xref: /openbmc/linux/drivers/block/rbd.c (revision c819e2cf)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_WRITE,
215 	OBJ_OP_READ,
216 	OBJ_OP_DISCARD,
217 };
218 
219 enum obj_req_flags {
220 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
221 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
222 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
223 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
224 };
225 
226 struct rbd_obj_request {
227 	const char		*object_name;
228 	u64			offset;		/* object start byte */
229 	u64			length;		/* bytes from offset */
230 	unsigned long		flags;
231 
232 	/*
233 	 * An object request associated with an image will have its
234 	 * img_data flag set; a standalone object request will not.
235 	 *
236 	 * A standalone object request will have which == BAD_WHICH
237 	 * and a null obj_request pointer.
238 	 *
239 	 * An object request initiated in support of a layered image
240 	 * object (to check for its existence before a write) will
241 	 * have which == BAD_WHICH and a non-null obj_request pointer.
242 	 *
243 	 * Finally, an object request for rbd image data will have
244 	 * which != BAD_WHICH, and will have a non-null img_request
245 	 * pointer.  The value of which will be in the range
246 	 * 0..(img_request->obj_request_count-1).
247 	 */
248 	union {
249 		struct rbd_obj_request	*obj_request;	/* STAT op */
250 		struct {
251 			struct rbd_img_request	*img_request;
252 			u64			img_offset;
253 			/* links for img_request->obj_requests list */
254 			struct list_head	links;
255 		};
256 	};
257 	u32			which;		/* posn image request list */
258 
259 	enum obj_request_type	type;
260 	union {
261 		struct bio	*bio_list;
262 		struct {
263 			struct page	**pages;
264 			u32		page_count;
265 		};
266 	};
267 	struct page		**copyup_pages;
268 	u32			copyup_page_count;
269 
270 	struct ceph_osd_request	*osd_req;
271 
272 	u64			xferred;	/* bytes transferred */
273 	int			result;
274 
275 	rbd_obj_callback_t	callback;
276 	struct completion	completion;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 	bool			read_only;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	struct list_head	rq_queue;	/* incoming rq queue */
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 	struct work_struct	rq_work;
346 
347 	struct rbd_image_header	header;
348 	unsigned long		flags;		/* possibly lock protected */
349 	struct rbd_spec		*spec;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* protects updating the header */
364 	struct rw_semaphore     header_rwsem;
365 
366 	struct rbd_mapping	mapping;
367 
368 	struct list_head	node;
369 
370 	/* sysfs related */
371 	struct device		dev;
372 	unsigned long		open_count;	/* protected by lock */
373 };
374 
375 /*
376  * Flag bits for rbd_dev->flags.  If atomicity is required,
377  * rbd_dev->lock is used to protect access.
378  *
379  * Currently, only the "removing" flag (which is coupled with the
380  * "open_count" field) requires atomic access.
381  */
382 enum rbd_dev_flags {
383 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
384 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
385 };
386 
387 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
388 
389 static LIST_HEAD(rbd_dev_list);    /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391 
392 static LIST_HEAD(rbd_client_list);		/* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394 
395 /* Slab caches for frequently-allocated structures */
396 
397 static struct kmem_cache	*rbd_img_request_cache;
398 static struct kmem_cache	*rbd_obj_request_cache;
399 static struct kmem_cache	*rbd_segment_name_cache;
400 
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403 
404 static struct workqueue_struct *rbd_wq;
405 
406 /*
407  * Default to false for now, as single-major requires >= 0.75 version of
408  * userspace rbd utility.
409  */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413 
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415 
416 static void rbd_dev_device_release(struct device *dev);
417 
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 		       size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 			  size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 				    size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 				       size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428 
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433 
434 static int minor_to_rbd_dev_id(int minor)
435 {
436 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438 
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443 
444 static struct attribute *rbd_bus_attrs[] = {
445 	&bus_attr_add.attr,
446 	&bus_attr_remove.attr,
447 	&bus_attr_add_single_major.attr,
448 	&bus_attr_remove_single_major.attr,
449 	NULL,
450 };
451 
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 				  struct attribute *attr, int index)
454 {
455 	if (!single_major &&
456 	    (attr == &bus_attr_add_single_major.attr ||
457 	     attr == &bus_attr_remove_single_major.attr))
458 		return 0;
459 
460 	return attr->mode;
461 }
462 
463 static const struct attribute_group rbd_bus_group = {
464 	.attrs = rbd_bus_attrs,
465 	.is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468 
469 static struct bus_type rbd_bus_type = {
470 	.name		= "rbd",
471 	.bus_groups	= rbd_bus_groups,
472 };
473 
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477 
478 static struct device rbd_root_dev = {
479 	.init_name =    "rbd",
480 	.release =      rbd_root_dev_release,
481 };
482 
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 	struct va_format vaf;
487 	va_list args;
488 
489 	va_start(args, fmt);
490 	vaf.fmt = fmt;
491 	vaf.va = &args;
492 
493 	if (!rbd_dev)
494 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 	else if (rbd_dev->disk)
496 		printk(KERN_WARNING "%s: %s: %pV\n",
497 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 		printk(KERN_WARNING "%s: image %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 		printk(KERN_WARNING "%s: id %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 	else	/* punt */
505 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 			RBD_DRV_NAME, rbd_dev, &vaf);
507 	va_end(args);
508 }
509 
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr)						\
512 		if (unlikely(!(expr))) {				\
513 			printk(KERN_ERR "\nAssertion failure in %s() "	\
514 						"at line %d:\n\n"	\
515 					"\trbd_assert(%s);\n\n",	\
516 					__func__, __LINE__, #expr);	\
517 			BUG();						\
518 		}
519 #else /* !RBD_DEBUG */
520 #  define rbd_assert(expr)	((void) 0)
521 #endif /* !RBD_DEBUG */
522 
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526 
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 					u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534 				u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 		u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538 
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542 	bool removing = false;
543 
544 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545 		return -EROFS;
546 
547 	spin_lock_irq(&rbd_dev->lock);
548 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549 		removing = true;
550 	else
551 		rbd_dev->open_count++;
552 	spin_unlock_irq(&rbd_dev->lock);
553 	if (removing)
554 		return -ENOENT;
555 
556 	(void) get_device(&rbd_dev->dev);
557 
558 	return 0;
559 }
560 
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563 	struct rbd_device *rbd_dev = disk->private_data;
564 	unsigned long open_count_before;
565 
566 	spin_lock_irq(&rbd_dev->lock);
567 	open_count_before = rbd_dev->open_count--;
568 	spin_unlock_irq(&rbd_dev->lock);
569 	rbd_assert(open_count_before > 0);
570 
571 	put_device(&rbd_dev->dev);
572 }
573 
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576 	int ret = 0;
577 	int val;
578 	bool ro;
579 	bool ro_changed = false;
580 
581 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
582 	if (get_user(val, (int __user *)(arg)))
583 		return -EFAULT;
584 
585 	ro = val ? true : false;
586 	/* Snapshot doesn't allow to write*/
587 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588 		return -EROFS;
589 
590 	spin_lock_irq(&rbd_dev->lock);
591 	/* prevent others open this device */
592 	if (rbd_dev->open_count > 1) {
593 		ret = -EBUSY;
594 		goto out;
595 	}
596 
597 	if (rbd_dev->mapping.read_only != ro) {
598 		rbd_dev->mapping.read_only = ro;
599 		ro_changed = true;
600 	}
601 
602 out:
603 	spin_unlock_irq(&rbd_dev->lock);
604 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605 	if (ret == 0 && ro_changed)
606 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607 
608 	return ret;
609 }
610 
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612 			unsigned int cmd, unsigned long arg)
613 {
614 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615 	int ret = 0;
616 
617 	switch (cmd) {
618 	case BLKROSET:
619 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
620 		break;
621 	default:
622 		ret = -ENOTTY;
623 	}
624 
625 	return ret;
626 }
627 
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630 				unsigned int cmd, unsigned long arg)
631 {
632 	return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635 
636 static const struct block_device_operations rbd_bd_ops = {
637 	.owner			= THIS_MODULE,
638 	.open			= rbd_open,
639 	.release		= rbd_release,
640 	.ioctl			= rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642 	.compat_ioctl		= rbd_compat_ioctl,
643 #endif
644 };
645 
646 /*
647  * Initialize an rbd client instance.  Success or not, this function
648  * consumes ceph_opts.  Caller holds client_mutex.
649  */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652 	struct rbd_client *rbdc;
653 	int ret = -ENOMEM;
654 
655 	dout("%s:\n", __func__);
656 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657 	if (!rbdc)
658 		goto out_opt;
659 
660 	kref_init(&rbdc->kref);
661 	INIT_LIST_HEAD(&rbdc->node);
662 
663 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664 	if (IS_ERR(rbdc->client))
665 		goto out_rbdc;
666 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667 
668 	ret = ceph_open_session(rbdc->client);
669 	if (ret < 0)
670 		goto out_client;
671 
672 	spin_lock(&rbd_client_list_lock);
673 	list_add_tail(&rbdc->node, &rbd_client_list);
674 	spin_unlock(&rbd_client_list_lock);
675 
676 	dout("%s: rbdc %p\n", __func__, rbdc);
677 
678 	return rbdc;
679 out_client:
680 	ceph_destroy_client(rbdc->client);
681 out_rbdc:
682 	kfree(rbdc);
683 out_opt:
684 	if (ceph_opts)
685 		ceph_destroy_options(ceph_opts);
686 	dout("%s: error %d\n", __func__, ret);
687 
688 	return ERR_PTR(ret);
689 }
690 
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693 	kref_get(&rbdc->kref);
694 
695 	return rbdc;
696 }
697 
698 /*
699  * Find a ceph client with specific addr and configuration.  If
700  * found, bump its reference count.
701  */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704 	struct rbd_client *client_node;
705 	bool found = false;
706 
707 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708 		return NULL;
709 
710 	spin_lock(&rbd_client_list_lock);
711 	list_for_each_entry(client_node, &rbd_client_list, node) {
712 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
713 			__rbd_get_client(client_node);
714 
715 			found = true;
716 			break;
717 		}
718 	}
719 	spin_unlock(&rbd_client_list_lock);
720 
721 	return found ? client_node : NULL;
722 }
723 
724 /*
725  * mount options
726  */
727 enum {
728 	Opt_last_int,
729 	/* int args above */
730 	Opt_last_string,
731 	/* string args above */
732 	Opt_read_only,
733 	Opt_read_write,
734 	/* Boolean args above */
735 	Opt_last_bool,
736 };
737 
738 static match_table_t rbd_opts_tokens = {
739 	/* int args above */
740 	/* string args above */
741 	{Opt_read_only, "read_only"},
742 	{Opt_read_only, "ro"},		/* Alternate spelling */
743 	{Opt_read_write, "read_write"},
744 	{Opt_read_write, "rw"},		/* Alternate spelling */
745 	/* Boolean args above */
746 	{-1, NULL}
747 };
748 
749 struct rbd_options {
750 	bool	read_only;
751 };
752 
753 #define RBD_READ_ONLY_DEFAULT	false
754 
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757 	struct rbd_options *rbd_opts = private;
758 	substring_t argstr[MAX_OPT_ARGS];
759 	int token, intval, ret;
760 
761 	token = match_token(c, rbd_opts_tokens, argstr);
762 	if (token < 0)
763 		return -EINVAL;
764 
765 	if (token < Opt_last_int) {
766 		ret = match_int(&argstr[0], &intval);
767 		if (ret < 0) {
768 			pr_err("bad mount option arg (not int) "
769 			       "at '%s'\n", c);
770 			return ret;
771 		}
772 		dout("got int token %d val %d\n", token, intval);
773 	} else if (token > Opt_last_int && token < Opt_last_string) {
774 		dout("got string token %d val %s\n", token,
775 		     argstr[0].from);
776 	} else if (token > Opt_last_string && token < Opt_last_bool) {
777 		dout("got Boolean token %d\n", token);
778 	} else {
779 		dout("got token %d\n", token);
780 	}
781 
782 	switch (token) {
783 	case Opt_read_only:
784 		rbd_opts->read_only = true;
785 		break;
786 	case Opt_read_write:
787 		rbd_opts->read_only = false;
788 		break;
789 	default:
790 		rbd_assert(false);
791 		break;
792 	}
793 	return 0;
794 }
795 
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798 	switch (op_type) {
799 	case OBJ_OP_READ:
800 		return "read";
801 	case OBJ_OP_WRITE:
802 		return "write";
803 	case OBJ_OP_DISCARD:
804 		return "discard";
805 	default:
806 		return "???";
807 	}
808 }
809 
810 /*
811  * Get a ceph client with specific addr and configuration, if one does
812  * not exist create it.  Either way, ceph_opts is consumed by this
813  * function.
814  */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817 	struct rbd_client *rbdc;
818 
819 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820 	rbdc = rbd_client_find(ceph_opts);
821 	if (rbdc)	/* using an existing client */
822 		ceph_destroy_options(ceph_opts);
823 	else
824 		rbdc = rbd_client_create(ceph_opts);
825 	mutex_unlock(&client_mutex);
826 
827 	return rbdc;
828 }
829 
830 /*
831  * Destroy ceph client
832  *
833  * Caller must hold rbd_client_list_lock.
834  */
835 static void rbd_client_release(struct kref *kref)
836 {
837 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838 
839 	dout("%s: rbdc %p\n", __func__, rbdc);
840 	spin_lock(&rbd_client_list_lock);
841 	list_del(&rbdc->node);
842 	spin_unlock(&rbd_client_list_lock);
843 
844 	ceph_destroy_client(rbdc->client);
845 	kfree(rbdc);
846 }
847 
848 /*
849  * Drop reference to ceph client node. If it's not referenced anymore, release
850  * it.
851  */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854 	if (rbdc)
855 		kref_put(&rbdc->kref, rbd_client_release);
856 }
857 
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860 	return image_format == 1 || image_format == 2;
861 }
862 
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865 	size_t size;
866 	u32 snap_count;
867 
868 	/* The header has to start with the magic rbd header text */
869 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870 		return false;
871 
872 	/* The bio layer requires at least sector-sized I/O */
873 
874 	if (ondisk->options.order < SECTOR_SHIFT)
875 		return false;
876 
877 	/* If we use u64 in a few spots we may be able to loosen this */
878 
879 	if (ondisk->options.order > 8 * sizeof (int) - 1)
880 		return false;
881 
882 	/*
883 	 * The size of a snapshot header has to fit in a size_t, and
884 	 * that limits the number of snapshots.
885 	 */
886 	snap_count = le32_to_cpu(ondisk->snap_count);
887 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
888 	if (snap_count > size / sizeof (__le64))
889 		return false;
890 
891 	/*
892 	 * Not only that, but the size of the entire the snapshot
893 	 * header must also be representable in a size_t.
894 	 */
895 	size -= snap_count * sizeof (__le64);
896 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897 		return false;
898 
899 	return true;
900 }
901 
902 /*
903  * Fill an rbd image header with information from the given format 1
904  * on-disk header.
905  */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907 				 struct rbd_image_header_ondisk *ondisk)
908 {
909 	struct rbd_image_header *header = &rbd_dev->header;
910 	bool first_time = header->object_prefix == NULL;
911 	struct ceph_snap_context *snapc;
912 	char *object_prefix = NULL;
913 	char *snap_names = NULL;
914 	u64 *snap_sizes = NULL;
915 	u32 snap_count;
916 	size_t size;
917 	int ret = -ENOMEM;
918 	u32 i;
919 
920 	/* Allocate this now to avoid having to handle failure below */
921 
922 	if (first_time) {
923 		size_t len;
924 
925 		len = strnlen(ondisk->object_prefix,
926 				sizeof (ondisk->object_prefix));
927 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
928 		if (!object_prefix)
929 			return -ENOMEM;
930 		memcpy(object_prefix, ondisk->object_prefix, len);
931 		object_prefix[len] = '\0';
932 	}
933 
934 	/* Allocate the snapshot context and fill it in */
935 
936 	snap_count = le32_to_cpu(ondisk->snap_count);
937 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938 	if (!snapc)
939 		goto out_err;
940 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 	if (snap_count) {
942 		struct rbd_image_snap_ondisk *snaps;
943 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944 
945 		/* We'll keep a copy of the snapshot names... */
946 
947 		if (snap_names_len > (u64)SIZE_MAX)
948 			goto out_2big;
949 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950 		if (!snap_names)
951 			goto out_err;
952 
953 		/* ...as well as the array of their sizes. */
954 
955 		size = snap_count * sizeof (*header->snap_sizes);
956 		snap_sizes = kmalloc(size, GFP_KERNEL);
957 		if (!snap_sizes)
958 			goto out_err;
959 
960 		/*
961 		 * Copy the names, and fill in each snapshot's id
962 		 * and size.
963 		 *
964 		 * Note that rbd_dev_v1_header_info() guarantees the
965 		 * ondisk buffer we're working with has
966 		 * snap_names_len bytes beyond the end of the
967 		 * snapshot id array, this memcpy() is safe.
968 		 */
969 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970 		snaps = ondisk->snaps;
971 		for (i = 0; i < snap_count; i++) {
972 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974 		}
975 	}
976 
977 	/* We won't fail any more, fill in the header */
978 
979 	if (first_time) {
980 		header->object_prefix = object_prefix;
981 		header->obj_order = ondisk->options.order;
982 		header->crypt_type = ondisk->options.crypt_type;
983 		header->comp_type = ondisk->options.comp_type;
984 		/* The rest aren't used for format 1 images */
985 		header->stripe_unit = 0;
986 		header->stripe_count = 0;
987 		header->features = 0;
988 	} else {
989 		ceph_put_snap_context(header->snapc);
990 		kfree(header->snap_names);
991 		kfree(header->snap_sizes);
992 	}
993 
994 	/* The remaining fields always get updated (when we refresh) */
995 
996 	header->image_size = le64_to_cpu(ondisk->image_size);
997 	header->snapc = snapc;
998 	header->snap_names = snap_names;
999 	header->snap_sizes = snap_sizes;
1000 
1001 	return 0;
1002 out_2big:
1003 	ret = -EIO;
1004 out_err:
1005 	kfree(snap_sizes);
1006 	kfree(snap_names);
1007 	ceph_put_snap_context(snapc);
1008 	kfree(object_prefix);
1009 
1010 	return ret;
1011 }
1012 
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015 	const char *snap_name;
1016 
1017 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018 
1019 	/* Skip over names until we find the one we are looking for */
1020 
1021 	snap_name = rbd_dev->header.snap_names;
1022 	while (which--)
1023 		snap_name += strlen(snap_name) + 1;
1024 
1025 	return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027 
1028 /*
1029  * Snapshot id comparison function for use with qsort()/bsearch().
1030  * Note that result is for snapshots in *descending* order.
1031  */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034 	u64 snap_id1 = *(u64 *)s1;
1035 	u64 snap_id2 = *(u64 *)s2;
1036 
1037 	if (snap_id1 < snap_id2)
1038 		return 1;
1039 	return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041 
1042 /*
1043  * Search a snapshot context to see if the given snapshot id is
1044  * present.
1045  *
1046  * Returns the position of the snapshot id in the array if it's found,
1047  * or BAD_SNAP_INDEX otherwise.
1048  *
1049  * Note: The snapshot array is in kept sorted (by the osd) in
1050  * reverse order, highest snapshot id first.
