xref: /openbmc/linux/drivers/block/rbd.c (revision 9f69e8a7)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
100 #define RBD_MAX_SNAP_NAME_LEN	\
101 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 
103 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
104 
105 #define RBD_SNAP_HEAD_NAME	"-"
106 
107 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
108 
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX	64
112 
113 #define RBD_OBJ_PREFIX_LEN_MAX	64
114 
115 /* Feature bits */
116 
117 #define RBD_FEATURE_LAYERING	(1<<0)
118 #define RBD_FEATURE_STRIPINGV2	(1<<1)
119 #define RBD_FEATURES_ALL \
120 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 
122 /* Features supported by this (client software) implementation. */
123 
124 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
125 
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN		32
133 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
134 
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139 	/* These six fields never change for a given rbd image */
140 	char *object_prefix;
141 	__u8 obj_order;
142 	__u8 crypt_type;
143 	__u8 comp_type;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	const char		*object_name;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 	struct completion	completion;
278 
279 	struct kref		kref;
280 };
281 
282 enum img_req_flags {
283 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
284 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
285 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
286 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
287 };
288 
289 struct rbd_img_request {
290 	struct rbd_device	*rbd_dev;
291 	u64			offset;	/* starting image byte offset */
292 	u64			length;	/* byte count from offset */
293 	unsigned long		flags;
294 	union {
295 		u64			snap_id;	/* for reads */
296 		struct ceph_snap_context *snapc;	/* for writes */
297 	};
298 	union {
299 		struct request		*rq;		/* block request */
300 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
301 	};
302 	struct page		**copyup_pages;
303 	u32			copyup_page_count;
304 	spinlock_t		completion_lock;/* protects next_completion */
305 	u32			next_completion;
306 	rbd_img_callback_t	callback;
307 	u64			xferred;/* aggregate bytes transferred */
308 	int			result;	/* first nonzero obj_request result */
309 
310 	u32			obj_request_count;
311 	struct list_head	obj_requests;	/* rbd_obj_request structs */
312 
313 	struct kref		kref;
314 };
315 
316 #define for_each_obj_request(ireq, oreq) \
317 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 	bool			read_only;
327 };
328 
329 /*
330  * a single device
331  */
332 struct rbd_device {
333 	int			dev_id;		/* blkdev unique id */
334 
335 	int			major;		/* blkdev assigned major */
336 	int			minor;
337 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
338 
339 	u32			image_format;	/* Either 1 or 2 */
340 	struct rbd_client	*rbd_client;
341 
342 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 
346 	struct rbd_image_header	header;
347 	unsigned long		flags;		/* possibly lock protected */
348 	struct rbd_spec		*spec;
349 
350 	char			*header_name;
351 
352 	struct ceph_file_layout	layout;
353 
354 	struct ceph_osd_event   *watch_event;
355 	struct rbd_obj_request	*watch_request;
356 
357 	struct rbd_spec		*parent_spec;
358 	u64			parent_overlap;
359 	atomic_t		parent_ref;
360 	struct rbd_device	*parent;
361 
362 	/* Block layer tags. */
363 	struct blk_mq_tag_set	tag_set;
364 
365 	/* protects updating the header */
366 	struct rw_semaphore     header_rwsem;
367 
368 	struct rbd_mapping	mapping;
369 
370 	struct list_head	node;
371 
372 	/* sysfs related */
373 	struct device		dev;
374 	unsigned long		open_count;	/* protected by lock */
375 };
376 
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
386 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
387 };
388 
389 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
390 
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393 
394 static LIST_HEAD(rbd_client_list);		/* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396 
397 /* Slab caches for frequently-allocated structures */
398 
399 static struct kmem_cache	*rbd_img_request_cache;
400 static struct kmem_cache	*rbd_obj_request_cache;
401 static struct kmem_cache	*rbd_segment_name_cache;
402 
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405 
406 static struct workqueue_struct *rbd_wq;
407 
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415 
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417 
418 static void rbd_dev_device_release(struct device *dev);
419 
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421 		       size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423 			  size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425 				    size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427 				       size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430 
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435 
436 static int minor_to_rbd_dev_id(int minor)
437 {
438 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440 
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445 
446 static struct attribute *rbd_bus_attrs[] = {
447 	&bus_attr_add.attr,
448 	&bus_attr_remove.attr,
449 	&bus_attr_add_single_major.attr,
450 	&bus_attr_remove_single_major.attr,
451 	NULL,
452 };
453 
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455 				  struct attribute *attr, int index)
456 {
457 	if (!single_major &&
458 	    (attr == &bus_attr_add_single_major.attr ||
459 	     attr == &bus_attr_remove_single_major.attr))
460 		return 0;
461 
462 	return attr->mode;
463 }
464 
465 static const struct attribute_group rbd_bus_group = {
466 	.attrs = rbd_bus_attrs,
467 	.is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470 
471 static struct bus_type rbd_bus_type = {
472 	.name		= "rbd",
473 	.bus_groups	= rbd_bus_groups,
474 };
475 
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479 
480 static struct device rbd_root_dev = {
481 	.init_name =    "rbd",
482 	.release =      rbd_root_dev_release,
483 };
484 
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488 	struct va_format vaf;
489 	va_list args;
490 
491 	va_start(args, fmt);
492 	vaf.fmt = fmt;
493 	vaf.va = &args;
494 
495 	if (!rbd_dev)
496 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497 	else if (rbd_dev->disk)
498 		printk(KERN_WARNING "%s: %s: %pV\n",
499 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
501 		printk(KERN_WARNING "%s: image %s: %pV\n",
502 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
504 		printk(KERN_WARNING "%s: id %s: %pV\n",
505 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506 	else	/* punt */
507 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508 			RBD_DRV_NAME, rbd_dev, &vaf);
509 	va_end(args);
510 }
511 
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)						\
514 		if (unlikely(!(expr))) {				\
515 			printk(KERN_ERR "\nAssertion failure in %s() "	\
516 						"at line %d:\n\n"	\
517 					"\trbd_assert(%s);\n\n",	\
518 					__func__, __LINE__, #expr);	\
519 			BUG();						\
520 		}
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)	((void) 0)
523 #endif /* !RBD_DEBUG */
524 
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528 
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534 					u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536 				u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538 		u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540 
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544 	bool removing = false;
545 
546 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547 		return -EROFS;
548 
549 	spin_lock_irq(&rbd_dev->lock);
550 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551 		removing = true;
552 	else
553 		rbd_dev->open_count++;
554 	spin_unlock_irq(&rbd_dev->lock);
555 	if (removing)
556 		return -ENOENT;
557 
558 	(void) get_device(&rbd_dev->dev);
559 
560 	return 0;
561 }
562 
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565 	struct rbd_device *rbd_dev = disk->private_data;
566 	unsigned long open_count_before;
567 
568 	spin_lock_irq(&rbd_dev->lock);
569 	open_count_before = rbd_dev->open_count--;
570 	spin_unlock_irq(&rbd_dev->lock);
571 	rbd_assert(open_count_before > 0);
572 
573 	put_device(&rbd_dev->dev);
574 }
575 
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578 	int ret = 0;
579 	int val;
580 	bool ro;
581 	bool ro_changed = false;
582 
583 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
584 	if (get_user(val, (int __user *)(arg)))
585 		return -EFAULT;
586 
587 	ro = val ? true : false;
588 	/* Snapshot doesn't allow to write*/
589 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590 		return -EROFS;
591 
592 	spin_lock_irq(&rbd_dev->lock);
593 	/* prevent others open this device */
594 	if (rbd_dev->open_count > 1) {
595 		ret = -EBUSY;
596 		goto out;
597 	}
598 
599 	if (rbd_dev->mapping.read_only != ro) {
600 		rbd_dev->mapping.read_only = ro;
601 		ro_changed = true;
602 	}
603 
604 out:
605 	spin_unlock_irq(&rbd_dev->lock);
606 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607 	if (ret == 0 && ro_changed)
608 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609 
610 	return ret;
611 }
612 
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614 			unsigned int cmd, unsigned long arg)
615 {
616 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617 	int ret = 0;
618 
619 	switch (cmd) {
620 	case BLKROSET:
621 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
622 		break;
623 	default:
624 		ret = -ENOTTY;
625 	}
626 
627 	return ret;
628 }
629 
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632 				unsigned int cmd, unsigned long arg)
633 {
634 	return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637 
638 static const struct block_device_operations rbd_bd_ops = {
639 	.owner			= THIS_MODULE,
640 	.open			= rbd_open,
641 	.release		= rbd_release,
642 	.ioctl			= rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644 	.compat_ioctl		= rbd_compat_ioctl,
645 #endif
646 };
647 
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654 	struct rbd_client *rbdc;
