xref: /openbmc/linux/drivers/block/rbd.c (revision bc5aa3a0)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 	struct rbd_options	*opts;
352 
353 	struct ceph_object_id	header_oid;
354 	struct ceph_object_locator header_oloc;
355 
356 	struct ceph_file_layout	layout;
357 
358 	struct ceph_osd_linger_request *watch_handle;
359 
360 	struct rbd_spec		*parent_spec;
361 	u64			parent_overlap;
362 	atomic_t		parent_ref;
363 	struct rbd_device	*parent;
364 
365 	/* Block layer tags. */
366 	struct blk_mq_tag_set	tag_set;
367 
368 	/* protects updating the header */
369 	struct rw_semaphore     header_rwsem;
370 
371 	struct rbd_mapping	mapping;
372 
373 	struct list_head	node;
374 
375 	/* sysfs related */
376 	struct device		dev;
377 	unsigned long		open_count;	/* protected by lock */
378 };
379 
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
389 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
390 };
391 
392 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
393 
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396 
397 static LIST_HEAD(rbd_client_list);		/* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399 
400 /* Slab caches for frequently-allocated structures */
401 
402 static struct kmem_cache	*rbd_img_request_cache;
403 static struct kmem_cache	*rbd_obj_request_cache;
404 static struct kmem_cache	*rbd_segment_name_cache;
405 
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408 
409 static struct workqueue_struct *rbd_wq;
410 
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418 
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530 
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 					u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 				u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 		u64 *snap_features);
541 
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 	bool removing = false;
546 
547 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 		return -EROFS;
549 
550 	spin_lock_irq(&rbd_dev->lock);
551 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 		removing = true;
553 	else
554 		rbd_dev->open_count++;
555 	spin_unlock_irq(&rbd_dev->lock);
556 	if (removing)
557 		return -ENOENT;
558 
559 	(void) get_device(&rbd_dev->dev);
560 
561 	return 0;
562 }
563 
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 	struct rbd_device *rbd_dev = disk->private_data;
567 	unsigned long open_count_before;
568 
569 	spin_lock_irq(&rbd_dev->lock);
570 	open_count_before = rbd_dev->open_count--;
571 	spin_unlock_irq(&rbd_dev->lock);
572 	rbd_assert(open_count_before > 0);
573 
574 	put_device(&rbd_dev->dev);
575 }
576 
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 	int ret = 0;
580 	int val;
581 	bool ro;
582 	bool ro_changed = false;
583 
584 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
585 	if (get_user(val, (int __user *)(arg)))
586 		return -EFAULT;
587 
588 	ro = val ? true : false;
589 	/* Snapshot doesn't allow to write*/
590 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 		return -EROFS;
592 
593 	spin_lock_irq(&rbd_dev->lock);
594 	/* prevent others open this device */
595 	if (rbd_dev->open_count > 1) {
596 		ret = -EBUSY;
597 		goto out;
598 	}
599 
600 	if (rbd_dev->mapping.read_only != ro) {
601 		rbd_dev->mapping.read_only = ro;
602 		ro_changed = true;
603 	}
604 
605 out:
606 	spin_unlock_irq(&rbd_dev->lock);
607 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 	if (ret == 0 && ro_changed)
609 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610 
611 	return ret;
612 }
613 
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 			unsigned int cmd, unsigned long arg)
616 {
617 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 	int ret = 0;
619 
620 	switch (cmd) {
621 	case BLKROSET:
622 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 		break;
624 	default:
625 		ret = -ENOTTY;
626 	}
627 
628 	return ret;
629 }
630 
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 				unsigned int cmd, unsigned long arg)
634 {
635 	return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638 
639 static const struct block_device_operations rbd_bd_ops = {
640 	.owner			= THIS_MODULE,
641 	.open			= rbd_open,
642 	.release		= rbd_release,
643 	.ioctl			= rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 	.compat_ioctl		= rbd_compat_ioctl,
646 #endif
647 };
648 
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 	struct rbd_client *rbdc;
656 	int ret = -ENOMEM;
657 
658 	dout("%s:\n", __func__);
659 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 	if (!rbdc)
661 		goto out_opt;
662 
663 	kref_init(&rbdc->kref);
664 	INIT_LIST_HEAD(&rbdc->node);
665 
666 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 	if (IS_ERR(rbdc->client))
668 		goto out_rbdc;
669 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670 
671 	ret = ceph_open_session(rbdc->client);
672 	if (ret < 0)
673 		goto out_client;
674 
675 	spin_lock(&rbd_client_list_lock);
676 	list_add_tail(&rbdc->node, &rbd_client_list);
677 	spin_unlock(&rbd_client_list_lock);
678 
679 	dout("%s: rbdc %p\n", __func__, rbdc);
680 
681 	return rbdc;
682 out_client:
683 	ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 	kfree(rbdc);
686 out_opt:
687 	if (ceph_opts)
688 		ceph_destroy_options(ceph_opts);
689 	dout("%s: error %d\n", __func__, ret);
690 
691 	return ERR_PTR(ret);
692 }
693 
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 	kref_get(&rbdc->kref);
697 
698 	return rbdc;
699 }
700 
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *client_node;
708 	bool found = false;
709 
710 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 		return NULL;
712 
713 	spin_lock(&rbd_client_list_lock);
714 	list_for_each_entry(client_node, &rbd_client_list, node) {
715 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 			__rbd_get_client(client_node);
717 
718 			found = true;
719 			break;
720 		}
721 	}
722 	spin_unlock(&rbd_client_list_lock);
723 
724 	return found ? client_node : NULL;
725 }
726 
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731 	Opt_queue_depth,
732 	Opt_last_int,
733 	/* int args above */
734 	Opt_last_string,
735 	/* string args above */
736 	Opt_read_only,
737 	Opt_read_write,
738 	Opt_err
739 };
740 
741 static match_table_t rbd_opts_tokens = {
742 	{Opt_queue_depth, "queue_depth=%d"},
743 	/* int args above */
744 	/* string args above */
745 	{Opt_read_only, "read_only"},
746 	{Opt_read_only, "ro"},		/* Alternate spelling */
747 	{Opt_read_write, "read_write"},
748 	{Opt_read_write, "rw"},		/* Alternate spelling */
749 	{Opt_err, NULL}
750 };
751 
752 struct rbd_options {
753 	int	queue_depth;
754 	bool	read_only;
755 };
756 
757 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT	false
759 
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 	struct rbd_options *rbd_opts = private;
763 	substring_t argstr[MAX_OPT_ARGS];
764 	int token, intval, ret;
765 
766 	token = match_token(c, rbd_opts_tokens, argstr);
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) at '%s'\n", c);
771 			return ret;
772 		}
773 		dout("got int token %d val %d\n", token, intval);
774 	} else if (token > Opt_last_int && token < Opt_last_string) {
775 		dout("got string token %d val %s\n", token, argstr[0].from);
776 	} else {
777 		dout("got token %d\n", token);
778 	}
779 
780 	switch (token) {
781 	case Opt_queue_depth:
782 		if (intval < 1) {
783 			pr_err("queue_depth out of range\n");
784 			return -EINVAL;
785 		}
786 		rbd_opts->queue_depth = intval;
787 		break;
788 	case Opt_read_only:
789 		rbd_opts->read_only = true;
790 		break;
791 	case Opt_read_write:
792 		rbd_opts->read_only = false;
793 		break;
794 	default:
795 		/* libceph prints "bad option" msg */
796 		return -EINVAL;
797 	}
798 
799 	return 0;
800 }
801 
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 	switch (op_type) {
805 	case OBJ_OP_READ:
806 		return "read";
807 	case OBJ_OP_WRITE:
808 		return "write";
809 	case OBJ_OP_DISCARD:
810 		return "discard";
811 	default:
812 		return "???";
813 	}
814 }
815 
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 	struct rbd_client *rbdc;
824 
825 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 	rbdc = rbd_client_find(ceph_opts);
827 	if (rbdc)	/* using an existing client */
828 		ceph_destroy_options(ceph_opts);
829 	else
830 		rbdc = rbd_client_create(ceph_opts);
831 	mutex_unlock(&client_mutex);
832 
833 	return rbdc;
834 }
835 
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844 
845 	dout("%s: rbdc %p\n", __func__, rbdc);
846 	spin_lock(&rbd_client_list_lock);
847 	list_del(&rbdc->node);
848 	spin_unlock(&rbd_client_list_lock);
849 
850 	ceph_destroy_client(rbdc->client);
851 	kfree(rbdc);
852 }
853 
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 	if (rbdc)
861 		kref_put(&rbdc->kref, rbd_client_release);
862 }
863 
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 	return image_format == 1 || image_format == 2;
867 }
868 
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 	size_t size;
872 	u32 snap_count;
873 
874 	/* The header has to start with the magic rbd header text */
875 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 		return false;
877 
878 	/* The bio layer requires at least sector-sized I/O */
879 
880 	if (ondisk->options.order < SECTOR_SHIFT)
881 		return false;
882 
883 	/* If we use u64 in a few spots we may be able to loosen this */
884 
885 	if (ondisk->options.order > 8 * sizeof (int) - 1)
886 		return false;
887 
888 	/*
889 	 * The size of a snapshot header has to fit in a size_t, and
890 	 * that limits the number of snapshots.
891 	 */
892 	snap_count = le32_to_cpu(ondisk->snap_count);
893 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 	if (snap_count > size / sizeof (__le64))
895 		return false;
896 
897 	/*
898 	 * Not only that, but the size of the entire the snapshot
899 	 * header must also be representable in a size_t.
900 	 */
901 	size -= snap_count * sizeof (__le64);
902 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 		return false;
904 
905 	return true;
906 }
907 
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 				 struct rbd_image_header_ondisk *ondisk)
914 {
915 	struct rbd_image_header *header = &rbd_dev->header;
916 	bool first_time = header->object_prefix == NULL;
917 	struct ceph_snap_context *snapc;
918 	char *object_prefix = NULL;
919 	char *snap_names = NULL;
920 	u64 *snap_sizes = NULL;
921 	u32 snap_count;
922 	size_t size;
923 	int ret = -ENOMEM;
924 	u32 i;
925 
926 	/* Allocate this now to avoid having to handle failure below */
927 
928 	if (first_time) {
929 		size_t len;
930 
931 		len = strnlen(ondisk->object_prefix,
932 				sizeof (ondisk->object_prefix));
933 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 		if (!object_prefix)
935 			return -ENOMEM;
936 		memcpy(object_prefix, ondisk->object_prefix, len);
937 		object_prefix[len] = '\0';
938 	}
939 
940 	/* Allocate the snapshot context and fill it in */
941 
942 	snap_count = le32_to_cpu(ondisk->snap_count);
943 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 	if (!snapc)
945 		goto out_err;
946 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 	if (snap_count) {
948 		struct rbd_image_snap_ondisk *snaps;
949 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950 
951 		/* We'll keep a copy of the snapshot names... */
952 
953 		if (snap_names_len > (u64)SIZE_MAX)
954 			goto out_2big;
955 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 		if (!snap_names)
957 			goto out_err;
958 
959 		/* ...as well as the array of their sizes. */
960 
961 		size = snap_count * sizeof (*header->snap_sizes);
962 		snap_sizes = kmalloc(size, GFP_KERNEL);
963 		if (!snap_sizes)
964 			goto out_err;
965 
966 		/*
967 		 * Copy the names, and fill in each snapshot's id
968 		 * and size.
969 		 *
970 		 * Note that rbd_dev_v1_header_info() guarantees the
971 		 * ondisk buffer we're working with has
972 		 * snap_names_len bytes beyond the end of the
973 		 * snapshot id array, this memcpy() is safe.
974 		 */
975 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 		snaps = ondisk->snaps;
977 		for (i = 0; i < snap_count; i++) {
978 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 		}
981 	}
982 
983 	/* We won't fail any more, fill in the header */
984 
985 	if (first_time) {
986 		header->object_prefix = object_prefix;
987 		header->obj_order = ondisk->options.order;
988 		header->crypt_type = ondisk->options.crypt_type;
989 		header->comp_type = ondisk->options.comp_type;
990 		/* The rest aren't used for format 1 images */
991 		header->stripe_unit = 0;
992 		header->stripe_count = 0;
993 		header->features = 0;
994 	} else {
995 		ceph_put_snap_context(header->snapc);
996 		kfree(header->snap_names);
997 		kfree(header->snap_sizes);
998 	}
999 
1000 	/* The remaining fields always get updated (when we refresh) */
1001 
1002 	header->image_size = le64_to_cpu(ondisk->image_size);
1003 	header->snapc = snapc;
1004 	header->snap_names = snap_names;
1005 	header->snap_sizes = snap_sizes;
1006 
1007 	return 0;
1008 out_2big:
1009 	ret = -EIO;
1010 out_err:
1011 	kfree(snap_sizes);
1012 	kfree(snap_names);
1013 	ceph_put_snap_context(snapc);
1014 	kfree(object_prefix);
1015 
1016 	return ret;
1017 }
1018 
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 	const char *snap_name;
1022 
1023 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024 
1025 	/* Skip over names until we find the one we are looking for */
1026 
1027 	snap_name = rbd_dev->header.snap_names;
1028 	while (which--)
1029 		snap_name += strlen(snap_name) + 1;
1030 
1031 	return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033 
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 	u64 snap_id1 = *(u64 *)s1;
1041 	u64 snap_id2 = *(u64 *)s2;
1042 
1043 	if (snap_id1 < snap_id2)
1044 		return 1;
1045 	return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047 
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 	u64 *found;
1062 
1063 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 				sizeof (snap_id), snapid_compare_reverse);
1065 
1066 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068 
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 					u64 snap_id)
1071 {
1072 	u32 which;
1073 	const char *snap_name;
1074 
1075 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 	if (which == BAD_SNAP_INDEX)
1077 		return ERR_PTR(-ENOENT);
1078 
1079 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082 
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 	if (snap_id == CEPH_NOSNAP)
1086 		return RBD_SNAP_HEAD_NAME;
1087 
1088 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 	if (rbd_dev->image_format == 1)
1090 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091 
1092 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094 
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 				u64 *snap_size)
1097 {
1098 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 	if (snap_id == CEPH_NOSNAP) {
1100 		*snap_size = rbd_dev->header.image_size;
1101 	} else if (rbd_dev->image_format == 1) {
1102 		u32 which;
1103 
1104 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 		if (which == BAD_SNAP_INDEX)
1106 			return -ENOENT;
1107 
1108 		*snap_size = rbd_dev->header.snap_sizes[which];
1109 	} else {
1110 		u64 size = 0;
1111 		int ret;
1112 
1113 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 		if (ret)
1115 			return ret;
1116 
1117 		*snap_size = size;
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 			u64 *snap_features)
1124 {
1125 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 	if (snap_id == CEPH_NOSNAP) {
1127 		*snap_features = rbd_dev->header.features;
1128 	} else if (rbd_dev->image_format == 1) {
1129 		*snap_features = 0;	/* No features for format 1 */
1130 	} else {
1131 		u64 features = 0;
1132 		int ret;
1133 
1134 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 		if (ret)
1136 			return ret;
1137 
1138 		*snap_features = features;
1139 	}
1140 	return 0;
1141 }
1142 
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 	u64 snap_id = rbd_dev->spec->snap_id;
1146 	u64 size = 0;
1147 	u64 features = 0;
1148 	int ret;
1149 
1150 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 	if (ret)
1152 		return ret;
1153 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 	if (ret)
1155 		return ret;
1156 
1157 	rbd_dev->mapping.size = size;
1158 	rbd_dev->mapping.features = features;
1159 
1160 	return 0;
1161 }
1162 
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 	rbd_dev->mapping.size = 0;
1166 	rbd_dev->mapping.features = 0;
1167 }
1168 
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 	/* The explicit cast here is needed to drop the const qualifier */
1172 
1173 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175 
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 	char *name;
1179 	u64 segment;
1180 	int ret;
1181 	char *name_format;
1182 
1183 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 	if (!name)
1185 		return NULL;
1186 	segment = offset >> rbd_dev->header.obj_order;
1187 	name_format = "%s.%012llx";
1188 	if (rbd_dev->image_format == 2)
1189 		name_format = "%s.%016llx";
1190 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 			rbd_dev->header.object_prefix, segment);
1192 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 		pr_err("error formatting segment name for #%llu (%d)\n",
1194 			segment, ret);
1195 		rbd_segment_name_free(name);
1196 		name = NULL;
1197 	}
1198 
1199 	return name;
1200 }
1201 
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205 
1206 	return offset & (segment_size - 1);
1207 }
1208 
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 				u64 offset, u64 length)
1211 {
1212 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213 
1214 	offset &= segment_size - 1;
1215 
1216 	rbd_assert(length <= U64_MAX - offset);
1217 	if (offset + length > segment_size)
1218 		length = segment_size - offset;
1219 
1220 	return length;
1221 }
1222 
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 	return 1 << header->obj_order;
1229 }
1230 
1231 /*
1232  * bio helpers
1233  */
1234 
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 	struct bio *tmp;
1238 
1239 	while (chain) {
1240 		tmp = chain;
1241 		chain = chain->bi_next;
1242 		bio_put(tmp);
1243 	}
1244 }
1245 
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 	struct bio_vec bv;
1252 	struct bvec_iter iter;
1253 	unsigned long flags;
1254 	void *buf;
1255 	int pos = 0;
1256 
1257 	while (chain) {
1258 		bio_for_each_segment(bv, chain, iter) {
1259 			if (pos + bv.bv_len > start_ofs) {
1260 				int remainder = max(start_ofs - pos, 0);
1261 				buf = bvec_kmap_irq(&bv, &flags);
1262 				memset(buf + remainder, 0,
1263 				       bv.bv_len - remainder);
1264 				flush_dcache_page(bv.bv_page);
1265 				bvec_kunmap_irq(buf, &flags);
1266 			}
1267 			pos += bv.bv_len;
1268 		}
1269 
