1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 #include <linux/idr.h> 45 46 #include "rbd_types.h" 47 48 #define RBD_DEBUG /* Activate rbd_assert() calls */ 49 50 /* 51 * The basic unit of block I/O is a sector. It is interpreted in a 52 * number of contexts in Linux (blk, bio, genhd), but the default is 53 * universally 512 bytes. These symbols are just slightly more 54 * meaningful than the bare numbers they represent. 55 */ 56 #define SECTOR_SHIFT 9 57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 58 59 /* 60 * Increment the given counter and return its updated value. 61 * If the counter is already 0 it will not be incremented. 62 * If the counter is already at its maximum value returns 63 * -EINVAL without updating it. 64 */ 65 static int atomic_inc_return_safe(atomic_t *v) 66 { 67 unsigned int counter; 68 69 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 70 if (counter <= (unsigned int)INT_MAX) 71 return (int)counter; 72 73 atomic_dec(v); 74 75 return -EINVAL; 76 } 77 78 /* Decrement the counter. Return the resulting value, or -EINVAL */ 79 static int atomic_dec_return_safe(atomic_t *v) 80 { 81 int counter; 82 83 counter = atomic_dec_return(v); 84 if (counter >= 0) 85 return counter; 86 87 atomic_inc(v); 88 89 return -EINVAL; 90 } 91 92 #define RBD_DRV_NAME "rbd" 93 94 #define RBD_MINORS_PER_MAJOR 256 95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 96 97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 98 #define RBD_MAX_SNAP_NAME_LEN \ 99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 100 101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 102 103 #define RBD_SNAP_HEAD_NAME "-" 104 105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 106 107 /* This allows a single page to hold an image name sent by OSD */ 108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 109 #define RBD_IMAGE_ID_LEN_MAX 64 110 111 #define RBD_OBJ_PREFIX_LEN_MAX 64 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1<<1) 117 #define RBD_FEATURES_ALL \ 118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 119 120 /* Features supported by this (client software) implementation. */ 121 122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 123 124 /* 125 * An RBD device name will be "rbd#", where the "rbd" comes from 126 * RBD_DRV_NAME above, and # is a unique integer identifier. 127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 128 * enough to hold all possible device names. 129 */ 130 #define DEV_NAME_LEN 32 131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 132 133 /* 134 * block device image metadata (in-memory version) 135 */ 136 struct rbd_image_header { 137 /* These six fields never change for a given rbd image */ 138 char *object_prefix; 139 __u8 obj_order; 140 __u8 crypt_type; 141 __u8 comp_type; 142 u64 stripe_unit; 143 u64 stripe_count; 144 u64 features; /* Might be changeable someday? */ 145 146 /* The remaining fields need to be updated occasionally */ 147 u64 image_size; 148 struct ceph_snap_context *snapc; 149 char *snap_names; /* format 1 only */ 150 u64 *snap_sizes; /* format 1 only */ 151 }; 152 153 /* 154 * An rbd image specification. 155 * 156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 157 * identify an image. Each rbd_dev structure includes a pointer to 158 * an rbd_spec structure that encapsulates this identity. 159 * 160 * Each of the id's in an rbd_spec has an associated name. For a 161 * user-mapped image, the names are supplied and the id's associated 162 * with them are looked up. For a layered image, a parent image is 163 * defined by the tuple, and the names are looked up. 164 * 165 * An rbd_dev structure contains a parent_spec pointer which is 166 * non-null if the image it represents is a child in a layered 167 * image. This pointer will refer to the rbd_spec structure used 168 * by the parent rbd_dev for its own identity (i.e., the structure 169 * is shared between the parent and child). 170 * 171 * Since these structures are populated once, during the discovery 172 * phase of image construction, they are effectively immutable so 173 * we make no effort to synchronize access to them. 174 * 175 * Note that code herein does not assume the image name is known (it 176 * could be a null pointer). 177 */ 178 struct rbd_spec { 179 u64 pool_id; 180 const char *pool_name; 181 182 const char *image_id; 183 const char *image_name; 184 185 u64 snap_id; 186 const char *snap_name; 187 188 struct kref kref; 189 }; 190 191 /* 192 * an instance of the client. multiple devices may share an rbd client. 193 */ 194 struct rbd_client { 195 struct ceph_client *client; 196 struct kref kref; 197 struct list_head node; 198 }; 199 200 struct rbd_img_request; 201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 202 203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 204 205 struct rbd_obj_request; 206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 207 208 enum obj_request_type { 209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 210 }; 211 212 enum obj_req_flags { 213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 217 }; 218 219 struct rbd_obj_request { 220 const char *object_name; 221 u64 offset; /* object start byte */ 222 u64 length; /* bytes from offset */ 223 unsigned long flags; 224 225 /* 226 * An object request associated with an image will have its 227 * img_data flag set; a standalone object request will not. 228 * 229 * A standalone object request will have which == BAD_WHICH 230 * and a null obj_request pointer. 231 * 232 * An object request initiated in support of a layered image 233 * object (to check for its existence before a write) will 234 * have which == BAD_WHICH and a non-null obj_request pointer. 235 * 236 * Finally, an object request for rbd image data will have 237 * which != BAD_WHICH, and will have a non-null img_request 238 * pointer. The value of which will be in the range 239 * 0..(img_request->obj_request_count-1). 240 */ 241 union { 242 struct rbd_obj_request *obj_request; /* STAT op */ 243 struct { 244 struct rbd_img_request *img_request; 245 u64 img_offset; 246 /* links for img_request->obj_requests list */ 247 struct list_head links; 248 }; 249 }; 250 u32 which; /* posn image request list */ 251 252 enum obj_request_type type; 253 union { 254 struct bio *bio_list; 255 struct { 256 struct page **pages; 257 u32 page_count; 258 }; 259 }; 260 struct page **copyup_pages; 261 u32 copyup_page_count; 262 263 struct ceph_osd_request *osd_req; 264 265 u64 xferred; /* bytes transferred */ 266 int result; 267 268 rbd_obj_callback_t callback; 269 struct completion completion; 270 271 struct kref kref; 272 }; 273 274 enum img_req_flags { 275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 278 }; 279 280 struct rbd_img_request { 281 struct rbd_device *rbd_dev; 282 u64 offset; /* starting image byte offset */ 283 u64 length; /* byte count from offset */ 284 unsigned long flags; 285 union { 286 u64 snap_id; /* for reads */ 287 struct ceph_snap_context *snapc; /* for writes */ 288 }; 289 union { 290 struct request *rq; /* block request */ 291 struct rbd_obj_request *obj_request; /* obj req initiator */ 292 }; 293 struct page **copyup_pages; 294 u32 copyup_page_count; 295 spinlock_t completion_lock;/* protects next_completion */ 296 u32 next_completion; 297 rbd_img_callback_t callback; 298 u64 xferred;/* aggregate bytes transferred */ 299 int result; /* first nonzero obj_request result */ 300 301 u32 obj_request_count; 302 struct list_head obj_requests; /* rbd_obj_request structs */ 303 304 struct kref kref; 305 }; 306 307 #define for_each_obj_request(ireq, oreq) \ 308 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 309 #define for_each_obj_request_from(ireq, oreq) \ 310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 311 #define for_each_obj_request_safe(ireq, oreq, n) \ 312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 313 314 struct rbd_mapping { 315 u64 size; 316 u64 features; 317 bool read_only; 318 }; 319 320 /* 321 * a single device 322 */ 323 struct rbd_device { 324 int dev_id; /* blkdev unique id */ 325 326 int major; /* blkdev assigned major */ 327 int minor; 328 struct gendisk *disk; /* blkdev's gendisk and rq */ 329 330 u32 image_format; /* Either 1 or 2 */ 331 struct rbd_client *rbd_client; 332 333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 334 335 spinlock_t lock; /* queue, flags, open_count */ 336 337 struct rbd_image_header header; 338 unsigned long flags; /* possibly lock protected */ 339 struct rbd_spec *spec; 340 341 char *header_name; 342 343 struct ceph_file_layout layout; 344 345 struct ceph_osd_event *watch_event; 346 struct rbd_obj_request *watch_request; 347 348 struct rbd_spec *parent_spec; 349 u64 parent_overlap; 350 atomic_t parent_ref; 351 struct rbd_device *parent; 352 353 /* protects updating the header */ 354 struct rw_semaphore header_rwsem; 355 356 struct rbd_mapping mapping; 357 358 struct list_head node; 359 360 /* sysfs related */ 361 struct device dev; 362 unsigned long open_count; /* protected by lock */ 363 }; 364 365 /* 366 * Flag bits for rbd_dev->flags. If atomicity is required, 367 * rbd_dev->lock is used to protect access. 368 * 369 * Currently, only the "removing" flag (which is coupled with the 370 * "open_count" field) requires atomic access. 371 */ 372 enum rbd_dev_flags { 373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 375 }; 376 377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 378 379 static LIST_HEAD(rbd_dev_list); /* devices */ 380 static DEFINE_SPINLOCK(rbd_dev_list_lock); 381 382 static LIST_HEAD(rbd_client_list); /* clients */ 383 static DEFINE_SPINLOCK(rbd_client_list_lock); 384 385 /* Slab caches for frequently-allocated structures */ 386 387 static struct kmem_cache *rbd_img_request_cache; 388 static struct kmem_cache *rbd_obj_request_cache; 389 static struct kmem_cache *rbd_segment_name_cache; 390 391 static int rbd_major; 392 static DEFINE_IDA(rbd_dev_id_ida); 393 394 /* 395 * Default to false for now, as single-major requires >= 0.75 version of 396 * userspace rbd utility. 397 */ 398 static bool single_major = false; 399 module_param(single_major, bool, S_IRUGO); 400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 401 402 static int rbd_img_request_submit(struct rbd_img_request *img_request); 403 404 static void rbd_dev_device_release(struct device *dev); 405 406 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 407 size_t count); 408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 409 size_t count); 410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 411 size_t count); 412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 413 size_t count); 414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 415 static void rbd_spec_put(struct rbd_spec *spec); 416 417 static int rbd_dev_id_to_minor(int dev_id) 418 { 419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 420 } 421 422 static int minor_to_rbd_dev_id(int minor) 423 { 424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 425 } 426 427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 431 432 static struct attribute *rbd_bus_attrs[] = { 433 &bus_attr_add.attr, 434 &bus_attr_remove.attr, 435 &bus_attr_add_single_major.attr, 436 &bus_attr_remove_single_major.attr, 437 NULL, 438 }; 439 440 static umode_t rbd_bus_is_visible(struct kobject *kobj, 441 struct attribute *attr, int index) 442 { 443 if (!single_major && 444 (attr == &bus_attr_add_single_major.attr || 445 attr == &bus_attr_remove_single_major.attr)) 446 return 0; 447 448 return attr->mode; 449 } 450 451 static const struct attribute_group rbd_bus_group = { 452 .attrs = rbd_bus_attrs, 453 .is_visible = rbd_bus_is_visible, 454 }; 455 __ATTRIBUTE_GROUPS(rbd_bus); 456 457 static struct bus_type rbd_bus_type = { 458 .name = "rbd", 459 .bus_groups = rbd_bus_groups, 460 }; 461 462 static void rbd_root_dev_release(struct device *dev) 463 { 464 } 465 466 static struct device rbd_root_dev = { 467 .init_name = "rbd", 468 .release = rbd_root_dev_release, 469 }; 470 471 static __printf(2, 3) 472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 473 { 474 struct va_format vaf; 475 va_list args; 476 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 481 if (!rbd_dev) 482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 483 else if (rbd_dev->disk) 484 printk(KERN_WARNING "%s: %s: %pV\n", 485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 486 else if (rbd_dev->spec && rbd_dev->spec->image_name) 487 printk(KERN_WARNING "%s: image %s: %pV\n", 488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 489 else if (rbd_dev->spec && rbd_dev->spec->image_id) 490 printk(KERN_WARNING "%s: id %s: %pV\n", 491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 492 else /* punt */ 493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 494 RBD_DRV_NAME, rbd_dev, &vaf); 495 va_end(args); 496 } 497 498 #ifdef RBD_DEBUG 499 #define rbd_assert(expr) \ 500 if (unlikely(!(expr))) { \ 501 printk(KERN_ERR "\nAssertion failure in %s() " \ 502 "at line %d:\n\n" \ 503 "\trbd_assert(%s);\n\n", \ 504 __func__, __LINE__, #expr); \ 505 BUG(); \ 506 } 507 #else /* !RBD_DEBUG */ 508 # define rbd_assert(expr) ((void) 0) 509 #endif /* !RBD_DEBUG */ 510 511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 514 515 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev); 518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 519 u64 snap_id); 520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 521 u8 *order, u64 *snap_size); 522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 523 u64 *snap_features); 524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 525 526 static int rbd_open(struct block_device *bdev, fmode_t mode) 527 { 528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 529 bool removing = false; 530 531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 532 return -EROFS; 533 534 spin_lock_irq(&rbd_dev->lock); 535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 536 removing = true; 537 else 538 rbd_dev->open_count++; 539 spin_unlock_irq(&rbd_dev->lock); 540 if (removing) 541 return -ENOENT; 542 543 (void) get_device(&rbd_dev->dev); 544 set_device_ro(bdev, rbd_dev->mapping.read_only); 545 546 return 0; 547 } 548 549 static void rbd_release(struct gendisk *disk, fmode_t mode) 550 { 551 struct rbd_device *rbd_dev = disk->private_data; 552 unsigned long open_count_before; 553 554 spin_lock_irq(&rbd_dev->lock); 555 open_count_before = rbd_dev->open_count--; 556 spin_unlock_irq(&rbd_dev->lock); 557 rbd_assert(open_count_before > 0); 558 559 put_device(&rbd_dev->dev); 560 } 561 562 static const struct block_device_operations rbd_bd_ops = { 563 .owner = THIS_MODULE, 564 .open = rbd_open, 565 .release = rbd_release, 566 }; 567 568 /* 569 * Initialize an rbd client instance. Success or not, this function 570 * consumes ceph_opts. Caller holds client_mutex. 571 */ 572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 573 { 574 struct rbd_client *rbdc; 575 int ret = -ENOMEM; 576 577 dout("%s:\n", __func__); 578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 579 if (!rbdc) 580 goto out_opt; 581 582 kref_init(&rbdc->kref); 583 INIT_LIST_HEAD(&rbdc->node); 584 585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 586 if (IS_ERR(rbdc->client)) 587 goto out_rbdc; 588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 589 590 ret = ceph_open_session(rbdc->client); 591 if (ret < 0) 592 goto out_client; 593 594 spin_lock(&rbd_client_list_lock); 595 list_add_tail(&rbdc->node, &rbd_client_list); 596 spin_unlock(&rbd_client_list_lock); 597 598 dout("%s: rbdc %p\n", __func__, rbdc); 599 600 return rbdc; 601 out_client: 602 ceph_destroy_client(rbdc->client); 603 out_rbdc: 604 kfree(rbdc); 605 out_opt: 606 if (ceph_opts) 607 ceph_destroy_options(ceph_opts); 608 dout("%s: error %d\n", __func__, ret); 609 610 return ERR_PTR(ret); 611 } 612 613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 614 { 615 kref_get(&rbdc->kref); 616 617 return rbdc; 618 } 619 620 /* 621 * Find a ceph client with specific addr and configuration. If 622 * found, bump its reference count. 623 */ 624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 625 { 626 struct rbd_client *client_node; 627 bool found = false; 628 629 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 630 return NULL; 631 632 spin_lock(&rbd_client_list_lock); 633 list_for_each_entry(client_node, &rbd_client_list, node) { 634 if (!ceph_compare_options(ceph_opts, client_node->client)) { 635 __rbd_get_client(client_node); 636 637 found = true; 638 break; 639 } 640 } 641 spin_unlock(&rbd_client_list_lock); 642 643 return found ? client_node : NULL; 644 } 645 646 /* 647 * mount options 648 */ 649 enum { 650 Opt_last_int, 651 /* int args above */ 652 Opt_last_string, 653 /* string args above */ 654 Opt_read_only, 655 Opt_read_write, 656 /* Boolean args above */ 657 Opt_last_bool, 658 }; 659 660 static match_table_t rbd_opts_tokens = { 661 /* int args above */ 662 /* string args above */ 663 {Opt_read_only, "read_only"}, 664 {Opt_read_only, "ro"}, /* Alternate spelling */ 665 {Opt_read_write, "read_write"}, 666 {Opt_read_write, "rw"}, /* Alternate spelling */ 667 /* Boolean args above */ 668 {-1, NULL} 669 }; 670 671 struct rbd_options { 672 bool read_only; 673 }; 674 675 #define RBD_READ_ONLY_DEFAULT false 676 677 static int parse_rbd_opts_token(char *c, void *private) 678 { 679 struct rbd_options *rbd_opts = private; 680 substring_t argstr[MAX_OPT_ARGS]; 681 int token, intval, ret; 682 683 token = match_token(c, rbd_opts_tokens, argstr); 684 if (token < 0) 685 return -EINVAL; 686 687 if (token < Opt_last_int) { 688 ret = match_int(&argstr[0], &intval); 689 if (ret < 0) { 690 pr_err("bad mount option arg (not int) " 691 "at '%s'\n", c); 692 return ret; 693 } 694 dout("got int token %d val %d\n", token, intval); 695 } else if (token > Opt_last_int && token < Opt_last_string) { 696 dout("got string token %d val %s\n", token, 697 argstr[0].from); 698 } else if (token > Opt_last_string && token < Opt_last_bool) { 699 dout("got Boolean token %d\n", token); 700 } else { 701 dout("got token %d\n", token); 702 } 703 704 switch (token) { 705 case Opt_read_only: 706 rbd_opts->read_only = true; 707 break; 708 case Opt_read_write: 709 rbd_opts->read_only = false; 710 break; 711 default: 712 rbd_assert(false); 713 break; 714 } 715 return 0; 716 } 717 718 /* 719 * Get a ceph client with specific addr and configuration, if one does 720 * not exist create it. Either way, ceph_opts is consumed by this 721 * function. 