655 	int ret = -ENOMEM;
656 
657 	dout("%s:\n", __func__);
658 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 	if (!rbdc)
660 		goto out_opt;
661 
662 	kref_init(&rbdc->kref);
663 	INIT_LIST_HEAD(&rbdc->node);
664 
665 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666 	if (IS_ERR(rbdc->client))
667 		goto out_rbdc;
668 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669 
670 	ret = ceph_open_session(rbdc->client);
671 	if (ret < 0)
672 		goto out_client;
673 
674 	spin_lock(&rbd_client_list_lock);
675 	list_add_tail(&rbdc->node, &rbd_client_list);
676 	spin_unlock(&rbd_client_list_lock);
677 
678 	dout("%s: rbdc %p\n", __func__, rbdc);
679 
680 	return rbdc;
681 out_client:
682 	ceph_destroy_client(rbdc->client);
683 out_rbdc:
684 	kfree(rbdc);
685 out_opt:
686 	if (ceph_opts)
687 		ceph_destroy_options(ceph_opts);
688 	dout("%s: error %d\n", __func__, ret);
689 
690 	return ERR_PTR(ret);
691 }
692 
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695 	kref_get(&rbdc->kref);
696 
697 	return rbdc;
698 }
699 
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *client_node;
707 	bool found = false;
708 
709 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710 		return NULL;
711 
712 	spin_lock(&rbd_client_list_lock);
713 	list_for_each_entry(client_node, &rbd_client_list, node) {
714 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
715 			__rbd_get_client(client_node);
716 
717 			found = true;
718 			break;
719 		}
720 	}
721 	spin_unlock(&rbd_client_list_lock);
722 
723 	return found ? client_node : NULL;
724 }
725 
726 /*
727  * mount options
728  */
729 enum {
730 	Opt_last_int,
731 	/* int args above */
732 	Opt_last_string,
733 	/* string args above */
734 	Opt_read_only,
735 	Opt_read_write,
736 	/* Boolean args above */
737 	Opt_last_bool,
738 };
739 
740 static match_table_t rbd_opts_tokens = {
741 	/* int args above */
742 	/* string args above */
743 	{Opt_read_only, "read_only"},
744 	{Opt_read_only, "ro"},		/* Alternate spelling */
745 	{Opt_read_write, "read_write"},
746 	{Opt_read_write, "rw"},		/* Alternate spelling */
747 	/* Boolean args above */
748 	{-1, NULL}
749 };
750 
751 struct rbd_options {
752 	bool	read_only;
753 };
754 
755 #define RBD_READ_ONLY_DEFAULT	false
756 
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759 	struct rbd_options *rbd_opts = private;
760 	substring_t argstr[MAX_OPT_ARGS];
761 	int token, intval, ret;
762 
763 	token = match_token(c, rbd_opts_tokens, argstr);
764 	if (token < 0)
765 		return -EINVAL;
766 
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) "
771 			       "at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token,
777 		     argstr[0].from);
778 	} else if (token > Opt_last_string && token < Opt_last_bool) {
779 		dout("got Boolean token %d\n", token);
780 	} else {
781 		dout("got token %d\n", token);
782 	}
783 
784 	switch (token) {
785 	case Opt_read_only:
786 		rbd_opts->read_only = true;
787 		break;
788 	case Opt_read_write:
789 		rbd_opts->read_only = false;
790 		break;
791 	default:
792 		rbd_assert(false);
793 		break;
794 	}
795 	return 0;
796 }
797 
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800 	switch (op_type) {
801 	case OBJ_OP_READ:
802 		return "read";
803 	case OBJ_OP_WRITE:
804 		return "write";
805 	case OBJ_OP_DISCARD:
806 		return "discard";
807 	default:
808 		return "???";
809 	}
810 }
811 
812 /*
813  * Get a ceph client with specific addr and configuration, if one does
814  * not exist create it.  Either way, ceph_opts is consumed by this
815  * function.
816  */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819 	struct rbd_client *rbdc;
820 
821 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822 	rbdc = rbd_client_find(ceph_opts);
823 	if (rbdc)	/* using an existing client */
824 		ceph_destroy_options(ceph_opts);
825 	else
826 		rbdc = rbd_client_create(ceph_opts);
827 	mutex_unlock(&client_mutex);
828 
829 	return rbdc;
830 }
831 
832 /*
833  * Destroy ceph client
834  *
835  * Caller must hold rbd_client_list_lock.
836  */
837 static void rbd_client_release(struct kref *kref)
838 {
839 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840 
841 	dout("%s: rbdc %p\n", __func__, rbdc);
842 	spin_lock(&rbd_client_list_lock);
843 	list_del(&rbdc->node);
844 	spin_unlock(&rbd_client_list_lock);
845 
846 	ceph_destroy_client(rbdc->client);
847 	kfree(rbdc);
848 }
849 
850 /*
851  * Drop reference to ceph client node. If it's not referenced anymore, release
852  * it.
853  */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856 	if (rbdc)
857 		kref_put(&rbdc->kref, rbd_client_release);
858 }
859 
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862 	return image_format == 1 || image_format == 2;
863 }
864 
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867 	size_t size;
868 	u32 snap_count;
869 
870 	/* The header has to start with the magic rbd header text */
871 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872 		return false;
873 
874 	/* The bio layer requires at least sector-sized I/O */
875 
876 	if (ondisk->options.order < SECTOR_SHIFT)
877 		return false;
878 
879 	/* If we use u64 in a few spots we may be able to loosen this */
880 
881 	if (ondisk->options.order > 8 * sizeof (int) - 1)
882 		return false;
883 
884 	/*
885 	 * The size of a snapshot header has to fit in a size_t, and
886 	 * that limits the number of snapshots.
887 	 */
888 	snap_count = le32_to_cpu(ondisk->snap_count);
889 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
890 	if (snap_count > size / sizeof (__le64))
891 		return false;
892 
893 	/*
894 	 * Not only that, but the size of the entire the snapshot
895 	 * header must also be representable in a size_t.
896 	 */
897 	size -= snap_count * sizeof (__le64);
898 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899 		return false;
900 
901 	return true;
902 }
903 
904 /*
905  * Fill an rbd image header with information from the given format 1
906  * on-disk header.
907  */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909 				 struct rbd_image_header_ondisk *ondisk)
910 {
911 	struct rbd_image_header *header = &rbd_dev->header;
912 	bool first_time = header->object_prefix == NULL;
913 	struct ceph_snap_context *snapc;
914 	char *object_prefix = NULL;
915 	char *snap_names = NULL;
916 	u64 *snap_sizes = NULL;
917 	u32 snap_count;
918 	size_t size;
919 	int ret = -ENOMEM;
920 	u32 i;
921 
922 	/* Allocate this now to avoid having to handle failure below */
923 
924 	if (first_time) {
925 		size_t len;
926 
927 		len = strnlen(ondisk->object_prefix,
928 				sizeof (ondisk->object_prefix));
929 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
930 		if (!object_prefix)
931 			return -ENOMEM;
932 		memcpy(object_prefix, ondisk->object_prefix, len);
933 		object_prefix[len] = '\0';
934 	}
935 
936 	/* Allocate the snapshot context and fill it in */
937 
938 	snap_count = le32_to_cpu(ondisk->snap_count);
939 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940 	if (!snapc)
941 		goto out_err;
942 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
943 	if (snap_count) {
944 		struct rbd_image_snap_ondisk *snaps;
945 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946 
947 		/* We'll keep a copy of the snapshot names... */
948 
949 		if (snap_names_len > (u64)SIZE_MAX)
950 			goto out_2big;
951 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 		if (!snap_names)
953 			goto out_err;
954 
955 		/* ...as well as the array of their sizes. */
956 
957 		size = snap_count * sizeof (*header->snap_sizes);
958 		snap_sizes = kmalloc(size, GFP_KERNEL);
959 		if (!snap_sizes)
960 			goto out_err;
961 
962 		/*
963 		 * Copy the names, and fill in each snapshot's id
964 		 * and size.
965 		 *
966 		 * Note that rbd_dev_v1_header_info() guarantees the
967 		 * ondisk buffer we're working with has
968 		 * snap_names_len bytes beyond the end of the
969 		 * snapshot id array, this memcpy() is safe.
970 		 */
971 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972 		snaps = ondisk->snaps;
973 		for (i = 0; i < snap_count; i++) {
974 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 		}
977 	}
978 
979 	/* We won't fail any more, fill in the header */
980 
981 	if (first_time) {
982 		header->object_prefix = object_prefix;
983 		header->obj_order = ondisk->options.order;
984 		header->crypt_type = ondisk->options.crypt_type;
985 		header->comp_type = ondisk->options.comp_type;
986 		/* The rest aren't used for format 1 images */
987 		header->stripe_unit = 0;
988 		header->stripe_count = 0;
989 		header->features = 0;
990 	} else {
991 		ceph_put_snap_context(header->snapc);
992 		kfree(header->snap_names);
993 		kfree(header->snap_sizes);
994 	}
995 
996 	/* The remaining fields always get updated (when we refresh) */
997 
998 	header->image_size = le64_to_cpu(ondisk->image_size);
999 	header->snapc = snapc;
1000 	header->snap_names = snap_names;
1001 	header->snap_sizes = snap_sizes;
1002 
1003 	return 0;
1004 out_2big:
1005 	ret = -EIO;
1006 out_err:
1007 	kfree(snap_sizes);
1008 	kfree(snap_names);
1009 	ceph_put_snap_context(snapc);
1010 	kfree(object_prefix);
1011 
1012 	return ret;
1013 }
1014 
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017 	const char *snap_name;
1018 
1019 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020 
1021 	/* Skip over names until we find the one we are looking for */
1022 
1023 	snap_name = rbd_dev->header.snap_names;
1024 	while (which--)
1025 		snap_name += strlen(snap_name) + 1;
1026 
1027 	return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029 
1030 /*
1031  * Snapshot id comparison function for use with qsort()/bsearch().
1032  * Note that result is for snapshots in *descending* order.
1033  */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036 	u64 snap_id1 = *(u64 *)s1;
1037 	u64 snap_id2 = *(u64 *)s2;
1038 
1039 	if (snap_id1 < snap_id2)
1040 		return 1;
1041 	return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043 
1044 /*
1045  * Search a snapshot context to see if the given snapshot id is
1046  * present.
1047  *
1048  * Returns the position of the snapshot id in the array if it's found,
1049  * or BAD_SNAP_INDEX otherwise.
