1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 100 #define RBD_MAX_SNAP_NAME_LEN \ 101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 102 103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 104 105 #define RBD_SNAP_HEAD_NAME "-" 106 107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 108 109 /* This allows a single page to hold an image name sent by OSD */ 110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 111 #define RBD_IMAGE_ID_LEN_MAX 64 112 113 #define RBD_OBJ_PREFIX_LEN_MAX 64 114 115 /* Feature bits */ 116 117 #define RBD_FEATURE_LAYERING (1<<0) 118 #define RBD_FEATURE_STRIPINGV2 (1<<1) 119 #define RBD_FEATURES_ALL \ 120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 121 122 /* Features supported by this (client software) implementation. */ 123 124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 125 126 /* 127 * An RBD device name will be "rbd#", where the "rbd" comes from 128 * RBD_DRV_NAME above, and # is a unique integer identifier. 129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 130 * enough to hold all possible device names. 131 */ 132 #define DEV_NAME_LEN 32 133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 134 135 /* 136 * block device image metadata (in-memory version) 137 */ 138 struct rbd_image_header { 139 /* These six fields never change for a given rbd image */ 140 char *object_prefix; 141 __u8 obj_order; 142 __u8 crypt_type; 143 __u8 comp_type; 144 u64 stripe_unit; 145 u64 stripe_count; 146 u64 features; /* Might be changeable someday? */ 147 148 /* The remaining fields need to be updated occasionally */ 149 u64 image_size; 150 struct ceph_snap_context *snapc; 151 char *snap_names; /* format 1 only */ 152 u64 *snap_sizes; /* format 1 only */ 153 }; 154 155 /* 156 * An rbd image specification. 157 * 158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 159 * identify an image. Each rbd_dev structure includes a pointer to 160 * an rbd_spec structure that encapsulates this identity. 161 * 162 * Each of the id's in an rbd_spec has an associated name. For a 163 * user-mapped image, the names are supplied and the id's associated 164 * with them are looked up. For a layered image, a parent image is 165 * defined by the tuple, and the names are looked up. 166 * 167 * An rbd_dev structure contains a parent_spec pointer which is 168 * non-null if the image it represents is a child in a layered 169 * image. This pointer will refer to the rbd_spec structure used 170 * by the parent rbd_dev for its own identity (i.e., the structure 171 * is shared between the parent and child). 172 * 173 * Since these structures are populated once, during the discovery 174 * phase of image construction, they are effectively immutable so 175 * we make no effort to synchronize access to them. 176 * 177 * Note that code herein does not assume the image name is known (it 178 * could be a null pointer). 179 */ 180 struct rbd_spec { 181 u64 pool_id; 182 const char *pool_name; 183 184 const char *image_id; 185 const char *image_name; 186 187 u64 snap_id; 188 const char *snap_name; 189 190 struct kref kref; 191 }; 192 193 /* 194 * an instance of the client. multiple devices may share an rbd client. 195 */ 196 struct rbd_client { 197 struct ceph_client *client; 198 struct kref kref; 199 struct list_head node; 200 }; 201 202 struct rbd_img_request; 203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 204 205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 206 207 struct rbd_obj_request; 208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 209 210 enum obj_request_type { 211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 212 }; 213 214 enum obj_operation_type { 215 OBJ_OP_WRITE, 216 OBJ_OP_READ, 217 OBJ_OP_DISCARD, 218 }; 219 220 enum obj_req_flags { 221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 225 }; 226 227 struct rbd_obj_request { 228 const char *object_name; 229 u64 offset; /* object start byte */ 230 u64 length; /* bytes from offset */ 231 unsigned long flags; 232 233 /* 234 * An object request associated with an image will have its 235 * img_data flag set; a standalone object request will not. 236 * 237 * A standalone object request will have which == BAD_WHICH 238 * and a null obj_request pointer. 239 * 240 * An object request initiated in support of a layered image 241 * object (to check for its existence before a write) will 242 * have which == BAD_WHICH and a non-null obj_request pointer. 243 * 244 * Finally, an object request for rbd image data will have 245 * which != BAD_WHICH, and will have a non-null img_request 246 * pointer. The value of which will be in the range 247 * 0..(img_request->obj_request_count-1). 248 */ 249 union { 250 struct rbd_obj_request *obj_request; /* STAT op */ 251 struct { 252 struct rbd_img_request *img_request; 253 u64 img_offset; 254 /* links for img_request->obj_requests list */ 255 struct list_head links; 256 }; 257 }; 258 u32 which; /* posn image request list */ 259 260 enum obj_request_type type; 261 union { 262 struct bio *bio_list; 263 struct { 264 struct page **pages; 265 u32 page_count; 266 }; 267 }; 268 struct page **copyup_pages; 269 u32 copyup_page_count; 270 271 struct ceph_osd_request *osd_req; 272 273 u64 xferred; /* bytes transferred */ 274 int result; 275 276 rbd_obj_callback_t callback; 277 struct completion completion; 278 279 struct kref kref; 280 }; 281 282 enum img_req_flags { 283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 287 }; 288 289 struct rbd_img_request { 290 struct rbd_device *rbd_dev; 291 u64 offset; /* starting image byte offset */ 292 u64 length; /* byte count from offset */ 293 unsigned long flags; 294 union { 295 u64 snap_id; /* for reads */ 296 struct ceph_snap_context *snapc; /* for writes */ 297 }; 298 union { 299 struct request *rq; /* block request */ 300 struct rbd_obj_request *obj_request; /* obj req initiator */ 301 }; 302 struct page **copyup_pages; 303 u32 copyup_page_count; 304 spinlock_t completion_lock;/* protects next_completion */ 305 u32 next_completion; 306 rbd_img_callback_t callback; 307 u64 xferred;/* aggregate bytes transferred */ 308 int result; /* first nonzero obj_request result */ 309 310 u32 obj_request_count; 311 struct list_head obj_requests; /* rbd_obj_request structs */ 312 313 struct kref kref; 314 }; 315 316 #define for_each_obj_request(ireq, oreq) \ 317 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 318 #define for_each_obj_request_from(ireq, oreq) \ 319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_safe(ireq, oreq, n) \ 321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 322 323 struct rbd_mapping { 324 u64 size; 325 u64 features; 326 bool read_only; 327 }; 328 329 /* 330 * a single device 331 */ 332 struct rbd_device { 333 int dev_id; /* blkdev unique id */ 334 335 int major; /* blkdev assigned major */ 336 int minor; 337 struct gendisk *disk; /* blkdev's gendisk and rq */ 338 339 u32 image_format; /* Either 1 or 2 */ 340 struct rbd_client *rbd_client; 341 342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 343 344 spinlock_t lock; /* queue, flags, open_count */ 345 346 struct rbd_image_header header; 347 unsigned long flags; /* possibly lock protected */ 348 struct rbd_spec *spec; 349 struct rbd_options *opts; 350 351 char *header_name; 352 353 struct ceph_file_layout layout; 354 355 struct ceph_osd_event *watch_event; 356 struct rbd_obj_request *watch_request; 357 358 struct rbd_spec *parent_spec; 359 u64 parent_overlap; 360 atomic_t parent_ref; 361 struct rbd_device *parent; 362 363 /* Block layer tags. */ 364 struct blk_mq_tag_set tag_set; 365 366 /* protects updating the header */ 367 struct rw_semaphore header_rwsem; 368 369 struct rbd_mapping mapping; 370 371 struct list_head node; 372 373 /* sysfs related */ 374 struct device dev; 375 unsigned long open_count; /* protected by lock */ 376 }; 377 378 /* 379 * Flag bits for rbd_dev->flags. If atomicity is required, 380 * rbd_dev->lock is used to protect access. 381 * 382 * Currently, only the "removing" flag (which is coupled with the 383 * "open_count" field) requires atomic access. 384 */ 385 enum rbd_dev_flags { 386 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 387 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 388 }; 389 390 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 391 392 static LIST_HEAD(rbd_dev_list); /* devices */ 393 static DEFINE_SPINLOCK(rbd_dev_list_lock); 394 395 static LIST_HEAD(rbd_client_list); /* clients */ 396 static DEFINE_SPINLOCK(rbd_client_list_lock); 397 398 /* Slab caches for frequently-allocated structures */ 399 400 static struct kmem_cache *rbd_img_request_cache; 401 static struct kmem_cache *rbd_obj_request_cache; 402 static struct kmem_cache *rbd_segment_name_cache; 403 404 static int rbd_major; 405 static DEFINE_IDA(rbd_dev_id_ida); 406 407 static struct workqueue_struct *rbd_wq; 408 409 /* 410 * Default to false for now, as single-major requires >= 0.75 version of 411 * userspace rbd utility. 412 */ 413 static bool single_major = false; 414 module_param(single_major, bool, S_IRUGO); 415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 416 417 static int rbd_img_request_submit(struct rbd_img_request *img_request); 418 419 static void rbd_dev_device_release(struct device *dev); 420 421 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 422 size_t count); 423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 424 size_t count); 425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 426 size_t count); 427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 428 size_t count); 429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 430 static void rbd_spec_put(struct rbd_spec *spec); 431 432 static int rbd_dev_id_to_minor(int dev_id) 433 { 434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 435 } 436 437 static int minor_to_rbd_dev_id(int minor) 438 { 439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 440 } 441 442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 446 447 static struct attribute *rbd_bus_attrs[] = { 448 &bus_attr_add.attr, 449 &bus_attr_remove.attr, 450 &bus_attr_add_single_major.attr, 451 &bus_attr_remove_single_major.attr, 452 NULL, 453 }; 454 455 static umode_t rbd_bus_is_visible(struct kobject *kobj, 456 struct attribute *attr, int index) 457 { 458 if (!single_major && 459 (attr == &bus_attr_add_single_major.attr || 460 attr == &bus_attr_remove_single_major.attr)) 461 return 0; 462 463 return attr->mode; 464 } 465 466 static const struct attribute_group rbd_bus_group = { 467 .attrs = rbd_bus_attrs, 468 .is_visible = rbd_bus_is_visible, 469 }; 470 __ATTRIBUTE_GROUPS(rbd_bus); 471 472 static struct bus_type rbd_bus_type = { 473 .name = "rbd", 474 .bus_groups = rbd_bus_groups, 475 }; 476 477 static void rbd_root_dev_release(struct device *dev) 478 { 479 } 480 481 static struct device rbd_root_dev = { 482 .init_name = "rbd", 483 .release = rbd_root_dev_release, 484 }; 485 486 static __printf(2, 3) 487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 488 { 489 struct va_format vaf; 490 va_list args; 491 492 va_start(args, fmt); 493 vaf.fmt = fmt; 494 vaf.va = &args; 495 496 if (!rbd_dev) 497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 498 else if (rbd_dev->disk) 499 printk(KERN_WARNING "%s: %s: %pV\n", 500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 501 else if (rbd_dev->spec && rbd_dev->spec->image_name) 502 printk(KERN_WARNING "%s: image %s: %pV\n", 503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 504 else if (rbd_dev->spec && rbd_dev->spec->image_id) 505 printk(KERN_WARNING "%s: id %s: %pV\n", 506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 507 else /* punt */ 508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 509 RBD_DRV_NAME, rbd_dev, &vaf); 510 va_end(args); 511 } 512 513 #ifdef RBD_DEBUG 514 #define rbd_assert(expr) \ 515 if (unlikely(!(expr))) { \ 516 printk(KERN_ERR "\nAssertion failure in %s() " \ 517 "at line %d:\n\n" \ 518 "\trbd_assert(%s);\n\n", \ 519 __func__, __LINE__, #expr); \ 520 BUG(); \ 521 } 522 #else /* !RBD_DEBUG */ 523 # define rbd_assert(expr) ((void) 0) 524 #endif /* !RBD_DEBUG */ 525 526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 530 531 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 533 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 536 u64 snap_id); 537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 538 u8 *order, u64 *snap_size); 539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 540 u64 *snap_features); 541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 542 543 static int rbd_open(struct block_device *bdev, fmode_t mode) 544 { 545 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 546 bool removing = false; 547 548 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 549 return -EROFS; 550 551 spin_lock_irq(&rbd_dev->lock); 552 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 553 removing = true; 554 else 555 rbd_dev->open_count++; 556 spin_unlock_irq(&rbd_dev->lock); 557 if (removing) 558 return -ENOENT; 559 560 (void) get_device(&rbd_dev->dev); 561 562 return 0; 563 } 564 565 static void rbd_release(struct gendisk *disk, fmode_t mode) 566 { 567 struct rbd_device *rbd_dev = disk->private_data; 568 unsigned long open_count_before; 569 570 spin_lock_irq(&rbd_dev->lock); 571 open_count_before = rbd_dev->open_count--; 572 spin_unlock_irq(&rbd_dev->lock); 573 rbd_assert(open_count_before > 0); 574 575 put_device(&rbd_dev->dev); 576 } 577 578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 579 { 580 int ret = 0; 581 int val; 582 bool ro; 583 bool ro_changed = false; 584 585 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 586 if (get_user(val, (int __user *)(arg))) 587 return -EFAULT; 588 589 ro = val ? true : false; 590 /* Snapshot doesn't allow to write*/ 591 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 592 return -EROFS; 593 594 spin_lock_irq(&rbd_dev->lock); 595 /* prevent others open this device */ 596 if (rbd_dev->open_count > 1) { 597 ret = -EBUSY; 598 goto out; 599 } 600 601 if (rbd_dev->mapping.read_only != ro) { 602 rbd_dev->mapping.read_only = ro; 603 ro_changed = true; 604 } 605 606 out: 607 spin_unlock_irq(&rbd_dev->lock); 608 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 609 if (ret == 0 && ro_changed) 610 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 611 612 return ret; 613 } 614 615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 616 unsigned int cmd, unsigned long arg) 617 { 618 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 619 int ret = 0; 620 621 switch (cmd) { 622 case BLKROSET: 623 ret = rbd_ioctl_set_ro(rbd_dev, arg); 624 break; 625 default: 626 ret = -ENOTTY; 627 } 628 629 return ret; 630 } 631 632 #ifdef CONFIG_COMPAT 633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 634 unsigned int cmd, unsigned long arg) 635 { 636 return rbd_ioctl(bdev, mode, cmd, arg); 637 } 638 #endif /* CONFIG_COMPAT */ 639 640 static const struct block_device_operations rbd_bd_ops = { 641 .owner = THIS_MODULE, 642 .open = rbd_open, 643 .release = rbd_release, 644 .ioctl = rbd_ioctl, 645 #ifdef CONFIG_COMPAT 646 .compat_ioctl = rbd_compat_ioctl, 647 #endif 648 }; 649 650 /* 651 * Initialize an rbd client instance. Success or not, this function 652 * consumes ceph_opts. Caller holds client_mutex. 653 */ 654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 655 { 656 struct rbd_client *rbdc; 657 int ret = -ENOMEM; 658 659 dout("%s:\n", __func__); 660 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 661 if (!rbdc) 662 goto out_opt; 663 664 kref_init(&rbdc->kref); 665 INIT_LIST_HEAD(&rbdc->node); 666 667 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 668 if (IS_ERR(rbdc->client)) 669 goto out_rbdc; 670 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 671 672 ret = ceph_open_session(rbdc->client); 673 if (ret < 0) 674 goto out_client; 675 676 spin_lock(&rbd_client_list_lock); 677 list_add_tail(&rbdc->node, &rbd_client_list); 678 spin_unlock(&rbd_client_list_lock); 679 680 dout("%s: rbdc %p\n", __func__, rbdc); 681 682 return rbdc; 683 out_client: 684 ceph_destroy_client(rbdc->client); 685 out_rbdc: 686 kfree(rbdc); 687 out_opt: 688 if (ceph_opts) 689 ceph_destroy_options(ceph_opts); 690 dout("%s: error %d\n", __func__, ret); 691 692 return ERR_PTR(ret); 693 } 694 695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 696 { 697 kref_get(&rbdc->kref); 698 699 return rbdc; 700 } 701 702 /* 703 * Find a ceph client with specific addr and configuration. If 704 * found, bump its reference count. 705 */ 706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 707 { 708 struct rbd_client *client_node; 709 bool found = false; 710 711 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 712 return NULL; 713 714 spin_lock(&rbd_client_list_lock); 715 list_for_each_entry(client_node, &rbd_client_list, node) { 716 if (!ceph_compare_options(ceph_opts, client_node->client)) { 717 __rbd_get_client(client_node); 718 719 found = true; 720 break; 721 } 722 } 723 spin_unlock(&rbd_client_list_lock); 724 725 return found ? client_node : NULL; 726 } 727 728 /* 729 * (Per device) rbd map options 730 */ 731 enum { 732 Opt_queue_depth, 733 Opt_last_int, 734 /* int args above */ 735 Opt_last_string, 736 /* string args above */ 737 Opt_read_only, 738 Opt_read_write, 739 Opt_err 740 }; 741 742 static match_table_t rbd_opts_tokens = { 743 {Opt_queue_depth, "queue_depth=%d"}, 744 /* int args above */ 745 /* string args above */ 746 {Opt_read_only, "read_only"}, 747 {Opt_read_only, "ro"}, /* Alternate spelling */ 748 {Opt_read_write, "read_write"}, 749 {Opt_read_write, "rw"}, /* Alternate spelling */ 750 {Opt_err, NULL} 751 }; 752 753 struct rbd_options { 754 int queue_depth; 755 bool read_only; 756 }; 757 758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 759 #define RBD_READ_ONLY_DEFAULT false 760 761 static int parse_rbd_opts_token(char *c, void *private) 762 { 763 struct rbd_options *rbd_opts = private; 764 substring_t argstr[MAX_OPT_ARGS]; 765 int token, intval, ret; 766 767 token = match_token(c, rbd_opts_tokens, argstr); 768 if (token < Opt_last_int) { 769 ret = match_int(&argstr[0], &intval); 770 if (ret < 0) { 771 pr_err("bad mount option arg (not int) at '%s'\n", c); 772 return ret; 773 } 774 dout("got int token %d val %d\n", token, intval); 775 } else if (token > Opt_last_int && token < Opt_last_string) { 776 dout("got string token %d val %s\n", token, argstr[0].from); 777 } else { 778 dout("got token %d\n", token); 779 } 780 781 switch (token) { 782 case Opt_queue_depth: 783 if (intval < 1) { 784 pr_err("queue_depth out of range\n"); 785 return -EINVAL; 786 } 787 rbd_opts->queue_depth = intval; 788 break; 789 case Opt_read_only: 790 rbd_opts->read_only = true; 791 break; 792 case Opt_read_write: 793 rbd_opts->read_only = false; 794 break; 795 default: 796 /* libceph prints "bad option" msg */ 797 return -EINVAL; 798 } 799 800 return 0; 801 } 802 803 static char* obj_op_name(enum obj_operation_type op_type) 804 { 805 switch (op_type) { 806 case OBJ_OP_READ: 807 return "read"; 808 case OBJ_OP_WRITE: 809 return "write"; 810 case OBJ_OP_DISCARD: 811 return "discard"; 812 default: 813 return "???"; 814 } 815 } 816 817 /* 818 * Get a ceph client with specific addr and configuration, if one does 819 * not exist create it. Either way, ceph_opts is consumed by this 820 * function. 