xref: /openbmc/linux/drivers/block/rbd.c (revision addee42a)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
120 
121 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
122 				 RBD_FEATURE_STRIPINGV2 |	\
123 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
124 				 RBD_FEATURE_DATA_POOL |	\
125 				 RBD_FEATURE_OPERATIONS)
126 
127 /* Features supported by this (client software) implementation. */
128 
129 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
130 
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN		32
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	s64 data_pool_id;
147 	u64 features;		/* Might be changeable someday? */
148 
149 	/* The remaining fields need to be updated occasionally */
150 	u64 image_size;
151 	struct ceph_snap_context *snapc;
152 	char *snap_names;	/* format 1 only */
153 	u64 *snap_sizes;	/* format 1 only */
154 };
155 
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182 	u64		pool_id;
183 	const char	*pool_name;
184 
185 	const char	*image_id;
186 	const char	*image_name;
187 
188 	u64		snap_id;
189 	const char	*snap_name;
190 
191 	struct kref	kref;
192 };
193 
194 /*
195  * an instance of the client.  multiple devices may share an rbd client.
196  */
197 struct rbd_client {
198 	struct ceph_client	*client;
199 	struct kref		kref;
200 	struct list_head	node;
201 };
202 
203 struct rbd_img_request;
204 
205 enum obj_request_type {
206 	OBJ_REQUEST_NODATA = 1,
207 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
208 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
209 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
210 };
211 
212 enum obj_operation_type {
213 	OBJ_OP_READ = 1,
214 	OBJ_OP_WRITE,
215 	OBJ_OP_DISCARD,
216 };
217 
218 /*
219  * Writes go through the following state machine to deal with
220  * layering:
221  *
222  *                       need copyup
223  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
224  *        |     ^                              |
225  *        v     \------------------------------/
226  *      done
227  *        ^
228  *        |
229  * RBD_OBJ_WRITE_FLAT
230  *
231  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
232  * there is a parent or not.
233  */
234 enum rbd_obj_write_state {
235 	RBD_OBJ_WRITE_FLAT = 1,
236 	RBD_OBJ_WRITE_GUARD,
237 	RBD_OBJ_WRITE_COPYUP,
238 };
239 
240 struct rbd_obj_request {
241 	struct ceph_object_extent ex;
242 	union {
243 		bool			tried_parent;	/* for reads */
244 		enum rbd_obj_write_state write_state;	/* for writes */
245 	};
246 
247 	struct rbd_img_request	*img_request;
248 	struct ceph_file_extent	*img_extents;
249 	u32			num_img_extents;
250 
251 	union {
252 		struct ceph_bio_iter	bio_pos;
253 		struct {
254 			struct ceph_bvec_iter	bvec_pos;
255 			u32			bvec_count;
256 			u32			bvec_idx;
257 		};
258 	};
259 	struct bio_vec		*copyup_bvecs;
260 	u32			copyup_bvec_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	struct kref		kref;
268 };
269 
270 enum img_req_flags {
271 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
272 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
273 };
274 
275 struct rbd_img_request {
276 	struct rbd_device	*rbd_dev;
277 	enum obj_operation_type	op_type;
278 	enum obj_request_type	data_type;
279 	unsigned long		flags;
280 	union {
281 		u64			snap_id;	/* for reads */
282 		struct ceph_snap_context *snapc;	/* for writes */
283 	};
284 	union {
285 		struct request		*rq;		/* block request */
286 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
287 	};
288 	spinlock_t		completion_lock;
289 	u64			xferred;/* aggregate bytes transferred */
290 	int			result;	/* first nonzero obj_request result */
291 
292 	struct list_head	object_extents;	/* obj_req.ex structs */
293 	u32			obj_request_count;
294 	u32			pending_count;
295 
296 	struct kref		kref;
297 };
298 
299 #define for_each_obj_request(ireq, oreq) \
300 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
301 #define for_each_obj_request_safe(ireq, oreq, n) \
302 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
303 
304 enum rbd_watch_state {
305 	RBD_WATCH_STATE_UNREGISTERED,
306 	RBD_WATCH_STATE_REGISTERED,
307 	RBD_WATCH_STATE_ERROR,
308 };
309 
310 enum rbd_lock_state {
311 	RBD_LOCK_STATE_UNLOCKED,
312 	RBD_LOCK_STATE_LOCKED,
313 	RBD_LOCK_STATE_RELEASING,
314 };
315 
316 /* WatchNotify::ClientId */
317 struct rbd_client_id {
318 	u64 gid;
319 	u64 handle;
320 };
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 };
326 
327 /*
328  * a single device
329  */
330 struct rbd_device {
331 	int			dev_id;		/* blkdev unique id */
332 
333 	int			major;		/* blkdev assigned major */
334 	int			minor;
335 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
336 
337 	u32			image_format;	/* Either 1 or 2 */
338 	struct rbd_client	*rbd_client;
339 
340 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
341 
342 	spinlock_t		lock;		/* queue, flags, open_count */
343 
344 	struct rbd_image_header	header;
345 	unsigned long		flags;		/* possibly lock protected */
346 	struct rbd_spec		*spec;
347 	struct rbd_options	*opts;
348 	char			*config_info;	/* add{,_single_major} string */
349 
350 	struct ceph_object_id	header_oid;
351 	struct ceph_object_locator header_oloc;
352 
353 	struct ceph_file_layout	layout;		/* used for all rbd requests */
354 
355 	struct mutex		watch_mutex;
356 	enum rbd_watch_state	watch_state;
357 	struct ceph_osd_linger_request *watch_handle;
358 	u64			watch_cookie;
359 	struct delayed_work	watch_dwork;
360 
361 	struct rw_semaphore	lock_rwsem;
362 	enum rbd_lock_state	lock_state;
363 	char			lock_cookie[32];
364 	struct rbd_client_id	owner_cid;
365 	struct work_struct	acquired_lock_work;
366 	struct work_struct	released_lock_work;
367 	struct delayed_work	lock_dwork;
368 	struct work_struct	unlock_work;
369 	wait_queue_head_t	lock_waitq;
370 
371 	struct workqueue_struct	*task_wq;
372 
373 	struct rbd_spec		*parent_spec;
374 	u64			parent_overlap;
375 	atomic_t		parent_ref;
376 	struct rbd_device	*parent;
377 
378 	/* Block layer tags. */
379 	struct blk_mq_tag_set	tag_set;
380 
381 	/* protects updating the header */
382 	struct rw_semaphore     header_rwsem;
383 
384 	struct rbd_mapping	mapping;
385 
386 	struct list_head	node;
387 
388 	/* sysfs related */
389 	struct device		dev;
390 	unsigned long		open_count;	/* protected by lock */
391 };
392 
393 /*
394  * Flag bits for rbd_dev->flags:
395  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
396  *   by rbd_dev->lock
397  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
398  */
399 enum rbd_dev_flags {
400 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
401 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
402 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
403 };
404 
405 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
406 
407 static LIST_HEAD(rbd_dev_list);    /* devices */
408 static DEFINE_SPINLOCK(rbd_dev_list_lock);
409 
410 static LIST_HEAD(rbd_client_list);		/* clients */
411 static DEFINE_SPINLOCK(rbd_client_list_lock);
412 
413 /* Slab caches for frequently-allocated structures */
414 
415 static struct kmem_cache	*rbd_img_request_cache;
416 static struct kmem_cache	*rbd_obj_request_cache;
417 
418 static int rbd_major;
419 static DEFINE_IDA(rbd_dev_id_ida);
420 
421 static struct workqueue_struct *rbd_wq;
422 
423 /*
424  * single-major requires >= 0.75 version of userspace rbd utility.
425  */
426 static bool single_major = true;
427 module_param(single_major, bool, S_IRUGO);
428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
429 
430 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
431 		       size_t count);
432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
433 			  size_t count);
434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
435 				    size_t count);
436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
437 				       size_t count);
438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
439 
440 static int rbd_dev_id_to_minor(int dev_id)
441 {
442 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
443 }
444 
445 static int minor_to_rbd_dev_id(int minor)
446 {
447 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
448 }
449 
450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
451 {
452 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
453 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
454 }
455 
456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
457 {
458 	bool is_lock_owner;
459 
460 	down_read(&rbd_dev->lock_rwsem);
461 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
462 	up_read(&rbd_dev->lock_rwsem);
463 	return is_lock_owner;
464 }
465 
466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
467 {
468 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
469 }
470 
471 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
472 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
473 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
474 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
475 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
476 
477 static struct attribute *rbd_bus_attrs[] = {
478 	&bus_attr_add.attr,
479 	&bus_attr_remove.attr,
480 	&bus_attr_add_single_major.attr,
481 	&bus_attr_remove_single_major.attr,
482 	&bus_attr_supported_features.attr,
483 	NULL,
484 };
485 
486 static umode_t rbd_bus_is_visible(struct kobject *kobj,
487 				  struct attribute *attr, int index)
488 {
489 	if (!single_major &&
490 	    (attr == &bus_attr_add_single_major.attr ||
491 	     attr == &bus_attr_remove_single_major.attr))
492 		return 0;
493 
494 	return attr->mode;
495 }
496 
497 static const struct attribute_group rbd_bus_group = {
498 	.attrs = rbd_bus_attrs,
499 	.is_visible = rbd_bus_is_visible,
500 };
501 __ATTRIBUTE_GROUPS(rbd_bus);
502 
503 static struct bus_type rbd_bus_type = {
504 	.name		= "rbd",
505 	.bus_groups	= rbd_bus_groups,
506 };
507 
508 static void rbd_root_dev_release(struct device *dev)
509 {
510 }
511 
512 static struct device rbd_root_dev = {
513 	.init_name =    "rbd",
514 	.release =      rbd_root_dev_release,
515 };
516 
517 static __printf(2, 3)
518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
519 {
520 	struct va_format vaf;
521 	va_list args;
522 
523 	va_start(args, fmt);
524 	vaf.fmt = fmt;
525 	vaf.va = &args;
526 
527 	if (!rbd_dev)
528 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
529 	else if (rbd_dev->disk)
530 		printk(KERN_WARNING "%s: %s: %pV\n",
531 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
532 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
533 		printk(KERN_WARNING "%s: image %s: %pV\n",
534 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
535 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
536 		printk(KERN_WARNING "%s: id %s: %pV\n",
537 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
538 	else	/* punt */
539 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
540 			RBD_DRV_NAME, rbd_dev, &vaf);
541 	va_end(args);
542 }
543 
544 #ifdef RBD_DEBUG
545 #define rbd_assert(expr)						\
546 		if (unlikely(!(expr))) {				\
547 			printk(KERN_ERR "\nAssertion failure in %s() "	\
548 						"at line %d:\n\n"	\
549 					"\trbd_assert(%s);\n\n",	\
550 					__func__, __LINE__, #expr);	\
551 			BUG();						\
552 		}
553 #else /* !RBD_DEBUG */
554 #  define rbd_assert(expr)	((void) 0)
555 #endif /* !RBD_DEBUG */
556 
557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
558 
559 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
561 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
564 					u64 snap_id);
565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
566 				u8 *order, u64 *snap_size);
567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
568 		u64 *snap_features);
569 
570 static int rbd_open(struct block_device *bdev, fmode_t mode)
571 {
572 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
573 	bool removing = false;
574 
575 	spin_lock_irq(&rbd_dev->lock);
576 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
577 		removing = true;
578 	else
579 		rbd_dev->open_count++;
580 	spin_unlock_irq(&rbd_dev->lock);
581 	if (removing)
582 		return -ENOENT;
583 
584 	(void) get_device(&rbd_dev->dev);
585 
586 	return 0;
587 }
588 
589 static void rbd_release(struct gendisk *disk, fmode_t mode)
590 {
591 	struct rbd_device *rbd_dev = disk->private_data;
592 	unsigned long open_count_before;
593 
594 	spin_lock_irq(&rbd_dev->lock);
595 	open_count_before = rbd_dev->open_count--;
596 	spin_unlock_irq(&rbd_dev->lock);
597 	rbd_assert(open_count_before > 0);
598 
599 	put_device(&rbd_dev->dev);
600 }
601 
602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
603 {
604 	int ro;
605 
606 	if (get_user(ro, (int __user *)arg))
607 		return -EFAULT;
608 
609 	/* Snapshots can't be marked read-write */
610 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
611 		return -EROFS;
612 
613 	/* Let blkdev_roset() handle it */
614 	return -ENOTTY;
615 }
616 
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618 			unsigned int cmd, unsigned long arg)
619 {
620 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621 	int ret;
622 
623 	switch (cmd) {
624 	case BLKROSET:
625 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
626 		break;
627 	default:
628 		ret = -ENOTTY;
629 	}
630 
631 	return ret;
632 }
633 
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636 				unsigned int cmd, unsigned long arg)
637 {
638 	return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641 
642 static const struct block_device_operations rbd_bd_ops = {
643 	.owner			= THIS_MODULE,
644 	.open			= rbd_open,
645 	.release		= rbd_release,
646 	.ioctl			= rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648 	.compat_ioctl		= rbd_compat_ioctl,
649 #endif
650 };
651 
652 /*
653  * Initialize an rbd client instance.  Success or not, this function
654  * consumes ceph_opts.  Caller holds client_mutex.
655  */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658 	struct rbd_client *rbdc;
659 	int ret = -ENOMEM;
660 
661 	dout("%s:\n", __func__);
662 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663 	if (!rbdc)
664 		goto out_opt;
665 
666 	kref_init(&rbdc->kref);
667 	INIT_LIST_HEAD(&rbdc->node);
668 
669 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
670 	if (IS_ERR(rbdc->client))
671 		goto out_rbdc;
672 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673 
674 	ret = ceph_open_session(rbdc->client);
675 	if (ret < 0)
676 		goto out_client;
677 
678 	spin_lock(&rbd_client_list_lock);
679 	list_add_tail(&rbdc->node, &rbd_client_list);
680 	spin_unlock(&rbd_client_list_lock);
681 
682 	dout("%s: rbdc %p\n", __func__, rbdc);
683 
684 	return rbdc;
685 out_client:
686 	ceph_destroy_client(rbdc->client);
687 out_rbdc:
688 	kfree(rbdc);
689 out_opt:
690 	if (ceph_opts)
691 		ceph_destroy_options(ceph_opts);
692 	dout("%s: error %d\n", __func__, ret);
693 
694 	return ERR_PTR(ret);
695 }
696 
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699 	kref_get(&rbdc->kref);
700 
701 	return rbdc;
702 }
703 
704 /*
705  * Find a ceph client with specific addr and configuration.  If
706  * found, bump its reference count.
707  */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710 	struct rbd_client *client_node;
711 	bool found = false;
712 
713 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714 		return NULL;
715 
716 	spin_lock(&rbd_client_list_lock);
717 	list_for_each_entry(client_node, &rbd_client_list, node) {
718 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
719 			__rbd_get_client(client_node);
720 
721 			found = true;
722 			break;
723 		}
724 	}
725 	spin_unlock(&rbd_client_list_lock);
726 
727 	return found ? client_node : NULL;
728 }
729 
730 /*
731  * (Per device) rbd map options
732  */
733 enum {
734 	Opt_queue_depth,
735 	Opt_lock_timeout,
736 	Opt_last_int,
737 	/* int args above */
738 	Opt_last_string,
739 	/* string args above */
740 	Opt_read_only,
741 	Opt_read_write,
742 	Opt_lock_on_read,
743 	Opt_exclusive,
744 	Opt_notrim,
745 	Opt_err
746 };
747 
748 static match_table_t rbd_opts_tokens = {
749 	{Opt_queue_depth, "queue_depth=%d"},
750 	{Opt_lock_timeout, "lock_timeout=%d"},
751 	/* int args above */
752 	/* string args above */
753 	{Opt_read_only, "read_only"},
754 	{Opt_read_only, "ro"},		/* Alternate spelling */
755 	{Opt_read_write, "read_write"},
756 	{Opt_read_write, "rw"},		/* Alternate spelling */
757 	{Opt_lock_on_read, "lock_on_read"},
758 	{Opt_exclusive, "exclusive"},
759 	{Opt_notrim, "notrim"},
760 	{Opt_err, NULL}
761 };
762 
763 struct rbd_options {
764 	int	queue_depth;
765 	unsigned long	lock_timeout;
766 	bool	read_only;
767 	bool	lock_on_read;
768 	bool	exclusive;
769 	bool	trim;
770 };
771 
772 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
773 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
774 #define RBD_READ_ONLY_DEFAULT	false
775 #define RBD_LOCK_ON_READ_DEFAULT false
776 #define RBD_EXCLUSIVE_DEFAULT	false
777 #define RBD_TRIM_DEFAULT	true
778 
779 static int parse_rbd_opts_token(char *c, void *private)
780 {
781 	struct rbd_options *rbd_opts = private;
782 	substring_t argstr[MAX_OPT_ARGS];
783 	int token, intval, ret;
784 
785 	token = match_token(c, rbd_opts_tokens, argstr);
786 	if (token < Opt_last_int) {
787 		ret = match_int(&argstr[0], &intval);
788 		if (ret < 0) {
789 			pr_err("bad mount option arg (not int) at '%s'\n", c);
790 			return ret;
791 		}
792 		dout("got int token %d val %d\n", token, intval);
793 	} else if (token > Opt_last_int && token < Opt_last_string) {
794 		dout("got string token %d val %s\n", token, argstr[0].from);
795 	} else {
796 		dout("got token %d\n", token);
797 	}
798 
799 	switch (token) {
800 	case Opt_queue_depth:
801 		if (intval < 1) {
802 			pr_err("queue_depth out of range\n");
803 			return -EINVAL;
804 		}
805 		rbd_opts->queue_depth = intval;
806 		break;
807 	case Opt_lock_timeout:
808 		/* 0 is "wait forever" (i.e. infinite timeout) */
809 		if (intval < 0 || intval > INT_MAX / 1000) {
810 			pr_err("lock_timeout out of range\n");
811 			return -EINVAL;
812 		}
813 		rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000);
814 		break;
815 	case Opt_read_only:
816 		rbd_opts->read_only = true;
817 		break;
818 	case Opt_read_write:
819 		rbd_opts->read_only = false;
820 		break;
821 	case Opt_lock_on_read:
822 		rbd_opts->lock_on_read = true;
823 		break;
824 	case Opt_exclusive:
825 		rbd_opts->exclusive = true;
826 		break;
827 	case Opt_notrim:
828 		rbd_opts->trim = false;
829 		break;
830 	default:
831 		/* libceph prints "bad option" msg */
832 		return -EINVAL;
833 	}
834 
835 	return 0;
836 }
837 
838 static char* obj_op_name(enum obj_operation_type op_type)
839 {
840 	switch (op_type) {
841 	case OBJ_OP_READ:
842 		return "read";
843 	case OBJ_OP_WRITE:
844 		return "write";
845 	case OBJ_OP_DISCARD:
846 		return "discard";
847 	default:
848 		return "???";
849 	}
850 }
851 
852 /*
853  * Destroy ceph client
854  *
855  * Caller must hold rbd_client_list_lock.
856  */
857 static void rbd_client_release(struct kref *kref)
858 {
859 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
860 
861 	dout("%s: rbdc %p\n", __func__, rbdc);
862 	spin_lock(&rbd_client_list_lock);
863 	list_del(&rbdc->node);
864 	spin_unlock(&rbd_client_list_lock);
865 
866 	ceph_destroy_client(rbdc->client);
867 	kfree(rbdc);
868 }
869 
870 /*
871  * Drop reference to ceph client node. If it's not referenced anymore, release
872  * it.
873  */
874 static void rbd_put_client(struct rbd_client *rbdc)
875 {
876 	if (rbdc)
877 		kref_put(&rbdc->kref, rbd_client_release);
878 }
879 
880 static int wait_for_latest_osdmap(struct ceph_client *client)
881 {
882 	u64 newest_epoch;
883 	int ret;
884 
885 	ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
886 	if (ret)
887 		return ret;
888 
889 	if (client->osdc.osdmap->epoch >= newest_epoch)
890 		return 0;
891 
892 	ceph_osdc_maybe_request_map(&client->osdc);
893 	return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
894 				     client->options->mount_timeout);
895 }
896 
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904 	struct rbd_client *rbdc;
905 	int ret;
906 
907 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
908 	rbdc = rbd_client_find(ceph_opts);
909 	if (rbdc) {
910 		ceph_destroy_options(ceph_opts);
911 
912 		/*
913 		 * Using an existing client.  Make sure ->pg_pools is up to
914 		 * date before we look up the pool id in do_rbd_add().