1270 		chain = chain->bi_next;
1271 	}
1272 }
1273 
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 	struct page **page = &pages[offset >> PAGE_SHIFT];
1283 
1284 	rbd_assert(end > offset);
1285 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 	while (offset < end) {
1287 		size_t page_offset;
1288 		size_t length;
1289 		unsigned long flags;
1290 		void *kaddr;
1291 
1292 		page_offset = offset & ~PAGE_MASK;
1293 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 		local_irq_save(flags);
1295 		kaddr = kmap_atomic(*page);
1296 		memset(kaddr + page_offset, 0, length);
1297 		flush_dcache_page(*page);
1298 		kunmap_atomic(kaddr);
1299 		local_irq_restore(flags);
1300 
1301 		offset += length;
1302 		page++;
1303 	}
1304 }
1305 
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 					unsigned int offset,
1312 					unsigned int len,
1313 					gfp_t gfpmask)
1314 {
1315 	struct bio *bio;
1316 
1317 	bio = bio_clone(bio_src, gfpmask);
1318 	if (!bio)
1319 		return NULL;	/* ENOMEM */
1320 
1321 	bio_advance(bio, offset);
1322 	bio->bi_iter.bi_size = len;
1323 
1324 	return bio;
1325 }
1326 
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 					unsigned int *offset,
1343 					unsigned int len,
1344 					gfp_t gfpmask)
1345 {
1346 	struct bio *bi = *bio_src;
1347 	unsigned int off = *offset;
1348 	struct bio *chain = NULL;
1349 	struct bio **end;
1350 
1351 	/* Build up a chain of clone bios up to the limit */
1352 
1353 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 		return NULL;		/* Nothing to clone */
1355 
1356 	end = &chain;
1357 	while (len) {
1358 		unsigned int bi_size;
1359 		struct bio *bio;
1360 
1361 		if (!bi) {
1362 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 			goto out_err;	/* EINVAL; ran out of bio's */
1364 		}
1365 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 		if (!bio)
1368 			goto out_err;	/* ENOMEM */
1369 
1370 		*end = bio;
1371 		end = &bio->bi_next;
1372 
1373 		off += bi_size;
1374 		if (off == bi->bi_iter.bi_size) {
1375 			bi = bi->bi_next;
1376 			off = 0;
1377 		}
1378 		len -= bi_size;
1379 	}
1380 	*bio_src = bi;
1381 	*offset = off;
1382 
1383 	return chain;
1384 out_err:
1385 	bio_chain_put(chain);
1386 
1387 	return NULL;
1388 }
1389 
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 		struct rbd_device *rbd_dev;
1399 
1400 		rbd_dev = obj_request->img_request->rbd_dev;
1401 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 			obj_request);
1403 	}
1404 }
1405 
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 	smp_mb();
1409 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411 
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 		struct rbd_device *rbd_dev = NULL;
1416 
1417 		if (obj_request_img_data_test(obj_request))
1418 			rbd_dev = obj_request->img_request->rbd_dev;
1419 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 			obj_request);
1421 	}
1422 }
1423 
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 	smp_mb();
1427 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429 
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 				bool exists)
1442 {
1443 	if (exists)
1444 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 	smp_mb();
1447 }
1448 
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 	smp_mb();
1458 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460 
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464 
1465 	return obj_request->img_offset <
1466 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468 
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 		atomic_read(&obj_request->kref.refcount));
1473 	kref_get(&obj_request->kref);
1474 }
1475 
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 	rbd_assert(obj_request != NULL);
1480 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 		atomic_read(&obj_request->kref.refcount));
1482 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484 
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 	dout("%s: img %p (was %d)\n", __func__, img_request,
1488 	     atomic_read(&img_request->kref.refcount));
1489 	kref_get(&img_request->kref);
1490 }
1491 
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 	rbd_assert(img_request != NULL);
1498 	dout("%s: img %p (was %d)\n", __func__, img_request,
1499 		atomic_read(&img_request->kref.refcount));
1500 	if (img_request_child_test(img_request))
1501 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 	else
1503 		kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505 
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 					struct rbd_obj_request *obj_request)
1508 {
1509 	rbd_assert(obj_request->img_request == NULL);
1510 
1511 	/* Image request now owns object's original reference */
1512 	obj_request->img_request = img_request;
1513 	obj_request->which = img_request->obj_request_count;
1514 	rbd_assert(!obj_request_img_data_test(obj_request));
1515 	obj_request_img_data_set(obj_request);
1516 	rbd_assert(obj_request->which != BAD_WHICH);
1517 	img_request->obj_request_count++;
1518 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 		obj_request->which);
1521 }
1522 
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 					struct rbd_obj_request *obj_request)
1525 {
1526 	rbd_assert(obj_request->which != BAD_WHICH);
1527 
1528 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 		obj_request->which);
1530 	list_del(&obj_request->links);
1531 	rbd_assert(img_request->obj_request_count > 0);
1532 	img_request->obj_request_count--;
1533 	rbd_assert(obj_request->which == img_request->obj_request_count);
1534 	obj_request->which = BAD_WHICH;
1535 	rbd_assert(obj_request_img_data_test(obj_request));
1536 	rbd_assert(obj_request->img_request == img_request);
1537 	obj_request->img_request = NULL;
1538 	obj_request->callback = NULL;
1539 	rbd_obj_request_put(obj_request);
1540 }
1541 
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 	switch (type) {
1545 	case OBJ_REQUEST_NODATA:
1546 	case OBJ_REQUEST_BIO:
1547 	case OBJ_REQUEST_PAGES:
1548 		return true;
1549 	default:
1550 		return false;
1551 	}
1552 }
1553 
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 				struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560 
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 	dout("%s %p\n", __func__, obj_request);
1564 	ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566 
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 				  unsigned long timeout)
1575 {
1576 	long ret;
1577 
1578 	dout("%s %p\n", __func__, obj_request);
1579 	ret = wait_for_completion_interruptible_timeout(
1580 					&obj_request->completion,
1581 					ceph_timeout_jiffies(timeout));
1582 	if (ret <= 0) {
1583 		if (ret == 0)
1584 			ret = -ETIMEDOUT;
1585 		rbd_obj_request_end(obj_request);
1586 	} else {
1587 		ret = 0;
1588 	}
1589 
1590 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 	return ret;
1592 }
1593 
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 	return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598 
1599 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1600 {
1601 
1602 	dout("%s: img %p\n", __func__, img_request);
1603 
1604 	/*
1605 	 * If no error occurred, compute the aggregate transfer
1606 	 * count for the image request.  We could instead use
1607 	 * atomic64_cmpxchg() to update it as each object request
1608 	 * completes; not clear which way is better off hand.
1609 	 */
1610 	if (!img_request->result) {
1611 		struct rbd_obj_request *obj_request;
1612 		u64 xferred = 0;
1613 
1614 		for_each_obj_request(img_request, obj_request)
1615 			xferred += obj_request->xferred;
1616 		img_request->xferred = xferred;
1617 	}
1618 
1619 	if (img_request->callback)
1620 		img_request->callback(img_request);
1621 	else
1622 		rbd_img_request_put(img_request);
1623 }
1624 
1625 /*
1626  * The default/initial value for all image request flags is 0.  Each
1627  * is conditionally set to 1 at image request initialization time
1628  * and currently never change thereafter.
1629  */
1630 static void img_request_write_set(struct rbd_img_request *img_request)
1631 {
1632 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1633 	smp_mb();
1634 }
1635 
1636 static bool img_request_write_test(struct rbd_img_request *img_request)
1637 {
1638 	smp_mb();
1639 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1640 }
1641 
1642 /*
1643  * Set the discard flag when the img_request is an discard request
1644  */
1645 static void img_request_discard_set(struct rbd_img_request *img_request)
1646 {
1647 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1648 	smp_mb();
1649 }
1650 
1651 static bool img_request_discard_test(struct rbd_img_request *img_request)
1652 {
1653 	smp_mb();
1654 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1655 }
1656 
1657 static void img_request_child_set(struct rbd_img_request *img_request)
1658 {
1659 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1660 	smp_mb();
1661 }
1662 
1663 static void img_request_child_clear(struct rbd_img_request *img_request)
1664 {
1665 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1666 	smp_mb();
1667 }
1668 
1669 static bool img_request_child_test(struct rbd_img_request *img_request)
1670 {
1671 	smp_mb();
1672 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1673 }
1674 
1675 static void img_request_layered_set(struct rbd_img_request *img_request)
1676 {
1677 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1678 	smp_mb();
1679 }
1680 
1681 static void img_request_layered_clear(struct rbd_img_request *img_request)
1682 {
1683 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 	smp_mb();
1685 }
1686 
1687 static bool img_request_layered_test(struct rbd_img_request *img_request)
1688 {
1689 	smp_mb();
1690 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1691 }
1692 
1693 static enum obj_operation_type
1694 rbd_img_request_op_type(struct rbd_img_request *img_request)
1695 {
1696 	if (img_request_write_test(img_request))
1697 		return OBJ_OP_WRITE;
1698 	else if (img_request_discard_test(img_request))
1699 		return OBJ_OP_DISCARD;
1700 	else
1701 		return OBJ_OP_READ;
1702 }
1703 
1704 static void
1705 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1706 {
1707 	u64 xferred = obj_request->xferred;
1708 	u64 length = obj_request->length;
1709 
1710 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1711 		obj_request, obj_request->img_request, obj_request->result,
1712 		xferred, length);
1713 	/*
1714 	 * ENOENT means a hole in the image.  We zero-fill the entire
1715 	 * length of the request.  A short read also implies zero-fill
1716 	 * to the end of the request.  An error requires the whole
1717 	 * length of the request to be reported finished with an error
1718 	 * to the block layer.  In each case we update the xferred
1719 	 * count to indicate the whole request was satisfied.
1720 	 */
1721 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1722 	if (obj_request->result == -ENOENT) {
1723 		if (obj_request->type == OBJ_REQUEST_BIO)
1724 			zero_bio_chain(obj_request->bio_list, 0);
1725 		else
1726 			zero_pages(obj_request->pages, 0, length);
1727 		obj_request->result = 0;
1728 	} else if (xferred < length && !obj_request->result) {
1729 		if (obj_request->type == OBJ_REQUEST_BIO)
1730 			zero_bio_chain(obj_request->bio_list, xferred);
1731 		else
1732 			zero_pages(obj_request->pages, xferred, length);
1733 	}
1734 	obj_request->xferred = length;
1735 	obj_request_done_set(obj_request);
1736 }
1737 
1738 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1739 {
1740 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1741 		obj_request->callback);
1742 	if (obj_request->callback)
1743 		obj_request->callback(obj_request);
1744 	else
1745 		complete_all(&obj_request->completion);
1746 }
1747 
1748 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1749 {
1750 	struct rbd_img_request *img_request = NULL;
1751 	struct rbd_device *rbd_dev = NULL;
1752 	bool layered = false;
1753 
1754 	if (obj_request_img_data_test(obj_request)) {
1755 		img_request = obj_request->img_request;
1756 		layered = img_request && img_request_layered_test(img_request);
1757 		rbd_dev = img_request->rbd_dev;
1758 	}
1759 
1760 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1761 		obj_request, img_request, obj_request->result,
1762 		obj_request->xferred, obj_request->length);
1763 	if (layered && obj_request->result == -ENOENT &&
1764 			obj_request->img_offset < rbd_dev->parent_overlap)
1765 		rbd_img_parent_read(obj_request);
1766 	else if (img_request)
1767 		rbd_img_obj_request_read_callback(obj_request);
1768 	else
1769 		obj_request_done_set(obj_request);
1770 }
1771 
1772 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1773 {
1774 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775 		obj_request->result, obj_request->length);
1776 	/*
1777 	 * There is no such thing as a successful short write.  Set
1778 	 * it to our originally-requested length.
1779 	 */
1780 	obj_request->xferred = obj_request->length;
1781 	obj_request_done_set(obj_request);
1782 }
1783 
1784 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1785 {
1786 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 		obj_request->result, obj_request->length);
1788 	/*
1789 	 * There is no such thing as a successful short discard.  Set
1790 	 * it to our originally-requested length.
1791 	 */
1792 	obj_request->xferred = obj_request->length;
1793 	/* discarding a non-existent object is not a problem */
1794 	if (obj_request->result == -ENOENT)
1795 		obj_request->result = 0;
1796 	obj_request_done_set(obj_request);
1797 }
1798 
1799 /*
1800  * For a simple stat call there's nothing to do.  We'll do more if
1801  * this is part of a write sequence for a layered image.
1802  */
1803 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1804 {
1805 	dout("%s: obj %p\n", __func__, obj_request);
1806 	obj_request_done_set(obj_request);
1807 }
1808 
1809 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1810 {
1811 	dout("%s: obj %p\n", __func__, obj_request);
1812 
1813 	if (obj_request_img_data_test(obj_request))
1814 		rbd_osd_copyup_callback(obj_request);
1815 	else
1816 		obj_request_done_set(obj_request);
1817 }
1818 
1819 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1820 {
1821 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1822 	u16 opcode;
1823 
1824 	dout("%s: osd_req %p\n", __func__, osd_req);
1825 	rbd_assert(osd_req == obj_request->osd_req);
1826 	if (obj_request_img_data_test(obj_request)) {
1827 		rbd_assert(obj_request->img_request);
1828 		rbd_assert(obj_request->which != BAD_WHICH);
1829 	} else {
1830 		rbd_assert(obj_request->which == BAD_WHICH);
1831 	}
1832 
1833 	if (osd_req->r_result < 0)
1834 		obj_request->result = osd_req->r_result;
1835 
1836 	/*
1837 	 * We support a 64-bit length, but ultimately it has to be
1838 	 * passed to the block layer, which just supports a 32-bit
1839 	 * length field.
1840 	 */
1841 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1842 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1843 
1844 	opcode = osd_req->r_ops[0].op;
1845 	switch (opcode) {
1846 	case CEPH_OSD_OP_READ:
1847 		rbd_osd_read_callback(obj_request);
1848 		break;
1849 	case CEPH_OSD_OP_SETALLOCHINT:
1850 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1851 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1852 		/* fall through */
1853 	case CEPH_OSD_OP_WRITE:
1854 	case CEPH_OSD_OP_WRITEFULL:
1855 		rbd_osd_write_callback(obj_request);
1856 		break;
1857 	case CEPH_OSD_OP_STAT:
1858 		rbd_osd_stat_callback(obj_request);
1859 		break;
1860 	case CEPH_OSD_OP_DELETE:
1861 	case CEPH_OSD_OP_TRUNCATE:
1862 	case CEPH_OSD_OP_ZERO:
1863 		rbd_osd_discard_callback(obj_request);
1864 		break;
1865 	case CEPH_OSD_OP_CALL:
1866 		rbd_osd_call_callback(obj_request);
1867 		break;
1868 	default:
1869 		rbd_warn(NULL, "%s: unsupported op %hu",
1870 			obj_request->object_name, (unsigned short) opcode);
1871 		break;
1872 	}
1873 
1874 	if (obj_request_done_test(obj_request))
1875 		rbd_obj_request_complete(obj_request);
1876 }
1877 
1878 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1879 {
1880 	struct rbd_img_request *img_request = obj_request->img_request;
1881 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1882 
1883 	if (img_request)
1884 		osd_req->r_snapid = img_request->snap_id;
1885 }
1886 
1887 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1888 {
1889 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1890 
1891 	osd_req->r_mtime = CURRENT_TIME;
1892 	osd_req->r_data_offset = obj_request->offset;
1893 }
1894 
1895 /*
1896  * Create an osd request.  A read request has one osd op (read).
1897  * A write request has either one (watch) or two (hint+write) osd ops.
1898  * (All rbd data writes are prefixed with an allocation hint op, but
1899  * technically osd watch is a write request, hence this distinction.)
1900  */
1901 static struct ceph_osd_request *rbd_osd_req_create(
1902 					struct rbd_device *rbd_dev,
1903 					enum obj_operation_type op_type,
1904 					unsigned int num_ops,
1905 					struct rbd_obj_request *obj_request)
1906 {
1907 	struct ceph_snap_context *snapc = NULL;
1908 	struct ceph_osd_client *osdc;
1909 	struct ceph_osd_request *osd_req;
1910 
1911 	if (obj_request_img_data_test(obj_request) &&
1912 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1913 		struct rbd_img_request *img_request = obj_request->img_request;
1914 		if (op_type == OBJ_OP_WRITE) {
1915 			rbd_assert(img_request_write_test(img_request));
1916 		} else {
1917 			rbd_assert(img_request_discard_test(img_request));
1918 		}
1919 		snapc = img_request->snapc;
1920 	}
1921 
1922 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1923 
1924 	/* Allocate and initialize the request, for the num_ops ops */
1925 
1926 	osdc = &rbd_dev->rbd_client->client->osdc;
1927 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1928 					  GFP_NOIO);
1929 	if (!osd_req)
1930 		goto fail;
1931 
1932 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1933 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1934 	else
1935 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1936 
1937 	osd_req->r_callback = rbd_osd_req_callback;
1938 	osd_req->r_priv = obj_request;
1939 
1940 	osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1941 	if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
1942 			     obj_request->object_name))
1943 		goto fail;
1944 
1945 	if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
1946 		goto fail;
1947 
1948 	return osd_req;
1949 
1950 fail:
1951 	ceph_osdc_put_request(osd_req);
1952 	return NULL;
1953 }
1954 
1955 /*
1956  * Create a copyup osd request based on the information in the object
1957  * request supplied.  A copyup request has two or three osd ops, a
1958  * copyup method call, potentially a hint op, and a write or truncate
1959  * or zero op.
