode = 0; 2341 } 2342 } else { 2343 opcode = truncate_or_zero_opcode(obj_req); 2344 } 2345 2346 if (opcode) 2347 osd_req_op_extent_init(osd_req, which, opcode, 2348 obj_req->ex.oe_off, obj_req->ex.oe_len, 2349 0, 0); 2350 } 2351 2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2353 { 2354 int ret; 2355 2356 /* reverse map the entire object onto the parent */ 2357 ret = rbd_obj_calc_img_extents(obj_req, true); 2358 if (ret) 2359 return ret; 2360 2361 if (!obj_req->num_img_extents) { 2362 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2363 if (rbd_obj_is_entire(obj_req)) 2364 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2365 } 2366 2367 obj_req->write_state = RBD_OBJ_WRITE_START; 2368 return 0; 2369 } 2370 2371 static int count_write_ops(struct rbd_obj_request *obj_req) 2372 { 2373 struct rbd_img_request *img_req = obj_req->img_request; 2374 2375 switch (img_req->op_type) { 2376 case OBJ_OP_WRITE: 2377 if (!use_object_map(img_req->rbd_dev) || 2378 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2379 return 2; /* setallochint + write/writefull */ 2380 2381 return 1; /* write/writefull */ 2382 case OBJ_OP_DISCARD: 2383 return 1; /* delete/truncate/zero */ 2384 case OBJ_OP_ZEROOUT: 2385 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2386 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2387 return 2; /* create + truncate */ 2388 2389 return 1; /* delete/truncate/zero */ 2390 default: 2391 BUG(); 2392 } 2393 } 2394 2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2396 int which) 2397 { 2398 struct rbd_obj_request *obj_req = osd_req->r_priv; 2399 2400 switch (obj_req->img_request->op_type) { 2401 case OBJ_OP_WRITE: 2402 __rbd_osd_setup_write_ops(osd_req, which); 2403 break; 2404 case OBJ_OP_DISCARD: 2405 __rbd_osd_setup_discard_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_ZEROOUT: 2408 __rbd_osd_setup_zeroout_ops(osd_req, which); 2409 break; 2410 default: 2411 BUG(); 2412 } 2413 } 2414 2415 /* 2416 * Prune the list of object requests (adjust offset and/or length, drop 2417 * redundant requests). Prepare object request state machines and image 2418 * request state machine for execution. 2419 */ 2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2421 { 2422 struct rbd_obj_request *obj_req, *next_obj_req; 2423 int ret; 2424 2425 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2426 switch (img_req->op_type) { 2427 case OBJ_OP_READ: 2428 ret = rbd_obj_init_read(obj_req); 2429 break; 2430 case OBJ_OP_WRITE: 2431 ret = rbd_obj_init_write(obj_req); 2432 break; 2433 case OBJ_OP_DISCARD: 2434 ret = rbd_obj_init_discard(obj_req); 2435 break; 2436 case OBJ_OP_ZEROOUT: 2437 ret = rbd_obj_init_zeroout(obj_req); 2438 break; 2439 default: 2440 BUG(); 2441 } 2442 if (ret < 0) 2443 return ret; 2444 if (ret > 0) { 2445 rbd_img_obj_request_del(img_req, obj_req); 2446 continue; 2447 } 2448 } 2449 2450 img_req->state = RBD_IMG_START; 2451 return 0; 2452 } 2453 2454 union rbd_img_fill_iter { 2455 struct ceph_bio_iter bio_iter; 2456 struct ceph_bvec_iter bvec_iter; 2457 }; 2458 2459 struct rbd_img_fill_ctx { 2460 enum obj_request_type pos_type; 2461 union rbd_img_fill_iter *pos; 2462 union rbd_img_fill_iter iter; 2463 ceph_object_extent_fn_t set_pos_fn; 2464 ceph_object_extent_fn_t count_fn; 2465 ceph_object_extent_fn_t copy_fn; 2466 }; 2467 2468 static struct ceph_object_extent *alloc_object_extent(void *arg) 2469 { 2470 struct rbd_img_request *img_req = arg; 2471 struct rbd_obj_request *obj_req; 2472 2473 obj_req = rbd_obj_request_create(); 2474 if (!obj_req) 2475 return NULL; 2476 2477 rbd_img_obj_request_add(img_req, obj_req); 2478 return &obj_req->ex; 2479 } 2480 2481 /* 2482 * While su != os && sc == 1 is technically not fancy (it's the same 2483 * layout as su == os && sc == 1), we can't use the nocopy path for it 2484 * because ->set_pos_fn() should be called only once per object. 2485 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2486 * treat su != os && sc == 1 as fancy. 2487 */ 2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2489 { 2490 return l->stripe_unit != l->object_size; 2491 } 2492 2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2494 struct ceph_file_extent *img_extents, 2495 u32 num_img_extents, 2496 struct rbd_img_fill_ctx *fctx) 2497 { 2498 u32 i; 2499 int ret; 2500 2501 img_req->data_type = fctx->pos_type; 2502 2503 /* 2504 * Create object requests and set each object request's starting 2505 * position in the provided bio (list) or bio_vec array. 2506 */ 2507 fctx->iter = *fctx->pos; 2508 for (i = 0; i < num_img_extents; i++) { 2509 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2510 img_extents[i].fe_off, 2511 img_extents[i].fe_len, 2512 &img_req->object_extents, 2513 alloc_object_extent, img_req, 2514 fctx->set_pos_fn, &fctx->iter); 2515 if (ret) 2516 return ret; 2517 } 2518 2519 return __rbd_img_fill_request(img_req); 2520 } 2521 2522 /* 2523 * Map a list of image extents to a list of object extents, create the 2524 * corresponding object requests (normally each to a different object, 2525 * but not always) and add them to @img_req. For each object request, 2526 * set up its data descriptor to point to the corresponding chunk(s) of 2527 * @fctx->pos data buffer. 2528 * 2529 * Because ceph_file_to_extents() will merge adjacent object extents 2530 * together, each object request's data descriptor may point to multiple 2531 * different chunks of @fctx->pos data buffer. 2532 * 2533 * @fctx->pos data buffer is assumed to be large enough. 2534 */ 2535 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2536 struct ceph_file_extent *img_extents, 2537 u32 num_img_extents, 2538 struct rbd_img_fill_ctx *fctx) 2539 { 2540 struct rbd_device *rbd_dev = img_req->rbd_dev; 2541 struct rbd_obj_request *obj_req; 2542 u32 i; 2543 int ret; 2544 2545 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2546 !rbd_layout_is_fancy(&rbd_dev->layout)) 2547 return rbd_img_fill_request_nocopy(img_req, img_extents, 2548 num_img_extents, fctx); 2549 2550 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2551 2552 /* 2553 * Create object requests and determine ->bvec_count for each object 2554 * request. Note that ->bvec_count sum over all object requests may 2555 * be greater than the number of bio_vecs in the provided bio (list) 2556 * or bio_vec array because when mapped, those bio_vecs can straddle 2557 * stripe unit boundaries. 2558 */ 2559 fctx->iter = *fctx->pos; 2560 for (i = 0; i < num_img_extents; i++) { 2561 ret = ceph_file_to_extents(&rbd_dev->layout, 2562 img_extents[i].fe_off, 2563 img_extents[i].fe_len, 2564 &img_req->object_extents, 2565 alloc_object_extent, img_req, 2566 fctx->count_fn, &fctx->iter); 2567 if (ret) 2568 return ret; 2569 } 2570 2571 for_each_obj_request(img_req, obj_req) { 2572 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2573 sizeof(*obj_req->bvec_pos.bvecs), 2574 GFP_NOIO); 2575 if (!obj_req->bvec_pos.bvecs) 2576 return -ENOMEM; 2577 } 2578 2579 /* 2580 * Fill in each object request's private bio_vec array, splitting and 2581 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2582 */ 2583 fctx->iter = *fctx->pos; 2584 for (i = 0; i < num_img_extents; i++) { 2585 ret = ceph_iterate_extents(&rbd_dev->layout, 2586 img_extents[i].fe_off, 2587 img_extents[i].fe_len, 2588 &img_req->object_extents, 2589 fctx->copy_fn, &fctx->iter); 2590 if (ret) 2591 return ret; 2592 } 2593 2594 return __rbd_img_fill_request(img_req); 2595 } 2596 2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2598 u64 off, u64 len) 2599 { 2600 struct ceph_file_extent ex = { off, len }; 2601 union rbd_img_fill_iter dummy = {}; 2602 struct rbd_img_fill_ctx fctx = { 2603 .pos_type = OBJ_REQUEST_NODATA, 2604 .pos = &dummy, 2605 }; 2606 2607 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2608 } 2609 2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2611 { 2612 struct rbd_obj_request *obj_req = 2613 container_of(ex, struct rbd_obj_request, ex); 2614 struct ceph_bio_iter *it = arg; 2615 2616 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2617 obj_req->bio_pos = *it; 2618 ceph_bio_iter_advance(it, bytes); 2619 } 2620 2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2622 { 2623 struct rbd_obj_request *obj_req = 2624 container_of(ex, struct rbd_obj_request, ex); 2625 struct ceph_bio_iter *it = arg; 2626 2627 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2628 ceph_bio_iter_advance_step(it, bytes, ({ 2629 obj_req->bvec_count++; 2630 })); 2631 2632 } 2633 2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2635 { 2636 struct rbd_obj_request *obj_req = 2637 container_of(ex, struct rbd_obj_request, ex); 2638 struct ceph_bio_iter *it = arg; 2639 2640 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2641 ceph_bio_iter_advance_step(it, bytes, ({ 2642 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2643 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2644 })); 2645 } 2646 2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2648 struct ceph_file_extent *img_extents, 2649 u32 num_img_extents, 2650 struct ceph_bio_iter *bio_pos) 2651 { 2652 struct rbd_img_fill_ctx fctx = { 2653 .pos_type = OBJ_REQUEST_BIO, 2654 .pos = (union rbd_img_fill_iter *)bio_pos, 2655 .set_pos_fn = set_bio_pos, 2656 .count_fn = count_bio_bvecs, 2657 .copy_fn = copy_bio_bvecs, 2658 }; 2659 2660 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2661 &fctx); 2662 } 2663 2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2665 u64 off, u64 len, struct bio *bio) 2666 { 2667 struct ceph_file_extent ex = { off, len }; 2668 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2669 2670 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2671 } 2672 2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2674 { 2675 struct rbd_obj_request *obj_req = 2676 container_of(ex, struct rbd_obj_request, ex); 2677 struct ceph_bvec_iter *it = arg; 2678 2679 obj_req->bvec_pos = *it; 2680 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2681 ceph_bvec_iter_advance(it, bytes); 2682 } 2683 2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2685 { 2686 struct rbd_obj_request *obj_req = 2687 container_of(ex, struct rbd_obj_request, ex); 2688 struct ceph_bvec_iter *it = arg; 2689 2690 ceph_bvec_iter_advance_step(it, bytes, ({ 2691 obj_req->bvec_count++; 2692 })); 2693 } 2694 2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2696 { 2697 struct rbd_obj_request *obj_req = 2698 container_of(ex, struct rbd_obj_request, ex); 2699 struct ceph_bvec_iter *it = arg; 2700 2701 ceph_bvec_iter_advance_step(it, bytes, ({ 2702 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2703 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2704 })); 2705 } 2706 2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2708 struct ceph_file_extent *img_extents, 2709 u32 num_img_extents, 2710 struct ceph_bvec_iter *bvec_pos) 2711 { 2712 struct rbd_img_fill_ctx fctx = { 2713 .pos_type = OBJ_REQUEST_BVECS, 2714 .pos = (union rbd_img_fill_iter *)bvec_pos, 2715 .set_pos_fn = set_bvec_pos, 2716 .count_fn = count_bvecs, 2717 .copy_fn = copy_bvecs, 2718 }; 2719 2720 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2721 &fctx); 2722 } 2723 2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2725 struct ceph_file_extent *img_extents, 2726 u32 num_img_extents, 2727 struct bio_vec *bvecs) 2728 { 2729 struct ceph_bvec_iter it = { 2730 .bvecs = bvecs, 2731 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2732 num_img_extents) }, 2733 }; 2734 2735 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2736 &it); 2737 } 2738 2739 static void rbd_img_handle_request_work(struct work_struct *work) 2740 { 2741 struct rbd_img_request *img_req = 2742 container_of(work, struct rbd_img_request, work); 2743 2744 rbd_img_handle_request(img_req, img_req->work_result); 2745 } 2746 2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2748 { 2749 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2750 img_req->work_result = result; 2751 queue_work(rbd_wq, &img_req->work); 2752 } 2753 2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2755 { 2756 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2757 2758 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2759 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2760 return true; 2761 } 2762 2763 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2764 obj_req->ex.oe_objno); 2765 return false; 2766 } 2767 2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2769 { 2770 struct ceph_osd_request *osd_req; 2771 int ret; 2772 2773 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2774 if (IS_ERR(osd_req)) 2775 return PTR_ERR(osd_req); 2776 2777 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2778 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2779 rbd_osd_setup_data(osd_req, 0); 2780 rbd_osd_format_read(osd_req); 2781 2782 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2783 if (ret) 2784 return ret; 2785 2786 rbd_osd_submit(osd_req); 2787 return 0; 2788 } 2789 2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2791 { 2792 struct rbd_img_request *img_req = obj_req->img_request; 2793 struct rbd_device *parent = img_req->rbd_dev->parent; 2794 struct rbd_img_request *child_img_req; 2795 int ret; 2796 2797 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2798 if (!child_img_req) 2799 return -ENOMEM; 2800 2801 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2802 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2803 child_img_req->obj_request = obj_req; 2804 2805 down_read(&parent->header_rwsem); 2806 rbd_img_capture_header(child_img_req); 2807 up_read(&parent->header_rwsem); 2808 2809 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2810 obj_req); 2811 2812 if (!rbd_img_is_write(img_req)) { 2813 switch (img_req->data_type) { 2814 case OBJ_REQUEST_BIO: 2815 ret = __rbd_img_fill_from_bio(child_img_req, 2816 obj_req->img_extents, 2817 obj_req->num_img_extents, 2818 &obj_req->bio_pos); 2819 break; 2820 case OBJ_REQUEST_BVECS: 2821 case OBJ_REQUEST_OWN_BVECS: 2822 ret = __rbd_img_fill_from_bvecs(child_img_req, 2823 obj_req->img_extents, 2824 obj_req->num_img_extents, 2825 &obj_req->bvec_pos); 2826 break; 2827 default: 2828 BUG(); 2829 } 2830 } else { 2831 ret = rbd_img_fill_from_bvecs(child_img_req, 2832 obj_req->img_extents, 2833 obj_req->num_img_extents, 2834 obj_req->copyup_bvecs); 2835 } 2836 if (ret) { 2837 rbd_img_request_destroy(child_img_req); 2838 return ret; 2839 } 2840 2841 /* avoid parent chain recursion */ 2842 rbd_img_schedule(child_img_req, 0); 2843 return 0; 2844 } 2845 2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2847 { 2848 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2849 int ret; 2850 2851 again: 2852 switch (obj_req->read_state) { 2853 case RBD_OBJ_READ_START: 2854 rbd_assert(!*result); 2855 2856 if (!rbd_obj_may_exist(obj_req)) { 2857 *result = -ENOENT; 2858 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2859 goto again; 2860 } 2861 2862 ret = rbd_obj_read_object(obj_req); 2863 if (ret) { 2864 *result = ret; 2865 return true; 2866 } 2867 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2868 return false; 2869 case RBD_OBJ_READ_OBJECT: 2870 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2871 /* reverse map this object extent onto the parent */ 2872 ret = rbd_obj_calc_img_extents(obj_req, false); 2873 if (ret) { 2874 *result = ret; 2875 return true; 2876 } 2877 if (obj_req->num_img_extents) { 2878 ret = rbd_obj_read_from_parent(obj_req); 2879 if (ret) { 2880 *result = ret; 2881 return true; 2882 } 2883 obj_req->read_state = RBD_OBJ_READ_PARENT; 2884 return false; 2885 } 2886 } 2887 2888 /* 2889 * -ENOENT means a hole in the image -- zero-fill the entire 2890 * length of the request. A short read also implies zero-fill 2891 * to the end of the request. 2892 */ 2893 if (*result == -ENOENT) { 2894 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2895 *result = 0; 2896 } else if (*result >= 0) { 2897 if (*result < obj_req->ex.oe_len) 2898 rbd_obj_zero_range(obj_req, *result, 2899 obj_req->ex.oe_len - *result); 2900 else 2901 rbd_assert(*result == obj_req->ex.oe_len); 2902 *result = 0; 2903 } 2904 return true; 2905 case RBD_OBJ_READ_PARENT: 2906 /* 2907 * The parent image is read only up to the overlap -- zero-fill 2908 * from the overlap to the end of the request. 2909 */ 2910 if (!