1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 119 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 120 121 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 122 RBD_FEATURE_STRIPINGV2 | \ 123 RBD_FEATURE_EXCLUSIVE_LOCK | \ 124 RBD_FEATURE_DATA_POOL | \ 125 RBD_FEATURE_OPERATIONS) 126 127 /* Features supported by this (client software) implementation. */ 128 129 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 130 131 /* 132 * An RBD device name will be "rbd#", where the "rbd" comes from 133 * RBD_DRV_NAME above, and # is a unique integer identifier. 134 */ 135 #define DEV_NAME_LEN 32 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 u64 stripe_unit; 145 u64 stripe_count; 146 s64 data_pool_id; 147 u64 features; /* Might be changeable someday? */ 148 149 /* The remaining fields need to be updated occasionally */ 150 u64 image_size; 151 struct ceph_snap_context *snapc; 152 char *snap_names; /* format 1 only */ 153 u64 *snap_sizes; /* format 1 only */ 154 }; 155 156 /* 157 * An rbd image specification. 158 * 159 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 160 * identify an image. Each rbd_dev structure includes a pointer to 161 * an rbd_spec structure that encapsulates this identity. 162 * 163 * Each of the id's in an rbd_spec has an associated name. For a 164 * user-mapped image, the names are supplied and the id's associated 165 * with them are looked up. For a layered image, a parent image is 166 * defined by the tuple, and the names are looked up. 167 * 168 * An rbd_dev structure contains a parent_spec pointer which is 169 * non-null if the image it represents is a child in a layered 170 * image. This pointer will refer to the rbd_spec structure used 171 * by the parent rbd_dev for its own identity (i.e., the structure 172 * is shared between the parent and child). 173 * 174 * Since these structures are populated once, during the discovery 175 * phase of image construction, they are effectively immutable so 176 * we make no effort to synchronize access to them. 177 * 178 * Note that code herein does not assume the image name is known (it 179 * could be a null pointer). 180 */ 181 struct rbd_spec { 182 u64 pool_id; 183 const char *pool_name; 184 185 const char *image_id; 186 const char *image_name; 187 188 u64 snap_id; 189 const char *snap_name; 190 191 struct kref kref; 192 }; 193 194 /* 195 * an instance of the client. multiple devices may share an rbd client. 196 */ 197 struct rbd_client { 198 struct ceph_client *client; 199 struct kref kref; 200 struct list_head node; 201 }; 202 203 struct rbd_img_request; 204 205 enum obj_request_type { 206 OBJ_REQUEST_NODATA = 1, 207 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 208 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 209 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 210 }; 211 212 enum obj_operation_type { 213 OBJ_OP_READ = 1, 214 OBJ_OP_WRITE, 215 OBJ_OP_DISCARD, 216 }; 217 218 /* 219 * Writes go through the following state machine to deal with 220 * layering: 221 * 222 * need copyup 223 * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP 224 * | ^ | 225 * v \------------------------------/ 226 * done 227 * ^ 228 * | 229 * RBD_OBJ_WRITE_FLAT 230 * 231 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 232 * there is a parent or not. 233 */ 234 enum rbd_obj_write_state { 235 RBD_OBJ_WRITE_FLAT = 1, 236 RBD_OBJ_WRITE_GUARD, 237 RBD_OBJ_WRITE_COPYUP, 238 }; 239 240 struct rbd_obj_request { 241 struct ceph_object_extent ex; 242 union { 243 bool tried_parent; /* for reads */ 244 enum rbd_obj_write_state write_state; /* for writes */ 245 }; 246 247 struct rbd_img_request *img_request; 248 struct ceph_file_extent *img_extents; 249 u32 num_img_extents; 250 251 union { 252 struct ceph_bio_iter bio_pos; 253 struct { 254 struct ceph_bvec_iter bvec_pos; 255 u32 bvec_count; 256 u32 bvec_idx; 257 }; 258 }; 259 struct bio_vec *copyup_bvecs; 260 u32 copyup_bvec_count; 261 262 struct ceph_osd_request *osd_req; 263 264 u64 xferred; /* bytes transferred */ 265 int result; 266 267 struct kref kref; 268 }; 269 270 enum img_req_flags { 271 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 272 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 273 }; 274 275 struct rbd_img_request { 276 struct rbd_device *rbd_dev; 277 enum obj_operation_type op_type; 278 enum obj_request_type data_type; 279 unsigned long flags; 280 union { 281 u64 snap_id; /* for reads */ 282 struct ceph_snap_context *snapc; /* for writes */ 283 }; 284 union { 285 struct request *rq; /* block request */ 286 struct rbd_obj_request *obj_request; /* obj req initiator */ 287 }; 288 spinlock_t completion_lock; 289 u64 xferred;/* aggregate bytes transferred */ 290 int result; /* first nonzero obj_request result */ 291 292 struct list_head object_extents; /* obj_req.ex structs */ 293 u32 obj_request_count; 294 u32 pending_count; 295 296 struct kref kref; 297 }; 298 299 #define for_each_obj_request(ireq, oreq) \ 300 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 301 #define for_each_obj_request_safe(ireq, oreq, n) \ 302 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 303 304 enum rbd_watch_state { 305 RBD_WATCH_STATE_UNREGISTERED, 306 RBD_WATCH_STATE_REGISTERED, 307 RBD_WATCH_STATE_ERROR, 308 }; 309 310 enum rbd_lock_state { 311 RBD_LOCK_STATE_UNLOCKED, 312 RBD_LOCK_STATE_LOCKED, 313 RBD_LOCK_STATE_RELEASING, 314 }; 315 316 /* WatchNotify::ClientId */ 317 struct rbd_client_id { 318 u64 gid; 319 u64 handle; 320 }; 321 322 struct rbd_mapping { 323 u64 size; 324 u64 features; 325 }; 326 327 /* 328 * a single device 329 */ 330 struct rbd_device { 331 int dev_id; /* blkdev unique id */ 332 333 int major; /* blkdev assigned major */ 334 int minor; 335 struct gendisk *disk; /* blkdev's gendisk and rq */ 336 337 u32 image_format; /* Either 1 or 2 */ 338 struct rbd_client *rbd_client; 339 340 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 341 342 spinlock_t lock; /* queue, flags, open_count */ 343 344 struct rbd_image_header header; 345 unsigned long flags; /* possibly lock protected */ 346 struct rbd_spec *spec; 347 struct rbd_options *opts; 348 char *config_info; /* add{,_single_major} string */ 349 350 struct ceph_object_id header_oid; 351 struct ceph_object_locator header_oloc; 352 353 struct ceph_file_layout layout; /* used for all rbd requests */ 354 355 struct mutex watch_mutex; 356 enum rbd_watch_state watch_state; 357 struct ceph_osd_linger_request *watch_handle; 358 u64 watch_cookie; 359 struct delayed_work watch_dwork; 360 361 struct rw_semaphore lock_rwsem; 362 enum rbd_lock_state lock_state; 363 char lock_cookie[32]; 364 struct rbd_client_id owner_cid; 365 struct work_struct acquired_lock_work; 366 struct work_struct released_lock_work; 367 struct delayed_work lock_dwork; 368 struct work_struct unlock_work; 369 wait_queue_head_t lock_waitq; 370 371 struct workqueue_struct *task_wq; 372 373 struct rbd_spec *parent_spec; 374 u64 parent_overlap; 375 atomic_t parent_ref; 376 struct rbd_device *parent; 377 378 /* Block layer tags. */ 379 struct blk_mq_tag_set tag_set; 380 381 /* protects updating the header */ 382 struct rw_semaphore header_rwsem; 383 384 struct rbd_mapping mapping; 385 386 struct list_head node; 387 388 /* sysfs related */ 389 struct device dev; 390 unsigned long open_count; /* protected by lock */ 391 }; 392 393 /* 394 * Flag bits for rbd_dev->flags: 395 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 396 * by rbd_dev->lock 397 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 398 */ 399 enum rbd_dev_flags { 400 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 401 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 402 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 403 }; 404 405 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 406 407 static LIST_HEAD(rbd_dev_list); /* devices */ 408 static DEFINE_SPINLOCK(rbd_dev_list_lock); 409 410 static LIST_HEAD(rbd_client_list); /* clients */ 411 static DEFINE_SPINLOCK(rbd_client_list_lock); 412 413 /* Slab caches for frequently-allocated structures */ 414 415 static struct kmem_cache *rbd_img_request_cache; 416 static struct kmem_cache *rbd_obj_request_cache; 417 418 static int rbd_major; 419 static DEFINE_IDA(rbd_dev_id_ida); 420 421 static struct workqueue_struct *rbd_wq; 422 423 /* 424 * single-major requires >= 0.75 version of userspace rbd utility. 425 */ 426 static bool single_major = true; 427 module_param(single_major, bool, S_IRUGO); 428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 429 430 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 431 size_t count); 432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 433 size_t count); 434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 435 size_t count); 436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 437 size_t count); 438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 439 440 static int rbd_dev_id_to_minor(int dev_id) 441 { 442 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 443 } 444 445 static int minor_to_rbd_dev_id(int minor) 446 { 447 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 448 } 449 450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 451 { 452 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 453 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 454 } 455 456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 457 { 458 bool is_lock_owner; 459 460 down_read(&rbd_dev->lock_rwsem); 461 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 462 up_read(&rbd_dev->lock_rwsem); 463 return is_lock_owner; 464 } 465 466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 467 { 468 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 469 } 470 471 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 472 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 473 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 474 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 475 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL); 476 477 static struct attribute *rbd_bus_attrs[] = { 478 &bus_attr_add.attr, 479 &bus_attr_remove.attr, 480 &bus_attr_add_single_major.attr, 481 &bus_attr_remove_single_major.attr, 482 &bus_attr_supported_features.attr, 483 NULL, 484 }; 485 486 static umode_t rbd_bus_is_visible(struct kobject *kobj, 487 struct attribute *attr, int index) 488 { 489 if (!single_major && 490 (attr == &bus_attr_add_single_major.attr || 491 attr == &bus_attr_remove_single_major.attr)) 492 return 0; 493 494 return attr->mode; 495 } 496 497 static const struct attribute_group rbd_bus_group = { 498 .attrs = rbd_bus_attrs, 499 .is_visible = rbd_bus_is_visible, 500 }; 501 __ATTRIBUTE_GROUPS(rbd_bus); 502 503 static struct bus_type rbd_bus_type = { 504 .name = "rbd", 505 .bus_groups = rbd_bus_groups, 506 }; 507 508 static void rbd_root_dev_release(struct device *dev) 509 { 510 } 511 512 static struct device rbd_root_dev = { 513 .init_name = "rbd", 514 .release = rbd_root_dev_release, 515 }; 516 517 static __printf(2, 3) 518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 519 { 520 struct va_format vaf; 521 va_list args; 522 523 va_start(args, fmt); 524 vaf.fmt = fmt; 525 vaf.va = &args; 526 527 if (!rbd_dev) 528 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 529 else if (rbd_dev->disk) 530 printk(KERN_WARNING "%s: %s: %pV\n", 531 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 532 else if (rbd_dev->spec && rbd_dev->spec->image_name) 533 printk(KERN_WARNING "%s: image %s: %pV\n", 534 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 535 else if (rbd_dev->spec && rbd_dev->spec->image_id) 536 printk(KERN_WARNING "%s: id %s: %pV\n", 537 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 538 else /* punt */ 539 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 540 RBD_DRV_NAME, rbd_dev, &vaf); 541 va_end(args); 542 } 543 544 #ifdef RBD_DEBUG 545 #define rbd_assert(expr) \ 546 if (unlikely(!(expr))) { \ 547 printk(KERN_ERR "\nAssertion failure in %s() " \ 548 "at line %d:\n\n" \ 549 "\trbd_assert(%s);\n\n", \ 550 __func__, __LINE__, #expr); \ 551 BUG(); \ 552 } 553 #else /* !RBD_DEBUG */ 554 # define rbd_assert(expr) ((void) 0) 555 #endif /* !RBD_DEBUG */ 556 557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 558 559 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 561 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 564 u64 snap_id); 565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 566 u8 *order, u64 *snap_size); 567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 568 u64 *snap_features); 569 570 static int rbd_open(struct block_device *bdev, fmode_t mode) 571 { 572 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 573 bool removing = false; 574 575 spin_lock_irq(&rbd_dev->lock); 576 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 577 removing = true; 578 else 579 rbd_dev->open_count++; 580 spin_unlock_irq(&rbd_dev->lock); 581 if (removing) 582 return -ENOENT; 583 584 (void) get_device(&rbd_dev->dev); 585 586 return 0; 587 } 588 589 static void rbd_release(struct gendisk *disk, fmode_t mode) 590 { 591 struct rbd_device *rbd_dev = disk->private_data; 592 unsigned long open_count_before; 593 594 spin_lock_irq(&rbd_dev->lock); 595 open_count_before = rbd_dev->open_count--; 596 spin_unlock_irq(&rbd_dev->lock); 597 rbd_assert(open_count_before > 0); 598 599 put_device(&rbd_dev->dev); 600 } 601 602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 603 { 604 int ro; 605 606 if (get_user(ro, (int __user *)arg)) 607 return -EFAULT; 608 609 /* Snapshots can't be marked read-write */ 610 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 611 return -EROFS; 612 613 /* Let blkdev_roset() handle it */ 614 return -ENOTTY; 615 } 616 617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 618 unsigned int cmd, unsigned long arg) 619 { 620 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 621 int ret; 622 623 switch (cmd) { 624 case BLKROSET: 625 ret = rbd_ioctl_set_ro(rbd_dev, arg); 626 break; 627 default: 628 ret = -ENOTTY; 629 } 630 631 return ret; 632 } 633 634 #ifdef CONFIG_COMPAT 635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 636 unsigned int cmd, unsigned long arg) 637 { 638 return rbd_ioctl(bdev, mode, cmd, arg); 639 } 640 #endif /* CONFIG_COMPAT */ 641 642 static const struct block_device_operations rbd_bd_ops = { 643 .owner = THIS_MODULE, 644 .open = rbd_open, 645 .release = rbd_release, 646 .ioctl = rbd_ioctl, 647 #ifdef CONFIG_COMPAT 648 .compat_ioctl = rbd_compat_ioctl, 649 #endif 650 }; 651 652 /* 653 * Initialize an rbd client instance. Success or not, this function 654 * consumes ceph_opts. Caller holds client_mutex. 655 */ 656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 657 { 658 struct rbd_client *rbdc; 659 int ret = -ENOMEM; 660 661 dout("%s:\n", __func__); 662 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 663 if (!rbdc) 664 goto out_opt; 665 666 kref_init(&rbdc->kref); 667 INIT_LIST_HEAD(&rbdc->node); 668 669 rbdc->client = ceph_create_client(ceph_opts, rbdc); 670 if (IS_ERR(rbdc->client)) 671 goto out_rbdc; 672 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 673 674 ret = ceph_open_session(rbdc->client); 675 if (ret < 0) 676 goto out_client; 677 678 spin_lock(&rbd_client_list_lock); 679 list_add_tail(&rbdc->node, &rbd_client_list); 680 spin_unlock(&rbd_client_list_lock); 681 682 dout("%s: rbdc %p\n", __func__, rbdc); 683 684 return rbdc; 685 out_client: 686 ceph_destroy_client(rbdc->client); 687 out_rbdc: 688 kfree(rbdc); 689 out_opt: 690 if (ceph_opts) 691 ceph_destroy_options(ceph_opts); 692 dout("%s: error %d\n", __func__, ret); 693 694 return ERR_PTR(ret); 695 } 696 697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 698 { 699 kref_get(&rbdc->kref); 700 701 return rbdc; 702 } 703 704 /* 705 * Find a ceph client with specific addr and configuration. If 706 * found, bump its reference count. 707 */ 708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 709 { 710 struct rbd_client *client_node; 711 bool found = false; 712 713 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 714 return NULL; 715 716 spin_lock(&rbd_client_list_lock); 717 list_for_each_entry(client_node, &rbd_client_list, node) { 718 if (!ceph_compare_options(ceph_opts, client_node->client)) { 719 __rbd_get_client(client_node); 720 721 found = true; 722 break; 723 } 724 } 725 spin_unlock(&rbd_client_list_lock); 726 727 return found ? client_node : NULL; 728 } 729 730 /* 731 * (Per device) rbd map options 732 */ 733 enum { 734 Opt_queue_depth, 735 Opt_lock_timeout, 736 Opt_last_int, 737 /* int args above */ 738 Opt_last_string, 739 /* string args above */ 740 Opt_read_only, 741 Opt_read_write, 742 Opt_lock_on_read, 743 Opt_exclusive, 744 Opt_notrim, 745 Opt_err 746 }; 747 748 static match_table_t rbd_opts_tokens = { 749 {Opt_queue_depth, "queue_depth=%d"}, 750 {Opt_lock_timeout, "lock_timeout=%d"}, 751 /* int args above */ 752 /* string args above */ 753 {Opt_read_only, "read_only"}, 754 {Opt_read_only, "ro"}, /* Alternate spelling */ 755 {Opt_read_write, "read_write"}, 756 {Opt_read_write, "rw"}, /* Alternate spelling */ 757 {Opt_lock_on_read, "lock_on_read"}, 758 {Opt_exclusive, "exclusive"}, 759 {Opt_notrim, "notrim"}, 760 {Opt_err, NULL} 761 }; 762 763 struct rbd_options { 764 int queue_depth; 765 unsigned long lock_timeout; 766 bool read_only; 767 bool lock_on_read; 768 bool exclusive; 769 bool trim; 770 }; 771 772 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 773 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 774 #define RBD_READ_ONLY_DEFAULT false 775 #define RBD_LOCK_ON_READ_DEFAULT false 776 #define RBD_EXCLUSIVE_DEFAULT false 777 #define RBD_TRIM_DEFAULT true 778 779 static int parse_rbd_opts_token(char *c, void *private) 780 { 781 struct rbd_options *rbd_opts = private; 782 substring_t argstr[MAX_OPT_ARGS]; 783 int token, intval, ret; 784 785 token = match_token(c, rbd_opts_tokens, argstr); 786 if (token < Opt_last_int) { 787 ret = match_int(&argstr[0], &intval); 788 if (ret < 0) { 789 pr_err("bad mount option arg (not int) at '%s'\n", c); 790 return ret; 791 } 792 dout("got int token %d val %d\n", token, intval); 793 } else if (token > Opt_last_int && token < Opt_last_string) { 794 dout("got string token %d val %s\n", token, argstr[0].from); 795 } else { 796 dout("got token %d\n", token); 797 } 798 799 switch (token) { 800 case Opt_queue_depth: 801 if (intval < 1) { 802 pr_err("queue_depth out of range\n"); 803 return -EINVAL; 804 } 805 rbd_opts->queue_depth = intval; 806 break; 807 case Opt_lock_timeout: 808 /* 0 is "wait forever" (i.e. infinite timeout) */ 809 if (intval < 0 || intval > INT_MAX / 1000) { 810 pr_err("lock_timeout out of range\n"); 811 return -EINVAL; 812 } 813 rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000); 814 break; 815 case Opt_read_only: 816 rbd_opts->read_only = true; 817 break; 818 case Opt_read_write: 819 rbd_opts->read_only = false; 820 break; 821 case Opt_lock_on_read: 822 rbd_opts->lock_on_read = true; 823 break; 824 case Opt_exclusive: 825 rbd_opts->exclusive = true; 826 break; 827 case Opt_notrim: 828 rbd_opts->trim = false; 829 break; 830 default: 831 /* libceph prints "bad option" msg */ 832 return -EINVAL; 833 } 834 835 return 0; 836 } 837 838 static char* obj_op_name(enum obj_operation_type op_type) 839 { 840 switch (op_type) { 841 case OBJ_OP_READ: 842 return "read"; 843 case OBJ_OP_WRITE: 844 return "write"; 845 case OBJ_OP_DISCARD: 846 return "discard"; 847 default: 848 return "???"; 849 } 850 } 851 852 /* 853 * Destroy ceph client 854 * 855 * Caller must hold rbd_client_list_lock. 856 */ 857 static void rbd_client_release(struct kref *kref) 858 { 859 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 860 861 dout("%s: rbdc %p\n", __func__, rbdc); 862 spin_lock(&rbd_client_list_lock); 863 list_del(&rbdc->node); 864 spin_unlock(&rbd_client_list_lock); 865 866 ceph_destroy_client(rbdc->client); 867 kfree(rbdc); 868 } 869 870 /* 871 * Drop reference to ceph client node. If it's not referenced anymore, release 872 * it. 873 */ 874 static void rbd_put_client(struct rbd_client *rbdc) 875 { 876 if (rbdc) 877 kref_put(&rbdc->kref, rbd_client_release); 878 } 879 880 static int wait_for_latest_osdmap(struct ceph_client *client) 881 { 882 u64 newest_epoch; 883 int ret; 884 885 ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch); 886 if (ret) 887 return ret; 888 889 if (client->osdc.osdmap->epoch >= newest_epoch) 890 return 0; 891 892 ceph_osdc_maybe_request_map(&client->osdc); 893 return ceph_monc_wait_osdmap(&client->monc, newest_epoch, 894 client->options->mount_timeout); 895 } 896 897 /* 898 * Get a ceph client with specific addr and configuration, if one does 899 * not exist create it. Either way, ceph_opts is consumed by this 900 * function. 