xref: /openbmc/linux/drivers/block/rbd.c (revision b34081f1)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 
45 #include "rbd_types.h"
46 
47 #define RBD_DEBUG	/* Activate rbd_assert() calls */
48 
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define	SECTOR_SHIFT	9
56 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
57 
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 	unsigned int counter;
67 
68 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 	if (counter <= (unsigned int)INT_MAX)
70 		return (int)counter;
71 
72 	atomic_dec(v);
73 
74 	return -EINVAL;
75 }
76 
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 	int counter;
81 
82 	counter = atomic_dec_return(v);
83 	if (counter >= 0)
84 		return counter;
85 
86 	atomic_inc(v);
87 
88 	return -EINVAL;
89 }
90 
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93 
94 #define RBD_MINORS_PER_MAJOR	256		/* max minors per blkdev */
95 
96 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
97 #define RBD_MAX_SNAP_NAME_LEN	\
98 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99 
100 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
101 
102 #define RBD_SNAP_HEAD_NAME	"-"
103 
104 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
105 
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX	64
109 
110 #define RBD_OBJ_PREFIX_LEN_MAX	64
111 
112 /* Feature bits */
113 
114 #define RBD_FEATURE_LAYERING	(1<<0)
115 #define RBD_FEATURE_STRIPINGV2	(1<<1)
116 #define RBD_FEATURES_ALL \
117 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118 
119 /* Features supported by this (client software) implementation. */
120 
121 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
122 
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN		32
130 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
131 
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136 	/* These six fields never change for a given rbd image */
137 	char *object_prefix;
138 	__u8 obj_order;
139 	__u8 crypt_type;
140 	__u8 comp_type;
141 	u64 stripe_unit;
142 	u64 stripe_count;
143 	u64 features;		/* Might be changeable someday? */
144 
145 	/* The remaining fields need to be updated occasionally */
146 	u64 image_size;
147 	struct ceph_snap_context *snapc;
148 	char *snap_names;	/* format 1 only */
149 	u64 *snap_sizes;	/* format 1 only */
150 };
151 
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178 	u64		pool_id;
179 	const char	*pool_name;
180 
181 	const char	*image_id;
182 	const char	*image_name;
183 
184 	u64		snap_id;
185 	const char	*snap_name;
186 
187 	struct kref	kref;
188 };
189 
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194 	struct ceph_client	*client;
195 	struct kref		kref;
196 	struct list_head	node;
197 };
198 
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201 
202 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
203 
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206 
207 enum obj_request_type {
208 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210 
211 enum obj_req_flags {
212 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
213 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
214 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
215 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
216 };
217 
218 struct rbd_obj_request {
219 	const char		*object_name;
220 	u64			offset;		/* object start byte */
221 	u64			length;		/* bytes from offset */
222 	unsigned long		flags;
223 
224 	/*
225 	 * An object request associated with an image will have its
226 	 * img_data flag set; a standalone object request will not.
227 	 *
228 	 * A standalone object request will have which == BAD_WHICH
229 	 * and a null obj_request pointer.
230 	 *
231 	 * An object request initiated in support of a layered image
232 	 * object (to check for its existence before a write) will
233 	 * have which == BAD_WHICH and a non-null obj_request pointer.
234 	 *
235 	 * Finally, an object request for rbd image data will have
236 	 * which != BAD_WHICH, and will have a non-null img_request
237 	 * pointer.  The value of which will be in the range
238 	 * 0..(img_request->obj_request_count-1).
239 	 */
240 	union {
241 		struct rbd_obj_request	*obj_request;	/* STAT op */
242 		struct {
243 			struct rbd_img_request	*img_request;
244 			u64			img_offset;
245 			/* links for img_request->obj_requests list */
246 			struct list_head	links;
247 		};
248 	};
249 	u32			which;		/* posn image request list */
250 
251 	enum obj_request_type	type;
252 	union {
253 		struct bio	*bio_list;
254 		struct {
255 			struct page	**pages;
256 			u32		page_count;
257 		};
258 	};
259 	struct page		**copyup_pages;
260 	u32			copyup_page_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	rbd_obj_callback_t	callback;
268 	struct completion	completion;
269 
270 	struct kref		kref;
271 };
272 
273 enum img_req_flags {
274 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
275 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
276 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
277 };
278 
279 struct rbd_img_request {
280 	struct rbd_device	*rbd_dev;
281 	u64			offset;	/* starting image byte offset */
282 	u64			length;	/* byte count from offset */
283 	unsigned long		flags;
284 	union {
285 		u64			snap_id;	/* for reads */
286 		struct ceph_snap_context *snapc;	/* for writes */
287 	};
288 	union {
289 		struct request		*rq;		/* block request */
290 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
291 	};
292 	struct page		**copyup_pages;
293 	u32			copyup_page_count;
294 	spinlock_t		completion_lock;/* protects next_completion */
295 	u32			next_completion;
296 	rbd_img_callback_t	callback;
297 	u64			xferred;/* aggregate bytes transferred */
298 	int			result;	/* first nonzero obj_request result */
299 
300 	u32			obj_request_count;
301 	struct list_head	obj_requests;	/* rbd_obj_request structs */
302 
303 	struct kref		kref;
304 };
305 
306 #define for_each_obj_request(ireq, oreq) \
307 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312 
313 struct rbd_mapping {
314 	u64                     size;
315 	u64                     features;
316 	bool			read_only;
317 };
318 
319 /*
320  * a single device
321  */
322 struct rbd_device {
323 	int			dev_id;		/* blkdev unique id */
324 
325 	int			major;		/* blkdev assigned major */
326 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
327 
328 	u32			image_format;	/* Either 1 or 2 */
329 	struct rbd_client	*rbd_client;
330 
331 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332 
333 	spinlock_t		lock;		/* queue, flags, open_count */
334 
335 	struct rbd_image_header	header;
336 	unsigned long		flags;		/* possibly lock protected */
337 	struct rbd_spec		*spec;
338 
339 	char			*header_name;
340 
341 	struct ceph_file_layout	layout;
342 
343 	struct ceph_osd_event   *watch_event;
344 	struct rbd_obj_request	*watch_request;
345 
346 	struct rbd_spec		*parent_spec;
347 	u64			parent_overlap;
348 	atomic_t		parent_ref;
349 	struct rbd_device	*parent;
350 
351 	/* protects updating the header */
352 	struct rw_semaphore     header_rwsem;
353 
354 	struct rbd_mapping	mapping;
355 
356 	struct list_head	node;
357 
358 	/* sysfs related */
359 	struct device		dev;
360 	unsigned long		open_count;	/* protected by lock */
361 };
362 
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
372 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
373 };
374 
375 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
376 
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379 
380 static LIST_HEAD(rbd_client_list);		/* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382 
383 /* Slab caches for frequently-allocated structures */
384 
385 static struct kmem_cache	*rbd_img_request_cache;
386 static struct kmem_cache	*rbd_obj_request_cache;
387 static struct kmem_cache	*rbd_segment_name_cache;
388 
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390 
391 static void rbd_dev_device_release(struct device *dev);
392 
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 		       size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 			  size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399 
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402 
403 static struct attribute *rbd_bus_attrs[] = {
404 	&bus_attr_add.attr,
405 	&bus_attr_remove.attr,
406 	NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409 
410 static struct bus_type rbd_bus_type = {
411 	.name		= "rbd",
412 	.bus_groups	= rbd_bus_groups,
413 };
414 
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418 
419 static struct device rbd_root_dev = {
420 	.init_name =    "rbd",
421 	.release =      rbd_root_dev_release,
422 };
423 
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427 	struct va_format vaf;
428 	va_list args;
429 
430 	va_start(args, fmt);
431 	vaf.fmt = fmt;
432 	vaf.va = &args;
433 
434 	if (!rbd_dev)
435 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436 	else if (rbd_dev->disk)
437 		printk(KERN_WARNING "%s: %s: %pV\n",
438 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
440 		printk(KERN_WARNING "%s: image %s: %pV\n",
441 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
443 		printk(KERN_WARNING "%s: id %s: %pV\n",
444 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445 	else	/* punt */
446 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447 			RBD_DRV_NAME, rbd_dev, &vaf);
448 	va_end(args);
449 }
450 
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)						\
453 		if (unlikely(!(expr))) {				\
454 			printk(KERN_ERR "\nAssertion failure in %s() "	\
455 						"at line %d:\n\n"	\
456 					"\trbd_assert(%s);\n\n",	\
457 					__func__, __LINE__, #expr);	\
458 			BUG();						\
459 		}
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)	((void) 0)
462 #endif /* !RBD_DEBUG */
463 
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467 
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472 					u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474 				u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476 		u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478 
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482 	bool removing = false;
483 
484 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485 		return -EROFS;
486 
487 	spin_lock_irq(&rbd_dev->lock);
488 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489 		removing = true;
490 	else
491 		rbd_dev->open_count++;
492 	spin_unlock_irq(&rbd_dev->lock);
493 	if (removing)
494 		return -ENOENT;
495 
496 	(void) get_device(&rbd_dev->dev);
497 	set_device_ro(bdev, rbd_dev->mapping.read_only);
498 
499 	return 0;
500 }
501 
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504 	struct rbd_device *rbd_dev = disk->private_data;
505 	unsigned long open_count_before;
506 
507 	spin_lock_irq(&rbd_dev->lock);
508 	open_count_before = rbd_dev->open_count--;
509 	spin_unlock_irq(&rbd_dev->lock);
510 	rbd_assert(open_count_before > 0);
511 
512 	put_device(&rbd_dev->dev);
513 }
514 
515 static const struct block_device_operations rbd_bd_ops = {
516 	.owner			= THIS_MODULE,
517 	.open			= rbd_open,
518 	.release		= rbd_release,
519 };
520 
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 	struct rbd_client *rbdc;
528 	int ret = -ENOMEM;
529 
530 	dout("%s:\n", __func__);
531 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 	if (!rbdc)
533 		goto out_opt;
534 
535 	kref_init(&rbdc->kref);
536 	INIT_LIST_HEAD(&rbdc->node);
537 
538 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539 	if (IS_ERR(rbdc->client))
540 		goto out_rbdc;
541 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542 
543 	ret = ceph_open_session(rbdc->client);
544 	if (ret < 0)
545 		goto out_client;
546 
547 	spin_lock(&rbd_client_list_lock);
548 	list_add_tail(&rbdc->node, &rbd_client_list);
549 	spin_unlock(&rbd_client_list_lock);
550 
551 	dout("%s: rbdc %p\n", __func__, rbdc);
552 
553 	return rbdc;
554 out_client:
555 	ceph_destroy_client(rbdc->client);
556 out_rbdc:
557 	kfree(rbdc);
558 out_opt:
559 	if (ceph_opts)
560 		ceph_destroy_options(ceph_opts);
561 	dout("%s: error %d\n", __func__, ret);
562 
563 	return ERR_PTR(ret);
564 }
565 
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568 	kref_get(&rbdc->kref);
569 
570 	return rbdc;
571 }
572 
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579 	struct rbd_client *client_node;
580 	bool found = false;
581 
582 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583 		return NULL;
584 
585 	spin_lock(&rbd_client_list_lock);
586 	list_for_each_entry(client_node, &rbd_client_list, node) {
587 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
588 			__rbd_get_client(client_node);
589 
590 			found = true;
591 			break;
592 		}
593 	}
594 	spin_unlock(&rbd_client_list_lock);
595 
596 	return found ? client_node : NULL;
597 }
598 
599 /*
600  * mount options
601  */
602 enum {
603 	Opt_last_int,
604 	/* int args above */
605 	Opt_last_string,
606 	/* string args above */
607 	Opt_read_only,
608 	Opt_read_write,
609 	/* Boolean args above */
610 	Opt_last_bool,
611 };
612 
613 static match_table_t rbd_opts_tokens = {
614 	/* int args above */
615 	/* string args above */
616 	{Opt_read_only, "read_only"},
617 	{Opt_read_only, "ro"},		/* Alternate spelling */
618 	{Opt_read_write, "read_write"},
619 	{Opt_read_write, "rw"},		/* Alternate spelling */
620 	/* Boolean args above */
621 	{-1, NULL}
622 };
623 
624 struct rbd_options {
625 	bool	read_only;
626 };
627 
628 #define RBD_READ_ONLY_DEFAULT	false
629 
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632 	struct rbd_options *rbd_opts = private;
633 	substring_t argstr[MAX_OPT_ARGS];
634 	int token, intval, ret;
635 
636 	token = match_token(c, rbd_opts_tokens, argstr);
637 	if (token < 0)
638 		return -EINVAL;
639 
640 	if (token < Opt_last_int) {
641 		ret = match_int(&argstr[0], &intval);
642 		if (ret < 0) {
643 			pr_err("bad mount option arg (not int) "
644 			       "at '%s'\n", c);
645 			return ret;
646 		}
647 		dout("got int token %d val %d\n", token, intval);
648 	} else if (token > Opt_last_int && token < Opt_last_string) {
649 		dout("got string token %d val %s\n", token,
650 		     argstr[0].from);
651 	} else if (token > Opt_last_string && token < Opt_last_bool) {
652 		dout("got Boolean token %d\n", token);
653 	} else {
654 		dout("got token %d\n", token);
655 	}
656 
657 	switch (token) {
658 	case Opt_read_only:
659 		rbd_opts->read_only = true;
660 		break;
661 	case Opt_read_write:
662 		rbd_opts->read_only = false;
663 		break;
664 	default:
665 		rbd_assert(false);
666 		break;
667 	}
668 	return 0;
669 }
670 
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678 	struct rbd_client *rbdc;
679 
680 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681 	rbdc = rbd_client_find(ceph_opts);
682 	if (rbdc)	/* using an existing client */
683 		ceph_destroy_options(ceph_opts);
684 	else
685 		rbdc = rbd_client_create(ceph_opts);
686 	mutex_unlock(&client_mutex);
687 
688 	return rbdc;
689 }
690 
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699 
700 	dout("%s: rbdc %p\n", __func__, rbdc);
701 	spin_lock(&rbd_client_list_lock);
702 	list_del(&rbdc->node);
703 	spin_unlock(&rbd_client_list_lock);
704 
705 	ceph_destroy_client(rbdc->client);
706 	kfree(rbdc);
707 }
708 
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715 	if (rbdc)
716 		kref_put(&rbdc->kref, rbd_client_release);
717 }
718 
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721 	return image_format == 1 || image_format == 2;
722 }
723 
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726 	size_t size;
727 	u32 snap_count;
728 
729 	/* The header has to start with the magic rbd header text */
730 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731 		return false;
732 
733 	/* The bio layer requires at least sector-sized I/O */
734 
735 	if (ondisk->options.order < SECTOR_SHIFT)
736 		return false;
737 
738 	/* If we use u64 in a few spots we may be able to loosen this */
739 
740 	if (ondisk->options.order > 8 * sizeof (int) - 1)
741 		return false;
742 
743 	/*
744 	 * The size of a snapshot header has to fit in a size_t, and
745 	 * that limits the number of snapshots.
746 	 */
747 	snap_count = le32_to_cpu(ondisk->snap_count);
748 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
749 	if (snap_count > size / sizeof (__le64))
750 		return false;
751 
752 	/*
753 	 * Not only that, but the size of the entire the snapshot
754 	 * header must also be representable in a size_t.
755 	 */
756 	size -= snap_count * sizeof (__le64);
757 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758 		return false;
759 
760 	return true;
761 }
762 
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768 				 struct rbd_image_header_ondisk *ondisk)
769 {
770 	struct rbd_image_header *header = &rbd_dev->header;
771 	bool first_time = header->object_prefix == NULL;
772 	struct ceph_snap_context *snapc;
773 	char *object_prefix = NULL;
774 	char *snap_names = NULL;
775 	u64 *snap_sizes = NULL;
776 	u32 snap_count;
777 	size_t size;
778 	int ret = -ENOMEM;
779 	u32 i;
780 
781 	/* Allocate this now to avoid having to handle failure below */
782 
783 	if (first_time) {
784 		size_t len;
785 
786 		len = strnlen(ondisk->object_prefix,
787 				sizeof (ondisk->object_prefix));
788 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
789 		if (!object_prefix)
790 			return -ENOMEM;
791 		memcpy(object_prefix, ondisk->object_prefix, len);
792 		object_prefix[len] = '\0';
793 	}
794 
795 	/* Allocate the snapshot context and fill it in */
796 
797 	snap_count = le32_to_cpu(ondisk->snap_count);
798 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799 	if (!snapc)
800 		goto out_err;
801 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
802 	if (snap_count) {
803 		struct rbd_image_snap_ondisk *snaps;
804 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805 
806 		/* We'll keep a copy of the snapshot names... */
807 
808 		if (snap_names_len > (u64)SIZE_MAX)
809 			goto out_2big;
810 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811 		if (!snap_names)
812 			goto out_err;
813 
814 		/* ...as well as the array of their sizes. */
815 
816 		size = snap_count * sizeof (*header->snap_sizes);
817 		snap_sizes = kmalloc(size, GFP_KERNEL);
818 		if (!snap_sizes)
819 			goto out_err;
820 
821 		/*
822 		 * Copy the names, and fill in each snapshot's id
823 		 * and size.
824 		 *
825 		 * Note that rbd_dev_v1_header_info() guarantees the
826 		 * ondisk buffer we're working with has
827 		 * snap_names_len bytes beyond the end of the
828 		 * snapshot id array, this memcpy() is safe.