1050  *
1051  * Note: The snapshot array is in kept sorted (by the osd) in
1052  * reverse order, highest snapshot id first.
1053  */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057 	u64 *found;
1058 
1059 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060 				sizeof (snap_id), snapid_compare_reverse);
1061 
1062 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064 
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 					u64 snap_id)
1067 {
1068 	u32 which;
1069 	const char *snap_name;
1070 
1071 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1072 	if (which == BAD_SNAP_INDEX)
1073 		return ERR_PTR(-ENOENT);
1074 
1075 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078 
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081 	if (snap_id == CEPH_NOSNAP)
1082 		return RBD_SNAP_HEAD_NAME;
1083 
1084 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085 	if (rbd_dev->image_format == 1)
1086 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087 
1088 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090 
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092 				u64 *snap_size)
1093 {
1094 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095 	if (snap_id == CEPH_NOSNAP) {
1096 		*snap_size = rbd_dev->header.image_size;
1097 	} else if (rbd_dev->image_format == 1) {
1098 		u32 which;
1099 
1100 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1101 		if (which == BAD_SNAP_INDEX)
1102 			return -ENOENT;
1103 
1104 		*snap_size = rbd_dev->header.snap_sizes[which];
1105 	} else {
1106 		u64 size = 0;
1107 		int ret;
1108 
1109 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110 		if (ret)
1111 			return ret;
1112 
1113 		*snap_size = size;
1114 	}
1115 	return 0;
1116 }
1117 
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119 			u64 *snap_features)
1120 {
1121 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122 	if (snap_id == CEPH_NOSNAP) {
1123 		*snap_features = rbd_dev->header.features;
1124 	} else if (rbd_dev->image_format == 1) {
1125 		*snap_features = 0;	/* No features for format 1 */
1126 	} else {
1127 		u64 features = 0;
1128 		int ret;
1129 
1130 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 		if (ret)
1132 			return ret;
1133 
1134 		*snap_features = features;
1135 	}
1136 	return 0;
1137 }
1138 
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141 	u64 snap_id = rbd_dev->spec->snap_id;
1142 	u64 size = 0;
1143 	u64 features = 0;
1144 	int ret;
1145 
1146 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147 	if (ret)
1148 		return ret;
1149 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 	if (ret)
1151 		return ret;
1152 
1153 	rbd_dev->mapping.size = size;
1154 	rbd_dev->mapping.features = features;
1155 
1156 	return 0;
1157 }
1158 
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161 	rbd_dev->mapping.size = 0;
1162 	rbd_dev->mapping.features = 0;
1163 }
1164 
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167 	/* The explicit cast here is needed to drop the const qualifier */
1168 
1169 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171 
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174 	char *name;
1175 	u64 segment;
1176 	int ret;
1177 	char *name_format;
1178 
1179 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180 	if (!name)
1181 		return NULL;
1182 	segment = offset >> rbd_dev->header.obj_order;
1183 	name_format = "%s.%012llx";
1184 	if (rbd_dev->image_format == 2)
1185 		name_format = "%s.%016llx";
1186 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187 			rbd_dev->header.object_prefix, segment);
1188 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189 		pr_err("error formatting segment name for #%llu (%d)\n",
1190 			segment, ret);
1191 		rbd_segment_name_free(name);
1192 		name = NULL;
1193 	}
1194 
1195 	return name;
1196 }
1197 
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201 
1202 	return offset & (segment_size - 1);
1203 }
1204 
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206 				u64 offset, u64 length)
1207 {
1208 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209 
1210 	offset &= segment_size - 1;
1211 
1212 	rbd_assert(length <= U64_MAX - offset);
1213 	if (offset + length > segment_size)
1214 		length = segment_size - offset;
1215 
1216 	return length;
1217 }
1218 
1219 /*
1220  * returns the size of an object in the image
1221  */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224 	return 1 << header->obj_order;
1225 }
1226 
1227 /*
1228  * bio helpers
1229  */
1230 
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233 	struct bio *tmp;
1234 
1235 	while (chain) {
1236 		tmp = chain;
1237 		chain = chain->bi_next;
1238 		bio_put(tmp);
1239 	}
1240 }
1241 
1242 /*
1243  * zeros a bio chain, starting at specific offset
1244  */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247 	struct bio_vec bv;
1248 	struct bvec_iter iter;
1249 	unsigned long flags;
1250 	void *buf;
1251 	int pos = 0;
1252 
1253 	while (chain) {
1254 		bio_for_each_segment(bv, chain, iter) {
1255 			if (pos + bv.bv_len > start_ofs) {
1256 				int remainder = max(start_ofs - pos, 0);
1257 				buf = bvec_kmap_irq(&bv, &flags);
1258 				memset(buf + remainder, 0,
1259 				       bv.bv_len - remainder);
1260 				flush_dcache_page(bv.bv_page);
1261 				bvec_kunmap_irq(buf, &flags);
1262 			}
1263 			pos += bv.bv_len;
1264 		}
1265 
1266 		chain = chain->bi_next;
1267 	}
1268 }
1269 
1270 /*
1271  * similar to zero_bio_chain(), zeros data defined by a page array,
1272  * starting at the given byte offset from the start of the array and
1273  * continuing up to the given end offset.  The pages array is
1274  * assumed to be big enough to hold all bytes up to the end.
1275  */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278 	struct page **page = &pages[offset >> PAGE_SHIFT];
1279 
1280 	rbd_assert(end > offset);
1281 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1282 	while (offset < end) {
1283 		size_t page_offset;
1284 		size_t length;
1285 		unsigned long flags;
1286 		void *kaddr;
1287 
1288 		page_offset = offset & ~PAGE_MASK;
1289 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290 		local_irq_save(flags);
1291 		kaddr = kmap_atomic(*page);
1292 		memset(kaddr + page_offset, 0, length);
1293 		flush_dcache_page(*page);
1294 		kunmap_atomic(kaddr);
1295 		local_irq_restore(flags);
1296 
1297 		offset += length;
1298 		page++;
1299 	}
1300 }
1301 
1302 /*
1303  * Clone a portion of a bio, starting at the given byte offset
1304  * and continuing for the number of bytes indicated.
1305  */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307 					unsigned int offset,
1308 					unsigned int len,
1309 					gfp_t gfpmask)
1310 {
1311 	struct bio *bio;
1312 
1313 	bio = bio_clone(bio_src, gfpmask);
1314 	if (!bio)
1315 		return NULL;	/* ENOMEM */
1316 
1317 	bio_advance(bio, offset);
1318 	bio->bi_iter.bi_size = len;
1319 
1320 	return bio;
1321 }
1322 
1323 /*
1324  * Clone a portion of a bio chain, starting at the given byte offset
1325  * into the first bio in the source chain and continuing for the
1326  * number of bytes indicated.  The result is another bio chain of
1327  * exactly the given length, or a null pointer on error.
1328  *
1329  * The bio_src and offset parameters are both in-out.  On entry they
1330  * refer to the first source bio and the offset into that bio where
1331  * the start of data to be cloned is located.
1332  *
1333  * On return, bio_src is updated to refer to the bio in the source
1334  * chain that contains first un-cloned byte, and *offset will
1335  * contain the offset of that byte within that bio.
1336  */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338 					unsigned int *offset,
1339 					unsigned int len,
1340 					gfp_t gfpmask)
1341 {
1342 	struct bio *bi = *bio_src;
1343 	unsigned int off = *offset;
1344 	struct bio *chain = NULL;
1345 	struct bio **end;
1346 
1347 	/* Build up a chain of clone bios up to the limit */
1348 
1349 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1350 		return NULL;		/* Nothing to clone */
1351 
1352 	end = &chain;
1353 	while (len) {
1354 		unsigned int bi_size;
1355 		struct bio *bio;
1356 
1357 		if (!bi) {
1358 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359 			goto out_err;	/* EINVAL; ran out of bio's */
1360 		}
1361 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363 		if (!bio)
1364 			goto out_err;	/* ENOMEM */
1365 
1366 		*end = bio;
1367 		end = &bio->bi_next;
1368 
1369 		off += bi_size;
1370 		if (off == bi->bi_iter.bi_size) {
1371 			bi = bi->bi_next;
1372 			off = 0;
1373 		}
1374 		len -= bi_size;
1375 	}
1376 	*bio_src = bi;
1377 	*offset = off;
1378 
1379 	return chain;
1380 out_err:
1381 	bio_chain_put(chain);
1382 
1383 	return NULL;
1384 }
1385 
1386 /*
1387  * The default/initial value for all object request flags is 0.  For
1388  * each flag, once its value is set to 1 it is never reset to 0
1389  * again.
1390  */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394 		struct rbd_device *rbd_dev;
1395 
1396 		rbd_dev = obj_request->img_request->rbd_dev;
1397 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398 			obj_request);
1399 	}
1400 }
1401 
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404 	smp_mb();
1405 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407 
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411 		struct rbd_device *rbd_dev = NULL;
1412 
1413 		if (obj_request_img_data_test(obj_request))
1414 			rbd_dev = obj_request->img_request->rbd_dev;
1415 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1416 			obj_request);
1417 	}
1418 }
1419 
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422 	smp_mb();
1423 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425 
1426 /*
1427  * This sets the KNOWN flag after (possibly) setting the EXISTS
1428  * flag.  The latter is set based on the "exists" value provided.
1429  *
1430  * Note that for our purposes once an object exists it never goes
1431  * away again.  It's possible that the response from two existence
1432  * checks are separated by the creation of the target object, and
1433  * the first ("doesn't exist") response arrives *after* the second
1434  * ("does exist").  In that case we ignore the second one.