821 */ 822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 823 { 824 struct rbd_client *rbdc; 825 826 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 827 rbdc = rbd_client_find(ceph_opts); 828 if (rbdc) /* using an existing client */ 829 ceph_destroy_options(ceph_opts); 830 else 831 rbdc = rbd_client_create(ceph_opts); 832 mutex_unlock(&client_mutex); 833 834 return rbdc; 835 } 836 837 /* 838 * Destroy ceph client 839 * 840 * Caller must hold rbd_client_list_lock. 841 */ 842 static void rbd_client_release(struct kref *kref) 843 { 844 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 845 846 dout("%s: rbdc %p\n", __func__, rbdc); 847 spin_lock(&rbd_client_list_lock); 848 list_del(&rbdc->node); 849 spin_unlock(&rbd_client_list_lock); 850 851 ceph_destroy_client(rbdc->client); 852 kfree(rbdc); 853 } 854 855 /* 856 * Drop reference to ceph client node. If it's not referenced anymore, release 857 * it. 858 */ 859 static void rbd_put_client(struct rbd_client *rbdc) 860 { 861 if (rbdc) 862 kref_put(&rbdc->kref, rbd_client_release); 863 } 864 865 static bool rbd_image_format_valid(u32 image_format) 866 { 867 return image_format == 1 || image_format == 2; 868 } 869 870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 871 { 872 size_t size; 873 u32 snap_count; 874 875 /* The header has to start with the magic rbd header text */ 876 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 877 return false; 878 879 /* The bio layer requires at least sector-sized I/O */ 880 881 if (ondisk->options.order < SECTOR_SHIFT) 882 return false; 883 884 /* If we use u64 in a few spots we may be able to loosen this */ 885 886 if (ondisk->options.order > 8 * sizeof (int) - 1) 887 return false; 888 889 /* 890 * The size of a snapshot header has to fit in a size_t, and 891 * that limits the number of snapshots. 892 */ 893 snap_count = le32_to_cpu(ondisk->snap_count); 894 size = SIZE_MAX - sizeof (struct ceph_snap_context); 895 if (snap_count > size / sizeof (__le64)) 896 return false; 897 898 /* 899 * Not only that, but the size of the entire the snapshot 900 * header must also be representable in a size_t. 901 */ 902 size -= snap_count * sizeof (__le64); 903 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 904 return false; 905 906 return true; 907 } 908 909 /* 910 * Fill an rbd image header with information from the given format 1 911 * on-disk header. 912 */ 913 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 914 struct rbd_image_header_ondisk *ondisk) 915 { 916 struct rbd_image_header *header = &rbd_dev->header; 917 bool first_time = header->object_prefix == NULL; 918 struct ceph_snap_context *snapc; 919 char *object_prefix = NULL; 920 char *snap_names = NULL; 921 u64 *snap_sizes = NULL; 922 u32 snap_count; 923 size_t size; 924 int ret = -ENOMEM; 925 u32 i; 926 927 /* Allocate this now to avoid having to handle failure below */ 928 929 if (first_time) { 930 size_t len; 931 932 len = strnlen(ondisk->object_prefix, 933 sizeof (ondisk->object_prefix)); 934 object_prefix = kmalloc(len + 1, GFP_KERNEL); 935 if (!object_prefix) 936 return -ENOMEM; 937 memcpy(object_prefix, ondisk->object_prefix, len); 938 object_prefix[len] = '\0'; 939 } 940 941 /* Allocate the snapshot context and fill it in */ 942 943 snap_count = le32_to_cpu(ondisk->snap_count); 944 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 945 if (!snapc) 946 goto out_err; 947 snapc->seq = le64_to_cpu(ondisk->snap_seq); 948 if (snap_count) { 949 struct rbd_image_snap_ondisk *snaps; 950 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 951 952 /* We'll keep a copy of the snapshot names... */ 953 954 if (snap_names_len > (u64)SIZE_MAX) 955 goto out_2big; 956 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 957 if (!snap_names) 958 goto out_err; 959 960 /* ...as well as the array of their sizes. */ 961 962 size = snap_count * sizeof (*header->snap_sizes); 963 snap_sizes = kmalloc(size, GFP_KERNEL); 964 if (!snap_sizes) 965 goto out_err; 966 967 /* 968 * Copy the names, and fill in each snapshot's id 969 * and size. 970 * 971 * Note that rbd_dev_v1_header_info() guarantees the 972 * ondisk buffer we're working with has 973 * snap_names_len bytes beyond the end of the 974 * snapshot id array, this memcpy() is safe. 975 */ 976 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 977 snaps = ondisk->snaps; 978 for (i = 0; i < snap_count; i++) { 979 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 980 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 981 } 982 } 983 984 /* We won't fail any more, fill in the header */ 985 986 if (first_time) { 987 header->object_prefix = object_prefix; 988 header->obj_order = ondisk->options.order; 989 header->crypt_type = ondisk->options.crypt_type; 990 header->comp_type = ondisk->options.comp_type; 991 /* The rest aren't used for format 1 images */ 992 header->stripe_unit = 0; 993 header->stripe_count = 0; 994 header->features = 0; 995 } else { 996 ceph_put_snap_context(header->snapc); 997 kfree(header->snap_names); 998 kfree(header->snap_sizes); 999 } 1000 1001 /* The remaining fields always get updated (when we refresh) */ 1002 1003 header->image_size = le64_to_cpu(ondisk->image_size); 1004 header->snapc = snapc; 1005 header->snap_names = snap_names; 1006 header->snap_sizes = snap_sizes; 1007 1008 return 0; 1009 out_2big: 1010 ret = -EIO; 1011 out_err: 1012 kfree(snap_sizes); 1013 kfree(snap_names); 1014 ceph_put_snap_context(snapc); 1015 kfree(object_prefix); 1016 1017 return ret; 1018 } 1019 1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1021 { 1022 const char *snap_name; 1023 1024 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1025 1026 /* Skip over names until we find the one we are looking for */ 1027 1028 snap_name = rbd_dev->header.snap_names; 1029 while (which--) 1030 snap_name += strlen(snap_name) + 1; 1031 1032 return kstrdup(snap_name, GFP_KERNEL); 1033 } 1034 1035 /* 1036 * Snapshot id comparison function for use with qsort()/bsearch(). 1037 * Note that result is for snapshots in *descending* order. 1038 */ 1039 static int snapid_compare_reverse(const void *s1, const void *s2) 1040 { 1041 u64 snap_id1 = *(u64 *)s1; 1042 u64 snap_id2 = *(u64 *)s2; 1043 1044 if (snap_id1 < snap_id2) 1045 return 1; 1046 return snap_id1 == snap_id2 ? 0 : -1; 1047 } 1048 1049 /* 1050 * Search a snapshot context to see if the given snapshot id is 1051 * present. 1052 * 1053 * Returns the position of the snapshot id in the array if it's found, 1054 * or BAD_SNAP_INDEX otherwise. 1055 * 1056 * Note: The snapshot array is in kept sorted (by the osd) in 1057 * reverse order, highest snapshot id first. 1058 */ 1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1060 { 1061 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1062 u64 *found; 1063 1064 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1065 sizeof (snap_id), snapid_compare_reverse); 1066 1067 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1068 } 1069 1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1071 u64 snap_id) 1072 { 1073 u32 which; 1074 const char *snap_name; 1075 1076 which = rbd_dev_snap_index(rbd_dev, snap_id); 1077 if (which == BAD_SNAP_INDEX) 1078 return ERR_PTR(-ENOENT); 1079 1080 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1081 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1082 } 1083 1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1085 { 1086 if (snap_id == CEPH_NOSNAP) 1087 return RBD_SNAP_HEAD_NAME; 1088 1089 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1090 if (rbd_dev->image_format == 1) 1091 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1092 1093 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1094 } 1095 1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1097 u64 *snap_size) 1098 { 1099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1100 if (snap_id == CEPH_NOSNAP) { 1101 *snap_size = rbd_dev->header.image_size; 1102 } else if (rbd_dev->image_format == 1) { 1103 u32 which; 1104 1105 which = rbd_dev_snap_index(rbd_dev, snap_id); 1106 if (which == BAD_SNAP_INDEX) 1107 return -ENOENT; 1108 1109 *snap_size = rbd_dev->header.snap_sizes[which]; 1110 } else { 1111 u64 size = 0; 1112 int ret; 1113 1114 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1115 if (ret) 1116 return ret; 1117 1118 *snap_size = size; 1119 } 1120 return 0; 1121 } 1122 1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1124 u64 *snap_features) 1125 { 1126 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1127 if (snap_id == CEPH_NOSNAP) { 1128 *snap_features = rbd_dev->header.features; 1129 } else if (rbd_dev->image_format == 1) { 1130 *snap_features = 0; /* No features for format 1 */ 1131 } else { 1132 u64 features = 0; 1133 int ret; 1134 1135 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1136 if (ret) 1137 return ret; 1138 1139 *snap_features = features; 1140 } 1141 return 0; 1142 } 1143 1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1145 { 1146 u64 snap_id = rbd_dev->spec->snap_id; 1147 u64 size = 0; 1148 u64 features = 0; 1149 int ret; 1150 1151 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1152 if (ret) 1153 return ret; 1154 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1155 if (ret) 1156 return ret; 1157 1158 rbd_dev->mapping.size = size; 1159 rbd_dev->mapping.features = features; 1160 1161 return 0; 1162 } 1163 1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1165 { 1166 rbd_dev->mapping.size = 0; 1167 rbd_dev->mapping.features = 0; 1168 } 1169 1170 static void rbd_segment_name_free(const char *name) 1171 { 1172 /* The explicit cast here is needed to drop the const qualifier */ 1173 1174 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1175 } 1176 1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1178 { 1179 char *name; 1180 u64 segment; 1181 int ret; 1182 char *name_format; 1183 1184 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1185 if (!name) 1186 return NULL; 1187 segment = offset >> rbd_dev->header.obj_order; 1188 name_format = "%s.%012llx"; 1189 if (rbd_dev->image_format == 2) 1190 name_format = "%s.%016llx"; 1191 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1192 rbd_dev->header.object_prefix, segment); 1193 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1194 pr_err("error formatting segment name for #%llu (%d)\n", 1195 segment, ret); 1196 rbd_segment_name_free(name); 1197 name = NULL; 1198 } 1199 1200 return name; 1201 } 1202 1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1204 { 1205 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1206 1207 return offset & (segment_size - 1); 1208 } 1209 1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1211 u64 offset, u64 length) 1212 { 1213 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1214 1215 offset &= segment_size - 1; 1216 1217 rbd_assert(length <= U64_MAX - offset); 1218 if (offset + length > segment_size) 1219 length = segment_size - offset; 1220 1221 return length; 1222 } 1223 1224 /* 1225 * returns the size of an object in the image 1226 */ 1227 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1228 { 1229 return 1 << header->obj_order; 1230 } 1231 1232 /* 1233 * bio helpers 1234 */ 1235 1236 static void bio_chain_put(struct bio *chain) 1237 { 1238 struct bio *tmp; 1239 1240 while (chain) { 1241 tmp = chain; 1242 chain = chain->bi_next; 1243 bio_put(tmp); 1244 } 1245 } 1246 1247 /* 1248 * zeros a bio chain, starting at specific offset 1249 */ 1250 static void zero_bio_chain(struct bio *chain, int start_ofs) 1251 { 1252 struct bio_vec bv; 1253 struct bvec_iter iter; 1254 unsigned long flags; 1255 void *buf; 1256 int pos = 0; 1257 1258 while (chain) { 1259 bio_for_each_segment(bv, chain, iter) { 1260 if (pos + bv.bv_len > start_ofs) { 1261 int remainder = max(start_ofs - pos, 0); 1262 buf = bvec_kmap_irq(&bv, &flags); 1263 memset(buf + remainder, 0, 1264 bv.bv_len - remainder); 1265 flush_dcache_page(bv.bv_page); 1266 bvec_kunmap_irq(buf, &flags); 1267 } 1268 pos += bv.bv_len; 1269 } 1270 1271 chain = chain->bi_next; 1272 } 1273 } 1274 1275 /* 1276 * similar to zero_bio_chain(), zeros data defined by a page array, 1277 * starting at the given byte offset from the start of the array and 1278 * continuing up to the given end offset. The pages array is 1279 * assumed to be big enough to hold all bytes up to the end. 1280 */ 1281 static void zero_pages(struct page **pages, u64 offset, u64 end) 1282 { 1283 struct page **page = &pages[offset >> PAGE_SHIFT]; 1284 1285 rbd_assert(end > offset); 1286 rbd_assert(end - offset <= (u64)SIZE_MAX); 1287 while (offset < end) { 1288 size_t page_offset; 1289 size_t length; 1290 unsigned long flags; 1291 void *kaddr; 1292 1293 page_offset = offset & ~PAGE_MASK; 1294 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1295 local_irq_save(flags); 1296 kaddr = kmap_atomic(*page); 1297 memset(kaddr + page_offset, 0, length); 1298 flush_dcache_page(*page); 1299 kunmap_atomic(kaddr); 1300 local_irq_restore(flags); 1301 1302 offset += length; 1303 page++; 1304 } 1305 } 1306 1307 /* 1308 * Clone a portion of a bio, starting at the given byte offset 1309 * and continuing for the number of bytes indicated. 1310 */ 1311 static struct bio *bio_clone_range(struct bio *bio_src, 1312 unsigned int offset, 1313 unsigned int len, 1314 gfp_t gfpmask) 1315 { 1316 struct bio *bio; 1317 1318 bio = bio_clone(bio_src, gfpmask); 1319 if (!bio) 1320 return NULL; /* ENOMEM */ 1321 1322 bio_advance(bio, offset); 1323 bio->bi_iter.bi_size = len; 1324 1325 return bio; 1326 } 1327 1328 /* 1329 * Clone a portion of a bio chain, starting at the given byte offset 1330 * into the first bio in the source chain and continuing for the 1331 * number of bytes indicated. The result is another bio chain of 1332 * exactly the given length, or a null pointer on error. 1333 * 1334 * The bio_src and offset parameters are both in-out. On entry they 1335 * refer to the first source bio and the offset into that bio where 1336 * the start of data to be cloned is located. 1337 * 1338 * On return, bio_src is updated to refer to the bio in the source 1339 * chain that contains first un-cloned byte, and *offset will 1340 * contain the offset of that byte within that bio. 1341 */ 1342 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1343 unsigned int *offset, 1344 unsigned int len, 1345 gfp_t gfpmask) 1346 { 1347 struct bio *bi = *bio_src; 1348 unsigned int off = *offset; 1349 struct bio *chain = NULL; 1350 struct bio **end; 1351 1352 /* Build up a chain of clone bios up to the limit */ 1353 1354 if (!bi || off >= bi->bi_iter.bi_size || !len) 1355 return NULL; /* Nothing to clone */ 1356 1357 end = &chain; 1358 while (len) { 1359 unsigned int bi_size; 1360 struct bio *bio; 1361 1362 if (!bi) { 1363 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1364 goto out_err; /* EINVAL; ran out of bio's */ 1365 } 1366 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1367 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1368 if (!bio) 1369 goto out_err; /* ENOMEM */ 1370 1371 *end = bio; 1372 end = &bio->bi_next; 1373 1374 off += bi_size; 1375 if (off == bi->bi_iter.bi_size) { 1376 bi = bi->bi_next; 1377 off = 0; 1378 } 1379 len -= bi_size; 1380 } 1381 *bio_src = bi; 1382 *offset = off; 1383 1384 return chain; 1385 out_err: 1386 bio_chain_put(chain); 1387 1388 return NULL; 1389 } 1390 1391 /* 1392 * The default/initial value for all object request flags is 0. For 1393 * each flag, once its value is set to 1 it is never reset to 0 1394 * again. 1395 */ 1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1397 { 1398 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1399 struct rbd_device *rbd_dev; 1400 1401 rbd_dev = obj_request->img_request->rbd_dev; 1402 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1403 obj_request); 1404 } 1405 } 1406 1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1408 { 1409 smp_mb(); 1410 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1411 } 1412 1413 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1414 { 1415 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1416 struct rbd_device *rbd_dev = NULL; 1417 1418 if (obj_request_img_data_test(obj_request)) 1419 rbd_dev = obj_request->img_request->rbd_dev; 1420 rbd_warn(rbd_dev, "obj_request %p already marked done", 1421 obj_request); 1422 } 1423 } 1424 1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1426 { 1427 smp_mb(); 1428 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1429 } 1430 1431 /* 1432 * This sets the KNOWN flag after (possibly) setting the EXISTS 1433 * flag. The latter is set based on the "exists" value provided. 1434 * 1435 * Note that for our purposes once an object exists it never goes 1436 * away again. It's possible that the response from two existence 1437 * checks are separated by the creation of the target object, and 1438 * the first ("doesn't exist") response arrives *after* the second 1439 * ("does exist"). In that case we ignore the second one. 1440 */ 1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1442 bool exists) 1443 { 1444 if (exists) 1445 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1446 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1447 smp_mb(); 1448 } 1449 1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1451 { 1452 smp_mb(); 1453 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1454 } 1455 1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1457 { 1458 smp_mb(); 1459 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1460 } 1461 1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1463 { 1464 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1465 1466 return obj_request->img_offset < 1467 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1468 } 1469 1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1471 { 1472 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1473 atomic_read(&obj_request->kref.refcount)); 1474 kref_get(&obj_request->kref); 1475 } 1476 1477 static void rbd_obj_request_destroy(struct kref *kref); 1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1479 { 1480 rbd_assert(obj_request != NULL); 1481 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1482 atomic_read(&obj_request->kref.refcount)); 1483 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1484 } 1485 1486 static void rbd_img_request_get(struct rbd_img_request *img_request) 1487 { 1488 dout("%s: img %p (was %d)\n", __func__, img_request, 1489 atomic_read(&img_request->kref.refcount)); 1490 kref_get(&img_request->kref); 1491 } 1492 1493 static bool img_request_child_test(struct rbd_img_request *img_request); 1494 static void rbd_parent_request_destroy(struct kref *kref); 1495 static void rbd_img_request_destroy(struct kref *kref); 1496 static void rbd_img_request_put(struct rbd_img_request *img_request) 1497 { 1498 rbd_assert(img_request != NULL); 1499 dout("%s: img %p (was %d)\n", __func__, img_request, 1500 atomic_read(&img_request->kref.refcount)); 1501 if (img_request_child_test(img_request)) 1502 kref_put(&img_request->kref, rbd_parent_request_destroy); 1503 else 1504 kref_put(&img_request->kref, rbd_img_request_destroy); 1505 } 1506 1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1508 struct rbd_obj_request *obj_request) 1509 { 1510 rbd_assert(obj_request->img_request == NULL); 1511 1512 /* Image request now owns object's original reference */ 1513 obj_request->img_request = img_request; 1514 obj_request->which = img_request->obj_request_count; 1515 rbd_assert(!obj_request_img_data_test(obj_request)); 1516 obj_request_img_data_set(obj_request); 1517 rbd_assert(obj_request->which != BAD_WHICH); 1518 img_request->obj_request_count++; 1519 list_add_tail(&obj_request->links, &img_request->obj_requests); 1520 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1521 obj_request->which); 1522 } 1523 1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1525 struct rbd_obj_request *obj_request) 1526 { 1527 rbd_assert(obj_request->which != BAD_WHICH); 1528 1529 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1530 obj_request->which); 1531 list_del(&obj_request->links); 1532 rbd_assert(img_request->obj_request_count > 0); 1533 img_request->obj_request_count--; 1534 rbd_assert(obj_request->which == img_request->obj_request_count); 1535 obj_request->which = BAD_WHICH; 1536 rbd_assert(obj_request_img_data_test(obj_request)); 1537 rbd_assert(obj_request->img_request == img_request); 1538 obj_request->img_request = NULL; 1539 obj_request->callback = NULL; 1540 rbd_obj_request_put(obj_request); 1541 } 1542 1543 static bool obj_request_type_valid(enum obj_request_type type) 1544 { 1545 switch (type) { 1546 case OBJ_REQUEST_NODATA: 1547 case OBJ_REQUEST_BIO: 1548 case OBJ_REQUEST_PAGES: 1549 return true; 1550 default: 1551 return false; 1552 } 1553 } 1554 1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1556 struct rbd_obj_request *obj_request) 1557 { 1558 dout("%s %p\n", __func__, obj_request); 1559 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1560 } 1561 1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1563 { 1564 dout("%s %p\n", __func__, obj_request); 1565 ceph_osdc_cancel_request(obj_request->osd_req); 1566 } 1567 1568 /* 1569 * Wait for an object request to complete. If interrupted, cancel the 1570 * underlying osd request. 