829 		 */
830 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831 		snaps = ondisk->snaps;
832 		for (i = 0; i < snap_count; i++) {
833 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835 		}
836 	}
837 
838 	/* We won't fail any more, fill in the header */
839 
840 	if (first_time) {
841 		header->object_prefix = object_prefix;
842 		header->obj_order = ondisk->options.order;
843 		header->crypt_type = ondisk->options.crypt_type;
844 		header->comp_type = ondisk->options.comp_type;
845 		/* The rest aren't used for format 1 images */
846 		header->stripe_unit = 0;
847 		header->stripe_count = 0;
848 		header->features = 0;
849 	} else {
850 		ceph_put_snap_context(header->snapc);
851 		kfree(header->snap_names);
852 		kfree(header->snap_sizes);
853 	}
854 
855 	/* The remaining fields always get updated (when we refresh) */
856 
857 	header->image_size = le64_to_cpu(ondisk->image_size);
858 	header->snapc = snapc;
859 	header->snap_names = snap_names;
860 	header->snap_sizes = snap_sizes;
861 
862 	/* Make sure mapping size is consistent with header info */
863 
864 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865 		if (rbd_dev->mapping.size != header->image_size)
866 			rbd_dev->mapping.size = header->image_size;
867 
868 	return 0;
869 out_2big:
870 	ret = -EIO;
871 out_err:
872 	kfree(snap_sizes);
873 	kfree(snap_names);
874 	ceph_put_snap_context(snapc);
875 	kfree(object_prefix);
876 
877 	return ret;
878 }
879 
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882 	const char *snap_name;
883 
884 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885 
886 	/* Skip over names until we find the one we are looking for */
887 
888 	snap_name = rbd_dev->header.snap_names;
889 	while (which--)
890 		snap_name += strlen(snap_name) + 1;
891 
892 	return kstrdup(snap_name, GFP_KERNEL);
893 }
894 
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901 	u64 snap_id1 = *(u64 *)s1;
902 	u64 snap_id2 = *(u64 *)s2;
903 
904 	if (snap_id1 < snap_id2)
905 		return 1;
906 	return snap_id1 == snap_id2 ? 0 : -1;
907 }
908 
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922 	u64 *found;
923 
924 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925 				sizeof (snap_id), snapid_compare_reverse);
926 
927 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929 
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931 					u64 snap_id)
932 {
933 	u32 which;
934 
935 	which = rbd_dev_snap_index(rbd_dev, snap_id);
936 	if (which == BAD_SNAP_INDEX)
937 		return NULL;
938 
939 	return _rbd_dev_v1_snap_name(rbd_dev, which);
940 }
941 
942 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
943 {
944 	if (snap_id == CEPH_NOSNAP)
945 		return RBD_SNAP_HEAD_NAME;
946 
947 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
948 	if (rbd_dev->image_format == 1)
949 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
950 
951 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
952 }
953 
954 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
955 				u64 *snap_size)
956 {
957 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
958 	if (snap_id == CEPH_NOSNAP) {
959 		*snap_size = rbd_dev->header.image_size;
960 	} else if (rbd_dev->image_format == 1) {
961 		u32 which;
962 
963 		which = rbd_dev_snap_index(rbd_dev, snap_id);
964 		if (which == BAD_SNAP_INDEX)
965 			return -ENOENT;
966 
967 		*snap_size = rbd_dev->header.snap_sizes[which];
968 	} else {
969 		u64 size = 0;
970 		int ret;
971 
972 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
973 		if (ret)
974 			return ret;
975 
976 		*snap_size = size;
977 	}
978 	return 0;
979 }
980 
981 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
982 			u64 *snap_features)
983 {
984 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
985 	if (snap_id == CEPH_NOSNAP) {
986 		*snap_features = rbd_dev->header.features;
987 	} else if (rbd_dev->image_format == 1) {
988 		*snap_features = 0;	/* No features for format 1 */
989 	} else {
990 		u64 features = 0;
991 		int ret;
992 
993 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
994 		if (ret)
995 			return ret;
996 
997 		*snap_features = features;
998 	}
999 	return 0;
1000 }
1001 
1002 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1003 {
1004 	u64 snap_id = rbd_dev->spec->snap_id;
1005 	u64 size = 0;
1006 	u64 features = 0;
1007 	int ret;
1008 
1009 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1010 	if (ret)
1011 		return ret;
1012 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1013 	if (ret)
1014 		return ret;
1015 
1016 	rbd_dev->mapping.size = size;
1017 	rbd_dev->mapping.features = features;
1018 
1019 	return 0;
1020 }
1021 
1022 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1023 {
1024 	rbd_dev->mapping.size = 0;
1025 	rbd_dev->mapping.features = 0;
1026 }
1027 
1028 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1029 {
1030 	char *name;
1031 	u64 segment;
1032 	int ret;
1033 	char *name_format;
1034 
1035 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1036 	if (!name)
1037 		return NULL;
1038 	segment = offset >> rbd_dev->header.obj_order;
1039 	name_format = "%s.%012llx";
1040 	if (rbd_dev->image_format == 2)
1041 		name_format = "%s.%016llx";
1042 	ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1043 			rbd_dev->header.object_prefix, segment);
1044 	if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1045 		pr_err("error formatting segment name for #%llu (%d)\n",
1046 			segment, ret);
1047 		kfree(name);
1048 		name = NULL;
1049 	}
1050 
1051 	return name;
1052 }
1053 
1054 static void rbd_segment_name_free(const char *name)
1055 {
1056 	/* The explicit cast here is needed to drop the const qualifier */
1057 
1058 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1059 }
1060 
1061 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1062 {
1063 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1064 
1065 	return offset & (segment_size - 1);
1066 }
1067 
1068 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1069 				u64 offset, u64 length)
1070 {
1071 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072 
1073 	offset &= segment_size - 1;
1074 
1075 	rbd_assert(length <= U64_MAX - offset);
1076 	if (offset + length > segment_size)
1077 		length = segment_size - offset;
1078 
1079 	return length;
1080 }
1081 
1082 /*
1083  * returns the size of an object in the image
1084  */
1085 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1086 {
1087 	return 1 << header->obj_order;
1088 }
1089 
1090 /*
1091  * bio helpers
1092  */
1093 
1094 static void bio_chain_put(struct bio *chain)
1095 {
1096 	struct bio *tmp;
1097 
1098 	while (chain) {
1099 		tmp = chain;
1100 		chain = chain->bi_next;
1101 		bio_put(tmp);
1102 	}
1103 }
1104 
1105 /*
1106  * zeros a bio chain, starting at specific offset
1107  */
1108 static void zero_bio_chain(struct bio *chain, int start_ofs)
1109 {
1110 	struct bio_vec *bv;
1111 	unsigned long flags;
1112 	void *buf;
1113 	int i;
1114 	int pos = 0;
1115 
1116 	while (chain) {
1117 		bio_for_each_segment(bv, chain, i) {
1118 			if (pos + bv->bv_len > start_ofs) {
1119 				int remainder = max(start_ofs - pos, 0);
1120 				buf = bvec_kmap_irq(bv, &flags);
1121 				memset(buf + remainder, 0,
1122 				       bv->bv_len - remainder);
1123 				flush_dcache_page(bv->bv_page);
1124 				bvec_kunmap_irq(buf, &flags);
1125 			}
1126 			pos += bv->bv_len;
1127 		}
1128 
1129 		chain = chain->bi_next;
1130 	}
1131 }
1132 
1133 /*
1134  * similar to zero_bio_chain(), zeros data defined by a page array,
1135  * starting at the given byte offset from the start of the array and
1136  * continuing up to the given end offset.  The pages array is
1137  * assumed to be big enough to hold all bytes up to the end.
1138  */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141 	struct page **page = &pages[offset >> PAGE_SHIFT];
1142 
1143 	rbd_assert(end > offset);
1144 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1145 	while (offset < end) {
1146 		size_t page_offset;
1147 		size_t length;
1148 		unsigned long flags;
1149 		void *kaddr;
1150 
1151 		page_offset = offset & ~PAGE_MASK;
1152 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1153 		local_irq_save(flags);
1154 		kaddr = kmap_atomic(*page);
1155 		memset(kaddr + page_offset, 0, length);
1156 		flush_dcache_page(*page);
1157 		kunmap_atomic(kaddr);
1158 		local_irq_restore(flags);
1159 
1160 		offset += length;
1161 		page++;
1162 	}
1163 }
1164 
1165 /*
1166  * Clone a portion of a bio, starting at the given byte offset
1167  * and continuing for the number of bytes indicated.
1168  */
1169 static struct bio *bio_clone_range(struct bio *bio_src,
1170 					unsigned int offset,
1171 					unsigned int len,
1172 					gfp_t gfpmask)
1173 {
1174 	struct bio_vec *bv;
1175 	unsigned int resid;
1176 	unsigned short idx;
1177 	unsigned int voff;
1178 	unsigned short end_idx;
1179 	unsigned short vcnt;
1180 	struct bio *bio;
1181 
1182 	/* Handle the easy case for the caller */
1183 
1184 	if (!offset && len == bio_src->bi_size)
1185 		return bio_clone(bio_src, gfpmask);
1186 
1187 	if (WARN_ON_ONCE(!len))
1188 		return NULL;
1189 	if (WARN_ON_ONCE(len > bio_src->bi_size))
1190 		return NULL;
1191 	if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1192 		return NULL;
1193 
1194 	/* Find first affected segment... */
1195 
1196 	resid = offset;
1197 	bio_for_each_segment(bv, bio_src, idx) {
1198 		if (resid < bv->bv_len)
1199 			break;
1200 		resid -= bv->bv_len;
1201 	}
1202 	voff = resid;
1203 
1204 	/* ...and the last affected segment */
1205 
1206 	resid += len;
1207 	__bio_for_each_segment(bv, bio_src, end_idx, idx) {
1208 		if (resid <= bv->bv_len)
1209 			break;
1210 		resid -= bv->bv_len;
1211 	}
1212 	vcnt = end_idx - idx + 1;
1213 
1214 	/* Build the clone */
1215 
1216 	bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1217 	if (!bio)
1218 		return NULL;	/* ENOMEM */
1219 
1220 	bio->bi_bdev = bio_src->bi_bdev;
1221 	bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1222 	bio->bi_rw = bio_src->bi_rw;
1223 	bio->bi_flags |= 1 << BIO_CLONED;
1224 
1225 	/*
1226 	 * Copy over our part of the bio_vec, then update the first
1227 	 * and last (or only) entries.
1228 	 */
1229 	memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1230 			vcnt * sizeof (struct bio_vec));
1231 	bio->bi_io_vec[0].bv_offset += voff;
1232 	if (vcnt > 1) {
1233 		bio->bi_io_vec[0].bv_len -= voff;
1234 		bio->bi_io_vec[vcnt - 1].bv_len = resid;
1235 	} else {
1236 		bio->bi_io_vec[0].bv_len = len;
1237 	}
1238 
1239 	bio->bi_vcnt = vcnt;
1240 	bio->bi_size = len;
1241 	bio->bi_idx = 0;
1242 
1243 	return bio;
1244 }
1245 
1246 /*
1247  * Clone a portion of a bio chain, starting at the given byte offset
1248  * into the first bio in the source chain and continuing for the
1249  * number of bytes indicated.  The result is another bio chain of
1250  * exactly the given length, or a null pointer on error.
1251  *
1252  * The bio_src and offset parameters are both in-out.  On entry they
1253  * refer to the first source bio and the offset into that bio where
1254  * the start of data to be cloned is located.
1255  *
1256  * On return, bio_src is updated to refer to the bio in the source
1257  * chain that contains first un-cloned byte, and *offset will
1258  * contain the offset of that byte within that bio.
1259  */
1260 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1261 					unsigned int *offset,
1262 					unsigned int len,
1263 					gfp_t gfpmask)
1264 {
1265 	struct bio *bi = *bio_src;
1266 	unsigned int off = *offset;
1267 	struct bio *chain = NULL;
1268 	struct bio **end;
1269 
1270 	/* Build up a chain of clone bios up to the limit */
1271 
1272 	if (!bi || off >= bi->bi_size || !len)
1273 		return NULL;		/* Nothing to clone */
1274 
1275 	end = &chain;
1276 	while (len) {
1277 		unsigned int bi_size;
1278 		struct bio *bio;
1279 
1280 		if (!bi) {
1281 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1282 			goto out_err;	/* EINVAL; ran out of bio's */
1283 		}
1284 		bi_size = min_t(unsigned int, bi->bi_size - off, len);
1285 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1286 		if (!bio)
1287 			goto out_err;	/* ENOMEM */
1288 
1289 		*end = bio;
1290 		end = &bio->bi_next;
1291 
1292 		off += bi_size;
1293 		if (off == bi->bi_size) {
1294 			bi = bi->bi_next;
1295 			off = 0;
1296 		}
1297 		len -= bi_size;
1298 	}
1299 	*bio_src = bi;
1300 	*offset = off;
1301 
1302 	return chain;
1303 out_err:
1304 	bio_chain_put(chain);
1305 
1306 	return NULL;
1307 }
1308 
1309 /*
1310  * The default/initial value for all object request flags is 0.  For
1311  * each flag, once its value is set to 1 it is never reset to 0
1312  * again.
1313  */
1314 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1315 {
1316 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1317 		struct rbd_device *rbd_dev;
1318 
1319 		rbd_dev = obj_request->img_request->rbd_dev;
1320 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1321 			obj_request);
1322 	}
1323 }
1324 
1325 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1326 {
1327 	smp_mb();
1328 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1329 }
1330 
1331 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1332 {
1333 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1334 		struct rbd_device *rbd_dev = NULL;
1335 
1336 		if (obj_request_img_data_test(obj_request))
1337 			rbd_dev = obj_request->img_request->rbd_dev;
1338 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1339 			obj_request);
1340 	}
1341 }
1342 
1343 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1344 {
1345 	smp_mb();
1346 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1347 }
1348 
1349 /*
1350  * This sets the KNOWN flag after (possibly) setting the EXISTS
1351  * flag.  The latter is set based on the "exists" value provided.
1352  *
1353  * Note that for our purposes once an object exists it never goes
1354  * away again.  It's possible that the response from two existence
1355  * checks are separated by the creation of the target object, and
1356  * the first ("doesn't exist") response arrives *after* the second
1357  * ("does exist").  In that case we ignore the second one.
1358  */
1359 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1360 				bool exists)
1361 {
1362 	if (exists)
1363 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1364 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1365 	smp_mb();
1366 }
1367 
1368 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1369 {
1370 	smp_mb();
1371 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1372 }
1373 
1374 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1375 {
1376 	smp_mb();
1377 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1378 }
1379 
1380 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1381 {
1382 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1383 		atomic_read(&obj_request->kref.refcount));
1384 	kref_get(&obj_request->kref);
1385 }
1386 
1387 static void rbd_obj_request_destroy(struct kref *kref);
1388 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1389 {
1390 	rbd_assert(obj_request != NULL);
1391 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1392 		atomic_read(&obj_request->kref.refcount));
1393 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1394 }
1395 
1396 static bool img_request_child_test(struct rbd_img_request *img_request);
1397 static void rbd_parent_request_destroy(struct kref *kref);
1398 static void rbd_img_request_destroy(struct kref *kref);
1399 static void rbd_img_request_put(struct rbd_img_request *img_request)
1400 {
1401 	rbd_assert(img_request != NULL);
1402 	dout("%s: img %p (was %d)\n", __func__, img_request,
1403 		atomic_read(&img_request->kref.refcount));
1404 	if (img_request_child_test(img_request))
1405 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1406 	else
1407 		kref_put(&img_request->kref, rbd_img_request_destroy);
1408 }
1409 
1410 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1411 					struct rbd_obj_request *obj_request)
1412 {
1413 	rbd_assert(obj_request->img_request == NULL);
1414 
1415 	/* Image request now owns object's original reference */
1416 	obj_request->img_request = img_request;
1417 	obj_request->which = img_request->obj_request_count;
1418 	rbd_assert(!obj_request_img_data_test(obj_request));
1419 	obj_request_img_data_set(obj_request);
1420 	rbd_assert(obj_request->which != BAD_WHICH);
1421 	img_request->obj_request_count++;
1422 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1423 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1424 		obj_request->which);
1425 }
1426 
1427 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1428 					struct rbd_obj_request *obj_request)
1429 {
1430 	rbd_assert(obj_request->which != BAD_WHICH);
1431 
1432 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1433 		obj_request->which);
1434 	list_del(&obj_request->links);
1435 	rbd_assert(img_request->obj_request_count > 0);
1436 	img_request->obj_request_count--;
1437 	rbd_assert(obj_request->which == img_request->obj_request_count);
1438 	obj_request->which = BAD_WHICH;
1439 	rbd_assert(obj_request_img_data_test(obj_request));
1440 	rbd_assert(obj_request->img_request == img_request);
1441 	obj_request->img_request = NULL;
1442 	obj_request->callback = NULL;
1443 	rbd_obj_request_put(obj_request);
1444 }
1445 
1446 static bool obj_request_type_valid(enum obj_request_type type)
1447 {
1448 	switch (type) {
1449 	case OBJ_REQUEST_NODATA:
1450 	case OBJ_REQUEST_BIO:
1451 	case OBJ_REQUEST_PAGES:
1452 		return true;
1453 	default:
1454 		return false;
1455 	}
1456 }
1457 
1458 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1459 				struct rbd_obj_request *obj_request)
1460 {
1461 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1462 
1463 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1464 }
1465 
1466 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1467 {
1468 
1469 	dout("%s: img %p\n", __func__, img_request);
1470 
1471 	/*
1472 	 * If no error occurred, compute the aggregate transfer
1473 	 * count for the image request.  We could instead use
1474 	 * atomic64_cmpxchg() to update it as each object request
1475 	 * completes; not clear which way is better off hand.
1476 	 */
1477 	if (!img_request->result) {
1478 		struct rbd_obj_request *obj_request;
1479 		u64 xferred = 0;
1480 
1481 		for_each_obj_request(img_request, obj_request)
1482 			xferred += obj_request->xferred;
1483 		img_request->xferred = xferred;
1484 	}
1485 
1486 	if (img_request->callback)
1487 		img_request->callback(img_request);
1488 	else
1489 		rbd_img_request_put(img_request);
1490 }
1491 
1492 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1493 
1494 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1495 {
1496 	dout("%s: obj %p\n", __func__, obj_request);
1497 
1498 	return wait_for_completion_interruptible(&obj_request->completion);
1499 }
1500 
1501 /*
1502  * The default/initial value for all image request flags is 0.  Each
1503  * is conditionally set to 1 at image request initialization time
1504  * and currently never change thereafter.
1505  */
1506 static void img_request_write_set(struct rbd_img_request *img_request)
1507 {
1508 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1509 	smp_mb();
1510 }
1511 
1512 static bool img_request_write_test(struct rbd_img_request *img_request)
1513 {
1514 	smp_mb();
1515 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1516 }
1517 
1518 static void img_request_child_set(struct rbd_img_request *img_request)
1519 {
1520 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1521 	smp_mb();
1522 }
1523 
1524 static void img_request_child_clear(struct rbd_img_request *img_request)
1525 {
1526 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1527 	smp_mb();
1528 }
1529 
1530 static bool img_request_child_test(struct rbd_img_request *img_request)
1531 {
1532 	smp_mb();
1533 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1534 }
1535 
1536 static void img_request_layered_set(struct rbd_img_request *img_request)
1537 {
1538 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1539 	smp_mb();
1540 }
1541 
1542 static void img_request_layered_clear(struct rbd_img_request *img_request)
1543 {
1544 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1545 	smp_mb();
1546 }
1547 
1548 static bool img_request_layered_test(struct rbd_img_request *img_request)
1549 {
1550 	smp_mb();
1551 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1552 }
1553 
1554 static void
1555 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1556 {
1557 	u64 xferred = obj_request->xferred;
1558 	u64 length = obj_request->length;
1559 
1560 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1561 		obj_request, obj_request->img_request, obj_request->result,
1562 		xferred, length);
1563 	/*
1564 	 * ENOENT means a hole in the image.  We zero-fill the entire
1565 	 * length of the request.  A short read also implies zero-fill
1566 	 * to the end of the request.  An error requires the whole
1567 	 * length of the request to be reported finished with an error
1568 	 * to the block layer.  In each case we update the xferred
1569 	 * count to indicate the whole request was satisfied.