*result) { 2911 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2912 2913 if (obj_overlap < obj_req->ex.oe_len) 2914 rbd_obj_zero_range(obj_req, obj_overlap, 2915 obj_req->ex.oe_len - obj_overlap); 2916 } 2917 return true; 2918 default: 2919 BUG(); 2920 } 2921 } 2922 2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2924 { 2925 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2926 2927 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2928 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2929 2930 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2931 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2932 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2933 return true; 2934 } 2935 2936 return false; 2937 } 2938 2939 /* 2940 * Return: 2941 * 0 - object map update sent 2942 * 1 - object map update isn't needed 2943 * <0 - error 2944 */ 2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2946 { 2947 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2948 u8 new_state; 2949 2950 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2951 return 1; 2952 2953 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2954 new_state = OBJECT_PENDING; 2955 else 2956 new_state = OBJECT_EXISTS; 2957 2958 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2959 } 2960 2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2962 { 2963 struct ceph_osd_request *osd_req; 2964 int num_ops = count_write_ops(obj_req); 2965 int which = 0; 2966 int ret; 2967 2968 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2969 num_ops++; /* stat */ 2970 2971 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2972 if (IS_ERR(osd_req)) 2973 return PTR_ERR(osd_req); 2974 2975 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2976 ret = rbd_osd_setup_stat(osd_req, which++); 2977 if (ret) 2978 return ret; 2979 } 2980 2981 rbd_osd_setup_write_ops(osd_req, which); 2982 rbd_osd_format_write(osd_req); 2983 2984 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2985 if (ret) 2986 return ret; 2987 2988 rbd_osd_submit(osd_req); 2989 return 0; 2990 } 2991 2992 /* 2993 * copyup_bvecs pages are never highmem pages 2994 */ 2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2996 { 2997 struct ceph_bvec_iter it = { 2998 .bvecs = bvecs, 2999 .iter = { .bi_size = bytes }, 3000 }; 3001 3002 ceph_bvec_iter_advance_step(&it, bytes, ({ 3003 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3004 return false; 3005 })); 3006 return true; 3007 } 3008 3009 #define MODS_ONLY U32_MAX 3010 3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3012 u32 bytes) 3013 { 3014 struct ceph_osd_request *osd_req; 3015 int ret; 3016 3017 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3018 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3019 3020 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3021 if (IS_ERR(osd_req)) 3022 return PTR_ERR(osd_req); 3023 3024 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3025 if (ret) 3026 return ret; 3027 3028 rbd_osd_format_write(osd_req); 3029 3030 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3031 if (ret) 3032 return ret; 3033 3034 rbd_osd_submit(osd_req); 3035 return 0; 3036 } 3037 3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3039 u32 bytes) 3040 { 3041 struct ceph_osd_request *osd_req; 3042 int num_ops = count_write_ops(obj_req); 3043 int which = 0; 3044 int ret; 3045 3046 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3047 3048 if (bytes != MODS_ONLY) 3049 num_ops++; /* copyup */ 3050 3051 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3052 if (IS_ERR(osd_req)) 3053 return PTR_ERR(osd_req); 3054 3055 if (bytes != MODS_ONLY) { 3056 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3057 if (ret) 3058 return ret; 3059 } 3060 3061 rbd_osd_setup_write_ops(osd_req, which); 3062 rbd_osd_format_write(osd_req); 3063 3064 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3065 if (ret) 3066 return ret; 3067 3068 rbd_osd_submit(osd_req); 3069 return 0; 3070 } 3071 3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3073 { 3074 u32 i; 3075 3076 rbd_assert(!obj_req->copyup_bvecs); 3077 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3078 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3079 sizeof(*obj_req->copyup_bvecs), 3080 GFP_NOIO); 3081 if (!obj_req->copyup_bvecs) 3082 return -ENOMEM; 3083 3084 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3085 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3086 struct page *page = alloc_page(GFP_NOIO); 3087 3088 if (!page) 3089 return -ENOMEM; 3090 3091 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3092 obj_overlap -= len; 3093 } 3094 3095 rbd_assert(!obj_overlap); 3096 return 0; 3097 } 3098 3099 /* 3100 * The target object doesn't exist. Read the data for the entire 3101 * target object up to the overlap point (if any) from the parent, 3102 * so we can use it for a copyup. 3103 */ 3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3105 { 3106 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3107 int ret; 3108 3109 rbd_assert(obj_req->num_img_extents); 3110 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3111 rbd_dev->parent_overlap); 3112 if (!obj_req->num_img_extents) { 3113 /* 3114 * The overlap has become 0 (most likely because the 3115 * image has been flattened). Re-submit the original write 3116 * request -- pass MODS_ONLY since the copyup isn't needed 3117 * anymore. 3118 */ 3119 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3120 } 3121 3122 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3123 if (ret) 3124 return ret; 3125 3126 return rbd_obj_read_from_parent(obj_req); 3127 } 3128 3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3130 { 3131 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3132 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3133 u8 new_state; 3134 u32 i; 3135 int ret; 3136 3137 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3138 3139 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3140 return; 3141 3142 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3143 return; 3144 3145 for (i = 0; i < snapc->num_snaps; i++) { 3146 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3147 i + 1 < snapc->num_snaps) 3148 new_state = OBJECT_EXISTS_CLEAN; 3149 else 3150 new_state = OBJECT_EXISTS; 3151 3152 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3153 new_state, NULL); 3154 if (ret < 0) { 3155 obj_req->pending.result = ret; 3156 return; 3157 } 3158 3159 rbd_assert(!ret); 3160 obj_req->pending.num_pending++; 3161 } 3162 } 3163 3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3165 { 3166 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3167 int ret; 3168 3169 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3170 3171 /* 3172 * Only send non-zero copyup data to save some I/O and network 3173 * bandwidth -- zero copyup data is equivalent to the object not 3174 * existing. 3175 */ 3176 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3177 bytes = 0; 3178 3179 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3180 /* 3181 * Send a copyup request with an empty snapshot context to 3182 * deep-copyup the object through all existing snapshots. 3183 * A second request with the current snapshot context will be 3184 * sent for the actual modification. 3185 */ 3186 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3187 if (ret) { 3188 obj_req->pending.result = ret; 3189 return; 3190 } 3191 3192 obj_req->pending.num_pending++; 3193 bytes = MODS_ONLY; 3194 } 3195 3196 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3197 if (ret) { 3198 obj_req->pending.result = ret; 3199 return; 3200 } 3201 3202 obj_req->pending.num_pending++; 3203 } 3204 3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3206 { 3207 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3208 int ret; 3209 3210 again: 3211 switch (obj_req->copyup_state) { 3212 case RBD_OBJ_COPYUP_START: 3213 rbd_assert(!*result); 3214 3215 ret = rbd_obj_copyup_read_parent(obj_req); 3216 if (ret) { 3217 *result = ret; 3218 return true; 3219 } 3220 if (obj_req->num_img_extents) 3221 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3222 else 3223 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3224 return false; 3225 case RBD_OBJ_COPYUP_READ_PARENT: 3226 if (*result) 3227 return true; 3228 3229 if (is_zero_bvecs(obj_req->copyup_bvecs, 3230 rbd_obj_img_extents_bytes(obj_req))) { 3231 dout("%s %p detected zeros\n", __func__, obj_req); 3232 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3233 } 3234 3235 rbd_obj_copyup_object_maps(obj_req); 3236 if (!obj_req->pending.num_pending) { 3237 *result = obj_req->pending.result; 3238 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3239 goto again; 3240 } 3241 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 return false; 3243 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3244 if (!pending_result_dec(&obj_req->pending, result)) 3245 return false; 3246 fallthrough; 3247 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3248 if (*result) { 3249 rbd_warn(rbd_dev, "snap object map update failed: %d", 3250 *result); 3251 return true; 3252 } 3253 3254 rbd_obj_copyup_write_object(obj_req); 3255 if (!obj_req->pending.num_pending) { 3256 *result = obj_req->pending.result; 3257 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3258 goto again; 3259 } 3260 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 return false; 3262 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3263 if (!pending_result_dec(&obj_req->pending, result)) 3264 return false; 3265 fallthrough; 3266 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3267 return true; 3268 default: 3269 BUG(); 3270 } 3271 } 3272 3273 /* 3274 * Return: 3275 * 0 - object map update sent 3276 * 1 - object map update isn't needed 3277 * <0 - error 3278 */ 3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3280 { 3281 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3282 u8 current_state = OBJECT_PENDING; 3283 3284 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3285 return 1; 3286 3287 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3288 return 1; 3289 3290 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3291 ¤t_state); 3292 } 3293 3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3295 { 3296 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3297 int ret; 3298 3299 again: 3300 switch (obj_req->write_state) { 3301 case RBD_OBJ_WRITE_START: 3302 rbd_assert(!*result); 3303 3304 rbd_obj_set_copyup_enabled(obj_req); 3305 if (rbd_obj_write_is_noop(obj_req)) 3306 return true; 3307 3308 ret = rbd_obj_write_pre_object_map(obj_req); 3309 if (ret < 0) { 3310 *result = ret; 3311 return true; 3312 } 3313 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3314 if (ret > 0) 3315 goto again; 3316 return false; 3317 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3318 if (*result) { 3319 rbd_warn(rbd_dev, "pre object map update failed: %d", 3320 *result); 3321 return true; 3322 } 3323 ret = rbd_obj_write_object(obj_req); 3324 if (ret) { 3325 *result = ret; 3326 return true; 3327 } 3328 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3329 return false; 3330 case RBD_OBJ_WRITE_OBJECT: 3331 if (*result == -ENOENT) { 3332 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3333 *result = 0; 3334 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3335 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3336 goto again; 3337 } 3338 /* 3339 * On a non-existent object: 3340 * delete - -ENOENT, truncate/zero - 0 3341 */ 3342 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3343 *result = 0; 3344 } 3345 if (*result) 3346 return true; 3347 3348 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3349 goto again; 3350 case __RBD_OBJ_WRITE_COPYUP: 3351 if (!rbd_obj_advance_copyup(obj_req, result)) 3352 return false; 3353 fallthrough; 3354 case RBD_OBJ_WRITE_COPYUP: 3355 if (*result) { 3356 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3357 return true; 3358 } 3359 ret = rbd_obj_write_post_object_map(obj_req); 3360 if (ret < 0) { 3361 *result = ret; 3362 return true; 3363 } 3364 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3365 if (ret > 0) 3366 goto again; 3367 return false; 3368 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3369 if (*result) 3370 rbd_warn(rbd_dev, "post object map update failed: %d", 3371 *result); 3372 return true; 3373 default: 3374 BUG(); 3375 } 3376 } 3377 3378 /* 3379 * Return true if @obj_req is completed. 3380 */ 3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3382 int *result) 3383 { 3384 struct rbd_img_request *img_req = obj_req->img_request; 3385 struct rbd_device *rbd_dev = img_req->rbd_dev; 3386 bool done; 3387 3388 mutex_lock(&obj_req->state_mutex); 3389 if (!rbd_img_is_write(img_req)) 3390 done = rbd_obj_advance_read(obj_req, result); 3391 else 3392 done = rbd_obj_advance_write(obj_req, result); 3393 mutex_unlock(&obj_req->state_mutex); 3394 3395 if (done && *result) { 3396 rbd_assert(*result < 0); 3397 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3398 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3399 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3400 } 3401 return done; 3402 } 3403 3404 /* 3405 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3406 * recursion. 3407 */ 3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3409 { 3410 if (__rbd_obj_handle_request(obj_req, &result)) 3411 rbd_img_handle_request(obj_req->img_request, result); 3412 } 3413 3414 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3415 { 3416 struct rbd_device *rbd_dev = img_req->rbd_dev; 3417 3418 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3419 return false; 3420 3421 if (rbd_is_ro(rbd_dev)) 3422 return false; 3423 3424 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3425 if (rbd_dev->opts->lock_on_read || 3426 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3427 return true; 3428 3429 return rbd_img_is_write(img_req); 3430 } 3431 3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3433 { 3434 struct rbd_device *rbd_dev = img_req->rbd_dev; 3435 bool locked; 3436 3437 lockdep_assert_held(&rbd_dev->lock_rwsem); 3438 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3439 spin_lock(&rbd_dev->lock_lists_lock); 3440 rbd_assert(list_empty(&img_req->lock_item)); 3441 if (!locked) 3442 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3443 else 3444 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3445 spin_unlock(&rbd_dev->lock_lists_lock); 3446 return locked; 3447 } 3448 3449 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3450 { 3451 struct rbd_device *rbd_dev = img_req->rbd_dev; 3452 bool need_wakeup; 3453 3454 lockdep_assert_held(&rbd_dev->lock_rwsem); 3455 spin_lock(&rbd_dev->lock_lists_lock); 3456 rbd_assert(!list_empty(&img_req->lock_item)); 3457 list_del_init(&img_req->lock_item); 3458 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3459 list_empty(&rbd_dev->running_list)); 3460 spin_unlock(&rbd_dev->lock_lists_lock); 3461 if (need_wakeup) 3462 complete(&rbd_dev->releasing_wait); 3463 } 3464 3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3466 { 3467 struct rbd_device *rbd_dev = img_req->rbd_dev; 3468 3469 if (!need_exclusive_lock(img_req)) 3470 return 1; 3471 3472 if (rbd_lock_add_request(img_req)) 3473 return 1; 3474 3475 if (rbd_dev->opts->exclusive) { 3476 WARN_ON(1); /* lock got released? */ 3477 return -EROFS; 3478 } 3479 3480 /* 3481 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3482 * and cancel_delayed_work() in wake_lock_waiters(). 3483 */ 3484 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3485 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3486 return 0; 3487 } 3488 3489 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3490 { 3491 struct rbd_device *rbd_dev = img_req->rbd_dev; 3492 struct rbd_obj_request *obj_req; 3493 3494 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3495 rbd_assert(!need_exclusive_lock(img_req) || 3496 __rbd_is_lock_owner(rbd_dev)); 3497 3498 if (rbd_img_is_write(img_req)) { 3499 rbd_assert(!img_req->snapc); 3500 down_read(&rbd_dev->header_rwsem); 3501 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 3502 up_read(&rbd_dev->header_rwsem); 3503 } 3504 3505 for_each_obj_request(img_req, obj_req) { 3506 int result = 0; 3507 3508 if (__rbd_obj_handle_request(obj_req, &result)) { 3509 if (result) { 3510 img_req->pending.result = result; 3511 return; 3512 } 3513 } else { 3514 img_req->pending.num_pending++; 3515 } 3516 } 3517 } 3518 3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3520 { 3521 int ret; 3522 3523 again: 3524 switch (img_req->state) { 3525 case RBD_IMG_START: 3526 rbd_assert(!*result); 3527 3528 ret = rbd_img_exclusive_lock(img_req); 3529 if (ret < 0) { 3530 *result = ret; 3531 return true; 3532 } 3533 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3534 if (ret > 0) 3535 goto again; 3536 return false; 3537 case RBD_IMG_EXCLUSIVE_LOCK: 3538 if (*result) 3539 return true; 3540 3541 rbd_img_object_requests(img_req); 3542 if (!img_req->pending.num_pending) { 3543 *result = img_req->pending.result; 3544 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3545 goto again; 3546 } 3547 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3548 return false; 3549 case __RBD_IMG_OBJECT_REQUESTS: 3550 if (!pending_result_dec(&img_req->pending, result)) 3551 return false; 3552 fallthrough; 3553 case RBD_IMG_OBJECT_REQUESTS: 3554 return true; 3555 default: 3556 BUG(); 3557 } 3558 } 3559 3560 /* 3561 * Return true if @img_req is completed. 3562 */ 3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3564 int *result) 3565 { 3566 struct rbd_device *rbd_dev = img_req->rbd_dev; 3567 bool done; 3568 3569 if (need_exclusive_lock(img_req)) { 3570 down_read(&rbd_dev->lock_rwsem); 3571 mutex_lock(&img_req->state_mutex); 3572 done = rbd_img_advance(img_req, result); 3573 if (done) 3574 rbd_lock_del_request(img_req); 3575 mutex_unlock(&img_req->state_mutex); 3576 up_read(&rbd_dev->lock_rwsem); 3577 } else { 3578 mutex_lock(&img_req->state_mutex); 3579 done = rbd_img_advance(img_req, result); 3580 mutex_unlock(&img_req->state_mutex); 3581 } 3582 3583 if (done && *result) { 3584 rbd_assert(*result < 0); 3585 rbd_warn(rbd_dev, "%s%s result %d", 3586 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3587 obj_op_name(img_req->op_type), *result); 3588 } 3589 return done; 3590 } 3591 3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3593 { 3594 again: 3595 if (!