1960  */
1961 static struct ceph_osd_request *
1962 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1963 {
1964 	struct rbd_img_request *img_request;
1965 	struct ceph_snap_context *snapc;
1966 	struct rbd_device *rbd_dev;
1967 	struct ceph_osd_client *osdc;
1968 	struct ceph_osd_request *osd_req;
1969 	int num_osd_ops = 3;
1970 
1971 	rbd_assert(obj_request_img_data_test(obj_request));
1972 	img_request = obj_request->img_request;
1973 	rbd_assert(img_request);
1974 	rbd_assert(img_request_write_test(img_request) ||
1975 			img_request_discard_test(img_request));
1976 
1977 	if (img_request_discard_test(img_request))
1978 		num_osd_ops = 2;
1979 
1980 	/* Allocate and initialize the request, for all the ops */
1981 
1982 	snapc = img_request->snapc;
1983 	rbd_dev = img_request->rbd_dev;
1984 	osdc = &rbd_dev->rbd_client->client->osdc;
1985 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1986 						false, GFP_NOIO);
1987 	if (!osd_req)
1988 		goto fail;
1989 
1990 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1991 	osd_req->r_callback = rbd_osd_req_callback;
1992 	osd_req->r_priv = obj_request;
1993 
1994 	osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1995 	if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
1996 			     obj_request->object_name))
1997 		goto fail;
1998 
1999 	if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2000 		goto fail;
2001 
2002 	return osd_req;
2003 
2004 fail:
2005 	ceph_osdc_put_request(osd_req);
2006 	return NULL;
2007 }
2008 
2009 
2010 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2011 {
2012 	ceph_osdc_put_request(osd_req);
2013 }
2014 
2015 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2016 
2017 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2018 						u64 offset, u64 length,
2019 						enum obj_request_type type)
2020 {
2021 	struct rbd_obj_request *obj_request;
2022 	size_t size;
2023 	char *name;
2024 
2025 	rbd_assert(obj_request_type_valid(type));
2026 
2027 	size = strlen(object_name) + 1;
2028 	name = kmalloc(size, GFP_NOIO);
2029 	if (!name)
2030 		return NULL;
2031 
2032 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2033 	if (!obj_request) {
2034 		kfree(name);
2035 		return NULL;
2036 	}
2037 
2038 	obj_request->object_name = memcpy(name, object_name, size);
2039 	obj_request->offset = offset;
2040 	obj_request->length = length;
2041 	obj_request->flags = 0;
2042 	obj_request->which = BAD_WHICH;
2043 	obj_request->type = type;
2044 	INIT_LIST_HEAD(&obj_request->links);
2045 	init_completion(&obj_request->completion);
2046 	kref_init(&obj_request->kref);
2047 
2048 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2049 		offset, length, (int)type, obj_request);
2050 
2051 	return obj_request;
2052 }
2053 
2054 static void rbd_obj_request_destroy(struct kref *kref)
2055 {
2056 	struct rbd_obj_request *obj_request;
2057 
2058 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2059 
2060 	dout("%s: obj %p\n", __func__, obj_request);
2061 
2062 	rbd_assert(obj_request->img_request == NULL);
2063 	rbd_assert(obj_request->which == BAD_WHICH);
2064 
2065 	if (obj_request->osd_req)
2066 		rbd_osd_req_destroy(obj_request->osd_req);
2067 
2068 	rbd_assert(obj_request_type_valid(obj_request->type));
2069 	switch (obj_request->type) {
2070 	case OBJ_REQUEST_NODATA:
2071 		break;		/* Nothing to do */
2072 	case OBJ_REQUEST_BIO:
2073 		if (obj_request->bio_list)
2074 			bio_chain_put(obj_request->bio_list);
2075 		break;
2076 	case OBJ_REQUEST_PAGES:
2077 		if (obj_request->pages)
2078 			ceph_release_page_vector(obj_request->pages,
2079 						obj_request->page_count);
2080 		break;
2081 	}
2082 
2083 	kfree(obj_request->object_name);
2084 	obj_request->object_name = NULL;
2085 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2086 }
2087 
2088 /* It's OK to call this for a device with no parent */
2089 
2090 static void rbd_spec_put(struct rbd_spec *spec);
2091 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2092 {
2093 	rbd_dev_remove_parent(rbd_dev);
2094 	rbd_spec_put(rbd_dev->parent_spec);
2095 	rbd_dev->parent_spec = NULL;
2096 	rbd_dev->parent_overlap = 0;
2097 }
2098 
2099 /*
2100  * Parent image reference counting is used to determine when an
2101  * image's parent fields can be safely torn down--after there are no
2102  * more in-flight requests to the parent image.  When the last
2103  * reference is dropped, cleaning them up is safe.
2104  */
2105 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2106 {
2107 	int counter;
2108 
2109 	if (!rbd_dev->parent_spec)
2110 		return;
2111 
2112 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2113 	if (counter > 0)
2114 		return;
2115 
2116 	/* Last reference; clean up parent data structures */
2117 
2118 	if (!counter)
2119 		rbd_dev_unparent(rbd_dev);
2120 	else
2121 		rbd_warn(rbd_dev, "parent reference underflow");
2122 }
2123 
2124 /*
2125  * If an image has a non-zero parent overlap, get a reference to its
2126  * parent.
2127  *
2128  * Returns true if the rbd device has a parent with a non-zero
2129  * overlap and a reference for it was successfully taken, or
2130  * false otherwise.
2131  */
2132 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2133 {
2134 	int counter = 0;
2135 
2136 	if (!rbd_dev->parent_spec)
2137 		return false;
2138 
2139 	down_read(&rbd_dev->header_rwsem);
2140 	if (rbd_dev->parent_overlap)
2141 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2142 	up_read(&rbd_dev->header_rwsem);
2143 
2144 	if (counter < 0)
2145 		rbd_warn(rbd_dev, "parent reference overflow");
2146 
2147 	return counter > 0;
2148 }
2149 
2150 /*
2151  * Caller is responsible for filling in the list of object requests
2152  * that comprises the image request, and the Linux request pointer
2153  * (if there is one).
2154  */
2155 static struct rbd_img_request *rbd_img_request_create(
2156 					struct rbd_device *rbd_dev,
2157 					u64 offset, u64 length,
2158 					enum obj_operation_type op_type,
2159 					struct ceph_snap_context *snapc)
2160 {
2161 	struct rbd_img_request *img_request;
2162 
2163 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2164 	if (!img_request)
2165 		return NULL;
2166 
2167 	img_request->rq = NULL;
2168 	img_request->rbd_dev = rbd_dev;
2169 	img_request->offset = offset;
2170 	img_request->length = length;
2171 	img_request->flags = 0;
2172 	if (op_type == OBJ_OP_DISCARD) {
2173 		img_request_discard_set(img_request);
2174 		img_request->snapc = snapc;
2175 	} else if (op_type == OBJ_OP_WRITE) {
2176 		img_request_write_set(img_request);
2177 		img_request->snapc = snapc;
2178 	} else {
2179 		img_request->snap_id = rbd_dev->spec->snap_id;
2180 	}
2181 	if (rbd_dev_parent_get(rbd_dev))
2182 		img_request_layered_set(img_request);
2183 	spin_lock_init(&img_request->completion_lock);
2184 	img_request->next_completion = 0;
2185 	img_request->callback = NULL;
2186 	img_request->result = 0;
2187 	img_request->obj_request_count = 0;
2188 	INIT_LIST_HEAD(&img_request->obj_requests);
2189 	kref_init(&img_request->kref);
2190 
2191 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2192 		obj_op_name(op_type), offset, length, img_request);
2193 
2194 	return img_request;
2195 }
2196 
2197 static void rbd_img_request_destroy(struct kref *kref)
2198 {
2199 	struct rbd_img_request *img_request;
2200 	struct rbd_obj_request *obj_request;
2201 	struct rbd_obj_request *next_obj_request;
2202 
2203 	img_request = container_of(kref, struct rbd_img_request, kref);
2204 
2205 	dout("%s: img %p\n", __func__, img_request);
2206 
2207 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2208 		rbd_img_obj_request_del(img_request, obj_request);
2209 	rbd_assert(img_request->obj_request_count == 0);
2210 
2211 	if (img_request_layered_test(img_request)) {
2212 		img_request_layered_clear(img_request);
2213 		rbd_dev_parent_put(img_request->rbd_dev);
2214 	}
2215 
2216 	if (img_request_write_test(img_request) ||
2217 		img_request_discard_test(img_request))
2218 		ceph_put_snap_context(img_request->snapc);
2219 
2220 	kmem_cache_free(rbd_img_request_cache, img_request);
2221 }
2222 
2223 static struct rbd_img_request *rbd_parent_request_create(
2224 					struct rbd_obj_request *obj_request,
2225 					u64 img_offset, u64 length)
2226 {
2227 	struct rbd_img_request *parent_request;
2228 	struct rbd_device *rbd_dev;
2229 
2230 	rbd_assert(obj_request->img_request);
2231 	rbd_dev = obj_request->img_request->rbd_dev;
2232 
2233 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2234 						length, OBJ_OP_READ, NULL);
2235 	if (!parent_request)
2236 		return NULL;
2237 
2238 	img_request_child_set(parent_request);
2239 	rbd_obj_request_get(obj_request);
2240 	parent_request->obj_request = obj_request;
2241 
2242 	return parent_request;
2243 }
2244 
2245 static void rbd_parent_request_destroy(struct kref *kref)
2246 {
2247 	struct rbd_img_request *parent_request;
2248 	struct rbd_obj_request *orig_request;
2249 
2250 	parent_request = container_of(kref, struct rbd_img_request, kref);
2251 	orig_request = parent_request->obj_request;
2252 
2253 	parent_request->obj_request = NULL;
2254 	rbd_obj_request_put(orig_request);
2255 	img_request_child_clear(parent_request);
2256 
2257 	rbd_img_request_destroy(kref);
2258 }
2259 
2260 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2261 {
2262 	struct rbd_img_request *img_request;
2263 	unsigned int xferred;
2264 	int result;
2265 	bool more;
2266 
2267 	rbd_assert(obj_request_img_data_test(obj_request));
2268 	img_request = obj_request->img_request;
2269 
2270 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2271 	xferred = (unsigned int)obj_request->xferred;
2272 	result = obj_request->result;
2273 	if (result) {
2274 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2275 		enum obj_operation_type op_type;
2276 
2277 		if (img_request_discard_test(img_request))
2278 			op_type = OBJ_OP_DISCARD;
2279 		else if (img_request_write_test(img_request))
2280 			op_type = OBJ_OP_WRITE;
2281 		else
2282 			op_type = OBJ_OP_READ;
2283 
2284 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2285 			obj_op_name(op_type), obj_request->length,
2286 			obj_request->img_offset, obj_request->offset);
2287 		rbd_warn(rbd_dev, "  result %d xferred %x",
2288 			result, xferred);
2289 		if (!img_request->result)
2290 			img_request->result = result;
2291 		/*
2292 		 * Need to end I/O on the entire obj_request worth of
2293 		 * bytes in case of error.
2294 		 */
2295 		xferred = obj_request->length;
2296 	}
2297 
2298 	/* Image object requests don't own their page array */
2299 
2300 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2301 		obj_request->pages = NULL;
2302 		obj_request->page_count = 0;
2303 	}
2304 
2305 	if (img_request_child_test(img_request)) {
2306 		rbd_assert(img_request->obj_request != NULL);
2307 		more = obj_request->which < img_request->obj_request_count - 1;
2308 	} else {
2309 		rbd_assert(img_request->rq != NULL);
2310 
2311 		more = blk_update_request(img_request->rq, result, xferred);
2312 		if (!more)
2313 			__blk_mq_end_request(img_request->rq, result);
2314 	}
2315 
2316 	return more;
2317 }
2318 
2319 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2320 {
2321 	struct rbd_img_request *img_request;
2322 	u32 which = obj_request->which;
2323 	bool more = true;
2324 
2325 	rbd_assert(obj_request_img_data_test(obj_request));
2326 	img_request = obj_request->img_request;
2327 
2328 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2329 	rbd_assert(img_request != NULL);
2330 	rbd_assert(img_request->obj_request_count > 0);
2331 	rbd_assert(which != BAD_WHICH);
2332 	rbd_assert(which < img_request->obj_request_count);
2333 
2334 	spin_lock_irq(&img_request->completion_lock);
2335 	if (which != img_request->next_completion)
2336 		goto out;
2337 
2338 	for_each_obj_request_from(img_request, obj_request) {
2339 		rbd_assert(more);
2340 		rbd_assert(which < img_request->obj_request_count);
2341 
2342 		if (!obj_request_done_test(obj_request))
2343 			break;
2344 		more = rbd_img_obj_end_request(obj_request);
2345 		which++;
2346 	}
2347 
2348 	rbd_assert(more ^ (which == img_request->obj_request_count));
2349 	img_request->next_completion = which;
2350 out:
2351 	spin_unlock_irq(&img_request->completion_lock);
2352 	rbd_img_request_put(img_request);
2353 
2354 	if (!more)
2355 		rbd_img_request_complete(img_request);
2356 }
2357 
2358 /*
2359  * Add individual osd ops to the given ceph_osd_request and prepare
2360  * them for submission. num_ops is the current number of
2361  * osd operations already to the object request.
2362  */
2363 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2364 				struct ceph_osd_request *osd_request,
2365 				enum obj_operation_type op_type,
2366 				unsigned int num_ops)
2367 {
2368 	struct rbd_img_request *img_request = obj_request->img_request;
2369 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2370 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2371 	u64 offset = obj_request->offset;
2372 	u64 length = obj_request->length;
2373 	u64 img_end;
2374 	u16 opcode;
2375 
2376 	if (op_type == OBJ_OP_DISCARD) {
2377 		if (!offset && length == object_size &&
2378 		    (!img_request_layered_test(img_request) ||
2379 		     !obj_request_overlaps_parent(obj_request))) {
2380 			opcode = CEPH_OSD_OP_DELETE;
2381 		} else if ((offset + length == object_size)) {
2382 			opcode = CEPH_OSD_OP_TRUNCATE;
2383 		} else {
2384 			down_read(&rbd_dev->header_rwsem);
2385 			img_end = rbd_dev->header.image_size;
2386 			up_read(&rbd_dev->header_rwsem);
2387 
2388 			if (obj_request->img_offset + length == img_end)
2389 				opcode = CEPH_OSD_OP_TRUNCATE;
2390 			else
2391 				opcode = CEPH_OSD_OP_ZERO;
2392 		}
2393 	} else if (op_type == OBJ_OP_WRITE) {
2394 		if (!offset && length == object_size)
2395 			opcode = CEPH_OSD_OP_WRITEFULL;
2396 		else
2397 			opcode = CEPH_OSD_OP_WRITE;
2398 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2399 					object_size, object_size);
2400 		num_ops++;
2401 	} else {
2402 		opcode = CEPH_OSD_OP_READ;
2403 	}
2404 
2405 	if (opcode == CEPH_OSD_OP_DELETE)
2406 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2407 	else
2408 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2409 				       offset, length, 0, 0);
2410 
2411 	if (obj_request->type == OBJ_REQUEST_BIO)
2412 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2413 					obj_request->bio_list, length);
2414 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2415 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2416 					obj_request->pages, length,
2417 					offset & ~PAGE_MASK, false, false);
2418 
2419 	/* Discards are also writes */
2420 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2421 		rbd_osd_req_format_write(obj_request);
2422 	else
2423 		rbd_osd_req_format_read(obj_request);
2424 }
2425 
2426 /*
2427  * Split up an image request into one or more object requests, each
2428  * to a different object.  The "type" parameter indicates whether
2429  * "data_desc" is the pointer to the head of a list of bio
2430  * structures, or the base of a page array.  In either case this
2431  * function assumes data_desc describes memory sufficient to hold
2432  * all data described by the image request.
2433  */
2434 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2435 					enum obj_request_type type,
2436 					void *data_desc)
2437 {
2438 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2439 	struct rbd_obj_request *obj_request = NULL;
2440 	struct rbd_obj_request *next_obj_request;
2441 	struct bio *bio_list = NULL;
2442 	unsigned int bio_offset = 0;
2443 	struct page **pages = NULL;
2444 	enum obj_operation_type op_type;
2445 	u64 img_offset;
2446 	u64 resid;
2447 
2448 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2449 		(int)type, data_desc);
2450 
2451 	img_offset = img_request->offset;
2452 	resid = img_request->length;
2453 	rbd_assert(resid > 0);
2454 	op_type = rbd_img_request_op_type(img_request);
2455 
2456 	if (type == OBJ_REQUEST_BIO) {
2457 		bio_list = data_desc;
2458 		rbd_assert(img_offset ==
2459 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2460 	} else if (type == OBJ_REQUEST_PAGES) {
2461 		pages = data_desc;
2462 	}
2463 
2464 	while (resid) {
2465 		struct ceph_osd_request *osd_req;
2466 		const char *object_name;
2467 		u64 offset;
2468 		u64 length;
2469 
2470 		object_name = rbd_segment_name(rbd_dev, img_offset);
2471 		if (!object_name)
2472 			goto out_unwind;
2473 		offset = rbd_segment_offset(rbd_dev, img_offset);
2474 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2475 		obj_request = rbd_obj_request_create(object_name,
2476 						offset, length, type);
2477 		/* object request has its own copy of the object name */
2478 		rbd_segment_name_free(object_name);
2479 		if (!obj_request)
2480 			goto out_unwind;
2481 
2482 		/*
2483 		 * set obj_request->img_request before creating the
2484 		 * osd_request so that it gets the right snapc
2485 		 */
2486 		rbd_img_obj_request_add(img_request, obj_request);
2487 
2488 		if (type == OBJ_REQUEST_BIO) {
2489 			unsigned int clone_size;
2490 
2491 			rbd_assert(length <= (u64)UINT_MAX);
2492 			clone_size = (unsigned int)length;
2493 			obj_request->bio_list =
2494 					bio_chain_clone_range(&bio_list,
2495 								&bio_offset,
2496 								clone_size,
2497 								GFP_NOIO);
2498 			if (!obj_request->bio_list)
2499 				goto out_unwind;
2500 		} else if (type == OBJ_REQUEST_PAGES) {
2501 			unsigned int page_count;
2502 
2503 			obj_request->pages = pages;
2504 			page_count = (u32)calc_pages_for(offset, length);
2505 			obj_request->page_count = page_count;
2506 			if ((offset + length) & ~PAGE_MASK)
2507 				page_count--;	/* more on last page */
2508 			pages += page_count;
2509 		}
2510 
2511 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2512 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2513 					obj_request);
2514 		if (!osd_req)
2515 			goto out_unwind;
2516 
2517 		obj_request->osd_req = osd_req;
2518 		obj_request->callback = rbd_img_obj_callback;
2519 		obj_request->img_offset = img_offset;
2520 
2521 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2522 
2523 		rbd_img_request_get(img_request);
2524 
2525 		img_offset += length;
2526 		resid -= length;
2527 	}
2528 
2529 	return 0;
2530 
2531 out_unwind:
2532 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2533 		rbd_img_obj_request_del(img_request, obj_request);
2534 
2535 	return -ENOMEM;
2536 }
2537 
2538 static void
2539 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2540 {
2541 	struct rbd_img_request *img_request;
2542 	struct rbd_device *rbd_dev;
2543 	struct page **pages;
2544 	u32 page_count;
2545 
2546 	dout("%s: obj %p\n", __func__, obj_request);
2547 
2548 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2549 		obj_request->type == OBJ_REQUEST_NODATA);
2550 	rbd_assert(obj_request_img_data_test(obj_request));
2551 	img_request = obj_request->img_request;
2552 	rbd_assert(img_request);
2553 
2554 	rbd_dev = img_request->rbd_dev;
2555 	rbd_assert(rbd_dev);
2556 
2557 	pages = obj_request->copyup_pages;
2558 	rbd_assert(pages != NULL);
2559 	obj_request->copyup_pages = NULL;
2560 	page_count = obj_request->copyup_page_count;
2561 	rbd_assert(page_count);
2562 	obj_request->copyup_page_count = 0;
2563 	ceph_release_page_vector(pages, page_count);
2564 
2565 	/*
2566 	 * We want the transfer count to reflect the size of the
2567 	 * original write request.  There is no such thing as a
2568 	 * successful short write, so if the request was successful
2569 	 * we can just set it to the originally-requested length.