1570 	 */
1571 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1572 	if (obj_request->result == -ENOENT) {
1573 		if (obj_request->type == OBJ_REQUEST_BIO)
1574 			zero_bio_chain(obj_request->bio_list, 0);
1575 		else
1576 			zero_pages(obj_request->pages, 0, length);
1577 		obj_request->result = 0;
1578 	} else if (xferred < length && !obj_request->result) {
1579 		if (obj_request->type == OBJ_REQUEST_BIO)
1580 			zero_bio_chain(obj_request->bio_list, xferred);
1581 		else
1582 			zero_pages(obj_request->pages, xferred, length);
1583 	}
1584 	obj_request->xferred = length;
1585 	obj_request_done_set(obj_request);
1586 }
1587 
1588 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1589 {
1590 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1591 		obj_request->callback);
1592 	if (obj_request->callback)
1593 		obj_request->callback(obj_request);
1594 	else
1595 		complete_all(&obj_request->completion);
1596 }
1597 
1598 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1599 {
1600 	dout("%s: obj %p\n", __func__, obj_request);
1601 	obj_request_done_set(obj_request);
1602 }
1603 
1604 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606 	struct rbd_img_request *img_request = NULL;
1607 	struct rbd_device *rbd_dev = NULL;
1608 	bool layered = false;
1609 
1610 	if (obj_request_img_data_test(obj_request)) {
1611 		img_request = obj_request->img_request;
1612 		layered = img_request && img_request_layered_test(img_request);
1613 		rbd_dev = img_request->rbd_dev;
1614 	}
1615 
1616 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1617 		obj_request, img_request, obj_request->result,
1618 		obj_request->xferred, obj_request->length);
1619 	if (layered && obj_request->result == -ENOENT &&
1620 			obj_request->img_offset < rbd_dev->parent_overlap)
1621 		rbd_img_parent_read(obj_request);
1622 	else if (img_request)
1623 		rbd_img_obj_request_read_callback(obj_request);
1624 	else
1625 		obj_request_done_set(obj_request);
1626 }
1627 
1628 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1629 {
1630 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1631 		obj_request->result, obj_request->length);
1632 	/*
1633 	 * There is no such thing as a successful short write.  Set
1634 	 * it to our originally-requested length.
1635 	 */
1636 	obj_request->xferred = obj_request->length;
1637 	obj_request_done_set(obj_request);
1638 }
1639 
1640 /*
1641  * For a simple stat call there's nothing to do.  We'll do more if
1642  * this is part of a write sequence for a layered image.
1643  */
1644 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1645 {
1646 	dout("%s: obj %p\n", __func__, obj_request);
1647 	obj_request_done_set(obj_request);
1648 }
1649 
1650 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1651 				struct ceph_msg *msg)
1652 {
1653 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1654 	u16 opcode;
1655 
1656 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1657 	rbd_assert(osd_req == obj_request->osd_req);
1658 	if (obj_request_img_data_test(obj_request)) {
1659 		rbd_assert(obj_request->img_request);
1660 		rbd_assert(obj_request->which != BAD_WHICH);
1661 	} else {
1662 		rbd_assert(obj_request->which == BAD_WHICH);
1663 	}
1664 
1665 	if (osd_req->r_result < 0)
1666 		obj_request->result = osd_req->r_result;
1667 
1668 	BUG_ON(osd_req->r_num_ops > 2);
1669 
1670 	/*
1671 	 * We support a 64-bit length, but ultimately it has to be
1672 	 * passed to blk_end_request(), which takes an unsigned int.
1673 	 */
1674 	obj_request->xferred = osd_req->r_reply_op_len[0];
1675 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1676 	opcode = osd_req->r_ops[0].op;
1677 	switch (opcode) {
1678 	case CEPH_OSD_OP_READ:
1679 		rbd_osd_read_callback(obj_request);
1680 		break;
1681 	case CEPH_OSD_OP_WRITE:
1682 		rbd_osd_write_callback(obj_request);
1683 		break;
1684 	case CEPH_OSD_OP_STAT:
1685 		rbd_osd_stat_callback(obj_request);
1686 		break;
1687 	case CEPH_OSD_OP_CALL:
1688 	case CEPH_OSD_OP_NOTIFY_ACK:
1689 	case CEPH_OSD_OP_WATCH:
1690 		rbd_osd_trivial_callback(obj_request);
1691 		break;
1692 	default:
1693 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1694 			obj_request->object_name, (unsigned short) opcode);
1695 		break;
1696 	}
1697 
1698 	if (obj_request_done_test(obj_request))
1699 		rbd_obj_request_complete(obj_request);
1700 }
1701 
1702 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1703 {
1704 	struct rbd_img_request *img_request = obj_request->img_request;
1705 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1706 	u64 snap_id;
1707 
1708 	rbd_assert(osd_req != NULL);
1709 
1710 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1711 	ceph_osdc_build_request(osd_req, obj_request->offset,
1712 			NULL, snap_id, NULL);
1713 }
1714 
1715 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1716 {
1717 	struct rbd_img_request *img_request = obj_request->img_request;
1718 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1719 	struct ceph_snap_context *snapc;
1720 	struct timespec mtime = CURRENT_TIME;
1721 
1722 	rbd_assert(osd_req != NULL);
1723 
1724 	snapc = img_request ? img_request->snapc : NULL;
1725 	ceph_osdc_build_request(osd_req, obj_request->offset,
1726 			snapc, CEPH_NOSNAP, &mtime);
1727 }
1728 
1729 static struct ceph_osd_request *rbd_osd_req_create(
1730 					struct rbd_device *rbd_dev,
1731 					bool write_request,
1732 					struct rbd_obj_request *obj_request)
1733 {
1734 	struct ceph_snap_context *snapc = NULL;
1735 	struct ceph_osd_client *osdc;
1736 	struct ceph_osd_request *osd_req;
1737 
1738 	if (obj_request_img_data_test(obj_request)) {
1739 		struct rbd_img_request *img_request = obj_request->img_request;
1740 
1741 		rbd_assert(write_request ==
1742 				img_request_write_test(img_request));
1743 		if (write_request)
1744 			snapc = img_request->snapc;
1745 	}
1746 
1747 	/* Allocate and initialize the request, for the single op */
1748 
1749 	osdc = &rbd_dev->rbd_client->client->osdc;
1750 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1751 	if (!osd_req)
1752 		return NULL;	/* ENOMEM */
1753 
1754 	if (write_request)
1755 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1756 	else
1757 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1758 
1759 	osd_req->r_callback = rbd_osd_req_callback;
1760 	osd_req->r_priv = obj_request;
1761 
1762 	osd_req->r_oid_len = strlen(obj_request->object_name);
1763 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1764 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1765 
1766 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1767 
1768 	return osd_req;
1769 }
1770 
1771 /*
1772  * Create a copyup osd request based on the information in the
1773  * object request supplied.  A copyup request has two osd ops,
1774  * a copyup method call, and a "normal" write request.
1775  */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779 	struct rbd_img_request *img_request;
1780 	struct ceph_snap_context *snapc;
1781 	struct rbd_device *rbd_dev;
1782 	struct ceph_osd_client *osdc;
1783 	struct ceph_osd_request *osd_req;
1784 
1785 	rbd_assert(obj_request_img_data_test(obj_request));
1786 	img_request = obj_request->img_request;
1787 	rbd_assert(img_request);
1788 	rbd_assert(img_request_write_test(img_request));
1789 
1790 	/* Allocate and initialize the request, for the two ops */
1791 
1792 	snapc = img_request->snapc;
1793 	rbd_dev = img_request->rbd_dev;
1794 	osdc = &rbd_dev->rbd_client->client->osdc;
1795 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1796 	if (!osd_req)
1797 		return NULL;	/* ENOMEM */
1798 
1799 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 	osd_req->r_callback = rbd_osd_req_callback;
1801 	osd_req->r_priv = obj_request;
1802 
1803 	osd_req->r_oid_len = strlen(obj_request->object_name);
1804 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1805 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1806 
1807 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1808 
1809 	return osd_req;
1810 }
1811 
1812 
1813 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1814 {
1815 	ceph_osdc_put_request(osd_req);
1816 }
1817 
1818 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1819 
1820 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1821 						u64 offset, u64 length,
1822 						enum obj_request_type type)
1823 {
1824 	struct rbd_obj_request *obj_request;
1825 	size_t size;
1826 	char *name;
1827 
1828 	rbd_assert(obj_request_type_valid(type));
1829 
1830 	size = strlen(object_name) + 1;
1831 	name = kmalloc(size, GFP_KERNEL);
1832 	if (!name)
1833 		return NULL;
1834 
1835 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1836 	if (!obj_request) {
1837 		kfree(name);
1838 		return NULL;
1839 	}
1840 
1841 	obj_request->object_name = memcpy(name, object_name, size);
1842 	obj_request->offset = offset;
1843 	obj_request->length = length;
1844 	obj_request->flags = 0;
1845 	obj_request->which = BAD_WHICH;
1846 	obj_request->type = type;
1847 	INIT_LIST_HEAD(&obj_request->links);
1848 	init_completion(&obj_request->completion);
1849 	kref_init(&obj_request->kref);
1850 
1851 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1852 		offset, length, (int)type, obj_request);
1853 
1854 	return obj_request;
1855 }
1856 
1857 static void rbd_obj_request_destroy(struct kref *kref)
1858 {
1859 	struct rbd_obj_request *obj_request;
1860 
1861 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1862 
1863 	dout("%s: obj %p\n", __func__, obj_request);
1864 
1865 	rbd_assert(obj_request->img_request == NULL);
1866 	rbd_assert(obj_request->which == BAD_WHICH);
1867 
1868 	if (obj_request->osd_req)
1869 		rbd_osd_req_destroy(obj_request->osd_req);
1870 
1871 	rbd_assert(obj_request_type_valid(obj_request->type));
1872 	switch (obj_request->type) {
1873 	case OBJ_REQUEST_NODATA:
1874 		break;		/* Nothing to do */
1875 	case OBJ_REQUEST_BIO:
1876 		if (obj_request->bio_list)
1877 			bio_chain_put(obj_request->bio_list);
1878 		break;
1879 	case OBJ_REQUEST_PAGES:
1880 		if (obj_request->pages)
1881 			ceph_release_page_vector(obj_request->pages,
1882 						obj_request->page_count);
1883 		break;
1884 	}
1885 
1886 	kfree(obj_request->object_name);
1887 	obj_request->object_name = NULL;
1888 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1889 }
1890 
1891 /* It's OK to call this for a device with no parent */
1892 
1893 static void rbd_spec_put(struct rbd_spec *spec);
1894 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1895 {
1896 	rbd_dev_remove_parent(rbd_dev);
1897 	rbd_spec_put(rbd_dev->parent_spec);
1898 	rbd_dev->parent_spec = NULL;
1899 	rbd_dev->parent_overlap = 0;
1900 }
1901 
1902 /*
1903  * Parent image reference counting is used to determine when an
1904  * image's parent fields can be safely torn down--after there are no
1905  * more in-flight requests to the parent image.  When the last
1906  * reference is dropped, cleaning them up is safe.
1907  */
1908 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1909 {
1910 	int counter;
1911 
1912 	if (!rbd_dev->parent_spec)
1913 		return;
1914 
1915 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1916 	if (counter > 0)
1917 		return;
1918 
1919 	/* Last reference; clean up parent data structures */
1920 
1921 	if (!counter)
1922 		rbd_dev_unparent(rbd_dev);
1923 	else
1924 		rbd_warn(rbd_dev, "parent reference underflow\n");
1925 }
1926 
1927 /*
1928  * If an image has a non-zero parent overlap, get a reference to its
1929  * parent.
1930  *
1931  * We must get the reference before checking for the overlap to
1932  * coordinate properly with zeroing the parent overlap in
1933  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1934  * drop it again if there is no overlap.
1935  *
1936  * Returns true if the rbd device has a parent with a non-zero
1937  * overlap and a reference for it was successfully taken, or
1938  * false otherwise.
1939  */
1940 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1941 {
1942 	int counter;
1943 
1944 	if (!rbd_dev->parent_spec)
1945 		return false;
1946 
1947 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1948 	if (counter > 0 && rbd_dev->parent_overlap)
1949 		return true;
1950 
1951 	/* Image was flattened, but parent is not yet torn down */
1952 
1953 	if (counter < 0)
1954 		rbd_warn(rbd_dev, "parent reference overflow\n");
1955 
1956 	return false;
1957 }
1958 
1959 /*
1960  * Caller is responsible for filling in the list of object requests
1961  * that comprises the image request, and the Linux request pointer
1962  * (if there is one).
1963  */
1964 static struct rbd_img_request *rbd_img_request_create(
1965 					struct rbd_device *rbd_dev,
1966 					u64 offset, u64 length,
1967 					bool write_request)
1968 {
1969 	struct rbd_img_request *img_request;
1970 
1971 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1972 	if (!img_request)
1973 		return NULL;
1974 
1975 	if (write_request) {
1976 		down_read(&rbd_dev->header_rwsem);
1977 		ceph_get_snap_context(rbd_dev->header.snapc);
1978 		up_read(&rbd_dev->header_rwsem);
1979 	}
1980 
1981 	img_request->rq = NULL;
1982 	img_request->rbd_dev = rbd_dev;
1983 	img_request->offset = offset;
1984 	img_request->length = length;
1985 	img_request->flags = 0;
1986 	if (write_request) {
1987 		img_request_write_set(img_request);
1988 		img_request->snapc = rbd_dev->header.snapc;
1989 	} else {
1990 		img_request->snap_id = rbd_dev->spec->snap_id;
1991 	}
1992 	if (rbd_dev_parent_get(rbd_dev))
1993 		img_request_layered_set(img_request);
1994 	spin_lock_init(&img_request->completion_lock);
1995 	img_request->next_completion = 0;
1996 	img_request->callback = NULL;
1997 	img_request->result = 0;
1998 	img_request->obj_request_count = 0;
1999 	INIT_LIST_HEAD(&img_request->obj_requests);
2000 	kref_init(&img_request->kref);
2001 
2002 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2003 		write_request ? "write" : "read", offset, length,
2004 		img_request);
2005 
2006 	return img_request;
2007 }
2008 
2009 static void rbd_img_request_destroy(struct kref *kref)
2010 {
2011 	struct rbd_img_request *img_request;
2012 	struct rbd_obj_request *obj_request;
2013 	struct rbd_obj_request *next_obj_request;
2014 
2015 	img_request = container_of(kref, struct rbd_img_request, kref);
2016 
2017 	dout("%s: img %p\n", __func__, img_request);
2018 
2019 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2020 		rbd_img_obj_request_del(img_request, obj_request);
2021 	rbd_assert(img_request->obj_request_count == 0);
2022 
2023 	if (img_request_layered_test(img_request)) {
2024 		img_request_layered_clear(img_request);
2025 		rbd_dev_parent_put(img_request->rbd_dev);
2026 	}
2027 
2028 	if (img_request_write_test(img_request))
2029 		ceph_put_snap_context(img_request->snapc);
2030 
2031 	kmem_cache_free(rbd_img_request_cache, img_request);
2032 }
2033 
2034 static struct rbd_img_request *rbd_parent_request_create(
2035 					struct rbd_obj_request *obj_request,
2036 					u64 img_offset, u64 length)
2037 {
2038 	struct rbd_img_request *parent_request;
2039 	struct rbd_device *rbd_dev;
2040 
2041 	rbd_assert(obj_request->img_request);
2042 	rbd_dev = obj_request->img_request->rbd_dev;
2043 
2044 	parent_request = rbd_img_request_create(rbd_dev->parent,
2045 						img_offset, length, false);
2046 	if (!parent_request)
2047 		return NULL;
2048 
2049 	img_request_child_set(parent_request);
2050 	rbd_obj_request_get(obj_request);
2051 	parent_request->obj_request = obj_request;
2052 
2053 	return parent_request;
2054 }
2055 
2056 static void rbd_parent_request_destroy(struct kref *kref)
2057 {
2058 	struct rbd_img_request *parent_request;
2059 	struct rbd_obj_request *orig_request;
2060 
2061 	parent_request = container_of(kref, struct rbd_img_request, kref);
2062 	orig_request = parent_request->obj_request;
2063 
2064 	parent_request->obj_request = NULL;
2065 	rbd_obj_request_put(orig_request);
2066 	img_request_child_clear(parent_request);
2067 
2068 	rbd_img_request_destroy(kref);
2069 }
2070 
2071 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2072 {
2073 	struct rbd_img_request *img_request;
2074 	unsigned int xferred;
2075 	int result;
2076 	bool more;
2077 
2078 	rbd_assert(obj_request_img_data_test(obj_request));
2079 	img_request = obj_request->img_request;
2080 
2081 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2082 	xferred = (unsigned int)obj_request->xferred;
2083 	result = obj_request->result;
2084 	if (result) {
2085 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2086 
2087 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2088 			img_request_write_test(img_request) ? "write" : "read",
2089 			obj_request->length, obj_request->img_offset,
2090 			obj_request->offset);
2091 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2092 			result, xferred);
2093 		if (!img_request->result)
2094 			img_request->result = result;
2095 	}
2096 
2097 	/* Image object requests don't own their page array */
2098 
2099 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2100 		obj_request->pages = NULL;
2101 		obj_request->page_count = 0;
2102 	}
2103 
2104 	if (img_request_child_test(img_request)) {
2105 		rbd_assert(img_request->obj_request != NULL);
2106 		more = obj_request->which < img_request->obj_request_count - 1;
2107 	} else {
2108 		rbd_assert(img_request->rq != NULL);
2109 		more = blk_end_request(img_request->rq, result, xferred);
2110 	}
2111 
2112 	return more;
2113 }
2114 
2115 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2116 {
2117 	struct rbd_img_request *img_request;
2118 	u32 which = obj_request->which;
2119 	bool more = true;
2120 
2121 	rbd_assert(obj_request_img_data_test(obj_request));
2122 	img_request = obj_request->img_request;
2123 
2124 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2125 	rbd_assert(img_request != NULL);
2126 	rbd_assert(img_request->obj_request_count > 0);
2127 	rbd_assert(which != BAD_WHICH);
2128 	rbd_assert(which < img_request->obj_request_count);
2129 	rbd_assert(which >= img_request->next_completion);
2130 
2131 	spin_lock_irq(&img_request->completion_lock);
2132 	if (which != img_request->next_completion)
2133 		goto out;
2134 
2135 	for_each_obj_request_from(img_request, obj_request) {
2136 		rbd_assert(more);
2137 		rbd_assert(which < img_request->obj_request_count);
2138 
2139 		if (!obj_request_done_test(obj_request))
2140 			break;
2141 		more = rbd_img_obj_end_request(obj_request);
2142 		which++;
2143 	}
2144 
2145 	rbd_assert(more ^ (which == img_request->obj_request_count));
2146 	img_request->next_completion = which;
2147 out:
2148 	spin_unlock_irq(&img_request->completion_lock);
2149 
2150 	if (!more)
2151 		rbd_img_request_complete(img_request);
2152 }
2153 
2154 /*
2155  * Split up an image request into one or more object requests, each
2156  * to a different object.  The "type" parameter indicates whether
2157  * "data_desc" is the pointer to the head of a list of bio
2158  * structures, or the base of a page array.  In either case this
2159  * function assumes data_desc describes memory sufficient to hold
2160  * all data described by the image request.
