xref: /openbmc/linux/drivers/block/rbd.c (revision cd99b9eb)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
664 {
665 	struct rbd_device *rbd_dev = disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	rbd_assert(obj_req->img_request->snapc);
1340 
1341 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1342 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1343 		     obj_req->ex.oe_objno);
1344 		return;
1345 	}
1346 
1347 	if (!obj_req->num_img_extents) {
1348 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1349 		     obj_req->ex.oe_objno);
1350 		return;
1351 	}
1352 
1353 	if (rbd_obj_is_entire(obj_req) &&
1354 	    !obj_req->img_request->snapc->num_snaps) {
1355 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1356 		     obj_req->ex.oe_objno);
1357 		return;
1358 	}
1359 
1360 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1361 }
1362 
1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1364 {
1365 	return ceph_file_extents_bytes(obj_req->img_extents,
1366 				       obj_req->num_img_extents);
1367 }
1368 
1369 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1370 {
1371 	switch (img_req->op_type) {
1372 	case OBJ_OP_READ:
1373 		return false;
1374 	case OBJ_OP_WRITE:
1375 	case OBJ_OP_DISCARD:
1376 	case OBJ_OP_ZEROOUT:
1377 		return true;
1378 	default:
1379 		BUG();
1380 	}
1381 }
1382 
1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1384 {
1385 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1386 	int result;
1387 
1388 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1389 	     osd_req->r_result, obj_req);
1390 
1391 	/*
1392 	 * Writes aren't allowed to return a data payload.  In some
1393 	 * guarded write cases (e.g. stat + zero on an empty object)
1394 	 * a stat response makes it through, but we don't care.
1395 	 */
1396 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1397 		result = 0;
1398 	else
1399 		result = osd_req->r_result;
1400 
1401 	rbd_obj_handle_request(obj_req, result);
1402 }
1403 
1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1405 {
1406 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1407 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1408 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1409 
1410 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1411 	osd_req->r_snapid = obj_request->img_request->snap_id;
1412 }
1413 
1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1415 {
1416 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1417 
1418 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1419 	ktime_get_real_ts64(&osd_req->r_mtime);
1420 	osd_req->r_data_offset = obj_request->ex.oe_off;
1421 }
1422 
1423 static struct ceph_osd_request *
1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1425 			  struct ceph_snap_context *snapc, int num_ops)
1426 {
1427 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1428 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1429 	struct ceph_osd_request *req;
1430 	const char *name_format = rbd_dev->image_format == 1 ?
1431 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1432 	int ret;
1433 
1434 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1435 	if (!req)
1436 		return ERR_PTR(-ENOMEM);
1437 
1438 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1439 	req->r_callback = rbd_osd_req_callback;
1440 	req->r_priv = obj_req;
1441 
1442 	/*
1443 	 * Data objects may be stored in a separate pool, but always in
1444 	 * the same namespace in that pool as the header in its pool.
1445 	 */
1446 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1447 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1448 
1449 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1450 			       rbd_dev->header.object_prefix,
1451 			       obj_req->ex.oe_objno);
1452 	if (ret)
1453 		return ERR_PTR(ret);
1454 
1455 	return req;
1456 }
1457 
1458 static struct ceph_osd_request *
1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1460 {
1461 	rbd_assert(obj_req->img_request->snapc);
1462 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1463 					 num_ops);
1464 }
1465 
1466 static struct rbd_obj_request *rbd_obj_request_create(void)
1467 {
1468 	struct rbd_obj_request *obj_request;
1469 
1470 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1471 	if (!obj_request)
1472 		return NULL;
1473 
1474 	ceph_object_extent_init(&obj_request->ex);
1475 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1476 	mutex_init(&obj_request->state_mutex);
1477 	kref_init(&obj_request->kref);
1478 
1479 	dout("%s %p\n", __func__, obj_request);
1480 	return obj_request;
1481 }
1482 
1483 static void rbd_obj_request_destroy(struct kref *kref)
1484 {
1485 	struct rbd_obj_request *obj_request;
1486 	struct ceph_osd_request *osd_req;
1487 	u32 i;
1488 
1489 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1490 
1491 	dout("%s: obj %p\n", __func__, obj_request);
1492 
1493 	while (!list_empty(&obj_request->osd_reqs)) {
1494 		osd_req = list_first_entry(&obj_request->osd_reqs,
1495 				    struct ceph_osd_request, r_private_item);
1496 		list_del_init(&osd_req->r_private_item);
1497 		ceph_osdc_put_request(osd_req);
1498 	}
1499 
1500 	switch (obj_request->img_request->data_type) {
1501 	case OBJ_REQUEST_NODATA:
1502 	case OBJ_REQUEST_BIO:
1503 	case OBJ_REQUEST_BVECS:
1504 		break;		/* Nothing to do */
1505 	case OBJ_REQUEST_OWN_BVECS:
1506 		kfree(obj_request->bvec_pos.bvecs);
1507 		break;
1508 	default:
1509 		BUG();
1510 	}
1511 
1512 	kfree(obj_request->img_extents);
1513 	if (obj_request->copyup_bvecs) {
1514 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1515 			if (obj_request->copyup_bvecs[i].bv_page)
1516 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1517 		}
1518 		kfree(obj_request->copyup_bvecs);
1519 	}
1520 
1521 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1522 }
1523 
1524 /* It's OK to call this for a device with no parent */
1525 
1526 static void rbd_spec_put(struct rbd_spec *spec);
1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1528 {
1529 	rbd_dev_remove_parent(rbd_dev);
1530 	rbd_spec_put(rbd_dev->parent_spec);
1531 	rbd_dev->parent_spec = NULL;
1532 	rbd_dev->parent_overlap = 0;
1533 }
1534 
1535 /*
1536  * Parent image reference counting is used to determine when an
1537  * image's parent fields can be safely torn down--after there are no
1538  * more in-flight requests to the parent image.  When the last
1539  * reference is dropped, cleaning them up is safe.
1540  */
1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1542 {
1543 	int counter;
1544 
1545 	if (!rbd_dev->parent_spec)
1546 		return;
1547 
1548 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1549 	if (counter > 0)
1550 		return;
1551 
1552 	/* Last reference; clean up parent data structures */
1553 
1554 	if (!counter)
1555 		rbd_dev_unparent(rbd_dev);
1556 	else
1557 		rbd_warn(rbd_dev, "parent reference underflow");
1558 }
1559 
1560 /*
1561  * If an image has a non-zero parent overlap, get a reference to its
1562  * parent.
1563  *
1564  * Returns true if the rbd device has a parent with a non-zero
1565  * overlap and a reference for it was successfully taken, or
1566  * false otherwise.
1567  */
1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1569 {
1570 	int counter = 0;
1571 
1572 	if (!rbd_dev->parent_spec)
1573 		return false;
1574 
1575 	if (rbd_dev->parent_overlap)
1576 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1577 
1578 	if (counter < 0)
1579 		rbd_warn(rbd_dev, "parent reference overflow");
1580 
1581 	return counter > 0;
1582 }
1583 
1584 static void rbd_img_request_init(struct rbd_img_request *img_request,
1585 				 struct rbd_device *rbd_dev,
1586 				 enum obj_operation_type op_type)
1587 {
1588 	memset(img_request, 0, sizeof(*img_request));
1589 
1590 	img_request->rbd_dev = rbd_dev;
1591 	img_request->op_type = op_type;
1592 
1593 	INIT_LIST_HEAD(&img_request->lock_item);
1594 	INIT_LIST_HEAD(&img_request->object_extents);
1595 	mutex_init(&img_request->state_mutex);
1596 }
1597 
1598 /*
1599  * Only snap_id is captured here, for reads.  For writes, snapshot
1600  * context is captured in rbd_img_object_requests() after exclusive
1601  * lock is ensured to be held.
1602  */
1603 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1604 {
1605 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1606 
1607 	lockdep_assert_held(&rbd_dev->header_rwsem);
1608 
1609 	if (!rbd_img_is_write(img_req))
1610 		img_req->snap_id = rbd_dev->spec->snap_id;
1611 
1612 	if (rbd_dev_parent_get(rbd_dev))
1613 		img_request_layered_set(img_req);
1614 }
1615 
1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1617 {
1618 	struct rbd_obj_request *obj_request;
1619 	struct rbd_obj_request *next_obj_request;
1620 
1621 	dout("%s: img %p\n", __func__, img_request);
1622 
1623 	WARN_ON(!list_empty(&img_request->lock_item));
1624 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1625 		rbd_img_obj_request_del(img_request, obj_request);
1626 
1627 	if (img_request_layered_test(img_request))
1628 		rbd_dev_parent_put(img_request->rbd_dev);
1629 
1630 	if (rbd_img_is_write(img_request))
1631 		ceph_put_snap_context(img_request->snapc);
1632 
1633 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1634 		kmem_cache_free(rbd_img_request_cache, img_request);
1635 }
1636 
1637 #define BITS_PER_OBJ	2
1638 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1639 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1640 
1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1642 				   u64 *index, u8 *shift)
1643 {
1644 	u32 off;
1645 
1646 	rbd_assert(objno < rbd_dev->object_map_size);
1647 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1648 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1649 }
1650 
1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1652 {
1653 	u64 index;
1654 	u8 shift;
1655 
1656 	lockdep_assert_held(&rbd_dev->object_map_lock);
1657 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1658 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1659 }
1660 
1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1662 {
1663 	u64 index;
1664 	u8 shift;
1665 	u8 *p;
1666 
1667 	lockdep_assert_held(&rbd_dev->object_map_lock);
1668 	rbd_assert(!(val & ~OBJ_MASK));
1669 
1670 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1671 	p = &rbd_dev->object_map[index];
1672 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1673 }
1674 
1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1676 {
1677 	u8 state;
1678 
1679 	spin_lock(&rbd_dev->object_map_lock);
1680 	state = __rbd_object_map_get(rbd_dev, objno);
1681 	spin_unlock(&rbd_dev->object_map_lock);
1682 	return state;
1683 }
1684 
1685 static bool use_object_map(struct rbd_device *rbd_dev)
1686 {
1687 	/*
1688 	 * An image mapped read-only can't use the object map -- it isn't
1689 	 * loaded because the header lock isn't acquired.  Someone else can
1690 	 * write to the image and update the object map behind our back.
1691 	 *
1692 	 * A snapshot can't be written to, so using the object map is always
1693 	 * safe.
1694 	 */
1695 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1696 		return false;
1697 
1698 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1699 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1700 }
1701 
1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1703 {
1704 	u8 state;
1705 
1706 	/* fall back to default logic if object map is disabled or invalid */
1707 	if (!use_object_map(rbd_dev))
1708 		return true;
1709 
1710 	state = rbd_object_map_get(rbd_dev, objno);
1711 	return state != OBJECT_NONEXISTENT;
1712 }
1713 
1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1715 				struct ceph_object_id *oid)
1716 {
1717 	if (snap_id == CEPH_NOSNAP)
1718 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1719 				rbd_dev->spec->image_id);
1720 	else
1721 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id, snap_id);
1723 }
1724 
1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1726 {
1727 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1728 	CEPH_DEFINE_OID_ONSTACK(oid);
1729 	u8 lock_type;
1730 	char *lock_tag;
1731 	struct ceph_locker *lockers;
1732 	u32 num_lockers;
1733 	bool broke_lock = false;
1734 	int ret;
1735 
1736 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1737 
1738 again:
1739 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1740 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1741 	if (ret != -EBUSY || broke_lock) {
1742 		if (ret == -EEXIST)
1743 			ret = 0; /* already locked by myself */
1744 		if (ret)
1745 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1746 		return ret;
1747 	}
1748 
1749 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1750 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1751 				 &lockers, &num_lockers);
1752 	if (ret) {
1753 		if (ret == -ENOENT)
1754 			goto again;
1755 
1756 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1757 		return ret;
1758 	}
1759 
1760 	kfree(lock_tag);
1761 	if (num_lockers == 0)
1762 		goto again;
1763 
1764 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1765 		 ENTITY_NAME(lockers[0].id.name));
1766 
1767 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1768 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1769 				  &lockers[0].id.name);
1770 	ceph_free_lockers(lockers, num_lockers);
1771 	if (ret) {
1772 		if (ret == -ENOENT)
1773 			goto again;
1774 
1775 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1776 		return ret;
1777 	}
1778 
1779 	broke_lock = true;
1780 	goto again;
1781 }
1782 
1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1784 {
1785 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1786 	CEPH_DEFINE_OID_ONSTACK(oid);
1787 	int ret;
1788 
1789 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1790 
1791 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1792 			      "");
1793 	if (ret && ret != -ENOENT)
1794 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1795 }
1796 
1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1798 {
1799 	u8 struct_v;
1800 	u32 struct_len;
1801 	u32 header_len;
1802 	void *header_end;
1803 	int ret;
1804 
1805 	ceph_decode_32_safe(p, end, header_len, e_inval);
1806 	header_end = *p + header_len;
1807 
1808 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1809 				  &struct_len);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1814 
1815 	*p = header_end;
1816 	return 0;
1817 
1818 e_inval:
1819 	return -EINVAL;
1820 }
1821 
1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1823 {
1824 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1825 	CEPH_DEFINE_OID_ONSTACK(oid);
1826 	struct page **pages;
1827 	void *p, *end;
1828 	size_t reply_len;
1829 	u64 num_objects;
1830 	u64 object_map_bytes;
1831 	u64 object_map_size;
1832 	int num_pages;
1833 	int ret;
1834 
1835 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1836 
1837 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1838 					   rbd_dev->mapping.size);
1839 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1840 					    BITS_PER_BYTE);
1841 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1842 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1843 	if (IS_ERR(pages))
1844 		return PTR_ERR(pages);
1845 
1846 	reply_len = num_pages * PAGE_SIZE;
1847 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1848 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1849 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1850 			     NULL, 0, pages, &reply_len);
1851 	if (ret)
1852 		goto out;
1853 
1854 	p = page_address(pages[0]);
1855 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1856 	ret = decode_object_map_header(&p, end, &object_map_size);
1857 	if (ret)
1858 		goto out;
1859 
1860 	if (object_map_size != num_objects) {
1861 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1862 			 object_map_size, num_objects);
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1868 		ret = -EINVAL;
1869 		goto out;
1870 	}
1871 
1872 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1873 	if (!rbd_dev->object_map) {
1874 		ret = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	rbd_dev->object_map_size = object_map_size;
1879 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1880 				   offset_in_page(p), object_map_bytes);
1881 
1882 out:
1883 	ceph_release_page_vector(pages, num_pages);
1884 	return ret;
1885 }
1886 
1887 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1888 {
1889 	kvfree(rbd_dev->object_map);
1890 	rbd_dev->object_map = NULL;
1891 	rbd_dev->object_map_size = 0;
1892 }
1893 
1894 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1895 {
1896 	int ret;
1897 
1898 	ret = __rbd_object_map_load(rbd_dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	ret = rbd_dev_v2_get_flags(rbd_dev);
1903 	if (ret) {
1904 		rbd_object_map_free(rbd_dev);
1905 		return ret;
1906 	}
1907 
1908 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1909 		rbd_warn(rbd_dev, "object map is invalid");
1910 
1911 	return 0;
1912 }
1913 
1914 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1915 {
1916 	int ret;
1917 
1918 	ret = rbd_object_map_lock(rbd_dev);
1919 	if (ret)
1920 		return ret;
1921 
1922 	ret = rbd_object_map_load(rbd_dev);
1923 	if (ret) {
1924 		rbd_object_map_unlock(rbd_dev);
1925 		return ret;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1932 {
1933 	rbd_object_map_free(rbd_dev);
1934 	rbd_object_map_unlock(rbd_dev);
1935 }
1936 
1937 /*
1938  * This function needs snap_id (or more precisely just something to
1939  * distinguish between HEAD and snapshot object maps), new_state and
1940  * current_state that were passed to rbd_object_map_update().
1941  *
1942  * To avoid allocating and stashing a context we piggyback on the OSD
1943  * request.  A HEAD update has two ops (assert_locked).  For new_state
1944  * and current_state we decode our own object_map_update op, encoded in
1945  * rbd_cls_object_map_update().
1946  */
1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1948 					struct ceph_osd_request *osd_req)
1949 {
1950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1951 	struct ceph_osd_data *osd_data;
1952 	u64 objno;
1953 	u8 state, new_state, current_state;
1954 	bool has_current_state;
1955 	void *p;
1956 
1957 	if (osd_req->r_result)
1958 		return osd_req->r_result;
1959 
1960 	/*
1961 	 * Nothing to do for a snapshot object map.
1962 	 */
1963 	if (osd_req->r_num_ops == 1)
1964 		return 0;
1965 
1966 	/*
1967 	 * Update in-memory HEAD object map.
1968 	 */
1969 	rbd_assert(osd_req->r_num_ops == 2);
1970 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1971 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1972 
1973 	p = page_address(osd_data->pages[0]);
1974 	objno = ceph_decode_64(&p);
1975 	rbd_assert(objno == obj_req->ex.oe_objno);
1976 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1977 	new_state = ceph_decode_8(&p);
1978 	has_current_state = ceph_decode_8(&p);
1979 	if (has_current_state)
1980 		current_state = ceph_decode_8(&p);
1981 
1982 	spin_lock(&rbd_dev->object_map_lock);
1983 	state = __rbd_object_map_get(rbd_dev, objno);
1984 	if (!has_current_state || current_state == state ||
1985 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1986 		__rbd_object_map_set(rbd_dev, objno, new_state);
1987 	spin_unlock(&rbd_dev->object_map_lock);
1988 
1989 	return 0;
1990 }
1991 
1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1993 {
1994 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1995 	int result;
1996 
1997 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1998 	     osd_req->r_result, obj_req);
1999 
2000 	result = rbd_object_map_update_finish(obj_req, osd_req);
2001 	rbd_obj_handle_request(obj_req, result);
2002 }
2003 
2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2005 {
2006 	u8 state = rbd_object_map_get(rbd_dev, objno);
2007 
2008 	if (state == new_state ||
2009 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2010 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2017 				     int which, u64 objno, u8 new_state,
2018 				     const u8 *current_state)
2019 {
2020 	struct page **pages;
2021 	void *p, *start;
2022 	int ret;
2023 
2024 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2025 	if (ret)
2026 		return ret;
2027 
2028 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2029 	if (IS_ERR(pages))
2030 		return PTR_ERR(pages);
2031 
2032 	p = start = page_address(pages[0]);
2033 	ceph_encode_64(&p, objno);
2034 	ceph_encode_64(&p, objno + 1);
2035 	ceph_encode_8(&p, new_state);
2036 	if (current_state) {
2037 		ceph_encode_8(&p, 1);
2038 		ceph_encode_8(&p, *current_state);
2039 	} else {
2040 		ceph_encode_8(&p, 0);
2041 	}
2042 
2043 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2044 					  false, true);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Return:
2050  *   0 - object map update sent
2051  *   1 - object map update isn't needed
2052  *  <0 - error
2053  */
2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2055 				 u8 new_state, const u8 *current_state)
2056 {
2057 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2059 	struct ceph_osd_request *req;
2060 	int num_ops = 1;
2061 	int which = 0;
2062 	int ret;
2063 
2064 	if (snap_id == CEPH_NOSNAP) {
2065 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2066 			return 1;
2067 
2068 		num_ops++; /* assert_locked */
2069 	}
2070 
2071 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2072 	if (!req)
2073 		return -ENOMEM;
2074 
2075 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2076 	req->r_callback = rbd_object_map_callback;
2077 	req->r_priv = obj_req;
2078 
2079 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2080 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2081 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2082 	ktime_get_real_ts64(&req->r_mtime);
2083 
2084 	if (snap_id == CEPH_NOSNAP) {
2085 		/*
2086 		 * Protect against possible race conditions during lock
2087 		 * ownership transitions.
2088 		 */
2089 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2090 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2096 					new_state, current_state);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2101 	if (ret)
2102 		return ret;
2103 
2104 	ceph_osdc_start_request(osdc, req);
2105 	return 0;
2106 }
2107 
2108 static void prune_extents(struct ceph_file_extent *img_extents,
2109 			  u32 *num_img_extents, u64 overlap)
2110 {
2111 	u32 cnt = *num_img_extents;
2112 
2113 	/* drop extents completely beyond the overlap */
2114 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2115 		cnt--;
2116 
2117 	if (cnt) {
2118 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2119 
2120 		/* trim final overlapping extent */
2121 		if (ex->fe_off + ex->fe_len > overlap)
2122 			ex->fe_len = overlap - ex->fe_off;
2123 	}
2124 
2125 	*num_img_extents = cnt;
2126 }
2127 
2128 /*
2129  * Determine the byte range(s) covered by either just the object extent
2130  * or the entire object in the parent image.