1051  */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055 	u64 *found;
1056 
1057 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058 				sizeof (snap_id), snapid_compare_reverse);
1059 
1060 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062 
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064 					u64 snap_id)
1065 {
1066 	u32 which;
1067 	const char *snap_name;
1068 
1069 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1070 	if (which == BAD_SNAP_INDEX)
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076 
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079 	if (snap_id == CEPH_NOSNAP)
1080 		return RBD_SNAP_HEAD_NAME;
1081 
1082 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083 	if (rbd_dev->image_format == 1)
1084 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085 
1086 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088 
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090 				u64 *snap_size)
1091 {
1092 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093 	if (snap_id == CEPH_NOSNAP) {
1094 		*snap_size = rbd_dev->header.image_size;
1095 	} else if (rbd_dev->image_format == 1) {
1096 		u32 which;
1097 
1098 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1099 		if (which == BAD_SNAP_INDEX)
1100 			return -ENOENT;
1101 
1102 		*snap_size = rbd_dev->header.snap_sizes[which];
1103 	} else {
1104 		u64 size = 0;
1105 		int ret;
1106 
1107 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108 		if (ret)
1109 			return ret;
1110 
1111 		*snap_size = size;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117 			u64 *snap_features)
1118 {
1119 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120 	if (snap_id == CEPH_NOSNAP) {
1121 		*snap_features = rbd_dev->header.features;
1122 	} else if (rbd_dev->image_format == 1) {
1123 		*snap_features = 0;	/* No features for format 1 */
1124 	} else {
1125 		u64 features = 0;
1126 		int ret;
1127 
1128 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129 		if (ret)
1130 			return ret;
1131 
1132 		*snap_features = features;
1133 	}
1134 	return 0;
1135 }
1136 
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139 	u64 snap_id = rbd_dev->spec->snap_id;
1140 	u64 size = 0;
1141 	u64 features = 0;
1142 	int ret;
1143 
1144 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145 	if (ret)
1146 		return ret;
1147 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148 	if (ret)
1149 		return ret;
1150 
1151 	rbd_dev->mapping.size = size;
1152 	rbd_dev->mapping.features = features;
1153 
1154 	return 0;
1155 }
1156 
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159 	rbd_dev->mapping.size = 0;
1160 	rbd_dev->mapping.features = 0;
1161 }
1162 
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165 	/* The explicit cast here is needed to drop the const qualifier */
1166 
1167 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169 
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172 	char *name;
1173 	u64 segment;
1174 	int ret;
1175 	char *name_format;
1176 
1177 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178 	if (!name)
1179 		return NULL;
1180 	segment = offset >> rbd_dev->header.obj_order;
1181 	name_format = "%s.%012llx";
1182 	if (rbd_dev->image_format == 2)
1183 		name_format = "%s.%016llx";
1184 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185 			rbd_dev->header.object_prefix, segment);
1186 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187 		pr_err("error formatting segment name for #%llu (%d)\n",
1188 			segment, ret);
1189 		rbd_segment_name_free(name);
1190 		name = NULL;
1191 	}
1192 
1193 	return name;
1194 }
1195 
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199 
1200 	return offset & (segment_size - 1);
1201 }
1202 
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204 				u64 offset, u64 length)
1205 {
1206 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207 
1208 	offset &= segment_size - 1;
1209 
1210 	rbd_assert(length <= U64_MAX - offset);
1211 	if (offset + length > segment_size)
1212 		length = segment_size - offset;
1213 
1214 	return length;
1215 }
1216 
1217 /*
1218  * returns the size of an object in the image
1219  */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222 	return 1 << header->obj_order;
1223 }
1224 
1225 /*
1226  * bio helpers
1227  */
1228 
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231 	struct bio *tmp;
1232 
1233 	while (chain) {
1234 		tmp = chain;
1235 		chain = chain->bi_next;
1236 		bio_put(tmp);
1237 	}
1238 }
1239 
1240 /*
1241  * zeros a bio chain, starting at specific offset
1242  */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245 	struct bio_vec bv;
1246 	struct bvec_iter iter;
1247 	unsigned long flags;
1248 	void *buf;
1249 	int pos = 0;
1250 
1251 	while (chain) {
1252 		bio_for_each_segment(bv, chain, iter) {
1253 			if (pos + bv.bv_len > start_ofs) {
1254 				int remainder = max(start_ofs - pos, 0);
1255 				buf = bvec_kmap_irq(&bv, &flags);
1256 				memset(buf + remainder, 0,
1257 				       bv.bv_len - remainder);
1258 				flush_dcache_page(bv.bv_page);
1259 				bvec_kunmap_irq(buf, &flags);
1260 			}
1261 			pos += bv.bv_len;
1262 		}
1263 
1264 		chain = chain->bi_next;
1265 	}
1266 }
1267 
1268 /*
1269  * similar to zero_bio_chain(), zeros data defined by a page array,
1270  * starting at the given byte offset from the start of the array and
1271  * continuing up to the given end offset.  The pages array is
1272  * assumed to be big enough to hold all bytes up to the end.
1273  */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276 	struct page **page = &pages[offset >> PAGE_SHIFT];
1277 
1278 	rbd_assert(end > offset);
1279 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1280 	while (offset < end) {
1281 		size_t page_offset;
1282 		size_t length;
1283 		unsigned long flags;
1284 		void *kaddr;
1285 
1286 		page_offset = offset & ~PAGE_MASK;
1287 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288 		local_irq_save(flags);
1289 		kaddr = kmap_atomic(*page);
1290 		memset(kaddr + page_offset, 0, length);
1291 		flush_dcache_page(*page);
1292 		kunmap_atomic(kaddr);
1293 		local_irq_restore(flags);
1294 
1295 		offset += length;
1296 		page++;
1297 	}
1298 }
1299 
1300 /*
1301  * Clone a portion of a bio, starting at the given byte offset
1302  * and continuing for the number of bytes indicated.
1303  */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305 					unsigned int offset,
1306 					unsigned int len,
1307 					gfp_t gfpmask)
1308 {
1309 	struct bio *bio;
1310 
1311 	bio = bio_clone(bio_src, gfpmask);
1312 	if (!bio)
1313 		return NULL;	/* ENOMEM */
1314 
1315 	bio_advance(bio, offset);
1316 	bio->bi_iter.bi_size = len;
1317 
1318 	return bio;
1319 }
1320 
1321 /*
1322  * Clone a portion of a bio chain, starting at the given byte offset
1323  * into the first bio in the source chain and continuing for the
1324  * number of bytes indicated.  The result is another bio chain of
1325  * exactly the given length, or a null pointer on error.
1326  *
1327  * The bio_src and offset parameters are both in-out.  On entry they
1328  * refer to the first source bio and the offset into that bio where
1329  * the start of data to be cloned is located.
1330  *
1331  * On return, bio_src is updated to refer to the bio in the source
1332  * chain that contains first un-cloned byte, and *offset will
1333  * contain the offset of that byte within that bio.
1334  */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336 					unsigned int *offset,
1337 					unsigned int len,
1338 					gfp_t gfpmask)
1339 {
1340 	struct bio *bi = *bio_src;
1341 	unsigned int off = *offset;
1342 	struct bio *chain = NULL;
1343 	struct bio **end;
1344 
1345 	/* Build up a chain of clone bios up to the limit */
1346 
1347 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1348 		return NULL;		/* Nothing to clone */
1349 
1350 	end = &chain;
1351 	while (len) {
1352 		unsigned int bi_size;
1353 		struct bio *bio;
1354 
1355 		if (!bi) {
1356 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357 			goto out_err;	/* EINVAL; ran out of bio's */
1358 		}
1359 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 		if (!bio)
1362 			goto out_err;	/* ENOMEM */
1363 
1364 		*end = bio;
1365 		end = &bio->bi_next;
1366 
1367 		off += bi_size;
1368 		if (off == bi->bi_iter.bi_size) {
1369 			bi = bi->bi_next;
1370 			off = 0;
1371 		}
1372 		len -= bi_size;
1373 	}
1374 	*bio_src = bi;
1375 	*offset = off;
1376 
1377 	return chain;
1378 out_err:
1379 	bio_chain_put(chain);
1380 
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * The default/initial value for all object request flags is 0.  For
1386  * each flag, once its value is set to 1 it is never reset to 0
1387  * again.
1388  */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392 		struct rbd_device *rbd_dev;
1393 
1394 		rbd_dev = obj_request->img_request->rbd_dev;
1395 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396 			obj_request);
1397 	}
1398 }
1399 
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402 	smp_mb();
1403 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405 
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409 		struct rbd_device *rbd_dev = NULL;
1410 
1411 		if (obj_request_img_data_test(obj_request))
1412 			rbd_dev = obj_request->img_request->rbd_dev;
1413 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1414 			obj_request);
1415 	}
1416 }
1417 
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420 	smp_mb();
1421 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423 
1424 /*
1425  * This sets the KNOWN flag after (possibly) setting the EXISTS
1426  * flag.  The latter is set based on the "exists" value provided.
1427  *
1428  * Note that for our purposes once an object exists it never goes
1429  * away again.  It's possible that the response from two existence
1430  * checks are separated by the creation of the target object, and
1431  * the first ("doesn't exist") response arrives *after* the second
1432  * ("does exist").  In that case we ignore the second one.
1433  */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435 				bool exists)
1436 {
1437 	if (exists)
1438 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440 	smp_mb();
1441 }
1442 
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445 	smp_mb();
1446 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448 
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458 
1459 	return obj_request->img_offset <
1460 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462 
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466 		atomic_read(&obj_request->kref.refcount));
1467 	kref_get(&obj_request->kref);
1468 }
1469 
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473 	rbd_assert(obj_request != NULL);
1474 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 		atomic_read(&obj_request->kref.refcount));
1476 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478 
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481 	dout("%s: img %p (was %d)\n", __func__, img_request,
1482 	     atomic_read(&img_request->kref.refcount));
1483 	kref_get(&img_request->kref);
1484 }
1485 
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491 	rbd_assert(img_request != NULL);
1492 	dout("%s: img %p (was %d)\n", __func__, img_request,
1493 		atomic_read(&img_request->kref.refcount));
1494 	if (img_request_child_test(img_request))
1495 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 	else
1497 		kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499 
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501 					struct rbd_obj_request *obj_request)
1502 {
1503 	rbd_assert(obj_request->img_request == NULL);
1504 
1505 	/* Image request now owns object's original reference */
1506 	obj_request->img_request = img_request;
1507 	obj_request->which = img_request->obj_request_count;
1508 	rbd_assert(!obj_request_img_data_test(obj_request));
1509 	obj_request_img_data_set(obj_request);
1510 	rbd_assert(obj_request->which != BAD_WHICH);
1511 	img_request->obj_request_count++;
1512 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1513 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514 		obj_request->which);
1515 }
1516 
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518 					struct rbd_obj_request *obj_request)
1519 {
1520 	rbd_assert(obj_request->which != BAD_WHICH);
1521 
1522 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 		obj_request->which);
1524 	list_del(&obj_request->links);
1525 	rbd_assert(img_request->obj_request_count > 0);
1526 	img_request->obj_request_count--;
1527 	rbd_assert(obj_request->which == img_request->obj_request_count);
1528 	obj_request->which = BAD_WHICH;
1529 	rbd_assert(obj_request_img_data_test(obj_request));
1530 	rbd_assert(obj_request->img_request == img_request);
1531 	obj_request->img_request = NULL;
1532 	obj_request->callback = NULL;
1533 	rbd_obj_request_put(obj_request);
1534 }
1535 
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538 	switch (type) {
1539 	case OBJ_REQUEST_NODATA:
1540 	case OBJ_REQUEST_BIO:
1541 	case OBJ_REQUEST_PAGES:
1542 		return true;
1543 	default:
1544 		return false;
1545 	}
1546 }
1547 
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549 				struct rbd_obj_request *obj_request)
1550 {
1551 	dout("%s %p\n", __func__, obj_request);
1552 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554 
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560 
1561 /*
1562  * Wait for an object request to complete.  If interrupted, cancel the
1563  * underlying osd request.
1564  */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567 	int ret;
1568 
1569 	dout("%s %p\n", __func__, obj_request);
1570 
1571 	ret = wait_for_completion_interruptible(&obj_request->completion);
1572 	if (ret < 0) {
1573 		dout("%s %p interrupted\n", __func__, obj_request);
1574 		rbd_obj_request_end(obj_request);
1575 		return ret;
1576 	}
1577 
1578 	dout("%s %p done\n", __func__, obj_request);
1579 	return 0;
1580 }
1581 
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584 
1585 	dout("%s: img %p\n", __func__, img_request);
1586 
1587 	/*
1588 	 * If no error occurred, compute the aggregate transfer
1589 	 * count for the image request.  We could instead use
1590 	 * atomic64_cmpxchg() to update it as each object request
1591 	 * completes; not clear which way is better off hand.
1592 	 */
1593 	if (!img_request->result) {
1594 		struct rbd_obj_request *obj_request;
1595 		u64 xferred = 0;
1596 
1597 		for_each_obj_request(img_request, obj_request)
1598 			xferred += obj_request->xferred;
1599 		img_request->xferred = xferred;
1600 	}
1601 
1602 	if (img_request->callback)
1603 		img_request->callback(img_request);
1604 	else
1605 		rbd_img_request_put(img_request);
1606 }
1607 
1608 /*
1609  * The default/initial value for all image request flags is 0.  Each
1610  * is conditionally set to 1 at image request initialization time
1611  * and currently never change thereafter.
1612  */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1616 	smp_mb();
1617 }
1618 
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621 	smp_mb();
1622 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624 
1625 /*
1626  * Set the discard flag when the img_request is an discard request
1627  */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631 	smp_mb();
1632 }
1633 
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636 	smp_mb();
1637 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639 
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1643 	smp_mb();
1644 }
1645 
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649 	smp_mb();
1650 }
1651 
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654 	smp_mb();
1655 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657 
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661 	smp_mb();
1662 }
1663 
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672 	smp_mb();
1673 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675 
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679 	if (img_request_write_test(img_request))
1680 		return OBJ_OP_WRITE;
1681 	else if (img_request_discard_test(img_request))
1682 		return OBJ_OP_DISCARD;
1683 	else
1684 		return OBJ_OP_READ;
1685 }
1686 
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690 	u64 xferred = obj_request->xferred;
1691 	u64 length = obj_request->length;
1692 
1693 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694 		obj_request, obj_request->img_request, obj_request->result,
1695 		xferred, length);
1696 	/*
1697 	 * ENOENT means a hole in the image.  We zero-fill the entire
1698 	 * length of the request.  A short read also implies zero-fill
1699 	 * to the end of the request.  An error requires the whole
1700 	 * length of the request to be reported finished with an error
1701 	 * to the block layer.  In each case we update the xferred
1702 	 * count to indicate the whole request was satisfied.
1703 	 */
1704 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705 	if (obj_request->result == -ENOENT) {
1706 		if (obj_request->type == OBJ_REQUEST_BIO)
1707 			zero_bio_chain(obj_request->bio_list, 0);
1708 		else
1709 			zero_pages(obj_request->pages, 0, length);
1710 		obj_request->result = 0;
1711 	} else if (xferred < length && !obj_request->result) {
1712 		if (obj_request->type == OBJ_REQUEST_BIO)
1713 			zero_bio_chain(obj_request->bio_list, xferred);
1714 		else
1715 			zero_pages(obj_request->pages, xferred, length);
1716 	}
1717 	obj_request->xferred = length;
1718 	obj_request_done_set(obj_request);
1719 }
1720 
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1724 		obj_request->callback);
1725 	if (obj_request->callback)
1726 		obj_request->callback(obj_request);
1727 	else
1728 		complete_all(&obj_request->completion);
1729 }
1730 
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733 	dout("%s: obj %p\n", __func__, obj_request);
1734 	obj_request_done_set(obj_request);
1735 }
1736 
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739 	struct rbd_img_request *img_request = NULL;
1740 	struct rbd_device *rbd_dev = NULL;
1741 	bool layered = false;
1742 
1743 	if (obj_request_img_data_test(obj_request)) {
1744 		img_request = obj_request->img_request;
1745 		layered = img_request && img_request_layered_test(img_request);
1746 		rbd_dev = img_request->rbd_dev;
1747 	}
1748 
1749 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750 		obj_request, img_request, obj_request->result,
1751 		obj_request->xferred, obj_request->length);
1752 	if (layered && obj_request->result == -ENOENT &&
1753 			obj_request->img_offset < rbd_dev->parent_overlap)
1754 		rbd_img_parent_read(obj_request);
1755 	else if (img_request)
1756 		rbd_img_obj_request_read_callback(obj_request);
1757 	else
1758 		obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764 		obj_request->result, obj_request->length);
1765 	/*
1766 	 * There is no such thing as a successful short write.  Set
1767 	 * it to our originally-requested length.
1768 	 */
1769 	obj_request->xferred = obj_request->length;
1770 	obj_request_done_set(obj_request);
1771 }
1772 
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776 		obj_request->result, obj_request->length);
1777 	/*
1778 	 * There is no such thing as a successful short discard.  Set
1779 	 * it to our originally-requested length.
1780 	 */
1781 	obj_request->xferred = obj_request->length;
1782 	/* discarding a non-existent object is not a problem */
1783 	if (obj_request->result == -ENOENT)
1784 		obj_request->result = 0;
1785 	obj_request_done_set(obj_request);
1786 }
1787 
1788 /*
1789  * For a simple stat call there's nothing to do.  We'll do more if
1790  * this is part of a write sequence for a layered image.
1791  */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794 	dout("%s: obj %p\n", __func__, obj_request);
1795 	obj_request_done_set(obj_request);
1796 }
1797 
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799 				struct ceph_msg *msg)
1800 {
1801 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1802 	u16 opcode;
1803 
1804 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805 	rbd_assert(osd_req == obj_request->osd_req);
1806 	if (obj_request_img_data_test(obj_request)) {
1807 		rbd_assert(obj_request->img_request);
1808 		rbd_assert(obj_request->which != BAD_WHICH);
1809 	} else {
1810 		rbd_assert(obj_request->which == BAD_WHICH);
1811 	}
1812 
1813 	if (osd_req->r_result < 0)
1814 		obj_request->result = osd_req->r_result;
1815 
1816 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817 
1818 	/*
1819 	 * We support a 64-bit length, but ultimately it has to be
1820 	 * passed to blk_end_request(), which takes an unsigned int.
1821 	 */
1822 	obj_request->xferred = osd_req->r_reply_op_len[0];
1823 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824 
1825 	opcode = osd_req->r_ops[0].op;
1826 	switch (opcode) {
1827 	case CEPH_OSD_OP_READ:
1828 		rbd_osd_read_callback(obj_request);
1829 		break;
1830 	case CEPH_OSD_OP_SETALLOCHINT:
1831 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 		/* fall through */
1833 	case CEPH_OSD_OP_WRITE:
1834 		rbd_osd_write_callback(obj_request);
1835 		break;
1836 	case CEPH_OSD_OP_STAT:
1837 		rbd_osd_stat_callback(obj_request);
1838 		break;
1839 	case CEPH_OSD_OP_DELETE:
1840 	case CEPH_OSD_OP_TRUNCATE:
1841 	case CEPH_OSD_OP_ZERO:
1842 		rbd_osd_discard_callback(obj_request);
1843 		break;
1844 	case CEPH_OSD_OP_CALL:
1845 	case CEPH_OSD_OP_NOTIFY_ACK:
1846 	case CEPH_OSD_OP_WATCH:
1847 		rbd_osd_trivial_callback(obj_request);
1848 		break;
1849 	default:
1850 		rbd_warn(NULL, "%s: unsupported op %hu",
1851 			obj_request->object_name, (unsigned short) opcode);
1852 		break;
1853 	}
1854 
1855 	if (obj_request_done_test(obj_request))
1856 		rbd_obj_request_complete(obj_request);
1857 }
1858 
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861 	struct rbd_img_request *img_request = obj_request->img_request;
1862 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1863 	u64 snap_id;
1864 
1865 	rbd_assert(osd_req != NULL);
1866 
1867 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868 	ceph_osdc_build_request(osd_req, obj_request->offset,
1869 			NULL, snap_id, NULL);
1870 }
1871 
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874 	struct rbd_img_request *img_request = obj_request->img_request;
1875 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 	struct ceph_snap_context *snapc;
1877 	struct timespec mtime = CURRENT_TIME;
1878 
1879 	rbd_assert(osd_req != NULL);
1880 
1881 	snapc = img_request ? img_request->snapc : NULL;
1882 	ceph_osdc_build_request(osd_req, obj_request->offset,
1883 			snapc, CEPH_NOSNAP, &mtime);
1884 }
1885 
1886 /*
1887  * Create an osd request.  A read request has one osd op (read).