1571 * 1572 * @timeout: in jiffies, 0 means "wait forever" 1573 */ 1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1575 unsigned long timeout) 1576 { 1577 long ret; 1578 1579 dout("%s %p\n", __func__, obj_request); 1580 ret = wait_for_completion_interruptible_timeout( 1581 &obj_request->completion, 1582 ceph_timeout_jiffies(timeout)); 1583 if (ret <= 0) { 1584 if (ret == 0) 1585 ret = -ETIMEDOUT; 1586 rbd_obj_request_end(obj_request); 1587 } else { 1588 ret = 0; 1589 } 1590 1591 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1592 return ret; 1593 } 1594 1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1596 { 1597 return __rbd_obj_request_wait(obj_request, 0); 1598 } 1599 1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request, 1601 unsigned long timeout) 1602 { 1603 return __rbd_obj_request_wait(obj_request, timeout); 1604 } 1605 1606 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1607 { 1608 1609 dout("%s: img %p\n", __func__, img_request); 1610 1611 /* 1612 * If no error occurred, compute the aggregate transfer 1613 * count for the image request. We could instead use 1614 * atomic64_cmpxchg() to update it as each object request 1615 * completes; not clear which way is better off hand. 1616 */ 1617 if (!img_request->result) { 1618 struct rbd_obj_request *obj_request; 1619 u64 xferred = 0; 1620 1621 for_each_obj_request(img_request, obj_request) 1622 xferred += obj_request->xferred; 1623 img_request->xferred = xferred; 1624 } 1625 1626 if (img_request->callback) 1627 img_request->callback(img_request); 1628 else 1629 rbd_img_request_put(img_request); 1630 } 1631 1632 /* 1633 * The default/initial value for all image request flags is 0. Each 1634 * is conditionally set to 1 at image request initialization time 1635 * and currently never change thereafter. 1636 */ 1637 static void img_request_write_set(struct rbd_img_request *img_request) 1638 { 1639 set_bit(IMG_REQ_WRITE, &img_request->flags); 1640 smp_mb(); 1641 } 1642 1643 static bool img_request_write_test(struct rbd_img_request *img_request) 1644 { 1645 smp_mb(); 1646 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1647 } 1648 1649 /* 1650 * Set the discard flag when the img_request is an discard request 1651 */ 1652 static void img_request_discard_set(struct rbd_img_request *img_request) 1653 { 1654 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1655 smp_mb(); 1656 } 1657 1658 static bool img_request_discard_test(struct rbd_img_request *img_request) 1659 { 1660 smp_mb(); 1661 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1662 } 1663 1664 static void img_request_child_set(struct rbd_img_request *img_request) 1665 { 1666 set_bit(IMG_REQ_CHILD, &img_request->flags); 1667 smp_mb(); 1668 } 1669 1670 static void img_request_child_clear(struct rbd_img_request *img_request) 1671 { 1672 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1673 smp_mb(); 1674 } 1675 1676 static bool img_request_child_test(struct rbd_img_request *img_request) 1677 { 1678 smp_mb(); 1679 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1680 } 1681 1682 static void img_request_layered_set(struct rbd_img_request *img_request) 1683 { 1684 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1685 smp_mb(); 1686 } 1687 1688 static void img_request_layered_clear(struct rbd_img_request *img_request) 1689 { 1690 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1691 smp_mb(); 1692 } 1693 1694 static bool img_request_layered_test(struct rbd_img_request *img_request) 1695 { 1696 smp_mb(); 1697 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1698 } 1699 1700 static enum obj_operation_type 1701 rbd_img_request_op_type(struct rbd_img_request *img_request) 1702 { 1703 if (img_request_write_test(img_request)) 1704 return OBJ_OP_WRITE; 1705 else if (img_request_discard_test(img_request)) 1706 return OBJ_OP_DISCARD; 1707 else 1708 return OBJ_OP_READ; 1709 } 1710 1711 static void 1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1713 { 1714 u64 xferred = obj_request->xferred; 1715 u64 length = obj_request->length; 1716 1717 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1718 obj_request, obj_request->img_request, obj_request->result, 1719 xferred, length); 1720 /* 1721 * ENOENT means a hole in the image. We zero-fill the entire 1722 * length of the request. A short read also implies zero-fill 1723 * to the end of the request. An error requires the whole 1724 * length of the request to be reported finished with an error 1725 * to the block layer. In each case we update the xferred 1726 * count to indicate the whole request was satisfied. 1727 */ 1728 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1729 if (obj_request->result == -ENOENT) { 1730 if (obj_request->type == OBJ_REQUEST_BIO) 1731 zero_bio_chain(obj_request->bio_list, 0); 1732 else 1733 zero_pages(obj_request->pages, 0, length); 1734 obj_request->result = 0; 1735 } else if (xferred < length && !obj_request->result) { 1736 if (obj_request->type == OBJ_REQUEST_BIO) 1737 zero_bio_chain(obj_request->bio_list, xferred); 1738 else 1739 zero_pages(obj_request->pages, xferred, length); 1740 } 1741 obj_request->xferred = length; 1742 obj_request_done_set(obj_request); 1743 } 1744 1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1746 { 1747 dout("%s: obj %p cb %p\n", __func__, obj_request, 1748 obj_request->callback); 1749 if (obj_request->callback) 1750 obj_request->callback(obj_request); 1751 else 1752 complete_all(&obj_request->completion); 1753 } 1754 1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1756 { 1757 dout("%s: obj %p\n", __func__, obj_request); 1758 obj_request_done_set(obj_request); 1759 } 1760 1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1762 { 1763 struct rbd_img_request *img_request = NULL; 1764 struct rbd_device *rbd_dev = NULL; 1765 bool layered = false; 1766 1767 if (obj_request_img_data_test(obj_request)) { 1768 img_request = obj_request->img_request; 1769 layered = img_request && img_request_layered_test(img_request); 1770 rbd_dev = img_request->rbd_dev; 1771 } 1772 1773 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1774 obj_request, img_request, obj_request->result, 1775 obj_request->xferred, obj_request->length); 1776 if (layered && obj_request->result == -ENOENT && 1777 obj_request->img_offset < rbd_dev->parent_overlap) 1778 rbd_img_parent_read(obj_request); 1779 else if (img_request) 1780 rbd_img_obj_request_read_callback(obj_request); 1781 else 1782 obj_request_done_set(obj_request); 1783 } 1784 1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1786 { 1787 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1788 obj_request->result, obj_request->length); 1789 /* 1790 * There is no such thing as a successful short write. Set 1791 * it to our originally-requested length. 1792 */ 1793 obj_request->xferred = obj_request->length; 1794 obj_request_done_set(obj_request); 1795 } 1796 1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1798 { 1799 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1800 obj_request->result, obj_request->length); 1801 /* 1802 * There is no such thing as a successful short discard. Set 1803 * it to our originally-requested length. 1804 */ 1805 obj_request->xferred = obj_request->length; 1806 /* discarding a non-existent object is not a problem */ 1807 if (obj_request->result == -ENOENT) 1808 obj_request->result = 0; 1809 obj_request_done_set(obj_request); 1810 } 1811 1812 /* 1813 * For a simple stat call there's nothing to do. We'll do more if 1814 * this is part of a write sequence for a layered image. 1815 */ 1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1817 { 1818 dout("%s: obj %p\n", __func__, obj_request); 1819 obj_request_done_set(obj_request); 1820 } 1821 1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1823 { 1824 dout("%s: obj %p\n", __func__, obj_request); 1825 1826 if (obj_request_img_data_test(obj_request)) 1827 rbd_osd_copyup_callback(obj_request); 1828 else 1829 obj_request_done_set(obj_request); 1830 } 1831 1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1833 struct ceph_msg *msg) 1834 { 1835 struct rbd_obj_request *obj_request = osd_req->r_priv; 1836 u16 opcode; 1837 1838 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1839 rbd_assert(osd_req == obj_request->osd_req); 1840 if (obj_request_img_data_test(obj_request)) { 1841 rbd_assert(obj_request->img_request); 1842 rbd_assert(obj_request->which != BAD_WHICH); 1843 } else { 1844 rbd_assert(obj_request->which == BAD_WHICH); 1845 } 1846 1847 if (osd_req->r_result < 0) 1848 obj_request->result = osd_req->r_result; 1849 1850 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1851 1852 /* 1853 * We support a 64-bit length, but ultimately it has to be 1854 * passed to the block layer, which just supports a 32-bit 1855 * length field. 1856 */ 1857 obj_request->xferred = osd_req->r_reply_op_len[0]; 1858 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1859 1860 opcode = osd_req->r_ops[0].op; 1861 switch (opcode) { 1862 case CEPH_OSD_OP_READ: 1863 rbd_osd_read_callback(obj_request); 1864 break; 1865 case CEPH_OSD_OP_SETALLOCHINT: 1866 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1867 /* fall through */ 1868 case CEPH_OSD_OP_WRITE: 1869 rbd_osd_write_callback(obj_request); 1870 break; 1871 case CEPH_OSD_OP_STAT: 1872 rbd_osd_stat_callback(obj_request); 1873 break; 1874 case CEPH_OSD_OP_DELETE: 1875 case CEPH_OSD_OP_TRUNCATE: 1876 case CEPH_OSD_OP_ZERO: 1877 rbd_osd_discard_callback(obj_request); 1878 break; 1879 case CEPH_OSD_OP_CALL: 1880 rbd_osd_call_callback(obj_request); 1881 break; 1882 case CEPH_OSD_OP_NOTIFY_ACK: 1883 case CEPH_OSD_OP_WATCH: 1884 rbd_osd_trivial_callback(obj_request); 1885 break; 1886 default: 1887 rbd_warn(NULL, "%s: unsupported op %hu", 1888 obj_request->object_name, (unsigned short) opcode); 1889 break; 1890 } 1891 1892 if (obj_request_done_test(obj_request)) 1893 rbd_obj_request_complete(obj_request); 1894 } 1895 1896 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1897 { 1898 struct rbd_img_request *img_request = obj_request->img_request; 1899 struct ceph_osd_request *osd_req = obj_request->osd_req; 1900 u64 snap_id; 1901 1902 rbd_assert(osd_req != NULL); 1903 1904 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1905 ceph_osdc_build_request(osd_req, obj_request->offset, 1906 NULL, snap_id, NULL); 1907 } 1908 1909 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1910 { 1911 struct rbd_img_request *img_request = obj_request->img_request; 1912 struct ceph_osd_request *osd_req = obj_request->osd_req; 1913 struct ceph_snap_context *snapc; 1914 struct timespec mtime = CURRENT_TIME; 1915 1916 rbd_assert(osd_req != NULL); 1917 1918 snapc = img_request ? img_request->snapc : NULL; 1919 ceph_osdc_build_request(osd_req, obj_request->offset, 1920 snapc, CEPH_NOSNAP, &mtime); 1921 } 1922 1923 /* 1924 * Create an osd request. A read request has one osd op (read). 1925 * A write request has either one (watch) or two (hint+write) osd ops. 1926 * (All rbd data writes are prefixed with an allocation hint op, but 1927 * technically osd watch is a write request, hence this distinction.) 1928 */ 1929 static struct ceph_osd_request *rbd_osd_req_create( 1930 struct rbd_device *rbd_dev, 1931 enum obj_operation_type op_type, 1932 unsigned int num_ops, 1933 struct rbd_obj_request *obj_request) 1934 { 1935 struct ceph_snap_context *snapc = NULL; 1936 struct ceph_osd_client *osdc; 1937 struct ceph_osd_request *osd_req; 1938 1939 if (obj_request_img_data_test(obj_request) && 1940 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1941 struct rbd_img_request *img_request = obj_request->img_request; 1942 if (op_type == OBJ_OP_WRITE) { 1943 rbd_assert(img_request_write_test(img_request)); 1944 } else { 1945 rbd_assert(img_request_discard_test(img_request)); 1946 } 1947 snapc = img_request->snapc; 1948 } 1949 1950 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1951 1952 /* Allocate and initialize the request, for the num_ops ops */ 1953 1954 osdc = &rbd_dev->rbd_client->client->osdc; 1955 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1956 GFP_ATOMIC); 1957 if (!osd_req) 1958 return NULL; /* ENOMEM */ 1959 1960 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1961 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1962 else 1963 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1964 1965 osd_req->r_callback = rbd_osd_req_callback; 1966 osd_req->r_priv = obj_request; 1967 1968 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1969 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1970 1971 return osd_req; 1972 } 1973 1974 /* 1975 * Create a copyup osd request based on the information in the object 1976 * request supplied. A copyup request has two or three osd ops, a 1977 * copyup method call, potentially a hint op, and a write or truncate 1978 * or zero op. 1979 */ 1980 static struct ceph_osd_request * 1981 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1982 { 1983 struct rbd_img_request *img_request; 1984 struct ceph_snap_context *snapc; 1985 struct rbd_device *rbd_dev; 1986 struct ceph_osd_client *osdc; 1987 struct ceph_osd_request *osd_req; 1988 int num_osd_ops = 3; 1989 1990 rbd_assert(obj_request_img_data_test(obj_request)); 1991 img_request = obj_request->img_request; 1992 rbd_assert(img_request); 1993 rbd_assert(img_request_write_test(img_request) || 1994 img_request_discard_test(img_request)); 1995 1996 if (img_request_discard_test(img_request)) 1997 num_osd_ops = 2; 1998 1999 /* Allocate and initialize the request, for all the ops */ 2000 2001 snapc = img_request->snapc; 2002 rbd_dev = img_request->rbd_dev; 2003 osdc = &rbd_dev->rbd_client->client->osdc; 2004 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 2005 false, GFP_ATOMIC); 2006 if (!osd_req) 2007 return NULL; /* ENOMEM */ 2008 2009 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 2010 osd_req->r_callback = rbd_osd_req_callback; 2011 osd_req->r_priv = obj_request; 2012 2013 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 2014 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 2015 2016 return osd_req; 2017 } 2018 2019 2020 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2021 { 2022 ceph_osdc_put_request(osd_req); 2023 } 2024 2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2026 2027 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2028 u64 offset, u64 length, 2029 enum obj_request_type type) 2030 { 2031 struct rbd_obj_request *obj_request; 2032 size_t size; 2033 char *name; 2034 2035 rbd_assert(obj_request_type_valid(type)); 2036 2037 size = strlen(object_name) + 1; 2038 name = kmalloc(size, GFP_NOIO); 2039 if (!name) 2040 return NULL; 2041 2042 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2043 if (!obj_request) { 2044 kfree(name); 2045 return NULL; 2046 } 2047 2048 obj_request->object_name = memcpy(name, object_name, size); 2049 obj_request->offset = offset; 2050 obj_request->length = length; 2051 obj_request->flags = 0; 2052 obj_request->which = BAD_WHICH; 2053 obj_request->type = type; 2054 INIT_LIST_HEAD(&obj_request->links); 2055 init_completion(&obj_request->completion); 2056 kref_init(&obj_request->kref); 2057 2058 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2059 offset, length, (int)type, obj_request); 2060 2061 return obj_request; 2062 } 2063 2064 static void rbd_obj_request_destroy(struct kref *kref) 2065 { 2066 struct rbd_obj_request *obj_request; 2067 2068 obj_request = container_of(kref, struct rbd_obj_request, kref); 2069 2070 dout("%s: obj %p\n", __func__, obj_request); 2071 2072 rbd_assert(obj_request->img_request == NULL); 2073 rbd_assert(obj_request->which == BAD_WHICH); 2074 2075 if (obj_request->osd_req) 2076 rbd_osd_req_destroy(obj_request->osd_req); 2077 2078 rbd_assert(obj_request_type_valid(obj_request->type)); 2079 switch (obj_request->type) { 2080 case OBJ_REQUEST_NODATA: 2081 break; /* Nothing to do */ 2082 case OBJ_REQUEST_BIO: 2083 if (obj_request->bio_list) 2084 bio_chain_put(obj_request->bio_list); 2085 break; 2086 case OBJ_REQUEST_PAGES: 2087 if (obj_request->pages) 2088 ceph_release_page_vector(obj_request->pages, 2089 obj_request->page_count); 2090 break; 2091 } 2092 2093 kfree(obj_request->object_name); 2094 obj_request->object_name = NULL; 2095 kmem_cache_free(rbd_obj_request_cache, obj_request); 2096 } 2097 2098 /* It's OK to call this for a device with no parent */ 2099 2100 static void rbd_spec_put(struct rbd_spec *spec); 2101 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2102 { 2103 rbd_dev_remove_parent(rbd_dev); 2104 rbd_spec_put(rbd_dev->parent_spec); 2105 rbd_dev->parent_spec = NULL; 2106 rbd_dev->parent_overlap = 0; 2107 } 2108 2109 /* 2110 * Parent image reference counting is used to determine when an 2111 * image's parent fields can be safely torn down--after there are no 2112 * more in-flight requests to the parent image. When the last 2113 * reference is dropped, cleaning them up is safe. 2114 */ 2115 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2116 { 2117 int counter; 2118 2119 if (!rbd_dev->parent_spec) 2120 return; 2121 2122 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2123 if (counter > 0) 2124 return; 2125 2126 /* Last reference; clean up parent data structures */ 2127 2128 if (!counter) 2129 rbd_dev_unparent(rbd_dev); 2130 else 2131 rbd_warn(rbd_dev, "parent reference underflow"); 2132 } 2133 2134 /* 2135 * If an image has a non-zero parent overlap, get a reference to its 2136 * parent. 2137 * 2138 * Returns true if the rbd device has a parent with a non-zero 2139 * overlap and a reference for it was successfully taken, or 2140 * false otherwise. 2141 */ 2142 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2143 { 2144 int counter = 0; 2145 2146 if (!rbd_dev->parent_spec) 2147 return false; 2148 2149 down_read(&rbd_dev->header_rwsem); 2150 if (rbd_dev->parent_overlap) 2151 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2152 up_read(&rbd_dev->header_rwsem); 2153 2154 if (counter < 0) 2155 rbd_warn(rbd_dev, "parent reference overflow"); 2156 2157 return counter > 0; 2158 } 2159 2160 /* 2161 * Caller is responsible for filling in the list of object requests 2162 * that comprises the image request, and the Linux request pointer 2163 * (if there is one). 