2161  */
2162 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2163 					enum obj_request_type type,
2164 					void *data_desc)
2165 {
2166 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2167 	struct rbd_obj_request *obj_request = NULL;
2168 	struct rbd_obj_request *next_obj_request;
2169 	bool write_request = img_request_write_test(img_request);
2170 	struct bio *bio_list = NULL;
2171 	unsigned int bio_offset = 0;
2172 	struct page **pages = NULL;
2173 	u64 img_offset;
2174 	u64 resid;
2175 	u16 opcode;
2176 
2177 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2178 		(int)type, data_desc);
2179 
2180 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2181 	img_offset = img_request->offset;
2182 	resid = img_request->length;
2183 	rbd_assert(resid > 0);
2184 
2185 	if (type == OBJ_REQUEST_BIO) {
2186 		bio_list = data_desc;
2187 		rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2188 	} else {
2189 		rbd_assert(type == OBJ_REQUEST_PAGES);
2190 		pages = data_desc;
2191 	}
2192 
2193 	while (resid) {
2194 		struct ceph_osd_request *osd_req;
2195 		const char *object_name;
2196 		u64 offset;
2197 		u64 length;
2198 
2199 		object_name = rbd_segment_name(rbd_dev, img_offset);
2200 		if (!object_name)
2201 			goto out_unwind;
2202 		offset = rbd_segment_offset(rbd_dev, img_offset);
2203 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2204 		obj_request = rbd_obj_request_create(object_name,
2205 						offset, length, type);
2206 		/* object request has its own copy of the object name */
2207 		rbd_segment_name_free(object_name);
2208 		if (!obj_request)
2209 			goto out_unwind;
2210 		/*
2211 		 * set obj_request->img_request before creating the
2212 		 * osd_request so that it gets the right snapc
2213 		 */
2214 		rbd_img_obj_request_add(img_request, obj_request);
2215 
2216 		if (type == OBJ_REQUEST_BIO) {
2217 			unsigned int clone_size;
2218 
2219 			rbd_assert(length <= (u64)UINT_MAX);
2220 			clone_size = (unsigned int)length;
2221 			obj_request->bio_list =
2222 					bio_chain_clone_range(&bio_list,
2223 								&bio_offset,
2224 								clone_size,
2225 								GFP_ATOMIC);
2226 			if (!obj_request->bio_list)
2227 				goto out_partial;
2228 		} else {
2229 			unsigned int page_count;
2230 
2231 			obj_request->pages = pages;
2232 			page_count = (u32)calc_pages_for(offset, length);
2233 			obj_request->page_count = page_count;
2234 			if ((offset + length) & ~PAGE_MASK)
2235 				page_count--;	/* more on last page */
2236 			pages += page_count;
2237 		}
2238 
2239 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2240 						obj_request);
2241 		if (!osd_req)
2242 			goto out_partial;
2243 		obj_request->osd_req = osd_req;
2244 		obj_request->callback = rbd_img_obj_callback;
2245 
2246 		osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2247 						0, 0);
2248 		if (type == OBJ_REQUEST_BIO)
2249 			osd_req_op_extent_osd_data_bio(osd_req, 0,
2250 					obj_request->bio_list, length);
2251 		else
2252 			osd_req_op_extent_osd_data_pages(osd_req, 0,
2253 					obj_request->pages, length,
2254 					offset & ~PAGE_MASK, false, false);
2255 
2256 		if (write_request)
2257 			rbd_osd_req_format_write(obj_request);
2258 		else
2259 			rbd_osd_req_format_read(obj_request);
2260 
2261 		obj_request->img_offset = img_offset;
2262 
2263 		img_offset += length;
2264 		resid -= length;
2265 	}
2266 
2267 	return 0;
2268 
2269 out_partial:
2270 	rbd_obj_request_put(obj_request);
2271 out_unwind:
2272 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273 		rbd_obj_request_put(obj_request);
2274 
2275 	return -ENOMEM;
2276 }
2277 
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281 	struct rbd_img_request *img_request;
2282 	struct rbd_device *rbd_dev;
2283 	struct page **pages;
2284 	u32 page_count;
2285 
2286 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287 	rbd_assert(obj_request_img_data_test(obj_request));
2288 	img_request = obj_request->img_request;
2289 	rbd_assert(img_request);
2290 
2291 	rbd_dev = img_request->rbd_dev;
2292 	rbd_assert(rbd_dev);
2293 
2294 	pages = obj_request->copyup_pages;
2295 	rbd_assert(pages != NULL);
2296 	obj_request->copyup_pages = NULL;
2297 	page_count = obj_request->copyup_page_count;
2298 	rbd_assert(page_count);
2299 	obj_request->copyup_page_count = 0;
2300 	ceph_release_page_vector(pages, page_count);
2301 
2302 	/*
2303 	 * We want the transfer count to reflect the size of the
2304 	 * original write request.  There is no such thing as a
2305 	 * successful short write, so if the request was successful
2306 	 * we can just set it to the originally-requested length.
2307 	 */
2308 	if (!obj_request->result)
2309 		obj_request->xferred = obj_request->length;
2310 
2311 	/* Finish up with the normal image object callback */
2312 
2313 	rbd_img_obj_callback(obj_request);
2314 }
2315 
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319 	struct rbd_obj_request *orig_request;
2320 	struct ceph_osd_request *osd_req;
2321 	struct ceph_osd_client *osdc;
2322 	struct rbd_device *rbd_dev;
2323 	struct page **pages;
2324 	u32 page_count;
2325 	int img_result;
2326 	u64 parent_length;
2327 	u64 offset;
2328 	u64 length;
2329 
2330 	rbd_assert(img_request_child_test(img_request));
2331 
2332 	/* First get what we need from the image request */
2333 
2334 	pages = img_request->copyup_pages;
2335 	rbd_assert(pages != NULL);
2336 	img_request->copyup_pages = NULL;
2337 	page_count = img_request->copyup_page_count;
2338 	rbd_assert(page_count);
2339 	img_request->copyup_page_count = 0;
2340 
2341 	orig_request = img_request->obj_request;
2342 	rbd_assert(orig_request != NULL);
2343 	rbd_assert(obj_request_type_valid(orig_request->type));
2344 	img_result = img_request->result;
2345 	parent_length = img_request->length;
2346 	rbd_assert(parent_length == img_request->xferred);
2347 	rbd_img_request_put(img_request);
2348 
2349 	rbd_assert(orig_request->img_request);
2350 	rbd_dev = orig_request->img_request->rbd_dev;
2351 	rbd_assert(rbd_dev);
2352 
2353 	/*
2354 	 * If the overlap has become 0 (most likely because the
2355 	 * image has been flattened) we need to free the pages
2356 	 * and re-submit the original write request.
2357 	 */
2358 	if (!rbd_dev->parent_overlap) {
2359 		struct ceph_osd_client *osdc;
2360 
2361 		ceph_release_page_vector(pages, page_count);
2362 		osdc = &rbd_dev->rbd_client->client->osdc;
2363 		img_result = rbd_obj_request_submit(osdc, orig_request);
2364 		if (!img_result)
2365 			return;
2366 	}
2367 
2368 	if (img_result)
2369 		goto out_err;
2370 
2371 	/*
2372 	 * The original osd request is of no use to use any more.
2373 	 * We need a new one that can hold the two ops in a copyup
2374 	 * request.  Allocate the new copyup osd request for the
2375 	 * original request, and release the old one.
2376 	 */
2377 	img_result = -ENOMEM;
2378 	osd_req = rbd_osd_req_create_copyup(orig_request);
2379 	if (!osd_req)
2380 		goto out_err;
2381 	rbd_osd_req_destroy(orig_request->osd_req);
2382 	orig_request->osd_req = osd_req;
2383 	orig_request->copyup_pages = pages;
2384 	orig_request->copyup_page_count = page_count;
2385 
2386 	/* Initialize the copyup op */
2387 
2388 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390 						false, false);
2391 
2392 	/* Then the original write request op */
2393 
2394 	offset = orig_request->offset;
2395 	length = orig_request->length;
2396 	osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397 					offset, length, 0, 0);
2398 	if (orig_request->type == OBJ_REQUEST_BIO)
2399 		osd_req_op_extent_osd_data_bio(osd_req, 1,
2400 					orig_request->bio_list, length);
2401 	else
2402 		osd_req_op_extent_osd_data_pages(osd_req, 1,
2403 					orig_request->pages, length,
2404 					offset & ~PAGE_MASK, false, false);
2405 
2406 	rbd_osd_req_format_write(orig_request);
2407 
2408 	/* All set, send it off. */
2409 
2410 	orig_request->callback = rbd_img_obj_copyup_callback;
2411 	osdc = &rbd_dev->rbd_client->client->osdc;
2412 	img_result = rbd_obj_request_submit(osdc, orig_request);
2413 	if (!img_result)
2414 		return;
2415 out_err:
2416 	/* Record the error code and complete the request */
2417 
2418 	orig_request->result = img_result;
2419 	orig_request->xferred = 0;
2420 	obj_request_done_set(orig_request);
2421 	rbd_obj_request_complete(orig_request);
2422 }
2423 
2424 /*
2425  * Read from the parent image the range of data that covers the
2426  * entire target of the given object request.  This is used for
2427  * satisfying a layered image write request when the target of an
2428  * object request from the image request does not exist.
2429  *
2430  * A page array big enough to hold the returned data is allocated
2431  * and supplied to rbd_img_request_fill() as the "data descriptor."
2432  * When the read completes, this page array will be transferred to
2433  * the original object request for the copyup operation.
2434  *
2435  * If an error occurs, record it as the result of the original
2436  * object request and mark it done so it gets completed.
2437  */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440 	struct rbd_img_request *img_request = NULL;
2441 	struct rbd_img_request *parent_request = NULL;
2442 	struct rbd_device *rbd_dev;
2443 	u64 img_offset;
2444 	u64 length;
2445 	struct page **pages = NULL;
2446 	u32 page_count;
2447 	int result;
2448 
2449 	rbd_assert(obj_request_img_data_test(obj_request));
2450 	rbd_assert(obj_request_type_valid(obj_request->type));
2451 
2452 	img_request = obj_request->img_request;
2453 	rbd_assert(img_request != NULL);
2454 	rbd_dev = img_request->rbd_dev;
2455 	rbd_assert(rbd_dev->parent != NULL);
2456 
2457 	/*
2458 	 * Determine the byte range covered by the object in the
2459 	 * child image to which the original request was to be sent.
2460 	 */
2461 	img_offset = obj_request->img_offset - obj_request->offset;
2462 	length = (u64)1 << rbd_dev->header.obj_order;
2463 
2464 	/*
2465 	 * There is no defined parent data beyond the parent
2466 	 * overlap, so limit what we read at that boundary if
2467 	 * necessary.
2468 	 */
2469 	if (img_offset + length > rbd_dev->parent_overlap) {
2470 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2471 		length = rbd_dev->parent_overlap - img_offset;
2472 	}
2473 
2474 	/*
2475 	 * Allocate a page array big enough to receive the data read
2476 	 * from the parent.
2477 	 */
2478 	page_count = (u32)calc_pages_for(0, length);
2479 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480 	if (IS_ERR(pages)) {
2481 		result = PTR_ERR(pages);
2482 		pages = NULL;
2483 		goto out_err;
2484 	}
2485 
2486 	result = -ENOMEM;
2487 	parent_request = rbd_parent_request_create(obj_request,
2488 						img_offset, length);
2489 	if (!parent_request)
2490 		goto out_err;
2491 
2492 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493 	if (result)
2494 		goto out_err;
2495 	parent_request->copyup_pages = pages;
2496 	parent_request->copyup_page_count = page_count;
2497 
2498 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499 	result = rbd_img_request_submit(parent_request);
2500 	if (!result)
2501 		return 0;
2502 
2503 	parent_request->copyup_pages = NULL;
2504 	parent_request->copyup_page_count = 0;
2505 	parent_request->obj_request = NULL;
2506 	rbd_obj_request_put(obj_request);
2507 out_err:
2508 	if (pages)
2509 		ceph_release_page_vector(pages, page_count);
2510 	if (parent_request)
2511 		rbd_img_request_put(parent_request);
2512 	obj_request->result = result;
2513 	obj_request->xferred = 0;
2514 	obj_request_done_set(obj_request);
2515 
2516 	return result;
2517 }
2518 
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521 	struct rbd_obj_request *orig_request;
2522 	struct rbd_device *rbd_dev;
2523 	int result;
2524 
2525 	rbd_assert(!obj_request_img_data_test(obj_request));
2526 
2527 	/*
2528 	 * All we need from the object request is the original
2529 	 * request and the result of the STAT op.  Grab those, then
2530 	 * we're done with the request.
2531 	 */
2532 	orig_request = obj_request->obj_request;
2533 	obj_request->obj_request = NULL;
2534 	rbd_obj_request_put(orig_request);
2535 	rbd_assert(orig_request);
2536 	rbd_assert(orig_request->img_request);
2537 
2538 	result = obj_request->result;
2539 	obj_request->result = 0;
2540 
2541 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2542 		obj_request, orig_request, result,
2543 		obj_request->xferred, obj_request->length);
2544 	rbd_obj_request_put(obj_request);
2545 
2546 	/*
2547 	 * If the overlap has become 0 (most likely because the
2548 	 * image has been flattened) we need to free the pages
2549 	 * and re-submit the original write request.
2550 	 */
2551 	rbd_dev = orig_request->img_request->rbd_dev;
2552 	if (!rbd_dev->parent_overlap) {
2553 		struct ceph_osd_client *osdc;
2554 
2555 		osdc = &rbd_dev->rbd_client->client->osdc;
2556 		result = rbd_obj_request_submit(osdc, orig_request);
2557 		if (!result)
2558 			return;
2559 	}
2560 
2561 	/*
2562 	 * Our only purpose here is to determine whether the object
2563 	 * exists, and we don't want to treat the non-existence as
2564 	 * an error.  If something else comes back, transfer the
2565 	 * error to the original request and complete it now.
2566 	 */
2567 	if (!result) {
2568 		obj_request_existence_set(orig_request, true);
2569 	} else if (result == -ENOENT) {
2570 		obj_request_existence_set(orig_request, false);
2571 	} else if (result) {
2572 		orig_request->result = result;
2573 		goto out;
2574 	}
2575 
2576 	/*
2577 	 * Resubmit the original request now that we have recorded
2578 	 * whether the target object exists.
2579 	 */
2580 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582 	if (orig_request->result)
2583 		rbd_obj_request_complete(orig_request);
2584 }
2585 
2586 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2587 {
2588 	struct rbd_obj_request *stat_request;
2589 	struct rbd_device *rbd_dev;
2590 	struct ceph_osd_client *osdc;
2591 	struct page **pages = NULL;
2592 	u32 page_count;
2593 	size_t size;
2594 	int ret;
2595 
2596 	/*
2597 	 * The response data for a STAT call consists of:
2598 	 *     le64 length;
2599 	 *     struct {
2600 	 *         le32 tv_sec;
2601 	 *         le32 tv_nsec;
2602 	 *     } mtime;
2603 	 */
2604 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2605 	page_count = (u32)calc_pages_for(0, size);
2606 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2607 	if (IS_ERR(pages))
2608 		return PTR_ERR(pages);
2609 
2610 	ret = -ENOMEM;
2611 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2612 							OBJ_REQUEST_PAGES);
2613 	if (!stat_request)
2614 		goto out;
2615 
2616 	rbd_obj_request_get(obj_request);
2617 	stat_request->obj_request = obj_request;
2618 	stat_request->pages = pages;
2619 	stat_request->page_count = page_count;
2620 
2621 	rbd_assert(obj_request->img_request);
2622 	rbd_dev = obj_request->img_request->rbd_dev;
2623 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2624 						stat_request);
2625 	if (!stat_request->osd_req)
2626 		goto out;
2627 	stat_request->callback = rbd_img_obj_exists_callback;
2628 
2629 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2630 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2631 					false, false);
2632 	rbd_osd_req_format_read(stat_request);
2633 
2634 	osdc = &rbd_dev->rbd_client->client->osdc;
2635 	ret = rbd_obj_request_submit(osdc, stat_request);
2636 out:
2637 	if (ret)
2638 		rbd_obj_request_put(obj_request);
2639 
2640 	return ret;
2641 }
2642 
2643 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2644 {
2645 	struct rbd_img_request *img_request;
2646 	struct rbd_device *rbd_dev;
2647 	bool known;
2648 
2649 	rbd_assert(obj_request_img_data_test(obj_request));
2650 
2651 	img_request = obj_request->img_request;
2652 	rbd_assert(img_request);
2653 	rbd_dev = img_request->rbd_dev;
2654 
2655 	/*
2656 	 * Only writes to layered images need special handling.
2657 	 * Reads and non-layered writes are simple object requests.
2658 	 * Layered writes that start beyond the end of the overlap
2659 	 * with the parent have no parent data, so they too are
2660 	 * simple object requests.  Finally, if the target object is
2661 	 * known to already exist, its parent data has already been
2662 	 * copied, so a write to the object can also be handled as a
2663 	 * simple object request.
2664 	 */
2665 	if (!img_request_write_test(img_request) ||
2666 		!img_request_layered_test(img_request) ||
2667 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2668 		((known = obj_request_known_test(obj_request)) &&
2669 			obj_request_exists_test(obj_request))) {
2670 
2671 		struct rbd_device *rbd_dev;
2672 		struct ceph_osd_client *osdc;
2673 
2674 		rbd_dev = obj_request->img_request->rbd_dev;
2675 		osdc = &rbd_dev->rbd_client->client->osdc;
2676 
2677 		return rbd_obj_request_submit(osdc, obj_request);
2678 	}
2679 
2680 	/*
2681 	 * It's a layered write.  The target object might exist but
2682 	 * we may not know that yet.  If we know it doesn't exist,
2683 	 * start by reading the data for the full target object from
2684 	 * the parent so we can use it for a copyup to the target.
2685 	 */
2686 	if (known)
2687 		return rbd_img_obj_parent_read_full(obj_request);
2688 
2689 	/* We don't know whether the target exists.  Go find out. */
2690 
2691 	return rbd_img_obj_exists_submit(obj_request);
2692 }
2693 
2694 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2695 {
2696 	struct rbd_obj_request *obj_request;
2697 	struct rbd_obj_request *next_obj_request;
2698 
2699 	dout("%s: img %p\n", __func__, img_request);
2700 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2701 		int ret;
2702 
2703 		ret = rbd_img_obj_request_submit(obj_request);
2704 		if (ret)
2705 			return ret;
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2712 {
2713 	struct rbd_obj_request *obj_request;
2714 	struct rbd_device *rbd_dev;
2715 	u64 obj_end;
2716 	u64 img_xferred;
2717 	int img_result;
2718 
2719 	rbd_assert(img_request_child_test(img_request));
2720 
2721 	/* First get what we need from the image request and release it */
2722 
2723 	obj_request = img_request->obj_request;
2724 	img_xferred = img_request->xferred;
2725 	img_result = img_request->result;
2726 	rbd_img_request_put(img_request);
2727 
2728 	/*
2729 	 * If the overlap has become 0 (most likely because the
2730 	 * image has been flattened) we need to re-submit the
2731 	 * original request.
2732 	 */
2733 	rbd_assert(obj_request);
2734 	rbd_assert(obj_request->img_request);
2735 	rbd_dev = obj_request->img_request->rbd_dev;
2736 	if (!rbd_dev->parent_overlap) {
2737 		struct ceph_osd_client *osdc;
2738 
2739 		osdc = &rbd_dev->rbd_client->client->osdc;
2740 		img_result = rbd_obj_request_submit(osdc, obj_request);
2741 		if (!img_result)
2742 			return;
2743 	}
2744 
2745 	obj_request->result = img_result;
2746 	if (obj_request->result)
2747 		goto out;
2748 
2749 	/*
2750 	 * We need to zero anything beyond the parent overlap
2751 	 * boundary.  Since rbd_img_obj_request_read_callback()
2752 	 * will zero anything beyond the end of a short read, an
2753 	 * easy way to do this is to pretend the data from the
2754 	 * parent came up short--ending at the overlap boundary.