2570 	 */
2571 	if (!obj_request->result)
2572 		obj_request->xferred = obj_request->length;
2573 
2574 	obj_request_done_set(obj_request);
2575 }
2576 
2577 static void
2578 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2579 {
2580 	struct rbd_obj_request *orig_request;
2581 	struct ceph_osd_request *osd_req;
2582 	struct ceph_osd_client *osdc;
2583 	struct rbd_device *rbd_dev;
2584 	struct page **pages;
2585 	enum obj_operation_type op_type;
2586 	u32 page_count;
2587 	int img_result;
2588 	u64 parent_length;
2589 
2590 	rbd_assert(img_request_child_test(img_request));
2591 
2592 	/* First get what we need from the image request */
2593 
2594 	pages = img_request->copyup_pages;
2595 	rbd_assert(pages != NULL);
2596 	img_request->copyup_pages = NULL;
2597 	page_count = img_request->copyup_page_count;
2598 	rbd_assert(page_count);
2599 	img_request->copyup_page_count = 0;
2600 
2601 	orig_request = img_request->obj_request;
2602 	rbd_assert(orig_request != NULL);
2603 	rbd_assert(obj_request_type_valid(orig_request->type));
2604 	img_result = img_request->result;
2605 	parent_length = img_request->length;
2606 	rbd_assert(parent_length == img_request->xferred);
2607 	rbd_img_request_put(img_request);
2608 
2609 	rbd_assert(orig_request->img_request);
2610 	rbd_dev = orig_request->img_request->rbd_dev;
2611 	rbd_assert(rbd_dev);
2612 
2613 	/*
2614 	 * If the overlap has become 0 (most likely because the
2615 	 * image has been flattened) we need to free the pages
2616 	 * and re-submit the original write request.
2617 	 */
2618 	if (!rbd_dev->parent_overlap) {
2619 		struct ceph_osd_client *osdc;
2620 
2621 		ceph_release_page_vector(pages, page_count);
2622 		osdc = &rbd_dev->rbd_client->client->osdc;
2623 		img_result = rbd_obj_request_submit(osdc, orig_request);
2624 		if (!img_result)
2625 			return;
2626 	}
2627 
2628 	if (img_result)
2629 		goto out_err;
2630 
2631 	/*
2632 	 * The original osd request is of no use to use any more.
2633 	 * We need a new one that can hold the three ops in a copyup
2634 	 * request.  Allocate the new copyup osd request for the
2635 	 * original request, and release the old one.
2636 	 */
2637 	img_result = -ENOMEM;
2638 	osd_req = rbd_osd_req_create_copyup(orig_request);
2639 	if (!osd_req)
2640 		goto out_err;
2641 	rbd_osd_req_destroy(orig_request->osd_req);
2642 	orig_request->osd_req = osd_req;
2643 	orig_request->copyup_pages = pages;
2644 	orig_request->copyup_page_count = page_count;
2645 
2646 	/* Initialize the copyup op */
2647 
2648 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2649 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2650 						false, false);
2651 
2652 	/* Add the other op(s) */
2653 
2654 	op_type = rbd_img_request_op_type(orig_request->img_request);
2655 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2656 
2657 	/* All set, send it off. */
2658 
2659 	osdc = &rbd_dev->rbd_client->client->osdc;
2660 	img_result = rbd_obj_request_submit(osdc, orig_request);
2661 	if (!img_result)
2662 		return;
2663 out_err:
2664 	/* Record the error code and complete the request */
2665 
2666 	orig_request->result = img_result;
2667 	orig_request->xferred = 0;
2668 	obj_request_done_set(orig_request);
2669 	rbd_obj_request_complete(orig_request);
2670 }
2671 
2672 /*
2673  * Read from the parent image the range of data that covers the
2674  * entire target of the given object request.  This is used for
2675  * satisfying a layered image write request when the target of an
2676  * object request from the image request does not exist.
2677  *
2678  * A page array big enough to hold the returned data is allocated
2679  * and supplied to rbd_img_request_fill() as the "data descriptor."
2680  * When the read completes, this page array will be transferred to
2681  * the original object request for the copyup operation.
2682  *
2683  * If an error occurs, record it as the result of the original
2684  * object request and mark it done so it gets completed.
2685  */
2686 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2687 {
2688 	struct rbd_img_request *img_request = NULL;
2689 	struct rbd_img_request *parent_request = NULL;
2690 	struct rbd_device *rbd_dev;
2691 	u64 img_offset;
2692 	u64 length;
2693 	struct page **pages = NULL;
2694 	u32 page_count;
2695 	int result;
2696 
2697 	rbd_assert(obj_request_img_data_test(obj_request));
2698 	rbd_assert(obj_request_type_valid(obj_request->type));
2699 
2700 	img_request = obj_request->img_request;
2701 	rbd_assert(img_request != NULL);
2702 	rbd_dev = img_request->rbd_dev;
2703 	rbd_assert(rbd_dev->parent != NULL);
2704 
2705 	/*
2706 	 * Determine the byte range covered by the object in the
2707 	 * child image to which the original request was to be sent.
2708 	 */
2709 	img_offset = obj_request->img_offset - obj_request->offset;
2710 	length = (u64)1 << rbd_dev->header.obj_order;
2711 
2712 	/*
2713 	 * There is no defined parent data beyond the parent
2714 	 * overlap, so limit what we read at that boundary if
2715 	 * necessary.
2716 	 */
2717 	if (img_offset + length > rbd_dev->parent_overlap) {
2718 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2719 		length = rbd_dev->parent_overlap - img_offset;
2720 	}
2721 
2722 	/*
2723 	 * Allocate a page array big enough to receive the data read
2724 	 * from the parent.
2725 	 */
2726 	page_count = (u32)calc_pages_for(0, length);
2727 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2728 	if (IS_ERR(pages)) {
2729 		result = PTR_ERR(pages);
2730 		pages = NULL;
2731 		goto out_err;
2732 	}
2733 
2734 	result = -ENOMEM;
2735 	parent_request = rbd_parent_request_create(obj_request,
2736 						img_offset, length);
2737 	if (!parent_request)
2738 		goto out_err;
2739 
2740 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2741 	if (result)
2742 		goto out_err;
2743 	parent_request->copyup_pages = pages;
2744 	parent_request->copyup_page_count = page_count;
2745 
2746 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2747 	result = rbd_img_request_submit(parent_request);
2748 	if (!result)
2749 		return 0;
2750 
2751 	parent_request->copyup_pages = NULL;
2752 	parent_request->copyup_page_count = 0;
2753 	parent_request->obj_request = NULL;
2754 	rbd_obj_request_put(obj_request);
2755 out_err:
2756 	if (pages)
2757 		ceph_release_page_vector(pages, page_count);
2758 	if (parent_request)
2759 		rbd_img_request_put(parent_request);
2760 	obj_request->result = result;
2761 	obj_request->xferred = 0;
2762 	obj_request_done_set(obj_request);
2763 
2764 	return result;
2765 }
2766 
2767 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2768 {
2769 	struct rbd_obj_request *orig_request;
2770 	struct rbd_device *rbd_dev;
2771 	int result;
2772 
2773 	rbd_assert(!obj_request_img_data_test(obj_request));
2774 
2775 	/*
2776 	 * All we need from the object request is the original
2777 	 * request and the result of the STAT op.  Grab those, then
2778 	 * we're done with the request.
2779 	 */
2780 	orig_request = obj_request->obj_request;
2781 	obj_request->obj_request = NULL;
2782 	rbd_obj_request_put(orig_request);
2783 	rbd_assert(orig_request);
2784 	rbd_assert(orig_request->img_request);
2785 
2786 	result = obj_request->result;
2787 	obj_request->result = 0;
2788 
2789 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2790 		obj_request, orig_request, result,
2791 		obj_request->xferred, obj_request->length);
2792 	rbd_obj_request_put(obj_request);
2793 
2794 	/*
2795 	 * If the overlap has become 0 (most likely because the
2796 	 * image has been flattened) we need to free the pages
2797 	 * and re-submit the original write request.
2798 	 */
2799 	rbd_dev = orig_request->img_request->rbd_dev;
2800 	if (!rbd_dev->parent_overlap) {
2801 		struct ceph_osd_client *osdc;
2802 
2803 		osdc = &rbd_dev->rbd_client->client->osdc;
2804 		result = rbd_obj_request_submit(osdc, orig_request);
2805 		if (!result)
2806 			return;
2807 	}
2808 
2809 	/*
2810 	 * Our only purpose here is to determine whether the object
2811 	 * exists, and we don't want to treat the non-existence as
2812 	 * an error.  If something else comes back, transfer the
2813 	 * error to the original request and complete it now.
2814 	 */
2815 	if (!result) {
2816 		obj_request_existence_set(orig_request, true);
2817 	} else if (result == -ENOENT) {
2818 		obj_request_existence_set(orig_request, false);
2819 	} else if (result) {
2820 		orig_request->result = result;
2821 		goto out;
2822 	}
2823 
2824 	/*
2825 	 * Resubmit the original request now that we have recorded
2826 	 * whether the target object exists.
2827 	 */
2828 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2829 out:
2830 	if (orig_request->result)
2831 		rbd_obj_request_complete(orig_request);
2832 }
2833 
2834 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2835 {
2836 	struct rbd_obj_request *stat_request;
2837 	struct rbd_device *rbd_dev;
2838 	struct ceph_osd_client *osdc;
2839 	struct page **pages = NULL;
2840 	u32 page_count;
2841 	size_t size;
2842 	int ret;
2843 
2844 	/*
2845 	 * The response data for a STAT call consists of:
2846 	 *     le64 length;
2847 	 *     struct {
2848 	 *         le32 tv_sec;
2849 	 *         le32 tv_nsec;
2850 	 *     } mtime;
2851 	 */
2852 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2853 	page_count = (u32)calc_pages_for(0, size);
2854 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2855 	if (IS_ERR(pages))
2856 		return PTR_ERR(pages);
2857 
2858 	ret = -ENOMEM;
2859 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2860 							OBJ_REQUEST_PAGES);
2861 	if (!stat_request)
2862 		goto out;
2863 
2864 	rbd_obj_request_get(obj_request);
2865 	stat_request->obj_request = obj_request;
2866 	stat_request->pages = pages;
2867 	stat_request->page_count = page_count;
2868 
2869 	rbd_assert(obj_request->img_request);
2870 	rbd_dev = obj_request->img_request->rbd_dev;
2871 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2872 						   stat_request);
2873 	if (!stat_request->osd_req)
2874 		goto out;
2875 	stat_request->callback = rbd_img_obj_exists_callback;
2876 
2877 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2878 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2879 					false, false);
2880 	rbd_osd_req_format_read(stat_request);
2881 
2882 	osdc = &rbd_dev->rbd_client->client->osdc;
2883 	ret = rbd_obj_request_submit(osdc, stat_request);
2884 out:
2885 	if (ret)
2886 		rbd_obj_request_put(obj_request);
2887 
2888 	return ret;
2889 }
2890 
2891 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2892 {
2893 	struct rbd_img_request *img_request;
2894 	struct rbd_device *rbd_dev;
2895 
2896 	rbd_assert(obj_request_img_data_test(obj_request));
2897 
2898 	img_request = obj_request->img_request;
2899 	rbd_assert(img_request);
2900 	rbd_dev = img_request->rbd_dev;
2901 
2902 	/* Reads */
2903 	if (!img_request_write_test(img_request) &&
2904 	    !img_request_discard_test(img_request))
2905 		return true;
2906 
2907 	/* Non-layered writes */
2908 	if (!img_request_layered_test(img_request))
2909 		return true;
2910 
2911 	/*
2912 	 * Layered writes outside of the parent overlap range don't
2913 	 * share any data with the parent.
2914 	 */
2915 	if (!obj_request_overlaps_parent(obj_request))
2916 		return true;
2917 
2918 	/*
2919 	 * Entire-object layered writes - we will overwrite whatever
2920 	 * parent data there is anyway.
2921 	 */
2922 	if (!obj_request->offset &&
2923 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2924 		return true;
2925 
2926 	/*
2927 	 * If the object is known to already exist, its parent data has
2928 	 * already been copied.
2929 	 */
2930 	if (obj_request_known_test(obj_request) &&
2931 	    obj_request_exists_test(obj_request))
2932 		return true;
2933 
2934 	return false;
2935 }
2936 
2937 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2938 {
2939 	if (img_obj_request_simple(obj_request)) {
2940 		struct rbd_device *rbd_dev;
2941 		struct ceph_osd_client *osdc;
2942 
2943 		rbd_dev = obj_request->img_request->rbd_dev;
2944 		osdc = &rbd_dev->rbd_client->client->osdc;
2945 
2946 		return rbd_obj_request_submit(osdc, obj_request);
2947 	}
2948 
2949 	/*
2950 	 * It's a layered write.  The target object might exist but
2951 	 * we may not know that yet.  If we know it doesn't exist,
2952 	 * start by reading the data for the full target object from
2953 	 * the parent so we can use it for a copyup to the target.
2954 	 */
2955 	if (obj_request_known_test(obj_request))
2956 		return rbd_img_obj_parent_read_full(obj_request);
2957 
2958 	/* We don't know whether the target exists.  Go find out. */
2959 
2960 	return rbd_img_obj_exists_submit(obj_request);
2961 }
2962 
2963 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2964 {
2965 	struct rbd_obj_request *obj_request;
2966 	struct rbd_obj_request *next_obj_request;
2967 	int ret = 0;
2968 
2969 	dout("%s: img %p\n", __func__, img_request);
2970 
2971 	rbd_img_request_get(img_request);
2972 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2973 		ret = rbd_img_obj_request_submit(obj_request);
2974 		if (ret)
2975 			goto out_put_ireq;
2976 	}
2977 
2978 out_put_ireq:
2979 	rbd_img_request_put(img_request);
2980 	return ret;
2981 }
2982 
2983 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2984 {
2985 	struct rbd_obj_request *obj_request;
2986 	struct rbd_device *rbd_dev;
2987 	u64 obj_end;
2988 	u64 img_xferred;
2989 	int img_result;
2990 
2991 	rbd_assert(img_request_child_test(img_request));
2992 
2993 	/* First get what we need from the image request and release it */
2994 
2995 	obj_request = img_request->obj_request;
2996 	img_xferred = img_request->xferred;
2997 	img_result = img_request->result;
2998 	rbd_img_request_put(img_request);
2999 
3000 	/*
3001 	 * If the overlap has become 0 (most likely because the
3002 	 * image has been flattened) we need to re-submit the
3003 	 * original request.
3004 	 */
3005 	rbd_assert(obj_request);
3006 	rbd_assert(obj_request->img_request);
3007 	rbd_dev = obj_request->img_request->rbd_dev;
3008 	if (!rbd_dev->parent_overlap) {
3009 		struct ceph_osd_client *osdc;
3010 
3011 		osdc = &rbd_dev->rbd_client->client->osdc;
3012 		img_result = rbd_obj_request_submit(osdc, obj_request);
3013 		if (!img_result)
3014 			return;
3015 	}
3016 
3017 	obj_request->result = img_result;
3018 	if (obj_request->result)
3019 		goto out;
3020 
3021 	/*
3022 	 * We need to zero anything beyond the parent overlap
3023 	 * boundary.  Since rbd_img_obj_request_read_callback()
3024 	 * will zero anything beyond the end of a short read, an
3025 	 * easy way to do this is to pretend the data from the
3026 	 * parent came up short--ending at the overlap boundary.
3027 	 */
3028 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3029 	obj_end = obj_request->img_offset + obj_request->length;
3030 	if (obj_end > rbd_dev->parent_overlap) {
3031 		u64 xferred = 0;
3032 
3033 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3034 			xferred = rbd_dev->parent_overlap -
3035 					obj_request->img_offset;
3036 
3037 		obj_request->xferred = min(img_xferred, xferred);
3038 	} else {
3039 		obj_request->xferred = img_xferred;
3040 	}
3041 out:
3042 	rbd_img_obj_request_read_callback(obj_request);
3043 	rbd_obj_request_complete(obj_request);
3044 }
3045 
3046 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3047 {
3048 	struct rbd_img_request *img_request;
3049 	int result;
3050 
3051 	rbd_assert(obj_request_img_data_test(obj_request));
3052 	rbd_assert(obj_request->img_request != NULL);
3053 	rbd_assert(obj_request->result == (s32) -ENOENT);
3054 	rbd_assert(obj_request_type_valid(obj_request->type));
3055 
3056 	/* rbd_read_finish(obj_request, obj_request->length); */
3057 	img_request = rbd_parent_request_create(obj_request,
3058 						obj_request->img_offset,
3059 						obj_request->length);
3060 	result = -ENOMEM;
3061 	if (!img_request)
3062 		goto out_err;
3063 
3064 	if (obj_request->type == OBJ_REQUEST_BIO)
3065 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3066 						obj_request->bio_list);
3067 	else
3068 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3069 						obj_request->pages);
3070 	if (result)
3071 		goto out_err;
3072 
3073 	img_request->callback = rbd_img_parent_read_callback;
3074 	result = rbd_img_request_submit(img_request);
3075 	if (result)
3076 		goto out_err;
3077 
3078 	return;
3079 out_err:
3080 	if (img_request)
3081 		rbd_img_request_put(img_request);
3082 	obj_request->result = result;
3083 	obj_request->xferred = 0;
3084 	obj_request_done_set(obj_request);
3085 }
3086 
3087 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev);
3088 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev);
3089 
3090 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3091 			 u64 notifier_id, void *data, size_t data_len)
3092 {
3093 	struct rbd_device *rbd_dev = arg;
3094 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095 	int ret;
3096 
3097 	dout("%s rbd_dev %p cookie %llu notify_id %llu\n", __func__, rbd_dev,
3098 	     cookie, notify_id);
3099 
3100 	/*
3101 	 * Until adequate refresh error handling is in place, there is
3102 	 * not much we can do here, except warn.
3103 	 *
3104 	 * See http://tracker.ceph.com/issues/5040
3105 	 */
3106 	ret = rbd_dev_refresh(rbd_dev);
3107 	if (ret)
3108 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3109 
3110 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3111 				   &rbd_dev->header_oloc, notify_id, cookie,
3112 				   NULL, 0);
3113 	if (ret)
3114 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3115 }
3116 
3117 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3118 {
3119 	struct rbd_device *rbd_dev = arg;
3120 	int ret;
3121 
3122 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3123 
3124 	__rbd_dev_header_unwatch_sync(rbd_dev);
3125 
3126 	ret = rbd_dev_header_watch_sync(rbd_dev);
3127 	if (ret) {
3128 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3129 		return;
3130 	}
3131 
3132 	ret = rbd_dev_refresh(rbd_dev);
3133 	if (ret)
3134 		rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3135 }
3136 
3137 /*
3138  * Initiate a watch request, synchronously.