2164 */ 2165 static struct rbd_img_request *rbd_img_request_create( 2166 struct rbd_device *rbd_dev, 2167 u64 offset, u64 length, 2168 enum obj_operation_type op_type, 2169 struct ceph_snap_context *snapc) 2170 { 2171 struct rbd_img_request *img_request; 2172 2173 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2174 if (!img_request) 2175 return NULL; 2176 2177 img_request->rq = NULL; 2178 img_request->rbd_dev = rbd_dev; 2179 img_request->offset = offset; 2180 img_request->length = length; 2181 img_request->flags = 0; 2182 if (op_type == OBJ_OP_DISCARD) { 2183 img_request_discard_set(img_request); 2184 img_request->snapc = snapc; 2185 } else if (op_type == OBJ_OP_WRITE) { 2186 img_request_write_set(img_request); 2187 img_request->snapc = snapc; 2188 } else { 2189 img_request->snap_id = rbd_dev->spec->snap_id; 2190 } 2191 if (rbd_dev_parent_get(rbd_dev)) 2192 img_request_layered_set(img_request); 2193 spin_lock_init(&img_request->completion_lock); 2194 img_request->next_completion = 0; 2195 img_request->callback = NULL; 2196 img_request->result = 0; 2197 img_request->obj_request_count = 0; 2198 INIT_LIST_HEAD(&img_request->obj_requests); 2199 kref_init(&img_request->kref); 2200 2201 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2202 obj_op_name(op_type), offset, length, img_request); 2203 2204 return img_request; 2205 } 2206 2207 static void rbd_img_request_destroy(struct kref *kref) 2208 { 2209 struct rbd_img_request *img_request; 2210 struct rbd_obj_request *obj_request; 2211 struct rbd_obj_request *next_obj_request; 2212 2213 img_request = container_of(kref, struct rbd_img_request, kref); 2214 2215 dout("%s: img %p\n", __func__, img_request); 2216 2217 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2218 rbd_img_obj_request_del(img_request, obj_request); 2219 rbd_assert(img_request->obj_request_count == 0); 2220 2221 if (img_request_layered_test(img_request)) { 2222 img_request_layered_clear(img_request); 2223 rbd_dev_parent_put(img_request->rbd_dev); 2224 } 2225 2226 if (img_request_write_test(img_request) || 2227 img_request_discard_test(img_request)) 2228 ceph_put_snap_context(img_request->snapc); 2229 2230 kmem_cache_free(rbd_img_request_cache, img_request); 2231 } 2232 2233 static struct rbd_img_request *rbd_parent_request_create( 2234 struct rbd_obj_request *obj_request, 2235 u64 img_offset, u64 length) 2236 { 2237 struct rbd_img_request *parent_request; 2238 struct rbd_device *rbd_dev; 2239 2240 rbd_assert(obj_request->img_request); 2241 rbd_dev = obj_request->img_request->rbd_dev; 2242 2243 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2244 length, OBJ_OP_READ, NULL); 2245 if (!parent_request) 2246 return NULL; 2247 2248 img_request_child_set(parent_request); 2249 rbd_obj_request_get(obj_request); 2250 parent_request->obj_request = obj_request; 2251 2252 return parent_request; 2253 } 2254 2255 static void rbd_parent_request_destroy(struct kref *kref) 2256 { 2257 struct rbd_img_request *parent_request; 2258 struct rbd_obj_request *orig_request; 2259 2260 parent_request = container_of(kref, struct rbd_img_request, kref); 2261 orig_request = parent_request->obj_request; 2262 2263 parent_request->obj_request = NULL; 2264 rbd_obj_request_put(orig_request); 2265 img_request_child_clear(parent_request); 2266 2267 rbd_img_request_destroy(kref); 2268 } 2269 2270 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2271 { 2272 struct rbd_img_request *img_request; 2273 unsigned int xferred; 2274 int result; 2275 bool more; 2276 2277 rbd_assert(obj_request_img_data_test(obj_request)); 2278 img_request = obj_request->img_request; 2279 2280 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2281 xferred = (unsigned int)obj_request->xferred; 2282 result = obj_request->result; 2283 if (result) { 2284 struct rbd_device *rbd_dev = img_request->rbd_dev; 2285 enum obj_operation_type op_type; 2286 2287 if (img_request_discard_test(img_request)) 2288 op_type = OBJ_OP_DISCARD; 2289 else if (img_request_write_test(img_request)) 2290 op_type = OBJ_OP_WRITE; 2291 else 2292 op_type = OBJ_OP_READ; 2293 2294 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2295 obj_op_name(op_type), obj_request->length, 2296 obj_request->img_offset, obj_request->offset); 2297 rbd_warn(rbd_dev, " result %d xferred %x", 2298 result, xferred); 2299 if (!img_request->result) 2300 img_request->result = result; 2301 /* 2302 * Need to end I/O on the entire obj_request worth of 2303 * bytes in case of error. 2304 */ 2305 xferred = obj_request->length; 2306 } 2307 2308 /* Image object requests don't own their page array */ 2309 2310 if (obj_request->type == OBJ_REQUEST_PAGES) { 2311 obj_request->pages = NULL; 2312 obj_request->page_count = 0; 2313 } 2314 2315 if (img_request_child_test(img_request)) { 2316 rbd_assert(img_request->obj_request != NULL); 2317 more = obj_request->which < img_request->obj_request_count - 1; 2318 } else { 2319 rbd_assert(img_request->rq != NULL); 2320 2321 more = blk_update_request(img_request->rq, result, xferred); 2322 if (!more) 2323 __blk_mq_end_request(img_request->rq, result); 2324 } 2325 2326 return more; 2327 } 2328 2329 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2330 { 2331 struct rbd_img_request *img_request; 2332 u32 which = obj_request->which; 2333 bool more = true; 2334 2335 rbd_assert(obj_request_img_data_test(obj_request)); 2336 img_request = obj_request->img_request; 2337 2338 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2339 rbd_assert(img_request != NULL); 2340 rbd_assert(img_request->obj_request_count > 0); 2341 rbd_assert(which != BAD_WHICH); 2342 rbd_assert(which < img_request->obj_request_count); 2343 2344 spin_lock_irq(&img_request->completion_lock); 2345 if (which != img_request->next_completion) 2346 goto out; 2347 2348 for_each_obj_request_from(img_request, obj_request) { 2349 rbd_assert(more); 2350 rbd_assert(which < img_request->obj_request_count); 2351 2352 if (!obj_request_done_test(obj_request)) 2353 break; 2354 more = rbd_img_obj_end_request(obj_request); 2355 which++; 2356 } 2357 2358 rbd_assert(more ^ (which == img_request->obj_request_count)); 2359 img_request->next_completion = which; 2360 out: 2361 spin_unlock_irq(&img_request->completion_lock); 2362 rbd_img_request_put(img_request); 2363 2364 if (!more) 2365 rbd_img_request_complete(img_request); 2366 } 2367 2368 /* 2369 * Add individual osd ops to the given ceph_osd_request and prepare 2370 * them for submission. num_ops is the current number of 2371 * osd operations already to the object request. 2372 */ 2373 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2374 struct ceph_osd_request *osd_request, 2375 enum obj_operation_type op_type, 2376 unsigned int num_ops) 2377 { 2378 struct rbd_img_request *img_request = obj_request->img_request; 2379 struct rbd_device *rbd_dev = img_request->rbd_dev; 2380 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2381 u64 offset = obj_request->offset; 2382 u64 length = obj_request->length; 2383 u64 img_end; 2384 u16 opcode; 2385 2386 if (op_type == OBJ_OP_DISCARD) { 2387 if (!offset && length == object_size && 2388 (!img_request_layered_test(img_request) || 2389 !obj_request_overlaps_parent(obj_request))) { 2390 opcode = CEPH_OSD_OP_DELETE; 2391 } else if ((offset + length == object_size)) { 2392 opcode = CEPH_OSD_OP_TRUNCATE; 2393 } else { 2394 down_read(&rbd_dev->header_rwsem); 2395 img_end = rbd_dev->header.image_size; 2396 up_read(&rbd_dev->header_rwsem); 2397 2398 if (obj_request->img_offset + length == img_end) 2399 opcode = CEPH_OSD_OP_TRUNCATE; 2400 else 2401 opcode = CEPH_OSD_OP_ZERO; 2402 } 2403 } else if (op_type == OBJ_OP_WRITE) { 2404 opcode = CEPH_OSD_OP_WRITE; 2405 osd_req_op_alloc_hint_init(osd_request, num_ops, 2406 object_size, object_size); 2407 num_ops++; 2408 } else { 2409 opcode = CEPH_OSD_OP_READ; 2410 } 2411 2412 if (opcode == CEPH_OSD_OP_DELETE) 2413 osd_req_op_init(osd_request, num_ops, opcode, 0); 2414 else 2415 osd_req_op_extent_init(osd_request, num_ops, opcode, 2416 offset, length, 0, 0); 2417 2418 if (obj_request->type == OBJ_REQUEST_BIO) 2419 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2420 obj_request->bio_list, length); 2421 else if (obj_request->type == OBJ_REQUEST_PAGES) 2422 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2423 obj_request->pages, length, 2424 offset & ~PAGE_MASK, false, false); 2425 2426 /* Discards are also writes */ 2427 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2428 rbd_osd_req_format_write(obj_request); 2429 else 2430 rbd_osd_req_format_read(obj_request); 2431 } 2432 2433 /* 2434 * Split up an image request into one or more object requests, each 2435 * to a different object. The "type" parameter indicates whether 2436 * "data_desc" is the pointer to the head of a list of bio 2437 * structures, or the base of a page array. In either case this 2438 * function assumes data_desc describes memory sufficient to hold 2439 * all data described by the image request. 2440 */ 2441 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2442 enum obj_request_type type, 2443 void *data_desc) 2444 { 2445 struct rbd_device *rbd_dev = img_request->rbd_dev; 2446 struct rbd_obj_request *obj_request = NULL; 2447 struct rbd_obj_request *next_obj_request; 2448 struct bio *bio_list = NULL; 2449 unsigned int bio_offset = 0; 2450 struct page **pages = NULL; 2451 enum obj_operation_type op_type; 2452 u64 img_offset; 2453 u64 resid; 2454 2455 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2456 (int)type, data_desc); 2457 2458 img_offset = img_request->offset; 2459 resid = img_request->length; 2460 rbd_assert(resid > 0); 2461 op_type = rbd_img_request_op_type(img_request); 2462 2463 if (type == OBJ_REQUEST_BIO) { 2464 bio_list = data_desc; 2465 rbd_assert(img_offset == 2466 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2467 } else if (type == OBJ_REQUEST_PAGES) { 2468 pages = data_desc; 2469 } 2470 2471 while (resid) { 2472 struct ceph_osd_request *osd_req; 2473 const char *object_name; 2474 u64 offset; 2475 u64 length; 2476 2477 object_name = rbd_segment_name(rbd_dev, img_offset); 2478 if (!object_name) 2479 goto out_unwind; 2480 offset = rbd_segment_offset(rbd_dev, img_offset); 2481 length = rbd_segment_length(rbd_dev, img_offset, resid); 2482 obj_request = rbd_obj_request_create(object_name, 2483 offset, length, type); 2484 /* object request has its own copy of the object name */ 2485 rbd_segment_name_free(object_name); 2486 if (!obj_request) 2487 goto out_unwind; 2488 2489 /* 2490 * set obj_request->img_request before creating the 2491 * osd_request so that it gets the right snapc 2492 */ 2493 rbd_img_obj_request_add(img_request, obj_request); 2494 2495 if (type == OBJ_REQUEST_BIO) { 2496 unsigned int clone_size; 2497 2498 rbd_assert(length <= (u64)UINT_MAX); 2499 clone_size = (unsigned int)length; 2500 obj_request->bio_list = 2501 bio_chain_clone_range(&bio_list, 2502 &bio_offset, 2503 clone_size, 2504 GFP_ATOMIC); 2505 if (!obj_request->bio_list) 2506 goto out_unwind; 2507 } else if (type == OBJ_REQUEST_PAGES) { 2508 unsigned int page_count; 2509 2510 obj_request->pages = pages; 2511 page_count = (u32)calc_pages_for(offset, length); 2512 obj_request->page_count = page_count; 2513 if ((offset + length) & ~PAGE_MASK) 2514 page_count--; /* more on last page */ 2515 pages += page_count; 2516 } 2517 2518 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2519 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2520 obj_request); 2521 if (!osd_req) 2522 goto out_unwind; 2523 2524 obj_request->osd_req = osd_req; 2525 obj_request->callback = rbd_img_obj_callback; 2526 obj_request->img_offset = img_offset; 2527 2528 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2529 2530 rbd_img_request_get(img_request); 2531 2532 img_offset += length; 2533 resid -= length; 2534 } 2535 2536 return 0; 2537 2538 out_unwind: 2539 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2540 rbd_img_obj_request_del(img_request, obj_request); 2541 2542 return -ENOMEM; 2543 } 2544 2545 static void 2546 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2547 { 2548 struct rbd_img_request *img_request; 2549 struct rbd_device *rbd_dev; 2550 struct page **pages; 2551 u32 page_count; 2552 2553 dout("%s: obj %p\n", __func__, obj_request); 2554 2555 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2556 obj_request->type == OBJ_REQUEST_NODATA); 2557 rbd_assert(obj_request_img_data_test(obj_request)); 2558 img_request = obj_request->img_request; 2559 rbd_assert(img_request); 2560 2561 rbd_dev = img_request->rbd_dev; 2562 rbd_assert(rbd_dev); 2563 2564 pages = obj_request->copyup_pages; 2565 rbd_assert(pages != NULL); 2566 obj_request->copyup_pages = NULL; 2567 page_count = obj_request->copyup_page_count; 2568 rbd_assert(page_count); 2569 obj_request->copyup_page_count = 0; 2570 ceph_release_page_vector(pages, page_count); 2571 2572 /* 2573 * We want the transfer count to reflect the size of the 2574 * original write request. There is no such thing as a 2575 * successful short write, so if the request was successful 2576 * we can just set it to the originally-requested length. 2577 */ 2578 if (!obj_request->result) 2579 obj_request->xferred = obj_request->length; 2580 2581 obj_request_done_set(obj_request); 2582 } 2583 2584 static void 2585 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2586 { 2587 struct rbd_obj_request *orig_request; 2588 struct ceph_osd_request *osd_req; 2589 struct ceph_osd_client *osdc; 2590 struct rbd_device *rbd_dev; 2591 struct page **pages; 2592 enum obj_operation_type op_type; 2593 u32 page_count; 2594 int img_result; 2595 u64 parent_length; 2596 2597 rbd_assert(img_request_child_test(img_request)); 2598 2599 /* First get what we need from the image request */ 2600 2601 pages = img_request->copyup_pages; 2602 rbd_assert(pages != NULL); 2603 img_request->copyup_pages = NULL; 2604 page_count = img_request->copyup_page_count; 2605 rbd_assert(page_count); 2606 img_request->copyup_page_count = 0; 2607 2608 orig_request = img_request->obj_request; 2609 rbd_assert(orig_request != NULL); 2610 rbd_assert(obj_request_type_valid(orig_request->type)); 2611 img_result = img_request->result; 2612 parent_length = img_request->length; 2613 rbd_assert(parent_length == img_request->xferred); 2614 rbd_img_request_put(img_request); 2615 2616 rbd_assert(orig_request->img_request); 2617 rbd_dev = orig_request->img_request->rbd_dev; 2618 rbd_assert(rbd_dev); 2619 2620 /* 2621 * If the overlap has become 0 (most likely because the 2622 * image has been flattened) we need to free the pages 2623 * and re-submit the original write request. 2624 */ 2625 if (!rbd_dev->parent_overlap) { 2626 struct ceph_osd_client *osdc; 2627 2628 ceph_release_page_vector(pages, page_count); 2629 osdc = &rbd_dev->rbd_client->client->osdc; 2630 img_result = rbd_obj_request_submit(osdc, orig_request); 2631 if (!img_result) 2632 return; 2633 } 2634 2635 if (img_result) 2636 goto out_err; 2637 2638 /* 2639 * The original osd request is of no use to use any more. 2640 * We need a new one that can hold the three ops in a copyup 2641 * request. Allocate the new copyup osd request for the 2642 * original request, and release the old one. 2643 */ 2644 img_result = -ENOMEM; 2645 osd_req = rbd_osd_req_create_copyup(orig_request); 2646 if (!osd_req) 2647 goto out_err; 2648 rbd_osd_req_destroy(orig_request->osd_req); 2649 orig_request->osd_req = osd_req; 2650 orig_request->copyup_pages = pages; 2651 orig_request->copyup_page_count = page_count; 2652 2653 /* Initialize the copyup op */ 2654 2655 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2656 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2657 false, false); 2658 2659 /* Add the other op(s) */ 2660 2661 op_type = rbd_img_request_op_type(orig_request->img_request); 2662 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2663 2664 /* All set, send it off. */ 2665 2666 osdc = &rbd_dev->rbd_client->client->osdc; 2667 img_result = rbd_obj_request_submit(osdc, orig_request); 2668 if (!img_result) 2669 return; 2670 out_err: 2671 /* Record the error code and complete the request */ 2672 2673 orig_request->result = img_result; 2674 orig_request->xferred = 0; 2675 obj_request_done_set(orig_request); 2676 rbd_obj_request_complete(orig_request); 2677 } 2678 2679 /* 2680 * Read from the parent image the range of data that covers the 2681 * entire target of the given object request. This is used for 2682 * satisfying a layered image write request when the target of an 2683 * object request from the image request does not exist. 2684 * 2685 * A page array big enough to hold the returned data is allocated 2686 * and supplied to rbd_img_request_fill() as the "data descriptor." 2687 * When the read completes, this page array will be transferred to 2688 * the original object request for the copyup operation. 2689 * 2690 * If an error occurs, record it as the result of the original 2691 * object request and mark it done so it gets completed. 2692 */ 2693 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2694 { 2695 struct rbd_img_request *img_request = NULL; 2696 struct rbd_img_request *parent_request = NULL; 2697 struct rbd_device *rbd_dev; 2698 u64 img_offset; 2699 u64 length; 2700 struct page **pages = NULL; 2701 u32 page_count; 2702 int result; 2703 2704 rbd_assert(obj_request_img_data_test(obj_request)); 2705 rbd_assert(obj_request_type_valid(obj_request->type)); 2706 2707 img_request = obj_request->img_request; 2708 rbd_assert(img_request != NULL); 2709 rbd_dev = img_request->rbd_dev; 2710 rbd_assert(rbd_dev->parent != NULL); 2711 2712 /* 2713 * Determine the byte range covered by the object in the 2714 * child image to which the original request was to be sent. 2715 */ 2716 img_offset = obj_request->img_offset - obj_request->offset; 2717 length = (u64)1 << rbd_dev->header.obj_order; 2718 2719 /* 2720 * There is no defined parent data beyond the parent 2721 * overlap, so limit what we read at that boundary if 2722 * necessary. 2723 */ 2724 if (img_offset + length > rbd_dev->parent_overlap) { 2725 rbd_assert(img_offset < rbd_dev->parent_overlap); 2726 length = rbd_dev->parent_overlap - img_offset; 2727 } 2728 2729 /* 2730 * Allocate a page array big enough to receive the data read 2731 * from the parent. 2732 */ 2733 page_count = (u32)calc_pages_for(0, length); 2734 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2735 if (IS_ERR(pages)) { 2736 result = PTR_ERR(pages); 2737 pages = NULL; 2738 goto out_err; 2739 } 2740 2741 result = -ENOMEM; 2742 parent_request = rbd_parent_request_create(obj_request, 2743 img_offset, length); 2744 if (!parent_request) 2745 goto out_err; 2746 2747 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2748 if (result) 2749 goto out_err; 2750 parent_request->copyup_pages = pages; 2751 parent_request->copyup_page_count = page_count; 2752 2753 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2754 result = rbd_img_request_submit(parent_request); 2755 if (!result) 2756 return 0; 2757 2758 parent_request->copyup_pages = NULL; 2759 parent_request->copyup_page_count = 0; 2760 parent_request->obj_request = NULL; 2761 rbd_obj_request_put(obj_request); 2762 out_err: 2763 if (pages) 2764 ceph_release_page_vector(pages, page_count); 2765 if (parent_request) 2766 rbd_img_request_put(parent_request); 2767 obj_request->result = result; 2768 obj_request->xferred = 0; 2769 obj_request_done_set(obj_request); 2770 2771 return result; 2772 } 2773 2774 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2775 { 2776 struct rbd_obj_request *orig_request; 2777 struct rbd_device *rbd_dev; 2778 int result; 2779 2780 rbd_assert(!obj_request_img_data_test(obj_request)); 2781 2782 /* 2783 * All we need from the object request is the original 2784 * request and the result of the STAT op. Grab those, then 2785 * we're done with the request. 2786 */ 2787 orig_request = obj_request->obj_request; 2788 obj_request->obj_request = NULL; 2789 rbd_obj_request_put(orig_request); 2790 rbd_assert(orig_request); 2791 rbd_assert(orig_request->img_request); 2792 2793 result = obj_request->result; 2794 obj_request->result = 0; 2795 2796 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2797 obj_request, orig_request, result, 2798 obj_request->xferred, obj_request->length); 2799 rbd_obj_request_put(obj_request); 2800 2801 /* 2802 * If the overlap has become 0 (most likely because the 2803 * image has been flattened) we need to free the pages 2804 * and re-submit the original write request. 2805 */ 2806 rbd_dev = orig_request->img_request->rbd_dev; 2807 if (!rbd_dev->parent_overlap) { 2808 struct ceph_osd_client *osdc; 2809 2810 osdc = &rbd_dev->rbd_client->client->osdc; 2811 result = rbd_obj_request_submit(osdc, orig_request); 2812 if (!result) 2813 return; 2814 } 2815 2816 /* 2817 * Our only purpose here is to determine whether the object 2818 * exists, and we don't want to treat the non-existence as 2819 * an error. If something else comes back, transfer the 2820 * error to the original request and complete it now. 2821 */ 2822 if (!result) { 2823 obj_request_existence_set(orig_request, true); 2824 } else if (result == -ENOENT) { 2825 obj_request_existence_set(orig_request, false); 2826 } else if (result) { 2827 orig_request->result = result; 2828 goto out; 2829 } 2830 2831 /* 2832 * Resubmit the original request now that we have recorded 2833 * whether the target object exists. 