722 */ 723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 724 { 725 struct rbd_client *rbdc; 726 727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 728 rbdc = rbd_client_find(ceph_opts); 729 if (rbdc) /* using an existing client */ 730 ceph_destroy_options(ceph_opts); 731 else 732 rbdc = rbd_client_create(ceph_opts); 733 mutex_unlock(&client_mutex); 734 735 return rbdc; 736 } 737 738 /* 739 * Destroy ceph client 740 * 741 * Caller must hold rbd_client_list_lock. 742 */ 743 static void rbd_client_release(struct kref *kref) 744 { 745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 746 747 dout("%s: rbdc %p\n", __func__, rbdc); 748 spin_lock(&rbd_client_list_lock); 749 list_del(&rbdc->node); 750 spin_unlock(&rbd_client_list_lock); 751 752 ceph_destroy_client(rbdc->client); 753 kfree(rbdc); 754 } 755 756 /* 757 * Drop reference to ceph client node. If it's not referenced anymore, release 758 * it. 759 */ 760 static void rbd_put_client(struct rbd_client *rbdc) 761 { 762 if (rbdc) 763 kref_put(&rbdc->kref, rbd_client_release); 764 } 765 766 static bool rbd_image_format_valid(u32 image_format) 767 { 768 return image_format == 1 || image_format == 2; 769 } 770 771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 772 { 773 size_t size; 774 u32 snap_count; 775 776 /* The header has to start with the magic rbd header text */ 777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 778 return false; 779 780 /* The bio layer requires at least sector-sized I/O */ 781 782 if (ondisk->options.order < SECTOR_SHIFT) 783 return false; 784 785 /* If we use u64 in a few spots we may be able to loosen this */ 786 787 if (ondisk->options.order > 8 * sizeof (int) - 1) 788 return false; 789 790 /* 791 * The size of a snapshot header has to fit in a size_t, and 792 * that limits the number of snapshots. 793 */ 794 snap_count = le32_to_cpu(ondisk->snap_count); 795 size = SIZE_MAX - sizeof (struct ceph_snap_context); 796 if (snap_count > size / sizeof (__le64)) 797 return false; 798 799 /* 800 * Not only that, but the size of the entire the snapshot 801 * header must also be representable in a size_t. 802 */ 803 size -= snap_count * sizeof (__le64); 804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 805 return false; 806 807 return true; 808 } 809 810 /* 811 * Fill an rbd image header with information from the given format 1 812 * on-disk header. 813 */ 814 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 815 struct rbd_image_header_ondisk *ondisk) 816 { 817 struct rbd_image_header *header = &rbd_dev->header; 818 bool first_time = header->object_prefix == NULL; 819 struct ceph_snap_context *snapc; 820 char *object_prefix = NULL; 821 char *snap_names = NULL; 822 u64 *snap_sizes = NULL; 823 u32 snap_count; 824 size_t size; 825 int ret = -ENOMEM; 826 u32 i; 827 828 /* Allocate this now to avoid having to handle failure below */ 829 830 if (first_time) { 831 size_t len; 832 833 len = strnlen(ondisk->object_prefix, 834 sizeof (ondisk->object_prefix)); 835 object_prefix = kmalloc(len + 1, GFP_KERNEL); 836 if (!object_prefix) 837 return -ENOMEM; 838 memcpy(object_prefix, ondisk->object_prefix, len); 839 object_prefix[len] = '\0'; 840 } 841 842 /* Allocate the snapshot context and fill it in */ 843 844 snap_count = le32_to_cpu(ondisk->snap_count); 845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 846 if (!snapc) 847 goto out_err; 848 snapc->seq = le64_to_cpu(ondisk->snap_seq); 849 if (snap_count) { 850 struct rbd_image_snap_ondisk *snaps; 851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 852 853 /* We'll keep a copy of the snapshot names... */ 854 855 if (snap_names_len > (u64)SIZE_MAX) 856 goto out_2big; 857 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 858 if (!snap_names) 859 goto out_err; 860 861 /* ...as well as the array of their sizes. */ 862 863 size = snap_count * sizeof (*header->snap_sizes); 864 snap_sizes = kmalloc(size, GFP_KERNEL); 865 if (!snap_sizes) 866 goto out_err; 867 868 /* 869 * Copy the names, and fill in each snapshot's id 870 * and size. 871 * 872 * Note that rbd_dev_v1_header_info() guarantees the 873 * ondisk buffer we're working with has 874 * snap_names_len bytes beyond the end of the 875 * snapshot id array, this memcpy() is safe. 876 */ 877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 878 snaps = ondisk->snaps; 879 for (i = 0; i < snap_count; i++) { 880 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 882 } 883 } 884 885 /* We won't fail any more, fill in the header */ 886 887 if (first_time) { 888 header->object_prefix = object_prefix; 889 header->obj_order = ondisk->options.order; 890 header->crypt_type = ondisk->options.crypt_type; 891 header->comp_type = ondisk->options.comp_type; 892 /* The rest aren't used for format 1 images */ 893 header->stripe_unit = 0; 894 header->stripe_count = 0; 895 header->features = 0; 896 } else { 897 ceph_put_snap_context(header->snapc); 898 kfree(header->snap_names); 899 kfree(header->snap_sizes); 900 } 901 902 /* The remaining fields always get updated (when we refresh) */ 903 904 header->image_size = le64_to_cpu(ondisk->image_size); 905 header->snapc = snapc; 906 header->snap_names = snap_names; 907 header->snap_sizes = snap_sizes; 908 909 /* Make sure mapping size is consistent with header info */ 910 911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time) 912 if (rbd_dev->mapping.size != header->image_size) 913 rbd_dev->mapping.size = header->image_size; 914 915 return 0; 916 out_2big: 917 ret = -EIO; 918 out_err: 919 kfree(snap_sizes); 920 kfree(snap_names); 921 ceph_put_snap_context(snapc); 922 kfree(object_prefix); 923 924 return ret; 925 } 926 927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 928 { 929 const char *snap_name; 930 931 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 932 933 /* Skip over names until we find the one we are looking for */ 934 935 snap_name = rbd_dev->header.snap_names; 936 while (which--) 937 snap_name += strlen(snap_name) + 1; 938 939 return kstrdup(snap_name, GFP_KERNEL); 940 } 941 942 /* 943 * Snapshot id comparison function for use with qsort()/bsearch(). 944 * Note that result is for snapshots in *descending* order. 945 */ 946 static int snapid_compare_reverse(const void *s1, const void *s2) 947 { 948 u64 snap_id1 = *(u64 *)s1; 949 u64 snap_id2 = *(u64 *)s2; 950 951 if (snap_id1 < snap_id2) 952 return 1; 953 return snap_id1 == snap_id2 ? 0 : -1; 954 } 955 956 /* 957 * Search a snapshot context to see if the given snapshot id is 958 * present. 959 * 960 * Returns the position of the snapshot id in the array if it's found, 961 * or BAD_SNAP_INDEX otherwise. 962 * 963 * Note: The snapshot array is in kept sorted (by the osd) in 964 * reverse order, highest snapshot id first. 965 */ 966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 967 { 968 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 969 u64 *found; 970 971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 972 sizeof (snap_id), snapid_compare_reverse); 973 974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 975 } 976 977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 978 u64 snap_id) 979 { 980 u32 which; 981 const char *snap_name; 982 983 which = rbd_dev_snap_index(rbd_dev, snap_id); 984 if (which == BAD_SNAP_INDEX) 985 return ERR_PTR(-ENOENT); 986 987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 988 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 989 } 990 991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 992 { 993 if (snap_id == CEPH_NOSNAP) 994 return RBD_SNAP_HEAD_NAME; 995 996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 997 if (rbd_dev->image_format == 1) 998 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 999 1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1001 } 1002 1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1004 u64 *snap_size) 1005 { 1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1007 if (snap_id == CEPH_NOSNAP) { 1008 *snap_size = rbd_dev->header.image_size; 1009 } else if (rbd_dev->image_format == 1) { 1010 u32 which; 1011 1012 which = rbd_dev_snap_index(rbd_dev, snap_id); 1013 if (which == BAD_SNAP_INDEX) 1014 return -ENOENT; 1015 1016 *snap_size = rbd_dev->header.snap_sizes[which]; 1017 } else { 1018 u64 size = 0; 1019 int ret; 1020 1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1022 if (ret) 1023 return ret; 1024 1025 *snap_size = size; 1026 } 1027 return 0; 1028 } 1029 1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1031 u64 *snap_features) 1032 { 1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1034 if (snap_id == CEPH_NOSNAP) { 1035 *snap_features = rbd_dev->header.features; 1036 } else if (rbd_dev->image_format == 1) { 1037 *snap_features = 0; /* No features for format 1 */ 1038 } else { 1039 u64 features = 0; 1040 int ret; 1041 1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1043 if (ret) 1044 return ret; 1045 1046 *snap_features = features; 1047 } 1048 return 0; 1049 } 1050 1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1052 { 1053 u64 snap_id = rbd_dev->spec->snap_id; 1054 u64 size = 0; 1055 u64 features = 0; 1056 int ret; 1057 1058 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1059 if (ret) 1060 return ret; 1061 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1062 if (ret) 1063 return ret; 1064 1065 rbd_dev->mapping.size = size; 1066 rbd_dev->mapping.features = features; 1067 1068 return 0; 1069 } 1070 1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1072 { 1073 rbd_dev->mapping.size = 0; 1074 rbd_dev->mapping.features = 0; 1075 } 1076 1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1078 { 1079 char *name; 1080 u64 segment; 1081 int ret; 1082 char *name_format; 1083 1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1085 if (!name) 1086 return NULL; 1087 segment = offset >> rbd_dev->header.obj_order; 1088 name_format = "%s.%012llx"; 1089 if (rbd_dev->image_format == 2) 1090 name_format = "%s.%016llx"; 1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1092 rbd_dev->header.object_prefix, segment); 1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1094 pr_err("error formatting segment name for #%llu (%d)\n", 1095 segment, ret); 1096 kfree(name); 1097 name = NULL; 1098 } 1099 1100 return name; 1101 } 1102 1103 static void rbd_segment_name_free(const char *name) 1104 { 1105 /* The explicit cast here is needed to drop the const qualifier */ 1106 1107 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1108 } 1109 1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1111 { 1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1113 1114 return offset & (segment_size - 1); 1115 } 1116 1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1118 u64 offset, u64 length) 1119 { 1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1121 1122 offset &= segment_size - 1; 1123 1124 rbd_assert(length <= U64_MAX - offset); 1125 if (offset + length > segment_size) 1126 length = segment_size - offset; 1127 1128 return length; 1129 } 1130 1131 /* 1132 * returns the size of an object in the image 1133 */ 1134 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1135 { 1136 return 1 << header->obj_order; 1137 } 1138 1139 /* 1140 * bio helpers 1141 */ 1142 1143 static void bio_chain_put(struct bio *chain) 1144 { 1145 struct bio *tmp; 1146 1147 while (chain) { 1148 tmp = chain; 1149 chain = chain->bi_next; 1150 bio_put(tmp); 1151 } 1152 } 1153 1154 /* 1155 * zeros a bio chain, starting at specific offset 1156 */ 1157 static void zero_bio_chain(struct bio *chain, int start_ofs) 1158 { 1159 struct bio_vec bv; 1160 struct bvec_iter iter; 1161 unsigned long flags; 1162 void *buf; 1163 int pos = 0; 1164 1165 while (chain) { 1166 bio_for_each_segment(bv, chain, iter) { 1167 if (pos + bv.bv_len > start_ofs) { 1168 int remainder = max(start_ofs - pos, 0); 1169 buf = bvec_kmap_irq(&bv, &flags); 1170 memset(buf + remainder, 0, 1171 bv.bv_len - remainder); 1172 flush_dcache_page(bv.bv_page); 1173 bvec_kunmap_irq(buf, &flags); 1174 } 1175 pos += bv.bv_len; 1176 } 1177 1178 chain = chain->bi_next; 1179 } 1180 } 1181 1182 /* 1183 * similar to zero_bio_chain(), zeros data defined by a page array, 1184 * starting at the given byte offset from the start of the array and 1185 * continuing up to the given end offset. The pages array is 1186 * assumed to be big enough to hold all bytes up to the end. 1187 */ 1188 static void zero_pages(struct page **pages, u64 offset, u64 end) 1189 { 1190 struct page **page = &pages[offset >> PAGE_SHIFT]; 1191 1192 rbd_assert(end > offset); 1193 rbd_assert(end - offset <= (u64)SIZE_MAX); 1194 while (offset < end) { 1195 size_t page_offset; 1196 size_t length; 1197 unsigned long flags; 1198 void *kaddr; 1199 1200 page_offset = offset & ~PAGE_MASK; 1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1202 local_irq_save(flags); 1203 kaddr = kmap_atomic(*page); 1204 memset(kaddr + page_offset, 0, length); 1205 flush_dcache_page(*page); 1206 kunmap_atomic(kaddr); 1207 local_irq_restore(flags); 1208 1209 offset += length; 1210 page++; 1211 } 1212 } 1213 1214 /* 1215 * Clone a portion of a bio, starting at the given byte offset 1216 * and continuing for the number of bytes indicated. 1217 */ 1218 static struct bio *bio_clone_range(struct bio *bio_src, 1219 unsigned int offset, 1220 unsigned int len, 1221 gfp_t gfpmask) 1222 { 1223 struct bio *bio; 1224 1225 bio = bio_clone(bio_src, gfpmask); 1226 if (!bio) 1227 return NULL; /* ENOMEM */ 1228 1229 bio_advance(bio, offset); 1230 bio->bi_iter.bi_size = len; 1231 1232 return bio; 1233 } 1234 1235 /* 1236 * Clone a portion of a bio chain, starting at the given byte offset 1237 * into the first bio in the source chain and continuing for the 1238 * number of bytes indicated. The result is another bio chain of 1239 * exactly the given length, or a null pointer on error. 1240 * 1241 * The bio_src and offset parameters are both in-out. On entry they 1242 * refer to the first source bio and the offset into that bio where 1243 * the start of data to be cloned is located. 1244 * 1245 * On return, bio_src is updated to refer to the bio in the source 1246 * chain that contains first un-cloned byte, and *offset will 1247 * contain the offset of that byte within that bio. 1248 */ 1249 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1250 unsigned int *offset, 1251 unsigned int len, 1252 gfp_t gfpmask) 1253 { 1254 struct bio *bi = *bio_src; 1255 unsigned int off = *offset; 1256 struct bio *chain = NULL; 1257 struct bio **end; 1258 1259 /* Build up a chain of clone bios up to the limit */ 1260 1261 if (!bi || off >= bi->bi_iter.bi_size || !len) 1262 return NULL; /* Nothing to clone */ 1263 1264 end = &chain; 1265 while (len) { 1266 unsigned int bi_size; 1267 struct bio *bio; 1268 1269 if (!bi) { 1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1271 goto out_err; /* EINVAL; ran out of bio's */ 1272 } 1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1274 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1275 if (!bio) 1276 goto out_err; /* ENOMEM */ 1277 1278 *end = bio; 1279 end = &bio->bi_next; 1280 1281 off += bi_size; 1282 if (off == bi->bi_iter.bi_size) { 1283 bi = bi->bi_next; 1284 off = 0; 1285 } 1286 len -= bi_size; 1287 } 1288 *bio_src = bi; 1289 *offset = off; 1290 1291 return chain; 1292 out_err: 1293 bio_chain_put(chain); 1294 1295 return NULL; 1296 } 1297 1298 /* 1299 * The default/initial value for all object request flags is 0. For 1300 * each flag, once its value is set to 1 it is never reset to 0 1301 * again. 1302 */ 1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1304 { 1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1306 struct rbd_device *rbd_dev; 1307 1308 rbd_dev = obj_request->img_request->rbd_dev; 1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n", 1310 obj_request); 1311 } 1312 } 1313 1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1315 { 1316 smp_mb(); 1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1318 } 1319 1320 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1321 { 1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1323 struct rbd_device *rbd_dev = NULL; 1324 1325 if (obj_request_img_data_test(obj_request)) 1326 rbd_dev = obj_request->img_request->rbd_dev; 1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n", 1328 obj_request); 1329 } 1330 } 1331 1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1333 { 1334 smp_mb(); 1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1336 } 1337 1338 /* 1339 * This sets the KNOWN flag after (possibly) setting the EXISTS 1340 * flag. The latter is set based on the "exists" value provided. 1341 * 1342 * Note that for our purposes once an object exists it never goes 1343 * away again. It's possible that the response from two existence 1344 * checks are separated by the creation of the target object, and 1345 * the first ("doesn't exist") response arrives *after* the second 1346 * ("does exist"). In that case we ignore the second one. 1347 */ 1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1349 bool exists) 1350 { 1351 if (exists) 1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1354 smp_mb(); 1355 } 1356 1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1358 { 1359 smp_mb(); 1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1361 } 1362 1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1364 { 1365 smp_mb(); 1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1367 } 1368 1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1370 { 1371 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1372 atomic_read(&obj_request->kref.refcount)); 1373 kref_get(&obj_request->kref); 1374 } 1375 1376 static void rbd_obj_request_destroy(struct kref *kref); 1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1378 { 1379 rbd_assert(obj_request != NULL); 1380 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1381 atomic_read(&obj_request->kref.refcount)); 1382 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1383 } 1384 1385 static bool img_request_child_test(struct rbd_img_request *img_request); 1386 static void rbd_parent_request_destroy(struct kref *kref); 1387 static void rbd_img_request_destroy(struct kref *kref); 1388 static void rbd_img_request_put(struct rbd_img_request *img_request) 1389 { 1390 rbd_assert(img_request != NULL); 1391 dout("%s: img %p (was %d)\n", __func__, img_request, 1392 atomic_read(&img_request->kref.refcount)); 1393 if (img_request_child_test(img_request)) 1394 kref_put(&img_request->kref, rbd_parent_request_destroy); 1395 else 1396 kref_put(&img_request->kref, rbd_img_request_destroy); 1397 } 1398 1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1400 struct rbd_obj_request *obj_request) 1401 { 1402 rbd_assert(obj_request->img_request == NULL); 1403 1404 /* Image request now owns object's original reference */ 1405 obj_request->img_request = img_request; 1406 obj_request->which = img_request->obj_request_count; 1407 rbd_assert(!obj_request_img_data_test(obj_request)); 1408 obj_request_img_data_set(obj_request); 1409 rbd_assert(obj_request->which != BAD_WHICH); 1410 img_request->obj_request_count++; 1411 list_add_tail(&obj_request->links, &img_request->obj_requests); 1412 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1413 obj_request->which); 1414 } 1415 1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1417 struct rbd_obj_request *obj_request) 1418 { 1419 rbd_assert(obj_request->which != BAD_WHICH); 1420 1421 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1422 obj_request->which); 1423 list_del(&obj_request->links); 1424 rbd_assert(img_request->obj_request_count > 0); 1425 img_request->obj_request_count--; 1426 rbd_assert(obj_request->which == img_request->obj_request_count); 1427 obj_request->which = BAD_WHICH; 1428 rbd_assert(obj_request_img_data_test(obj_request)); 1429 rbd_assert(obj_request->img_request == img_request); 1430 obj_request->img_request = NULL; 1431 obj_request->callback = NULL; 1432 rbd_obj_request_put(obj_request); 1433 } 1434 1435 static bool obj_request_type_valid(enum obj_request_type type) 1436 { 1437 switch (type) { 1438 case OBJ_REQUEST_NODATA: 1439 case OBJ_REQUEST_BIO: 1440 case OBJ_REQUEST_PAGES: 1441 return true; 1442 default: 1443 return false; 1444 } 1445 } 1446 1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1448 struct rbd_obj_request *obj_request) 1449 { 1450 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request); 1451 1452 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1453 } 1454 1455 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1456 { 1457 1458 dout("%s: img %p\n", __func__, img_request); 1459 1460 /* 1461 * If no error occurred, compute the aggregate transfer 1462 * count for the image request. We could instead use 1463 * atomic64_cmpxchg() to update it as each object request 1464 * completes; not clear which way is better off hand. 1465 */ 1466 if (!img_request->result) { 1467 struct rbd_obj_request *obj_request; 1468 u64 xferred = 0; 1469 1470 for_each_obj_request(img_request, obj_request) 1471 xferred += obj_request->xferred; 1472 img_request->xferred = xferred; 1473 } 1474 1475 if (img_request->callback) 1476 img_request->callback(img_request); 1477 else 1478 rbd_img_request_put(img_request); 1479 } 1480 1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */ 1482 1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1484 { 1485 dout("%s: obj %p\n", __func__, obj_request); 1486 1487 return wait_for_completion_interruptible(&obj_request->completion); 1488 } 1489 1490 /* 1491 * The default/initial value for all image request flags is 0. Each 1492 * is conditionally set to 1 at image request initialization time 1493 * and currently never change thereafter. 