901 */ 902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 903 { 904 struct rbd_client *rbdc; 905 int ret; 906 907 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 908 rbdc = rbd_client_find(ceph_opts); 909 if (rbdc) { 910 ceph_destroy_options(ceph_opts); 911 912 /* 913 * Using an existing client. Make sure ->pg_pools is up to 914 * date before we look up the pool id in do_rbd_add(). 915 */ 916 ret = wait_for_latest_osdmap(rbdc->client); 917 if (ret) { 918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 919 rbd_put_client(rbdc); 920 rbdc = ERR_PTR(ret); 921 } 922 } else { 923 rbdc = rbd_client_create(ceph_opts); 924 } 925 mutex_unlock(&client_mutex); 926 927 return rbdc; 928 } 929 930 static bool rbd_image_format_valid(u32 image_format) 931 { 932 return image_format == 1 || image_format == 2; 933 } 934 935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 936 { 937 size_t size; 938 u32 snap_count; 939 940 /* The header has to start with the magic rbd header text */ 941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 942 return false; 943 944 /* The bio layer requires at least sector-sized I/O */ 945 946 if (ondisk->options.order < SECTOR_SHIFT) 947 return false; 948 949 /* If we use u64 in a few spots we may be able to loosen this */ 950 951 if (ondisk->options.order > 8 * sizeof (int) - 1) 952 return false; 953 954 /* 955 * The size of a snapshot header has to fit in a size_t, and 956 * that limits the number of snapshots. 957 */ 958 snap_count = le32_to_cpu(ondisk->snap_count); 959 size = SIZE_MAX - sizeof (struct ceph_snap_context); 960 if (snap_count > size / sizeof (__le64)) 961 return false; 962 963 /* 964 * Not only that, but the size of the entire the snapshot 965 * header must also be representable in a size_t. 966 */ 967 size -= snap_count * sizeof (__le64); 968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 969 return false; 970 971 return true; 972 } 973 974 /* 975 * returns the size of an object in the image 976 */ 977 static u32 rbd_obj_bytes(struct rbd_image_header *header) 978 { 979 return 1U << header->obj_order; 980 } 981 982 static void rbd_init_layout(struct rbd_device *rbd_dev) 983 { 984 if (rbd_dev->header.stripe_unit == 0 || 985 rbd_dev->header.stripe_count == 0) { 986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 987 rbd_dev->header.stripe_count = 1; 988 } 989 990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 996 } 997 998 /* 999 * Fill an rbd image header with information from the given format 1 1000 * on-disk header. 1001 */ 1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1003 struct rbd_image_header_ondisk *ondisk) 1004 { 1005 struct rbd_image_header *header = &rbd_dev->header; 1006 bool first_time = header->object_prefix == NULL; 1007 struct ceph_snap_context *snapc; 1008 char *object_prefix = NULL; 1009 char *snap_names = NULL; 1010 u64 *snap_sizes = NULL; 1011 u32 snap_count; 1012 int ret = -ENOMEM; 1013 u32 i; 1014 1015 /* Allocate this now to avoid having to handle failure below */ 1016 1017 if (first_time) { 1018 object_prefix = kstrndup(ondisk->object_prefix, 1019 sizeof(ondisk->object_prefix), 1020 GFP_KERNEL); 1021 if (!object_prefix) 1022 return -ENOMEM; 1023 } 1024 1025 /* Allocate the snapshot context and fill it in */ 1026 1027 snap_count = le32_to_cpu(ondisk->snap_count); 1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1029 if (!snapc) 1030 goto out_err; 1031 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1032 if (snap_count) { 1033 struct rbd_image_snap_ondisk *snaps; 1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1035 1036 /* We'll keep a copy of the snapshot names... */ 1037 1038 if (snap_names_len > (u64)SIZE_MAX) 1039 goto out_2big; 1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1041 if (!snap_names) 1042 goto out_err; 1043 1044 /* ...as well as the array of their sizes. */ 1045 snap_sizes = kmalloc_array(snap_count, 1046 sizeof(*header->snap_sizes), 1047 GFP_KERNEL); 1048 if (!snap_sizes) 1049 goto out_err; 1050 1051 /* 1052 * Copy the names, and fill in each snapshot's id 1053 * and size. 1054 * 1055 * Note that rbd_dev_v1_header_info() guarantees the 1056 * ondisk buffer we're working with has 1057 * snap_names_len bytes beyond the end of the 1058 * snapshot id array, this memcpy() is safe. 1059 */ 1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1061 snaps = ondisk->snaps; 1062 for (i = 0; i < snap_count; i++) { 1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1065 } 1066 } 1067 1068 /* We won't fail any more, fill in the header */ 1069 1070 if (first_time) { 1071 header->object_prefix = object_prefix; 1072 header->obj_order = ondisk->options.order; 1073 rbd_init_layout(rbd_dev); 1074 } else { 1075 ceph_put_snap_context(header->snapc); 1076 kfree(header->snap_names); 1077 kfree(header->snap_sizes); 1078 } 1079 1080 /* The remaining fields always get updated (when we refresh) */ 1081 1082 header->image_size = le64_to_cpu(ondisk->image_size); 1083 header->snapc = snapc; 1084 header->snap_names = snap_names; 1085 header->snap_sizes = snap_sizes; 1086 1087 return 0; 1088 out_2big: 1089 ret = -EIO; 1090 out_err: 1091 kfree(snap_sizes); 1092 kfree(snap_names); 1093 ceph_put_snap_context(snapc); 1094 kfree(object_prefix); 1095 1096 return ret; 1097 } 1098 1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1100 { 1101 const char *snap_name; 1102 1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1104 1105 /* Skip over names until we find the one we are looking for */ 1106 1107 snap_name = rbd_dev->header.snap_names; 1108 while (which--) 1109 snap_name += strlen(snap_name) + 1; 1110 1111 return kstrdup(snap_name, GFP_KERNEL); 1112 } 1113 1114 /* 1115 * Snapshot id comparison function for use with qsort()/bsearch(). 1116 * Note that result is for snapshots in *descending* order. 1117 */ 1118 static int snapid_compare_reverse(const void *s1, const void *s2) 1119 { 1120 u64 snap_id1 = *(u64 *)s1; 1121 u64 snap_id2 = *(u64 *)s2; 1122 1123 if (snap_id1 < snap_id2) 1124 return 1; 1125 return snap_id1 == snap_id2 ? 0 : -1; 1126 } 1127 1128 /* 1129 * Search a snapshot context to see if the given snapshot id is 1130 * present. 1131 * 1132 * Returns the position of the snapshot id in the array if it's found, 1133 * or BAD_SNAP_INDEX otherwise. 1134 * 1135 * Note: The snapshot array is in kept sorted (by the osd) in 1136 * reverse order, highest snapshot id first. 1137 */ 1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1139 { 1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1141 u64 *found; 1142 1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1144 sizeof (snap_id), snapid_compare_reverse); 1145 1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1147 } 1148 1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1150 u64 snap_id) 1151 { 1152 u32 which; 1153 const char *snap_name; 1154 1155 which = rbd_dev_snap_index(rbd_dev, snap_id); 1156 if (which == BAD_SNAP_INDEX) 1157 return ERR_PTR(-ENOENT); 1158 1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1161 } 1162 1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1164 { 1165 if (snap_id == CEPH_NOSNAP) 1166 return RBD_SNAP_HEAD_NAME; 1167 1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1169 if (rbd_dev->image_format == 1) 1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1171 1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1173 } 1174 1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1176 u64 *snap_size) 1177 { 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (snap_id == CEPH_NOSNAP) { 1180 *snap_size = rbd_dev->header.image_size; 1181 } else if (rbd_dev->image_format == 1) { 1182 u32 which; 1183 1184 which = rbd_dev_snap_index(rbd_dev, snap_id); 1185 if (which == BAD_SNAP_INDEX) 1186 return -ENOENT; 1187 1188 *snap_size = rbd_dev->header.snap_sizes[which]; 1189 } else { 1190 u64 size = 0; 1191 int ret; 1192 1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1194 if (ret) 1195 return ret; 1196 1197 *snap_size = size; 1198 } 1199 return 0; 1200 } 1201 1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1203 u64 *snap_features) 1204 { 1205 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1206 if (snap_id == CEPH_NOSNAP) { 1207 *snap_features = rbd_dev->header.features; 1208 } else if (rbd_dev->image_format == 1) { 1209 *snap_features = 0; /* No features for format 1 */ 1210 } else { 1211 u64 features = 0; 1212 int ret; 1213 1214 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1215 if (ret) 1216 return ret; 1217 1218 *snap_features = features; 1219 } 1220 return 0; 1221 } 1222 1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1224 { 1225 u64 snap_id = rbd_dev->spec->snap_id; 1226 u64 size = 0; 1227 u64 features = 0; 1228 int ret; 1229 1230 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1231 if (ret) 1232 return ret; 1233 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1234 if (ret) 1235 return ret; 1236 1237 rbd_dev->mapping.size = size; 1238 rbd_dev->mapping.features = features; 1239 1240 return 0; 1241 } 1242 1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1244 { 1245 rbd_dev->mapping.size = 0; 1246 rbd_dev->mapping.features = 0; 1247 } 1248 1249 static void zero_bvec(struct bio_vec *bv) 1250 { 1251 void *buf; 1252 unsigned long flags; 1253 1254 buf = bvec_kmap_irq(bv, &flags); 1255 memset(buf, 0, bv->bv_len); 1256 flush_dcache_page(bv->bv_page); 1257 bvec_kunmap_irq(buf, &flags); 1258 } 1259 1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1261 { 1262 struct ceph_bio_iter it = *bio_pos; 1263 1264 ceph_bio_iter_advance(&it, off); 1265 ceph_bio_iter_advance_step(&it, bytes, ({ 1266 zero_bvec(&bv); 1267 })); 1268 } 1269 1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1271 { 1272 struct ceph_bvec_iter it = *bvec_pos; 1273 1274 ceph_bvec_iter_advance(&it, off); 1275 ceph_bvec_iter_advance_step(&it, bytes, ({ 1276 zero_bvec(&bv); 1277 })); 1278 } 1279 1280 /* 1281 * Zero a range in @obj_req data buffer defined by a bio (list) or 1282 * (private) bio_vec array. 1283 * 1284 * @off is relative to the start of the data buffer. 1285 */ 1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1287 u32 bytes) 1288 { 1289 switch (obj_req->img_request->data_type) { 1290 case OBJ_REQUEST_BIO: 1291 zero_bios(&obj_req->bio_pos, off, bytes); 1292 break; 1293 case OBJ_REQUEST_BVECS: 1294 case OBJ_REQUEST_OWN_BVECS: 1295 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1296 break; 1297 default: 1298 rbd_assert(0); 1299 } 1300 } 1301 1302 static void rbd_obj_request_destroy(struct kref *kref); 1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1304 { 1305 rbd_assert(obj_request != NULL); 1306 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1307 kref_read(&obj_request->kref)); 1308 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1309 } 1310 1311 static void rbd_img_request_get(struct rbd_img_request *img_request) 1312 { 1313 dout("%s: img %p (was %d)\n", __func__, img_request, 1314 kref_read(&img_request->kref)); 1315 kref_get(&img_request->kref); 1316 } 1317 1318 static void rbd_img_request_destroy(struct kref *kref); 1319 static void rbd_img_request_put(struct rbd_img_request *img_request) 1320 { 1321 rbd_assert(img_request != NULL); 1322 dout("%s: img %p (was %d)\n", __func__, img_request, 1323 kref_read(&img_request->kref)); 1324 kref_put(&img_request->kref, rbd_img_request_destroy); 1325 } 1326 1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1328 struct rbd_obj_request *obj_request) 1329 { 1330 rbd_assert(obj_request->img_request == NULL); 1331 1332 /* Image request now owns object's original reference */ 1333 obj_request->img_request = img_request; 1334 img_request->obj_request_count++; 1335 img_request->pending_count++; 1336 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1337 } 1338 1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1340 struct rbd_obj_request *obj_request) 1341 { 1342 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1343 list_del(&obj_request->ex.oe_item); 1344 rbd_assert(img_request->obj_request_count > 0); 1345 img_request->obj_request_count--; 1346 rbd_assert(obj_request->img_request == img_request); 1347 rbd_obj_request_put(obj_request); 1348 } 1349 1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1351 { 1352 struct ceph_osd_request *osd_req = obj_request->osd_req; 1353 1354 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1355 obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off, 1356 obj_request->ex.oe_len, osd_req); 1357 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1358 } 1359 1360 /* 1361 * The default/initial value for all image request flags is 0. Each 1362 * is conditionally set to 1 at image request initialization time 1363 * and currently never change thereafter. 1364 */ 1365 static void img_request_layered_set(struct rbd_img_request *img_request) 1366 { 1367 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1368 smp_mb(); 1369 } 1370 1371 static void img_request_layered_clear(struct rbd_img_request *img_request) 1372 { 1373 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1374 smp_mb(); 1375 } 1376 1377 static bool img_request_layered_test(struct rbd_img_request *img_request) 1378 { 1379 smp_mb(); 1380 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1381 } 1382 1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1384 { 1385 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1386 1387 return !obj_req->ex.oe_off && 1388 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1389 } 1390 1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1392 { 1393 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1394 1395 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1396 rbd_dev->layout.object_size; 1397 } 1398 1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1400 { 1401 return ceph_file_extents_bytes(obj_req->img_extents, 1402 obj_req->num_img_extents); 1403 } 1404 1405 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1406 { 1407 switch (img_req->op_type) { 1408 case OBJ_OP_READ: 1409 return false; 1410 case OBJ_OP_WRITE: 1411 case OBJ_OP_DISCARD: 1412 return true; 1413 default: 1414 BUG(); 1415 } 1416 } 1417 1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req); 1419 1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1421 { 1422 struct rbd_obj_request *obj_req = osd_req->r_priv; 1423 1424 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1425 osd_req->r_result, obj_req); 1426 rbd_assert(osd_req == obj_req->osd_req); 1427 1428 obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0; 1429 if (!obj_req->result && !rbd_img_is_write(obj_req->img_request)) 1430 obj_req->xferred = osd_req->r_result; 1431 else 1432 /* 1433 * Writes aren't allowed to return a data payload. In some 1434 * guarded write cases (e.g. stat + zero on an empty object) 1435 * a stat response makes it through, but we don't care. 1436 */ 1437 obj_req->xferred = 0; 1438 1439 rbd_obj_handle_request(obj_req); 1440 } 1441 1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1443 { 1444 struct ceph_osd_request *osd_req = obj_request->osd_req; 1445 1446 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1447 osd_req->r_snapid = obj_request->img_request->snap_id; 1448 } 1449 1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1451 { 1452 struct ceph_osd_request *osd_req = obj_request->osd_req; 1453 1454 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1455 ktime_get_real_ts(&osd_req->r_mtime); 1456 osd_req->r_data_offset = obj_request->ex.oe_off; 1457 } 1458 1459 static struct ceph_osd_request * 1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops) 1461 { 1462 struct rbd_img_request *img_req = obj_req->img_request; 1463 struct rbd_device *rbd_dev = img_req->rbd_dev; 1464 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1465 struct ceph_osd_request *req; 1466 const char *name_format = rbd_dev->image_format == 1 ? 1467 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1468 1469 req = ceph_osdc_alloc_request(osdc, 1470 (rbd_img_is_write(img_req) ? img_req->snapc : NULL), 1471 num_ops, false, GFP_NOIO); 1472 if (!req) 1473 return NULL; 1474 1475 req->r_callback = rbd_osd_req_callback; 1476 req->r_priv = obj_req; 1477 1478 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1479 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1480 rbd_dev->header.object_prefix, obj_req->ex.oe_objno)) 1481 goto err_req; 1482 1483 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1484 goto err_req; 1485 1486 return req; 1487 1488 err_req: 1489 ceph_osdc_put_request(req); 1490 return NULL; 1491 } 1492 1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1494 { 1495 ceph_osdc_put_request(osd_req); 1496 } 1497 1498 static struct rbd_obj_request *rbd_obj_request_create(void) 1499 { 1500 struct rbd_obj_request *obj_request; 1501 1502 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1503 if (!obj_request) 1504 return NULL; 1505 1506 ceph_object_extent_init(&obj_request->ex); 1507 kref_init(&obj_request->kref); 1508 1509 dout("%s %p\n", __func__, obj_request); 1510 return obj_request; 1511 } 1512 1513 static void rbd_obj_request_destroy(struct kref *kref) 1514 { 1515 struct rbd_obj_request *obj_request; 1516 u32 i; 1517 1518 obj_request = container_of(kref, struct rbd_obj_request, kref); 1519 1520 dout("%s: obj %p\n", __func__, obj_request); 1521 1522 if (obj_request->osd_req) 1523 rbd_osd_req_destroy(obj_request->osd_req); 1524 1525 switch (obj_request->img_request->data_type) { 1526 case OBJ_REQUEST_NODATA: 1527 case OBJ_REQUEST_BIO: 1528 case OBJ_REQUEST_BVECS: 1529 break; /* Nothing to do */ 1530 case OBJ_REQUEST_OWN_BVECS: 1531 kfree(obj_request->bvec_pos.bvecs); 1532 break; 1533 default: 1534 rbd_assert(0); 1535 } 1536 1537 kfree(obj_request->img_extents); 1538 if (obj_request->copyup_bvecs) { 1539 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1540 if (obj_request->copyup_bvecs[i].bv_page) 1541 __free_page(obj_request->copyup_bvecs[i].bv_page); 1542 } 1543 kfree(obj_request->copyup_bvecs); 1544 } 1545 1546 kmem_cache_free(rbd_obj_request_cache, obj_request); 1547 } 1548 1549 /* It's OK to call this for a device with no parent */ 1550 1551 static void rbd_spec_put(struct rbd_spec *spec); 1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1553 { 1554 rbd_dev_remove_parent(rbd_dev); 1555 rbd_spec_put(rbd_dev->parent_spec); 1556 rbd_dev->parent_spec = NULL; 1557 rbd_dev->parent_overlap = 0; 1558 } 1559 1560 /* 1561 * Parent image reference counting is used to determine when an 1562 * image's parent fields can be safely torn down--after there are no 1563 * more in-flight requests to the parent image. When the last 1564 * reference is dropped, cleaning them up is safe. 1565 */ 1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1567 { 1568 int counter; 1569 1570 if (!rbd_dev->parent_spec) 1571 return; 1572 1573 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1574 if (counter > 0) 1575 return; 1576 1577 /* Last reference; clean up parent data structures */ 1578 1579 if (!counter) 1580 rbd_dev_unparent(rbd_dev); 1581 else 1582 rbd_warn(rbd_dev, "parent reference underflow"); 1583 } 1584 1585 /* 1586 * If an image has a non-zero parent overlap, get a reference to its 1587 * parent. 1588 * 1589 * Returns true if the rbd device has a parent with a non-zero 1590 * overlap and a reference for it was successfully taken, or 1591 * false otherwise. 1592 */ 1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1594 { 1595 int counter = 0; 1596 1597 if (!rbd_dev->parent_spec) 1598 return false; 1599 1600 down_read(&rbd_dev->header_rwsem); 1601 if (rbd_dev->parent_overlap) 1602 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1603 up_read(&rbd_dev->header_rwsem); 1604 1605 if (counter < 0) 1606 rbd_warn(rbd_dev, "parent reference overflow"); 1607 1608 return counter > 0; 1609 } 1610 1611 /* 1612 * Caller is responsible for filling in the list of object requests 1613 * that comprises the image request, and the Linux request pointer 1614 * (if there is one). 