1435  */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 				bool exists)
1438 {
1439 	if (exists)
1440 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 	smp_mb();
1443 }
1444 
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447 	smp_mb();
1448 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450 
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453 	smp_mb();
1454 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456 
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460 
1461 	return obj_request->img_offset <
1462 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464 
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468 		atomic_read(&obj_request->kref.refcount));
1469 	kref_get(&obj_request->kref);
1470 }
1471 
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475 	rbd_assert(obj_request != NULL);
1476 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477 		atomic_read(&obj_request->kref.refcount));
1478 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480 
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483 	dout("%s: img %p (was %d)\n", __func__, img_request,
1484 	     atomic_read(&img_request->kref.refcount));
1485 	kref_get(&img_request->kref);
1486 }
1487 
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493 	rbd_assert(img_request != NULL);
1494 	dout("%s: img %p (was %d)\n", __func__, img_request,
1495 		atomic_read(&img_request->kref.refcount));
1496 	if (img_request_child_test(img_request))
1497 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1498 	else
1499 		kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501 
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503 					struct rbd_obj_request *obj_request)
1504 {
1505 	rbd_assert(obj_request->img_request == NULL);
1506 
1507 	/* Image request now owns object's original reference */
1508 	obj_request->img_request = img_request;
1509 	obj_request->which = img_request->obj_request_count;
1510 	rbd_assert(!obj_request_img_data_test(obj_request));
1511 	obj_request_img_data_set(obj_request);
1512 	rbd_assert(obj_request->which != BAD_WHICH);
1513 	img_request->obj_request_count++;
1514 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1515 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516 		obj_request->which);
1517 }
1518 
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520 					struct rbd_obj_request *obj_request)
1521 {
1522 	rbd_assert(obj_request->which != BAD_WHICH);
1523 
1524 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525 		obj_request->which);
1526 	list_del(&obj_request->links);
1527 	rbd_assert(img_request->obj_request_count > 0);
1528 	img_request->obj_request_count--;
1529 	rbd_assert(obj_request->which == img_request->obj_request_count);
1530 	obj_request->which = BAD_WHICH;
1531 	rbd_assert(obj_request_img_data_test(obj_request));
1532 	rbd_assert(obj_request->img_request == img_request);
1533 	obj_request->img_request = NULL;
1534 	obj_request->callback = NULL;
1535 	rbd_obj_request_put(obj_request);
1536 }
1537 
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540 	switch (type) {
1541 	case OBJ_REQUEST_NODATA:
1542 	case OBJ_REQUEST_BIO:
1543 	case OBJ_REQUEST_PAGES:
1544 		return true;
1545 	default:
1546 		return false;
1547 	}
1548 }
1549 
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551 				struct rbd_obj_request *obj_request)
1552 {
1553 	dout("%s %p\n", __func__, obj_request);
1554 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556 
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559 	dout("%s %p\n", __func__, obj_request);
1560 	ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562 
1563 /*
1564  * Wait for an object request to complete.  If interrupted, cancel the
1565  * underlying osd request.
1566  */
1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 {
1569 	int ret;
1570 
1571 	dout("%s %p\n", __func__, obj_request);
1572 
1573 	ret = wait_for_completion_interruptible(&obj_request->completion);
1574 	if (ret < 0) {
1575 		dout("%s %p interrupted\n", __func__, obj_request);
1576 		rbd_obj_request_end(obj_request);
1577 		return ret;
1578 	}
1579 
1580 	dout("%s %p done\n", __func__, obj_request);
1581 	return 0;
1582 }
1583 
1584 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585 {
1586 
1587 	dout("%s: img %p\n", __func__, img_request);
1588 
1589 	/*
1590 	 * If no error occurred, compute the aggregate transfer
1591 	 * count for the image request.  We could instead use
1592 	 * atomic64_cmpxchg() to update it as each object request
1593 	 * completes; not clear which way is better off hand.
1594 	 */
1595 	if (!img_request->result) {
1596 		struct rbd_obj_request *obj_request;
1597 		u64 xferred = 0;
1598 
1599 		for_each_obj_request(img_request, obj_request)
1600 			xferred += obj_request->xferred;
1601 		img_request->xferred = xferred;
1602 	}
1603 
1604 	if (img_request->callback)
1605 		img_request->callback(img_request);
1606 	else
1607 		rbd_img_request_put(img_request);
1608 }
1609 
1610 /*
1611  * The default/initial value for all image request flags is 0.  Each
1612  * is conditionally set to 1 at image request initialization time
1613  * and currently never change thereafter.
1614  */
1615 static void img_request_write_set(struct rbd_img_request *img_request)
1616 {
1617 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1618 	smp_mb();
1619 }
1620 
1621 static bool img_request_write_test(struct rbd_img_request *img_request)
1622 {
1623 	smp_mb();
1624 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 }
1626 
1627 /*
1628  * Set the discard flag when the img_request is an discard request
1629  */
1630 static void img_request_discard_set(struct rbd_img_request *img_request)
1631 {
1632 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633 	smp_mb();
1634 }
1635 
1636 static bool img_request_discard_test(struct rbd_img_request *img_request)
1637 {
1638 	smp_mb();
1639 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640 }
1641 
1642 static void img_request_child_set(struct rbd_img_request *img_request)
1643 {
1644 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1645 	smp_mb();
1646 }
1647 
1648 static void img_request_child_clear(struct rbd_img_request *img_request)
1649 {
1650 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651 	smp_mb();
1652 }
1653 
1654 static bool img_request_child_test(struct rbd_img_request *img_request)
1655 {
1656 	smp_mb();
1657 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658 }
1659 
1660 static void img_request_layered_set(struct rbd_img_request *img_request)
1661 {
1662 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663 	smp_mb();
1664 }
1665 
1666 static void img_request_layered_clear(struct rbd_img_request *img_request)
1667 {
1668 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669 	smp_mb();
1670 }
1671 
1672 static bool img_request_layered_test(struct rbd_img_request *img_request)
1673 {
1674 	smp_mb();
1675 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676 }
1677 
1678 static enum obj_operation_type
1679 rbd_img_request_op_type(struct rbd_img_request *img_request)
1680 {
1681 	if (img_request_write_test(img_request))
1682 		return OBJ_OP_WRITE;
1683 	else if (img_request_discard_test(img_request))
1684 		return OBJ_OP_DISCARD;
1685 	else
1686 		return OBJ_OP_READ;
1687 }
1688 
1689 static void
1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692 	u64 xferred = obj_request->xferred;
1693 	u64 length = obj_request->length;
1694 
1695 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696 		obj_request, obj_request->img_request, obj_request->result,
1697 		xferred, length);
1698 	/*
1699 	 * ENOENT means a hole in the image.  We zero-fill the entire
1700 	 * length of the request.  A short read also implies zero-fill
1701 	 * to the end of the request.  An error requires the whole
1702 	 * length of the request to be reported finished with an error
1703 	 * to the block layer.  In each case we update the xferred
1704 	 * count to indicate the whole request was satisfied.
1705 	 */
1706 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707 	if (obj_request->result == -ENOENT) {
1708 		if (obj_request->type == OBJ_REQUEST_BIO)
1709 			zero_bio_chain(obj_request->bio_list, 0);
1710 		else
1711 			zero_pages(obj_request->pages, 0, length);
1712 		obj_request->result = 0;
1713 	} else if (xferred < length && !obj_request->result) {
1714 		if (obj_request->type == OBJ_REQUEST_BIO)
1715 			zero_bio_chain(obj_request->bio_list, xferred);
1716 		else
1717 			zero_pages(obj_request->pages, xferred, length);
1718 	}
1719 	obj_request->xferred = length;
1720 	obj_request_done_set(obj_request);
1721 }
1722 
1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724 {
1725 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1726 		obj_request->callback);
1727 	if (obj_request->callback)
1728 		obj_request->callback(obj_request);
1729 	else
1730 		complete_all(&obj_request->completion);
1731 }
1732 
1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734 {
1735 	dout("%s: obj %p\n", __func__, obj_request);
1736 	obj_request_done_set(obj_request);
1737 }
1738 
1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740 {
1741 	struct rbd_img_request *img_request = NULL;
1742 	struct rbd_device *rbd_dev = NULL;
1743 	bool layered = false;
1744 
1745 	if (obj_request_img_data_test(obj_request)) {
1746 		img_request = obj_request->img_request;
1747 		layered = img_request && img_request_layered_test(img_request);
1748 		rbd_dev = img_request->rbd_dev;
1749 	}
1750 
1751 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752 		obj_request, img_request, obj_request->result,
1753 		obj_request->xferred, obj_request->length);
1754 	if (layered && obj_request->result == -ENOENT &&
1755 			obj_request->img_offset < rbd_dev->parent_overlap)
1756 		rbd_img_parent_read(obj_request);
1757 	else if (img_request)
1758 		rbd_img_obj_request_read_callback(obj_request);
1759 	else
1760 		obj_request_done_set(obj_request);
1761 }
1762 
1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764 {
1765 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766 		obj_request->result, obj_request->length);
1767 	/*
1768 	 * There is no such thing as a successful short write.  Set
1769 	 * it to our originally-requested length.
1770 	 */
1771 	obj_request->xferred = obj_request->length;
1772 	obj_request_done_set(obj_request);
1773 }
1774 
1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776 {
1777 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778 		obj_request->result, obj_request->length);
1779 	/*
1780 	 * There is no such thing as a successful short discard.  Set
1781 	 * it to our originally-requested length.