2834 */ 2835 orig_request->result = rbd_img_obj_request_submit(orig_request); 2836 out: 2837 if (orig_request->result) 2838 rbd_obj_request_complete(orig_request); 2839 } 2840 2841 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2842 { 2843 struct rbd_obj_request *stat_request; 2844 struct rbd_device *rbd_dev; 2845 struct ceph_osd_client *osdc; 2846 struct page **pages = NULL; 2847 u32 page_count; 2848 size_t size; 2849 int ret; 2850 2851 /* 2852 * The response data for a STAT call consists of: 2853 * le64 length; 2854 * struct { 2855 * le32 tv_sec; 2856 * le32 tv_nsec; 2857 * } mtime; 2858 */ 2859 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2860 page_count = (u32)calc_pages_for(0, size); 2861 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2862 if (IS_ERR(pages)) 2863 return PTR_ERR(pages); 2864 2865 ret = -ENOMEM; 2866 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2867 OBJ_REQUEST_PAGES); 2868 if (!stat_request) 2869 goto out; 2870 2871 rbd_obj_request_get(obj_request); 2872 stat_request->obj_request = obj_request; 2873 stat_request->pages = pages; 2874 stat_request->page_count = page_count; 2875 2876 rbd_assert(obj_request->img_request); 2877 rbd_dev = obj_request->img_request->rbd_dev; 2878 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2879 stat_request); 2880 if (!stat_request->osd_req) 2881 goto out; 2882 stat_request->callback = rbd_img_obj_exists_callback; 2883 2884 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2885 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2886 false, false); 2887 rbd_osd_req_format_read(stat_request); 2888 2889 osdc = &rbd_dev->rbd_client->client->osdc; 2890 ret = rbd_obj_request_submit(osdc, stat_request); 2891 out: 2892 if (ret) 2893 rbd_obj_request_put(obj_request); 2894 2895 return ret; 2896 } 2897 2898 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2899 { 2900 struct rbd_img_request *img_request; 2901 struct rbd_device *rbd_dev; 2902 2903 rbd_assert(obj_request_img_data_test(obj_request)); 2904 2905 img_request = obj_request->img_request; 2906 rbd_assert(img_request); 2907 rbd_dev = img_request->rbd_dev; 2908 2909 /* Reads */ 2910 if (!img_request_write_test(img_request) && 2911 !img_request_discard_test(img_request)) 2912 return true; 2913 2914 /* Non-layered writes */ 2915 if (!img_request_layered_test(img_request)) 2916 return true; 2917 2918 /* 2919 * Layered writes outside of the parent overlap range don't 2920 * share any data with the parent. 2921 */ 2922 if (!obj_request_overlaps_parent(obj_request)) 2923 return true; 2924 2925 /* 2926 * Entire-object layered writes - we will overwrite whatever 2927 * parent data there is anyway. 2928 */ 2929 if (!obj_request->offset && 2930 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2931 return true; 2932 2933 /* 2934 * If the object is known to already exist, its parent data has 2935 * already been copied. 2936 */ 2937 if (obj_request_known_test(obj_request) && 2938 obj_request_exists_test(obj_request)) 2939 return true; 2940 2941 return false; 2942 } 2943 2944 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2945 { 2946 if (img_obj_request_simple(obj_request)) { 2947 struct rbd_device *rbd_dev; 2948 struct ceph_osd_client *osdc; 2949 2950 rbd_dev = obj_request->img_request->rbd_dev; 2951 osdc = &rbd_dev->rbd_client->client->osdc; 2952 2953 return rbd_obj_request_submit(osdc, obj_request); 2954 } 2955 2956 /* 2957 * It's a layered write. The target object might exist but 2958 * we may not know that yet. If we know it doesn't exist, 2959 * start by reading the data for the full target object from 2960 * the parent so we can use it for a copyup to the target. 2961 */ 2962 if (obj_request_known_test(obj_request)) 2963 return rbd_img_obj_parent_read_full(obj_request); 2964 2965 /* We don't know whether the target exists. Go find out. */ 2966 2967 return rbd_img_obj_exists_submit(obj_request); 2968 } 2969 2970 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2971 { 2972 struct rbd_obj_request *obj_request; 2973 struct rbd_obj_request *next_obj_request; 2974 2975 dout("%s: img %p\n", __func__, img_request); 2976 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2977 int ret; 2978 2979 ret = rbd_img_obj_request_submit(obj_request); 2980 if (ret) 2981 return ret; 2982 } 2983 2984 return 0; 2985 } 2986 2987 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2988 { 2989 struct rbd_obj_request *obj_request; 2990 struct rbd_device *rbd_dev; 2991 u64 obj_end; 2992 u64 img_xferred; 2993 int img_result; 2994 2995 rbd_assert(img_request_child_test(img_request)); 2996 2997 /* First get what we need from the image request and release it */ 2998 2999 obj_request = img_request->obj_request; 3000 img_xferred = img_request->xferred; 3001 img_result = img_request->result; 3002 rbd_img_request_put(img_request); 3003 3004 /* 3005 * If the overlap has become 0 (most likely because the 3006 * image has been flattened) we need to re-submit the 3007 * original request. 3008 */ 3009 rbd_assert(obj_request); 3010 rbd_assert(obj_request->img_request); 3011 rbd_dev = obj_request->img_request->rbd_dev; 3012 if (!rbd_dev->parent_overlap) { 3013 struct ceph_osd_client *osdc; 3014 3015 osdc = &rbd_dev->rbd_client->client->osdc; 3016 img_result = rbd_obj_request_submit(osdc, obj_request); 3017 if (!img_result) 3018 return; 3019 } 3020 3021 obj_request->result = img_result; 3022 if (obj_request->result) 3023 goto out; 3024 3025 /* 3026 * We need to zero anything beyond the parent overlap 3027 * boundary. Since rbd_img_obj_request_read_callback() 3028 * will zero anything beyond the end of a short read, an 3029 * easy way to do this is to pretend the data from the 3030 * parent came up short--ending at the overlap boundary. 3031 */ 3032 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3033 obj_end = obj_request->img_offset + obj_request->length; 3034 if (obj_end > rbd_dev->parent_overlap) { 3035 u64 xferred = 0; 3036 3037 if (obj_request->img_offset < rbd_dev->parent_overlap) 3038 xferred = rbd_dev->parent_overlap - 3039 obj_request->img_offset; 3040 3041 obj_request->xferred = min(img_xferred, xferred); 3042 } else { 3043 obj_request->xferred = img_xferred; 3044 } 3045 out: 3046 rbd_img_obj_request_read_callback(obj_request); 3047 rbd_obj_request_complete(obj_request); 3048 } 3049 3050 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3051 { 3052 struct rbd_img_request *img_request; 3053 int result; 3054 3055 rbd_assert(obj_request_img_data_test(obj_request)); 3056 rbd_assert(obj_request->img_request != NULL); 3057 rbd_assert(obj_request->result == (s32) -ENOENT); 3058 rbd_assert(obj_request_type_valid(obj_request->type)); 3059 3060 /* rbd_read_finish(obj_request, obj_request->length); */ 3061 img_request = rbd_parent_request_create(obj_request, 3062 obj_request->img_offset, 3063 obj_request->length); 3064 result = -ENOMEM; 3065 if (!img_request) 3066 goto out_err; 3067 3068 if (obj_request->type == OBJ_REQUEST_BIO) 3069 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3070 obj_request->bio_list); 3071 else 3072 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3073 obj_request->pages); 3074 if (result) 3075 goto out_err; 3076 3077 img_request->callback = rbd_img_parent_read_callback; 3078 result = rbd_img_request_submit(img_request); 3079 if (result) 3080 goto out_err; 3081 3082 return; 3083 out_err: 3084 if (img_request) 3085 rbd_img_request_put(img_request); 3086 obj_request->result = result; 3087 obj_request->xferred = 0; 3088 obj_request_done_set(obj_request); 3089 } 3090 3091 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3092 { 3093 struct rbd_obj_request *obj_request; 3094 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3095 int ret; 3096 3097 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3098 OBJ_REQUEST_NODATA); 3099 if (!obj_request) 3100 return -ENOMEM; 3101 3102 ret = -ENOMEM; 3103 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3104 obj_request); 3105 if (!obj_request->osd_req) 3106 goto out; 3107 3108 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3109 notify_id, 0, 0); 3110 rbd_osd_req_format_read(obj_request); 3111 3112 ret = rbd_obj_request_submit(osdc, obj_request); 3113 if (ret) 3114 goto out; 3115 ret = rbd_obj_request_wait(obj_request); 3116 out: 3117 rbd_obj_request_put(obj_request); 3118 3119 return ret; 3120 } 3121 3122 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3123 { 3124 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3125 int ret; 3126 3127 if (!rbd_dev) 3128 return; 3129 3130 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3131 rbd_dev->header_name, (unsigned long long)notify_id, 3132 (unsigned int)opcode); 3133 3134 /* 3135 * Until adequate refresh error handling is in place, there is 3136 * not much we can do here, except warn. 3137 * 3138 * See http://tracker.ceph.com/issues/5040 3139 */ 3140 ret = rbd_dev_refresh(rbd_dev); 3141 if (ret) 3142 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3143 3144 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3145 if (ret) 3146 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3147 } 3148 3149 /* 3150 * Send a (un)watch request and wait for the ack. Return a request 3151 * with a ref held on success or error. 3152 */ 3153 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3154 struct rbd_device *rbd_dev, 3155 bool watch) 3156 { 3157 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3158 struct ceph_options *opts = osdc->client->options; 3159 struct rbd_obj_request *obj_request; 3160 int ret; 3161 3162 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3163 OBJ_REQUEST_NODATA); 3164 if (!obj_request) 3165 return ERR_PTR(-ENOMEM); 3166 3167 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3168 obj_request); 3169 if (!obj_request->osd_req) { 3170 ret = -ENOMEM; 3171 goto out; 3172 } 3173 3174 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3175 rbd_dev->watch_event->cookie, 0, watch); 3176 rbd_osd_req_format_write(obj_request); 3177 3178 if (watch) 3179 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3180 3181 ret = rbd_obj_request_submit(osdc, obj_request); 3182 if (ret) 3183 goto out; 3184 3185 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout); 3186 if (ret) 3187 goto out; 3188 3189 ret = obj_request->result; 3190 if (ret) { 3191 if (watch) 3192 rbd_obj_request_end(obj_request); 3193 goto out; 3194 } 3195 3196 return obj_request; 3197 3198 out: 3199 rbd_obj_request_put(obj_request); 3200 return ERR_PTR(ret); 3201 } 3202 3203 /* 3204 * Initiate a watch request, synchronously. 3205 */ 3206 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3207 { 3208 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3209 struct rbd_obj_request *obj_request; 3210 int ret; 3211 3212 rbd_assert(!rbd_dev->watch_event); 3213 rbd_assert(!rbd_dev->watch_request); 3214 3215 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3216 &rbd_dev->watch_event); 3217 if (ret < 0) 3218 return ret; 3219 3220 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3221 if (IS_ERR(obj_request)) { 3222 ceph_osdc_cancel_event(rbd_dev->watch_event); 3223 rbd_dev->watch_event = NULL; 3224 return PTR_ERR(obj_request); 3225 } 3226 3227 /* 3228 * A watch request is set to linger, so the underlying osd 3229 * request won't go away until we unregister it. We retain 3230 * a pointer to the object request during that time (in 3231 * rbd_dev->watch_request), so we'll keep a reference to it. 3232 * We'll drop that reference after we've unregistered it in 3233 * rbd_dev_header_unwatch_sync(). 3234 */ 3235 rbd_dev->watch_request = obj_request; 3236 3237 return 0; 3238 } 3239 3240 /* 3241 * Tear down a watch request, synchronously. 3242 */ 3243 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3244 { 3245 struct rbd_obj_request *obj_request; 3246 3247 rbd_assert(rbd_dev->watch_event); 3248 rbd_assert(rbd_dev->watch_request); 3249 3250 rbd_obj_request_end(rbd_dev->watch_request); 3251 rbd_obj_request_put(rbd_dev->watch_request); 3252 rbd_dev->watch_request = NULL; 3253 3254 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3255 if (!IS_ERR(obj_request)) 3256 rbd_obj_request_put(obj_request); 3257 else 3258 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3259 PTR_ERR(obj_request)); 3260 3261 ceph_osdc_cancel_event(rbd_dev->watch_event); 3262 rbd_dev->watch_event = NULL; 3263 } 3264 3265 /* 3266 * Synchronous osd object method call. Returns the number of bytes 3267 * returned in the outbound buffer, or a negative error code. 3268 */ 3269 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3270 const char *object_name, 3271 const char *class_name, 3272 const char *method_name, 3273 const void *outbound, 3274 size_t outbound_size, 3275 void *inbound, 3276 size_t inbound_size) 3277 { 3278 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3279 struct rbd_obj_request *obj_request; 3280 struct page **pages; 3281 u32 page_count; 3282 int ret; 3283 3284 /* 3285 * Method calls are ultimately read operations. The result 3286 * should placed into the inbound buffer provided. They 3287 * also supply outbound data--parameters for the object 3288 * method. Currently if this is present it will be a 3289 * snapshot id. 3290 */ 3291 page_count = (u32)calc_pages_for(0, inbound_size); 3292 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3293 if (IS_ERR(pages)) 3294 return PTR_ERR(pages); 3295 3296 ret = -ENOMEM; 3297 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3298 OBJ_REQUEST_PAGES); 3299 if (!obj_request) 3300 goto out; 3301 3302 obj_request->pages = pages; 3303 obj_request->page_count = page_count; 3304 3305 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3306 obj_request); 3307 if (!obj_request->osd_req) 3308 goto out; 3309 3310 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3311 class_name, method_name); 3312 if (outbound_size) { 3313 struct ceph_pagelist *pagelist; 3314 3315 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3316 if (!pagelist) 3317 goto out; 3318 3319 ceph_pagelist_init(pagelist); 3320 ceph_pagelist_append(pagelist, outbound, outbound_size); 3321 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3322 pagelist); 3323 } 3324 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3325 obj_request->pages, inbound_size, 3326 0, false, false); 3327 rbd_osd_req_format_read(obj_request); 3328 3329 ret = rbd_obj_request_submit(osdc, obj_request); 3330 if (ret) 3331 goto out; 3332 ret = rbd_obj_request_wait(obj_request); 3333 if (ret) 3334 goto out; 3335 3336 ret = obj_request->result; 3337 if (ret < 0) 3338 goto out; 3339 3340 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3341 ret = (int)obj_request->xferred; 3342 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3343 out: 3344 if (obj_request) 3345 rbd_obj_request_put(obj_request); 3346 else 3347 ceph_release_page_vector(pages, page_count); 3348 3349 return ret; 3350 } 3351 3352 static void rbd_queue_workfn(struct work_struct *work) 3353 { 3354 struct request *rq = blk_mq_rq_from_pdu(work); 3355 struct rbd_device *rbd_dev = rq->q->queuedata; 3356 struct rbd_img_request *img_request; 3357 struct ceph_snap_context *snapc = NULL; 3358 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3359 u64 length = blk_rq_bytes(rq); 3360 enum obj_operation_type op_type; 3361 u64 mapping_size; 3362 int result; 3363 3364 if (rq->cmd_type != REQ_TYPE_FS) { 3365 dout("%s: non-fs request type %d\n", __func__, 3366 (int) rq->cmd_type); 3367 result = -EIO; 3368 goto err; 3369 } 3370 3371 if (rq->cmd_flags & REQ_DISCARD) 3372 op_type = OBJ_OP_DISCARD; 3373 else if (rq->cmd_flags & REQ_WRITE) 3374 op_type = OBJ_OP_WRITE; 3375 else 3376 op_type = OBJ_OP_READ; 3377 3378 /* Ignore/skip any zero-length requests */ 3379 3380 if (!length) { 3381 dout("%s: zero-length request\n", __func__); 3382 result = 0; 3383 goto err_rq; 3384 } 3385 3386 /* Only reads are allowed to a read-only device */ 3387 3388 if (op_type != OBJ_OP_READ) { 3389 if (rbd_dev->mapping.read_only) { 3390 result = -EROFS; 3391 goto err_rq; 3392 } 3393 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3394 } 3395 3396 /* 3397 * Quit early if the mapped snapshot no longer exists. It's 3398 * still possible the snapshot will have disappeared by the 3399 * time our request arrives at the osd, but there's no sense in 3400 * sending it if we already know. 3401 */ 3402 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3403 dout("request for non-existent snapshot"); 3404 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3405 result = -ENXIO; 3406 goto err_rq; 3407 } 3408 3409 if (offset && length > U64_MAX - offset + 1) { 3410 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3411 length); 3412 result = -EINVAL; 3413 goto err_rq; /* Shouldn't happen */ 3414 } 3415 3416 blk_mq_start_request(rq); 3417 3418 down_read(&rbd_dev->header_rwsem); 3419 mapping_size = rbd_dev->mapping.size; 3420 if (op_type != OBJ_OP_READ) { 3421 snapc = rbd_dev->header.snapc; 3422 ceph_get_snap_context(snapc); 3423 } 3424 up_read(&rbd_dev->header_rwsem); 3425 3426 if (offset + length > mapping_size) { 3427 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3428 length, mapping_size); 3429 result = -EIO; 3430 goto err_rq; 3431 } 3432 3433 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3434 snapc); 3435 if (!img_request) { 3436 result = -ENOMEM; 3437 goto err_rq; 3438 } 3439 img_request->rq = rq; 3440 3441 if (op_type == OBJ_OP_DISCARD) 3442 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3443 NULL); 3444 else 3445 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3446 rq->bio); 3447 if (result) 3448 goto err_img_request; 3449 3450 result = rbd_img_request_submit(img_request); 3451 if (result) 3452 goto err_img_request; 3453 3454 return; 3455 3456 err_img_request: 3457 rbd_img_request_put(img_request); 3458 err_rq: 3459 if (result) 3460 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3461 obj_op_name(op_type), length, offset, result); 3462 ceph_put_snap_context(snapc); 3463 err: 3464 blk_mq_end_request(rq, result); 3465 } 3466 3467 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3468 const struct blk_mq_queue_data *bd) 3469 { 3470 struct request *rq = bd->rq; 3471 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3472 3473 queue_work(rbd_wq, work); 3474 return BLK_MQ_RQ_QUEUE_OK; 3475 } 3476 3477 static void rbd_free_disk(struct rbd_device *rbd_dev) 3478 { 3479 struct gendisk *disk = rbd_dev->disk; 3480 3481 if (!disk) 3482 return; 3483 3484 rbd_dev->disk = NULL; 3485 if (disk->flags & GENHD_FL_UP) { 3486 del_gendisk(disk); 3487 if (disk->queue) 3488 blk_cleanup_queue(disk->queue); 3489 blk_mq_free_tag_set(&rbd_dev->tag_set); 3490 } 3491 put_disk(disk); 3492 } 3493 3494 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3495 const char *object_name, 3496 u64 offset, u64 length, void *buf) 3497 3498 { 3499 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3500 struct rbd_obj_request *obj_request; 3501 struct page **pages = NULL; 3502 u32 page_count; 3503 size_t size; 3504 int ret; 3505 3506 page_count = (u32) calc_pages_for(offset, length); 3507 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3508 if (IS_ERR(pages)) 3509 return PTR_ERR(pages); 3510 3511 ret = -ENOMEM; 3512 obj_request = rbd_obj_request_create(object_name, offset, length, 3513 OBJ_REQUEST_PAGES); 3514 if (!obj_request) 3515 goto out; 3516 3517 obj_request->pages = pages; 3518 obj_request->page_count = page_count; 3519 3520 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3521 obj_request); 3522 if (!obj_request->osd_req) 3523 goto out; 3524 3525 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3526 offset, length, 0, 0); 3527 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3528 obj_request->pages, 3529 obj_request->length, 3530 obj_request->offset & ~PAGE_MASK, 3531 false, false); 3532 rbd_osd_req_format_read(obj_request); 3533 3534 ret = rbd_obj_request_submit(osdc, obj_request); 3535 if (ret) 3536 goto out; 3537 ret = rbd_obj_request_wait(obj_request); 3538 if (ret) 3539 goto out; 3540 3541 ret = obj_request->result; 3542 if (ret < 0) 3543 goto out; 3544 3545 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3546 size = (size_t) obj_request->xferred; 3547 ceph_copy_from_page_vector(pages, buf, 0, size); 3548 rbd_assert(size <= (size_t)INT_MAX); 3549 ret = (int)size; 3550 out: 3551 if (obj_request) 3552 rbd_obj_request_put(obj_request); 3553 else 3554 ceph_release_page_vector(pages, page_count); 3555 3556 return ret; 3557 } 3558 3559 /* 3560 * Read the complete header for the given rbd device. On successful 3561 * return, the rbd_dev->header field will contain up-to-date 3562 * information about the image. 