1615 */ 1616 static struct rbd_img_request *rbd_img_request_create( 1617 struct rbd_device *rbd_dev, 1618 enum obj_operation_type op_type, 1619 struct ceph_snap_context *snapc) 1620 { 1621 struct rbd_img_request *img_request; 1622 1623 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO); 1624 if (!img_request) 1625 return NULL; 1626 1627 img_request->rbd_dev = rbd_dev; 1628 img_request->op_type = op_type; 1629 if (!rbd_img_is_write(img_request)) 1630 img_request->snap_id = rbd_dev->spec->snap_id; 1631 else 1632 img_request->snapc = snapc; 1633 1634 if (rbd_dev_parent_get(rbd_dev)) 1635 img_request_layered_set(img_request); 1636 1637 spin_lock_init(&img_request->completion_lock); 1638 INIT_LIST_HEAD(&img_request->object_extents); 1639 kref_init(&img_request->kref); 1640 1641 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev, 1642 obj_op_name(op_type), img_request); 1643 return img_request; 1644 } 1645 1646 static void rbd_img_request_destroy(struct kref *kref) 1647 { 1648 struct rbd_img_request *img_request; 1649 struct rbd_obj_request *obj_request; 1650 struct rbd_obj_request *next_obj_request; 1651 1652 img_request = container_of(kref, struct rbd_img_request, kref); 1653 1654 dout("%s: img %p\n", __func__, img_request); 1655 1656 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1657 rbd_img_obj_request_del(img_request, obj_request); 1658 rbd_assert(img_request->obj_request_count == 0); 1659 1660 if (img_request_layered_test(img_request)) { 1661 img_request_layered_clear(img_request); 1662 rbd_dev_parent_put(img_request->rbd_dev); 1663 } 1664 1665 if (rbd_img_is_write(img_request)) 1666 ceph_put_snap_context(img_request->snapc); 1667 1668 kmem_cache_free(rbd_img_request_cache, img_request); 1669 } 1670 1671 static void prune_extents(struct ceph_file_extent *img_extents, 1672 u32 *num_img_extents, u64 overlap) 1673 { 1674 u32 cnt = *num_img_extents; 1675 1676 /* drop extents completely beyond the overlap */ 1677 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 1678 cnt--; 1679 1680 if (cnt) { 1681 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 1682 1683 /* trim final overlapping extent */ 1684 if (ex->fe_off + ex->fe_len > overlap) 1685 ex->fe_len = overlap - ex->fe_off; 1686 } 1687 1688 *num_img_extents = cnt; 1689 } 1690 1691 /* 1692 * Determine the byte range(s) covered by either just the object extent 1693 * or the entire object in the parent image. 1694 */ 1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 1696 bool entire) 1697 { 1698 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1699 int ret; 1700 1701 if (!rbd_dev->parent_overlap) 1702 return 0; 1703 1704 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 1705 entire ? 0 : obj_req->ex.oe_off, 1706 entire ? rbd_dev->layout.object_size : 1707 obj_req->ex.oe_len, 1708 &obj_req->img_extents, 1709 &obj_req->num_img_extents); 1710 if (ret) 1711 return ret; 1712 1713 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 1714 rbd_dev->parent_overlap); 1715 return 0; 1716 } 1717 1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which) 1719 { 1720 switch (obj_req->img_request->data_type) { 1721 case OBJ_REQUEST_BIO: 1722 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which, 1723 &obj_req->bio_pos, 1724 obj_req->ex.oe_len); 1725 break; 1726 case OBJ_REQUEST_BVECS: 1727 case OBJ_REQUEST_OWN_BVECS: 1728 rbd_assert(obj_req->bvec_pos.iter.bi_size == 1729 obj_req->ex.oe_len); 1730 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 1731 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which, 1732 &obj_req->bvec_pos); 1733 break; 1734 default: 1735 rbd_assert(0); 1736 } 1737 } 1738 1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req) 1740 { 1741 obj_req->osd_req = rbd_osd_req_create(obj_req, 1); 1742 if (!obj_req->osd_req) 1743 return -ENOMEM; 1744 1745 osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ, 1746 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1747 rbd_osd_req_setup_data(obj_req, 0); 1748 1749 rbd_osd_req_format_read(obj_req); 1750 return 0; 1751 } 1752 1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req, 1754 unsigned int which) 1755 { 1756 struct page **pages; 1757 1758 /* 1759 * The response data for a STAT call consists of: 1760 * le64 length; 1761 * struct { 1762 * le32 tv_sec; 1763 * le32 tv_nsec; 1764 * } mtime; 1765 */ 1766 pages = ceph_alloc_page_vector(1, GFP_NOIO); 1767 if (IS_ERR(pages)) 1768 return PTR_ERR(pages); 1769 1770 osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0); 1771 osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages, 1772 8 + sizeof(struct ceph_timespec), 1773 0, false, true); 1774 return 0; 1775 } 1776 1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req, 1778 unsigned int which) 1779 { 1780 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1781 u16 opcode; 1782 1783 osd_req_op_alloc_hint_init(obj_req->osd_req, which++, 1784 rbd_dev->layout.object_size, 1785 rbd_dev->layout.object_size); 1786 1787 if (rbd_obj_is_entire(obj_req)) 1788 opcode = CEPH_OSD_OP_WRITEFULL; 1789 else 1790 opcode = CEPH_OSD_OP_WRITE; 1791 1792 osd_req_op_extent_init(obj_req->osd_req, which, opcode, 1793 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1794 rbd_osd_req_setup_data(obj_req, which++); 1795 1796 rbd_assert(which == obj_req->osd_req->r_num_ops); 1797 rbd_osd_req_format_write(obj_req); 1798 } 1799 1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req) 1801 { 1802 unsigned int num_osd_ops, which = 0; 1803 int ret; 1804 1805 /* reverse map the entire object onto the parent */ 1806 ret = rbd_obj_calc_img_extents(obj_req, true); 1807 if (ret) 1808 return ret; 1809 1810 if (obj_req->num_img_extents) { 1811 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1812 num_osd_ops = 3; /* stat + setallochint + write/writefull */ 1813 } else { 1814 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1815 num_osd_ops = 2; /* setallochint + write/writefull */ 1816 } 1817 1818 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1819 if (!obj_req->osd_req) 1820 return -ENOMEM; 1821 1822 if (obj_req->num_img_extents) { 1823 ret = __rbd_obj_setup_stat(obj_req, which++); 1824 if (ret) 1825 return ret; 1826 } 1827 1828 __rbd_obj_setup_write(obj_req, which); 1829 return 0; 1830 } 1831 1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req, 1833 unsigned int which) 1834 { 1835 u16 opcode; 1836 1837 if (rbd_obj_is_entire(obj_req)) { 1838 if (obj_req->num_img_extents) { 1839 osd_req_op_init(obj_req->osd_req, which++, 1840 CEPH_OSD_OP_CREATE, 0); 1841 opcode = CEPH_OSD_OP_TRUNCATE; 1842 } else { 1843 osd_req_op_init(obj_req->osd_req, which++, 1844 CEPH_OSD_OP_DELETE, 0); 1845 opcode = 0; 1846 } 1847 } else if (rbd_obj_is_tail(obj_req)) { 1848 opcode = CEPH_OSD_OP_TRUNCATE; 1849 } else { 1850 opcode = CEPH_OSD_OP_ZERO; 1851 } 1852 1853 if (opcode) 1854 osd_req_op_extent_init(obj_req->osd_req, which++, opcode, 1855 obj_req->ex.oe_off, obj_req->ex.oe_len, 1856 0, 0); 1857 1858 rbd_assert(which == obj_req->osd_req->r_num_ops); 1859 rbd_osd_req_format_write(obj_req); 1860 } 1861 1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req) 1863 { 1864 unsigned int num_osd_ops, which = 0; 1865 int ret; 1866 1867 /* reverse map the entire object onto the parent */ 1868 ret = rbd_obj_calc_img_extents(obj_req, true); 1869 if (ret) 1870 return ret; 1871 1872 if (rbd_obj_is_entire(obj_req)) { 1873 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1874 if (obj_req->num_img_extents) 1875 num_osd_ops = 2; /* create + truncate */ 1876 else 1877 num_osd_ops = 1; /* delete */ 1878 } else { 1879 if (obj_req->num_img_extents) { 1880 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1881 num_osd_ops = 2; /* stat + truncate/zero */ 1882 } else { 1883 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1884 num_osd_ops = 1; /* truncate/zero */ 1885 } 1886 } 1887 1888 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1889 if (!obj_req->osd_req) 1890 return -ENOMEM; 1891 1892 if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) { 1893 ret = __rbd_obj_setup_stat(obj_req, which++); 1894 if (ret) 1895 return ret; 1896 } 1897 1898 __rbd_obj_setup_discard(obj_req, which); 1899 return 0; 1900 } 1901 1902 /* 1903 * For each object request in @img_req, allocate an OSD request, add 1904 * individual OSD ops and prepare them for submission. The number of 1905 * OSD ops depends on op_type and the overlap point (if any). 1906 */ 1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 1908 { 1909 struct rbd_obj_request *obj_req; 1910 int ret; 1911 1912 for_each_obj_request(img_req, obj_req) { 1913 switch (img_req->op_type) { 1914 case OBJ_OP_READ: 1915 ret = rbd_obj_setup_read(obj_req); 1916 break; 1917 case OBJ_OP_WRITE: 1918 ret = rbd_obj_setup_write(obj_req); 1919 break; 1920 case OBJ_OP_DISCARD: 1921 ret = rbd_obj_setup_discard(obj_req); 1922 break; 1923 default: 1924 rbd_assert(0); 1925 } 1926 if (ret) 1927 return ret; 1928 } 1929 1930 return 0; 1931 } 1932 1933 union rbd_img_fill_iter { 1934 struct ceph_bio_iter bio_iter; 1935 struct ceph_bvec_iter bvec_iter; 1936 }; 1937 1938 struct rbd_img_fill_ctx { 1939 enum obj_request_type pos_type; 1940 union rbd_img_fill_iter *pos; 1941 union rbd_img_fill_iter iter; 1942 ceph_object_extent_fn_t set_pos_fn; 1943 ceph_object_extent_fn_t count_fn; 1944 ceph_object_extent_fn_t copy_fn; 1945 }; 1946 1947 static struct ceph_object_extent *alloc_object_extent(void *arg) 1948 { 1949 struct rbd_img_request *img_req = arg; 1950 struct rbd_obj_request *obj_req; 1951 1952 obj_req = rbd_obj_request_create(); 1953 if (!obj_req) 1954 return NULL; 1955 1956 rbd_img_obj_request_add(img_req, obj_req); 1957 return &obj_req->ex; 1958 } 1959 1960 /* 1961 * While su != os && sc == 1 is technically not fancy (it's the same 1962 * layout as su == os && sc == 1), we can't use the nocopy path for it 1963 * because ->set_pos_fn() should be called only once per object. 1964 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 1965 * treat su != os && sc == 1 as fancy. 1966 */ 1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 1968 { 1969 return l->stripe_unit != l->object_size; 1970 } 1971 1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 1973 struct ceph_file_extent *img_extents, 1974 u32 num_img_extents, 1975 struct rbd_img_fill_ctx *fctx) 1976 { 1977 u32 i; 1978 int ret; 1979 1980 img_req->data_type = fctx->pos_type; 1981 1982 /* 1983 * Create object requests and set each object request's starting 1984 * position in the provided bio (list) or bio_vec array. 1985 */ 1986 fctx->iter = *fctx->pos; 1987 for (i = 0; i < num_img_extents; i++) { 1988 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 1989 img_extents[i].fe_off, 1990 img_extents[i].fe_len, 1991 &img_req->object_extents, 1992 alloc_object_extent, img_req, 1993 fctx->set_pos_fn, &fctx->iter); 1994 if (ret) 1995 return ret; 1996 } 1997 1998 return __rbd_img_fill_request(img_req); 1999 } 2000 2001 /* 2002 * Map a list of image extents to a list of object extents, create the 2003 * corresponding object requests (normally each to a different object, 2004 * but not always) and add them to @img_req. For each object request, 2005 * set up its data descriptor to point to the corresponding chunk(s) of 2006 * @fctx->pos data buffer. 2007 * 2008 * Because ceph_file_to_extents() will merge adjacent object extents 2009 * together, each object request's data descriptor may point to multiple 2010 * different chunks of @fctx->pos data buffer. 2011 * 2012 * @fctx->pos data buffer is assumed to be large enough. 2013 */ 2014 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2015 struct ceph_file_extent *img_extents, 2016 u32 num_img_extents, 2017 struct rbd_img_fill_ctx *fctx) 2018 { 2019 struct rbd_device *rbd_dev = img_req->rbd_dev; 2020 struct rbd_obj_request *obj_req; 2021 u32 i; 2022 int ret; 2023 2024 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2025 !rbd_layout_is_fancy(&rbd_dev->layout)) 2026 return rbd_img_fill_request_nocopy(img_req, img_extents, 2027 num_img_extents, fctx); 2028 2029 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2030 2031 /* 2032 * Create object requests and determine ->bvec_count for each object 2033 * request. Note that ->bvec_count sum over all object requests may 2034 * be greater than the number of bio_vecs in the provided bio (list) 2035 * or bio_vec array because when mapped, those bio_vecs can straddle 2036 * stripe unit boundaries. 2037 */ 2038 fctx->iter = *fctx->pos; 2039 for (i = 0; i < num_img_extents; i++) { 2040 ret = ceph_file_to_extents(&rbd_dev->layout, 2041 img_extents[i].fe_off, 2042 img_extents[i].fe_len, 2043 &img_req->object_extents, 2044 alloc_object_extent, img_req, 2045 fctx->count_fn, &fctx->iter); 2046 if (ret) 2047 return ret; 2048 } 2049 2050 for_each_obj_request(img_req, obj_req) { 2051 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2052 sizeof(*obj_req->bvec_pos.bvecs), 2053 GFP_NOIO); 2054 if (!obj_req->bvec_pos.bvecs) 2055 return -ENOMEM; 2056 } 2057 2058 /* 2059 * Fill in each object request's private bio_vec array, splitting and 2060 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2061 */ 2062 fctx->iter = *fctx->pos; 2063 for (i = 0; i < num_img_extents; i++) { 2064 ret = ceph_iterate_extents(&rbd_dev->layout, 2065 img_extents[i].fe_off, 2066 img_extents[i].fe_len, 2067 &img_req->object_extents, 2068 fctx->copy_fn, &fctx->iter); 2069 if (ret) 2070 return ret; 2071 } 2072 2073 return __rbd_img_fill_request(img_req); 2074 } 2075 2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2077 u64 off, u64 len) 2078 { 2079 struct ceph_file_extent ex = { off, len }; 2080 union rbd_img_fill_iter dummy; 2081 struct rbd_img_fill_ctx fctx = { 2082 .pos_type = OBJ_REQUEST_NODATA, 2083 .pos = &dummy, 2084 }; 2085 2086 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2087 } 2088 2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2090 { 2091 struct rbd_obj_request *obj_req = 2092 container_of(ex, struct rbd_obj_request, ex); 2093 struct ceph_bio_iter *it = arg; 2094 2095 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2096 obj_req->bio_pos = *it; 2097 ceph_bio_iter_advance(it, bytes); 2098 } 2099 2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2101 { 2102 struct rbd_obj_request *obj_req = 2103 container_of(ex, struct rbd_obj_request, ex); 2104 struct ceph_bio_iter *it = arg; 2105 2106 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2107 ceph_bio_iter_advance_step(it, bytes, ({ 2108 obj_req->bvec_count++; 2109 })); 2110 2111 } 2112 2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2114 { 2115 struct rbd_obj_request *obj_req = 2116 container_of(ex, struct rbd_obj_request, ex); 2117 struct ceph_bio_iter *it = arg; 2118 2119 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2120 ceph_bio_iter_advance_step(it, bytes, ({ 2121 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2122 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2123 })); 2124 } 2125 2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2127 struct ceph_file_extent *img_extents, 2128 u32 num_img_extents, 2129 struct ceph_bio_iter *bio_pos) 2130 { 2131 struct rbd_img_fill_ctx fctx = { 2132 .pos_type = OBJ_REQUEST_BIO, 2133 .pos = (union rbd_img_fill_iter *)bio_pos, 2134 .set_pos_fn = set_bio_pos, 2135 .count_fn = count_bio_bvecs, 2136 .copy_fn = copy_bio_bvecs, 2137 }; 2138 2139 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2140 &fctx); 2141 } 2142 2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2144 u64 off, u64 len, struct bio *bio) 2145 { 2146 struct ceph_file_extent ex = { off, len }; 2147 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2148 2149 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2150 } 2151 2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2153 { 2154 struct rbd_obj_request *obj_req = 2155 container_of(ex, struct rbd_obj_request, ex); 2156 struct ceph_bvec_iter *it = arg; 2157 2158 obj_req->bvec_pos = *it; 2159 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2160 ceph_bvec_iter_advance(it, bytes); 2161 } 2162 2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2164 { 2165 struct rbd_obj_request *obj_req = 2166 container_of(ex, struct rbd_obj_request, ex); 2167 struct ceph_bvec_iter *it = arg; 2168 2169 ceph_bvec_iter_advance_step(it, bytes, ({ 2170 obj_req->bvec_count++; 2171 })); 2172 } 2173 2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2175 { 2176 struct rbd_obj_request *obj_req = 2177 container_of(ex, struct rbd_obj_request, ex); 2178 struct ceph_bvec_iter *it = arg; 2179 2180 ceph_bvec_iter_advance_step(it, bytes, ({ 2181 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2182 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2183 })); 2184 } 2185 2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2187 struct ceph_file_extent *img_extents, 2188 u32 num_img_extents, 2189 struct ceph_bvec_iter *bvec_pos) 2190 { 2191 struct rbd_img_fill_ctx fctx = { 2192 .pos_type = OBJ_REQUEST_BVECS, 2193 .pos = (union rbd_img_fill_iter *)bvec_pos, 2194 .set_pos_fn = set_bvec_pos, 2195 .count_fn = count_bvecs, 2196 .copy_fn = copy_bvecs, 2197 }; 2198 2199 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2200 &fctx); 2201 } 2202 2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2204 struct ceph_file_extent *img_extents, 2205 u32 num_img_extents, 2206 struct bio_vec *bvecs) 2207 { 2208 struct ceph_bvec_iter it = { 2209 .bvecs = bvecs, 2210 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2211 num_img_extents) }, 2212 }; 2213 2214 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2215 &it); 2216 } 2217 2218 static void rbd_img_request_submit(struct rbd_img_request *img_request) 2219 { 2220 struct rbd_obj_request *obj_request; 2221 2222 dout("%s: img %p\n", __func__, img_request); 2223 2224 rbd_img_request_get(img_request); 2225 for_each_obj_request(img_request, obj_request) 2226 rbd_obj_request_submit(obj_request); 2227 2228 rbd_img_request_put(img_request); 2229 } 2230 2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2232 { 2233 struct rbd_img_request *img_req = obj_req->img_request; 2234 struct rbd_img_request *child_img_req; 2235 int ret; 2236 2237 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent, 2238 OBJ_OP_READ, NULL); 2239 if (!child_img_req) 2240 return -ENOMEM; 2241 2242 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2243 child_img_req->obj_request = obj_req; 2244 2245 if (!rbd_img_is_write(img_req)) { 2246 switch (img_req->data_type) { 2247 case OBJ_REQUEST_BIO: 2248 ret = __rbd_img_fill_from_bio(child_img_req, 2249 obj_req->img_extents, 2250 obj_req->num_img_extents, 2251 &obj_req->bio_pos); 2252 break; 2253 case OBJ_REQUEST_BVECS: 2254 case OBJ_REQUEST_OWN_BVECS: 2255 ret = __rbd_img_fill_from_bvecs(child_img_req, 2256 obj_req->img_extents, 2257 obj_req->num_img_extents, 2258 &obj_req->bvec_pos); 2259 break; 2260 default: 2261 rbd_assert(0); 2262 } 2263 } else { 2264 ret = rbd_img_fill_from_bvecs(child_img_req, 2265 obj_req->img_extents, 2266 obj_req->num_img_extents, 2267 obj_req->copyup_bvecs); 2268 } 2269 if (ret) { 2270 rbd_img_request_put(child_img_req); 2271 return ret; 2272 } 2273 2274 rbd_img_request_submit(child_img_req); 2275 return 0; 2276 } 2277 2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req) 2279 { 2280 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2281 int ret; 2282 2283 if (obj_req->result == -ENOENT && 2284 rbd_dev->parent_overlap && !obj_req->tried_parent) { 2285 /* reverse map this object extent onto the parent */ 2286 ret = rbd_obj_calc_img_extents(obj_req, false); 2287 if (ret) { 2288 obj_req->result = ret; 2289 return true; 2290 } 2291 2292 if (obj_req->num_img_extents) { 2293 obj_req->tried_parent = true; 2294 ret = rbd_obj_read_from_parent(obj_req); 2295 if (ret) { 2296 obj_req->result = ret; 2297 return true; 2298 } 2299 return false; 2300 } 2301 } 2302 2303 /* 2304 * -ENOENT means a hole in the image -- zero-fill the entire 2305 * length of the request. A short read also implies zero-fill 2306 * to the end of the request. In both cases we update xferred 2307 * count to indicate the whole request was satisfied. 2308 */ 2309 if (obj_req->result == -ENOENT || 2310 (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) { 2311 rbd_assert(!obj_req->xferred || !obj_req->result); 2312 rbd_obj_zero_range(obj_req, obj_req->xferred, 2313 obj_req->ex.oe_len - obj_req->xferred); 2314 obj_req->result = 0; 2315 obj_req->xferred = obj_req->ex.oe_len; 2316 } 2317 2318 return true; 2319 } 2320 2321 /* 2322 * copyup_bvecs pages are never highmem pages 2323 */ 2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2325 { 2326 struct ceph_bvec_iter it = { 2327 .bvecs = bvecs, 2328 .iter = { .bi_size = bytes }, 2329 }; 2330 2331 ceph_bvec_iter_advance_step(&it, bytes, ({ 2332 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 2333 bv.bv_len)) 2334 return false; 2335 })); 2336 return true; 2337 } 2338 2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes) 2340 { 2341 unsigned int num_osd_ops = obj_req->osd_req->r_num_ops; 2342 2343 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 2344 rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT); 2345 rbd_osd_req_destroy(obj_req->osd_req); 2346 2347 /* 2348 * Create a copyup request with the same number of OSD ops as 2349 * the original request. The original request was stat + op(s), 2350 * the new copyup request will be copyup + the same op(s). 