1888  * A write request has either one (watch) or two (hint+write) osd ops.
1889  * (All rbd data writes are prefixed with an allocation hint op, but
1890  * technically osd watch is a write request, hence this distinction.)
1891  */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893 					struct rbd_device *rbd_dev,
1894 					enum obj_operation_type op_type,
1895 					unsigned int num_ops,
1896 					struct rbd_obj_request *obj_request)
1897 {
1898 	struct ceph_snap_context *snapc = NULL;
1899 	struct ceph_osd_client *osdc;
1900 	struct ceph_osd_request *osd_req;
1901 
1902 	if (obj_request_img_data_test(obj_request) &&
1903 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904 		struct rbd_img_request *img_request = obj_request->img_request;
1905 		if (op_type == OBJ_OP_WRITE) {
1906 			rbd_assert(img_request_write_test(img_request));
1907 		} else {
1908 			rbd_assert(img_request_discard_test(img_request));
1909 		}
1910 		snapc = img_request->snapc;
1911 	}
1912 
1913 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914 
1915 	/* Allocate and initialize the request, for the num_ops ops */
1916 
1917 	osdc = &rbd_dev->rbd_client->client->osdc;
1918 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919 					  GFP_ATOMIC);
1920 	if (!osd_req)
1921 		return NULL;	/* ENOMEM */
1922 
1923 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 	else
1926 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927 
1928 	osd_req->r_callback = rbd_osd_req_callback;
1929 	osd_req->r_priv = obj_request;
1930 
1931 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933 
1934 	return osd_req;
1935 }
1936 
1937 /*
1938  * Create a copyup osd request based on the information in the object
1939  * request supplied.  A copyup request has two or three osd ops, a
1940  * copyup method call, potentially a hint op, and a write or truncate
1941  * or zero op.
1942  */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946 	struct rbd_img_request *img_request;
1947 	struct ceph_snap_context *snapc;
1948 	struct rbd_device *rbd_dev;
1949 	struct ceph_osd_client *osdc;
1950 	struct ceph_osd_request *osd_req;
1951 	int num_osd_ops = 3;
1952 
1953 	rbd_assert(obj_request_img_data_test(obj_request));
1954 	img_request = obj_request->img_request;
1955 	rbd_assert(img_request);
1956 	rbd_assert(img_request_write_test(img_request) ||
1957 			img_request_discard_test(img_request));
1958 
1959 	if (img_request_discard_test(img_request))
1960 		num_osd_ops = 2;
1961 
1962 	/* Allocate and initialize the request, for all the ops */
1963 
1964 	snapc = img_request->snapc;
1965 	rbd_dev = img_request->rbd_dev;
1966 	osdc = &rbd_dev->rbd_client->client->osdc;
1967 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968 						false, GFP_ATOMIC);
1969 	if (!osd_req)
1970 		return NULL;	/* ENOMEM */
1971 
1972 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973 	osd_req->r_callback = rbd_osd_req_callback;
1974 	osd_req->r_priv = obj_request;
1975 
1976 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978 
1979 	return osd_req;
1980 }
1981 
1982 
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985 	ceph_osdc_put_request(osd_req);
1986 }
1987 
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989 
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991 						u64 offset, u64 length,
1992 						enum obj_request_type type)
1993 {
1994 	struct rbd_obj_request *obj_request;
1995 	size_t size;
1996 	char *name;
1997 
1998 	rbd_assert(obj_request_type_valid(type));
1999 
2000 	size = strlen(object_name) + 1;
2001 	name = kmalloc(size, GFP_KERNEL);
2002 	if (!name)
2003 		return NULL;
2004 
2005 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006 	if (!obj_request) {
2007 		kfree(name);
2008 		return NULL;
2009 	}
2010 
2011 	obj_request->object_name = memcpy(name, object_name, size);
2012 	obj_request->offset = offset;
2013 	obj_request->length = length;
2014 	obj_request->flags = 0;
2015 	obj_request->which = BAD_WHICH;
2016 	obj_request->type = type;
2017 	INIT_LIST_HEAD(&obj_request->links);
2018 	init_completion(&obj_request->completion);
2019 	kref_init(&obj_request->kref);
2020 
2021 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022 		offset, length, (int)type, obj_request);
2023 
2024 	return obj_request;
2025 }
2026 
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029 	struct rbd_obj_request *obj_request;
2030 
2031 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2032 
2033 	dout("%s: obj %p\n", __func__, obj_request);
2034 
2035 	rbd_assert(obj_request->img_request == NULL);
2036 	rbd_assert(obj_request->which == BAD_WHICH);
2037 
2038 	if (obj_request->osd_req)
2039 		rbd_osd_req_destroy(obj_request->osd_req);
2040 
2041 	rbd_assert(obj_request_type_valid(obj_request->type));
2042 	switch (obj_request->type) {
2043 	case OBJ_REQUEST_NODATA:
2044 		break;		/* Nothing to do */
2045 	case OBJ_REQUEST_BIO:
2046 		if (obj_request->bio_list)
2047 			bio_chain_put(obj_request->bio_list);
2048 		break;
2049 	case OBJ_REQUEST_PAGES:
2050 		if (obj_request->pages)
2051 			ceph_release_page_vector(obj_request->pages,
2052 						obj_request->page_count);
2053 		break;
2054 	}
2055 
2056 	kfree(obj_request->object_name);
2057 	obj_request->object_name = NULL;
2058 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060 
2061 /* It's OK to call this for a device with no parent */
2062 
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066 	rbd_dev_remove_parent(rbd_dev);
2067 	rbd_spec_put(rbd_dev->parent_spec);
2068 	rbd_dev->parent_spec = NULL;
2069 	rbd_dev->parent_overlap = 0;
2070 }
2071 
2072 /*
2073  * Parent image reference counting is used to determine when an
2074  * image's parent fields can be safely torn down--after there are no
2075  * more in-flight requests to the parent image.  When the last
2076  * reference is dropped, cleaning them up is safe.
2077  */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080 	int counter;
2081 
2082 	if (!rbd_dev->parent_spec)
2083 		return;
2084 
2085 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086 	if (counter > 0)
2087 		return;
2088 
2089 	/* Last reference; clean up parent data structures */
2090 
2091 	if (!counter)
2092 		rbd_dev_unparent(rbd_dev);
2093 	else
2094 		rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096 
2097 /*
2098  * If an image has a non-zero parent overlap, get a reference to its
2099  * parent.
2100  *
2101  * Returns true if the rbd device has a parent with a non-zero
2102  * overlap and a reference for it was successfully taken, or
2103  * false otherwise.
2104  */
2105 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2106 {
2107 	int counter = 0;
2108 
2109 	if (!rbd_dev->parent_spec)
2110 		return false;
2111 
2112 	down_read(&rbd_dev->header_rwsem);
2113 	if (rbd_dev->parent_overlap)
2114 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2115 	up_read(&rbd_dev->header_rwsem);
2116 
2117 	if (counter < 0)
2118 		rbd_warn(rbd_dev, "parent reference overflow");
2119 
2120 	return counter > 0;
2121 }
2122 
2123 /*
2124  * Caller is responsible for filling in the list of object requests
2125  * that comprises the image request, and the Linux request pointer
2126  * (if there is one).
2127  */
2128 static struct rbd_img_request *rbd_img_request_create(
2129 					struct rbd_device *rbd_dev,
2130 					u64 offset, u64 length,
2131 					enum obj_operation_type op_type,
2132 					struct ceph_snap_context *snapc)
2133 {
2134 	struct rbd_img_request *img_request;
2135 
2136 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2137 	if (!img_request)
2138 		return NULL;
2139 
2140 	img_request->rq = NULL;
2141 	img_request->rbd_dev = rbd_dev;
2142 	img_request->offset = offset;
2143 	img_request->length = length;
2144 	img_request->flags = 0;
2145 	if (op_type == OBJ_OP_DISCARD) {
2146 		img_request_discard_set(img_request);
2147 		img_request->snapc = snapc;
2148 	} else if (op_type == OBJ_OP_WRITE) {
2149 		img_request_write_set(img_request);
2150 		img_request->snapc = snapc;
2151 	} else {
2152 		img_request->snap_id = rbd_dev->spec->snap_id;
2153 	}
2154 	if (rbd_dev_parent_get(rbd_dev))
2155 		img_request_layered_set(img_request);
2156 	spin_lock_init(&img_request->completion_lock);
2157 	img_request->next_completion = 0;
2158 	img_request->callback = NULL;
2159 	img_request->result = 0;
2160 	img_request->obj_request_count = 0;
2161 	INIT_LIST_HEAD(&img_request->obj_requests);
2162 	kref_init(&img_request->kref);
2163 
2164 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2165 		obj_op_name(op_type), offset, length, img_request);
2166 
2167 	return img_request;
2168 }
2169 
2170 static void rbd_img_request_destroy(struct kref *kref)
2171 {
2172 	struct rbd_img_request *img_request;
2173 	struct rbd_obj_request *obj_request;
2174 	struct rbd_obj_request *next_obj_request;
2175 
2176 	img_request = container_of(kref, struct rbd_img_request, kref);
2177 
2178 	dout("%s: img %p\n", __func__, img_request);
2179 
2180 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2181 		rbd_img_obj_request_del(img_request, obj_request);
2182 	rbd_assert(img_request->obj_request_count == 0);
2183 
2184 	if (img_request_layered_test(img_request)) {
2185 		img_request_layered_clear(img_request);
2186 		rbd_dev_parent_put(img_request->rbd_dev);
2187 	}
2188 
2189 	if (img_request_write_test(img_request) ||
2190 		img_request_discard_test(img_request))
2191 		ceph_put_snap_context(img_request->snapc);
2192 
2193 	kmem_cache_free(rbd_img_request_cache, img_request);
2194 }
2195 
2196 static struct rbd_img_request *rbd_parent_request_create(
2197 					struct rbd_obj_request *obj_request,
2198 					u64 img_offset, u64 length)
2199 {
2200 	struct rbd_img_request *parent_request;
2201 	struct rbd_device *rbd_dev;
2202 
2203 	rbd_assert(obj_request->img_request);
2204 	rbd_dev = obj_request->img_request->rbd_dev;
2205 
2206 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2207 						length, OBJ_OP_READ, NULL);
2208 	if (!parent_request)
2209 		return NULL;
2210 
2211 	img_request_child_set(parent_request);
2212 	rbd_obj_request_get(obj_request);
2213 	parent_request->obj_request = obj_request;
2214 
2215 	return parent_request;
2216 }
2217 
2218 static void rbd_parent_request_destroy(struct kref *kref)
2219 {
2220 	struct rbd_img_request *parent_request;
2221 	struct rbd_obj_request *orig_request;
2222 
2223 	parent_request = container_of(kref, struct rbd_img_request, kref);
2224 	orig_request = parent_request->obj_request;
2225 
2226 	parent_request->obj_request = NULL;
2227 	rbd_obj_request_put(orig_request);
2228 	img_request_child_clear(parent_request);
2229 
2230 	rbd_img_request_destroy(kref);
2231 }
2232 
2233 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2234 {
2235 	struct rbd_img_request *img_request;
2236 	unsigned int xferred;
2237 	int result;
2238 	bool more;
2239 
2240 	rbd_assert(obj_request_img_data_test(obj_request));
2241 	img_request = obj_request->img_request;
2242 
2243 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2244 	xferred = (unsigned int)obj_request->xferred;
2245 	result = obj_request->result;
2246 	if (result) {
2247 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2248 		enum obj_operation_type op_type;
2249 
2250 		if (img_request_discard_test(img_request))
2251 			op_type = OBJ_OP_DISCARD;
2252 		else if (img_request_write_test(img_request))
2253 			op_type = OBJ_OP_WRITE;
2254 		else
2255 			op_type = OBJ_OP_READ;
2256 
2257 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2258 			obj_op_name(op_type), obj_request->length,
2259 			obj_request->img_offset, obj_request->offset);
2260 		rbd_warn(rbd_dev, "  result %d xferred %x",
2261 			result, xferred);
2262 		if (!img_request->result)
2263 			img_request->result = result;
2264 	}
2265 
2266 	/* Image object requests don't own their page array */
2267 
2268 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2269 		obj_request->pages = NULL;
2270 		obj_request->page_count = 0;
2271 	}
2272 
2273 	if (img_request_child_test(img_request)) {
2274 		rbd_assert(img_request->obj_request != NULL);
2275 		more = obj_request->which < img_request->obj_request_count - 1;
2276 	} else {
2277 		rbd_assert(img_request->rq != NULL);
2278 		more = blk_end_request(img_request->rq, result, xferred);
2279 	}
2280 
2281 	return more;
2282 }
2283 
2284 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2285 {
2286 	struct rbd_img_request *img_request;
2287 	u32 which = obj_request->which;
2288 	bool more = true;
2289 
2290 	rbd_assert(obj_request_img_data_test(obj_request));
2291 	img_request = obj_request->img_request;
2292 
2293 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2294 	rbd_assert(img_request != NULL);
2295 	rbd_assert(img_request->obj_request_count > 0);
2296 	rbd_assert(which != BAD_WHICH);
2297 	rbd_assert(which < img_request->obj_request_count);
2298 
2299 	spin_lock_irq(&img_request->completion_lock);
2300 	if (which != img_request->next_completion)
2301 		goto out;
2302 
2303 	for_each_obj_request_from(img_request, obj_request) {
2304 		rbd_assert(more);
2305 		rbd_assert(which < img_request->obj_request_count);
2306 
2307 		if (!obj_request_done_test(obj_request))
2308 			break;
2309 		more = rbd_img_obj_end_request(obj_request);
2310 		which++;
2311 	}
2312 
2313 	rbd_assert(more ^ (which == img_request->obj_request_count));
2314 	img_request->next_completion = which;
2315 out:
2316 	spin_unlock_irq(&img_request->completion_lock);
2317 	rbd_img_request_put(img_request);
2318 
2319 	if (!more)
2320 		rbd_img_request_complete(img_request);
2321 }
2322 
2323 /*
2324  * Add individual osd ops to the given ceph_osd_request and prepare
2325  * them for submission. num_ops is the current number of
2326  * osd operations already to the object request.
2327  */
2328 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2329 				struct ceph_osd_request *osd_request,
2330 				enum obj_operation_type op_type,
2331 				unsigned int num_ops)
2332 {
2333 	struct rbd_img_request *img_request = obj_request->img_request;
2334 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2335 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2336 	u64 offset = obj_request->offset;
2337 	u64 length = obj_request->length;
2338 	u64 img_end;
2339 	u16 opcode;
2340 
2341 	if (op_type == OBJ_OP_DISCARD) {
2342 		if (!offset && length == object_size &&
2343 		    (!img_request_layered_test(img_request) ||
2344 		     !obj_request_overlaps_parent(obj_request))) {
2345 			opcode = CEPH_OSD_OP_DELETE;
2346 		} else if ((offset + length == object_size)) {
2347 			opcode = CEPH_OSD_OP_TRUNCATE;
2348 		} else {
2349 			down_read(&rbd_dev->header_rwsem);
2350 			img_end = rbd_dev->header.image_size;
2351 			up_read(&rbd_dev->header_rwsem);
2352 
2353 			if (obj_request->img_offset + length == img_end)
2354 				opcode = CEPH_OSD_OP_TRUNCATE;
2355 			else
2356 				opcode = CEPH_OSD_OP_ZERO;
2357 		}
2358 	} else if (op_type == OBJ_OP_WRITE) {
2359 		opcode = CEPH_OSD_OP_WRITE;
2360 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2361 					object_size, object_size);
2362 		num_ops++;
2363 	} else {
2364 		opcode = CEPH_OSD_OP_READ;
2365 	}
2366 
2367 	if (opcode == CEPH_OSD_OP_DELETE)
2368 		osd_req_op_init(osd_request, num_ops, opcode);
2369 	else
2370 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2371 				       offset, length, 0, 0);
2372 
2373 	if (obj_request->type == OBJ_REQUEST_BIO)
2374 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2375 					obj_request->bio_list, length);
2376 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2377 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2378 					obj_request->pages, length,
2379 					offset & ~PAGE_MASK, false, false);
2380 
2381 	/* Discards are also writes */
2382 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2383 		rbd_osd_req_format_write(obj_request);
2384 	else
2385 		rbd_osd_req_format_read(obj_request);
2386 }
2387 
2388 /*
2389  * Split up an image request into one or more object requests, each
2390  * to a different object.  The "type" parameter indicates whether
2391  * "data_desc" is the pointer to the head of a list of bio
2392  * structures, or the base of a page array.  In either case this
2393  * function assumes data_desc describes memory sufficient to hold
2394  * all data described by the image request.
2395  */
2396 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2397 					enum obj_request_type type,
2398 					void *data_desc)
2399 {
2400 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2401 	struct rbd_obj_request *obj_request = NULL;
2402 	struct rbd_obj_request *next_obj_request;
2403 	struct bio *bio_list = NULL;
2404 	unsigned int bio_offset = 0;
2405 	struct page **pages = NULL;
2406 	enum obj_operation_type op_type;
2407 	u64 img_offset;
2408 	u64 resid;
2409 
2410 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2411 		(int)type, data_desc);
2412 
2413 	img_offset = img_request->offset;
2414 	resid = img_request->length;
2415 	rbd_assert(resid > 0);
2416 	op_type = rbd_img_request_op_type(img_request);
2417 
2418 	if (type == OBJ_REQUEST_BIO) {
2419 		bio_list = data_desc;
2420 		rbd_assert(img_offset ==
2421 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2422 	} else if (type == OBJ_REQUEST_PAGES) {
2423 		pages = data_desc;
2424 	}
2425 
2426 	while (resid) {
2427 		struct ceph_osd_request *osd_req;
2428 		const char *object_name;
2429 		u64 offset;
2430 		u64 length;
2431 
2432 		object_name = rbd_segment_name(rbd_dev, img_offset);
2433 		if (!object_name)
2434 			goto out_unwind;
2435 		offset = rbd_segment_offset(rbd_dev, img_offset);
2436 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2437 		obj_request = rbd_obj_request_create(object_name,
2438 						offset, length, type);
2439 		/* object request has its own copy of the object name */
2440 		rbd_segment_name_free(object_name);
2441 		if (!obj_request)
2442 			goto out_unwind;
2443 
2444 		/*
2445 		 * set obj_request->img_request before creating the
2446 		 * osd_request so that it gets the right snapc
2447 		 */
2448 		rbd_img_obj_request_add(img_request, obj_request);
2449 
2450 		if (type == OBJ_REQUEST_BIO) {
2451 			unsigned int clone_size;
2452 
2453 			rbd_assert(length <= (u64)UINT_MAX);
2454 			clone_size = (unsigned int)length;
2455 			obj_request->bio_list =
2456 					bio_chain_clone_range(&bio_list,
2457 								&bio_offset,
2458 								clone_size,
2459 								GFP_ATOMIC);
2460 			if (!obj_request->bio_list)
2461 				goto out_unwind;
2462 		} else if (type == OBJ_REQUEST_PAGES) {
2463 			unsigned int page_count;
2464 
2465 			obj_request->pages = pages;
2466 			page_count = (u32)calc_pages_for(offset, length);
2467 			obj_request->page_count = page_count;
2468 			if ((offset + length) & ~PAGE_MASK)
2469 				page_count--;	/* more on last page */
2470 			pages += page_count;
2471 		}
2472 
2473 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2474 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2475 					obj_request);
2476 		if (!osd_req)
2477 			goto out_unwind;
2478 
2479 		obj_request->osd_req = osd_req;
2480 		obj_request->callback = rbd_img_obj_callback;
2481 		obj_request->img_offset = img_offset;
2482 
2483 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2484 
2485 		rbd_img_request_get(img_request);
2486 
2487 		img_offset += length;
2488 		resid -= length;
2489 	}
2490 
2491 	return 0;
2492 
2493 out_unwind:
2494 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2495 		rbd_img_obj_request_del(img_request, obj_request);
2496 
2497 	return -ENOMEM;
2498 }
2499 
2500 static void
2501 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2502 {
2503 	struct rbd_img_request *img_request;
2504 	struct rbd_device *rbd_dev;
2505 	struct page **pages;
2506 	u32 page_count;
2507 
2508 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2509 		obj_request->type == OBJ_REQUEST_NODATA);
2510 	rbd_assert(obj_request_img_data_test(obj_request));
2511 	img_request = obj_request->img_request;
2512 	rbd_assert(img_request);
2513 
2514 	rbd_dev = img_request->rbd_dev;
2515 	rbd_assert(rbd_dev);
2516 
2517 	pages = obj_request->copyup_pages;
2518 	rbd_assert(pages != NULL);
2519 	obj_request->copyup_pages = NULL;
2520 	page_count = obj_request->copyup_page_count;
2521 	rbd_assert(page_count);
2522 	obj_request->copyup_page_count = 0;
2523 	ceph_release_page_vector(pages, page_count);
2524 
2525 	/*
2526 	 * We want the transfer count to reflect the size of the
2527 	 * original write request.  There is no such thing as a
2528 	 * successful short write, so if the request was successful
2529 	 * we can just set it to the originally-requested length.