3563 */ 3564 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3565 { 3566 struct rbd_image_header_ondisk *ondisk = NULL; 3567 u32 snap_count = 0; 3568 u64 names_size = 0; 3569 u32 want_count; 3570 int ret; 3571 3572 /* 3573 * The complete header will include an array of its 64-bit 3574 * snapshot ids, followed by the names of those snapshots as 3575 * a contiguous block of NUL-terminated strings. Note that 3576 * the number of snapshots could change by the time we read 3577 * it in, in which case we re-read it. 3578 */ 3579 do { 3580 size_t size; 3581 3582 kfree(ondisk); 3583 3584 size = sizeof (*ondisk); 3585 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3586 size += names_size; 3587 ondisk = kmalloc(size, GFP_KERNEL); 3588 if (!ondisk) 3589 return -ENOMEM; 3590 3591 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3592 0, size, ondisk); 3593 if (ret < 0) 3594 goto out; 3595 if ((size_t)ret < size) { 3596 ret = -ENXIO; 3597 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3598 size, ret); 3599 goto out; 3600 } 3601 if (!rbd_dev_ondisk_valid(ondisk)) { 3602 ret = -ENXIO; 3603 rbd_warn(rbd_dev, "invalid header"); 3604 goto out; 3605 } 3606 3607 names_size = le64_to_cpu(ondisk->snap_names_len); 3608 want_count = snap_count; 3609 snap_count = le32_to_cpu(ondisk->snap_count); 3610 } while (snap_count != want_count); 3611 3612 ret = rbd_header_from_disk(rbd_dev, ondisk); 3613 out: 3614 kfree(ondisk); 3615 3616 return ret; 3617 } 3618 3619 /* 3620 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3621 * has disappeared from the (just updated) snapshot context. 3622 */ 3623 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3624 { 3625 u64 snap_id; 3626 3627 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3628 return; 3629 3630 snap_id = rbd_dev->spec->snap_id; 3631 if (snap_id == CEPH_NOSNAP) 3632 return; 3633 3634 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3635 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3636 } 3637 3638 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3639 { 3640 sector_t size; 3641 bool removing; 3642 3643 /* 3644 * Don't hold the lock while doing disk operations, 3645 * or lock ordering will conflict with the bdev mutex via: 3646 * rbd_add() -> blkdev_get() -> rbd_open() 3647 */ 3648 spin_lock_irq(&rbd_dev->lock); 3649 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3650 spin_unlock_irq(&rbd_dev->lock); 3651 /* 3652 * If the device is being removed, rbd_dev->disk has 3653 * been destroyed, so don't try to update its size 3654 */ 3655 if (!removing) { 3656 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3657 dout("setting size to %llu sectors", (unsigned long long)size); 3658 set_capacity(rbd_dev->disk, size); 3659 revalidate_disk(rbd_dev->disk); 3660 } 3661 } 3662 3663 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3664 { 3665 u64 mapping_size; 3666 int ret; 3667 3668 down_write(&rbd_dev->header_rwsem); 3669 mapping_size = rbd_dev->mapping.size; 3670 3671 ret = rbd_dev_header_info(rbd_dev); 3672 if (ret) 3673 goto out; 3674 3675 /* 3676 * If there is a parent, see if it has disappeared due to the 3677 * mapped image getting flattened. 3678 */ 3679 if (rbd_dev->parent) { 3680 ret = rbd_dev_v2_parent_info(rbd_dev); 3681 if (ret) 3682 goto out; 3683 } 3684 3685 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3686 rbd_dev->mapping.size = rbd_dev->header.image_size; 3687 } else { 3688 /* validate mapped snapshot's EXISTS flag */ 3689 rbd_exists_validate(rbd_dev); 3690 } 3691 3692 out: 3693 up_write(&rbd_dev->header_rwsem); 3694 if (!ret && mapping_size != rbd_dev->mapping.size) 3695 rbd_dev_update_size(rbd_dev); 3696 3697 return ret; 3698 } 3699 3700 static int rbd_init_request(void *data, struct request *rq, 3701 unsigned int hctx_idx, unsigned int request_idx, 3702 unsigned int numa_node) 3703 { 3704 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3705 3706 INIT_WORK(work, rbd_queue_workfn); 3707 return 0; 3708 } 3709 3710 static struct blk_mq_ops rbd_mq_ops = { 3711 .queue_rq = rbd_queue_rq, 3712 .map_queue = blk_mq_map_queue, 3713 .init_request = rbd_init_request, 3714 }; 3715 3716 static int rbd_init_disk(struct rbd_device *rbd_dev) 3717 { 3718 struct gendisk *disk; 3719 struct request_queue *q; 3720 u64 segment_size; 3721 int err; 3722 3723 /* create gendisk info */ 3724 disk = alloc_disk(single_major ? 3725 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3726 RBD_MINORS_PER_MAJOR); 3727 if (!disk) 3728 return -ENOMEM; 3729 3730 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3731 rbd_dev->dev_id); 3732 disk->major = rbd_dev->major; 3733 disk->first_minor = rbd_dev->minor; 3734 if (single_major) 3735 disk->flags |= GENHD_FL_EXT_DEVT; 3736 disk->fops = &rbd_bd_ops; 3737 disk->private_data = rbd_dev; 3738 3739 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3740 rbd_dev->tag_set.ops = &rbd_mq_ops; 3741 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3742 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3743 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3744 rbd_dev->tag_set.nr_hw_queues = 1; 3745 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3746 3747 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3748 if (err) 3749 goto out_disk; 3750 3751 q = blk_mq_init_queue(&rbd_dev->tag_set); 3752 if (IS_ERR(q)) { 3753 err = PTR_ERR(q); 3754 goto out_tag_set; 3755 } 3756 3757 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3758 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3759 3760 /* set io sizes to object size */ 3761 segment_size = rbd_obj_bytes(&rbd_dev->header); 3762 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3763 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 3764 blk_queue_max_segment_size(q, segment_size); 3765 blk_queue_io_min(q, segment_size); 3766 blk_queue_io_opt(q, segment_size); 3767 3768 /* enable the discard support */ 3769 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3770 q->limits.discard_granularity = segment_size; 3771 q->limits.discard_alignment = segment_size; 3772 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 3773 q->limits.discard_zeroes_data = 1; 3774 3775 disk->queue = q; 3776 3777 q->queuedata = rbd_dev; 3778 3779 rbd_dev->disk = disk; 3780 3781 return 0; 3782 out_tag_set: 3783 blk_mq_free_tag_set(&rbd_dev->tag_set); 3784 out_disk: 3785 put_disk(disk); 3786 return err; 3787 } 3788 3789 /* 3790 sysfs 3791 */ 3792 3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3794 { 3795 return container_of(dev, struct rbd_device, dev); 3796 } 3797 3798 static ssize_t rbd_size_show(struct device *dev, 3799 struct device_attribute *attr, char *buf) 3800 { 3801 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3802 3803 return sprintf(buf, "%llu\n", 3804 (unsigned long long)rbd_dev->mapping.size); 3805 } 3806 3807 /* 3808 * Note this shows the features for whatever's mapped, which is not 3809 * necessarily the base image. 3810 */ 3811 static ssize_t rbd_features_show(struct device *dev, 3812 struct device_attribute *attr, char *buf) 3813 { 3814 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3815 3816 return sprintf(buf, "0x%016llx\n", 3817 (unsigned long long)rbd_dev->mapping.features); 3818 } 3819 3820 static ssize_t rbd_major_show(struct device *dev, 3821 struct device_attribute *attr, char *buf) 3822 { 3823 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3824 3825 if (rbd_dev->major) 3826 return sprintf(buf, "%d\n", rbd_dev->major); 3827 3828 return sprintf(buf, "(none)\n"); 3829 } 3830 3831 static ssize_t rbd_minor_show(struct device *dev, 3832 struct device_attribute *attr, char *buf) 3833 { 3834 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3835 3836 return sprintf(buf, "%d\n", rbd_dev->minor); 3837 } 3838 3839 static ssize_t rbd_client_id_show(struct device *dev, 3840 struct device_attribute *attr, char *buf) 3841 { 3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3843 3844 return sprintf(buf, "client%lld\n", 3845 ceph_client_id(rbd_dev->rbd_client->client)); 3846 } 3847 3848 static ssize_t rbd_pool_show(struct device *dev, 3849 struct device_attribute *attr, char *buf) 3850 { 3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3852 3853 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3854 } 3855 3856 static ssize_t rbd_pool_id_show(struct device *dev, 3857 struct device_attribute *attr, char *buf) 3858 { 3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3860 3861 return sprintf(buf, "%llu\n", 3862 (unsigned long long) rbd_dev->spec->pool_id); 3863 } 3864 3865 static ssize_t rbd_name_show(struct device *dev, 3866 struct device_attribute *attr, char *buf) 3867 { 3868 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3869 3870 if (rbd_dev->spec->image_name) 3871 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3872 3873 return sprintf(buf, "(unknown)\n"); 3874 } 3875 3876 static ssize_t rbd_image_id_show(struct device *dev, 3877 struct device_attribute *attr, char *buf) 3878 { 3879 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3880 3881 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3882 } 3883 3884 /* 3885 * Shows the name of the currently-mapped snapshot (or 3886 * RBD_SNAP_HEAD_NAME for the base image). 3887 */ 3888 static ssize_t rbd_snap_show(struct device *dev, 3889 struct device_attribute *attr, 3890 char *buf) 3891 { 3892 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3893 3894 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3895 } 3896 3897 /* 3898 * For a v2 image, shows the chain of parent images, separated by empty 3899 * lines. For v1 images or if there is no parent, shows "(no parent 3900 * image)". 3901 */ 3902 static ssize_t rbd_parent_show(struct device *dev, 3903 struct device_attribute *attr, 3904 char *buf) 3905 { 3906 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3907 ssize_t count = 0; 3908 3909 if (!rbd_dev->parent) 3910 return sprintf(buf, "(no parent image)\n"); 3911 3912 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3913 struct rbd_spec *spec = rbd_dev->parent_spec; 3914 3915 count += sprintf(&buf[count], "%s" 3916 "pool_id %llu\npool_name %s\n" 3917 "image_id %s\nimage_name %s\n" 3918 "snap_id %llu\nsnap_name %s\n" 3919 "overlap %llu\n", 3920 !count ? "" : "\n", /* first? */ 3921 spec->pool_id, spec->pool_name, 3922 spec->image_id, spec->image_name ?: "(unknown)", 3923 spec->snap_id, spec->snap_name, 3924 rbd_dev->parent_overlap); 3925 } 3926 3927 return count; 3928 } 3929 3930 static ssize_t rbd_image_refresh(struct device *dev, 3931 struct device_attribute *attr, 3932 const char *buf, 3933 size_t size) 3934 { 3935 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3936 int ret; 3937 3938 ret = rbd_dev_refresh(rbd_dev); 3939 if (ret) 3940 return ret; 3941 3942 return size; 3943 } 3944 3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3957 3958 static struct attribute *rbd_attrs[] = { 3959 &dev_attr_size.attr, 3960 &dev_attr_features.attr, 3961 &dev_attr_major.attr, 3962 &dev_attr_minor.attr, 3963 &dev_attr_client_id.attr, 3964 &dev_attr_pool.attr, 3965 &dev_attr_pool_id.attr, 3966 &dev_attr_name.attr, 3967 &dev_attr_image_id.attr, 3968 &dev_attr_current_snap.attr, 3969 &dev_attr_parent.attr, 3970 &dev_attr_refresh.attr, 3971 NULL 3972 }; 3973 3974 static struct attribute_group rbd_attr_group = { 3975 .attrs = rbd_attrs, 3976 }; 3977 3978 static const struct attribute_group *rbd_attr_groups[] = { 3979 &rbd_attr_group, 3980 NULL 3981 }; 3982 3983 static void rbd_sysfs_dev_release(struct device *dev) 3984 { 3985 } 3986 3987 static struct device_type rbd_device_type = { 3988 .name = "rbd", 3989 .groups = rbd_attr_groups, 3990 .release = rbd_sysfs_dev_release, 3991 }; 3992 3993 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3994 { 3995 kref_get(&spec->kref); 3996 3997 return spec; 3998 } 3999 4000 static void rbd_spec_free(struct kref *kref); 4001 static void rbd_spec_put(struct rbd_spec *spec) 4002 { 4003 if (spec) 4004 kref_put(&spec->kref, rbd_spec_free); 4005 } 4006 4007 static struct rbd_spec *rbd_spec_alloc(void) 4008 { 4009 struct rbd_spec *spec; 4010 4011 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4012 if (!spec) 4013 return NULL; 4014 4015 spec->pool_id = CEPH_NOPOOL; 4016 spec->snap_id = CEPH_NOSNAP; 4017 kref_init(&spec->kref); 4018 4019 return spec; 4020 } 4021 4022 static void rbd_spec_free(struct kref *kref) 4023 { 4024 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4025 4026 kfree(spec->pool_name); 4027 kfree(spec->image_id); 4028 kfree(spec->image_name); 4029 kfree(spec->snap_name); 4030 kfree(spec); 4031 } 4032 4033 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4034 struct rbd_spec *spec, 4035 struct rbd_options *opts) 4036 { 4037 struct rbd_device *rbd_dev; 4038 4039 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4040 if (!rbd_dev) 4041 return NULL; 4042 4043 spin_lock_init(&rbd_dev->lock); 4044 rbd_dev->flags = 0; 4045 atomic_set(&rbd_dev->parent_ref, 0); 4046 INIT_LIST_HEAD(&rbd_dev->node); 4047 init_rwsem(&rbd_dev->header_rwsem); 4048 4049 rbd_dev->rbd_client = rbdc; 4050 rbd_dev->spec = spec; 4051 rbd_dev->opts = opts; 4052 4053 /* Initialize the layout used for all rbd requests */ 4054 4055 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4056 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4057 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4058 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4059 4060 return rbd_dev; 4061 } 4062 4063 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4064 { 4065 rbd_put_client(rbd_dev->rbd_client); 4066 rbd_spec_put(rbd_dev->spec); 4067 kfree(rbd_dev->opts); 4068 kfree(rbd_dev); 4069 } 4070 4071 /* 4072 * Get the size and object order for an image snapshot, or if 4073 * snap_id is CEPH_NOSNAP, gets this information for the base 4074 * image. 4075 */ 4076 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4077 u8 *order, u64 *snap_size) 4078 { 4079 __le64 snapid = cpu_to_le64(snap_id); 4080 int ret; 4081 struct { 4082 u8 order; 4083 __le64 size; 4084 } __attribute__ ((packed)) size_buf = { 0 }; 4085 4086 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4087 "rbd", "get_size", 4088 &snapid, sizeof (snapid), 4089 &size_buf, sizeof (size_buf)); 4090 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4091 if (ret < 0) 4092 return ret; 4093 if (ret < sizeof (size_buf)) 4094 return -ERANGE; 4095 4096 if (order) { 4097 *order = size_buf.order; 4098 dout(" order %u", (unsigned int)*order); 4099 } 4100 *snap_size = le64_to_cpu(size_buf.size); 4101 4102 dout(" snap_id 0x%016llx snap_size = %llu\n", 4103 (unsigned long long)snap_id, 4104 (unsigned long long)*snap_size); 4105 4106 return 0; 4107 } 4108 4109 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4110 { 4111 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4112 &rbd_dev->header.obj_order, 4113 &rbd_dev->header.image_size); 4114 } 4115 4116 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4117 { 4118 void *reply_buf; 4119 int ret; 4120 void *p; 4121 4122 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4123 if (!reply_buf) 4124 return -ENOMEM; 4125 4126 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4127 "rbd", "get_object_prefix", NULL, 0, 4128 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4129 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4130 if (ret < 0) 4131 goto out; 4132 4133 p = reply_buf; 4134 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4135 p + ret, NULL, GFP_NOIO); 4136 ret = 0; 4137 4138 if (IS_ERR(rbd_dev->header.object_prefix)) { 4139 ret = PTR_ERR(rbd_dev->header.object_prefix); 4140 rbd_dev->header.object_prefix = NULL; 4141 } else { 4142 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4143 } 4144 out: 4145 kfree(reply_buf); 4146 4147 return ret; 4148 } 4149 4150 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4151 u64 *snap_features) 4152 { 4153 __le64 snapid = cpu_to_le64(snap_id); 4154 struct { 4155 __le64 features; 4156 __le64 incompat; 4157 } __attribute__ ((packed)) features_buf = { 0 }; 4158 u64 incompat; 4159 int ret; 4160 4161 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4162 "rbd", "get_features", 4163 &snapid, sizeof (snapid), 4164 &features_buf, sizeof (features_buf)); 4165 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4166 if (ret < 0) 4167 return ret; 4168 if (ret < sizeof (features_buf)) 4169 return -ERANGE; 4170 4171 incompat = le64_to_cpu(features_buf.incompat); 4172 if (incompat & ~RBD_FEATURES_SUPPORTED) 4173 return -ENXIO; 4174 4175 *snap_features = le64_to_cpu(features_buf.features); 4176 4177 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4178 (unsigned long long)snap_id, 4179 (unsigned long long)*snap_features, 4180 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4181 4182 return 0; 4183 } 4184 4185 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4186 { 4187 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4188 &rbd_dev->header.features); 4189 } 4190 4191 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4192 { 4193 struct rbd_spec *parent_spec; 4194 size_t size; 4195 void *reply_buf = NULL; 4196 __le64 snapid; 4197 void *p; 4198 void *end; 4199 u64 pool_id; 4200 char *image_id; 4201 u64 snap_id; 4202 u64 overlap; 4203 int ret; 4204 4205 parent_spec = rbd_spec_alloc(); 4206 if (!parent_spec) 4207 return -ENOMEM; 4208 4209 size = sizeof (__le64) + /* pool_id */ 4210 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4211 sizeof (__le64) + /* snap_id */ 4212 sizeof (__le64); /* overlap */ 4213 reply_buf = kmalloc(size, GFP_KERNEL); 4214 if (!reply_buf) { 4215 ret = -ENOMEM; 4216 goto out_err; 4217 } 4218 4219 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4220 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4221 "rbd", "get_parent", 4222 &snapid, sizeof (snapid), 4223 reply_buf, size); 4224 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4225 if (ret < 0) 4226 goto out_err; 4227 4228 p = reply_buf; 4229 end = reply_buf + ret; 4230 ret = -ERANGE; 4231 ceph_decode_64_safe(&p, end, pool_id, out_err); 4232 if (pool_id == CEPH_NOPOOL) { 4233 /* 4234 * Either the parent never existed, or we have 4235 * record of it but the image got flattened so it no 4236 * longer has a parent. When the parent of a 4237 * layered image disappears we immediately set the 4238 * overlap to 0. The effect of this is that all new 4239 * requests will be treated as if the image had no 4240 * parent. 4241 */ 4242 if (rbd_dev->parent_overlap) { 4243 rbd_dev->parent_overlap = 0; 4244 rbd_dev_parent_put(rbd_dev); 4245 pr_info("%s: clone image has been flattened\n", 4246 rbd_dev->disk->disk_name); 4247 } 4248 4249 goto out; /* No parent? No problem. */ 4250 } 4251 4252 /* The ceph file layout needs to fit pool id in 32 bits */ 4253 4254 ret = -EIO; 4255 if (pool_id > (u64)U32_MAX) { 4256 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4257 (unsigned long long)pool_id, U32_MAX); 4258 goto out_err; 4259 } 4260 4261 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4262 if (IS_ERR(image_id)) { 4263 ret = PTR_ERR(image_id); 4264 goto out_err; 4265 } 4266 ceph_decode_64_safe(&p, end, snap_id, out_err); 4267 ceph_decode_64_safe(&p, end, overlap, out_err); 4268 4269 /* 4270 * The parent won't change (except when the clone is 4271 * flattened, already handled that). So we only need to 4272 * record the parent spec we have not already done so. 4273 */ 4274 if (!rbd_dev->parent_spec) { 4275 parent_spec->pool_id = pool_id; 4276 parent_spec->image_id = image_id; 4277 parent_spec->snap_id = snap_id; 4278 rbd_dev->parent_spec = parent_spec; 4279 parent_spec = NULL; /* rbd_dev now owns this */ 4280 } else { 4281 kfree(image_id); 4282 } 4283 4284 /* 4285 * We always update the parent overlap. If it's zero we issue 4286 * a warning, as we will proceed as if there was no parent. 