3139  */
3140 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3141 {
3142 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3143 	struct ceph_osd_linger_request *handle;
3144 
3145 	rbd_assert(!rbd_dev->watch_handle);
3146 
3147 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3148 				 &rbd_dev->header_oloc, rbd_watch_cb,
3149 				 rbd_watch_errcb, rbd_dev);
3150 	if (IS_ERR(handle))
3151 		return PTR_ERR(handle);
3152 
3153 	rbd_dev->watch_handle = handle;
3154 	return 0;
3155 }
3156 
3157 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3158 {
3159 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3160 	int ret;
3161 
3162 	if (!rbd_dev->watch_handle)
3163 		return;
3164 
3165 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3166 	if (ret)
3167 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3168 
3169 	rbd_dev->watch_handle = NULL;
3170 }
3171 
3172 /*
3173  * Tear down a watch request, synchronously.
3174  */
3175 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3176 {
3177 	__rbd_dev_header_unwatch_sync(rbd_dev);
3178 
3179 	dout("%s flushing notifies\n", __func__);
3180 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3181 }
3182 
3183 /*
3184  * Synchronous osd object method call.  Returns the number of bytes
3185  * returned in the outbound buffer, or a negative error code.
3186  */
3187 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3188 			     const char *object_name,
3189 			     const char *class_name,
3190 			     const char *method_name,
3191 			     const void *outbound,
3192 			     size_t outbound_size,
3193 			     void *inbound,
3194 			     size_t inbound_size)
3195 {
3196 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 	struct rbd_obj_request *obj_request;
3198 	struct page **pages;
3199 	u32 page_count;
3200 	int ret;
3201 
3202 	/*
3203 	 * Method calls are ultimately read operations.  The result
3204 	 * should placed into the inbound buffer provided.  They
3205 	 * also supply outbound data--parameters for the object
3206 	 * method.  Currently if this is present it will be a
3207 	 * snapshot id.
3208 	 */
3209 	page_count = (u32)calc_pages_for(0, inbound_size);
3210 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3211 	if (IS_ERR(pages))
3212 		return PTR_ERR(pages);
3213 
3214 	ret = -ENOMEM;
3215 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3216 							OBJ_REQUEST_PAGES);
3217 	if (!obj_request)
3218 		goto out;
3219 
3220 	obj_request->pages = pages;
3221 	obj_request->page_count = page_count;
3222 
3223 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3224 						  obj_request);
3225 	if (!obj_request->osd_req)
3226 		goto out;
3227 
3228 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3229 					class_name, method_name);
3230 	if (outbound_size) {
3231 		struct ceph_pagelist *pagelist;
3232 
3233 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3234 		if (!pagelist)
3235 			goto out;
3236 
3237 		ceph_pagelist_init(pagelist);
3238 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3239 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3240 						pagelist);
3241 	}
3242 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3243 					obj_request->pages, inbound_size,
3244 					0, false, false);
3245 	rbd_osd_req_format_read(obj_request);
3246 
3247 	ret = rbd_obj_request_submit(osdc, obj_request);
3248 	if (ret)
3249 		goto out;
3250 	ret = rbd_obj_request_wait(obj_request);
3251 	if (ret)
3252 		goto out;
3253 
3254 	ret = obj_request->result;
3255 	if (ret < 0)
3256 		goto out;
3257 
3258 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3259 	ret = (int)obj_request->xferred;
3260 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3261 out:
3262 	if (obj_request)
3263 		rbd_obj_request_put(obj_request);
3264 	else
3265 		ceph_release_page_vector(pages, page_count);
3266 
3267 	return ret;
3268 }
3269 
3270 static void rbd_queue_workfn(struct work_struct *work)
3271 {
3272 	struct request *rq = blk_mq_rq_from_pdu(work);
3273 	struct rbd_device *rbd_dev = rq->q->queuedata;
3274 	struct rbd_img_request *img_request;
3275 	struct ceph_snap_context *snapc = NULL;
3276 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3277 	u64 length = blk_rq_bytes(rq);
3278 	enum obj_operation_type op_type;
3279 	u64 mapping_size;
3280 	int result;
3281 
3282 	if (rq->cmd_type != REQ_TYPE_FS) {
3283 		dout("%s: non-fs request type %d\n", __func__,
3284 			(int) rq->cmd_type);
3285 		result = -EIO;
3286 		goto err;
3287 	}
3288 
3289 	if (req_op(rq) == REQ_OP_DISCARD)
3290 		op_type = OBJ_OP_DISCARD;
3291 	else if (req_op(rq) == REQ_OP_WRITE)
3292 		op_type = OBJ_OP_WRITE;
3293 	else
3294 		op_type = OBJ_OP_READ;
3295 
3296 	/* Ignore/skip any zero-length requests */
3297 
3298 	if (!length) {
3299 		dout("%s: zero-length request\n", __func__);
3300 		result = 0;
3301 		goto err_rq;
3302 	}
3303 
3304 	/* Only reads are allowed to a read-only device */
3305 
3306 	if (op_type != OBJ_OP_READ) {
3307 		if (rbd_dev->mapping.read_only) {
3308 			result = -EROFS;
3309 			goto err_rq;
3310 		}
3311 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3312 	}
3313 
3314 	/*
3315 	 * Quit early if the mapped snapshot no longer exists.  It's
3316 	 * still possible the snapshot will have disappeared by the
3317 	 * time our request arrives at the osd, but there's no sense in
3318 	 * sending it if we already know.
3319 	 */
3320 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3321 		dout("request for non-existent snapshot");
3322 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3323 		result = -ENXIO;
3324 		goto err_rq;
3325 	}
3326 
3327 	if (offset && length > U64_MAX - offset + 1) {
3328 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3329 			 length);
3330 		result = -EINVAL;
3331 		goto err_rq;	/* Shouldn't happen */
3332 	}
3333 
3334 	blk_mq_start_request(rq);
3335 
3336 	down_read(&rbd_dev->header_rwsem);
3337 	mapping_size = rbd_dev->mapping.size;
3338 	if (op_type != OBJ_OP_READ) {
3339 		snapc = rbd_dev->header.snapc;
3340 		ceph_get_snap_context(snapc);
3341 	}
3342 	up_read(&rbd_dev->header_rwsem);
3343 
3344 	if (offset + length > mapping_size) {
3345 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3346 			 length, mapping_size);
3347 		result = -EIO;
3348 		goto err_rq;
3349 	}
3350 
3351 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3352 					     snapc);
3353 	if (!img_request) {
3354 		result = -ENOMEM;
3355 		goto err_rq;
3356 	}
3357 	img_request->rq = rq;
3358 	snapc = NULL; /* img_request consumes a ref */
3359 
3360 	if (op_type == OBJ_OP_DISCARD)
3361 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3362 					      NULL);
3363 	else
3364 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3365 					      rq->bio);
3366 	if (result)
3367 		goto err_img_request;
3368 
3369 	result = rbd_img_request_submit(img_request);
3370 	if (result)
3371 		goto err_img_request;
3372 
3373 	return;
3374 
3375 err_img_request:
3376 	rbd_img_request_put(img_request);
3377 err_rq:
3378 	if (result)
3379 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3380 			 obj_op_name(op_type), length, offset, result);
3381 	ceph_put_snap_context(snapc);
3382 err:
3383 	blk_mq_end_request(rq, result);
3384 }
3385 
3386 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3387 		const struct blk_mq_queue_data *bd)
3388 {
3389 	struct request *rq = bd->rq;
3390 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3391 
3392 	queue_work(rbd_wq, work);
3393 	return BLK_MQ_RQ_QUEUE_OK;
3394 }
3395 
3396 static void rbd_free_disk(struct rbd_device *rbd_dev)
3397 {
3398 	struct gendisk *disk = rbd_dev->disk;
3399 
3400 	if (!disk)
3401 		return;
3402 
3403 	rbd_dev->disk = NULL;
3404 	if (disk->flags & GENHD_FL_UP) {
3405 		del_gendisk(disk);
3406 		if (disk->queue)
3407 			blk_cleanup_queue(disk->queue);
3408 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3409 	}
3410 	put_disk(disk);
3411 }
3412 
3413 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3414 				const char *object_name,
3415 				u64 offset, u64 length, void *buf)
3416 
3417 {
3418 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3419 	struct rbd_obj_request *obj_request;
3420 	struct page **pages = NULL;
3421 	u32 page_count;
3422 	size_t size;
3423 	int ret;
3424 
3425 	page_count = (u32) calc_pages_for(offset, length);
3426 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3427 	if (IS_ERR(pages))
3428 		return PTR_ERR(pages);
3429 
3430 	ret = -ENOMEM;
3431 	obj_request = rbd_obj_request_create(object_name, offset, length,
3432 							OBJ_REQUEST_PAGES);
3433 	if (!obj_request)
3434 		goto out;
3435 
3436 	obj_request->pages = pages;
3437 	obj_request->page_count = page_count;
3438 
3439 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3440 						  obj_request);
3441 	if (!obj_request->osd_req)
3442 		goto out;
3443 
3444 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3445 					offset, length, 0, 0);
3446 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3447 					obj_request->pages,
3448 					obj_request->length,
3449 					obj_request->offset & ~PAGE_MASK,
3450 					false, false);
3451 	rbd_osd_req_format_read(obj_request);
3452 
3453 	ret = rbd_obj_request_submit(osdc, obj_request);
3454 	if (ret)
3455 		goto out;
3456 	ret = rbd_obj_request_wait(obj_request);
3457 	if (ret)
3458 		goto out;
3459 
3460 	ret = obj_request->result;
3461 	if (ret < 0)
3462 		goto out;
3463 
3464 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3465 	size = (size_t) obj_request->xferred;
3466 	ceph_copy_from_page_vector(pages, buf, 0, size);
3467 	rbd_assert(size <= (size_t)INT_MAX);
3468 	ret = (int)size;
3469 out:
3470 	if (obj_request)
3471 		rbd_obj_request_put(obj_request);
3472 	else
3473 		ceph_release_page_vector(pages, page_count);
3474 
3475 	return ret;
3476 }
3477 
3478 /*
3479  * Read the complete header for the given rbd device.  On successful
3480  * return, the rbd_dev->header field will contain up-to-date
3481  * information about the image.
3482  */
3483 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3484 {
3485 	struct rbd_image_header_ondisk *ondisk = NULL;
3486 	u32 snap_count = 0;
3487 	u64 names_size = 0;
3488 	u32 want_count;
3489 	int ret;
3490 
3491 	/*
3492 	 * The complete header will include an array of its 64-bit
3493 	 * snapshot ids, followed by the names of those snapshots as
3494 	 * a contiguous block of NUL-terminated strings.  Note that
3495 	 * the number of snapshots could change by the time we read
3496 	 * it in, in which case we re-read it.
3497 	 */
3498 	do {
3499 		size_t size;
3500 
3501 		kfree(ondisk);
3502 
3503 		size = sizeof (*ondisk);
3504 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3505 		size += names_size;
3506 		ondisk = kmalloc(size, GFP_KERNEL);
3507 		if (!ondisk)
3508 			return -ENOMEM;
3509 
3510 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
3511 				       0, size, ondisk);
3512 		if (ret < 0)
3513 			goto out;
3514 		if ((size_t)ret < size) {
3515 			ret = -ENXIO;
3516 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3517 				size, ret);
3518 			goto out;
3519 		}
3520 		if (!rbd_dev_ondisk_valid(ondisk)) {
3521 			ret = -ENXIO;
3522 			rbd_warn(rbd_dev, "invalid header");
3523 			goto out;
3524 		}
3525 
3526 		names_size = le64_to_cpu(ondisk->snap_names_len);
3527 		want_count = snap_count;
3528 		snap_count = le32_to_cpu(ondisk->snap_count);
3529 	} while (snap_count != want_count);
3530 
3531 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3532 out:
3533 	kfree(ondisk);
3534 
3535 	return ret;
3536 }
3537 
3538 /*
3539  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3540  * has disappeared from the (just updated) snapshot context.
3541  */
3542 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3543 {
3544 	u64 snap_id;
3545 
3546 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3547 		return;
3548 
3549 	snap_id = rbd_dev->spec->snap_id;
3550 	if (snap_id == CEPH_NOSNAP)
3551 		return;
3552 
3553 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3554 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3555 }
3556 
3557 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3558 {
3559 	sector_t size;
3560 
3561 	/*
3562 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3563 	 * try to update its size.  If REMOVING is set, updating size
3564 	 * is just useless work since the device can't be opened.
3565 	 */
3566 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3567 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3568 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3569 		dout("setting size to %llu sectors", (unsigned long long)size);
3570 		set_capacity(rbd_dev->disk, size);
3571 		revalidate_disk(rbd_dev->disk);
3572 	}
3573 }
3574 
3575 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3576 {
3577 	u64 mapping_size;
3578 	int ret;
3579 
3580 	down_write(&rbd_dev->header_rwsem);
3581 	mapping_size = rbd_dev->mapping.size;
3582 
3583 	ret = rbd_dev_header_info(rbd_dev);
3584 	if (ret)
3585 		goto out;
3586 
3587 	/*
3588 	 * If there is a parent, see if it has disappeared due to the
3589 	 * mapped image getting flattened.
3590 	 */
3591 	if (rbd_dev->parent) {
3592 		ret = rbd_dev_v2_parent_info(rbd_dev);
3593 		if (ret)
3594 			goto out;
3595 	}
3596 
3597 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3598 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3599 	} else {
3600 		/* validate mapped snapshot's EXISTS flag */
3601 		rbd_exists_validate(rbd_dev);
3602 	}
3603 
3604 out:
3605 	up_write(&rbd_dev->header_rwsem);
3606 	if (!ret && mapping_size != rbd_dev->mapping.size)
3607 		rbd_dev_update_size(rbd_dev);
3608 
3609 	return ret;
3610 }
3611 
3612 static int rbd_init_request(void *data, struct request *rq,
3613 		unsigned int hctx_idx, unsigned int request_idx,
3614 		unsigned int numa_node)
3615 {
3616 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3617 
3618 	INIT_WORK(work, rbd_queue_workfn);
3619 	return 0;
3620 }
3621 
3622 static struct blk_mq_ops rbd_mq_ops = {
3623 	.queue_rq	= rbd_queue_rq,
3624 	.map_queue	= blk_mq_map_queue,
3625 	.init_request	= rbd_init_request,
3626 };
3627 
3628 static int rbd_init_disk(struct rbd_device *rbd_dev)
3629 {
3630 	struct gendisk *disk;
3631 	struct request_queue *q;
3632 	u64 segment_size;
3633 	int err;
3634 
3635 	/* create gendisk info */
3636 	disk = alloc_disk(single_major ?
3637 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3638 			  RBD_MINORS_PER_MAJOR);
3639 	if (!disk)
3640 		return -ENOMEM;
3641 
3642 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3643 		 rbd_dev->dev_id);
3644 	disk->major = rbd_dev->major;
3645 	disk->first_minor = rbd_dev->minor;
3646 	if (single_major)
3647 		disk->flags |= GENHD_FL_EXT_DEVT;
3648 	disk->fops = &rbd_bd_ops;
3649 	disk->private_data = rbd_dev;
3650 
3651 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3652 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3653 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3654 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3655 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3656 	rbd_dev->tag_set.nr_hw_queues = 1;
3657 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3658 
3659 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3660 	if (err)
3661 		goto out_disk;
3662 
3663 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3664 	if (IS_ERR(q)) {
3665 		err = PTR_ERR(q);
3666 		goto out_tag_set;
3667 	}
3668 
3669 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3670 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3671 
3672 	/* set io sizes to object size */
3673 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3674 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3675 	q->limits.max_sectors = queue_max_hw_sectors(q);
3676 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3677 	blk_queue_max_segment_size(q, segment_size);
3678 	blk_queue_io_min(q, segment_size);
3679 	blk_queue_io_opt(q, segment_size);
3680 
3681 	/* enable the discard support */
3682 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3683 	q->limits.discard_granularity = segment_size;
3684 	q->limits.discard_alignment = segment_size;
3685 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3686 	q->limits.discard_zeroes_data = 1;
3687 
3688 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3689 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3690 
3691 	disk->queue = q;
3692 
3693 	q->queuedata = rbd_dev;
3694 
3695 	rbd_dev->disk = disk;
3696 
3697 	return 0;
3698 out_tag_set:
3699 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3700 out_disk:
3701 	put_disk(disk);
3702 	return err;
3703 }
3704 
3705 /*
3706   sysfs
3707 */
3708 
3709 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3710 {
3711 	return container_of(dev, struct rbd_device, dev);
3712 }
3713 
3714 static ssize_t rbd_size_show(struct device *dev,
3715 			     struct device_attribute *attr, char *buf)
3716 {
3717 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3718 
3719 	return sprintf(buf, "%llu\n",
3720 		(unsigned long long)rbd_dev->mapping.size);
3721 }
3722 
3723 /*
3724  * Note this shows the features for whatever's mapped, which is not
3725  * necessarily the base image.
3726  */
3727 static ssize_t rbd_features_show(struct device *dev,
3728 			     struct device_attribute *attr, char *buf)
3729 {
3730 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3731 
3732 	return sprintf(buf, "0x%016llx\n",
3733 			(unsigned long long)rbd_dev->mapping.features);
3734 }
3735 
3736 static ssize_t rbd_major_show(struct device *dev,
3737 			      struct device_attribute *attr, char *buf)
3738 {
3739 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3740 
3741 	if (rbd_dev->major)
3742 		return sprintf(buf, "%d\n", rbd_dev->major);
3743 
3744 	return sprintf(buf, "(none)\n");
3745 }
3746 
3747 static ssize_t rbd_minor_show(struct device *dev,
3748 			      struct device_attribute *attr, char *buf)
3749 {
3750 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3751 
3752 	return sprintf(buf, "%d\n", rbd_dev->minor);
3753 }
3754 
3755 static ssize_t rbd_client_id_show(struct device *dev,
3756 				  struct device_attribute *attr, char *buf)
3757 {
3758 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3759 
3760 	return sprintf(buf, "client%lld\n",
3761 			ceph_client_id(rbd_dev->rbd_client->client));
3762 }
3763 
3764 static ssize_t rbd_pool_show(struct device *dev,
3765 			     struct device_attribute *attr, char *buf)
3766 {
3767 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3768 
3769 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3770 }
3771 
3772 static ssize_t rbd_pool_id_show(struct device *dev,
3773 			     struct device_attribute *attr, char *buf)
3774 {
3775 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3776 
3777 	return sprintf(buf, "%llu\n",
3778 			(unsigned long long) rbd_dev->spec->pool_id);
3779 }
3780 
3781 static ssize_t rbd_name_show(struct device *dev,
3782 			     struct device_attribute *attr, char *buf)
3783 {
3784 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3785 
3786 	if (rbd_dev->spec->image_name)
3787 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3788 
3789 	return sprintf(buf, "(unknown)\n");
3790 }
3791 
3792 static ssize_t rbd_image_id_show(struct device *dev,
3793 			     struct device_attribute *attr, char *buf)
3794 {
3795 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3796 
3797 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3798 }
3799 
3800 /*
3801  * Shows the name of the currently-mapped snapshot (or
3802  * RBD_SNAP_HEAD_NAME for the base image).