__rbd_img_handle_request(img_req, &result)) 3596 return; 3597 3598 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3599 struct rbd_obj_request *obj_req = img_req->obj_request; 3600 3601 rbd_img_request_destroy(img_req); 3602 if (__rbd_obj_handle_request(obj_req, &result)) { 3603 img_req = obj_req->img_request; 3604 goto again; 3605 } 3606 } else { 3607 struct request *rq = blk_mq_rq_from_pdu(img_req); 3608 3609 rbd_img_request_destroy(img_req); 3610 blk_mq_end_request(rq, errno_to_blk_status(result)); 3611 } 3612 } 3613 3614 static const struct rbd_client_id rbd_empty_cid; 3615 3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3617 const struct rbd_client_id *rhs) 3618 { 3619 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3620 } 3621 3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3623 { 3624 struct rbd_client_id cid; 3625 3626 mutex_lock(&rbd_dev->watch_mutex); 3627 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3628 cid.handle = rbd_dev->watch_cookie; 3629 mutex_unlock(&rbd_dev->watch_mutex); 3630 return cid; 3631 } 3632 3633 /* 3634 * lock_rwsem must be held for write 3635 */ 3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3637 const struct rbd_client_id *cid) 3638 { 3639 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3640 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3641 cid->gid, cid->handle); 3642 rbd_dev->owner_cid = *cid; /* struct */ 3643 } 3644 3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3646 { 3647 mutex_lock(&rbd_dev->watch_mutex); 3648 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3649 mutex_unlock(&rbd_dev->watch_mutex); 3650 } 3651 3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3653 { 3654 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3655 3656 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3657 strcpy(rbd_dev->lock_cookie, cookie); 3658 rbd_set_owner_cid(rbd_dev, &cid); 3659 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3660 } 3661 3662 /* 3663 * lock_rwsem must be held for write 3664 */ 3665 static int rbd_lock(struct rbd_device *rbd_dev) 3666 { 3667 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3668 char cookie[32]; 3669 int ret; 3670 3671 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3672 rbd_dev->lock_cookie[0] != '\0'); 3673 3674 format_lock_cookie(rbd_dev, cookie); 3675 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3676 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3677 RBD_LOCK_TAG, "", 0); 3678 if (ret && ret != -EEXIST) 3679 return ret; 3680 3681 __rbd_lock(rbd_dev, cookie); 3682 return 0; 3683 } 3684 3685 /* 3686 * lock_rwsem must be held for write 3687 */ 3688 static void rbd_unlock(struct rbd_device *rbd_dev) 3689 { 3690 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3691 int ret; 3692 3693 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3694 rbd_dev->lock_cookie[0] == '\0'); 3695 3696 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3697 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3698 if (ret && ret != -ENOENT) 3699 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3700 3701 /* treat errors as the image is unlocked */ 3702 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3703 rbd_dev->lock_cookie[0] = '\0'; 3704 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3705 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3706 } 3707 3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3709 enum rbd_notify_op notify_op, 3710 struct page ***preply_pages, 3711 size_t *preply_len) 3712 { 3713 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3714 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3715 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3716 int buf_size = sizeof(buf); 3717 void *p = buf; 3718 3719 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3720 3721 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3722 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3723 ceph_encode_32(&p, notify_op); 3724 ceph_encode_64(&p, cid.gid); 3725 ceph_encode_64(&p, cid.handle); 3726 3727 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3728 &rbd_dev->header_oloc, buf, buf_size, 3729 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3730 } 3731 3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3733 enum rbd_notify_op notify_op) 3734 { 3735 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3736 } 3737 3738 static void rbd_notify_acquired_lock(struct work_struct *work) 3739 { 3740 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3741 acquired_lock_work); 3742 3743 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3744 } 3745 3746 static void rbd_notify_released_lock(struct work_struct *work) 3747 { 3748 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3749 released_lock_work); 3750 3751 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3752 } 3753 3754 static int rbd_request_lock(struct rbd_device *rbd_dev) 3755 { 3756 struct page **reply_pages; 3757 size_t reply_len; 3758 bool lock_owner_responded = false; 3759 int ret; 3760 3761 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3762 3763 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3764 &reply_pages, &reply_len); 3765 if (ret && ret != -ETIMEDOUT) { 3766 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3767 goto out; 3768 } 3769 3770 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3771 void *p = page_address(reply_pages[0]); 3772 void *const end = p + reply_len; 3773 u32 n; 3774 3775 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3776 while (n--) { 3777 u8 struct_v; 3778 u32 len; 3779 3780 ceph_decode_need(&p, end, 8 + 8, e_inval); 3781 p += 8 + 8; /* skip gid and cookie */ 3782 3783 ceph_decode_32_safe(&p, end, len, e_inval); 3784 if (!len) 3785 continue; 3786 3787 if (lock_owner_responded) { 3788 rbd_warn(rbd_dev, 3789 "duplicate lock owners detected"); 3790 ret = -EIO; 3791 goto out; 3792 } 3793 3794 lock_owner_responded = true; 3795 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3796 &struct_v, &len); 3797 if (ret) { 3798 rbd_warn(rbd_dev, 3799 "failed to decode ResponseMessage: %d", 3800 ret); 3801 goto e_inval; 3802 } 3803 3804 ret = ceph_decode_32(&p); 3805 } 3806 } 3807 3808 if (!lock_owner_responded) { 3809 rbd_warn(rbd_dev, "no lock owners detected"); 3810 ret = -ETIMEDOUT; 3811 } 3812 3813 out: 3814 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3815 return ret; 3816 3817 e_inval: 3818 ret = -EINVAL; 3819 goto out; 3820 } 3821 3822 /* 3823 * Either image request state machine(s) or rbd_add_acquire_lock() 3824 * (i.e. "rbd map"). 3825 */ 3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3827 { 3828 struct rbd_img_request *img_req; 3829 3830 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3831 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3832 3833 cancel_delayed_work(&rbd_dev->lock_dwork); 3834 if (!completion_done(&rbd_dev->acquire_wait)) { 3835 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3836 list_empty(&rbd_dev->running_list)); 3837 rbd_dev->acquire_err = result; 3838 complete_all(&rbd_dev->acquire_wait); 3839 return; 3840 } 3841 3842 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3843 mutex_lock(&img_req->state_mutex); 3844 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3845 rbd_img_schedule(img_req, result); 3846 mutex_unlock(&img_req->state_mutex); 3847 } 3848 3849 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3850 } 3851 3852 static bool locker_equal(const struct ceph_locker *lhs, 3853 const struct ceph_locker *rhs) 3854 { 3855 return lhs->id.name.type == rhs->id.name.type && 3856 lhs->id.name.num == rhs->id.name.num && 3857 !strcmp(lhs->id.cookie, rhs->id.cookie) && 3858 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr); 3859 } 3860 3861 static void free_locker(struct ceph_locker *locker) 3862 { 3863 if (locker) 3864 ceph_free_lockers(locker, 1); 3865 } 3866 3867 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev) 3868 { 3869 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3870 struct ceph_locker *lockers; 3871 u32 num_lockers; 3872 u8 lock_type; 3873 char *lock_tag; 3874 u64 handle; 3875 int ret; 3876 3877 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3878 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3879 &lock_type, &lock_tag, &lockers, &num_lockers); 3880 if (ret) { 3881 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret); 3882 return ERR_PTR(ret); 3883 } 3884 3885 if (num_lockers == 0) { 3886 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3887 lockers = NULL; 3888 goto out; 3889 } 3890 3891 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3892 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3893 lock_tag); 3894 goto err_busy; 3895 } 3896 3897 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) { 3898 rbd_warn(rbd_dev, "incompatible lock type detected"); 3899 goto err_busy; 3900 } 3901 3902 WARN_ON(num_lockers != 1); 3903 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", 3904 &handle); 3905 if (ret != 1) { 3906 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3907 lockers[0].id.cookie); 3908 goto err_busy; 3909 } 3910 if (ceph_addr_is_blank(&lockers[0].info.addr)) { 3911 rbd_warn(rbd_dev, "locker has a blank address"); 3912 goto err_busy; 3913 } 3914 3915 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n", 3916 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name), 3917 &lockers[0].info.addr.in_addr, 3918 le32_to_cpu(lockers[0].info.addr.nonce), handle); 3919 3920 out: 3921 kfree(lock_tag); 3922 return lockers; 3923 3924 err_busy: 3925 kfree(lock_tag); 3926 ceph_free_lockers(lockers, num_lockers); 3927 return ERR_PTR(-EBUSY); 3928 } 3929 3930 static int find_watcher(struct rbd_device *rbd_dev, 3931 const struct ceph_locker *locker) 3932 { 3933 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3934 struct ceph_watch_item *watchers; 3935 u32 num_watchers; 3936 u64 cookie; 3937 int i; 3938 int ret; 3939 3940 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3941 &rbd_dev->header_oloc, &watchers, 3942 &num_watchers); 3943 if (ret) { 3944 rbd_warn(rbd_dev, "failed to get watchers: %d", ret); 3945 return ret; 3946 } 3947 3948 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3949 for (i = 0; i < num_watchers; i++) { 3950 /* 3951 * Ignore addr->type while comparing. This mimics 3952 * entity_addr_t::get_legacy_str() + strcmp(). 3953 */ 3954 if (ceph_addr_equal_no_type(&watchers[i].addr, 3955 &locker->info.addr) && 3956 watchers[i].cookie == cookie) { 3957 struct rbd_client_id cid = { 3958 .gid = le64_to_cpu(watchers[i].name.num), 3959 .handle = cookie, 3960 }; 3961 3962 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3963 rbd_dev, cid.gid, cid.handle); 3964 rbd_set_owner_cid(rbd_dev, &cid); 3965 ret = 1; 3966 goto out; 3967 } 3968 } 3969 3970 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3971 ret = 0; 3972 out: 3973 kfree(watchers); 3974 return ret; 3975 } 3976 3977 /* 3978 * lock_rwsem must be held for write 3979 */ 3980 static int rbd_try_lock(struct rbd_device *rbd_dev) 3981 { 3982 struct ceph_client *client = rbd_dev->rbd_client->client; 3983 struct ceph_locker *locker, *refreshed_locker; 3984 int ret; 3985 3986 for (;;) { 3987 locker = refreshed_locker = NULL; 3988 3989 ret = rbd_lock(rbd_dev); 3990 if (!ret) 3991 goto out; 3992 if (ret != -EBUSY) { 3993 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 3994 goto out; 3995 } 3996 3997 /* determine if the current lock holder is still alive */ 3998 locker = get_lock_owner_info(rbd_dev); 3999 if (IS_ERR(locker)) { 4000 ret = PTR_ERR(locker); 4001 locker = NULL; 4002 goto out; 4003 } 4004 if (!locker) 4005 goto again; 4006 4007 ret = find_watcher(rbd_dev, locker); 4008 if (ret) 4009 goto out; /* request lock or error */ 4010 4011 refreshed_locker = get_lock_owner_info(rbd_dev); 4012 if (IS_ERR(refreshed_locker)) { 4013 ret = PTR_ERR(refreshed_locker); 4014 refreshed_locker = NULL; 4015 goto out; 4016 } 4017 if (!refreshed_locker || 4018 !locker_equal(locker, refreshed_locker)) 4019 goto again; 4020 4021 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4022 ENTITY_NAME(locker->id.name)); 4023 4024 ret = ceph_monc_blocklist_add(&client->monc, 4025 &locker->info.addr); 4026 if (ret) { 4027 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d", 4028 ENTITY_NAME(locker->id.name), ret); 4029 goto out; 4030 } 4031 4032 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4033 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4034 locker->id.cookie, &locker->id.name); 4035 if (ret && ret != -ENOENT) { 4036 rbd_warn(rbd_dev, "failed to break header lock: %d", 4037 ret); 4038 goto out; 4039 } 4040 4041 again: 4042 free_locker(refreshed_locker); 4043 free_locker(locker); 4044 } 4045 4046 out: 4047 free_locker(refreshed_locker); 4048 free_locker(locker); 4049 return ret; 4050 } 4051 4052 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4053 { 4054 int ret; 4055 4056 ret = rbd_dev_refresh(rbd_dev); 4057 if (ret) 4058 return ret; 4059 4060 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4061 ret = rbd_object_map_open(rbd_dev); 4062 if (ret) 4063 return ret; 4064 } 4065 4066 return 0; 4067 } 4068 4069 /* 4070 * Return: 4071 * 0 - lock acquired 4072 * 1 - caller should call rbd_request_lock() 4073 * <0 - error 4074 */ 4075 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4076 { 4077 int ret; 4078 4079 down_read(&rbd_dev->lock_rwsem); 4080 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4081 rbd_dev->lock_state); 4082 if (__rbd_is_lock_owner(rbd_dev)) { 4083 up_read(&rbd_dev->lock_rwsem); 4084 return 0; 4085 } 4086 4087 up_read(&rbd_dev->lock_rwsem); 4088 down_write(&rbd_dev->lock_rwsem); 4089 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4090 rbd_dev->lock_state); 4091 if (__rbd_is_lock_owner(rbd_dev)) { 4092 up_write(&rbd_dev->lock_rwsem); 4093 return 0; 4094 } 4095 4096 ret = rbd_try_lock(rbd_dev); 4097 if (ret < 0) { 4098 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret); 4099 goto out; 4100 } 4101 if (ret > 0) { 4102 up_write(&rbd_dev->lock_rwsem); 4103 return ret; 4104 } 4105 4106 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4107 rbd_assert(list_empty(&rbd_dev->running_list)); 4108 4109 ret = rbd_post_acquire_action(rbd_dev); 4110 if (ret) { 4111 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4112 /* 4113 * Can't stay in RBD_LOCK_STATE_LOCKED because 4114 * rbd_lock_add_request() would let the request through, 4115 * assuming that e.g. object map is locked and loaded. 4116 */ 4117 rbd_unlock(rbd_dev); 4118 } 4119 4120 out: 4121 wake_lock_waiters(rbd_dev, ret); 4122 up_write(&rbd_dev->lock_rwsem); 4123 return ret; 4124 } 4125 4126 static void rbd_acquire_lock(struct work_struct *work) 4127 { 4128 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4129 struct rbd_device, lock_dwork); 4130 int ret; 4131 4132 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4133 again: 4134 ret = rbd_try_acquire_lock(rbd_dev); 4135 if (ret <= 0) { 4136 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4137 return; 4138 } 4139 4140 ret = rbd_request_lock(rbd_dev); 4141 if (ret == -ETIMEDOUT) { 4142 goto again; /* treat this as a dead client */ 4143 } else if (ret == -EROFS) { 4144 rbd_warn(rbd_dev, "peer will not release lock"); 4145 down_write(&rbd_dev->lock_rwsem); 4146 wake_lock_waiters(rbd_dev, ret); 4147 up_write(&rbd_dev->lock_rwsem); 4148 } else if (ret < 0) { 4149 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4150 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4151 RBD_RETRY_DELAY); 4152 } else { 4153 /* 4154 * lock owner acked, but resend if we don't see them 4155 * release the lock 4156 */ 4157 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4158 rbd_dev); 4159 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4160 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4161 } 4162 } 4163 4164 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4165 { 4166 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4167 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4168 4169 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4170 return false; 4171 4172 /* 4173 * Ensure that all in-flight IO is flushed. 4174 */ 4175 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4176 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4177 if (list_empty(&rbd_dev->running_list)) 4178 return true; 4179 4180 up_write(&rbd_dev->lock_rwsem); 4181 wait_for_completion(&rbd_dev->releasing_wait); 4182 4183 down_write(&rbd_dev->lock_rwsem); 4184 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4185 return false; 4186 4187 rbd_assert(list_empty(&rbd_dev->running_list)); 4188 return true; 4189 } 4190 4191 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4192 { 4193 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4194 rbd_object_map_close(rbd_dev); 4195 } 4196 4197 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4198 { 4199 rbd_assert(list_empty(&rbd_dev->running_list)); 4200 4201 rbd_pre_release_action(rbd_dev); 4202 rbd_unlock(rbd_dev); 4203 } 4204 4205 /* 4206 * lock_rwsem must be held for write 4207 */ 4208 static void rbd_release_lock(struct rbd_device *rbd_dev) 4209 { 4210 if (!rbd_quiesce_lock(rbd_dev)) 4211 return; 4212 4213 __rbd_release_lock(rbd_dev); 4214 4215 /* 4216 * Give others a chance to grab the lock - we would re-acquire 4217 * almost immediately if we got new IO while draining the running 4218 * list otherwise. We need to ack our own notifications, so this 4219 * lock_dwork will be requeued from rbd_handle_released_lock() by 4220 * way of maybe_kick_acquire(). 