1494 */ 1495 static void img_request_write_set(struct rbd_img_request *img_request) 1496 { 1497 set_bit(IMG_REQ_WRITE, &img_request->flags); 1498 smp_mb(); 1499 } 1500 1501 static bool img_request_write_test(struct rbd_img_request *img_request) 1502 { 1503 smp_mb(); 1504 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1505 } 1506 1507 static void img_request_child_set(struct rbd_img_request *img_request) 1508 { 1509 set_bit(IMG_REQ_CHILD, &img_request->flags); 1510 smp_mb(); 1511 } 1512 1513 static void img_request_child_clear(struct rbd_img_request *img_request) 1514 { 1515 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1516 smp_mb(); 1517 } 1518 1519 static bool img_request_child_test(struct rbd_img_request *img_request) 1520 { 1521 smp_mb(); 1522 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1523 } 1524 1525 static void img_request_layered_set(struct rbd_img_request *img_request) 1526 { 1527 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1528 smp_mb(); 1529 } 1530 1531 static void img_request_layered_clear(struct rbd_img_request *img_request) 1532 { 1533 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1534 smp_mb(); 1535 } 1536 1537 static bool img_request_layered_test(struct rbd_img_request *img_request) 1538 { 1539 smp_mb(); 1540 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1541 } 1542 1543 static void 1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1545 { 1546 u64 xferred = obj_request->xferred; 1547 u64 length = obj_request->length; 1548 1549 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1550 obj_request, obj_request->img_request, obj_request->result, 1551 xferred, length); 1552 /* 1553 * ENOENT means a hole in the image. We zero-fill the entire 1554 * length of the request. A short read also implies zero-fill 1555 * to the end of the request. An error requires the whole 1556 * length of the request to be reported finished with an error 1557 * to the block layer. In each case we update the xferred 1558 * count to indicate the whole request was satisfied. 1559 */ 1560 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1561 if (obj_request->result == -ENOENT) { 1562 if (obj_request->type == OBJ_REQUEST_BIO) 1563 zero_bio_chain(obj_request->bio_list, 0); 1564 else 1565 zero_pages(obj_request->pages, 0, length); 1566 obj_request->result = 0; 1567 } else if (xferred < length && !obj_request->result) { 1568 if (obj_request->type == OBJ_REQUEST_BIO) 1569 zero_bio_chain(obj_request->bio_list, xferred); 1570 else 1571 zero_pages(obj_request->pages, xferred, length); 1572 } 1573 obj_request->xferred = length; 1574 obj_request_done_set(obj_request); 1575 } 1576 1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1578 { 1579 dout("%s: obj %p cb %p\n", __func__, obj_request, 1580 obj_request->callback); 1581 if (obj_request->callback) 1582 obj_request->callback(obj_request); 1583 else 1584 complete_all(&obj_request->completion); 1585 } 1586 1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1588 { 1589 dout("%s: obj %p\n", __func__, obj_request); 1590 obj_request_done_set(obj_request); 1591 } 1592 1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1594 { 1595 struct rbd_img_request *img_request = NULL; 1596 struct rbd_device *rbd_dev = NULL; 1597 bool layered = false; 1598 1599 if (obj_request_img_data_test(obj_request)) { 1600 img_request = obj_request->img_request; 1601 layered = img_request && img_request_layered_test(img_request); 1602 rbd_dev = img_request->rbd_dev; 1603 } 1604 1605 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1606 obj_request, img_request, obj_request->result, 1607 obj_request->xferred, obj_request->length); 1608 if (layered && obj_request->result == -ENOENT && 1609 obj_request->img_offset < rbd_dev->parent_overlap) 1610 rbd_img_parent_read(obj_request); 1611 else if (img_request) 1612 rbd_img_obj_request_read_callback(obj_request); 1613 else 1614 obj_request_done_set(obj_request); 1615 } 1616 1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1618 { 1619 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1620 obj_request->result, obj_request->length); 1621 /* 1622 * There is no such thing as a successful short write. Set 1623 * it to our originally-requested length. 1624 */ 1625 obj_request->xferred = obj_request->length; 1626 obj_request_done_set(obj_request); 1627 } 1628 1629 /* 1630 * For a simple stat call there's nothing to do. We'll do more if 1631 * this is part of a write sequence for a layered image. 1632 */ 1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1634 { 1635 dout("%s: obj %p\n", __func__, obj_request); 1636 obj_request_done_set(obj_request); 1637 } 1638 1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1640 struct ceph_msg *msg) 1641 { 1642 struct rbd_obj_request *obj_request = osd_req->r_priv; 1643 u16 opcode; 1644 1645 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1646 rbd_assert(osd_req == obj_request->osd_req); 1647 if (obj_request_img_data_test(obj_request)) { 1648 rbd_assert(obj_request->img_request); 1649 rbd_assert(obj_request->which != BAD_WHICH); 1650 } else { 1651 rbd_assert(obj_request->which == BAD_WHICH); 1652 } 1653 1654 if (osd_req->r_result < 0) 1655 obj_request->result = osd_req->r_result; 1656 1657 BUG_ON(osd_req->r_num_ops > 2); 1658 1659 /* 1660 * We support a 64-bit length, but ultimately it has to be 1661 * passed to blk_end_request(), which takes an unsigned int. 1662 */ 1663 obj_request->xferred = osd_req->r_reply_op_len[0]; 1664 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1665 opcode = osd_req->r_ops[0].op; 1666 switch (opcode) { 1667 case CEPH_OSD_OP_READ: 1668 rbd_osd_read_callback(obj_request); 1669 break; 1670 case CEPH_OSD_OP_WRITE: 1671 rbd_osd_write_callback(obj_request); 1672 break; 1673 case CEPH_OSD_OP_STAT: 1674 rbd_osd_stat_callback(obj_request); 1675 break; 1676 case CEPH_OSD_OP_CALL: 1677 case CEPH_OSD_OP_NOTIFY_ACK: 1678 case CEPH_OSD_OP_WATCH: 1679 rbd_osd_trivial_callback(obj_request); 1680 break; 1681 default: 1682 rbd_warn(NULL, "%s: unsupported op %hu\n", 1683 obj_request->object_name, (unsigned short) opcode); 1684 break; 1685 } 1686 1687 if (obj_request_done_test(obj_request)) 1688 rbd_obj_request_complete(obj_request); 1689 } 1690 1691 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1692 { 1693 struct rbd_img_request *img_request = obj_request->img_request; 1694 struct ceph_osd_request *osd_req = obj_request->osd_req; 1695 u64 snap_id; 1696 1697 rbd_assert(osd_req != NULL); 1698 1699 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1700 ceph_osdc_build_request(osd_req, obj_request->offset, 1701 NULL, snap_id, NULL); 1702 } 1703 1704 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1705 { 1706 struct rbd_img_request *img_request = obj_request->img_request; 1707 struct ceph_osd_request *osd_req = obj_request->osd_req; 1708 struct ceph_snap_context *snapc; 1709 struct timespec mtime = CURRENT_TIME; 1710 1711 rbd_assert(osd_req != NULL); 1712 1713 snapc = img_request ? img_request->snapc : NULL; 1714 ceph_osdc_build_request(osd_req, obj_request->offset, 1715 snapc, CEPH_NOSNAP, &mtime); 1716 } 1717 1718 static struct ceph_osd_request *rbd_osd_req_create( 1719 struct rbd_device *rbd_dev, 1720 bool write_request, 1721 struct rbd_obj_request *obj_request) 1722 { 1723 struct ceph_snap_context *snapc = NULL; 1724 struct ceph_osd_client *osdc; 1725 struct ceph_osd_request *osd_req; 1726 1727 if (obj_request_img_data_test(obj_request)) { 1728 struct rbd_img_request *img_request = obj_request->img_request; 1729 1730 rbd_assert(write_request == 1731 img_request_write_test(img_request)); 1732 if (write_request) 1733 snapc = img_request->snapc; 1734 } 1735 1736 /* Allocate and initialize the request, for the single op */ 1737 1738 osdc = &rbd_dev->rbd_client->client->osdc; 1739 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC); 1740 if (!osd_req) 1741 return NULL; /* ENOMEM */ 1742 1743 if (write_request) 1744 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1745 else 1746 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1747 1748 osd_req->r_callback = rbd_osd_req_callback; 1749 osd_req->r_priv = obj_request; 1750 1751 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1752 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1753 1754 return osd_req; 1755 } 1756 1757 /* 1758 * Create a copyup osd request based on the information in the 1759 * object request supplied. A copyup request has two osd ops, 1760 * a copyup method call, and a "normal" write request. 1761 */ 1762 static struct ceph_osd_request * 1763 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1764 { 1765 struct rbd_img_request *img_request; 1766 struct ceph_snap_context *snapc; 1767 struct rbd_device *rbd_dev; 1768 struct ceph_osd_client *osdc; 1769 struct ceph_osd_request *osd_req; 1770 1771 rbd_assert(obj_request_img_data_test(obj_request)); 1772 img_request = obj_request->img_request; 1773 rbd_assert(img_request); 1774 rbd_assert(img_request_write_test(img_request)); 1775 1776 /* Allocate and initialize the request, for the two ops */ 1777 1778 snapc = img_request->snapc; 1779 rbd_dev = img_request->rbd_dev; 1780 osdc = &rbd_dev->rbd_client->client->osdc; 1781 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC); 1782 if (!osd_req) 1783 return NULL; /* ENOMEM */ 1784 1785 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1786 osd_req->r_callback = rbd_osd_req_callback; 1787 osd_req->r_priv = obj_request; 1788 1789 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1790 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1791 1792 return osd_req; 1793 } 1794 1795 1796 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1797 { 1798 ceph_osdc_put_request(osd_req); 1799 } 1800 1801 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1802 1803 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1804 u64 offset, u64 length, 1805 enum obj_request_type type) 1806 { 1807 struct rbd_obj_request *obj_request; 1808 size_t size; 1809 char *name; 1810 1811 rbd_assert(obj_request_type_valid(type)); 1812 1813 size = strlen(object_name) + 1; 1814 name = kmalloc(size, GFP_KERNEL); 1815 if (!name) 1816 return NULL; 1817 1818 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 1819 if (!obj_request) { 1820 kfree(name); 1821 return NULL; 1822 } 1823 1824 obj_request->object_name = memcpy(name, object_name, size); 1825 obj_request->offset = offset; 1826 obj_request->length = length; 1827 obj_request->flags = 0; 1828 obj_request->which = BAD_WHICH; 1829 obj_request->type = type; 1830 INIT_LIST_HEAD(&obj_request->links); 1831 init_completion(&obj_request->completion); 1832 kref_init(&obj_request->kref); 1833 1834 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1835 offset, length, (int)type, obj_request); 1836 1837 return obj_request; 1838 } 1839 1840 static void rbd_obj_request_destroy(struct kref *kref) 1841 { 1842 struct rbd_obj_request *obj_request; 1843 1844 obj_request = container_of(kref, struct rbd_obj_request, kref); 1845 1846 dout("%s: obj %p\n", __func__, obj_request); 1847 1848 rbd_assert(obj_request->img_request == NULL); 1849 rbd_assert(obj_request->which == BAD_WHICH); 1850 1851 if (obj_request->osd_req) 1852 rbd_osd_req_destroy(obj_request->osd_req); 1853 1854 rbd_assert(obj_request_type_valid(obj_request->type)); 1855 switch (obj_request->type) { 1856 case OBJ_REQUEST_NODATA: 1857 break; /* Nothing to do */ 1858 case OBJ_REQUEST_BIO: 1859 if (obj_request->bio_list) 1860 bio_chain_put(obj_request->bio_list); 1861 break; 1862 case OBJ_REQUEST_PAGES: 1863 if (obj_request->pages) 1864 ceph_release_page_vector(obj_request->pages, 1865 obj_request->page_count); 1866 break; 1867 } 1868 1869 kfree(obj_request->object_name); 1870 obj_request->object_name = NULL; 1871 kmem_cache_free(rbd_obj_request_cache, obj_request); 1872 } 1873 1874 /* It's OK to call this for a device with no parent */ 1875 1876 static void rbd_spec_put(struct rbd_spec *spec); 1877 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1878 { 1879 rbd_dev_remove_parent(rbd_dev); 1880 rbd_spec_put(rbd_dev->parent_spec); 1881 rbd_dev->parent_spec = NULL; 1882 rbd_dev->parent_overlap = 0; 1883 } 1884 1885 /* 1886 * Parent image reference counting is used to determine when an 1887 * image's parent fields can be safely torn down--after there are no 1888 * more in-flight requests to the parent image. When the last 1889 * reference is dropped, cleaning them up is safe. 1890 */ 1891 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1892 { 1893 int counter; 1894 1895 if (!rbd_dev->parent_spec) 1896 return; 1897 1898 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1899 if (counter > 0) 1900 return; 1901 1902 /* Last reference; clean up parent data structures */ 1903 1904 if (!counter) 1905 rbd_dev_unparent(rbd_dev); 1906 else 1907 rbd_warn(rbd_dev, "parent reference underflow\n"); 1908 } 1909 1910 /* 1911 * If an image has a non-zero parent overlap, get a reference to its 1912 * parent. 1913 * 1914 * We must get the reference before checking for the overlap to 1915 * coordinate properly with zeroing the parent overlap in 1916 * rbd_dev_v2_parent_info() when an image gets flattened. We 1917 * drop it again if there is no overlap. 1918 * 1919 * Returns true if the rbd device has a parent with a non-zero 1920 * overlap and a reference for it was successfully taken, or 1921 * false otherwise. 1922 */ 1923 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1924 { 1925 int counter; 1926 1927 if (!rbd_dev->parent_spec) 1928 return false; 1929 1930 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1931 if (counter > 0 && rbd_dev->parent_overlap) 1932 return true; 1933 1934 /* Image was flattened, but parent is not yet torn down */ 1935 1936 if (counter < 0) 1937 rbd_warn(rbd_dev, "parent reference overflow\n"); 1938 1939 return false; 1940 } 1941 1942 /* 1943 * Caller is responsible for filling in the list of object requests 1944 * that comprises the image request, and the Linux request pointer 1945 * (if there is one). 1946 */ 1947 static struct rbd_img_request *rbd_img_request_create( 1948 struct rbd_device *rbd_dev, 1949 u64 offset, u64 length, 1950 bool write_request) 1951 { 1952 struct rbd_img_request *img_request; 1953 1954 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC); 1955 if (!img_request) 1956 return NULL; 1957 1958 if (write_request) { 1959 down_read(&rbd_dev->header_rwsem); 1960 ceph_get_snap_context(rbd_dev->header.snapc); 1961 up_read(&rbd_dev->header_rwsem); 1962 } 1963 1964 img_request->rq = NULL; 1965 img_request->rbd_dev = rbd_dev; 1966 img_request->offset = offset; 1967 img_request->length = length; 1968 img_request->flags = 0; 1969 if (write_request) { 1970 img_request_write_set(img_request); 1971 img_request->snapc = rbd_dev->header.snapc; 1972 } else { 1973 img_request->snap_id = rbd_dev->spec->snap_id; 1974 } 1975 if (rbd_dev_parent_get(rbd_dev)) 1976 img_request_layered_set(img_request); 1977 spin_lock_init(&img_request->completion_lock); 1978 img_request->next_completion = 0; 1979 img_request->callback = NULL; 1980 img_request->result = 0; 1981 img_request->obj_request_count = 0; 1982 INIT_LIST_HEAD(&img_request->obj_requests); 1983 kref_init(&img_request->kref); 1984 1985 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 1986 write_request ? "write" : "read", offset, length, 1987 img_request); 1988 1989 return img_request; 1990 } 1991 1992 static void rbd_img_request_destroy(struct kref *kref) 1993 { 1994 struct rbd_img_request *img_request; 1995 struct rbd_obj_request *obj_request; 1996 struct rbd_obj_request *next_obj_request; 1997 1998 img_request = container_of(kref, struct rbd_img_request, kref); 1999 2000 dout("%s: img %p\n", __func__, img_request); 2001 2002 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2003 rbd_img_obj_request_del(img_request, obj_request); 2004 rbd_assert(img_request->obj_request_count == 0); 2005 2006 if (img_request_layered_test(img_request)) { 2007 img_request_layered_clear(img_request); 2008 rbd_dev_parent_put(img_request->rbd_dev); 2009 } 2010 2011 if (img_request_write_test(img_request)) 2012 ceph_put_snap_context(img_request->snapc); 2013 2014 kmem_cache_free(rbd_img_request_cache, img_request); 2015 } 2016 2017 static struct rbd_img_request *rbd_parent_request_create( 2018 struct rbd_obj_request *obj_request, 2019 u64 img_offset, u64 length) 2020 { 2021 struct rbd_img_request *parent_request; 2022 struct rbd_device *rbd_dev; 2023 2024 rbd_assert(obj_request->img_request); 2025 rbd_dev = obj_request->img_request->rbd_dev; 2026 2027 parent_request = rbd_img_request_create(rbd_dev->parent, 2028 img_offset, length, false); 2029 if (!parent_request) 2030 return NULL; 2031 2032 img_request_child_set(parent_request); 2033 rbd_obj_request_get(obj_request); 2034 parent_request->obj_request = obj_request; 2035 2036 return parent_request; 2037 } 2038 2039 static void rbd_parent_request_destroy(struct kref *kref) 2040 { 2041 struct rbd_img_request *parent_request; 2042 struct rbd_obj_request *orig_request; 2043 2044 parent_request = container_of(kref, struct rbd_img_request, kref); 2045 orig_request = parent_request->obj_request; 2046 2047 