915 		 */
916 		ret = wait_for_latest_osdmap(rbdc->client);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1203 			u64 *snap_features)
1204 {
1205 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1206 	if (snap_id == CEPH_NOSNAP) {
1207 		*snap_features = rbd_dev->header.features;
1208 	} else if (rbd_dev->image_format == 1) {
1209 		*snap_features = 0;	/* No features for format 1 */
1210 	} else {
1211 		u64 features = 0;
1212 		int ret;
1213 
1214 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1215 		if (ret)
1216 			return ret;
1217 
1218 		*snap_features = features;
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1224 {
1225 	u64 snap_id = rbd_dev->spec->snap_id;
1226 	u64 size = 0;
1227 	u64 features = 0;
1228 	int ret;
1229 
1230 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1231 	if (ret)
1232 		return ret;
1233 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1234 	if (ret)
1235 		return ret;
1236 
1237 	rbd_dev->mapping.size = size;
1238 	rbd_dev->mapping.features = features;
1239 
1240 	return 0;
1241 }
1242 
1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1244 {
1245 	rbd_dev->mapping.size = 0;
1246 	rbd_dev->mapping.features = 0;
1247 }
1248 
1249 static void zero_bvec(struct bio_vec *bv)
1250 {
1251 	void *buf;
1252 	unsigned long flags;
1253 
1254 	buf = bvec_kmap_irq(bv, &flags);
1255 	memset(buf, 0, bv->bv_len);
1256 	flush_dcache_page(bv->bv_page);
1257 	bvec_kunmap_irq(buf, &flags);
1258 }
1259 
1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1261 {
1262 	struct ceph_bio_iter it = *bio_pos;
1263 
1264 	ceph_bio_iter_advance(&it, off);
1265 	ceph_bio_iter_advance_step(&it, bytes, ({
1266 		zero_bvec(&bv);
1267 	}));
1268 }
1269 
1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1271 {
1272 	struct ceph_bvec_iter it = *bvec_pos;
1273 
1274 	ceph_bvec_iter_advance(&it, off);
1275 	ceph_bvec_iter_advance_step(&it, bytes, ({
1276 		zero_bvec(&bv);
1277 	}));
1278 }
1279 
1280 /*
1281  * Zero a range in @obj_req data buffer defined by a bio (list) or
1282  * (private) bio_vec array.
1283  *
1284  * @off is relative to the start of the data buffer.
1285  */
1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1287 			       u32 bytes)
1288 {
1289 	switch (obj_req->img_request->data_type) {
1290 	case OBJ_REQUEST_BIO:
1291 		zero_bios(&obj_req->bio_pos, off, bytes);
1292 		break;
1293 	case OBJ_REQUEST_BVECS:
1294 	case OBJ_REQUEST_OWN_BVECS:
1295 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1296 		break;
1297 	default:
1298 		rbd_assert(0);
1299 	}
1300 }
1301 
1302 static void rbd_obj_request_destroy(struct kref *kref);
1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1304 {
1305 	rbd_assert(obj_request != NULL);
1306 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1307 		kref_read(&obj_request->kref));
1308 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1309 }
1310 
1311 static void rbd_img_request_get(struct rbd_img_request *img_request)
1312 {
1313 	dout("%s: img %p (was %d)\n", __func__, img_request,
1314 	     kref_read(&img_request->kref));
1315 	kref_get(&img_request->kref);
1316 }
1317 
1318 static void rbd_img_request_destroy(struct kref *kref);
1319 static void rbd_img_request_put(struct rbd_img_request *img_request)
1320 {
1321 	rbd_assert(img_request != NULL);
1322 	dout("%s: img %p (was %d)\n", __func__, img_request,
1323 		kref_read(&img_request->kref));
1324 	kref_put(&img_request->kref, rbd_img_request_destroy);
1325 }
1326 
1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1328 					struct rbd_obj_request *obj_request)
1329 {
1330 	rbd_assert(obj_request->img_request == NULL);
1331 
1332 	/* Image request now owns object's original reference */
1333 	obj_request->img_request = img_request;
1334 	img_request->obj_request_count++;
1335 	img_request->pending_count++;
1336 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1337 }
1338 
1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1340 					struct rbd_obj_request *obj_request)
1341 {
1342 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1343 	list_del(&obj_request->ex.oe_item);
1344 	rbd_assert(img_request->obj_request_count > 0);
1345 	img_request->obj_request_count--;
1346 	rbd_assert(obj_request->img_request == img_request);
1347 	rbd_obj_request_put(obj_request);
1348 }
1349 
1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1351 {
1352 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1353 
1354 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1355 	     obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1356 	     obj_request->ex.oe_len, osd_req);
1357 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1358 }
1359 
1360 /*
1361  * The default/initial value for all image request flags is 0.  Each
1362  * is conditionally set to 1 at image request initialization time
1363  * and currently never change thereafter.
1364  */
1365 static void img_request_layered_set(struct rbd_img_request *img_request)
1366 {
1367 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1368 	smp_mb();
1369 }
1370 
1371 static void img_request_layered_clear(struct rbd_img_request *img_request)
1372 {
1373 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 	smp_mb();
1375 }
1376 
1377 static bool img_request_layered_test(struct rbd_img_request *img_request)
1378 {
1379 	smp_mb();
1380 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1381 }
1382 
1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1384 {
1385 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1386 
1387 	return !obj_req->ex.oe_off &&
1388 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1389 }
1390 
1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1392 {
1393 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1394 
1395 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1396 					rbd_dev->layout.object_size;
1397 }
1398 
1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1400 {
1401 	return ceph_file_extents_bytes(obj_req->img_extents,
1402 				       obj_req->num_img_extents);
1403 }
1404 
1405 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1406 {
1407 	switch (img_req->op_type) {
1408 	case OBJ_OP_READ:
1409 		return false;
1410 	case OBJ_OP_WRITE:
1411 	case OBJ_OP_DISCARD:
1412 		return true;
1413 	default:
1414 		BUG();
1415 	}
1416 }
1417 
1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1419 
1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1421 {
1422 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1423 
1424 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1425 	     osd_req->r_result, obj_req);
1426 	rbd_assert(osd_req == obj_req->osd_req);
1427 
1428 	obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1429 	if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1430 		obj_req->xferred = osd_req->r_result;
1431 	else
1432 		/*
1433 		 * Writes aren't allowed to return a data payload.  In some
1434 		 * guarded write cases (e.g. stat + zero on an empty object)
1435 		 * a stat response makes it through, but we don't care.
1436 		 */
1437 		obj_req->xferred = 0;
1438 
1439 	rbd_obj_handle_request(obj_req);
1440 }
1441 
1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1443 {
1444 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1445 
1446 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1447 	osd_req->r_snapid = obj_request->img_request->snap_id;
1448 }
1449 
1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1451 {
1452 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1453 
1454 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1455 	ktime_get_real_ts(&osd_req->r_mtime);
1456 	osd_req->r_data_offset = obj_request->ex.oe_off;
1457 }
1458 
1459 static struct ceph_osd_request *
1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1461 {
1462 	struct rbd_img_request *img_req = obj_req->img_request;
1463 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1464 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1465 	struct ceph_osd_request *req;
1466 	const char *name_format = rbd_dev->image_format == 1 ?
1467 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1468 
1469 	req = ceph_osdc_alloc_request(osdc,
1470 			(rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1471 			num_ops, false, GFP_NOIO);
1472 	if (!req)
1473 		return NULL;
1474 
1475 	req->r_callback = rbd_osd_req_callback;
1476 	req->r_priv = obj_req;
1477 
1478 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1479 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1480 			rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1481 		goto err_req;
1482 
1483 	if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1484 		goto err_req;
1485 
1486 	return req;
1487 
1488 err_req:
1489 	ceph_osdc_put_request(req);
1490 	return NULL;
1491 }
1492 
1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1494 {
1495 	ceph_osdc_put_request(osd_req);
1496 }
1497 
1498 static struct rbd_obj_request *rbd_obj_request_create(void)
1499 {
1500 	struct rbd_obj_request *obj_request;
1501 
1502 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1503 	if (!obj_request)
1504 		return NULL;
1505 
1506 	ceph_object_extent_init(&obj_request->ex);
1507 	kref_init(&obj_request->kref);
1508 
1509 	dout("%s %p\n", __func__, obj_request);
1510 	return obj_request;
1511 }
1512 
1513 static void rbd_obj_request_destroy(struct kref *kref)
1514 {
1515 	struct rbd_obj_request *obj_request;
1516 	u32 i;
1517 
1518 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1519 
1520 	dout("%s: obj %p\n", __func__, obj_request);
1521 
1522 	if (obj_request->osd_req)
1523 		rbd_osd_req_destroy(obj_request->osd_req);
1524 
1525 	switch (obj_request->img_request->data_type) {
1526 	case OBJ_REQUEST_NODATA:
1527 	case OBJ_REQUEST_BIO:
1528 	case OBJ_REQUEST_BVECS:
1529 		break;		/* Nothing to do */
1530 	case OBJ_REQUEST_OWN_BVECS:
1531 		kfree(obj_request->bvec_pos.bvecs);
1532 		break;
1533 	default:
1534 		rbd_assert(0);
1535 	}
1536 
1537 	kfree(obj_request->img_extents);
1538 	if (obj_request->copyup_bvecs) {
1539 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1540 			if (obj_request->copyup_bvecs[i].bv_page)
1541 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1542 		}
1543 		kfree(obj_request->copyup_bvecs);
1544 	}
1545 
1546 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1547 }
1548 
1549 /* It's OK to call this for a device with no parent */
1550 
1551 static void rbd_spec_put(struct rbd_spec *spec);
1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1553 {
1554 	rbd_dev_remove_parent(rbd_dev);
1555 	rbd_spec_put(rbd_dev->parent_spec);
1556 	rbd_dev->parent_spec = NULL;
1557 	rbd_dev->parent_overlap = 0;
1558 }
1559 
1560 /*
1561  * Parent image reference counting is used to determine when an
1562  * image's parent fields can be safely torn down--after there are no
1563  * more in-flight requests to the parent image.  When the last
1564  * reference is dropped, cleaning them up is safe.
1565  */
1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1567 {
1568 	int counter;
1569 
1570 	if (!rbd_dev->parent_spec)
1571 		return;
1572 
1573 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1574 	if (counter > 0)
1575 		return;
1576 
1577 	/* Last reference; clean up parent data structures */
1578 
1579 	if (!counter)
1580 		rbd_dev_unparent(rbd_dev);
1581 	else
1582 		rbd_warn(rbd_dev, "parent reference underflow");
1583 }
1584 
1585 /*
1586  * If an image has a non-zero parent overlap, get a reference to its
1587  * parent.
1588  *
1589  * Returns true if the rbd device has a parent with a non-zero
1590  * overlap and a reference for it was successfully taken, or
1591  * false otherwise.
1592  */
1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1594 {
1595 	int counter = 0;
1596 
1597 	if (!rbd_dev->parent_spec)
1598 		return false;
1599 
1600 	down_read(&rbd_dev->header_rwsem);
1601 	if (rbd_dev->parent_overlap)
1602 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1603 	up_read(&rbd_dev->header_rwsem);
1604 
1605 	if (counter < 0)
1606 		rbd_warn(rbd_dev, "parent reference overflow");
1607 
1608 	return counter > 0;
1609 }
1610 
1611 /*
1612  * Caller is responsible for filling in the list of object requests
1613  * that comprises the image request, and the Linux request pointer
1614  * (if there is one).
1615  */
1616 static struct rbd_img_request *rbd_img_request_create(
1617 					struct rbd_device *rbd_dev,
1618 					enum obj_operation_type op_type,
1619 					struct ceph_snap_context *snapc)
1620 {
1621 	struct rbd_img_request *img_request;
1622 
1623 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1624 	if (!img_request)
1625 		return NULL;
1626 
1627 	img_request->rbd_dev = rbd_dev;
1628 	img_request->op_type = op_type;
1629 	if (!rbd_img_is_write(img_request))
1630 		img_request->snap_id = rbd_dev->spec->snap_id;
1631 	else
1632 		img_request->snapc = snapc;
1633 
1634 	if (rbd_dev_parent_get(rbd_dev))
1635 		img_request_layered_set(img_request);
1636 
1637 	spin_lock_init(&img_request->completion_lock);
1638 	INIT_LIST_HEAD(&img_request->object_extents);
1639 	kref_init(&img_request->kref);
1640 
1641 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1642 	     obj_op_name(op_type), img_request);
1643 	return img_request;
1644 }
1645 
1646 static void rbd_img_request_destroy(struct kref *kref)
1647 {
1648 	struct rbd_img_request *img_request;
1649 	struct rbd_obj_request *obj_request;
1650 	struct rbd_obj_request *next_obj_request;
1651 
1652 	img_request = container_of(kref, struct rbd_img_request, kref);
1653 
1654 	dout("%s: img %p\n", __func__, img_request);
1655 
1656 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1657 		rbd_img_obj_request_del(img_request, obj_request);
1658 	rbd_assert(img_request->obj_request_count == 0);
1659 
1660 	if (img_request_layered_test(img_request)) {
1661 		img_request_layered_clear(img_request);
1662 		rbd_dev_parent_put(img_request->rbd_dev);
1663 	}
1664 
1665 	if (rbd_img_is_write(img_request))
1666 		ceph_put_snap_context(img_request->snapc);
1667 
1668 	kmem_cache_free(rbd_img_request_cache, img_request);
1669 }
1670 
1671 static void prune_extents(struct ceph_file_extent *img_extents,
1672 			  u32 *num_img_extents, u64 overlap)
1673 {
1674 	u32 cnt = *num_img_extents;
1675 
1676 	/* drop extents completely beyond the overlap */
1677 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1678 		cnt--;
1679 
1680 	if (cnt) {
1681 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
1682 
1683 		/* trim final overlapping extent */
1684 		if (ex->fe_off + ex->fe_len > overlap)
1685 			ex->fe_len = overlap - ex->fe_off;
1686 	}
1687 
1688 	*num_img_extents = cnt;
1689 }
1690 
1691 /*
1692  * Determine the byte range(s) covered by either just the object extent
1693  * or the entire object in the parent image.
1694  */
1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1696 				    bool entire)
1697 {
1698 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1699 	int ret;
1700 
1701 	if (!rbd_dev->parent_overlap)
1702 		return 0;
1703 
1704 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1705 				  entire ? 0 : obj_req->ex.oe_off,
1706 				  entire ? rbd_dev->layout.object_size :
1707 							obj_req->ex.oe_len,
1708 				  &obj_req->img_extents,
1709 				  &obj_req->num_img_extents);
1710 	if (ret)
1711 		return ret;
1712 
1713 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1714 		      rbd_dev->parent_overlap);
1715 	return 0;
1716 }
1717 
1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1719 {
1720 	switch (obj_req->img_request->data_type) {
1721 	case OBJ_REQUEST_BIO:
1722 		osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1723 					       &obj_req->bio_pos,
1724 					       obj_req->ex.oe_len);
1725 		break;
1726 	case OBJ_REQUEST_BVECS:
1727 	case OBJ_REQUEST_OWN_BVECS:
1728 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1729 							obj_req->ex.oe_len);
1730 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1731 		osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1732 						    &obj_req->bvec_pos);
1733 		break;
1734 	default:
1735 		rbd_assert(0);
1736 	}
1737 }
1738 
1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1740 {
1741 	obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1742 	if (!obj_req->osd_req)
1743 		return -ENOMEM;
1744 
1745 	osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1746 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1747 	rbd_osd_req_setup_data(obj_req, 0);
1748 
1749 	rbd_osd_req_format_read(obj_req);
1750 	return 0;
1751 }
1752 
1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1754 				unsigned int which)
1755 {
1756 	struct page **pages;
1757 
1758 	/*
1759 	 * The response data for a STAT call consists of:
1760 	 *     le64 length;
1761 	 *     struct {
1762 	 *         le32 tv_sec;
1763 	 *         le32 tv_nsec;
1764 	 *     } mtime;
1765 	 */
1766 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
1767 	if (IS_ERR(pages))
1768 		return PTR_ERR(pages);
1769 
1770 	osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1771 	osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1772 				     8 + sizeof(struct ceph_timespec),
1773 				     0, false, true);
1774 	return 0;
1775 }
1776 
1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1778 				  unsigned int which)
1779 {
1780 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1781 	u16 opcode;
1782 
1783 	osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1784 				   rbd_dev->layout.object_size,
1785 				   rbd_dev->layout.object_size);
1786 
1787 	if (rbd_obj_is_entire(obj_req))
1788 		opcode = CEPH_OSD_OP_WRITEFULL;
1789 	else
1790 		opcode = CEPH_OSD_OP_WRITE;
1791 
1792 	osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1793 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1794 	rbd_osd_req_setup_data(obj_req, which++);
1795 
1796 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1797 	rbd_osd_req_format_write(obj_req);
1798 }
1799 
1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1801 {
1802 	unsigned int num_osd_ops, which = 0;
1803 	int ret;
1804 
1805 	/* reverse map the entire object onto the parent */
1806 	ret = rbd_obj_calc_img_extents(obj_req, true);
1807 	if (ret)
1808 		return ret;
1809 
1810 	if (obj_req->num_img_extents) {
1811 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1812 		num_osd_ops = 3; /* stat + setallochint + write/writefull */
1813 	} else {
1814 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1815 		num_osd_ops = 2; /* setallochint + write/writefull */
1816 	}
1817 
1818 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1819 	if (!obj_req->osd_req)
1820 		return -ENOMEM;
1821 
1822 	if (obj_req->num_img_extents) {
1823 		ret = __rbd_obj_setup_stat(obj_req, which++);
1824 		if (ret)
1825 			return ret;
1826 	}
1827 
1828 	__rbd_obj_setup_write(obj_req, which);
1829 	return 0;
1830 }
1831 
1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1833 				    unsigned int which)
1834 {
1835 	u16 opcode;
1836 
1837 	if (rbd_obj_is_entire(obj_req)) {
1838 		if (obj_req->num_img_extents) {
1839 			osd_req_op_init(obj_req->osd_req, which++,
1840 					CEPH_OSD_OP_CREATE, 0);
1841 			opcode = CEPH_OSD_OP_TRUNCATE;
1842 		} else {
1843 			osd_req_op_init(obj_req->osd_req, which++,
1844 					CEPH_OSD_OP_DELETE, 0);
1845 			opcode = 0;
1846 		}
1847 	} else if (rbd_obj_is_tail(obj_req)) {
1848 		opcode = CEPH_OSD_OP_TRUNCATE;
1849 	} else {
1850 		opcode = CEPH_OSD_OP_ZERO;
1851 	}
1852 
1853 	if (opcode)
1854 		osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1855 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
1856 				       0, 0);
1857 
1858 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1859 	rbd_osd_req_format_write(obj_req);
1860 }
1861 
1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1863 {
1864 	unsigned int num_osd_ops, which = 0;
1865 	int ret;
1866 
1867 	/* reverse map the entire object onto the parent */
1868 	ret = rbd_obj_calc_img_extents(obj_req, true);
1869 	if (ret)
1870 		return ret;
1871 
1872 	if (rbd_obj_is_entire(obj_req)) {
1873 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1874 		if (obj_req->num_img_extents)
1875 			num_osd_ops = 2; /* create + truncate */
1876 		else
1877 			num_osd_ops = 1; /* delete */
1878 	} else {
1879 		if (obj_req->num_img_extents) {
1880 			obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1881 			num_osd_ops = 2; /* stat + truncate/zero */
1882 		} else {
1883 			obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1884 			num_osd_ops = 1; /* truncate/zero */
1885 		}
1886 	}
1887 
1888 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1889 	if (!obj_req->osd_req)
1890 		return -ENOMEM;
1891 
1892 	if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1893 		ret = __rbd_obj_setup_stat(obj_req, which++);
1894 		if (ret)
1895 			return ret;
1896 	}
1897 
1898 	__rbd_obj_setup_discard(obj_req, which);
1899 	return 0;
1900 }
1901 
1902 /*
1903  * For each object request in @img_req, allocate an OSD request, add
1904  * individual OSD ops and prepare them for submission.  The number of
1905  * OSD ops depends on op_type and the overlap point (if any).