2755 	 */
2756 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2757 	obj_end = obj_request->img_offset + obj_request->length;
2758 	if (obj_end > rbd_dev->parent_overlap) {
2759 		u64 xferred = 0;
2760 
2761 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2762 			xferred = rbd_dev->parent_overlap -
2763 					obj_request->img_offset;
2764 
2765 		obj_request->xferred = min(img_xferred, xferred);
2766 	} else {
2767 		obj_request->xferred = img_xferred;
2768 	}
2769 out:
2770 	rbd_img_obj_request_read_callback(obj_request);
2771 	rbd_obj_request_complete(obj_request);
2772 }
2773 
2774 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2775 {
2776 	struct rbd_img_request *img_request;
2777 	int result;
2778 
2779 	rbd_assert(obj_request_img_data_test(obj_request));
2780 	rbd_assert(obj_request->img_request != NULL);
2781 	rbd_assert(obj_request->result == (s32) -ENOENT);
2782 	rbd_assert(obj_request_type_valid(obj_request->type));
2783 
2784 	/* rbd_read_finish(obj_request, obj_request->length); */
2785 	img_request = rbd_parent_request_create(obj_request,
2786 						obj_request->img_offset,
2787 						obj_request->length);
2788 	result = -ENOMEM;
2789 	if (!img_request)
2790 		goto out_err;
2791 
2792 	if (obj_request->type == OBJ_REQUEST_BIO)
2793 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2794 						obj_request->bio_list);
2795 	else
2796 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2797 						obj_request->pages);
2798 	if (result)
2799 		goto out_err;
2800 
2801 	img_request->callback = rbd_img_parent_read_callback;
2802 	result = rbd_img_request_submit(img_request);
2803 	if (result)
2804 		goto out_err;
2805 
2806 	return;
2807 out_err:
2808 	if (img_request)
2809 		rbd_img_request_put(img_request);
2810 	obj_request->result = result;
2811 	obj_request->xferred = 0;
2812 	obj_request_done_set(obj_request);
2813 }
2814 
2815 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2816 {
2817 	struct rbd_obj_request *obj_request;
2818 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2819 	int ret;
2820 
2821 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2822 							OBJ_REQUEST_NODATA);
2823 	if (!obj_request)
2824 		return -ENOMEM;
2825 
2826 	ret = -ENOMEM;
2827 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2828 	if (!obj_request->osd_req)
2829 		goto out;
2830 	obj_request->callback = rbd_obj_request_put;
2831 
2832 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2833 					notify_id, 0, 0);
2834 	rbd_osd_req_format_read(obj_request);
2835 
2836 	ret = rbd_obj_request_submit(osdc, obj_request);
2837 out:
2838 	if (ret)
2839 		rbd_obj_request_put(obj_request);
2840 
2841 	return ret;
2842 }
2843 
2844 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2845 {
2846 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2847 	int ret;
2848 
2849 	if (!rbd_dev)
2850 		return;
2851 
2852 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2853 		rbd_dev->header_name, (unsigned long long)notify_id,
2854 		(unsigned int)opcode);
2855 	ret = rbd_dev_refresh(rbd_dev);
2856 	if (ret)
2857 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2858 
2859 	rbd_obj_notify_ack(rbd_dev, notify_id);
2860 }
2861 
2862 /*
2863  * Request sync osd watch/unwatch.  The value of "start" determines
2864  * whether a watch request is being initiated or torn down.
2865  */
2866 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2867 {
2868 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2869 	struct rbd_obj_request *obj_request;
2870 	int ret;
2871 
2872 	rbd_assert(start ^ !!rbd_dev->watch_event);
2873 	rbd_assert(start ^ !!rbd_dev->watch_request);
2874 
2875 	if (start) {
2876 		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2877 						&rbd_dev->watch_event);
2878 		if (ret < 0)
2879 			return ret;
2880 		rbd_assert(rbd_dev->watch_event != NULL);
2881 	}
2882 
2883 	ret = -ENOMEM;
2884 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2885 							OBJ_REQUEST_NODATA);
2886 	if (!obj_request)
2887 		goto out_cancel;
2888 
2889 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2890 	if (!obj_request->osd_req)
2891 		goto out_cancel;
2892 
2893 	if (start)
2894 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2895 	else
2896 		ceph_osdc_unregister_linger_request(osdc,
2897 					rbd_dev->watch_request->osd_req);
2898 
2899 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2900 				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2901 	rbd_osd_req_format_write(obj_request);
2902 
2903 	ret = rbd_obj_request_submit(osdc, obj_request);
2904 	if (ret)
2905 		goto out_cancel;
2906 	ret = rbd_obj_request_wait(obj_request);
2907 	if (ret)
2908 		goto out_cancel;
2909 	ret = obj_request->result;
2910 	if (ret)
2911 		goto out_cancel;
2912 
2913 	/*
2914 	 * A watch request is set to linger, so the underlying osd
2915 	 * request won't go away until we unregister it.  We retain
2916 	 * a pointer to the object request during that time (in
2917 	 * rbd_dev->watch_request), so we'll keep a reference to
2918 	 * it.  We'll drop that reference (below) after we've
2919 	 * unregistered it.
2920 	 */
2921 	if (start) {
2922 		rbd_dev->watch_request = obj_request;
2923 
2924 		return 0;
2925 	}
2926 
2927 	/* We have successfully torn down the watch request */
2928 
2929 	rbd_obj_request_put(rbd_dev->watch_request);
2930 	rbd_dev->watch_request = NULL;
2931 out_cancel:
2932 	/* Cancel the event if we're tearing down, or on error */
2933 	ceph_osdc_cancel_event(rbd_dev->watch_event);
2934 	rbd_dev->watch_event = NULL;
2935 	if (obj_request)
2936 		rbd_obj_request_put(obj_request);
2937 
2938 	return ret;
2939 }
2940 
2941 /*
2942  * Synchronous osd object method call.  Returns the number of bytes
2943  * returned in the outbound buffer, or a negative error code.
2944  */
2945 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2946 			     const char *object_name,
2947 			     const char *class_name,
2948 			     const char *method_name,
2949 			     const void *outbound,
2950 			     size_t outbound_size,
2951 			     void *inbound,
2952 			     size_t inbound_size)
2953 {
2954 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2955 	struct rbd_obj_request *obj_request;
2956 	struct page **pages;
2957 	u32 page_count;
2958 	int ret;
2959 
2960 	/*
2961 	 * Method calls are ultimately read operations.  The result
2962 	 * should placed into the inbound buffer provided.  They
2963 	 * also supply outbound data--parameters for the object
2964 	 * method.  Currently if this is present it will be a
2965 	 * snapshot id.
2966 	 */
2967 	page_count = (u32)calc_pages_for(0, inbound_size);
2968 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2969 	if (IS_ERR(pages))
2970 		return PTR_ERR(pages);
2971 
2972 	ret = -ENOMEM;
2973 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2974 							OBJ_REQUEST_PAGES);
2975 	if (!obj_request)
2976 		goto out;
2977 
2978 	obj_request->pages = pages;
2979 	obj_request->page_count = page_count;
2980 
2981 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2982 	if (!obj_request->osd_req)
2983 		goto out;
2984 
2985 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2986 					class_name, method_name);
2987 	if (outbound_size) {
2988 		struct ceph_pagelist *pagelist;
2989 
2990 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2991 		if (!pagelist)
2992 			goto out;
2993 
2994 		ceph_pagelist_init(pagelist);
2995 		ceph_pagelist_append(pagelist, outbound, outbound_size);
2996 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2997 						pagelist);
2998 	}
2999 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3000 					obj_request->pages, inbound_size,
3001 					0, false, false);
3002 	rbd_osd_req_format_read(obj_request);
3003 
3004 	ret = rbd_obj_request_submit(osdc, obj_request);
3005 	if (ret)
3006 		goto out;
3007 	ret = rbd_obj_request_wait(obj_request);
3008 	if (ret)
3009 		goto out;
3010 
3011 	ret = obj_request->result;
3012 	if (ret < 0)
3013 		goto out;
3014 
3015 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3016 	ret = (int)obj_request->xferred;
3017 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3018 out:
3019 	if (obj_request)
3020 		rbd_obj_request_put(obj_request);
3021 	else
3022 		ceph_release_page_vector(pages, page_count);
3023 
3024 	return ret;
3025 }
3026 
3027 static void rbd_request_fn(struct request_queue *q)
3028 		__releases(q->queue_lock) __acquires(q->queue_lock)
3029 {
3030 	struct rbd_device *rbd_dev = q->queuedata;
3031 	bool read_only = rbd_dev->mapping.read_only;
3032 	struct request *rq;
3033 	int result;
3034 
3035 	while ((rq = blk_fetch_request(q))) {
3036 		bool write_request = rq_data_dir(rq) == WRITE;
3037 		struct rbd_img_request *img_request;
3038 		u64 offset;
3039 		u64 length;
3040 
3041 		/* Ignore any non-FS requests that filter through. */
3042 
3043 		if (rq->cmd_type != REQ_TYPE_FS) {
3044 			dout("%s: non-fs request type %d\n", __func__,
3045 				(int) rq->cmd_type);
3046 			__blk_end_request_all(rq, 0);
3047 			continue;
3048 		}
3049 
3050 		/* Ignore/skip any zero-length requests */
3051 
3052 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3053 		length = (u64) blk_rq_bytes(rq);
3054 
3055 		if (!length) {
3056 			dout("%s: zero-length request\n", __func__);
3057 			__blk_end_request_all(rq, 0);
3058 			continue;
3059 		}
3060 
3061 		spin_unlock_irq(q->queue_lock);
3062 
3063 		/* Disallow writes to a read-only device */
3064 
3065 		if (write_request) {
3066 			result = -EROFS;
3067 			if (read_only)
3068 				goto end_request;
3069 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3070 		}
3071 
3072 		/*
3073 		 * Quit early if the mapped snapshot no longer
3074 		 * exists.  It's still possible the snapshot will
3075 		 * have disappeared by the time our request arrives
3076 		 * at the osd, but there's no sense in sending it if
3077 		 * we already know.
3078 		 */
3079 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3080 			dout("request for non-existent snapshot");
3081 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3082 			result = -ENXIO;
3083 			goto end_request;
3084 		}
3085 
3086 		result = -EINVAL;
3087 		if (offset && length > U64_MAX - offset + 1) {
3088 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3089 				offset, length);
3090 			goto end_request;	/* Shouldn't happen */
3091 		}
3092 
3093 		result = -EIO;
3094 		if (offset + length > rbd_dev->mapping.size) {
3095 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3096 				offset, length, rbd_dev->mapping.size);
3097 			goto end_request;
3098 		}
3099 
3100 		result = -ENOMEM;
3101 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3102 							write_request);
3103 		if (!img_request)
3104 			goto end_request;
3105 
3106 		img_request->rq = rq;
3107 
3108 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3109 						rq->bio);
3110 		if (!result)
3111 			result = rbd_img_request_submit(img_request);
3112 		if (result)
3113 			rbd_img_request_put(img_request);
3114 end_request:
3115 		spin_lock_irq(q->queue_lock);
3116 		if (result < 0) {
3117 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3118 				write_request ? "write" : "read",
3119 				length, offset, result);
3120 
3121 			__blk_end_request_all(rq, result);
3122 		}
3123 	}
3124 }
3125 
3126 /*
3127  * a queue callback. Makes sure that we don't create a bio that spans across
3128  * multiple osd objects. One exception would be with a single page bios,
3129  * which we handle later at bio_chain_clone_range()
3130  */
3131 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3132 			  struct bio_vec *bvec)
3133 {
3134 	struct rbd_device *rbd_dev = q->queuedata;
3135 	sector_t sector_offset;
3136 	sector_t sectors_per_obj;
3137 	sector_t obj_sector_offset;
3138 	int ret;
3139 
3140 	/*
3141 	 * Find how far into its rbd object the partition-relative
3142 	 * bio start sector is to offset relative to the enclosing
3143 	 * device.
3144 	 */
3145 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3146 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3147 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3148 
3149 	/*
3150 	 * Compute the number of bytes from that offset to the end
3151 	 * of the object.  Account for what's already used by the bio.
3152 	 */
3153 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3154 	if (ret > bmd->bi_size)
3155 		ret -= bmd->bi_size;
3156 	else
3157 		ret = 0;
3158 
3159 	/*
3160 	 * Don't send back more than was asked for.  And if the bio
3161 	 * was empty, let the whole thing through because:  "Note
3162 	 * that a block device *must* allow a single page to be
3163 	 * added to an empty bio."
3164 	 */
3165 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3166 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3167 		ret = (int) bvec->bv_len;
3168 
3169 	return ret;
3170 }
3171 
3172 static void rbd_free_disk(struct rbd_device *rbd_dev)
3173 {
3174 	struct gendisk *disk = rbd_dev->disk;
3175 
3176 	if (!disk)
3177 		return;
3178 
3179 	rbd_dev->disk = NULL;
3180 	if (disk->flags & GENHD_FL_UP) {
3181 		del_gendisk(disk);
3182 		if (disk->queue)
3183 			blk_cleanup_queue(disk->queue);
3184 	}
3185 	put_disk(disk);
3186 }
3187 
3188 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3189 				const char *object_name,
3190 				u64 offset, u64 length, void *buf)
3191 
3192 {
3193 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3194 	struct rbd_obj_request *obj_request;
3195 	struct page **pages = NULL;
3196 	u32 page_count;
3197 	size_t size;
3198 	int ret;
3199 
3200 	page_count = (u32) calc_pages_for(offset, length);
3201 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3202 	if (IS_ERR(pages))
3203 		ret = PTR_ERR(pages);
3204 
3205 	ret = -ENOMEM;
3206 	obj_request = rbd_obj_request_create(object_name, offset, length,
3207 							OBJ_REQUEST_PAGES);
3208 	if (!obj_request)
3209 		goto out;
3210 
3211 	obj_request->pages = pages;
3212 	obj_request->page_count = page_count;
3213 
3214 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3215 	if (!obj_request->osd_req)
3216 		goto out;
3217 
3218 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3219 					offset, length, 0, 0);
3220 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3221 					obj_request->pages,
3222 					obj_request->length,
3223 					obj_request->offset & ~PAGE_MASK,
3224 					false, false);
3225 	rbd_osd_req_format_read(obj_request);
3226 
3227 	ret = rbd_obj_request_submit(osdc, obj_request);
3228 	if (ret)
3229 		goto out;
3230 	ret = rbd_obj_request_wait(obj_request);
3231 	if (ret)
3232 		goto out;
3233 
3234 	ret = obj_request->result;
3235 	if (ret < 0)
3236 		goto out;
3237 
3238 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3239 	size = (size_t) obj_request->xferred;
3240 	ceph_copy_from_page_vector(pages, buf, 0, size);
3241 	rbd_assert(size <= (size_t)INT_MAX);
3242 	ret = (int)size;
3243 out:
3244 	if (obj_request)
3245 		rbd_obj_request_put(obj_request);
3246 	else
3247 		ceph_release_page_vector(pages, page_count);
3248 
3249 	return ret;
3250 }
3251 
3252 /*
3253  * Read the complete header for the given rbd device.  On successful
3254  * return, the rbd_dev->header field will contain up-to-date
3255  * information about the image.
3256  */
3257 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3258 {
3259 	struct rbd_image_header_ondisk *ondisk = NULL;
3260 	u32 snap_count = 0;
3261 	u64 names_size = 0;
3262 	u32 want_count;
3263 	int ret;
3264 
3265 	/*
3266 	 * The complete header will include an array of its 64-bit
3267 	 * snapshot ids, followed by the names of those snapshots as
3268 	 * a contiguous block of NUL-terminated strings.  Note that
3269 	 * the number of snapshots could change by the time we read
3270 	 * it in, in which case we re-read it.
3271 	 */
3272 	do {
3273 		size_t size;
3274 
3275 		kfree(ondisk);
3276 
3277 		size = sizeof (*ondisk);
3278 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3279 		size += names_size;
3280 		ondisk = kmalloc(size, GFP_KERNEL);
3281 		if (!ondisk)
3282 			return -ENOMEM;
3283 
3284 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3285 				       0, size, ondisk);
3286 		if (ret < 0)
3287 			goto out;
3288 		if ((size_t)ret < size) {
3289 			ret = -ENXIO;
3290 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3291 				size, ret);
3292 			goto out;
3293 		}
3294 		if (!rbd_dev_ondisk_valid(ondisk)) {
3295 			ret = -ENXIO;
3296 			rbd_warn(rbd_dev, "invalid header");
3297 			goto out;
3298 		}
3299 
3300 		names_size = le64_to_cpu(ondisk->snap_names_len);
3301 		want_count = snap_count;
3302 		snap_count = le32_to_cpu(ondisk->snap_count);
3303 	} while (snap_count != want_count);
3304 
3305 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3306 out:
3307 	kfree(ondisk);
3308 
3309 	return ret;
3310 }
3311 
3312 /*
3313  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3314  * has disappeared from the (just updated) snapshot context.
3315  */
3316 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3317 {
3318 	u64 snap_id;
3319 
3320 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3321 		return;
3322 
3323 	snap_id = rbd_dev->spec->snap_id;
3324 	if (snap_id == CEPH_NOSNAP)
3325 		return;
3326 
3327 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3328 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3329 }
3330 
3331 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3332 {
3333 	u64 mapping_size;
3334 	int ret;
3335 
3336 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3337 	down_write(&rbd_dev->header_rwsem);
3338 	mapping_size = rbd_dev->mapping.size;
3339 	if (rbd_dev->image_format == 1)
3340 		ret = rbd_dev_v1_header_info(rbd_dev);
3341 	else
3342 		ret = rbd_dev_v2_header_info(rbd_dev);
3343 
3344 	/* If it's a mapped snapshot, validate its EXISTS flag */
3345 
3346 	rbd_exists_validate(rbd_dev);
3347 	up_write(&rbd_dev->header_rwsem);
3348 
3349 	if (mapping_size != rbd_dev->mapping.size) {
3350 		sector_t size;
3351 
3352 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353 		dout("setting size to %llu sectors", (unsigned long long)size);
3354 		set_capacity(rbd_dev->disk, size);
3355 		revalidate_disk(rbd_dev->disk);
3356 	}
3357 
3358 	return ret;
3359 }
3360 
3361 static int rbd_init_disk(struct rbd_device *rbd_dev)
3362 {
3363 	struct gendisk *disk;
3364 	struct request_queue *q;
3365 	u64 segment_size;
3366 
3367 	/* create gendisk info */
3368 	disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3369 	if (!disk)
3370 		return -ENOMEM;
3371 
3372 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3373 		 rbd_dev->dev_id);
3374 	disk->major = rbd_dev->major;
3375 	disk->first_minor = 0;
3376 	disk->fops = &rbd_bd_ops;
3377 	disk->private_data = rbd_dev;
3378 
3379 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3380 	if (!q)
3381 		goto out_disk;
3382 
3383 	/* We use the default size, but let's be explicit about it. */
3384 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3385 
3386 	/* set io sizes to object size */
3387 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3388 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3389 	blk_queue_max_segment_size(q, segment_size);
3390 	blk_queue_io_min(q, segment_size);
3391 	blk_queue_io_opt(q, segment_size);
3392 
3393 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3394 	disk->queue = q;
3395 
3396 	q->queuedata = rbd_dev;
3397 
3398 	rbd_dev->disk = disk;
3399 
3400 	return 0;
3401 out_disk:
3402 	put_disk(disk);
3403 
3404 	return -ENOMEM;
3405 }
3406 
3407 /*
3408   sysfs
3409 */
3410 
3411 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3412 {
3413 	return container_of(dev, struct rbd_device, dev);
3414 }
3415 
3416 static ssize_t rbd_size_show(struct device *dev,
3417 			     struct device_attribute *attr, char *buf)
3418 {
3419 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3420 
3421 	return sprintf(buf, "%llu\n",
3422 		(unsigned long long)rbd_dev->mapping.size);
3423 }
3424 
3425 /*
3426  * Note this shows the features for whatever's mapped, which is not
3427  * necessarily the base image.