4221 */ 4222 cancel_delayed_work(&rbd_dev->lock_dwork); 4223 } 4224 4225 static void rbd_release_lock_work(struct work_struct *work) 4226 { 4227 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4228 unlock_work); 4229 4230 down_write(&rbd_dev->lock_rwsem); 4231 rbd_release_lock(rbd_dev); 4232 up_write(&rbd_dev->lock_rwsem); 4233 } 4234 4235 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4236 { 4237 bool have_requests; 4238 4239 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4240 if (__rbd_is_lock_owner(rbd_dev)) 4241 return; 4242 4243 spin_lock(&rbd_dev->lock_lists_lock); 4244 have_requests = !list_empty(&rbd_dev->acquiring_list); 4245 spin_unlock(&rbd_dev->lock_lists_lock); 4246 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4247 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4248 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4249 } 4250 } 4251 4252 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4253 void **p) 4254 { 4255 struct rbd_client_id cid = { 0 }; 4256 4257 if (struct_v >= 2) { 4258 cid.gid = ceph_decode_64(p); 4259 cid.handle = ceph_decode_64(p); 4260 } 4261 4262 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4263 cid.handle); 4264 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4265 down_write(&rbd_dev->lock_rwsem); 4266 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4267 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4268 __func__, rbd_dev, cid.gid, cid.handle); 4269 } else { 4270 rbd_set_owner_cid(rbd_dev, &cid); 4271 } 4272 downgrade_write(&rbd_dev->lock_rwsem); 4273 } else { 4274 down_read(&rbd_dev->lock_rwsem); 4275 } 4276 4277 maybe_kick_acquire(rbd_dev); 4278 up_read(&rbd_dev->lock_rwsem); 4279 } 4280 4281 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4282 void **p) 4283 { 4284 struct rbd_client_id cid = { 0 }; 4285 4286 if (struct_v >= 2) { 4287 cid.gid = ceph_decode_64(p); 4288 cid.handle = ceph_decode_64(p); 4289 } 4290 4291 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4292 cid.handle); 4293 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4294 down_write(&rbd_dev->lock_rwsem); 4295 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4296 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4297 __func__, rbd_dev, cid.gid, cid.handle, 4298 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4299 } else { 4300 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4301 } 4302 downgrade_write(&rbd_dev->lock_rwsem); 4303 } else { 4304 down_read(&rbd_dev->lock_rwsem); 4305 } 4306 4307 maybe_kick_acquire(rbd_dev); 4308 up_read(&rbd_dev->lock_rwsem); 4309 } 4310 4311 /* 4312 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4313 * ResponseMessage is needed. 4314 */ 4315 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4316 void **p) 4317 { 4318 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4319 struct rbd_client_id cid = { 0 }; 4320 int result = 1; 4321 4322 if (struct_v >= 2) { 4323 cid.gid = ceph_decode_64(p); 4324 cid.handle = ceph_decode_64(p); 4325 } 4326 4327 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4328 cid.handle); 4329 if (rbd_cid_equal(&cid, &my_cid)) 4330 return result; 4331 4332 down_read(&rbd_dev->lock_rwsem); 4333 if (__rbd_is_lock_owner(rbd_dev)) { 4334 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4335 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4336 goto out_unlock; 4337 4338 /* 4339 * encode ResponseMessage(0) so the peer can detect 4340 * a missing owner 4341 */ 4342 result = 0; 4343 4344 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4345 if (!rbd_dev->opts->exclusive) { 4346 dout("%s rbd_dev %p queueing unlock_work\n", 4347 __func__, rbd_dev); 4348 queue_work(rbd_dev->task_wq, 4349 &rbd_dev->unlock_work); 4350 } else { 4351 /* refuse to release the lock */ 4352 result = -EROFS; 4353 } 4354 } 4355 } 4356 4357 out_unlock: 4358 up_read(&rbd_dev->lock_rwsem); 4359 return result; 4360 } 4361 4362 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4363 u64 notify_id, u64 cookie, s32 *result) 4364 { 4365 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4366 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4367 int buf_size = sizeof(buf); 4368 int ret; 4369 4370 if (result) { 4371 void *p = buf; 4372 4373 /* encode ResponseMessage */ 4374 ceph_start_encoding(&p, 1, 1, 4375 buf_size - CEPH_ENCODING_START_BLK_LEN); 4376 ceph_encode_32(&p, *result); 4377 } else { 4378 buf_size = 0; 4379 } 4380 4381 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4382 &rbd_dev->header_oloc, notify_id, cookie, 4383 buf, buf_size); 4384 if (ret) 4385 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4386 } 4387 4388 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4389 u64 cookie) 4390 { 4391 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4392 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4393 } 4394 4395 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4396 u64 notify_id, u64 cookie, s32 result) 4397 { 4398 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4399 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4400 } 4401 4402 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4403 u64 notifier_id, void *data, size_t data_len) 4404 { 4405 struct rbd_device *rbd_dev = arg; 4406 void *p = data; 4407 void *const end = p + data_len; 4408 u8 struct_v = 0; 4409 u32 len; 4410 u32 notify_op; 4411 int ret; 4412 4413 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4414 __func__, rbd_dev, cookie, notify_id, data_len); 4415 if (data_len) { 4416 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4417 &struct_v, &len); 4418 if (ret) { 4419 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4420 ret); 4421 return; 4422 } 4423 4424 notify_op = ceph_decode_32(&p); 4425 } else { 4426 /* legacy notification for header updates */ 4427 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4428 len = 0; 4429 } 4430 4431 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4432 switch (notify_op) { 4433 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4434 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4435 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4436 break; 4437 case RBD_NOTIFY_OP_RELEASED_LOCK: 4438 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4439 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4440 break; 4441 case RBD_NOTIFY_OP_REQUEST_LOCK: 4442 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4443 if (ret <= 0) 4444 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4445 cookie, ret); 4446 else 4447 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4448 break; 4449 case RBD_NOTIFY_OP_HEADER_UPDATE: 4450 ret = rbd_dev_refresh(rbd_dev); 4451 if (ret) 4452 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4453 4454 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4455 break; 4456 default: 4457 if (rbd_is_lock_owner(rbd_dev)) 4458 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4459 cookie, -EOPNOTSUPP); 4460 else 4461 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4462 break; 4463 } 4464 } 4465 4466 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4467 4468 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4469 { 4470 struct rbd_device *rbd_dev = arg; 4471 4472 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4473 4474 down_write(&rbd_dev->lock_rwsem); 4475 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4476 up_write(&rbd_dev->lock_rwsem); 4477 4478 mutex_lock(&rbd_dev->watch_mutex); 4479 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4480 __rbd_unregister_watch(rbd_dev); 4481 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4482 4483 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4484 } 4485 mutex_unlock(&rbd_dev->watch_mutex); 4486 } 4487 4488 /* 4489 * watch_mutex must be locked 4490 */ 4491 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4492 { 4493 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4494 struct ceph_osd_linger_request *handle; 4495 4496 rbd_assert(!rbd_dev->watch_handle); 4497 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4498 4499 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4500 &rbd_dev->header_oloc, rbd_watch_cb, 4501 rbd_watch_errcb, rbd_dev); 4502 if (IS_ERR(handle)) 4503 return PTR_ERR(handle); 4504 4505 rbd_dev->watch_handle = handle; 4506 return 0; 4507 } 4508 4509 /* 4510 * watch_mutex must be locked 4511 */ 4512 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4513 { 4514 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4515 int ret; 4516 4517 rbd_assert(rbd_dev->watch_handle); 4518 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4519 4520 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4521 if (ret) 4522 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4523 4524 rbd_dev->watch_handle = NULL; 4525 } 4526 4527 static int rbd_register_watch(struct rbd_device *rbd_dev) 4528 { 4529 int ret; 4530 4531 mutex_lock(&rbd_dev->watch_mutex); 4532 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4533 ret = __rbd_register_watch(rbd_dev); 4534 if (ret) 4535 goto out; 4536 4537 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4538 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4539 4540 out: 4541 mutex_unlock(&rbd_dev->watch_mutex); 4542 return ret; 4543 } 4544 4545 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4546 { 4547 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4548 4549 cancel_work_sync(&rbd_dev->acquired_lock_work); 4550 cancel_work_sync(&rbd_dev->released_lock_work); 4551 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4552 cancel_work_sync(&rbd_dev->unlock_work); 4553 } 4554 4555 /* 4556 * header_rwsem must not be held to avoid a deadlock with 4557 * rbd_dev_refresh() when flushing notifies. 4558 */ 4559 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4560 { 4561 cancel_tasks_sync(rbd_dev); 4562 4563 mutex_lock(&rbd_dev->watch_mutex); 4564 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4565 __rbd_unregister_watch(rbd_dev); 4566 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4567 mutex_unlock(&rbd_dev->watch_mutex); 4568 4569 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4570 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4571 } 4572 4573 /* 4574 * lock_rwsem must be held for write 4575 */ 4576 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4577 { 4578 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4579 char cookie[32]; 4580 int ret; 4581 4582 if (!rbd_quiesce_lock(rbd_dev)) 4583 return; 4584 4585 format_lock_cookie(rbd_dev, cookie); 4586 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4587 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4588 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4589 RBD_LOCK_TAG, cookie); 4590 if (ret) { 4591 if (ret != -EOPNOTSUPP) 4592 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4593 ret); 4594 4595 /* 4596 * Lock cookie cannot be updated on older OSDs, so do 4597 * a manual release and queue an acquire. 4598 */ 4599 __rbd_release_lock(rbd_dev); 4600 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4601 } else { 4602 __rbd_lock(rbd_dev, cookie); 4603 wake_lock_waiters(rbd_dev, 0); 4604 } 4605 } 4606 4607 static void rbd_reregister_watch(struct work_struct *work) 4608 { 4609 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4610 struct rbd_device, watch_dwork); 4611 int ret; 4612 4613 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4614 4615 mutex_lock(&rbd_dev->watch_mutex); 4616 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4617 mutex_unlock(&rbd_dev->watch_mutex); 4618 return; 4619 } 4620 4621 ret = __rbd_register_watch(rbd_dev); 4622 if (ret) { 4623 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4624 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4625 queue_delayed_work(rbd_dev->task_wq, 4626 &rbd_dev->watch_dwork, 4627 RBD_RETRY_DELAY); 4628 mutex_unlock(&rbd_dev->watch_mutex); 4629 return; 4630 } 4631 4632 mutex_unlock(&rbd_dev->watch_mutex); 4633 down_write(&rbd_dev->lock_rwsem); 4634 wake_lock_waiters(rbd_dev, ret); 4635 up_write(&rbd_dev->lock_rwsem); 4636 return; 4637 } 4638 4639 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4640 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4641 mutex_unlock(&rbd_dev->watch_mutex); 4642 4643 down_write(&rbd_dev->lock_rwsem); 4644 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4645 rbd_reacquire_lock(rbd_dev); 4646 up_write(&rbd_dev->lock_rwsem); 4647 4648 ret = rbd_dev_refresh(rbd_dev); 4649 if (ret) 4650 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4651 } 4652 4653 /* 4654 * Synchronous osd object method call. Returns the number of bytes 4655 * returned in the outbound buffer, or a negative error code. 4656 */ 4657 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4658 struct ceph_object_id *oid, 4659 struct ceph_object_locator *oloc, 4660 const char *method_name, 4661 const void *outbound, 4662 size_t outbound_size, 4663 void *inbound, 4664 size_t inbound_size) 4665 { 4666 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4667 struct page *req_page = NULL; 4668 struct page *reply_page; 4669 int ret; 4670 4671 /* 4672 * Method calls are ultimately read operations. The result 4673 * should placed into the inbound buffer provided. They 4674 * also supply outbound data--parameters for the object 4675 * method. Currently if this is present it will be a 4676 * snapshot id. 4677 */ 4678 if (outbound) { 4679 if (outbound_size > PAGE_SIZE) 4680 return -E2BIG; 4681 4682 req_page = alloc_page(GFP_KERNEL); 4683 if (!req_page) 4684 return -ENOMEM; 4685 4686 memcpy(page_address(req_page), outbound, outbound_size); 4687 } 4688 4689 reply_page = alloc_page(GFP_KERNEL); 4690 if (!reply_page) { 4691 if (req_page) 4692 __free_page(req_page); 4693 return -ENOMEM; 4694 } 4695 4696 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4697 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4698 &reply_page, &inbound_size); 4699 if (!ret) { 4700 memcpy(inbound, page_address(reply_page), inbound_size); 4701 ret = inbound_size; 4702 } 4703 4704 if (req_page) 4705 __free_page(req_page); 4706 __free_page(reply_page); 4707 return ret; 4708 } 4709 4710 static void rbd_queue_workfn(struct work_struct *work) 4711 { 4712 struct rbd_img_request *img_request = 4713 container_of(work, struct rbd_img_request, work); 4714 struct rbd_device *rbd_dev = img_request->rbd_dev; 4715 enum obj_operation_type op_type = img_request->op_type; 4716 struct request *rq = blk_mq_rq_from_pdu(img_request); 4717 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4718 u64 length = blk_rq_bytes(rq); 4719 u64 mapping_size; 4720 int result; 4721 4722 /* Ignore/skip any zero-length requests */ 4723 if (!length) { 4724 dout("%s: zero-length request\n", __func__); 4725 result = 0; 4726 goto err_img_request; 4727 } 4728 4729 blk_mq_start_request(rq); 4730 4731 down_read(&rbd_dev->header_rwsem); 4732 mapping_size = rbd_dev->mapping.size; 4733 rbd_img_capture_header(img_request); 4734 up_read(&rbd_dev->header_rwsem); 4735 4736 if (offset + length > mapping_size) { 4737 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4738 length, mapping_size); 4739 result = -EIO; 4740 goto err_img_request; 4741 } 4742 4743 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4744 img_request, obj_op_name(op_type), offset, length); 4745 4746 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4747 result = rbd_img_fill_nodata(img_request, offset, length); 4748 else 4749 result = rbd_img_fill_from_bio(img_request, offset, length, 4750 rq->bio); 4751 if (result) 4752 goto err_img_request; 4753 4754 rbd_img_handle_request(img_request, 0); 4755 return; 4756 4757 err_img_request: 4758 rbd_img_request_destroy(img_request); 4759 if (result) 4760 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4761 obj_op_name(op_type), length, offset, result); 4762 blk_mq_end_request(rq, errno_to_blk_status(result)); 4763 } 4764 4765 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4766 const struct blk_mq_queue_data *bd) 4767 { 4768 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4769 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4770 enum obj_operation_type op_type; 4771 4772 switch (req_op(bd->rq)) { 4773 case REQ_OP_DISCARD: 4774 op_type = OBJ_OP_DISCARD; 4775 break; 4776 case REQ_OP_WRITE_ZEROES: 4777 op_type = OBJ_OP_ZEROOUT; 4778 break; 4779 case REQ_OP_WRITE: 4780 op_type = OBJ_OP_WRITE; 4781 break; 4782 case REQ_OP_READ: 4783 op_type = OBJ_OP_READ; 4784 break; 4785 default: 4786 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4787 return BLK_STS_IOERR; 4788 } 4789 4790 rbd_img_request_init(img_req, rbd_dev, op_type); 4791 4792 if (rbd_img_is_write(img_req)) { 4793 if (rbd_is_ro(rbd_dev)) { 4794 rbd_warn(rbd_dev, "%s on read-only mapping", 4795 obj_op_name(img_req->op_type)); 4796 return BLK_STS_IOERR; 4797 } 4798 rbd_assert(!rbd_is_snap(rbd_dev)); 4799 } 4800 4801 INIT_WORK(&img_req->work, rbd_queue_workfn); 4802 queue_work(rbd_wq, &img_req->work); 4803 return BLK_STS_OK; 4804 } 4805 4806 static void rbd_free_disk(struct rbd_device *rbd_dev) 4807 { 4808 put_disk(rbd_dev->disk); 4809 blk_mq_free_tag_set(&rbd_dev->tag_set); 4810 rbd_dev->disk = NULL; 4811 } 4812 4813 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4814 struct ceph_object_id *oid, 4815 struct ceph_object_locator *oloc, 4816 void *buf, int buf_len) 4817 4818 { 4819 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4820 struct ceph_osd_request *req; 4821 struct page **pages; 4822 int num_pages = calc_pages_for(0, buf_len); 4823 int ret; 4824 4825 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4826 if (!req) 4827 return -ENOMEM; 4828 4829 ceph_oid_copy(&req->r_base_oid, oid); 4830 ceph_oloc_copy(&req->r_base_oloc, oloc); 4831 req->r_flags = CEPH_OSD_FLAG_READ; 4832 4833 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4834 if (IS_ERR(pages)) { 4835 ret = PTR_ERR(pages); 4836 goto out_req; 4837 } 4838 4839 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4840 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4841 true); 4842 4843 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4844 if (ret) 4845 goto out_req; 4846 4847 ceph_osdc_start_request(osdc, req); 4848 ret = ceph_osdc_wait_request(osdc, req); 4849 if (ret >= 0) 4850 ceph_copy_from_page_vector(pages, buf, 0, ret); 4851 4852 out_req: 4853 ceph_osdc_put_request(req); 4854 return ret; 4855 } 4856 4857 /* 4858 * Read the complete header for the given rbd device. On successful 4859 * return, the rbd_dev->header field will contain up-to-date 4860 * information about the image. 