2351 */ 2352 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 2353 if (!obj_req->osd_req) 2354 return -ENOMEM; 2355 2356 /* 2357 * Only send non-zero copyup data to save some I/O and network 2358 * bandwidth -- zero copyup data is equivalent to the object not 2359 * existing. 2360 */ 2361 if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) { 2362 dout("%s obj_req %p detected zeroes\n", __func__, obj_req); 2363 bytes = 0; 2364 } 2365 2366 osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd", 2367 "copyup"); 2368 osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0, 2369 obj_req->copyup_bvecs, 2370 obj_req->copyup_bvec_count, 2371 bytes); 2372 2373 switch (obj_req->img_request->op_type) { 2374 case OBJ_OP_WRITE: 2375 __rbd_obj_setup_write(obj_req, 1); 2376 break; 2377 case OBJ_OP_DISCARD: 2378 rbd_assert(!rbd_obj_is_entire(obj_req)); 2379 __rbd_obj_setup_discard(obj_req, 1); 2380 break; 2381 default: 2382 rbd_assert(0); 2383 } 2384 2385 rbd_obj_request_submit(obj_req); 2386 return 0; 2387 } 2388 2389 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 2390 { 2391 u32 i; 2392 2393 rbd_assert(!obj_req->copyup_bvecs); 2394 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 2395 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 2396 sizeof(*obj_req->copyup_bvecs), 2397 GFP_NOIO); 2398 if (!obj_req->copyup_bvecs) 2399 return -ENOMEM; 2400 2401 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 2402 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 2403 2404 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 2405 if (!obj_req->copyup_bvecs[i].bv_page) 2406 return -ENOMEM; 2407 2408 obj_req->copyup_bvecs[i].bv_offset = 0; 2409 obj_req->copyup_bvecs[i].bv_len = len; 2410 obj_overlap -= len; 2411 } 2412 2413 rbd_assert(!obj_overlap); 2414 return 0; 2415 } 2416 2417 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req) 2418 { 2419 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2420 int ret; 2421 2422 rbd_assert(obj_req->num_img_extents); 2423 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2424 rbd_dev->parent_overlap); 2425 if (!obj_req->num_img_extents) { 2426 /* 2427 * The overlap has become 0 (most likely because the 2428 * image has been flattened). Use rbd_obj_issue_copyup() 2429 * to re-submit the original write request -- the copyup 2430 * operation itself will be a no-op, since someone must 2431 * have populated the child object while we weren't 2432 * looking. Move to WRITE_FLAT state as we'll be done 2433 * with the operation once the null copyup completes. 2434 */ 2435 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 2436 return rbd_obj_issue_copyup(obj_req, 0); 2437 } 2438 2439 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 2440 if (ret) 2441 return ret; 2442 2443 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 2444 return rbd_obj_read_from_parent(obj_req); 2445 } 2446 2447 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req) 2448 { 2449 int ret; 2450 2451 again: 2452 switch (obj_req->write_state) { 2453 case RBD_OBJ_WRITE_GUARD: 2454 rbd_assert(!obj_req->xferred); 2455 if (obj_req->result == -ENOENT) { 2456 /* 2457 * The target object doesn't exist. Read the data for 2458 * the entire target object up to the overlap point (if 2459 * any) from the parent, so we can use it for a copyup. 2460 */ 2461 ret = rbd_obj_handle_write_guard(obj_req); 2462 if (ret) { 2463 obj_req->result = ret; 2464 return true; 2465 } 2466 return false; 2467 } 2468 /* fall through */ 2469 case RBD_OBJ_WRITE_FLAT: 2470 if (!obj_req->result) 2471 /* 2472 * There is no such thing as a successful short 2473 * write -- indicate the whole request was satisfied. 2474 */ 2475 obj_req->xferred = obj_req->ex.oe_len; 2476 return true; 2477 case RBD_OBJ_WRITE_COPYUP: 2478 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 2479 if (obj_req->result) 2480 goto again; 2481 2482 rbd_assert(obj_req->xferred); 2483 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred); 2484 if (ret) { 2485 obj_req->result = ret; 2486 return true; 2487 } 2488 return false; 2489 default: 2490 BUG(); 2491 } 2492 } 2493 2494 /* 2495 * Returns true if @obj_req is completed, or false otherwise. 2496 */ 2497 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2498 { 2499 switch (obj_req->img_request->op_type) { 2500 case OBJ_OP_READ: 2501 return rbd_obj_handle_read(obj_req); 2502 case OBJ_OP_WRITE: 2503 return rbd_obj_handle_write(obj_req); 2504 case OBJ_OP_DISCARD: 2505 if (rbd_obj_handle_write(obj_req)) { 2506 /* 2507 * Hide -ENOENT from delete/truncate/zero -- discarding 2508 * a non-existent object is not a problem. 2509 */ 2510 if (obj_req->result == -ENOENT) { 2511 obj_req->result = 0; 2512 obj_req->xferred = obj_req->ex.oe_len; 2513 } 2514 return true; 2515 } 2516 return false; 2517 default: 2518 BUG(); 2519 } 2520 } 2521 2522 static void rbd_obj_end_request(struct rbd_obj_request *obj_req) 2523 { 2524 struct rbd_img_request *img_req = obj_req->img_request; 2525 2526 rbd_assert((!obj_req->result && 2527 obj_req->xferred == obj_req->ex.oe_len) || 2528 (obj_req->result < 0 && !obj_req->xferred)); 2529 if (!obj_req->result) { 2530 img_req->xferred += obj_req->xferred; 2531 return; 2532 } 2533 2534 rbd_warn(img_req->rbd_dev, 2535 "%s at objno %llu %llu~%llu result %d xferred %llu", 2536 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 2537 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result, 2538 obj_req->xferred); 2539 if (!img_req->result) { 2540 img_req->result = obj_req->result; 2541 img_req->xferred = 0; 2542 } 2543 } 2544 2545 static void rbd_img_end_child_request(struct rbd_img_request *img_req) 2546 { 2547 struct rbd_obj_request *obj_req = img_req->obj_request; 2548 2549 rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags)); 2550 rbd_assert((!img_req->result && 2551 img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) || 2552 (img_req->result < 0 && !img_req->xferred)); 2553 2554 obj_req->result = img_req->result; 2555 obj_req->xferred = img_req->xferred; 2556 rbd_img_request_put(img_req); 2557 } 2558 2559 static void rbd_img_end_request(struct rbd_img_request *img_req) 2560 { 2561 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 2562 rbd_assert((!img_req->result && 2563 img_req->xferred == blk_rq_bytes(img_req->rq)) || 2564 (img_req->result < 0 && !img_req->xferred)); 2565 2566 blk_mq_end_request(img_req->rq, 2567 errno_to_blk_status(img_req->result)); 2568 rbd_img_request_put(img_req); 2569 } 2570 2571 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2572 { 2573 struct rbd_img_request *img_req; 2574 2575 again: 2576 if (!__rbd_obj_handle_request(obj_req)) 2577 return; 2578 2579 img_req = obj_req->img_request; 2580 spin_lock(&img_req->completion_lock); 2581 rbd_obj_end_request(obj_req); 2582 rbd_assert(img_req->pending_count); 2583 if (--img_req->pending_count) { 2584 spin_unlock(&img_req->completion_lock); 2585 return; 2586 } 2587 2588 spin_unlock(&img_req->completion_lock); 2589 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 2590 obj_req = img_req->obj_request; 2591 rbd_img_end_child_request(img_req); 2592 goto again; 2593 } 2594 rbd_img_end_request(img_req); 2595 } 2596 2597 static const struct rbd_client_id rbd_empty_cid; 2598 2599 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 2600 const struct rbd_client_id *rhs) 2601 { 2602 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 2603 } 2604 2605 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 2606 { 2607 struct rbd_client_id cid; 2608 2609 mutex_lock(&rbd_dev->watch_mutex); 2610 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 2611 cid.handle = rbd_dev->watch_cookie; 2612 mutex_unlock(&rbd_dev->watch_mutex); 2613 return cid; 2614 } 2615 2616 /* 2617 * lock_rwsem must be held for write 2618 */ 2619 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 2620 const struct rbd_client_id *cid) 2621 { 2622 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 2623 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 2624 cid->gid, cid->handle); 2625 rbd_dev->owner_cid = *cid; /* struct */ 2626 } 2627 2628 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 2629 { 2630 mutex_lock(&rbd_dev->watch_mutex); 2631 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 2632 mutex_unlock(&rbd_dev->watch_mutex); 2633 } 2634 2635 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 2636 { 2637 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2638 2639 strcpy(rbd_dev->lock_cookie, cookie); 2640 rbd_set_owner_cid(rbd_dev, &cid); 2641 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 2642 } 2643 2644 /* 2645 * lock_rwsem must be held for write 2646 */ 2647 static int rbd_lock(struct rbd_device *rbd_dev) 2648 { 2649 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2650 char cookie[32]; 2651 int ret; 2652 2653 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 2654 rbd_dev->lock_cookie[0] != '\0'); 2655 2656 format_lock_cookie(rbd_dev, cookie); 2657 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2658 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 2659 RBD_LOCK_TAG, "", 0); 2660 if (ret) 2661 return ret; 2662 2663 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 2664 __rbd_lock(rbd_dev, cookie); 2665 return 0; 2666 } 2667 2668 /* 2669 * lock_rwsem must be held for write 2670 */ 2671 static void rbd_unlock(struct rbd_device *rbd_dev) 2672 { 2673 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2674 int ret; 2675 2676 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 2677 rbd_dev->lock_cookie[0] == '\0'); 2678 2679 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2680 RBD_LOCK_NAME, rbd_dev->lock_cookie); 2681 if (ret && ret != -ENOENT) 2682 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 2683 2684 /* treat errors as the image is unlocked */ 2685 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 2686 rbd_dev->lock_cookie[0] = '\0'; 2687 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 2688 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 2689 } 2690 2691 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 2692 enum rbd_notify_op notify_op, 2693 struct page ***preply_pages, 2694 size_t *preply_len) 2695 { 2696 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2697 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2698 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 2699 int buf_size = sizeof(buf); 2700 void *p = buf; 2701 2702 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 2703 2704 /* encode *LockPayload NotifyMessage (op + ClientId) */ 2705 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 2706 ceph_encode_32(&p, notify_op); 2707 ceph_encode_64(&p, cid.gid); 2708 ceph_encode_64(&p, cid.handle); 2709 2710 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 2711 &rbd_dev->header_oloc, buf, buf_size, 2712 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 2713 } 2714 2715 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 2716 enum rbd_notify_op notify_op) 2717 { 2718 struct page **reply_pages; 2719 size_t reply_len; 2720 2721 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 2722 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2723 } 2724 2725 static void rbd_notify_acquired_lock(struct work_struct *work) 2726 { 2727 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2728 acquired_lock_work); 2729 2730 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 2731 } 2732 2733 static void rbd_notify_released_lock(struct work_struct *work) 2734 { 2735 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2736 released_lock_work); 2737 2738 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 2739 } 2740 2741 static int rbd_request_lock(struct rbd_device *rbd_dev) 2742 { 2743 struct page **reply_pages; 2744 size_t reply_len; 2745 bool lock_owner_responded = false; 2746 int ret; 2747 2748 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2749 2750 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 2751 &reply_pages, &reply_len); 2752 if (ret && ret != -ETIMEDOUT) { 2753 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 2754 goto out; 2755 } 2756 2757 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 2758 void *p = page_address(reply_pages[0]); 2759 void *const end = p + reply_len; 2760 u32 n; 2761 2762 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 2763 while (n--) { 2764 u8 struct_v; 2765 u32 len; 2766 2767 ceph_decode_need(&p, end, 8 + 8, e_inval); 2768 p += 8 + 8; /* skip gid and cookie */ 2769 2770 ceph_decode_32_safe(&p, end, len, e_inval); 2771 if (!len) 2772 continue; 2773 2774 if (lock_owner_responded) { 2775 rbd_warn(rbd_dev, 2776 "duplicate lock owners detected"); 2777 ret = -EIO; 2778 goto out; 2779 } 2780 2781 lock_owner_responded = true; 2782 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 2783 &struct_v, &len); 2784 if (ret) { 2785 rbd_warn(rbd_dev, 2786 "failed to decode ResponseMessage: %d", 2787 ret); 2788 goto e_inval; 2789 } 2790 2791 ret = ceph_decode_32(&p); 2792 } 2793 } 2794 2795 if (!lock_owner_responded) { 2796 rbd_warn(rbd_dev, "no lock owners detected"); 2797 ret = -ETIMEDOUT; 2798 } 2799 2800 out: 2801 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2802 return ret; 2803 2804 e_inval: 2805 ret = -EINVAL; 2806 goto out; 2807 } 2808 2809 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 2810 { 2811 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 2812 2813 cancel_delayed_work(&rbd_dev->lock_dwork); 2814 if (wake_all) 2815 wake_up_all(&rbd_dev->lock_waitq); 2816 else 2817 wake_up(&rbd_dev->lock_waitq); 2818 } 2819 2820 static int get_lock_owner_info(struct rbd_device *rbd_dev, 2821 struct ceph_locker **lockers, u32 *num_lockers) 2822 { 2823 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2824 u8 lock_type; 2825 char *lock_tag; 2826 int ret; 2827 2828 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2829 2830 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 2831 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2832 &lock_type, &lock_tag, lockers, num_lockers); 2833 if (ret) 2834 return ret; 2835 2836 if (*num_lockers == 0) { 2837 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 2838 goto out; 2839 } 2840 2841 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 2842 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 2843 lock_tag); 2844 ret = -EBUSY; 2845 goto out; 2846 } 2847 2848 if (lock_type == CEPH_CLS_LOCK_SHARED) { 2849 rbd_warn(rbd_dev, "shared lock type detected"); 2850 ret = -EBUSY; 2851 goto out; 2852 } 2853 2854 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 2855 strlen(RBD_LOCK_COOKIE_PREFIX))) { 2856 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 2857 (*lockers)[0].id.cookie); 2858 ret = -EBUSY; 2859 goto out; 2860 } 2861 2862 out: 2863 kfree(lock_tag); 2864 return ret; 2865 } 2866 2867 static int find_watcher(struct rbd_device *rbd_dev, 2868 const struct ceph_locker *locker) 2869 { 2870 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2871 struct ceph_watch_item *watchers; 2872 u32 num_watchers; 2873 u64 cookie; 2874 int i; 2875 int ret; 2876 2877 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 2878 &rbd_dev->header_oloc, &watchers, 2879 &num_watchers); 2880 if (ret) 2881 return ret; 2882 2883 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 2884 for (i = 0; i < num_watchers; i++) { 2885 if (!memcmp(&watchers[i].addr, &locker->info.addr, 2886 sizeof(locker->info.addr)) && 2887 watchers[i].cookie == cookie) { 2888 struct rbd_client_id cid = { 2889 .gid = le64_to_cpu(watchers[i].name.num), 2890 .handle = cookie, 2891 }; 2892 2893 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 2894 rbd_dev, cid.gid, cid.handle); 2895 rbd_set_owner_cid(rbd_dev, &cid); 2896 ret = 1; 2897 goto out; 2898 } 2899 } 2900 2901 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 2902 ret = 0; 2903 out: 2904 kfree(watchers); 2905 return ret; 2906 } 2907 2908 /* 2909 * lock_rwsem must be held for write 2910 */ 2911 static int rbd_try_lock(struct rbd_device *rbd_dev) 2912 { 2913 struct ceph_client *client = rbd_dev->rbd_client->client; 2914 struct ceph_locker *lockers; 2915 u32 num_lockers; 2916 int ret; 2917 2918 for (;;) { 2919 ret = rbd_lock(rbd_dev); 2920 if (ret != -EBUSY) 2921 return ret; 2922 2923 /* determine if the current lock holder is still alive */ 2924 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 2925 if (ret) 2926 return ret; 2927 2928 if (num_lockers == 0) 2929 goto again; 2930 2931 ret = find_watcher(rbd_dev, lockers); 2932 if (ret) { 2933 if (ret > 0) 2934 ret = 0; /* have to request lock */ 2935 goto out; 2936 } 2937 2938 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 2939 ENTITY_NAME(lockers[0].id.name)); 2940 2941 ret = ceph_monc_blacklist_add(&client->monc, 2942 &lockers[0].info.addr); 2943 if (ret) { 2944 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 2945 ENTITY_NAME(lockers[0].id.name), ret); 2946 goto out; 2947 } 2948 2949 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 2950 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2951 lockers[0].id.cookie, 2952 &lockers[0].id.name); 2953 if (ret && ret != -ENOENT) 2954 goto out; 2955 2956 again: 2957 ceph_free_lockers(lockers, num_lockers); 2958 } 2959 2960 out: 2961 ceph_free_lockers(lockers, num_lockers); 2962 return ret; 2963 } 2964 2965 /* 2966 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 2967 */ 2968 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 2969 int *pret) 2970 { 2971 enum rbd_lock_state lock_state; 2972 2973 down_read(&rbd_dev->lock_rwsem); 2974 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 2975 rbd_dev->lock_state); 2976 if (__rbd_is_lock_owner(rbd_dev)) { 2977 lock_state = rbd_dev->lock_state; 2978 up_read(&rbd_dev->lock_rwsem); 2979 return lock_state; 2980 } 2981 2982 up_read(&rbd_dev->lock_rwsem); 2983 down_write(&rbd_dev->lock_rwsem); 2984 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 2985 rbd_dev->lock_state); 2986 if (!__rbd_is_lock_owner(rbd_dev)) { 2987 *pret = rbd_try_lock(rbd_dev); 2988 if (*pret) 2989 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 2990 } 2991 2992 lock_state = rbd_dev->lock_state; 2993 up_write(&rbd_dev->lock_rwsem); 2994 return lock_state; 2995 } 2996 2997 static void rbd_acquire_lock(struct work_struct *work) 2998 { 2999 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3000 struct rbd_device, lock_dwork); 3001 enum rbd_lock_state lock_state; 3002 int ret = 0; 3003 3004 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3005 again: 3006 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3007 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3008 if (lock_state == RBD_LOCK_STATE_LOCKED) 3009 wake_requests(rbd_dev, true); 3010 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3011 rbd_dev, lock_state, ret); 3012 return; 3013 } 3014 3015 ret = rbd_request_lock(rbd_dev); 3016 if (ret == -ETIMEDOUT) { 3017 goto again; /* treat this as a dead client */ 3018 } else if (ret == -EROFS) { 3019 rbd_warn(rbd_dev, "peer will not release lock"); 3020 /* 3021 * If this is rbd_add_acquire_lock(), we want to fail 3022 * immediately -- reuse BLACKLISTED flag. Otherwise we 3023 * want to block. 3024 */ 3025 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3026 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3027 /* wake "rbd map --exclusive" process */ 3028 wake_requests(rbd_dev, false); 3029 } 3030 } else if (ret < 0) { 3031 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3032 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3033 RBD_RETRY_DELAY); 3034 } else { 3035 /* 3036 * lock owner acked, but resend if we don't see them 3037 * release the lock 3038 */ 3039 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3040 rbd_dev); 3041 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3042 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3043 } 3044 } 3045 3046 /* 3047 * lock_rwsem must be held for write 3048 */ 3049 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3050 { 3051 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3052 rbd_dev->lock_state); 3053 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3054 return false; 3055 3056 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3057 downgrade_write(&rbd_dev->lock_rwsem); 3058 /* 3059 * Ensure that all in-flight IO is flushed. 3060 * 3061 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3062 * may be shared with other devices. 