3428  */
3429 static ssize_t rbd_features_show(struct device *dev,
3430 			     struct device_attribute *attr, char *buf)
3431 {
3432 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3433 
3434 	return sprintf(buf, "0x%016llx\n",
3435 			(unsigned long long)rbd_dev->mapping.features);
3436 }
3437 
3438 static ssize_t rbd_major_show(struct device *dev,
3439 			      struct device_attribute *attr, char *buf)
3440 {
3441 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442 
3443 	if (rbd_dev->major)
3444 		return sprintf(buf, "%d\n", rbd_dev->major);
3445 
3446 	return sprintf(buf, "(none)\n");
3447 
3448 }
3449 
3450 static ssize_t rbd_client_id_show(struct device *dev,
3451 				  struct device_attribute *attr, char *buf)
3452 {
3453 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3454 
3455 	return sprintf(buf, "client%lld\n",
3456 			ceph_client_id(rbd_dev->rbd_client->client));
3457 }
3458 
3459 static ssize_t rbd_pool_show(struct device *dev,
3460 			     struct device_attribute *attr, char *buf)
3461 {
3462 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3463 
3464 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3465 }
3466 
3467 static ssize_t rbd_pool_id_show(struct device *dev,
3468 			     struct device_attribute *attr, char *buf)
3469 {
3470 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471 
3472 	return sprintf(buf, "%llu\n",
3473 			(unsigned long long) rbd_dev->spec->pool_id);
3474 }
3475 
3476 static ssize_t rbd_name_show(struct device *dev,
3477 			     struct device_attribute *attr, char *buf)
3478 {
3479 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480 
3481 	if (rbd_dev->spec->image_name)
3482 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3483 
3484 	return sprintf(buf, "(unknown)\n");
3485 }
3486 
3487 static ssize_t rbd_image_id_show(struct device *dev,
3488 			     struct device_attribute *attr, char *buf)
3489 {
3490 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3491 
3492 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3493 }
3494 
3495 /*
3496  * Shows the name of the currently-mapped snapshot (or
3497  * RBD_SNAP_HEAD_NAME for the base image).
3498  */
3499 static ssize_t rbd_snap_show(struct device *dev,
3500 			     struct device_attribute *attr,
3501 			     char *buf)
3502 {
3503 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504 
3505 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3506 }
3507 
3508 /*
3509  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3510  * for the parent image.  If there is no parent, simply shows
3511  * "(no parent image)".
3512  */
3513 static ssize_t rbd_parent_show(struct device *dev,
3514 			     struct device_attribute *attr,
3515 			     char *buf)
3516 {
3517 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518 	struct rbd_spec *spec = rbd_dev->parent_spec;
3519 	int count;
3520 	char *bufp = buf;
3521 
3522 	if (!spec)
3523 		return sprintf(buf, "(no parent image)\n");
3524 
3525 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3526 			(unsigned long long) spec->pool_id, spec->pool_name);
3527 	if (count < 0)
3528 		return count;
3529 	bufp += count;
3530 
3531 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3532 			spec->image_name ? spec->image_name : "(unknown)");
3533 	if (count < 0)
3534 		return count;
3535 	bufp += count;
3536 
3537 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3538 			(unsigned long long) spec->snap_id, spec->snap_name);
3539 	if (count < 0)
3540 		return count;
3541 	bufp += count;
3542 
3543 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3544 	if (count < 0)
3545 		return count;
3546 	bufp += count;
3547 
3548 	return (ssize_t) (bufp - buf);
3549 }
3550 
3551 static ssize_t rbd_image_refresh(struct device *dev,
3552 				 struct device_attribute *attr,
3553 				 const char *buf,
3554 				 size_t size)
3555 {
3556 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3557 	int ret;
3558 
3559 	ret = rbd_dev_refresh(rbd_dev);
3560 	if (ret)
3561 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3562 
3563 	return ret < 0 ? ret : size;
3564 }
3565 
3566 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3567 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3568 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3569 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3570 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3571 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3572 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3573 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3574 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3575 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3576 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3577 
3578 static struct attribute *rbd_attrs[] = {
3579 	&dev_attr_size.attr,
3580 	&dev_attr_features.attr,
3581 	&dev_attr_major.attr,
3582 	&dev_attr_client_id.attr,
3583 	&dev_attr_pool.attr,
3584 	&dev_attr_pool_id.attr,
3585 	&dev_attr_name.attr,
3586 	&dev_attr_image_id.attr,
3587 	&dev_attr_current_snap.attr,
3588 	&dev_attr_parent.attr,
3589 	&dev_attr_refresh.attr,
3590 	NULL
3591 };
3592 
3593 static struct attribute_group rbd_attr_group = {
3594 	.attrs = rbd_attrs,
3595 };
3596 
3597 static const struct attribute_group *rbd_attr_groups[] = {
3598 	&rbd_attr_group,
3599 	NULL
3600 };
3601 
3602 static void rbd_sysfs_dev_release(struct device *dev)
3603 {
3604 }
3605 
3606 static struct device_type rbd_device_type = {
3607 	.name		= "rbd",
3608 	.groups		= rbd_attr_groups,
3609 	.release	= rbd_sysfs_dev_release,
3610 };
3611 
3612 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3613 {
3614 	kref_get(&spec->kref);
3615 
3616 	return spec;
3617 }
3618 
3619 static void rbd_spec_free(struct kref *kref);
3620 static void rbd_spec_put(struct rbd_spec *spec)
3621 {
3622 	if (spec)
3623 		kref_put(&spec->kref, rbd_spec_free);
3624 }
3625 
3626 static struct rbd_spec *rbd_spec_alloc(void)
3627 {
3628 	struct rbd_spec *spec;
3629 
3630 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3631 	if (!spec)
3632 		return NULL;
3633 	kref_init(&spec->kref);
3634 
3635 	return spec;
3636 }
3637 
3638 static void rbd_spec_free(struct kref *kref)
3639 {
3640 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3641 
3642 	kfree(spec->pool_name);
3643 	kfree(spec->image_id);
3644 	kfree(spec->image_name);
3645 	kfree(spec->snap_name);
3646 	kfree(spec);
3647 }
3648 
3649 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3650 				struct rbd_spec *spec)
3651 {
3652 	struct rbd_device *rbd_dev;
3653 
3654 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3655 	if (!rbd_dev)
3656 		return NULL;
3657 
3658 	spin_lock_init(&rbd_dev->lock);
3659 	rbd_dev->flags = 0;
3660 	atomic_set(&rbd_dev->parent_ref, 0);
3661 	INIT_LIST_HEAD(&rbd_dev->node);
3662 	init_rwsem(&rbd_dev->header_rwsem);
3663 
3664 	rbd_dev->spec = spec;
3665 	rbd_dev->rbd_client = rbdc;
3666 
3667 	/* Initialize the layout used for all rbd requests */
3668 
3669 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3671 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3672 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3673 
3674 	return rbd_dev;
3675 }
3676 
3677 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3678 {
3679 	rbd_put_client(rbd_dev->rbd_client);
3680 	rbd_spec_put(rbd_dev->spec);
3681 	kfree(rbd_dev);
3682 }
3683 
3684 /*
3685  * Get the size and object order for an image snapshot, or if
3686  * snap_id is CEPH_NOSNAP, gets this information for the base
3687  * image.
3688  */
3689 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3690 				u8 *order, u64 *snap_size)
3691 {
3692 	__le64 snapid = cpu_to_le64(snap_id);
3693 	int ret;
3694 	struct {
3695 		u8 order;
3696 		__le64 size;
3697 	} __attribute__ ((packed)) size_buf = { 0 };
3698 
3699 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3700 				"rbd", "get_size",
3701 				&snapid, sizeof (snapid),
3702 				&size_buf, sizeof (size_buf));
3703 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3704 	if (ret < 0)
3705 		return ret;
3706 	if (ret < sizeof (size_buf))
3707 		return -ERANGE;
3708 
3709 	if (order) {
3710 		*order = size_buf.order;
3711 		dout("  order %u", (unsigned int)*order);
3712 	}
3713 	*snap_size = le64_to_cpu(size_buf.size);
3714 
3715 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3716 		(unsigned long long)snap_id,
3717 		(unsigned long long)*snap_size);
3718 
3719 	return 0;
3720 }
3721 
3722 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3723 {
3724 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3725 					&rbd_dev->header.obj_order,
3726 					&rbd_dev->header.image_size);
3727 }
3728 
3729 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3730 {
3731 	void *reply_buf;
3732 	int ret;
3733 	void *p;
3734 
3735 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3736 	if (!reply_buf)
3737 		return -ENOMEM;
3738 
3739 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3740 				"rbd", "get_object_prefix", NULL, 0,
3741 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3742 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3743 	if (ret < 0)
3744 		goto out;
3745 
3746 	p = reply_buf;
3747 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3748 						p + ret, NULL, GFP_NOIO);
3749 	ret = 0;
3750 
3751 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3752 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3753 		rbd_dev->header.object_prefix = NULL;
3754 	} else {
3755 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3756 	}
3757 out:
3758 	kfree(reply_buf);
3759 
3760 	return ret;
3761 }
3762 
3763 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3764 		u64 *snap_features)
3765 {
3766 	__le64 snapid = cpu_to_le64(snap_id);
3767 	struct {
3768 		__le64 features;
3769 		__le64 incompat;
3770 	} __attribute__ ((packed)) features_buf = { 0 };
3771 	u64 incompat;
3772 	int ret;
3773 
3774 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3775 				"rbd", "get_features",
3776 				&snapid, sizeof (snapid),
3777 				&features_buf, sizeof (features_buf));
3778 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3779 	if (ret < 0)
3780 		return ret;
3781 	if (ret < sizeof (features_buf))
3782 		return -ERANGE;
3783 
3784 	incompat = le64_to_cpu(features_buf.incompat);
3785 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3786 		return -ENXIO;
3787 
3788 	*snap_features = le64_to_cpu(features_buf.features);
3789 
3790 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3791 		(unsigned long long)snap_id,
3792 		(unsigned long long)*snap_features,
3793 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3794 
3795 	return 0;
3796 }
3797 
3798 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3799 {
3800 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3801 						&rbd_dev->header.features);
3802 }
3803 
3804 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3805 {
3806 	struct rbd_spec *parent_spec;
3807 	size_t size;
3808 	void *reply_buf = NULL;
3809 	__le64 snapid;
3810 	void *p;
3811 	void *end;
3812 	u64 pool_id;
3813 	char *image_id;
3814 	u64 snap_id;
3815 	u64 overlap;
3816 	int ret;
3817 
3818 	parent_spec = rbd_spec_alloc();
3819 	if (!parent_spec)
3820 		return -ENOMEM;
3821 
3822 	size = sizeof (__le64) +				/* pool_id */
3823 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3824 		sizeof (__le64) +				/* snap_id */
3825 		sizeof (__le64);				/* overlap */
3826 	reply_buf = kmalloc(size, GFP_KERNEL);
3827 	if (!reply_buf) {
3828 		ret = -ENOMEM;
3829 		goto out_err;
3830 	}
3831 
3832 	snapid = cpu_to_le64(CEPH_NOSNAP);
3833 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3834 				"rbd", "get_parent",
3835 				&snapid, sizeof (snapid),
3836 				reply_buf, size);
3837 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3838 	if (ret < 0)
3839 		goto out_err;
3840 
3841 	p = reply_buf;
3842 	end = reply_buf + ret;
3843 	ret = -ERANGE;
3844 	ceph_decode_64_safe(&p, end, pool_id, out_err);
3845 	if (pool_id == CEPH_NOPOOL) {
3846 		/*
3847 		 * Either the parent never existed, or we have
3848 		 * record of it but the image got flattened so it no
3849 		 * longer has a parent.  When the parent of a
3850 		 * layered image disappears we immediately set the
3851 		 * overlap to 0.  The effect of this is that all new
3852 		 * requests will be treated as if the image had no
3853 		 * parent.
3854 		 */
3855 		if (rbd_dev->parent_overlap) {
3856 			rbd_dev->parent_overlap = 0;
3857 			smp_mb();
3858 			rbd_dev_parent_put(rbd_dev);
3859 			pr_info("%s: clone image has been flattened\n",
3860 				rbd_dev->disk->disk_name);
3861 		}
3862 
3863 		goto out;	/* No parent?  No problem. */
3864 	}
3865 
3866 	/* The ceph file layout needs to fit pool id in 32 bits */
3867 
3868 	ret = -EIO;
3869 	if (pool_id > (u64)U32_MAX) {
3870 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3871 			(unsigned long long)pool_id, U32_MAX);
3872 		goto out_err;
3873 	}
3874 
3875 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3876 	if (IS_ERR(image_id)) {
3877 		ret = PTR_ERR(image_id);
3878 		goto out_err;
3879 	}
3880 	ceph_decode_64_safe(&p, end, snap_id, out_err);
3881 	ceph_decode_64_safe(&p, end, overlap, out_err);
3882 
3883 	/*
3884 	 * The parent won't change (except when the clone is
3885 	 * flattened, already handled that).  So we only need to
3886 	 * record the parent spec we have not already done so.
3887 	 */
3888 	if (!rbd_dev->parent_spec) {
3889 		parent_spec->pool_id = pool_id;
3890 		parent_spec->image_id = image_id;
3891 		parent_spec->snap_id = snap_id;
3892 		rbd_dev->parent_spec = parent_spec;
3893 		parent_spec = NULL;	/* rbd_dev now owns this */
3894 	}
3895 
3896 	/*
3897 	 * We always update the parent overlap.  If it's zero we
3898 	 * treat it specially.
3899 	 */
3900 	rbd_dev->parent_overlap = overlap;
3901 	smp_mb();
3902 	if (!overlap) {
3903 
3904 		/* A null parent_spec indicates it's the initial probe */
3905 
3906 		if (parent_spec) {
3907 			/*
3908 			 * The overlap has become zero, so the clone
3909 			 * must have been resized down to 0 at some
3910 			 * point.  Treat this the same as a flatten.
3911 			 */
3912 			rbd_dev_parent_put(rbd_dev);
3913 			pr_info("%s: clone image now standalone\n",
3914 				rbd_dev->disk->disk_name);
3915 		} else {
3916 			/*
3917 			 * For the initial probe, if we find the
3918 			 * overlap is zero we just pretend there was
3919 			 * no parent image.
3920 			 */
3921 			rbd_warn(rbd_dev, "ignoring parent of "
3922 						"clone with overlap 0\n");
3923 		}
3924 	}
3925 out:
3926 	ret = 0;
3927 out_err:
3928 	kfree(reply_buf);
3929 	rbd_spec_put(parent_spec);
3930 
3931 	return ret;
3932 }
3933 
3934 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3935 {
3936 	struct {
3937 		__le64 stripe_unit;
3938 		__le64 stripe_count;
3939 	} __attribute__ ((packed)) striping_info_buf = { 0 };
3940 	size_t size = sizeof (striping_info_buf);
3941 	void *p;
3942 	u64 obj_size;
3943 	u64 stripe_unit;
3944 	u64 stripe_count;
3945 	int ret;
3946 
3947 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3948 				"rbd", "get_stripe_unit_count", NULL, 0,
3949 				(char *)&striping_info_buf, size);
3950 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3951 	if (ret < 0)
3952 		return ret;
3953 	if (ret < size)
3954 		return -ERANGE;
3955 
3956 	/*
3957 	 * We don't actually support the "fancy striping" feature
3958 	 * (STRIPINGV2) yet, but if the striping sizes are the
3959 	 * defaults the behavior is the same as before.  So find
3960 	 * out, and only fail if the image has non-default values.
3961 	 */
3962 	ret = -EINVAL;
3963 	obj_size = (u64)1 << rbd_dev->header.obj_order;
3964 	p = &striping_info_buf;
3965 	stripe_unit = ceph_decode_64(&p);
3966 	if (stripe_unit != obj_size) {
3967 		rbd_warn(rbd_dev, "unsupported stripe unit "
3968 				"(got %llu want %llu)",
3969 				stripe_unit, obj_size);
3970 		return -EINVAL;
3971 	}
3972 	stripe_count = ceph_decode_64(&p);
3973 	if (stripe_count != 1) {
3974 		rbd_warn(rbd_dev, "unsupported stripe count "
3975 				"(got %llu want 1)", stripe_count);
3976 		return -EINVAL;
3977 	}
3978 	rbd_dev->header.stripe_unit = stripe_unit;
3979 	rbd_dev->header.stripe_count = stripe_count;
3980 
3981 	return 0;
3982 }
3983 
3984 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3985 {
3986 	size_t image_id_size;
3987 	char *image_id;
3988 	void *p;
3989 	void *end;
3990 	size_t size;
3991 	void *reply_buf = NULL;
3992 	size_t len = 0;
3993 	char *image_name = NULL;
3994 	int ret;
3995 
3996 	rbd_assert(!rbd_dev->spec->image_name);
3997 
3998 	len = strlen(rbd_dev->spec->image_id);
3999 	image_id_size = sizeof (__le32) + len;
4000 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4001 	if (!image_id)
4002 		return NULL;
4003 
4004 	p = image_id;
4005 	end = image_id + image_id_size;
4006 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4007 
4008 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4009 	reply_buf = kmalloc(size, GFP_KERNEL);
4010 	if (!reply_buf)
4011 		goto out;
4012 
4013 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4014 				"rbd", "dir_get_name",
4015 				image_id, image_id_size,
4016 				reply_buf, size);
4017 	if (ret < 0)
4018 		goto out;
4019 	p = reply_buf;
4020 	end = reply_buf + ret;
4021 
4022 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4023 	if (IS_ERR(image_name))
4024 		image_name = NULL;
4025 	else
4026 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4027 out:
4028 	kfree(reply_buf);
4029 	kfree(image_id);
4030 
4031 	return image_name;
4032 }
4033 
4034 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4035 {
4036 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4037 	const char *snap_name;
4038 	u32 which = 0;
4039 
4040 	/* Skip over names until we find the one we are looking for */
4041 
4042 	snap_name = rbd_dev->header.snap_names;
4043 	while (which < snapc->num_snaps) {
4044 		if (!strcmp(name, snap_name))
4045 			return snapc->snaps[which];
4046 		snap_name += strlen(snap_name) + 1;
4047 		which++;
4048 	}
4049 	return CEPH_NOSNAP;
4050 }
4051 
4052 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4053 {
4054 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4055 	u32 which;
4056 	bool found = false;
4057 	u64 snap_id;
4058 
4059 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4060 		const char *snap_name;
4061 
4062 		snap_id = snapc->snaps[which];
4063 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4064 		if (IS_ERR(snap_name))
4065 			break;
4066 		found = !strcmp(name, snap_name);
4067 		kfree(snap_name);
4068 	}
4069 	return found ? snap_id : CEPH_NOSNAP;
4070 }
4071 
4072 /*
4073  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4074  * no snapshot by that name is found, or if an error occurs.