1906  */
1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1908 {
1909 	struct rbd_obj_request *obj_req;
1910 	int ret;
1911 
1912 	for_each_obj_request(img_req, obj_req) {
1913 		switch (img_req->op_type) {
1914 		case OBJ_OP_READ:
1915 			ret = rbd_obj_setup_read(obj_req);
1916 			break;
1917 		case OBJ_OP_WRITE:
1918 			ret = rbd_obj_setup_write(obj_req);
1919 			break;
1920 		case OBJ_OP_DISCARD:
1921 			ret = rbd_obj_setup_discard(obj_req);
1922 			break;
1923 		default:
1924 			rbd_assert(0);
1925 		}
1926 		if (ret)
1927 			return ret;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 union rbd_img_fill_iter {
1934 	struct ceph_bio_iter	bio_iter;
1935 	struct ceph_bvec_iter	bvec_iter;
1936 };
1937 
1938 struct rbd_img_fill_ctx {
1939 	enum obj_request_type	pos_type;
1940 	union rbd_img_fill_iter	*pos;
1941 	union rbd_img_fill_iter	iter;
1942 	ceph_object_extent_fn_t	set_pos_fn;
1943 	ceph_object_extent_fn_t	count_fn;
1944 	ceph_object_extent_fn_t	copy_fn;
1945 };
1946 
1947 static struct ceph_object_extent *alloc_object_extent(void *arg)
1948 {
1949 	struct rbd_img_request *img_req = arg;
1950 	struct rbd_obj_request *obj_req;
1951 
1952 	obj_req = rbd_obj_request_create();
1953 	if (!obj_req)
1954 		return NULL;
1955 
1956 	rbd_img_obj_request_add(img_req, obj_req);
1957 	return &obj_req->ex;
1958 }
1959 
1960 /*
1961  * While su != os && sc == 1 is technically not fancy (it's the same
1962  * layout as su == os && sc == 1), we can't use the nocopy path for it
1963  * because ->set_pos_fn() should be called only once per object.
1964  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1965  * treat su != os && sc == 1 as fancy.
1966  */
1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1968 {
1969 	return l->stripe_unit != l->object_size;
1970 }
1971 
1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1973 				       struct ceph_file_extent *img_extents,
1974 				       u32 num_img_extents,
1975 				       struct rbd_img_fill_ctx *fctx)
1976 {
1977 	u32 i;
1978 	int ret;
1979 
1980 	img_req->data_type = fctx->pos_type;
1981 
1982 	/*
1983 	 * Create object requests and set each object request's starting
1984 	 * position in the provided bio (list) or bio_vec array.
1985 	 */
1986 	fctx->iter = *fctx->pos;
1987 	for (i = 0; i < num_img_extents; i++) {
1988 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
1989 					   img_extents[i].fe_off,
1990 					   img_extents[i].fe_len,
1991 					   &img_req->object_extents,
1992 					   alloc_object_extent, img_req,
1993 					   fctx->set_pos_fn, &fctx->iter);
1994 		if (ret)
1995 			return ret;
1996 	}
1997 
1998 	return __rbd_img_fill_request(img_req);
1999 }
2000 
2001 /*
2002  * Map a list of image extents to a list of object extents, create the
2003  * corresponding object requests (normally each to a different object,
2004  * but not always) and add them to @img_req.  For each object request,
2005  * set up its data descriptor to point to the corresponding chunk(s) of
2006  * @fctx->pos data buffer.
2007  *
2008  * Because ceph_file_to_extents() will merge adjacent object extents
2009  * together, each object request's data descriptor may point to multiple
2010  * different chunks of @fctx->pos data buffer.
2011  *
2012  * @fctx->pos data buffer is assumed to be large enough.
2013  */
2014 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2015 				struct ceph_file_extent *img_extents,
2016 				u32 num_img_extents,
2017 				struct rbd_img_fill_ctx *fctx)
2018 {
2019 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2020 	struct rbd_obj_request *obj_req;
2021 	u32 i;
2022 	int ret;
2023 
2024 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2025 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2026 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2027 						   num_img_extents, fctx);
2028 
2029 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2030 
2031 	/*
2032 	 * Create object requests and determine ->bvec_count for each object
2033 	 * request.  Note that ->bvec_count sum over all object requests may
2034 	 * be greater than the number of bio_vecs in the provided bio (list)
2035 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2036 	 * stripe unit boundaries.
2037 	 */
2038 	fctx->iter = *fctx->pos;
2039 	for (i = 0; i < num_img_extents; i++) {
2040 		ret = ceph_file_to_extents(&rbd_dev->layout,
2041 					   img_extents[i].fe_off,
2042 					   img_extents[i].fe_len,
2043 					   &img_req->object_extents,
2044 					   alloc_object_extent, img_req,
2045 					   fctx->count_fn, &fctx->iter);
2046 		if (ret)
2047 			return ret;
2048 	}
2049 
2050 	for_each_obj_request(img_req, obj_req) {
2051 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2052 					      sizeof(*obj_req->bvec_pos.bvecs),
2053 					      GFP_NOIO);
2054 		if (!obj_req->bvec_pos.bvecs)
2055 			return -ENOMEM;
2056 	}
2057 
2058 	/*
2059 	 * Fill in each object request's private bio_vec array, splitting and
2060 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2061 	 */
2062 	fctx->iter = *fctx->pos;
2063 	for (i = 0; i < num_img_extents; i++) {
2064 		ret = ceph_iterate_extents(&rbd_dev->layout,
2065 					   img_extents[i].fe_off,
2066 					   img_extents[i].fe_len,
2067 					   &img_req->object_extents,
2068 					   fctx->copy_fn, &fctx->iter);
2069 		if (ret)
2070 			return ret;
2071 	}
2072 
2073 	return __rbd_img_fill_request(img_req);
2074 }
2075 
2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2077 			       u64 off, u64 len)
2078 {
2079 	struct ceph_file_extent ex = { off, len };
2080 	union rbd_img_fill_iter dummy;
2081 	struct rbd_img_fill_ctx fctx = {
2082 		.pos_type = OBJ_REQUEST_NODATA,
2083 		.pos = &dummy,
2084 	};
2085 
2086 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2087 }
2088 
2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2090 {
2091 	struct rbd_obj_request *obj_req =
2092 	    container_of(ex, struct rbd_obj_request, ex);
2093 	struct ceph_bio_iter *it = arg;
2094 
2095 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2096 	obj_req->bio_pos = *it;
2097 	ceph_bio_iter_advance(it, bytes);
2098 }
2099 
2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2101 {
2102 	struct rbd_obj_request *obj_req =
2103 	    container_of(ex, struct rbd_obj_request, ex);
2104 	struct ceph_bio_iter *it = arg;
2105 
2106 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2107 	ceph_bio_iter_advance_step(it, bytes, ({
2108 		obj_req->bvec_count++;
2109 	}));
2110 
2111 }
2112 
2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2114 {
2115 	struct rbd_obj_request *obj_req =
2116 	    container_of(ex, struct rbd_obj_request, ex);
2117 	struct ceph_bio_iter *it = arg;
2118 
2119 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2120 	ceph_bio_iter_advance_step(it, bytes, ({
2121 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2122 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2123 	}));
2124 }
2125 
2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2127 				   struct ceph_file_extent *img_extents,
2128 				   u32 num_img_extents,
2129 				   struct ceph_bio_iter *bio_pos)
2130 {
2131 	struct rbd_img_fill_ctx fctx = {
2132 		.pos_type = OBJ_REQUEST_BIO,
2133 		.pos = (union rbd_img_fill_iter *)bio_pos,
2134 		.set_pos_fn = set_bio_pos,
2135 		.count_fn = count_bio_bvecs,
2136 		.copy_fn = copy_bio_bvecs,
2137 	};
2138 
2139 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2140 				    &fctx);
2141 }
2142 
2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2144 				 u64 off, u64 len, struct bio *bio)
2145 {
2146 	struct ceph_file_extent ex = { off, len };
2147 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2148 
2149 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2150 }
2151 
2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2153 {
2154 	struct rbd_obj_request *obj_req =
2155 	    container_of(ex, struct rbd_obj_request, ex);
2156 	struct ceph_bvec_iter *it = arg;
2157 
2158 	obj_req->bvec_pos = *it;
2159 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2160 	ceph_bvec_iter_advance(it, bytes);
2161 }
2162 
2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2164 {
2165 	struct rbd_obj_request *obj_req =
2166 	    container_of(ex, struct rbd_obj_request, ex);
2167 	struct ceph_bvec_iter *it = arg;
2168 
2169 	ceph_bvec_iter_advance_step(it, bytes, ({
2170 		obj_req->bvec_count++;
2171 	}));
2172 }
2173 
2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2175 {
2176 	struct rbd_obj_request *obj_req =
2177 	    container_of(ex, struct rbd_obj_request, ex);
2178 	struct ceph_bvec_iter *it = arg;
2179 
2180 	ceph_bvec_iter_advance_step(it, bytes, ({
2181 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2182 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2183 	}));
2184 }
2185 
2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2187 				     struct ceph_file_extent *img_extents,
2188 				     u32 num_img_extents,
2189 				     struct ceph_bvec_iter *bvec_pos)
2190 {
2191 	struct rbd_img_fill_ctx fctx = {
2192 		.pos_type = OBJ_REQUEST_BVECS,
2193 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2194 		.set_pos_fn = set_bvec_pos,
2195 		.count_fn = count_bvecs,
2196 		.copy_fn = copy_bvecs,
2197 	};
2198 
2199 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2200 				    &fctx);
2201 }
2202 
2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2204 				   struct ceph_file_extent *img_extents,
2205 				   u32 num_img_extents,
2206 				   struct bio_vec *bvecs)
2207 {
2208 	struct ceph_bvec_iter it = {
2209 		.bvecs = bvecs,
2210 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2211 							     num_img_extents) },
2212 	};
2213 
2214 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2215 					 &it);
2216 }
2217 
2218 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2219 {
2220 	struct rbd_obj_request *obj_request;
2221 
2222 	dout("%s: img %p\n", __func__, img_request);
2223 
2224 	rbd_img_request_get(img_request);
2225 	for_each_obj_request(img_request, obj_request)
2226 		rbd_obj_request_submit(obj_request);
2227 
2228 	rbd_img_request_put(img_request);
2229 }
2230 
2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2232 {
2233 	struct rbd_img_request *img_req = obj_req->img_request;
2234 	struct rbd_img_request *child_img_req;
2235 	int ret;
2236 
2237 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2238 					       OBJ_OP_READ, NULL);
2239 	if (!child_img_req)
2240 		return -ENOMEM;
2241 
2242 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2243 	child_img_req->obj_request = obj_req;
2244 
2245 	if (!rbd_img_is_write(img_req)) {
2246 		switch (img_req->data_type) {
2247 		case OBJ_REQUEST_BIO:
2248 			ret = __rbd_img_fill_from_bio(child_img_req,
2249 						      obj_req->img_extents,
2250 						      obj_req->num_img_extents,
2251 						      &obj_req->bio_pos);
2252 			break;
2253 		case OBJ_REQUEST_BVECS:
2254 		case OBJ_REQUEST_OWN_BVECS:
2255 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2256 						      obj_req->img_extents,
2257 						      obj_req->num_img_extents,
2258 						      &obj_req->bvec_pos);
2259 			break;
2260 		default:
2261 			rbd_assert(0);
2262 		}
2263 	} else {
2264 		ret = rbd_img_fill_from_bvecs(child_img_req,
2265 					      obj_req->img_extents,
2266 					      obj_req->num_img_extents,
2267 					      obj_req->copyup_bvecs);
2268 	}
2269 	if (ret) {
2270 		rbd_img_request_put(child_img_req);
2271 		return ret;
2272 	}
2273 
2274 	rbd_img_request_submit(child_img_req);
2275 	return 0;
2276 }
2277 
2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2279 {
2280 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2281 	int ret;
2282 
2283 	if (obj_req->result == -ENOENT &&
2284 	    rbd_dev->parent_overlap && !obj_req->tried_parent) {
2285 		/* reverse map this object extent onto the parent */
2286 		ret = rbd_obj_calc_img_extents(obj_req, false);
2287 		if (ret) {
2288 			obj_req->result = ret;
2289 			return true;
2290 		}
2291 
2292 		if (obj_req->num_img_extents) {
2293 			obj_req->tried_parent = true;
2294 			ret = rbd_obj_read_from_parent(obj_req);
2295 			if (ret) {
2296 				obj_req->result = ret;
2297 				return true;
2298 			}
2299 			return false;
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * -ENOENT means a hole in the image -- zero-fill the entire
2305 	 * length of the request.  A short read also implies zero-fill
2306 	 * to the end of the request.  In both cases we update xferred
2307 	 * count to indicate the whole request was satisfied.
2308 	 */
2309 	if (obj_req->result == -ENOENT ||
2310 	    (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2311 		rbd_assert(!obj_req->xferred || !obj_req->result);
2312 		rbd_obj_zero_range(obj_req, obj_req->xferred,
2313 				   obj_req->ex.oe_len - obj_req->xferred);
2314 		obj_req->result = 0;
2315 		obj_req->xferred = obj_req->ex.oe_len;
2316 	}
2317 
2318 	return true;
2319 }
2320 
2321 /*
2322  * copyup_bvecs pages are never highmem pages
2323  */
2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2325 {
2326 	struct ceph_bvec_iter it = {
2327 		.bvecs = bvecs,
2328 		.iter = { .bi_size = bytes },
2329 	};
2330 
2331 	ceph_bvec_iter_advance_step(&it, bytes, ({
2332 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2333 			       bv.bv_len))
2334 			return false;
2335 	}));
2336 	return true;
2337 }
2338 
2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2340 {
2341 	unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2342 
2343 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2344 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2345 	rbd_osd_req_destroy(obj_req->osd_req);
2346 
2347 	/*
2348 	 * Create a copyup request with the same number of OSD ops as
2349 	 * the original request.  The original request was stat + op(s),
2350 	 * the new copyup request will be copyup + the same op(s).
2351 	 */
2352 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2353 	if (!obj_req->osd_req)
2354 		return -ENOMEM;
2355 
2356 	/*
2357 	 * Only send non-zero copyup data to save some I/O and network
2358 	 * bandwidth -- zero copyup data is equivalent to the object not
2359 	 * existing.
2360 	 */
2361 	if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2362 		dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2363 		bytes = 0;
2364 	}
2365 
2366 	osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2367 			    "copyup");
2368 	osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2369 					  obj_req->copyup_bvecs,
2370 					  obj_req->copyup_bvec_count,
2371 					  bytes);
2372 
2373 	switch (obj_req->img_request->op_type) {
2374 	case OBJ_OP_WRITE:
2375 		__rbd_obj_setup_write(obj_req, 1);
2376 		break;
2377 	case OBJ_OP_DISCARD:
2378 		rbd_assert(!rbd_obj_is_entire(obj_req));
2379 		__rbd_obj_setup_discard(obj_req, 1);
2380 		break;
2381 	default:
2382 		rbd_assert(0);
2383 	}
2384 
2385 	rbd_obj_request_submit(obj_req);
2386 	return 0;
2387 }
2388 
2389 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2390 {
2391 	u32 i;
2392 
2393 	rbd_assert(!obj_req->copyup_bvecs);
2394 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2395 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2396 					sizeof(*obj_req->copyup_bvecs),
2397 					GFP_NOIO);
2398 	if (!obj_req->copyup_bvecs)
2399 		return -ENOMEM;
2400 
2401 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2402 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2403 
2404 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2405 		if (!obj_req->copyup_bvecs[i].bv_page)
2406 			return -ENOMEM;
2407 
2408 		obj_req->copyup_bvecs[i].bv_offset = 0;
2409 		obj_req->copyup_bvecs[i].bv_len = len;
2410 		obj_overlap -= len;
2411 	}
2412 
2413 	rbd_assert(!obj_overlap);
2414 	return 0;
2415 }
2416 
2417 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2418 {
2419 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2420 	int ret;
2421 
2422 	rbd_assert(obj_req->num_img_extents);
2423 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2424 		      rbd_dev->parent_overlap);
2425 	if (!obj_req->num_img_extents) {
2426 		/*
2427 		 * The overlap has become 0 (most likely because the
2428 		 * image has been flattened).  Use rbd_obj_issue_copyup()
2429 		 * to re-submit the original write request -- the copyup
2430 		 * operation itself will be a no-op, since someone must
2431 		 * have populated the child object while we weren't
2432 		 * looking.  Move to WRITE_FLAT state as we'll be done
2433 		 * with the operation once the null copyup completes.
2434 		 */
2435 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2436 		return rbd_obj_issue_copyup(obj_req, 0);
2437 	}
2438 
2439 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2440 	if (ret)
2441 		return ret;
2442 
2443 	obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2444 	return rbd_obj_read_from_parent(obj_req);
2445 }
2446 
2447 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2448 {
2449 	int ret;
2450 
2451 again:
2452 	switch (obj_req->write_state) {
2453 	case RBD_OBJ_WRITE_GUARD:
2454 		rbd_assert(!obj_req->xferred);
2455 		if (obj_req->result == -ENOENT) {
2456 			/*
2457 			 * The target object doesn't exist.  Read the data for
2458 			 * the entire target object up to the overlap point (if
2459 			 * any) from the parent, so we can use it for a copyup.
2460 			 */
2461 			ret = rbd_obj_handle_write_guard(obj_req);
2462 			if (ret) {
2463 				obj_req->result = ret;
2464 				return true;
2465 			}
2466 			return false;
2467 		}
2468 		/* fall through */
2469 	case RBD_OBJ_WRITE_FLAT:
2470 		if (!obj_req->result)
2471 			/*
2472 			 * There is no such thing as a successful short
2473 			 * write -- indicate the whole request was satisfied.
2474 			 */
2475 			obj_req->xferred = obj_req->ex.oe_len;
2476 		return true;
2477 	case RBD_OBJ_WRITE_COPYUP:
2478 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2479 		if (obj_req->result)
2480 			goto again;
2481 
2482 		rbd_assert(obj_req->xferred);
2483 		ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2484 		if (ret) {
2485 			obj_req->result = ret;
2486 			return true;
2487 		}
2488 		return false;
2489 	default:
2490 		BUG();
2491 	}
2492 }
2493 
2494 /*
2495  * Returns true if @obj_req is completed, or false otherwise.
2496  */
2497 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2498 {
2499 	switch (obj_req->img_request->op_type) {
2500 	case OBJ_OP_READ:
2501 		return rbd_obj_handle_read(obj_req);
2502 	case OBJ_OP_WRITE:
2503 		return rbd_obj_handle_write(obj_req);
2504 	case OBJ_OP_DISCARD:
2505 		if (rbd_obj_handle_write(obj_req)) {
2506 			/*
2507 			 * Hide -ENOENT from delete/truncate/zero -- discarding
2508 			 * a non-existent object is not a problem.