2530 	 */
2531 	if (!obj_request->result)
2532 		obj_request->xferred = obj_request->length;
2533 
2534 	/* Finish up with the normal image object callback */
2535 
2536 	rbd_img_obj_callback(obj_request);
2537 }
2538 
2539 static void
2540 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2541 {
2542 	struct rbd_obj_request *orig_request;
2543 	struct ceph_osd_request *osd_req;
2544 	struct ceph_osd_client *osdc;
2545 	struct rbd_device *rbd_dev;
2546 	struct page **pages;
2547 	enum obj_operation_type op_type;
2548 	u32 page_count;
2549 	int img_result;
2550 	u64 parent_length;
2551 
2552 	rbd_assert(img_request_child_test(img_request));
2553 
2554 	/* First get what we need from the image request */
2555 
2556 	pages = img_request->copyup_pages;
2557 	rbd_assert(pages != NULL);
2558 	img_request->copyup_pages = NULL;
2559 	page_count = img_request->copyup_page_count;
2560 	rbd_assert(page_count);
2561 	img_request->copyup_page_count = 0;
2562 
2563 	orig_request = img_request->obj_request;
2564 	rbd_assert(orig_request != NULL);
2565 	rbd_assert(obj_request_type_valid(orig_request->type));
2566 	img_result = img_request->result;
2567 	parent_length = img_request->length;
2568 	rbd_assert(parent_length == img_request->xferred);
2569 	rbd_img_request_put(img_request);
2570 
2571 	rbd_assert(orig_request->img_request);
2572 	rbd_dev = orig_request->img_request->rbd_dev;
2573 	rbd_assert(rbd_dev);
2574 
2575 	/*
2576 	 * If the overlap has become 0 (most likely because the
2577 	 * image has been flattened) we need to free the pages
2578 	 * and re-submit the original write request.
2579 	 */
2580 	if (!rbd_dev->parent_overlap) {
2581 		struct ceph_osd_client *osdc;
2582 
2583 		ceph_release_page_vector(pages, page_count);
2584 		osdc = &rbd_dev->rbd_client->client->osdc;
2585 		img_result = rbd_obj_request_submit(osdc, orig_request);
2586 		if (!img_result)
2587 			return;
2588 	}
2589 
2590 	if (img_result)
2591 		goto out_err;
2592 
2593 	/*
2594 	 * The original osd request is of no use to use any more.
2595 	 * We need a new one that can hold the three ops in a copyup
2596 	 * request.  Allocate the new copyup osd request for the
2597 	 * original request, and release the old one.
2598 	 */
2599 	img_result = -ENOMEM;
2600 	osd_req = rbd_osd_req_create_copyup(orig_request);
2601 	if (!osd_req)
2602 		goto out_err;
2603 	rbd_osd_req_destroy(orig_request->osd_req);
2604 	orig_request->osd_req = osd_req;
2605 	orig_request->copyup_pages = pages;
2606 	orig_request->copyup_page_count = page_count;
2607 
2608 	/* Initialize the copyup op */
2609 
2610 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2611 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2612 						false, false);
2613 
2614 	/* Add the other op(s) */
2615 
2616 	op_type = rbd_img_request_op_type(orig_request->img_request);
2617 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2618 
2619 	/* All set, send it off. */
2620 
2621 	orig_request->callback = rbd_img_obj_copyup_callback;
2622 	osdc = &rbd_dev->rbd_client->client->osdc;
2623 	img_result = rbd_obj_request_submit(osdc, orig_request);
2624 	if (!img_result)
2625 		return;
2626 out_err:
2627 	/* Record the error code and complete the request */
2628 
2629 	orig_request->result = img_result;
2630 	orig_request->xferred = 0;
2631 	obj_request_done_set(orig_request);
2632 	rbd_obj_request_complete(orig_request);
2633 }
2634 
2635 /*
2636  * Read from the parent image the range of data that covers the
2637  * entire target of the given object request.  This is used for
2638  * satisfying a layered image write request when the target of an
2639  * object request from the image request does not exist.
2640  *
2641  * A page array big enough to hold the returned data is allocated
2642  * and supplied to rbd_img_request_fill() as the "data descriptor."
2643  * When the read completes, this page array will be transferred to
2644  * the original object request for the copyup operation.
2645  *
2646  * If an error occurs, record it as the result of the original
2647  * object request and mark it done so it gets completed.
2648  */
2649 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2650 {
2651 	struct rbd_img_request *img_request = NULL;
2652 	struct rbd_img_request *parent_request = NULL;
2653 	struct rbd_device *rbd_dev;
2654 	u64 img_offset;
2655 	u64 length;
2656 	struct page **pages = NULL;
2657 	u32 page_count;
2658 	int result;
2659 
2660 	rbd_assert(obj_request_img_data_test(obj_request));
2661 	rbd_assert(obj_request_type_valid(obj_request->type));
2662 
2663 	img_request = obj_request->img_request;
2664 	rbd_assert(img_request != NULL);
2665 	rbd_dev = img_request->rbd_dev;
2666 	rbd_assert(rbd_dev->parent != NULL);
2667 
2668 	/*
2669 	 * Determine the byte range covered by the object in the
2670 	 * child image to which the original request was to be sent.
2671 	 */
2672 	img_offset = obj_request->img_offset - obj_request->offset;
2673 	length = (u64)1 << rbd_dev->header.obj_order;
2674 
2675 	/*
2676 	 * There is no defined parent data beyond the parent
2677 	 * overlap, so limit what we read at that boundary if
2678 	 * necessary.
2679 	 */
2680 	if (img_offset + length > rbd_dev->parent_overlap) {
2681 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2682 		length = rbd_dev->parent_overlap - img_offset;
2683 	}
2684 
2685 	/*
2686 	 * Allocate a page array big enough to receive the data read
2687 	 * from the parent.
2688 	 */
2689 	page_count = (u32)calc_pages_for(0, length);
2690 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2691 	if (IS_ERR(pages)) {
2692 		result = PTR_ERR(pages);
2693 		pages = NULL;
2694 		goto out_err;
2695 	}
2696 
2697 	result = -ENOMEM;
2698 	parent_request = rbd_parent_request_create(obj_request,
2699 						img_offset, length);
2700 	if (!parent_request)
2701 		goto out_err;
2702 
2703 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2704 	if (result)
2705 		goto out_err;
2706 	parent_request->copyup_pages = pages;
2707 	parent_request->copyup_page_count = page_count;
2708 
2709 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2710 	result = rbd_img_request_submit(parent_request);
2711 	if (!result)
2712 		return 0;
2713 
2714 	parent_request->copyup_pages = NULL;
2715 	parent_request->copyup_page_count = 0;
2716 	parent_request->obj_request = NULL;
2717 	rbd_obj_request_put(obj_request);
2718 out_err:
2719 	if (pages)
2720 		ceph_release_page_vector(pages, page_count);
2721 	if (parent_request)
2722 		rbd_img_request_put(parent_request);
2723 	obj_request->result = result;
2724 	obj_request->xferred = 0;
2725 	obj_request_done_set(obj_request);
2726 
2727 	return result;
2728 }
2729 
2730 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2731 {
2732 	struct rbd_obj_request *orig_request;
2733 	struct rbd_device *rbd_dev;
2734 	int result;
2735 
2736 	rbd_assert(!obj_request_img_data_test(obj_request));
2737 
2738 	/*
2739 	 * All we need from the object request is the original
2740 	 * request and the result of the STAT op.  Grab those, then
2741 	 * we're done with the request.
2742 	 */
2743 	orig_request = obj_request->obj_request;
2744 	obj_request->obj_request = NULL;
2745 	rbd_obj_request_put(orig_request);
2746 	rbd_assert(orig_request);
2747 	rbd_assert(orig_request->img_request);
2748 
2749 	result = obj_request->result;
2750 	obj_request->result = 0;
2751 
2752 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2753 		obj_request, orig_request, result,
2754 		obj_request->xferred, obj_request->length);
2755 	rbd_obj_request_put(obj_request);
2756 
2757 	/*
2758 	 * If the overlap has become 0 (most likely because the
2759 	 * image has been flattened) we need to free the pages
2760 	 * and re-submit the original write request.
2761 	 */
2762 	rbd_dev = orig_request->img_request->rbd_dev;
2763 	if (!rbd_dev->parent_overlap) {
2764 		struct ceph_osd_client *osdc;
2765 
2766 		osdc = &rbd_dev->rbd_client->client->osdc;
2767 		result = rbd_obj_request_submit(osdc, orig_request);
2768 		if (!result)
2769 			return;
2770 	}
2771 
2772 	/*
2773 	 * Our only purpose here is to determine whether the object
2774 	 * exists, and we don't want to treat the non-existence as
2775 	 * an error.  If something else comes back, transfer the
2776 	 * error to the original request and complete it now.
2777 	 */
2778 	if (!result) {
2779 		obj_request_existence_set(orig_request, true);
2780 	} else if (result == -ENOENT) {
2781 		obj_request_existence_set(orig_request, false);
2782 	} else if (result) {
2783 		orig_request->result = result;
2784 		goto out;
2785 	}
2786 
2787 	/*
2788 	 * Resubmit the original request now that we have recorded
2789 	 * whether the target object exists.
2790 	 */
2791 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2792 out:
2793 	if (orig_request->result)
2794 		rbd_obj_request_complete(orig_request);
2795 }
2796 
2797 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2798 {
2799 	struct rbd_obj_request *stat_request;
2800 	struct rbd_device *rbd_dev;
2801 	struct ceph_osd_client *osdc;
2802 	struct page **pages = NULL;
2803 	u32 page_count;
2804 	size_t size;
2805 	int ret;
2806 
2807 	/*
2808 	 * The response data for a STAT call consists of:
2809 	 *     le64 length;
2810 	 *     struct {
2811 	 *         le32 tv_sec;
2812 	 *         le32 tv_nsec;
2813 	 *     } mtime;
2814 	 */
2815 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2816 	page_count = (u32)calc_pages_for(0, size);
2817 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2818 	if (IS_ERR(pages))
2819 		return PTR_ERR(pages);
2820 
2821 	ret = -ENOMEM;
2822 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2823 							OBJ_REQUEST_PAGES);
2824 	if (!stat_request)
2825 		goto out;
2826 
2827 	rbd_obj_request_get(obj_request);
2828 	stat_request->obj_request = obj_request;
2829 	stat_request->pages = pages;
2830 	stat_request->page_count = page_count;
2831 
2832 	rbd_assert(obj_request->img_request);
2833 	rbd_dev = obj_request->img_request->rbd_dev;
2834 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2835 						   stat_request);
2836 	if (!stat_request->osd_req)
2837 		goto out;
2838 	stat_request->callback = rbd_img_obj_exists_callback;
2839 
2840 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2841 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2842 					false, false);
2843 	rbd_osd_req_format_read(stat_request);
2844 
2845 	osdc = &rbd_dev->rbd_client->client->osdc;
2846 	ret = rbd_obj_request_submit(osdc, stat_request);
2847 out:
2848 	if (ret)
2849 		rbd_obj_request_put(obj_request);
2850 
2851 	return ret;
2852 }
2853 
2854 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2855 {
2856 	struct rbd_img_request *img_request;
2857 	struct rbd_device *rbd_dev;
2858 
2859 	rbd_assert(obj_request_img_data_test(obj_request));
2860 
2861 	img_request = obj_request->img_request;
2862 	rbd_assert(img_request);
2863 	rbd_dev = img_request->rbd_dev;
2864 
2865 	/* Reads */
2866 	if (!img_request_write_test(img_request) &&
2867 	    !img_request_discard_test(img_request))
2868 		return true;
2869 
2870 	/* Non-layered writes */
2871 	if (!img_request_layered_test(img_request))
2872 		return true;
2873 
2874 	/*
2875 	 * Layered writes outside of the parent overlap range don't
2876 	 * share any data with the parent.
2877 	 */
2878 	if (!obj_request_overlaps_parent(obj_request))
2879 		return true;
2880 
2881 	/*
2882 	 * Entire-object layered writes - we will overwrite whatever
2883 	 * parent data there is anyway.
2884 	 */
2885 	if (!obj_request->offset &&
2886 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2887 		return true;
2888 
2889 	/*
2890 	 * If the object is known to already exist, its parent data has
2891 	 * already been copied.
2892 	 */
2893 	if (obj_request_known_test(obj_request) &&
2894 	    obj_request_exists_test(obj_request))
2895 		return true;
2896 
2897 	return false;
2898 }
2899 
2900 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2901 {
2902 	if (img_obj_request_simple(obj_request)) {
2903 		struct rbd_device *rbd_dev;
2904 		struct ceph_osd_client *osdc;
2905 
2906 		rbd_dev = obj_request->img_request->rbd_dev;
2907 		osdc = &rbd_dev->rbd_client->client->osdc;
2908 
2909 		return rbd_obj_request_submit(osdc, obj_request);
2910 	}
2911 
2912 	/*
2913 	 * It's a layered write.  The target object might exist but
2914 	 * we may not know that yet.  If we know it doesn't exist,
2915 	 * start by reading the data for the full target object from
2916 	 * the parent so we can use it for a copyup to the target.
2917 	 */
2918 	if (obj_request_known_test(obj_request))
2919 		return rbd_img_obj_parent_read_full(obj_request);
2920 
2921 	/* We don't know whether the target exists.  Go find out. */
2922 
2923 	return rbd_img_obj_exists_submit(obj_request);
2924 }
2925 
2926 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2927 {
2928 	struct rbd_obj_request *obj_request;
2929 	struct rbd_obj_request *next_obj_request;
2930 
2931 	dout("%s: img %p\n", __func__, img_request);
2932 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2933 		int ret;
2934 
2935 		ret = rbd_img_obj_request_submit(obj_request);
2936 		if (ret)
2937 			return ret;
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2944 {
2945 	struct rbd_obj_request *obj_request;
2946 	struct rbd_device *rbd_dev;
2947 	u64 obj_end;
2948 	u64 img_xferred;
2949 	int img_result;
2950 
2951 	rbd_assert(img_request_child_test(img_request));
2952 
2953 	/* First get what we need from the image request and release it */
2954 
2955 	obj_request = img_request->obj_request;
2956 	img_xferred = img_request->xferred;
2957 	img_result = img_request->result;
2958 	rbd_img_request_put(img_request);
2959 
2960 	/*
2961 	 * If the overlap has become 0 (most likely because the
2962 	 * image has been flattened) we need to re-submit the
2963 	 * original request.
2964 	 */
2965 	rbd_assert(obj_request);
2966 	rbd_assert(obj_request->img_request);
2967 	rbd_dev = obj_request->img_request->rbd_dev;
2968 	if (!rbd_dev->parent_overlap) {
2969 		struct ceph_osd_client *osdc;
2970 
2971 		osdc = &rbd_dev->rbd_client->client->osdc;
2972 		img_result = rbd_obj_request_submit(osdc, obj_request);
2973 		if (!img_result)
2974 			return;
2975 	}
2976 
2977 	obj_request->result = img_result;
2978 	if (obj_request->result)
2979 		goto out;
2980 
2981 	/*
2982 	 * We need to zero anything beyond the parent overlap
2983 	 * boundary.  Since rbd_img_obj_request_read_callback()
2984 	 * will zero anything beyond the end of a short read, an
2985 	 * easy way to do this is to pretend the data from the
2986 	 * parent came up short--ending at the overlap boundary.
2987 	 */
2988 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2989 	obj_end = obj_request->img_offset + obj_request->length;
2990 	if (obj_end > rbd_dev->parent_overlap) {
2991 		u64 xferred = 0;
2992 
2993 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2994 			xferred = rbd_dev->parent_overlap -
2995 					obj_request->img_offset;
2996 
2997 		obj_request->xferred = min(img_xferred, xferred);
2998 	} else {
2999 		obj_request->xferred = img_xferred;
3000 	}
3001 out:
3002 	rbd_img_obj_request_read_callback(obj_request);
3003 	rbd_obj_request_complete(obj_request);
3004 }
3005 
3006 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3007 {
3008 	struct rbd_img_request *img_request;
3009 	int result;
3010 
3011 	rbd_assert(obj_request_img_data_test(obj_request));
3012 	rbd_assert(obj_request->img_request != NULL);
3013 	rbd_assert(obj_request->result == (s32) -ENOENT);
3014 	rbd_assert(obj_request_type_valid(obj_request->type));
3015 
3016 	/* rbd_read_finish(obj_request, obj_request->length); */
3017 	img_request = rbd_parent_request_create(obj_request,
3018 						obj_request->img_offset,
3019 						obj_request->length);
3020 	result = -ENOMEM;
3021 	if (!img_request)
3022 		goto out_err;
3023 
3024 	if (obj_request->type == OBJ_REQUEST_BIO)
3025 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3026 						obj_request->bio_list);
3027 	else
3028 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3029 						obj_request->pages);
3030 	if (result)
3031 		goto out_err;
3032 
3033 	img_request->callback = rbd_img_parent_read_callback;
3034 	result = rbd_img_request_submit(img_request);
3035 	if (result)
3036 		goto out_err;
3037 
3038 	return;
3039 out_err:
3040 	if (img_request)
3041 		rbd_img_request_put(img_request);
3042 	obj_request->result = result;
3043 	obj_request->xferred = 0;
3044 	obj_request_done_set(obj_request);
3045 }
3046 
3047 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3048 {
3049 	struct rbd_obj_request *obj_request;
3050 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3051 	int ret;
3052 
3053 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3054 							OBJ_REQUEST_NODATA);
3055 	if (!obj_request)
3056 		return -ENOMEM;
3057 
3058 	ret = -ENOMEM;
3059 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3060 						  obj_request);
3061 	if (!obj_request->osd_req)
3062 		goto out;
3063 
3064 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3065 					notify_id, 0, 0);
3066 	rbd_osd_req_format_read(obj_request);
3067 
3068 	ret = rbd_obj_request_submit(osdc, obj_request);
3069 	if (ret)
3070 		goto out;
3071 	ret = rbd_obj_request_wait(obj_request);
3072 out:
3073 	rbd_obj_request_put(obj_request);
3074 
3075 	return ret;
3076 }
3077 
3078 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3079 {
3080 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3081 	int ret;
3082 
3083 	if (!rbd_dev)
3084 		return;
3085 
3086 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3087 		rbd_dev->header_name, (unsigned long long)notify_id,
3088 		(unsigned int)opcode);
3089 
3090 	/*
3091 	 * Until adequate refresh error handling is in place, there is
3092 	 * not much we can do here, except warn.