parent_request->obj_request = NULL; 2048 rbd_obj_request_put(orig_request); 2049 img_request_child_clear(parent_request); 2050 2051 rbd_img_request_destroy(kref); 2052 } 2053 2054 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2055 { 2056 struct rbd_img_request *img_request; 2057 unsigned int xferred; 2058 int result; 2059 bool more; 2060 2061 rbd_assert(obj_request_img_data_test(obj_request)); 2062 img_request = obj_request->img_request; 2063 2064 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2065 xferred = (unsigned int)obj_request->xferred; 2066 result = obj_request->result; 2067 if (result) { 2068 struct rbd_device *rbd_dev = img_request->rbd_dev; 2069 2070 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n", 2071 img_request_write_test(img_request) ? "write" : "read", 2072 obj_request->length, obj_request->img_offset, 2073 obj_request->offset); 2074 rbd_warn(rbd_dev, " result %d xferred %x\n", 2075 result, xferred); 2076 if (!img_request->result) 2077 img_request->result = result; 2078 } 2079 2080 /* Image object requests don't own their page array */ 2081 2082 if (obj_request->type == OBJ_REQUEST_PAGES) { 2083 obj_request->pages = NULL; 2084 obj_request->page_count = 0; 2085 } 2086 2087 if (img_request_child_test(img_request)) { 2088 rbd_assert(img_request->obj_request != NULL); 2089 more = obj_request->which < img_request->obj_request_count - 1; 2090 } else { 2091 rbd_assert(img_request->rq != NULL); 2092 more = blk_end_request(img_request->rq, result, xferred); 2093 } 2094 2095 return more; 2096 } 2097 2098 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2099 { 2100 struct rbd_img_request *img_request; 2101 u32 which = obj_request->which; 2102 bool more = true; 2103 2104 rbd_assert(obj_request_img_data_test(obj_request)); 2105 img_request = obj_request->img_request; 2106 2107 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2108 rbd_assert(img_request != NULL); 2109 rbd_assert(img_request->obj_request_count > 0); 2110 rbd_assert(which != BAD_WHICH); 2111 rbd_assert(which < img_request->obj_request_count); 2112 rbd_assert(which >= img_request->next_completion); 2113 2114 spin_lock_irq(&img_request->completion_lock); 2115 if (which != img_request->next_completion) 2116 goto out; 2117 2118 for_each_obj_request_from(img_request, obj_request) { 2119 rbd_assert(more); 2120 rbd_assert(which < img_request->obj_request_count); 2121 2122 if (!obj_request_done_test(obj_request)) 2123 break; 2124 more = rbd_img_obj_end_request(obj_request); 2125 which++; 2126 } 2127 2128 rbd_assert(more ^ (which == img_request->obj_request_count)); 2129 img_request->next_completion = which; 2130 out: 2131 spin_unlock_irq(&img_request->completion_lock); 2132 2133 if (!more) 2134 rbd_img_request_complete(img_request); 2135 } 2136 2137 /* 2138 * Split up an image request into one or more object requests, each 2139 * to a different object. The "type" parameter indicates whether 2140 * "data_desc" is the pointer to the head of a list of bio 2141 * structures, or the base of a page array. In either case this 2142 * function assumes data_desc describes memory sufficient to hold 2143 * all data described by the image request. 2144 */ 2145 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2146 enum obj_request_type type, 2147 void *data_desc) 2148 { 2149 struct rbd_device *rbd_dev = img_request->rbd_dev; 2150 struct rbd_obj_request *obj_request = NULL; 2151 struct rbd_obj_request *next_obj_request; 2152 bool write_request = img_request_write_test(img_request); 2153 struct bio *bio_list = NULL; 2154 unsigned int bio_offset = 0; 2155 struct page **pages = NULL; 2156 u64 img_offset; 2157 u64 resid; 2158 u16 opcode; 2159 2160 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2161 (int)type, data_desc); 2162 2163 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 2164 img_offset = img_request->offset; 2165 resid = img_request->length; 2166 rbd_assert(resid > 0); 2167 2168 if (type == OBJ_REQUEST_BIO) { 2169 bio_list = data_desc; 2170 rbd_assert(img_offset == 2171 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2172 } else { 2173 rbd_assert(type == OBJ_REQUEST_PAGES); 2174 pages = data_desc; 2175 } 2176 2177 while (resid) { 2178 struct ceph_osd_request *osd_req; 2179 const char *object_name; 2180 u64 offset; 2181 u64 length; 2182 2183 object_name = rbd_segment_name(rbd_dev, img_offset); 2184 if (!object_name) 2185 goto out_unwind; 2186 offset = rbd_segment_offset(rbd_dev, img_offset); 2187 length = rbd_segment_length(rbd_dev, img_offset, resid); 2188 obj_request = rbd_obj_request_create(object_name, 2189 offset, length, type); 2190 /* object request has its own copy of the object name */ 2191 rbd_segment_name_free(object_name); 2192 if (!obj_request) 2193 goto out_unwind; 2194 /* 2195 * set obj_request->img_request before creating the 2196 * osd_request so that it gets the right snapc 2197 */ 2198 rbd_img_obj_request_add(img_request, obj_request); 2199 2200 if (type == OBJ_REQUEST_BIO) { 2201 unsigned int clone_size; 2202 2203 rbd_assert(length <= (u64)UINT_MAX); 2204 clone_size = (unsigned int)length; 2205 obj_request->bio_list = 2206 bio_chain_clone_range(&bio_list, 2207 &bio_offset, 2208 clone_size, 2209 GFP_ATOMIC); 2210 if (!obj_request->bio_list) 2211 goto out_partial; 2212 } else { 2213 unsigned int page_count; 2214 2215 obj_request->pages = pages; 2216 page_count = (u32)calc_pages_for(offset, length); 2217 obj_request->page_count = page_count; 2218 if ((offset + length) & ~PAGE_MASK) 2219 page_count--; /* more on last page */ 2220 pages += page_count; 2221 } 2222 2223 osd_req = rbd_osd_req_create(rbd_dev, write_request, 2224 obj_request); 2225 if (!osd_req) 2226 goto out_partial; 2227 obj_request->osd_req = osd_req; 2228 obj_request->callback = rbd_img_obj_callback; 2229 2230 osd_req_op_extent_init(osd_req, 0, opcode, offset, length, 2231 0, 0); 2232 if (type == OBJ_REQUEST_BIO) 2233 osd_req_op_extent_osd_data_bio(osd_req, 0, 2234 obj_request->bio_list, length); 2235 else 2236 osd_req_op_extent_osd_data_pages(osd_req, 0, 2237 obj_request->pages, length, 2238 offset & ~PAGE_MASK, false, false); 2239 2240 if (write_request) 2241 rbd_osd_req_format_write(obj_request); 2242 else 2243 rbd_osd_req_format_read(obj_request); 2244 2245 obj_request->img_offset = img_offset; 2246 2247 img_offset += length; 2248 resid -= length; 2249 } 2250 2251 return 0; 2252 2253 out_partial: 2254 rbd_obj_request_put(obj_request); 2255 out_unwind: 2256 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2257 rbd_obj_request_put(obj_request); 2258 2259 return -ENOMEM; 2260 } 2261 2262 static void 2263 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2264 { 2265 struct rbd_img_request *img_request; 2266 struct rbd_device *rbd_dev; 2267 struct page **pages; 2268 u32 page_count; 2269 2270 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2271 rbd_assert(obj_request_img_data_test(obj_request)); 2272 img_request = obj_request->img_request; 2273 rbd_assert(img_request); 2274 2275 rbd_dev = img_request->rbd_dev; 2276 rbd_assert(rbd_dev); 2277 2278 pages = obj_request->copyup_pages; 2279 rbd_assert(pages != NULL); 2280 obj_request->copyup_pages = NULL; 2281 page_count = obj_request->copyup_page_count; 2282 rbd_assert(page_count); 2283 obj_request->copyup_page_count = 0; 2284 ceph_release_page_vector(pages, page_count); 2285 2286 /* 2287 * We want the transfer count to reflect the size of the 2288 * original write request. There is no such thing as a 2289 * successful short write, so if the request was successful 2290 * we can just set it to the originally-requested length. 2291 */ 2292 if (!obj_request->result) 2293 obj_request->xferred = obj_request->length; 2294 2295 /* Finish up with the normal image object callback */ 2296 2297 rbd_img_obj_callback(obj_request); 2298 } 2299 2300 static void 2301 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2302 { 2303 struct rbd_obj_request *orig_request; 2304 struct ceph_osd_request *osd_req; 2305 struct ceph_osd_client *osdc; 2306 struct rbd_device *rbd_dev; 2307 struct page **pages; 2308 u32 page_count; 2309 int img_result; 2310 u64 parent_length; 2311 u64 offset; 2312 u64 length; 2313 2314 rbd_assert(img_request_child_test(img_request)); 2315 2316 /* First get what we need from the image request */ 2317 2318 pages = img_request->copyup_pages; 2319 rbd_assert(pages != NULL); 2320 img_request->copyup_pages = NULL; 2321 page_count = img_request->copyup_page_count; 2322 rbd_assert(page_count); 2323 img_request->copyup_page_count = 0; 2324 2325 orig_request = img_request->obj_request; 2326 rbd_assert(orig_request != NULL); 2327 rbd_assert(obj_request_type_valid(orig_request->type)); 2328 img_result = img_request->result; 2329 parent_length = img_request->length; 2330 rbd_assert(parent_length == img_request->xferred); 2331 rbd_img_request_put(img_request); 2332 2333 rbd_assert(orig_request->img_request); 2334 rbd_dev = orig_request->img_request->rbd_dev; 2335 rbd_assert(rbd_dev); 2336 2337 /* 2338 * If the overlap has become 0 (most likely because the 2339 * image has been flattened) we need to free the pages 2340 * and re-submit the original write request. 2341 */ 2342 if (!rbd_dev->parent_overlap) { 2343 struct ceph_osd_client *osdc; 2344 2345 ceph_release_page_vector(pages, page_count); 2346 osdc = &rbd_dev->rbd_client->client->osdc; 2347 img_result = rbd_obj_request_submit(osdc, orig_request); 2348 if (!img_result) 2349 return; 2350 } 2351 2352 if (img_result) 2353 goto out_err; 2354 2355 /* 2356 * The original osd request is of no use to use any more. 2357 * We need a new one that can hold the two ops in a copyup 2358 * request. Allocate the new copyup osd request for the 2359 * original request, and release the old one. 2360 */ 2361 img_result = -ENOMEM; 2362 osd_req = rbd_osd_req_create_copyup(orig_request); 2363 if (!osd_req) 2364 goto out_err; 2365 rbd_osd_req_destroy(orig_request->osd_req); 2366 orig_request->osd_req = osd_req; 2367 orig_request->copyup_pages = pages; 2368 orig_request->copyup_page_count = page_count; 2369 2370 /* Initialize the copyup op */ 2371 2372 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2373 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2374 false, false); 2375 2376 /* Then the original write request op */ 2377 2378 offset = orig_request->offset; 2379 length = orig_request->length; 2380 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE, 2381 offset, length, 0, 0); 2382 if (orig_request->type == OBJ_REQUEST_BIO) 2383 osd_req_op_extent_osd_data_bio(osd_req, 1, 2384 orig_request->bio_list, length); 2385 else 2386 osd_req_op_extent_osd_data_pages(osd_req, 1, 2387 orig_request->pages, length, 2388 offset & ~PAGE_MASK, false, false); 2389 2390 rbd_osd_req_format_write(orig_request); 2391 2392 /* All set, send it off. */ 2393 2394 orig_request->callback = rbd_img_obj_copyup_callback; 2395 osdc = &rbd_dev->rbd_client->client->osdc; 2396 img_result = rbd_obj_request_submit(osdc, orig_request); 2397 if (!img_result) 2398 return; 2399 out_err: 2400 /* Record the error code and complete the request */ 2401 2402 orig_request->result = img_result; 2403 orig_request->xferred = 0; 2404 obj_request_done_set(orig_request); 2405 rbd_obj_request_complete(orig_request); 2406 } 2407 2408 /* 2409 * Read from the parent image the range of data that covers the 2410 * entire target of the given object request. This is used for 2411 * satisfying a layered image write request when the target of an 2412 * object request from the image request does not exist. 2413 * 2414 * A page array big enough to hold the returned data is allocated 2415 * and supplied to rbd_img_request_fill() as the "data descriptor." 2416 * When the read completes, this page array will be transferred to 2417 * the original object request for the copyup operation. 2418 * 2419 * If an error occurs, record it as the result of the original 2420 * object request and mark it done so it gets completed. 2421 */ 2422 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2423 { 2424 struct rbd_img_request *img_request = NULL; 2425 struct rbd_img_request *parent_request = NULL; 2426 struct rbd_device *rbd_dev; 2427 u64 img_offset; 2428 u64 length; 2429 struct page **pages = NULL; 2430 u32 page_count; 2431 int result; 2432 2433 rbd_assert(obj_request_img_data_test(obj_request)); 2434 rbd_assert(obj_request_type_valid(obj_request->type)); 2435 2436 img_request = obj_request->img_request; 2437 rbd_assert(img_request != NULL); 2438 rbd_dev = img_request->rbd_dev; 2439 rbd_assert(rbd_dev->parent != NULL); 2440 2441 /* 2442 * Determine the byte range covered by the object in the 2443 * child image to which the original request was to be sent. 2444 */ 2445 img_offset = obj_request->img_offset - obj_request->offset; 2446 length = (u64)1 << rbd_dev->header.obj_order; 2447 2448 /* 2449 * There is no defined parent data beyond the parent 2450 * overlap, so limit what we read at that boundary if 2451 * necessary. 2452 */ 2453 if (img_offset + length > rbd_dev->parent_overlap) { 2454 rbd_assert(img_offset < rbd_dev->parent_overlap); 2455 length = rbd_dev->parent_overlap - img_offset; 2456 } 2457 2458 /* 2459 * Allocate a page array big enough to receive the data read 2460 * from the parent. 2461 */ 2462 page_count = (u32)calc_pages_for(0, length); 2463 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2464 if (IS_ERR(pages)) { 2465 result = PTR_ERR(pages); 2466 pages = NULL; 2467 goto out_err; 2468 } 2469 2470 result = -ENOMEM; 2471 parent_request = rbd_parent_request_create(obj_request, 2472 img_offset, length); 2473 if (!parent_request) 2474 goto out_err; 2475 2476 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2477 if (result) 2478 goto out_err; 2479 parent_request->copyup_pages = pages; 2480 parent_request->copyup_page_count = page_count; 2481 2482 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2483 result = rbd_img_request_submit(parent_request); 2484 if (!result) 2485 return 0; 2486 2487 parent_request->copyup_pages = NULL; 2488 parent_request->copyup_page_count = 0; 2489 parent_request->obj_request = NULL; 2490 rbd_obj_request_put(obj_request); 2491 out_err: 2492 if (pages) 2493 ceph_release_page_vector(pages, page_count); 2494 if (parent_request) 2495 rbd_img_request_put(parent_request); 2496 obj_request->result = result; 2497 obj_request->xferred = 0; 2498 obj_request_done_set(obj_request); 2499 2500 return result; 2501 } 2502 2503 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2504 { 2505 struct rbd_obj_request *orig_request; 2506 struct rbd_device *rbd_dev; 2507 int result; 2508 2509 rbd_assert(!obj_request_img_data_test(obj_request)); 2510 2511 /* 2512 * All we need from the object request is the original 2513 * request and the result of the STAT op. Grab those, then 2514 * we're done with the request. 2515 */ 2516 orig_request = obj_request->obj_request; 2517 obj_request->obj_request = NULL; 2518 rbd_obj_request_put(orig_request); 2519 rbd_assert(orig_request); 2520 rbd_assert(orig_request->img_request); 2521 2522 result = obj_request->result; 2523 obj_request->result = 0; 2524 2525 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2526 obj_request, orig_request, result, 2527 obj_request->xferred, obj_request->length); 2528 rbd_obj_request_put(obj_request); 2529 2530 /* 2531 * If the overlap has become 0 (most likely because the 2532 * image has been flattened) we need to free the pages 2533 * and re-submit the original write request. 2534 */ 2535 rbd_dev = orig_request->img_request->rbd_dev; 2536 if (!rbd_dev->parent_overlap) { 2537 struct ceph_osd_client *osdc; 2538 2539 osdc = &rbd_dev->rbd_client->client->osdc; 2540 result = rbd_obj_request_submit(osdc, orig_request); 2541 if (!result) 2542 return; 2543 } 2544 2545 /* 2546 * Our only purpose here is to determine whether the object 2547 * exists, and we don't want to treat the non-existence as 2548 * an error. If something else comes back, transfer the 2549 * error to the original request and complete it now. 2550 */ 2551 if (!result) { 2552 obj_request_existence_set(orig_request, true); 2553 } else if (result == -ENOENT) { 2554 obj_request_existence_set(orig_request, false); 2555 } else if (result) { 2556 orig_request->result = result; 2557 goto out; 2558 } 2559 2560 /* 2561 * Resubmit the original request now that we have recorded 2562 * whether the target object exists. 2563 */ 2564 orig_request->result = rbd_img_obj_request_submit(orig_request); 2565 out: 2566 if (orig_request->result) 2567 rbd_obj_request_complete(orig_request); 2568 } 2569 2570 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2571 { 2572 struct rbd_obj_request *stat_request; 2573 struct rbd_device *rbd_dev; 2574 struct ceph_osd_client *osdc; 2575 struct page **pages = NULL; 2576 u32 page_count; 2577 size_t size; 2578 int ret; 2579 2580 /* 2581 * The response data for a STAT call consists of: 2582 * le64 length; 2583 * struct { 2584 * le32 tv_sec; 2585 * le32 tv_nsec; 2586 * } mtime; 2587 */ 2588 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2589 page_count = (u32)calc_pages_for(0, size); 2590 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2591 if (IS_ERR(pages)) 2592 return PTR_ERR(pages); 2593 2594 ret = -ENOMEM; 2595 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2596 OBJ_REQUEST_PAGES); 2597 if (!stat_request) 2598 goto out; 2599 2600 rbd_obj_request_get(obj_request); 2601 stat_request->obj_request = obj_request; 2602 stat_request->pages = pages; 2603 stat_request->page_count = page_count; 2604 2605 rbd_assert(obj_request->img_request); 2606 rbd_dev = obj_request->img_request->rbd_dev; 2607 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 2608 stat_request); 2609 if (!stat_request->osd_req) 2610 goto out; 2611 stat_request->callback = rbd_img_obj_exists_callback; 2612 2613 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2614 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2615 false, false); 2616 rbd_osd_req_format_read(stat_request); 2617 2618 osdc = &rbd_dev->rbd_client->client->osdc; 2619 ret = rbd_obj_request_submit(osdc, stat_request); 2620 out: 2621 if (ret) 2622 rbd_obj_request_put(obj_request); 2623 2624 return ret; 2625 } 2626 2627 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2628 { 2629 struct rbd_img_request *img_request; 2630 struct rbd_device *rbd_dev; 2631 bool known; 2632 2633 rbd_assert(obj_request_img_data_test(obj_request)); 2634 2635 img_request = obj_request->img_request; 2636 rbd_assert(img_request); 2637 rbd_dev = img_request->rbd_dev; 2638 2639 /* 2640 * Only writes to layered images need special handling. 2641 * Reads and non-layered writes are simple object requests. 2642 * Layered writes that start beyond the end of the overlap 2643 * with the parent have no parent data, so they too are 2644 * simple object requests. Finally, if the target object is 2645 * known to already exist, its parent data has already been 2646 * copied, so a write to the object can also be handled as a 2647 * simple object request. 