3803  */
3804 static ssize_t rbd_snap_show(struct device *dev,
3805 			     struct device_attribute *attr,
3806 			     char *buf)
3807 {
3808 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3809 
3810 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3811 }
3812 
3813 /*
3814  * For a v2 image, shows the chain of parent images, separated by empty
3815  * lines.  For v1 images or if there is no parent, shows "(no parent
3816  * image)".
3817  */
3818 static ssize_t rbd_parent_show(struct device *dev,
3819 			       struct device_attribute *attr,
3820 			       char *buf)
3821 {
3822 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 	ssize_t count = 0;
3824 
3825 	if (!rbd_dev->parent)
3826 		return sprintf(buf, "(no parent image)\n");
3827 
3828 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3829 		struct rbd_spec *spec = rbd_dev->parent_spec;
3830 
3831 		count += sprintf(&buf[count], "%s"
3832 			    "pool_id %llu\npool_name %s\n"
3833 			    "image_id %s\nimage_name %s\n"
3834 			    "snap_id %llu\nsnap_name %s\n"
3835 			    "overlap %llu\n",
3836 			    !count ? "" : "\n", /* first? */
3837 			    spec->pool_id, spec->pool_name,
3838 			    spec->image_id, spec->image_name ?: "(unknown)",
3839 			    spec->snap_id, spec->snap_name,
3840 			    rbd_dev->parent_overlap);
3841 	}
3842 
3843 	return count;
3844 }
3845 
3846 static ssize_t rbd_image_refresh(struct device *dev,
3847 				 struct device_attribute *attr,
3848 				 const char *buf,
3849 				 size_t size)
3850 {
3851 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852 	int ret;
3853 
3854 	ret = rbd_dev_refresh(rbd_dev);
3855 	if (ret)
3856 		return ret;
3857 
3858 	return size;
3859 }
3860 
3861 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3862 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3863 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3864 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3865 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3866 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3867 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3868 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3869 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3870 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3871 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3872 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3873 
3874 static struct attribute *rbd_attrs[] = {
3875 	&dev_attr_size.attr,
3876 	&dev_attr_features.attr,
3877 	&dev_attr_major.attr,
3878 	&dev_attr_minor.attr,
3879 	&dev_attr_client_id.attr,
3880 	&dev_attr_pool.attr,
3881 	&dev_attr_pool_id.attr,
3882 	&dev_attr_name.attr,
3883 	&dev_attr_image_id.attr,
3884 	&dev_attr_current_snap.attr,
3885 	&dev_attr_parent.attr,
3886 	&dev_attr_refresh.attr,
3887 	NULL
3888 };
3889 
3890 static struct attribute_group rbd_attr_group = {
3891 	.attrs = rbd_attrs,
3892 };
3893 
3894 static const struct attribute_group *rbd_attr_groups[] = {
3895 	&rbd_attr_group,
3896 	NULL
3897 };
3898 
3899 static void rbd_dev_release(struct device *dev);
3900 
3901 static struct device_type rbd_device_type = {
3902 	.name		= "rbd",
3903 	.groups		= rbd_attr_groups,
3904 	.release	= rbd_dev_release,
3905 };
3906 
3907 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3908 {
3909 	kref_get(&spec->kref);
3910 
3911 	return spec;
3912 }
3913 
3914 static void rbd_spec_free(struct kref *kref);
3915 static void rbd_spec_put(struct rbd_spec *spec)
3916 {
3917 	if (spec)
3918 		kref_put(&spec->kref, rbd_spec_free);
3919 }
3920 
3921 static struct rbd_spec *rbd_spec_alloc(void)
3922 {
3923 	struct rbd_spec *spec;
3924 
3925 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3926 	if (!spec)
3927 		return NULL;
3928 
3929 	spec->pool_id = CEPH_NOPOOL;
3930 	spec->snap_id = CEPH_NOSNAP;
3931 	kref_init(&spec->kref);
3932 
3933 	return spec;
3934 }
3935 
3936 static void rbd_spec_free(struct kref *kref)
3937 {
3938 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3939 
3940 	kfree(spec->pool_name);
3941 	kfree(spec->image_id);
3942 	kfree(spec->image_name);
3943 	kfree(spec->snap_name);
3944 	kfree(spec);
3945 }
3946 
3947 static void rbd_dev_release(struct device *dev)
3948 {
3949 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3950 	bool need_put = !!rbd_dev->opts;
3951 
3952 	ceph_oid_destroy(&rbd_dev->header_oid);
3953 	ceph_oloc_destroy(&rbd_dev->header_oloc);
3954 
3955 	rbd_put_client(rbd_dev->rbd_client);
3956 	rbd_spec_put(rbd_dev->spec);
3957 	kfree(rbd_dev->opts);
3958 	kfree(rbd_dev);
3959 
3960 	/*
3961 	 * This is racy, but way better than putting module outside of
3962 	 * the release callback.  The race window is pretty small, so
3963 	 * doing something similar to dm (dm-builtin.c) is overkill.
3964 	 */
3965 	if (need_put)
3966 		module_put(THIS_MODULE);
3967 }
3968 
3969 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3970 					 struct rbd_spec *spec,
3971 					 struct rbd_options *opts)
3972 {
3973 	struct rbd_device *rbd_dev;
3974 
3975 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3976 	if (!rbd_dev)
3977 		return NULL;
3978 
3979 	spin_lock_init(&rbd_dev->lock);
3980 	rbd_dev->flags = 0;
3981 	atomic_set(&rbd_dev->parent_ref, 0);
3982 	INIT_LIST_HEAD(&rbd_dev->node);
3983 	init_rwsem(&rbd_dev->header_rwsem);
3984 
3985 	ceph_oid_init(&rbd_dev->header_oid);
3986 	ceph_oloc_init(&rbd_dev->header_oloc);
3987 
3988 	rbd_dev->dev.bus = &rbd_bus_type;
3989 	rbd_dev->dev.type = &rbd_device_type;
3990 	rbd_dev->dev.parent = &rbd_root_dev;
3991 	device_initialize(&rbd_dev->dev);
3992 
3993 	rbd_dev->rbd_client = rbdc;
3994 	rbd_dev->spec = spec;
3995 	rbd_dev->opts = opts;
3996 
3997 	/* Initialize the layout used for all rbd requests */
3998 
3999 	rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4000 	rbd_dev->layout.stripe_count = 1;
4001 	rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4002 	rbd_dev->layout.pool_id = spec->pool_id;
4003 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4004 
4005 	/*
4006 	 * If this is a mapping rbd_dev (as opposed to a parent one),
4007 	 * pin our module.  We have a ref from do_rbd_add(), so use
4008 	 * __module_get().
4009 	 */
4010 	if (rbd_dev->opts)
4011 		__module_get(THIS_MODULE);
4012 
4013 	return rbd_dev;
4014 }
4015 
4016 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4017 {
4018 	if (rbd_dev)
4019 		put_device(&rbd_dev->dev);
4020 }
4021 
4022 /*
4023  * Get the size and object order for an image snapshot, or if
4024  * snap_id is CEPH_NOSNAP, gets this information for the base
4025  * image.
4026  */
4027 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4028 				u8 *order, u64 *snap_size)
4029 {
4030 	__le64 snapid = cpu_to_le64(snap_id);
4031 	int ret;
4032 	struct {
4033 		u8 order;
4034 		__le64 size;
4035 	} __attribute__ ((packed)) size_buf = { 0 };
4036 
4037 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4038 				"rbd", "get_size",
4039 				&snapid, sizeof (snapid),
4040 				&size_buf, sizeof (size_buf));
4041 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4042 	if (ret < 0)
4043 		return ret;
4044 	if (ret < sizeof (size_buf))
4045 		return -ERANGE;
4046 
4047 	if (order) {
4048 		*order = size_buf.order;
4049 		dout("  order %u", (unsigned int)*order);
4050 	}
4051 	*snap_size = le64_to_cpu(size_buf.size);
4052 
4053 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4054 		(unsigned long long)snap_id,
4055 		(unsigned long long)*snap_size);
4056 
4057 	return 0;
4058 }
4059 
4060 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4061 {
4062 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4063 					&rbd_dev->header.obj_order,
4064 					&rbd_dev->header.image_size);
4065 }
4066 
4067 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4068 {
4069 	void *reply_buf;
4070 	int ret;
4071 	void *p;
4072 
4073 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4074 	if (!reply_buf)
4075 		return -ENOMEM;
4076 
4077 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4078 				"rbd", "get_object_prefix", NULL, 0,
4079 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4080 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4081 	if (ret < 0)
4082 		goto out;
4083 
4084 	p = reply_buf;
4085 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4086 						p + ret, NULL, GFP_NOIO);
4087 	ret = 0;
4088 
4089 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4090 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4091 		rbd_dev->header.object_prefix = NULL;
4092 	} else {
4093 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4094 	}
4095 out:
4096 	kfree(reply_buf);
4097 
4098 	return ret;
4099 }
4100 
4101 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4102 		u64 *snap_features)
4103 {
4104 	__le64 snapid = cpu_to_le64(snap_id);
4105 	struct {
4106 		__le64 features;
4107 		__le64 incompat;
4108 	} __attribute__ ((packed)) features_buf = { 0 };
4109 	u64 unsup;
4110 	int ret;
4111 
4112 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4113 				"rbd", "get_features",
4114 				&snapid, sizeof (snapid),
4115 				&features_buf, sizeof (features_buf));
4116 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4117 	if (ret < 0)
4118 		return ret;
4119 	if (ret < sizeof (features_buf))
4120 		return -ERANGE;
4121 
4122 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4123 	if (unsup) {
4124 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4125 			 unsup);
4126 		return -ENXIO;
4127 	}
4128 
4129 	*snap_features = le64_to_cpu(features_buf.features);
4130 
4131 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4132 		(unsigned long long)snap_id,
4133 		(unsigned long long)*snap_features,
4134 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4135 
4136 	return 0;
4137 }
4138 
4139 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4140 {
4141 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4142 						&rbd_dev->header.features);
4143 }
4144 
4145 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4146 {
4147 	struct rbd_spec *parent_spec;
4148 	size_t size;
4149 	void *reply_buf = NULL;
4150 	__le64 snapid;
4151 	void *p;
4152 	void *end;
4153 	u64 pool_id;
4154 	char *image_id;
4155 	u64 snap_id;
4156 	u64 overlap;
4157 	int ret;
4158 
4159 	parent_spec = rbd_spec_alloc();
4160 	if (!parent_spec)
4161 		return -ENOMEM;
4162 
4163 	size = sizeof (__le64) +				/* pool_id */
4164 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4165 		sizeof (__le64) +				/* snap_id */
4166 		sizeof (__le64);				/* overlap */
4167 	reply_buf = kmalloc(size, GFP_KERNEL);
4168 	if (!reply_buf) {
4169 		ret = -ENOMEM;
4170 		goto out_err;
4171 	}
4172 
4173 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4174 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4175 				"rbd", "get_parent",
4176 				&snapid, sizeof (snapid),
4177 				reply_buf, size);
4178 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4179 	if (ret < 0)
4180 		goto out_err;
4181 
4182 	p = reply_buf;
4183 	end = reply_buf + ret;
4184 	ret = -ERANGE;
4185 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4186 	if (pool_id == CEPH_NOPOOL) {
4187 		/*
4188 		 * Either the parent never existed, or we have
4189 		 * record of it but the image got flattened so it no
4190 		 * longer has a parent.  When the parent of a
4191 		 * layered image disappears we immediately set the
4192 		 * overlap to 0.  The effect of this is that all new
4193 		 * requests will be treated as if the image had no
4194 		 * parent.
4195 		 */
4196 		if (rbd_dev->parent_overlap) {
4197 			rbd_dev->parent_overlap = 0;
4198 			rbd_dev_parent_put(rbd_dev);
4199 			pr_info("%s: clone image has been flattened\n",
4200 				rbd_dev->disk->disk_name);
4201 		}
4202 
4203 		goto out;	/* No parent?  No problem. */
4204 	}
4205 
4206 	/* The ceph file layout needs to fit pool id in 32 bits */
4207 
4208 	ret = -EIO;
4209 	if (pool_id > (u64)U32_MAX) {
4210 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4211 			(unsigned long long)pool_id, U32_MAX);
4212 		goto out_err;
4213 	}
4214 
4215 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4216 	if (IS_ERR(image_id)) {
4217 		ret = PTR_ERR(image_id);
4218 		goto out_err;
4219 	}
4220 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4221 	ceph_decode_64_safe(&p, end, overlap, out_err);
4222 
4223 	/*
4224 	 * The parent won't change (except when the clone is
4225 	 * flattened, already handled that).  So we only need to
4226 	 * record the parent spec we have not already done so.
4227 	 */
4228 	if (!rbd_dev->parent_spec) {
4229 		parent_spec->pool_id = pool_id;
4230 		parent_spec->image_id = image_id;
4231 		parent_spec->snap_id = snap_id;
4232 		rbd_dev->parent_spec = parent_spec;
4233 		parent_spec = NULL;	/* rbd_dev now owns this */
4234 	} else {
4235 		kfree(image_id);
4236 	}
4237 
4238 	/*
4239 	 * We always update the parent overlap.  If it's zero we issue
4240 	 * a warning, as we will proceed as if there was no parent.
4241 	 */
4242 	if (!overlap) {
4243 		if (parent_spec) {
4244 			/* refresh, careful to warn just once */
4245 			if (rbd_dev->parent_overlap)
4246 				rbd_warn(rbd_dev,
4247 				    "clone now standalone (overlap became 0)");
4248 		} else {
4249 			/* initial probe */
4250 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4251 		}
4252 	}
4253 	rbd_dev->parent_overlap = overlap;
4254 
4255 out:
4256 	ret = 0;
4257 out_err:
4258 	kfree(reply_buf);
4259 	rbd_spec_put(parent_spec);
4260 
4261 	return ret;
4262 }
4263 
4264 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4265 {
4266 	struct {
4267 		__le64 stripe_unit;
4268 		__le64 stripe_count;
4269 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4270 	size_t size = sizeof (striping_info_buf);
4271 	void *p;
4272 	u64 obj_size;
4273 	u64 stripe_unit;
4274 	u64 stripe_count;
4275 	int ret;
4276 
4277 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4278 				"rbd", "get_stripe_unit_count", NULL, 0,
4279 				(char *)&striping_info_buf, size);
4280 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4281 	if (ret < 0)
4282 		return ret;
4283 	if (ret < size)
4284 		return -ERANGE;
4285 
4286 	/*
4287 	 * We don't actually support the "fancy striping" feature
4288 	 * (STRIPINGV2) yet, but if the striping sizes are the
4289 	 * defaults the behavior is the same as before.  So find
4290 	 * out, and only fail if the image has non-default values.
4291 	 */
4292 	ret = -EINVAL;
4293 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4294 	p = &striping_info_buf;
4295 	stripe_unit = ceph_decode_64(&p);
4296 	if (stripe_unit != obj_size) {
4297 		rbd_warn(rbd_dev, "unsupported stripe unit "
4298 				"(got %llu want %llu)",
4299 				stripe_unit, obj_size);
4300 		return -EINVAL;
4301 	}
4302 	stripe_count = ceph_decode_64(&p);
4303 	if (stripe_count != 1) {
4304 		rbd_warn(rbd_dev, "unsupported stripe count "
4305 				"(got %llu want 1)", stripe_count);
4306 		return -EINVAL;
4307 	}
4308 	rbd_dev->header.stripe_unit = stripe_unit;
4309 	rbd_dev->header.stripe_count = stripe_count;
4310 
4311 	return 0;
4312 }
4313 
4314 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4315 {
4316 	size_t image_id_size;
4317 	char *image_id;
4318 	void *p;
4319 	void *end;
4320 	size_t size;
4321 	void *reply_buf = NULL;
4322 	size_t len = 0;
4323 	char *image_name = NULL;
4324 	int ret;
4325 
4326 	rbd_assert(!rbd_dev->spec->image_name);
4327 
4328 	len = strlen(rbd_dev->spec->image_id);
4329 	image_id_size = sizeof (__le32) + len;
4330 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4331 	if (!image_id)
4332 		return NULL;
4333 
4334 	p = image_id;
4335 	end = image_id + image_id_size;
4336 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4337 
4338 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4339 	reply_buf = kmalloc(size, GFP_KERNEL);
4340 	if (!reply_buf)
4341 		goto out;
4342 
4343 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4344 				"rbd", "dir_get_name",
4345 				image_id, image_id_size,
4346 				reply_buf, size);
4347 	if (ret < 0)
4348 		goto out;
4349 	p = reply_buf;
4350 	end = reply_buf + ret;
4351 
4352 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4353 	if (IS_ERR(image_name))
4354 		image_name = NULL;
4355 	else
4356 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4357 out:
4358 	kfree(reply_buf);
4359 	kfree(image_id);
4360 
4361 	return image_name;
4362 }
4363 
4364 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4365 {
4366 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4367 	const char *snap_name;
4368 	u32 which = 0;
4369 
4370 	/* Skip over names until we find the one we are looking for */
4371 
4372 	snap_name = rbd_dev->header.snap_names;
4373 	while (which < snapc->num_snaps) {
4374 		if (!strcmp(name, snap_name))
4375 			return snapc->snaps[which];
4376 		snap_name += strlen(snap_name) + 1;
4377 		which++;
4378 	}
4379 	return CEPH_NOSNAP;
4380 }
4381 
4382 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4383 {
4384 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4385 	u32 which;
4386 	bool found = false;
4387 	u64 snap_id;
4388 
4389 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4390 		const char *snap_name;
4391 
4392 		snap_id = snapc->snaps[which];
4393 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4394 		if (IS_ERR(snap_name)) {
4395 			/* ignore no-longer existing snapshots */
4396 			if (PTR_ERR(snap_name) == -ENOENT)
4397 				continue;
4398 			else
4399 				break;
4400 		}
4401 		found = !strcmp(name, snap_name);
4402 		kfree(snap_name);
4403 	}
4404 	return found ? snap_id : CEPH_NOSNAP;
4405 }
4406 
4407 /*
4408  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4409  * no snapshot by that name is found, or if an error occurs.
4410  */
4411 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4412 {
4413 	if (rbd_dev->image_format == 1)
4414 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4415 
4416 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4417 }
4418 
4419 /*
4420  * An image being mapped will have everything but the snap id.