4287 */ 4288 if (!overlap) { 4289 if (parent_spec) { 4290 /* refresh, careful to warn just once */ 4291 if (rbd_dev->parent_overlap) 4292 rbd_warn(rbd_dev, 4293 "clone now standalone (overlap became 0)"); 4294 } else { 4295 /* initial probe */ 4296 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4297 } 4298 } 4299 rbd_dev->parent_overlap = overlap; 4300 4301 out: 4302 ret = 0; 4303 out_err: 4304 kfree(reply_buf); 4305 rbd_spec_put(parent_spec); 4306 4307 return ret; 4308 } 4309 4310 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4311 { 4312 struct { 4313 __le64 stripe_unit; 4314 __le64 stripe_count; 4315 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4316 size_t size = sizeof (striping_info_buf); 4317 void *p; 4318 u64 obj_size; 4319 u64 stripe_unit; 4320 u64 stripe_count; 4321 int ret; 4322 4323 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4324 "rbd", "get_stripe_unit_count", NULL, 0, 4325 (char *)&striping_info_buf, size); 4326 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4327 if (ret < 0) 4328 return ret; 4329 if (ret < size) 4330 return -ERANGE; 4331 4332 /* 4333 * We don't actually support the "fancy striping" feature 4334 * (STRIPINGV2) yet, but if the striping sizes are the 4335 * defaults the behavior is the same as before. So find 4336 * out, and only fail if the image has non-default values. 4337 */ 4338 ret = -EINVAL; 4339 obj_size = (u64)1 << rbd_dev->header.obj_order; 4340 p = &striping_info_buf; 4341 stripe_unit = ceph_decode_64(&p); 4342 if (stripe_unit != obj_size) { 4343 rbd_warn(rbd_dev, "unsupported stripe unit " 4344 "(got %llu want %llu)", 4345 stripe_unit, obj_size); 4346 return -EINVAL; 4347 } 4348 stripe_count = ceph_decode_64(&p); 4349 if (stripe_count != 1) { 4350 rbd_warn(rbd_dev, "unsupported stripe count " 4351 "(got %llu want 1)", stripe_count); 4352 return -EINVAL; 4353 } 4354 rbd_dev->header.stripe_unit = stripe_unit; 4355 rbd_dev->header.stripe_count = stripe_count; 4356 4357 return 0; 4358 } 4359 4360 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4361 { 4362 size_t image_id_size; 4363 char *image_id; 4364 void *p; 4365 void *end; 4366 size_t size; 4367 void *reply_buf = NULL; 4368 size_t len = 0; 4369 char *image_name = NULL; 4370 int ret; 4371 4372 rbd_assert(!rbd_dev->spec->image_name); 4373 4374 len = strlen(rbd_dev->spec->image_id); 4375 image_id_size = sizeof (__le32) + len; 4376 image_id = kmalloc(image_id_size, GFP_KERNEL); 4377 if (!image_id) 4378 return NULL; 4379 4380 p = image_id; 4381 end = image_id + image_id_size; 4382 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4383 4384 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4385 reply_buf = kmalloc(size, GFP_KERNEL); 4386 if (!reply_buf) 4387 goto out; 4388 4389 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4390 "rbd", "dir_get_name", 4391 image_id, image_id_size, 4392 reply_buf, size); 4393 if (ret < 0) 4394 goto out; 4395 p = reply_buf; 4396 end = reply_buf + ret; 4397 4398 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4399 if (IS_ERR(image_name)) 4400 image_name = NULL; 4401 else 4402 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4403 out: 4404 kfree(reply_buf); 4405 kfree(image_id); 4406 4407 return image_name; 4408 } 4409 4410 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4411 { 4412 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4413 const char *snap_name; 4414 u32 which = 0; 4415 4416 /* Skip over names until we find the one we are looking for */ 4417 4418 snap_name = rbd_dev->header.snap_names; 4419 while (which < snapc->num_snaps) { 4420 if (!strcmp(name, snap_name)) 4421 return snapc->snaps[which]; 4422 snap_name += strlen(snap_name) + 1; 4423 which++; 4424 } 4425 return CEPH_NOSNAP; 4426 } 4427 4428 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4429 { 4430 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4431 u32 which; 4432 bool found = false; 4433 u64 snap_id; 4434 4435 for (which = 0; !found && which < snapc->num_snaps; which++) { 4436 const char *snap_name; 4437 4438 snap_id = snapc->snaps[which]; 4439 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4440 if (IS_ERR(snap_name)) { 4441 /* ignore no-longer existing snapshots */ 4442 if (PTR_ERR(snap_name) == -ENOENT) 4443 continue; 4444 else 4445 break; 4446 } 4447 found = !strcmp(name, snap_name); 4448 kfree(snap_name); 4449 } 4450 return found ? snap_id : CEPH_NOSNAP; 4451 } 4452 4453 /* 4454 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4455 * no snapshot by that name is found, or if an error occurs. 4456 */ 4457 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4458 { 4459 if (rbd_dev->image_format == 1) 4460 return rbd_v1_snap_id_by_name(rbd_dev, name); 4461 4462 return rbd_v2_snap_id_by_name(rbd_dev, name); 4463 } 4464 4465 /* 4466 * An image being mapped will have everything but the snap id. 4467 */ 4468 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4469 { 4470 struct rbd_spec *spec = rbd_dev->spec; 4471 4472 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4473 rbd_assert(spec->image_id && spec->image_name); 4474 rbd_assert(spec->snap_name); 4475 4476 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4477 u64 snap_id; 4478 4479 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4480 if (snap_id == CEPH_NOSNAP) 4481 return -ENOENT; 4482 4483 spec->snap_id = snap_id; 4484 } else { 4485 spec->snap_id = CEPH_NOSNAP; 4486 } 4487 4488 return 0; 4489 } 4490 4491 /* 4492 * A parent image will have all ids but none of the names. 4493 * 4494 * All names in an rbd spec are dynamically allocated. It's OK if we 4495 * can't figure out the name for an image id. 4496 */ 4497 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4498 { 4499 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4500 struct rbd_spec *spec = rbd_dev->spec; 4501 const char *pool_name; 4502 const char *image_name; 4503 const char *snap_name; 4504 int ret; 4505 4506 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4507 rbd_assert(spec->image_id); 4508 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4509 4510 /* Get the pool name; we have to make our own copy of this */ 4511 4512 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4513 if (!pool_name) { 4514 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4515 return -EIO; 4516 } 4517 pool_name = kstrdup(pool_name, GFP_KERNEL); 4518 if (!pool_name) 4519 return -ENOMEM; 4520 4521 /* Fetch the image name; tolerate failure here */ 4522 4523 image_name = rbd_dev_image_name(rbd_dev); 4524 if (!image_name) 4525 rbd_warn(rbd_dev, "unable to get image name"); 4526 4527 /* Fetch the snapshot name */ 4528 4529 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4530 if (IS_ERR(snap_name)) { 4531 ret = PTR_ERR(snap_name); 4532 goto out_err; 4533 } 4534 4535 spec->pool_name = pool_name; 4536 spec->image_name = image_name; 4537 spec->snap_name = snap_name; 4538 4539 return 0; 4540 4541 out_err: 4542 kfree(image_name); 4543 kfree(pool_name); 4544 return ret; 4545 } 4546 4547 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4548 { 4549 size_t size; 4550 int ret; 4551 void *reply_buf; 4552 void *p; 4553 void *end; 4554 u64 seq; 4555 u32 snap_count; 4556 struct ceph_snap_context *snapc; 4557 u32 i; 4558 4559 /* 4560 * We'll need room for the seq value (maximum snapshot id), 4561 * snapshot count, and array of that many snapshot ids. 4562 * For now we have a fixed upper limit on the number we're 4563 * prepared to receive. 4564 */ 4565 size = sizeof (__le64) + sizeof (__le32) + 4566 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4567 reply_buf = kzalloc(size, GFP_KERNEL); 4568 if (!reply_buf) 4569 return -ENOMEM; 4570 4571 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4572 "rbd", "get_snapcontext", NULL, 0, 4573 reply_buf, size); 4574 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4575 if (ret < 0) 4576 goto out; 4577 4578 p = reply_buf; 4579 end = reply_buf + ret; 4580 ret = -ERANGE; 4581 ceph_decode_64_safe(&p, end, seq, out); 4582 ceph_decode_32_safe(&p, end, snap_count, out); 4583 4584 /* 4585 * Make sure the reported number of snapshot ids wouldn't go 4586 * beyond the end of our buffer. But before checking that, 4587 * make sure the computed size of the snapshot context we 4588 * allocate is representable in a size_t. 4589 */ 4590 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4591 / sizeof (u64)) { 4592 ret = -EINVAL; 4593 goto out; 4594 } 4595 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4596 goto out; 4597 ret = 0; 4598 4599 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4600 if (!snapc) { 4601 ret = -ENOMEM; 4602 goto out; 4603 } 4604 snapc->seq = seq; 4605 for (i = 0; i < snap_count; i++) 4606 snapc->snaps[i] = ceph_decode_64(&p); 4607 4608 ceph_put_snap_context(rbd_dev->header.snapc); 4609 rbd_dev->header.snapc = snapc; 4610 4611 dout(" snap context seq = %llu, snap_count = %u\n", 4612 (unsigned long long)seq, (unsigned int)snap_count); 4613 out: 4614 kfree(reply_buf); 4615 4616 return ret; 4617 } 4618 4619 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4620 u64 snap_id) 4621 { 4622 size_t size; 4623 void *reply_buf; 4624 __le64 snapid; 4625 int ret; 4626 void *p; 4627 void *end; 4628 char *snap_name; 4629 4630 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4631 reply_buf = kmalloc(size, GFP_KERNEL); 4632 if (!reply_buf) 4633 return ERR_PTR(-ENOMEM); 4634 4635 snapid = cpu_to_le64(snap_id); 4636 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4637 "rbd", "get_snapshot_name", 4638 &snapid, sizeof (snapid), 4639 reply_buf, size); 4640 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4641 if (ret < 0) { 4642 snap_name = ERR_PTR(ret); 4643 goto out; 4644 } 4645 4646 p = reply_buf; 4647 end = reply_buf + ret; 4648 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4649 if (IS_ERR(snap_name)) 4650 goto out; 4651 4652 dout(" snap_id 0x%016llx snap_name = %s\n", 4653 (unsigned long long)snap_id, snap_name); 4654 out: 4655 kfree(reply_buf); 4656 4657 return snap_name; 4658 } 4659 4660 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4661 { 4662 bool first_time = rbd_dev->header.object_prefix == NULL; 4663 int ret; 4664 4665 ret = rbd_dev_v2_image_size(rbd_dev); 4666 if (ret) 4667 return ret; 4668 4669 if (first_time) { 4670 ret = rbd_dev_v2_header_onetime(rbd_dev); 4671 if (ret) 4672 return ret; 4673 } 4674 4675 ret = rbd_dev_v2_snap_context(rbd_dev); 4676 if (ret && first_time) { 4677 kfree(rbd_dev->header.object_prefix); 4678 rbd_dev->header.object_prefix = NULL; 4679 } 4680 4681 return ret; 4682 } 4683 4684 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4685 { 4686 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4687 4688 if (rbd_dev->image_format == 1) 4689 return rbd_dev_v1_header_info(rbd_dev); 4690 4691 return rbd_dev_v2_header_info(rbd_dev); 4692 } 4693 4694 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4695 { 4696 struct device *dev; 4697 int ret; 4698 4699 dev = &rbd_dev->dev; 4700 dev->bus = &rbd_bus_type; 4701 dev->type = &rbd_device_type; 4702 dev->parent = &rbd_root_dev; 4703 dev->release = rbd_dev_device_release; 4704 dev_set_name(dev, "%d", rbd_dev->dev_id); 4705 ret = device_register(dev); 4706 4707 return ret; 4708 } 4709 4710 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4711 { 4712 device_unregister(&rbd_dev->dev); 4713 } 4714 4715 /* 4716 * Get a unique rbd identifier for the given new rbd_dev, and add 4717 * the rbd_dev to the global list. 4718 */ 4719 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4720 { 4721 int new_dev_id; 4722 4723 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4724 0, minor_to_rbd_dev_id(1 << MINORBITS), 4725 GFP_KERNEL); 4726 if (new_dev_id < 0) 4727 return new_dev_id; 4728 4729 rbd_dev->dev_id = new_dev_id; 4730 4731 spin_lock(&rbd_dev_list_lock); 4732 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4733 spin_unlock(&rbd_dev_list_lock); 4734 4735 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4736 4737 return 0; 4738 } 4739 4740 /* 4741 * Remove an rbd_dev from the global list, and record that its 4742 * identifier is no longer in use. 4743 */ 4744 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4745 { 4746 spin_lock(&rbd_dev_list_lock); 4747 list_del_init(&rbd_dev->node); 4748 spin_unlock(&rbd_dev_list_lock); 4749 4750 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4751 4752 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4753 } 4754 4755 /* 4756 * Skips over white space at *buf, and updates *buf to point to the 4757 * first found non-space character (if any). Returns the length of 4758 * the token (string of non-white space characters) found. Note 4759 * that *buf must be terminated with '\0'. 4760 */ 4761 static inline size_t next_token(const char **buf) 4762 { 4763 /* 4764 * These are the characters that produce nonzero for 4765 * isspace() in the "C" and "POSIX" locales. 4766 */ 4767 const char *spaces = " \f\n\r\t\v"; 4768 4769 *buf += strspn(*buf, spaces); /* Find start of token */ 4770 4771 return strcspn(*buf, spaces); /* Return token length */ 4772 } 4773 4774 /* 4775 * Finds the next token in *buf, dynamically allocates a buffer big 4776 * enough to hold a copy of it, and copies the token into the new 4777 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4778 * that a duplicate buffer is created even for a zero-length token. 4779 * 4780 * Returns a pointer to the newly-allocated duplicate, or a null 4781 * pointer if memory for the duplicate was not available. If 4782 * the lenp argument is a non-null pointer, the length of the token 4783 * (not including the '\0') is returned in *lenp. 4784 * 4785 * If successful, the *buf pointer will be updated to point beyond 4786 * the end of the found token. 4787 * 4788 * Note: uses GFP_KERNEL for allocation. 4789 */ 4790 static inline char *dup_token(const char **buf, size_t *lenp) 4791 { 4792 char *dup; 4793 size_t len; 4794 4795 len = next_token(buf); 4796 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4797 if (!dup) 4798 return NULL; 4799 *(dup + len) = '\0'; 4800 *buf += len; 4801 4802 if (lenp) 4803 *lenp = len; 4804 4805 return dup; 4806 } 4807 4808 /* 4809 * Parse the options provided for an "rbd add" (i.e., rbd image 4810 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4811 * and the data written is passed here via a NUL-terminated buffer. 4812 * Returns 0 if successful or an error code otherwise. 4813 * 4814 * The information extracted from these options is recorded in 4815 * the other parameters which return dynamically-allocated 4816 * structures: 4817 * ceph_opts 4818 * The address of a pointer that will refer to a ceph options 4819 * structure. Caller must release the returned pointer using 4820 * ceph_destroy_options() when it is no longer needed. 4821 * rbd_opts 4822 * Address of an rbd options pointer. Fully initialized by 4823 * this function; caller must release with kfree(). 4824 * spec 4825 * Address of an rbd image specification pointer. Fully 4826 * initialized by this function based on parsed options. 4827 * Caller must release with rbd_spec_put(). 4828 * 4829 * The options passed take this form: 4830 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4831 * where: 4832 * <mon_addrs> 4833 * A comma-separated list of one or more monitor addresses. 4834 * A monitor address is an ip address, optionally followed 4835 * by a port number (separated by a colon). 4836 * I.e.: ip1[:port1][,ip2[:port2]...] 4837 * <options> 4838 * A comma-separated list of ceph and/or rbd options. 4839 * <pool_name> 4840 * The name of the rados pool containing the rbd image. 4841 * <image_name> 4842 * The name of the image in that pool to map. 4843 * <snap_id> 4844 * An optional snapshot id. If provided, the mapping will 4845 * present data from the image at the time that snapshot was 4846 * created. The image head is used if no snapshot id is 4847 * provided. Snapshot mappings are always read-only. 4848 */ 4849 static int rbd_add_parse_args(const char *buf, 4850 struct ceph_options **ceph_opts, 4851 struct rbd_options **opts, 4852 struct rbd_spec **rbd_spec) 4853 { 4854 size_t len; 4855 char *options; 4856 const char *mon_addrs; 4857 char *snap_name; 4858 size_t mon_addrs_size; 4859 struct rbd_spec *spec = NULL; 4860 struct rbd_options *rbd_opts = NULL; 4861 struct ceph_options *copts; 4862 int ret; 4863 4864 /* The first four tokens are required */ 4865 4866 len = next_token(&buf); 4867 if (!len) { 4868 rbd_warn(NULL, "no monitor address(es) provided"); 4869 return -EINVAL; 4870 } 4871 mon_addrs = buf; 4872 mon_addrs_size = len + 1; 4873 buf += len; 4874 4875 ret = -EINVAL; 4876 options = dup_token(&buf, NULL); 4877 if (!options) 4878 return -ENOMEM; 4879 if (!*options) { 4880 rbd_warn(NULL, "no options provided"); 4881 goto out_err; 4882 } 4883 4884 spec = rbd_spec_alloc(); 4885 if (!spec) 4886 goto out_mem; 4887 4888 spec->pool_name = dup_token(&buf, NULL); 4889 if (!spec->pool_name) 4890 goto out_mem; 4891 if (!*spec->pool_name) { 4892 rbd_warn(NULL, "no pool name provided"); 4893 goto out_err; 4894 } 4895 4896 spec->image_name = dup_token(&buf, NULL); 4897 if (!spec->image_name) 4898 goto out_mem; 4899 if (!*spec->image_name) { 4900 rbd_warn(NULL, "no image name provided"); 4901 goto out_err; 4902 } 4903 4904 /* 4905 * Snapshot name is optional; default is to use "-" 4906 * (indicating the head/no snapshot). 4907 */ 4908 len = next_token(&buf); 4909 if (!len) { 4910 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4911 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4912 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4913 ret = -ENAMETOOLONG; 4914 goto out_err; 4915 } 4916 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4917 if (!snap_name) 4918 goto out_mem; 4919 *(snap_name + len) = '\0'; 4920 spec->snap_name = snap_name; 4921 4922 /* Initialize all rbd options to the defaults */ 4923 4924 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4925 if (!rbd_opts) 4926 goto out_mem; 4927 4928 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4929 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 4930 4931 copts = ceph_parse_options(options, mon_addrs, 4932 mon_addrs + mon_addrs_size - 1, 4933 parse_rbd_opts_token, rbd_opts); 4934 if (IS_ERR(copts)) { 4935 ret = PTR_ERR(copts); 4936 goto out_err; 4937 } 4938 kfree(options); 4939 4940 *ceph_opts = copts; 4941 *opts = rbd_opts; 4942 *rbd_spec = spec; 4943 4944 return 0; 4945 out_mem: 4946 ret = -ENOMEM; 4947 out_err: 4948 kfree(rbd_opts); 4949 rbd_spec_put(spec); 4950 kfree(options); 4951 4952 return ret; 4953 } 4954 4955 /* 4956 * Return pool id (>= 0) or a negative error code. 4957 */ 4958 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4959 { 4960 struct ceph_options *opts = rbdc->client->options; 4961 u64 newest_epoch; 4962 int tries = 0; 4963 int ret; 4964 4965 again: 4966 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4967 if (ret == -ENOENT && tries++ < 1) { 4968 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4969 &newest_epoch); 4970 if (ret < 0) 4971 return ret; 4972 4973 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4974 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4975 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4976 newest_epoch, 4977 opts->mount_timeout); 4978 goto again; 4979 } else { 4980 /* the osdmap we have is new enough */ 4981 return -ENOENT; 4982 } 4983 } 4984 4985 return ret; 4986 } 4987 4988 /* 4989 * An rbd format 2 image has a unique identifier, distinct from the 4990 * name given to it by the user. Internally, that identifier is 4991 * what's used to specify the names of objects related to the image. 