2648 */ 2649 if (!img_request_write_test(img_request) || 2650 !img_request_layered_test(img_request) || 2651 rbd_dev->parent_overlap <= obj_request->img_offset || 2652 ((known = obj_request_known_test(obj_request)) && 2653 obj_request_exists_test(obj_request))) { 2654 2655 struct rbd_device *rbd_dev; 2656 struct ceph_osd_client *osdc; 2657 2658 rbd_dev = obj_request->img_request->rbd_dev; 2659 osdc = &rbd_dev->rbd_client->client->osdc; 2660 2661 return rbd_obj_request_submit(osdc, obj_request); 2662 } 2663 2664 /* 2665 * It's a layered write. The target object might exist but 2666 * we may not know that yet. If we know it doesn't exist, 2667 * start by reading the data for the full target object from 2668 * the parent so we can use it for a copyup to the target. 2669 */ 2670 if (known) 2671 return rbd_img_obj_parent_read_full(obj_request); 2672 2673 /* We don't know whether the target exists. Go find out. */ 2674 2675 return rbd_img_obj_exists_submit(obj_request); 2676 } 2677 2678 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2679 { 2680 struct rbd_obj_request *obj_request; 2681 struct rbd_obj_request *next_obj_request; 2682 2683 dout("%s: img %p\n", __func__, img_request); 2684 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2685 int ret; 2686 2687 ret = rbd_img_obj_request_submit(obj_request); 2688 if (ret) 2689 return ret; 2690 } 2691 2692 return 0; 2693 } 2694 2695 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2696 { 2697 struct rbd_obj_request *obj_request; 2698 struct rbd_device *rbd_dev; 2699 u64 obj_end; 2700 u64 img_xferred; 2701 int img_result; 2702 2703 rbd_assert(img_request_child_test(img_request)); 2704 2705 /* First get what we need from the image request and release it */ 2706 2707 obj_request = img_request->obj_request; 2708 img_xferred = img_request->xferred; 2709 img_result = img_request->result; 2710 rbd_img_request_put(img_request); 2711 2712 /* 2713 * If the overlap has become 0 (most likely because the 2714 * image has been flattened) we need to re-submit the 2715 * original request. 2716 */ 2717 rbd_assert(obj_request); 2718 rbd_assert(obj_request->img_request); 2719 rbd_dev = obj_request->img_request->rbd_dev; 2720 if (!rbd_dev->parent_overlap) { 2721 struct ceph_osd_client *osdc; 2722 2723 osdc = &rbd_dev->rbd_client->client->osdc; 2724 img_result = rbd_obj_request_submit(osdc, obj_request); 2725 if (!img_result) 2726 return; 2727 } 2728 2729 obj_request->result = img_result; 2730 if (obj_request->result) 2731 goto out; 2732 2733 /* 2734 * We need to zero anything beyond the parent overlap 2735 * boundary. Since rbd_img_obj_request_read_callback() 2736 * will zero anything beyond the end of a short read, an 2737 * easy way to do this is to pretend the data from the 2738 * parent came up short--ending at the overlap boundary. 2739 */ 2740 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2741 obj_end = obj_request->img_offset + obj_request->length; 2742 if (obj_end > rbd_dev->parent_overlap) { 2743 u64 xferred = 0; 2744 2745 if (obj_request->img_offset < rbd_dev->parent_overlap) 2746 xferred = rbd_dev->parent_overlap - 2747 obj_request->img_offset; 2748 2749 obj_request->xferred = min(img_xferred, xferred); 2750 } else { 2751 obj_request->xferred = img_xferred; 2752 } 2753 out: 2754 rbd_img_obj_request_read_callback(obj_request); 2755 rbd_obj_request_complete(obj_request); 2756 } 2757 2758 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2759 { 2760 struct rbd_img_request *img_request; 2761 int result; 2762 2763 rbd_assert(obj_request_img_data_test(obj_request)); 2764 rbd_assert(obj_request->img_request != NULL); 2765 rbd_assert(obj_request->result == (s32) -ENOENT); 2766 rbd_assert(obj_request_type_valid(obj_request->type)); 2767 2768 /* rbd_read_finish(obj_request, obj_request->length); */ 2769 img_request = rbd_parent_request_create(obj_request, 2770 obj_request->img_offset, 2771 obj_request->length); 2772 result = -ENOMEM; 2773 if (!img_request) 2774 goto out_err; 2775 2776 if (obj_request->type == OBJ_REQUEST_BIO) 2777 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2778 obj_request->bio_list); 2779 else 2780 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2781 obj_request->pages); 2782 if (result) 2783 goto out_err; 2784 2785 img_request->callback = rbd_img_parent_read_callback; 2786 result = rbd_img_request_submit(img_request); 2787 if (result) 2788 goto out_err; 2789 2790 return; 2791 out_err: 2792 if (img_request) 2793 rbd_img_request_put(img_request); 2794 obj_request->result = result; 2795 obj_request->xferred = 0; 2796 obj_request_done_set(obj_request); 2797 } 2798 2799 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 2800 { 2801 struct rbd_obj_request *obj_request; 2802 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2803 int ret; 2804 2805 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2806 OBJ_REQUEST_NODATA); 2807 if (!obj_request) 2808 return -ENOMEM; 2809 2810 ret = -ENOMEM; 2811 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2812 if (!obj_request->osd_req) 2813 goto out; 2814 2815 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2816 notify_id, 0, 0); 2817 rbd_osd_req_format_read(obj_request); 2818 2819 ret = rbd_obj_request_submit(osdc, obj_request); 2820 if (ret) 2821 goto out; 2822 ret = rbd_obj_request_wait(obj_request); 2823 out: 2824 rbd_obj_request_put(obj_request); 2825 2826 return ret; 2827 } 2828 2829 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2830 { 2831 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2832 int ret; 2833 2834 if (!rbd_dev) 2835 return; 2836 2837 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2838 rbd_dev->header_name, (unsigned long long)notify_id, 2839 (unsigned int)opcode); 2840 ret = rbd_dev_refresh(rbd_dev); 2841 if (ret) 2842 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret); 2843 2844 rbd_obj_notify_ack_sync(rbd_dev, notify_id); 2845 } 2846 2847 /* 2848 * Request sync osd watch/unwatch. The value of "start" determines 2849 * whether a watch request is being initiated or torn down. 2850 */ 2851 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start) 2852 { 2853 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2854 struct rbd_obj_request *obj_request; 2855 int ret; 2856 2857 rbd_assert(start ^ !!rbd_dev->watch_event); 2858 rbd_assert(start ^ !!rbd_dev->watch_request); 2859 2860 if (start) { 2861 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 2862 &rbd_dev->watch_event); 2863 if (ret < 0) 2864 return ret; 2865 rbd_assert(rbd_dev->watch_event != NULL); 2866 } 2867 2868 ret = -ENOMEM; 2869 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2870 OBJ_REQUEST_NODATA); 2871 if (!obj_request) 2872 goto out_cancel; 2873 2874 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request); 2875 if (!obj_request->osd_req) 2876 goto out_cancel; 2877 2878 if (start) 2879 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 2880 else 2881 ceph_osdc_unregister_linger_request(osdc, 2882 rbd_dev->watch_request->osd_req); 2883 2884 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 2885 rbd_dev->watch_event->cookie, 0, start ? 1 : 0); 2886 rbd_osd_req_format_write(obj_request); 2887 2888 ret = rbd_obj_request_submit(osdc, obj_request); 2889 if (ret) 2890 goto out_cancel; 2891 ret = rbd_obj_request_wait(obj_request); 2892 if (ret) 2893 goto out_cancel; 2894 ret = obj_request->result; 2895 if (ret) 2896 goto out_cancel; 2897 2898 /* 2899 * A watch request is set to linger, so the underlying osd 2900 * request won't go away until we unregister it. We retain 2901 * a pointer to the object request during that time (in 2902 * rbd_dev->watch_request), so we'll keep a reference to 2903 * it. We'll drop that reference (below) after we've 2904 * unregistered it. 2905 */ 2906 if (start) { 2907 rbd_dev->watch_request = obj_request; 2908 2909 return 0; 2910 } 2911 2912 /* We have successfully torn down the watch request */ 2913 2914 rbd_obj_request_put(rbd_dev->watch_request); 2915 rbd_dev->watch_request = NULL; 2916 out_cancel: 2917 /* Cancel the event if we're tearing down, or on error */ 2918 ceph_osdc_cancel_event(rbd_dev->watch_event); 2919 rbd_dev->watch_event = NULL; 2920 if (obj_request) 2921 rbd_obj_request_put(obj_request); 2922 2923 return ret; 2924 } 2925 2926 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 2927 { 2928 return __rbd_dev_header_watch_sync(rbd_dev, true); 2929 } 2930 2931 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 2932 { 2933 int ret; 2934 2935 ret = __rbd_dev_header_watch_sync(rbd_dev, false); 2936 if (ret) { 2937 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n", 2938 ret); 2939 } 2940 } 2941 2942 /* 2943 * Synchronous osd object method call. Returns the number of bytes 2944 * returned in the outbound buffer, or a negative error code. 2945 */ 2946 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 2947 const char *object_name, 2948 const char *class_name, 2949 const char *method_name, 2950 const void *outbound, 2951 size_t outbound_size, 2952 void *inbound, 2953 size_t inbound_size) 2954 { 2955 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2956 struct rbd_obj_request *obj_request; 2957 struct page **pages; 2958 u32 page_count; 2959 int ret; 2960 2961 /* 2962 * Method calls are ultimately read operations. The result 2963 * should placed into the inbound buffer provided. They 2964 * also supply outbound data--parameters for the object 2965 * method. Currently if this is present it will be a 2966 * snapshot id. 2967 */ 2968 page_count = (u32)calc_pages_for(0, inbound_size); 2969 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2970 if (IS_ERR(pages)) 2971 return PTR_ERR(pages); 2972 2973 ret = -ENOMEM; 2974 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 2975 OBJ_REQUEST_PAGES); 2976 if (!obj_request) 2977 goto out; 2978 2979 obj_request->pages = pages; 2980 obj_request->page_count = page_count; 2981 2982 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2983 if (!obj_request->osd_req) 2984 goto out; 2985 2986 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 2987 class_name, method_name); 2988 if (outbound_size) { 2989 struct ceph_pagelist *pagelist; 2990 2991 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 2992 if (!pagelist) 2993 goto out; 2994 2995 ceph_pagelist_init(pagelist); 2996 ceph_pagelist_append(pagelist, outbound, outbound_size); 2997 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 2998 pagelist); 2999 } 3000 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3001 obj_request->pages, inbound_size, 3002 0, false, false); 3003 rbd_osd_req_format_read(obj_request); 3004 3005 ret = rbd_obj_request_submit(osdc, obj_request); 3006 if (ret) 3007 goto out; 3008 ret = rbd_obj_request_wait(obj_request); 3009 if (ret) 3010 goto out; 3011 3012 ret = obj_request->result; 3013 if (ret < 0) 3014 goto out; 3015 3016 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3017 ret = (int)obj_request->xferred; 3018 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3019 out: 3020 if (obj_request) 3021 rbd_obj_request_put(obj_request); 3022 else 3023 ceph_release_page_vector(pages, page_count); 3024 3025 return ret; 3026 } 3027 3028 static void rbd_request_fn(struct request_queue *q) 3029 __releases(q->queue_lock) __acquires(q->queue_lock) 3030 { 3031 struct rbd_device *rbd_dev = q->queuedata; 3032 bool read_only = rbd_dev->mapping.read_only; 3033 struct request *rq; 3034 int result; 3035 3036 while ((rq = blk_fetch_request(q))) { 3037 bool write_request = rq_data_dir(rq) == WRITE; 3038 struct rbd_img_request *img_request; 3039 u64 offset; 3040 u64 length; 3041 3042 /* Ignore any non-FS requests that filter through. */ 3043 3044 if (rq->cmd_type != REQ_TYPE_FS) { 3045 dout("%s: non-fs request type %d\n", __func__, 3046 (int) rq->cmd_type); 3047 __blk_end_request_all(rq, 0); 3048 continue; 3049 } 3050 3051 /* Ignore/skip any zero-length requests */ 3052 3053 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT; 3054 length = (u64) blk_rq_bytes(rq); 3055 3056 if (!length) { 3057 dout("%s: zero-length request\n", __func__); 3058 __blk_end_request_all(rq, 0); 3059 continue; 3060 } 3061 3062 spin_unlock_irq(q->queue_lock); 3063 3064 /* Disallow writes to a read-only device */ 3065 3066 if (write_request) { 3067 result = -EROFS; 3068 if (read_only) 3069 goto end_request; 3070 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3071 } 3072 3073 /* 3074 * Quit early if the mapped snapshot no longer 3075 * exists. It's still possible the snapshot will 3076 * have disappeared by the time our request arrives 3077 * at the osd, but there's no sense in sending it if 3078 * we already know. 3079 */ 3080 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3081 dout("request for non-existent snapshot"); 3082 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3083 result = -ENXIO; 3084 goto end_request; 3085 } 3086 3087 result = -EINVAL; 3088 if (offset && length > U64_MAX - offset + 1) { 3089 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n", 3090 offset, length); 3091 goto end_request; /* Shouldn't happen */ 3092 } 3093 3094 result = -EIO; 3095 if (offset + length > rbd_dev->mapping.size) { 3096 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n", 3097 offset, length, rbd_dev->mapping.size); 3098 goto end_request; 3099 } 3100 3101 result = -ENOMEM; 3102 img_request = rbd_img_request_create(rbd_dev, offset, length, 3103 write_request); 3104 if (!img_request) 3105 goto end_request; 3106 3107 img_request->rq = rq; 3108 3109 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3110 rq->bio); 3111 if (!result) 3112 result = rbd_img_request_submit(img_request); 3113 if (result) 3114 rbd_img_request_put(img_request); 3115 end_request: 3116 spin_lock_irq(q->queue_lock); 3117 if (result < 0) { 3118 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n", 3119 write_request ? "write" : "read", 3120 length, offset, result); 3121 3122 __blk_end_request_all(rq, result); 3123 } 3124 } 3125 } 3126 3127 /* 3128 * a queue callback. Makes sure that we don't create a bio that spans across 3129 * multiple osd objects. One exception would be with a single page bios, 3130 * which we handle later at bio_chain_clone_range() 3131 */ 3132 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3133 struct bio_vec *bvec) 3134 { 3135 struct rbd_device *rbd_dev = q->queuedata; 3136 sector_t sector_offset; 3137 sector_t sectors_per_obj; 3138 sector_t obj_sector_offset; 3139 int ret; 3140 3141 /* 3142 * Find how far into its rbd object the partition-relative 3143 * bio start sector is to offset relative to the enclosing 3144 * device. 3145 */ 3146 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3147 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3148 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3149 3150 /* 3151 * Compute the number of bytes from that offset to the end 3152 * of the object. Account for what's already used by the bio. 3153 */ 3154 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3155 if (ret > bmd->bi_size) 3156 ret -= bmd->bi_size; 3157 else 3158 ret = 0; 3159 3160 /* 3161 * Don't send back more than was asked for. And if the bio 3162 * was empty, let the whole thing through because: "Note 3163 * that a block device *must* allow a single page to be 3164 * added to an empty bio." 3165 */ 3166 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3167 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3168 ret = (int) bvec->bv_len; 3169 3170 return ret; 3171 } 3172 3173 static void rbd_free_disk(struct rbd_device *rbd_dev) 3174 { 3175 struct gendisk *disk = rbd_dev->disk; 3176 3177 if (!disk) 3178 return; 3179 3180 rbd_dev->disk = NULL; 3181 if (disk->flags & GENHD_FL_UP) { 3182 del_gendisk(disk); 3183 if (disk->queue) 3184 blk_cleanup_queue(disk->queue); 3185 } 3186 put_disk(disk); 3187 } 3188 3189 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3190 const char *object_name, 3191 u64 offset, u64 length, void *buf) 3192 3193 { 3194 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3195 struct rbd_obj_request *obj_request; 3196 struct page **pages = NULL; 3197 u32 page_count; 3198 size_t size; 3199 int ret; 3200 3201 page_count = (u32) calc_pages_for(offset, length); 3202 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3203 if (IS_ERR(pages)) 3204 ret = PTR_ERR(pages); 3205 3206 ret = -ENOMEM; 3207 obj_request = rbd_obj_request_create(object_name, offset, length, 3208 OBJ_REQUEST_PAGES); 3209 if (!obj_request) 3210 goto out; 3211 3212 obj_request->pages = pages; 3213 obj_request->page_count = page_count; 3214 3215 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 3216 if (!obj_request->osd_req) 3217 goto out; 3218 3219 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3220 offset, length, 0, 0); 3221 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3222 obj_request->pages, 3223 obj_request->length, 3224 obj_request->offset & ~PAGE_MASK, 3225 false, false); 3226 rbd_osd_req_format_read(obj_request); 3227 3228 ret = rbd_obj_request_submit(osdc, obj_request); 3229 if (ret) 3230 goto out; 3231 ret = rbd_obj_request_wait(obj_request); 3232 if (ret) 3233 goto out; 3234 3235 ret = obj_request->result; 3236 if (ret < 0) 3237 goto out; 3238 3239 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3240 size = (size_t) obj_request->xferred; 3241 ceph_copy_from_page_vector(pages, buf, 0, size); 3242 rbd_assert(size <= (size_t)INT_MAX); 3243 ret = (int)size; 3244 out: 3245 if (obj_request) 3246 rbd_obj_request_put(obj_request); 3247 else 3248 ceph_release_page_vector(pages, page_count); 3249 3250 return ret; 3251 } 3252 3253 /* 3254 * Read the complete header for the given rbd device. On successful 3255 * return, the rbd_dev->header field will contain up-to-date 3256 * information about the image. 3257 */ 3258 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3259 { 3260 struct rbd_image_header_ondisk *ondisk = NULL; 3261 u32 snap_count = 0; 3262 u64 names_size = 0; 3263 u32 want_count; 3264 int ret; 3265 3266 /* 3267 * The complete header will include an array of its 64-bit 3268 * snapshot ids, followed by the names of those snapshots as 3269 * a contiguous block of NUL-terminated strings. Note that 3270 * the number of snapshots could change by the time we read 3271 * it in, in which case we re-read it. 3272 */ 3273 do { 3274 size_t size; 3275 3276 kfree(ondisk); 3277 3278 size = sizeof (*ondisk); 3279 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3280 size += names_size; 3281 ondisk = kmalloc(size, GFP_KERNEL); 3282 if (!ondisk) 3283 return -ENOMEM; 3284 3285 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3286 0, size, ondisk); 3287 if (ret < 0) 3288 goto out; 3289 if ((size_t)ret < size) { 3290 ret = -ENXIO; 3291 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3292 size, ret); 3293 goto out; 3294 } 3295 if (!rbd_dev_ondisk_valid(ondisk)) { 3296 ret = -ENXIO; 3297 rbd_warn(rbd_dev, "invalid header"); 3298 goto out; 3299 } 3300 3301 names_size = le64_to_cpu(ondisk->snap_names_len); 3302 want_count = snap_count; 3303 snap_count = le32_to_cpu(ondisk->snap_count); 3304 } while (snap_count != want_count); 3305 3306 ret = rbd_header_from_disk(rbd_dev, ondisk); 3307 out: 3308 kfree(ondisk); 3309 3310 return ret; 3311 } 3312 3313 /* 3314 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3315 * has disappeared from the (just updated) snapshot context. 