3063 */ 3064 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3065 up_read(&rbd_dev->lock_rwsem); 3066 3067 down_write(&rbd_dev->lock_rwsem); 3068 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3069 rbd_dev->lock_state); 3070 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3071 return false; 3072 3073 rbd_unlock(rbd_dev); 3074 /* 3075 * Give others a chance to grab the lock - we would re-acquire 3076 * almost immediately if we got new IO during ceph_osdc_sync() 3077 * otherwise. We need to ack our own notifications, so this 3078 * lock_dwork will be requeued from rbd_wait_state_locked() 3079 * after wake_requests() in rbd_handle_released_lock(). 3080 */ 3081 cancel_delayed_work(&rbd_dev->lock_dwork); 3082 return true; 3083 } 3084 3085 static void rbd_release_lock_work(struct work_struct *work) 3086 { 3087 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3088 unlock_work); 3089 3090 down_write(&rbd_dev->lock_rwsem); 3091 rbd_release_lock(rbd_dev); 3092 up_write(&rbd_dev->lock_rwsem); 3093 } 3094 3095 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3096 void **p) 3097 { 3098 struct rbd_client_id cid = { 0 }; 3099 3100 if (struct_v >= 2) { 3101 cid.gid = ceph_decode_64(p); 3102 cid.handle = ceph_decode_64(p); 3103 } 3104 3105 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3106 cid.handle); 3107 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3108 down_write(&rbd_dev->lock_rwsem); 3109 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3110 /* 3111 * we already know that the remote client is 3112 * the owner 3113 */ 3114 up_write(&rbd_dev->lock_rwsem); 3115 return; 3116 } 3117 3118 rbd_set_owner_cid(rbd_dev, &cid); 3119 downgrade_write(&rbd_dev->lock_rwsem); 3120 } else { 3121 down_read(&rbd_dev->lock_rwsem); 3122 } 3123 3124 if (!__rbd_is_lock_owner(rbd_dev)) 3125 wake_requests(rbd_dev, false); 3126 up_read(&rbd_dev->lock_rwsem); 3127 } 3128 3129 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3130 void **p) 3131 { 3132 struct rbd_client_id cid = { 0 }; 3133 3134 if (struct_v >= 2) { 3135 cid.gid = ceph_decode_64(p); 3136 cid.handle = ceph_decode_64(p); 3137 } 3138 3139 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3140 cid.handle); 3141 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3142 down_write(&rbd_dev->lock_rwsem); 3143 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3144 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3145 __func__, rbd_dev, cid.gid, cid.handle, 3146 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3147 up_write(&rbd_dev->lock_rwsem); 3148 return; 3149 } 3150 3151 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3152 downgrade_write(&rbd_dev->lock_rwsem); 3153 } else { 3154 down_read(&rbd_dev->lock_rwsem); 3155 } 3156 3157 if (!__rbd_is_lock_owner(rbd_dev)) 3158 wake_requests(rbd_dev, false); 3159 up_read(&rbd_dev->lock_rwsem); 3160 } 3161 3162 /* 3163 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3164 * ResponseMessage is needed. 3165 */ 3166 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3167 void **p) 3168 { 3169 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3170 struct rbd_client_id cid = { 0 }; 3171 int result = 1; 3172 3173 if (struct_v >= 2) { 3174 cid.gid = ceph_decode_64(p); 3175 cid.handle = ceph_decode_64(p); 3176 } 3177 3178 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3179 cid.handle); 3180 if (rbd_cid_equal(&cid, &my_cid)) 3181 return result; 3182 3183 down_read(&rbd_dev->lock_rwsem); 3184 if (__rbd_is_lock_owner(rbd_dev)) { 3185 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3186 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3187 goto out_unlock; 3188 3189 /* 3190 * encode ResponseMessage(0) so the peer can detect 3191 * a missing owner 3192 */ 3193 result = 0; 3194 3195 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3196 if (!rbd_dev->opts->exclusive) { 3197 dout("%s rbd_dev %p queueing unlock_work\n", 3198 __func__, rbd_dev); 3199 queue_work(rbd_dev->task_wq, 3200 &rbd_dev->unlock_work); 3201 } else { 3202 /* refuse to release the lock */ 3203 result = -EROFS; 3204 } 3205 } 3206 } 3207 3208 out_unlock: 3209 up_read(&rbd_dev->lock_rwsem); 3210 return result; 3211 } 3212 3213 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3214 u64 notify_id, u64 cookie, s32 *result) 3215 { 3216 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3217 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 3218 int buf_size = sizeof(buf); 3219 int ret; 3220 3221 if (result) { 3222 void *p = buf; 3223 3224 /* encode ResponseMessage */ 3225 ceph_start_encoding(&p, 1, 1, 3226 buf_size - CEPH_ENCODING_START_BLK_LEN); 3227 ceph_encode_32(&p, *result); 3228 } else { 3229 buf_size = 0; 3230 } 3231 3232 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3233 &rbd_dev->header_oloc, notify_id, cookie, 3234 buf, buf_size); 3235 if (ret) 3236 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3237 } 3238 3239 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3240 u64 cookie) 3241 { 3242 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3243 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3244 } 3245 3246 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3247 u64 notify_id, u64 cookie, s32 result) 3248 { 3249 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3250 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3251 } 3252 3253 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3254 u64 notifier_id, void *data, size_t data_len) 3255 { 3256 struct rbd_device *rbd_dev = arg; 3257 void *p = data; 3258 void *const end = p + data_len; 3259 u8 struct_v = 0; 3260 u32 len; 3261 u32 notify_op; 3262 int ret; 3263 3264 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3265 __func__, rbd_dev, cookie, notify_id, data_len); 3266 if (data_len) { 3267 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3268 &struct_v, &len); 3269 if (ret) { 3270 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3271 ret); 3272 return; 3273 } 3274 3275 notify_op = ceph_decode_32(&p); 3276 } else { 3277 /* legacy notification for header updates */ 3278 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3279 len = 0; 3280 } 3281 3282 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3283 switch (notify_op) { 3284 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3285 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3286 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3287 break; 3288 case RBD_NOTIFY_OP_RELEASED_LOCK: 3289 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3290 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3291 break; 3292 case RBD_NOTIFY_OP_REQUEST_LOCK: 3293 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3294 if (ret <= 0) 3295 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3296 cookie, ret); 3297 else 3298 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3299 break; 3300 case RBD_NOTIFY_OP_HEADER_UPDATE: 3301 ret = rbd_dev_refresh(rbd_dev); 3302 if (ret) 3303 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3304 3305 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3306 break; 3307 default: 3308 if (rbd_is_lock_owner(rbd_dev)) 3309 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3310 cookie, -EOPNOTSUPP); 3311 else 3312 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3313 break; 3314 } 3315 } 3316 3317 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3318 3319 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3320 { 3321 struct rbd_device *rbd_dev = arg; 3322 3323 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3324 3325 down_write(&rbd_dev->lock_rwsem); 3326 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3327 up_write(&rbd_dev->lock_rwsem); 3328 3329 mutex_lock(&rbd_dev->watch_mutex); 3330 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3331 __rbd_unregister_watch(rbd_dev); 3332 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3333 3334 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3335 } 3336 mutex_unlock(&rbd_dev->watch_mutex); 3337 } 3338 3339 /* 3340 * watch_mutex must be locked 3341 */ 3342 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3343 { 3344 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3345 struct ceph_osd_linger_request *handle; 3346 3347 rbd_assert(!rbd_dev->watch_handle); 3348 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3349 3350 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3351 &rbd_dev->header_oloc, rbd_watch_cb, 3352 rbd_watch_errcb, rbd_dev); 3353 if (IS_ERR(handle)) 3354 return PTR_ERR(handle); 3355 3356 rbd_dev->watch_handle = handle; 3357 return 0; 3358 } 3359 3360 /* 3361 * watch_mutex must be locked 3362 */ 3363 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3364 { 3365 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3366 int ret; 3367 3368 rbd_assert(rbd_dev->watch_handle); 3369 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3370 3371 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3372 if (ret) 3373 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3374 3375 rbd_dev->watch_handle = NULL; 3376 } 3377 3378 static int rbd_register_watch(struct rbd_device *rbd_dev) 3379 { 3380 int ret; 3381 3382 mutex_lock(&rbd_dev->watch_mutex); 3383 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3384 ret = __rbd_register_watch(rbd_dev); 3385 if (ret) 3386 goto out; 3387 3388 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3389 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3390 3391 out: 3392 mutex_unlock(&rbd_dev->watch_mutex); 3393 return ret; 3394 } 3395 3396 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3397 { 3398 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3399 3400 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3401 cancel_work_sync(&rbd_dev->acquired_lock_work); 3402 cancel_work_sync(&rbd_dev->released_lock_work); 3403 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3404 cancel_work_sync(&rbd_dev->unlock_work); 3405 } 3406 3407 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3408 { 3409 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3410 cancel_tasks_sync(rbd_dev); 3411 3412 mutex_lock(&rbd_dev->watch_mutex); 3413 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3414 __rbd_unregister_watch(rbd_dev); 3415 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3416 mutex_unlock(&rbd_dev->watch_mutex); 3417 3418 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3419 } 3420 3421 /* 3422 * lock_rwsem must be held for write 3423 */ 3424 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3425 { 3426 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3427 char cookie[32]; 3428 int ret; 3429 3430 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3431 3432 format_lock_cookie(rbd_dev, cookie); 3433 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3434 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3435 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3436 RBD_LOCK_TAG, cookie); 3437 if (ret) { 3438 if (ret != -EOPNOTSUPP) 3439 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3440 ret); 3441 3442 /* 3443 * Lock cookie cannot be updated on older OSDs, so do 3444 * a manual release and queue an acquire. 3445 */ 3446 if (rbd_release_lock(rbd_dev)) 3447 queue_delayed_work(rbd_dev->task_wq, 3448 &rbd_dev->lock_dwork, 0); 3449 } else { 3450 __rbd_lock(rbd_dev, cookie); 3451 } 3452 } 3453 3454 static void rbd_reregister_watch(struct work_struct *work) 3455 { 3456 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3457 struct rbd_device, watch_dwork); 3458 int ret; 3459 3460 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3461 3462 mutex_lock(&rbd_dev->watch_mutex); 3463 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3464 mutex_unlock(&rbd_dev->watch_mutex); 3465 return; 3466 } 3467 3468 ret = __rbd_register_watch(rbd_dev); 3469 if (ret) { 3470 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3471 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3472 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3473 wake_requests(rbd_dev, true); 3474 } else { 3475 queue_delayed_work(rbd_dev->task_wq, 3476 &rbd_dev->watch_dwork, 3477 RBD_RETRY_DELAY); 3478 } 3479 mutex_unlock(&rbd_dev->watch_mutex); 3480 return; 3481 } 3482 3483 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3484 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3485 mutex_unlock(&rbd_dev->watch_mutex); 3486 3487 down_write(&rbd_dev->lock_rwsem); 3488 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3489 rbd_reacquire_lock(rbd_dev); 3490 up_write(&rbd_dev->lock_rwsem); 3491 3492 ret = rbd_dev_refresh(rbd_dev); 3493 if (ret) 3494 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 3495 } 3496 3497 /* 3498 * Synchronous osd object method call. Returns the number of bytes 3499 * returned in the outbound buffer, or a negative error code. 3500 */ 3501 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3502 struct ceph_object_id *oid, 3503 struct ceph_object_locator *oloc, 3504 const char *method_name, 3505 const void *outbound, 3506 size_t outbound_size, 3507 void *inbound, 3508 size_t inbound_size) 3509 { 3510 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3511 struct page *req_page = NULL; 3512 struct page *reply_page; 3513 int ret; 3514 3515 /* 3516 * Method calls are ultimately read operations. The result 3517 * should placed into the inbound buffer provided. They 3518 * also supply outbound data--parameters for the object 3519 * method. Currently if this is present it will be a 3520 * snapshot id. 3521 */ 3522 if (outbound) { 3523 if (outbound_size > PAGE_SIZE) 3524 return -E2BIG; 3525 3526 req_page = alloc_page(GFP_KERNEL); 3527 if (!req_page) 3528 return -ENOMEM; 3529 3530 memcpy(page_address(req_page), outbound, outbound_size); 3531 } 3532 3533 reply_page = alloc_page(GFP_KERNEL); 3534 if (!reply_page) { 3535 if (req_page) 3536 __free_page(req_page); 3537 return -ENOMEM; 3538 } 3539 3540 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3541 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3542 reply_page, &inbound_size); 3543 if (!ret) { 3544 memcpy(inbound, page_address(reply_page), inbound_size); 3545 ret = inbound_size; 3546 } 3547 3548 if (req_page) 3549 __free_page(req_page); 3550 __free_page(reply_page); 3551 return ret; 3552 } 3553 3554 /* 3555 * lock_rwsem must be held for read 3556 */ 3557 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire) 3558 { 3559 DEFINE_WAIT(wait); 3560 unsigned long timeout; 3561 int ret = 0; 3562 3563 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) 3564 return -EBLACKLISTED; 3565 3566 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3567 return 0; 3568 3569 if (!may_acquire) { 3570 rbd_warn(rbd_dev, "exclusive lock required"); 3571 return -EROFS; 3572 } 3573 3574 do { 3575 /* 3576 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3577 * and cancel_delayed_work() in wake_requests(). 3578 */ 3579 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3580 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3581 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3582 TASK_UNINTERRUPTIBLE); 3583 up_read(&rbd_dev->lock_rwsem); 3584 timeout = schedule_timeout(ceph_timeout_jiffies( 3585 rbd_dev->opts->lock_timeout)); 3586 down_read(&rbd_dev->lock_rwsem); 3587 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 3588 ret = -EBLACKLISTED; 3589 break; 3590 } 3591 if (!timeout) { 3592 rbd_warn(rbd_dev, "timed out waiting for lock"); 3593 ret = -ETIMEDOUT; 3594 break; 3595 } 3596 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3597 3598 finish_wait(&rbd_dev->lock_waitq, &wait); 3599 return ret; 3600 } 3601 3602 static void rbd_queue_workfn(struct work_struct *work) 3603 { 3604 struct request *rq = blk_mq_rq_from_pdu(work); 3605 struct rbd_device *rbd_dev = rq->q->queuedata; 3606 struct rbd_img_request *img_request; 3607 struct ceph_snap_context *snapc = NULL; 3608 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3609 u64 length = blk_rq_bytes(rq); 3610 enum obj_operation_type op_type; 3611 u64 mapping_size; 3612 bool must_be_locked; 3613 int result; 3614 3615 switch (req_op(rq)) { 3616 case REQ_OP_DISCARD: 3617 case REQ_OP_WRITE_ZEROES: 3618 op_type = OBJ_OP_DISCARD; 3619 break; 3620 case REQ_OP_WRITE: 3621 op_type = OBJ_OP_WRITE; 3622 break; 3623 case REQ_OP_READ: 3624 op_type = OBJ_OP_READ; 3625 break; 3626 default: 3627 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 3628 result = -EIO; 3629 goto err; 3630 } 3631 3632 /* Ignore/skip any zero-length requests */ 3633 3634 if (!length) { 3635 dout("%s: zero-length request\n", __func__); 3636 result = 0; 3637 goto err_rq; 3638 } 3639 3640 rbd_assert(op_type == OBJ_OP_READ || 3641 rbd_dev->spec->snap_id == CEPH_NOSNAP); 3642 3643 /* 3644 * Quit early if the mapped snapshot no longer exists. It's 3645 * still possible the snapshot will have disappeared by the 3646 * time our request arrives at the osd, but there's no sense in 3647 * sending it if we already know. 3648 */ 3649 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3650 dout("request for non-existent snapshot"); 3651 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3652 result = -ENXIO; 3653 goto err_rq; 3654 } 3655 3656 if (offset && length > U64_MAX - offset + 1) { 3657 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3658 length); 3659 result = -EINVAL; 3660 goto err_rq; /* Shouldn't happen */ 3661 } 3662 3663 blk_mq_start_request(rq); 3664 3665 down_read(&rbd_dev->header_rwsem); 3666 mapping_size = rbd_dev->mapping.size; 3667 if (op_type != OBJ_OP_READ) { 3668 snapc = rbd_dev->header.snapc; 3669 ceph_get_snap_context(snapc); 3670 } 3671 up_read(&rbd_dev->header_rwsem); 3672 3673 if (offset + length > mapping_size) { 3674 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3675 length, mapping_size); 3676 result = -EIO; 3677 goto err_rq; 3678 } 3679 3680 must_be_locked = 3681 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 3682 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 3683 if (must_be_locked) { 3684 down_read(&rbd_dev->lock_rwsem); 3685 result = rbd_wait_state_locked(rbd_dev, 3686 !rbd_dev->opts->exclusive); 3687 if (result) 3688 goto err_unlock; 3689 } 3690 3691 img_request = rbd_img_request_create(rbd_dev, op_type, snapc); 3692 if (!img_request) { 3693 result = -ENOMEM; 3694 goto err_unlock; 3695 } 3696 img_request->rq = rq; 3697 snapc = NULL; /* img_request consumes a ref */ 3698 3699 if (op_type == OBJ_OP_DISCARD) 3700 result = rbd_img_fill_nodata(img_request, offset, length); 3701 else 3702 result = rbd_img_fill_from_bio(img_request, offset, length, 3703 rq->bio); 3704 if (result) 3705 goto err_img_request; 3706 3707 rbd_img_request_submit(img_request); 3708 if (must_be_locked) 3709 up_read(&rbd_dev->lock_rwsem); 3710 return; 3711 3712 err_img_request: 3713 rbd_img_request_put(img_request); 3714 err_unlock: 3715 if (must_be_locked) 3716 up_read(&rbd_dev->lock_rwsem); 3717 err_rq: 3718 if (result) 3719 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3720 obj_op_name(op_type), length, offset, result); 3721 ceph_put_snap_context(snapc); 3722 err: 3723 blk_mq_end_request(rq, errno_to_blk_status(result)); 3724 } 3725 3726 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3727 const struct blk_mq_queue_data *bd) 3728 { 3729 struct request *rq = bd->rq; 3730 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3731 3732 queue_work(rbd_wq, work); 3733 return BLK_STS_OK; 3734 } 3735 3736 static void rbd_free_disk(struct rbd_device *rbd_dev) 3737 { 3738 blk_cleanup_queue(rbd_dev->disk->queue); 3739 blk_mq_free_tag_set(&rbd_dev->tag_set); 3740 put_disk(rbd_dev->disk); 3741 rbd_dev->disk = NULL; 3742 } 3743 3744 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3745 struct ceph_object_id *oid, 3746 struct ceph_object_locator *oloc, 3747 void *buf, int buf_len) 3748 3749 { 3750 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3751 struct ceph_osd_request *req; 3752 struct page **pages; 3753 int num_pages = calc_pages_for(0, buf_len); 3754 int ret; 3755 3756 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 3757 if (!req) 3758 return -ENOMEM; 3759 3760 ceph_oid_copy(&req->r_base_oid, oid); 3761 ceph_oloc_copy(&req->r_base_oloc, oloc); 3762 req->r_flags = CEPH_OSD_FLAG_READ; 3763 3764 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 3765 if (ret) 3766 goto out_req; 3767 3768 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 3769 if (IS_ERR(pages)) { 3770 ret = PTR_ERR(pages); 3771 goto out_req; 3772 } 3773 3774 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 3775 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 3776 true); 3777 3778 ceph_osdc_start_request(osdc, req, false); 3779 ret = ceph_osdc_wait_request(osdc, req); 3780 if (ret >= 0) 3781 ceph_copy_from_page_vector(pages, buf, 0, ret); 3782 3783 out_req: 3784 ceph_osdc_put_request(req); 3785 return ret; 3786 } 3787 3788 /* 3789 * Read the complete header for the given rbd device. On successful 3790 * return, the rbd_dev->header field will contain up-to-date 3791 * information about the image. 