4861 */ 4862 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4863 { 4864 struct rbd_image_header_ondisk *ondisk = NULL; 4865 u32 snap_count = 0; 4866 u64 names_size = 0; 4867 u32 want_count; 4868 int ret; 4869 4870 /* 4871 * The complete header will include an array of its 64-bit 4872 * snapshot ids, followed by the names of those snapshots as 4873 * a contiguous block of NUL-terminated strings. Note that 4874 * the number of snapshots could change by the time we read 4875 * it in, in which case we re-read it. 4876 */ 4877 do { 4878 size_t size; 4879 4880 kfree(ondisk); 4881 4882 size = sizeof (*ondisk); 4883 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4884 size += names_size; 4885 ondisk = kmalloc(size, GFP_KERNEL); 4886 if (!ondisk) 4887 return -ENOMEM; 4888 4889 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4890 &rbd_dev->header_oloc, ondisk, size); 4891 if (ret < 0) 4892 goto out; 4893 if ((size_t)ret < size) { 4894 ret = -ENXIO; 4895 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4896 size, ret); 4897 goto out; 4898 } 4899 if (!rbd_dev_ondisk_valid(ondisk)) { 4900 ret = -ENXIO; 4901 rbd_warn(rbd_dev, "invalid header"); 4902 goto out; 4903 } 4904 4905 names_size = le64_to_cpu(ondisk->snap_names_len); 4906 want_count = snap_count; 4907 snap_count = le32_to_cpu(ondisk->snap_count); 4908 } while (snap_count != want_count); 4909 4910 ret = rbd_header_from_disk(rbd_dev, ondisk); 4911 out: 4912 kfree(ondisk); 4913 4914 return ret; 4915 } 4916 4917 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4918 { 4919 sector_t size; 4920 4921 /* 4922 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4923 * try to update its size. If REMOVING is set, updating size 4924 * is just useless work since the device can't be opened. 4925 */ 4926 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4927 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4928 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4929 dout("setting size to %llu sectors", (unsigned long long)size); 4930 set_capacity_and_notify(rbd_dev->disk, size); 4931 } 4932 } 4933 4934 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4935 { 4936 u64 mapping_size; 4937 int ret; 4938 4939 down_write(&rbd_dev->header_rwsem); 4940 mapping_size = rbd_dev->mapping.size; 4941 4942 ret = rbd_dev_header_info(rbd_dev); 4943 if (ret) 4944 goto out; 4945 4946 /* 4947 * If there is a parent, see if it has disappeared due to the 4948 * mapped image getting flattened. 4949 */ 4950 if (rbd_dev->parent) { 4951 ret = rbd_dev_v2_parent_info(rbd_dev); 4952 if (ret) 4953 goto out; 4954 } 4955 4956 rbd_assert(!rbd_is_snap(rbd_dev)); 4957 rbd_dev->mapping.size = rbd_dev->header.image_size; 4958 4959 out: 4960 up_write(&rbd_dev->header_rwsem); 4961 if (!ret && mapping_size != rbd_dev->mapping.size) 4962 rbd_dev_update_size(rbd_dev); 4963 4964 return ret; 4965 } 4966 4967 static const struct blk_mq_ops rbd_mq_ops = { 4968 .queue_rq = rbd_queue_rq, 4969 }; 4970 4971 static int rbd_init_disk(struct rbd_device *rbd_dev) 4972 { 4973 struct gendisk *disk; 4974 struct request_queue *q; 4975 unsigned int objset_bytes = 4976 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4977 int err; 4978 4979 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4980 rbd_dev->tag_set.ops = &rbd_mq_ops; 4981 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4982 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4983 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4984 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4985 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4986 4987 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4988 if (err) 4989 return err; 4990 4991 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev); 4992 if (IS_ERR(disk)) { 4993 err = PTR_ERR(disk); 4994 goto out_tag_set; 4995 } 4996 q = disk->queue; 4997 4998 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4999 rbd_dev->dev_id); 5000 disk->major = rbd_dev->major; 5001 disk->first_minor = rbd_dev->minor; 5002 if (single_major) 5003 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 5004 else 5005 disk->minors = RBD_MINORS_PER_MAJOR; 5006 disk->fops = &rbd_bd_ops; 5007 disk->private_data = rbd_dev; 5008 5009 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 5010 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 5011 5012 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 5013 q->limits.max_sectors = queue_max_hw_sectors(q); 5014 blk_queue_max_segments(q, USHRT_MAX); 5015 blk_queue_max_segment_size(q, UINT_MAX); 5016 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 5017 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 5018 5019 if (rbd_dev->opts->trim) { 5020 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 5021 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 5022 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 5023 } 5024 5025 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 5026 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 5027 5028 rbd_dev->disk = disk; 5029 5030 return 0; 5031 out_tag_set: 5032 blk_mq_free_tag_set(&rbd_dev->tag_set); 5033 return err; 5034 } 5035 5036 /* 5037 sysfs 5038 */ 5039 5040 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5041 { 5042 return container_of(dev, struct rbd_device, dev); 5043 } 5044 5045 static ssize_t rbd_size_show(struct device *dev, 5046 struct device_attribute *attr, char *buf) 5047 { 5048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5049 5050 return sprintf(buf, "%llu\n", 5051 (unsigned long long)rbd_dev->mapping.size); 5052 } 5053 5054 static ssize_t rbd_features_show(struct device *dev, 5055 struct device_attribute *attr, char *buf) 5056 { 5057 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5058 5059 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5060 } 5061 5062 static ssize_t rbd_major_show(struct device *dev, 5063 struct device_attribute *attr, char *buf) 5064 { 5065 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5066 5067 if (rbd_dev->major) 5068 return sprintf(buf, "%d\n", rbd_dev->major); 5069 5070 return sprintf(buf, "(none)\n"); 5071 } 5072 5073 static ssize_t rbd_minor_show(struct device *dev, 5074 struct device_attribute *attr, char *buf) 5075 { 5076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5077 5078 return sprintf(buf, "%d\n", rbd_dev->minor); 5079 } 5080 5081 static ssize_t rbd_client_addr_show(struct device *dev, 5082 struct device_attribute *attr, char *buf) 5083 { 5084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5085 struct ceph_entity_addr *client_addr = 5086 ceph_client_addr(rbd_dev->rbd_client->client); 5087 5088 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5089 le32_to_cpu(client_addr->nonce)); 5090 } 5091 5092 static ssize_t rbd_client_id_show(struct device *dev, 5093 struct device_attribute *attr, char *buf) 5094 { 5095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5096 5097 return sprintf(buf, "client%lld\n", 5098 ceph_client_gid(rbd_dev->rbd_client->client)); 5099 } 5100 5101 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5102 struct device_attribute *attr, char *buf) 5103 { 5104 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5105 5106 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5107 } 5108 5109 static ssize_t rbd_config_info_show(struct device *dev, 5110 struct device_attribute *attr, char *buf) 5111 { 5112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5113 5114 if (!capable(CAP_SYS_ADMIN)) 5115 return -EPERM; 5116 5117 return sprintf(buf, "%s\n", rbd_dev->config_info); 5118 } 5119 5120 static ssize_t rbd_pool_show(struct device *dev, 5121 struct device_attribute *attr, char *buf) 5122 { 5123 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5124 5125 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5126 } 5127 5128 static ssize_t rbd_pool_id_show(struct device *dev, 5129 struct device_attribute *attr, char *buf) 5130 { 5131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5132 5133 return sprintf(buf, "%llu\n", 5134 (unsigned long long) rbd_dev->spec->pool_id); 5135 } 5136 5137 static ssize_t rbd_pool_ns_show(struct device *dev, 5138 struct device_attribute *attr, char *buf) 5139 { 5140 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5141 5142 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5143 } 5144 5145 static ssize_t rbd_name_show(struct device *dev, 5146 struct device_attribute *attr, char *buf) 5147 { 5148 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5149 5150 if (rbd_dev->spec->image_name) 5151 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5152 5153 return sprintf(buf, "(unknown)\n"); 5154 } 5155 5156 static ssize_t rbd_image_id_show(struct device *dev, 5157 struct device_attribute *attr, char *buf) 5158 { 5159 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5160 5161 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5162 } 5163 5164 /* 5165 * Shows the name of the currently-mapped snapshot (or 5166 * RBD_SNAP_HEAD_NAME for the base image). 5167 */ 5168 static ssize_t rbd_snap_show(struct device *dev, 5169 struct device_attribute *attr, 5170 char *buf) 5171 { 5172 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5173 5174 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5175 } 5176 5177 static ssize_t rbd_snap_id_show(struct device *dev, 5178 struct device_attribute *attr, char *buf) 5179 { 5180 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5181 5182 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5183 } 5184 5185 /* 5186 * For a v2 image, shows the chain of parent images, separated by empty 5187 * lines. For v1 images or if there is no parent, shows "(no parent 5188 * image)". 5189 */ 5190 static ssize_t rbd_parent_show(struct device *dev, 5191 struct device_attribute *attr, 5192 char *buf) 5193 { 5194 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5195 ssize_t count = 0; 5196 5197 if (!rbd_dev->parent) 5198 return sprintf(buf, "(no parent image)\n"); 5199 5200 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5201 struct rbd_spec *spec = rbd_dev->parent_spec; 5202 5203 count += sprintf(&buf[count], "%s" 5204 "pool_id %llu\npool_name %s\n" 5205 "pool_ns %s\n" 5206 "image_id %s\nimage_name %s\n" 5207 "snap_id %llu\nsnap_name %s\n" 5208 "overlap %llu\n", 5209 !count ? "" : "\n", /* first? */ 5210 spec->pool_id, spec->pool_name, 5211 spec->pool_ns ?: "", 5212 spec->image_id, spec->image_name ?: "(unknown)", 5213 spec->snap_id, spec->snap_name, 5214 rbd_dev->parent_overlap); 5215 } 5216 5217 return count; 5218 } 5219 5220 static ssize_t rbd_image_refresh(struct device *dev, 5221 struct device_attribute *attr, 5222 const char *buf, 5223 size_t size) 5224 { 5225 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5226 int ret; 5227 5228 if (!capable(CAP_SYS_ADMIN)) 5229 return -EPERM; 5230 5231 ret = rbd_dev_refresh(rbd_dev); 5232 if (ret) 5233 return ret; 5234 5235 return size; 5236 } 5237 5238 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5239 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5240 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5241 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5242 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5243 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5244 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5245 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5246 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5247 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5248 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5249 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5250 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5251 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5252 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5253 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5254 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5255 5256 static struct attribute *rbd_attrs[] = { 5257 &dev_attr_size.attr, 5258 &dev_attr_features.attr, 5259 &dev_attr_major.attr, 5260 &dev_attr_minor.attr, 5261 &dev_attr_client_addr.attr, 5262 &dev_attr_client_id.attr, 5263 &dev_attr_cluster_fsid.attr, 5264 &dev_attr_config_info.attr, 5265 &dev_attr_pool.attr, 5266 &dev_attr_pool_id.attr, 5267 &dev_attr_pool_ns.attr, 5268 &dev_attr_name.attr, 5269 &dev_attr_image_id.attr, 5270 &dev_attr_current_snap.attr, 5271 &dev_attr_snap_id.attr, 5272 &dev_attr_parent.attr, 5273 &dev_attr_refresh.attr, 5274 NULL 5275 }; 5276 5277 static struct attribute_group rbd_attr_group = { 5278 .attrs = rbd_attrs, 5279 }; 5280 5281 static const struct attribute_group *rbd_attr_groups[] = { 5282 &rbd_attr_group, 5283 NULL 5284 }; 5285 5286 static void rbd_dev_release(struct device *dev); 5287 5288 static const struct device_type rbd_device_type = { 5289 .name = "rbd", 5290 .groups = rbd_attr_groups, 5291 .release = rbd_dev_release, 5292 }; 5293 5294 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5295 { 5296 kref_get(&spec->kref); 5297 5298 return spec; 5299 } 5300 5301 static void rbd_spec_free(struct kref *kref); 5302 static void rbd_spec_put(struct rbd_spec *spec) 5303 { 5304 if (spec) 5305 kref_put(&spec->kref, rbd_spec_free); 5306 } 5307 5308 static struct rbd_spec *rbd_spec_alloc(void) 5309 { 5310 struct rbd_spec *spec; 5311 5312 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5313 if (!spec) 5314 return NULL; 5315 5316 spec->pool_id = CEPH_NOPOOL; 5317 spec->snap_id = CEPH_NOSNAP; 5318 kref_init(&spec->kref); 5319 5320 return spec; 5321 } 5322 5323 static void rbd_spec_free(struct kref *kref) 5324 { 5325 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5326 5327 kfree(spec->pool_name); 5328 kfree(spec->pool_ns); 5329 kfree(spec->image_id); 5330 kfree(spec->image_name); 5331 kfree(spec->snap_name); 5332 kfree(spec); 5333 } 5334 5335 static void rbd_dev_free(struct rbd_device *rbd_dev) 5336 { 5337 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5338 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5339 5340 ceph_oid_destroy(&rbd_dev->header_oid); 5341 ceph_oloc_destroy(&rbd_dev->header_oloc); 5342 kfree(rbd_dev->config_info); 5343 5344 rbd_put_client(rbd_dev->rbd_client); 5345 rbd_spec_put(rbd_dev->spec); 5346 kfree(rbd_dev->opts); 5347 kfree(rbd_dev); 5348 } 5349 5350 static void rbd_dev_release(struct device *dev) 5351 { 5352 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5353 bool need_put = !!rbd_dev->opts; 5354 5355 if (need_put) { 5356 destroy_workqueue(rbd_dev->task_wq); 5357 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5358 } 5359 5360 rbd_dev_free(rbd_dev); 5361 5362 /* 5363 * This is racy, but way better than putting module outside of 5364 * the release callback. The race window is pretty small, so 5365 * doing something similar to dm (dm-builtin.c) is overkill. 5366 */ 5367 if (need_put) 5368 module_put(THIS_MODULE); 5369 } 5370 5371 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5372 { 5373 struct rbd_device *rbd_dev; 5374 5375 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5376 if (!rbd_dev) 5377 return NULL; 5378 5379 spin_lock_init(&rbd_dev->lock); 5380 INIT_LIST_HEAD(&rbd_dev->node); 5381 init_rwsem(&rbd_dev->header_rwsem); 5382 5383 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5384 ceph_oid_init(&rbd_dev->header_oid); 5385 rbd_dev->header_oloc.pool = spec->pool_id; 5386 if (spec->pool_ns) { 5387 WARN_ON(!*spec->pool_ns); 5388 rbd_dev->header_oloc.pool_ns = 5389 ceph_find_or_create_string(spec->pool_ns, 5390 strlen(spec->pool_ns)); 5391 } 5392 5393 mutex_init(&rbd_dev->watch_mutex); 5394 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5395 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5396 5397 init_rwsem(&rbd_dev->lock_rwsem); 5398 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5399 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5400 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5401 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5402 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5403 spin_lock_init(&rbd_dev->lock_lists_lock); 5404 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5405 INIT_LIST_HEAD(&rbd_dev->running_list); 5406 init_completion(&rbd_dev->acquire_wait); 5407 init_completion(&rbd_dev->releasing_wait); 5408 5409 spin_lock_init(&rbd_dev->object_map_lock); 5410 5411 rbd_dev->dev.bus = &rbd_bus_type; 5412 rbd_dev->dev.type = &rbd_device_type; 5413 rbd_dev->dev.parent = &rbd_root_dev; 5414 device_initialize(&rbd_dev->dev); 5415 5416 return rbd_dev; 5417 } 5418 5419 /* 5420 * Create a mapping rbd_dev. 5421 */ 5422 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5423 struct rbd_spec *spec, 5424 struct rbd_options *opts) 5425 { 5426 struct rbd_device *rbd_dev; 5427 5428 rbd_dev = __rbd_dev_create(spec); 5429 if (!rbd_dev) 5430 return NULL; 5431 5432 /* get an id and fill in device name */ 5433 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5434 minor_to_rbd_dev_id(1 << MINORBITS), 5435 GFP_KERNEL); 5436 if (rbd_dev->dev_id < 0) 5437 goto fail_rbd_dev; 5438 5439 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5440 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5441 rbd_dev->name); 5442 if (!rbd_dev->task_wq) 5443 goto fail_dev_id; 5444 5445 /* we have a ref from do_rbd_add() */ 5446 __module_get(THIS_MODULE); 5447 5448 rbd_dev->rbd_client = rbdc; 5449 rbd_dev->spec = spec; 5450 rbd_dev->opts = opts; 5451 5452 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5453 return rbd_dev; 5454 5455 fail_dev_id: 5456 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5457 fail_rbd_dev: 5458 rbd_dev_free(rbd_dev); 5459 return NULL; 5460 } 5461 5462 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5463 { 5464 if (rbd_dev) 5465 put_device(&rbd_dev->dev); 5466 } 5467 5468 /* 5469 * Get the size and object order for an image snapshot, or if 5470 * snap_id is CEPH_NOSNAP, gets this information for the base 5471 * image. 