3316 */ 3317 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3318 { 3319 u64 snap_id; 3320 3321 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3322 return; 3323 3324 snap_id = rbd_dev->spec->snap_id; 3325 if (snap_id == CEPH_NOSNAP) 3326 return; 3327 3328 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3329 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3330 } 3331 3332 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3333 { 3334 sector_t size; 3335 bool removing; 3336 3337 /* 3338 * Don't hold the lock while doing disk operations, 3339 * or lock ordering will conflict with the bdev mutex via: 3340 * rbd_add() -> blkdev_get() -> rbd_open() 3341 */ 3342 spin_lock_irq(&rbd_dev->lock); 3343 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3344 spin_unlock_irq(&rbd_dev->lock); 3345 /* 3346 * If the device is being removed, rbd_dev->disk has 3347 * been destroyed, so don't try to update its size 3348 */ 3349 if (!removing) { 3350 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3351 dout("setting size to %llu sectors", (unsigned long long)size); 3352 set_capacity(rbd_dev->disk, size); 3353 revalidate_disk(rbd_dev->disk); 3354 } 3355 } 3356 3357 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3358 { 3359 u64 mapping_size; 3360 int ret; 3361 3362 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 3363 down_write(&rbd_dev->header_rwsem); 3364 mapping_size = rbd_dev->mapping.size; 3365 if (rbd_dev->image_format == 1) 3366 ret = rbd_dev_v1_header_info(rbd_dev); 3367 else 3368 ret = rbd_dev_v2_header_info(rbd_dev); 3369 3370 /* If it's a mapped snapshot, validate its EXISTS flag */ 3371 3372 rbd_exists_validate(rbd_dev); 3373 up_write(&rbd_dev->header_rwsem); 3374 3375 if (mapping_size != rbd_dev->mapping.size) { 3376 rbd_dev_update_size(rbd_dev); 3377 } 3378 3379 return ret; 3380 } 3381 3382 static int rbd_init_disk(struct rbd_device *rbd_dev) 3383 { 3384 struct gendisk *disk; 3385 struct request_queue *q; 3386 u64 segment_size; 3387 3388 /* create gendisk info */ 3389 disk = alloc_disk(single_major ? 3390 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3391 RBD_MINORS_PER_MAJOR); 3392 if (!disk) 3393 return -ENOMEM; 3394 3395 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3396 rbd_dev->dev_id); 3397 disk->major = rbd_dev->major; 3398 disk->first_minor = rbd_dev->minor; 3399 if (single_major) 3400 disk->flags |= GENHD_FL_EXT_DEVT; 3401 disk->fops = &rbd_bd_ops; 3402 disk->private_data = rbd_dev; 3403 3404 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3405 if (!q) 3406 goto out_disk; 3407 3408 /* We use the default size, but let's be explicit about it. */ 3409 blk_queue_physical_block_size(q, SECTOR_SIZE); 3410 3411 /* set io sizes to object size */ 3412 segment_size = rbd_obj_bytes(&rbd_dev->header); 3413 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3414 blk_queue_max_segment_size(q, segment_size); 3415 blk_queue_io_min(q, segment_size); 3416 blk_queue_io_opt(q, segment_size); 3417 3418 blk_queue_merge_bvec(q, rbd_merge_bvec); 3419 disk->queue = q; 3420 3421 q->queuedata = rbd_dev; 3422 3423 rbd_dev->disk = disk; 3424 3425 return 0; 3426 out_disk: 3427 put_disk(disk); 3428 3429 return -ENOMEM; 3430 } 3431 3432 /* 3433 sysfs 3434 */ 3435 3436 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3437 { 3438 return container_of(dev, struct rbd_device, dev); 3439 } 3440 3441 static ssize_t rbd_size_show(struct device *dev, 3442 struct device_attribute *attr, char *buf) 3443 { 3444 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3445 3446 return sprintf(buf, "%llu\n", 3447 (unsigned long long)rbd_dev->mapping.size); 3448 } 3449 3450 /* 3451 * Note this shows the features for whatever's mapped, which is not 3452 * necessarily the base image. 3453 */ 3454 static ssize_t rbd_features_show(struct device *dev, 3455 struct device_attribute *attr, char *buf) 3456 { 3457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3458 3459 return sprintf(buf, "0x%016llx\n", 3460 (unsigned long long)rbd_dev->mapping.features); 3461 } 3462 3463 static ssize_t rbd_major_show(struct device *dev, 3464 struct device_attribute *attr, char *buf) 3465 { 3466 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3467 3468 if (rbd_dev->major) 3469 return sprintf(buf, "%d\n", rbd_dev->major); 3470 3471 return sprintf(buf, "(none)\n"); 3472 } 3473 3474 static ssize_t rbd_minor_show(struct device *dev, 3475 struct device_attribute *attr, char *buf) 3476 { 3477 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3478 3479 return sprintf(buf, "%d\n", rbd_dev->minor); 3480 } 3481 3482 static ssize_t rbd_client_id_show(struct device *dev, 3483 struct device_attribute *attr, char *buf) 3484 { 3485 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3486 3487 return sprintf(buf, "client%lld\n", 3488 ceph_client_id(rbd_dev->rbd_client->client)); 3489 } 3490 3491 static ssize_t rbd_pool_show(struct device *dev, 3492 struct device_attribute *attr, char *buf) 3493 { 3494 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3495 3496 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3497 } 3498 3499 static ssize_t rbd_pool_id_show(struct device *dev, 3500 struct device_attribute *attr, char *buf) 3501 { 3502 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3503 3504 return sprintf(buf, "%llu\n", 3505 (unsigned long long) rbd_dev->spec->pool_id); 3506 } 3507 3508 static ssize_t rbd_name_show(struct device *dev, 3509 struct device_attribute *attr, char *buf) 3510 { 3511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3512 3513 if (rbd_dev->spec->image_name) 3514 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3515 3516 return sprintf(buf, "(unknown)\n"); 3517 } 3518 3519 static ssize_t rbd_image_id_show(struct device *dev, 3520 struct device_attribute *attr, char *buf) 3521 { 3522 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3523 3524 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3525 } 3526 3527 /* 3528 * Shows the name of the currently-mapped snapshot (or 3529 * RBD_SNAP_HEAD_NAME for the base image). 3530 */ 3531 static ssize_t rbd_snap_show(struct device *dev, 3532 struct device_attribute *attr, 3533 char *buf) 3534 { 3535 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3536 3537 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3538 } 3539 3540 /* 3541 * For an rbd v2 image, shows the pool id, image id, and snapshot id 3542 * for the parent image. If there is no parent, simply shows 3543 * "(no parent image)". 3544 */ 3545 static ssize_t rbd_parent_show(struct device *dev, 3546 struct device_attribute *attr, 3547 char *buf) 3548 { 3549 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3550 struct rbd_spec *spec = rbd_dev->parent_spec; 3551 int count; 3552 char *bufp = buf; 3553 3554 if (!spec) 3555 return sprintf(buf, "(no parent image)\n"); 3556 3557 count = sprintf(bufp, "pool_id %llu\npool_name %s\n", 3558 (unsigned long long) spec->pool_id, spec->pool_name); 3559 if (count < 0) 3560 return count; 3561 bufp += count; 3562 3563 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id, 3564 spec->image_name ? spec->image_name : "(unknown)"); 3565 if (count < 0) 3566 return count; 3567 bufp += count; 3568 3569 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n", 3570 (unsigned long long) spec->snap_id, spec->snap_name); 3571 if (count < 0) 3572 return count; 3573 bufp += count; 3574 3575 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap); 3576 if (count < 0) 3577 return count; 3578 bufp += count; 3579 3580 return (ssize_t) (bufp - buf); 3581 } 3582 3583 static ssize_t rbd_image_refresh(struct device *dev, 3584 struct device_attribute *attr, 3585 const char *buf, 3586 size_t size) 3587 { 3588 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3589 int ret; 3590 3591 ret = rbd_dev_refresh(rbd_dev); 3592 if (ret) 3593 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret); 3594 3595 return ret < 0 ? ret : size; 3596 } 3597 3598 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3599 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3600 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3601 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3602 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3603 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3604 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3605 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3606 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3607 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3608 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3609 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3610 3611 static struct attribute *rbd_attrs[] = { 3612 &dev_attr_size.attr, 3613 &dev_attr_features.attr, 3614 &dev_attr_major.attr, 3615 &dev_attr_minor.attr, 3616 &dev_attr_client_id.attr, 3617 &dev_attr_pool.attr, 3618 &dev_attr_pool_id.attr, 3619 &dev_attr_name.attr, 3620 &dev_attr_image_id.attr, 3621 &dev_attr_current_snap.attr, 3622 &dev_attr_parent.attr, 3623 &dev_attr_refresh.attr, 3624 NULL 3625 }; 3626 3627 static struct attribute_group rbd_attr_group = { 3628 .attrs = rbd_attrs, 3629 }; 3630 3631 static const struct attribute_group *rbd_attr_groups[] = { 3632 &rbd_attr_group, 3633 NULL 3634 }; 3635 3636 static void rbd_sysfs_dev_release(struct device *dev) 3637 { 3638 } 3639 3640 static struct device_type rbd_device_type = { 3641 .name = "rbd", 3642 .groups = rbd_attr_groups, 3643 .release = rbd_sysfs_dev_release, 3644 }; 3645 3646 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3647 { 3648 kref_get(&spec->kref); 3649 3650 return spec; 3651 } 3652 3653 static void rbd_spec_free(struct kref *kref); 3654 static void rbd_spec_put(struct rbd_spec *spec) 3655 { 3656 if (spec) 3657 kref_put(&spec->kref, rbd_spec_free); 3658 } 3659 3660 static struct rbd_spec *rbd_spec_alloc(void) 3661 { 3662 struct rbd_spec *spec; 3663 3664 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3665 if (!spec) 3666 return NULL; 3667 kref_init(&spec->kref); 3668 3669 return spec; 3670 } 3671 3672 static void rbd_spec_free(struct kref *kref) 3673 { 3674 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3675 3676 kfree(spec->pool_name); 3677 kfree(spec->image_id); 3678 kfree(spec->image_name); 3679 kfree(spec->snap_name); 3680 kfree(spec); 3681 } 3682 3683 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3684 struct rbd_spec *spec) 3685 { 3686 struct rbd_device *rbd_dev; 3687 3688 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3689 if (!rbd_dev) 3690 return NULL; 3691 3692 spin_lock_init(&rbd_dev->lock); 3693 rbd_dev->flags = 0; 3694 atomic_set(&rbd_dev->parent_ref, 0); 3695 INIT_LIST_HEAD(&rbd_dev->node); 3696 init_rwsem(&rbd_dev->header_rwsem); 3697 3698 rbd_dev->spec = spec; 3699 rbd_dev->rbd_client = rbdc; 3700 3701 /* Initialize the layout used for all rbd requests */ 3702 3703 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3704 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3705 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3706 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3707 3708 return rbd_dev; 3709 } 3710 3711 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3712 { 3713 rbd_put_client(rbd_dev->rbd_client); 3714 rbd_spec_put(rbd_dev->spec); 3715 kfree(rbd_dev); 3716 } 3717 3718 /* 3719 * Get the size and object order for an image snapshot, or if 3720 * snap_id is CEPH_NOSNAP, gets this information for the base 3721 * image. 3722 */ 3723 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3724 u8 *order, u64 *snap_size) 3725 { 3726 __le64 snapid = cpu_to_le64(snap_id); 3727 int ret; 3728 struct { 3729 u8 order; 3730 __le64 size; 3731 } __attribute__ ((packed)) size_buf = { 0 }; 3732 3733 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3734 "rbd", "get_size", 3735 &snapid, sizeof (snapid), 3736 &size_buf, sizeof (size_buf)); 3737 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3738 if (ret < 0) 3739 return ret; 3740 if (ret < sizeof (size_buf)) 3741 return -ERANGE; 3742 3743 if (order) { 3744 *order = size_buf.order; 3745 dout(" order %u", (unsigned int)*order); 3746 } 3747 *snap_size = le64_to_cpu(size_buf.size); 3748 3749 dout(" snap_id 0x%016llx snap_size = %llu\n", 3750 (unsigned long long)snap_id, 3751 (unsigned long long)*snap_size); 3752 3753 return 0; 3754 } 3755 3756 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3757 { 3758 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3759 &rbd_dev->header.obj_order, 3760 &rbd_dev->header.image_size); 3761 } 3762 3763 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3764 { 3765 void *reply_buf; 3766 int ret; 3767 void *p; 3768 3769 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3770 if (!reply_buf) 3771 return -ENOMEM; 3772 3773 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3774 "rbd", "get_object_prefix", NULL, 0, 3775 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 3776 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3777 if (ret < 0) 3778 goto out; 3779 3780 p = reply_buf; 3781 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3782 p + ret, NULL, GFP_NOIO); 3783 ret = 0; 3784 3785 if (IS_ERR(rbd_dev->header.object_prefix)) { 3786 ret = PTR_ERR(rbd_dev->header.object_prefix); 3787 rbd_dev->header.object_prefix = NULL; 3788 } else { 3789 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3790 } 3791 out: 3792 kfree(reply_buf); 3793 3794 return ret; 3795 } 3796 3797 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3798 u64 *snap_features) 3799 { 3800 __le64 snapid = cpu_to_le64(snap_id); 3801 struct { 3802 __le64 features; 3803 __le64 incompat; 3804 } __attribute__ ((packed)) features_buf = { 0 }; 3805 u64 incompat; 3806 int ret; 3807 3808 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3809 "rbd", "get_features", 3810 &snapid, sizeof (snapid), 3811 &features_buf, sizeof (features_buf)); 3812 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3813 if (ret < 0) 3814 return ret; 3815 if (ret < sizeof (features_buf)) 3816 return -ERANGE; 3817 3818 incompat = le64_to_cpu(features_buf.incompat); 3819 if (incompat & ~RBD_FEATURES_SUPPORTED) 3820 return -ENXIO; 3821 3822 *snap_features = le64_to_cpu(features_buf.features); 3823 3824 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 3825 (unsigned long long)snap_id, 3826 (unsigned long long)*snap_features, 3827 (unsigned long long)le64_to_cpu(features_buf.incompat)); 3828 3829 return 0; 3830 } 3831 3832 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 3833 { 3834 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 3835 &rbd_dev->header.features); 3836 } 3837 3838 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 3839 { 3840 struct rbd_spec *parent_spec; 3841 size_t size; 3842 void *reply_buf = NULL; 3843 __le64 snapid; 3844 void *p; 3845 void *end; 3846 u64 pool_id; 3847 char *image_id; 3848 u64 snap_id; 3849 u64 overlap; 3850 int ret; 3851 3852 parent_spec = rbd_spec_alloc(); 3853 if (!parent_spec) 3854 return -ENOMEM; 3855 3856 size = sizeof (__le64) + /* pool_id */ 3857 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 3858 sizeof (__le64) + /* snap_id */ 3859 sizeof (__le64); /* overlap */ 3860 reply_buf = kmalloc(size, GFP_KERNEL); 3861 if (!reply_buf) { 3862 ret = -ENOMEM; 3863 goto out_err; 3864 } 3865 3866 snapid = cpu_to_le64(CEPH_NOSNAP); 3867 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3868 "rbd", "get_parent", 3869 &snapid, sizeof (snapid), 3870 reply_buf, size); 3871 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3872 if (ret < 0) 3873 goto out_err; 3874 3875 p = reply_buf; 3876 end = reply_buf + ret; 3877 ret = -ERANGE; 3878 ceph_decode_64_safe(&p, end, pool_id, out_err); 3879 if (pool_id == CEPH_NOPOOL) { 3880 /* 3881 * Either the parent never existed, or we have 3882 * record of it but the image got flattened so it no 3883 * longer has a parent. When the parent of a 3884 * layered image disappears we immediately set the 3885 * overlap to 0. The effect of this is that all new 3886 * requests will be treated as if the image had no 3887 * parent. 3888 */ 3889 if (rbd_dev->parent_overlap) { 3890 rbd_dev->parent_overlap = 0; 3891 smp_mb(); 3892 rbd_dev_parent_put(rbd_dev); 3893 pr_info("%s: clone image has been flattened\n", 3894 rbd_dev->disk->disk_name); 3895 } 3896 3897 goto out; /* No parent? No problem. */ 3898 } 3899 3900 /* The ceph file layout needs to fit pool id in 32 bits */ 3901 3902 ret = -EIO; 3903 if (pool_id > (u64)U32_MAX) { 3904 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n", 3905 (unsigned long long)pool_id, U32_MAX); 3906 goto out_err; 3907 } 3908 3909 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 3910 if (IS_ERR(image_id)) { 3911 ret = PTR_ERR(image_id); 3912 goto out_err; 3913 } 3914 ceph_decode_64_safe(&p, end, snap_id, out_err); 3915 ceph_decode_64_safe(&p, end, overlap, out_err); 3916 3917 /* 3918 * The parent won't change (except when the clone is 3919 * flattened, already handled that). So we only need to 3920 * record the parent spec we have not already done so. 3921 */ 3922 if (!rbd_dev->parent_spec) { 3923 parent_spec->pool_id = pool_id; 3924 parent_spec->image_id = image_id; 3925 parent_spec->snap_id = snap_id; 3926 rbd_dev->parent_spec = parent_spec; 3927 parent_spec = NULL; /* rbd_dev now owns this */ 3928 } 3929 3930 /* 3931 * We always update the parent overlap. If it's zero we 3932 * treat it specially. 3933 */ 3934 rbd_dev->parent_overlap = overlap; 3935 smp_mb(); 3936 if (!overlap) { 3937 3938 /* A null parent_spec indicates it's the initial probe */ 3939 3940 if (parent_spec) { 3941 /* 3942 * The overlap has become zero, so the clone 3943 * must have been resized down to 0 at some 3944 * point. Treat this the same as a flatten. 3945 */ 3946 rbd_dev_parent_put(rbd_dev); 3947 pr_info("%s: clone image now standalone\n", 3948 rbd_dev->disk->disk_name); 3949 } else { 3950 /* 3951 * For the initial probe, if we find the 3952 * overlap is zero we just pretend there was 3953 * no parent image. 3954 */ 3955 rbd_warn(rbd_dev, "ignoring parent of " 3956 "clone with overlap 0\n"); 3957 } 3958 } 3959 out: 3960 ret = 0; 3961 out_err: 3962 kfree(reply_buf); 3963 rbd_spec_put(parent_spec); 3964 3965 return ret; 3966 } 3967 3968 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 3969 { 3970 struct { 3971 __le64 stripe_unit; 3972 __le64 stripe_count; 3973 } __attribute__ ((packed)) striping_info_buf = { 0 }; 3974 size_t size = sizeof (striping_info_buf); 3975 void *p; 3976 u64 obj_size; 3977 u64 stripe_unit; 3978 u64 stripe_count; 3979 int ret; 3980 3981 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3982 "rbd", "get_stripe_unit_count", NULL, 0, 3983 (char *)&striping_info_buf, size); 3984 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3985 if (ret < 0) 3986 return ret; 3987 if (ret < size) 3988 return -ERANGE; 3989 3990 /* 3991 * We don't actually support the "fancy striping" feature 3992 * (STRIPINGV2) yet, but if the striping sizes are the 3993 * defaults the behavior is the same as before. So find 3994 * out, and only fail if the image has non-default values. 