2509 			 */
2510 			if (obj_req->result == -ENOENT) {
2511 				obj_req->result = 0;
2512 				obj_req->xferred = obj_req->ex.oe_len;
2513 			}
2514 			return true;
2515 		}
2516 		return false;
2517 	default:
2518 		BUG();
2519 	}
2520 }
2521 
2522 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2523 {
2524 	struct rbd_img_request *img_req = obj_req->img_request;
2525 
2526 	rbd_assert((!obj_req->result &&
2527 		    obj_req->xferred == obj_req->ex.oe_len) ||
2528 		   (obj_req->result < 0 && !obj_req->xferred));
2529 	if (!obj_req->result) {
2530 		img_req->xferred += obj_req->xferred;
2531 		return;
2532 	}
2533 
2534 	rbd_warn(img_req->rbd_dev,
2535 		 "%s at objno %llu %llu~%llu result %d xferred %llu",
2536 		 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2537 		 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2538 		 obj_req->xferred);
2539 	if (!img_req->result) {
2540 		img_req->result = obj_req->result;
2541 		img_req->xferred = 0;
2542 	}
2543 }
2544 
2545 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2546 {
2547 	struct rbd_obj_request *obj_req = img_req->obj_request;
2548 
2549 	rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2550 	rbd_assert((!img_req->result &&
2551 		    img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2552 		   (img_req->result < 0 && !img_req->xferred));
2553 
2554 	obj_req->result = img_req->result;
2555 	obj_req->xferred = img_req->xferred;
2556 	rbd_img_request_put(img_req);
2557 }
2558 
2559 static void rbd_img_end_request(struct rbd_img_request *img_req)
2560 {
2561 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2562 	rbd_assert((!img_req->result &&
2563 		    img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2564 		   (img_req->result < 0 && !img_req->xferred));
2565 
2566 	blk_mq_end_request(img_req->rq,
2567 			   errno_to_blk_status(img_req->result));
2568 	rbd_img_request_put(img_req);
2569 }
2570 
2571 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2572 {
2573 	struct rbd_img_request *img_req;
2574 
2575 again:
2576 	if (!__rbd_obj_handle_request(obj_req))
2577 		return;
2578 
2579 	img_req = obj_req->img_request;
2580 	spin_lock(&img_req->completion_lock);
2581 	rbd_obj_end_request(obj_req);
2582 	rbd_assert(img_req->pending_count);
2583 	if (--img_req->pending_count) {
2584 		spin_unlock(&img_req->completion_lock);
2585 		return;
2586 	}
2587 
2588 	spin_unlock(&img_req->completion_lock);
2589 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2590 		obj_req = img_req->obj_request;
2591 		rbd_img_end_child_request(img_req);
2592 		goto again;
2593 	}
2594 	rbd_img_end_request(img_req);
2595 }
2596 
2597 static const struct rbd_client_id rbd_empty_cid;
2598 
2599 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2600 			  const struct rbd_client_id *rhs)
2601 {
2602 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2603 }
2604 
2605 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2606 {
2607 	struct rbd_client_id cid;
2608 
2609 	mutex_lock(&rbd_dev->watch_mutex);
2610 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2611 	cid.handle = rbd_dev->watch_cookie;
2612 	mutex_unlock(&rbd_dev->watch_mutex);
2613 	return cid;
2614 }
2615 
2616 /*
2617  * lock_rwsem must be held for write
2618  */
2619 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2620 			      const struct rbd_client_id *cid)
2621 {
2622 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2623 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2624 	     cid->gid, cid->handle);
2625 	rbd_dev->owner_cid = *cid; /* struct */
2626 }
2627 
2628 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2629 {
2630 	mutex_lock(&rbd_dev->watch_mutex);
2631 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2632 	mutex_unlock(&rbd_dev->watch_mutex);
2633 }
2634 
2635 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2636 {
2637 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2638 
2639 	strcpy(rbd_dev->lock_cookie, cookie);
2640 	rbd_set_owner_cid(rbd_dev, &cid);
2641 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2642 }
2643 
2644 /*
2645  * lock_rwsem must be held for write
2646  */
2647 static int rbd_lock(struct rbd_device *rbd_dev)
2648 {
2649 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2650 	char cookie[32];
2651 	int ret;
2652 
2653 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2654 		rbd_dev->lock_cookie[0] != '\0');
2655 
2656 	format_lock_cookie(rbd_dev, cookie);
2657 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2658 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2659 			    RBD_LOCK_TAG, "", 0);
2660 	if (ret)
2661 		return ret;
2662 
2663 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2664 	__rbd_lock(rbd_dev, cookie);
2665 	return 0;
2666 }
2667 
2668 /*
2669  * lock_rwsem must be held for write
2670  */
2671 static void rbd_unlock(struct rbd_device *rbd_dev)
2672 {
2673 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2674 	int ret;
2675 
2676 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2677 		rbd_dev->lock_cookie[0] == '\0');
2678 
2679 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2680 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
2681 	if (ret && ret != -ENOENT)
2682 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2683 
2684 	/* treat errors as the image is unlocked */
2685 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2686 	rbd_dev->lock_cookie[0] = '\0';
2687 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2688 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2689 }
2690 
2691 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2692 				enum rbd_notify_op notify_op,
2693 				struct page ***preply_pages,
2694 				size_t *preply_len)
2695 {
2696 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2697 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2698 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2699 	int buf_size = sizeof(buf);
2700 	void *p = buf;
2701 
2702 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2703 
2704 	/* encode *LockPayload NotifyMessage (op + ClientId) */
2705 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2706 	ceph_encode_32(&p, notify_op);
2707 	ceph_encode_64(&p, cid.gid);
2708 	ceph_encode_64(&p, cid.handle);
2709 
2710 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2711 				&rbd_dev->header_oloc, buf, buf_size,
2712 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2713 }
2714 
2715 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2716 			       enum rbd_notify_op notify_op)
2717 {
2718 	struct page **reply_pages;
2719 	size_t reply_len;
2720 
2721 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2722 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2723 }
2724 
2725 static void rbd_notify_acquired_lock(struct work_struct *work)
2726 {
2727 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2728 						  acquired_lock_work);
2729 
2730 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2731 }
2732 
2733 static void rbd_notify_released_lock(struct work_struct *work)
2734 {
2735 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2736 						  released_lock_work);
2737 
2738 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2739 }
2740 
2741 static int rbd_request_lock(struct rbd_device *rbd_dev)
2742 {
2743 	struct page **reply_pages;
2744 	size_t reply_len;
2745 	bool lock_owner_responded = false;
2746 	int ret;
2747 
2748 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2749 
2750 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2751 				   &reply_pages, &reply_len);
2752 	if (ret && ret != -ETIMEDOUT) {
2753 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2754 		goto out;
2755 	}
2756 
2757 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2758 		void *p = page_address(reply_pages[0]);
2759 		void *const end = p + reply_len;
2760 		u32 n;
2761 
2762 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2763 		while (n--) {
2764 			u8 struct_v;
2765 			u32 len;
2766 
2767 			ceph_decode_need(&p, end, 8 + 8, e_inval);
2768 			p += 8 + 8; /* skip gid and cookie */
2769 
2770 			ceph_decode_32_safe(&p, end, len, e_inval);
2771 			if (!len)
2772 				continue;
2773 
2774 			if (lock_owner_responded) {
2775 				rbd_warn(rbd_dev,
2776 					 "duplicate lock owners detected");
2777 				ret = -EIO;
2778 				goto out;
2779 			}
2780 
2781 			lock_owner_responded = true;
2782 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2783 						  &struct_v, &len);
2784 			if (ret) {
2785 				rbd_warn(rbd_dev,
2786 					 "failed to decode ResponseMessage: %d",
2787 					 ret);
2788 				goto e_inval;
2789 			}
2790 
2791 			ret = ceph_decode_32(&p);
2792 		}
2793 	}
2794 
2795 	if (!lock_owner_responded) {
2796 		rbd_warn(rbd_dev, "no lock owners detected");
2797 		ret = -ETIMEDOUT;
2798 	}
2799 
2800 out:
2801 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2802 	return ret;
2803 
2804 e_inval:
2805 	ret = -EINVAL;
2806 	goto out;
2807 }
2808 
2809 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2810 {
2811 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2812 
2813 	cancel_delayed_work(&rbd_dev->lock_dwork);
2814 	if (wake_all)
2815 		wake_up_all(&rbd_dev->lock_waitq);
2816 	else
2817 		wake_up(&rbd_dev->lock_waitq);
2818 }
2819 
2820 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2821 			       struct ceph_locker **lockers, u32 *num_lockers)
2822 {
2823 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2824 	u8 lock_type;
2825 	char *lock_tag;
2826 	int ret;
2827 
2828 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2829 
2830 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2831 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2832 				 &lock_type, &lock_tag, lockers, num_lockers);
2833 	if (ret)
2834 		return ret;
2835 
2836 	if (*num_lockers == 0) {
2837 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2838 		goto out;
2839 	}
2840 
2841 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2842 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2843 			 lock_tag);
2844 		ret = -EBUSY;
2845 		goto out;
2846 	}
2847 
2848 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
2849 		rbd_warn(rbd_dev, "shared lock type detected");
2850 		ret = -EBUSY;
2851 		goto out;
2852 	}
2853 
2854 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2855 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
2856 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2857 			 (*lockers)[0].id.cookie);
2858 		ret = -EBUSY;
2859 		goto out;
2860 	}
2861 
2862 out:
2863 	kfree(lock_tag);
2864 	return ret;
2865 }
2866 
2867 static int find_watcher(struct rbd_device *rbd_dev,
2868 			const struct ceph_locker *locker)
2869 {
2870 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2871 	struct ceph_watch_item *watchers;
2872 	u32 num_watchers;
2873 	u64 cookie;
2874 	int i;
2875 	int ret;
2876 
2877 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2878 				      &rbd_dev->header_oloc, &watchers,
2879 				      &num_watchers);
2880 	if (ret)
2881 		return ret;
2882 
2883 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2884 	for (i = 0; i < num_watchers; i++) {
2885 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
2886 			    sizeof(locker->info.addr)) &&
2887 		    watchers[i].cookie == cookie) {
2888 			struct rbd_client_id cid = {
2889 				.gid = le64_to_cpu(watchers[i].name.num),
2890 				.handle = cookie,
2891 			};
2892 
2893 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2894 			     rbd_dev, cid.gid, cid.handle);
2895 			rbd_set_owner_cid(rbd_dev, &cid);
2896 			ret = 1;
2897 			goto out;
2898 		}
2899 	}
2900 
2901 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2902 	ret = 0;
2903 out:
2904 	kfree(watchers);
2905 	return ret;
2906 }
2907 
2908 /*
2909  * lock_rwsem must be held for write
2910  */
2911 static int rbd_try_lock(struct rbd_device *rbd_dev)
2912 {
2913 	struct ceph_client *client = rbd_dev->rbd_client->client;
2914 	struct ceph_locker *lockers;
2915 	u32 num_lockers;
2916 	int ret;
2917 
2918 	for (;;) {
2919 		ret = rbd_lock(rbd_dev);
2920 		if (ret != -EBUSY)
2921 			return ret;
2922 
2923 		/* determine if the current lock holder is still alive */
2924 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2925 		if (ret)
2926 			return ret;
2927 
2928 		if (num_lockers == 0)
2929 			goto again;
2930 
2931 		ret = find_watcher(rbd_dev, lockers);
2932 		if (ret) {
2933 			if (ret > 0)
2934 				ret = 0; /* have to request lock */
2935 			goto out;
2936 		}
2937 
2938 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2939 			 ENTITY_NAME(lockers[0].id.name));
2940 
2941 		ret = ceph_monc_blacklist_add(&client->monc,
2942 					      &lockers[0].info.addr);
2943 		if (ret) {
2944 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2945 				 ENTITY_NAME(lockers[0].id.name), ret);
2946 			goto out;
2947 		}
2948 
2949 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2950 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2951 					  lockers[0].id.cookie,
2952 					  &lockers[0].id.name);
2953 		if (ret && ret != -ENOENT)
2954 			goto out;
2955 
2956 again:
2957 		ceph_free_lockers(lockers, num_lockers);
2958 	}
2959 
2960 out:
2961 	ceph_free_lockers(lockers, num_lockers);
2962 	return ret;
2963 }
2964 
2965 /*
2966  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2967  */
2968 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2969 						int *pret)
2970 {
2971 	enum rbd_lock_state lock_state;
2972 
2973 	down_read(&rbd_dev->lock_rwsem);
2974 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2975 	     rbd_dev->lock_state);
2976 	if (__rbd_is_lock_owner(rbd_dev)) {
2977 		lock_state = rbd_dev->lock_state;
2978 		up_read(&rbd_dev->lock_rwsem);
2979 		return lock_state;
2980 	}
2981 
2982 	up_read(&rbd_dev->lock_rwsem);
2983 	down_write(&rbd_dev->lock_rwsem);
2984 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
2985 	     rbd_dev->lock_state);
2986 	if (!__rbd_is_lock_owner(rbd_dev)) {
2987 		*pret = rbd_try_lock(rbd_dev);
2988 		if (*pret)
2989 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
2990 	}
2991 
2992 	lock_state = rbd_dev->lock_state;
2993 	up_write(&rbd_dev->lock_rwsem);
2994 	return lock_state;
2995 }
2996 
2997 static void rbd_acquire_lock(struct work_struct *work)
2998 {
2999 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3000 					    struct rbd_device, lock_dwork);
3001 	enum rbd_lock_state lock_state;
3002 	int ret = 0;
3003 
3004 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3005 again:
3006 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3007 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3008 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3009 			wake_requests(rbd_dev, true);
3010 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3011 		     rbd_dev, lock_state, ret);
3012 		return;
3013 	}
3014 
3015 	ret = rbd_request_lock(rbd_dev);
3016 	if (ret == -ETIMEDOUT) {
3017 		goto again; /* treat this as a dead client */
3018 	} else if (ret == -EROFS) {
3019 		rbd_warn(rbd_dev, "peer will not release lock");
3020 		/*
3021 		 * If this is rbd_add_acquire_lock(), we want to fail
3022 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3023 		 * want to block.
3024 		 */
3025 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3026 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3027 			/* wake "rbd map --exclusive" process */
3028 			wake_requests(rbd_dev, false);
3029 		}
3030 	} else if (ret < 0) {
3031 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3032 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3033 				 RBD_RETRY_DELAY);
3034 	} else {
3035 		/*
3036 		 * lock owner acked, but resend if we don't see them
3037 		 * release the lock
3038 		 */
3039 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3040 		     rbd_dev);
3041 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3042 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3043 	}
3044 }
3045 
3046 /*
3047  * lock_rwsem must be held for write
3048  */
3049 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3050 {
3051 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3052 	     rbd_dev->lock_state);
3053 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3054 		return false;
3055 
3056 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3057 	downgrade_write(&rbd_dev->lock_rwsem);
3058 	/*
3059 	 * Ensure that all in-flight IO is flushed.
3060 	 *
3061 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3062 	 * may be shared with other devices.
3063 	 */
3064 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3065 	up_read(&rbd_dev->lock_rwsem);
3066 
3067 	down_write(&rbd_dev->lock_rwsem);
3068 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3069 	     rbd_dev->lock_state);
3070 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3071 		return false;
3072 
3073 	rbd_unlock(rbd_dev);
3074 	/*
3075 	 * Give others a chance to grab the lock - we would re-acquire
3076 	 * almost immediately if we got new IO during ceph_osdc_sync()
3077 	 * otherwise.  We need to ack our own notifications, so this
3078 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3079 	 * after wake_requests() in rbd_handle_released_lock().
3080 	 */
3081 	cancel_delayed_work(&rbd_dev->lock_dwork);
3082 	return true;
3083 }
3084 
3085 static void rbd_release_lock_work(struct work_struct *work)
3086 {
3087 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3088 						  unlock_work);
3089 
3090 	down_write(&rbd_dev->lock_rwsem);
3091 	rbd_release_lock(rbd_dev);
3092 	up_write(&rbd_dev->lock_rwsem);
3093 }
3094 
3095 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3096 				     void **p)
3097 {
3098 	struct rbd_client_id cid = { 0 };
3099 
3100 	if (struct_v >= 2) {
3101 		cid.gid = ceph_decode_64(p);
3102 		cid.handle = ceph_decode_64(p);
3103 	}
3104 
3105 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3106 	     cid.handle);
3107 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3108 		down_write(&rbd_dev->lock_rwsem);
3109 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3110 			/*
3111 			 * we already know that the remote client is
3112 			 * the owner
3113 			 */
3114 			up_write(&rbd_dev->lock_rwsem);
3115 			return;
3116 		}
3117 
3118 		rbd_set_owner_cid(rbd_dev, &cid);
3119 		downgrade_write(&rbd_dev->lock_rwsem);
3120 	} else {
3121 		down_read(&rbd_dev->lock_rwsem);
3122 	}
3123 
3124 	if (!__rbd_is_lock_owner(rbd_dev))
3125 		wake_requests(rbd_dev, false);
3126 	up_read(&rbd_dev->lock_rwsem);
3127 }
3128 
3129 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3130 				     void **p)
3131 {
3132 	struct rbd_client_id cid = { 0 };
3133 
3134 	if (struct_v >= 2) {
3135 		cid.gid = ceph_decode_64(p);
3136 		cid.handle = ceph_decode_64(p);
3137 	}
3138 
3139 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3140 	     cid.handle);
3141 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3142 		down_write(&rbd_dev->lock_rwsem);
3143 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3144 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3145 			     __func__, rbd_dev, cid.gid, cid.handle,
3146 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3147 			up_write(&rbd_dev->lock_rwsem);
3148 			return;
3149 		}
3150 
3151 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3152 		downgrade_write(&rbd_dev->lock_rwsem);
3153 	} else {
3154 		down_read(&rbd_dev->lock_rwsem);
3155 	}
3156 
3157 	if (!__rbd_is_lock_owner(rbd_dev))
3158 		wake_requests(rbd_dev, false);
3159 	up_read(&rbd_dev->lock_rwsem);
3160 }
3161 
3162 /*
3163  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3164  * ResponseMessage is needed.