1782 	 */
1783 	obj_request->xferred = obj_request->length;
1784 	/* discarding a non-existent object is not a problem */
1785 	if (obj_request->result == -ENOENT)
1786 		obj_request->result = 0;
1787 	obj_request_done_set(obj_request);
1788 }
1789 
1790 /*
1791  * For a simple stat call there's nothing to do.  We'll do more if
1792  * this is part of a write sequence for a layered image.
1793  */
1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795 {
1796 	dout("%s: obj %p\n", __func__, obj_request);
1797 	obj_request_done_set(obj_request);
1798 }
1799 
1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801 				struct ceph_msg *msg)
1802 {
1803 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1804 	u16 opcode;
1805 
1806 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807 	rbd_assert(osd_req == obj_request->osd_req);
1808 	if (obj_request_img_data_test(obj_request)) {
1809 		rbd_assert(obj_request->img_request);
1810 		rbd_assert(obj_request->which != BAD_WHICH);
1811 	} else {
1812 		rbd_assert(obj_request->which == BAD_WHICH);
1813 	}
1814 
1815 	if (osd_req->r_result < 0)
1816 		obj_request->result = osd_req->r_result;
1817 
1818 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819 
1820 	/*
1821 	 * We support a 64-bit length, but ultimately it has to be
1822 	 * passed to the block layer, which just supports a 32-bit
1823 	 * length field.
1824 	 */
1825 	obj_request->xferred = osd_req->r_reply_op_len[0];
1826 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827 
1828 	opcode = osd_req->r_ops[0].op;
1829 	switch (opcode) {
1830 	case CEPH_OSD_OP_READ:
1831 		rbd_osd_read_callback(obj_request);
1832 		break;
1833 	case CEPH_OSD_OP_SETALLOCHINT:
1834 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835 		/* fall through */
1836 	case CEPH_OSD_OP_WRITE:
1837 		rbd_osd_write_callback(obj_request);
1838 		break;
1839 	case CEPH_OSD_OP_STAT:
1840 		rbd_osd_stat_callback(obj_request);
1841 		break;
1842 	case CEPH_OSD_OP_DELETE:
1843 	case CEPH_OSD_OP_TRUNCATE:
1844 	case CEPH_OSD_OP_ZERO:
1845 		rbd_osd_discard_callback(obj_request);
1846 		break;
1847 	case CEPH_OSD_OP_CALL:
1848 	case CEPH_OSD_OP_NOTIFY_ACK:
1849 	case CEPH_OSD_OP_WATCH:
1850 		rbd_osd_trivial_callback(obj_request);
1851 		break;
1852 	default:
1853 		rbd_warn(NULL, "%s: unsupported op %hu",
1854 			obj_request->object_name, (unsigned short) opcode);
1855 		break;
1856 	}
1857 
1858 	if (obj_request_done_test(obj_request))
1859 		rbd_obj_request_complete(obj_request);
1860 }
1861 
1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863 {
1864 	struct rbd_img_request *img_request = obj_request->img_request;
1865 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1866 	u64 snap_id;
1867 
1868 	rbd_assert(osd_req != NULL);
1869 
1870 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871 	ceph_osdc_build_request(osd_req, obj_request->offset,
1872 			NULL, snap_id, NULL);
1873 }
1874 
1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876 {
1877 	struct rbd_img_request *img_request = obj_request->img_request;
1878 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1879 	struct ceph_snap_context *snapc;
1880 	struct timespec mtime = CURRENT_TIME;
1881 
1882 	rbd_assert(osd_req != NULL);
1883 
1884 	snapc = img_request ? img_request->snapc : NULL;
1885 	ceph_osdc_build_request(osd_req, obj_request->offset,
1886 			snapc, CEPH_NOSNAP, &mtime);
1887 }
1888 
1889 /*
1890  * Create an osd request.  A read request has one osd op (read).
1891  * A write request has either one (watch) or two (hint+write) osd ops.
1892  * (All rbd data writes are prefixed with an allocation hint op, but
1893  * technically osd watch is a write request, hence this distinction.)
1894  */
1895 static struct ceph_osd_request *rbd_osd_req_create(
1896 					struct rbd_device *rbd_dev,
1897 					enum obj_operation_type op_type,
1898 					unsigned int num_ops,
1899 					struct rbd_obj_request *obj_request)
1900 {
1901 	struct ceph_snap_context *snapc = NULL;
1902 	struct ceph_osd_client *osdc;
1903 	struct ceph_osd_request *osd_req;
1904 
1905 	if (obj_request_img_data_test(obj_request) &&
1906 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907 		struct rbd_img_request *img_request = obj_request->img_request;
1908 		if (op_type == OBJ_OP_WRITE) {
1909 			rbd_assert(img_request_write_test(img_request));
1910 		} else {
1911 			rbd_assert(img_request_discard_test(img_request));
1912 		}
1913 		snapc = img_request->snapc;
1914 	}
1915 
1916 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917 
1918 	/* Allocate and initialize the request, for the num_ops ops */
1919 
1920 	osdc = &rbd_dev->rbd_client->client->osdc;
1921 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922 					  GFP_ATOMIC);
1923 	if (!osd_req)
1924 		return NULL;	/* ENOMEM */
1925 
1926 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928 	else
1929 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930 
1931 	osd_req->r_callback = rbd_osd_req_callback;
1932 	osd_req->r_priv = obj_request;
1933 
1934 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936 
1937 	return osd_req;
1938 }
1939 
1940 /*
1941  * Create a copyup osd request based on the information in the object
1942  * request supplied.  A copyup request has two or three osd ops, a
1943  * copyup method call, potentially a hint op, and a write or truncate
1944  * or zero op.
1945  */
1946 static struct ceph_osd_request *
1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948 {
1949 	struct rbd_img_request *img_request;
1950 	struct ceph_snap_context *snapc;
1951 	struct rbd_device *rbd_dev;
1952 	struct ceph_osd_client *osdc;
1953 	struct ceph_osd_request *osd_req;
1954 	int num_osd_ops = 3;
1955 
1956 	rbd_assert(obj_request_img_data_test(obj_request));
1957 	img_request = obj_request->img_request;
1958 	rbd_assert(img_request);
1959 	rbd_assert(img_request_write_test(img_request) ||
1960 			img_request_discard_test(img_request));
1961 
1962 	if (img_request_discard_test(img_request))
1963 		num_osd_ops = 2;
1964 
1965 	/* Allocate and initialize the request, for all the ops */
1966 
1967 	snapc = img_request->snapc;
1968 	rbd_dev = img_request->rbd_dev;
1969 	osdc = &rbd_dev->rbd_client->client->osdc;
1970 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971 						false, GFP_ATOMIC);
1972 	if (!osd_req)
1973 		return NULL;	/* ENOMEM */
1974 
1975 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976 	osd_req->r_callback = rbd_osd_req_callback;
1977 	osd_req->r_priv = obj_request;
1978 
1979 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981 
1982 	return osd_req;
1983 }
1984 
1985 
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988 	ceph_osdc_put_request(osd_req);
1989 }
1990 
1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1992 
1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994 						u64 offset, u64 length,
1995 						enum obj_request_type type)
1996 {
1997 	struct rbd_obj_request *obj_request;
1998 	size_t size;
1999 	char *name;
2000 
2001 	rbd_assert(obj_request_type_valid(type));
2002 
2003 	size = strlen(object_name) + 1;
2004 	name = kmalloc(size, GFP_KERNEL);
2005 	if (!name)
2006 		return NULL;
2007 
2008 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009 	if (!obj_request) {
2010 		kfree(name);
2011 		return NULL;
2012 	}
2013 
2014 	obj_request->object_name = memcpy(name, object_name, size);
2015 	obj_request->offset = offset;
2016 	obj_request->length = length;
2017 	obj_request->flags = 0;
2018 	obj_request->which = BAD_WHICH;
2019 	obj_request->type = type;
2020 	INIT_LIST_HEAD(&obj_request->links);
2021 	init_completion(&obj_request->completion);
2022 	kref_init(&obj_request->kref);
2023 
2024 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025 		offset, length, (int)type, obj_request);
2026 
2027 	return obj_request;
2028 }
2029 
2030 static void rbd_obj_request_destroy(struct kref *kref)
2031 {
2032 	struct rbd_obj_request *obj_request;
2033 
2034 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2035 
2036 	dout("%s: obj %p\n", __func__, obj_request);
2037 
2038 	rbd_assert(obj_request->img_request == NULL);
2039 	rbd_assert(obj_request->which == BAD_WHICH);
2040 
2041 	if (obj_request->osd_req)
2042 		rbd_osd_req_destroy(obj_request->osd_req);
2043 
2044 	rbd_assert(obj_request_type_valid(obj_request->type));
2045 	switch (obj_request->type) {
2046 	case OBJ_REQUEST_NODATA:
2047 		break;		/* Nothing to do */
2048 	case OBJ_REQUEST_BIO:
2049 		if (obj_request->bio_list)
2050 			bio_chain_put(obj_request->bio_list);
2051 		break;
2052 	case OBJ_REQUEST_PAGES:
2053 		if (obj_request->pages)
2054 			ceph_release_page_vector(obj_request->pages,
2055 						obj_request->page_count);
2056 		break;
2057 	}
2058 
2059 	kfree(obj_request->object_name);
2060 	obj_request->object_name = NULL;
2061 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2062 }
2063 
2064 /* It's OK to call this for a device with no parent */
2065 
2066 static void rbd_spec_put(struct rbd_spec *spec);
2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068 {
2069 	rbd_dev_remove_parent(rbd_dev);
2070 	rbd_spec_put(rbd_dev->parent_spec);
2071 	rbd_dev->parent_spec = NULL;
2072 	rbd_dev->parent_overlap = 0;
2073 }
2074 
2075 /*
2076  * Parent image reference counting is used to determine when an
2077  * image's parent fields can be safely torn down--after there are no
2078  * more in-flight requests to the parent image.  When the last
2079  * reference is dropped, cleaning them up is safe.