2131  */
2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2133 				    bool entire)
2134 {
2135 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2136 	int ret;
2137 
2138 	if (!rbd_dev->parent_overlap)
2139 		return 0;
2140 
2141 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2142 				  entire ? 0 : obj_req->ex.oe_off,
2143 				  entire ? rbd_dev->layout.object_size :
2144 							obj_req->ex.oe_len,
2145 				  &obj_req->img_extents,
2146 				  &obj_req->num_img_extents);
2147 	if (ret)
2148 		return ret;
2149 
2150 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2151 		      rbd_dev->parent_overlap);
2152 	return 0;
2153 }
2154 
2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2156 {
2157 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2158 
2159 	switch (obj_req->img_request->data_type) {
2160 	case OBJ_REQUEST_BIO:
2161 		osd_req_op_extent_osd_data_bio(osd_req, which,
2162 					       &obj_req->bio_pos,
2163 					       obj_req->ex.oe_len);
2164 		break;
2165 	case OBJ_REQUEST_BVECS:
2166 	case OBJ_REQUEST_OWN_BVECS:
2167 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2168 							obj_req->ex.oe_len);
2169 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2170 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2171 						    &obj_req->bvec_pos);
2172 		break;
2173 	default:
2174 		BUG();
2175 	}
2176 }
2177 
2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2179 {
2180 	struct page **pages;
2181 
2182 	/*
2183 	 * The response data for a STAT call consists of:
2184 	 *     le64 length;
2185 	 *     struct {
2186 	 *         le32 tv_sec;
2187 	 *         le32 tv_nsec;
2188 	 *     } mtime;
2189 	 */
2190 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2191 	if (IS_ERR(pages))
2192 		return PTR_ERR(pages);
2193 
2194 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2195 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2196 				     8 + sizeof(struct ceph_timespec),
2197 				     0, false, true);
2198 	return 0;
2199 }
2200 
2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2202 				u32 bytes)
2203 {
2204 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2205 	int ret;
2206 
2207 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2208 	if (ret)
2209 		return ret;
2210 
2211 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2212 					  obj_req->copyup_bvec_count, bytes);
2213 	return 0;
2214 }
2215 
2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2217 {
2218 	obj_req->read_state = RBD_OBJ_READ_START;
2219 	return 0;
2220 }
2221 
2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2223 				      int which)
2224 {
2225 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2226 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2227 	u16 opcode;
2228 
2229 	if (!use_object_map(rbd_dev) ||
2230 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2231 		osd_req_op_alloc_hint_init(osd_req, which++,
2232 					   rbd_dev->layout.object_size,
2233 					   rbd_dev->layout.object_size,
2234 					   rbd_dev->opts->alloc_hint_flags);
2235 	}
2236 
2237 	if (rbd_obj_is_entire(obj_req))
2238 		opcode = CEPH_OSD_OP_WRITEFULL;
2239 	else
2240 		opcode = CEPH_OSD_OP_WRITE;
2241 
2242 	osd_req_op_extent_init(osd_req, which, opcode,
2243 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2244 	rbd_osd_setup_data(osd_req, which);
2245 }
2246 
2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2248 {
2249 	int ret;
2250 
2251 	/* reverse map the entire object onto the parent */
2252 	ret = rbd_obj_calc_img_extents(obj_req, true);
2253 	if (ret)
2254 		return ret;
2255 
2256 	obj_req->write_state = RBD_OBJ_WRITE_START;
2257 	return 0;
2258 }
2259 
2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2261 {
2262 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2263 					  CEPH_OSD_OP_ZERO;
2264 }
2265 
2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2267 					int which)
2268 {
2269 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2270 
2271 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2272 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2273 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2274 	} else {
2275 		osd_req_op_extent_init(osd_req, which,
2276 				       truncate_or_zero_opcode(obj_req),
2277 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2278 				       0, 0);
2279 	}
2280 }
2281 
2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2283 {
2284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2285 	u64 off, next_off;
2286 	int ret;
2287 
2288 	/*
2289 	 * Align the range to alloc_size boundary and punt on discards
2290 	 * that are too small to free up any space.
2291 	 *
2292 	 * alloc_size == object_size && is_tail() is a special case for
2293 	 * filestore with filestore_punch_hole = false, needed to allow
2294 	 * truncate (in addition to delete).
2295 	 */
2296 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2297 	    !rbd_obj_is_tail(obj_req)) {
2298 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2299 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2300 				      rbd_dev->opts->alloc_size);
2301 		if (off >= next_off)
2302 			return 1;
2303 
2304 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2305 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2306 		     off, next_off - off);
2307 		obj_req->ex.oe_off = off;
2308 		obj_req->ex.oe_len = next_off - off;
2309 	}
2310 
2311 	/* reverse map the entire object onto the parent */
2312 	ret = rbd_obj_calc_img_extents(obj_req, true);
2313 	if (ret)
2314 		return ret;
2315 
2316 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2318 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2319 
2320 	obj_req->write_state = RBD_OBJ_WRITE_START;
2321 	return 0;
2322 }
2323 
2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2325 					int which)
2326 {
2327 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2328 	u16 opcode;
2329 
2330 	if (rbd_obj_is_entire(obj_req)) {
2331 		if (obj_req->num_img_extents) {
2332 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2333 				osd_req_op_init(osd_req, which++,
2334 						CEPH_OSD_OP_CREATE, 0);
2335 			opcode = CEPH_OSD_OP_TRUNCATE;
2336 		} else {
2337 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2338 			osd_req_op_init(osd_req, which++,
2339 					CEPH_OSD_OP_DELETE, 0);
2340 			opcode = 0;
2341 		}
2342 	} else {
2343 		opcode = truncate_or_zero_opcode(obj_req);
2344 	}
2345 
2346 	if (opcode)
2347 		osd_req_op_extent_init(osd_req, which, opcode,
2348 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2349 				       0, 0);
2350 }
2351 
2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2353 {
2354 	int ret;
2355 
2356 	/* reverse map the entire object onto the parent */
2357 	ret = rbd_obj_calc_img_extents(obj_req, true);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (!obj_req->num_img_extents) {
2362 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 		if (rbd_obj_is_entire(obj_req))
2364 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 	}
2366 
2367 	obj_req->write_state = RBD_OBJ_WRITE_START;
2368 	return 0;
2369 }
2370 
2371 static int count_write_ops(struct rbd_obj_request *obj_req)
2372 {
2373 	struct rbd_img_request *img_req = obj_req->img_request;
2374 
2375 	switch (img_req->op_type) {
2376 	case OBJ_OP_WRITE:
2377 		if (!use_object_map(img_req->rbd_dev) ||
2378 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2379 			return 2; /* setallochint + write/writefull */
2380 
2381 		return 1; /* write/writefull */
2382 	case OBJ_OP_DISCARD:
2383 		return 1; /* delete/truncate/zero */
2384 	case OBJ_OP_ZEROOUT:
2385 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2386 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2387 			return 2; /* create + truncate */
2388 
2389 		return 1; /* delete/truncate/zero */
2390 	default:
2391 		BUG();
2392 	}
2393 }
2394 
2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2396 				    int which)
2397 {
2398 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2399 
2400 	switch (obj_req->img_request->op_type) {
2401 	case OBJ_OP_WRITE:
2402 		__rbd_osd_setup_write_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_DISCARD:
2405 		__rbd_osd_setup_discard_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_ZEROOUT:
2408 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2409 		break;
2410 	default:
2411 		BUG();
2412 	}
2413 }
2414 
2415 /*
2416  * Prune the list of object requests (adjust offset and/or length, drop
2417  * redundant requests).  Prepare object request state machines and image
2418  * request state machine for execution.
2419  */
2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2421 {
2422 	struct rbd_obj_request *obj_req, *next_obj_req;
2423 	int ret;
2424 
2425 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2426 		switch (img_req->op_type) {
2427 		case OBJ_OP_READ:
2428 			ret = rbd_obj_init_read(obj_req);
2429 			break;
2430 		case OBJ_OP_WRITE:
2431 			ret = rbd_obj_init_write(obj_req);
2432 			break;
2433 		case OBJ_OP_DISCARD:
2434 			ret = rbd_obj_init_discard(obj_req);
2435 			break;
2436 		case OBJ_OP_ZEROOUT:
2437 			ret = rbd_obj_init_zeroout(obj_req);
2438 			break;
2439 		default:
2440 			BUG();
2441 		}
2442 		if (ret < 0)
2443 			return ret;
2444 		if (ret > 0) {
2445 			rbd_img_obj_request_del(img_req, obj_req);
2446 			continue;
2447 		}
2448 	}
2449 
2450 	img_req->state = RBD_IMG_START;
2451 	return 0;
2452 }
2453 
2454 union rbd_img_fill_iter {
2455 	struct ceph_bio_iter	bio_iter;
2456 	struct ceph_bvec_iter	bvec_iter;
2457 };
2458 
2459 struct rbd_img_fill_ctx {
2460 	enum obj_request_type	pos_type;
2461 	union rbd_img_fill_iter	*pos;
2462 	union rbd_img_fill_iter	iter;
2463 	ceph_object_extent_fn_t	set_pos_fn;
2464 	ceph_object_extent_fn_t	count_fn;
2465 	ceph_object_extent_fn_t	copy_fn;
2466 };
2467 
2468 static struct ceph_object_extent *alloc_object_extent(void *arg)
2469 {
2470 	struct rbd_img_request *img_req = arg;
2471 	struct rbd_obj_request *obj_req;
2472 
2473 	obj_req = rbd_obj_request_create();
2474 	if (!obj_req)
2475 		return NULL;
2476 
2477 	rbd_img_obj_request_add(img_req, obj_req);
2478 	return &obj_req->ex;
2479 }
2480 
2481 /*
2482  * While su != os && sc == 1 is technically not fancy (it's the same
2483  * layout as su == os && sc == 1), we can't use the nocopy path for it
2484  * because ->set_pos_fn() should be called only once per object.
2485  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2486  * treat su != os && sc == 1 as fancy.
2487  */
2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2489 {
2490 	return l->stripe_unit != l->object_size;
2491 }
2492 
2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2494 				       struct ceph_file_extent *img_extents,
2495 				       u32 num_img_extents,
2496 				       struct rbd_img_fill_ctx *fctx)
2497 {
2498 	u32 i;
2499 	int ret;
2500 
2501 	img_req->data_type = fctx->pos_type;
2502 
2503 	/*
2504 	 * Create object requests and set each object request's starting
2505 	 * position in the provided bio (list) or bio_vec array.
2506 	 */
2507 	fctx->iter = *fctx->pos;
2508 	for (i = 0; i < num_img_extents; i++) {
2509 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2510 					   img_extents[i].fe_off,
2511 					   img_extents[i].fe_len,
2512 					   &img_req->object_extents,
2513 					   alloc_object_extent, img_req,
2514 					   fctx->set_pos_fn, &fctx->iter);
2515 		if (ret)
2516 			return ret;
2517 	}
2518 
2519 	return __rbd_img_fill_request(img_req);
2520 }
2521 
2522 /*
2523  * Map a list of image extents to a list of object extents, create the
2524  * corresponding object requests (normally each to a different object,
2525  * but not always) and add them to @img_req.  For each object request,
2526  * set up its data descriptor to point to the corresponding chunk(s) of
2527  * @fctx->pos data buffer.
2528  *
2529  * Because ceph_file_to_extents() will merge adjacent object extents
2530  * together, each object request's data descriptor may point to multiple
2531  * different chunks of @fctx->pos data buffer.
2532  *
2533  * @fctx->pos data buffer is assumed to be large enough.
2534  */
2535 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2536 				struct ceph_file_extent *img_extents,
2537 				u32 num_img_extents,
2538 				struct rbd_img_fill_ctx *fctx)
2539 {
2540 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2541 	struct rbd_obj_request *obj_req;
2542 	u32 i;
2543 	int ret;
2544 
2545 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2546 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2547 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2548 						   num_img_extents, fctx);
2549 
2550 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2551 
2552 	/*
2553 	 * Create object requests and determine ->bvec_count for each object
2554 	 * request.  Note that ->bvec_count sum over all object requests may
2555 	 * be greater than the number of bio_vecs in the provided bio (list)
2556 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2557 	 * stripe unit boundaries.
2558 	 */
2559 	fctx->iter = *fctx->pos;
2560 	for (i = 0; i < num_img_extents; i++) {
2561 		ret = ceph_file_to_extents(&rbd_dev->layout,
2562 					   img_extents[i].fe_off,
2563 					   img_extents[i].fe_len,
2564 					   &img_req->object_extents,
2565 					   alloc_object_extent, img_req,
2566 					   fctx->count_fn, &fctx->iter);
2567 		if (ret)
2568 			return ret;
2569 	}
2570 
2571 	for_each_obj_request(img_req, obj_req) {
2572 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2573 					      sizeof(*obj_req->bvec_pos.bvecs),
2574 					      GFP_NOIO);
2575 		if (!obj_req->bvec_pos.bvecs)
2576 			return -ENOMEM;
2577 	}
2578 
2579 	/*
2580 	 * Fill in each object request's private bio_vec array, splitting and
2581 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2582 	 */
2583 	fctx->iter = *fctx->pos;
2584 	for (i = 0; i < num_img_extents; i++) {
2585 		ret = ceph_iterate_extents(&rbd_dev->layout,
2586 					   img_extents[i].fe_off,
2587 					   img_extents[i].fe_len,
2588 					   &img_req->object_extents,
2589 					   fctx->copy_fn, &fctx->iter);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	return __rbd_img_fill_request(img_req);
2595 }
2596 
2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2598 			       u64 off, u64 len)
2599 {
2600 	struct ceph_file_extent ex = { off, len };
2601 	union rbd_img_fill_iter dummy = {};
2602 	struct rbd_img_fill_ctx fctx = {
2603 		.pos_type = OBJ_REQUEST_NODATA,
2604 		.pos = &dummy,
2605 	};
2606 
2607 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2608 }
2609 
2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2611 {
2612 	struct rbd_obj_request *obj_req =
2613 	    container_of(ex, struct rbd_obj_request, ex);
2614 	struct ceph_bio_iter *it = arg;
2615 
2616 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2617 	obj_req->bio_pos = *it;
2618 	ceph_bio_iter_advance(it, bytes);
2619 }
2620 
2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2622 {
2623 	struct rbd_obj_request *obj_req =
2624 	    container_of(ex, struct rbd_obj_request, ex);
2625 	struct ceph_bio_iter *it = arg;
2626 
2627 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2628 	ceph_bio_iter_advance_step(it, bytes, ({
2629 		obj_req->bvec_count++;
2630 	}));
2631 
2632 }
2633 
2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2635 {
2636 	struct rbd_obj_request *obj_req =
2637 	    container_of(ex, struct rbd_obj_request, ex);
2638 	struct ceph_bio_iter *it = arg;
2639 
2640 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2641 	ceph_bio_iter_advance_step(it, bytes, ({
2642 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2643 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2644 	}));
2645 }
2646 
2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2648 				   struct ceph_file_extent *img_extents,
2649 				   u32 num_img_extents,
2650 				   struct ceph_bio_iter *bio_pos)
2651 {
2652 	struct rbd_img_fill_ctx fctx = {
2653 		.pos_type = OBJ_REQUEST_BIO,
2654 		.pos = (union rbd_img_fill_iter *)bio_pos,
2655 		.set_pos_fn = set_bio_pos,
2656 		.count_fn = count_bio_bvecs,
2657 		.copy_fn = copy_bio_bvecs,
2658 	};
2659 
2660 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2661 				    &fctx);
2662 }
2663 
2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2665 				 u64 off, u64 len, struct bio *bio)
2666 {
2667 	struct ceph_file_extent ex = { off, len };
2668 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2669 
2670 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2671 }
2672 
2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2674 {
2675 	struct rbd_obj_request *obj_req =
2676 	    container_of(ex, struct rbd_obj_request, ex);
2677 	struct ceph_bvec_iter *it = arg;
2678 
2679 	obj_req->bvec_pos = *it;
2680 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2681 	ceph_bvec_iter_advance(it, bytes);
2682 }
2683 
2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2685 {
2686 	struct rbd_obj_request *obj_req =
2687 	    container_of(ex, struct rbd_obj_request, ex);
2688 	struct ceph_bvec_iter *it = arg;
2689 
2690 	ceph_bvec_iter_advance_step(it, bytes, ({
2691 		obj_req->bvec_count++;
2692 	}));
2693 }
2694 
2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2696 {
2697 	struct rbd_obj_request *obj_req =
2698 	    container_of(ex, struct rbd_obj_request, ex);
2699 	struct ceph_bvec_iter *it = arg;
2700 
2701 	ceph_bvec_iter_advance_step(it, bytes, ({
2702 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2703 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2704 	}));
2705 }
2706 
2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2708 				     struct ceph_file_extent *img_extents,
2709 				     u32 num_img_extents,
2710 				     struct ceph_bvec_iter *bvec_pos)
2711 {
2712 	struct rbd_img_fill_ctx fctx = {
2713 		.pos_type = OBJ_REQUEST_BVECS,
2714 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2715 		.set_pos_fn = set_bvec_pos,
2716 		.count_fn = count_bvecs,
2717 		.copy_fn = copy_bvecs,
2718 	};
2719 
2720 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2721 				    &fctx);
2722 }
2723 
2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2725 				   struct ceph_file_extent *img_extents,
2726 				   u32 num_img_extents,
2727 				   struct bio_vec *bvecs)
2728 {
2729 	struct ceph_bvec_iter it = {
2730 		.bvecs = bvecs,
2731 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2732 							     num_img_extents) },
2733 	};
2734 
2735 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2736 					 &it);
2737 }
2738 
2739 static void rbd_img_handle_request_work(struct work_struct *work)
2740 {
2741 	struct rbd_img_request *img_req =
2742 	    container_of(work, struct rbd_img_request, work);
2743 
2744 	rbd_img_handle_request(img_req, img_req->work_result);
2745 }
2746 
2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2748 {
2749 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2750 	img_req->work_result = result;
2751 	queue_work(rbd_wq, &img_req->work);
2752 }
2753 
2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2755 {
2756 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2757 
2758 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2759 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2760 		return true;
2761 	}
2762 
2763 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2764 	     obj_req->ex.oe_objno);
2765 	return false;
2766 }
2767 
2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2769 {
2770 	struct ceph_osd_request *osd_req;
2771 	int ret;
2772 
2773 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2774 	if (IS_ERR(osd_req))
2775 		return PTR_ERR(osd_req);
2776 
2777 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2778 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2779 	rbd_osd_setup_data(osd_req, 0);
2780 	rbd_osd_format_read(osd_req);
2781 
2782 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2783 	if (ret)
2784 		return ret;
2785 
2786 	rbd_osd_submit(osd_req);
2787 	return 0;
2788 }
2789 
2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2791 {
2792 	struct rbd_img_request *img_req = obj_req->img_request;
2793 	struct rbd_device *parent = img_req->rbd_dev->parent;
2794 	struct rbd_img_request *child_img_req;
2795 	int ret;
2796 
2797 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2798 	if (!child_img_req)
2799 		return -ENOMEM;
2800 
2801 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2802 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2803 	child_img_req->obj_request = obj_req;
2804 
2805 	down_read(&parent->header_rwsem);
2806 	rbd_img_capture_header(child_img_req);
2807 	up_read(&parent->header_rwsem);
2808 
2809 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2810 	     obj_req);
2811 
2812 	if (!rbd_img_is_write(img_req)) {
2813 		switch (img_req->data_type) {
2814 		case OBJ_REQUEST_BIO:
2815 			ret = __rbd_img_fill_from_bio(child_img_req,
2816 						      obj_req->img_extents,
2817 						      obj_req->num_img_extents,
2818 						      &obj_req->bio_pos);
2819 			break;
2820 		case OBJ_REQUEST_BVECS:
2821 		case OBJ_REQUEST_OWN_BVECS:
2822 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2823 						      obj_req->img_extents,
2824 						      obj_req->num_img_extents,
2825 						      &obj_req->bvec_pos);
2826 			break;
2827 		default:
2828 			BUG();
2829 		}
2830 	} else {
2831 		ret = rbd_img_fill_from_bvecs(child_img_req,
2832 					      obj_req->img_extents,
2833 					      obj_req->num_img_extents,
2834 					      obj_req->copyup_bvecs);
2835 	}
2836 	if (ret) {
2837 		rbd_img_request_destroy(child_img_req);
2838 		return ret;
2839 	}
2840 
2841 	/* avoid parent chain recursion */
2842 	rbd_img_schedule(child_img_req, 0);
2843 	return 0;
2844 }
2845 
2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2847 {
2848 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2849 	int ret;
2850 
2851 again:
2852 	switch (obj_req->read_state) {
2853 	case RBD_OBJ_READ_START:
2854 		rbd_assert(!*result);
2855 
2856 		if (!rbd_obj_may_exist(obj_req)) {
2857 			*result = -ENOENT;
2858 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2859 			goto again;
2860 		}
2861 
2862 		ret = rbd_obj_read_object(obj_req);
2863 		if (ret) {
2864 			*result = ret;
2865 			return true;
2866 		}
2867 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2868 		return false;
2869 	case RBD_OBJ_READ_OBJECT:
2870 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2871 			/* reverse map this object extent onto the parent */
2872 			ret = rbd_obj_calc_img_extents(obj_req, false);
2873 			if (ret) {
2874 				*result = ret;
2875 				return true;
2876 			}
2877 			if (obj_req->num_img_extents) {
2878 				ret = rbd_obj_read_from_parent(obj_req);
2879 				if (ret) {
2880 					*result = ret;
2881 					return true;
2882 				}
2883 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2884 				return false;
2885 			}
2886 		}
2887 
2888 		/*
2889 		 * -ENOENT means a hole in the image -- zero-fill the entire
2890 		 * length of the request.  A short read also implies zero-fill
2891 		 * to the end of the request.