3165  */
3166 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3167 				   void **p)
3168 {
3169 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3170 	struct rbd_client_id cid = { 0 };
3171 	int result = 1;
3172 
3173 	if (struct_v >= 2) {
3174 		cid.gid = ceph_decode_64(p);
3175 		cid.handle = ceph_decode_64(p);
3176 	}
3177 
3178 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3179 	     cid.handle);
3180 	if (rbd_cid_equal(&cid, &my_cid))
3181 		return result;
3182 
3183 	down_read(&rbd_dev->lock_rwsem);
3184 	if (__rbd_is_lock_owner(rbd_dev)) {
3185 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3186 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3187 			goto out_unlock;
3188 
3189 		/*
3190 		 * encode ResponseMessage(0) so the peer can detect
3191 		 * a missing owner
3192 		 */
3193 		result = 0;
3194 
3195 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3196 			if (!rbd_dev->opts->exclusive) {
3197 				dout("%s rbd_dev %p queueing unlock_work\n",
3198 				     __func__, rbd_dev);
3199 				queue_work(rbd_dev->task_wq,
3200 					   &rbd_dev->unlock_work);
3201 			} else {
3202 				/* refuse to release the lock */
3203 				result = -EROFS;
3204 			}
3205 		}
3206 	}
3207 
3208 out_unlock:
3209 	up_read(&rbd_dev->lock_rwsem);
3210 	return result;
3211 }
3212 
3213 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3214 				     u64 notify_id, u64 cookie, s32 *result)
3215 {
3216 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3217 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3218 	int buf_size = sizeof(buf);
3219 	int ret;
3220 
3221 	if (result) {
3222 		void *p = buf;
3223 
3224 		/* encode ResponseMessage */
3225 		ceph_start_encoding(&p, 1, 1,
3226 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3227 		ceph_encode_32(&p, *result);
3228 	} else {
3229 		buf_size = 0;
3230 	}
3231 
3232 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3233 				   &rbd_dev->header_oloc, notify_id, cookie,
3234 				   buf, buf_size);
3235 	if (ret)
3236 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3237 }
3238 
3239 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3240 				   u64 cookie)
3241 {
3242 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3243 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3244 }
3245 
3246 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3247 					  u64 notify_id, u64 cookie, s32 result)
3248 {
3249 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3250 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3251 }
3252 
3253 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3254 			 u64 notifier_id, void *data, size_t data_len)
3255 {
3256 	struct rbd_device *rbd_dev = arg;
3257 	void *p = data;
3258 	void *const end = p + data_len;
3259 	u8 struct_v = 0;
3260 	u32 len;
3261 	u32 notify_op;
3262 	int ret;
3263 
3264 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3265 	     __func__, rbd_dev, cookie, notify_id, data_len);
3266 	if (data_len) {
3267 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3268 					  &struct_v, &len);
3269 		if (ret) {
3270 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3271 				 ret);
3272 			return;
3273 		}
3274 
3275 		notify_op = ceph_decode_32(&p);
3276 	} else {
3277 		/* legacy notification for header updates */
3278 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3279 		len = 0;
3280 	}
3281 
3282 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3283 	switch (notify_op) {
3284 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3285 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3286 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3287 		break;
3288 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3289 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3290 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3291 		break;
3292 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3293 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3294 		if (ret <= 0)
3295 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3296 						      cookie, ret);
3297 		else
3298 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3299 		break;
3300 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3301 		ret = rbd_dev_refresh(rbd_dev);
3302 		if (ret)
3303 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3304 
3305 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3306 		break;
3307 	default:
3308 		if (rbd_is_lock_owner(rbd_dev))
3309 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3310 						      cookie, -EOPNOTSUPP);
3311 		else
3312 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3313 		break;
3314 	}
3315 }
3316 
3317 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3318 
3319 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3320 {
3321 	struct rbd_device *rbd_dev = arg;
3322 
3323 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3324 
3325 	down_write(&rbd_dev->lock_rwsem);
3326 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3327 	up_write(&rbd_dev->lock_rwsem);
3328 
3329 	mutex_lock(&rbd_dev->watch_mutex);
3330 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3331 		__rbd_unregister_watch(rbd_dev);
3332 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3333 
3334 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3335 	}
3336 	mutex_unlock(&rbd_dev->watch_mutex);
3337 }
3338 
3339 /*
3340  * watch_mutex must be locked
3341  */
3342 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3343 {
3344 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3345 	struct ceph_osd_linger_request *handle;
3346 
3347 	rbd_assert(!rbd_dev->watch_handle);
3348 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3349 
3350 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3351 				 &rbd_dev->header_oloc, rbd_watch_cb,
3352 				 rbd_watch_errcb, rbd_dev);
3353 	if (IS_ERR(handle))
3354 		return PTR_ERR(handle);
3355 
3356 	rbd_dev->watch_handle = handle;
3357 	return 0;
3358 }
3359 
3360 /*
3361  * watch_mutex must be locked
3362  */
3363 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3364 {
3365 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3366 	int ret;
3367 
3368 	rbd_assert(rbd_dev->watch_handle);
3369 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3370 
3371 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3372 	if (ret)
3373 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3374 
3375 	rbd_dev->watch_handle = NULL;
3376 }
3377 
3378 static int rbd_register_watch(struct rbd_device *rbd_dev)
3379 {
3380 	int ret;
3381 
3382 	mutex_lock(&rbd_dev->watch_mutex);
3383 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3384 	ret = __rbd_register_watch(rbd_dev);
3385 	if (ret)
3386 		goto out;
3387 
3388 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3389 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3390 
3391 out:
3392 	mutex_unlock(&rbd_dev->watch_mutex);
3393 	return ret;
3394 }
3395 
3396 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3397 {
3398 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3399 
3400 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3401 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3402 	cancel_work_sync(&rbd_dev->released_lock_work);
3403 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3404 	cancel_work_sync(&rbd_dev->unlock_work);
3405 }
3406 
3407 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3408 {
3409 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3410 	cancel_tasks_sync(rbd_dev);
3411 
3412 	mutex_lock(&rbd_dev->watch_mutex);
3413 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3414 		__rbd_unregister_watch(rbd_dev);
3415 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3416 	mutex_unlock(&rbd_dev->watch_mutex);
3417 
3418 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3419 }
3420 
3421 /*
3422  * lock_rwsem must be held for write
3423  */
3424 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3425 {
3426 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3427 	char cookie[32];
3428 	int ret;
3429 
3430 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3431 
3432 	format_lock_cookie(rbd_dev, cookie);
3433 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3434 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3435 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3436 				  RBD_LOCK_TAG, cookie);
3437 	if (ret) {
3438 		if (ret != -EOPNOTSUPP)
3439 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3440 				 ret);
3441 
3442 		/*
3443 		 * Lock cookie cannot be updated on older OSDs, so do
3444 		 * a manual release and queue an acquire.
3445 		 */
3446 		if (rbd_release_lock(rbd_dev))
3447 			queue_delayed_work(rbd_dev->task_wq,
3448 					   &rbd_dev->lock_dwork, 0);
3449 	} else {
3450 		__rbd_lock(rbd_dev, cookie);
3451 	}
3452 }
3453 
3454 static void rbd_reregister_watch(struct work_struct *work)
3455 {
3456 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3457 					    struct rbd_device, watch_dwork);
3458 	int ret;
3459 
3460 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3461 
3462 	mutex_lock(&rbd_dev->watch_mutex);
3463 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3464 		mutex_unlock(&rbd_dev->watch_mutex);
3465 		return;
3466 	}
3467 
3468 	ret = __rbd_register_watch(rbd_dev);
3469 	if (ret) {
3470 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3471 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3472 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3473 			wake_requests(rbd_dev, true);
3474 		} else {
3475 			queue_delayed_work(rbd_dev->task_wq,
3476 					   &rbd_dev->watch_dwork,
3477 					   RBD_RETRY_DELAY);
3478 		}
3479 		mutex_unlock(&rbd_dev->watch_mutex);
3480 		return;
3481 	}
3482 
3483 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3484 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3485 	mutex_unlock(&rbd_dev->watch_mutex);
3486 
3487 	down_write(&rbd_dev->lock_rwsem);
3488 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3489 		rbd_reacquire_lock(rbd_dev);
3490 	up_write(&rbd_dev->lock_rwsem);
3491 
3492 	ret = rbd_dev_refresh(rbd_dev);
3493 	if (ret)
3494 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3495 }
3496 
3497 /*
3498  * Synchronous osd object method call.  Returns the number of bytes
3499  * returned in the outbound buffer, or a negative error code.
3500  */
3501 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3502 			     struct ceph_object_id *oid,
3503 			     struct ceph_object_locator *oloc,
3504 			     const char *method_name,
3505 			     const void *outbound,
3506 			     size_t outbound_size,
3507 			     void *inbound,
3508 			     size_t inbound_size)
3509 {
3510 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3511 	struct page *req_page = NULL;
3512 	struct page *reply_page;
3513 	int ret;
3514 
3515 	/*
3516 	 * Method calls are ultimately read operations.  The result
3517 	 * should placed into the inbound buffer provided.  They
3518 	 * also supply outbound data--parameters for the object
3519 	 * method.  Currently if this is present it will be a
3520 	 * snapshot id.
3521 	 */
3522 	if (outbound) {
3523 		if (outbound_size > PAGE_SIZE)
3524 			return -E2BIG;
3525 
3526 		req_page = alloc_page(GFP_KERNEL);
3527 		if (!req_page)
3528 			return -ENOMEM;
3529 
3530 		memcpy(page_address(req_page), outbound, outbound_size);
3531 	}
3532 
3533 	reply_page = alloc_page(GFP_KERNEL);
3534 	if (!reply_page) {
3535 		if (req_page)
3536 			__free_page(req_page);
3537 		return -ENOMEM;
3538 	}
3539 
3540 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3541 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3542 			     reply_page, &inbound_size);
3543 	if (!ret) {
3544 		memcpy(inbound, page_address(reply_page), inbound_size);
3545 		ret = inbound_size;
3546 	}
3547 
3548 	if (req_page)
3549 		__free_page(req_page);
3550 	__free_page(reply_page);
3551 	return ret;
3552 }
3553 
3554 /*
3555  * lock_rwsem must be held for read
3556  */
3557 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3558 {
3559 	DEFINE_WAIT(wait);
3560 	unsigned long timeout;
3561 	int ret = 0;
3562 
3563 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3564 		return -EBLACKLISTED;
3565 
3566 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3567 		return 0;
3568 
3569 	if (!may_acquire) {
3570 		rbd_warn(rbd_dev, "exclusive lock required");
3571 		return -EROFS;
3572 	}
3573 
3574 	do {
3575 		/*
3576 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3577 		 * and cancel_delayed_work() in wake_requests().
3578 		 */
3579 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3580 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3581 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3582 					  TASK_UNINTERRUPTIBLE);
3583 		up_read(&rbd_dev->lock_rwsem);
3584 		timeout = schedule_timeout(ceph_timeout_jiffies(
3585 						rbd_dev->opts->lock_timeout));
3586 		down_read(&rbd_dev->lock_rwsem);
3587 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3588 			ret = -EBLACKLISTED;
3589 			break;
3590 		}
3591 		if (!timeout) {
3592 			rbd_warn(rbd_dev, "timed out waiting for lock");
3593 			ret = -ETIMEDOUT;
3594 			break;
3595 		}
3596 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3597 
3598 	finish_wait(&rbd_dev->lock_waitq, &wait);
3599 	return ret;
3600 }
3601 
3602 static void rbd_queue_workfn(struct work_struct *work)
3603 {
3604 	struct request *rq = blk_mq_rq_from_pdu(work);
3605 	struct rbd_device *rbd_dev = rq->q->queuedata;
3606 	struct rbd_img_request *img_request;
3607 	struct ceph_snap_context *snapc = NULL;
3608 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3609 	u64 length = blk_rq_bytes(rq);
3610 	enum obj_operation_type op_type;
3611 	u64 mapping_size;
3612 	bool must_be_locked;
3613 	int result;
3614 
3615 	switch (req_op(rq)) {
3616 	case REQ_OP_DISCARD:
3617 	case REQ_OP_WRITE_ZEROES:
3618 		op_type = OBJ_OP_DISCARD;
3619 		break;
3620 	case REQ_OP_WRITE:
3621 		op_type = OBJ_OP_WRITE;
3622 		break;
3623 	case REQ_OP_READ:
3624 		op_type = OBJ_OP_READ;
3625 		break;
3626 	default:
3627 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3628 		result = -EIO;
3629 		goto err;
3630 	}
3631 
3632 	/* Ignore/skip any zero-length requests */
3633 
3634 	if (!length) {
3635 		dout("%s: zero-length request\n", __func__);
3636 		result = 0;
3637 		goto err_rq;
3638 	}
3639 
3640 	rbd_assert(op_type == OBJ_OP_READ ||
3641 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
3642 
3643 	/*
3644 	 * Quit early if the mapped snapshot no longer exists.  It's
3645 	 * still possible the snapshot will have disappeared by the
3646 	 * time our request arrives at the osd, but there's no sense in
3647 	 * sending it if we already know.
3648 	 */
3649 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3650 		dout("request for non-existent snapshot");
3651 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3652 		result = -ENXIO;
3653 		goto err_rq;
3654 	}
3655 
3656 	if (offset && length > U64_MAX - offset + 1) {
3657 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3658 			 length);
3659 		result = -EINVAL;
3660 		goto err_rq;	/* Shouldn't happen */
3661 	}
3662 
3663 	blk_mq_start_request(rq);
3664 
3665 	down_read(&rbd_dev->header_rwsem);
3666 	mapping_size = rbd_dev->mapping.size;
3667 	if (op_type != OBJ_OP_READ) {
3668 		snapc = rbd_dev->header.snapc;
3669 		ceph_get_snap_context(snapc);
3670 	}
3671 	up_read(&rbd_dev->header_rwsem);
3672 
3673 	if (offset + length > mapping_size) {
3674 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3675 			 length, mapping_size);
3676 		result = -EIO;
3677 		goto err_rq;
3678 	}
3679 
3680 	must_be_locked =
3681 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3682 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3683 	if (must_be_locked) {
3684 		down_read(&rbd_dev->lock_rwsem);
3685 		result = rbd_wait_state_locked(rbd_dev,
3686 					       !rbd_dev->opts->exclusive);
3687 		if (result)
3688 			goto err_unlock;
3689 	}
3690 
3691 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3692 	if (!img_request) {
3693 		result = -ENOMEM;
3694 		goto err_unlock;
3695 	}
3696 	img_request->rq = rq;
3697 	snapc = NULL; /* img_request consumes a ref */
3698 
3699 	if (op_type == OBJ_OP_DISCARD)
3700 		result = rbd_img_fill_nodata(img_request, offset, length);
3701 	else
3702 		result = rbd_img_fill_from_bio(img_request, offset, length,
3703 					       rq->bio);
3704 	if (result)
3705 		goto err_img_request;
3706 
3707 	rbd_img_request_submit(img_request);
3708 	if (must_be_locked)
3709 		up_read(&rbd_dev->lock_rwsem);
3710 	return;
3711 
3712 err_img_request:
3713 	rbd_img_request_put(img_request);
3714 err_unlock:
3715 	if (must_be_locked)
3716 		up_read(&rbd_dev->lock_rwsem);
3717 err_rq:
3718 	if (result)
3719 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3720 			 obj_op_name(op_type), length, offset, result);
3721 	ceph_put_snap_context(snapc);
3722 err:
3723 	blk_mq_end_request(rq, errno_to_blk_status(result));
3724 }
3725 
3726 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3727 		const struct blk_mq_queue_data *bd)
3728 {
3729 	struct request *rq = bd->rq;
3730 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3731 
3732 	queue_work(rbd_wq, work);
3733 	return BLK_STS_OK;
3734 }
3735 
3736 static void rbd_free_disk(struct rbd_device *rbd_dev)
3737 {
3738 	blk_cleanup_queue(rbd_dev->disk->queue);
3739 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3740 	put_disk(rbd_dev->disk);
3741 	rbd_dev->disk = NULL;
3742 }
3743 
3744 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3745 			     struct ceph_object_id *oid,
3746 			     struct ceph_object_locator *oloc,
3747 			     void *buf, int buf_len)
3748 
3749 {
3750 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3751 	struct ceph_osd_request *req;
3752 	struct page **pages;
3753 	int num_pages = calc_pages_for(0, buf_len);
3754 	int ret;
3755 
3756 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3757 	if (!req)
3758 		return -ENOMEM;
3759 
3760 	ceph_oid_copy(&req->r_base_oid, oid);
3761 	ceph_oloc_copy(&req->r_base_oloc, oloc);
3762 	req->r_flags = CEPH_OSD_FLAG_READ;
3763 
3764 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3765 	if (ret)
3766 		goto out_req;
3767 
3768 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3769 	if (IS_ERR(pages)) {
3770 		ret = PTR_ERR(pages);
3771 		goto out_req;
3772 	}
3773 
3774 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3775 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3776 					 true);
3777 
3778 	ceph_osdc_start_request(osdc, req, false);
3779 	ret = ceph_osdc_wait_request(osdc, req);
3780 	if (ret >= 0)
3781 		ceph_copy_from_page_vector(pages, buf, 0, ret);
3782 
3783 out_req:
3784 	ceph_osdc_put_request(req);
3785 	return ret;
3786 }
3787 
3788 /*
3789  * Read the complete header for the given rbd device.  On successful
3790  * return, the rbd_dev->header field will contain up-to-date
3791  * information about the image.
3792  */
3793 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3794 {
3795 	struct rbd_image_header_ondisk *ondisk = NULL;
3796 	u32 snap_count = 0;
3797 	u64 names_size = 0;
3798 	u32 want_count;
3799 	int ret;
3800 
3801 	/*
3802 	 * The complete header will include an array of its 64-bit
3803 	 * snapshot ids, followed by the names of those snapshots as
3804 	 * a contiguous block of NUL-terminated strings.  Note that
3805 	 * the number of snapshots could change by the time we read
3806 	 * it in, in which case we re-read it.
3807 	 */
3808 	do {
3809 		size_t size;
3810 
3811 		kfree(ondisk);
3812 
3813 		size = sizeof (*ondisk);
3814 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3815 		size += names_size;
3816 		ondisk = kmalloc(size, GFP_KERNEL);
3817 		if (!ondisk)
3818 			return -ENOMEM;
3819 
3820 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3821 					&rbd_dev->header_oloc, ondisk, size);
3822 		if (ret < 0)
3823 			goto out;
3824 		if ((size_t)ret < size) {
3825 			ret = -ENXIO;
3826 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3827 				size, ret);
3828 			goto out;
3829 		}
3830 		if (!rbd_dev_ondisk_valid(ondisk)) {
3831 			ret = -ENXIO;
3832 			rbd_warn(rbd_dev, "invalid header");
3833 			goto out;
3834 		}
3835 
3836 		names_size = le64_to_cpu(ondisk->snap_names_len);
3837 		want_count = snap_count;
3838 		snap_count = le32_to_cpu(ondisk->snap_count);
3839 	} while (snap_count != want_count);
3840 
3841 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3842 out:
3843 	kfree(ondisk);
3844 
3845 	return ret;
3846 }
3847 
3848 /*
3849  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3850  * has disappeared from the (just updated) snapshot context.
3851  */
3852 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3853 {
3854 	u64 snap_id;
3855 
3856 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3857 		return;
3858 
3859 	snap_id = rbd_dev->spec->snap_id;
3860 	if (snap_id == CEPH_NOSNAP)
3861 		return;
3862 
3863 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3864 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3865 }
3866 
3867 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3868 {
3869 	sector_t size;
3870 
3871 	/*
3872 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3873 	 * try to update its size.  If REMOVING is set, updating size
3874 	 * is just useless work since the device can't be opened.
3875 	 */
3876 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3877 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3878 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3879 		dout("setting size to %llu sectors", (unsigned long long)size);
3880 		set_capacity(rbd_dev->disk, size);
3881 		revalidate_disk(rbd_dev->disk);
3882 	}
3883 }
3884 
3885 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3886 {
3887 	u64 mapping_size;
3888 	int ret;
3889 
3890 	down_write(&rbd_dev->header_rwsem);
3891 	mapping_size = rbd_dev->mapping.size;
3892 
3893 	ret = rbd_dev_header_info(rbd_dev);
3894 	if (ret)
3895 		goto out;
3896 
3897 	/*
3898 	 * If there is a parent, see if it has disappeared due to the
3899 	 * mapped image getting flattened.
3900 	 */
3901 	if (rbd_dev->parent) {
3902 		ret = rbd_dev_v2_parent_info(rbd_dev);
3903 		if (ret)
3904 			goto out;
3905 	}
3906 
3907 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3908 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3909 	} else {
3910 		/* validate mapped snapshot's EXISTS flag */
3911 		rbd_exists_validate(rbd_dev);
3912 	}
3913 
3914 out:
3915 	up_write(&rbd_dev->header_rwsem);
3916 	if (!ret && mapping_size != rbd_dev->mapping.size)
3917 		rbd_dev_update_size(rbd_dev);
3918 
3919 	return ret;
3920 }
3921 
3922 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3923 		unsigned int hctx_idx, unsigned int numa_node)
3924 {
3925 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3926 
3927 	INIT_WORK(work, rbd_queue_workfn);
3928 	return 0;
3929 }
3930 
3931 static const struct blk_mq_ops rbd_mq_ops = {
3932 	.queue_rq	= rbd_queue_rq,
3933 	.init_request	= rbd_init_request,
3934 };
3935 
3936 static int rbd_init_disk(struct rbd_device *rbd_dev)
3937 {
3938 	struct gendisk *disk;
3939 	struct request_queue *q;
3940 	unsigned int objset_bytes =
3941 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3942 	int err;
3943 
3944 	/* create gendisk info */
3945 	disk = alloc_disk(single_major ?
3946 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3947 			  RBD_MINORS_PER_MAJOR);
3948 	if (!disk)
3949 		return -ENOMEM;
3950 
3951 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3952 		 rbd_dev->dev_id);
3953 	disk->major = rbd_dev->major;
3954 	disk->first_minor = rbd_dev->minor;
3955 	if (single_major)
3956 		disk->flags |= GENHD_FL_EXT_DEVT;
3957 	disk->fops = &rbd_bd_ops;
3958 	disk->private_data = rbd_dev;
3959 
3960 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3961 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3962 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3963 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3964 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3965 	rbd_dev->tag_set.nr_hw_queues = 1;
3966 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3967 
3968 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3969 	if (err)
3970 		goto out_disk;
3971 
3972 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3973 	if (IS_ERR(q)) {
3974 		err = PTR_ERR(q);
3975 		goto out_tag_set;
3976 	}
3977 
3978 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3979 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3980 
3981 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
3982 	q->limits.max_sectors = queue_max_hw_sectors(q);
3983 	blk_queue_max_segments(q, USHRT_MAX);
3984 	blk_queue_max_segment_size(q, UINT_MAX);
3985 	blk_queue_io_min(q, objset_bytes);
3986 	blk_queue_io_opt(q, objset_bytes);
3987 
3988 	if (rbd_dev->opts->trim) {
3989 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
3990 		q->limits.discard_granularity = objset_bytes;
3991 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
3992 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
3993 	}
3994 
3995 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3996 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
3997 
3998 	/*
3999 	 * disk_release() expects a queue ref from add_disk() and will
4000 	 * put it.  Hold an extra ref until add_disk() is called.