2080  */
2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082 {
2083 	int counter;
2084 
2085 	if (!rbd_dev->parent_spec)
2086 		return;
2087 
2088 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089 	if (counter > 0)
2090 		return;
2091 
2092 	/* Last reference; clean up parent data structures */
2093 
2094 	if (!counter)
2095 		rbd_dev_unparent(rbd_dev);
2096 	else
2097 		rbd_warn(rbd_dev, "parent reference underflow");
2098 }
2099 
2100 /*
2101  * If an image has a non-zero parent overlap, get a reference to its
2102  * parent.
2103  *
2104  * Returns true if the rbd device has a parent with a non-zero
2105  * overlap and a reference for it was successfully taken, or
2106  * false otherwise.
2107  */
2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109 {
2110 	int counter = 0;
2111 
2112 	if (!rbd_dev->parent_spec)
2113 		return false;
2114 
2115 	down_read(&rbd_dev->header_rwsem);
2116 	if (rbd_dev->parent_overlap)
2117 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 	up_read(&rbd_dev->header_rwsem);
2119 
2120 	if (counter < 0)
2121 		rbd_warn(rbd_dev, "parent reference overflow");
2122 
2123 	return counter > 0;
2124 }
2125 
2126 /*
2127  * Caller is responsible for filling in the list of object requests
2128  * that comprises the image request, and the Linux request pointer
2129  * (if there is one).
2130  */
2131 static struct rbd_img_request *rbd_img_request_create(
2132 					struct rbd_device *rbd_dev,
2133 					u64 offset, u64 length,
2134 					enum obj_operation_type op_type,
2135 					struct ceph_snap_context *snapc)
2136 {
2137 	struct rbd_img_request *img_request;
2138 
2139 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140 	if (!img_request)
2141 		return NULL;
2142 
2143 	img_request->rq = NULL;
2144 	img_request->rbd_dev = rbd_dev;
2145 	img_request->offset = offset;
2146 	img_request->length = length;
2147 	img_request->flags = 0;
2148 	if (op_type == OBJ_OP_DISCARD) {
2149 		img_request_discard_set(img_request);
2150 		img_request->snapc = snapc;
2151 	} else if (op_type == OBJ_OP_WRITE) {
2152 		img_request_write_set(img_request);
2153 		img_request->snapc = snapc;
2154 	} else {
2155 		img_request->snap_id = rbd_dev->spec->snap_id;
2156 	}
2157 	if (rbd_dev_parent_get(rbd_dev))
2158 		img_request_layered_set(img_request);
2159 	spin_lock_init(&img_request->completion_lock);
2160 	img_request->next_completion = 0;
2161 	img_request->callback = NULL;
2162 	img_request->result = 0;
2163 	img_request->obj_request_count = 0;
2164 	INIT_LIST_HEAD(&img_request->obj_requests);
2165 	kref_init(&img_request->kref);
2166 
2167 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168 		obj_op_name(op_type), offset, length, img_request);
2169 
2170 	return img_request;
2171 }
2172 
2173 static void rbd_img_request_destroy(struct kref *kref)
2174 {
2175 	struct rbd_img_request *img_request;
2176 	struct rbd_obj_request *obj_request;
2177 	struct rbd_obj_request *next_obj_request;
2178 
2179 	img_request = container_of(kref, struct rbd_img_request, kref);
2180 
2181 	dout("%s: img %p\n", __func__, img_request);
2182 
2183 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184 		rbd_img_obj_request_del(img_request, obj_request);
2185 	rbd_assert(img_request->obj_request_count == 0);
2186 
2187 	if (img_request_layered_test(img_request)) {
2188 		img_request_layered_clear(img_request);
2189 		rbd_dev_parent_put(img_request->rbd_dev);
2190 	}
2191 
2192 	if (img_request_write_test(img_request) ||
2193 		img_request_discard_test(img_request))
2194 		ceph_put_snap_context(img_request->snapc);
2195 
2196 	kmem_cache_free(rbd_img_request_cache, img_request);
2197 }
2198 
2199 static struct rbd_img_request *rbd_parent_request_create(
2200 					struct rbd_obj_request *obj_request,
2201 					u64 img_offset, u64 length)
2202 {
2203 	struct rbd_img_request *parent_request;
2204 	struct rbd_device *rbd_dev;
2205 
2206 	rbd_assert(obj_request->img_request);
2207 	rbd_dev = obj_request->img_request->rbd_dev;
2208 
2209 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210 						length, OBJ_OP_READ, NULL);
2211 	if (!parent_request)
2212 		return NULL;
2213 
2214 	img_request_child_set(parent_request);
2215 	rbd_obj_request_get(obj_request);
2216 	parent_request->obj_request = obj_request;
2217 
2218 	return parent_request;
2219 }
2220 
2221 static void rbd_parent_request_destroy(struct kref *kref)
2222 {
2223 	struct rbd_img_request *parent_request;
2224 	struct rbd_obj_request *orig_request;
2225 
2226 	parent_request = container_of(kref, struct rbd_img_request, kref);
2227 	orig_request = parent_request->obj_request;
2228 
2229 	parent_request->obj_request = NULL;
2230 	rbd_obj_request_put(orig_request);
2231 	img_request_child_clear(parent_request);
2232 
2233 	rbd_img_request_destroy(kref);
2234 }
2235 
2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237 {
2238 	struct rbd_img_request *img_request;
2239 	unsigned int xferred;
2240 	int result;
2241 	bool more;
2242 
2243 	rbd_assert(obj_request_img_data_test(obj_request));
2244 	img_request = obj_request->img_request;
2245 
2246 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247 	xferred = (unsigned int)obj_request->xferred;
2248 	result = obj_request->result;
2249 	if (result) {
2250 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2251 		enum obj_operation_type op_type;
2252 
2253 		if (img_request_discard_test(img_request))
2254 			op_type = OBJ_OP_DISCARD;
2255 		else if (img_request_write_test(img_request))
2256 			op_type = OBJ_OP_WRITE;
2257 		else
2258 			op_type = OBJ_OP_READ;
2259 
2260 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261 			obj_op_name(op_type), obj_request->length,
2262 			obj_request->img_offset, obj_request->offset);
2263 		rbd_warn(rbd_dev, "  result %d xferred %x",
2264 			result, xferred);
2265 		if (!img_request->result)
2266 			img_request->result = result;
2267 		/*
2268 		 * Need to end I/O on the entire obj_request worth of
2269 		 * bytes in case of error.
2270 		 */
2271 		xferred = obj_request->length;
2272 	}
2273 
2274 	/* Image object requests don't own their page array */
2275 
2276 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2277 		obj_request->pages = NULL;
2278 		obj_request->page_count = 0;
2279 	}
2280 
2281 	if (img_request_child_test(img_request)) {
2282 		rbd_assert(img_request->obj_request != NULL);
2283 		more = obj_request->which < img_request->obj_request_count - 1;
2284 	} else {
2285 		rbd_assert(img_request->rq != NULL);
2286 
2287 		more = blk_update_request(img_request->rq, result, xferred);
2288 		if (!more)
2289 			__blk_mq_end_request(img_request->rq, result);
2290 	}
2291 
2292 	return more;
2293 }
2294 
2295 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2296 {
2297 	struct rbd_img_request *img_request;
2298 	u32 which = obj_request->which;
2299 	bool more = true;
2300 
2301 	rbd_assert(obj_request_img_data_test(obj_request));
2302 	img_request = obj_request->img_request;
2303 
2304 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2305 	rbd_assert(img_request != NULL);
2306 	rbd_assert(img_request->obj_request_count > 0);
2307 	rbd_assert(which != BAD_WHICH);
2308 	rbd_assert(which < img_request->obj_request_count);
2309 
2310 	spin_lock_irq(&img_request->completion_lock);
2311 	if (which != img_request->next_completion)
2312 		goto out;
2313 
2314 	for_each_obj_request_from(img_request, obj_request) {
2315 		rbd_assert(more);
2316 		rbd_assert(which < img_request->obj_request_count);
2317 
2318 		if (!obj_request_done_test(obj_request))
2319 			break;
2320 		more = rbd_img_obj_end_request(obj_request);
2321 		which++;
2322 	}
2323 
2324 	rbd_assert(more ^ (which == img_request->obj_request_count));
2325 	img_request->next_completion = which;
2326 out:
2327 	spin_unlock_irq(&img_request->completion_lock);
2328 	rbd_img_request_put(img_request);
2329 
2330 	if (!more)
2331 		rbd_img_request_complete(img_request);
2332 }
2333 
2334 /*
2335  * Add individual osd ops to the given ceph_osd_request and prepare
2336  * them for submission. num_ops is the current number of
2337  * osd operations already to the object request.