2892 		 */
2893 		if (*result == -ENOENT) {
2894 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2895 			*result = 0;
2896 		} else if (*result >= 0) {
2897 			if (*result < obj_req->ex.oe_len)
2898 				rbd_obj_zero_range(obj_req, *result,
2899 						obj_req->ex.oe_len - *result);
2900 			else
2901 				rbd_assert(*result == obj_req->ex.oe_len);
2902 			*result = 0;
2903 		}
2904 		return true;
2905 	case RBD_OBJ_READ_PARENT:
2906 		/*
2907 		 * The parent image is read only up to the overlap -- zero-fill
2908 		 * from the overlap to the end of the request.
2909 		 */
2910 		if (!*result) {
2911 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2912 
2913 			if (obj_overlap < obj_req->ex.oe_len)
2914 				rbd_obj_zero_range(obj_req, obj_overlap,
2915 					    obj_req->ex.oe_len - obj_overlap);
2916 		}
2917 		return true;
2918 	default:
2919 		BUG();
2920 	}
2921 }
2922 
2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2924 {
2925 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2926 
2927 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2928 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2929 
2930 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2931 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2932 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2933 		return true;
2934 	}
2935 
2936 	return false;
2937 }
2938 
2939 /*
2940  * Return:
2941  *   0 - object map update sent
2942  *   1 - object map update isn't needed
2943  *  <0 - error
2944  */
2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2946 {
2947 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2948 	u8 new_state;
2949 
2950 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2951 		return 1;
2952 
2953 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2954 		new_state = OBJECT_PENDING;
2955 	else
2956 		new_state = OBJECT_EXISTS;
2957 
2958 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2959 }
2960 
2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2962 {
2963 	struct ceph_osd_request *osd_req;
2964 	int num_ops = count_write_ops(obj_req);
2965 	int which = 0;
2966 	int ret;
2967 
2968 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2969 		num_ops++; /* stat */
2970 
2971 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2972 	if (IS_ERR(osd_req))
2973 		return PTR_ERR(osd_req);
2974 
2975 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2976 		ret = rbd_osd_setup_stat(osd_req, which++);
2977 		if (ret)
2978 			return ret;
2979 	}
2980 
2981 	rbd_osd_setup_write_ops(osd_req, which);
2982 	rbd_osd_format_write(osd_req);
2983 
2984 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2985 	if (ret)
2986 		return ret;
2987 
2988 	rbd_osd_submit(osd_req);
2989 	return 0;
2990 }
2991 
2992 /*
2993  * copyup_bvecs pages are never highmem pages
2994  */
2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2996 {
2997 	struct ceph_bvec_iter it = {
2998 		.bvecs = bvecs,
2999 		.iter = { .bi_size = bytes },
3000 	};
3001 
3002 	ceph_bvec_iter_advance_step(&it, bytes, ({
3003 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3004 			return false;
3005 	}));
3006 	return true;
3007 }
3008 
3009 #define MODS_ONLY	U32_MAX
3010 
3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3012 				      u32 bytes)
3013 {
3014 	struct ceph_osd_request *osd_req;
3015 	int ret;
3016 
3017 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3018 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3019 
3020 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3021 	if (IS_ERR(osd_req))
3022 		return PTR_ERR(osd_req);
3023 
3024 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3025 	if (ret)
3026 		return ret;
3027 
3028 	rbd_osd_format_write(osd_req);
3029 
3030 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031 	if (ret)
3032 		return ret;
3033 
3034 	rbd_osd_submit(osd_req);
3035 	return 0;
3036 }
3037 
3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3039 					u32 bytes)
3040 {
3041 	struct ceph_osd_request *osd_req;
3042 	int num_ops = count_write_ops(obj_req);
3043 	int which = 0;
3044 	int ret;
3045 
3046 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3047 
3048 	if (bytes != MODS_ONLY)
3049 		num_ops++; /* copyup */
3050 
3051 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3052 	if (IS_ERR(osd_req))
3053 		return PTR_ERR(osd_req);
3054 
3055 	if (bytes != MODS_ONLY) {
3056 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 
3061 	rbd_osd_setup_write_ops(osd_req, which);
3062 	rbd_osd_format_write(osd_req);
3063 
3064 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3065 	if (ret)
3066 		return ret;
3067 
3068 	rbd_osd_submit(osd_req);
3069 	return 0;
3070 }
3071 
3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3073 {
3074 	u32 i;
3075 
3076 	rbd_assert(!obj_req->copyup_bvecs);
3077 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3078 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3079 					sizeof(*obj_req->copyup_bvecs),
3080 					GFP_NOIO);
3081 	if (!obj_req->copyup_bvecs)
3082 		return -ENOMEM;
3083 
3084 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3085 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3086 		struct page *page = alloc_page(GFP_NOIO);
3087 
3088 		if (!page)
3089 			return -ENOMEM;
3090 
3091 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3092 		obj_overlap -= len;
3093 	}
3094 
3095 	rbd_assert(!obj_overlap);
3096 	return 0;
3097 }
3098 
3099 /*
3100  * The target object doesn't exist.  Read the data for the entire
3101  * target object up to the overlap point (if any) from the parent,
3102  * so we can use it for a copyup.
3103  */
3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3105 {
3106 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3107 	int ret;
3108 
3109 	rbd_assert(obj_req->num_img_extents);
3110 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3111 		      rbd_dev->parent_overlap);
3112 	if (!obj_req->num_img_extents) {
3113 		/*
3114 		 * The overlap has become 0 (most likely because the
3115 		 * image has been flattened).  Re-submit the original write
3116 		 * request -- pass MODS_ONLY since the copyup isn't needed
3117 		 * anymore.
3118 		 */
3119 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3120 	}
3121 
3122 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3123 	if (ret)
3124 		return ret;
3125 
3126 	return rbd_obj_read_from_parent(obj_req);
3127 }
3128 
3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3130 {
3131 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3132 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3133 	u8 new_state;
3134 	u32 i;
3135 	int ret;
3136 
3137 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3138 
3139 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3140 		return;
3141 
3142 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3143 		return;
3144 
3145 	for (i = 0; i < snapc->num_snaps; i++) {
3146 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3147 		    i + 1 < snapc->num_snaps)
3148 			new_state = OBJECT_EXISTS_CLEAN;
3149 		else
3150 			new_state = OBJECT_EXISTS;
3151 
3152 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3153 					    new_state, NULL);
3154 		if (ret < 0) {
3155 			obj_req->pending.result = ret;
3156 			return;
3157 		}
3158 
3159 		rbd_assert(!ret);
3160 		obj_req->pending.num_pending++;
3161 	}
3162 }
3163 
3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3165 {
3166 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3167 	int ret;
3168 
3169 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3170 
3171 	/*
3172 	 * Only send non-zero copyup data to save some I/O and network
3173 	 * bandwidth -- zero copyup data is equivalent to the object not
3174 	 * existing.
3175 	 */
3176 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3177 		bytes = 0;
3178 
3179 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3180 		/*
3181 		 * Send a copyup request with an empty snapshot context to
3182 		 * deep-copyup the object through all existing snapshots.
3183 		 * A second request with the current snapshot context will be
3184 		 * sent for the actual modification.
3185 		 */
3186 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3187 		if (ret) {
3188 			obj_req->pending.result = ret;
3189 			return;
3190 		}
3191 
3192 		obj_req->pending.num_pending++;
3193 		bytes = MODS_ONLY;
3194 	}
3195 
3196 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3197 	if (ret) {
3198 		obj_req->pending.result = ret;
3199 		return;
3200 	}
3201 
3202 	obj_req->pending.num_pending++;
3203 }
3204 
3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3206 {
3207 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3208 	int ret;
3209 
3210 again:
3211 	switch (obj_req->copyup_state) {
3212 	case RBD_OBJ_COPYUP_START:
3213 		rbd_assert(!*result);
3214 
3215 		ret = rbd_obj_copyup_read_parent(obj_req);
3216 		if (ret) {
3217 			*result = ret;
3218 			return true;
3219 		}
3220 		if (obj_req->num_img_extents)
3221 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3222 		else
3223 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3224 		return false;
3225 	case RBD_OBJ_COPYUP_READ_PARENT:
3226 		if (*result)
3227 			return true;
3228 
3229 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3230 				  rbd_obj_img_extents_bytes(obj_req))) {
3231 			dout("%s %p detected zeros\n", __func__, obj_req);
3232 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3233 		}
3234 
3235 		rbd_obj_copyup_object_maps(obj_req);
3236 		if (!obj_req->pending.num_pending) {
3237 			*result = obj_req->pending.result;
3238 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3239 			goto again;
3240 		}
3241 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 		return false;
3243 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3244 		if (!pending_result_dec(&obj_req->pending, result))
3245 			return false;
3246 		fallthrough;
3247 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3248 		if (*result) {
3249 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3250 				 *result);
3251 			return true;
3252 		}
3253 
3254 		rbd_obj_copyup_write_object(obj_req);
3255 		if (!obj_req->pending.num_pending) {
3256 			*result = obj_req->pending.result;
3257 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3258 			goto again;
3259 		}
3260 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 		return false;
3262 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3263 		if (!pending_result_dec(&obj_req->pending, result))
3264 			return false;
3265 		fallthrough;
3266 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3267 		return true;
3268 	default:
3269 		BUG();
3270 	}
3271 }
3272 
3273 /*
3274  * Return:
3275  *   0 - object map update sent
3276  *   1 - object map update isn't needed
3277  *  <0 - error
3278  */
3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3280 {
3281 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282 	u8 current_state = OBJECT_PENDING;
3283 
3284 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3285 		return 1;
3286 
3287 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3288 		return 1;
3289 
3290 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3291 				     &current_state);
3292 }
3293 
3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3295 {
3296 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3297 	int ret;
3298 
3299 again:
3300 	switch (obj_req->write_state) {
3301 	case RBD_OBJ_WRITE_START:
3302 		rbd_assert(!*result);
3303 
3304 		rbd_obj_set_copyup_enabled(obj_req);
3305 		if (rbd_obj_write_is_noop(obj_req))
3306 			return true;
3307 
3308 		ret = rbd_obj_write_pre_object_map(obj_req);
3309 		if (ret < 0) {
3310 			*result = ret;
3311 			return true;
3312 		}
3313 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3314 		if (ret > 0)
3315 			goto again;
3316 		return false;
3317 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3318 		if (*result) {
3319 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3320 				 *result);
3321 			return true;
3322 		}
3323 		ret = rbd_obj_write_object(obj_req);
3324 		if (ret) {
3325 			*result = ret;
3326 			return true;
3327 		}
3328 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3329 		return false;
3330 	case RBD_OBJ_WRITE_OBJECT:
3331 		if (*result == -ENOENT) {
3332 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3333 				*result = 0;
3334 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3335 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3336 				goto again;
3337 			}
3338 			/*
3339 			 * On a non-existent object:
3340 			 *   delete - -ENOENT, truncate/zero - 0
3341 			 */
3342 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3343 				*result = 0;
3344 		}
3345 		if (*result)
3346 			return true;
3347 
3348 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3349 		goto again;
3350 	case __RBD_OBJ_WRITE_COPYUP:
3351 		if (!rbd_obj_advance_copyup(obj_req, result))
3352 			return false;
3353 		fallthrough;
3354 	case RBD_OBJ_WRITE_COPYUP:
3355 		if (*result) {
3356 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3357 			return true;
3358 		}
3359 		ret = rbd_obj_write_post_object_map(obj_req);
3360 		if (ret < 0) {
3361 			*result = ret;
3362 			return true;
3363 		}
3364 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3365 		if (ret > 0)
3366 			goto again;
3367 		return false;
3368 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3369 		if (*result)
3370 			rbd_warn(rbd_dev, "post object map update failed: %d",
3371 				 *result);
3372 		return true;
3373 	default:
3374 		BUG();
3375 	}
3376 }
3377 
3378 /*
3379  * Return true if @obj_req is completed.
3380  */
3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3382 				     int *result)
3383 {
3384 	struct rbd_img_request *img_req = obj_req->img_request;
3385 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3386 	bool done;
3387 
3388 	mutex_lock(&obj_req->state_mutex);
3389 	if (!rbd_img_is_write(img_req))
3390 		done = rbd_obj_advance_read(obj_req, result);
3391 	else
3392 		done = rbd_obj_advance_write(obj_req, result);
3393 	mutex_unlock(&obj_req->state_mutex);
3394 
3395 	if (done && *result) {
3396 		rbd_assert(*result < 0);
3397 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3398 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3399 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3400 	}
3401 	return done;
3402 }
3403 
3404 /*
3405  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3406  * recursion.
3407  */
3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3409 {
3410 	if (__rbd_obj_handle_request(obj_req, &result))
3411 		rbd_img_handle_request(obj_req->img_request, result);
3412 }
3413 
3414 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3415 {
3416 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3417 
3418 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3419 		return false;
3420 
3421 	if (rbd_is_ro(rbd_dev))
3422 		return false;
3423 
3424 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3425 	if (rbd_dev->opts->lock_on_read ||
3426 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3427 		return true;
3428 
3429 	return rbd_img_is_write(img_req);
3430 }
3431 
3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3433 {
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool locked;
3436 
3437 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3438 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3439 	spin_lock(&rbd_dev->lock_lists_lock);
3440 	rbd_assert(list_empty(&img_req->lock_item));
3441 	if (!locked)
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3443 	else
3444 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3445 	spin_unlock(&rbd_dev->lock_lists_lock);
3446 	return locked;
3447 }
3448 
3449 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 	bool need_wakeup;
3453 
3454 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3455 	spin_lock(&rbd_dev->lock_lists_lock);
3456 	rbd_assert(!list_empty(&img_req->lock_item));
3457 	list_del_init(&img_req->lock_item);
3458 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3459 		       list_empty(&rbd_dev->running_list));
3460 	spin_unlock(&rbd_dev->lock_lists_lock);
3461 	if (need_wakeup)
3462 		complete(&rbd_dev->releasing_wait);
3463 }
3464 
3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3466 {
3467 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3468 
3469 	if (!need_exclusive_lock(img_req))
3470 		return 1;
3471 
3472 	if (rbd_lock_add_request(img_req))
3473 		return 1;
3474 
3475 	if (rbd_dev->opts->exclusive) {
3476 		WARN_ON(1); /* lock got released? */
3477 		return -EROFS;
3478 	}
3479 
3480 	/*
3481 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 	 * and cancel_delayed_work() in wake_lock_waiters().
3483 	 */
3484 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 	return 0;
3487 }
3488 
3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 	struct rbd_obj_request *obj_req;
3493 
3494 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 	rbd_assert(!need_exclusive_lock(img_req) ||
3496 		   __rbd_is_lock_owner(rbd_dev));
3497 
3498 	if (rbd_img_is_write(img_req)) {
3499 		rbd_assert(!img_req->snapc);
3500 		down_read(&rbd_dev->header_rwsem);
3501 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502 		up_read(&rbd_dev->header_rwsem);
3503 	}
3504 
3505 	for_each_obj_request(img_req, obj_req) {
3506 		int result = 0;
3507 
3508 		if (__rbd_obj_handle_request(obj_req, &result)) {
3509 			if (result) {
3510 				img_req->pending.result = result;
3511 				return;
3512 			}
3513 		} else {
3514 			img_req->pending.num_pending++;
3515 		}
3516 	}
3517 }
3518 
3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520 {
3521 	int ret;
3522 
3523 again:
3524 	switch (img_req->state) {
3525 	case RBD_IMG_START:
3526 		rbd_assert(!*result);
3527 
3528 		ret = rbd_img_exclusive_lock(img_req);
3529 		if (ret < 0) {
3530 			*result = ret;
3531 			return true;
3532 		}
3533 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534 		if (ret > 0)
3535 			goto again;
3536 		return false;
3537 	case RBD_IMG_EXCLUSIVE_LOCK:
3538 		if (*result)
3539 			return true;
3540 
3541 		rbd_img_object_requests(img_req);
3542 		if (!img_req->pending.num_pending) {
3543 			*result = img_req->pending.result;
3544 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545 			goto again;
3546 		}
3547 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548 		return false;
3549 	case __RBD_IMG_OBJECT_REQUESTS:
3550 		if (!pending_result_dec(&img_req->pending, result))
3551 			return false;
3552 		fallthrough;
3553 	case RBD_IMG_OBJECT_REQUESTS:
3554 		return true;
3555 	default:
3556 		BUG();
3557 	}
3558 }
3559 
3560 /*
3561  * Return true if @img_req is completed.
3562  */
3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564 				     int *result)
3565 {
3566 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3567 	bool done;
3568 
3569 	if (need_exclusive_lock(img_req)) {
3570 		down_read(&rbd_dev->lock_rwsem);
3571 		mutex_lock(&img_req->state_mutex);
3572 		done = rbd_img_advance(img_req, result);
3573 		if (done)
3574 			rbd_lock_del_request(img_req);
3575 		mutex_unlock(&img_req->state_mutex);
3576 		up_read(&rbd_dev->lock_rwsem);
3577 	} else {
3578 		mutex_lock(&img_req->state_mutex);
3579 		done = rbd_img_advance(img_req, result);
3580 		mutex_unlock(&img_req->state_mutex);
3581 	}
3582 
3583 	if (done && *result) {
3584 		rbd_assert(*result < 0);
3585 		rbd_warn(rbd_dev, "%s%s result %d",
3586 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587 		      obj_op_name(img_req->op_type), *result);
3588 	}
3589 	return done;
3590 }
3591 
3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593 {
3594 again:
3595 	if (!__rbd_img_handle_request(img_req, &result))
3596 		return;
3597 
3598 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599 		struct rbd_obj_request *obj_req = img_req->obj_request;
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		if (__rbd_obj_handle_request(obj_req, &result)) {
3603 			img_req = obj_req->img_request;
3604 			goto again;
3605 		}
3606 	} else {
3607 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3608 
3609 		rbd_img_request_destroy(img_req);
3610 		blk_mq_end_request(rq, errno_to_blk_status(result));
3611 	}
3612 }
3613 
3614 static const struct rbd_client_id rbd_empty_cid;
3615 
3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617 			  const struct rbd_client_id *rhs)
3618 {
3619 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620 }
3621 
3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623 {
3624 	struct rbd_client_id cid;
3625 
3626 	mutex_lock(&rbd_dev->watch_mutex);
3627 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628 	cid.handle = rbd_dev->watch_cookie;
3629 	mutex_unlock(&rbd_dev->watch_mutex);
3630 	return cid;
3631 }
3632 
3633 /*
3634  * lock_rwsem must be held for write
3635  */
3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637 			      const struct rbd_client_id *cid)
3638 {
3639 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641 	     cid->gid, cid->handle);
3642 	rbd_dev->owner_cid = *cid; /* struct */
3643 }
3644 
3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646 {
3647 	mutex_lock(&rbd_dev->watch_mutex);
3648 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649 	mutex_unlock(&rbd_dev->watch_mutex);
3650 }
3651 
3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653 {
3654 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655 
3656 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657 	strcpy(rbd_dev->lock_cookie, cookie);
3658 	rbd_set_owner_cid(rbd_dev, &cid);
3659 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660 }
3661 
3662 /*
3663  * lock_rwsem must be held for write
3664  */
3665 static int rbd_lock(struct rbd_device *rbd_dev)
3666 {
3667 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668 	char cookie[32];
3669 	int ret;
3670 
3671 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672 		rbd_dev->lock_cookie[0] != '\0');
3673 
3674 	format_lock_cookie(rbd_dev, cookie);
3675 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677 			    RBD_LOCK_TAG, "", 0);
3678 	if (ret && ret != -EEXIST)
3679 		return ret;
3680 
3681 	__rbd_lock(rbd_dev, cookie);
3682 	return 0;
3683 }
3684 
3685 /*
3686  * lock_rwsem must be held for write
3687  */
3688 static void rbd_unlock(struct rbd_device *rbd_dev)
3689 {
3690 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691 	int ret;
3692 
3693 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694 		rbd_dev->lock_cookie[0] == '\0');
3695 
3696 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698 	if (ret && ret != -ENOENT)
3699 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700 
3701 	/* treat errors as the image is unlocked */
3702 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703 	rbd_dev->lock_cookie[0] = '\0';
3704 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706 }
3707 
3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709 				enum rbd_notify_op notify_op,
3710 				struct page ***preply_pages,
3711 				size_t *preply_len)
3712 {
3713 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716 	int buf_size = sizeof(buf);
3717 	void *p = buf;
3718 
3719 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720 
3721 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3722 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723 	ceph_encode_32(&p, notify_op);
3724 	ceph_encode_64(&p, cid.gid);
3725 	ceph_encode_64(&p, cid.handle);
3726 
3727 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728 				&rbd_dev->header_oloc, buf, buf_size,
3729 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730 }
3731 
3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733 			       enum rbd_notify_op notify_op)
3734 {
3735 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736 }
3737 
3738 static void rbd_notify_acquired_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  acquired_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744 }
3745 
3746 static void rbd_notify_released_lock(struct work_struct *work)
3747 {
3748 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749 						  released_lock_work);
3750 
3751 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752 }
3753 
3754 static int rbd_request_lock(struct rbd_device *rbd_dev)
3755 {
3756 	struct page **reply_pages;
3757 	size_t reply_len;
3758 	bool lock_owner_responded = false;
3759 	int ret;
3760 
3761 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762 
3763 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764 				   &reply_pages, &reply_len);
3765 	if (ret && ret != -ETIMEDOUT) {
3766 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767 		goto out;
3768 	}
3769 
3770 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771 		void *p = page_address(reply_pages[0]);
3772 		void *const end = p + reply_len;
3773 		u32 n;
3774 
3775 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776 		while (n--) {
3777 			u8 struct_v;
3778 			u32 len;
3779 
3780 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3781 			p += 8 + 8; /* skip gid and cookie */
3782 
3783 			ceph_decode_32_safe(&p, end, len, e_inval);
3784 			if (!len)
3785 				continue;
3786 
3787 			if (lock_owner_responded) {
3788 				rbd_warn(rbd_dev,
3789 					 "duplicate lock owners detected");
3790 				ret = -EIO;
3791 				goto out;
3792 			}
3793 
3794 			lock_owner_responded = true;
3795 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796 						  &struct_v, &len);
3797 			if (ret) {
3798 				rbd_warn(rbd_dev,
3799 					 "failed to decode ResponseMessage: %d",
3800 					 ret);
3801 				goto e_inval;
3802 			}
3803 
3804 			ret = ceph_decode_32(&p);
3805 		}
3806 	}
3807 
3808 	if (!lock_owner_responded) {
3809 		rbd_warn(rbd_dev, "no lock owners detected");
3810 		ret = -ETIMEDOUT;
3811 	}
3812 
3813 out:
3814 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815 	return ret;
3816 
3817 e_inval:
3818 	ret = -EINVAL;
3819 	goto out;
3820 }
3821 
3822 /*
3823  * Either image request state machine(s) or rbd_add_acquire_lock()
3824  * (i.e. "rbd map").