3995 */ 3996 ret = -EINVAL; 3997 obj_size = (u64)1 << rbd_dev->header.obj_order; 3998 p = &striping_info_buf; 3999 stripe_unit = ceph_decode_64(&p); 4000 if (stripe_unit != obj_size) { 4001 rbd_warn(rbd_dev, "unsupported stripe unit " 4002 "(got %llu want %llu)", 4003 stripe_unit, obj_size); 4004 return -EINVAL; 4005 } 4006 stripe_count = ceph_decode_64(&p); 4007 if (stripe_count != 1) { 4008 rbd_warn(rbd_dev, "unsupported stripe count " 4009 "(got %llu want 1)", stripe_count); 4010 return -EINVAL; 4011 } 4012 rbd_dev->header.stripe_unit = stripe_unit; 4013 rbd_dev->header.stripe_count = stripe_count; 4014 4015 return 0; 4016 } 4017 4018 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4019 { 4020 size_t image_id_size; 4021 char *image_id; 4022 void *p; 4023 void *end; 4024 size_t size; 4025 void *reply_buf = NULL; 4026 size_t len = 0; 4027 char *image_name = NULL; 4028 int ret; 4029 4030 rbd_assert(!rbd_dev->spec->image_name); 4031 4032 len = strlen(rbd_dev->spec->image_id); 4033 image_id_size = sizeof (__le32) + len; 4034 image_id = kmalloc(image_id_size, GFP_KERNEL); 4035 if (!image_id) 4036 return NULL; 4037 4038 p = image_id; 4039 end = image_id + image_id_size; 4040 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4041 4042 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4043 reply_buf = kmalloc(size, GFP_KERNEL); 4044 if (!reply_buf) 4045 goto out; 4046 4047 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4048 "rbd", "dir_get_name", 4049 image_id, image_id_size, 4050 reply_buf, size); 4051 if (ret < 0) 4052 goto out; 4053 p = reply_buf; 4054 end = reply_buf + ret; 4055 4056 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4057 if (IS_ERR(image_name)) 4058 image_name = NULL; 4059 else 4060 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4061 out: 4062 kfree(reply_buf); 4063 kfree(image_id); 4064 4065 return image_name; 4066 } 4067 4068 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4069 { 4070 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4071 const char *snap_name; 4072 u32 which = 0; 4073 4074 /* Skip over names until we find the one we are looking for */ 4075 4076 snap_name = rbd_dev->header.snap_names; 4077 while (which < snapc->num_snaps) { 4078 if (!strcmp(name, snap_name)) 4079 return snapc->snaps[which]; 4080 snap_name += strlen(snap_name) + 1; 4081 which++; 4082 } 4083 return CEPH_NOSNAP; 4084 } 4085 4086 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4087 { 4088 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4089 u32 which; 4090 bool found = false; 4091 u64 snap_id; 4092 4093 for (which = 0; !found && which < snapc->num_snaps; which++) { 4094 const char *snap_name; 4095 4096 snap_id = snapc->snaps[which]; 4097 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4098 if (IS_ERR(snap_name)) { 4099 /* ignore no-longer existing snapshots */ 4100 if (PTR_ERR(snap_name) == -ENOENT) 4101 continue; 4102 else 4103 break; 4104 } 4105 found = !strcmp(name, snap_name); 4106 kfree(snap_name); 4107 } 4108 return found ? snap_id : CEPH_NOSNAP; 4109 } 4110 4111 /* 4112 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4113 * no snapshot by that name is found, or if an error occurs. 4114 */ 4115 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4116 { 4117 if (rbd_dev->image_format == 1) 4118 return rbd_v1_snap_id_by_name(rbd_dev, name); 4119 4120 return rbd_v2_snap_id_by_name(rbd_dev, name); 4121 } 4122 4123 /* 4124 * When an rbd image has a parent image, it is identified by the 4125 * pool, image, and snapshot ids (not names). This function fills 4126 * in the names for those ids. (It's OK if we can't figure out the 4127 * name for an image id, but the pool and snapshot ids should always 4128 * exist and have names.) All names in an rbd spec are dynamically 4129 * allocated. 4130 * 4131 * When an image being mapped (not a parent) is probed, we have the 4132 * pool name and pool id, image name and image id, and the snapshot 4133 * name. The only thing we're missing is the snapshot id. 4134 */ 4135 static int rbd_dev_spec_update(struct rbd_device *rbd_dev) 4136 { 4137 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4138 struct rbd_spec *spec = rbd_dev->spec; 4139 const char *pool_name; 4140 const char *image_name; 4141 const char *snap_name; 4142 int ret; 4143 4144 /* 4145 * An image being mapped will have the pool name (etc.), but 4146 * we need to look up the snapshot id. 4147 */ 4148 if (spec->pool_name) { 4149 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4150 u64 snap_id; 4151 4152 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4153 if (snap_id == CEPH_NOSNAP) 4154 return -ENOENT; 4155 spec->snap_id = snap_id; 4156 } else { 4157 spec->snap_id = CEPH_NOSNAP; 4158 } 4159 4160 return 0; 4161 } 4162 4163 /* Get the pool name; we have to make our own copy of this */ 4164 4165 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4166 if (!pool_name) { 4167 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4168 return -EIO; 4169 } 4170 pool_name = kstrdup(pool_name, GFP_KERNEL); 4171 if (!pool_name) 4172 return -ENOMEM; 4173 4174 /* Fetch the image name; tolerate failure here */ 4175 4176 image_name = rbd_dev_image_name(rbd_dev); 4177 if (!image_name) 4178 rbd_warn(rbd_dev, "unable to get image name"); 4179 4180 /* Look up the snapshot name, and make a copy */ 4181 4182 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4183 if (IS_ERR(snap_name)) { 4184 ret = PTR_ERR(snap_name); 4185 goto out_err; 4186 } 4187 4188 spec->pool_name = pool_name; 4189 spec->image_name = image_name; 4190 spec->snap_name = snap_name; 4191 4192 return 0; 4193 out_err: 4194 kfree(image_name); 4195 kfree(pool_name); 4196 4197 return ret; 4198 } 4199 4200 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4201 { 4202 size_t size; 4203 int ret; 4204 void *reply_buf; 4205 void *p; 4206 void *end; 4207 u64 seq; 4208 u32 snap_count; 4209 struct ceph_snap_context *snapc; 4210 u32 i; 4211 4212 /* 4213 * We'll need room for the seq value (maximum snapshot id), 4214 * snapshot count, and array of that many snapshot ids. 4215 * For now we have a fixed upper limit on the number we're 4216 * prepared to receive. 4217 */ 4218 size = sizeof (__le64) + sizeof (__le32) + 4219 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4220 reply_buf = kzalloc(size, GFP_KERNEL); 4221 if (!reply_buf) 4222 return -ENOMEM; 4223 4224 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4225 "rbd", "get_snapcontext", NULL, 0, 4226 reply_buf, size); 4227 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4228 if (ret < 0) 4229 goto out; 4230 4231 p = reply_buf; 4232 end = reply_buf + ret; 4233 ret = -ERANGE; 4234 ceph_decode_64_safe(&p, end, seq, out); 4235 ceph_decode_32_safe(&p, end, snap_count, out); 4236 4237 /* 4238 * Make sure the reported number of snapshot ids wouldn't go 4239 * beyond the end of our buffer. But before checking that, 4240 * make sure the computed size of the snapshot context we 4241 * allocate is representable in a size_t. 4242 */ 4243 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4244 / sizeof (u64)) { 4245 ret = -EINVAL; 4246 goto out; 4247 } 4248 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4249 goto out; 4250 ret = 0; 4251 4252 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4253 if (!snapc) { 4254 ret = -ENOMEM; 4255 goto out; 4256 } 4257 snapc->seq = seq; 4258 for (i = 0; i < snap_count; i++) 4259 snapc->snaps[i] = ceph_decode_64(&p); 4260 4261 ceph_put_snap_context(rbd_dev->header.snapc); 4262 rbd_dev->header.snapc = snapc; 4263 4264 dout(" snap context seq = %llu, snap_count = %u\n", 4265 (unsigned long long)seq, (unsigned int)snap_count); 4266 out: 4267 kfree(reply_buf); 4268 4269 return ret; 4270 } 4271 4272 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4273 u64 snap_id) 4274 { 4275 size_t size; 4276 void *reply_buf; 4277 __le64 snapid; 4278 int ret; 4279 void *p; 4280 void *end; 4281 char *snap_name; 4282 4283 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4284 reply_buf = kmalloc(size, GFP_KERNEL); 4285 if (!reply_buf) 4286 return ERR_PTR(-ENOMEM); 4287 4288 snapid = cpu_to_le64(snap_id); 4289 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4290 "rbd", "get_snapshot_name", 4291 &snapid, sizeof (snapid), 4292 reply_buf, size); 4293 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4294 if (ret < 0) { 4295 snap_name = ERR_PTR(ret); 4296 goto out; 4297 } 4298 4299 p = reply_buf; 4300 end = reply_buf + ret; 4301 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4302 if (IS_ERR(snap_name)) 4303 goto out; 4304 4305 dout(" snap_id 0x%016llx snap_name = %s\n", 4306 (unsigned long long)snap_id, snap_name); 4307 out: 4308 kfree(reply_buf); 4309 4310 return snap_name; 4311 } 4312 4313 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4314 { 4315 bool first_time = rbd_dev->header.object_prefix == NULL; 4316 int ret; 4317 4318 ret = rbd_dev_v2_image_size(rbd_dev); 4319 if (ret) 4320 return ret; 4321 4322 if (first_time) { 4323 ret = rbd_dev_v2_header_onetime(rbd_dev); 4324 if (ret) 4325 return ret; 4326 } 4327 4328 /* 4329 * If the image supports layering, get the parent info. We 4330 * need to probe the first time regardless. Thereafter we 4331 * only need to if there's a parent, to see if it has 4332 * disappeared due to the mapped image getting flattened. 4333 */ 4334 if (rbd_dev->header.features & RBD_FEATURE_LAYERING && 4335 (first_time || rbd_dev->parent_spec)) { 4336 bool warn; 4337 4338 ret = rbd_dev_v2_parent_info(rbd_dev); 4339 if (ret) 4340 return ret; 4341 4342 /* 4343 * Print a warning if this is the initial probe and 4344 * the image has a parent. Don't print it if the 4345 * image now being probed is itself a parent. We 4346 * can tell at this point because we won't know its 4347 * pool name yet (just its pool id). 4348 */ 4349 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name; 4350 if (first_time && warn) 4351 rbd_warn(rbd_dev, "WARNING: kernel layering " 4352 "is EXPERIMENTAL!"); 4353 } 4354 4355 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) 4356 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 4357 rbd_dev->mapping.size = rbd_dev->header.image_size; 4358 4359 ret = rbd_dev_v2_snap_context(rbd_dev); 4360 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4361 4362 return ret; 4363 } 4364 4365 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4366 { 4367 struct device *dev; 4368 int ret; 4369 4370 dev = &rbd_dev->dev; 4371 dev->bus = &rbd_bus_type; 4372 dev->type = &rbd_device_type; 4373 dev->parent = &rbd_root_dev; 4374 dev->release = rbd_dev_device_release; 4375 dev_set_name(dev, "%d", rbd_dev->dev_id); 4376 ret = device_register(dev); 4377 4378 return ret; 4379 } 4380 4381 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4382 { 4383 device_unregister(&rbd_dev->dev); 4384 } 4385 4386 /* 4387 * Get a unique rbd identifier for the given new rbd_dev, and add 4388 * the rbd_dev to the global list. 4389 */ 4390 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4391 { 4392 int new_dev_id; 4393 4394 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4395 0, minor_to_rbd_dev_id(1 << MINORBITS), 4396 GFP_KERNEL); 4397 if (new_dev_id < 0) 4398 return new_dev_id; 4399 4400 rbd_dev->dev_id = new_dev_id; 4401 4402 spin_lock(&rbd_dev_list_lock); 4403 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4404 spin_unlock(&rbd_dev_list_lock); 4405 4406 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4407 4408 return 0; 4409 } 4410 4411 /* 4412 * Remove an rbd_dev from the global list, and record that its 4413 * identifier is no longer in use. 4414 */ 4415 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4416 { 4417 spin_lock(&rbd_dev_list_lock); 4418 list_del_init(&rbd_dev->node); 4419 spin_unlock(&rbd_dev_list_lock); 4420 4421 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4422 4423 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4424 } 4425 4426 /* 4427 * Skips over white space at *buf, and updates *buf to point to the 4428 * first found non-space character (if any). Returns the length of 4429 * the token (string of non-white space characters) found. Note 4430 * that *buf must be terminated with '\0'. 4431 */ 4432 static inline size_t next_token(const char **buf) 4433 { 4434 /* 4435 * These are the characters that produce nonzero for 4436 * isspace() in the "C" and "POSIX" locales. 4437 */ 4438 const char *spaces = " \f\n\r\t\v"; 4439 4440 *buf += strspn(*buf, spaces); /* Find start of token */ 4441 4442 return strcspn(*buf, spaces); /* Return token length */ 4443 } 4444 4445 /* 4446 * Finds the next token in *buf, and if the provided token buffer is 4447 * big enough, copies the found token into it. The result, if 4448 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4449 * must be terminated with '\0' on entry. 4450 * 4451 * Returns the length of the token found (not including the '\0'). 4452 * Return value will be 0 if no token is found, and it will be >= 4453 * token_size if the token would not fit. 4454 * 4455 * The *buf pointer will be updated to point beyond the end of the 4456 * found token. Note that this occurs even if the token buffer is 4457 * too small to hold it. 4458 */ 4459 static inline size_t copy_token(const char **buf, 4460 char *token, 4461 size_t token_size) 4462 { 4463 size_t len; 4464 4465 len = next_token(buf); 4466 if (len < token_size) { 4467 memcpy(token, *buf, len); 4468 *(token + len) = '\0'; 4469 } 4470 *buf += len; 4471 4472 return len; 4473 } 4474 4475 /* 4476 * Finds the next token in *buf, dynamically allocates a buffer big 4477 * enough to hold a copy of it, and copies the token into the new 4478 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4479 * that a duplicate buffer is created even for a zero-length token. 4480 * 4481 * Returns a pointer to the newly-allocated duplicate, or a null 4482 * pointer if memory for the duplicate was not available. If 4483 * the lenp argument is a non-null pointer, the length of the token 4484 * (not including the '\0') is returned in *lenp. 4485 * 4486 * If successful, the *buf pointer will be updated to point beyond 4487 * the end of the found token. 4488 * 4489 * Note: uses GFP_KERNEL for allocation. 4490 */ 4491 static inline char *dup_token(const char **buf, size_t *lenp) 4492 { 4493 char *dup; 4494 size_t len; 4495 4496 len = next_token(buf); 4497 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4498 if (!dup) 4499 return NULL; 4500 *(dup + len) = '\0'; 4501 *buf += len; 4502 4503 if (lenp) 4504 *lenp = len; 4505 4506 return dup; 4507 } 4508 4509 /* 4510 * Parse the options provided for an "rbd add" (i.e., rbd image 4511 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4512 * and the data written is passed here via a NUL-terminated buffer. 4513 * Returns 0 if successful or an error code otherwise. 4514 * 4515 * The information extracted from these options is recorded in 4516 * the other parameters which return dynamically-allocated 4517 * structures: 4518 * ceph_opts 4519 * The address of a pointer that will refer to a ceph options 4520 * structure. Caller must release the returned pointer using 4521 * ceph_destroy_options() when it is no longer needed. 4522 * rbd_opts 4523 * Address of an rbd options pointer. Fully initialized by 4524 * this function; caller must release with kfree(). 4525 * spec 4526 * Address of an rbd image specification pointer. Fully 4527 * initialized by this function based on parsed options. 4528 * Caller must release with rbd_spec_put(). 4529 * 4530 * The options passed take this form: 4531 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4532 * where: 4533 * <mon_addrs> 4534 * A comma-separated list of one or more monitor addresses. 4535 * A monitor address is an ip address, optionally followed 4536 * by a port number (separated by a colon). 4537 * I.e.: ip1[:port1][,ip2[:port2]...] 4538 * <options> 4539 * A comma-separated list of ceph and/or rbd options. 4540 * <pool_name> 4541 * The name of the rados pool containing the rbd image. 4542 * <image_name> 4543 * The name of the image in that pool to map. 4544 * <snap_id> 4545 * An optional snapshot id. If provided, the mapping will 4546 * present data from the image at the time that snapshot was 4547 * created. The image head is used if no snapshot id is 4548 * provided. Snapshot mappings are always read-only. 4549 */ 4550 static int rbd_add_parse_args(const char *buf, 4551 struct ceph_options **ceph_opts, 4552 struct rbd_options **opts, 4553 struct rbd_spec **rbd_spec) 4554 { 4555 size_t len; 4556 char *options; 4557 const char *mon_addrs; 4558 char *snap_name; 4559 size_t mon_addrs_size; 4560 struct rbd_spec *spec = NULL; 4561 struct rbd_options *rbd_opts = NULL; 4562 struct ceph_options *copts; 4563 int ret; 4564 4565 /* The first four tokens are required */ 4566 4567 len = next_token(&buf); 4568 if (!len) { 4569 rbd_warn(NULL, "no monitor address(es) provided"); 4570 return -EINVAL; 4571 } 4572 mon_addrs = buf; 4573 mon_addrs_size = len + 1; 4574 buf += len; 4575 4576 ret = -EINVAL; 4577 options = dup_token(&buf, NULL); 4578 if (!options) 4579 return -ENOMEM; 4580 if (!*options) { 4581 rbd_warn(NULL, "no options provided"); 4582 goto out_err; 4583 } 4584 4585 spec = rbd_spec_alloc(); 4586 if (!spec) 4587 goto out_mem; 4588 4589 spec->pool_name = dup_token(&buf, NULL); 4590 if (!spec->pool_name) 4591 goto out_mem; 4592 if (!*spec->pool_name) { 4593 rbd_warn(NULL, "no pool name provided"); 4594 goto out_err; 4595 } 4596 4597 spec->image_name = dup_token(&buf, NULL); 4598 if (!spec->image_name) 4599 goto out_mem; 4600 if (!*spec->image_name) { 4601 rbd_warn(NULL, "no image name provided"); 4602 goto out_err; 4603 } 4604 4605 /* 4606 * Snapshot name is optional; default is to use "-" 4607 * (indicating the head/no snapshot). 4608 */ 4609 len = next_token(&buf); 4610 if (!len) { 4611 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4612 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4613 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4614 ret = -ENAMETOOLONG; 4615 goto out_err; 4616 } 4617 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4618 if (!snap_name) 4619 goto out_mem; 4620 *(snap_name + len) = '\0'; 4621 spec->snap_name = snap_name; 4622 4623 /* Initialize all rbd options to the defaults */ 4624 4625 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4626 if (!rbd_opts) 4627 goto out_mem; 4628 4629 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4630 4631 copts = ceph_parse_options(options, mon_addrs, 4632 mon_addrs + mon_addrs_size - 1, 4633 parse_rbd_opts_token, rbd_opts); 4634 if (IS_ERR(copts)) { 4635 ret = PTR_ERR(copts); 4636 goto out_err; 4637 } 4638 kfree(options); 4639 4640 *ceph_opts = copts; 4641 *opts = rbd_opts; 4642 *rbd_spec = spec; 4643 4644 return 0; 4645 out_mem: 4646 ret = -ENOMEM; 4647 out_err: 4648 kfree(rbd_opts); 4649 rbd_spec_put(spec); 4650 kfree(options); 4651 4652 return ret; 4653 } 4654 4655 /* 4656 * An rbd format 2 image has a unique identifier, distinct from the 4657 * name given to it by the user. Internally, that identifier is 4658 * what's used to specify the names of objects related to the image. 