4001 	 */
4002 	WARN_ON(!blk_get_queue(q));
4003 	disk->queue = q;
4004 	q->queuedata = rbd_dev;
4005 
4006 	rbd_dev->disk = disk;
4007 
4008 	return 0;
4009 out_tag_set:
4010 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4011 out_disk:
4012 	put_disk(disk);
4013 	return err;
4014 }
4015 
4016 /*
4017   sysfs
4018 */
4019 
4020 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4021 {
4022 	return container_of(dev, struct rbd_device, dev);
4023 }
4024 
4025 static ssize_t rbd_size_show(struct device *dev,
4026 			     struct device_attribute *attr, char *buf)
4027 {
4028 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4029 
4030 	return sprintf(buf, "%llu\n",
4031 		(unsigned long long)rbd_dev->mapping.size);
4032 }
4033 
4034 /*
4035  * Note this shows the features for whatever's mapped, which is not
4036  * necessarily the base image.
4037  */
4038 static ssize_t rbd_features_show(struct device *dev,
4039 			     struct device_attribute *attr, char *buf)
4040 {
4041 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4042 
4043 	return sprintf(buf, "0x%016llx\n",
4044 			(unsigned long long)rbd_dev->mapping.features);
4045 }
4046 
4047 static ssize_t rbd_major_show(struct device *dev,
4048 			      struct device_attribute *attr, char *buf)
4049 {
4050 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4051 
4052 	if (rbd_dev->major)
4053 		return sprintf(buf, "%d\n", rbd_dev->major);
4054 
4055 	return sprintf(buf, "(none)\n");
4056 }
4057 
4058 static ssize_t rbd_minor_show(struct device *dev,
4059 			      struct device_attribute *attr, char *buf)
4060 {
4061 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4062 
4063 	return sprintf(buf, "%d\n", rbd_dev->minor);
4064 }
4065 
4066 static ssize_t rbd_client_addr_show(struct device *dev,
4067 				    struct device_attribute *attr, char *buf)
4068 {
4069 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4070 	struct ceph_entity_addr *client_addr =
4071 	    ceph_client_addr(rbd_dev->rbd_client->client);
4072 
4073 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4074 		       le32_to_cpu(client_addr->nonce));
4075 }
4076 
4077 static ssize_t rbd_client_id_show(struct device *dev,
4078 				  struct device_attribute *attr, char *buf)
4079 {
4080 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4081 
4082 	return sprintf(buf, "client%lld\n",
4083 		       ceph_client_gid(rbd_dev->rbd_client->client));
4084 }
4085 
4086 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4087 				     struct device_attribute *attr, char *buf)
4088 {
4089 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4090 
4091 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4092 }
4093 
4094 static ssize_t rbd_config_info_show(struct device *dev,
4095 				    struct device_attribute *attr, char *buf)
4096 {
4097 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4098 
4099 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4100 }
4101 
4102 static ssize_t rbd_pool_show(struct device *dev,
4103 			     struct device_attribute *attr, char *buf)
4104 {
4105 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4106 
4107 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4108 }
4109 
4110 static ssize_t rbd_pool_id_show(struct device *dev,
4111 			     struct device_attribute *attr, char *buf)
4112 {
4113 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4114 
4115 	return sprintf(buf, "%llu\n",
4116 			(unsigned long long) rbd_dev->spec->pool_id);
4117 }
4118 
4119 static ssize_t rbd_name_show(struct device *dev,
4120 			     struct device_attribute *attr, char *buf)
4121 {
4122 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4123 
4124 	if (rbd_dev->spec->image_name)
4125 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4126 
4127 	return sprintf(buf, "(unknown)\n");
4128 }
4129 
4130 static ssize_t rbd_image_id_show(struct device *dev,
4131 			     struct device_attribute *attr, char *buf)
4132 {
4133 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4134 
4135 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4136 }
4137 
4138 /*
4139  * Shows the name of the currently-mapped snapshot (or
4140  * RBD_SNAP_HEAD_NAME for the base image).
4141  */
4142 static ssize_t rbd_snap_show(struct device *dev,
4143 			     struct device_attribute *attr,
4144 			     char *buf)
4145 {
4146 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4147 
4148 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4149 }
4150 
4151 static ssize_t rbd_snap_id_show(struct device *dev,
4152 				struct device_attribute *attr, char *buf)
4153 {
4154 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4155 
4156 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4157 }
4158 
4159 /*
4160  * For a v2 image, shows the chain of parent images, separated by empty
4161  * lines.  For v1 images or if there is no parent, shows "(no parent
4162  * image)".
4163  */
4164 static ssize_t rbd_parent_show(struct device *dev,
4165 			       struct device_attribute *attr,
4166 			       char *buf)
4167 {
4168 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4169 	ssize_t count = 0;
4170 
4171 	if (!rbd_dev->parent)
4172 		return sprintf(buf, "(no parent image)\n");
4173 
4174 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4175 		struct rbd_spec *spec = rbd_dev->parent_spec;
4176 
4177 		count += sprintf(&buf[count], "%s"
4178 			    "pool_id %llu\npool_name %s\n"
4179 			    "image_id %s\nimage_name %s\n"
4180 			    "snap_id %llu\nsnap_name %s\n"
4181 			    "overlap %llu\n",
4182 			    !count ? "" : "\n", /* first? */
4183 			    spec->pool_id, spec->pool_name,
4184 			    spec->image_id, spec->image_name ?: "(unknown)",
4185 			    spec->snap_id, spec->snap_name,
4186 			    rbd_dev->parent_overlap);
4187 	}
4188 
4189 	return count;
4190 }
4191 
4192 static ssize_t rbd_image_refresh(struct device *dev,
4193 				 struct device_attribute *attr,
4194 				 const char *buf,
4195 				 size_t size)
4196 {
4197 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4198 	int ret;
4199 
4200 	ret = rbd_dev_refresh(rbd_dev);
4201 	if (ret)
4202 		return ret;
4203 
4204 	return size;
4205 }
4206 
4207 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4208 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4209 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4210 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4211 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4212 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4213 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4214 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4215 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4216 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4217 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4218 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4219 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4220 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4221 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4222 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4223 
4224 static struct attribute *rbd_attrs[] = {
4225 	&dev_attr_size.attr,
4226 	&dev_attr_features.attr,
4227 	&dev_attr_major.attr,
4228 	&dev_attr_minor.attr,
4229 	&dev_attr_client_addr.attr,
4230 	&dev_attr_client_id.attr,
4231 	&dev_attr_cluster_fsid.attr,
4232 	&dev_attr_config_info.attr,
4233 	&dev_attr_pool.attr,
4234 	&dev_attr_pool_id.attr,
4235 	&dev_attr_name.attr,
4236 	&dev_attr_image_id.attr,
4237 	&dev_attr_current_snap.attr,
4238 	&dev_attr_snap_id.attr,
4239 	&dev_attr_parent.attr,
4240 	&dev_attr_refresh.attr,
4241 	NULL
4242 };
4243 
4244 static struct attribute_group rbd_attr_group = {
4245 	.attrs = rbd_attrs,
4246 };
4247 
4248 static const struct attribute_group *rbd_attr_groups[] = {
4249 	&rbd_attr_group,
4250 	NULL
4251 };
4252 
4253 static void rbd_dev_release(struct device *dev);
4254 
4255 static const struct device_type rbd_device_type = {
4256 	.name		= "rbd",
4257 	.groups		= rbd_attr_groups,
4258 	.release	= rbd_dev_release,
4259 };
4260 
4261 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4262 {
4263 	kref_get(&spec->kref);
4264 
4265 	return spec;
4266 }
4267 
4268 static void rbd_spec_free(struct kref *kref);
4269 static void rbd_spec_put(struct rbd_spec *spec)
4270 {
4271 	if (spec)
4272 		kref_put(&spec->kref, rbd_spec_free);
4273 }
4274 
4275 static struct rbd_spec *rbd_spec_alloc(void)
4276 {
4277 	struct rbd_spec *spec;
4278 
4279 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4280 	if (!spec)
4281 		return NULL;
4282 
4283 	spec->pool_id = CEPH_NOPOOL;
4284 	spec->snap_id = CEPH_NOSNAP;
4285 	kref_init(&spec->kref);
4286 
4287 	return spec;
4288 }
4289 
4290 static void rbd_spec_free(struct kref *kref)
4291 {
4292 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4293 
4294 	kfree(spec->pool_name);
4295 	kfree(spec->image_id);
4296 	kfree(spec->image_name);
4297 	kfree(spec->snap_name);
4298 	kfree(spec);
4299 }
4300 
4301 static void rbd_dev_free(struct rbd_device *rbd_dev)
4302 {
4303 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4304 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4305 
4306 	ceph_oid_destroy(&rbd_dev->header_oid);
4307 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4308 	kfree(rbd_dev->config_info);
4309 
4310 	rbd_put_client(rbd_dev->rbd_client);
4311 	rbd_spec_put(rbd_dev->spec);
4312 	kfree(rbd_dev->opts);
4313 	kfree(rbd_dev);
4314 }
4315 
4316 static void rbd_dev_release(struct device *dev)
4317 {
4318 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4319 	bool need_put = !!rbd_dev->opts;
4320 
4321 	if (need_put) {
4322 		destroy_workqueue(rbd_dev->task_wq);
4323 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4324 	}
4325 
4326 	rbd_dev_free(rbd_dev);
4327 
4328 	/*
4329 	 * This is racy, but way better than putting module outside of
4330 	 * the release callback.  The race window is pretty small, so
4331 	 * doing something similar to dm (dm-builtin.c) is overkill.
4332 	 */
4333 	if (need_put)
4334 		module_put(THIS_MODULE);
4335 }
4336 
4337 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4338 					   struct rbd_spec *spec)
4339 {
4340 	struct rbd_device *rbd_dev;
4341 
4342 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4343 	if (!rbd_dev)
4344 		return NULL;
4345 
4346 	spin_lock_init(&rbd_dev->lock);
4347 	INIT_LIST_HEAD(&rbd_dev->node);
4348 	init_rwsem(&rbd_dev->header_rwsem);
4349 
4350 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4351 	ceph_oid_init(&rbd_dev->header_oid);
4352 	rbd_dev->header_oloc.pool = spec->pool_id;
4353 
4354 	mutex_init(&rbd_dev->watch_mutex);
4355 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4356 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4357 
4358 	init_rwsem(&rbd_dev->lock_rwsem);
4359 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4360 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4361 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4362 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4363 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4364 	init_waitqueue_head(&rbd_dev->lock_waitq);
4365 
4366 	rbd_dev->dev.bus = &rbd_bus_type;
4367 	rbd_dev->dev.type = &rbd_device_type;
4368 	rbd_dev->dev.parent = &rbd_root_dev;
4369 	device_initialize(&rbd_dev->dev);
4370 
4371 	rbd_dev->rbd_client = rbdc;
4372 	rbd_dev->spec = spec;
4373 
4374 	return rbd_dev;
4375 }
4376 
4377 /*
4378  * Create a mapping rbd_dev.
4379  */
4380 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4381 					 struct rbd_spec *spec,
4382 					 struct rbd_options *opts)
4383 {
4384 	struct rbd_device *rbd_dev;
4385 
4386 	rbd_dev = __rbd_dev_create(rbdc, spec);
4387 	if (!rbd_dev)
4388 		return NULL;
4389 
4390 	rbd_dev->opts = opts;
4391 
4392 	/* get an id and fill in device name */
4393 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4394 					 minor_to_rbd_dev_id(1 << MINORBITS),
4395 					 GFP_KERNEL);
4396 	if (rbd_dev->dev_id < 0)
4397 		goto fail_rbd_dev;
4398 
4399 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4400 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4401 						   rbd_dev->name);
4402 	if (!rbd_dev->task_wq)
4403 		goto fail_dev_id;
4404 
4405 	/* we have a ref from do_rbd_add() */
4406 	__module_get(THIS_MODULE);
4407 
4408 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4409 	return rbd_dev;
4410 
4411 fail_dev_id:
4412 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4413 fail_rbd_dev:
4414 	rbd_dev_free(rbd_dev);
4415 	return NULL;
4416 }
4417 
4418 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4419 {
4420 	if (rbd_dev)
4421 		put_device(&rbd_dev->dev);
4422 }
4423 
4424 /*
4425  * Get the size and object order for an image snapshot, or if
4426  * snap_id is CEPH_NOSNAP, gets this information for the base
4427  * image.
4428  */
4429 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4430 				u8 *order, u64 *snap_size)
4431 {
4432 	__le64 snapid = cpu_to_le64(snap_id);
4433 	int ret;
4434 	struct {
4435 		u8 order;
4436 		__le64 size;
4437 	} __attribute__ ((packed)) size_buf = { 0 };
4438 
4439 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4440 				  &rbd_dev->header_oloc, "get_size",
4441 				  &snapid, sizeof(snapid),
4442 				  &size_buf, sizeof(size_buf));
4443 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4444 	if (ret < 0)
4445 		return ret;
4446 	if (ret < sizeof (size_buf))
4447 		return -ERANGE;
4448 
4449 	if (order) {
4450 		*order = size_buf.order;
4451 		dout("  order %u", (unsigned int)*order);
4452 	}
4453 	*snap_size = le64_to_cpu(size_buf.size);
4454 
4455 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4456 		(unsigned long long)snap_id,
4457 		(unsigned long long)*snap_size);
4458 
4459 	return 0;
4460 }
4461 
4462 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4463 {
4464 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4465 					&rbd_dev->header.obj_order,
4466 					&rbd_dev->header.image_size);
4467 }
4468 
4469 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4470 {
4471 	void *reply_buf;
4472 	int ret;
4473 	void *p;
4474 
4475 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4476 	if (!reply_buf)
4477 		return -ENOMEM;
4478 
4479 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4480 				  &rbd_dev->header_oloc, "get_object_prefix",
4481 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4482 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4483 	if (ret < 0)
4484 		goto out;
4485 
4486 	p = reply_buf;
4487 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4488 						p + ret, NULL, GFP_NOIO);
4489 	ret = 0;
4490 
4491 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4492 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4493 		rbd_dev->header.object_prefix = NULL;
4494 	} else {
4495 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4496 	}
4497 out:
4498 	kfree(reply_buf);
4499 
4500 	return ret;
4501 }
4502 
4503 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4504 		u64 *snap_features)
4505 {
4506 	__le64 snapid = cpu_to_le64(snap_id);
4507 	struct {
4508 		__le64 features;
4509 		__le64 incompat;
4510 	} __attribute__ ((packed)) features_buf = { 0 };
4511 	u64 unsup;
4512 	int ret;
4513 
4514 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4515 				  &rbd_dev->header_oloc, "get_features",
4516 				  &snapid, sizeof(snapid),
4517 				  &features_buf, sizeof(features_buf));
4518 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4519 	if (ret < 0)
4520 		return ret;
4521 	if (ret < sizeof (features_buf))
4522 		return -ERANGE;
4523 
4524 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4525 	if (unsup) {
4526 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4527 			 unsup);
4528 		return -ENXIO;
4529 	}
4530 
4531 	*snap_features = le64_to_cpu(features_buf.features);
4532 
4533 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4534 		(unsigned long long)snap_id,
4535 		(unsigned long long)*snap_features,
4536 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4537 
4538 	return 0;
4539 }
4540 
4541 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4542 {
4543 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4544 						&rbd_dev->header.features);
4545 }
4546 
4547 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4548 {
4549 	struct rbd_spec *parent_spec;
4550 	size_t size;
4551 	void *reply_buf = NULL;
4552 	__le64 snapid;
4553 	void *p;
4554 	void *end;
4555 	u64 pool_id;
4556 	char *image_id;
4557 	u64 snap_id;
4558 	u64 overlap;
4559 	int ret;
4560 
4561 	parent_spec = rbd_spec_alloc();
4562 	if (!parent_spec)
4563 		return -ENOMEM;
4564 
4565 	size = sizeof (__le64) +				/* pool_id */
4566 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4567 		sizeof (__le64) +				/* snap_id */
4568 		sizeof (__le64);				/* overlap */
4569 	reply_buf = kmalloc(size, GFP_KERNEL);
4570 	if (!reply_buf) {
4571 		ret = -ENOMEM;
4572 		goto out_err;
4573 	}
4574 
4575 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4576 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4577 				  &rbd_dev->header_oloc, "get_parent",
4578 				  &snapid, sizeof(snapid), reply_buf, size);
4579 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4580 	if (ret < 0)
4581 		goto out_err;
4582 
4583 	p = reply_buf;
4584 	end = reply_buf + ret;
4585 	ret = -ERANGE;
4586 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4587 	if (pool_id == CEPH_NOPOOL) {
4588 		/*
4589 		 * Either the parent never existed, or we have
4590 		 * record of it but the image got flattened so it no
4591 		 * longer has a parent.  When the parent of a
4592 		 * layered image disappears we immediately set the
4593 		 * overlap to 0.  The effect of this is that all new
4594 		 * requests will be treated as if the image had no
4595 		 * parent.
4596 		 */
4597 		if (rbd_dev->parent_overlap) {
4598 			rbd_dev->parent_overlap = 0;
4599 			rbd_dev_parent_put(rbd_dev);
4600 			pr_info("%s: clone image has been flattened\n",
4601 				rbd_dev->disk->disk_name);
4602 		}
4603 
4604 		goto out;	/* No parent?  No problem. */
4605 	}
4606 
4607 	/* The ceph file layout needs to fit pool id in 32 bits */
4608 
4609 	ret = -EIO;
4610 	if (pool_id > (u64)U32_MAX) {
4611 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4612 			(unsigned long long)pool_id, U32_MAX);
4613 		goto out_err;
4614 	}
4615 
4616 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4617 	if (IS_ERR(image_id)) {
4618 		ret = PTR_ERR(image_id);
4619 		goto out_err;
4620 	}
4621 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4622 	ceph_decode_64_safe(&p, end, overlap, out_err);
4623 
4624 	/*
4625 	 * The parent won't change (except when the clone is
4626 	 * flattened, already handled that).  So we only need to
4627 	 * record the parent spec we have not already done so.
4628 	 */
4629 	if (!rbd_dev->parent_spec) {
4630 		parent_spec->pool_id = pool_id;
4631 		parent_spec->image_id = image_id;
4632 		parent_spec->snap_id = snap_id;
4633 		rbd_dev->parent_spec = parent_spec;
4634 		parent_spec = NULL;	/* rbd_dev now owns this */
4635 	} else {
4636 		kfree(image_id);
4637 	}
4638 
4639 	/*
4640 	 * We always update the parent overlap.  If it's zero we issue
4641 	 * a warning, as we will proceed as if there was no parent.