2338  */
2339 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2340 				struct ceph_osd_request *osd_request,
2341 				enum obj_operation_type op_type,
2342 				unsigned int num_ops)
2343 {
2344 	struct rbd_img_request *img_request = obj_request->img_request;
2345 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2346 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2347 	u64 offset = obj_request->offset;
2348 	u64 length = obj_request->length;
2349 	u64 img_end;
2350 	u16 opcode;
2351 
2352 	if (op_type == OBJ_OP_DISCARD) {
2353 		if (!offset && length == object_size &&
2354 		    (!img_request_layered_test(img_request) ||
2355 		     !obj_request_overlaps_parent(obj_request))) {
2356 			opcode = CEPH_OSD_OP_DELETE;
2357 		} else if ((offset + length == object_size)) {
2358 			opcode = CEPH_OSD_OP_TRUNCATE;
2359 		} else {
2360 			down_read(&rbd_dev->header_rwsem);
2361 			img_end = rbd_dev->header.image_size;
2362 			up_read(&rbd_dev->header_rwsem);
2363 
2364 			if (obj_request->img_offset + length == img_end)
2365 				opcode = CEPH_OSD_OP_TRUNCATE;
2366 			else
2367 				opcode = CEPH_OSD_OP_ZERO;
2368 		}
2369 	} else if (op_type == OBJ_OP_WRITE) {
2370 		opcode = CEPH_OSD_OP_WRITE;
2371 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2372 					object_size, object_size);
2373 		num_ops++;
2374 	} else {
2375 		opcode = CEPH_OSD_OP_READ;
2376 	}
2377 
2378 	if (opcode == CEPH_OSD_OP_DELETE)
2379 		osd_req_op_init(osd_request, num_ops, opcode);
2380 	else
2381 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2382 				       offset, length, 0, 0);
2383 
2384 	if (obj_request->type == OBJ_REQUEST_BIO)
2385 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2386 					obj_request->bio_list, length);
2387 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2388 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2389 					obj_request->pages, length,
2390 					offset & ~PAGE_MASK, false, false);
2391 
2392 	/* Discards are also writes */
2393 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2394 		rbd_osd_req_format_write(obj_request);
2395 	else
2396 		rbd_osd_req_format_read(obj_request);
2397 }
2398 
2399 /*
2400  * Split up an image request into one or more object requests, each
2401  * to a different object.  The "type" parameter indicates whether
2402  * "data_desc" is the pointer to the head of a list of bio
2403  * structures, or the base of a page array.  In either case this
2404  * function assumes data_desc describes memory sufficient to hold
2405  * all data described by the image request.
2406  */
2407 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2408 					enum obj_request_type type,
2409 					void *data_desc)
2410 {
2411 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2412 	struct rbd_obj_request *obj_request = NULL;
2413 	struct rbd_obj_request *next_obj_request;
2414 	struct bio *bio_list = NULL;
2415 	unsigned int bio_offset = 0;
2416 	struct page **pages = NULL;
2417 	enum obj_operation_type op_type;
2418 	u64 img_offset;
2419 	u64 resid;
2420 
2421 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2422 		(int)type, data_desc);
2423 
2424 	img_offset = img_request->offset;
2425 	resid = img_request->length;
2426 	rbd_assert(resid > 0);
2427 	op_type = rbd_img_request_op_type(img_request);
2428 
2429 	if (type == OBJ_REQUEST_BIO) {
2430 		bio_list = data_desc;
2431 		rbd_assert(img_offset ==
2432 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2433 	} else if (type == OBJ_REQUEST_PAGES) {
2434 		pages = data_desc;
2435 	}
2436 
2437 	while (resid) {
2438 		struct ceph_osd_request *osd_req;
2439 		const char *object_name;
2440 		u64 offset;
2441 		u64 length;
2442 
2443 		object_name = rbd_segment_name(rbd_dev, img_offset);
2444 		if (!object_name)
2445 			goto out_unwind;
2446 		offset = rbd_segment_offset(rbd_dev, img_offset);
2447 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2448 		obj_request = rbd_obj_request_create(object_name,
2449 						offset, length, type);
2450 		/* object request has its own copy of the object name */
2451 		rbd_segment_name_free(object_name);
2452 		if (!obj_request)
2453 			goto out_unwind;
2454 
2455 		/*
2456 		 * set obj_request->img_request before creating the
2457 		 * osd_request so that it gets the right snapc
2458 		 */
2459 		rbd_img_obj_request_add(img_request, obj_request);
2460 
2461 		if (type == OBJ_REQUEST_BIO) {
2462 			unsigned int clone_size;
2463 
2464 			rbd_assert(length <= (u64)UINT_MAX);
2465 			clone_size = (unsigned int)length;
2466 			obj_request->bio_list =
2467 					bio_chain_clone_range(&bio_list,
2468 								&bio_offset,
2469 								clone_size,
2470 								GFP_ATOMIC);
2471 			if (!obj_request->bio_list)
2472 				goto out_unwind;
2473 		} else if (type == OBJ_REQUEST_PAGES) {
2474 			unsigned int page_count;
2475 
2476 			obj_request->pages = pages;
2477 			page_count = (u32)calc_pages_for(offset, length);
2478 			obj_request->page_count = page_count;
2479 			if ((offset + length) & ~PAGE_MASK)
2480 				page_count--;	/* more on last page */
2481 			pages += page_count;
2482 		}
2483 
2484 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2485 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2486 					obj_request);
2487 		if (!osd_req)
2488 			goto out_unwind;
2489 
2490 		obj_request->osd_req = osd_req;
2491 		obj_request->callback = rbd_img_obj_callback;
2492 		obj_request->img_offset = img_offset;
2493 
2494 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2495 
2496 		rbd_img_request_get(img_request);
2497 
2498 		img_offset += length;
2499 		resid -= length;
2500 	}
2501 
2502 	return 0;
2503 
2504 out_unwind:
2505 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2506 		rbd_img_obj_request_del(img_request, obj_request);
2507 
2508 	return -ENOMEM;
2509 }
2510 
2511 static void
2512 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2513 {
2514 	struct rbd_img_request *img_request;
2515 	struct rbd_device *rbd_dev;
2516 	struct page **pages;
2517 	u32 page_count;
2518 
2519 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2520 		obj_request->type == OBJ_REQUEST_NODATA);
2521 	rbd_assert(obj_request_img_data_test(obj_request));
2522 	img_request = obj_request->img_request;
2523 	rbd_assert(img_request);
2524 
2525 	rbd_dev = img_request->rbd_dev;
2526 	rbd_assert(rbd_dev);
2527 
2528 	pages = obj_request->copyup_pages;
2529 	rbd_assert(pages != NULL);
2530 	obj_request->copyup_pages = NULL;
2531 	page_count = obj_request->copyup_page_count;
2532 	rbd_assert(page_count);
2533 	obj_request->copyup_page_count = 0;
2534 	ceph_release_page_vector(pages, page_count);
2535 
2536 	/*
2537 	 * We want the transfer count to reflect the size of the
2538 	 * original write request.  There is no such thing as a
2539 	 * successful short write, so if the request was successful
2540 	 * we can just set it to the originally-requested length.
2541 	 */
2542 	if (!obj_request->result)
2543 		obj_request->xferred = obj_request->length;
2544 
2545 	/* Finish up with the normal image object callback */
2546 
2547 	rbd_img_obj_callback(obj_request);
2548 }
2549 
2550 static void
2551 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2552 {
2553 	struct rbd_obj_request *orig_request;
2554 	struct ceph_osd_request *osd_req;
2555 	struct ceph_osd_client *osdc;
2556 	struct rbd_device *rbd_dev;
2557 	struct page **pages;
2558 	enum obj_operation_type op_type;
2559 	u32 page_count;
2560 	int img_result;
2561 	u64 parent_length;
2562 
2563 	rbd_assert(img_request_child_test(img_request));
2564 
2565 	/* First get what we need from the image request */
2566 
2567 	pages = img_request->copyup_pages;
2568 	rbd_assert(pages != NULL);
2569 	img_request->copyup_pages = NULL;
2570 	page_count = img_request->copyup_page_count;
2571 	rbd_assert(page_count);
2572 	img_request->copyup_page_count = 0;
2573 
2574 	orig_request = img_request->obj_request;
2575 	rbd_assert(orig_request != NULL);
2576 	rbd_assert(obj_request_type_valid(orig_request->type));
2577 	img_result = img_request->result;
2578 	parent_length = img_request->length;
2579 	rbd_assert(parent_length == img_request->xferred);
2580 	rbd_img_request_put(img_request);
2581 
2582 	rbd_assert(orig_request->img_request);
2583 	rbd_dev = orig_request->img_request->rbd_dev;
2584 	rbd_assert(rbd_dev);
2585 
2586 	/*
2587 	 * If the overlap has become 0 (most likely because the
2588 	 * image has been flattened) we need to free the pages
2589 	 * and re-submit the original write request.
2590 	 */
2591 	if (!rbd_dev->parent_overlap) {
2592 		struct ceph_osd_client *osdc;
2593 
2594 		ceph_release_page_vector(pages, page_count);
2595 		osdc = &rbd_dev->rbd_client->client->osdc;
2596 		img_result = rbd_obj_request_submit(osdc, orig_request);
2597 		if (!img_result)
2598 			return;
2599 	}
2600 
2601 	if (img_result)
2602 		goto out_err;
2603 
2604 	/*
2605 	 * The original osd request is of no use to use any more.
2606 	 * We need a new one that can hold the three ops in a copyup
2607 	 * request.  Allocate the new copyup osd request for the
2608 	 * original request, and release the old one.