4421  */
4422 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4423 {
4424 	struct rbd_spec *spec = rbd_dev->spec;
4425 
4426 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4427 	rbd_assert(spec->image_id && spec->image_name);
4428 	rbd_assert(spec->snap_name);
4429 
4430 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4431 		u64 snap_id;
4432 
4433 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4434 		if (snap_id == CEPH_NOSNAP)
4435 			return -ENOENT;
4436 
4437 		spec->snap_id = snap_id;
4438 	} else {
4439 		spec->snap_id = CEPH_NOSNAP;
4440 	}
4441 
4442 	return 0;
4443 }
4444 
4445 /*
4446  * A parent image will have all ids but none of the names.
4447  *
4448  * All names in an rbd spec are dynamically allocated.  It's OK if we
4449  * can't figure out the name for an image id.
4450  */
4451 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4452 {
4453 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4454 	struct rbd_spec *spec = rbd_dev->spec;
4455 	const char *pool_name;
4456 	const char *image_name;
4457 	const char *snap_name;
4458 	int ret;
4459 
4460 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4461 	rbd_assert(spec->image_id);
4462 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4463 
4464 	/* Get the pool name; we have to make our own copy of this */
4465 
4466 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4467 	if (!pool_name) {
4468 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4469 		return -EIO;
4470 	}
4471 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4472 	if (!pool_name)
4473 		return -ENOMEM;
4474 
4475 	/* Fetch the image name; tolerate failure here */
4476 
4477 	image_name = rbd_dev_image_name(rbd_dev);
4478 	if (!image_name)
4479 		rbd_warn(rbd_dev, "unable to get image name");
4480 
4481 	/* Fetch the snapshot name */
4482 
4483 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4484 	if (IS_ERR(snap_name)) {
4485 		ret = PTR_ERR(snap_name);
4486 		goto out_err;
4487 	}
4488 
4489 	spec->pool_name = pool_name;
4490 	spec->image_name = image_name;
4491 	spec->snap_name = snap_name;
4492 
4493 	return 0;
4494 
4495 out_err:
4496 	kfree(image_name);
4497 	kfree(pool_name);
4498 	return ret;
4499 }
4500 
4501 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4502 {
4503 	size_t size;
4504 	int ret;
4505 	void *reply_buf;
4506 	void *p;
4507 	void *end;
4508 	u64 seq;
4509 	u32 snap_count;
4510 	struct ceph_snap_context *snapc;
4511 	u32 i;
4512 
4513 	/*
4514 	 * We'll need room for the seq value (maximum snapshot id),
4515 	 * snapshot count, and array of that many snapshot ids.
4516 	 * For now we have a fixed upper limit on the number we're
4517 	 * prepared to receive.
4518 	 */
4519 	size = sizeof (__le64) + sizeof (__le32) +
4520 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4521 	reply_buf = kzalloc(size, GFP_KERNEL);
4522 	if (!reply_buf)
4523 		return -ENOMEM;
4524 
4525 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4526 				"rbd", "get_snapcontext", NULL, 0,
4527 				reply_buf, size);
4528 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4529 	if (ret < 0)
4530 		goto out;
4531 
4532 	p = reply_buf;
4533 	end = reply_buf + ret;
4534 	ret = -ERANGE;
4535 	ceph_decode_64_safe(&p, end, seq, out);
4536 	ceph_decode_32_safe(&p, end, snap_count, out);
4537 
4538 	/*
4539 	 * Make sure the reported number of snapshot ids wouldn't go
4540 	 * beyond the end of our buffer.  But before checking that,
4541 	 * make sure the computed size of the snapshot context we
4542 	 * allocate is representable in a size_t.
4543 	 */
4544 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4545 				 / sizeof (u64)) {
4546 		ret = -EINVAL;
4547 		goto out;
4548 	}
4549 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4550 		goto out;
4551 	ret = 0;
4552 
4553 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4554 	if (!snapc) {
4555 		ret = -ENOMEM;
4556 		goto out;
4557 	}
4558 	snapc->seq = seq;
4559 	for (i = 0; i < snap_count; i++)
4560 		snapc->snaps[i] = ceph_decode_64(&p);
4561 
4562 	ceph_put_snap_context(rbd_dev->header.snapc);
4563 	rbd_dev->header.snapc = snapc;
4564 
4565 	dout("  snap context seq = %llu, snap_count = %u\n",
4566 		(unsigned long long)seq, (unsigned int)snap_count);
4567 out:
4568 	kfree(reply_buf);
4569 
4570 	return ret;
4571 }
4572 
4573 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4574 					u64 snap_id)
4575 {
4576 	size_t size;
4577 	void *reply_buf;
4578 	__le64 snapid;
4579 	int ret;
4580 	void *p;
4581 	void *end;
4582 	char *snap_name;
4583 
4584 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4585 	reply_buf = kmalloc(size, GFP_KERNEL);
4586 	if (!reply_buf)
4587 		return ERR_PTR(-ENOMEM);
4588 
4589 	snapid = cpu_to_le64(snap_id);
4590 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4591 				"rbd", "get_snapshot_name",
4592 				&snapid, sizeof (snapid),
4593 				reply_buf, size);
4594 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4595 	if (ret < 0) {
4596 		snap_name = ERR_PTR(ret);
4597 		goto out;
4598 	}
4599 
4600 	p = reply_buf;
4601 	end = reply_buf + ret;
4602 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4603 	if (IS_ERR(snap_name))
4604 		goto out;
4605 
4606 	dout("  snap_id 0x%016llx snap_name = %s\n",
4607 		(unsigned long long)snap_id, snap_name);
4608 out:
4609 	kfree(reply_buf);
4610 
4611 	return snap_name;
4612 }
4613 
4614 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4615 {
4616 	bool first_time = rbd_dev->header.object_prefix == NULL;
4617 	int ret;
4618 
4619 	ret = rbd_dev_v2_image_size(rbd_dev);
4620 	if (ret)
4621 		return ret;
4622 
4623 	if (first_time) {
4624 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4625 		if (ret)
4626 			return ret;
4627 	}
4628 
4629 	ret = rbd_dev_v2_snap_context(rbd_dev);
4630 	if (ret && first_time) {
4631 		kfree(rbd_dev->header.object_prefix);
4632 		rbd_dev->header.object_prefix = NULL;
4633 	}
4634 
4635 	return ret;
4636 }
4637 
4638 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4639 {
4640 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4641 
4642 	if (rbd_dev->image_format == 1)
4643 		return rbd_dev_v1_header_info(rbd_dev);
4644 
4645 	return rbd_dev_v2_header_info(rbd_dev);
4646 }
4647 
4648 /*
4649  * Get a unique rbd identifier for the given new rbd_dev, and add
4650  * the rbd_dev to the global list.
4651  */
4652 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4653 {
4654 	int new_dev_id;
4655 
4656 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4657 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4658 				    GFP_KERNEL);
4659 	if (new_dev_id < 0)
4660 		return new_dev_id;
4661 
4662 	rbd_dev->dev_id = new_dev_id;
4663 
4664 	spin_lock(&rbd_dev_list_lock);
4665 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4666 	spin_unlock(&rbd_dev_list_lock);
4667 
4668 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4669 
4670 	return 0;
4671 }
4672 
4673 /*
4674  * Remove an rbd_dev from the global list, and record that its
4675  * identifier is no longer in use.
4676  */
4677 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4678 {
4679 	spin_lock(&rbd_dev_list_lock);
4680 	list_del_init(&rbd_dev->node);
4681 	spin_unlock(&rbd_dev_list_lock);
4682 
4683 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4684 
4685 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4686 }
4687 
4688 /*
4689  * Skips over white space at *buf, and updates *buf to point to the
4690  * first found non-space character (if any). Returns the length of
4691  * the token (string of non-white space characters) found.  Note
4692  * that *buf must be terminated with '\0'.
4693  */
4694 static inline size_t next_token(const char **buf)
4695 {
4696         /*
4697         * These are the characters that produce nonzero for
4698         * isspace() in the "C" and "POSIX" locales.
4699         */
4700         const char *spaces = " \f\n\r\t\v";
4701 
4702         *buf += strspn(*buf, spaces);	/* Find start of token */
4703 
4704 	return strcspn(*buf, spaces);   /* Return token length */
4705 }
4706 
4707 /*
4708  * Finds the next token in *buf, dynamically allocates a buffer big
4709  * enough to hold a copy of it, and copies the token into the new
4710  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4711  * that a duplicate buffer is created even for a zero-length token.
4712  *
4713  * Returns a pointer to the newly-allocated duplicate, or a null
4714  * pointer if memory for the duplicate was not available.  If
4715  * the lenp argument is a non-null pointer, the length of the token
4716  * (not including the '\0') is returned in *lenp.
4717  *
4718  * If successful, the *buf pointer will be updated to point beyond
4719  * the end of the found token.
4720  *
4721  * Note: uses GFP_KERNEL for allocation.
4722  */
4723 static inline char *dup_token(const char **buf, size_t *lenp)
4724 {
4725 	char *dup;
4726 	size_t len;
4727 
4728 	len = next_token(buf);
4729 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4730 	if (!dup)
4731 		return NULL;
4732 	*(dup + len) = '\0';
4733 	*buf += len;
4734 
4735 	if (lenp)
4736 		*lenp = len;
4737 
4738 	return dup;
4739 }
4740 
4741 /*
4742  * Parse the options provided for an "rbd add" (i.e., rbd image
4743  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4744  * and the data written is passed here via a NUL-terminated buffer.
4745  * Returns 0 if successful or an error code otherwise.
4746  *
4747  * The information extracted from these options is recorded in
4748  * the other parameters which return dynamically-allocated
4749  * structures:
4750  *  ceph_opts
4751  *      The address of a pointer that will refer to a ceph options
4752  *      structure.  Caller must release the returned pointer using
4753  *      ceph_destroy_options() when it is no longer needed.
4754  *  rbd_opts
4755  *	Address of an rbd options pointer.  Fully initialized by
4756  *	this function; caller must release with kfree().
4757  *  spec
4758  *	Address of an rbd image specification pointer.  Fully
4759  *	initialized by this function based on parsed options.
4760  *	Caller must release with rbd_spec_put().
4761  *
4762  * The options passed take this form:
4763  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4764  * where:
4765  *  <mon_addrs>
4766  *      A comma-separated list of one or more monitor addresses.
4767  *      A monitor address is an ip address, optionally followed
4768  *      by a port number (separated by a colon).
4769  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4770  *  <options>
4771  *      A comma-separated list of ceph and/or rbd options.
4772  *  <pool_name>
4773  *      The name of the rados pool containing the rbd image.
4774  *  <image_name>
4775  *      The name of the image in that pool to map.
4776  *  <snap_id>
4777  *      An optional snapshot id.  If provided, the mapping will
4778  *      present data from the image at the time that snapshot was
4779  *      created.  The image head is used if no snapshot id is
4780  *      provided.  Snapshot mappings are always read-only.
4781  */
4782 static int rbd_add_parse_args(const char *buf,
4783 				struct ceph_options **ceph_opts,
4784 				struct rbd_options **opts,
4785 				struct rbd_spec **rbd_spec)
4786 {
4787 	size_t len;
4788 	char *options;
4789 	const char *mon_addrs;
4790 	char *snap_name;
4791 	size_t mon_addrs_size;
4792 	struct rbd_spec *spec = NULL;
4793 	struct rbd_options *rbd_opts = NULL;
4794 	struct ceph_options *copts;
4795 	int ret;
4796 
4797 	/* The first four tokens are required */
4798 
4799 	len = next_token(&buf);
4800 	if (!len) {
4801 		rbd_warn(NULL, "no monitor address(es) provided");
4802 		return -EINVAL;
4803 	}
4804 	mon_addrs = buf;
4805 	mon_addrs_size = len + 1;
4806 	buf += len;
4807 
4808 	ret = -EINVAL;
4809 	options = dup_token(&buf, NULL);
4810 	if (!options)
4811 		return -ENOMEM;
4812 	if (!*options) {
4813 		rbd_warn(NULL, "no options provided");
4814 		goto out_err;
4815 	}
4816 
4817 	spec = rbd_spec_alloc();
4818 	if (!spec)
4819 		goto out_mem;
4820 
4821 	spec->pool_name = dup_token(&buf, NULL);
4822 	if (!spec->pool_name)
4823 		goto out_mem;
4824 	if (!*spec->pool_name) {
4825 		rbd_warn(NULL, "no pool name provided");
4826 		goto out_err;
4827 	}
4828 
4829 	spec->image_name = dup_token(&buf, NULL);
4830 	if (!spec->image_name)
4831 		goto out_mem;
4832 	if (!*spec->image_name) {
4833 		rbd_warn(NULL, "no image name provided");
4834 		goto out_err;
4835 	}
4836 
4837 	/*
4838 	 * Snapshot name is optional; default is to use "-"
4839 	 * (indicating the head/no snapshot).
4840 	 */
4841 	len = next_token(&buf);
4842 	if (!len) {
4843 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4844 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4845 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4846 		ret = -ENAMETOOLONG;
4847 		goto out_err;
4848 	}
4849 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4850 	if (!snap_name)
4851 		goto out_mem;
4852 	*(snap_name + len) = '\0';
4853 	spec->snap_name = snap_name;
4854 
4855 	/* Initialize all rbd options to the defaults */
4856 
4857 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4858 	if (!rbd_opts)
4859 		goto out_mem;
4860 
4861 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4862 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4863 
4864 	copts = ceph_parse_options(options, mon_addrs,
4865 					mon_addrs + mon_addrs_size - 1,
4866 					parse_rbd_opts_token, rbd_opts);
4867 	if (IS_ERR(copts)) {
4868 		ret = PTR_ERR(copts);
4869 		goto out_err;
4870 	}
4871 	kfree(options);
4872 
4873 	*ceph_opts = copts;
4874 	*opts = rbd_opts;
4875 	*rbd_spec = spec;
4876 
4877 	return 0;
4878 out_mem:
4879 	ret = -ENOMEM;
4880 out_err:
4881 	kfree(rbd_opts);
4882 	rbd_spec_put(spec);
4883 	kfree(options);
4884 
4885 	return ret;
4886 }
4887 
4888 /*
4889  * Return pool id (>= 0) or a negative error code.
4890  */
4891 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4892 {
4893 	struct ceph_options *opts = rbdc->client->options;
4894 	u64 newest_epoch;
4895 	int tries = 0;
4896 	int ret;
4897 
4898 again:
4899 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4900 	if (ret == -ENOENT && tries++ < 1) {
4901 		ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
4902 					    &newest_epoch);
4903 		if (ret < 0)
4904 			return ret;
4905 
4906 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4907 			ceph_osdc_maybe_request_map(&rbdc->client->osdc);
4908 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4909 						     newest_epoch,
4910 						     opts->mount_timeout);
4911 			goto again;
4912 		} else {
4913 			/* the osdmap we have is new enough */
4914 			return -ENOENT;
4915 		}
4916 	}
4917 
4918 	return ret;
4919 }
4920 
4921 /*
4922  * An rbd format 2 image has a unique identifier, distinct from the
4923  * name given to it by the user.  Internally, that identifier is
4924  * what's used to specify the names of objects related to the image.
4925  *
4926  * A special "rbd id" object is used to map an rbd image name to its
4927  * id.  If that object doesn't exist, then there is no v2 rbd image
4928  * with the supplied name.
4929  *
4930  * This function will record the given rbd_dev's image_id field if
4931  * it can be determined, and in that case will return 0.  If any
4932  * errors occur a negative errno will be returned and the rbd_dev's
4933  * image_id field will be unchanged (and should be NULL).
4934  */
4935 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4936 {
4937 	int ret;
4938 	size_t size;
4939 	char *object_name;
4940 	void *response;
4941 	char *image_id;
4942 
4943 	/*
4944 	 * When probing a parent image, the image id is already
4945 	 * known (and the image name likely is not).  There's no
4946 	 * need to fetch the image id again in this case.  We
4947 	 * do still need to set the image format though.
4948 	 */
4949 	if (rbd_dev->spec->image_id) {
4950 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4951 
4952 		return 0;
4953 	}
4954 
4955 	/*
4956 	 * First, see if the format 2 image id file exists, and if
4957 	 * so, get the image's persistent id from it.
4958 	 */
4959 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4960 	object_name = kmalloc(size, GFP_NOIO);
4961 	if (!object_name)
4962 		return -ENOMEM;
4963 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4964 	dout("rbd id object name is %s\n", object_name);
4965 
4966 	/* Response will be an encoded string, which includes a length */
4967 
4968 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4969 	response = kzalloc(size, GFP_NOIO);
4970 	if (!response) {
4971 		ret = -ENOMEM;
4972 		goto out;
4973 	}
4974 
4975 	/* If it doesn't exist we'll assume it's a format 1 image */
4976 
4977 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4978 				"rbd", "get_id", NULL, 0,
4979 				response, RBD_IMAGE_ID_LEN_MAX);
4980 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4981 	if (ret == -ENOENT) {
4982 		image_id = kstrdup("", GFP_KERNEL);
4983 		ret = image_id ? 0 : -ENOMEM;
4984 		if (!ret)
4985 			rbd_dev->image_format = 1;
4986 	} else if (ret >= 0) {
4987 		void *p = response;
4988 
4989 		image_id = ceph_extract_encoded_string(&p, p + ret,
4990 						NULL, GFP_NOIO);
4991 		ret = PTR_ERR_OR_ZERO(image_id);
4992 		if (!ret)
4993 			rbd_dev->image_format = 2;
4994 	}
4995 
4996 	if (!ret) {
4997 		rbd_dev->spec->image_id = image_id;
4998 		dout("image_id is %s\n", image_id);
4999 	}
5000 out:
5001 	kfree(response);
5002 	kfree(object_name);
5003 
5004 	return ret;
5005 }
5006 
5007 /*
5008  * Undo whatever state changes are made by v1 or v2 header info
5009  * call.
5010  */
5011 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5012 {
5013 	struct rbd_image_header	*header;
5014 
5015 	rbd_dev_parent_put(rbd_dev);
5016 
5017 	/* Free dynamic fields from the header, then zero it out */
5018 
5019 	header = &rbd_dev->header;
5020 	ceph_put_snap_context(header->snapc);
5021 	kfree(header->snap_sizes);
5022 	kfree(header->snap_names);
5023 	kfree(header->object_prefix);
5024 	memset(header, 0, sizeof (*header));
5025 }
5026 
5027 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5028 {
5029 	int ret;
5030 
5031 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5032 	if (ret)
5033 		goto out_err;
5034 
5035 	/*
5036 	 * Get the and check features for the image.  Currently the
5037 	 * features are assumed to never change.