3792 */ 3793 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3794 { 3795 struct rbd_image_header_ondisk *ondisk = NULL; 3796 u32 snap_count = 0; 3797 u64 names_size = 0; 3798 u32 want_count; 3799 int ret; 3800 3801 /* 3802 * The complete header will include an array of its 64-bit 3803 * snapshot ids, followed by the names of those snapshots as 3804 * a contiguous block of NUL-terminated strings. Note that 3805 * the number of snapshots could change by the time we read 3806 * it in, in which case we re-read it. 3807 */ 3808 do { 3809 size_t size; 3810 3811 kfree(ondisk); 3812 3813 size = sizeof (*ondisk); 3814 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3815 size += names_size; 3816 ondisk = kmalloc(size, GFP_KERNEL); 3817 if (!ondisk) 3818 return -ENOMEM; 3819 3820 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 3821 &rbd_dev->header_oloc, ondisk, size); 3822 if (ret < 0) 3823 goto out; 3824 if ((size_t)ret < size) { 3825 ret = -ENXIO; 3826 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3827 size, ret); 3828 goto out; 3829 } 3830 if (!rbd_dev_ondisk_valid(ondisk)) { 3831 ret = -ENXIO; 3832 rbd_warn(rbd_dev, "invalid header"); 3833 goto out; 3834 } 3835 3836 names_size = le64_to_cpu(ondisk->snap_names_len); 3837 want_count = snap_count; 3838 snap_count = le32_to_cpu(ondisk->snap_count); 3839 } while (snap_count != want_count); 3840 3841 ret = rbd_header_from_disk(rbd_dev, ondisk); 3842 out: 3843 kfree(ondisk); 3844 3845 return ret; 3846 } 3847 3848 /* 3849 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3850 * has disappeared from the (just updated) snapshot context. 3851 */ 3852 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3853 { 3854 u64 snap_id; 3855 3856 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3857 return; 3858 3859 snap_id = rbd_dev->spec->snap_id; 3860 if (snap_id == CEPH_NOSNAP) 3861 return; 3862 3863 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3864 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3865 } 3866 3867 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3868 { 3869 sector_t size; 3870 3871 /* 3872 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 3873 * try to update its size. If REMOVING is set, updating size 3874 * is just useless work since the device can't be opened. 3875 */ 3876 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 3877 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 3878 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3879 dout("setting size to %llu sectors", (unsigned long long)size); 3880 set_capacity(rbd_dev->disk, size); 3881 revalidate_disk(rbd_dev->disk); 3882 } 3883 } 3884 3885 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3886 { 3887 u64 mapping_size; 3888 int ret; 3889 3890 down_write(&rbd_dev->header_rwsem); 3891 mapping_size = rbd_dev->mapping.size; 3892 3893 ret = rbd_dev_header_info(rbd_dev); 3894 if (ret) 3895 goto out; 3896 3897 /* 3898 * If there is a parent, see if it has disappeared due to the 3899 * mapped image getting flattened. 3900 */ 3901 if (rbd_dev->parent) { 3902 ret = rbd_dev_v2_parent_info(rbd_dev); 3903 if (ret) 3904 goto out; 3905 } 3906 3907 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3908 rbd_dev->mapping.size = rbd_dev->header.image_size; 3909 } else { 3910 /* validate mapped snapshot's EXISTS flag */ 3911 rbd_exists_validate(rbd_dev); 3912 } 3913 3914 out: 3915 up_write(&rbd_dev->header_rwsem); 3916 if (!ret && mapping_size != rbd_dev->mapping.size) 3917 rbd_dev_update_size(rbd_dev); 3918 3919 return ret; 3920 } 3921 3922 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 3923 unsigned int hctx_idx, unsigned int numa_node) 3924 { 3925 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3926 3927 INIT_WORK(work, rbd_queue_workfn); 3928 return 0; 3929 } 3930 3931 static const struct blk_mq_ops rbd_mq_ops = { 3932 .queue_rq = rbd_queue_rq, 3933 .init_request = rbd_init_request, 3934 }; 3935 3936 static int rbd_init_disk(struct rbd_device *rbd_dev) 3937 { 3938 struct gendisk *disk; 3939 struct request_queue *q; 3940 unsigned int objset_bytes = 3941 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 3942 int err; 3943 3944 /* create gendisk info */ 3945 disk = alloc_disk(single_major ? 3946 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3947 RBD_MINORS_PER_MAJOR); 3948 if (!disk) 3949 return -ENOMEM; 3950 3951 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3952 rbd_dev->dev_id); 3953 disk->major = rbd_dev->major; 3954 disk->first_minor = rbd_dev->minor; 3955 if (single_major) 3956 disk->flags |= GENHD_FL_EXT_DEVT; 3957 disk->fops = &rbd_bd_ops; 3958 disk->private_data = rbd_dev; 3959 3960 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3961 rbd_dev->tag_set.ops = &rbd_mq_ops; 3962 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3963 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3964 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3965 rbd_dev->tag_set.nr_hw_queues = 1; 3966 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3967 3968 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3969 if (err) 3970 goto out_disk; 3971 3972 q = blk_mq_init_queue(&rbd_dev->tag_set); 3973 if (IS_ERR(q)) { 3974 err = PTR_ERR(q); 3975 goto out_tag_set; 3976 } 3977 3978 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3979 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3980 3981 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 3982 q->limits.max_sectors = queue_max_hw_sectors(q); 3983 blk_queue_max_segments(q, USHRT_MAX); 3984 blk_queue_max_segment_size(q, UINT_MAX); 3985 blk_queue_io_min(q, objset_bytes); 3986 blk_queue_io_opt(q, objset_bytes); 3987 3988 if (rbd_dev->opts->trim) { 3989 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 3990 q->limits.discard_granularity = objset_bytes; 3991 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 3992 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 3993 } 3994 3995 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 3996 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 3997 3998 /* 3999 * disk_release() expects a queue ref from add_disk() and will 4000 * put it. Hold an extra ref until add_disk() is called. 4001 */ 4002 WARN_ON(!blk_get_queue(q)); 4003 disk->queue = q; 4004 q->queuedata = rbd_dev; 4005 4006 rbd_dev->disk = disk; 4007 4008 return 0; 4009 out_tag_set: 4010 blk_mq_free_tag_set(&rbd_dev->tag_set); 4011 out_disk: 4012 put_disk(disk); 4013 return err; 4014 } 4015 4016 /* 4017 sysfs 4018 */ 4019 4020 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4021 { 4022 return container_of(dev, struct rbd_device, dev); 4023 } 4024 4025 static ssize_t rbd_size_show(struct device *dev, 4026 struct device_attribute *attr, char *buf) 4027 { 4028 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4029 4030 return sprintf(buf, "%llu\n", 4031 (unsigned long long)rbd_dev->mapping.size); 4032 } 4033 4034 /* 4035 * Note this shows the features for whatever's mapped, which is not 4036 * necessarily the base image. 4037 */ 4038 static ssize_t rbd_features_show(struct device *dev, 4039 struct device_attribute *attr, char *buf) 4040 { 4041 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4042 4043 return sprintf(buf, "0x%016llx\n", 4044 (unsigned long long)rbd_dev->mapping.features); 4045 } 4046 4047 static ssize_t rbd_major_show(struct device *dev, 4048 struct device_attribute *attr, char *buf) 4049 { 4050 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4051 4052 if (rbd_dev->major) 4053 return sprintf(buf, "%d\n", rbd_dev->major); 4054 4055 return sprintf(buf, "(none)\n"); 4056 } 4057 4058 static ssize_t rbd_minor_show(struct device *dev, 4059 struct device_attribute *attr, char *buf) 4060 { 4061 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4062 4063 return sprintf(buf, "%d\n", rbd_dev->minor); 4064 } 4065 4066 static ssize_t rbd_client_addr_show(struct device *dev, 4067 struct device_attribute *attr, char *buf) 4068 { 4069 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4070 struct ceph_entity_addr *client_addr = 4071 ceph_client_addr(rbd_dev->rbd_client->client); 4072 4073 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4074 le32_to_cpu(client_addr->nonce)); 4075 } 4076 4077 static ssize_t rbd_client_id_show(struct device *dev, 4078 struct device_attribute *attr, char *buf) 4079 { 4080 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4081 4082 return sprintf(buf, "client%lld\n", 4083 ceph_client_gid(rbd_dev->rbd_client->client)); 4084 } 4085 4086 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4087 struct device_attribute *attr, char *buf) 4088 { 4089 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4090 4091 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4092 } 4093 4094 static ssize_t rbd_config_info_show(struct device *dev, 4095 struct device_attribute *attr, char *buf) 4096 { 4097 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4098 4099 return sprintf(buf, "%s\n", rbd_dev->config_info); 4100 } 4101 4102 static ssize_t rbd_pool_show(struct device *dev, 4103 struct device_attribute *attr, char *buf) 4104 { 4105 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4106 4107 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4108 } 4109 4110 static ssize_t rbd_pool_id_show(struct device *dev, 4111 struct device_attribute *attr, char *buf) 4112 { 4113 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4114 4115 return sprintf(buf, "%llu\n", 4116 (unsigned long long) rbd_dev->spec->pool_id); 4117 } 4118 4119 static ssize_t rbd_name_show(struct device *dev, 4120 struct device_attribute *attr, char *buf) 4121 { 4122 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4123 4124 if (rbd_dev->spec->image_name) 4125 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4126 4127 return sprintf(buf, "(unknown)\n"); 4128 } 4129 4130 static ssize_t rbd_image_id_show(struct device *dev, 4131 struct device_attribute *attr, char *buf) 4132 { 4133 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4134 4135 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4136 } 4137 4138 /* 4139 * Shows the name of the currently-mapped snapshot (or 4140 * RBD_SNAP_HEAD_NAME for the base image). 4141 */ 4142 static ssize_t rbd_snap_show(struct device *dev, 4143 struct device_attribute *attr, 4144 char *buf) 4145 { 4146 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4147 4148 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4149 } 4150 4151 static ssize_t rbd_snap_id_show(struct device *dev, 4152 struct device_attribute *attr, char *buf) 4153 { 4154 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4155 4156 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4157 } 4158 4159 /* 4160 * For a v2 image, shows the chain of parent images, separated by empty 4161 * lines. For v1 images or if there is no parent, shows "(no parent 4162 * image)". 4163 */ 4164 static ssize_t rbd_parent_show(struct device *dev, 4165 struct device_attribute *attr, 4166 char *buf) 4167 { 4168 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4169 ssize_t count = 0; 4170 4171 if (!rbd_dev->parent) 4172 return sprintf(buf, "(no parent image)\n"); 4173 4174 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4175 struct rbd_spec *spec = rbd_dev->parent_spec; 4176 4177 count += sprintf(&buf[count], "%s" 4178 "pool_id %llu\npool_name %s\n" 4179 "image_id %s\nimage_name %s\n" 4180 "snap_id %llu\nsnap_name %s\n" 4181 "overlap %llu\n", 4182 !count ? "" : "\n", /* first? */ 4183 spec->pool_id, spec->pool_name, 4184 spec->image_id, spec->image_name ?: "(unknown)", 4185 spec->snap_id, spec->snap_name, 4186 rbd_dev->parent_overlap); 4187 } 4188 4189 return count; 4190 } 4191 4192 static ssize_t rbd_image_refresh(struct device *dev, 4193 struct device_attribute *attr, 4194 const char *buf, 4195 size_t size) 4196 { 4197 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4198 int ret; 4199 4200 ret = rbd_dev_refresh(rbd_dev); 4201 if (ret) 4202 return ret; 4203 4204 return size; 4205 } 4206 4207 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4208 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4209 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4210 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4211 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4212 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4213 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4214 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4215 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4216 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4217 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4218 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4219 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4220 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4221 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4222 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4223 4224 static struct attribute *rbd_attrs[] = { 4225 &dev_attr_size.attr, 4226 &dev_attr_features.attr, 4227 &dev_attr_major.attr, 4228 &dev_attr_minor.attr, 4229 &dev_attr_client_addr.attr, 4230 &dev_attr_client_id.attr, 4231 &dev_attr_cluster_fsid.attr, 4232 &dev_attr_config_info.attr, 4233 &dev_attr_pool.attr, 4234 &dev_attr_pool_id.attr, 4235 &dev_attr_name.attr, 4236 &dev_attr_image_id.attr, 4237 &dev_attr_current_snap.attr, 4238 &dev_attr_snap_id.attr, 4239 &dev_attr_parent.attr, 4240 &dev_attr_refresh.attr, 4241 NULL 4242 }; 4243 4244 static struct attribute_group rbd_attr_group = { 4245 .attrs = rbd_attrs, 4246 }; 4247 4248 static const struct attribute_group *rbd_attr_groups[] = { 4249 &rbd_attr_group, 4250 NULL 4251 }; 4252 4253 static void rbd_dev_release(struct device *dev); 4254 4255 static const struct device_type rbd_device_type = { 4256 .name = "rbd", 4257 .groups = rbd_attr_groups, 4258 .release = rbd_dev_release, 4259 }; 4260 4261 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4262 { 4263 kref_get(&spec->kref); 4264 4265 return spec; 4266 } 4267 4268 static void rbd_spec_free(struct kref *kref); 4269 static void rbd_spec_put(struct rbd_spec *spec) 4270 { 4271 if (spec) 4272 kref_put(&spec->kref, rbd_spec_free); 4273 } 4274 4275 static struct rbd_spec *rbd_spec_alloc(void) 4276 { 4277 struct rbd_spec *spec; 4278 4279 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4280 if (!spec) 4281 return NULL; 4282 4283 spec->pool_id = CEPH_NOPOOL; 4284 spec->snap_id = CEPH_NOSNAP; 4285 kref_init(&spec->kref); 4286 4287 return spec; 4288 } 4289 4290 static void rbd_spec_free(struct kref *kref) 4291 { 4292 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4293 4294 kfree(spec->pool_name); 4295 kfree(spec->image_id); 4296 kfree(spec->image_name); 4297 kfree(spec->snap_name); 4298 kfree(spec); 4299 } 4300 4301 static void rbd_dev_free(struct rbd_device *rbd_dev) 4302 { 4303 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4304 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4305 4306 ceph_oid_destroy(&rbd_dev->header_oid); 4307 ceph_oloc_destroy(&rbd_dev->header_oloc); 4308 kfree(rbd_dev->config_info); 4309 4310 rbd_put_client(rbd_dev->rbd_client); 4311 rbd_spec_put(rbd_dev->spec); 4312 kfree(rbd_dev->opts); 4313 kfree(rbd_dev); 4314 } 4315 4316 static void rbd_dev_release(struct device *dev) 4317 { 4318 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4319 bool need_put = !!rbd_dev->opts; 4320 4321 if (need_put) { 4322 destroy_workqueue(rbd_dev->task_wq); 4323 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4324 } 4325 4326 rbd_dev_free(rbd_dev); 4327 4328 /* 4329 * This is racy, but way better than putting module outside of 4330 * the release callback. The race window is pretty small, so 4331 * doing something similar to dm (dm-builtin.c) is overkill. 4332 */ 4333 if (need_put) 4334 module_put(THIS_MODULE); 4335 } 4336 4337 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4338 struct rbd_spec *spec) 4339 { 4340 struct rbd_device *rbd_dev; 4341 4342 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4343 if (!rbd_dev) 4344 return NULL; 4345 4346 spin_lock_init(&rbd_dev->lock); 4347 INIT_LIST_HEAD(&rbd_dev->node); 4348 init_rwsem(&rbd_dev->header_rwsem); 4349 4350 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4351 ceph_oid_init(&rbd_dev->header_oid); 4352 rbd_dev->header_oloc.pool = spec->pool_id; 4353 4354 mutex_init(&rbd_dev->watch_mutex); 4355 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4356 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4357 4358 init_rwsem(&rbd_dev->lock_rwsem); 4359 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4360 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4361 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4362 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4363 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4364 init_waitqueue_head(&rbd_dev->lock_waitq); 4365 4366 rbd_dev->dev.bus = &rbd_bus_type; 4367 rbd_dev->dev.type = &rbd_device_type; 4368 rbd_dev->dev.parent = &rbd_root_dev; 4369 device_initialize(&rbd_dev->dev); 4370 4371 rbd_dev->rbd_client = rbdc; 4372 rbd_dev->spec = spec; 4373 4374 return rbd_dev; 4375 } 4376 4377 /* 4378 * Create a mapping rbd_dev. 4379 */ 4380 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4381 struct rbd_spec *spec, 4382 struct rbd_options *opts) 4383 { 4384 struct rbd_device *rbd_dev; 4385 4386 rbd_dev = __rbd_dev_create(rbdc, spec); 4387 if (!rbd_dev) 4388 return NULL; 4389 4390 rbd_dev->opts = opts; 4391 4392 /* get an id and fill in device name */ 4393 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4394 minor_to_rbd_dev_id(1 << MINORBITS), 4395 GFP_KERNEL); 4396 if (rbd_dev->dev_id < 0) 4397 goto fail_rbd_dev; 4398 4399 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4400 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4401 rbd_dev->name); 4402 if (!rbd_dev->task_wq) 4403 goto fail_dev_id; 4404 4405 /* we have a ref from do_rbd_add() */ 4406 __module_get(THIS_MODULE); 4407 4408 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4409 return rbd_dev; 4410 4411 fail_dev_id: 4412 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4413 fail_rbd_dev: 4414 rbd_dev_free(rbd_dev); 4415 return NULL; 4416 } 4417 4418 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4419 { 4420 if (rbd_dev) 4421 put_device(&rbd_dev->dev); 4422 } 4423 4424 /* 4425 * Get the size and object order for an image snapshot, or if 4426 * snap_id is CEPH_NOSNAP, gets this information for the base 4427 * image. 