3093 	 *
3094 	 * See http://tracker.ceph.com/issues/5040
3095 	 */
3096 	ret = rbd_dev_refresh(rbd_dev);
3097 	if (ret)
3098 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3099 
3100 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3101 	if (ret)
3102 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3103 }
3104 
3105 /*
3106  * Send a (un)watch request and wait for the ack.  Return a request
3107  * with a ref held on success or error.
3108  */
3109 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3110 						struct rbd_device *rbd_dev,
3111 						bool watch)
3112 {
3113 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3114 	struct rbd_obj_request *obj_request;
3115 	int ret;
3116 
3117 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3118 					     OBJ_REQUEST_NODATA);
3119 	if (!obj_request)
3120 		return ERR_PTR(-ENOMEM);
3121 
3122 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3123 						  obj_request);
3124 	if (!obj_request->osd_req) {
3125 		ret = -ENOMEM;
3126 		goto out;
3127 	}
3128 
3129 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3130 			      rbd_dev->watch_event->cookie, 0, watch);
3131 	rbd_osd_req_format_write(obj_request);
3132 
3133 	if (watch)
3134 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3135 
3136 	ret = rbd_obj_request_submit(osdc, obj_request);
3137 	if (ret)
3138 		goto out;
3139 
3140 	ret = rbd_obj_request_wait(obj_request);
3141 	if (ret)
3142 		goto out;
3143 
3144 	ret = obj_request->result;
3145 	if (ret) {
3146 		if (watch)
3147 			rbd_obj_request_end(obj_request);
3148 		goto out;
3149 	}
3150 
3151 	return obj_request;
3152 
3153 out:
3154 	rbd_obj_request_put(obj_request);
3155 	return ERR_PTR(ret);
3156 }
3157 
3158 /*
3159  * Initiate a watch request, synchronously.
3160  */
3161 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3162 {
3163 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3164 	struct rbd_obj_request *obj_request;
3165 	int ret;
3166 
3167 	rbd_assert(!rbd_dev->watch_event);
3168 	rbd_assert(!rbd_dev->watch_request);
3169 
3170 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3171 				     &rbd_dev->watch_event);
3172 	if (ret < 0)
3173 		return ret;
3174 
3175 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3176 	if (IS_ERR(obj_request)) {
3177 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3178 		rbd_dev->watch_event = NULL;
3179 		return PTR_ERR(obj_request);
3180 	}
3181 
3182 	/*
3183 	 * A watch request is set to linger, so the underlying osd
3184 	 * request won't go away until we unregister it.  We retain
3185 	 * a pointer to the object request during that time (in
3186 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3187 	 * We'll drop that reference after we've unregistered it in
3188 	 * rbd_dev_header_unwatch_sync().
3189 	 */
3190 	rbd_dev->watch_request = obj_request;
3191 
3192 	return 0;
3193 }
3194 
3195 /*
3196  * Tear down a watch request, synchronously.
3197  */
3198 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3199 {
3200 	struct rbd_obj_request *obj_request;
3201 
3202 	rbd_assert(rbd_dev->watch_event);
3203 	rbd_assert(rbd_dev->watch_request);
3204 
3205 	rbd_obj_request_end(rbd_dev->watch_request);
3206 	rbd_obj_request_put(rbd_dev->watch_request);
3207 	rbd_dev->watch_request = NULL;
3208 
3209 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3210 	if (!IS_ERR(obj_request))
3211 		rbd_obj_request_put(obj_request);
3212 	else
3213 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3214 			 PTR_ERR(obj_request));
3215 
3216 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3217 	rbd_dev->watch_event = NULL;
3218 }
3219 
3220 /*
3221  * Synchronous osd object method call.  Returns the number of bytes
3222  * returned in the outbound buffer, or a negative error code.
3223  */
3224 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3225 			     const char *object_name,
3226 			     const char *class_name,
3227 			     const char *method_name,
3228 			     const void *outbound,
3229 			     size_t outbound_size,
3230 			     void *inbound,
3231 			     size_t inbound_size)
3232 {
3233 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3234 	struct rbd_obj_request *obj_request;
3235 	struct page **pages;
3236 	u32 page_count;
3237 	int ret;
3238 
3239 	/*
3240 	 * Method calls are ultimately read operations.  The result
3241 	 * should placed into the inbound buffer provided.  They
3242 	 * also supply outbound data--parameters for the object
3243 	 * method.  Currently if this is present it will be a
3244 	 * snapshot id.
3245 	 */
3246 	page_count = (u32)calc_pages_for(0, inbound_size);
3247 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3248 	if (IS_ERR(pages))
3249 		return PTR_ERR(pages);
3250 
3251 	ret = -ENOMEM;
3252 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3253 							OBJ_REQUEST_PAGES);
3254 	if (!obj_request)
3255 		goto out;
3256 
3257 	obj_request->pages = pages;
3258 	obj_request->page_count = page_count;
3259 
3260 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3261 						  obj_request);
3262 	if (!obj_request->osd_req)
3263 		goto out;
3264 
3265 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3266 					class_name, method_name);
3267 	if (outbound_size) {
3268 		struct ceph_pagelist *pagelist;
3269 
3270 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3271 		if (!pagelist)
3272 			goto out;
3273 
3274 		ceph_pagelist_init(pagelist);
3275 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3276 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3277 						pagelist);
3278 	}
3279 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3280 					obj_request->pages, inbound_size,
3281 					0, false, false);
3282 	rbd_osd_req_format_read(obj_request);
3283 
3284 	ret = rbd_obj_request_submit(osdc, obj_request);
3285 	if (ret)
3286 		goto out;
3287 	ret = rbd_obj_request_wait(obj_request);
3288 	if (ret)
3289 		goto out;
3290 
3291 	ret = obj_request->result;
3292 	if (ret < 0)
3293 		goto out;
3294 
3295 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3296 	ret = (int)obj_request->xferred;
3297 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3298 out:
3299 	if (obj_request)
3300 		rbd_obj_request_put(obj_request);
3301 	else
3302 		ceph_release_page_vector(pages, page_count);
3303 
3304 	return ret;
3305 }
3306 
3307 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3308 {
3309 	struct rbd_img_request *img_request;
3310 	struct ceph_snap_context *snapc = NULL;
3311 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3312 	u64 length = blk_rq_bytes(rq);
3313 	enum obj_operation_type op_type;
3314 	u64 mapping_size;
3315 	int result;
3316 
3317 	if (rq->cmd_flags & REQ_DISCARD)
3318 		op_type = OBJ_OP_DISCARD;
3319 	else if (rq->cmd_flags & REQ_WRITE)
3320 		op_type = OBJ_OP_WRITE;
3321 	else
3322 		op_type = OBJ_OP_READ;
3323 
3324 	/* Ignore/skip any zero-length requests */
3325 
3326 	if (!length) {
3327 		dout("%s: zero-length request\n", __func__);
3328 		result = 0;
3329 		goto err_rq;
3330 	}
3331 
3332 	/* Only reads are allowed to a read-only device */
3333 
3334 	if (op_type != OBJ_OP_READ) {
3335 		if (rbd_dev->mapping.read_only) {
3336 			result = -EROFS;
3337 			goto err_rq;
3338 		}
3339 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3340 	}
3341 
3342 	/*
3343 	 * Quit early if the mapped snapshot no longer exists.  It's
3344 	 * still possible the snapshot will have disappeared by the
3345 	 * time our request arrives at the osd, but there's no sense in
3346 	 * sending it if we already know.
3347 	 */
3348 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3349 		dout("request for non-existent snapshot");
3350 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3351 		result = -ENXIO;
3352 		goto err_rq;
3353 	}
3354 
3355 	if (offset && length > U64_MAX - offset + 1) {
3356 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3357 			 length);
3358 		result = -EINVAL;
3359 		goto err_rq;	/* Shouldn't happen */
3360 	}
3361 
3362 	down_read(&rbd_dev->header_rwsem);
3363 	mapping_size = rbd_dev->mapping.size;
3364 	if (op_type != OBJ_OP_READ) {
3365 		snapc = rbd_dev->header.snapc;
3366 		ceph_get_snap_context(snapc);
3367 	}
3368 	up_read(&rbd_dev->header_rwsem);
3369 
3370 	if (offset + length > mapping_size) {
3371 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3372 			 length, mapping_size);
3373 		result = -EIO;
3374 		goto err_rq;
3375 	}
3376 
3377 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3378 					     snapc);
3379 	if (!img_request) {
3380 		result = -ENOMEM;
3381 		goto err_rq;
3382 	}
3383 	img_request->rq = rq;
3384 
3385 	if (op_type == OBJ_OP_DISCARD)
3386 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3387 					      NULL);
3388 	else
3389 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3390 					      rq->bio);
3391 	if (result)
3392 		goto err_img_request;
3393 
3394 	result = rbd_img_request_submit(img_request);
3395 	if (result)
3396 		goto err_img_request;
3397 
3398 	return;
3399 
3400 err_img_request:
3401 	rbd_img_request_put(img_request);
3402 err_rq:
3403 	if (result)
3404 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3405 			 obj_op_name(op_type), length, offset, result);
3406 	ceph_put_snap_context(snapc);
3407 	blk_end_request_all(rq, result);
3408 }
3409 
3410 static void rbd_request_workfn(struct work_struct *work)
3411 {
3412 	struct rbd_device *rbd_dev =
3413 	    container_of(work, struct rbd_device, rq_work);
3414 	struct request *rq, *next;
3415 	LIST_HEAD(requests);
3416 
3417 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3418 	list_splice_init(&rbd_dev->rq_queue, &requests);
3419 	spin_unlock_irq(&rbd_dev->lock);
3420 
3421 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3422 		list_del_init(&rq->queuelist);
3423 		rbd_handle_request(rbd_dev, rq);
3424 	}
3425 }
3426 
3427 /*
3428  * Called with q->queue_lock held and interrupts disabled, possibly on
3429  * the way to schedule().  Do not sleep here!
3430  */
3431 static void rbd_request_fn(struct request_queue *q)
3432 {
3433 	struct rbd_device *rbd_dev = q->queuedata;
3434 	struct request *rq;
3435 	int queued = 0;
3436 
3437 	rbd_assert(rbd_dev);
3438 
3439 	while ((rq = blk_fetch_request(q))) {
3440 		/* Ignore any non-FS requests that filter through. */
3441 		if (rq->cmd_type != REQ_TYPE_FS) {
3442 			dout("%s: non-fs request type %d\n", __func__,
3443 				(int) rq->cmd_type);
3444 			__blk_end_request_all(rq, 0);
3445 			continue;
3446 		}
3447 
3448 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3449 		queued++;
3450 	}
3451 
3452 	if (queued)
3453 		queue_work(rbd_wq, &rbd_dev->rq_work);
3454 }
3455 
3456 /*
3457  * a queue callback. Makes sure that we don't create a bio that spans across
3458  * multiple osd objects. One exception would be with a single page bios,
3459  * which we handle later at bio_chain_clone_range()
3460  */
3461 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3462 			  struct bio_vec *bvec)
3463 {
3464 	struct rbd_device *rbd_dev = q->queuedata;
3465 	sector_t sector_offset;
3466 	sector_t sectors_per_obj;
3467 	sector_t obj_sector_offset;
3468 	int ret;
3469 
3470 	/*
3471 	 * Find how far into its rbd object the partition-relative
3472 	 * bio start sector is to offset relative to the enclosing
3473 	 * device.
3474 	 */
3475 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3476 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3477 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3478 
3479 	/*
3480 	 * Compute the number of bytes from that offset to the end
3481 	 * of the object.  Account for what's already used by the bio.
3482 	 */
3483 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3484 	if (ret > bmd->bi_size)
3485 		ret -= bmd->bi_size;
3486 	else
3487 		ret = 0;
3488 
3489 	/*
3490 	 * Don't send back more than was asked for.  And if the bio
3491 	 * was empty, let the whole thing through because:  "Note
3492 	 * that a block device *must* allow a single page to be
3493 	 * added to an empty bio."
3494 	 */
3495 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3496 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3497 		ret = (int) bvec->bv_len;
3498 
3499 	return ret;
3500 }
3501 
3502 static void rbd_free_disk(struct rbd_device *rbd_dev)
3503 {
3504 	struct gendisk *disk = rbd_dev->disk;
3505 
3506 	if (!disk)
3507 		return;
3508 
3509 	rbd_dev->disk = NULL;
3510 	if (disk->flags & GENHD_FL_UP) {
3511 		del_gendisk(disk);
3512 		if (disk->queue)
3513 			blk_cleanup_queue(disk->queue);
3514 	}
3515 	put_disk(disk);
3516 }
3517 
3518 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3519 				const char *object_name,
3520 				u64 offset, u64 length, void *buf)
3521 
3522 {
3523 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3524 	struct rbd_obj_request *obj_request;
3525 	struct page **pages = NULL;
3526 	u32 page_count;
3527 	size_t size;
3528 	int ret;
3529 
3530 	page_count = (u32) calc_pages_for(offset, length);
3531 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3532 	if (IS_ERR(pages))
3533 		return PTR_ERR(pages);
3534 
3535 	ret = -ENOMEM;
3536 	obj_request = rbd_obj_request_create(object_name, offset, length,
3537 							OBJ_REQUEST_PAGES);
3538 	if (!obj_request)
3539 		goto out;
3540 
3541 	obj_request->pages = pages;
3542 	obj_request->page_count = page_count;
3543 
3544 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3545 						  obj_request);
3546 	if (!obj_request->osd_req)
3547 		goto out;
3548 
3549 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3550 					offset, length, 0, 0);
3551 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3552 					obj_request->pages,
3553 					obj_request->length,
3554 					obj_request->offset & ~PAGE_MASK,
3555 					false, false);
3556 	rbd_osd_req_format_read(obj_request);
3557 
3558 	ret = rbd_obj_request_submit(osdc, obj_request);
3559 	if (ret)
3560 		goto out;
3561 	ret = rbd_obj_request_wait(obj_request);
3562 	if (ret)
3563 		goto out;
3564 
3565 	ret = obj_request->result;
3566 	if (ret < 0)
3567 		goto out;
3568 
3569 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3570 	size = (size_t) obj_request->xferred;
3571 	ceph_copy_from_page_vector(pages, buf, 0, size);
3572 	rbd_assert(size <= (size_t)INT_MAX);
3573 	ret = (int)size;
3574 out:
3575 	if (obj_request)
3576 		rbd_obj_request_put(obj_request);
3577 	else
3578 		ceph_release_page_vector(pages, page_count);
3579 
3580 	return ret;
3581 }
3582 
3583 /*
3584  * Read the complete header for the given rbd device.  On successful
3585  * return, the rbd_dev->header field will contain up-to-date
3586  * information about the image.
3587  */
3588 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3589 {
3590 	struct rbd_image_header_ondisk *ondisk = NULL;
3591 	u32 snap_count = 0;
3592 	u64 names_size = 0;
3593 	u32 want_count;
3594 	int ret;
3595 
3596 	/*
3597 	 * The complete header will include an array of its 64-bit
3598 	 * snapshot ids, followed by the names of those snapshots as
3599 	 * a contiguous block of NUL-terminated strings.  Note that
3600 	 * the number of snapshots could change by the time we read
3601 	 * it in, in which case we re-read it.
3602 	 */
3603 	do {
3604 		size_t size;
3605 
3606 		kfree(ondisk);
3607 
3608 		size = sizeof (*ondisk);
3609 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3610 		size += names_size;
3611 		ondisk = kmalloc(size, GFP_KERNEL);
3612 		if (!ondisk)
3613 			return -ENOMEM;
3614 
3615 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3616 				       0, size, ondisk);
3617 		if (ret < 0)
3618 			goto out;
3619 		if ((size_t)ret < size) {
3620 			ret = -ENXIO;
3621 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3622 				size, ret);
3623 			goto out;
3624 		}
3625 		if (!rbd_dev_ondisk_valid(ondisk)) {
3626 			ret = -ENXIO;
3627 			rbd_warn(rbd_dev, "invalid header");
3628 			goto out;
3629 		}
3630 
3631 		names_size = le64_to_cpu(ondisk->snap_names_len);
3632 		want_count = snap_count;
3633 		snap_count = le32_to_cpu(ondisk->snap_count);
3634 	} while (snap_count != want_count);
3635 
3636 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3637 out:
3638 	kfree(ondisk);
3639 
3640 	return ret;
3641 }
3642 
3643 /*
3644  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3645  * has disappeared from the (just updated) snapshot context.
3646  */
3647 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3648 {
3649 	u64 snap_id;
3650 
3651 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3652 		return;
3653 
3654 	snap_id = rbd_dev->spec->snap_id;
3655 	if (snap_id == CEPH_NOSNAP)
3656 		return;
3657 
3658 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3659 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3660 }
3661 
3662 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3663 {
3664 	sector_t size;
3665 	bool removing;
3666 
3667 	/*
3668 	 * Don't hold the lock while doing disk operations,
3669 	 * or lock ordering will conflict with the bdev mutex via:
3670 	 * rbd_add() -> blkdev_get() -> rbd_open()
3671 	 */
3672 	spin_lock_irq(&rbd_dev->lock);
3673 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3674 	spin_unlock_irq(&rbd_dev->lock);
3675 	/*
3676 	 * If the device is being removed, rbd_dev->disk has
3677 	 * been destroyed, so don't try to update its size
3678 	 */
3679 	if (!removing) {
3680 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3681 		dout("setting size to %llu sectors", (unsigned long long)size);
3682 		set_capacity(rbd_dev->disk, size);
3683 		revalidate_disk(rbd_dev->disk);
3684 	}
3685 }
3686 
3687 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3688 {
3689 	u64 mapping_size;
3690 	int ret;
3691 
3692 	down_write(&rbd_dev->header_rwsem);
3693 	mapping_size = rbd_dev->mapping.size;
3694 
3695 	ret = rbd_dev_header_info(rbd_dev);
3696 	if (ret)
3697 		return ret;
3698 
3699 	/*
3700 	 * If there is a parent, see if it has disappeared due to the
3701 	 * mapped image getting flattened.
3702 	 */
3703 	if (rbd_dev->parent) {
3704 		ret = rbd_dev_v2_parent_info(rbd_dev);
3705 		if (ret)
3706 			return ret;
3707 	}
3708 
3709 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3710 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3711 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3712 	} else {
3713 		/* validate mapped snapshot's EXISTS flag */
3714 		rbd_exists_validate(rbd_dev);
3715 	}
3716 
3717 	up_write(&rbd_dev->header_rwsem);
3718 
3719 	if (mapping_size != rbd_dev->mapping.size)
3720 		rbd_dev_update_size(rbd_dev);
3721 
3722 	return 0;
3723 }
3724 
3725 static int rbd_init_disk(struct rbd_device *rbd_dev)
3726 {
3727 	struct gendisk *disk;
3728 	struct request_queue *q;
3729 	u64 segment_size;
3730 
3731 	/* create gendisk info */
3732 	disk = alloc_disk(single_major ?