4075  */
4076 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4077 {
4078 	if (rbd_dev->image_format == 1)
4079 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4080 
4081 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4082 }
4083 
4084 /*
4085  * When an rbd image has a parent image, it is identified by the
4086  * pool, image, and snapshot ids (not names).  This function fills
4087  * in the names for those ids.  (It's OK if we can't figure out the
4088  * name for an image id, but the pool and snapshot ids should always
4089  * exist and have names.)  All names in an rbd spec are dynamically
4090  * allocated.
4091  *
4092  * When an image being mapped (not a parent) is probed, we have the
4093  * pool name and pool id, image name and image id, and the snapshot
4094  * name.  The only thing we're missing is the snapshot id.
4095  */
4096 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4097 {
4098 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4099 	struct rbd_spec *spec = rbd_dev->spec;
4100 	const char *pool_name;
4101 	const char *image_name;
4102 	const char *snap_name;
4103 	int ret;
4104 
4105 	/*
4106 	 * An image being mapped will have the pool name (etc.), but
4107 	 * we need to look up the snapshot id.
4108 	 */
4109 	if (spec->pool_name) {
4110 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4111 			u64 snap_id;
4112 
4113 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4114 			if (snap_id == CEPH_NOSNAP)
4115 				return -ENOENT;
4116 			spec->snap_id = snap_id;
4117 		} else {
4118 			spec->snap_id = CEPH_NOSNAP;
4119 		}
4120 
4121 		return 0;
4122 	}
4123 
4124 	/* Get the pool name; we have to make our own copy of this */
4125 
4126 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4127 	if (!pool_name) {
4128 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4129 		return -EIO;
4130 	}
4131 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4132 	if (!pool_name)
4133 		return -ENOMEM;
4134 
4135 	/* Fetch the image name; tolerate failure here */
4136 
4137 	image_name = rbd_dev_image_name(rbd_dev);
4138 	if (!image_name)
4139 		rbd_warn(rbd_dev, "unable to get image name");
4140 
4141 	/* Look up the snapshot name, and make a copy */
4142 
4143 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4144 	if (!snap_name) {
4145 		ret = -ENOMEM;
4146 		goto out_err;
4147 	}
4148 
4149 	spec->pool_name = pool_name;
4150 	spec->image_name = image_name;
4151 	spec->snap_name = snap_name;
4152 
4153 	return 0;
4154 out_err:
4155 	kfree(image_name);
4156 	kfree(pool_name);
4157 
4158 	return ret;
4159 }
4160 
4161 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4162 {
4163 	size_t size;
4164 	int ret;
4165 	void *reply_buf;
4166 	void *p;
4167 	void *end;
4168 	u64 seq;
4169 	u32 snap_count;
4170 	struct ceph_snap_context *snapc;
4171 	u32 i;
4172 
4173 	/*
4174 	 * We'll need room for the seq value (maximum snapshot id),
4175 	 * snapshot count, and array of that many snapshot ids.
4176 	 * For now we have a fixed upper limit on the number we're
4177 	 * prepared to receive.
4178 	 */
4179 	size = sizeof (__le64) + sizeof (__le32) +
4180 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4181 	reply_buf = kzalloc(size, GFP_KERNEL);
4182 	if (!reply_buf)
4183 		return -ENOMEM;
4184 
4185 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4186 				"rbd", "get_snapcontext", NULL, 0,
4187 				reply_buf, size);
4188 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4189 	if (ret < 0)
4190 		goto out;
4191 
4192 	p = reply_buf;
4193 	end = reply_buf + ret;
4194 	ret = -ERANGE;
4195 	ceph_decode_64_safe(&p, end, seq, out);
4196 	ceph_decode_32_safe(&p, end, snap_count, out);
4197 
4198 	/*
4199 	 * Make sure the reported number of snapshot ids wouldn't go
4200 	 * beyond the end of our buffer.  But before checking that,
4201 	 * make sure the computed size of the snapshot context we
4202 	 * allocate is representable in a size_t.
4203 	 */
4204 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4205 				 / sizeof (u64)) {
4206 		ret = -EINVAL;
4207 		goto out;
4208 	}
4209 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4210 		goto out;
4211 	ret = 0;
4212 
4213 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4214 	if (!snapc) {
4215 		ret = -ENOMEM;
4216 		goto out;
4217 	}
4218 	snapc->seq = seq;
4219 	for (i = 0; i < snap_count; i++)
4220 		snapc->snaps[i] = ceph_decode_64(&p);
4221 
4222 	ceph_put_snap_context(rbd_dev->header.snapc);
4223 	rbd_dev->header.snapc = snapc;
4224 
4225 	dout("  snap context seq = %llu, snap_count = %u\n",
4226 		(unsigned long long)seq, (unsigned int)snap_count);
4227 out:
4228 	kfree(reply_buf);
4229 
4230 	return ret;
4231 }
4232 
4233 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4234 					u64 snap_id)
4235 {
4236 	size_t size;
4237 	void *reply_buf;
4238 	__le64 snapid;
4239 	int ret;
4240 	void *p;
4241 	void *end;
4242 	char *snap_name;
4243 
4244 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4245 	reply_buf = kmalloc(size, GFP_KERNEL);
4246 	if (!reply_buf)
4247 		return ERR_PTR(-ENOMEM);
4248 
4249 	snapid = cpu_to_le64(snap_id);
4250 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4251 				"rbd", "get_snapshot_name",
4252 				&snapid, sizeof (snapid),
4253 				reply_buf, size);
4254 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4255 	if (ret < 0) {
4256 		snap_name = ERR_PTR(ret);
4257 		goto out;
4258 	}
4259 
4260 	p = reply_buf;
4261 	end = reply_buf + ret;
4262 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4263 	if (IS_ERR(snap_name))
4264 		goto out;
4265 
4266 	dout("  snap_id 0x%016llx snap_name = %s\n",
4267 		(unsigned long long)snap_id, snap_name);
4268 out:
4269 	kfree(reply_buf);
4270 
4271 	return snap_name;
4272 }
4273 
4274 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4275 {
4276 	bool first_time = rbd_dev->header.object_prefix == NULL;
4277 	int ret;
4278 
4279 	ret = rbd_dev_v2_image_size(rbd_dev);
4280 	if (ret)
4281 		return ret;
4282 
4283 	if (first_time) {
4284 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4285 		if (ret)
4286 			return ret;
4287 	}
4288 
4289 	/*
4290 	 * If the image supports layering, get the parent info.  We
4291 	 * need to probe the first time regardless.  Thereafter we
4292 	 * only need to if there's a parent, to see if it has
4293 	 * disappeared due to the mapped image getting flattened.
4294 	 */
4295 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4296 			(first_time || rbd_dev->parent_spec)) {
4297 		bool warn;
4298 
4299 		ret = rbd_dev_v2_parent_info(rbd_dev);
4300 		if (ret)
4301 			return ret;
4302 
4303 		/*
4304 		 * Print a warning if this is the initial probe and
4305 		 * the image has a parent.  Don't print it if the
4306 		 * image now being probed is itself a parent.  We
4307 		 * can tell at this point because we won't know its
4308 		 * pool name yet (just its pool id).
4309 		 */
4310 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4311 		if (first_time && warn)
4312 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4313 					"is EXPERIMENTAL!");
4314 	}
4315 
4316 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4317 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4318 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4319 
4320 	ret = rbd_dev_v2_snap_context(rbd_dev);
4321 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4322 
4323 	return ret;
4324 }
4325 
4326 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4327 {
4328 	struct device *dev;
4329 	int ret;
4330 
4331 	dev = &rbd_dev->dev;
4332 	dev->bus = &rbd_bus_type;
4333 	dev->type = &rbd_device_type;
4334 	dev->parent = &rbd_root_dev;
4335 	dev->release = rbd_dev_device_release;
4336 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4337 	ret = device_register(dev);
4338 
4339 	return ret;
4340 }
4341 
4342 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4343 {
4344 	device_unregister(&rbd_dev->dev);
4345 }
4346 
4347 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4348 
4349 /*
4350  * Get a unique rbd identifier for the given new rbd_dev, and add
4351  * the rbd_dev to the global list.  The minimum rbd id is 1.
4352  */
4353 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4354 {
4355 	rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4356 
4357 	spin_lock(&rbd_dev_list_lock);
4358 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4359 	spin_unlock(&rbd_dev_list_lock);
4360 	dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4361 		(unsigned long long) rbd_dev->dev_id);
4362 }
4363 
4364 /*
4365  * Remove an rbd_dev from the global list, and record that its
4366  * identifier is no longer in use.
4367  */
4368 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4369 {
4370 	struct list_head *tmp;
4371 	int rbd_id = rbd_dev->dev_id;
4372 	int max_id;
4373 
4374 	rbd_assert(rbd_id > 0);
4375 
4376 	dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4377 		(unsigned long long) rbd_dev->dev_id);
4378 	spin_lock(&rbd_dev_list_lock);
4379 	list_del_init(&rbd_dev->node);
4380 
4381 	/*
4382 	 * If the id being "put" is not the current maximum, there
4383 	 * is nothing special we need to do.
4384 	 */
4385 	if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4386 		spin_unlock(&rbd_dev_list_lock);
4387 		return;
4388 	}
4389 
4390 	/*
4391 	 * We need to update the current maximum id.  Search the
4392 	 * list to find out what it is.  We're more likely to find
4393 	 * the maximum at the end, so search the list backward.
4394 	 */
4395 	max_id = 0;
4396 	list_for_each_prev(tmp, &rbd_dev_list) {
4397 		struct rbd_device *rbd_dev;
4398 
4399 		rbd_dev = list_entry(tmp, struct rbd_device, node);
4400 		if (rbd_dev->dev_id > max_id)
4401 			max_id = rbd_dev->dev_id;
4402 	}
4403 	spin_unlock(&rbd_dev_list_lock);
4404 
4405 	/*
4406 	 * The max id could have been updated by rbd_dev_id_get(), in
4407 	 * which case it now accurately reflects the new maximum.
4408 	 * Be careful not to overwrite the maximum value in that
4409 	 * case.
4410 	 */
4411 	atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4412 	dout("  max dev id has been reset\n");
4413 }
4414 
4415 /*
4416  * Skips over white space at *buf, and updates *buf to point to the
4417  * first found non-space character (if any). Returns the length of
4418  * the token (string of non-white space characters) found.  Note
4419  * that *buf must be terminated with '\0'.
4420  */
4421 static inline size_t next_token(const char **buf)
4422 {
4423         /*
4424         * These are the characters that produce nonzero for
4425         * isspace() in the "C" and "POSIX" locales.
4426         */
4427         const char *spaces = " \f\n\r\t\v";
4428 
4429         *buf += strspn(*buf, spaces);	/* Find start of token */
4430 
4431 	return strcspn(*buf, spaces);   /* Return token length */
4432 }
4433 
4434 /*
4435  * Finds the next token in *buf, and if the provided token buffer is
4436  * big enough, copies the found token into it.  The result, if
4437  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4438  * must be terminated with '\0' on entry.
4439  *
4440  * Returns the length of the token found (not including the '\0').
4441  * Return value will be 0 if no token is found, and it will be >=
4442  * token_size if the token would not fit.
4443  *
4444  * The *buf pointer will be updated to point beyond the end of the
4445  * found token.  Note that this occurs even if the token buffer is
4446  * too small to hold it.
4447  */
4448 static inline size_t copy_token(const char **buf,
4449 				char *token,
4450 				size_t token_size)
4451 {
4452         size_t len;
4453 
4454 	len = next_token(buf);
4455 	if (len < token_size) {
4456 		memcpy(token, *buf, len);
4457 		*(token + len) = '\0';
4458 	}
4459 	*buf += len;
4460 
4461         return len;
4462 }
4463 
4464 /*
4465  * Finds the next token in *buf, dynamically allocates a buffer big
4466  * enough to hold a copy of it, and copies the token into the new
4467  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4468  * that a duplicate buffer is created even for a zero-length token.
4469  *
4470  * Returns a pointer to the newly-allocated duplicate, or a null
4471  * pointer if memory for the duplicate was not available.  If
4472  * the lenp argument is a non-null pointer, the length of the token
4473  * (not including the '\0') is returned in *lenp.
4474  *
4475  * If successful, the *buf pointer will be updated to point beyond
4476  * the end of the found token.
4477  *
4478  * Note: uses GFP_KERNEL for allocation.
4479  */
4480 static inline char *dup_token(const char **buf, size_t *lenp)
4481 {
4482 	char *dup;
4483 	size_t len;
4484 
4485 	len = next_token(buf);
4486 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4487 	if (!dup)
4488 		return NULL;
4489 	*(dup + len) = '\0';
4490 	*buf += len;
4491 
4492 	if (lenp)
4493 		*lenp = len;
4494 
4495 	return dup;
4496 }
4497 
4498 /*
4499  * Parse the options provided for an "rbd add" (i.e., rbd image
4500  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4501  * and the data written is passed here via a NUL-terminated buffer.
4502  * Returns 0 if successful or an error code otherwise.
4503  *
4504  * The information extracted from these options is recorded in
4505  * the other parameters which return dynamically-allocated
4506  * structures:
4507  *  ceph_opts
4508  *      The address of a pointer that will refer to a ceph options
4509  *      structure.  Caller must release the returned pointer using
4510  *      ceph_destroy_options() when it is no longer needed.
4511  *  rbd_opts
4512  *	Address of an rbd options pointer.  Fully initialized by
4513  *	this function; caller must release with kfree().
4514  *  spec
4515  *	Address of an rbd image specification pointer.  Fully
4516  *	initialized by this function based on parsed options.
4517  *	Caller must release with rbd_spec_put().
4518  *
4519  * The options passed take this form:
4520  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4521  * where:
4522  *  <mon_addrs>
4523  *      A comma-separated list of one or more monitor addresses.
4524  *      A monitor address is an ip address, optionally followed
4525  *      by a port number (separated by a colon).
4526  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4527  *  <options>
4528  *      A comma-separated list of ceph and/or rbd options.
4529  *  <pool_name>
4530  *      The name of the rados pool containing the rbd image.
4531  *  <image_name>
4532  *      The name of the image in that pool to map.
4533  *  <snap_id>
4534  *      An optional snapshot id.  If provided, the mapping will
4535  *      present data from the image at the time that snapshot was
4536  *      created.  The image head is used if no snapshot id is
4537  *      provided.  Snapshot mappings are always read-only.
4538  */
4539 static int rbd_add_parse_args(const char *buf,
4540 				struct ceph_options **ceph_opts,
4541 				struct rbd_options **opts,
4542 				struct rbd_spec **rbd_spec)
4543 {
4544 	size_t len;
4545 	char *options;
4546 	const char *mon_addrs;
4547 	char *snap_name;
4548 	size_t mon_addrs_size;
4549 	struct rbd_spec *spec = NULL;
4550 	struct rbd_options *rbd_opts = NULL;
4551 	struct ceph_options *copts;
4552 	int ret;
4553 
4554 	/* The first four tokens are required */
4555 
4556 	len = next_token(&buf);
4557 	if (!len) {
4558 		rbd_warn(NULL, "no monitor address(es) provided");
4559 		return -EINVAL;
4560 	}
4561 	mon_addrs = buf;
4562 	mon_addrs_size = len + 1;
4563 	buf += len;
4564 
4565 	ret = -EINVAL;
4566 	options = dup_token(&buf, NULL);
4567 	if (!options)
4568 		return -ENOMEM;
4569 	if (!*options) {
4570 		rbd_warn(NULL, "no options provided");
4571 		goto out_err;
4572 	}
4573 
4574 	spec = rbd_spec_alloc();
4575 	if (!spec)
4576 		goto out_mem;
4577 
4578 	spec->pool_name = dup_token(&buf, NULL);
4579 	if (!spec->pool_name)
4580 		goto out_mem;
4581 	if (!*spec->pool_name) {
4582 		rbd_warn(NULL, "no pool name provided");
4583 		goto out_err;
4584 	}
4585 
4586 	spec->image_name = dup_token(&buf, NULL);
4587 	if (!spec->image_name)
4588 		goto out_mem;
4589 	if (!*spec->image_name) {
4590 		rbd_warn(NULL, "no image name provided");
4591 		goto out_err;
4592 	}
4593 
4594 	/*
4595 	 * Snapshot name is optional; default is to use "-"
4596 	 * (indicating the head/no snapshot).
4597 	 */
4598 	len = next_token(&buf);
4599 	if (!len) {
4600 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4601 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4602 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4603 		ret = -ENAMETOOLONG;
4604 		goto out_err;
4605 	}
4606 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4607 	if (!snap_name)
4608 		goto out_mem;
4609 	*(snap_name + len) = '\0';
4610 	spec->snap_name = snap_name;
4611 
4612 	/* Initialize all rbd options to the defaults */
4613 
4614 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4615 	if (!rbd_opts)
4616 		goto out_mem;
4617 
4618 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4619 
4620 	copts = ceph_parse_options(options, mon_addrs,
4621 					mon_addrs + mon_addrs_size - 1,
4622 					parse_rbd_opts_token, rbd_opts);
4623 	if (IS_ERR(copts)) {
4624 		ret = PTR_ERR(copts);
4625 		goto out_err;
4626 	}
4627 	kfree(options);
4628 
4629 	*ceph_opts = copts;
4630 	*opts = rbd_opts;
4631 	*rbd_spec = spec;
4632 
4633 	return 0;
4634 out_mem:
4635 	ret = -ENOMEM;
4636 out_err:
4637 	kfree(rbd_opts);
4638 	rbd_spec_put(spec);
4639 	kfree(options);
4640 
4641 	return ret;
4642 }
4643 
4644 /*
4645  * An rbd format 2 image has a unique identifier, distinct from the
4646  * name given to it by the user.  Internally, that identifier is
4647  * what's used to specify the names of objects related to the image.
4648  *
4649  * A special "rbd id" object is used to map an rbd image name to its
4650  * id.  If that object doesn't exist, then there is no v2 rbd image
4651  * with the supplied name.
4652  *
4653  * This function will record the given rbd_dev's image_id field if
4654  * it can be determined, and in that case will return 0.  If any
4655  * errors occur a negative errno will be returned and the rbd_dev's
4656  * image_id field will be unchanged (and should be NULL).
4657  */
4658 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4659 {
4660 	int ret;
4661 	size_t size;
4662 	char *object_name;
4663 	void *response;
4664 	char *image_id;
4665 
4666 	/*
4667 	 * When probing a parent image, the image id is already
4668 	 * known (and the image name likely is not).  There's no
4669 	 * need to fetch the image id again in this case.  We
4670 	 * do still need to set the image format though.
4671 	 */
4672 	if (rbd_dev->spec->image_id) {
4673 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4674 
4675 		return 0;
4676 	}
4677 
4678 	/*
4679 	 * First, see if the format 2 image id file exists, and if
4680 	 * so, get the image's persistent id from it.