3825  */
3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827 {
3828 	struct rbd_img_request *img_req;
3829 
3830 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832 
3833 	cancel_delayed_work(&rbd_dev->lock_dwork);
3834 	if (!completion_done(&rbd_dev->acquire_wait)) {
3835 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836 			   list_empty(&rbd_dev->running_list));
3837 		rbd_dev->acquire_err = result;
3838 		complete_all(&rbd_dev->acquire_wait);
3839 		return;
3840 	}
3841 
3842 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3843 		mutex_lock(&img_req->state_mutex);
3844 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3845 		rbd_img_schedule(img_req, result);
3846 		mutex_unlock(&img_req->state_mutex);
3847 	}
3848 
3849 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3850 }
3851 
3852 static bool locker_equal(const struct ceph_locker *lhs,
3853 			 const struct ceph_locker *rhs)
3854 {
3855 	return lhs->id.name.type == rhs->id.name.type &&
3856 	       lhs->id.name.num == rhs->id.name.num &&
3857 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3858 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3859 }
3860 
3861 static void free_locker(struct ceph_locker *locker)
3862 {
3863 	if (locker)
3864 		ceph_free_lockers(locker, 1);
3865 }
3866 
3867 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3868 {
3869 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3870 	struct ceph_locker *lockers;
3871 	u32 num_lockers;
3872 	u8 lock_type;
3873 	char *lock_tag;
3874 	u64 handle;
3875 	int ret;
3876 
3877 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3878 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3879 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3880 	if (ret) {
3881 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3882 		return ERR_PTR(ret);
3883 	}
3884 
3885 	if (num_lockers == 0) {
3886 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3887 		lockers = NULL;
3888 		goto out;
3889 	}
3890 
3891 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3892 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3893 			 lock_tag);
3894 		goto err_busy;
3895 	}
3896 
3897 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3898 		rbd_warn(rbd_dev, "incompatible lock type detected");
3899 		goto err_busy;
3900 	}
3901 
3902 	WARN_ON(num_lockers != 1);
3903 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3904 		     &handle);
3905 	if (ret != 1) {
3906 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3907 			 lockers[0].id.cookie);
3908 		goto err_busy;
3909 	}
3910 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3911 		rbd_warn(rbd_dev, "locker has a blank address");
3912 		goto err_busy;
3913 	}
3914 
3915 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3916 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3917 	     &lockers[0].info.addr.in_addr,
3918 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3919 
3920 out:
3921 	kfree(lock_tag);
3922 	return lockers;
3923 
3924 err_busy:
3925 	kfree(lock_tag);
3926 	ceph_free_lockers(lockers, num_lockers);
3927 	return ERR_PTR(-EBUSY);
3928 }
3929 
3930 static int find_watcher(struct rbd_device *rbd_dev,
3931 			const struct ceph_locker *locker)
3932 {
3933 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3934 	struct ceph_watch_item *watchers;
3935 	u32 num_watchers;
3936 	u64 cookie;
3937 	int i;
3938 	int ret;
3939 
3940 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3941 				      &rbd_dev->header_oloc, &watchers,
3942 				      &num_watchers);
3943 	if (ret) {
3944 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3945 		return ret;
3946 	}
3947 
3948 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3949 	for (i = 0; i < num_watchers; i++) {
3950 		/*
3951 		 * Ignore addr->type while comparing.  This mimics
3952 		 * entity_addr_t::get_legacy_str() + strcmp().
3953 		 */
3954 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3955 					    &locker->info.addr) &&
3956 		    watchers[i].cookie == cookie) {
3957 			struct rbd_client_id cid = {
3958 				.gid = le64_to_cpu(watchers[i].name.num),
3959 				.handle = cookie,
3960 			};
3961 
3962 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3963 			     rbd_dev, cid.gid, cid.handle);
3964 			rbd_set_owner_cid(rbd_dev, &cid);
3965 			ret = 1;
3966 			goto out;
3967 		}
3968 	}
3969 
3970 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3971 	ret = 0;
3972 out:
3973 	kfree(watchers);
3974 	return ret;
3975 }
3976 
3977 /*
3978  * lock_rwsem must be held for write
3979  */
3980 static int rbd_try_lock(struct rbd_device *rbd_dev)
3981 {
3982 	struct ceph_client *client = rbd_dev->rbd_client->client;
3983 	struct ceph_locker *locker, *refreshed_locker;
3984 	int ret;
3985 
3986 	for (;;) {
3987 		locker = refreshed_locker = NULL;
3988 
3989 		ret = rbd_lock(rbd_dev);
3990 		if (!ret)
3991 			goto out;
3992 		if (ret != -EBUSY) {
3993 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3994 			goto out;
3995 		}
3996 
3997 		/* determine if the current lock holder is still alive */
3998 		locker = get_lock_owner_info(rbd_dev);
3999 		if (IS_ERR(locker)) {
4000 			ret = PTR_ERR(locker);
4001 			locker = NULL;
4002 			goto out;
4003 		}
4004 		if (!locker)
4005 			goto again;
4006 
4007 		ret = find_watcher(rbd_dev, locker);
4008 		if (ret)
4009 			goto out; /* request lock or error */
4010 
4011 		refreshed_locker = get_lock_owner_info(rbd_dev);
4012 		if (IS_ERR(refreshed_locker)) {
4013 			ret = PTR_ERR(refreshed_locker);
4014 			refreshed_locker = NULL;
4015 			goto out;
4016 		}
4017 		if (!refreshed_locker ||
4018 		    !locker_equal(locker, refreshed_locker))
4019 			goto again;
4020 
4021 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4022 			 ENTITY_NAME(locker->id.name));
4023 
4024 		ret = ceph_monc_blocklist_add(&client->monc,
4025 					      &locker->info.addr);
4026 		if (ret) {
4027 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4028 				 ENTITY_NAME(locker->id.name), ret);
4029 			goto out;
4030 		}
4031 
4032 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4033 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4034 					  locker->id.cookie, &locker->id.name);
4035 		if (ret && ret != -ENOENT) {
4036 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4037 				 ret);
4038 			goto out;
4039 		}
4040 
4041 again:
4042 		free_locker(refreshed_locker);
4043 		free_locker(locker);
4044 	}
4045 
4046 out:
4047 	free_locker(refreshed_locker);
4048 	free_locker(locker);
4049 	return ret;
4050 }
4051 
4052 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4053 {
4054 	int ret;
4055 
4056 	ret = rbd_dev_refresh(rbd_dev);
4057 	if (ret)
4058 		return ret;
4059 
4060 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4061 		ret = rbd_object_map_open(rbd_dev);
4062 		if (ret)
4063 			return ret;
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 /*
4070  * Return:
4071  *   0 - lock acquired
4072  *   1 - caller should call rbd_request_lock()
4073  *  <0 - error
4074  */
4075 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4076 {
4077 	int ret;
4078 
4079 	down_read(&rbd_dev->lock_rwsem);
4080 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4081 	     rbd_dev->lock_state);
4082 	if (__rbd_is_lock_owner(rbd_dev)) {
4083 		up_read(&rbd_dev->lock_rwsem);
4084 		return 0;
4085 	}
4086 
4087 	up_read(&rbd_dev->lock_rwsem);
4088 	down_write(&rbd_dev->lock_rwsem);
4089 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4090 	     rbd_dev->lock_state);
4091 	if (__rbd_is_lock_owner(rbd_dev)) {
4092 		up_write(&rbd_dev->lock_rwsem);
4093 		return 0;
4094 	}
4095 
4096 	ret = rbd_try_lock(rbd_dev);
4097 	if (ret < 0) {
4098 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4099 		goto out;
4100 	}
4101 	if (ret > 0) {
4102 		up_write(&rbd_dev->lock_rwsem);
4103 		return ret;
4104 	}
4105 
4106 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4107 	rbd_assert(list_empty(&rbd_dev->running_list));
4108 
4109 	ret = rbd_post_acquire_action(rbd_dev);
4110 	if (ret) {
4111 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4112 		/*
4113 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4114 		 * rbd_lock_add_request() would let the request through,
4115 		 * assuming that e.g. object map is locked and loaded.
4116 		 */
4117 		rbd_unlock(rbd_dev);
4118 	}
4119 
4120 out:
4121 	wake_lock_waiters(rbd_dev, ret);
4122 	up_write(&rbd_dev->lock_rwsem);
4123 	return ret;
4124 }
4125 
4126 static void rbd_acquire_lock(struct work_struct *work)
4127 {
4128 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4129 					    struct rbd_device, lock_dwork);
4130 	int ret;
4131 
4132 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4133 again:
4134 	ret = rbd_try_acquire_lock(rbd_dev);
4135 	if (ret <= 0) {
4136 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4137 		return;
4138 	}
4139 
4140 	ret = rbd_request_lock(rbd_dev);
4141 	if (ret == -ETIMEDOUT) {
4142 		goto again; /* treat this as a dead client */
4143 	} else if (ret == -EROFS) {
4144 		rbd_warn(rbd_dev, "peer will not release lock");
4145 		down_write(&rbd_dev->lock_rwsem);
4146 		wake_lock_waiters(rbd_dev, ret);
4147 		up_write(&rbd_dev->lock_rwsem);
4148 	} else if (ret < 0) {
4149 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4150 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4151 				 RBD_RETRY_DELAY);
4152 	} else {
4153 		/*
4154 		 * lock owner acked, but resend if we don't see them
4155 		 * release the lock
4156 		 */
4157 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4158 		     rbd_dev);
4159 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4160 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4161 	}
4162 }
4163 
4164 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4165 {
4166 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4167 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4168 
4169 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4170 		return false;
4171 
4172 	/*
4173 	 * Ensure that all in-flight IO is flushed.
4174 	 */
4175 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4176 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4177 	if (list_empty(&rbd_dev->running_list))
4178 		return true;
4179 
4180 	up_write(&rbd_dev->lock_rwsem);
4181 	wait_for_completion(&rbd_dev->releasing_wait);
4182 
4183 	down_write(&rbd_dev->lock_rwsem);
4184 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4185 		return false;
4186 
4187 	rbd_assert(list_empty(&rbd_dev->running_list));
4188 	return true;
4189 }
4190 
4191 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4192 {
4193 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4194 		rbd_object_map_close(rbd_dev);
4195 }
4196 
4197 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4198 {
4199 	rbd_assert(list_empty(&rbd_dev->running_list));
4200 
4201 	rbd_pre_release_action(rbd_dev);
4202 	rbd_unlock(rbd_dev);
4203 }
4204 
4205 /*
4206  * lock_rwsem must be held for write
4207  */
4208 static void rbd_release_lock(struct rbd_device *rbd_dev)
4209 {
4210 	if (!rbd_quiesce_lock(rbd_dev))
4211 		return;
4212 
4213 	__rbd_release_lock(rbd_dev);
4214 
4215 	/*
4216 	 * Give others a chance to grab the lock - we would re-acquire
4217 	 * almost immediately if we got new IO while draining the running
4218 	 * list otherwise.  We need to ack our own notifications, so this
4219 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4220 	 * way of maybe_kick_acquire().
4221 	 */
4222 	cancel_delayed_work(&rbd_dev->lock_dwork);
4223 }
4224 
4225 static void rbd_release_lock_work(struct work_struct *work)
4226 {
4227 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4228 						  unlock_work);
4229 
4230 	down_write(&rbd_dev->lock_rwsem);
4231 	rbd_release_lock(rbd_dev);
4232 	up_write(&rbd_dev->lock_rwsem);
4233 }
4234 
4235 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4236 {
4237 	bool have_requests;
4238 
4239 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4240 	if (__rbd_is_lock_owner(rbd_dev))
4241 		return;
4242 
4243 	spin_lock(&rbd_dev->lock_lists_lock);
4244 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4245 	spin_unlock(&rbd_dev->lock_lists_lock);
4246 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4247 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4248 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4249 	}
4250 }
4251 
4252 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4253 				     void **p)
4254 {
4255 	struct rbd_client_id cid = { 0 };
4256 
4257 	if (struct_v >= 2) {
4258 		cid.gid = ceph_decode_64(p);
4259 		cid.handle = ceph_decode_64(p);
4260 	}
4261 
4262 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4263 	     cid.handle);
4264 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4265 		down_write(&rbd_dev->lock_rwsem);
4266 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4267 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4268 			     __func__, rbd_dev, cid.gid, cid.handle);
4269 		} else {
4270 			rbd_set_owner_cid(rbd_dev, &cid);
4271 		}
4272 		downgrade_write(&rbd_dev->lock_rwsem);
4273 	} else {
4274 		down_read(&rbd_dev->lock_rwsem);
4275 	}
4276 
4277 	maybe_kick_acquire(rbd_dev);
4278 	up_read(&rbd_dev->lock_rwsem);
4279 }
4280 
4281 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4282 				     void **p)
4283 {
4284 	struct rbd_client_id cid = { 0 };
4285 
4286 	if (struct_v >= 2) {
4287 		cid.gid = ceph_decode_64(p);
4288 		cid.handle = ceph_decode_64(p);
4289 	}
4290 
4291 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4292 	     cid.handle);
4293 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4294 		down_write(&rbd_dev->lock_rwsem);
4295 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4296 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4297 			     __func__, rbd_dev, cid.gid, cid.handle,
4298 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4299 		} else {
4300 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4301 		}
4302 		downgrade_write(&rbd_dev->lock_rwsem);
4303 	} else {
4304 		down_read(&rbd_dev->lock_rwsem);
4305 	}
4306 
4307 	maybe_kick_acquire(rbd_dev);
4308 	up_read(&rbd_dev->lock_rwsem);
4309 }
4310 
4311 /*
4312  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4313  * ResponseMessage is needed.
4314  */
4315 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4316 				   void **p)
4317 {
4318 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4319 	struct rbd_client_id cid = { 0 };
4320 	int result = 1;
4321 
4322 	if (struct_v >= 2) {
4323 		cid.gid = ceph_decode_64(p);
4324 		cid.handle = ceph_decode_64(p);
4325 	}
4326 
4327 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4328 	     cid.handle);
4329 	if (rbd_cid_equal(&cid, &my_cid))
4330 		return result;
4331 
4332 	down_read(&rbd_dev->lock_rwsem);
4333 	if (__rbd_is_lock_owner(rbd_dev)) {
4334 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4335 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4336 			goto out_unlock;
4337 
4338 		/*
4339 		 * encode ResponseMessage(0) so the peer can detect
4340 		 * a missing owner
4341 		 */
4342 		result = 0;
4343 
4344 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4345 			if (!rbd_dev->opts->exclusive) {
4346 				dout("%s rbd_dev %p queueing unlock_work\n",
4347 				     __func__, rbd_dev);
4348 				queue_work(rbd_dev->task_wq,
4349 					   &rbd_dev->unlock_work);
4350 			} else {
4351 				/* refuse to release the lock */
4352 				result = -EROFS;
4353 			}
4354 		}
4355 	}
4356 
4357 out_unlock:
4358 	up_read(&rbd_dev->lock_rwsem);
4359 	return result;
4360 }
4361 
4362 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4363 				     u64 notify_id, u64 cookie, s32 *result)
4364 {
4365 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4366 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4367 	int buf_size = sizeof(buf);
4368 	int ret;
4369 
4370 	if (result) {
4371 		void *p = buf;
4372 
4373 		/* encode ResponseMessage */
4374 		ceph_start_encoding(&p, 1, 1,
4375 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4376 		ceph_encode_32(&p, *result);
4377 	} else {
4378 		buf_size = 0;
4379 	}
4380 
4381 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4382 				   &rbd_dev->header_oloc, notify_id, cookie,
4383 				   buf, buf_size);
4384 	if (ret)
4385 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4386 }
4387 
4388 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4389 				   u64 cookie)
4390 {
4391 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4392 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4393 }
4394 
4395 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4396 					  u64 notify_id, u64 cookie, s32 result)
4397 {
4398 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4399 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4400 }
4401 
4402 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4403 			 u64 notifier_id, void *data, size_t data_len)
4404 {
4405 	struct rbd_device *rbd_dev = arg;
4406 	void *p = data;
4407 	void *const end = p + data_len;
4408 	u8 struct_v = 0;
4409 	u32 len;
4410 	u32 notify_op;
4411 	int ret;
4412 
4413 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4414 	     __func__, rbd_dev, cookie, notify_id, data_len);
4415 	if (data_len) {
4416 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4417 					  &struct_v, &len);
4418 		if (ret) {
4419 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4420 				 ret);
4421 			return;
4422 		}
4423 
4424 		notify_op = ceph_decode_32(&p);
4425 	} else {
4426 		/* legacy notification for header updates */
4427 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4428 		len = 0;
4429 	}
4430 
4431 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4432 	switch (notify_op) {
4433 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4434 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4435 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4436 		break;
4437 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4438 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4439 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4440 		break;
4441 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4442 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4443 		if (ret <= 0)
4444 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4445 						      cookie, ret);
4446 		else
4447 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4448 		break;
4449 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4450 		ret = rbd_dev_refresh(rbd_dev);
4451 		if (ret)
4452 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4453 
4454 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4455 		break;
4456 	default:
4457 		if (rbd_is_lock_owner(rbd_dev))
4458 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4459 						      cookie, -EOPNOTSUPP);
4460 		else
4461 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4462 		break;
4463 	}
4464 }
4465 
4466 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4467 
4468 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4469 {
4470 	struct rbd_device *rbd_dev = arg;
4471 
4472 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4473 
4474 	down_write(&rbd_dev->lock_rwsem);
4475 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4476 	up_write(&rbd_dev->lock_rwsem);
4477 
4478 	mutex_lock(&rbd_dev->watch_mutex);
4479 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4480 		__rbd_unregister_watch(rbd_dev);
4481 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4482 
4483 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4484 	}
4485 	mutex_unlock(&rbd_dev->watch_mutex);
4486 }
4487 
4488 /*
4489  * watch_mutex must be locked
4490  */
4491 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4492 {
4493 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4494 	struct ceph_osd_linger_request *handle;
4495 
4496 	rbd_assert(!rbd_dev->watch_handle);
4497 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4498 
4499 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4500 				 &rbd_dev->header_oloc, rbd_watch_cb,
4501 				 rbd_watch_errcb, rbd_dev);
4502 	if (IS_ERR(handle))
4503 		return PTR_ERR(handle);
4504 
4505 	rbd_dev->watch_handle = handle;
4506 	return 0;
4507 }
4508 
4509 /*
4510  * watch_mutex must be locked
4511  */
4512 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4513 {
4514 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4515 	int ret;
4516 
4517 	rbd_assert(rbd_dev->watch_handle);
4518 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4519 
4520 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4521 	if (ret)
4522 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4523 
4524 	rbd_dev->watch_handle = NULL;
4525 }
4526 
4527 static int rbd_register_watch(struct rbd_device *rbd_dev)
4528 {
4529 	int ret;
4530 
4531 	mutex_lock(&rbd_dev->watch_mutex);
4532 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4533 	ret = __rbd_register_watch(rbd_dev);
4534 	if (ret)
4535 		goto out;
4536 
4537 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4538 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4539 
4540 out:
4541 	mutex_unlock(&rbd_dev->watch_mutex);
4542 	return ret;
4543 }
4544 
4545 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4546 {
4547 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4548 
4549 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4550 	cancel_work_sync(&rbd_dev->released_lock_work);
4551 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4552 	cancel_work_sync(&rbd_dev->unlock_work);
4553 }
4554 
4555 /*
4556  * header_rwsem must not be held to avoid a deadlock with
4557  * rbd_dev_refresh() when flushing notifies.