4428 */ 4429 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4430 u8 *order, u64 *snap_size) 4431 { 4432 __le64 snapid = cpu_to_le64(snap_id); 4433 int ret; 4434 struct { 4435 u8 order; 4436 __le64 size; 4437 } __attribute__ ((packed)) size_buf = { 0 }; 4438 4439 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4440 &rbd_dev->header_oloc, "get_size", 4441 &snapid, sizeof(snapid), 4442 &size_buf, sizeof(size_buf)); 4443 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4444 if (ret < 0) 4445 return ret; 4446 if (ret < sizeof (size_buf)) 4447 return -ERANGE; 4448 4449 if (order) { 4450 *order = size_buf.order; 4451 dout(" order %u", (unsigned int)*order); 4452 } 4453 *snap_size = le64_to_cpu(size_buf.size); 4454 4455 dout(" snap_id 0x%016llx snap_size = %llu\n", 4456 (unsigned long long)snap_id, 4457 (unsigned long long)*snap_size); 4458 4459 return 0; 4460 } 4461 4462 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4463 { 4464 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4465 &rbd_dev->header.obj_order, 4466 &rbd_dev->header.image_size); 4467 } 4468 4469 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4470 { 4471 void *reply_buf; 4472 int ret; 4473 void *p; 4474 4475 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4476 if (!reply_buf) 4477 return -ENOMEM; 4478 4479 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4480 &rbd_dev->header_oloc, "get_object_prefix", 4481 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4482 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4483 if (ret < 0) 4484 goto out; 4485 4486 p = reply_buf; 4487 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4488 p + ret, NULL, GFP_NOIO); 4489 ret = 0; 4490 4491 if (IS_ERR(rbd_dev->header.object_prefix)) { 4492 ret = PTR_ERR(rbd_dev->header.object_prefix); 4493 rbd_dev->header.object_prefix = NULL; 4494 } else { 4495 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4496 } 4497 out: 4498 kfree(reply_buf); 4499 4500 return ret; 4501 } 4502 4503 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4504 u64 *snap_features) 4505 { 4506 __le64 snapid = cpu_to_le64(snap_id); 4507 struct { 4508 __le64 features; 4509 __le64 incompat; 4510 } __attribute__ ((packed)) features_buf = { 0 }; 4511 u64 unsup; 4512 int ret; 4513 4514 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4515 &rbd_dev->header_oloc, "get_features", 4516 &snapid, sizeof(snapid), 4517 &features_buf, sizeof(features_buf)); 4518 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4519 if (ret < 0) 4520 return ret; 4521 if (ret < sizeof (features_buf)) 4522 return -ERANGE; 4523 4524 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4525 if (unsup) { 4526 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4527 unsup); 4528 return -ENXIO; 4529 } 4530 4531 *snap_features = le64_to_cpu(features_buf.features); 4532 4533 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4534 (unsigned long long)snap_id, 4535 (unsigned long long)*snap_features, 4536 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4537 4538 return 0; 4539 } 4540 4541 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4542 { 4543 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4544 &rbd_dev->header.features); 4545 } 4546 4547 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4548 { 4549 struct rbd_spec *parent_spec; 4550 size_t size; 4551 void *reply_buf = NULL; 4552 __le64 snapid; 4553 void *p; 4554 void *end; 4555 u64 pool_id; 4556 char *image_id; 4557 u64 snap_id; 4558 u64 overlap; 4559 int ret; 4560 4561 parent_spec = rbd_spec_alloc(); 4562 if (!parent_spec) 4563 return -ENOMEM; 4564 4565 size = sizeof (__le64) + /* pool_id */ 4566 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4567 sizeof (__le64) + /* snap_id */ 4568 sizeof (__le64); /* overlap */ 4569 reply_buf = kmalloc(size, GFP_KERNEL); 4570 if (!reply_buf) { 4571 ret = -ENOMEM; 4572 goto out_err; 4573 } 4574 4575 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4576 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4577 &rbd_dev->header_oloc, "get_parent", 4578 &snapid, sizeof(snapid), reply_buf, size); 4579 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4580 if (ret < 0) 4581 goto out_err; 4582 4583 p = reply_buf; 4584 end = reply_buf + ret; 4585 ret = -ERANGE; 4586 ceph_decode_64_safe(&p, end, pool_id, out_err); 4587 if (pool_id == CEPH_NOPOOL) { 4588 /* 4589 * Either the parent never existed, or we have 4590 * record of it but the image got flattened so it no 4591 * longer has a parent. When the parent of a 4592 * layered image disappears we immediately set the 4593 * overlap to 0. The effect of this is that all new 4594 * requests will be treated as if the image had no 4595 * parent. 4596 */ 4597 if (rbd_dev->parent_overlap) { 4598 rbd_dev->parent_overlap = 0; 4599 rbd_dev_parent_put(rbd_dev); 4600 pr_info("%s: clone image has been flattened\n", 4601 rbd_dev->disk->disk_name); 4602 } 4603 4604 goto out; /* No parent? No problem. */ 4605 } 4606 4607 /* The ceph file layout needs to fit pool id in 32 bits */ 4608 4609 ret = -EIO; 4610 if (pool_id > (u64)U32_MAX) { 4611 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4612 (unsigned long long)pool_id, U32_MAX); 4613 goto out_err; 4614 } 4615 4616 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4617 if (IS_ERR(image_id)) { 4618 ret = PTR_ERR(image_id); 4619 goto out_err; 4620 } 4621 ceph_decode_64_safe(&p, end, snap_id, out_err); 4622 ceph_decode_64_safe(&p, end, overlap, out_err); 4623 4624 /* 4625 * The parent won't change (except when the clone is 4626 * flattened, already handled that). So we only need to 4627 * record the parent spec we have not already done so. 4628 */ 4629 if (!rbd_dev->parent_spec) { 4630 parent_spec->pool_id = pool_id; 4631 parent_spec->image_id = image_id; 4632 parent_spec->snap_id = snap_id; 4633 rbd_dev->parent_spec = parent_spec; 4634 parent_spec = NULL; /* rbd_dev now owns this */ 4635 } else { 4636 kfree(image_id); 4637 } 4638 4639 /* 4640 * We always update the parent overlap. If it's zero we issue 4641 * a warning, as we will proceed as if there was no parent. 4642 */ 4643 if (!overlap) { 4644 if (parent_spec) { 4645 /* refresh, careful to warn just once */ 4646 if (rbd_dev->parent_overlap) 4647 rbd_warn(rbd_dev, 4648 "clone now standalone (overlap became 0)"); 4649 } else { 4650 /* initial probe */ 4651 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4652 } 4653 } 4654 rbd_dev->parent_overlap = overlap; 4655 4656 out: 4657 ret = 0; 4658 out_err: 4659 kfree(reply_buf); 4660 rbd_spec_put(parent_spec); 4661 4662 return ret; 4663 } 4664 4665 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4666 { 4667 struct { 4668 __le64 stripe_unit; 4669 __le64 stripe_count; 4670 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4671 size_t size = sizeof (striping_info_buf); 4672 void *p; 4673 int ret; 4674 4675 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4676 &rbd_dev->header_oloc, "get_stripe_unit_count", 4677 NULL, 0, &striping_info_buf, size); 4678 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4679 if (ret < 0) 4680 return ret; 4681 if (ret < size) 4682 return -ERANGE; 4683 4684 p = &striping_info_buf; 4685 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 4686 rbd_dev->header.stripe_count = ceph_decode_64(&p); 4687 return 0; 4688 } 4689 4690 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 4691 { 4692 __le64 data_pool_id; 4693 int ret; 4694 4695 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4696 &rbd_dev->header_oloc, "get_data_pool", 4697 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 4698 if (ret < 0) 4699 return ret; 4700 if (ret < sizeof(data_pool_id)) 4701 return -EBADMSG; 4702 4703 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 4704 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 4705 return 0; 4706 } 4707 4708 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4709 { 4710 CEPH_DEFINE_OID_ONSTACK(oid); 4711 size_t image_id_size; 4712 char *image_id; 4713 void *p; 4714 void *end; 4715 size_t size; 4716 void *reply_buf = NULL; 4717 size_t len = 0; 4718 char *image_name = NULL; 4719 int ret; 4720 4721 rbd_assert(!rbd_dev->spec->image_name); 4722 4723 len = strlen(rbd_dev->spec->image_id); 4724 image_id_size = sizeof (__le32) + len; 4725 image_id = kmalloc(image_id_size, GFP_KERNEL); 4726 if (!image_id) 4727 return NULL; 4728 4729 p = image_id; 4730 end = image_id + image_id_size; 4731 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4732 4733 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4734 reply_buf = kmalloc(size, GFP_KERNEL); 4735 if (!reply_buf) 4736 goto out; 4737 4738 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 4739 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 4740 "dir_get_name", image_id, image_id_size, 4741 reply_buf, size); 4742 if (ret < 0) 4743 goto out; 4744 p = reply_buf; 4745 end = reply_buf + ret; 4746 4747 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4748 if (IS_ERR(image_name)) 4749 image_name = NULL; 4750 else 4751 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4752 out: 4753 kfree(reply_buf); 4754 kfree(image_id); 4755 4756 return image_name; 4757 } 4758 4759 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4760 { 4761 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4762 const char *snap_name; 4763 u32 which = 0; 4764 4765 /* Skip over names until we find the one we are looking for */ 4766 4767 snap_name = rbd_dev->header.snap_names; 4768 while (which < snapc->num_snaps) { 4769 if (!strcmp(name, snap_name)) 4770 return snapc->snaps[which]; 4771 snap_name += strlen(snap_name) + 1; 4772 which++; 4773 } 4774 return CEPH_NOSNAP; 4775 } 4776 4777 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4778 { 4779 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4780 u32 which; 4781 bool found = false; 4782 u64 snap_id; 4783 4784 for (which = 0; !found && which < snapc->num_snaps; which++) { 4785 const char *snap_name; 4786 4787 snap_id = snapc->snaps[which]; 4788 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4789 if (IS_ERR(snap_name)) { 4790 /* ignore no-longer existing snapshots */ 4791 if (PTR_ERR(snap_name) == -ENOENT) 4792 continue; 4793 else 4794 break; 4795 } 4796 found = !strcmp(name, snap_name); 4797 kfree(snap_name); 4798 } 4799 return found ? snap_id : CEPH_NOSNAP; 4800 } 4801 4802 /* 4803 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4804 * no snapshot by that name is found, or if an error occurs. 4805 */ 4806 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4807 { 4808 if (rbd_dev->image_format == 1) 4809 return rbd_v1_snap_id_by_name(rbd_dev, name); 4810 4811 return rbd_v2_snap_id_by_name(rbd_dev, name); 4812 } 4813 4814 /* 4815 * An image being mapped will have everything but the snap id. 4816 */ 4817 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4818 { 4819 struct rbd_spec *spec = rbd_dev->spec; 4820 4821 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4822 rbd_assert(spec->image_id && spec->image_name); 4823 rbd_assert(spec->snap_name); 4824 4825 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4826 u64 snap_id; 4827 4828 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4829 if (snap_id == CEPH_NOSNAP) 4830 return -ENOENT; 4831 4832 spec->snap_id = snap_id; 4833 } else { 4834 spec->snap_id = CEPH_NOSNAP; 4835 } 4836 4837 return 0; 4838 } 4839 4840 /* 4841 * A parent image will have all ids but none of the names. 4842 * 4843 * All names in an rbd spec are dynamically allocated. It's OK if we 4844 * can't figure out the name for an image id. 4845 */ 4846 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4847 { 4848 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4849 struct rbd_spec *spec = rbd_dev->spec; 4850 const char *pool_name; 4851 const char *image_name; 4852 const char *snap_name; 4853 int ret; 4854 4855 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4856 rbd_assert(spec->image_id); 4857 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4858 4859 /* Get the pool name; we have to make our own copy of this */ 4860 4861 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4862 if (!pool_name) { 4863 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4864 return -EIO; 4865 } 4866 pool_name = kstrdup(pool_name, GFP_KERNEL); 4867 if (!pool_name) 4868 return -ENOMEM; 4869 4870 /* Fetch the image name; tolerate failure here */ 4871 4872 image_name = rbd_dev_image_name(rbd_dev); 4873 if (!image_name) 4874 rbd_warn(rbd_dev, "unable to get image name"); 4875 4876 /* Fetch the snapshot name */ 4877 4878 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4879 if (IS_ERR(snap_name)) { 4880 ret = PTR_ERR(snap_name); 4881 goto out_err; 4882 } 4883 4884 spec->pool_name = pool_name; 4885 spec->image_name = image_name; 4886 spec->snap_name = snap_name; 4887 4888 return 0; 4889 4890 out_err: 4891 kfree(image_name); 4892 kfree(pool_name); 4893 return ret; 4894 } 4895 4896 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4897 { 4898 size_t size; 4899 int ret; 4900 void *reply_buf; 4901 void *p; 4902 void *end; 4903 u64 seq; 4904 u32 snap_count; 4905 struct ceph_snap_context *snapc; 4906 u32 i; 4907 4908 /* 4909 * We'll need room for the seq value (maximum snapshot id), 4910 * snapshot count, and array of that many snapshot ids. 4911 * For now we have a fixed upper limit on the number we're 4912 * prepared to receive. 4913 */ 4914 size = sizeof (__le64) + sizeof (__le32) + 4915 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4916 reply_buf = kzalloc(size, GFP_KERNEL); 4917 if (!reply_buf) 4918 return -ENOMEM; 4919 4920 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4921 &rbd_dev->header_oloc, "get_snapcontext", 4922 NULL, 0, reply_buf, size); 4923 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4924 if (ret < 0) 4925 goto out; 4926 4927 p = reply_buf; 4928 end = reply_buf + ret; 4929 ret = -ERANGE; 4930 ceph_decode_64_safe(&p, end, seq, out); 4931 ceph_decode_32_safe(&p, end, snap_count, out); 4932 4933 /* 4934 * Make sure the reported number of snapshot ids wouldn't go 4935 * beyond the end of our buffer. But before checking that, 4936 * make sure the computed size of the snapshot context we 4937 * allocate is representable in a size_t. 4938 */ 4939 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4940 / sizeof (u64)) { 4941 ret = -EINVAL; 4942 goto out; 4943 } 4944 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4945 goto out; 4946 ret = 0; 4947 4948 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4949 if (!snapc) { 4950 ret = -ENOMEM; 4951 goto out; 4952 } 4953 snapc->seq = seq; 4954 for (i = 0; i < snap_count; i++) 4955 snapc->snaps[i] = ceph_decode_64(&p); 4956 4957 ceph_put_snap_context(rbd_dev->header.snapc); 4958 rbd_dev->header.snapc = snapc; 4959 4960 dout(" snap context seq = %llu, snap_count = %u\n", 4961 (unsigned long long)seq, (unsigned int)snap_count); 4962 out: 4963 kfree(reply_buf); 4964 4965 return ret; 4966 } 4967 4968 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4969 u64 snap_id) 4970 { 4971 size_t size; 4972 void *reply_buf; 4973 __le64 snapid; 4974 int ret; 4975 void *p; 4976 void *end; 4977 char *snap_name; 4978 4979 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4980 reply_buf = kmalloc(size, GFP_KERNEL); 4981 if (!reply_buf) 4982 return ERR_PTR(-ENOMEM); 4983 4984 snapid = cpu_to_le64(snap_id); 4985 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4986 &rbd_dev->header_oloc, "get_snapshot_name", 4987 &snapid, sizeof(snapid), reply_buf, size); 4988 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4989 if (ret < 0) { 4990 snap_name = ERR_PTR(ret); 4991 goto out; 4992 } 4993 4994 p = reply_buf; 4995 end = reply_buf + ret; 4996 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4997 if (IS_ERR(snap_name)) 4998 goto out; 4999 5000 dout(" snap_id 0x%016llx snap_name = %s\n", 5001 (unsigned long long)snap_id, snap_name); 5002 out: 5003 kfree(reply_buf); 5004 5005 return snap_name; 5006 } 5007 5008 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5009 { 5010 bool first_time = rbd_dev->header.object_prefix == NULL; 5011 int ret; 5012 5013 ret = rbd_dev_v2_image_size(rbd_dev); 5014 if (ret) 5015 return ret; 5016 5017 if (first_time) { 5018 ret = rbd_dev_v2_header_onetime(rbd_dev); 5019 if (ret) 5020 return ret; 5021 } 5022 5023 ret = rbd_dev_v2_snap_context(rbd_dev); 5024 if (ret && first_time) { 5025 kfree(rbd_dev->header.object_prefix); 5026 rbd_dev->header.object_prefix = NULL; 5027 } 5028 5029 return ret; 5030 } 5031 5032 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5033 { 5034 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5035 5036 if (rbd_dev->image_format == 1) 5037 return rbd_dev_v1_header_info(rbd_dev); 5038 5039 return rbd_dev_v2_header_info(rbd_dev); 5040 } 5041 5042 /* 5043 * Skips over white space at *buf, and updates *buf to point to the 5044 * first found non-space character (if any). Returns the length of 5045 * the token (string of non-white space characters) found. Note 5046 * that *buf must be terminated with '\0'. 5047 */ 5048 static inline size_t next_token(const char **buf) 5049 { 5050 /* 5051 * These are the characters that produce nonzero for 5052 * isspace() in the "C" and "POSIX" locales. 5053 */ 5054 const char *spaces = " \f\n\r\t\v"; 5055 5056 *buf += strspn(*buf, spaces); /* Find start of token */ 5057 5058 return strcspn(*buf, spaces); /* Return token length */ 5059 } 5060 5061 /* 5062 * Finds the next token in *buf, dynamically allocates a buffer big 5063 * enough to hold a copy of it, and copies the token into the new 5064 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5065 * that a duplicate buffer is created even for a zero-length token. 5066 * 5067 * Returns a pointer to the newly-allocated duplicate, or a null 5068 * pointer if memory for the duplicate was not available. If 5069 * the lenp argument is a non-null pointer, the length of the token 5070 * (not including the '\0') is returned in *lenp. 5071 * 5072 * If successful, the *buf pointer will be updated to point beyond 5073 * the end of the found token. 5074 * 5075 * Note: uses GFP_KERNEL for allocation. 5076 */ 5077 static inline char *dup_token(const char **buf, size_t *lenp) 5078 { 5079 char *dup; 5080 size_t len; 5081 5082 len = next_token(buf); 5083 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5084 if (!dup) 5085 return NULL; 5086 *(dup + len) = '\0'; 5087 *buf += len; 5088 5089 if (lenp) 5090 *lenp = len; 5091 5092 return dup; 5093 } 5094 5095 /* 5096 * Parse the options provided for an "rbd add" (i.e., rbd image 5097 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5098 * and the data written is passed here via a NUL-terminated buffer. 5099 * Returns 0 if successful or an error code otherwise. 5100 * 5101 * The information extracted from these options is recorded in 5102 * the other parameters which return dynamically-allocated 5103 * structures: 5104 * ceph_opts 5105 * The address of a pointer that will refer to a ceph options 5106 * structure. Caller must release the returned pointer using 5107 * ceph_destroy_options() when it is no longer needed. 5108 * rbd_opts 5109 * Address of an rbd options pointer. Fully initialized by 5110 * this function; caller must release with kfree(). 5111 * spec 5112 * Address of an rbd image specification pointer. Fully 5113 * initialized by this function based on parsed options. 5114 * Caller must release with rbd_spec_put(). 5115 * 5116 * The options passed take this form: 5117 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5118 * where: 5119 * <mon_addrs> 5120 * A comma-separated list of one or more monitor addresses. 5121 * A monitor address is an ip address, optionally followed 5122 * by a port number (separated by a colon). 5123 * I.e.: ip1[:port1][,ip2[:port2]...] 5124 * <options> 5125 * A comma-separated list of ceph and/or rbd options. 5126 * <pool_name> 5127 * The name of the rados pool containing the rbd image. 5128 * <image_name> 5129 * The name of the image in that pool to map. 5130 * <snap_id> 5131 * An optional snapshot id. If provided, the mapping will 5132 * present data from the image at the time that snapshot was 5133 * created. The image head is used if no snapshot id is 5134 * provided. Snapshot mappings are always read-only. 5135 */ 5136 static int rbd_add_parse_args(const char *buf, 5137 struct ceph_options **ceph_opts, 5138 struct rbd_options **opts, 5139 struct rbd_spec **rbd_spec) 5140 { 5141 size_t len; 5142 char *options; 5143 const char *mon_addrs; 5144 char *snap_name; 5145 size_t mon_addrs_size; 5146 struct rbd_spec *spec = NULL; 5147 struct rbd_options *rbd_opts = NULL; 5148 struct ceph_options *copts; 5149 int ret; 5150 5151 /* The first four tokens are required */ 5152 5153 len = next_token(&buf); 5154 if (!len) { 5155 rbd_warn(NULL, "no monitor address(es) provided"); 5156 return -EINVAL; 5157 } 5158 mon_addrs = buf; 5159 mon_addrs_size = len + 1; 5160 buf += len; 5161 5162 ret = -EINVAL; 5163 options = dup_token(&buf, NULL); 5164 if (!options) 5165 return -ENOMEM; 5166 if (!*options) { 5167 rbd_warn(NULL, "no options provided"); 5168 goto out_err; 5169 } 5170 5171 spec = rbd_spec_alloc(); 5172 if (!spec) 5173 goto out_mem; 5174 5175 spec->pool_name = dup_token(&buf, NULL); 5176 if (!spec->pool_name) 5177 goto out_mem; 5178 if (!*spec->pool_name) { 5179 rbd_warn(NULL, "no pool name provided"); 5180 goto out_err; 5181 } 5182 5183 spec->image_name = dup_token(&buf, NULL); 5184 if (!spec->image_name) 5185 goto out_mem; 5186 if (!*spec->image_name) { 5187 rbd_warn(NULL, "no image name provided"); 5188 goto out_err; 5189 } 5190 5191 /* 5192 * Snapshot name is optional; default is to use "-" 5193 * (indicating the head/no snapshot). 