3733 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3734 			  RBD_MINORS_PER_MAJOR);
3735 	if (!disk)
3736 		return -ENOMEM;
3737 
3738 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3739 		 rbd_dev->dev_id);
3740 	disk->major = rbd_dev->major;
3741 	disk->first_minor = rbd_dev->minor;
3742 	if (single_major)
3743 		disk->flags |= GENHD_FL_EXT_DEVT;
3744 	disk->fops = &rbd_bd_ops;
3745 	disk->private_data = rbd_dev;
3746 
3747 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3748 	if (!q)
3749 		goto out_disk;
3750 
3751 	/* We use the default size, but let's be explicit about it. */
3752 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3753 
3754 	/* set io sizes to object size */
3755 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3756 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3757 	blk_queue_max_segment_size(q, segment_size);
3758 	blk_queue_io_min(q, segment_size);
3759 	blk_queue_io_opt(q, segment_size);
3760 
3761 	/* enable the discard support */
3762 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3763 	q->limits.discard_granularity = segment_size;
3764 	q->limits.discard_alignment = segment_size;
3765 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3766 	q->limits.discard_zeroes_data = 1;
3767 
3768 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3769 	disk->queue = q;
3770 
3771 	q->queuedata = rbd_dev;
3772 
3773 	rbd_dev->disk = disk;
3774 
3775 	return 0;
3776 out_disk:
3777 	put_disk(disk);
3778 
3779 	return -ENOMEM;
3780 }
3781 
3782 /*
3783   sysfs
3784 */
3785 
3786 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3787 {
3788 	return container_of(dev, struct rbd_device, dev);
3789 }
3790 
3791 static ssize_t rbd_size_show(struct device *dev,
3792 			     struct device_attribute *attr, char *buf)
3793 {
3794 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3795 
3796 	return sprintf(buf, "%llu\n",
3797 		(unsigned long long)rbd_dev->mapping.size);
3798 }
3799 
3800 /*
3801  * Note this shows the features for whatever's mapped, which is not
3802  * necessarily the base image.
3803  */
3804 static ssize_t rbd_features_show(struct device *dev,
3805 			     struct device_attribute *attr, char *buf)
3806 {
3807 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3808 
3809 	return sprintf(buf, "0x%016llx\n",
3810 			(unsigned long long)rbd_dev->mapping.features);
3811 }
3812 
3813 static ssize_t rbd_major_show(struct device *dev,
3814 			      struct device_attribute *attr, char *buf)
3815 {
3816 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3817 
3818 	if (rbd_dev->major)
3819 		return sprintf(buf, "%d\n", rbd_dev->major);
3820 
3821 	return sprintf(buf, "(none)\n");
3822 }
3823 
3824 static ssize_t rbd_minor_show(struct device *dev,
3825 			      struct device_attribute *attr, char *buf)
3826 {
3827 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828 
3829 	return sprintf(buf, "%d\n", rbd_dev->minor);
3830 }
3831 
3832 static ssize_t rbd_client_id_show(struct device *dev,
3833 				  struct device_attribute *attr, char *buf)
3834 {
3835 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3836 
3837 	return sprintf(buf, "client%lld\n",
3838 			ceph_client_id(rbd_dev->rbd_client->client));
3839 }
3840 
3841 static ssize_t rbd_pool_show(struct device *dev,
3842 			     struct device_attribute *attr, char *buf)
3843 {
3844 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3845 
3846 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3847 }
3848 
3849 static ssize_t rbd_pool_id_show(struct device *dev,
3850 			     struct device_attribute *attr, char *buf)
3851 {
3852 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853 
3854 	return sprintf(buf, "%llu\n",
3855 			(unsigned long long) rbd_dev->spec->pool_id);
3856 }
3857 
3858 static ssize_t rbd_name_show(struct device *dev,
3859 			     struct device_attribute *attr, char *buf)
3860 {
3861 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3862 
3863 	if (rbd_dev->spec->image_name)
3864 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3865 
3866 	return sprintf(buf, "(unknown)\n");
3867 }
3868 
3869 static ssize_t rbd_image_id_show(struct device *dev,
3870 			     struct device_attribute *attr, char *buf)
3871 {
3872 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873 
3874 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3875 }
3876 
3877 /*
3878  * Shows the name of the currently-mapped snapshot (or
3879  * RBD_SNAP_HEAD_NAME for the base image).
3880  */
3881 static ssize_t rbd_snap_show(struct device *dev,
3882 			     struct device_attribute *attr,
3883 			     char *buf)
3884 {
3885 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3886 
3887 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3888 }
3889 
3890 /*
3891  * For a v2 image, shows the chain of parent images, separated by empty
3892  * lines.  For v1 images or if there is no parent, shows "(no parent
3893  * image)".
3894  */
3895 static ssize_t rbd_parent_show(struct device *dev,
3896 			       struct device_attribute *attr,
3897 			       char *buf)
3898 {
3899 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3900 	ssize_t count = 0;
3901 
3902 	if (!rbd_dev->parent)
3903 		return sprintf(buf, "(no parent image)\n");
3904 
3905 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3906 		struct rbd_spec *spec = rbd_dev->parent_spec;
3907 
3908 		count += sprintf(&buf[count], "%s"
3909 			    "pool_id %llu\npool_name %s\n"
3910 			    "image_id %s\nimage_name %s\n"
3911 			    "snap_id %llu\nsnap_name %s\n"
3912 			    "overlap %llu\n",
3913 			    !count ? "" : "\n", /* first? */
3914 			    spec->pool_id, spec->pool_name,
3915 			    spec->image_id, spec->image_name ?: "(unknown)",
3916 			    spec->snap_id, spec->snap_name,
3917 			    rbd_dev->parent_overlap);
3918 	}
3919 
3920 	return count;
3921 }
3922 
3923 static ssize_t rbd_image_refresh(struct device *dev,
3924 				 struct device_attribute *attr,
3925 				 const char *buf,
3926 				 size_t size)
3927 {
3928 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3929 	int ret;
3930 
3931 	ret = rbd_dev_refresh(rbd_dev);
3932 	if (ret)
3933 		return ret;
3934 
3935 	return size;
3936 }
3937 
3938 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3939 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3940 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3941 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3942 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3943 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3944 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3945 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3946 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3947 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3948 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3949 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3950 
3951 static struct attribute *rbd_attrs[] = {
3952 	&dev_attr_size.attr,
3953 	&dev_attr_features.attr,
3954 	&dev_attr_major.attr,
3955 	&dev_attr_minor.attr,
3956 	&dev_attr_client_id.attr,
3957 	&dev_attr_pool.attr,
3958 	&dev_attr_pool_id.attr,
3959 	&dev_attr_name.attr,
3960 	&dev_attr_image_id.attr,
3961 	&dev_attr_current_snap.attr,
3962 	&dev_attr_parent.attr,
3963 	&dev_attr_refresh.attr,
3964 	NULL
3965 };
3966 
3967 static struct attribute_group rbd_attr_group = {
3968 	.attrs = rbd_attrs,
3969 };
3970 
3971 static const struct attribute_group *rbd_attr_groups[] = {
3972 	&rbd_attr_group,
3973 	NULL
3974 };
3975 
3976 static void rbd_sysfs_dev_release(struct device *dev)
3977 {
3978 }
3979 
3980 static struct device_type rbd_device_type = {
3981 	.name		= "rbd",
3982 	.groups		= rbd_attr_groups,
3983 	.release	= rbd_sysfs_dev_release,
3984 };
3985 
3986 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3987 {
3988 	kref_get(&spec->kref);
3989 
3990 	return spec;
3991 }
3992 
3993 static void rbd_spec_free(struct kref *kref);
3994 static void rbd_spec_put(struct rbd_spec *spec)
3995 {
3996 	if (spec)
3997 		kref_put(&spec->kref, rbd_spec_free);
3998 }
3999 
4000 static struct rbd_spec *rbd_spec_alloc(void)
4001 {
4002 	struct rbd_spec *spec;
4003 
4004 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4005 	if (!spec)
4006 		return NULL;
4007 
4008 	spec->pool_id = CEPH_NOPOOL;
4009 	spec->snap_id = CEPH_NOSNAP;
4010 	kref_init(&spec->kref);
4011 
4012 	return spec;
4013 }
4014 
4015 static void rbd_spec_free(struct kref *kref)
4016 {
4017 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4018 
4019 	kfree(spec->pool_name);
4020 	kfree(spec->image_id);
4021 	kfree(spec->image_name);
4022 	kfree(spec->snap_name);
4023 	kfree(spec);
4024 }
4025 
4026 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4027 				struct rbd_spec *spec)
4028 {
4029 	struct rbd_device *rbd_dev;
4030 
4031 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4032 	if (!rbd_dev)
4033 		return NULL;
4034 
4035 	spin_lock_init(&rbd_dev->lock);
4036 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
4037 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4038 	rbd_dev->flags = 0;
4039 	atomic_set(&rbd_dev->parent_ref, 0);
4040 	INIT_LIST_HEAD(&rbd_dev->node);
4041 	init_rwsem(&rbd_dev->header_rwsem);
4042 
4043 	rbd_dev->spec = spec;
4044 	rbd_dev->rbd_client = rbdc;
4045 
4046 	/* Initialize the layout used for all rbd requests */
4047 
4048 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4049 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4050 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4051 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4052 
4053 	return rbd_dev;
4054 }
4055 
4056 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4057 {
4058 	rbd_put_client(rbd_dev->rbd_client);
4059 	rbd_spec_put(rbd_dev->spec);
4060 	kfree(rbd_dev);
4061 }
4062 
4063 /*
4064  * Get the size and object order for an image snapshot, or if
4065  * snap_id is CEPH_NOSNAP, gets this information for the base
4066  * image.
4067  */
4068 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4069 				u8 *order, u64 *snap_size)
4070 {
4071 	__le64 snapid = cpu_to_le64(snap_id);
4072 	int ret;
4073 	struct {
4074 		u8 order;
4075 		__le64 size;
4076 	} __attribute__ ((packed)) size_buf = { 0 };
4077 
4078 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4079 				"rbd", "get_size",
4080 				&snapid, sizeof (snapid),
4081 				&size_buf, sizeof (size_buf));
4082 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4083 	if (ret < 0)
4084 		return ret;
4085 	if (ret < sizeof (size_buf))
4086 		return -ERANGE;
4087 
4088 	if (order) {
4089 		*order = size_buf.order;
4090 		dout("  order %u", (unsigned int)*order);
4091 	}
4092 	*snap_size = le64_to_cpu(size_buf.size);
4093 
4094 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4095 		(unsigned long long)snap_id,
4096 		(unsigned long long)*snap_size);
4097 
4098 	return 0;
4099 }
4100 
4101 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4102 {
4103 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4104 					&rbd_dev->header.obj_order,
4105 					&rbd_dev->header.image_size);
4106 }
4107 
4108 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4109 {
4110 	void *reply_buf;
4111 	int ret;
4112 	void *p;
4113 
4114 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4115 	if (!reply_buf)
4116 		return -ENOMEM;
4117 
4118 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119 				"rbd", "get_object_prefix", NULL, 0,
4120 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4121 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4122 	if (ret < 0)
4123 		goto out;
4124 
4125 	p = reply_buf;
4126 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4127 						p + ret, NULL, GFP_NOIO);
4128 	ret = 0;
4129 
4130 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4131 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4132 		rbd_dev->header.object_prefix = NULL;
4133 	} else {
4134 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4135 	}
4136 out:
4137 	kfree(reply_buf);
4138 
4139 	return ret;
4140 }
4141 
4142 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4143 		u64 *snap_features)
4144 {
4145 	__le64 snapid = cpu_to_le64(snap_id);
4146 	struct {
4147 		__le64 features;
4148 		__le64 incompat;
4149 	} __attribute__ ((packed)) features_buf = { 0 };
4150 	u64 incompat;
4151 	int ret;
4152 
4153 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4154 				"rbd", "get_features",
4155 				&snapid, sizeof (snapid),
4156 				&features_buf, sizeof (features_buf));
4157 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 	if (ret < 0)
4159 		return ret;
4160 	if (ret < sizeof (features_buf))
4161 		return -ERANGE;
4162 
4163 	incompat = le64_to_cpu(features_buf.incompat);
4164 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4165 		return -ENXIO;
4166 
4167 	*snap_features = le64_to_cpu(features_buf.features);
4168 
4169 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4170 		(unsigned long long)snap_id,
4171 		(unsigned long long)*snap_features,
4172 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4173 
4174 	return 0;
4175 }
4176 
4177 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4178 {
4179 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4180 						&rbd_dev->header.features);
4181 }
4182 
4183 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4184 {
4185 	struct rbd_spec *parent_spec;
4186 	size_t size;
4187 	void *reply_buf = NULL;
4188 	__le64 snapid;
4189 	void *p;
4190 	void *end;
4191 	u64 pool_id;
4192 	char *image_id;
4193 	u64 snap_id;
4194 	u64 overlap;
4195 	int ret;
4196 
4197 	parent_spec = rbd_spec_alloc();
4198 	if (!parent_spec)
4199 		return -ENOMEM;
4200 
4201 	size = sizeof (__le64) +				/* pool_id */
4202 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4203 		sizeof (__le64) +				/* snap_id */
4204 		sizeof (__le64);				/* overlap */
4205 	reply_buf = kmalloc(size, GFP_KERNEL);
4206 	if (!reply_buf) {
4207 		ret = -ENOMEM;
4208 		goto out_err;
4209 	}
4210 
4211 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4212 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4213 				"rbd", "get_parent",
4214 				&snapid, sizeof (snapid),
4215 				reply_buf, size);
4216 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217 	if (ret < 0)
4218 		goto out_err;
4219 
4220 	p = reply_buf;
4221 	end = reply_buf + ret;
4222 	ret = -ERANGE;
4223 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4224 	if (pool_id == CEPH_NOPOOL) {
4225 		/*
4226 		 * Either the parent never existed, or we have
4227 		 * record of it but the image got flattened so it no
4228 		 * longer has a parent.  When the parent of a
4229 		 * layered image disappears we immediately set the
4230 		 * overlap to 0.  The effect of this is that all new
4231 		 * requests will be treated as if the image had no
4232 		 * parent.
4233 		 */
4234 		if (rbd_dev->parent_overlap) {
4235 			rbd_dev->parent_overlap = 0;
4236 			rbd_dev_parent_put(rbd_dev);
4237 			pr_info("%s: clone image has been flattened\n",
4238 				rbd_dev->disk->disk_name);
4239 		}
4240 
4241 		goto out;	/* No parent?  No problem. */
4242 	}
4243 
4244 	/* The ceph file layout needs to fit pool id in 32 bits */
4245 
4246 	ret = -EIO;
4247 	if (pool_id > (u64)U32_MAX) {
4248 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4249 			(unsigned long long)pool_id, U32_MAX);
4250 		goto out_err;
4251 	}
4252 
4253 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4254 	if (IS_ERR(image_id)) {
4255 		ret = PTR_ERR(image_id);
4256 		goto out_err;
4257 	}
4258 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4259 	ceph_decode_64_safe(&p, end, overlap, out_err);
4260 
4261 	/*
4262 	 * The parent won't change (except when the clone is
4263 	 * flattened, already handled that).  So we only need to
4264 	 * record the parent spec we have not already done so.
4265 	 */
4266 	if (!rbd_dev->parent_spec) {
4267 		parent_spec->pool_id = pool_id;
4268 		parent_spec->image_id = image_id;
4269 		parent_spec->snap_id = snap_id;
4270 		rbd_dev->parent_spec = parent_spec;
4271 		parent_spec = NULL;	/* rbd_dev now owns this */
4272 	} else {
4273 		kfree(image_id);
4274 	}
4275 
4276 	/*
4277 	 * We always update the parent overlap.  If it's zero we
4278 	 * treat it specially.
4279 	 */
4280 	rbd_dev->parent_overlap = overlap;
4281 	if (!overlap) {
4282 
4283 		/* A null parent_spec indicates it's the initial probe */
4284 
4285 		if (parent_spec) {
4286 			/*
4287 			 * The overlap has become zero, so the clone
4288 			 * must have been resized down to 0 at some
4289 			 * point.  Treat this the same as a flatten.
4290 			 */
4291 			rbd_dev_parent_put(rbd_dev);
4292 			pr_info("%s: clone image now standalone\n",
4293 				rbd_dev->disk->disk_name);
4294 		} else {
4295 			/*
4296 			 * For the initial probe, if we find the
4297 			 * overlap is zero we just pretend there was
4298 			 * no parent image.
4299 			 */
4300 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4301 		}
4302 	}
4303 out:
4304 	ret = 0;
4305 out_err:
4306 	kfree(reply_buf);
4307 	rbd_spec_put(parent_spec);
4308 
4309 	return ret;
4310 }
4311 
4312 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4313 {
4314 	struct {
4315 		__le64 stripe_unit;
4316 		__le64 stripe_count;
4317 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4318 	size_t size = sizeof (striping_info_buf);
4319 	void *p;
4320 	u64 obj_size;
4321 	u64 stripe_unit;
4322 	u64 stripe_count;
4323 	int ret;
4324 
4325 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4326 				"rbd", "get_stripe_unit_count", NULL, 0,
4327 				(char *)&striping_info_buf, size);
4328 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4329 	if (ret < 0)
4330 		return ret;
4331 	if (ret < size)
4332 		return -ERANGE;
4333 
4334 	/*
4335 	 * We don't actually support the "fancy striping" feature
4336 	 * (STRIPINGV2) yet, but if the striping sizes are the
4337 	 * defaults the behavior is the same as before.  So find
4338 	 * out, and only fail if the image has non-default values.
4339 	 */
4340 	ret = -EINVAL;
4341 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4342 	p = &striping_info_buf;
4343 	stripe_unit = ceph_decode_64(&p);
4344 	if (stripe_unit != obj_size) {
4345 		rbd_warn(rbd_dev, "unsupported stripe unit "
4346 				"(got %llu want %llu)",
4347 				stripe_unit, obj_size);
4348 		return -EINVAL;
4349 	}
4350 	stripe_count = ceph_decode_64(&p);
4351 	if (stripe_count != 1) {
4352 		rbd_warn(rbd_dev, "unsupported stripe count "
4353 				"(got %llu want 1)", stripe_count);
4354 		return -EINVAL;
4355 	}
4356 	rbd_dev->header.stripe_unit = stripe_unit;
4357 	rbd_dev->header.stripe_count = stripe_count;
4358 
4359 	return 0;
4360 }
4361 
4362 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4363 {
4364 	size_t image_id_size;
4365 	char *image_id;
4366 	void *p;
4367 	void *end;
4368 	size_t size;
4369 	void *reply_buf = NULL;
4370 	size_t len = 0;
4371 	char *image_name = NULL;
4372 	int ret;
4373 
4374 	rbd_assert(!rbd_dev->spec->image_name);
4375 
4376 	len = strlen(rbd_dev->spec->image_id);
4377 	image_id_size = sizeof (__le32) + len;
4378 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4379 	if (!image_id)
4380 		return NULL;
4381 
4382 	p = image_id;
4383 	end = image_id + image_id_size;
4384 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4385 
4386 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4387 	reply_buf = kmalloc(size, GFP_KERNEL);
4388 	if (!reply_buf)
4389 		goto out;
4390 
4391 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4392 				"rbd", "dir_get_name",
4393 				image_id, image_id_size,
4394 				reply_buf, size);
4395 	if (ret < 0)
4396 		goto out;
4397 	p = reply_buf;
4398 	end = reply_buf + ret;
4399 
4400 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4401 	if (IS_ERR(image_name))
4402 		image_name = NULL;
4403 	else
4404 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4405 out:
4406 	kfree(reply_buf);
4407 	kfree(image_id);
4408 
4409 	return image_name;
4410 }
4411 
4412 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4413 {
4414 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4415 	const char *snap_name;
4416 	u32 which = 0;
4417 
4418 	/* Skip over names until we find the one we are looking for */
4419 
4420 	snap_name = rbd_dev->header.snap_names;
4421 	while (which < snapc->num_snaps) {
4422 		if (!strcmp(name, snap_name))
4423 			return snapc->snaps[which];
4424 		snap_name += strlen(snap_name) + 1;
4425 		which++;
4426 	}
4427 	return CEPH_NOSNAP;
4428 }
4429 
4430 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4431 {
4432 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4433 	u32 which;
4434 	bool found = false;
4435 	u64 snap_id;
4436 
4437 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4438 		const char *snap_name;
4439 
4440 		snap_id = snapc->snaps[which];
4441 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4442 		if (IS_ERR(snap_name)) {
4443 			/* ignore no-longer existing snapshots */
4444 			if (PTR_ERR(snap_name) == -ENOENT)
4445 				continue;
4446 			else
4447 				break;
4448 		}
4449 		found = !strcmp(name, snap_name);
4450 		kfree(snap_name);
4451 	}
4452 	return found ? snap_id : CEPH_NOSNAP;
4453 }
4454 
4455 /*
4456  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4457  * no snapshot by that name is found, or if an error occurs.