4558  */
4559 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4560 {
4561 	cancel_tasks_sync(rbd_dev);
4562 
4563 	mutex_lock(&rbd_dev->watch_mutex);
4564 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4565 		__rbd_unregister_watch(rbd_dev);
4566 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4567 	mutex_unlock(&rbd_dev->watch_mutex);
4568 
4569 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4570 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4571 }
4572 
4573 /*
4574  * lock_rwsem must be held for write
4575  */
4576 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4577 {
4578 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4579 	char cookie[32];
4580 	int ret;
4581 
4582 	if (!rbd_quiesce_lock(rbd_dev))
4583 		return;
4584 
4585 	format_lock_cookie(rbd_dev, cookie);
4586 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4587 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4588 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4589 				  RBD_LOCK_TAG, cookie);
4590 	if (ret) {
4591 		if (ret != -EOPNOTSUPP)
4592 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4593 				 ret);
4594 
4595 		/*
4596 		 * Lock cookie cannot be updated on older OSDs, so do
4597 		 * a manual release and queue an acquire.
4598 		 */
4599 		__rbd_release_lock(rbd_dev);
4600 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4601 	} else {
4602 		__rbd_lock(rbd_dev, cookie);
4603 		wake_lock_waiters(rbd_dev, 0);
4604 	}
4605 }
4606 
4607 static void rbd_reregister_watch(struct work_struct *work)
4608 {
4609 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4610 					    struct rbd_device, watch_dwork);
4611 	int ret;
4612 
4613 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4614 
4615 	mutex_lock(&rbd_dev->watch_mutex);
4616 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4617 		mutex_unlock(&rbd_dev->watch_mutex);
4618 		return;
4619 	}
4620 
4621 	ret = __rbd_register_watch(rbd_dev);
4622 	if (ret) {
4623 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4624 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4625 			queue_delayed_work(rbd_dev->task_wq,
4626 					   &rbd_dev->watch_dwork,
4627 					   RBD_RETRY_DELAY);
4628 			mutex_unlock(&rbd_dev->watch_mutex);
4629 			return;
4630 		}
4631 
4632 		mutex_unlock(&rbd_dev->watch_mutex);
4633 		down_write(&rbd_dev->lock_rwsem);
4634 		wake_lock_waiters(rbd_dev, ret);
4635 		up_write(&rbd_dev->lock_rwsem);
4636 		return;
4637 	}
4638 
4639 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4640 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4641 	mutex_unlock(&rbd_dev->watch_mutex);
4642 
4643 	down_write(&rbd_dev->lock_rwsem);
4644 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4645 		rbd_reacquire_lock(rbd_dev);
4646 	up_write(&rbd_dev->lock_rwsem);
4647 
4648 	ret = rbd_dev_refresh(rbd_dev);
4649 	if (ret)
4650 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4651 }
4652 
4653 /*
4654  * Synchronous osd object method call.  Returns the number of bytes
4655  * returned in the outbound buffer, or a negative error code.
4656  */
4657 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4658 			     struct ceph_object_id *oid,
4659 			     struct ceph_object_locator *oloc,
4660 			     const char *method_name,
4661 			     const void *outbound,
4662 			     size_t outbound_size,
4663 			     void *inbound,
4664 			     size_t inbound_size)
4665 {
4666 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4667 	struct page *req_page = NULL;
4668 	struct page *reply_page;
4669 	int ret;
4670 
4671 	/*
4672 	 * Method calls are ultimately read operations.  The result
4673 	 * should placed into the inbound buffer provided.  They
4674 	 * also supply outbound data--parameters for the object
4675 	 * method.  Currently if this is present it will be a
4676 	 * snapshot id.
4677 	 */
4678 	if (outbound) {
4679 		if (outbound_size > PAGE_SIZE)
4680 			return -E2BIG;
4681 
4682 		req_page = alloc_page(GFP_KERNEL);
4683 		if (!req_page)
4684 			return -ENOMEM;
4685 
4686 		memcpy(page_address(req_page), outbound, outbound_size);
4687 	}
4688 
4689 	reply_page = alloc_page(GFP_KERNEL);
4690 	if (!reply_page) {
4691 		if (req_page)
4692 			__free_page(req_page);
4693 		return -ENOMEM;
4694 	}
4695 
4696 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4697 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4698 			     &reply_page, &inbound_size);
4699 	if (!ret) {
4700 		memcpy(inbound, page_address(reply_page), inbound_size);
4701 		ret = inbound_size;
4702 	}
4703 
4704 	if (req_page)
4705 		__free_page(req_page);
4706 	__free_page(reply_page);
4707 	return ret;
4708 }
4709 
4710 static void rbd_queue_workfn(struct work_struct *work)
4711 {
4712 	struct rbd_img_request *img_request =
4713 	    container_of(work, struct rbd_img_request, work);
4714 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4715 	enum obj_operation_type op_type = img_request->op_type;
4716 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4717 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4718 	u64 length = blk_rq_bytes(rq);
4719 	u64 mapping_size;
4720 	int result;
4721 
4722 	/* Ignore/skip any zero-length requests */
4723 	if (!length) {
4724 		dout("%s: zero-length request\n", __func__);
4725 		result = 0;
4726 		goto err_img_request;
4727 	}
4728 
4729 	blk_mq_start_request(rq);
4730 
4731 	down_read(&rbd_dev->header_rwsem);
4732 	mapping_size = rbd_dev->mapping.size;
4733 	rbd_img_capture_header(img_request);
4734 	up_read(&rbd_dev->header_rwsem);
4735 
4736 	if (offset + length > mapping_size) {
4737 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4738 			 length, mapping_size);
4739 		result = -EIO;
4740 		goto err_img_request;
4741 	}
4742 
4743 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4744 	     img_request, obj_op_name(op_type), offset, length);
4745 
4746 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4747 		result = rbd_img_fill_nodata(img_request, offset, length);
4748 	else
4749 		result = rbd_img_fill_from_bio(img_request, offset, length,
4750 					       rq->bio);
4751 	if (result)
4752 		goto err_img_request;
4753 
4754 	rbd_img_handle_request(img_request, 0);
4755 	return;
4756 
4757 err_img_request:
4758 	rbd_img_request_destroy(img_request);
4759 	if (result)
4760 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4761 			 obj_op_name(op_type), length, offset, result);
4762 	blk_mq_end_request(rq, errno_to_blk_status(result));
4763 }
4764 
4765 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4766 		const struct blk_mq_queue_data *bd)
4767 {
4768 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4769 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4770 	enum obj_operation_type op_type;
4771 
4772 	switch (req_op(bd->rq)) {
4773 	case REQ_OP_DISCARD:
4774 		op_type = OBJ_OP_DISCARD;
4775 		break;
4776 	case REQ_OP_WRITE_ZEROES:
4777 		op_type = OBJ_OP_ZEROOUT;
4778 		break;
4779 	case REQ_OP_WRITE:
4780 		op_type = OBJ_OP_WRITE;
4781 		break;
4782 	case REQ_OP_READ:
4783 		op_type = OBJ_OP_READ;
4784 		break;
4785 	default:
4786 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4787 		return BLK_STS_IOERR;
4788 	}
4789 
4790 	rbd_img_request_init(img_req, rbd_dev, op_type);
4791 
4792 	if (rbd_img_is_write(img_req)) {
4793 		if (rbd_is_ro(rbd_dev)) {
4794 			rbd_warn(rbd_dev, "%s on read-only mapping",
4795 				 obj_op_name(img_req->op_type));
4796 			return BLK_STS_IOERR;
4797 		}
4798 		rbd_assert(!rbd_is_snap(rbd_dev));
4799 	}
4800 
4801 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4802 	queue_work(rbd_wq, &img_req->work);
4803 	return BLK_STS_OK;
4804 }
4805 
4806 static void rbd_free_disk(struct rbd_device *rbd_dev)
4807 {
4808 	put_disk(rbd_dev->disk);
4809 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4810 	rbd_dev->disk = NULL;
4811 }
4812 
4813 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4814 			     struct ceph_object_id *oid,
4815 			     struct ceph_object_locator *oloc,
4816 			     void *buf, int buf_len)
4817 
4818 {
4819 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4820 	struct ceph_osd_request *req;
4821 	struct page **pages;
4822 	int num_pages = calc_pages_for(0, buf_len);
4823 	int ret;
4824 
4825 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4826 	if (!req)
4827 		return -ENOMEM;
4828 
4829 	ceph_oid_copy(&req->r_base_oid, oid);
4830 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4831 	req->r_flags = CEPH_OSD_FLAG_READ;
4832 
4833 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4834 	if (IS_ERR(pages)) {
4835 		ret = PTR_ERR(pages);
4836 		goto out_req;
4837 	}
4838 
4839 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4840 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4841 					 true);
4842 
4843 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4844 	if (ret)
4845 		goto out_req;
4846 
4847 	ceph_osdc_start_request(osdc, req);
4848 	ret = ceph_osdc_wait_request(osdc, req);
4849 	if (ret >= 0)
4850 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4851 
4852 out_req:
4853 	ceph_osdc_put_request(req);
4854 	return ret;
4855 }
4856 
4857 /*
4858  * Read the complete header for the given rbd device.  On successful
4859  * return, the rbd_dev->header field will contain up-to-date
4860  * information about the image.
4861  */
4862 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4863 {
4864 	struct rbd_image_header_ondisk *ondisk = NULL;
4865 	u32 snap_count = 0;
4866 	u64 names_size = 0;
4867 	u32 want_count;
4868 	int ret;
4869 
4870 	/*
4871 	 * The complete header will include an array of its 64-bit
4872 	 * snapshot ids, followed by the names of those snapshots as
4873 	 * a contiguous block of NUL-terminated strings.  Note that
4874 	 * the number of snapshots could change by the time we read
4875 	 * it in, in which case we re-read it.
4876 	 */
4877 	do {
4878 		size_t size;
4879 
4880 		kfree(ondisk);
4881 
4882 		size = sizeof (*ondisk);
4883 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4884 		size += names_size;
4885 		ondisk = kmalloc(size, GFP_KERNEL);
4886 		if (!ondisk)
4887 			return -ENOMEM;
4888 
4889 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4890 					&rbd_dev->header_oloc, ondisk, size);
4891 		if (ret < 0)
4892 			goto out;
4893 		if ((size_t)ret < size) {
4894 			ret = -ENXIO;
4895 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4896 				size, ret);
4897 			goto out;
4898 		}
4899 		if (!rbd_dev_ondisk_valid(ondisk)) {
4900 			ret = -ENXIO;
4901 			rbd_warn(rbd_dev, "invalid header");
4902 			goto out;
4903 		}
4904 
4905 		names_size = le64_to_cpu(ondisk->snap_names_len);
4906 		want_count = snap_count;
4907 		snap_count = le32_to_cpu(ondisk->snap_count);
4908 	} while (snap_count != want_count);
4909 
4910 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4911 out:
4912 	kfree(ondisk);
4913 
4914 	return ret;
4915 }
4916 
4917 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4918 {
4919 	sector_t size;
4920 
4921 	/*
4922 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4923 	 * try to update its size.  If REMOVING is set, updating size
4924 	 * is just useless work since the device can't be opened.
4925 	 */
4926 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4927 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4928 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4929 		dout("setting size to %llu sectors", (unsigned long long)size);
4930 		set_capacity_and_notify(rbd_dev->disk, size);
4931 	}
4932 }
4933 
4934 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4935 {
4936 	u64 mapping_size;
4937 	int ret;
4938 
4939 	down_write(&rbd_dev->header_rwsem);
4940 	mapping_size = rbd_dev->mapping.size;
4941 
4942 	ret = rbd_dev_header_info(rbd_dev);
4943 	if (ret)
4944 		goto out;
4945 
4946 	/*
4947 	 * If there is a parent, see if it has disappeared due to the
4948 	 * mapped image getting flattened.
4949 	 */
4950 	if (rbd_dev->parent) {
4951 		ret = rbd_dev_v2_parent_info(rbd_dev);
4952 		if (ret)
4953 			goto out;
4954 	}
4955 
4956 	rbd_assert(!rbd_is_snap(rbd_dev));
4957 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4958 
4959 out:
4960 	up_write(&rbd_dev->header_rwsem);
4961 	if (!ret && mapping_size != rbd_dev->mapping.size)
4962 		rbd_dev_update_size(rbd_dev);
4963 
4964 	return ret;
4965 }
4966 
4967 static const struct blk_mq_ops rbd_mq_ops = {
4968 	.queue_rq	= rbd_queue_rq,
4969 };
4970 
4971 static int rbd_init_disk(struct rbd_device *rbd_dev)
4972 {
4973 	struct gendisk *disk;
4974 	struct request_queue *q;
4975 	unsigned int objset_bytes =
4976 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4977 	int err;
4978 
4979 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4980 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4981 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4982 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4983 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4984 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4985 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4986 
4987 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4988 	if (err)
4989 		return err;
4990 
4991 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4992 	if (IS_ERR(disk)) {
4993 		err = PTR_ERR(disk);
4994 		goto out_tag_set;
4995 	}
4996 	q = disk->queue;
4997 
4998 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4999 		 rbd_dev->dev_id);
5000 	disk->major = rbd_dev->major;
5001 	disk->first_minor = rbd_dev->minor;
5002 	if (single_major)
5003 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
5004 	else
5005 		disk->minors = RBD_MINORS_PER_MAJOR;
5006 	disk->fops = &rbd_bd_ops;
5007 	disk->private_data = rbd_dev;
5008 
5009 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5010 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5011 
5012 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5013 	q->limits.max_sectors = queue_max_hw_sectors(q);
5014 	blk_queue_max_segments(q, USHRT_MAX);
5015 	blk_queue_max_segment_size(q, UINT_MAX);
5016 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5017 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5018 
5019 	if (rbd_dev->opts->trim) {
5020 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5021 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5022 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5023 	}
5024 
5025 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5026 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5027 
5028 	rbd_dev->disk = disk;
5029 
5030 	return 0;
5031 out_tag_set:
5032 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5033 	return err;
5034 }
5035 
5036 /*
5037   sysfs
5038 */
5039 
5040 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5041 {
5042 	return container_of(dev, struct rbd_device, dev);
5043 }
5044 
5045 static ssize_t rbd_size_show(struct device *dev,
5046 			     struct device_attribute *attr, char *buf)
5047 {
5048 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049 
5050 	return sprintf(buf, "%llu\n",
5051 		(unsigned long long)rbd_dev->mapping.size);
5052 }
5053 
5054 static ssize_t rbd_features_show(struct device *dev,
5055 			     struct device_attribute *attr, char *buf)
5056 {
5057 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5058 
5059 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5060 }
5061 
5062 static ssize_t rbd_major_show(struct device *dev,
5063 			      struct device_attribute *attr, char *buf)
5064 {
5065 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5066 
5067 	if (rbd_dev->major)
5068 		return sprintf(buf, "%d\n", rbd_dev->major);
5069 
5070 	return sprintf(buf, "(none)\n");
5071 }
5072 
5073 static ssize_t rbd_minor_show(struct device *dev,
5074 			      struct device_attribute *attr, char *buf)
5075 {
5076 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5077 
5078 	return sprintf(buf, "%d\n", rbd_dev->minor);
5079 }
5080 
5081 static ssize_t rbd_client_addr_show(struct device *dev,
5082 				    struct device_attribute *attr, char *buf)
5083 {
5084 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 	struct ceph_entity_addr *client_addr =
5086 	    ceph_client_addr(rbd_dev->rbd_client->client);
5087 
5088 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5089 		       le32_to_cpu(client_addr->nonce));
5090 }
5091 
5092 static ssize_t rbd_client_id_show(struct device *dev,
5093 				  struct device_attribute *attr, char *buf)
5094 {
5095 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096 
5097 	return sprintf(buf, "client%lld\n",
5098 		       ceph_client_gid(rbd_dev->rbd_client->client));
5099 }
5100 
5101 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5102 				     struct device_attribute *attr, char *buf)
5103 {
5104 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5105 
5106 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5107 }
5108 
5109 static ssize_t rbd_config_info_show(struct device *dev,
5110 				    struct device_attribute *attr, char *buf)
5111 {
5112 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113 
5114 	if (!capable(CAP_SYS_ADMIN))
5115 		return -EPERM;
5116 
5117 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5118 }
5119 
5120 static ssize_t rbd_pool_show(struct device *dev,
5121 			     struct device_attribute *attr, char *buf)
5122 {
5123 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5124 
5125 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5126 }
5127 
5128 static ssize_t rbd_pool_id_show(struct device *dev,
5129 			     struct device_attribute *attr, char *buf)
5130 {
5131 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132 
5133 	return sprintf(buf, "%llu\n",
5134 			(unsigned long long) rbd_dev->spec->pool_id);
5135 }
5136 
5137 static ssize_t rbd_pool_ns_show(struct device *dev,
5138 				struct device_attribute *attr, char *buf)
5139 {
5140 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5141 
5142 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5143 }
5144 
5145 static ssize_t rbd_name_show(struct device *dev,
5146 			     struct device_attribute *attr, char *buf)
5147 {
5148 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5149 
5150 	if (rbd_dev->spec->image_name)
5151 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5152 
5153 	return sprintf(buf, "(unknown)\n");
5154 }
5155 
5156 static ssize_t rbd_image_id_show(struct device *dev,
5157 			     struct device_attribute *attr, char *buf)
5158 {
5159 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5160 
5161 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5162 }
5163 
5164 /*
5165  * Shows the name of the currently-mapped snapshot (or
5166  * RBD_SNAP_HEAD_NAME for the base image).
5167  */
5168 static ssize_t rbd_snap_show(struct device *dev,
5169 			     struct device_attribute *attr,
5170 			     char *buf)
5171 {
5172 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5173 
5174 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5175 }
5176 
5177 static ssize_t rbd_snap_id_show(struct device *dev,
5178 				struct device_attribute *attr, char *buf)
5179 {
5180 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5181 
5182 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5183 }
5184 
5185 /*
5186  * For a v2 image, shows the chain of parent images, separated by empty
5187  * lines.  For v1 images or if there is no parent, shows "(no parent
5188  * image)".