5194 */ 5195 len = next_token(&buf); 5196 if (!len) { 5197 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5198 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5199 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5200 ret = -ENAMETOOLONG; 5201 goto out_err; 5202 } 5203 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5204 if (!snap_name) 5205 goto out_mem; 5206 *(snap_name + len) = '\0'; 5207 spec->snap_name = snap_name; 5208 5209 /* Initialize all rbd options to the defaults */ 5210 5211 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5212 if (!rbd_opts) 5213 goto out_mem; 5214 5215 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5216 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5217 rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 5218 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5219 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5220 rbd_opts->trim = RBD_TRIM_DEFAULT; 5221 5222 copts = ceph_parse_options(options, mon_addrs, 5223 mon_addrs + mon_addrs_size - 1, 5224 parse_rbd_opts_token, rbd_opts); 5225 if (IS_ERR(copts)) { 5226 ret = PTR_ERR(copts); 5227 goto out_err; 5228 } 5229 kfree(options); 5230 5231 *ceph_opts = copts; 5232 *opts = rbd_opts; 5233 *rbd_spec = spec; 5234 5235 return 0; 5236 out_mem: 5237 ret = -ENOMEM; 5238 out_err: 5239 kfree(rbd_opts); 5240 rbd_spec_put(spec); 5241 kfree(options); 5242 5243 return ret; 5244 } 5245 5246 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5247 { 5248 down_write(&rbd_dev->lock_rwsem); 5249 if (__rbd_is_lock_owner(rbd_dev)) 5250 rbd_unlock(rbd_dev); 5251 up_write(&rbd_dev->lock_rwsem); 5252 } 5253 5254 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5255 { 5256 int ret; 5257 5258 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5259 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5260 return -EINVAL; 5261 } 5262 5263 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5264 down_read(&rbd_dev->lock_rwsem); 5265 ret = rbd_wait_state_locked(rbd_dev, true); 5266 up_read(&rbd_dev->lock_rwsem); 5267 if (ret) { 5268 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5269 return -EROFS; 5270 } 5271 5272 return 0; 5273 } 5274 5275 /* 5276 * An rbd format 2 image has a unique identifier, distinct from the 5277 * name given to it by the user. Internally, that identifier is 5278 * what's used to specify the names of objects related to the image. 5279 * 5280 * A special "rbd id" object is used to map an rbd image name to its 5281 * id. If that object doesn't exist, then there is no v2 rbd image 5282 * with the supplied name. 5283 * 5284 * This function will record the given rbd_dev's image_id field if 5285 * it can be determined, and in that case will return 0. If any 5286 * errors occur a negative errno will be returned and the rbd_dev's 5287 * image_id field will be unchanged (and should be NULL). 5288 */ 5289 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5290 { 5291 int ret; 5292 size_t size; 5293 CEPH_DEFINE_OID_ONSTACK(oid); 5294 void *response; 5295 char *image_id; 5296 5297 /* 5298 * When probing a parent image, the image id is already 5299 * known (and the image name likely is not). There's no 5300 * need to fetch the image id again in this case. We 5301 * do still need to set the image format though. 5302 */ 5303 if (rbd_dev->spec->image_id) { 5304 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5305 5306 return 0; 5307 } 5308 5309 /* 5310 * First, see if the format 2 image id file exists, and if 5311 * so, get the image's persistent id from it. 5312 */ 5313 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5314 rbd_dev->spec->image_name); 5315 if (ret) 5316 return ret; 5317 5318 dout("rbd id object name is %s\n", oid.name); 5319 5320 /* Response will be an encoded string, which includes a length */ 5321 5322 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5323 response = kzalloc(size, GFP_NOIO); 5324 if (!response) { 5325 ret = -ENOMEM; 5326 goto out; 5327 } 5328 5329 /* If it doesn't exist we'll assume it's a format 1 image */ 5330 5331 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5332 "get_id", NULL, 0, 5333 response, RBD_IMAGE_ID_LEN_MAX); 5334 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5335 if (ret == -ENOENT) { 5336 image_id = kstrdup("", GFP_KERNEL); 5337 ret = image_id ? 0 : -ENOMEM; 5338 if (!ret) 5339 rbd_dev->image_format = 1; 5340 } else if (ret >= 0) { 5341 void *p = response; 5342 5343 image_id = ceph_extract_encoded_string(&p, p + ret, 5344 NULL, GFP_NOIO); 5345 ret = PTR_ERR_OR_ZERO(image_id); 5346 if (!ret) 5347 rbd_dev->image_format = 2; 5348 } 5349 5350 if (!ret) { 5351 rbd_dev->spec->image_id = image_id; 5352 dout("image_id is %s\n", image_id); 5353 } 5354 out: 5355 kfree(response); 5356 ceph_oid_destroy(&oid); 5357 return ret; 5358 } 5359 5360 /* 5361 * Undo whatever state changes are made by v1 or v2 header info 5362 * call. 5363 */ 5364 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5365 { 5366 struct rbd_image_header *header; 5367 5368 rbd_dev_parent_put(rbd_dev); 5369 5370 /* Free dynamic fields from the header, then zero it out */ 5371 5372 header = &rbd_dev->header; 5373 ceph_put_snap_context(header->snapc); 5374 kfree(header->snap_sizes); 5375 kfree(header->snap_names); 5376 kfree(header->object_prefix); 5377 memset(header, 0, sizeof (*header)); 5378 } 5379 5380 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5381 { 5382 int ret; 5383 5384 ret = rbd_dev_v2_object_prefix(rbd_dev); 5385 if (ret) 5386 goto out_err; 5387 5388 /* 5389 * Get the and check features for the image. Currently the 5390 * features are assumed to never change. 5391 */ 5392 ret = rbd_dev_v2_features(rbd_dev); 5393 if (ret) 5394 goto out_err; 5395 5396 /* If the image supports fancy striping, get its parameters */ 5397 5398 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5399 ret = rbd_dev_v2_striping_info(rbd_dev); 5400 if (ret < 0) 5401 goto out_err; 5402 } 5403 5404 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5405 ret = rbd_dev_v2_data_pool(rbd_dev); 5406 if (ret) 5407 goto out_err; 5408 } 5409 5410 rbd_init_layout(rbd_dev); 5411 return 0; 5412 5413 out_err: 5414 rbd_dev->header.features = 0; 5415 kfree(rbd_dev->header.object_prefix); 5416 rbd_dev->header.object_prefix = NULL; 5417 return ret; 5418 } 5419 5420 /* 5421 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5422 * rbd_dev_image_probe() recursion depth, which means it's also the 5423 * length of the already discovered part of the parent chain. 5424 */ 5425 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5426 { 5427 struct rbd_device *parent = NULL; 5428 int ret; 5429 5430 if (!rbd_dev->parent_spec) 5431 return 0; 5432 5433 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5434 pr_info("parent chain is too long (%d)\n", depth); 5435 ret = -EINVAL; 5436 goto out_err; 5437 } 5438 5439 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5440 if (!parent) { 5441 ret = -ENOMEM; 5442 goto out_err; 5443 } 5444 5445 /* 5446 * Images related by parent/child relationships always share 5447 * rbd_client and spec/parent_spec, so bump their refcounts. 5448 */ 5449 __rbd_get_client(rbd_dev->rbd_client); 5450 rbd_spec_get(rbd_dev->parent_spec); 5451 5452 ret = rbd_dev_image_probe(parent, depth); 5453 if (ret < 0) 5454 goto out_err; 5455 5456 rbd_dev->parent = parent; 5457 atomic_set(&rbd_dev->parent_ref, 1); 5458 return 0; 5459 5460 out_err: 5461 rbd_dev_unparent(rbd_dev); 5462 rbd_dev_destroy(parent); 5463 return ret; 5464 } 5465 5466 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5467 { 5468 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5469 rbd_dev_mapping_clear(rbd_dev); 5470 rbd_free_disk(rbd_dev); 5471 if (!single_major) 5472 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5473 } 5474 5475 /* 5476 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5477 * upon return. 5478 */ 5479 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5480 { 5481 int ret; 5482 5483 /* Record our major and minor device numbers. */ 5484 5485 if (!single_major) { 5486 ret = register_blkdev(0, rbd_dev->name); 5487 if (ret < 0) 5488 goto err_out_unlock; 5489 5490 rbd_dev->major = ret; 5491 rbd_dev->minor = 0; 5492 } else { 5493 rbd_dev->major = rbd_major; 5494 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5495 } 5496 5497 /* Set up the blkdev mapping. */ 5498 5499 ret = rbd_init_disk(rbd_dev); 5500 if (ret) 5501 goto err_out_blkdev; 5502 5503 ret = rbd_dev_mapping_set(rbd_dev); 5504 if (ret) 5505 goto err_out_disk; 5506 5507 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5508 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 5509 5510 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5511 if (ret) 5512 goto err_out_mapping; 5513 5514 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5515 up_write(&rbd_dev->header_rwsem); 5516 return 0; 5517 5518 err_out_mapping: 5519 rbd_dev_mapping_clear(rbd_dev); 5520 err_out_disk: 5521 rbd_free_disk(rbd_dev); 5522 err_out_blkdev: 5523 if (!single_major) 5524 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5525 err_out_unlock: 5526 up_write(&rbd_dev->header_rwsem); 5527 return ret; 5528 } 5529 5530 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5531 { 5532 struct rbd_spec *spec = rbd_dev->spec; 5533 int ret; 5534 5535 /* Record the header object name for this rbd image. */ 5536 5537 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5538 if (rbd_dev->image_format == 1) 5539 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5540 spec->image_name, RBD_SUFFIX); 5541 else 5542 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5543 RBD_HEADER_PREFIX, spec->image_id); 5544 5545 return ret; 5546 } 5547 5548 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5549 { 5550 rbd_dev_unprobe(rbd_dev); 5551 if (rbd_dev->opts) 5552 rbd_unregister_watch(rbd_dev); 5553 rbd_dev->image_format = 0; 5554 kfree(rbd_dev->spec->image_id); 5555 rbd_dev->spec->image_id = NULL; 5556 } 5557 5558 /* 5559 * Probe for the existence of the header object for the given rbd 5560 * device. If this image is the one being mapped (i.e., not a 5561 * parent), initiate a watch on its header object before using that 5562 * object to get detailed information about the rbd image. 5563 */ 5564 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5565 { 5566 int ret; 5567 5568 /* 5569 * Get the id from the image id object. Unless there's an 5570 * error, rbd_dev->spec->image_id will be filled in with 5571 * a dynamically-allocated string, and rbd_dev->image_format 5572 * will be set to either 1 or 2. 5573 */ 5574 ret = rbd_dev_image_id(rbd_dev); 5575 if (ret) 5576 return ret; 5577 5578 ret = rbd_dev_header_name(rbd_dev); 5579 if (ret) 5580 goto err_out_format; 5581 5582 if (!depth) { 5583 ret = rbd_register_watch(rbd_dev); 5584 if (ret) { 5585 if (ret == -ENOENT) 5586 pr_info("image %s/%s does not exist\n", 5587 rbd_dev->spec->pool_name, 5588 rbd_dev->spec->image_name); 5589 goto err_out_format; 5590 } 5591 } 5592 5593 ret = rbd_dev_header_info(rbd_dev); 5594 if (ret) 5595 goto err_out_watch; 5596 5597 /* 5598 * If this image is the one being mapped, we have pool name and 5599 * id, image name and id, and snap name - need to fill snap id. 5600 * Otherwise this is a parent image, identified by pool, image 5601 * and snap ids - need to fill in names for those ids. 5602 */ 5603 if (!depth) 5604 ret = rbd_spec_fill_snap_id(rbd_dev); 5605 else 5606 ret = rbd_spec_fill_names(rbd_dev); 5607 if (ret) { 5608 if (ret == -ENOENT) 5609 pr_info("snap %s/%s@%s does not exist\n", 5610 rbd_dev->spec->pool_name, 5611 rbd_dev->spec->image_name, 5612 rbd_dev->spec->snap_name); 5613 goto err_out_probe; 5614 } 5615 5616 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5617 ret = rbd_dev_v2_parent_info(rbd_dev); 5618 if (ret) 5619 goto err_out_probe; 5620 5621 /* 5622 * Need to warn users if this image is the one being 5623 * mapped and has a parent. 5624 */ 5625 if (!depth && rbd_dev->parent_spec) 5626 rbd_warn(rbd_dev, 5627 "WARNING: kernel layering is EXPERIMENTAL!"); 5628 } 5629 5630 ret = rbd_dev_probe_parent(rbd_dev, depth); 5631 if (ret) 5632 goto err_out_probe; 5633 5634 dout("discovered format %u image, header name is %s\n", 5635 rbd_dev->image_format, rbd_dev->header_oid.name); 5636 return 0; 5637 5638 err_out_probe: 5639 rbd_dev_unprobe(rbd_dev); 5640 err_out_watch: 5641 if (!depth) 5642 rbd_unregister_watch(rbd_dev); 5643 err_out_format: 5644 rbd_dev->image_format = 0; 5645 kfree(rbd_dev->spec->image_id); 5646 rbd_dev->spec->image_id = NULL; 5647 return ret; 5648 } 5649 5650 static ssize_t do_rbd_add(struct bus_type *bus, 5651 const char *buf, 5652 size_t count) 5653 { 5654 struct rbd_device *rbd_dev = NULL; 5655 struct ceph_options *ceph_opts = NULL; 5656 struct rbd_options *rbd_opts = NULL; 5657 struct rbd_spec *spec = NULL; 5658 struct rbd_client *rbdc; 5659 int rc; 5660 5661 if (!try_module_get(THIS_MODULE)) 5662 return -ENODEV; 5663 5664 /* parse add command */ 5665 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5666 if (rc < 0) 5667 goto out; 5668 5669 rbdc = rbd_get_client(ceph_opts); 5670 if (IS_ERR(rbdc)) { 5671 rc = PTR_ERR(rbdc); 5672 goto err_out_args; 5673 } 5674 5675 /* pick the pool */ 5676 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 5677 if (rc < 0) { 5678 if (rc == -ENOENT) 5679 pr_info("pool %s does not exist\n", spec->pool_name); 5680 goto err_out_client; 5681 } 5682 spec->pool_id = (u64)rc; 5683 5684 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5685 if (!rbd_dev) { 5686 rc = -ENOMEM; 5687 goto err_out_client; 5688 } 5689 rbdc = NULL; /* rbd_dev now owns this */ 5690 spec = NULL; /* rbd_dev now owns this */ 5691 rbd_opts = NULL; /* rbd_dev now owns this */ 5692 5693 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 5694 if (!rbd_dev->config_info) { 5695 rc = -ENOMEM; 5696 goto err_out_rbd_dev; 5697 } 5698 5699 down_write(&rbd_dev->header_rwsem); 5700 rc = rbd_dev_image_probe(rbd_dev, 0); 5701 if (rc < 0) { 5702 up_write(&rbd_dev->header_rwsem); 5703 goto err_out_rbd_dev; 5704 } 5705 5706 /* If we are mapping a snapshot it must be marked read-only */ 5707 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5708 rbd_dev->opts->read_only = true; 5709 5710 rc = rbd_dev_device_setup(rbd_dev); 5711 if (rc) 5712 goto err_out_image_probe; 5713 5714 if (rbd_dev->opts->exclusive) { 5715 rc = rbd_add_acquire_lock(rbd_dev); 5716 if (rc) 5717 goto err_out_device_setup; 5718 } 5719 5720 /* Everything's ready. Announce the disk to the world. */ 5721 5722 rc = device_add(&rbd_dev->dev); 5723 if (rc) 5724 goto err_out_image_lock; 5725 5726 add_disk(rbd_dev->disk); 5727 /* see rbd_init_disk() */ 5728 blk_put_queue(rbd_dev->disk->queue); 5729 5730 spin_lock(&rbd_dev_list_lock); 5731 list_add_tail(&rbd_dev->node, &rbd_dev_list); 5732 spin_unlock(&rbd_dev_list_lock); 5733 5734 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 5735 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 5736 rbd_dev->header.features); 5737 rc = count; 5738 out: 5739 module_put(THIS_MODULE); 5740 return rc; 5741 5742 err_out_image_lock: 5743 rbd_dev_image_unlock(rbd_dev); 5744 err_out_device_setup: 5745 rbd_dev_device_release(rbd_dev); 5746 err_out_image_probe: 5747 rbd_dev_image_release(rbd_dev); 5748 err_out_rbd_dev: 5749 rbd_dev_destroy(rbd_dev); 5750 err_out_client: 5751 rbd_put_client(rbdc); 5752 err_out_args: 5753 rbd_spec_put(spec); 5754 kfree(rbd_opts); 5755 goto out; 5756 } 5757 5758 static ssize_t rbd_add(struct bus_type *bus, 5759 const char *buf, 5760 size_t count) 5761 { 5762 if (single_major) 5763 return -EINVAL; 5764 5765 return do_rbd_add(bus, buf, count); 5766 } 5767 5768 static ssize_t rbd_add_single_major(struct bus_type *bus, 5769 const char *buf, 5770 size_t count) 5771 { 5772 return do_rbd_add(bus, buf, count); 5773 } 5774 5775 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5776 { 5777 while (rbd_dev->parent) { 5778 struct rbd_device *first = rbd_dev; 5779 struct rbd_device *second = first->parent; 5780 struct rbd_device *third; 5781 5782 /* 5783 * Follow to the parent with no grandparent and 5784 * remove it. 5785 */ 5786 while (second && (third = second->parent)) { 5787 first = second; 5788 second = third; 5789 } 5790 rbd_assert(second); 5791 rbd_dev_image_release(second); 5792 rbd_dev_destroy(second); 5793 first->parent = NULL; 5794 first->parent_overlap = 0; 5795 5796 rbd_assert(first->parent_spec); 5797 rbd_spec_put(first->parent_spec); 5798 first->parent_spec = NULL; 5799 } 5800 } 5801 5802 static ssize_t do_rbd_remove(struct bus_type *bus, 5803 const char *buf, 5804 size_t count) 5805 { 5806 struct rbd_device *rbd_dev = NULL; 5807 struct list_head *tmp; 5808 int dev_id; 5809 char opt_buf[6]; 5810 bool already = false; 5811 bool force = false; 5812 int ret; 5813 5814 dev_id = -1; 5815 opt_buf[0] = '\0'; 5816 sscanf(buf, "%d %5s", &dev_id, opt_buf); 5817 if (dev_id < 0) { 5818 pr_err("dev_id out of range\n"); 5819 return -EINVAL; 5820 } 5821 if (opt_buf[0] != '\0') { 5822 if (!strcmp(opt_buf, "force")) { 5823 force = true; 5824 } else { 5825 pr_err("bad remove option at '%s'\n", opt_buf); 5826 return -EINVAL; 5827 } 5828 } 5829 5830 ret = -ENOENT; 5831 spin_lock(&rbd_dev_list_lock); 5832 list_for_each(tmp, &rbd_dev_list) { 5833 rbd_dev = list_entry(tmp, struct rbd_device, node); 5834 if (rbd_dev->dev_id == dev_id) { 5835 ret = 0; 5836 break; 5837 } 5838 } 5839 if (!ret) { 5840 spin_lock_irq(&rbd_dev->lock); 5841 if (rbd_dev->open_count && !force) 5842 ret = -EBUSY; 5843 else 5844 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5845 &rbd_dev->flags); 5846 spin_unlock_irq(&rbd_dev->lock); 5847 } 5848 spin_unlock(&rbd_dev_list_lock); 5849 if (ret < 0 || already) 5850 return ret; 5851 5852 if (force) { 5853 /* 5854 * Prevent new IO from being queued and wait for existing 5855 * IO to complete/fail. 5856 */ 5857 blk_mq_freeze_queue(rbd_dev->disk->queue); 5858 blk_set_queue_dying(rbd_dev->disk->queue); 5859 } 5860 5861 del_gendisk(rbd_dev->disk); 5862 spin_lock(&rbd_dev_list_lock); 5863 list_del_init(&rbd_dev->node); 5864 spin_unlock(&rbd_dev_list_lock); 5865 device_del(&rbd_dev->dev); 5866 5867 rbd_dev_image_unlock(rbd_dev); 5868 rbd_dev_device_release(rbd_dev); 5869 rbd_dev_image_release(rbd_dev); 5870 rbd_dev_destroy(rbd_dev); 5871 return count; 5872 } 5873 5874 static ssize_t rbd_remove(struct bus_type *bus, 5875 const char *buf, 5876 size_t count) 5877 { 5878 if (single_major) 5879 return -EINVAL; 5880 5881 return do_rbd_remove(bus, buf, count); 5882 } 5883 5884 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5885 const char *buf, 5886 size_t count) 5887 { 5888 return do_rbd_remove(bus, buf, count); 5889 } 5890 5891 /* 5892 * create control files in sysfs 5893 * /sys/bus/rbd/... 5894 */ 5895 static int rbd_sysfs_init(void) 5896 { 5897 int ret; 5898 5899 ret = device_register(&rbd_root_dev); 5900 if (ret < 0) 5901 return ret; 5902 5903 ret = bus_register(&rbd_bus_type); 5904 if (ret < 0) 5905 device_unregister(&rbd_root_dev); 5906 5907 return ret; 5908 } 5909 5910 static void rbd_sysfs_cleanup(void) 5911 { 5912 bus_unregister(&rbd_bus_type); 5913 device_unregister(&rbd_root_dev); 5914 } 5915 5916 static int rbd_slab_init(void) 5917 { 5918 rbd_assert(!rbd_img_request_cache); 5919 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 5920 if (!rbd_img_request_cache) 5921 return -ENOMEM; 5922 5923 rbd_assert(!rbd_obj_request_cache); 5924 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 5925 if (!rbd_obj_request_cache) 5926 goto out_err; 5927 5928 return 0; 5929 5930 out_err: 5931 kmem_cache_destroy(rbd_img_request_cache); 5932 rbd_img_request_cache = NULL; 5933 return -ENOMEM; 5934 } 5935 5936 static void rbd_slab_exit(void) 5937 { 5938 rbd_assert(rbd_obj_request_cache); 5939 kmem_cache_destroy(rbd_obj_request_cache); 5940 rbd_obj_request_cache = NULL; 5941 5942 rbd_assert(rbd_img_request_cache); 5943 kmem_cache_destroy(rbd_img_request_cache); 5944 rbd_img_request_cache = NULL; 5945 } 5946 5947 static int __init rbd_init(void) 5948 { 5949 int rc; 5950 5951 if (!libceph_compatible(NULL)) { 5952 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5953 return -EINVAL; 5954 } 5955 5956 rc = rbd_slab_init(); 5957 if (rc) 5958 return rc; 5959 5960 /* 5961 * The number of active work items is limited by the number of 5962 * rbd devices * queue depth, so leave @max_active at default. 5963 */ 5964 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5965 if (!rbd_wq) { 5966 rc = -ENOMEM; 5967 goto err_out_slab; 5968 } 5969 5970 if (single_major) { 5971 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5972 if (rbd_major < 0) { 5973 rc = rbd_major; 5974 goto err_out_wq; 5975 } 5976 } 5977 5978 rc = rbd_sysfs_init(); 5979 if (rc) 5980 goto err_out_blkdev; 5981 5982 if (single_major) 5983 pr_info("loaded (major %d)\n", rbd_major); 5984 else 5985 pr_info("loaded\n"); 5986 5987 return 0; 5988 5989 err_out_blkdev: 5990 if (single_major) 5991 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5992 err_out_wq: 5993 destroy_workqueue(rbd_wq); 5994 err_out_slab: 5995 rbd_slab_exit(); 5996 return rc; 5997 } 5998 5999 static void __exit rbd_exit(void) 6000 { 6001 ida_destroy(&rbd_dev_id_ida); 6002 rbd_sysfs_cleanup(); 6003 if (single_major) 6004 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6005 destroy_workqueue(rbd_wq); 6006 rbd_slab_exit(); 6007 } 6008 6009 module_init(rbd_init); 6010 module_exit(rbd_exit); 6011 6012 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6013 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6014 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6015 /* following authorship retained from original osdblk.c */ 6016 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6017 6018 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6019 MODULE_LICENSE("GPL"); 6020