4458  */
4459 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4460 {
4461 	if (rbd_dev->image_format == 1)
4462 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4463 
4464 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4465 }
4466 
4467 /*
4468  * An image being mapped will have everything but the snap id.
4469  */
4470 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4471 {
4472 	struct rbd_spec *spec = rbd_dev->spec;
4473 
4474 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4475 	rbd_assert(spec->image_id && spec->image_name);
4476 	rbd_assert(spec->snap_name);
4477 
4478 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4479 		u64 snap_id;
4480 
4481 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4482 		if (snap_id == CEPH_NOSNAP)
4483 			return -ENOENT;
4484 
4485 		spec->snap_id = snap_id;
4486 	} else {
4487 		spec->snap_id = CEPH_NOSNAP;
4488 	}
4489 
4490 	return 0;
4491 }
4492 
4493 /*
4494  * A parent image will have all ids but none of the names.
4495  *
4496  * All names in an rbd spec are dynamically allocated.  It's OK if we
4497  * can't figure out the name for an image id.
4498  */
4499 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4500 {
4501 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4502 	struct rbd_spec *spec = rbd_dev->spec;
4503 	const char *pool_name;
4504 	const char *image_name;
4505 	const char *snap_name;
4506 	int ret;
4507 
4508 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4509 	rbd_assert(spec->image_id);
4510 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4511 
4512 	/* Get the pool name; we have to make our own copy of this */
4513 
4514 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4515 	if (!pool_name) {
4516 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4517 		return -EIO;
4518 	}
4519 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4520 	if (!pool_name)
4521 		return -ENOMEM;
4522 
4523 	/* Fetch the image name; tolerate failure here */
4524 
4525 	image_name = rbd_dev_image_name(rbd_dev);
4526 	if (!image_name)
4527 		rbd_warn(rbd_dev, "unable to get image name");
4528 
4529 	/* Fetch the snapshot name */
4530 
4531 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4532 	if (IS_ERR(snap_name)) {
4533 		ret = PTR_ERR(snap_name);
4534 		goto out_err;
4535 	}
4536 
4537 	spec->pool_name = pool_name;
4538 	spec->image_name = image_name;
4539 	spec->snap_name = snap_name;
4540 
4541 	return 0;
4542 
4543 out_err:
4544 	kfree(image_name);
4545 	kfree(pool_name);
4546 	return ret;
4547 }
4548 
4549 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4550 {
4551 	size_t size;
4552 	int ret;
4553 	void *reply_buf;
4554 	void *p;
4555 	void *end;
4556 	u64 seq;
4557 	u32 snap_count;
4558 	struct ceph_snap_context *snapc;
4559 	u32 i;
4560 
4561 	/*
4562 	 * We'll need room for the seq value (maximum snapshot id),
4563 	 * snapshot count, and array of that many snapshot ids.
4564 	 * For now we have a fixed upper limit on the number we're
4565 	 * prepared to receive.
4566 	 */
4567 	size = sizeof (__le64) + sizeof (__le32) +
4568 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4569 	reply_buf = kzalloc(size, GFP_KERNEL);
4570 	if (!reply_buf)
4571 		return -ENOMEM;
4572 
4573 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4574 				"rbd", "get_snapcontext", NULL, 0,
4575 				reply_buf, size);
4576 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4577 	if (ret < 0)
4578 		goto out;
4579 
4580 	p = reply_buf;
4581 	end = reply_buf + ret;
4582 	ret = -ERANGE;
4583 	ceph_decode_64_safe(&p, end, seq, out);
4584 	ceph_decode_32_safe(&p, end, snap_count, out);
4585 
4586 	/*
4587 	 * Make sure the reported number of snapshot ids wouldn't go
4588 	 * beyond the end of our buffer.  But before checking that,
4589 	 * make sure the computed size of the snapshot context we
4590 	 * allocate is representable in a size_t.
4591 	 */
4592 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4593 				 / sizeof (u64)) {
4594 		ret = -EINVAL;
4595 		goto out;
4596 	}
4597 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4598 		goto out;
4599 	ret = 0;
4600 
4601 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4602 	if (!snapc) {
4603 		ret = -ENOMEM;
4604 		goto out;
4605 	}
4606 	snapc->seq = seq;
4607 	for (i = 0; i < snap_count; i++)
4608 		snapc->snaps[i] = ceph_decode_64(&p);
4609 
4610 	ceph_put_snap_context(rbd_dev->header.snapc);
4611 	rbd_dev->header.snapc = snapc;
4612 
4613 	dout("  snap context seq = %llu, snap_count = %u\n",
4614 		(unsigned long long)seq, (unsigned int)snap_count);
4615 out:
4616 	kfree(reply_buf);
4617 
4618 	return ret;
4619 }
4620 
4621 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4622 					u64 snap_id)
4623 {
4624 	size_t size;
4625 	void *reply_buf;
4626 	__le64 snapid;
4627 	int ret;
4628 	void *p;
4629 	void *end;
4630 	char *snap_name;
4631 
4632 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4633 	reply_buf = kmalloc(size, GFP_KERNEL);
4634 	if (!reply_buf)
4635 		return ERR_PTR(-ENOMEM);
4636 
4637 	snapid = cpu_to_le64(snap_id);
4638 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4639 				"rbd", "get_snapshot_name",
4640 				&snapid, sizeof (snapid),
4641 				reply_buf, size);
4642 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4643 	if (ret < 0) {
4644 		snap_name = ERR_PTR(ret);
4645 		goto out;
4646 	}
4647 
4648 	p = reply_buf;
4649 	end = reply_buf + ret;
4650 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4651 	if (IS_ERR(snap_name))
4652 		goto out;
4653 
4654 	dout("  snap_id 0x%016llx snap_name = %s\n",
4655 		(unsigned long long)snap_id, snap_name);
4656 out:
4657 	kfree(reply_buf);
4658 
4659 	return snap_name;
4660 }
4661 
4662 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4663 {
4664 	bool first_time = rbd_dev->header.object_prefix == NULL;
4665 	int ret;
4666 
4667 	ret = rbd_dev_v2_image_size(rbd_dev);
4668 	if (ret)
4669 		return ret;
4670 
4671 	if (first_time) {
4672 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4673 		if (ret)
4674 			return ret;
4675 	}
4676 
4677 	ret = rbd_dev_v2_snap_context(rbd_dev);
4678 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4679 
4680 	return ret;
4681 }
4682 
4683 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4684 {
4685 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4686 
4687 	if (rbd_dev->image_format == 1)
4688 		return rbd_dev_v1_header_info(rbd_dev);
4689 
4690 	return rbd_dev_v2_header_info(rbd_dev);
4691 }
4692 
4693 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4694 {
4695 	struct device *dev;
4696 	int ret;
4697 
4698 	dev = &rbd_dev->dev;
4699 	dev->bus = &rbd_bus_type;
4700 	dev->type = &rbd_device_type;
4701 	dev->parent = &rbd_root_dev;
4702 	dev->release = rbd_dev_device_release;
4703 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4704 	ret = device_register(dev);
4705 
4706 	return ret;
4707 }
4708 
4709 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4710 {
4711 	device_unregister(&rbd_dev->dev);
4712 }
4713 
4714 /*
4715  * Get a unique rbd identifier for the given new rbd_dev, and add
4716  * the rbd_dev to the global list.
4717  */
4718 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4719 {
4720 	int new_dev_id;
4721 
4722 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4723 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4724 				    GFP_KERNEL);
4725 	if (new_dev_id < 0)
4726 		return new_dev_id;
4727 
4728 	rbd_dev->dev_id = new_dev_id;
4729 
4730 	spin_lock(&rbd_dev_list_lock);
4731 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4732 	spin_unlock(&rbd_dev_list_lock);
4733 
4734 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4735 
4736 	return 0;
4737 }
4738 
4739 /*
4740  * Remove an rbd_dev from the global list, and record that its
4741  * identifier is no longer in use.
4742  */
4743 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4744 {
4745 	spin_lock(&rbd_dev_list_lock);
4746 	list_del_init(&rbd_dev->node);
4747 	spin_unlock(&rbd_dev_list_lock);
4748 
4749 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4750 
4751 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4752 }
4753 
4754 /*
4755  * Skips over white space at *buf, and updates *buf to point to the
4756  * first found non-space character (if any). Returns the length of
4757  * the token (string of non-white space characters) found.  Note
4758  * that *buf must be terminated with '\0'.
4759  */
4760 static inline size_t next_token(const char **buf)
4761 {
4762         /*
4763         * These are the characters that produce nonzero for
4764         * isspace() in the "C" and "POSIX" locales.
4765         */
4766         const char *spaces = " \f\n\r\t\v";
4767 
4768         *buf += strspn(*buf, spaces);	/* Find start of token */
4769 
4770 	return strcspn(*buf, spaces);   /* Return token length */
4771 }
4772 
4773 /*
4774  * Finds the next token in *buf, and if the provided token buffer is
4775  * big enough, copies the found token into it.  The result, if
4776  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4777  * must be terminated with '\0' on entry.
4778  *
4779  * Returns the length of the token found (not including the '\0').
4780  * Return value will be 0 if no token is found, and it will be >=
4781  * token_size if the token would not fit.
4782  *
4783  * The *buf pointer will be updated to point beyond the end of the
4784  * found token.  Note that this occurs even if the token buffer is
4785  * too small to hold it.
4786  */
4787 static inline size_t copy_token(const char **buf,
4788 				char *token,
4789 				size_t token_size)
4790 {
4791         size_t len;
4792 
4793 	len = next_token(buf);
4794 	if (len < token_size) {
4795 		memcpy(token, *buf, len);
4796 		*(token + len) = '\0';
4797 	}
4798 	*buf += len;
4799 
4800         return len;
4801 }
4802 
4803 /*
4804  * Finds the next token in *buf, dynamically allocates a buffer big
4805  * enough to hold a copy of it, and copies the token into the new
4806  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4807  * that a duplicate buffer is created even for a zero-length token.
4808  *
4809  * Returns a pointer to the newly-allocated duplicate, or a null
4810  * pointer if memory for the duplicate was not available.  If
4811  * the lenp argument is a non-null pointer, the length of the token
4812  * (not including the '\0') is returned in *lenp.
4813  *
4814  * If successful, the *buf pointer will be updated to point beyond
4815  * the end of the found token.
4816  *
4817  * Note: uses GFP_KERNEL for allocation.
4818  */
4819 static inline char *dup_token(const char **buf, size_t *lenp)
4820 {
4821 	char *dup;
4822 	size_t len;
4823 
4824 	len = next_token(buf);
4825 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4826 	if (!dup)
4827 		return NULL;
4828 	*(dup + len) = '\0';
4829 	*buf += len;
4830 
4831 	if (lenp)
4832 		*lenp = len;
4833 
4834 	return dup;
4835 }
4836 
4837 /*
4838  * Parse the options provided for an "rbd add" (i.e., rbd image
4839  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4840  * and the data written is passed here via a NUL-terminated buffer.
4841  * Returns 0 if successful or an error code otherwise.
4842  *
4843  * The information extracted from these options is recorded in
4844  * the other parameters which return dynamically-allocated
4845  * structures:
4846  *  ceph_opts
4847  *      The address of a pointer that will refer to a ceph options
4848  *      structure.  Caller must release the returned pointer using
4849  *      ceph_destroy_options() when it is no longer needed.
4850  *  rbd_opts
4851  *	Address of an rbd options pointer.  Fully initialized by
4852  *	this function; caller must release with kfree().
4853  *  spec
4854  *	Address of an rbd image specification pointer.  Fully
4855  *	initialized by this function based on parsed options.
4856  *	Caller must release with rbd_spec_put().
4857  *
4858  * The options passed take this form:
4859  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4860  * where:
4861  *  <mon_addrs>
4862  *      A comma-separated list of one or more monitor addresses.
4863  *      A monitor address is an ip address, optionally followed
4864  *      by a port number (separated by a colon).
4865  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4866  *  <options>
4867  *      A comma-separated list of ceph and/or rbd options.
4868  *  <pool_name>
4869  *      The name of the rados pool containing the rbd image.
4870  *  <image_name>
4871  *      The name of the image in that pool to map.
4872  *  <snap_id>
4873  *      An optional snapshot id.  If provided, the mapping will
4874  *      present data from the image at the time that snapshot was
4875  *      created.  The image head is used if no snapshot id is
4876  *      provided.  Snapshot mappings are always read-only.
4877  */
4878 static int rbd_add_parse_args(const char *buf,
4879 				struct ceph_options **ceph_opts,
4880 				struct rbd_options **opts,
4881 				struct rbd_spec **rbd_spec)
4882 {
4883 	size_t len;
4884 	char *options;
4885 	const char *mon_addrs;
4886 	char *snap_name;
4887 	size_t mon_addrs_size;
4888 	struct rbd_spec *spec = NULL;
4889 	struct rbd_options *rbd_opts = NULL;
4890 	struct ceph_options *copts;
4891 	int ret;
4892 
4893 	/* The first four tokens are required */
4894 
4895 	len = next_token(&buf);
4896 	if (!len) {
4897 		rbd_warn(NULL, "no monitor address(es) provided");
4898 		return -EINVAL;
4899 	}
4900 	mon_addrs = buf;
4901 	mon_addrs_size = len + 1;
4902 	buf += len;
4903 
4904 	ret = -EINVAL;
4905 	options = dup_token(&buf, NULL);
4906 	if (!options)
4907 		return -ENOMEM;
4908 	if (!*options) {
4909 		rbd_warn(NULL, "no options provided");
4910 		goto out_err;
4911 	}
4912 
4913 	spec = rbd_spec_alloc();
4914 	if (!spec)
4915 		goto out_mem;
4916 
4917 	spec->pool_name = dup_token(&buf, NULL);
4918 	if (!spec->pool_name)
4919 		goto out_mem;
4920 	if (!*spec->pool_name) {
4921 		rbd_warn(NULL, "no pool name provided");
4922 		goto out_err;
4923 	}
4924 
4925 	spec->image_name = dup_token(&buf, NULL);
4926 	if (!spec->image_name)
4927 		goto out_mem;
4928 	if (!*spec->image_name) {
4929 		rbd_warn(NULL, "no image name provided");
4930 		goto out_err;
4931 	}
4932 
4933 	/*
4934 	 * Snapshot name is optional; default is to use "-"
4935 	 * (indicating the head/no snapshot).
4936 	 */
4937 	len = next_token(&buf);
4938 	if (!len) {
4939 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4940 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4941 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4942 		ret = -ENAMETOOLONG;
4943 		goto out_err;
4944 	}
4945 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4946 	if (!snap_name)
4947 		goto out_mem;
4948 	*(snap_name + len) = '\0';
4949 	spec->snap_name = snap_name;
4950 
4951 	/* Initialize all rbd options to the defaults */
4952 
4953 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4954 	if (!rbd_opts)
4955 		goto out_mem;
4956 
4957 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4958 
4959 	copts = ceph_parse_options(options, mon_addrs,
4960 					mon_addrs + mon_addrs_size - 1,
4961 					parse_rbd_opts_token, rbd_opts);
4962 	if (IS_ERR(copts)) {
4963 		ret = PTR_ERR(copts);
4964 		goto out_err;
4965 	}
4966 	kfree(options);
4967 
4968 	*ceph_opts = copts;
4969 	*opts = rbd_opts;
4970 	*rbd_spec = spec;
4971 
4972 	return 0;
4973 out_mem:
4974 	ret = -ENOMEM;
4975 out_err:
4976 	kfree(rbd_opts);
4977 	rbd_spec_put(spec);
4978 	kfree(options);
4979 
4980 	return ret;
4981 }
4982 
4983 /*
4984  * Return pool id (>= 0) or a negative error code.
4985  */
4986 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4987 {
4988 	u64 newest_epoch;
4989 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4990 	int tries = 0;
4991 	int ret;
4992 
4993 again:
4994 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4995 	if (ret == -ENOENT && tries++ < 1) {
4996 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4997 					       &newest_epoch);
4998 		if (ret < 0)
4999 			return ret;
5000 
5001 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5002 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5003 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5004 						     newest_epoch, timeout);
5005 			goto again;
5006 		} else {
5007 			/* the osdmap we have is new enough */
5008 			return -ENOENT;
5009 		}
5010 	}
5011 
5012 	return ret;
5013 }
5014 
5015 /*
5016  * An rbd format 2 image has a unique identifier, distinct from the
5017  * name given to it by the user.  Internally, that identifier is
5018  * what's used to specify the names of objects related to the image.
5019  *
5020  * A special "rbd id" object is used to map an rbd image name to its
5021  * id.  If that object doesn't exist, then there is no v2 rbd image
5022  * with the supplied name.
5023  *
5024  * This function will record the given rbd_dev's image_id field if
5025  * it can be determined, and in that case will return 0.  If any
5026  * errors occur a negative errno will be returned and the rbd_dev's
5027  * image_id field will be unchanged (and should be NULL).
5028  */
5029 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5030 {
5031 	int ret;
5032 	size_t size;
5033 	char *object_name;
5034 	void *response;
5035 	char *image_id;
5036 
5037 	/*
5038 	 * When probing a parent image, the image id is already
5039 	 * known (and the image name likely is not).  There's no
5040 	 * need to fetch the image id again in this case.  We
5041 	 * do still need to set the image format though.
5042 	 */
5043 	if (rbd_dev->spec->image_id) {
5044 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5045 
5046 		return 0;
5047 	}
5048 
5049 	/*
5050 	 * First, see if the format 2 image id file exists, and if
5051 	 * so, get the image's persistent id from it.
5052 	 */
5053 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5054 	object_name = kmalloc(size, GFP_NOIO);
5055 	if (!object_name)
5056 		return -ENOMEM;
5057 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5058 	dout("rbd id object name is %s\n", object_name);
5059 
5060 	/* Response will be an encoded string, which includes a length */
5061 
5062 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5063 	response = kzalloc(size, GFP_NOIO);
5064 	if (!response) {
5065 		ret = -ENOMEM;
5066 		goto out;
5067 	}
5068 
5069 	/* If it doesn't exist we'll assume it's a format 1 image */
5070 
5071 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5072 				"rbd", "get_id", NULL, 0,
5073 				response, RBD_IMAGE_ID_LEN_MAX);
5074 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5075 	if (ret == -ENOENT) {
5076 		image_id = kstrdup("", GFP_KERNEL);
5077 		ret = image_id ? 0 : -ENOMEM;
5078 		if (!ret)
5079 			rbd_dev->image_format = 1;
5080 	} else if (ret >= 0) {
5081 		void *p = response;
5082 
5083 		image_id = ceph_extract_encoded_string(&p, p + ret,
5084 						NULL, GFP_NOIO);
5085 		ret = PTR_ERR_OR_ZERO(image_id);
5086 		if (!ret)
5087 			rbd_dev->image_format = 2;
5088 	}
5089 
5090 	if (!ret) {
5091 		rbd_dev->spec->image_id = image_id;
5092 		dout("image_id is %s\n", image_id);
5093 	}
5094 out:
5095 	kfree(response);
5096 	kfree(object_name);
5097 
5098 	return ret;
5099 }
5100 
5101 /*
5102  * Undo whatever state changes are made by v1 or v2 header info
5103  * call.
5104  */
5105 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5106 {
5107 	struct rbd_image_header	*header;
5108 
5109 	rbd_dev_parent_put(rbd_dev);
5110 
5111 	/* Free dynamic fields from the header, then zero it out */
5112 
5113 	header = &rbd_dev->header;
5114 	ceph_put_snap_context(header->snapc);
5115 	kfree(header->snap_sizes);
5116 	kfree(header->snap_names);
5117 	kfree(header->object_prefix);
5118 	memset(header, 0, sizeof (*header));
5119 }
5120 
5121 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5122 {
5123 	int ret;
5124 
5125 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5126 	if (ret)
5127 		goto out_err;
5128 
5129 	/*
5130 	 * Get the and check features for the image.  Currently the
5131 	 * features are assumed to never change.