5472 */ 5473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5474 u8 *order, u64 *snap_size) 5475 { 5476 __le64 snapid = cpu_to_le64(snap_id); 5477 int ret; 5478 struct { 5479 u8 order; 5480 __le64 size; 5481 } __attribute__ ((packed)) size_buf = { 0 }; 5482 5483 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5484 &rbd_dev->header_oloc, "get_size", 5485 &snapid, sizeof(snapid), 5486 &size_buf, sizeof(size_buf)); 5487 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5488 if (ret < 0) 5489 return ret; 5490 if (ret < sizeof (size_buf)) 5491 return -ERANGE; 5492 5493 if (order) { 5494 *order = size_buf.order; 5495 dout(" order %u", (unsigned int)*order); 5496 } 5497 *snap_size = le64_to_cpu(size_buf.size); 5498 5499 dout(" snap_id 0x%016llx snap_size = %llu\n", 5500 (unsigned long long)snap_id, 5501 (unsigned long long)*snap_size); 5502 5503 return 0; 5504 } 5505 5506 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 5507 { 5508 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 5509 &rbd_dev->header.obj_order, 5510 &rbd_dev->header.image_size); 5511 } 5512 5513 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5514 { 5515 size_t size; 5516 void *reply_buf; 5517 int ret; 5518 void *p; 5519 5520 /* Response will be an encoded string, which includes a length */ 5521 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5522 reply_buf = kzalloc(size, GFP_KERNEL); 5523 if (!reply_buf) 5524 return -ENOMEM; 5525 5526 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5527 &rbd_dev->header_oloc, "get_object_prefix", 5528 NULL, 0, reply_buf, size); 5529 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5530 if (ret < 0) 5531 goto out; 5532 5533 p = reply_buf; 5534 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5535 p + ret, NULL, GFP_NOIO); 5536 ret = 0; 5537 5538 if (IS_ERR(rbd_dev->header.object_prefix)) { 5539 ret = PTR_ERR(rbd_dev->header.object_prefix); 5540 rbd_dev->header.object_prefix = NULL; 5541 } else { 5542 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5543 } 5544 out: 5545 kfree(reply_buf); 5546 5547 return ret; 5548 } 5549 5550 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5551 bool read_only, u64 *snap_features) 5552 { 5553 struct { 5554 __le64 snap_id; 5555 u8 read_only; 5556 } features_in; 5557 struct { 5558 __le64 features; 5559 __le64 incompat; 5560 } __attribute__ ((packed)) features_buf = { 0 }; 5561 u64 unsup; 5562 int ret; 5563 5564 features_in.snap_id = cpu_to_le64(snap_id); 5565 features_in.read_only = read_only; 5566 5567 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5568 &rbd_dev->header_oloc, "get_features", 5569 &features_in, sizeof(features_in), 5570 &features_buf, sizeof(features_buf)); 5571 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5572 if (ret < 0) 5573 return ret; 5574 if (ret < sizeof (features_buf)) 5575 return -ERANGE; 5576 5577 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5578 if (unsup) { 5579 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5580 unsup); 5581 return -ENXIO; 5582 } 5583 5584 *snap_features = le64_to_cpu(features_buf.features); 5585 5586 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5587 (unsigned long long)snap_id, 5588 (unsigned long long)*snap_features, 5589 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5590 5591 return 0; 5592 } 5593 5594 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5595 { 5596 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5597 rbd_is_ro(rbd_dev), 5598 &rbd_dev->header.features); 5599 } 5600 5601 /* 5602 * These are generic image flags, but since they are used only for 5603 * object map, store them in rbd_dev->object_map_flags. 5604 * 5605 * For the same reason, this function is called only on object map 5606 * (re)load and not on header refresh. 5607 */ 5608 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5609 { 5610 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5611 __le64 flags; 5612 int ret; 5613 5614 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5615 &rbd_dev->header_oloc, "get_flags", 5616 &snapid, sizeof(snapid), 5617 &flags, sizeof(flags)); 5618 if (ret < 0) 5619 return ret; 5620 if (ret < sizeof(flags)) 5621 return -EBADMSG; 5622 5623 rbd_dev->object_map_flags = le64_to_cpu(flags); 5624 return 0; 5625 } 5626 5627 struct parent_image_info { 5628 u64 pool_id; 5629 const char *pool_ns; 5630 const char *image_id; 5631 u64 snap_id; 5632 5633 bool has_overlap; 5634 u64 overlap; 5635 }; 5636 5637 /* 5638 * The caller is responsible for @pii. 5639 */ 5640 static int decode_parent_image_spec(void **p, void *end, 5641 struct parent_image_info *pii) 5642 { 5643 u8 struct_v; 5644 u32 struct_len; 5645 int ret; 5646 5647 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5648 &struct_v, &struct_len); 5649 if (ret) 5650 return ret; 5651 5652 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5653 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5654 if (IS_ERR(pii->pool_ns)) { 5655 ret = PTR_ERR(pii->pool_ns); 5656 pii->pool_ns = NULL; 5657 return ret; 5658 } 5659 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5660 if (IS_ERR(pii->image_id)) { 5661 ret = PTR_ERR(pii->image_id); 5662 pii->image_id = NULL; 5663 return ret; 5664 } 5665 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5666 return 0; 5667 5668 e_inval: 5669 return -EINVAL; 5670 } 5671 5672 static int __get_parent_info(struct rbd_device *rbd_dev, 5673 struct page *req_page, 5674 struct page *reply_page, 5675 struct parent_image_info *pii) 5676 { 5677 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5678 size_t reply_len = PAGE_SIZE; 5679 void *p, *end; 5680 int ret; 5681 5682 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5683 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5684 req_page, sizeof(u64), &reply_page, &reply_len); 5685 if (ret) 5686 return ret == -EOPNOTSUPP ? 1 : ret; 5687 5688 p = page_address(reply_page); 5689 end = p + reply_len; 5690 ret = decode_parent_image_spec(&p, end, pii); 5691 if (ret) 5692 return ret; 5693 5694 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5695 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5696 req_page, sizeof(u64), &reply_page, &reply_len); 5697 if (ret) 5698 return ret; 5699 5700 p = page_address(reply_page); 5701 end = p + reply_len; 5702 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5703 if (pii->has_overlap) 5704 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5705 5706 return 0; 5707 5708 e_inval: 5709 return -EINVAL; 5710 } 5711 5712 /* 5713 * The caller is responsible for @pii. 5714 */ 5715 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5716 struct page *req_page, 5717 struct page *reply_page, 5718 struct parent_image_info *pii) 5719 { 5720 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5721 size_t reply_len = PAGE_SIZE; 5722 void *p, *end; 5723 int ret; 5724 5725 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5726 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5727 req_page, sizeof(u64), &reply_page, &reply_len); 5728 if (ret) 5729 return ret; 5730 5731 p = page_address(reply_page); 5732 end = p + reply_len; 5733 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5734 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5735 if (IS_ERR(pii->image_id)) { 5736 ret = PTR_ERR(pii->image_id); 5737 pii->image_id = NULL; 5738 return ret; 5739 } 5740 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5741 pii->has_overlap = true; 5742 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5743 5744 return 0; 5745 5746 e_inval: 5747 return -EINVAL; 5748 } 5749 5750 static int get_parent_info(struct rbd_device *rbd_dev, 5751 struct parent_image_info *pii) 5752 { 5753 struct page *req_page, *reply_page; 5754 void *p; 5755 int ret; 5756 5757 req_page = alloc_page(GFP_KERNEL); 5758 if (!req_page) 5759 return -ENOMEM; 5760 5761 reply_page = alloc_page(GFP_KERNEL); 5762 if (!reply_page) { 5763 __free_page(req_page); 5764 return -ENOMEM; 5765 } 5766 5767 p = page_address(req_page); 5768 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5769 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5770 if (ret > 0) 5771 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5772 pii); 5773 5774 __free_page(req_page); 5775 __free_page(reply_page); 5776 return ret; 5777 } 5778 5779 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5780 { 5781 struct rbd_spec *parent_spec; 5782 struct parent_image_info pii = { 0 }; 5783 int ret; 5784 5785 parent_spec = rbd_spec_alloc(); 5786 if (!parent_spec) 5787 return -ENOMEM; 5788 5789 ret = get_parent_info(rbd_dev, &pii); 5790 if (ret) 5791 goto out_err; 5792 5793 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5794 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 5795 pii.has_overlap, pii.overlap); 5796 5797 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 5798 /* 5799 * Either the parent never existed, or we have 5800 * record of it but the image got flattened so it no 5801 * longer has a parent. When the parent of a 5802 * layered image disappears we immediately set the 5803 * overlap to 0. The effect of this is that all new 5804 * requests will be treated as if the image had no 5805 * parent. 5806 * 5807 * If !pii.has_overlap, the parent image spec is not 5808 * applicable. It's there to avoid duplication in each 5809 * snapshot record. 5810 */ 5811 if (rbd_dev->parent_overlap) { 5812 rbd_dev->parent_overlap = 0; 5813 rbd_dev_parent_put(rbd_dev); 5814 pr_info("%s: clone image has been flattened\n", 5815 rbd_dev->disk->disk_name); 5816 } 5817 5818 goto out; /* No parent? No problem. */ 5819 } 5820 5821 /* The ceph file layout needs to fit pool id in 32 bits */ 5822 5823 ret = -EIO; 5824 if (pii.pool_id > (u64)U32_MAX) { 5825 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5826 (unsigned long long)pii.pool_id, U32_MAX); 5827 goto out_err; 5828 } 5829 5830 /* 5831 * The parent won't change (except when the clone is 5832 * flattened, already handled that). So we only need to 5833 * record the parent spec we have not already done so. 5834 */ 5835 if (!rbd_dev->parent_spec) { 5836 parent_spec->pool_id = pii.pool_id; 5837 if (pii.pool_ns && *pii.pool_ns) { 5838 parent_spec->pool_ns = pii.pool_ns; 5839 pii.pool_ns = NULL; 5840 } 5841 parent_spec->image_id = pii.image_id; 5842 pii.image_id = NULL; 5843 parent_spec->snap_id = pii.snap_id; 5844 5845 rbd_dev->parent_spec = parent_spec; 5846 parent_spec = NULL; /* rbd_dev now owns this */ 5847 } 5848 5849 /* 5850 * We always update the parent overlap. If it's zero we issue 5851 * a warning, as we will proceed as if there was no parent. 5852 */ 5853 if (!pii.overlap) { 5854 if (parent_spec) { 5855 /* refresh, careful to warn just once */ 5856 if (rbd_dev->parent_overlap) 5857 rbd_warn(rbd_dev, 5858 "clone now standalone (overlap became 0)"); 5859 } else { 5860 /* initial probe */ 5861 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5862 } 5863 } 5864 rbd_dev->parent_overlap = pii.overlap; 5865 5866 out: 5867 ret = 0; 5868 out_err: 5869 kfree(pii.pool_ns); 5870 kfree(pii.image_id); 5871 rbd_spec_put(parent_spec); 5872 return ret; 5873 } 5874 5875 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5876 { 5877 struct { 5878 __le64 stripe_unit; 5879 __le64 stripe_count; 5880 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5881 size_t size = sizeof (striping_info_buf); 5882 void *p; 5883 int ret; 5884 5885 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5886 &rbd_dev->header_oloc, "get_stripe_unit_count", 5887 NULL, 0, &striping_info_buf, size); 5888 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5889 if (ret < 0) 5890 return ret; 5891 if (ret < size) 5892 return -ERANGE; 5893 5894 p = &striping_info_buf; 5895 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 5896 rbd_dev->header.stripe_count = ceph_decode_64(&p); 5897 return 0; 5898 } 5899 5900 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5901 { 5902 __le64 data_pool_id; 5903 int ret; 5904 5905 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5906 &rbd_dev->header_oloc, "get_data_pool", 5907 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5908 if (ret < 0) 5909 return ret; 5910 if (ret < sizeof(data_pool_id)) 5911 return -EBADMSG; 5912 5913 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5914 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5915 return 0; 5916 } 5917 5918 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5919 { 5920 CEPH_DEFINE_OID_ONSTACK(oid); 5921 size_t image_id_size; 5922 char *image_id; 5923 void *p; 5924 void *end; 5925 size_t size; 5926 void *reply_buf = NULL; 5927 size_t len = 0; 5928 char *image_name = NULL; 5929 int ret; 5930 5931 rbd_assert(!rbd_dev->spec->image_name); 5932 5933 len = strlen(rbd_dev->spec->image_id); 5934 image_id_size = sizeof (__le32) + len; 5935 image_id = kmalloc(image_id_size, GFP_KERNEL); 5936 if (!image_id) 5937 return NULL; 5938 5939 p = image_id; 5940 end = image_id + image_id_size; 5941 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5942 5943 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5944 reply_buf = kmalloc(size, GFP_KERNEL); 5945 if (!reply_buf) 5946 goto out; 5947 5948 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5949 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5950 "dir_get_name", image_id, image_id_size, 5951 reply_buf, size); 5952 if (ret < 0) 5953 goto out; 5954 p = reply_buf; 5955 end = reply_buf + ret; 5956 5957 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5958 if (IS_ERR(image_name)) 5959 image_name = NULL; 5960 else 5961 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5962 out: 5963 kfree(reply_buf); 5964 kfree(image_id); 5965 5966 return image_name; 5967 } 5968 5969 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5970 { 5971 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5972 const char *snap_name; 5973 u32 which = 0; 5974 5975 /* Skip over names until we find the one we are looking for */ 5976 5977 snap_name = rbd_dev->header.snap_names; 5978 while (which < snapc->num_snaps) { 5979 if (!strcmp(name, snap_name)) 5980 return snapc->snaps[which]; 5981 snap_name += strlen(snap_name) + 1; 5982 which++; 5983 } 5984 return CEPH_NOSNAP; 5985 } 5986 5987 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5988 { 5989 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5990 u32 which; 5991 bool found = false; 5992 u64 snap_id; 5993 5994 for (which = 0; !found && which < snapc->num_snaps; which++) { 5995 const char *snap_name; 5996 5997 snap_id = snapc->snaps[which]; 5998 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5999 if (IS_ERR(snap_name)) { 6000 /* ignore no-longer existing snapshots */ 6001 if (PTR_ERR(snap_name) == -ENOENT) 6002 continue; 6003 else 6004 break; 6005 } 6006 found = !strcmp(name, snap_name); 6007 kfree(snap_name); 6008 } 6009 return found ? snap_id : CEPH_NOSNAP; 6010 } 6011 6012 /* 6013 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 6014 * no snapshot by that name is found, or if an error occurs. 6015 */ 6016 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 6017 { 6018 if (rbd_dev->image_format == 1) 6019 return rbd_v1_snap_id_by_name(rbd_dev, name); 6020 6021 return rbd_v2_snap_id_by_name(rbd_dev, name); 6022 } 6023 6024 /* 6025 * An image being mapped will have everything but the snap id. 6026 */ 6027 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 6028 { 6029 struct rbd_spec *spec = rbd_dev->spec; 6030 6031 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 6032 rbd_assert(spec->image_id && spec->image_name); 6033 rbd_assert(spec->snap_name); 6034 6035 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 6036 u64 snap_id; 6037 6038 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 6039 if (snap_id == CEPH_NOSNAP) 6040 return -ENOENT; 6041 6042 spec->snap_id = snap_id; 6043 } else { 6044 spec->snap_id = CEPH_NOSNAP; 6045 } 6046 6047 return 0; 6048 } 6049 6050 /* 6051 * A parent image will have all ids but none of the names. 6052 * 6053 * All names in an rbd spec are dynamically allocated. It's OK if we 6054 * can't figure out the name for an image id. 6055 */ 6056 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6057 { 6058 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6059 struct rbd_spec *spec = rbd_dev->spec; 6060 const char *pool_name; 6061 const char *image_name; 6062 const char *snap_name; 6063 int ret; 6064 6065 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6066 rbd_assert(spec->image_id); 6067 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6068 6069 /* Get the pool name; we have to make our own copy of this */ 6070 6071 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6072 if (!pool_name) { 6073 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6074 return -EIO; 6075 } 6076 pool_name = kstrdup(pool_name, GFP_KERNEL); 6077 if (!pool_name) 6078 return -ENOMEM; 6079 6080 /* Fetch the image name; tolerate failure here */ 6081 6082 image_name = rbd_dev_image_name(rbd_dev); 6083 if (!image_name) 6084 rbd_warn(rbd_dev, "unable to get image name"); 6085 6086 /* Fetch the snapshot name */ 6087 6088 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6089 if (IS_ERR(snap_name)) { 6090 ret = PTR_ERR(snap_name); 6091 goto out_err; 6092 } 6093 6094 spec->pool_name = pool_name; 6095 spec->image_name = image_name; 6096 spec->snap_name = snap_name; 6097 6098 return 0; 6099 6100 out_err: 6101 kfree(image_name); 6102 kfree(pool_name); 6103 return ret; 6104 } 6105 6106 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 6107 { 6108 size_t size; 6109 int ret; 6110 void *reply_buf; 6111 void *p; 6112 void *end; 6113 u64 seq; 6114 u32 snap_count; 6115 struct ceph_snap_context *snapc; 6116 u32 i; 6117 6118 /* 6119 * We'll need room for the seq value (maximum snapshot id), 6120 * snapshot count, and array of that many snapshot ids. 6121 * For now we have a fixed upper limit on the number we're 6122 * prepared to receive. 