4642 	 */
4643 	if (!overlap) {
4644 		if (parent_spec) {
4645 			/* refresh, careful to warn just once */
4646 			if (rbd_dev->parent_overlap)
4647 				rbd_warn(rbd_dev,
4648 				    "clone now standalone (overlap became 0)");
4649 		} else {
4650 			/* initial probe */
4651 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4652 		}
4653 	}
4654 	rbd_dev->parent_overlap = overlap;
4655 
4656 out:
4657 	ret = 0;
4658 out_err:
4659 	kfree(reply_buf);
4660 	rbd_spec_put(parent_spec);
4661 
4662 	return ret;
4663 }
4664 
4665 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4666 {
4667 	struct {
4668 		__le64 stripe_unit;
4669 		__le64 stripe_count;
4670 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4671 	size_t size = sizeof (striping_info_buf);
4672 	void *p;
4673 	int ret;
4674 
4675 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4676 				&rbd_dev->header_oloc, "get_stripe_unit_count",
4677 				NULL, 0, &striping_info_buf, size);
4678 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4679 	if (ret < 0)
4680 		return ret;
4681 	if (ret < size)
4682 		return -ERANGE;
4683 
4684 	p = &striping_info_buf;
4685 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4686 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
4687 	return 0;
4688 }
4689 
4690 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4691 {
4692 	__le64 data_pool_id;
4693 	int ret;
4694 
4695 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4696 				  &rbd_dev->header_oloc, "get_data_pool",
4697 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
4698 	if (ret < 0)
4699 		return ret;
4700 	if (ret < sizeof(data_pool_id))
4701 		return -EBADMSG;
4702 
4703 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4704 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4705 	return 0;
4706 }
4707 
4708 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4709 {
4710 	CEPH_DEFINE_OID_ONSTACK(oid);
4711 	size_t image_id_size;
4712 	char *image_id;
4713 	void *p;
4714 	void *end;
4715 	size_t size;
4716 	void *reply_buf = NULL;
4717 	size_t len = 0;
4718 	char *image_name = NULL;
4719 	int ret;
4720 
4721 	rbd_assert(!rbd_dev->spec->image_name);
4722 
4723 	len = strlen(rbd_dev->spec->image_id);
4724 	image_id_size = sizeof (__le32) + len;
4725 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4726 	if (!image_id)
4727 		return NULL;
4728 
4729 	p = image_id;
4730 	end = image_id + image_id_size;
4731 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4732 
4733 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4734 	reply_buf = kmalloc(size, GFP_KERNEL);
4735 	if (!reply_buf)
4736 		goto out;
4737 
4738 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4739 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4740 				  "dir_get_name", image_id, image_id_size,
4741 				  reply_buf, size);
4742 	if (ret < 0)
4743 		goto out;
4744 	p = reply_buf;
4745 	end = reply_buf + ret;
4746 
4747 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4748 	if (IS_ERR(image_name))
4749 		image_name = NULL;
4750 	else
4751 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4752 out:
4753 	kfree(reply_buf);
4754 	kfree(image_id);
4755 
4756 	return image_name;
4757 }
4758 
4759 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4760 {
4761 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4762 	const char *snap_name;
4763 	u32 which = 0;
4764 
4765 	/* Skip over names until we find the one we are looking for */
4766 
4767 	snap_name = rbd_dev->header.snap_names;
4768 	while (which < snapc->num_snaps) {
4769 		if (!strcmp(name, snap_name))
4770 			return snapc->snaps[which];
4771 		snap_name += strlen(snap_name) + 1;
4772 		which++;
4773 	}
4774 	return CEPH_NOSNAP;
4775 }
4776 
4777 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4778 {
4779 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4780 	u32 which;
4781 	bool found = false;
4782 	u64 snap_id;
4783 
4784 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4785 		const char *snap_name;
4786 
4787 		snap_id = snapc->snaps[which];
4788 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4789 		if (IS_ERR(snap_name)) {
4790 			/* ignore no-longer existing snapshots */
4791 			if (PTR_ERR(snap_name) == -ENOENT)
4792 				continue;
4793 			else
4794 				break;
4795 		}
4796 		found = !strcmp(name, snap_name);
4797 		kfree(snap_name);
4798 	}
4799 	return found ? snap_id : CEPH_NOSNAP;
4800 }
4801 
4802 /*
4803  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4804  * no snapshot by that name is found, or if an error occurs.
4805  */
4806 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4807 {
4808 	if (rbd_dev->image_format == 1)
4809 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4810 
4811 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4812 }
4813 
4814 /*
4815  * An image being mapped will have everything but the snap id.
4816  */
4817 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4818 {
4819 	struct rbd_spec *spec = rbd_dev->spec;
4820 
4821 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4822 	rbd_assert(spec->image_id && spec->image_name);
4823 	rbd_assert(spec->snap_name);
4824 
4825 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4826 		u64 snap_id;
4827 
4828 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4829 		if (snap_id == CEPH_NOSNAP)
4830 			return -ENOENT;
4831 
4832 		spec->snap_id = snap_id;
4833 	} else {
4834 		spec->snap_id = CEPH_NOSNAP;
4835 	}
4836 
4837 	return 0;
4838 }
4839 
4840 /*
4841  * A parent image will have all ids but none of the names.
4842  *
4843  * All names in an rbd spec are dynamically allocated.  It's OK if we
4844  * can't figure out the name for an image id.
4845  */
4846 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4847 {
4848 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4849 	struct rbd_spec *spec = rbd_dev->spec;
4850 	const char *pool_name;
4851 	const char *image_name;
4852 	const char *snap_name;
4853 	int ret;
4854 
4855 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4856 	rbd_assert(spec->image_id);
4857 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4858 
4859 	/* Get the pool name; we have to make our own copy of this */
4860 
4861 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4862 	if (!pool_name) {
4863 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4864 		return -EIO;
4865 	}
4866 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4867 	if (!pool_name)
4868 		return -ENOMEM;
4869 
4870 	/* Fetch the image name; tolerate failure here */
4871 
4872 	image_name = rbd_dev_image_name(rbd_dev);
4873 	if (!image_name)
4874 		rbd_warn(rbd_dev, "unable to get image name");
4875 
4876 	/* Fetch the snapshot name */
4877 
4878 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4879 	if (IS_ERR(snap_name)) {
4880 		ret = PTR_ERR(snap_name);
4881 		goto out_err;
4882 	}
4883 
4884 	spec->pool_name = pool_name;
4885 	spec->image_name = image_name;
4886 	spec->snap_name = snap_name;
4887 
4888 	return 0;
4889 
4890 out_err:
4891 	kfree(image_name);
4892 	kfree(pool_name);
4893 	return ret;
4894 }
4895 
4896 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4897 {
4898 	size_t size;
4899 	int ret;
4900 	void *reply_buf;
4901 	void *p;
4902 	void *end;
4903 	u64 seq;
4904 	u32 snap_count;
4905 	struct ceph_snap_context *snapc;
4906 	u32 i;
4907 
4908 	/*
4909 	 * We'll need room for the seq value (maximum snapshot id),
4910 	 * snapshot count, and array of that many snapshot ids.
4911 	 * For now we have a fixed upper limit on the number we're
4912 	 * prepared to receive.
4913 	 */
4914 	size = sizeof (__le64) + sizeof (__le32) +
4915 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4916 	reply_buf = kzalloc(size, GFP_KERNEL);
4917 	if (!reply_buf)
4918 		return -ENOMEM;
4919 
4920 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4921 				  &rbd_dev->header_oloc, "get_snapcontext",
4922 				  NULL, 0, reply_buf, size);
4923 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4924 	if (ret < 0)
4925 		goto out;
4926 
4927 	p = reply_buf;
4928 	end = reply_buf + ret;
4929 	ret = -ERANGE;
4930 	ceph_decode_64_safe(&p, end, seq, out);
4931 	ceph_decode_32_safe(&p, end, snap_count, out);
4932 
4933 	/*
4934 	 * Make sure the reported number of snapshot ids wouldn't go
4935 	 * beyond the end of our buffer.  But before checking that,
4936 	 * make sure the computed size of the snapshot context we
4937 	 * allocate is representable in a size_t.
4938 	 */
4939 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4940 				 / sizeof (u64)) {
4941 		ret = -EINVAL;
4942 		goto out;
4943 	}
4944 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4945 		goto out;
4946 	ret = 0;
4947 
4948 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4949 	if (!snapc) {
4950 		ret = -ENOMEM;
4951 		goto out;
4952 	}
4953 	snapc->seq = seq;
4954 	for (i = 0; i < snap_count; i++)
4955 		snapc->snaps[i] = ceph_decode_64(&p);
4956 
4957 	ceph_put_snap_context(rbd_dev->header.snapc);
4958 	rbd_dev->header.snapc = snapc;
4959 
4960 	dout("  snap context seq = %llu, snap_count = %u\n",
4961 		(unsigned long long)seq, (unsigned int)snap_count);
4962 out:
4963 	kfree(reply_buf);
4964 
4965 	return ret;
4966 }
4967 
4968 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4969 					u64 snap_id)
4970 {
4971 	size_t size;
4972 	void *reply_buf;
4973 	__le64 snapid;
4974 	int ret;
4975 	void *p;
4976 	void *end;
4977 	char *snap_name;
4978 
4979 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4980 	reply_buf = kmalloc(size, GFP_KERNEL);
4981 	if (!reply_buf)
4982 		return ERR_PTR(-ENOMEM);
4983 
4984 	snapid = cpu_to_le64(snap_id);
4985 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4986 				  &rbd_dev->header_oloc, "get_snapshot_name",
4987 				  &snapid, sizeof(snapid), reply_buf, size);
4988 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4989 	if (ret < 0) {
4990 		snap_name = ERR_PTR(ret);
4991 		goto out;
4992 	}
4993 
4994 	p = reply_buf;
4995 	end = reply_buf + ret;
4996 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4997 	if (IS_ERR(snap_name))
4998 		goto out;
4999 
5000 	dout("  snap_id 0x%016llx snap_name = %s\n",
5001 		(unsigned long long)snap_id, snap_name);
5002 out:
5003 	kfree(reply_buf);
5004 
5005 	return snap_name;
5006 }
5007 
5008 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5009 {
5010 	bool first_time = rbd_dev->header.object_prefix == NULL;
5011 	int ret;
5012 
5013 	ret = rbd_dev_v2_image_size(rbd_dev);
5014 	if (ret)
5015 		return ret;
5016 
5017 	if (first_time) {
5018 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5019 		if (ret)
5020 			return ret;
5021 	}
5022 
5023 	ret = rbd_dev_v2_snap_context(rbd_dev);
5024 	if (ret && first_time) {
5025 		kfree(rbd_dev->header.object_prefix);
5026 		rbd_dev->header.object_prefix = NULL;
5027 	}
5028 
5029 	return ret;
5030 }
5031 
5032 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5033 {
5034 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5035 
5036 	if (rbd_dev->image_format == 1)
5037 		return rbd_dev_v1_header_info(rbd_dev);
5038 
5039 	return rbd_dev_v2_header_info(rbd_dev);
5040 }
5041 
5042 /*
5043  * Skips over white space at *buf, and updates *buf to point to the
5044  * first found non-space character (if any). Returns the length of
5045  * the token (string of non-white space characters) found.  Note
5046  * that *buf must be terminated with '\0'.
5047  */
5048 static inline size_t next_token(const char **buf)
5049 {
5050         /*
5051         * These are the characters that produce nonzero for
5052         * isspace() in the "C" and "POSIX" locales.
5053         */
5054         const char *spaces = " \f\n\r\t\v";
5055 
5056         *buf += strspn(*buf, spaces);	/* Find start of token */
5057 
5058 	return strcspn(*buf, spaces);   /* Return token length */
5059 }
5060 
5061 /*
5062  * Finds the next token in *buf, dynamically allocates a buffer big
5063  * enough to hold a copy of it, and copies the token into the new
5064  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5065  * that a duplicate buffer is created even for a zero-length token.
5066  *
5067  * Returns a pointer to the newly-allocated duplicate, or a null
5068  * pointer if memory for the duplicate was not available.  If
5069  * the lenp argument is a non-null pointer, the length of the token
5070  * (not including the '\0') is returned in *lenp.
5071  *
5072  * If successful, the *buf pointer will be updated to point beyond
5073  * the end of the found token.
5074  *
5075  * Note: uses GFP_KERNEL for allocation.
5076  */
5077 static inline char *dup_token(const char **buf, size_t *lenp)
5078 {
5079 	char *dup;
5080 	size_t len;
5081 
5082 	len = next_token(buf);
5083 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5084 	if (!dup)
5085 		return NULL;
5086 	*(dup + len) = '\0';
5087 	*buf += len;
5088 
5089 	if (lenp)
5090 		*lenp = len;
5091 
5092 	return dup;
5093 }
5094 
5095 /*
5096  * Parse the options provided for an "rbd add" (i.e., rbd image
5097  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5098  * and the data written is passed here via a NUL-terminated buffer.
5099  * Returns 0 if successful or an error code otherwise.
5100  *
5101  * The information extracted from these options is recorded in
5102  * the other parameters which return dynamically-allocated
5103  * structures:
5104  *  ceph_opts
5105  *      The address of a pointer that will refer to a ceph options
5106  *      structure.  Caller must release the returned pointer using
5107  *      ceph_destroy_options() when it is no longer needed.
5108  *  rbd_opts
5109  *	Address of an rbd options pointer.  Fully initialized by
5110  *	this function; caller must release with kfree().
5111  *  spec
5112  *	Address of an rbd image specification pointer.  Fully
5113  *	initialized by this function based on parsed options.
5114  *	Caller must release with rbd_spec_put().
5115  *
5116  * The options passed take this form:
5117  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5118  * where:
5119  *  <mon_addrs>
5120  *      A comma-separated list of one or more monitor addresses.
5121  *      A monitor address is an ip address, optionally followed
5122  *      by a port number (separated by a colon).
5123  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5124  *  <options>
5125  *      A comma-separated list of ceph and/or rbd options.
5126  *  <pool_name>
5127  *      The name of the rados pool containing the rbd image.
5128  *  <image_name>
5129  *      The name of the image in that pool to map.
5130  *  <snap_id>
5131  *      An optional snapshot id.  If provided, the mapping will
5132  *      present data from the image at the time that snapshot was
5133  *      created.  The image head is used if no snapshot id is
5134  *      provided.  Snapshot mappings are always read-only.
5135  */
5136 static int rbd_add_parse_args(const char *buf,
5137 				struct ceph_options **ceph_opts,
5138 				struct rbd_options **opts,
5139 				struct rbd_spec **rbd_spec)
5140 {
5141 	size_t len;
5142 	char *options;
5143 	const char *mon_addrs;
5144 	char *snap_name;
5145 	size_t mon_addrs_size;
5146 	struct rbd_spec *spec = NULL;
5147 	struct rbd_options *rbd_opts = NULL;
5148 	struct ceph_options *copts;
5149 	int ret;
5150 
5151 	/* The first four tokens are required */
5152 
5153 	len = next_token(&buf);
5154 	if (!len) {
5155 		rbd_warn(NULL, "no monitor address(es) provided");
5156 		return -EINVAL;
5157 	}
5158 	mon_addrs = buf;
5159 	mon_addrs_size = len + 1;
5160 	buf += len;
5161 
5162 	ret = -EINVAL;
5163 	options = dup_token(&buf, NULL);
5164 	if (!options)
5165 		return -ENOMEM;
5166 	if (!*options) {
5167 		rbd_warn(NULL, "no options provided");
5168 		goto out_err;
5169 	}
5170 
5171 	spec = rbd_spec_alloc();
5172 	if (!spec)
5173 		goto out_mem;
5174 
5175 	spec->pool_name = dup_token(&buf, NULL);
5176 	if (!spec->pool_name)
5177 		goto out_mem;
5178 	if (!*spec->pool_name) {
5179 		rbd_warn(NULL, "no pool name provided");
5180 		goto out_err;
5181 	}
5182 
5183 	spec->image_name = dup_token(&buf, NULL);
5184 	if (!spec->image_name)
5185 		goto out_mem;
5186 	if (!*spec->image_name) {
5187 		rbd_warn(NULL, "no image name provided");
5188 		goto out_err;
5189 	}
5190 
5191 	/*
5192 	 * Snapshot name is optional; default is to use "-"
5193 	 * (indicating the head/no snapshot).
5194 	 */
5195 	len = next_token(&buf);
5196 	if (!len) {
5197 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5198 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5199 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5200 		ret = -ENAMETOOLONG;
5201 		goto out_err;
5202 	}
5203 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5204 	if (!snap_name)
5205 		goto out_mem;
5206 	*(snap_name + len) = '\0';
5207 	spec->snap_name = snap_name;
5208 
5209 	/* Initialize all rbd options to the defaults */
5210 
5211 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5212 	if (!rbd_opts)
5213 		goto out_mem;
5214 
5215 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5216 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5217 	rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5218 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5219 	rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5220 	rbd_opts->trim = RBD_TRIM_DEFAULT;
5221 
5222 	copts = ceph_parse_options(options, mon_addrs,
5223 					mon_addrs + mon_addrs_size - 1,
5224 					parse_rbd_opts_token, rbd_opts);
5225 	if (IS_ERR(copts)) {
5226 		ret = PTR_ERR(copts);
5227 		goto out_err;
5228 	}
5229 	kfree(options);
5230 
5231 	*ceph_opts = copts;
5232 	*opts = rbd_opts;
5233 	*rbd_spec = spec;
5234 
5235 	return 0;
5236 out_mem:
5237 	ret = -ENOMEM;
5238 out_err:
5239 	kfree(rbd_opts);
5240 	rbd_spec_put(spec);
5241 	kfree(options);
5242 
5243 	return ret;
5244 }
5245 
5246 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5247 {
5248 	down_write(&rbd_dev->lock_rwsem);
5249 	if (__rbd_is_lock_owner(rbd_dev))
5250 		rbd_unlock(rbd_dev);
5251 	up_write(&rbd_dev->lock_rwsem);
5252 }
5253 
5254 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5255 {
5256 	int ret;
5257 
5258 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5259 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5260 		return -EINVAL;
5261 	}
5262 
5263 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5264 	down_read(&rbd_dev->lock_rwsem);
5265 	ret = rbd_wait_state_locked(rbd_dev, true);
5266 	up_read(&rbd_dev->lock_rwsem);
5267 	if (ret) {
5268 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5269 		return -EROFS;
5270 	}
5271 
5272 	return 0;
5273 }
5274 
5275 /*
5276  * An rbd format 2 image has a unique identifier, distinct from the
5277  * name given to it by the user.  Internally, that identifier is
5278  * what's used to specify the names of objects related to the image.
5279  *
5280  * A special "rbd id" object is used to map an rbd image name to its
5281  * id.  If that object doesn't exist, then there is no v2 rbd image
5282  * with the supplied name.
5283  *
5284  * This function will record the given rbd_dev's image_id field if
5285  * it can be determined, and in that case will return 0.  If any
5286  * errors occur a negative errno will be returned and the rbd_dev's
5287  * image_id field will be unchanged (and should be NULL).
5288  */
5289 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5290 {
5291 	int ret;
5292 	size_t size;
5293 	CEPH_DEFINE_OID_ONSTACK(oid);
5294 	void *response;
5295 	char *image_id;
5296 
5297 	/*
5298 	 * When probing a parent image, the image id is already
5299 	 * known (and the image name likely is not).  There's no
5300 	 * need to fetch the image id again in this case.  We
5301 	 * do still need to set the image format though.
5302 	 */
5303 	if (rbd_dev->spec->image_id) {
5304 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5305 
5306 		return 0;
5307 	}
5308 
5309 	/*
5310 	 * First, see if the format 2 image id file exists, and if
5311 	 * so, get the image's persistent id from it.
5312 	 */
5313 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5314 			       rbd_dev->spec->image_name);
5315 	if (ret)
5316 		return ret;
5317 
5318 	dout("rbd id object name is %s\n", oid.name);
5319 
5320 	/* Response will be an encoded string, which includes a length */
5321 
5322 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5323 	response = kzalloc(size, GFP_NOIO);
5324 	if (!response) {
5325 		ret = -ENOMEM;
5326 		goto out;
5327 	}
5328 
5329 	/* If it doesn't exist we'll assume it's a format 1 image */
5330 
5331 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5332 				  "get_id", NULL, 0,
5333 				  response, RBD_IMAGE_ID_LEN_MAX);
5334 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5335 	if (ret == -ENOENT) {
5336 		image_id = kstrdup("", GFP_KERNEL);
5337 		ret = image_id ? 0 : -ENOMEM;
5338 		if (!ret)
5339 			rbd_dev->image_format = 1;
5340 	} else if (ret >= 0) {
5341 		void *p = response;
5342 
5343 		image_id = ceph_extract_encoded_string(&p, p + ret,
5344 						NULL, GFP_NOIO);
5345 		ret = PTR_ERR_OR_ZERO(image_id);
5346 		if (!ret)
5347 			rbd_dev->image_format = 2;
5348 	}
5349 
5350 	if (!ret) {
5351 		rbd_dev->spec->image_id = image_id;
5352 		dout("image_id is %s\n", image_id);
5353 	}
5354 out:
5355 	kfree(response);
5356 	ceph_oid_destroy(&oid);
5357 	return ret;
5358 }
5359 
5360 /*
5361  * Undo whatever state changes are made by v1 or v2 header info
5362  * call.