5189  */
5190 static ssize_t rbd_parent_show(struct device *dev,
5191 			       struct device_attribute *attr,
5192 			       char *buf)
5193 {
5194 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5195 	ssize_t count = 0;
5196 
5197 	if (!rbd_dev->parent)
5198 		return sprintf(buf, "(no parent image)\n");
5199 
5200 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5201 		struct rbd_spec *spec = rbd_dev->parent_spec;
5202 
5203 		count += sprintf(&buf[count], "%s"
5204 			    "pool_id %llu\npool_name %s\n"
5205 			    "pool_ns %s\n"
5206 			    "image_id %s\nimage_name %s\n"
5207 			    "snap_id %llu\nsnap_name %s\n"
5208 			    "overlap %llu\n",
5209 			    !count ? "" : "\n", /* first? */
5210 			    spec->pool_id, spec->pool_name,
5211 			    spec->pool_ns ?: "",
5212 			    spec->image_id, spec->image_name ?: "(unknown)",
5213 			    spec->snap_id, spec->snap_name,
5214 			    rbd_dev->parent_overlap);
5215 	}
5216 
5217 	return count;
5218 }
5219 
5220 static ssize_t rbd_image_refresh(struct device *dev,
5221 				 struct device_attribute *attr,
5222 				 const char *buf,
5223 				 size_t size)
5224 {
5225 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5226 	int ret;
5227 
5228 	if (!capable(CAP_SYS_ADMIN))
5229 		return -EPERM;
5230 
5231 	ret = rbd_dev_refresh(rbd_dev);
5232 	if (ret)
5233 		return ret;
5234 
5235 	return size;
5236 }
5237 
5238 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5239 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5240 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5241 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5242 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5243 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5244 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5245 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5246 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5247 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5248 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5249 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5250 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5251 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5252 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5253 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5254 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5255 
5256 static struct attribute *rbd_attrs[] = {
5257 	&dev_attr_size.attr,
5258 	&dev_attr_features.attr,
5259 	&dev_attr_major.attr,
5260 	&dev_attr_minor.attr,
5261 	&dev_attr_client_addr.attr,
5262 	&dev_attr_client_id.attr,
5263 	&dev_attr_cluster_fsid.attr,
5264 	&dev_attr_config_info.attr,
5265 	&dev_attr_pool.attr,
5266 	&dev_attr_pool_id.attr,
5267 	&dev_attr_pool_ns.attr,
5268 	&dev_attr_name.attr,
5269 	&dev_attr_image_id.attr,
5270 	&dev_attr_current_snap.attr,
5271 	&dev_attr_snap_id.attr,
5272 	&dev_attr_parent.attr,
5273 	&dev_attr_refresh.attr,
5274 	NULL
5275 };
5276 
5277 static struct attribute_group rbd_attr_group = {
5278 	.attrs = rbd_attrs,
5279 };
5280 
5281 static const struct attribute_group *rbd_attr_groups[] = {
5282 	&rbd_attr_group,
5283 	NULL
5284 };
5285 
5286 static void rbd_dev_release(struct device *dev);
5287 
5288 static const struct device_type rbd_device_type = {
5289 	.name		= "rbd",
5290 	.groups		= rbd_attr_groups,
5291 	.release	= rbd_dev_release,
5292 };
5293 
5294 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5295 {
5296 	kref_get(&spec->kref);
5297 
5298 	return spec;
5299 }
5300 
5301 static void rbd_spec_free(struct kref *kref);
5302 static void rbd_spec_put(struct rbd_spec *spec)
5303 {
5304 	if (spec)
5305 		kref_put(&spec->kref, rbd_spec_free);
5306 }
5307 
5308 static struct rbd_spec *rbd_spec_alloc(void)
5309 {
5310 	struct rbd_spec *spec;
5311 
5312 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5313 	if (!spec)
5314 		return NULL;
5315 
5316 	spec->pool_id = CEPH_NOPOOL;
5317 	spec->snap_id = CEPH_NOSNAP;
5318 	kref_init(&spec->kref);
5319 
5320 	return spec;
5321 }
5322 
5323 static void rbd_spec_free(struct kref *kref)
5324 {
5325 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5326 
5327 	kfree(spec->pool_name);
5328 	kfree(spec->pool_ns);
5329 	kfree(spec->image_id);
5330 	kfree(spec->image_name);
5331 	kfree(spec->snap_name);
5332 	kfree(spec);
5333 }
5334 
5335 static void rbd_dev_free(struct rbd_device *rbd_dev)
5336 {
5337 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5338 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5339 
5340 	ceph_oid_destroy(&rbd_dev->header_oid);
5341 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5342 	kfree(rbd_dev->config_info);
5343 
5344 	rbd_put_client(rbd_dev->rbd_client);
5345 	rbd_spec_put(rbd_dev->spec);
5346 	kfree(rbd_dev->opts);
5347 	kfree(rbd_dev);
5348 }
5349 
5350 static void rbd_dev_release(struct device *dev)
5351 {
5352 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5353 	bool need_put = !!rbd_dev->opts;
5354 
5355 	if (need_put) {
5356 		destroy_workqueue(rbd_dev->task_wq);
5357 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5358 	}
5359 
5360 	rbd_dev_free(rbd_dev);
5361 
5362 	/*
5363 	 * This is racy, but way better than putting module outside of
5364 	 * the release callback.  The race window is pretty small, so
5365 	 * doing something similar to dm (dm-builtin.c) is overkill.
5366 	 */
5367 	if (need_put)
5368 		module_put(THIS_MODULE);
5369 }
5370 
5371 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5372 {
5373 	struct rbd_device *rbd_dev;
5374 
5375 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5376 	if (!rbd_dev)
5377 		return NULL;
5378 
5379 	spin_lock_init(&rbd_dev->lock);
5380 	INIT_LIST_HEAD(&rbd_dev->node);
5381 	init_rwsem(&rbd_dev->header_rwsem);
5382 
5383 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5384 	ceph_oid_init(&rbd_dev->header_oid);
5385 	rbd_dev->header_oloc.pool = spec->pool_id;
5386 	if (spec->pool_ns) {
5387 		WARN_ON(!*spec->pool_ns);
5388 		rbd_dev->header_oloc.pool_ns =
5389 		    ceph_find_or_create_string(spec->pool_ns,
5390 					       strlen(spec->pool_ns));
5391 	}
5392 
5393 	mutex_init(&rbd_dev->watch_mutex);
5394 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5395 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5396 
5397 	init_rwsem(&rbd_dev->lock_rwsem);
5398 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5399 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5400 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5401 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5402 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5403 	spin_lock_init(&rbd_dev->lock_lists_lock);
5404 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5405 	INIT_LIST_HEAD(&rbd_dev->running_list);
5406 	init_completion(&rbd_dev->acquire_wait);
5407 	init_completion(&rbd_dev->releasing_wait);
5408 
5409 	spin_lock_init(&rbd_dev->object_map_lock);
5410 
5411 	rbd_dev->dev.bus = &rbd_bus_type;
5412 	rbd_dev->dev.type = &rbd_device_type;
5413 	rbd_dev->dev.parent = &rbd_root_dev;
5414 	device_initialize(&rbd_dev->dev);
5415 
5416 	return rbd_dev;
5417 }
5418 
5419 /*
5420  * Create a mapping rbd_dev.
5421  */
5422 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5423 					 struct rbd_spec *spec,
5424 					 struct rbd_options *opts)
5425 {
5426 	struct rbd_device *rbd_dev;
5427 
5428 	rbd_dev = __rbd_dev_create(spec);
5429 	if (!rbd_dev)
5430 		return NULL;
5431 
5432 	/* get an id and fill in device name */
5433 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5434 					 minor_to_rbd_dev_id(1 << MINORBITS),
5435 					 GFP_KERNEL);
5436 	if (rbd_dev->dev_id < 0)
5437 		goto fail_rbd_dev;
5438 
5439 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5440 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5441 						   rbd_dev->name);
5442 	if (!rbd_dev->task_wq)
5443 		goto fail_dev_id;
5444 
5445 	/* we have a ref from do_rbd_add() */
5446 	__module_get(THIS_MODULE);
5447 
5448 	rbd_dev->rbd_client = rbdc;
5449 	rbd_dev->spec = spec;
5450 	rbd_dev->opts = opts;
5451 
5452 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5453 	return rbd_dev;
5454 
5455 fail_dev_id:
5456 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5457 fail_rbd_dev:
5458 	rbd_dev_free(rbd_dev);
5459 	return NULL;
5460 }
5461 
5462 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5463 {
5464 	if (rbd_dev)
5465 		put_device(&rbd_dev->dev);
5466 }
5467 
5468 /*
5469  * Get the size and object order for an image snapshot, or if
5470  * snap_id is CEPH_NOSNAP, gets this information for the base
5471  * image.
5472  */
5473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5474 				u8 *order, u64 *snap_size)
5475 {
5476 	__le64 snapid = cpu_to_le64(snap_id);
5477 	int ret;
5478 	struct {
5479 		u8 order;
5480 		__le64 size;
5481 	} __attribute__ ((packed)) size_buf = { 0 };
5482 
5483 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5484 				  &rbd_dev->header_oloc, "get_size",
5485 				  &snapid, sizeof(snapid),
5486 				  &size_buf, sizeof(size_buf));
5487 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5488 	if (ret < 0)
5489 		return ret;
5490 	if (ret < sizeof (size_buf))
5491 		return -ERANGE;
5492 
5493 	if (order) {
5494 		*order = size_buf.order;
5495 		dout("  order %u", (unsigned int)*order);
5496 	}
5497 	*snap_size = le64_to_cpu(size_buf.size);
5498 
5499 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5500 		(unsigned long long)snap_id,
5501 		(unsigned long long)*snap_size);
5502 
5503 	return 0;
5504 }
5505 
5506 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5507 {
5508 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5509 					&rbd_dev->header.obj_order,
5510 					&rbd_dev->header.image_size);
5511 }
5512 
5513 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5514 {
5515 	size_t size;
5516 	void *reply_buf;
5517 	int ret;
5518 	void *p;
5519 
5520 	/* Response will be an encoded string, which includes a length */
5521 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5522 	reply_buf = kzalloc(size, GFP_KERNEL);
5523 	if (!reply_buf)
5524 		return -ENOMEM;
5525 
5526 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5527 				  &rbd_dev->header_oloc, "get_object_prefix",
5528 				  NULL, 0, reply_buf, size);
5529 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5530 	if (ret < 0)
5531 		goto out;
5532 
5533 	p = reply_buf;
5534 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5535 						p + ret, NULL, GFP_NOIO);
5536 	ret = 0;
5537 
5538 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5539 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5540 		rbd_dev->header.object_prefix = NULL;
5541 	} else {
5542 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5543 	}
5544 out:
5545 	kfree(reply_buf);
5546 
5547 	return ret;
5548 }
5549 
5550 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5551 				     bool read_only, u64 *snap_features)
5552 {
5553 	struct {
5554 		__le64 snap_id;
5555 		u8 read_only;
5556 	} features_in;
5557 	struct {
5558 		__le64 features;
5559 		__le64 incompat;
5560 	} __attribute__ ((packed)) features_buf = { 0 };
5561 	u64 unsup;
5562 	int ret;
5563 
5564 	features_in.snap_id = cpu_to_le64(snap_id);
5565 	features_in.read_only = read_only;
5566 
5567 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5568 				  &rbd_dev->header_oloc, "get_features",
5569 				  &features_in, sizeof(features_in),
5570 				  &features_buf, sizeof(features_buf));
5571 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5572 	if (ret < 0)
5573 		return ret;
5574 	if (ret < sizeof (features_buf))
5575 		return -ERANGE;
5576 
5577 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5578 	if (unsup) {
5579 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5580 			 unsup);
5581 		return -ENXIO;
5582 	}
5583 
5584 	*snap_features = le64_to_cpu(features_buf.features);
5585 
5586 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5587 		(unsigned long long)snap_id,
5588 		(unsigned long long)*snap_features,
5589 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5590 
5591 	return 0;
5592 }
5593 
5594 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5595 {
5596 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5597 					 rbd_is_ro(rbd_dev),
5598 					 &rbd_dev->header.features);
5599 }
5600 
5601 /*
5602  * These are generic image flags, but since they are used only for
5603  * object map, store them in rbd_dev->object_map_flags.
5604  *
5605  * For the same reason, this function is called only on object map
5606  * (re)load and not on header refresh.
5607  */
5608 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5609 {
5610 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5611 	__le64 flags;
5612 	int ret;
5613 
5614 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5615 				  &rbd_dev->header_oloc, "get_flags",
5616 				  &snapid, sizeof(snapid),
5617 				  &flags, sizeof(flags));
5618 	if (ret < 0)
5619 		return ret;
5620 	if (ret < sizeof(flags))
5621 		return -EBADMSG;
5622 
5623 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5624 	return 0;
5625 }
5626 
5627 struct parent_image_info {
5628 	u64		pool_id;
5629 	const char	*pool_ns;
5630 	const char	*image_id;
5631 	u64		snap_id;
5632 
5633 	bool		has_overlap;
5634 	u64		overlap;
5635 };
5636 
5637 /*
5638  * The caller is responsible for @pii.
5639  */
5640 static int decode_parent_image_spec(void **p, void *end,
5641 				    struct parent_image_info *pii)
5642 {
5643 	u8 struct_v;
5644 	u32 struct_len;
5645 	int ret;
5646 
5647 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5648 				  &struct_v, &struct_len);
5649 	if (ret)
5650 		return ret;
5651 
5652 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5653 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5654 	if (IS_ERR(pii->pool_ns)) {
5655 		ret = PTR_ERR(pii->pool_ns);
5656 		pii->pool_ns = NULL;
5657 		return ret;
5658 	}
5659 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5660 	if (IS_ERR(pii->image_id)) {
5661 		ret = PTR_ERR(pii->image_id);
5662 		pii->image_id = NULL;
5663 		return ret;
5664 	}
5665 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5666 	return 0;
5667 
5668 e_inval:
5669 	return -EINVAL;
5670 }
5671 
5672 static int __get_parent_info(struct rbd_device *rbd_dev,
5673 			     struct page *req_page,
5674 			     struct page *reply_page,
5675 			     struct parent_image_info *pii)
5676 {
5677 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5678 	size_t reply_len = PAGE_SIZE;
5679 	void *p, *end;
5680 	int ret;
5681 
5682 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5683 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5684 			     req_page, sizeof(u64), &reply_page, &reply_len);
5685 	if (ret)
5686 		return ret == -EOPNOTSUPP ? 1 : ret;
5687 
5688 	p = page_address(reply_page);
5689 	end = p + reply_len;
5690 	ret = decode_parent_image_spec(&p, end, pii);
5691 	if (ret)
5692 		return ret;
5693 
5694 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5695 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5696 			     req_page, sizeof(u64), &reply_page, &reply_len);
5697 	if (ret)
5698 		return ret;
5699 
5700 	p = page_address(reply_page);
5701 	end = p + reply_len;
5702 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5703 	if (pii->has_overlap)
5704 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5705 
5706 	return 0;
5707 
5708 e_inval:
5709 	return -EINVAL;
5710 }
5711 
5712 /*
5713  * The caller is responsible for @pii.
5714  */
5715 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5716 				    struct page *req_page,
5717 				    struct page *reply_page,
5718 				    struct parent_image_info *pii)
5719 {
5720 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5721 	size_t reply_len = PAGE_SIZE;
5722 	void *p, *end;
5723 	int ret;
5724 
5725 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5726 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5727 			     req_page, sizeof(u64), &reply_page, &reply_len);
5728 	if (ret)
5729 		return ret;
5730 
5731 	p = page_address(reply_page);
5732 	end = p + reply_len;
5733 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5734 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5735 	if (IS_ERR(pii->image_id)) {
5736 		ret = PTR_ERR(pii->image_id);
5737 		pii->image_id = NULL;
5738 		return ret;
5739 	}
5740 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5741 	pii->has_overlap = true;
5742 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5743 
5744 	return 0;
5745 
5746 e_inval:
5747 	return -EINVAL;
5748 }
5749 
5750 static int get_parent_info(struct rbd_device *rbd_dev,
5751 			   struct parent_image_info *pii)
5752 {
5753 	struct page *req_page, *reply_page;
5754 	void *p;
5755 	int ret;
5756 
5757 	req_page = alloc_page(GFP_KERNEL);
5758 	if (!req_page)
5759 		return -ENOMEM;
5760 
5761 	reply_page = alloc_page(GFP_KERNEL);
5762 	if (!reply_page) {
5763 		__free_page(req_page);
5764 		return -ENOMEM;
5765 	}
5766 
5767 	p = page_address(req_page);
5768 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5769 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5770 	if (ret > 0)
5771 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5772 					       pii);
5773 
5774 	__free_page(req_page);
5775 	__free_page(reply_page);
5776 	return ret;
5777 }
5778 
5779 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5780 {
5781 	struct rbd_spec *parent_spec;
5782 	struct parent_image_info pii = { 0 };
5783 	int ret;
5784 
5785 	parent_spec = rbd_spec_alloc();
5786 	if (!parent_spec)
5787 		return -ENOMEM;
5788 
5789 	ret = get_parent_info(rbd_dev, &pii);
5790 	if (ret)
5791 		goto out_err;
5792 
5793 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5794 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5795 	     pii.has_overlap, pii.overlap);
5796 
5797 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5798 		/*
5799 		 * Either the parent never existed, or we have
5800 		 * record of it but the image got flattened so it no
5801 		 * longer has a parent.  When the parent of a
5802 		 * layered image disappears we immediately set the
5803 		 * overlap to 0.  The effect of this is that all new
5804 		 * requests will be treated as if the image had no
5805 		 * parent.
5806 		 *
5807 		 * If !pii.has_overlap, the parent image spec is not
5808 		 * applicable.  It's there to avoid duplication in each
5809 		 * snapshot record.
5810 		 */
5811 		if (rbd_dev->parent_overlap) {
5812 			rbd_dev->parent_overlap = 0;
5813 			rbd_dev_parent_put(rbd_dev);
5814 			pr_info("%s: clone image has been flattened\n",
5815 				rbd_dev->disk->disk_name);
5816 		}
5817 
5818 		goto out;	/* No parent?  No problem. */
5819 	}
5820 
5821 	/* The ceph file layout needs to fit pool id in 32 bits */
5822 
5823 	ret = -EIO;
5824 	if (pii.pool_id > (u64)U32_MAX) {
5825 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5826 			(unsigned long long)pii.pool_id, U32_MAX);
5827 		goto out_err;
5828 	}
5829 
5830 	/*
5831 	 * The parent won't change (except when the clone is
5832 	 * flattened, already handled that).  So we only need to
5833 	 * record the parent spec we have not already done so.
5834 	 */
5835 	if (!rbd_dev->parent_spec) {
5836 		parent_spec->pool_id = pii.pool_id;
5837 		if (pii.pool_ns && *pii.pool_ns) {
5838 			parent_spec->pool_ns = pii.pool_ns;
5839 			pii.pool_ns = NULL;
5840 		}
5841 		parent_spec->image_id = pii.image_id;
5842 		pii.image_id = NULL;
5843 		parent_spec->snap_id = pii.snap_id;
5844 
5845 		rbd_dev->parent_spec = parent_spec;
5846 		parent_spec = NULL;	/* rbd_dev now owns this */
5847 	}
5848 
5849 	/*
5850 	 * We always update the parent overlap.  If it's zero we issue
5851 	 * a warning, as we will proceed as if there was no parent.
5852 	 */
5853 	if (!pii.overlap) {
5854 		if (parent_spec) {
5855 			/* refresh, careful to warn just once */
5856 			if (rbd_dev->parent_overlap)
5857 				rbd_warn(rbd_dev,
5858 				    "clone now standalone (overlap became 0)");
5859 		} else {
5860 			/* initial probe */
5861 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5862 		}
5863 	}
5864 	rbd_dev->parent_overlap = pii.overlap;
5865 
5866 out:
5867 	ret = 0;
5868 out_err:
5869 	kfree(pii.pool_ns);
5870 	kfree(pii.image_id);
5871 	rbd_spec_put(parent_spec);
5872 	return ret;
5873 }
5874 
5875 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5876 {
5877 	struct {
5878 		__le64 stripe_unit;
5879 		__le64 stripe_count;
5880 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5881 	size_t size = sizeof (striping_info_buf);
5882 	void *p;
5883 	int ret;
5884 
5885 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5886 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5887 				NULL, 0, &striping_info_buf, size);
5888 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5889 	if (ret < 0)
5890 		return ret;
5891 	if (ret < size)
5892 		return -ERANGE;
5893 
5894 	p = &striping_info_buf;
5895 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5896 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5897 	return 0;
5898 }
5899 
5900 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5901 {
5902 	__le64 data_pool_id;
5903 	int ret;
5904 
5905 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5906 				  &rbd_dev->header_oloc, "get_data_pool",
5907 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5908 	if (ret < 0)
5909 		return ret;
5910 	if (ret < sizeof(data_pool_id))
5911 		return -EBADMSG;
5912 
5913 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5914 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5915 	return 0;
5916 }
5917 
5918 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5919 {
5920 	CEPH_DEFINE_OID_ONSTACK(oid);
5921 	size_t image_id_size;
5922 	char *image_id;
5923 	void *p;
5924 	void *end;
5925 	size_t size;
5926 	void *reply_buf = NULL;
5927 	size_t len = 0;
5928 	char *image_name = NULL;
5929 	int ret;
5930 
5931 	rbd_assert(!rbd_dev->spec->image_name);
5932 
5933 	len = strlen(rbd_dev->spec->image_id);
5934 	image_id_size = sizeof (__le32) + len;
5935 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5936 	if (!image_id)
5937 		return NULL;
5938 
5939 	p = image_id;
5940 	end = image_id + image_id_size;
5941 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5942 
5943 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5944 	reply_buf = kmalloc(size, GFP_KERNEL);
5945 	if (!reply_buf)
5946 		goto out;
5947 
5948 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5949 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5950 				  "dir_get_name", image_id, image_id_size,
5951 				  reply_buf, size);
5952 	if (ret < 0)
5953 		goto out;
5954 	p = reply_buf;
5955 	end = reply_buf + ret;
5956 
5957 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5958 	if (IS_ERR(image_name))
5959 		image_name = NULL;
5960 	else
5961 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5962 out:
5963 	kfree(reply_buf);
5964 	kfree(image_id);
5965 
5966 	return image_name;
5967 }
5968 
5969 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5970 {
5971 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5972 	const char *snap_name;
5973 	u32 which = 0;
5974 
5975 	/* Skip over names until we find the one we are looking for */
5976 
5977 	snap_name = rbd_dev->header.snap_names;
5978 	while (which < snapc->num_snaps) {
5979 		if (!strcmp(name, snap_name))
5980 			return snapc->snaps[which];
5981 		snap_name += strlen(snap_name) + 1;
5982 		which++;
5983 	}
5984 	return CEPH_NOSNAP;
5985 }
5986 
5987 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5988 {
5989 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5990 	u32 which;
5991 	bool found = false;
5992 	u64 snap_id;
5993 
5994 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5995 		const char *snap_name;
5996 
5997 		snap_id = snapc->snaps[which];
5998 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5999 		if (IS_ERR(snap_name)) {
6000 			/* ignore no-longer existing snapshots */
6001 			if (PTR_ERR(snap_name) == -ENOENT)
6002 				continue;
6003 			else
6004 				break;
6005 		}
6006 		found = !strcmp(name, snap_name);
6007 		kfree(snap_name);
6008 	}
6009 	return found ? snap_id : CEPH_NOSNAP;
6010 }
6011 
6012 /*
6013  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6014  * no snapshot by that name is found, or if an error occurs.