6123 */ 6124 size = sizeof (__le64) + sizeof (__le32) + 6125 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6126 reply_buf = kzalloc(size, GFP_KERNEL); 6127 if (!reply_buf) 6128 return -ENOMEM; 6129 6130 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6131 &rbd_dev->header_oloc, "get_snapcontext", 6132 NULL, 0, reply_buf, size); 6133 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6134 if (ret < 0) 6135 goto out; 6136 6137 p = reply_buf; 6138 end = reply_buf + ret; 6139 ret = -ERANGE; 6140 ceph_decode_64_safe(&p, end, seq, out); 6141 ceph_decode_32_safe(&p, end, snap_count, out); 6142 6143 /* 6144 * Make sure the reported number of snapshot ids wouldn't go 6145 * beyond the end of our buffer. But before checking that, 6146 * make sure the computed size of the snapshot context we 6147 * allocate is representable in a size_t. 6148 */ 6149 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6150 / sizeof (u64)) { 6151 ret = -EINVAL; 6152 goto out; 6153 } 6154 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6155 goto out; 6156 ret = 0; 6157 6158 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6159 if (!snapc) { 6160 ret = -ENOMEM; 6161 goto out; 6162 } 6163 snapc->seq = seq; 6164 for (i = 0; i < snap_count; i++) 6165 snapc->snaps[i] = ceph_decode_64(&p); 6166 6167 ceph_put_snap_context(rbd_dev->header.snapc); 6168 rbd_dev->header.snapc = snapc; 6169 6170 dout(" snap context seq = %llu, snap_count = %u\n", 6171 (unsigned long long)seq, (unsigned int)snap_count); 6172 out: 6173 kfree(reply_buf); 6174 6175 return ret; 6176 } 6177 6178 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6179 u64 snap_id) 6180 { 6181 size_t size; 6182 void *reply_buf; 6183 __le64 snapid; 6184 int ret; 6185 void *p; 6186 void *end; 6187 char *snap_name; 6188 6189 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6190 reply_buf = kmalloc(size, GFP_KERNEL); 6191 if (!reply_buf) 6192 return ERR_PTR(-ENOMEM); 6193 6194 snapid = cpu_to_le64(snap_id); 6195 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6196 &rbd_dev->header_oloc, "get_snapshot_name", 6197 &snapid, sizeof(snapid), reply_buf, size); 6198 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6199 if (ret < 0) { 6200 snap_name = ERR_PTR(ret); 6201 goto out; 6202 } 6203 6204 p = reply_buf; 6205 end = reply_buf + ret; 6206 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6207 if (IS_ERR(snap_name)) 6208 goto out; 6209 6210 dout(" snap_id 0x%016llx snap_name = %s\n", 6211 (unsigned long long)snap_id, snap_name); 6212 out: 6213 kfree(reply_buf); 6214 6215 return snap_name; 6216 } 6217 6218 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 6219 { 6220 bool first_time = rbd_dev->header.object_prefix == NULL; 6221 int ret; 6222 6223 ret = rbd_dev_v2_image_size(rbd_dev); 6224 if (ret) 6225 return ret; 6226 6227 if (first_time) { 6228 ret = rbd_dev_v2_header_onetime(rbd_dev); 6229 if (ret) 6230 return ret; 6231 } 6232 6233 ret = rbd_dev_v2_snap_context(rbd_dev); 6234 if (ret && first_time) { 6235 kfree(rbd_dev->header.object_prefix); 6236 rbd_dev->header.object_prefix = NULL; 6237 } 6238 6239 return ret; 6240 } 6241 6242 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 6243 { 6244 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6245 6246 if (rbd_dev->image_format == 1) 6247 return rbd_dev_v1_header_info(rbd_dev); 6248 6249 return rbd_dev_v2_header_info(rbd_dev); 6250 } 6251 6252 /* 6253 * Skips over white space at *buf, and updates *buf to point to the 6254 * first found non-space character (if any). Returns the length of 6255 * the token (string of non-white space characters) found. Note 6256 * that *buf must be terminated with '\0'. 6257 */ 6258 static inline size_t next_token(const char **buf) 6259 { 6260 /* 6261 * These are the characters that produce nonzero for 6262 * isspace() in the "C" and "POSIX" locales. 6263 */ 6264 static const char spaces[] = " \f\n\r\t\v"; 6265 6266 *buf += strspn(*buf, spaces); /* Find start of token */ 6267 6268 return strcspn(*buf, spaces); /* Return token length */ 6269 } 6270 6271 /* 6272 * Finds the next token in *buf, dynamically allocates a buffer big 6273 * enough to hold a copy of it, and copies the token into the new 6274 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6275 * that a duplicate buffer is created even for a zero-length token. 6276 * 6277 * Returns a pointer to the newly-allocated duplicate, or a null 6278 * pointer if memory for the duplicate was not available. If 6279 * the lenp argument is a non-null pointer, the length of the token 6280 * (not including the '\0') is returned in *lenp. 6281 * 6282 * If successful, the *buf pointer will be updated to point beyond 6283 * the end of the found token. 6284 * 6285 * Note: uses GFP_KERNEL for allocation. 6286 */ 6287 static inline char *dup_token(const char **buf, size_t *lenp) 6288 { 6289 char *dup; 6290 size_t len; 6291 6292 len = next_token(buf); 6293 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6294 if (!dup) 6295 return NULL; 6296 *(dup + len) = '\0'; 6297 *buf += len; 6298 6299 if (lenp) 6300 *lenp = len; 6301 6302 return dup; 6303 } 6304 6305 static int rbd_parse_param(struct fs_parameter *param, 6306 struct rbd_parse_opts_ctx *pctx) 6307 { 6308 struct rbd_options *opt = pctx->opts; 6309 struct fs_parse_result result; 6310 struct p_log log = {.prefix = "rbd"}; 6311 int token, ret; 6312 6313 ret = ceph_parse_param(param, pctx->copts, NULL); 6314 if (ret != -ENOPARAM) 6315 return ret; 6316 6317 token = __fs_parse(&log, rbd_parameters, param, &result); 6318 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6319 if (token < 0) { 6320 if (token == -ENOPARAM) 6321 return inval_plog(&log, "Unknown parameter '%s'", 6322 param->key); 6323 return token; 6324 } 6325 6326 switch (token) { 6327 case Opt_queue_depth: 6328 if (result.uint_32 < 1) 6329 goto out_of_range; 6330 opt->queue_depth = result.uint_32; 6331 break; 6332 case Opt_alloc_size: 6333 if (result.uint_32 < SECTOR_SIZE) 6334 goto out_of_range; 6335 if (!is_power_of_2(result.uint_32)) 6336 return inval_plog(&log, "alloc_size must be a power of 2"); 6337 opt->alloc_size = result.uint_32; 6338 break; 6339 case Opt_lock_timeout: 6340 /* 0 is "wait forever" (i.e. infinite timeout) */ 6341 if (result.uint_32 > INT_MAX / 1000) 6342 goto out_of_range; 6343 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6344 break; 6345 case Opt_pool_ns: 6346 kfree(pctx->spec->pool_ns); 6347 pctx->spec->pool_ns = param->string; 6348 param->string = NULL; 6349 break; 6350 case Opt_compression_hint: 6351 switch (result.uint_32) { 6352 case Opt_compression_hint_none: 6353 opt->alloc_hint_flags &= 6354 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6355 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6356 break; 6357 case Opt_compression_hint_compressible: 6358 opt->alloc_hint_flags |= 6359 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6360 opt->alloc_hint_flags &= 6361 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6362 break; 6363 case Opt_compression_hint_incompressible: 6364 opt->alloc_hint_flags |= 6365 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6366 opt->alloc_hint_flags &= 6367 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6368 break; 6369 default: 6370 BUG(); 6371 } 6372 break; 6373 case Opt_read_only: 6374 opt->read_only = true; 6375 break; 6376 case Opt_read_write: 6377 opt->read_only = false; 6378 break; 6379 case Opt_lock_on_read: 6380 opt->lock_on_read = true; 6381 break; 6382 case Opt_exclusive: 6383 opt->exclusive = true; 6384 break; 6385 case Opt_notrim: 6386 opt->trim = false; 6387 break; 6388 default: 6389 BUG(); 6390 } 6391 6392 return 0; 6393 6394 out_of_range: 6395 return inval_plog(&log, "%s out of range", param->key); 6396 } 6397 6398 /* 6399 * This duplicates most of generic_parse_monolithic(), untying it from 6400 * fs_context and skipping standard superblock and security options. 6401 */ 6402 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6403 { 6404 char *key; 6405 int ret = 0; 6406 6407 dout("%s '%s'\n", __func__, options); 6408 while ((key = strsep(&options, ",")) != NULL) { 6409 if (*key) { 6410 struct fs_parameter param = { 6411 .key = key, 6412 .type = fs_value_is_flag, 6413 }; 6414 char *value = strchr(key, '='); 6415 size_t v_len = 0; 6416 6417 if (value) { 6418 if (value == key) 6419 continue; 6420 *value++ = 0; 6421 v_len = strlen(value); 6422 param.string = kmemdup_nul(value, v_len, 6423 GFP_KERNEL); 6424 if (!param.string) 6425 return -ENOMEM; 6426 param.type = fs_value_is_string; 6427 } 6428 param.size = v_len; 6429 6430 ret = rbd_parse_param(¶m, pctx); 6431 kfree(param.string); 6432 if (ret) 6433 break; 6434 } 6435 } 6436 6437 return ret; 6438 } 6439 6440 /* 6441 * Parse the options provided for an "rbd add" (i.e., rbd image 6442 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6443 * and the data written is passed here via a NUL-terminated buffer. 6444 * Returns 0 if successful or an error code otherwise. 6445 * 6446 * The information extracted from these options is recorded in 6447 * the other parameters which return dynamically-allocated 6448 * structures: 6449 * ceph_opts 6450 * The address of a pointer that will refer to a ceph options 6451 * structure. Caller must release the returned pointer using 6452 * ceph_destroy_options() when it is no longer needed. 6453 * rbd_opts 6454 * Address of an rbd options pointer. Fully initialized by 6455 * this function; caller must release with kfree(). 6456 * spec 6457 * Address of an rbd image specification pointer. Fully 6458 * initialized by this function based on parsed options. 6459 * Caller must release with rbd_spec_put(). 6460 * 6461 * The options passed take this form: 6462 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6463 * where: 6464 * <mon_addrs> 6465 * A comma-separated list of one or more monitor addresses. 6466 * A monitor address is an ip address, optionally followed 6467 * by a port number (separated by a colon). 6468 * I.e.: ip1[:port1][,ip2[:port2]...] 6469 * <options> 6470 * A comma-separated list of ceph and/or rbd options. 6471 * <pool_name> 6472 * The name of the rados pool containing the rbd image. 6473 * <image_name> 6474 * The name of the image in that pool to map. 6475 * <snap_id> 6476 * An optional snapshot id. If provided, the mapping will 6477 * present data from the image at the time that snapshot was 6478 * created. The image head is used if no snapshot id is 6479 * provided. Snapshot mappings are always read-only. 6480 */ 6481 static int rbd_add_parse_args(const char *buf, 6482 struct ceph_options **ceph_opts, 6483 struct rbd_options **opts, 6484 struct rbd_spec **rbd_spec) 6485 { 6486 size_t len; 6487 char *options; 6488 const char *mon_addrs; 6489 char *snap_name; 6490 size_t mon_addrs_size; 6491 struct rbd_parse_opts_ctx pctx = { 0 }; 6492 int ret; 6493 6494 /* The first four tokens are required */ 6495 6496 len = next_token(&buf); 6497 if (!len) { 6498 rbd_warn(NULL, "no monitor address(es) provided"); 6499 return -EINVAL; 6500 } 6501 mon_addrs = buf; 6502 mon_addrs_size = len; 6503 buf += len; 6504 6505 ret = -EINVAL; 6506 options = dup_token(&buf, NULL); 6507 if (!options) 6508 return -ENOMEM; 6509 if (!*options) { 6510 rbd_warn(NULL, "no options provided"); 6511 goto out_err; 6512 } 6513 6514 pctx.spec = rbd_spec_alloc(); 6515 if (!pctx.spec) 6516 goto out_mem; 6517 6518 pctx.spec->pool_name = dup_token(&buf, NULL); 6519 if (!pctx.spec->pool_name) 6520 goto out_mem; 6521 if (!*pctx.spec->pool_name) { 6522 rbd_warn(NULL, "no pool name provided"); 6523 goto out_err; 6524 } 6525 6526 pctx.spec->image_name = dup_token(&buf, NULL); 6527 if (!pctx.spec->image_name) 6528 goto out_mem; 6529 if (!*pctx.spec->image_name) { 6530 rbd_warn(NULL, "no image name provided"); 6531 goto out_err; 6532 } 6533 6534 /* 6535 * Snapshot name is optional; default is to use "-" 6536 * (indicating the head/no snapshot). 6537 */ 6538 len = next_token(&buf); 6539 if (!len) { 6540 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6541 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6542 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6543 ret = -ENAMETOOLONG; 6544 goto out_err; 6545 } 6546 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6547 if (!snap_name) 6548 goto out_mem; 6549 *(snap_name + len) = '\0'; 6550 pctx.spec->snap_name = snap_name; 6551 6552 pctx.copts = ceph_alloc_options(); 6553 if (!pctx.copts) 6554 goto out_mem; 6555 6556 /* Initialize all rbd options to the defaults */ 6557 6558 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6559 if (!pctx.opts) 6560 goto out_mem; 6561 6562 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6563 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6564 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6565 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6566 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6567 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6568 pctx.opts->trim = RBD_TRIM_DEFAULT; 6569 6570 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6571 ','); 6572 if (ret) 6573 goto out_err; 6574 6575 ret = rbd_parse_options(options, &pctx); 6576 if (ret) 6577 goto out_err; 6578 6579 *ceph_opts = pctx.copts; 6580 *opts = pctx.opts; 6581 *rbd_spec = pctx.spec; 6582 kfree(options); 6583 return 0; 6584 6585 out_mem: 6586 ret = -ENOMEM; 6587 out_err: 6588 kfree(pctx.opts); 6589 ceph_destroy_options(pctx.copts); 6590 rbd_spec_put(pctx.spec); 6591 kfree(options); 6592 return ret; 6593 } 6594 6595 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6596 { 6597 down_write(&rbd_dev->lock_rwsem); 6598 if (__rbd_is_lock_owner(rbd_dev)) 6599 __rbd_release_lock(rbd_dev); 6600 up_write(&rbd_dev->lock_rwsem); 6601 } 6602 6603 /* 6604 * If the wait is interrupted, an error is returned even if the lock 6605 * was successfully acquired. rbd_dev_image_unlock() will release it 6606 * if needed. 6607 */ 6608 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6609 { 6610 long ret; 6611 6612 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6613 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6614 return 0; 6615 6616 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6617 return -EINVAL; 6618 } 6619 6620 if (rbd_is_ro(rbd_dev)) 6621 return 0; 6622 6623 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6624 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6625 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6626 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6627 if (ret > 0) { 6628 ret = rbd_dev->acquire_err; 6629 } else { 6630 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6631 if (!ret) 6632 ret = -ETIMEDOUT; 6633 6634 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret); 6635 } 6636 if (ret) 6637 return ret; 6638 6639 /* 6640 * The lock may have been released by now, unless automatic lock 6641 * transitions are disabled. 6642 */ 6643 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6644 return 0; 6645 } 6646 6647 /* 6648 * An rbd format 2 image has a unique identifier, distinct from the 6649 * name given to it by the user. Internally, that identifier is 6650 * what's used to specify the names of objects related to the image. 6651 * 6652 * A special "rbd id" object is used to map an rbd image name to its 6653 * id. If that object doesn't exist, then there is no v2 rbd image 6654 * with the supplied name. 6655 * 6656 * This function will record the given rbd_dev's image_id field if 6657 * it can be determined, and in that case will return 0. If any 6658 * errors occur a negative errno will be returned and the rbd_dev's 6659 * image_id field will be unchanged (and should be NULL). 6660 */ 6661 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6662 { 6663 int ret; 6664 size_t size; 6665 CEPH_DEFINE_OID_ONSTACK(oid); 6666 void *response; 6667 char *image_id; 6668 6669 /* 6670 * When probing a parent image, the image id is already 6671 * known (and the image name likely is not). There's no 6672 * need to fetch the image id again in this case. We 6673 * do still need to set the image format though. 6674 */ 6675 if (rbd_dev->spec->image_id) { 6676 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6677 6678 return 0; 6679 } 6680 6681 /* 6682 * First, see if the format 2 image id file exists, and if 6683 * so, get the image's persistent id from it. 6684 */ 6685 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6686 rbd_dev->spec->image_name); 6687 if (ret) 6688 return ret; 6689 6690 dout("rbd id object name is %s\n", oid.name); 6691 6692 /* Response will be an encoded string, which includes a length */ 6693 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6694 response = kzalloc(size, GFP_NOIO); 6695 if (!response) { 6696 ret = -ENOMEM; 6697 goto out; 6698 } 6699 6700 /* If it doesn't exist we'll assume it's a format 1 image */ 6701 6702 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6703 "get_id", NULL, 0, 6704 response, size); 6705 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6706 if (ret == -ENOENT) { 6707 image_id = kstrdup("", GFP_KERNEL); 6708 ret = image_id ? 