5363  */
5364 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5365 {
5366 	struct rbd_image_header	*header;
5367 
5368 	rbd_dev_parent_put(rbd_dev);
5369 
5370 	/* Free dynamic fields from the header, then zero it out */
5371 
5372 	header = &rbd_dev->header;
5373 	ceph_put_snap_context(header->snapc);
5374 	kfree(header->snap_sizes);
5375 	kfree(header->snap_names);
5376 	kfree(header->object_prefix);
5377 	memset(header, 0, sizeof (*header));
5378 }
5379 
5380 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5381 {
5382 	int ret;
5383 
5384 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5385 	if (ret)
5386 		goto out_err;
5387 
5388 	/*
5389 	 * Get the and check features for the image.  Currently the
5390 	 * features are assumed to never change.
5391 	 */
5392 	ret = rbd_dev_v2_features(rbd_dev);
5393 	if (ret)
5394 		goto out_err;
5395 
5396 	/* If the image supports fancy striping, get its parameters */
5397 
5398 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5399 		ret = rbd_dev_v2_striping_info(rbd_dev);
5400 		if (ret < 0)
5401 			goto out_err;
5402 	}
5403 
5404 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5405 		ret = rbd_dev_v2_data_pool(rbd_dev);
5406 		if (ret)
5407 			goto out_err;
5408 	}
5409 
5410 	rbd_init_layout(rbd_dev);
5411 	return 0;
5412 
5413 out_err:
5414 	rbd_dev->header.features = 0;
5415 	kfree(rbd_dev->header.object_prefix);
5416 	rbd_dev->header.object_prefix = NULL;
5417 	return ret;
5418 }
5419 
5420 /*
5421  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5422  * rbd_dev_image_probe() recursion depth, which means it's also the
5423  * length of the already discovered part of the parent chain.
5424  */
5425 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5426 {
5427 	struct rbd_device *parent = NULL;
5428 	int ret;
5429 
5430 	if (!rbd_dev->parent_spec)
5431 		return 0;
5432 
5433 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5434 		pr_info("parent chain is too long (%d)\n", depth);
5435 		ret = -EINVAL;
5436 		goto out_err;
5437 	}
5438 
5439 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5440 	if (!parent) {
5441 		ret = -ENOMEM;
5442 		goto out_err;
5443 	}
5444 
5445 	/*
5446 	 * Images related by parent/child relationships always share
5447 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5448 	 */
5449 	__rbd_get_client(rbd_dev->rbd_client);
5450 	rbd_spec_get(rbd_dev->parent_spec);
5451 
5452 	ret = rbd_dev_image_probe(parent, depth);
5453 	if (ret < 0)
5454 		goto out_err;
5455 
5456 	rbd_dev->parent = parent;
5457 	atomic_set(&rbd_dev->parent_ref, 1);
5458 	return 0;
5459 
5460 out_err:
5461 	rbd_dev_unparent(rbd_dev);
5462 	rbd_dev_destroy(parent);
5463 	return ret;
5464 }
5465 
5466 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5467 {
5468 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5469 	rbd_dev_mapping_clear(rbd_dev);
5470 	rbd_free_disk(rbd_dev);
5471 	if (!single_major)
5472 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5473 }
5474 
5475 /*
5476  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5477  * upon return.
5478  */
5479 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5480 {
5481 	int ret;
5482 
5483 	/* Record our major and minor device numbers. */
5484 
5485 	if (!single_major) {
5486 		ret = register_blkdev(0, rbd_dev->name);
5487 		if (ret < 0)
5488 			goto err_out_unlock;
5489 
5490 		rbd_dev->major = ret;
5491 		rbd_dev->minor = 0;
5492 	} else {
5493 		rbd_dev->major = rbd_major;
5494 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5495 	}
5496 
5497 	/* Set up the blkdev mapping. */
5498 
5499 	ret = rbd_init_disk(rbd_dev);
5500 	if (ret)
5501 		goto err_out_blkdev;
5502 
5503 	ret = rbd_dev_mapping_set(rbd_dev);
5504 	if (ret)
5505 		goto err_out_disk;
5506 
5507 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5508 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5509 
5510 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5511 	if (ret)
5512 		goto err_out_mapping;
5513 
5514 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5515 	up_write(&rbd_dev->header_rwsem);
5516 	return 0;
5517 
5518 err_out_mapping:
5519 	rbd_dev_mapping_clear(rbd_dev);
5520 err_out_disk:
5521 	rbd_free_disk(rbd_dev);
5522 err_out_blkdev:
5523 	if (!single_major)
5524 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5525 err_out_unlock:
5526 	up_write(&rbd_dev->header_rwsem);
5527 	return ret;
5528 }
5529 
5530 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5531 {
5532 	struct rbd_spec *spec = rbd_dev->spec;
5533 	int ret;
5534 
5535 	/* Record the header object name for this rbd image. */
5536 
5537 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5538 	if (rbd_dev->image_format == 1)
5539 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5540 				       spec->image_name, RBD_SUFFIX);
5541 	else
5542 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5543 				       RBD_HEADER_PREFIX, spec->image_id);
5544 
5545 	return ret;
5546 }
5547 
5548 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5549 {
5550 	rbd_dev_unprobe(rbd_dev);
5551 	if (rbd_dev->opts)
5552 		rbd_unregister_watch(rbd_dev);
5553 	rbd_dev->image_format = 0;
5554 	kfree(rbd_dev->spec->image_id);
5555 	rbd_dev->spec->image_id = NULL;
5556 }
5557 
5558 /*
5559  * Probe for the existence of the header object for the given rbd
5560  * device.  If this image is the one being mapped (i.e., not a
5561  * parent), initiate a watch on its header object before using that
5562  * object to get detailed information about the rbd image.
5563  */
5564 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5565 {
5566 	int ret;
5567 
5568 	/*
5569 	 * Get the id from the image id object.  Unless there's an
5570 	 * error, rbd_dev->spec->image_id will be filled in with
5571 	 * a dynamically-allocated string, and rbd_dev->image_format
5572 	 * will be set to either 1 or 2.
5573 	 */
5574 	ret = rbd_dev_image_id(rbd_dev);
5575 	if (ret)
5576 		return ret;
5577 
5578 	ret = rbd_dev_header_name(rbd_dev);
5579 	if (ret)
5580 		goto err_out_format;
5581 
5582 	if (!depth) {
5583 		ret = rbd_register_watch(rbd_dev);
5584 		if (ret) {
5585 			if (ret == -ENOENT)
5586 				pr_info("image %s/%s does not exist\n",
5587 					rbd_dev->spec->pool_name,
5588 					rbd_dev->spec->image_name);
5589 			goto err_out_format;
5590 		}
5591 	}
5592 
5593 	ret = rbd_dev_header_info(rbd_dev);
5594 	if (ret)
5595 		goto err_out_watch;
5596 
5597 	/*
5598 	 * If this image is the one being mapped, we have pool name and
5599 	 * id, image name and id, and snap name - need to fill snap id.
5600 	 * Otherwise this is a parent image, identified by pool, image
5601 	 * and snap ids - need to fill in names for those ids.
5602 	 */
5603 	if (!depth)
5604 		ret = rbd_spec_fill_snap_id(rbd_dev);
5605 	else
5606 		ret = rbd_spec_fill_names(rbd_dev);
5607 	if (ret) {
5608 		if (ret == -ENOENT)
5609 			pr_info("snap %s/%s@%s does not exist\n",
5610 				rbd_dev->spec->pool_name,
5611 				rbd_dev->spec->image_name,
5612 				rbd_dev->spec->snap_name);
5613 		goto err_out_probe;
5614 	}
5615 
5616 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5617 		ret = rbd_dev_v2_parent_info(rbd_dev);
5618 		if (ret)
5619 			goto err_out_probe;
5620 
5621 		/*
5622 		 * Need to warn users if this image is the one being
5623 		 * mapped and has a parent.
5624 		 */
5625 		if (!depth && rbd_dev->parent_spec)
5626 			rbd_warn(rbd_dev,
5627 				 "WARNING: kernel layering is EXPERIMENTAL!");
5628 	}
5629 
5630 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5631 	if (ret)
5632 		goto err_out_probe;
5633 
5634 	dout("discovered format %u image, header name is %s\n",
5635 		rbd_dev->image_format, rbd_dev->header_oid.name);
5636 	return 0;
5637 
5638 err_out_probe:
5639 	rbd_dev_unprobe(rbd_dev);
5640 err_out_watch:
5641 	if (!depth)
5642 		rbd_unregister_watch(rbd_dev);
5643 err_out_format:
5644 	rbd_dev->image_format = 0;
5645 	kfree(rbd_dev->spec->image_id);
5646 	rbd_dev->spec->image_id = NULL;
5647 	return ret;
5648 }
5649 
5650 static ssize_t do_rbd_add(struct bus_type *bus,
5651 			  const char *buf,
5652 			  size_t count)
5653 {
5654 	struct rbd_device *rbd_dev = NULL;
5655 	struct ceph_options *ceph_opts = NULL;
5656 	struct rbd_options *rbd_opts = NULL;
5657 	struct rbd_spec *spec = NULL;
5658 	struct rbd_client *rbdc;
5659 	int rc;
5660 
5661 	if (!try_module_get(THIS_MODULE))
5662 		return -ENODEV;
5663 
5664 	/* parse add command */
5665 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5666 	if (rc < 0)
5667 		goto out;
5668 
5669 	rbdc = rbd_get_client(ceph_opts);
5670 	if (IS_ERR(rbdc)) {
5671 		rc = PTR_ERR(rbdc);
5672 		goto err_out_args;
5673 	}
5674 
5675 	/* pick the pool */
5676 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5677 	if (rc < 0) {
5678 		if (rc == -ENOENT)
5679 			pr_info("pool %s does not exist\n", spec->pool_name);
5680 		goto err_out_client;
5681 	}
5682 	spec->pool_id = (u64)rc;
5683 
5684 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5685 	if (!rbd_dev) {
5686 		rc = -ENOMEM;
5687 		goto err_out_client;
5688 	}
5689 	rbdc = NULL;		/* rbd_dev now owns this */
5690 	spec = NULL;		/* rbd_dev now owns this */
5691 	rbd_opts = NULL;	/* rbd_dev now owns this */
5692 
5693 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5694 	if (!rbd_dev->config_info) {
5695 		rc = -ENOMEM;
5696 		goto err_out_rbd_dev;
5697 	}
5698 
5699 	down_write(&rbd_dev->header_rwsem);
5700 	rc = rbd_dev_image_probe(rbd_dev, 0);
5701 	if (rc < 0) {
5702 		up_write(&rbd_dev->header_rwsem);
5703 		goto err_out_rbd_dev;
5704 	}
5705 
5706 	/* If we are mapping a snapshot it must be marked read-only */
5707 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5708 		rbd_dev->opts->read_only = true;
5709 
5710 	rc = rbd_dev_device_setup(rbd_dev);
5711 	if (rc)
5712 		goto err_out_image_probe;
5713 
5714 	if (rbd_dev->opts->exclusive) {
5715 		rc = rbd_add_acquire_lock(rbd_dev);
5716 		if (rc)
5717 			goto err_out_device_setup;
5718 	}
5719 
5720 	/* Everything's ready.  Announce the disk to the world. */
5721 
5722 	rc = device_add(&rbd_dev->dev);
5723 	if (rc)
5724 		goto err_out_image_lock;
5725 
5726 	add_disk(rbd_dev->disk);
5727 	/* see rbd_init_disk() */
5728 	blk_put_queue(rbd_dev->disk->queue);
5729 
5730 	spin_lock(&rbd_dev_list_lock);
5731 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
5732 	spin_unlock(&rbd_dev_list_lock);
5733 
5734 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5735 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5736 		rbd_dev->header.features);
5737 	rc = count;
5738 out:
5739 	module_put(THIS_MODULE);
5740 	return rc;
5741 
5742 err_out_image_lock:
5743 	rbd_dev_image_unlock(rbd_dev);
5744 err_out_device_setup:
5745 	rbd_dev_device_release(rbd_dev);
5746 err_out_image_probe:
5747 	rbd_dev_image_release(rbd_dev);
5748 err_out_rbd_dev:
5749 	rbd_dev_destroy(rbd_dev);
5750 err_out_client:
5751 	rbd_put_client(rbdc);
5752 err_out_args:
5753 	rbd_spec_put(spec);
5754 	kfree(rbd_opts);
5755 	goto out;
5756 }
5757 
5758 static ssize_t rbd_add(struct bus_type *bus,
5759 		       const char *buf,
5760 		       size_t count)
5761 {
5762 	if (single_major)
5763 		return -EINVAL;
5764 
5765 	return do_rbd_add(bus, buf, count);
5766 }
5767 
5768 static ssize_t rbd_add_single_major(struct bus_type *bus,
5769 				    const char *buf,
5770 				    size_t count)
5771 {
5772 	return do_rbd_add(bus, buf, count);
5773 }
5774 
5775 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5776 {
5777 	while (rbd_dev->parent) {
5778 		struct rbd_device *first = rbd_dev;
5779 		struct rbd_device *second = first->parent;
5780 		struct rbd_device *third;
5781 
5782 		/*
5783 		 * Follow to the parent with no grandparent and
5784 		 * remove it.
5785 		 */
5786 		while (second && (third = second->parent)) {
5787 			first = second;
5788 			second = third;
5789 		}
5790 		rbd_assert(second);
5791 		rbd_dev_image_release(second);
5792 		rbd_dev_destroy(second);
5793 		first->parent = NULL;
5794 		first->parent_overlap = 0;
5795 
5796 		rbd_assert(first->parent_spec);
5797 		rbd_spec_put(first->parent_spec);
5798 		first->parent_spec = NULL;
5799 	}
5800 }
5801 
5802 static ssize_t do_rbd_remove(struct bus_type *bus,
5803 			     const char *buf,
5804 			     size_t count)
5805 {
5806 	struct rbd_device *rbd_dev = NULL;
5807 	struct list_head *tmp;
5808 	int dev_id;
5809 	char opt_buf[6];
5810 	bool already = false;
5811 	bool force = false;
5812 	int ret;
5813 
5814 	dev_id = -1;
5815 	opt_buf[0] = '\0';
5816 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
5817 	if (dev_id < 0) {
5818 		pr_err("dev_id out of range\n");
5819 		return -EINVAL;
5820 	}
5821 	if (opt_buf[0] != '\0') {
5822 		if (!strcmp(opt_buf, "force")) {
5823 			force = true;
5824 		} else {
5825 			pr_err("bad remove option at '%s'\n", opt_buf);
5826 			return -EINVAL;
5827 		}
5828 	}
5829 
5830 	ret = -ENOENT;
5831 	spin_lock(&rbd_dev_list_lock);
5832 	list_for_each(tmp, &rbd_dev_list) {
5833 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5834 		if (rbd_dev->dev_id == dev_id) {
5835 			ret = 0;
5836 			break;
5837 		}
5838 	}
5839 	if (!ret) {
5840 		spin_lock_irq(&rbd_dev->lock);
5841 		if (rbd_dev->open_count && !force)
5842 			ret = -EBUSY;
5843 		else
5844 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5845 							&rbd_dev->flags);
5846 		spin_unlock_irq(&rbd_dev->lock);
5847 	}
5848 	spin_unlock(&rbd_dev_list_lock);
5849 	if (ret < 0 || already)
5850 		return ret;
5851 
5852 	if (force) {
5853 		/*
5854 		 * Prevent new IO from being queued and wait for existing
5855 		 * IO to complete/fail.
5856 		 */
5857 		blk_mq_freeze_queue(rbd_dev->disk->queue);
5858 		blk_set_queue_dying(rbd_dev->disk->queue);
5859 	}
5860 
5861 	del_gendisk(rbd_dev->disk);
5862 	spin_lock(&rbd_dev_list_lock);
5863 	list_del_init(&rbd_dev->node);
5864 	spin_unlock(&rbd_dev_list_lock);
5865 	device_del(&rbd_dev->dev);
5866 
5867 	rbd_dev_image_unlock(rbd_dev);
5868 	rbd_dev_device_release(rbd_dev);
5869 	rbd_dev_image_release(rbd_dev);
5870 	rbd_dev_destroy(rbd_dev);
5871 	return count;
5872 }
5873 
5874 static ssize_t rbd_remove(struct bus_type *bus,
5875 			  const char *buf,
5876 			  size_t count)
5877 {
5878 	if (single_major)
5879 		return -EINVAL;
5880 
5881 	return do_rbd_remove(bus, buf, count);
5882 }
5883 
5884 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5885 				       const char *buf,
5886 				       size_t count)
5887 {
5888 	return do_rbd_remove(bus, buf, count);
5889 }
5890 
5891 /*
5892  * create control files in sysfs
5893  * /sys/bus/rbd/...
5894  */
5895 static int rbd_sysfs_init(void)
5896 {
5897 	int ret;
5898 
5899 	ret = device_register(&rbd_root_dev);
5900 	if (ret < 0)
5901 		return ret;
5902 
5903 	ret = bus_register(&rbd_bus_type);
5904 	if (ret < 0)
5905 		device_unregister(&rbd_root_dev);
5906 
5907 	return ret;
5908 }
5909 
5910 static void rbd_sysfs_cleanup(void)
5911 {
5912 	bus_unregister(&rbd_bus_type);
5913 	device_unregister(&rbd_root_dev);
5914 }
5915 
5916 static int rbd_slab_init(void)
5917 {
5918 	rbd_assert(!rbd_img_request_cache);
5919 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5920 	if (!rbd_img_request_cache)
5921 		return -ENOMEM;
5922 
5923 	rbd_assert(!rbd_obj_request_cache);
5924 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5925 	if (!rbd_obj_request_cache)
5926 		goto out_err;
5927 
5928 	return 0;
5929 
5930 out_err:
5931 	kmem_cache_destroy(rbd_img_request_cache);
5932 	rbd_img_request_cache = NULL;
5933 	return -ENOMEM;
5934 }
5935 
5936 static void rbd_slab_exit(void)
5937 {
5938 	rbd_assert(rbd_obj_request_cache);
5939 	kmem_cache_destroy(rbd_obj_request_cache);
5940 	rbd_obj_request_cache = NULL;
5941 
5942 	rbd_assert(rbd_img_request_cache);
5943 	kmem_cache_destroy(rbd_img_request_cache);
5944 	rbd_img_request_cache = NULL;
5945 }
5946 
5947 static int __init rbd_init(void)
5948 {
5949 	int rc;
5950 
5951 	if (!libceph_compatible(NULL)) {
5952 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5953 		return -EINVAL;
5954 	}
5955 
5956 	rc = rbd_slab_init();
5957 	if (rc)
5958 		return rc;
5959 
5960 	/*
5961 	 * The number of active work items is limited by the number of
5962 	 * rbd devices * queue depth, so leave @max_active at default.
5963 	 */
5964 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5965 	if (!rbd_wq) {
5966 		rc = -ENOMEM;
5967 		goto err_out_slab;
5968 	}
5969 
5970 	if (single_major) {
5971 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5972 		if (rbd_major < 0) {
5973 			rc = rbd_major;
5974 			goto err_out_wq;
5975 		}
5976 	}
5977 
5978 	rc = rbd_sysfs_init();
5979 	if (rc)
5980 		goto err_out_blkdev;
5981 
5982 	if (single_major)
5983 		pr_info("loaded (major %d)\n", rbd_major);
5984 	else
5985 		pr_info("loaded\n");
5986 
5987 	return 0;
5988 
5989 err_out_blkdev:
5990 	if (single_major)
5991 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5992 err_out_wq:
5993 	destroy_workqueue(rbd_wq);
5994 err_out_slab:
5995 	rbd_slab_exit();
5996 	return rc;
5997 }
5998 
5999 static void __exit rbd_exit(void)
6000 {
6001 	ida_destroy(&rbd_dev_id_ida);
6002 	rbd_sysfs_cleanup();
6003 	if (single_major)
6004 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6005 	destroy_workqueue(rbd_wq);
6006 	rbd_slab_exit();
6007 }
6008 
6009 module_init(rbd_init);
6010 module_exit(rbd_exit);
6011 
6012 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6013 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6014 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6015 /* following authorship retained from original osdblk.c */
6016 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6017 
6018 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6019 MODULE_LICENSE("GPL");
6020