4681 	 */
4682 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4683 	object_name = kmalloc(size, GFP_NOIO);
4684 	if (!object_name)
4685 		return -ENOMEM;
4686 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4687 	dout("rbd id object name is %s\n", object_name);
4688 
4689 	/* Response will be an encoded string, which includes a length */
4690 
4691 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4692 	response = kzalloc(size, GFP_NOIO);
4693 	if (!response) {
4694 		ret = -ENOMEM;
4695 		goto out;
4696 	}
4697 
4698 	/* If it doesn't exist we'll assume it's a format 1 image */
4699 
4700 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4701 				"rbd", "get_id", NULL, 0,
4702 				response, RBD_IMAGE_ID_LEN_MAX);
4703 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4704 	if (ret == -ENOENT) {
4705 		image_id = kstrdup("", GFP_KERNEL);
4706 		ret = image_id ? 0 : -ENOMEM;
4707 		if (!ret)
4708 			rbd_dev->image_format = 1;
4709 	} else if (ret > sizeof (__le32)) {
4710 		void *p = response;
4711 
4712 		image_id = ceph_extract_encoded_string(&p, p + ret,
4713 						NULL, GFP_NOIO);
4714 		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4715 		if (!ret)
4716 			rbd_dev->image_format = 2;
4717 	} else {
4718 		ret = -EINVAL;
4719 	}
4720 
4721 	if (!ret) {
4722 		rbd_dev->spec->image_id = image_id;
4723 		dout("image_id is %s\n", image_id);
4724 	}
4725 out:
4726 	kfree(response);
4727 	kfree(object_name);
4728 
4729 	return ret;
4730 }
4731 
4732 /*
4733  * Undo whatever state changes are made by v1 or v2 header info
4734  * call.
4735  */
4736 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4737 {
4738 	struct rbd_image_header	*header;
4739 
4740 	/* Drop parent reference unless it's already been done (or none) */
4741 
4742 	if (rbd_dev->parent_overlap)
4743 		rbd_dev_parent_put(rbd_dev);
4744 
4745 	/* Free dynamic fields from the header, then zero it out */
4746 
4747 	header = &rbd_dev->header;
4748 	ceph_put_snap_context(header->snapc);
4749 	kfree(header->snap_sizes);
4750 	kfree(header->snap_names);
4751 	kfree(header->object_prefix);
4752 	memset(header, 0, sizeof (*header));
4753 }
4754 
4755 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4756 {
4757 	int ret;
4758 
4759 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4760 	if (ret)
4761 		goto out_err;
4762 
4763 	/*
4764 	 * Get the and check features for the image.  Currently the
4765 	 * features are assumed to never change.
4766 	 */
4767 	ret = rbd_dev_v2_features(rbd_dev);
4768 	if (ret)
4769 		goto out_err;
4770 
4771 	/* If the image supports fancy striping, get its parameters */
4772 
4773 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4774 		ret = rbd_dev_v2_striping_info(rbd_dev);
4775 		if (ret < 0)
4776 			goto out_err;
4777 	}
4778 	/* No support for crypto and compression type format 2 images */
4779 
4780 	return 0;
4781 out_err:
4782 	rbd_dev->header.features = 0;
4783 	kfree(rbd_dev->header.object_prefix);
4784 	rbd_dev->header.object_prefix = NULL;
4785 
4786 	return ret;
4787 }
4788 
4789 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4790 {
4791 	struct rbd_device *parent = NULL;
4792 	struct rbd_spec *parent_spec;
4793 	struct rbd_client *rbdc;
4794 	int ret;
4795 
4796 	if (!rbd_dev->parent_spec)
4797 		return 0;
4798 	/*
4799 	 * We need to pass a reference to the client and the parent
4800 	 * spec when creating the parent rbd_dev.  Images related by
4801 	 * parent/child relationships always share both.
4802 	 */
4803 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4804 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4805 
4806 	ret = -ENOMEM;
4807 	parent = rbd_dev_create(rbdc, parent_spec);
4808 	if (!parent)
4809 		goto out_err;
4810 
4811 	ret = rbd_dev_image_probe(parent, false);
4812 	if (ret < 0)
4813 		goto out_err;
4814 	rbd_dev->parent = parent;
4815 	atomic_set(&rbd_dev->parent_ref, 1);
4816 
4817 	return 0;
4818 out_err:
4819 	if (parent) {
4820 		rbd_dev_unparent(rbd_dev);
4821 		kfree(rbd_dev->header_name);
4822 		rbd_dev_destroy(parent);
4823 	} else {
4824 		rbd_put_client(rbdc);
4825 		rbd_spec_put(parent_spec);
4826 	}
4827 
4828 	return ret;
4829 }
4830 
4831 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4832 {
4833 	int ret;
4834 
4835 	/* generate unique id: find highest unique id, add one */
4836 	rbd_dev_id_get(rbd_dev);
4837 
4838 	/* Fill in the device name, now that we have its id. */
4839 	BUILD_BUG_ON(DEV_NAME_LEN
4840 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4841 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4842 
4843 	/* Get our block major device number. */
4844 
4845 	ret = register_blkdev(0, rbd_dev->name);
4846 	if (ret < 0)
4847 		goto err_out_id;
4848 	rbd_dev->major = ret;
4849 
4850 	/* Set up the blkdev mapping. */
4851 
4852 	ret = rbd_init_disk(rbd_dev);
4853 	if (ret)
4854 		goto err_out_blkdev;
4855 
4856 	ret = rbd_dev_mapping_set(rbd_dev);
4857 	if (ret)
4858 		goto err_out_disk;
4859 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4860 
4861 	ret = rbd_bus_add_dev(rbd_dev);
4862 	if (ret)
4863 		goto err_out_mapping;
4864 
4865 	/* Everything's ready.  Announce the disk to the world. */
4866 
4867 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4868 	add_disk(rbd_dev->disk);
4869 
4870 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4871 		(unsigned long long) rbd_dev->mapping.size);
4872 
4873 	return ret;
4874 
4875 err_out_mapping:
4876 	rbd_dev_mapping_clear(rbd_dev);
4877 err_out_disk:
4878 	rbd_free_disk(rbd_dev);
4879 err_out_blkdev:
4880 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
4881 err_out_id:
4882 	rbd_dev_id_put(rbd_dev);
4883 	rbd_dev_mapping_clear(rbd_dev);
4884 
4885 	return ret;
4886 }
4887 
4888 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4889 {
4890 	struct rbd_spec *spec = rbd_dev->spec;
4891 	size_t size;
4892 
4893 	/* Record the header object name for this rbd image. */
4894 
4895 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4896 
4897 	if (rbd_dev->image_format == 1)
4898 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4899 	else
4900 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4901 
4902 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4903 	if (!rbd_dev->header_name)
4904 		return -ENOMEM;
4905 
4906 	if (rbd_dev->image_format == 1)
4907 		sprintf(rbd_dev->header_name, "%s%s",
4908 			spec->image_name, RBD_SUFFIX);
4909 	else
4910 		sprintf(rbd_dev->header_name, "%s%s",
4911 			RBD_HEADER_PREFIX, spec->image_id);
4912 	return 0;
4913 }
4914 
4915 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4916 {
4917 	rbd_dev_unprobe(rbd_dev);
4918 	kfree(rbd_dev->header_name);
4919 	rbd_dev->header_name = NULL;
4920 	rbd_dev->image_format = 0;
4921 	kfree(rbd_dev->spec->image_id);
4922 	rbd_dev->spec->image_id = NULL;
4923 
4924 	rbd_dev_destroy(rbd_dev);
4925 }
4926 
4927 /*
4928  * Probe for the existence of the header object for the given rbd
4929  * device.  If this image is the one being mapped (i.e., not a
4930  * parent), initiate a watch on its header object before using that
4931  * object to get detailed information about the rbd image.
4932  */
4933 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4934 {
4935 	int ret;
4936 	int tmp;
4937 
4938 	/*
4939 	 * Get the id from the image id object.  Unless there's an
4940 	 * error, rbd_dev->spec->image_id will be filled in with
4941 	 * a dynamically-allocated string, and rbd_dev->image_format
4942 	 * will be set to either 1 or 2.
4943 	 */
4944 	ret = rbd_dev_image_id(rbd_dev);
4945 	if (ret)
4946 		return ret;
4947 	rbd_assert(rbd_dev->spec->image_id);
4948 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4949 
4950 	ret = rbd_dev_header_name(rbd_dev);
4951 	if (ret)
4952 		goto err_out_format;
4953 
4954 	if (mapping) {
4955 		ret = rbd_dev_header_watch_sync(rbd_dev, true);
4956 		if (ret)
4957 			goto out_header_name;
4958 	}
4959 
4960 	if (rbd_dev->image_format == 1)
4961 		ret = rbd_dev_v1_header_info(rbd_dev);
4962 	else
4963 		ret = rbd_dev_v2_header_info(rbd_dev);
4964 	if (ret)
4965 		goto err_out_watch;
4966 
4967 	ret = rbd_dev_spec_update(rbd_dev);
4968 	if (ret)
4969 		goto err_out_probe;
4970 
4971 	ret = rbd_dev_probe_parent(rbd_dev);
4972 	if (ret)
4973 		goto err_out_probe;
4974 
4975 	dout("discovered format %u image, header name is %s\n",
4976 		rbd_dev->image_format, rbd_dev->header_name);
4977 
4978 	return 0;
4979 err_out_probe:
4980 	rbd_dev_unprobe(rbd_dev);
4981 err_out_watch:
4982 	if (mapping) {
4983 		tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4984 		if (tmp)
4985 			rbd_warn(rbd_dev, "unable to tear down "
4986 					"watch request (%d)\n", tmp);
4987 	}
4988 out_header_name:
4989 	kfree(rbd_dev->header_name);
4990 	rbd_dev->header_name = NULL;
4991 err_out_format:
4992 	rbd_dev->image_format = 0;
4993 	kfree(rbd_dev->spec->image_id);
4994 	rbd_dev->spec->image_id = NULL;
4995 
4996 	dout("probe failed, returning %d\n", ret);
4997 
4998 	return ret;
4999 }
5000 
5001 static ssize_t rbd_add(struct bus_type *bus,
5002 		       const char *buf,
5003 		       size_t count)
5004 {
5005 	struct rbd_device *rbd_dev = NULL;
5006 	struct ceph_options *ceph_opts = NULL;
5007 	struct rbd_options *rbd_opts = NULL;
5008 	struct rbd_spec *spec = NULL;
5009 	struct rbd_client *rbdc;
5010 	struct ceph_osd_client *osdc;
5011 	bool read_only;
5012 	int rc = -ENOMEM;
5013 
5014 	if (!try_module_get(THIS_MODULE))
5015 		return -ENODEV;
5016 
5017 	/* parse add command */
5018 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5019 	if (rc < 0)
5020 		goto err_out_module;
5021 	read_only = rbd_opts->read_only;
5022 	kfree(rbd_opts);
5023 	rbd_opts = NULL;	/* done with this */
5024 
5025 	rbdc = rbd_get_client(ceph_opts);
5026 	if (IS_ERR(rbdc)) {
5027 		rc = PTR_ERR(rbdc);
5028 		goto err_out_args;
5029 	}
5030 
5031 	/* pick the pool */
5032 	osdc = &rbdc->client->osdc;
5033 	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5034 	if (rc < 0)
5035 		goto err_out_client;
5036 	spec->pool_id = (u64)rc;
5037 
5038 	/* The ceph file layout needs to fit pool id in 32 bits */
5039 
5040 	if (spec->pool_id > (u64)U32_MAX) {
5041 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5042 				(unsigned long long)spec->pool_id, U32_MAX);
5043 		rc = -EIO;
5044 		goto err_out_client;
5045 	}
5046 
5047 	rbd_dev = rbd_dev_create(rbdc, spec);
5048 	if (!rbd_dev)
5049 		goto err_out_client;
5050 	rbdc = NULL;		/* rbd_dev now owns this */
5051 	spec = NULL;		/* rbd_dev now owns this */
5052 
5053 	rc = rbd_dev_image_probe(rbd_dev, true);
5054 	if (rc < 0)
5055 		goto err_out_rbd_dev;
5056 
5057 	/* If we are mapping a snapshot it must be marked read-only */
5058 
5059 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5060 		read_only = true;
5061 	rbd_dev->mapping.read_only = read_only;
5062 
5063 	rc = rbd_dev_device_setup(rbd_dev);
5064 	if (rc) {
5065 		rbd_dev_image_release(rbd_dev);
5066 		goto err_out_module;
5067 	}
5068 
5069 	return count;
5070 
5071 err_out_rbd_dev:
5072 	rbd_dev_destroy(rbd_dev);
5073 err_out_client:
5074 	rbd_put_client(rbdc);
5075 err_out_args:
5076 	rbd_spec_put(spec);
5077 err_out_module:
5078 	module_put(THIS_MODULE);
5079 
5080 	dout("Error adding device %s\n", buf);
5081 
5082 	return (ssize_t)rc;
5083 }
5084 
5085 static void rbd_dev_device_release(struct device *dev)
5086 {
5087 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088 
5089 	rbd_free_disk(rbd_dev);
5090 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5091 	rbd_dev_mapping_clear(rbd_dev);
5092 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
5093 	rbd_dev->major = 0;
5094 	rbd_dev_id_put(rbd_dev);
5095 	rbd_dev_mapping_clear(rbd_dev);
5096 }
5097 
5098 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5099 {
5100 	while (rbd_dev->parent) {
5101 		struct rbd_device *first = rbd_dev;
5102 		struct rbd_device *second = first->parent;
5103 		struct rbd_device *third;
5104 
5105 		/*
5106 		 * Follow to the parent with no grandparent and
5107 		 * remove it.
5108 		 */
5109 		while (second && (third = second->parent)) {
5110 			first = second;
5111 			second = third;
5112 		}
5113 		rbd_assert(second);
5114 		rbd_dev_image_release(second);
5115 		first->parent = NULL;
5116 		first->parent_overlap = 0;
5117 
5118 		rbd_assert(first->parent_spec);
5119 		rbd_spec_put(first->parent_spec);
5120 		first->parent_spec = NULL;
5121 	}
5122 }
5123 
5124 static ssize_t rbd_remove(struct bus_type *bus,
5125 			  const char *buf,
5126 			  size_t count)
5127 {
5128 	struct rbd_device *rbd_dev = NULL;
5129 	struct list_head *tmp;
5130 	int dev_id;
5131 	unsigned long ul;
5132 	bool already = false;
5133 	int ret;
5134 
5135 	ret = kstrtoul(buf, 10, &ul);
5136 	if (ret)
5137 		return ret;
5138 
5139 	/* convert to int; abort if we lost anything in the conversion */
5140 	dev_id = (int)ul;
5141 	if (dev_id != ul)
5142 		return -EINVAL;
5143 
5144 	ret = -ENOENT;
5145 	spin_lock(&rbd_dev_list_lock);
5146 	list_for_each(tmp, &rbd_dev_list) {
5147 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5148 		if (rbd_dev->dev_id == dev_id) {
5149 			ret = 0;
5150 			break;
5151 		}
5152 	}
5153 	if (!ret) {
5154 		spin_lock_irq(&rbd_dev->lock);
5155 		if (rbd_dev->open_count)
5156 			ret = -EBUSY;
5157 		else
5158 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5159 							&rbd_dev->flags);
5160 		spin_unlock_irq(&rbd_dev->lock);
5161 	}
5162 	spin_unlock(&rbd_dev_list_lock);
5163 	if (ret < 0 || already)
5164 		return ret;
5165 
5166 	rbd_bus_del_dev(rbd_dev);
5167 	ret = rbd_dev_header_watch_sync(rbd_dev, false);
5168 	if (ret)
5169 		rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5170 	rbd_dev_image_release(rbd_dev);
5171 	module_put(THIS_MODULE);
5172 
5173 	return count;
5174 }
5175 
5176 /*
5177  * create control files in sysfs
5178  * /sys/bus/rbd/...
5179  */
5180 static int rbd_sysfs_init(void)
5181 {
5182 	int ret;
5183 
5184 	ret = device_register(&rbd_root_dev);
5185 	if (ret < 0)
5186 		return ret;
5187 
5188 	ret = bus_register(&rbd_bus_type);
5189 	if (ret < 0)
5190 		device_unregister(&rbd_root_dev);
5191 
5192 	return ret;
5193 }
5194 
5195 static void rbd_sysfs_cleanup(void)
5196 {
5197 	bus_unregister(&rbd_bus_type);
5198 	device_unregister(&rbd_root_dev);
5199 }
5200 
5201 static int rbd_slab_init(void)
5202 {
5203 	rbd_assert(!rbd_img_request_cache);
5204 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5205 					sizeof (struct rbd_img_request),
5206 					__alignof__(struct rbd_img_request),
5207 					0, NULL);
5208 	if (!rbd_img_request_cache)
5209 		return -ENOMEM;
5210 
5211 	rbd_assert(!rbd_obj_request_cache);
5212 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5213 					sizeof (struct rbd_obj_request),
5214 					__alignof__(struct rbd_obj_request),
5215 					0, NULL);
5216 	if (!rbd_obj_request_cache)
5217 		goto out_err;
5218 
5219 	rbd_assert(!rbd_segment_name_cache);
5220 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5221 					MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5222 	if (rbd_segment_name_cache)
5223 		return 0;
5224 out_err:
5225 	if (rbd_obj_request_cache) {
5226 		kmem_cache_destroy(rbd_obj_request_cache);
5227 		rbd_obj_request_cache = NULL;
5228 	}
5229 
5230 	kmem_cache_destroy(rbd_img_request_cache);
5231 	rbd_img_request_cache = NULL;
5232 
5233 	return -ENOMEM;
5234 }
5235 
5236 static void rbd_slab_exit(void)
5237 {
5238 	rbd_assert(rbd_segment_name_cache);
5239 	kmem_cache_destroy(rbd_segment_name_cache);
5240 	rbd_segment_name_cache = NULL;
5241 
5242 	rbd_assert(rbd_obj_request_cache);
5243 	kmem_cache_destroy(rbd_obj_request_cache);
5244 	rbd_obj_request_cache = NULL;
5245 
5246 	rbd_assert(rbd_img_request_cache);
5247 	kmem_cache_destroy(rbd_img_request_cache);
5248 	rbd_img_request_cache = NULL;
5249 }
5250 
5251 static int __init rbd_init(void)
5252 {
5253 	int rc;
5254 
5255 	if (!libceph_compatible(NULL)) {
5256 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5257 
5258 		return -EINVAL;
5259 	}
5260 	rc = rbd_slab_init();
5261 	if (rc)
5262 		return rc;
5263 	rc = rbd_sysfs_init();
5264 	if (rc)
5265 		rbd_slab_exit();
5266 	else
5267 		pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5268 
5269 	return rc;
5270 }
5271 
5272 static void __exit rbd_exit(void)
5273 {
5274 	rbd_sysfs_cleanup();
5275 	rbd_slab_exit();
5276 }
5277 
5278 module_init(rbd_init);
5279 module_exit(rbd_exit);
5280 
5281 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5282 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5283 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5284 MODULE_DESCRIPTION("rados block device");
5285 
5286 /* following authorship retained from original osdblk.c */
5287 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5288 
5289 MODULE_LICENSE("GPL");
5290