0 : -ENOMEM; 6709 if (!ret) 6710 rbd_dev->image_format = 1; 6711 } else if (ret >= 0) { 6712 void *p = response; 6713 6714 image_id = ceph_extract_encoded_string(&p, p + ret, 6715 NULL, GFP_NOIO); 6716 ret = PTR_ERR_OR_ZERO(image_id); 6717 if (!ret) 6718 rbd_dev->image_format = 2; 6719 } 6720 6721 if (!ret) { 6722 rbd_dev->spec->image_id = image_id; 6723 dout("image_id is %s\n", image_id); 6724 } 6725 out: 6726 kfree(response); 6727 ceph_oid_destroy(&oid); 6728 return ret; 6729 } 6730 6731 /* 6732 * Undo whatever state changes are made by v1 or v2 header info 6733 * call. 6734 */ 6735 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6736 { 6737 struct rbd_image_header *header; 6738 6739 rbd_dev_parent_put(rbd_dev); 6740 rbd_object_map_free(rbd_dev); 6741 rbd_dev_mapping_clear(rbd_dev); 6742 6743 /* Free dynamic fields from the header, then zero it out */ 6744 6745 header = &rbd_dev->header; 6746 ceph_put_snap_context(header->snapc); 6747 kfree(header->snap_sizes); 6748 kfree(header->snap_names); 6749 kfree(header->object_prefix); 6750 memset(header, 0, sizeof (*header)); 6751 } 6752 6753 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 6754 { 6755 int ret; 6756 6757 ret = rbd_dev_v2_object_prefix(rbd_dev); 6758 if (ret) 6759 goto out_err; 6760 6761 /* 6762 * Get the and check features for the image. Currently the 6763 * features are assumed to never change. 6764 */ 6765 ret = rbd_dev_v2_features(rbd_dev); 6766 if (ret) 6767 goto out_err; 6768 6769 /* If the image supports fancy striping, get its parameters */ 6770 6771 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 6772 ret = rbd_dev_v2_striping_info(rbd_dev); 6773 if (ret < 0) 6774 goto out_err; 6775 } 6776 6777 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 6778 ret = rbd_dev_v2_data_pool(rbd_dev); 6779 if (ret) 6780 goto out_err; 6781 } 6782 6783 rbd_init_layout(rbd_dev); 6784 return 0; 6785 6786 out_err: 6787 rbd_dev->header.features = 0; 6788 kfree(rbd_dev->header.object_prefix); 6789 rbd_dev->header.object_prefix = NULL; 6790 return ret; 6791 } 6792 6793 /* 6794 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6795 * rbd_dev_image_probe() recursion depth, which means it's also the 6796 * length of the already discovered part of the parent chain. 6797 */ 6798 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6799 { 6800 struct rbd_device *parent = NULL; 6801 int ret; 6802 6803 if (!rbd_dev->parent_spec) 6804 return 0; 6805 6806 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6807 pr_info("parent chain is too long (%d)\n", depth); 6808 ret = -EINVAL; 6809 goto out_err; 6810 } 6811 6812 parent = __rbd_dev_create(rbd_dev->parent_spec); 6813 if (!parent) { 6814 ret = -ENOMEM; 6815 goto out_err; 6816 } 6817 6818 /* 6819 * Images related by parent/child relationships always share 6820 * rbd_client and spec/parent_spec, so bump their refcounts. 6821 */ 6822 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6823 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6824 6825 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6826 6827 ret = rbd_dev_image_probe(parent, depth); 6828 if (ret < 0) 6829 goto out_err; 6830 6831 rbd_dev->parent = parent; 6832 atomic_set(&rbd_dev->parent_ref, 1); 6833 return 0; 6834 6835 out_err: 6836 rbd_dev_unparent(rbd_dev); 6837 rbd_dev_destroy(parent); 6838 return ret; 6839 } 6840 6841 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6842 { 6843 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6844 rbd_free_disk(rbd_dev); 6845 if (!single_major) 6846 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6847 } 6848 6849 /* 6850 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6851 * upon return. 6852 */ 6853 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6854 { 6855 int ret; 6856 6857 /* Record our major and minor device numbers. */ 6858 6859 if (!single_major) { 6860 ret = register_blkdev(0, rbd_dev->name); 6861 if (ret < 0) 6862 goto err_out_unlock; 6863 6864 rbd_dev->major = ret; 6865 rbd_dev->minor = 0; 6866 } else { 6867 rbd_dev->major = rbd_major; 6868 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6869 } 6870 6871 /* Set up the blkdev mapping. */ 6872 6873 ret = rbd_init_disk(rbd_dev); 6874 if (ret) 6875 goto err_out_blkdev; 6876 6877 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6878 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6879 6880 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6881 if (ret) 6882 goto err_out_disk; 6883 6884 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6885 up_write(&rbd_dev->header_rwsem); 6886 return 0; 6887 6888 err_out_disk: 6889 rbd_free_disk(rbd_dev); 6890 err_out_blkdev: 6891 if (!single_major) 6892 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6893 err_out_unlock: 6894 up_write(&rbd_dev->header_rwsem); 6895 return ret; 6896 } 6897 6898 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6899 { 6900 struct rbd_spec *spec = rbd_dev->spec; 6901 int ret; 6902 6903 /* Record the header object name for this rbd image. */ 6904 6905 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6906 if (rbd_dev->image_format == 1) 6907 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6908 spec->image_name, RBD_SUFFIX); 6909 else 6910 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6911 RBD_HEADER_PREFIX, spec->image_id); 6912 6913 return ret; 6914 } 6915 6916 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6917 { 6918 if (!is_snap) { 6919 pr_info("image %s/%s%s%s does not exist\n", 6920 rbd_dev->spec->pool_name, 6921 rbd_dev->spec->pool_ns ?: "", 6922 rbd_dev->spec->pool_ns ? "/" : "", 6923 rbd_dev->spec->image_name); 6924 } else { 6925 pr_info("snap %s/%s%s%s@%s does not exist\n", 6926 rbd_dev->spec->pool_name, 6927 rbd_dev->spec->pool_ns ?: "", 6928 rbd_dev->spec->pool_ns ? "/" : "", 6929 rbd_dev->spec->image_name, 6930 rbd_dev->spec->snap_name); 6931 } 6932 } 6933 6934 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6935 { 6936 if (!rbd_is_ro(rbd_dev)) 6937 rbd_unregister_watch(rbd_dev); 6938 6939 rbd_dev_unprobe(rbd_dev); 6940 rbd_dev->image_format = 0; 6941 kfree(rbd_dev->spec->image_id); 6942 rbd_dev->spec->image_id = NULL; 6943 } 6944 6945 /* 6946 * Probe for the existence of the header object for the given rbd 6947 * device. If this image is the one being mapped (i.e., not a 6948 * parent), initiate a watch on its header object before using that 6949 * object to get detailed information about the rbd image. 6950 * 6951 * On success, returns with header_rwsem held for write if called 6952 * with @depth == 0. 6953 */ 6954 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6955 { 6956 bool need_watch = !rbd_is_ro(rbd_dev); 6957 int ret; 6958 6959 /* 6960 * Get the id from the image id object. Unless there's an 6961 * error, rbd_dev->spec->image_id will be filled in with 6962 * a dynamically-allocated string, and rbd_dev->image_format 6963 * will be set to either 1 or 2. 6964 */ 6965 ret = rbd_dev_image_id(rbd_dev); 6966 if (ret) 6967 return ret; 6968 6969 ret = rbd_dev_header_name(rbd_dev); 6970 if (ret) 6971 goto err_out_format; 6972 6973 if (need_watch) { 6974 ret = rbd_register_watch(rbd_dev); 6975 if (ret) { 6976 if (ret == -ENOENT) 6977 rbd_print_dne(rbd_dev, false); 6978 goto err_out_format; 6979 } 6980 } 6981 6982 if (!depth) 6983 down_write(&rbd_dev->header_rwsem); 6984 6985 ret = rbd_dev_header_info(rbd_dev); 6986 if (ret) { 6987 if (ret == -ENOENT && !need_watch) 6988 rbd_print_dne(rbd_dev, false); 6989 goto err_out_probe; 6990 } 6991 6992 /* 6993 * If this image is the one being mapped, we have pool name and 6994 * id, image name and id, and snap name - need to fill snap id. 6995 * Otherwise this is a parent image, identified by pool, image 6996 * and snap ids - need to fill in names for those ids. 6997 */ 6998 if (!depth) 6999 ret = rbd_spec_fill_snap_id(rbd_dev); 7000 else 7001 ret = rbd_spec_fill_names(rbd_dev); 7002 if (ret) { 7003 if (ret == -ENOENT) 7004 rbd_print_dne(rbd_dev, true); 7005 goto err_out_probe; 7006 } 7007 7008 ret = rbd_dev_mapping_set(rbd_dev); 7009 if (ret) 7010 goto err_out_probe; 7011 7012 if (rbd_is_snap(rbd_dev) && 7013 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 7014 ret = rbd_object_map_load(rbd_dev); 7015 if (ret) 7016 goto err_out_probe; 7017 } 7018 7019 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 7020 ret = rbd_dev_v2_parent_info(rbd_dev); 7021 if (ret) 7022 goto err_out_probe; 7023 } 7024 7025 ret = rbd_dev_probe_parent(rbd_dev, depth); 7026 if (ret) 7027 goto err_out_probe; 7028 7029 dout("discovered format %u image, header name is %s\n", 7030 rbd_dev->image_format, rbd_dev->header_oid.name); 7031 return 0; 7032 7033 err_out_probe: 7034 if (!depth) 7035 up_write(&rbd_dev->header_rwsem); 7036 if (need_watch) 7037 rbd_unregister_watch(rbd_dev); 7038 rbd_dev_unprobe(rbd_dev); 7039 err_out_format: 7040 rbd_dev->image_format = 0; 7041 kfree(rbd_dev->spec->image_id); 7042 rbd_dev->spec->image_id = NULL; 7043 return ret; 7044 } 7045 7046 static ssize_t do_rbd_add(const char *buf, size_t count) 7047 { 7048 struct rbd_device *rbd_dev = NULL; 7049 struct ceph_options *ceph_opts = NULL; 7050 struct rbd_options *rbd_opts = NULL; 7051 struct rbd_spec *spec = NULL; 7052 struct rbd_client *rbdc; 7053 int rc; 7054 7055 if (!capable(CAP_SYS_ADMIN)) 7056 return -EPERM; 7057 7058 if (!try_module_get(THIS_MODULE)) 7059 return -ENODEV; 7060 7061 /* parse add command */ 7062 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7063 if (rc < 0) 7064 goto out; 7065 7066 rbdc = rbd_get_client(ceph_opts); 7067 if (IS_ERR(rbdc)) { 7068 rc = PTR_ERR(rbdc); 7069 goto err_out_args; 7070 } 7071 7072 /* pick the pool */ 7073 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7074 if (rc < 0) { 7075 if (rc == -ENOENT) 7076 pr_info("pool %s does not exist\n", spec->pool_name); 7077 goto err_out_client; 7078 } 7079 spec->pool_id = (u64)rc; 7080 7081 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7082 if (!rbd_dev) { 7083 rc = -ENOMEM; 7084 goto err_out_client; 7085 } 7086 rbdc = NULL; /* rbd_dev now owns this */ 7087 spec = NULL; /* rbd_dev now owns this */ 7088 rbd_opts = NULL; /* rbd_dev now owns this */ 7089 7090 /* if we are mapping a snapshot it will be a read-only mapping */ 7091 if (rbd_dev->opts->read_only || 7092 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7093 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7094 7095 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7096 if (!rbd_dev->config_info) { 7097 rc = -ENOMEM; 7098 goto err_out_rbd_dev; 7099 } 7100 7101 rc = rbd_dev_image_probe(rbd_dev, 0); 7102 if (rc < 0) 7103 goto err_out_rbd_dev; 7104 7105 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7106 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7107 rbd_dev->layout.object_size); 7108 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7109 } 7110 7111 rc = rbd_dev_device_setup(rbd_dev); 7112 if (rc) 7113 goto err_out_image_probe; 7114 7115 rc = rbd_add_acquire_lock(rbd_dev); 7116 if (rc) 7117 goto err_out_image_lock; 7118 7119 /* Everything's ready. Announce the disk to the world. */ 7120 7121 rc = device_add(&rbd_dev->dev); 7122 if (rc) 7123 goto err_out_image_lock; 7124 7125 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7126 if (rc) 7127 goto err_out_cleanup_disk; 7128 7129 spin_lock(&rbd_dev_list_lock); 7130 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7131 spin_unlock(&rbd_dev_list_lock); 7132 7133 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7134 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7135 rbd_dev->header.features); 7136 rc = count; 7137 out: 7138 module_put(THIS_MODULE); 7139 return rc; 7140 7141 err_out_cleanup_disk: 7142 rbd_free_disk(rbd_dev); 7143 err_out_image_lock: 7144 rbd_dev_image_unlock(rbd_dev); 7145 rbd_dev_device_release(rbd_dev); 7146 err_out_image_probe: 7147 rbd_dev_image_release(rbd_dev); 7148 err_out_rbd_dev: 7149 rbd_dev_destroy(rbd_dev); 7150 err_out_client: 7151 rbd_put_client(rbdc); 7152 err_out_args: 7153 rbd_spec_put(spec); 7154 kfree(rbd_opts); 7155 goto out; 7156 } 7157 7158 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7159 { 7160 if (single_major) 7161 return -EINVAL; 7162 7163 return do_rbd_add(buf, count); 7164 } 7165 7166 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7167 size_t count) 7168 { 7169 return do_rbd_add(buf, count); 7170 } 7171 7172 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7173 { 7174 while (rbd_dev->parent) { 7175 struct rbd_device *first = rbd_dev; 7176 struct rbd_device *second = first->parent; 7177 struct rbd_device *third; 7178 7179 /* 7180 * Follow to the parent with no grandparent and 7181 * remove it. 7182 */ 7183 while (second && (third = second->parent)) { 7184 first = second; 7185 second = third; 7186 } 7187 rbd_assert(second); 7188 rbd_dev_image_release(second); 7189 rbd_dev_destroy(second); 7190 first->parent = NULL; 7191 first->parent_overlap = 0; 7192 7193 rbd_assert(first->parent_spec); 7194 rbd_spec_put(first->parent_spec); 7195 first->parent_spec = NULL; 7196 } 7197 } 7198 7199 static ssize_t do_rbd_remove(const char *buf, size_t count) 7200 { 7201 struct rbd_device *rbd_dev = NULL; 7202 struct list_head *tmp; 7203 int dev_id; 7204 char opt_buf[6]; 7205 bool force = false; 7206 int ret; 7207 7208 if (!capable(CAP_SYS_ADMIN)) 7209 return -EPERM; 7210 7211 dev_id = -1; 7212 opt_buf[0] = '\0'; 7213 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7214 if (dev_id < 0) { 7215 pr_err("dev_id out of range\n"); 7216 return -EINVAL; 7217 } 7218 if (opt_buf[0] != '\0') { 7219 if (!strcmp(opt_buf, "force")) { 7220 force = true; 7221 } else { 7222 pr_err("bad remove option at '%s'\n", opt_buf); 7223 return -EINVAL; 7224 } 7225 } 7226 7227 ret = -ENOENT; 7228 spin_lock(&rbd_dev_list_lock); 7229 list_for_each(tmp, &rbd_dev_list) { 7230 rbd_dev = list_entry(tmp, struct rbd_device, node); 7231 if (rbd_dev->dev_id == dev_id) { 7232 ret = 0; 7233 break; 7234 } 7235 } 7236 if (!ret) { 7237 spin_lock_irq(&rbd_dev->lock); 7238 if (rbd_dev->open_count && !force) 7239 ret = -EBUSY; 7240 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7241 &rbd_dev->flags)) 7242 ret = -EINPROGRESS; 7243 spin_unlock_irq(&rbd_dev->lock); 7244 } 7245 spin_unlock(&rbd_dev_list_lock); 7246 if (ret) 7247 return ret; 7248 7249 if (force) { 7250 /* 7251 * Prevent new IO from being queued and wait for existing 7252 * IO to complete/fail. 7253 */ 7254 blk_mq_freeze_queue(rbd_dev->disk->queue); 7255 blk_mark_disk_dead(rbd_dev->disk); 7256 } 7257 7258 del_gendisk(rbd_dev->disk); 7259 spin_lock(&rbd_dev_list_lock); 7260 list_del_init(&rbd_dev->node); 7261 spin_unlock(&rbd_dev_list_lock); 7262 device_del(&rbd_dev->dev); 7263 7264 rbd_dev_image_unlock(rbd_dev); 7265 rbd_dev_device_release(rbd_dev); 7266 rbd_dev_image_release(rbd_dev); 7267 rbd_dev_destroy(rbd_dev); 7268 return count; 7269 } 7270 7271 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7272 { 7273 if (single_major) 7274 return -EINVAL; 7275 7276 return do_rbd_remove(buf, count); 7277 } 7278 7279 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7280 size_t count) 7281 { 7282 return do_rbd_remove(buf, count); 7283 } 7284 7285 /* 7286 * create control files in sysfs 7287 * /sys/bus/rbd/... 7288 */ 7289 static int __init rbd_sysfs_init(void) 7290 { 7291 int ret; 7292 7293 ret = device_register(&rbd_root_dev); 7294 if (ret < 0) { 7295 put_device(&rbd_root_dev); 7296 return ret; 7297 } 7298 7299 ret = bus_register(&rbd_bus_type); 7300 if (ret < 0) 7301 device_unregister(&rbd_root_dev); 7302 7303 return ret; 7304 } 7305 7306 static void __exit rbd_sysfs_cleanup(void) 7307 { 7308 bus_unregister(&rbd_bus_type); 7309 device_unregister(&rbd_root_dev); 7310 } 7311 7312 static int __init rbd_slab_init(void) 7313 { 7314 rbd_assert(!rbd_img_request_cache); 7315 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7316 if (!rbd_img_request_cache) 7317 return -ENOMEM; 7318 7319 rbd_assert(!rbd_obj_request_cache); 7320 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7321 if (!rbd_obj_request_cache) 7322 goto out_err; 7323 7324 return 0; 7325 7326 out_err: 7327 kmem_cache_destroy(rbd_img_request_cache); 7328 rbd_img_request_cache = NULL; 7329 return -ENOMEM; 7330 } 7331 7332 static void rbd_slab_exit(void) 7333 { 7334 rbd_assert(rbd_obj_request_cache); 7335 kmem_cache_destroy(rbd_obj_request_cache); 7336 rbd_obj_request_cache = NULL; 7337 7338 rbd_assert(rbd_img_request_cache); 7339 kmem_cache_destroy(rbd_img_request_cache); 7340 rbd_img_request_cache = NULL; 7341 } 7342 7343 static int __init rbd_init(void) 7344 { 7345 int rc; 7346 7347 if (!libceph_compatible(NULL)) { 7348 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7349 return -EINVAL; 7350 } 7351 7352 rc = rbd_slab_init(); 7353 if (rc) 7354 return rc; 7355 7356 /* 7357 * The number of active work items is limited by the number of 7358 * rbd devices * queue depth, so leave @max_active at default. 7359 */ 7360 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7361 if (!rbd_wq) { 7362 rc = -ENOMEM; 7363 goto err_out_slab; 7364 } 7365 7366 if (single_major) { 7367 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7368 if (rbd_major < 0) { 7369 rc = rbd_major; 7370 goto err_out_wq; 7371 } 7372 } 7373 7374 rc = rbd_sysfs_init(); 7375 if (rc) 7376 goto err_out_blkdev; 7377 7378 if (single_major) 7379 pr_info("loaded (major %d)\n", rbd_major); 7380 else 7381 pr_info("loaded\n"); 7382 7383 return 0; 7384 7385 err_out_blkdev: 7386 if (single_major) 7387 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7388 err_out_wq: 7389 destroy_workqueue(rbd_wq); 7390 err_out_slab: 7391 rbd_slab_exit(); 7392 return rc; 7393 } 7394 7395 static void __exit rbd_exit(void) 7396 { 7397 ida_destroy(&rbd_dev_id_ida); 7398 rbd_sysfs_cleanup(); 7399 if (single_major) 7400 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7401 destroy_workqueue(rbd_wq); 7402 rbd_slab_exit(); 7403 } 7404 7405 module_init(rbd_init); 7406 module_exit(rbd_exit); 7407 7408 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7409 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7410 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7411 /* following authorship retained from original osdblk.c */ 7412 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7413 7414 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7415 MODULE_LICENSE("GPL"); 7416