4659 * 4660 * A special "rbd id" object is used to map an rbd image name to its 4661 * id. If that object doesn't exist, then there is no v2 rbd image 4662 * with the supplied name. 4663 * 4664 * This function will record the given rbd_dev's image_id field if 4665 * it can be determined, and in that case will return 0. If any 4666 * errors occur a negative errno will be returned and the rbd_dev's 4667 * image_id field will be unchanged (and should be NULL). 4668 */ 4669 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4670 { 4671 int ret; 4672 size_t size; 4673 char *object_name; 4674 void *response; 4675 char *image_id; 4676 4677 /* 4678 * When probing a parent image, the image id is already 4679 * known (and the image name likely is not). There's no 4680 * need to fetch the image id again in this case. We 4681 * do still need to set the image format though. 4682 */ 4683 if (rbd_dev->spec->image_id) { 4684 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4685 4686 return 0; 4687 } 4688 4689 /* 4690 * First, see if the format 2 image id file exists, and if 4691 * so, get the image's persistent id from it. 4692 */ 4693 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4694 object_name = kmalloc(size, GFP_NOIO); 4695 if (!object_name) 4696 return -ENOMEM; 4697 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4698 dout("rbd id object name is %s\n", object_name); 4699 4700 /* Response will be an encoded string, which includes a length */ 4701 4702 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4703 response = kzalloc(size, GFP_NOIO); 4704 if (!response) { 4705 ret = -ENOMEM; 4706 goto out; 4707 } 4708 4709 /* If it doesn't exist we'll assume it's a format 1 image */ 4710 4711 ret = rbd_obj_method_sync(rbd_dev, object_name, 4712 "rbd", "get_id", NULL, 0, 4713 response, RBD_IMAGE_ID_LEN_MAX); 4714 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4715 if (ret == -ENOENT) { 4716 image_id = kstrdup("", GFP_KERNEL); 4717 ret = image_id ? 0 : -ENOMEM; 4718 if (!ret) 4719 rbd_dev->image_format = 1; 4720 } else if (ret > sizeof (__le32)) { 4721 void *p = response; 4722 4723 image_id = ceph_extract_encoded_string(&p, p + ret, 4724 NULL, GFP_NOIO); 4725 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0; 4726 if (!ret) 4727 rbd_dev->image_format = 2; 4728 } else { 4729 ret = -EINVAL; 4730 } 4731 4732 if (!ret) { 4733 rbd_dev->spec->image_id = image_id; 4734 dout("image_id is %s\n", image_id); 4735 } 4736 out: 4737 kfree(response); 4738 kfree(object_name); 4739 4740 return ret; 4741 } 4742 4743 /* 4744 * Undo whatever state changes are made by v1 or v2 header info 4745 * call. 4746 */ 4747 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4748 { 4749 struct rbd_image_header *header; 4750 4751 /* Drop parent reference unless it's already been done (or none) */ 4752 4753 if (rbd_dev->parent_overlap) 4754 rbd_dev_parent_put(rbd_dev); 4755 4756 /* Free dynamic fields from the header, then zero it out */ 4757 4758 header = &rbd_dev->header; 4759 ceph_put_snap_context(header->snapc); 4760 kfree(header->snap_sizes); 4761 kfree(header->snap_names); 4762 kfree(header->object_prefix); 4763 memset(header, 0, sizeof (*header)); 4764 } 4765 4766 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 4767 { 4768 int ret; 4769 4770 ret = rbd_dev_v2_object_prefix(rbd_dev); 4771 if (ret) 4772 goto out_err; 4773 4774 /* 4775 * Get the and check features for the image. Currently the 4776 * features are assumed to never change. 4777 */ 4778 ret = rbd_dev_v2_features(rbd_dev); 4779 if (ret) 4780 goto out_err; 4781 4782 /* If the image supports fancy striping, get its parameters */ 4783 4784 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4785 ret = rbd_dev_v2_striping_info(rbd_dev); 4786 if (ret < 0) 4787 goto out_err; 4788 } 4789 /* No support for crypto and compression type format 2 images */ 4790 4791 return 0; 4792 out_err: 4793 rbd_dev->header.features = 0; 4794 kfree(rbd_dev->header.object_prefix); 4795 rbd_dev->header.object_prefix = NULL; 4796 4797 return ret; 4798 } 4799 4800 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 4801 { 4802 struct rbd_device *parent = NULL; 4803 struct rbd_spec *parent_spec; 4804 struct rbd_client *rbdc; 4805 int ret; 4806 4807 if (!rbd_dev->parent_spec) 4808 return 0; 4809 /* 4810 * We need to pass a reference to the client and the parent 4811 * spec when creating the parent rbd_dev. Images related by 4812 * parent/child relationships always share both. 4813 */ 4814 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 4815 rbdc = __rbd_get_client(rbd_dev->rbd_client); 4816 4817 ret = -ENOMEM; 4818 parent = rbd_dev_create(rbdc, parent_spec); 4819 if (!parent) 4820 goto out_err; 4821 4822 ret = rbd_dev_image_probe(parent, false); 4823 if (ret < 0) 4824 goto out_err; 4825 rbd_dev->parent = parent; 4826 atomic_set(&rbd_dev->parent_ref, 1); 4827 4828 return 0; 4829 out_err: 4830 if (parent) { 4831 rbd_dev_unparent(rbd_dev); 4832 kfree(rbd_dev->header_name); 4833 rbd_dev_destroy(parent); 4834 } else { 4835 rbd_put_client(rbdc); 4836 rbd_spec_put(parent_spec); 4837 } 4838 4839 return ret; 4840 } 4841 4842 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 4843 { 4844 int ret; 4845 4846 /* Get an id and fill in device name. */ 4847 4848 ret = rbd_dev_id_get(rbd_dev); 4849 if (ret) 4850 return ret; 4851 4852 BUILD_BUG_ON(DEV_NAME_LEN 4853 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 4854 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 4855 4856 /* Record our major and minor device numbers. */ 4857 4858 if (!single_major) { 4859 ret = register_blkdev(0, rbd_dev->name); 4860 if (ret < 0) 4861 goto err_out_id; 4862 4863 rbd_dev->major = ret; 4864 rbd_dev->minor = 0; 4865 } else { 4866 rbd_dev->major = rbd_major; 4867 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 4868 } 4869 4870 /* Set up the blkdev mapping. */ 4871 4872 ret = rbd_init_disk(rbd_dev); 4873 if (ret) 4874 goto err_out_blkdev; 4875 4876 ret = rbd_dev_mapping_set(rbd_dev); 4877 if (ret) 4878 goto err_out_disk; 4879 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 4880 4881 ret = rbd_bus_add_dev(rbd_dev); 4882 if (ret) 4883 goto err_out_mapping; 4884 4885 /* Everything's ready. Announce the disk to the world. */ 4886 4887 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4888 add_disk(rbd_dev->disk); 4889 4890 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 4891 (unsigned long long) rbd_dev->mapping.size); 4892 4893 return ret; 4894 4895 err_out_mapping: 4896 rbd_dev_mapping_clear(rbd_dev); 4897 err_out_disk: 4898 rbd_free_disk(rbd_dev); 4899 err_out_blkdev: 4900 if (!single_major) 4901 unregister_blkdev(rbd_dev->major, rbd_dev->name); 4902 err_out_id: 4903 rbd_dev_id_put(rbd_dev); 4904 rbd_dev_mapping_clear(rbd_dev); 4905 4906 return ret; 4907 } 4908 4909 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 4910 { 4911 struct rbd_spec *spec = rbd_dev->spec; 4912 size_t size; 4913 4914 /* Record the header object name for this rbd image. */ 4915 4916 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4917 4918 if (rbd_dev->image_format == 1) 4919 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 4920 else 4921 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 4922 4923 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 4924 if (!rbd_dev->header_name) 4925 return -ENOMEM; 4926 4927 if (rbd_dev->image_format == 1) 4928 sprintf(rbd_dev->header_name, "%s%s", 4929 spec->image_name, RBD_SUFFIX); 4930 else 4931 sprintf(rbd_dev->header_name, "%s%s", 4932 RBD_HEADER_PREFIX, spec->image_id); 4933 return 0; 4934 } 4935 4936 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 4937 { 4938 rbd_dev_unprobe(rbd_dev); 4939 kfree(rbd_dev->header_name); 4940 rbd_dev->header_name = NULL; 4941 rbd_dev->image_format = 0; 4942 kfree(rbd_dev->spec->image_id); 4943 rbd_dev->spec->image_id = NULL; 4944 4945 rbd_dev_destroy(rbd_dev); 4946 } 4947 4948 /* 4949 * Probe for the existence of the header object for the given rbd 4950 * device. If this image is the one being mapped (i.e., not a 4951 * parent), initiate a watch on its header object before using that 4952 * object to get detailed information about the rbd image. 4953 */ 4954 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 4955 { 4956 int ret; 4957 4958 /* 4959 * Get the id from the image id object. Unless there's an 4960 * error, rbd_dev->spec->image_id will be filled in with 4961 * a dynamically-allocated string, and rbd_dev->image_format 4962 * will be set to either 1 or 2. 4963 */ 4964 ret = rbd_dev_image_id(rbd_dev); 4965 if (ret) 4966 return ret; 4967 rbd_assert(rbd_dev->spec->image_id); 4968 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4969 4970 ret = rbd_dev_header_name(rbd_dev); 4971 if (ret) 4972 goto err_out_format; 4973 4974 if (mapping) { 4975 ret = rbd_dev_header_watch_sync(rbd_dev); 4976 if (ret) 4977 goto out_header_name; 4978 } 4979 4980 if (rbd_dev->image_format == 1) 4981 ret = rbd_dev_v1_header_info(rbd_dev); 4982 else 4983 ret = rbd_dev_v2_header_info(rbd_dev); 4984 if (ret) 4985 goto err_out_watch; 4986 4987 ret = rbd_dev_spec_update(rbd_dev); 4988 if (ret) 4989 goto err_out_probe; 4990 4991 ret = rbd_dev_probe_parent(rbd_dev); 4992 if (ret) 4993 goto err_out_probe; 4994 4995 dout("discovered format %u image, header name is %s\n", 4996 rbd_dev->image_format, rbd_dev->header_name); 4997 4998 return 0; 4999 err_out_probe: 5000 rbd_dev_unprobe(rbd_dev); 5001 err_out_watch: 5002 if (mapping) 5003 rbd_dev_header_unwatch_sync(rbd_dev); 5004 out_header_name: 5005 kfree(rbd_dev->header_name); 5006 rbd_dev->header_name = NULL; 5007 err_out_format: 5008 rbd_dev->image_format = 0; 5009 kfree(rbd_dev->spec->image_id); 5010 rbd_dev->spec->image_id = NULL; 5011 5012 dout("probe failed, returning %d\n", ret); 5013 5014 return ret; 5015 } 5016 5017 static ssize_t do_rbd_add(struct bus_type *bus, 5018 const char *buf, 5019 size_t count) 5020 { 5021 struct rbd_device *rbd_dev = NULL; 5022 struct ceph_options *ceph_opts = NULL; 5023 struct rbd_options *rbd_opts = NULL; 5024 struct rbd_spec *spec = NULL; 5025 struct rbd_client *rbdc; 5026 struct ceph_osd_client *osdc; 5027 bool read_only; 5028 int rc = -ENOMEM; 5029 5030 if (!try_module_get(THIS_MODULE)) 5031 return -ENODEV; 5032 5033 /* parse add command */ 5034 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5035 if (rc < 0) 5036 goto err_out_module; 5037 read_only = rbd_opts->read_only; 5038 kfree(rbd_opts); 5039 rbd_opts = NULL; /* done with this */ 5040 5041 rbdc = rbd_get_client(ceph_opts); 5042 if (IS_ERR(rbdc)) { 5043 rc = PTR_ERR(rbdc); 5044 goto err_out_args; 5045 } 5046 5047 /* pick the pool */ 5048 osdc = &rbdc->client->osdc; 5049 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name); 5050 if (rc < 0) 5051 goto err_out_client; 5052 spec->pool_id = (u64)rc; 5053 5054 /* The ceph file layout needs to fit pool id in 32 bits */ 5055 5056 if (spec->pool_id > (u64)U32_MAX) { 5057 rbd_warn(NULL, "pool id too large (%llu > %u)\n", 5058 (unsigned long long)spec->pool_id, U32_MAX); 5059 rc = -EIO; 5060 goto err_out_client; 5061 } 5062 5063 rbd_dev = rbd_dev_create(rbdc, spec); 5064 if (!rbd_dev) 5065 goto err_out_client; 5066 rbdc = NULL; /* rbd_dev now owns this */ 5067 spec = NULL; /* rbd_dev now owns this */ 5068 5069 rc = rbd_dev_image_probe(rbd_dev, true); 5070 if (rc < 0) 5071 goto err_out_rbd_dev; 5072 5073 /* If we are mapping a snapshot it must be marked read-only */ 5074 5075 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5076 read_only = true; 5077 rbd_dev->mapping.read_only = read_only; 5078 5079 rc = rbd_dev_device_setup(rbd_dev); 5080 if (rc) { 5081 /* 5082 * rbd_dev_header_unwatch_sync() can't be moved into 5083 * rbd_dev_image_release() without refactoring, see 5084 * commit 1f3ef78861ac. 5085 */ 5086 rbd_dev_header_unwatch_sync(rbd_dev); 5087 rbd_dev_image_release(rbd_dev); 5088 goto err_out_module; 5089 } 5090 5091 return count; 5092 5093 err_out_rbd_dev: 5094 rbd_dev_destroy(rbd_dev); 5095 err_out_client: 5096 rbd_put_client(rbdc); 5097 err_out_args: 5098 rbd_spec_put(spec); 5099 err_out_module: 5100 module_put(THIS_MODULE); 5101 5102 dout("Error adding device %s\n", buf); 5103 5104 return (ssize_t)rc; 5105 } 5106 5107 static ssize_t rbd_add(struct bus_type *bus, 5108 const char *buf, 5109 size_t count) 5110 { 5111 if (single_major) 5112 return -EINVAL; 5113 5114 return do_rbd_add(bus, buf, count); 5115 } 5116 5117 static ssize_t rbd_add_single_major(struct bus_type *bus, 5118 const char *buf, 5119 size_t count) 5120 { 5121 return do_rbd_add(bus, buf, count); 5122 } 5123 5124 static void rbd_dev_device_release(struct device *dev) 5125 { 5126 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5127 5128 rbd_free_disk(rbd_dev); 5129 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5130 rbd_dev_mapping_clear(rbd_dev); 5131 if (!single_major) 5132 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5133 rbd_dev_id_put(rbd_dev); 5134 rbd_dev_mapping_clear(rbd_dev); 5135 } 5136 5137 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5138 { 5139 while (rbd_dev->parent) { 5140 struct rbd_device *first = rbd_dev; 5141 struct rbd_device *second = first->parent; 5142 struct rbd_device *third; 5143 5144 /* 5145 * Follow to the parent with no grandparent and 5146 * remove it. 5147 */ 5148 while (second && (third = second->parent)) { 5149 first = second; 5150 second = third; 5151 } 5152 rbd_assert(second); 5153 rbd_dev_image_release(second); 5154 first->parent = NULL; 5155 first->parent_overlap = 0; 5156 5157 rbd_assert(first->parent_spec); 5158 rbd_spec_put(first->parent_spec); 5159 first->parent_spec = NULL; 5160 } 5161 } 5162 5163 static ssize_t do_rbd_remove(struct bus_type *bus, 5164 const char *buf, 5165 size_t count) 5166 { 5167 struct rbd_device *rbd_dev = NULL; 5168 struct list_head *tmp; 5169 int dev_id; 5170 unsigned long ul; 5171 bool already = false; 5172 int ret; 5173 5174 ret = kstrtoul(buf, 10, &ul); 5175 if (ret) 5176 return ret; 5177 5178 /* convert to int; abort if we lost anything in the conversion */ 5179 dev_id = (int)ul; 5180 if (dev_id != ul) 5181 return -EINVAL; 5182 5183 ret = -ENOENT; 5184 spin_lock(&rbd_dev_list_lock); 5185 list_for_each(tmp, &rbd_dev_list) { 5186 rbd_dev = list_entry(tmp, struct rbd_device, node); 5187 if (rbd_dev->dev_id == dev_id) { 5188 ret = 0; 5189 break; 5190 } 5191 } 5192 if (!ret) { 5193 spin_lock_irq(&rbd_dev->lock); 5194 if (rbd_dev->open_count) 5195 ret = -EBUSY; 5196 else 5197 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5198 &rbd_dev->flags); 5199 spin_unlock_irq(&rbd_dev->lock); 5200 } 5201 spin_unlock(&rbd_dev_list_lock); 5202 if (ret < 0 || already) 5203 return ret; 5204 5205 rbd_dev_header_unwatch_sync(rbd_dev); 5206 /* 5207 * flush remaining watch callbacks - these must be complete 5208 * before the osd_client is shutdown 5209 */ 5210 dout("%s: flushing notifies", __func__); 5211 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5212 5213 /* 5214 * Don't free anything from rbd_dev->disk until after all 5215 * notifies are completely processed. Otherwise 5216 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5217 * in a potential use after free of rbd_dev->disk or rbd_dev. 5218 */ 5219 rbd_bus_del_dev(rbd_dev); 5220 rbd_dev_image_release(rbd_dev); 5221 module_put(THIS_MODULE); 5222 5223 return count; 5224 } 5225 5226 static ssize_t rbd_remove(struct bus_type *bus, 5227 const char *buf, 5228 size_t count) 5229 { 5230 if (single_major) 5231 return -EINVAL; 5232 5233 return do_rbd_remove(bus, buf, count); 5234 } 5235 5236 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5237 const char *buf, 5238 size_t count) 5239 { 5240 return do_rbd_remove(bus, buf, count); 5241 } 5242 5243 /* 5244 * create control files in sysfs 5245 * /sys/bus/rbd/... 5246 */ 5247 static int rbd_sysfs_init(void) 5248 { 5249 int ret; 5250 5251 ret = device_register(&rbd_root_dev); 5252 if (ret < 0) 5253 return ret; 5254 5255 ret = bus_register(&rbd_bus_type); 5256 if (ret < 0) 5257 device_unregister(&rbd_root_dev); 5258 5259 return ret; 5260 } 5261 5262 static void rbd_sysfs_cleanup(void) 5263 { 5264 bus_unregister(&rbd_bus_type); 5265 device_unregister(&rbd_root_dev); 5266 } 5267 5268 static int rbd_slab_init(void) 5269 { 5270 rbd_assert(!rbd_img_request_cache); 5271 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5272 sizeof (struct rbd_img_request), 5273 __alignof__(struct rbd_img_request), 5274 0, NULL); 5275 if (!rbd_img_request_cache) 5276 return -ENOMEM; 5277 5278 rbd_assert(!rbd_obj_request_cache); 5279 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5280 sizeof (struct rbd_obj_request), 5281 __alignof__(struct rbd_obj_request), 5282 0, NULL); 5283 if (!rbd_obj_request_cache) 5284 goto out_err; 5285 5286 rbd_assert(!rbd_segment_name_cache); 5287 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5288 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5289 if (rbd_segment_name_cache) 5290 return 0; 5291 out_err: 5292 if (rbd_obj_request_cache) { 5293 kmem_cache_destroy(rbd_obj_request_cache); 5294 rbd_obj_request_cache = NULL; 5295 } 5296 5297 kmem_cache_destroy(rbd_img_request_cache); 5298 rbd_img_request_cache = NULL; 5299 5300 return -ENOMEM; 5301 } 5302 5303 static void rbd_slab_exit(void) 5304 { 5305 rbd_assert(rbd_segment_name_cache); 5306 kmem_cache_destroy(rbd_segment_name_cache); 5307 rbd_segment_name_cache = NULL; 5308 5309 rbd_assert(rbd_obj_request_cache); 5310 kmem_cache_destroy(rbd_obj_request_cache); 5311 rbd_obj_request_cache = NULL; 5312 5313 rbd_assert(rbd_img_request_cache); 5314 kmem_cache_destroy(rbd_img_request_cache); 5315 rbd_img_request_cache = NULL; 5316 } 5317 5318 static int __init rbd_init(void) 5319 { 5320 int rc; 5321 5322 if (!libceph_compatible(NULL)) { 5323 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5324 return -EINVAL; 5325 } 5326 5327 rc = rbd_slab_init(); 5328 if (rc) 5329 return rc; 5330 5331 if (single_major) { 5332 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5333 if (rbd_major < 0) { 5334 rc = rbd_major; 5335 goto err_out_slab; 5336 } 5337 } 5338 5339 rc = rbd_sysfs_init(); 5340 if (rc) 5341 goto err_out_blkdev; 5342 5343 if (single_major) 5344 pr_info("loaded (major %d)\n", rbd_major); 5345 else 5346 pr_info("loaded\n"); 5347 5348 return 0; 5349 5350 err_out_blkdev: 5351 if (single_major) 5352 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5353 err_out_slab: 5354 rbd_slab_exit(); 5355 return rc; 5356 } 5357 5358 static void __exit rbd_exit(void) 5359 { 5360 rbd_sysfs_cleanup(); 5361 if (single_major) 5362 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5363 rbd_slab_exit(); 5364 } 5365 5366 module_init(rbd_init); 5367 module_exit(rbd_exit); 5368 5369 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5370 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5371 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5372 /* following authorship retained from original osdblk.c */ 5373 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5374 5375 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5376 MODULE_LICENSE("GPL"); 5377