5132 	 */
5133 	ret = rbd_dev_v2_features(rbd_dev);
5134 	if (ret)
5135 		goto out_err;
5136 
5137 	/* If the image supports fancy striping, get its parameters */
5138 
5139 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5140 		ret = rbd_dev_v2_striping_info(rbd_dev);
5141 		if (ret < 0)
5142 			goto out_err;
5143 	}
5144 	/* No support for crypto and compression type format 2 images */
5145 
5146 	return 0;
5147 out_err:
5148 	rbd_dev->header.features = 0;
5149 	kfree(rbd_dev->header.object_prefix);
5150 	rbd_dev->header.object_prefix = NULL;
5151 
5152 	return ret;
5153 }
5154 
5155 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5156 {
5157 	struct rbd_device *parent = NULL;
5158 	struct rbd_spec *parent_spec;
5159 	struct rbd_client *rbdc;
5160 	int ret;
5161 
5162 	if (!rbd_dev->parent_spec)
5163 		return 0;
5164 	/*
5165 	 * We need to pass a reference to the client and the parent
5166 	 * spec when creating the parent rbd_dev.  Images related by
5167 	 * parent/child relationships always share both.
5168 	 */
5169 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5170 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5171 
5172 	ret = -ENOMEM;
5173 	parent = rbd_dev_create(rbdc, parent_spec);
5174 	if (!parent)
5175 		goto out_err;
5176 
5177 	ret = rbd_dev_image_probe(parent, false);
5178 	if (ret < 0)
5179 		goto out_err;
5180 	rbd_dev->parent = parent;
5181 	atomic_set(&rbd_dev->parent_ref, 1);
5182 
5183 	return 0;
5184 out_err:
5185 	if (parent) {
5186 		rbd_dev_unparent(rbd_dev);
5187 		kfree(rbd_dev->header_name);
5188 		rbd_dev_destroy(parent);
5189 	} else {
5190 		rbd_put_client(rbdc);
5191 		rbd_spec_put(parent_spec);
5192 	}
5193 
5194 	return ret;
5195 }
5196 
5197 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5198 {
5199 	int ret;
5200 
5201 	/* Get an id and fill in device name. */
5202 
5203 	ret = rbd_dev_id_get(rbd_dev);
5204 	if (ret)
5205 		return ret;
5206 
5207 	BUILD_BUG_ON(DEV_NAME_LEN
5208 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5209 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5210 
5211 	/* Record our major and minor device numbers. */
5212 
5213 	if (!single_major) {
5214 		ret = register_blkdev(0, rbd_dev->name);
5215 		if (ret < 0)
5216 			goto err_out_id;
5217 
5218 		rbd_dev->major = ret;
5219 		rbd_dev->minor = 0;
5220 	} else {
5221 		rbd_dev->major = rbd_major;
5222 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5223 	}
5224 
5225 	/* Set up the blkdev mapping. */
5226 
5227 	ret = rbd_init_disk(rbd_dev);
5228 	if (ret)
5229 		goto err_out_blkdev;
5230 
5231 	ret = rbd_dev_mapping_set(rbd_dev);
5232 	if (ret)
5233 		goto err_out_disk;
5234 
5235 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5236 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5237 
5238 	ret = rbd_bus_add_dev(rbd_dev);
5239 	if (ret)
5240 		goto err_out_mapping;
5241 
5242 	/* Everything's ready.  Announce the disk to the world. */
5243 
5244 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5245 	add_disk(rbd_dev->disk);
5246 
5247 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5248 		(unsigned long long) rbd_dev->mapping.size);
5249 
5250 	return ret;
5251 
5252 err_out_mapping:
5253 	rbd_dev_mapping_clear(rbd_dev);
5254 err_out_disk:
5255 	rbd_free_disk(rbd_dev);
5256 err_out_blkdev:
5257 	if (!single_major)
5258 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5259 err_out_id:
5260 	rbd_dev_id_put(rbd_dev);
5261 	rbd_dev_mapping_clear(rbd_dev);
5262 
5263 	return ret;
5264 }
5265 
5266 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5267 {
5268 	struct rbd_spec *spec = rbd_dev->spec;
5269 	size_t size;
5270 
5271 	/* Record the header object name for this rbd image. */
5272 
5273 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5274 
5275 	if (rbd_dev->image_format == 1)
5276 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5277 	else
5278 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5279 
5280 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5281 	if (!rbd_dev->header_name)
5282 		return -ENOMEM;
5283 
5284 	if (rbd_dev->image_format == 1)
5285 		sprintf(rbd_dev->header_name, "%s%s",
5286 			spec->image_name, RBD_SUFFIX);
5287 	else
5288 		sprintf(rbd_dev->header_name, "%s%s",
5289 			RBD_HEADER_PREFIX, spec->image_id);
5290 	return 0;
5291 }
5292 
5293 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5294 {
5295 	rbd_dev_unprobe(rbd_dev);
5296 	kfree(rbd_dev->header_name);
5297 	rbd_dev->header_name = NULL;
5298 	rbd_dev->image_format = 0;
5299 	kfree(rbd_dev->spec->image_id);
5300 	rbd_dev->spec->image_id = NULL;
5301 
5302 	rbd_dev_destroy(rbd_dev);
5303 }
5304 
5305 /*
5306  * Probe for the existence of the header object for the given rbd
5307  * device.  If this image is the one being mapped (i.e., not a
5308  * parent), initiate a watch on its header object before using that
5309  * object to get detailed information about the rbd image.
5310  */
5311 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5312 {
5313 	int ret;
5314 
5315 	/*
5316 	 * Get the id from the image id object.  Unless there's an
5317 	 * error, rbd_dev->spec->image_id will be filled in with
5318 	 * a dynamically-allocated string, and rbd_dev->image_format
5319 	 * will be set to either 1 or 2.
5320 	 */
5321 	ret = rbd_dev_image_id(rbd_dev);
5322 	if (ret)
5323 		return ret;
5324 
5325 	ret = rbd_dev_header_name(rbd_dev);
5326 	if (ret)
5327 		goto err_out_format;
5328 
5329 	if (mapping) {
5330 		ret = rbd_dev_header_watch_sync(rbd_dev);
5331 		if (ret)
5332 			goto out_header_name;
5333 	}
5334 
5335 	ret = rbd_dev_header_info(rbd_dev);
5336 	if (ret)
5337 		goto err_out_watch;
5338 
5339 	/*
5340 	 * If this image is the one being mapped, we have pool name and
5341 	 * id, image name and id, and snap name - need to fill snap id.
5342 	 * Otherwise this is a parent image, identified by pool, image
5343 	 * and snap ids - need to fill in names for those ids.
5344 	 */
5345 	if (mapping)
5346 		ret = rbd_spec_fill_snap_id(rbd_dev);
5347 	else
5348 		ret = rbd_spec_fill_names(rbd_dev);
5349 	if (ret)
5350 		goto err_out_probe;
5351 
5352 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5353 		ret = rbd_dev_v2_parent_info(rbd_dev);
5354 		if (ret)
5355 			goto err_out_probe;
5356 
5357 		/*
5358 		 * Need to warn users if this image is the one being
5359 		 * mapped and has a parent.
5360 		 */
5361 		if (mapping && rbd_dev->parent_spec)
5362 			rbd_warn(rbd_dev,
5363 				 "WARNING: kernel layering is EXPERIMENTAL!");
5364 	}
5365 
5366 	ret = rbd_dev_probe_parent(rbd_dev);
5367 	if (ret)
5368 		goto err_out_probe;
5369 
5370 	dout("discovered format %u image, header name is %s\n",
5371 		rbd_dev->image_format, rbd_dev->header_name);
5372 	return 0;
5373 
5374 err_out_probe:
5375 	rbd_dev_unprobe(rbd_dev);
5376 err_out_watch:
5377 	if (mapping)
5378 		rbd_dev_header_unwatch_sync(rbd_dev);
5379 out_header_name:
5380 	kfree(rbd_dev->header_name);
5381 	rbd_dev->header_name = NULL;
5382 err_out_format:
5383 	rbd_dev->image_format = 0;
5384 	kfree(rbd_dev->spec->image_id);
5385 	rbd_dev->spec->image_id = NULL;
5386 	return ret;
5387 }
5388 
5389 static ssize_t do_rbd_add(struct bus_type *bus,
5390 			  const char *buf,
5391 			  size_t count)
5392 {
5393 	struct rbd_device *rbd_dev = NULL;
5394 	struct ceph_options *ceph_opts = NULL;
5395 	struct rbd_options *rbd_opts = NULL;
5396 	struct rbd_spec *spec = NULL;
5397 	struct rbd_client *rbdc;
5398 	bool read_only;
5399 	int rc = -ENOMEM;
5400 
5401 	if (!try_module_get(THIS_MODULE))
5402 		return -ENODEV;
5403 
5404 	/* parse add command */
5405 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5406 	if (rc < 0)
5407 		goto err_out_module;
5408 	read_only = rbd_opts->read_only;
5409 	kfree(rbd_opts);
5410 	rbd_opts = NULL;	/* done with this */
5411 
5412 	rbdc = rbd_get_client(ceph_opts);
5413 	if (IS_ERR(rbdc)) {
5414 		rc = PTR_ERR(rbdc);
5415 		goto err_out_args;
5416 	}
5417 
5418 	/* pick the pool */
5419 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420 	if (rc < 0)
5421 		goto err_out_client;
5422 	spec->pool_id = (u64)rc;
5423 
5424 	/* The ceph file layout needs to fit pool id in 32 bits */
5425 
5426 	if (spec->pool_id > (u64)U32_MAX) {
5427 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5428 				(unsigned long long)spec->pool_id, U32_MAX);
5429 		rc = -EIO;
5430 		goto err_out_client;
5431 	}
5432 
5433 	rbd_dev = rbd_dev_create(rbdc, spec);
5434 	if (!rbd_dev)
5435 		goto err_out_client;
5436 	rbdc = NULL;		/* rbd_dev now owns this */
5437 	spec = NULL;		/* rbd_dev now owns this */
5438 
5439 	rc = rbd_dev_image_probe(rbd_dev, true);
5440 	if (rc < 0)
5441 		goto err_out_rbd_dev;
5442 
5443 	/* If we are mapping a snapshot it must be marked read-only */
5444 
5445 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5446 		read_only = true;
5447 	rbd_dev->mapping.read_only = read_only;
5448 
5449 	rc = rbd_dev_device_setup(rbd_dev);
5450 	if (rc) {
5451 		/*
5452 		 * rbd_dev_header_unwatch_sync() can't be moved into
5453 		 * rbd_dev_image_release() without refactoring, see
5454 		 * commit 1f3ef78861ac.
5455 		 */
5456 		rbd_dev_header_unwatch_sync(rbd_dev);
5457 		rbd_dev_image_release(rbd_dev);
5458 		goto err_out_module;
5459 	}
5460 
5461 	return count;
5462 
5463 err_out_rbd_dev:
5464 	rbd_dev_destroy(rbd_dev);
5465 err_out_client:
5466 	rbd_put_client(rbdc);
5467 err_out_args:
5468 	rbd_spec_put(spec);
5469 err_out_module:
5470 	module_put(THIS_MODULE);
5471 
5472 	dout("Error adding device %s\n", buf);
5473 
5474 	return (ssize_t)rc;
5475 }
5476 
5477 static ssize_t rbd_add(struct bus_type *bus,
5478 		       const char *buf,
5479 		       size_t count)
5480 {
5481 	if (single_major)
5482 		return -EINVAL;
5483 
5484 	return do_rbd_add(bus, buf, count);
5485 }
5486 
5487 static ssize_t rbd_add_single_major(struct bus_type *bus,
5488 				    const char *buf,
5489 				    size_t count)
5490 {
5491 	return do_rbd_add(bus, buf, count);
5492 }
5493 
5494 static void rbd_dev_device_release(struct device *dev)
5495 {
5496 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5497 
5498 	rbd_free_disk(rbd_dev);
5499 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5500 	rbd_dev_mapping_clear(rbd_dev);
5501 	if (!single_major)
5502 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5503 	rbd_dev_id_put(rbd_dev);
5504 	rbd_dev_mapping_clear(rbd_dev);
5505 }
5506 
5507 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5508 {
5509 	while (rbd_dev->parent) {
5510 		struct rbd_device *first = rbd_dev;
5511 		struct rbd_device *second = first->parent;
5512 		struct rbd_device *third;
5513 
5514 		/*
5515 		 * Follow to the parent with no grandparent and
5516 		 * remove it.
5517 		 */
5518 		while (second && (third = second->parent)) {
5519 			first = second;
5520 			second = third;
5521 		}
5522 		rbd_assert(second);
5523 		rbd_dev_image_release(second);
5524 		first->parent = NULL;
5525 		first->parent_overlap = 0;
5526 
5527 		rbd_assert(first->parent_spec);
5528 		rbd_spec_put(first->parent_spec);
5529 		first->parent_spec = NULL;
5530 	}
5531 }
5532 
5533 static ssize_t do_rbd_remove(struct bus_type *bus,
5534 			     const char *buf,
5535 			     size_t count)
5536 {
5537 	struct rbd_device *rbd_dev = NULL;
5538 	struct list_head *tmp;
5539 	int dev_id;
5540 	unsigned long ul;
5541 	bool already = false;
5542 	int ret;
5543 
5544 	ret = kstrtoul(buf, 10, &ul);
5545 	if (ret)
5546 		return ret;
5547 
5548 	/* convert to int; abort if we lost anything in the conversion */
5549 	dev_id = (int)ul;
5550 	if (dev_id != ul)
5551 		return -EINVAL;
5552 
5553 	ret = -ENOENT;
5554 	spin_lock(&rbd_dev_list_lock);
5555 	list_for_each(tmp, &rbd_dev_list) {
5556 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5557 		if (rbd_dev->dev_id == dev_id) {
5558 			ret = 0;
5559 			break;
5560 		}
5561 	}
5562 	if (!ret) {
5563 		spin_lock_irq(&rbd_dev->lock);
5564 		if (rbd_dev->open_count)
5565 			ret = -EBUSY;
5566 		else
5567 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5568 							&rbd_dev->flags);
5569 		spin_unlock_irq(&rbd_dev->lock);
5570 	}
5571 	spin_unlock(&rbd_dev_list_lock);
5572 	if (ret < 0 || already)
5573 		return ret;
5574 
5575 	rbd_dev_header_unwatch_sync(rbd_dev);
5576 	/*
5577 	 * flush remaining watch callbacks - these must be complete
5578 	 * before the osd_client is shutdown
5579 	 */
5580 	dout("%s: flushing notifies", __func__);
5581 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5582 
5583 	/*
5584 	 * Don't free anything from rbd_dev->disk until after all
5585 	 * notifies are completely processed. Otherwise
5586 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5587 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5588 	 */
5589 	rbd_bus_del_dev(rbd_dev);
5590 	rbd_dev_image_release(rbd_dev);
5591 	module_put(THIS_MODULE);
5592 
5593 	return count;
5594 }
5595 
5596 static ssize_t rbd_remove(struct bus_type *bus,
5597 			  const char *buf,
5598 			  size_t count)
5599 {
5600 	if (single_major)
5601 		return -EINVAL;
5602 
5603 	return do_rbd_remove(bus, buf, count);
5604 }
5605 
5606 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5607 				       const char *buf,
5608 				       size_t count)
5609 {
5610 	return do_rbd_remove(bus, buf, count);
5611 }
5612 
5613 /*
5614  * create control files in sysfs
5615  * /sys/bus/rbd/...
5616  */
5617 static int rbd_sysfs_init(void)
5618 {
5619 	int ret;
5620 
5621 	ret = device_register(&rbd_root_dev);
5622 	if (ret < 0)
5623 		return ret;
5624 
5625 	ret = bus_register(&rbd_bus_type);
5626 	if (ret < 0)
5627 		device_unregister(&rbd_root_dev);
5628 
5629 	return ret;
5630 }
5631 
5632 static void rbd_sysfs_cleanup(void)
5633 {
5634 	bus_unregister(&rbd_bus_type);
5635 	device_unregister(&rbd_root_dev);
5636 }
5637 
5638 static int rbd_slab_init(void)
5639 {
5640 	rbd_assert(!rbd_img_request_cache);
5641 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5642 					sizeof (struct rbd_img_request),
5643 					__alignof__(struct rbd_img_request),
5644 					0, NULL);
5645 	if (!rbd_img_request_cache)
5646 		return -ENOMEM;
5647 
5648 	rbd_assert(!rbd_obj_request_cache);
5649 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5650 					sizeof (struct rbd_obj_request),
5651 					__alignof__(struct rbd_obj_request),
5652 					0, NULL);
5653 	if (!rbd_obj_request_cache)
5654 		goto out_err;
5655 
5656 	rbd_assert(!rbd_segment_name_cache);
5657 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5658 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5659 	if (rbd_segment_name_cache)
5660 		return 0;
5661 out_err:
5662 	if (rbd_obj_request_cache) {
5663 		kmem_cache_destroy(rbd_obj_request_cache);
5664 		rbd_obj_request_cache = NULL;
5665 	}
5666 
5667 	kmem_cache_destroy(rbd_img_request_cache);
5668 	rbd_img_request_cache = NULL;
5669 
5670 	return -ENOMEM;
5671 }
5672 
5673 static void rbd_slab_exit(void)
5674 {
5675 	rbd_assert(rbd_segment_name_cache);
5676 	kmem_cache_destroy(rbd_segment_name_cache);
5677 	rbd_segment_name_cache = NULL;
5678 
5679 	rbd_assert(rbd_obj_request_cache);
5680 	kmem_cache_destroy(rbd_obj_request_cache);
5681 	rbd_obj_request_cache = NULL;
5682 
5683 	rbd_assert(rbd_img_request_cache);
5684 	kmem_cache_destroy(rbd_img_request_cache);
5685 	rbd_img_request_cache = NULL;
5686 }
5687 
5688 static int __init rbd_init(void)
5689 {
5690 	int rc;
5691 
5692 	if (!libceph_compatible(NULL)) {
5693 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5694 		return -EINVAL;
5695 	}
5696 
5697 	rc = rbd_slab_init();
5698 	if (rc)
5699 		return rc;
5700 
5701 	/*
5702 	 * The number of active work items is limited by the number of
5703 	 * rbd devices, so leave @max_active at default.
5704 	 */
5705 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5706 	if (!rbd_wq) {
5707 		rc = -ENOMEM;
5708 		goto err_out_slab;
5709 	}
5710 
5711 	if (single_major) {
5712 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5713 		if (rbd_major < 0) {
5714 			rc = rbd_major;
5715 			goto err_out_wq;
5716 		}
5717 	}
5718 
5719 	rc = rbd_sysfs_init();
5720 	if (rc)
5721 		goto err_out_blkdev;
5722 
5723 	if (single_major)
5724 		pr_info("loaded (major %d)\n", rbd_major);
5725 	else
5726 		pr_info("loaded\n");
5727 
5728 	return 0;
5729 
5730 err_out_blkdev:
5731 	if (single_major)
5732 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5733 err_out_wq:
5734 	destroy_workqueue(rbd_wq);
5735 err_out_slab:
5736 	rbd_slab_exit();
5737 	return rc;
5738 }
5739 
5740 static void __exit rbd_exit(void)
5741 {
5742 	ida_destroy(&rbd_dev_id_ida);
5743 	rbd_sysfs_cleanup();
5744 	if (single_major)
5745 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5746 	destroy_workqueue(rbd_wq);
5747 	rbd_slab_exit();
5748 }
5749 
5750 module_init(rbd_init);
5751 module_exit(rbd_exit);
5752 
5753 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5754 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5755 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5756 /* following authorship retained from original osdblk.c */
5757 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5758 
5759 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5760 MODULE_LICENSE("GPL");
5761