4992 * 4993 * A special "rbd id" object is used to map an rbd image name to its 4994 * id. If that object doesn't exist, then there is no v2 rbd image 4995 * with the supplied name. 4996 * 4997 * This function will record the given rbd_dev's image_id field if 4998 * it can be determined, and in that case will return 0. If any 4999 * errors occur a negative errno will be returned and the rbd_dev's 5000 * image_id field will be unchanged (and should be NULL). 5001 */ 5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5003 { 5004 int ret; 5005 size_t size; 5006 char *object_name; 5007 void *response; 5008 char *image_id; 5009 5010 /* 5011 * When probing a parent image, the image id is already 5012 * known (and the image name likely is not). There's no 5013 * need to fetch the image id again in this case. We 5014 * do still need to set the image format though. 5015 */ 5016 if (rbd_dev->spec->image_id) { 5017 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5018 5019 return 0; 5020 } 5021 5022 /* 5023 * First, see if the format 2 image id file exists, and if 5024 * so, get the image's persistent id from it. 5025 */ 5026 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5027 object_name = kmalloc(size, GFP_NOIO); 5028 if (!object_name) 5029 return -ENOMEM; 5030 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5031 dout("rbd id object name is %s\n", object_name); 5032 5033 /* Response will be an encoded string, which includes a length */ 5034 5035 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5036 response = kzalloc(size, GFP_NOIO); 5037 if (!response) { 5038 ret = -ENOMEM; 5039 goto out; 5040 } 5041 5042 /* If it doesn't exist we'll assume it's a format 1 image */ 5043 5044 ret = rbd_obj_method_sync(rbd_dev, object_name, 5045 "rbd", "get_id", NULL, 0, 5046 response, RBD_IMAGE_ID_LEN_MAX); 5047 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5048 if (ret == -ENOENT) { 5049 image_id = kstrdup("", GFP_KERNEL); 5050 ret = image_id ? 0 : -ENOMEM; 5051 if (!ret) 5052 rbd_dev->image_format = 1; 5053 } else if (ret >= 0) { 5054 void *p = response; 5055 5056 image_id = ceph_extract_encoded_string(&p, p + ret, 5057 NULL, GFP_NOIO); 5058 ret = PTR_ERR_OR_ZERO(image_id); 5059 if (!ret) 5060 rbd_dev->image_format = 2; 5061 } 5062 5063 if (!ret) { 5064 rbd_dev->spec->image_id = image_id; 5065 dout("image_id is %s\n", image_id); 5066 } 5067 out: 5068 kfree(response); 5069 kfree(object_name); 5070 5071 return ret; 5072 } 5073 5074 /* 5075 * Undo whatever state changes are made by v1 or v2 header info 5076 * call. 5077 */ 5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5079 { 5080 struct rbd_image_header *header; 5081 5082 rbd_dev_parent_put(rbd_dev); 5083 5084 /* Free dynamic fields from the header, then zero it out */ 5085 5086 header = &rbd_dev->header; 5087 ceph_put_snap_context(header->snapc); 5088 kfree(header->snap_sizes); 5089 kfree(header->snap_names); 5090 kfree(header->object_prefix); 5091 memset(header, 0, sizeof (*header)); 5092 } 5093 5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5095 { 5096 int ret; 5097 5098 ret = rbd_dev_v2_object_prefix(rbd_dev); 5099 if (ret) 5100 goto out_err; 5101 5102 /* 5103 * Get the and check features for the image. Currently the 5104 * features are assumed to never change. 5105 */ 5106 ret = rbd_dev_v2_features(rbd_dev); 5107 if (ret) 5108 goto out_err; 5109 5110 /* If the image supports fancy striping, get its parameters */ 5111 5112 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5113 ret = rbd_dev_v2_striping_info(rbd_dev); 5114 if (ret < 0) 5115 goto out_err; 5116 } 5117 /* No support for crypto and compression type format 2 images */ 5118 5119 return 0; 5120 out_err: 5121 rbd_dev->header.features = 0; 5122 kfree(rbd_dev->header.object_prefix); 5123 rbd_dev->header.object_prefix = NULL; 5124 5125 return ret; 5126 } 5127 5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5129 { 5130 struct rbd_device *parent = NULL; 5131 struct rbd_spec *parent_spec; 5132 struct rbd_client *rbdc; 5133 int ret; 5134 5135 if (!rbd_dev->parent_spec) 5136 return 0; 5137 /* 5138 * We need to pass a reference to the client and the parent 5139 * spec when creating the parent rbd_dev. Images related by 5140 * parent/child relationships always share both. 5141 */ 5142 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5143 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5144 5145 ret = -ENOMEM; 5146 parent = rbd_dev_create(rbdc, parent_spec, NULL); 5147 if (!parent) 5148 goto out_err; 5149 5150 ret = rbd_dev_image_probe(parent, false); 5151 if (ret < 0) 5152 goto out_err; 5153 rbd_dev->parent = parent; 5154 atomic_set(&rbd_dev->parent_ref, 1); 5155 5156 return 0; 5157 out_err: 5158 if (parent) { 5159 rbd_dev_unparent(rbd_dev); 5160 rbd_dev_destroy(parent); 5161 } else { 5162 rbd_put_client(rbdc); 5163 rbd_spec_put(parent_spec); 5164 } 5165 5166 return ret; 5167 } 5168 5169 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5170 { 5171 int ret; 5172 5173 /* Get an id and fill in device name. */ 5174 5175 ret = rbd_dev_id_get(rbd_dev); 5176 if (ret) 5177 return ret; 5178 5179 BUILD_BUG_ON(DEV_NAME_LEN 5180 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5181 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5182 5183 /* Record our major and minor device numbers. */ 5184 5185 if (!single_major) { 5186 ret = register_blkdev(0, rbd_dev->name); 5187 if (ret < 0) 5188 goto err_out_id; 5189 5190 rbd_dev->major = ret; 5191 rbd_dev->minor = 0; 5192 } else { 5193 rbd_dev->major = rbd_major; 5194 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5195 } 5196 5197 /* Set up the blkdev mapping. */ 5198 5199 ret = rbd_init_disk(rbd_dev); 5200 if (ret) 5201 goto err_out_blkdev; 5202 5203 ret = rbd_dev_mapping_set(rbd_dev); 5204 if (ret) 5205 goto err_out_disk; 5206 5207 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5208 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5209 5210 ret = rbd_bus_add_dev(rbd_dev); 5211 if (ret) 5212 goto err_out_mapping; 5213 5214 /* Everything's ready. Announce the disk to the world. */ 5215 5216 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5217 add_disk(rbd_dev->disk); 5218 5219 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5220 (unsigned long long) rbd_dev->mapping.size); 5221 5222 return ret; 5223 5224 err_out_mapping: 5225 rbd_dev_mapping_clear(rbd_dev); 5226 err_out_disk: 5227 rbd_free_disk(rbd_dev); 5228 err_out_blkdev: 5229 if (!single_major) 5230 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5231 err_out_id: 5232 rbd_dev_id_put(rbd_dev); 5233 rbd_dev_mapping_clear(rbd_dev); 5234 5235 return ret; 5236 } 5237 5238 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5239 { 5240 struct rbd_spec *spec = rbd_dev->spec; 5241 size_t size; 5242 5243 /* Record the header object name for this rbd image. */ 5244 5245 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5246 5247 if (rbd_dev->image_format == 1) 5248 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5249 else 5250 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5251 5252 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5253 if (!rbd_dev->header_name) 5254 return -ENOMEM; 5255 5256 if (rbd_dev->image_format == 1) 5257 sprintf(rbd_dev->header_name, "%s%s", 5258 spec->image_name, RBD_SUFFIX); 5259 else 5260 sprintf(rbd_dev->header_name, "%s%s", 5261 RBD_HEADER_PREFIX, spec->image_id); 5262 return 0; 5263 } 5264 5265 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5266 { 5267 rbd_dev_unprobe(rbd_dev); 5268 kfree(rbd_dev->header_name); 5269 rbd_dev->header_name = NULL; 5270 rbd_dev->image_format = 0; 5271 kfree(rbd_dev->spec->image_id); 5272 rbd_dev->spec->image_id = NULL; 5273 5274 rbd_dev_destroy(rbd_dev); 5275 } 5276 5277 /* 5278 * Probe for the existence of the header object for the given rbd 5279 * device. If this image is the one being mapped (i.e., not a 5280 * parent), initiate a watch on its header object before using that 5281 * object to get detailed information about the rbd image. 5282 */ 5283 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5284 { 5285 int ret; 5286 5287 /* 5288 * Get the id from the image id object. Unless there's an 5289 * error, rbd_dev->spec->image_id will be filled in with 5290 * a dynamically-allocated string, and rbd_dev->image_format 5291 * will be set to either 1 or 2. 5292 */ 5293 ret = rbd_dev_image_id(rbd_dev); 5294 if (ret) 5295 return ret; 5296 5297 ret = rbd_dev_header_name(rbd_dev); 5298 if (ret) 5299 goto err_out_format; 5300 5301 if (mapping) { 5302 ret = rbd_dev_header_watch_sync(rbd_dev); 5303 if (ret) { 5304 if (ret == -ENOENT) 5305 pr_info("image %s/%s does not exist\n", 5306 rbd_dev->spec->pool_name, 5307 rbd_dev->spec->image_name); 5308 goto out_header_name; 5309 } 5310 } 5311 5312 ret = rbd_dev_header_info(rbd_dev); 5313 if (ret) 5314 goto err_out_watch; 5315 5316 /* 5317 * If this image is the one being mapped, we have pool name and 5318 * id, image name and id, and snap name - need to fill snap id. 5319 * Otherwise this is a parent image, identified by pool, image 5320 * and snap ids - need to fill in names for those ids. 5321 */ 5322 if (mapping) 5323 ret = rbd_spec_fill_snap_id(rbd_dev); 5324 else 5325 ret = rbd_spec_fill_names(rbd_dev); 5326 if (ret) { 5327 if (ret == -ENOENT) 5328 pr_info("snap %s/%s@%s does not exist\n", 5329 rbd_dev->spec->pool_name, 5330 rbd_dev->spec->image_name, 5331 rbd_dev->spec->snap_name); 5332 goto err_out_probe; 5333 } 5334 5335 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5336 ret = rbd_dev_v2_parent_info(rbd_dev); 5337 if (ret) 5338 goto err_out_probe; 5339 5340 /* 5341 * Need to warn users if this image is the one being 5342 * mapped and has a parent. 5343 */ 5344 if (mapping && rbd_dev->parent_spec) 5345 rbd_warn(rbd_dev, 5346 "WARNING: kernel layering is EXPERIMENTAL!"); 5347 } 5348 5349 ret = rbd_dev_probe_parent(rbd_dev); 5350 if (ret) 5351 goto err_out_probe; 5352 5353 dout("discovered format %u image, header name is %s\n", 5354 rbd_dev->image_format, rbd_dev->header_name); 5355 return 0; 5356 5357 err_out_probe: 5358 rbd_dev_unprobe(rbd_dev); 5359 err_out_watch: 5360 if (mapping) 5361 rbd_dev_header_unwatch_sync(rbd_dev); 5362 out_header_name: 5363 kfree(rbd_dev->header_name); 5364 rbd_dev->header_name = NULL; 5365 err_out_format: 5366 rbd_dev->image_format = 0; 5367 kfree(rbd_dev->spec->image_id); 5368 rbd_dev->spec->image_id = NULL; 5369 return ret; 5370 } 5371 5372 static ssize_t do_rbd_add(struct bus_type *bus, 5373 const char *buf, 5374 size_t count) 5375 { 5376 struct rbd_device *rbd_dev = NULL; 5377 struct ceph_options *ceph_opts = NULL; 5378 struct rbd_options *rbd_opts = NULL; 5379 struct rbd_spec *spec = NULL; 5380 struct rbd_client *rbdc; 5381 bool read_only; 5382 int rc = -ENOMEM; 5383 5384 if (!try_module_get(THIS_MODULE)) 5385 return -ENODEV; 5386 5387 /* parse add command */ 5388 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5389 if (rc < 0) 5390 goto err_out_module; 5391 5392 rbdc = rbd_get_client(ceph_opts); 5393 if (IS_ERR(rbdc)) { 5394 rc = PTR_ERR(rbdc); 5395 goto err_out_args; 5396 } 5397 5398 /* pick the pool */ 5399 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5400 if (rc < 0) { 5401 if (rc == -ENOENT) 5402 pr_info("pool %s does not exist\n", spec->pool_name); 5403 goto err_out_client; 5404 } 5405 spec->pool_id = (u64)rc; 5406 5407 /* The ceph file layout needs to fit pool id in 32 bits */ 5408 5409 if (spec->pool_id > (u64)U32_MAX) { 5410 rbd_warn(NULL, "pool id too large (%llu > %u)", 5411 (unsigned long long)spec->pool_id, U32_MAX); 5412 rc = -EIO; 5413 goto err_out_client; 5414 } 5415 5416 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5417 if (!rbd_dev) 5418 goto err_out_client; 5419 rbdc = NULL; /* rbd_dev now owns this */ 5420 spec = NULL; /* rbd_dev now owns this */ 5421 rbd_opts = NULL; /* rbd_dev now owns this */ 5422 5423 rc = rbd_dev_image_probe(rbd_dev, true); 5424 if (rc < 0) 5425 goto err_out_rbd_dev; 5426 5427 /* If we are mapping a snapshot it must be marked read-only */ 5428 5429 read_only = rbd_dev->opts->read_only; 5430 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5431 read_only = true; 5432 rbd_dev->mapping.read_only = read_only; 5433 5434 rc = rbd_dev_device_setup(rbd_dev); 5435 if (rc) { 5436 /* 5437 * rbd_dev_header_unwatch_sync() can't be moved into 5438 * rbd_dev_image_release() without refactoring, see 5439 * commit 1f3ef78861ac. 5440 */ 5441 rbd_dev_header_unwatch_sync(rbd_dev); 5442 rbd_dev_image_release(rbd_dev); 5443 goto err_out_module; 5444 } 5445 5446 return count; 5447 5448 err_out_rbd_dev: 5449 rbd_dev_destroy(rbd_dev); 5450 err_out_client: 5451 rbd_put_client(rbdc); 5452 err_out_args: 5453 rbd_spec_put(spec); 5454 kfree(rbd_opts); 5455 err_out_module: 5456 module_put(THIS_MODULE); 5457 5458 dout("Error adding device %s\n", buf); 5459 5460 return (ssize_t)rc; 5461 } 5462 5463 static ssize_t rbd_add(struct bus_type *bus, 5464 const char *buf, 5465 size_t count) 5466 { 5467 if (single_major) 5468 return -EINVAL; 5469 5470 return do_rbd_add(bus, buf, count); 5471 } 5472 5473 static ssize_t rbd_add_single_major(struct bus_type *bus, 5474 const char *buf, 5475 size_t count) 5476 { 5477 return do_rbd_add(bus, buf, count); 5478 } 5479 5480 static void rbd_dev_device_release(struct device *dev) 5481 { 5482 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5483 5484 rbd_free_disk(rbd_dev); 5485 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5486 rbd_dev_mapping_clear(rbd_dev); 5487 if (!single_major) 5488 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5489 rbd_dev_id_put(rbd_dev); 5490 rbd_dev_mapping_clear(rbd_dev); 5491 } 5492 5493 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5494 { 5495 while (rbd_dev->parent) { 5496 struct rbd_device *first = rbd_dev; 5497 struct rbd_device *second = first->parent; 5498 struct rbd_device *third; 5499 5500 /* 5501 * Follow to the parent with no grandparent and 5502 * remove it. 5503 */ 5504 while (second && (third = second->parent)) { 5505 first = second; 5506 second = third; 5507 } 5508 rbd_assert(second); 5509 rbd_dev_image_release(second); 5510 first->parent = NULL; 5511 first->parent_overlap = 0; 5512 5513 rbd_assert(first->parent_spec); 5514 rbd_spec_put(first->parent_spec); 5515 first->parent_spec = NULL; 5516 } 5517 } 5518 5519 static ssize_t do_rbd_remove(struct bus_type *bus, 5520 const char *buf, 5521 size_t count) 5522 { 5523 struct rbd_device *rbd_dev = NULL; 5524 struct list_head *tmp; 5525 int dev_id; 5526 unsigned long ul; 5527 bool already = false; 5528 int ret; 5529 5530 ret = kstrtoul(buf, 10, &ul); 5531 if (ret) 5532 return ret; 5533 5534 /* convert to int; abort if we lost anything in the conversion */ 5535 dev_id = (int)ul; 5536 if (dev_id != ul) 5537 return -EINVAL; 5538 5539 ret = -ENOENT; 5540 spin_lock(&rbd_dev_list_lock); 5541 list_for_each(tmp, &rbd_dev_list) { 5542 rbd_dev = list_entry(tmp, struct rbd_device, node); 5543 if (rbd_dev->dev_id == dev_id) { 5544 ret = 0; 5545 break; 5546 } 5547 } 5548 if (!ret) { 5549 spin_lock_irq(&rbd_dev->lock); 5550 if (rbd_dev->open_count) 5551 ret = -EBUSY; 5552 else 5553 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5554 &rbd_dev->flags); 5555 spin_unlock_irq(&rbd_dev->lock); 5556 } 5557 spin_unlock(&rbd_dev_list_lock); 5558 if (ret < 0 || already) 5559 return ret; 5560 5561 rbd_dev_header_unwatch_sync(rbd_dev); 5562 /* 5563 * flush remaining watch callbacks - these must be complete 5564 * before the osd_client is shutdown 5565 */ 5566 dout("%s: flushing notifies", __func__); 5567 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5568 5569 /* 5570 * Don't free anything from rbd_dev->disk until after all 5571 * notifies are completely processed. Otherwise 5572 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5573 * in a potential use after free of rbd_dev->disk or rbd_dev. 5574 */ 5575 rbd_bus_del_dev(rbd_dev); 5576 rbd_dev_image_release(rbd_dev); 5577 module_put(THIS_MODULE); 5578 5579 return count; 5580 } 5581 5582 static ssize_t rbd_remove(struct bus_type *bus, 5583 const char *buf, 5584 size_t count) 5585 { 5586 if (single_major) 5587 return -EINVAL; 5588 5589 return do_rbd_remove(bus, buf, count); 5590 } 5591 5592 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5593 const char *buf, 5594 size_t count) 5595 { 5596 return do_rbd_remove(bus, buf, count); 5597 } 5598 5599 /* 5600 * create control files in sysfs 5601 * /sys/bus/rbd/... 5602 */ 5603 static int rbd_sysfs_init(void) 5604 { 5605 int ret; 5606 5607 ret = device_register(&rbd_root_dev); 5608 if (ret < 0) 5609 return ret; 5610 5611 ret = bus_register(&rbd_bus_type); 5612 if (ret < 0) 5613 device_unregister(&rbd_root_dev); 5614 5615 return ret; 5616 } 5617 5618 static void rbd_sysfs_cleanup(void) 5619 { 5620 bus_unregister(&rbd_bus_type); 5621 device_unregister(&rbd_root_dev); 5622 } 5623 5624 static int rbd_slab_init(void) 5625 { 5626 rbd_assert(!rbd_img_request_cache); 5627 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5628 sizeof (struct rbd_img_request), 5629 __alignof__(struct rbd_img_request), 5630 0, NULL); 5631 if (!rbd_img_request_cache) 5632 return -ENOMEM; 5633 5634 rbd_assert(!rbd_obj_request_cache); 5635 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5636 sizeof (struct rbd_obj_request), 5637 __alignof__(struct rbd_obj_request), 5638 0, NULL); 5639 if (!rbd_obj_request_cache) 5640 goto out_err; 5641 5642 rbd_assert(!rbd_segment_name_cache); 5643 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5644 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5645 if (rbd_segment_name_cache) 5646 return 0; 5647 out_err: 5648 if (rbd_obj_request_cache) { 5649 kmem_cache_destroy(rbd_obj_request_cache); 5650 rbd_obj_request_cache = NULL; 5651 } 5652 5653 kmem_cache_destroy(rbd_img_request_cache); 5654 rbd_img_request_cache = NULL; 5655 5656 return -ENOMEM; 5657 } 5658 5659 static void rbd_slab_exit(void) 5660 { 5661 rbd_assert(rbd_segment_name_cache); 5662 kmem_cache_destroy(rbd_segment_name_cache); 5663 rbd_segment_name_cache = NULL; 5664 5665 rbd_assert(rbd_obj_request_cache); 5666 kmem_cache_destroy(rbd_obj_request_cache); 5667 rbd_obj_request_cache = NULL; 5668 5669 rbd_assert(rbd_img_request_cache); 5670 kmem_cache_destroy(rbd_img_request_cache); 5671 rbd_img_request_cache = NULL; 5672 } 5673 5674 static int __init rbd_init(void) 5675 { 5676 int rc; 5677 5678 if (!libceph_compatible(NULL)) { 5679 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5680 return -EINVAL; 5681 } 5682 5683 rc = rbd_slab_init(); 5684 if (rc) 5685 return rc; 5686 5687 /* 5688 * The number of active work items is limited by the number of 5689 * rbd devices * queue depth, so leave @max_active at default. 5690 */ 5691 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5692 if (!rbd_wq) { 5693 rc = -ENOMEM; 5694 goto err_out_slab; 5695 } 5696 5697 if (single_major) { 5698 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5699 if (rbd_major < 0) { 5700 rc = rbd_major; 5701 goto err_out_wq; 5702 } 5703 } 5704 5705 rc = rbd_sysfs_init(); 5706 if (rc) 5707 goto err_out_blkdev; 5708 5709 if (single_major) 5710 pr_info("loaded (major %d)\n", rbd_major); 5711 else 5712 pr_info("loaded\n"); 5713 5714 return 0; 5715 5716 err_out_blkdev: 5717 if (single_major) 5718 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5719 err_out_wq: 5720 destroy_workqueue(rbd_wq); 5721 err_out_slab: 5722 rbd_slab_exit(); 5723 return rc; 5724 } 5725 5726 static void __exit rbd_exit(void) 5727 { 5728 ida_destroy(&rbd_dev_id_ida); 5729 rbd_sysfs_cleanup(); 5730 if (single_major) 5731 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5732 destroy_workqueue(rbd_wq); 5733 rbd_slab_exit(); 5734 } 5735 5736 module_init(rbd_init); 5737 module_exit(rbd_exit); 5738 5739 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5740 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5741 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5742 /* following authorship retained from original osdblk.c */ 5743 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5744 5745 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5746 MODULE_LICENSE("GPL"); 5747