6015  */
6016 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6017 {
6018 	if (rbd_dev->image_format == 1)
6019 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6020 
6021 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6022 }
6023 
6024 /*
6025  * An image being mapped will have everything but the snap id.
6026  */
6027 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6028 {
6029 	struct rbd_spec *spec = rbd_dev->spec;
6030 
6031 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6032 	rbd_assert(spec->image_id && spec->image_name);
6033 	rbd_assert(spec->snap_name);
6034 
6035 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6036 		u64 snap_id;
6037 
6038 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6039 		if (snap_id == CEPH_NOSNAP)
6040 			return -ENOENT;
6041 
6042 		spec->snap_id = snap_id;
6043 	} else {
6044 		spec->snap_id = CEPH_NOSNAP;
6045 	}
6046 
6047 	return 0;
6048 }
6049 
6050 /*
6051  * A parent image will have all ids but none of the names.
6052  *
6053  * All names in an rbd spec are dynamically allocated.  It's OK if we
6054  * can't figure out the name for an image id.
6055  */
6056 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6057 {
6058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6059 	struct rbd_spec *spec = rbd_dev->spec;
6060 	const char *pool_name;
6061 	const char *image_name;
6062 	const char *snap_name;
6063 	int ret;
6064 
6065 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6066 	rbd_assert(spec->image_id);
6067 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6068 
6069 	/* Get the pool name; we have to make our own copy of this */
6070 
6071 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6072 	if (!pool_name) {
6073 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6074 		return -EIO;
6075 	}
6076 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6077 	if (!pool_name)
6078 		return -ENOMEM;
6079 
6080 	/* Fetch the image name; tolerate failure here */
6081 
6082 	image_name = rbd_dev_image_name(rbd_dev);
6083 	if (!image_name)
6084 		rbd_warn(rbd_dev, "unable to get image name");
6085 
6086 	/* Fetch the snapshot name */
6087 
6088 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6089 	if (IS_ERR(snap_name)) {
6090 		ret = PTR_ERR(snap_name);
6091 		goto out_err;
6092 	}
6093 
6094 	spec->pool_name = pool_name;
6095 	spec->image_name = image_name;
6096 	spec->snap_name = snap_name;
6097 
6098 	return 0;
6099 
6100 out_err:
6101 	kfree(image_name);
6102 	kfree(pool_name);
6103 	return ret;
6104 }
6105 
6106 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6107 {
6108 	size_t size;
6109 	int ret;
6110 	void *reply_buf;
6111 	void *p;
6112 	void *end;
6113 	u64 seq;
6114 	u32 snap_count;
6115 	struct ceph_snap_context *snapc;
6116 	u32 i;
6117 
6118 	/*
6119 	 * We'll need room for the seq value (maximum snapshot id),
6120 	 * snapshot count, and array of that many snapshot ids.
6121 	 * For now we have a fixed upper limit on the number we're
6122 	 * prepared to receive.
6123 	 */
6124 	size = sizeof (__le64) + sizeof (__le32) +
6125 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6126 	reply_buf = kzalloc(size, GFP_KERNEL);
6127 	if (!reply_buf)
6128 		return -ENOMEM;
6129 
6130 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6131 				  &rbd_dev->header_oloc, "get_snapcontext",
6132 				  NULL, 0, reply_buf, size);
6133 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6134 	if (ret < 0)
6135 		goto out;
6136 
6137 	p = reply_buf;
6138 	end = reply_buf + ret;
6139 	ret = -ERANGE;
6140 	ceph_decode_64_safe(&p, end, seq, out);
6141 	ceph_decode_32_safe(&p, end, snap_count, out);
6142 
6143 	/*
6144 	 * Make sure the reported number of snapshot ids wouldn't go
6145 	 * beyond the end of our buffer.  But before checking that,
6146 	 * make sure the computed size of the snapshot context we
6147 	 * allocate is representable in a size_t.
6148 	 */
6149 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6150 				 / sizeof (u64)) {
6151 		ret = -EINVAL;
6152 		goto out;
6153 	}
6154 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6155 		goto out;
6156 	ret = 0;
6157 
6158 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6159 	if (!snapc) {
6160 		ret = -ENOMEM;
6161 		goto out;
6162 	}
6163 	snapc->seq = seq;
6164 	for (i = 0; i < snap_count; i++)
6165 		snapc->snaps[i] = ceph_decode_64(&p);
6166 
6167 	ceph_put_snap_context(rbd_dev->header.snapc);
6168 	rbd_dev->header.snapc = snapc;
6169 
6170 	dout("  snap context seq = %llu, snap_count = %u\n",
6171 		(unsigned long long)seq, (unsigned int)snap_count);
6172 out:
6173 	kfree(reply_buf);
6174 
6175 	return ret;
6176 }
6177 
6178 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6179 					u64 snap_id)
6180 {
6181 	size_t size;
6182 	void *reply_buf;
6183 	__le64 snapid;
6184 	int ret;
6185 	void *p;
6186 	void *end;
6187 	char *snap_name;
6188 
6189 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6190 	reply_buf = kmalloc(size, GFP_KERNEL);
6191 	if (!reply_buf)
6192 		return ERR_PTR(-ENOMEM);
6193 
6194 	snapid = cpu_to_le64(snap_id);
6195 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6196 				  &rbd_dev->header_oloc, "get_snapshot_name",
6197 				  &snapid, sizeof(snapid), reply_buf, size);
6198 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6199 	if (ret < 0) {
6200 		snap_name = ERR_PTR(ret);
6201 		goto out;
6202 	}
6203 
6204 	p = reply_buf;
6205 	end = reply_buf + ret;
6206 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6207 	if (IS_ERR(snap_name))
6208 		goto out;
6209 
6210 	dout("  snap_id 0x%016llx snap_name = %s\n",
6211 		(unsigned long long)snap_id, snap_name);
6212 out:
6213 	kfree(reply_buf);
6214 
6215 	return snap_name;
6216 }
6217 
6218 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6219 {
6220 	bool first_time = rbd_dev->header.object_prefix == NULL;
6221 	int ret;
6222 
6223 	ret = rbd_dev_v2_image_size(rbd_dev);
6224 	if (ret)
6225 		return ret;
6226 
6227 	if (first_time) {
6228 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6229 		if (ret)
6230 			return ret;
6231 	}
6232 
6233 	ret = rbd_dev_v2_snap_context(rbd_dev);
6234 	if (ret && first_time) {
6235 		kfree(rbd_dev->header.object_prefix);
6236 		rbd_dev->header.object_prefix = NULL;
6237 	}
6238 
6239 	return ret;
6240 }
6241 
6242 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6243 {
6244 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6245 
6246 	if (rbd_dev->image_format == 1)
6247 		return rbd_dev_v1_header_info(rbd_dev);
6248 
6249 	return rbd_dev_v2_header_info(rbd_dev);
6250 }
6251 
6252 /*
6253  * Skips over white space at *buf, and updates *buf to point to the
6254  * first found non-space character (if any). Returns the length of
6255  * the token (string of non-white space characters) found.  Note
6256  * that *buf must be terminated with '\0'.
6257  */
6258 static inline size_t next_token(const char **buf)
6259 {
6260         /*
6261         * These are the characters that produce nonzero for
6262         * isspace() in the "C" and "POSIX" locales.
6263         */
6264 	static const char spaces[] = " \f\n\r\t\v";
6265 
6266         *buf += strspn(*buf, spaces);	/* Find start of token */
6267 
6268 	return strcspn(*buf, spaces);   /* Return token length */
6269 }
6270 
6271 /*
6272  * Finds the next token in *buf, dynamically allocates a buffer big
6273  * enough to hold a copy of it, and copies the token into the new
6274  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6275  * that a duplicate buffer is created even for a zero-length token.
6276  *
6277  * Returns a pointer to the newly-allocated duplicate, or a null
6278  * pointer if memory for the duplicate was not available.  If
6279  * the lenp argument is a non-null pointer, the length of the token
6280  * (not including the '\0') is returned in *lenp.
6281  *
6282  * If successful, the *buf pointer will be updated to point beyond
6283  * the end of the found token.
6284  *
6285  * Note: uses GFP_KERNEL for allocation.
6286  */
6287 static inline char *dup_token(const char **buf, size_t *lenp)
6288 {
6289 	char *dup;
6290 	size_t len;
6291 
6292 	len = next_token(buf);
6293 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6294 	if (!dup)
6295 		return NULL;
6296 	*(dup + len) = '\0';
6297 	*buf += len;
6298 
6299 	if (lenp)
6300 		*lenp = len;
6301 
6302 	return dup;
6303 }
6304 
6305 static int rbd_parse_param(struct fs_parameter *param,
6306 			    struct rbd_parse_opts_ctx *pctx)
6307 {
6308 	struct rbd_options *opt = pctx->opts;
6309 	struct fs_parse_result result;
6310 	struct p_log log = {.prefix = "rbd"};
6311 	int token, ret;
6312 
6313 	ret = ceph_parse_param(param, pctx->copts, NULL);
6314 	if (ret != -ENOPARAM)
6315 		return ret;
6316 
6317 	token = __fs_parse(&log, rbd_parameters, param, &result);
6318 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6319 	if (token < 0) {
6320 		if (token == -ENOPARAM)
6321 			return inval_plog(&log, "Unknown parameter '%s'",
6322 					  param->key);
6323 		return token;
6324 	}
6325 
6326 	switch (token) {
6327 	case Opt_queue_depth:
6328 		if (result.uint_32 < 1)
6329 			goto out_of_range;
6330 		opt->queue_depth = result.uint_32;
6331 		break;
6332 	case Opt_alloc_size:
6333 		if (result.uint_32 < SECTOR_SIZE)
6334 			goto out_of_range;
6335 		if (!is_power_of_2(result.uint_32))
6336 			return inval_plog(&log, "alloc_size must be a power of 2");
6337 		opt->alloc_size = result.uint_32;
6338 		break;
6339 	case Opt_lock_timeout:
6340 		/* 0 is "wait forever" (i.e. infinite timeout) */
6341 		if (result.uint_32 > INT_MAX / 1000)
6342 			goto out_of_range;
6343 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6344 		break;
6345 	case Opt_pool_ns:
6346 		kfree(pctx->spec->pool_ns);
6347 		pctx->spec->pool_ns = param->string;
6348 		param->string = NULL;
6349 		break;
6350 	case Opt_compression_hint:
6351 		switch (result.uint_32) {
6352 		case Opt_compression_hint_none:
6353 			opt->alloc_hint_flags &=
6354 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6355 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6356 			break;
6357 		case Opt_compression_hint_compressible:
6358 			opt->alloc_hint_flags |=
6359 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6360 			opt->alloc_hint_flags &=
6361 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6362 			break;
6363 		case Opt_compression_hint_incompressible:
6364 			opt->alloc_hint_flags |=
6365 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6366 			opt->alloc_hint_flags &=
6367 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6368 			break;
6369 		default:
6370 			BUG();
6371 		}
6372 		break;
6373 	case Opt_read_only:
6374 		opt->read_only = true;
6375 		break;
6376 	case Opt_read_write:
6377 		opt->read_only = false;
6378 		break;
6379 	case Opt_lock_on_read:
6380 		opt->lock_on_read = true;
6381 		break;
6382 	case Opt_exclusive:
6383 		opt->exclusive = true;
6384 		break;
6385 	case Opt_notrim:
6386 		opt->trim = false;
6387 		break;
6388 	default:
6389 		BUG();
6390 	}
6391 
6392 	return 0;
6393 
6394 out_of_range:
6395 	return inval_plog(&log, "%s out of range", param->key);
6396 }
6397 
6398 /*
6399  * This duplicates most of generic_parse_monolithic(), untying it from
6400  * fs_context and skipping standard superblock and security options.
6401  */
6402 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6403 {
6404 	char *key;
6405 	int ret = 0;
6406 
6407 	dout("%s '%s'\n", __func__, options);
6408 	while ((key = strsep(&options, ",")) != NULL) {
6409 		if (*key) {
6410 			struct fs_parameter param = {
6411 				.key	= key,
6412 				.type	= fs_value_is_flag,
6413 			};
6414 			char *value = strchr(key, '=');
6415 			size_t v_len = 0;
6416 
6417 			if (value) {
6418 				if (value == key)
6419 					continue;
6420 				*value++ = 0;
6421 				v_len = strlen(value);
6422 				param.string = kmemdup_nul(value, v_len,
6423 							   GFP_KERNEL);
6424 				if (!param.string)
6425 					return -ENOMEM;
6426 				param.type = fs_value_is_string;
6427 			}
6428 			param.size = v_len;
6429 
6430 			ret = rbd_parse_param(&param, pctx);
6431 			kfree(param.string);
6432 			if (ret)
6433 				break;
6434 		}
6435 	}
6436 
6437 	return ret;
6438 }
6439 
6440 /*
6441  * Parse the options provided for an "rbd add" (i.e., rbd image
6442  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6443  * and the data written is passed here via a NUL-terminated buffer.
6444  * Returns 0 if successful or an error code otherwise.
6445  *
6446  * The information extracted from these options is recorded in
6447  * the other parameters which return dynamically-allocated
6448  * structures:
6449  *  ceph_opts
6450  *      The address of a pointer that will refer to a ceph options
6451  *      structure.  Caller must release the returned pointer using
6452  *      ceph_destroy_options() when it is no longer needed.
6453  *  rbd_opts
6454  *	Address of an rbd options pointer.  Fully initialized by
6455  *	this function; caller must release with kfree().
6456  *  spec
6457  *	Address of an rbd image specification pointer.  Fully
6458  *	initialized by this function based on parsed options.
6459  *	Caller must release with rbd_spec_put().
6460  *
6461  * The options passed take this form:
6462  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6463  * where:
6464  *  <mon_addrs>
6465  *      A comma-separated list of one or more monitor addresses.
6466  *      A monitor address is an ip address, optionally followed
6467  *      by a port number (separated by a colon).
6468  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6469  *  <options>
6470  *      A comma-separated list of ceph and/or rbd options.
6471  *  <pool_name>
6472  *      The name of the rados pool containing the rbd image.
6473  *  <image_name>
6474  *      The name of the image in that pool to map.
6475  *  <snap_id>
6476  *      An optional snapshot id.  If provided, the mapping will
6477  *      present data from the image at the time that snapshot was
6478  *      created.  The image head is used if no snapshot id is
6479  *      provided.  Snapshot mappings are always read-only.
6480  */
6481 static int rbd_add_parse_args(const char *buf,
6482 				struct ceph_options **ceph_opts,
6483 				struct rbd_options **opts,
6484 				struct rbd_spec **rbd_spec)
6485 {
6486 	size_t len;
6487 	char *options;
6488 	const char *mon_addrs;
6489 	char *snap_name;
6490 	size_t mon_addrs_size;
6491 	struct rbd_parse_opts_ctx pctx = { 0 };
6492 	int ret;
6493 
6494 	/* The first four tokens are required */
6495 
6496 	len = next_token(&buf);
6497 	if (!len) {
6498 		rbd_warn(NULL, "no monitor address(es) provided");
6499 		return -EINVAL;
6500 	}
6501 	mon_addrs = buf;
6502 	mon_addrs_size = len;
6503 	buf += len;
6504 
6505 	ret = -EINVAL;
6506 	options = dup_token(&buf, NULL);
6507 	if (!options)
6508 		return -ENOMEM;
6509 	if (!*options) {
6510 		rbd_warn(NULL, "no options provided");
6511 		goto out_err;
6512 	}
6513 
6514 	pctx.spec = rbd_spec_alloc();
6515 	if (!pctx.spec)
6516 		goto out_mem;
6517 
6518 	pctx.spec->pool_name = dup_token(&buf, NULL);
6519 	if (!pctx.spec->pool_name)
6520 		goto out_mem;
6521 	if (!*pctx.spec->pool_name) {
6522 		rbd_warn(NULL, "no pool name provided");
6523 		goto out_err;
6524 	}
6525 
6526 	pctx.spec->image_name = dup_token(&buf, NULL);
6527 	if (!pctx.spec->image_name)
6528 		goto out_mem;
6529 	if (!*pctx.spec->image_name) {
6530 		rbd_warn(NULL, "no image name provided");
6531 		goto out_err;
6532 	}
6533 
6534 	/*
6535 	 * Snapshot name is optional; default is to use "-"
6536 	 * (indicating the head/no snapshot).
6537 	 */
6538 	len = next_token(&buf);
6539 	if (!len) {
6540 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6541 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6542 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6543 		ret = -ENAMETOOLONG;
6544 		goto out_err;
6545 	}
6546 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6547 	if (!snap_name)
6548 		goto out_mem;
6549 	*(snap_name + len) = '\0';
6550 	pctx.spec->snap_name = snap_name;
6551 
6552 	pctx.copts = ceph_alloc_options();
6553 	if (!pctx.copts)
6554 		goto out_mem;
6555 
6556 	/* Initialize all rbd options to the defaults */
6557 
6558 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6559 	if (!pctx.opts)
6560 		goto out_mem;
6561 
6562 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6563 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6564 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6565 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6566 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6567 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6568 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6569 
6570 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6571 				 ',');
6572 	if (ret)
6573 		goto out_err;
6574 
6575 	ret = rbd_parse_options(options, &pctx);
6576 	if (ret)
6577 		goto out_err;
6578 
6579 	*ceph_opts = pctx.copts;
6580 	*opts = pctx.opts;
6581 	*rbd_spec = pctx.spec;
6582 	kfree(options);
6583 	return 0;
6584 
6585 out_mem:
6586 	ret = -ENOMEM;
6587 out_err:
6588 	kfree(pctx.opts);
6589 	ceph_destroy_options(pctx.copts);
6590 	rbd_spec_put(pctx.spec);
6591 	kfree(options);
6592 	return ret;
6593 }
6594 
6595 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6596 {
6597 	down_write(&rbd_dev->lock_rwsem);
6598 	if (__rbd_is_lock_owner(rbd_dev))
6599 		__rbd_release_lock(rbd_dev);
6600 	up_write(&rbd_dev->lock_rwsem);
6601 }
6602 
6603 /*
6604  * If the wait is interrupted, an error is returned even if the lock
6605  * was successfully acquired.  rbd_dev_image_unlock() will release it
6606  * if needed.
6607  */
6608 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6609 {
6610 	long ret;
6611 
6612 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6613 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6614 			return 0;
6615 
6616 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6617 		return -EINVAL;
6618 	}
6619 
6620 	if (rbd_is_ro(rbd_dev))
6621 		return 0;
6622 
6623 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6624 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6625 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6626 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6627 	if (ret > 0) {
6628 		ret = rbd_dev->acquire_err;
6629 	} else {
6630 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6631 		if (!ret)
6632 			ret = -ETIMEDOUT;
6633 
6634 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6635 	}
6636 	if (ret)
6637 		return ret;
6638 
6639 	/*
6640 	 * The lock may have been released by now, unless automatic lock
6641 	 * transitions are disabled.
6642 	 */
6643 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6644 	return 0;
6645 }
6646 
6647 /*
6648  * An rbd format 2 image has a unique identifier, distinct from the
6649  * name given to it by the user.  Internally, that identifier is
6650  * what's used to specify the names of objects related to the image.
6651  *
6652  * A special "rbd id" object is used to map an rbd image name to its
6653  * id.  If that object doesn't exist, then there is no v2 rbd image
6654  * with the supplied name.
6655  *
6656  * This function will record the given rbd_dev's image_id field if
6657  * it can be determined, and in that case will return 0.  If any
6658  * errors occur a negative errno will be returned and the rbd_dev's
6659  * image_id field will be unchanged (and should be NULL).
6660  */
6661 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6662 {
6663 	int ret;
6664 	size_t size;
6665 	CEPH_DEFINE_OID_ONSTACK(oid);
6666 	void *response;
6667 	char *image_id;
6668 
6669 	/*
6670 	 * When probing a parent image, the image id is already
6671 	 * known (and the image name likely is not).  There's no
6672 	 * need to fetch the image id again in this case.  We
6673 	 * do still need to set the image format though.
6674 	 */
6675 	if (rbd_dev->spec->image_id) {
6676 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6677 
6678 		return 0;
6679 	}
6680 
6681 	/*
6682 	 * First, see if the format 2 image id file exists, and if
6683 	 * so, get the image's persistent id from it.
6684 	 */
6685 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6686 			       rbd_dev->spec->image_name);
6687 	if (ret)
6688 		return ret;
6689 
6690 	dout("rbd id object name is %s\n", oid.name);
6691 
6692 	/* Response will be an encoded string, which includes a length */
6693 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6694 	response = kzalloc(size, GFP_NOIO);
6695 	if (!response) {
6696 		ret = -ENOMEM;
6697 		goto out;
6698 	}
6699 
6700 	/* If it doesn't exist we'll assume it's a format 1 image */
6701 
6702 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6703 				  "get_id", NULL, 0,
6704 				  response, size);
6705 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6706 	if (ret == -ENOENT) {
6707 		image_id = kstrdup("", GFP_KERNEL);
6708 		ret = image_id ? 0 : -ENOMEM;
6709 		if (!ret)
6710 			rbd_dev->image_format = 1;
6711 	} else if (ret >= 0) {
6712 		void *p = response;
6713 
6714 		image_id = ceph_extract_encoded_string(&p, p + ret,
6715 						NULL, GFP_NOIO);
6716 		ret = PTR_ERR_OR_ZERO(image_id);
6717 		if (!ret)
6718 			rbd_dev->image_format = 2;
6719 	}
6720 
6721 	if (!ret) {
6722 		rbd_dev->spec->image_id = image_id;
6723 		dout("image_id is %s\n", image_id);
6724 	}
6725 out:
6726 	kfree(response);
6727 	ceph_oid_destroy(&oid);
6728 	return ret;
6729 }
6730 
6731 /*
6732  * Undo whatever state changes are made by v1 or v2 header info
6733  * call.