5038 	 */
5039 	ret = rbd_dev_v2_features(rbd_dev);
5040 	if (ret)
5041 		goto out_err;
5042 
5043 	/* If the image supports fancy striping, get its parameters */
5044 
5045 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5046 		ret = rbd_dev_v2_striping_info(rbd_dev);
5047 		if (ret < 0)
5048 			goto out_err;
5049 	}
5050 	/* No support for crypto and compression type format 2 images */
5051 
5052 	return 0;
5053 out_err:
5054 	rbd_dev->header.features = 0;
5055 	kfree(rbd_dev->header.object_prefix);
5056 	rbd_dev->header.object_prefix = NULL;
5057 
5058 	return ret;
5059 }
5060 
5061 /*
5062  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5063  * rbd_dev_image_probe() recursion depth, which means it's also the
5064  * length of the already discovered part of the parent chain.
5065  */
5066 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5067 {
5068 	struct rbd_device *parent = NULL;
5069 	int ret;
5070 
5071 	if (!rbd_dev->parent_spec)
5072 		return 0;
5073 
5074 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5075 		pr_info("parent chain is too long (%d)\n", depth);
5076 		ret = -EINVAL;
5077 		goto out_err;
5078 	}
5079 
5080 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5081 				NULL);
5082 	if (!parent) {
5083 		ret = -ENOMEM;
5084 		goto out_err;
5085 	}
5086 
5087 	/*
5088 	 * Images related by parent/child relationships always share
5089 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5090 	 */
5091 	__rbd_get_client(rbd_dev->rbd_client);
5092 	rbd_spec_get(rbd_dev->parent_spec);
5093 
5094 	ret = rbd_dev_image_probe(parent, depth);
5095 	if (ret < 0)
5096 		goto out_err;
5097 
5098 	rbd_dev->parent = parent;
5099 	atomic_set(&rbd_dev->parent_ref, 1);
5100 	return 0;
5101 
5102 out_err:
5103 	rbd_dev_unparent(rbd_dev);
5104 	rbd_dev_destroy(parent);
5105 	return ret;
5106 }
5107 
5108 /*
5109  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5110  * upon return.
5111  */
5112 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5113 {
5114 	int ret;
5115 
5116 	/* Get an id and fill in device name. */
5117 
5118 	ret = rbd_dev_id_get(rbd_dev);
5119 	if (ret)
5120 		goto err_out_unlock;
5121 
5122 	BUILD_BUG_ON(DEV_NAME_LEN
5123 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5124 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5125 
5126 	/* Record our major and minor device numbers. */
5127 
5128 	if (!single_major) {
5129 		ret = register_blkdev(0, rbd_dev->name);
5130 		if (ret < 0)
5131 			goto err_out_id;
5132 
5133 		rbd_dev->major = ret;
5134 		rbd_dev->minor = 0;
5135 	} else {
5136 		rbd_dev->major = rbd_major;
5137 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5138 	}
5139 
5140 	/* Set up the blkdev mapping. */
5141 
5142 	ret = rbd_init_disk(rbd_dev);
5143 	if (ret)
5144 		goto err_out_blkdev;
5145 
5146 	ret = rbd_dev_mapping_set(rbd_dev);
5147 	if (ret)
5148 		goto err_out_disk;
5149 
5150 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5151 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5152 
5153 	dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5154 	ret = device_add(&rbd_dev->dev);
5155 	if (ret)
5156 		goto err_out_mapping;
5157 
5158 	/* Everything's ready.  Announce the disk to the world. */
5159 
5160 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5161 	up_write(&rbd_dev->header_rwsem);
5162 
5163 	add_disk(rbd_dev->disk);
5164 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5165 		(unsigned long long) rbd_dev->mapping.size);
5166 
5167 	return ret;
5168 
5169 err_out_mapping:
5170 	rbd_dev_mapping_clear(rbd_dev);
5171 err_out_disk:
5172 	rbd_free_disk(rbd_dev);
5173 err_out_blkdev:
5174 	if (!single_major)
5175 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5176 err_out_id:
5177 	rbd_dev_id_put(rbd_dev);
5178 err_out_unlock:
5179 	up_write(&rbd_dev->header_rwsem);
5180 	return ret;
5181 }
5182 
5183 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5184 {
5185 	struct rbd_spec *spec = rbd_dev->spec;
5186 	int ret;
5187 
5188 	/* Record the header object name for this rbd image. */
5189 
5190 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5191 
5192 	rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
5193 	if (rbd_dev->image_format == 1)
5194 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5195 				       spec->image_name, RBD_SUFFIX);
5196 	else
5197 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5198 				       RBD_HEADER_PREFIX, spec->image_id);
5199 
5200 	return ret;
5201 }
5202 
5203 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5204 {
5205 	rbd_dev_unprobe(rbd_dev);
5206 	rbd_dev->image_format = 0;
5207 	kfree(rbd_dev->spec->image_id);
5208 	rbd_dev->spec->image_id = NULL;
5209 
5210 	rbd_dev_destroy(rbd_dev);
5211 }
5212 
5213 /*
5214  * Probe for the existence of the header object for the given rbd
5215  * device.  If this image is the one being mapped (i.e., not a
5216  * parent), initiate a watch on its header object before using that
5217  * object to get detailed information about the rbd image.
5218  */
5219 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5220 {
5221 	int ret;
5222 
5223 	/*
5224 	 * Get the id from the image id object.  Unless there's an
5225 	 * error, rbd_dev->spec->image_id will be filled in with
5226 	 * a dynamically-allocated string, and rbd_dev->image_format
5227 	 * will be set to either 1 or 2.
5228 	 */
5229 	ret = rbd_dev_image_id(rbd_dev);
5230 	if (ret)
5231 		return ret;
5232 
5233 	ret = rbd_dev_header_name(rbd_dev);
5234 	if (ret)
5235 		goto err_out_format;
5236 
5237 	if (!depth) {
5238 		ret = rbd_dev_header_watch_sync(rbd_dev);
5239 		if (ret) {
5240 			if (ret == -ENOENT)
5241 				pr_info("image %s/%s does not exist\n",
5242 					rbd_dev->spec->pool_name,
5243 					rbd_dev->spec->image_name);
5244 			goto err_out_format;
5245 		}
5246 	}
5247 
5248 	ret = rbd_dev_header_info(rbd_dev);
5249 	if (ret)
5250 		goto err_out_watch;
5251 
5252 	/*
5253 	 * If this image is the one being mapped, we have pool name and
5254 	 * id, image name and id, and snap name - need to fill snap id.
5255 	 * Otherwise this is a parent image, identified by pool, image
5256 	 * and snap ids - need to fill in names for those ids.
5257 	 */
5258 	if (!depth)
5259 		ret = rbd_spec_fill_snap_id(rbd_dev);
5260 	else
5261 		ret = rbd_spec_fill_names(rbd_dev);
5262 	if (ret) {
5263 		if (ret == -ENOENT)
5264 			pr_info("snap %s/%s@%s does not exist\n",
5265 				rbd_dev->spec->pool_name,
5266 				rbd_dev->spec->image_name,
5267 				rbd_dev->spec->snap_name);
5268 		goto err_out_probe;
5269 	}
5270 
5271 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5272 		ret = rbd_dev_v2_parent_info(rbd_dev);
5273 		if (ret)
5274 			goto err_out_probe;
5275 
5276 		/*
5277 		 * Need to warn users if this image is the one being
5278 		 * mapped and has a parent.
5279 		 */
5280 		if (!depth && rbd_dev->parent_spec)
5281 			rbd_warn(rbd_dev,
5282 				 "WARNING: kernel layering is EXPERIMENTAL!");
5283 	}
5284 
5285 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5286 	if (ret)
5287 		goto err_out_probe;
5288 
5289 	dout("discovered format %u image, header name is %s\n",
5290 		rbd_dev->image_format, rbd_dev->header_oid.name);
5291 	return 0;
5292 
5293 err_out_probe:
5294 	rbd_dev_unprobe(rbd_dev);
5295 err_out_watch:
5296 	if (!depth)
5297 		rbd_dev_header_unwatch_sync(rbd_dev);
5298 err_out_format:
5299 	rbd_dev->image_format = 0;
5300 	kfree(rbd_dev->spec->image_id);
5301 	rbd_dev->spec->image_id = NULL;
5302 	return ret;
5303 }
5304 
5305 static ssize_t do_rbd_add(struct bus_type *bus,
5306 			  const char *buf,
5307 			  size_t count)
5308 {
5309 	struct rbd_device *rbd_dev = NULL;
5310 	struct ceph_options *ceph_opts = NULL;
5311 	struct rbd_options *rbd_opts = NULL;
5312 	struct rbd_spec *spec = NULL;
5313 	struct rbd_client *rbdc;
5314 	bool read_only;
5315 	int rc;
5316 
5317 	if (!try_module_get(THIS_MODULE))
5318 		return -ENODEV;
5319 
5320 	/* parse add command */
5321 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5322 	if (rc < 0)
5323 		goto out;
5324 
5325 	rbdc = rbd_get_client(ceph_opts);
5326 	if (IS_ERR(rbdc)) {
5327 		rc = PTR_ERR(rbdc);
5328 		goto err_out_args;
5329 	}
5330 
5331 	/* pick the pool */
5332 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5333 	if (rc < 0) {
5334 		if (rc == -ENOENT)
5335 			pr_info("pool %s does not exist\n", spec->pool_name);
5336 		goto err_out_client;
5337 	}
5338 	spec->pool_id = (u64)rc;
5339 
5340 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5341 	if (!rbd_dev) {
5342 		rc = -ENOMEM;
5343 		goto err_out_client;
5344 	}
5345 	rbdc = NULL;		/* rbd_dev now owns this */
5346 	spec = NULL;		/* rbd_dev now owns this */
5347 	rbd_opts = NULL;	/* rbd_dev now owns this */
5348 
5349 	down_write(&rbd_dev->header_rwsem);
5350 	rc = rbd_dev_image_probe(rbd_dev, 0);
5351 	if (rc < 0)
5352 		goto err_out_rbd_dev;
5353 
5354 	/* If we are mapping a snapshot it must be marked read-only */
5355 
5356 	read_only = rbd_dev->opts->read_only;
5357 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5358 		read_only = true;
5359 	rbd_dev->mapping.read_only = read_only;
5360 
5361 	rc = rbd_dev_device_setup(rbd_dev);
5362 	if (rc) {
5363 		/*
5364 		 * rbd_dev_header_unwatch_sync() can't be moved into
5365 		 * rbd_dev_image_release() without refactoring, see
5366 		 * commit 1f3ef78861ac.
5367 		 */
5368 		rbd_dev_header_unwatch_sync(rbd_dev);
5369 		rbd_dev_image_release(rbd_dev);
5370 		goto out;
5371 	}
5372 
5373 	rc = count;
5374 out:
5375 	module_put(THIS_MODULE);
5376 	return rc;
5377 
5378 err_out_rbd_dev:
5379 	up_write(&rbd_dev->header_rwsem);
5380 	rbd_dev_destroy(rbd_dev);
5381 err_out_client:
5382 	rbd_put_client(rbdc);
5383 err_out_args:
5384 	rbd_spec_put(spec);
5385 	kfree(rbd_opts);
5386 	goto out;
5387 }
5388 
5389 static ssize_t rbd_add(struct bus_type *bus,
5390 		       const char *buf,
5391 		       size_t count)
5392 {
5393 	if (single_major)
5394 		return -EINVAL;
5395 
5396 	return do_rbd_add(bus, buf, count);
5397 }
5398 
5399 static ssize_t rbd_add_single_major(struct bus_type *bus,
5400 				    const char *buf,
5401 				    size_t count)
5402 {
5403 	return do_rbd_add(bus, buf, count);
5404 }
5405 
5406 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5407 {
5408 	rbd_free_disk(rbd_dev);
5409 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5410 	device_del(&rbd_dev->dev);
5411 	rbd_dev_mapping_clear(rbd_dev);
5412 	if (!single_major)
5413 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5414 	rbd_dev_id_put(rbd_dev);
5415 }
5416 
5417 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5418 {
5419 	while (rbd_dev->parent) {
5420 		struct rbd_device *first = rbd_dev;
5421 		struct rbd_device *second = first->parent;
5422 		struct rbd_device *third;
5423 
5424 		/*
5425 		 * Follow to the parent with no grandparent and
5426 		 * remove it.
5427 		 */
5428 		while (second && (third = second->parent)) {
5429 			first = second;
5430 			second = third;
5431 		}
5432 		rbd_assert(second);
5433 		rbd_dev_image_release(second);
5434 		first->parent = NULL;
5435 		first->parent_overlap = 0;
5436 
5437 		rbd_assert(first->parent_spec);
5438 		rbd_spec_put(first->parent_spec);
5439 		first->parent_spec = NULL;
5440 	}
5441 }
5442 
5443 static ssize_t do_rbd_remove(struct bus_type *bus,
5444 			     const char *buf,
5445 			     size_t count)
5446 {
5447 	struct rbd_device *rbd_dev = NULL;
5448 	struct list_head *tmp;
5449 	int dev_id;
5450 	unsigned long ul;
5451 	bool already = false;
5452 	int ret;
5453 
5454 	ret = kstrtoul(buf, 10, &ul);
5455 	if (ret)
5456 		return ret;
5457 
5458 	/* convert to int; abort if we lost anything in the conversion */
5459 	dev_id = (int)ul;
5460 	if (dev_id != ul)
5461 		return -EINVAL;
5462 
5463 	ret = -ENOENT;
5464 	spin_lock(&rbd_dev_list_lock);
5465 	list_for_each(tmp, &rbd_dev_list) {
5466 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5467 		if (rbd_dev->dev_id == dev_id) {
5468 			ret = 0;
5469 			break;
5470 		}
5471 	}
5472 	if (!ret) {
5473 		spin_lock_irq(&rbd_dev->lock);
5474 		if (rbd_dev->open_count)
5475 			ret = -EBUSY;
5476 		else
5477 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5478 							&rbd_dev->flags);
5479 		spin_unlock_irq(&rbd_dev->lock);
5480 	}
5481 	spin_unlock(&rbd_dev_list_lock);
5482 	if (ret < 0 || already)
5483 		return ret;
5484 
5485 	rbd_dev_header_unwatch_sync(rbd_dev);
5486 
5487 	/*
5488 	 * Don't free anything from rbd_dev->disk until after all
5489 	 * notifies are completely processed. Otherwise
5490 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5491 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5492 	 */
5493 	rbd_dev_device_release(rbd_dev);
5494 	rbd_dev_image_release(rbd_dev);
5495 
5496 	return count;
5497 }
5498 
5499 static ssize_t rbd_remove(struct bus_type *bus,
5500 			  const char *buf,
5501 			  size_t count)
5502 {
5503 	if (single_major)
5504 		return -EINVAL;
5505 
5506 	return do_rbd_remove(bus, buf, count);
5507 }
5508 
5509 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5510 				       const char *buf,
5511 				       size_t count)
5512 {
5513 	return do_rbd_remove(bus, buf, count);
5514 }
5515 
5516 /*
5517  * create control files in sysfs
5518  * /sys/bus/rbd/...
5519  */
5520 static int rbd_sysfs_init(void)
5521 {
5522 	int ret;
5523 
5524 	ret = device_register(&rbd_root_dev);
5525 	if (ret < 0)
5526 		return ret;
5527 
5528 	ret = bus_register(&rbd_bus_type);
5529 	if (ret < 0)
5530 		device_unregister(&rbd_root_dev);
5531 
5532 	return ret;
5533 }
5534 
5535 static void rbd_sysfs_cleanup(void)
5536 {
5537 	bus_unregister(&rbd_bus_type);
5538 	device_unregister(&rbd_root_dev);
5539 }
5540 
5541 static int rbd_slab_init(void)
5542 {
5543 	rbd_assert(!rbd_img_request_cache);
5544 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5545 	if (!rbd_img_request_cache)
5546 		return -ENOMEM;
5547 
5548 	rbd_assert(!rbd_obj_request_cache);
5549 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5550 	if (!rbd_obj_request_cache)
5551 		goto out_err;
5552 
5553 	rbd_assert(!rbd_segment_name_cache);
5554 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5555 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5556 	if (rbd_segment_name_cache)
5557 		return 0;
5558 out_err:
5559 	kmem_cache_destroy(rbd_obj_request_cache);
5560 	rbd_obj_request_cache = NULL;
5561 
5562 	kmem_cache_destroy(rbd_img_request_cache);
5563 	rbd_img_request_cache = NULL;
5564 
5565 	return -ENOMEM;
5566 }
5567 
5568 static void rbd_slab_exit(void)
5569 {
5570 	rbd_assert(rbd_segment_name_cache);
5571 	kmem_cache_destroy(rbd_segment_name_cache);
5572 	rbd_segment_name_cache = NULL;
5573 
5574 	rbd_assert(rbd_obj_request_cache);
5575 	kmem_cache_destroy(rbd_obj_request_cache);
5576 	rbd_obj_request_cache = NULL;
5577 
5578 	rbd_assert(rbd_img_request_cache);
5579 	kmem_cache_destroy(rbd_img_request_cache);
5580 	rbd_img_request_cache = NULL;
5581 }
5582 
5583 static int __init rbd_init(void)
5584 {
5585 	int rc;
5586 
5587 	if (!libceph_compatible(NULL)) {
5588 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5589 		return -EINVAL;
5590 	}
5591 
5592 	rc = rbd_slab_init();
5593 	if (rc)
5594 		return rc;
5595 
5596 	/*
5597 	 * The number of active work items is limited by the number of
5598 	 * rbd devices * queue depth, so leave @max_active at default.
5599 	 */
5600 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5601 	if (!rbd_wq) {
5602 		rc = -ENOMEM;
5603 		goto err_out_slab;
5604 	}
5605 
5606 	if (single_major) {
5607 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5608 		if (rbd_major < 0) {
5609 			rc = rbd_major;
5610 			goto err_out_wq;
5611 		}
5612 	}
5613 
5614 	rc = rbd_sysfs_init();
5615 	if (rc)
5616 		goto err_out_blkdev;
5617 
5618 	if (single_major)
5619 		pr_info("loaded (major %d)\n", rbd_major);
5620 	else
5621 		pr_info("loaded\n");
5622 
5623 	return 0;
5624 
5625 err_out_blkdev:
5626 	if (single_major)
5627 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5628 err_out_wq:
5629 	destroy_workqueue(rbd_wq);
5630 err_out_slab:
5631 	rbd_slab_exit();
5632 	return rc;
5633 }
5634 
5635 static void __exit rbd_exit(void)
5636 {
5637 	ida_destroy(&rbd_dev_id_ida);
5638 	rbd_sysfs_cleanup();
5639 	if (single_major)
5640 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5641 	destroy_workqueue(rbd_wq);
5642 	rbd_slab_exit();
5643 }
5644 
5645 module_init(rbd_init);
5646 module_exit(rbd_exit);
5647 
5648 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5649 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5650 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5651 /* following authorship retained from original osdblk.c */
5652 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5653 
5654 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5655 MODULE_LICENSE("GPL");
5656