6734  */
6735 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6736 {
6737 	struct rbd_image_header	*header;
6738 
6739 	rbd_dev_parent_put(rbd_dev);
6740 	rbd_object_map_free(rbd_dev);
6741 	rbd_dev_mapping_clear(rbd_dev);
6742 
6743 	/* Free dynamic fields from the header, then zero it out */
6744 
6745 	header = &rbd_dev->header;
6746 	ceph_put_snap_context(header->snapc);
6747 	kfree(header->snap_sizes);
6748 	kfree(header->snap_names);
6749 	kfree(header->object_prefix);
6750 	memset(header, 0, sizeof (*header));
6751 }
6752 
6753 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6754 {
6755 	int ret;
6756 
6757 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6758 	if (ret)
6759 		goto out_err;
6760 
6761 	/*
6762 	 * Get the and check features for the image.  Currently the
6763 	 * features are assumed to never change.
6764 	 */
6765 	ret = rbd_dev_v2_features(rbd_dev);
6766 	if (ret)
6767 		goto out_err;
6768 
6769 	/* If the image supports fancy striping, get its parameters */
6770 
6771 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6772 		ret = rbd_dev_v2_striping_info(rbd_dev);
6773 		if (ret < 0)
6774 			goto out_err;
6775 	}
6776 
6777 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6778 		ret = rbd_dev_v2_data_pool(rbd_dev);
6779 		if (ret)
6780 			goto out_err;
6781 	}
6782 
6783 	rbd_init_layout(rbd_dev);
6784 	return 0;
6785 
6786 out_err:
6787 	rbd_dev->header.features = 0;
6788 	kfree(rbd_dev->header.object_prefix);
6789 	rbd_dev->header.object_prefix = NULL;
6790 	return ret;
6791 }
6792 
6793 /*
6794  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6795  * rbd_dev_image_probe() recursion depth, which means it's also the
6796  * length of the already discovered part of the parent chain.
6797  */
6798 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6799 {
6800 	struct rbd_device *parent = NULL;
6801 	int ret;
6802 
6803 	if (!rbd_dev->parent_spec)
6804 		return 0;
6805 
6806 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6807 		pr_info("parent chain is too long (%d)\n", depth);
6808 		ret = -EINVAL;
6809 		goto out_err;
6810 	}
6811 
6812 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6813 	if (!parent) {
6814 		ret = -ENOMEM;
6815 		goto out_err;
6816 	}
6817 
6818 	/*
6819 	 * Images related by parent/child relationships always share
6820 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6821 	 */
6822 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6823 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6824 
6825 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6826 
6827 	ret = rbd_dev_image_probe(parent, depth);
6828 	if (ret < 0)
6829 		goto out_err;
6830 
6831 	rbd_dev->parent = parent;
6832 	atomic_set(&rbd_dev->parent_ref, 1);
6833 	return 0;
6834 
6835 out_err:
6836 	rbd_dev_unparent(rbd_dev);
6837 	rbd_dev_destroy(parent);
6838 	return ret;
6839 }
6840 
6841 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6842 {
6843 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6844 	rbd_free_disk(rbd_dev);
6845 	if (!single_major)
6846 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6847 }
6848 
6849 /*
6850  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6851  * upon return.
6852  */
6853 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6854 {
6855 	int ret;
6856 
6857 	/* Record our major and minor device numbers. */
6858 
6859 	if (!single_major) {
6860 		ret = register_blkdev(0, rbd_dev->name);
6861 		if (ret < 0)
6862 			goto err_out_unlock;
6863 
6864 		rbd_dev->major = ret;
6865 		rbd_dev->minor = 0;
6866 	} else {
6867 		rbd_dev->major = rbd_major;
6868 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6869 	}
6870 
6871 	/* Set up the blkdev mapping. */
6872 
6873 	ret = rbd_init_disk(rbd_dev);
6874 	if (ret)
6875 		goto err_out_blkdev;
6876 
6877 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6878 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6879 
6880 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6881 	if (ret)
6882 		goto err_out_disk;
6883 
6884 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6885 	up_write(&rbd_dev->header_rwsem);
6886 	return 0;
6887 
6888 err_out_disk:
6889 	rbd_free_disk(rbd_dev);
6890 err_out_blkdev:
6891 	if (!single_major)
6892 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6893 err_out_unlock:
6894 	up_write(&rbd_dev->header_rwsem);
6895 	return ret;
6896 }
6897 
6898 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6899 {
6900 	struct rbd_spec *spec = rbd_dev->spec;
6901 	int ret;
6902 
6903 	/* Record the header object name for this rbd image. */
6904 
6905 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6906 	if (rbd_dev->image_format == 1)
6907 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6908 				       spec->image_name, RBD_SUFFIX);
6909 	else
6910 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6911 				       RBD_HEADER_PREFIX, spec->image_id);
6912 
6913 	return ret;
6914 }
6915 
6916 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6917 {
6918 	if (!is_snap) {
6919 		pr_info("image %s/%s%s%s does not exist\n",
6920 			rbd_dev->spec->pool_name,
6921 			rbd_dev->spec->pool_ns ?: "",
6922 			rbd_dev->spec->pool_ns ? "/" : "",
6923 			rbd_dev->spec->image_name);
6924 	} else {
6925 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6926 			rbd_dev->spec->pool_name,
6927 			rbd_dev->spec->pool_ns ?: "",
6928 			rbd_dev->spec->pool_ns ? "/" : "",
6929 			rbd_dev->spec->image_name,
6930 			rbd_dev->spec->snap_name);
6931 	}
6932 }
6933 
6934 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6935 {
6936 	if (!rbd_is_ro(rbd_dev))
6937 		rbd_unregister_watch(rbd_dev);
6938 
6939 	rbd_dev_unprobe(rbd_dev);
6940 	rbd_dev->image_format = 0;
6941 	kfree(rbd_dev->spec->image_id);
6942 	rbd_dev->spec->image_id = NULL;
6943 }
6944 
6945 /*
6946  * Probe for the existence of the header object for the given rbd
6947  * device.  If this image is the one being mapped (i.e., not a
6948  * parent), initiate a watch on its header object before using that
6949  * object to get detailed information about the rbd image.
6950  *
6951  * On success, returns with header_rwsem held for write if called
6952  * with @depth == 0.
6953  */
6954 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6955 {
6956 	bool need_watch = !rbd_is_ro(rbd_dev);
6957 	int ret;
6958 
6959 	/*
6960 	 * Get the id from the image id object.  Unless there's an
6961 	 * error, rbd_dev->spec->image_id will be filled in with
6962 	 * a dynamically-allocated string, and rbd_dev->image_format
6963 	 * will be set to either 1 or 2.
6964 	 */
6965 	ret = rbd_dev_image_id(rbd_dev);
6966 	if (ret)
6967 		return ret;
6968 
6969 	ret = rbd_dev_header_name(rbd_dev);
6970 	if (ret)
6971 		goto err_out_format;
6972 
6973 	if (need_watch) {
6974 		ret = rbd_register_watch(rbd_dev);
6975 		if (ret) {
6976 			if (ret == -ENOENT)
6977 				rbd_print_dne(rbd_dev, false);
6978 			goto err_out_format;
6979 		}
6980 	}
6981 
6982 	if (!depth)
6983 		down_write(&rbd_dev->header_rwsem);
6984 
6985 	ret = rbd_dev_header_info(rbd_dev);
6986 	if (ret) {
6987 		if (ret == -ENOENT && !need_watch)
6988 			rbd_print_dne(rbd_dev, false);
6989 		goto err_out_probe;
6990 	}
6991 
6992 	/*
6993 	 * If this image is the one being mapped, we have pool name and
6994 	 * id, image name and id, and snap name - need to fill snap id.
6995 	 * Otherwise this is a parent image, identified by pool, image
6996 	 * and snap ids - need to fill in names for those ids.
6997 	 */
6998 	if (!depth)
6999 		ret = rbd_spec_fill_snap_id(rbd_dev);
7000 	else
7001 		ret = rbd_spec_fill_names(rbd_dev);
7002 	if (ret) {
7003 		if (ret == -ENOENT)
7004 			rbd_print_dne(rbd_dev, true);
7005 		goto err_out_probe;
7006 	}
7007 
7008 	ret = rbd_dev_mapping_set(rbd_dev);
7009 	if (ret)
7010 		goto err_out_probe;
7011 
7012 	if (rbd_is_snap(rbd_dev) &&
7013 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7014 		ret = rbd_object_map_load(rbd_dev);
7015 		if (ret)
7016 			goto err_out_probe;
7017 	}
7018 
7019 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7020 		ret = rbd_dev_v2_parent_info(rbd_dev);
7021 		if (ret)
7022 			goto err_out_probe;
7023 	}
7024 
7025 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7026 	if (ret)
7027 		goto err_out_probe;
7028 
7029 	dout("discovered format %u image, header name is %s\n",
7030 		rbd_dev->image_format, rbd_dev->header_oid.name);
7031 	return 0;
7032 
7033 err_out_probe:
7034 	if (!depth)
7035 		up_write(&rbd_dev->header_rwsem);
7036 	if (need_watch)
7037 		rbd_unregister_watch(rbd_dev);
7038 	rbd_dev_unprobe(rbd_dev);
7039 err_out_format:
7040 	rbd_dev->image_format = 0;
7041 	kfree(rbd_dev->spec->image_id);
7042 	rbd_dev->spec->image_id = NULL;
7043 	return ret;
7044 }
7045 
7046 static ssize_t do_rbd_add(const char *buf, size_t count)
7047 {
7048 	struct rbd_device *rbd_dev = NULL;
7049 	struct ceph_options *ceph_opts = NULL;
7050 	struct rbd_options *rbd_opts = NULL;
7051 	struct rbd_spec *spec = NULL;
7052 	struct rbd_client *rbdc;
7053 	int rc;
7054 
7055 	if (!capable(CAP_SYS_ADMIN))
7056 		return -EPERM;
7057 
7058 	if (!try_module_get(THIS_MODULE))
7059 		return -ENODEV;
7060 
7061 	/* parse add command */
7062 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7063 	if (rc < 0)
7064 		goto out;
7065 
7066 	rbdc = rbd_get_client(ceph_opts);
7067 	if (IS_ERR(rbdc)) {
7068 		rc = PTR_ERR(rbdc);
7069 		goto err_out_args;
7070 	}
7071 
7072 	/* pick the pool */
7073 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7074 	if (rc < 0) {
7075 		if (rc == -ENOENT)
7076 			pr_info("pool %s does not exist\n", spec->pool_name);
7077 		goto err_out_client;
7078 	}
7079 	spec->pool_id = (u64)rc;
7080 
7081 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7082 	if (!rbd_dev) {
7083 		rc = -ENOMEM;
7084 		goto err_out_client;
7085 	}
7086 	rbdc = NULL;		/* rbd_dev now owns this */
7087 	spec = NULL;		/* rbd_dev now owns this */
7088 	rbd_opts = NULL;	/* rbd_dev now owns this */
7089 
7090 	/* if we are mapping a snapshot it will be a read-only mapping */
7091 	if (rbd_dev->opts->read_only ||
7092 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7093 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7094 
7095 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7096 	if (!rbd_dev->config_info) {
7097 		rc = -ENOMEM;
7098 		goto err_out_rbd_dev;
7099 	}
7100 
7101 	rc = rbd_dev_image_probe(rbd_dev, 0);
7102 	if (rc < 0)
7103 		goto err_out_rbd_dev;
7104 
7105 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7106 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7107 			 rbd_dev->layout.object_size);
7108 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7109 	}
7110 
7111 	rc = rbd_dev_device_setup(rbd_dev);
7112 	if (rc)
7113 		goto err_out_image_probe;
7114 
7115 	rc = rbd_add_acquire_lock(rbd_dev);
7116 	if (rc)
7117 		goto err_out_image_lock;
7118 
7119 	/* Everything's ready.  Announce the disk to the world. */
7120 
7121 	rc = device_add(&rbd_dev->dev);
7122 	if (rc)
7123 		goto err_out_image_lock;
7124 
7125 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7126 	if (rc)
7127 		goto err_out_cleanup_disk;
7128 
7129 	spin_lock(&rbd_dev_list_lock);
7130 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7131 	spin_unlock(&rbd_dev_list_lock);
7132 
7133 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7134 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7135 		rbd_dev->header.features);
7136 	rc = count;
7137 out:
7138 	module_put(THIS_MODULE);
7139 	return rc;
7140 
7141 err_out_cleanup_disk:
7142 	rbd_free_disk(rbd_dev);
7143 err_out_image_lock:
7144 	rbd_dev_image_unlock(rbd_dev);
7145 	rbd_dev_device_release(rbd_dev);
7146 err_out_image_probe:
7147 	rbd_dev_image_release(rbd_dev);
7148 err_out_rbd_dev:
7149 	rbd_dev_destroy(rbd_dev);
7150 err_out_client:
7151 	rbd_put_client(rbdc);
7152 err_out_args:
7153 	rbd_spec_put(spec);
7154 	kfree(rbd_opts);
7155 	goto out;
7156 }
7157 
7158 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7159 {
7160 	if (single_major)
7161 		return -EINVAL;
7162 
7163 	return do_rbd_add(buf, count);
7164 }
7165 
7166 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7167 				      size_t count)
7168 {
7169 	return do_rbd_add(buf, count);
7170 }
7171 
7172 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7173 {
7174 	while (rbd_dev->parent) {
7175 		struct rbd_device *first = rbd_dev;
7176 		struct rbd_device *second = first->parent;
7177 		struct rbd_device *third;
7178 
7179 		/*
7180 		 * Follow to the parent with no grandparent and
7181 		 * remove it.
7182 		 */
7183 		while (second && (third = second->parent)) {
7184 			first = second;
7185 			second = third;
7186 		}
7187 		rbd_assert(second);
7188 		rbd_dev_image_release(second);
7189 		rbd_dev_destroy(second);
7190 		first->parent = NULL;
7191 		first->parent_overlap = 0;
7192 
7193 		rbd_assert(first->parent_spec);
7194 		rbd_spec_put(first->parent_spec);
7195 		first->parent_spec = NULL;
7196 	}
7197 }
7198 
7199 static ssize_t do_rbd_remove(const char *buf, size_t count)
7200 {
7201 	struct rbd_device *rbd_dev = NULL;
7202 	struct list_head *tmp;
7203 	int dev_id;
7204 	char opt_buf[6];
7205 	bool force = false;
7206 	int ret;
7207 
7208 	if (!capable(CAP_SYS_ADMIN))
7209 		return -EPERM;
7210 
7211 	dev_id = -1;
7212 	opt_buf[0] = '\0';
7213 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7214 	if (dev_id < 0) {
7215 		pr_err("dev_id out of range\n");
7216 		return -EINVAL;
7217 	}
7218 	if (opt_buf[0] != '\0') {
7219 		if (!strcmp(opt_buf, "force")) {
7220 			force = true;
7221 		} else {
7222 			pr_err("bad remove option at '%s'\n", opt_buf);
7223 			return -EINVAL;
7224 		}
7225 	}
7226 
7227 	ret = -ENOENT;
7228 	spin_lock(&rbd_dev_list_lock);
7229 	list_for_each(tmp, &rbd_dev_list) {
7230 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7231 		if (rbd_dev->dev_id == dev_id) {
7232 			ret = 0;
7233 			break;
7234 		}
7235 	}
7236 	if (!ret) {
7237 		spin_lock_irq(&rbd_dev->lock);
7238 		if (rbd_dev->open_count && !force)
7239 			ret = -EBUSY;
7240 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7241 					  &rbd_dev->flags))
7242 			ret = -EINPROGRESS;
7243 		spin_unlock_irq(&rbd_dev->lock);
7244 	}
7245 	spin_unlock(&rbd_dev_list_lock);
7246 	if (ret)
7247 		return ret;
7248 
7249 	if (force) {
7250 		/*
7251 		 * Prevent new IO from being queued and wait for existing
7252 		 * IO to complete/fail.
7253 		 */
7254 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7255 		blk_mark_disk_dead(rbd_dev->disk);
7256 	}
7257 
7258 	del_gendisk(rbd_dev->disk);
7259 	spin_lock(&rbd_dev_list_lock);
7260 	list_del_init(&rbd_dev->node);
7261 	spin_unlock(&rbd_dev_list_lock);
7262 	device_del(&rbd_dev->dev);
7263 
7264 	rbd_dev_image_unlock(rbd_dev);
7265 	rbd_dev_device_release(rbd_dev);
7266 	rbd_dev_image_release(rbd_dev);
7267 	rbd_dev_destroy(rbd_dev);
7268 	return count;
7269 }
7270 
7271 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7272 {
7273 	if (single_major)
7274 		return -EINVAL;
7275 
7276 	return do_rbd_remove(buf, count);
7277 }
7278 
7279 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7280 					 size_t count)
7281 {
7282 	return do_rbd_remove(buf, count);
7283 }
7284 
7285 /*
7286  * create control files in sysfs
7287  * /sys/bus/rbd/...
7288  */
7289 static int __init rbd_sysfs_init(void)
7290 {
7291 	int ret;
7292 
7293 	ret = device_register(&rbd_root_dev);
7294 	if (ret < 0) {
7295 		put_device(&rbd_root_dev);
7296 		return ret;
7297 	}
7298 
7299 	ret = bus_register(&rbd_bus_type);
7300 	if (ret < 0)
7301 		device_unregister(&rbd_root_dev);
7302 
7303 	return ret;
7304 }
7305 
7306 static void __exit rbd_sysfs_cleanup(void)
7307 {
7308 	bus_unregister(&rbd_bus_type);
7309 	device_unregister(&rbd_root_dev);
7310 }
7311 
7312 static int __init rbd_slab_init(void)
7313 {
7314 	rbd_assert(!rbd_img_request_cache);
7315 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7316 	if (!rbd_img_request_cache)
7317 		return -ENOMEM;
7318 
7319 	rbd_assert(!rbd_obj_request_cache);
7320 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7321 	if (!rbd_obj_request_cache)
7322 		goto out_err;
7323 
7324 	return 0;
7325 
7326 out_err:
7327 	kmem_cache_destroy(rbd_img_request_cache);
7328 	rbd_img_request_cache = NULL;
7329 	return -ENOMEM;
7330 }
7331 
7332 static void rbd_slab_exit(void)
7333 {
7334 	rbd_assert(rbd_obj_request_cache);
7335 	kmem_cache_destroy(rbd_obj_request_cache);
7336 	rbd_obj_request_cache = NULL;
7337 
7338 	rbd_assert(rbd_img_request_cache);
7339 	kmem_cache_destroy(rbd_img_request_cache);
7340 	rbd_img_request_cache = NULL;
7341 }
7342 
7343 static int __init rbd_init(void)
7344 {
7345 	int rc;
7346 
7347 	if (!libceph_compatible(NULL)) {
7348 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7349 		return -EINVAL;
7350 	}
7351 
7352 	rc = rbd_slab_init();
7353 	if (rc)
7354 		return rc;
7355 
7356 	/*
7357 	 * The number of active work items is limited by the number of
7358 	 * rbd devices * queue depth, so leave @max_active at default.
7359 	 */
7360 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7361 	if (!rbd_wq) {
7362 		rc = -ENOMEM;
7363 		goto err_out_slab;
7364 	}
7365 
7366 	if (single_major) {
7367 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7368 		if (rbd_major < 0) {
7369 			rc = rbd_major;
7370 			goto err_out_wq;
7371 		}
7372 	}
7373 
7374 	rc = rbd_sysfs_init();
7375 	if (rc)
7376 		goto err_out_blkdev;
7377 
7378 	if (single_major)
7379 		pr_info("loaded (major %d)\n", rbd_major);
7380 	else
7381 		pr_info("loaded\n");
7382 
7383 	return 0;
7384 
7385 err_out_blkdev:
7386 	if (single_major)
7387 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7388 err_out_wq:
7389 	destroy_workqueue(rbd_wq);
7390 err_out_slab:
7391 	rbd_slab_exit();
7392 	return rc;
7393 }
7394 
7395 static void __exit rbd_exit(void)
7396 {
7397 	ida_destroy(&rbd_dev_id_ida);
7398 	rbd_sysfs_cleanup();
7399 	if (single_major)
7400 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7401 	destroy_workqueue(rbd_wq);
7402 	rbd_slab_exit();
7403 }
7404 
7405 module_init(rbd_init);
7406 module_exit(rbd_exit);
7407 
7408 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7409 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7410 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7411 /* following authorship retained from original osdblk.c */
7412 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7413 
7414 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7415 MODULE_LICENSE("GPL");
7416