2609 	 */
2610 	img_result = -ENOMEM;
2611 	osd_req = rbd_osd_req_create_copyup(orig_request);
2612 	if (!osd_req)
2613 		goto out_err;
2614 	rbd_osd_req_destroy(orig_request->osd_req);
2615 	orig_request->osd_req = osd_req;
2616 	orig_request->copyup_pages = pages;
2617 	orig_request->copyup_page_count = page_count;
2618 
2619 	/* Initialize the copyup op */
2620 
2621 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2622 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2623 						false, false);
2624 
2625 	/* Add the other op(s) */
2626 
2627 	op_type = rbd_img_request_op_type(orig_request->img_request);
2628 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2629 
2630 	/* All set, send it off. */
2631 
2632 	orig_request->callback = rbd_img_obj_copyup_callback;
2633 	osdc = &rbd_dev->rbd_client->client->osdc;
2634 	img_result = rbd_obj_request_submit(osdc, orig_request);
2635 	if (!img_result)
2636 		return;
2637 out_err:
2638 	/* Record the error code and complete the request */
2639 
2640 	orig_request->result = img_result;
2641 	orig_request->xferred = 0;
2642 	obj_request_done_set(orig_request);
2643 	rbd_obj_request_complete(orig_request);
2644 }
2645 
2646 /*
2647  * Read from the parent image the range of data that covers the
2648  * entire target of the given object request.  This is used for
2649  * satisfying a layered image write request when the target of an
2650  * object request from the image request does not exist.
2651  *
2652  * A page array big enough to hold the returned data is allocated
2653  * and supplied to rbd_img_request_fill() as the "data descriptor."
2654  * When the read completes, this page array will be transferred to
2655  * the original object request for the copyup operation.
2656  *
2657  * If an error occurs, record it as the result of the original
2658  * object request and mark it done so it gets completed.
2659  */
2660 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2661 {
2662 	struct rbd_img_request *img_request = NULL;
2663 	struct rbd_img_request *parent_request = NULL;
2664 	struct rbd_device *rbd_dev;
2665 	u64 img_offset;
2666 	u64 length;
2667 	struct page **pages = NULL;
2668 	u32 page_count;
2669 	int result;
2670 
2671 	rbd_assert(obj_request_img_data_test(obj_request));
2672 	rbd_assert(obj_request_type_valid(obj_request->type));
2673 
2674 	img_request = obj_request->img_request;
2675 	rbd_assert(img_request != NULL);
2676 	rbd_dev = img_request->rbd_dev;
2677 	rbd_assert(rbd_dev->parent != NULL);
2678 
2679 	/*
2680 	 * Determine the byte range covered by the object in the
2681 	 * child image to which the original request was to be sent.
2682 	 */
2683 	img_offset = obj_request->img_offset - obj_request->offset;
2684 	length = (u64)1 << rbd_dev->header.obj_order;
2685 
2686 	/*
2687 	 * There is no defined parent data beyond the parent
2688 	 * overlap, so limit what we read at that boundary if
2689 	 * necessary.
2690 	 */
2691 	if (img_offset + length > rbd_dev->parent_overlap) {
2692 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2693 		length = rbd_dev->parent_overlap - img_offset;
2694 	}
2695 
2696 	/*
2697 	 * Allocate a page array big enough to receive the data read
2698 	 * from the parent.
2699 	 */
2700 	page_count = (u32)calc_pages_for(0, length);
2701 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2702 	if (IS_ERR(pages)) {
2703 		result = PTR_ERR(pages);
2704 		pages = NULL;
2705 		goto out_err;
2706 	}
2707 
2708 	result = -ENOMEM;
2709 	parent_request = rbd_parent_request_create(obj_request,
2710 						img_offset, length);
2711 	if (!parent_request)
2712 		goto out_err;
2713 
2714 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2715 	if (result)
2716 		goto out_err;
2717 	parent_request->copyup_pages = pages;
2718 	parent_request->copyup_page_count = page_count;
2719 
2720 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2721 	result = rbd_img_request_submit(parent_request);
2722 	if (!result)
2723 		return 0;
2724 
2725 	parent_request->copyup_pages = NULL;
2726 	parent_request->copyup_page_count = 0;
2727 	parent_request->obj_request = NULL;
2728 	rbd_obj_request_put(obj_request);
2729 out_err:
2730 	if (pages)
2731 		ceph_release_page_vector(pages, page_count);
2732 	if (parent_request)
2733 		rbd_img_request_put(parent_request);
2734 	obj_request->result = result;
2735 	obj_request->xferred = 0;
2736 	obj_request_done_set(obj_request);
2737 
2738 	return result;
2739 }
2740 
2741 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2742 {
2743 	struct rbd_obj_request *orig_request;
2744 	struct rbd_device *rbd_dev;
2745 	int result;
2746 
2747 	rbd_assert(!obj_request_img_data_test(obj_request));
2748 
2749 	/*
2750 	 * All we need from the object request is the original
2751 	 * request and the result of the STAT op.  Grab those, then
2752 	 * we're done with the request.
2753 	 */
2754 	orig_request = obj_request->obj_request;
2755 	obj_request->obj_request = NULL;
2756 	rbd_obj_request_put(orig_request);
2757 	rbd_assert(orig_request);
2758 	rbd_assert(orig_request->img_request);
2759 
2760 	result = obj_request->result;
2761 	obj_request->result = 0;
2762 
2763 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2764 		obj_request, orig_request, result,
2765 		obj_request->xferred, obj_request->length);
2766 	rbd_obj_request_put(obj_request);
2767 
2768 	/*
2769 	 * If the overlap has become 0 (most likely because the
2770 	 * image has been flattened) we need to free the pages
2771 	 * and re-submit the original write request.
2772 	 */
2773 	rbd_dev = orig_request->img_request->rbd_dev;
2774 	if (!rbd_dev->parent_overlap) {
2775 		struct ceph_osd_client *osdc;
2776 
2777 		osdc = &rbd_dev->rbd_client->client->osdc;
2778 		result = rbd_obj_request_submit(osdc, orig_request);
2779 		if (!result)
2780 			return;
2781 	}
2782 
2783 	/*
2784 	 * Our only purpose here is to determine whether the object
2785 	 * exists, and we don't want to treat the non-existence as
2786 	 * an error.  If something else comes back, transfer the
2787 	 * error to the original request and complete it now.
2788 	 */
2789 	if (!result) {
2790 		obj_request_existence_set(orig_request, true);
2791 	} else if (result == -ENOENT) {
2792 		obj_request_existence_set(orig_request, false);
2793 	} else if (result) {
2794 		orig_request->result = result;
2795 		goto out;
2796 	}
2797 
2798 	/*
2799 	 * Resubmit the original request now that we have recorded
2800 	 * whether the target object exists.
2801 	 */
2802 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2803 out:
2804 	if (orig_request->result)
2805 		rbd_obj_request_complete(orig_request);
2806 }
2807 
2808 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2809 {
2810 	struct rbd_obj_request *stat_request;
2811 	struct rbd_device *rbd_dev;
2812 	struct ceph_osd_client *osdc;
2813 	struct page **pages = NULL;
2814 	u32 page_count;
2815 	size_t size;
2816 	int ret;
2817 
2818 	/*
2819 	 * The response data for a STAT call consists of:
2820 	 *     le64 length;
2821 	 *     struct {
2822 	 *         le32 tv_sec;
2823 	 *         le32 tv_nsec;
2824 	 *     } mtime;
2825 	 */
2826 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2827 	page_count = (u32)calc_pages_for(0, size);
2828 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2829 	if (IS_ERR(pages))
2830 		return PTR_ERR(pages);
2831 
2832 	ret = -ENOMEM;
2833 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2834 							OBJ_REQUEST_PAGES);
2835 	if (!stat_request)
2836 		goto out;
2837 
2838 	rbd_obj_request_get(obj_request);
2839 	stat_request->obj_request = obj_request;
2840 	stat_request->pages = pages;
2841 	stat_request->page_count = page_count;
2842 
2843 	rbd_assert(obj_request->img_request);
2844 	rbd_dev = obj_request->img_request->rbd_dev;
2845 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2846 						   stat_request);
2847 	if (!stat_request->osd_req)
2848 		goto out;
2849 	stat_request->callback = rbd_img_obj_exists_callback;
2850 
2851 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2852 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2853 					false, false);
2854 	rbd_osd_req_format_read(stat_request);
2855 
2856 	osdc = &rbd_dev->rbd_client->client->osdc;
2857 	ret = rbd_obj_request_submit(osdc, stat_request);
2858 out:
2859 	if (ret)
2860 		rbd_obj_request_put(obj_request);
2861 
2862 	return ret;
2863 }
2864 
2865 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2866 {
2867 	struct rbd_img_request *img_request;
2868 	struct rbd_device *rbd_dev;
2869 
2870 	rbd_assert(obj_request_img_data_test(obj_request));
2871 
2872 	img_request = obj_request->img_request;
2873 	rbd_assert(img_request);
2874 	rbd_dev = img_request->rbd_dev;
2875 
2876 	/* Reads */
2877 	if (!img_request_write_test(img_request) &&
2878 	    !img_request_discard_test(img_request))
2879 		return true;
2880 
2881 	/* Non-layered writes */
2882 	if (!img_request_layered_test(img_request))
2883 		return true;
2884 
2885 	/*
2886 	 * Layered writes outside of the parent overlap range don't
2887 	 * share any data with the parent.
2888 	 */
2889 	if (!obj_request_overlaps_parent(obj_request))
2890 		return true;
2891 
2892 	/*
2893 	 * Entire-object layered writes - we will overwrite whatever
2894 	 * parent data there is anyway.
2895 	 */
2896 	if (!obj_request->offset &&
2897 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2898 		return true;
2899 
2900 	/*
2901 	 * If the object is known to already exist, its parent data has
2902 	 * already been copied.
2903 	 */
2904 	if (obj_request_known_test(obj_request) &&
2905 	    obj_request_exists_test(obj_request))
2906 		return true;
2907 
2908 	return false;
2909 }
2910 
2911 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2912 {
2913 	if (img_obj_request_simple(obj_request)) {
2914 		struct rbd_device *rbd_dev;
2915 		struct ceph_osd_client *osdc;
2916 
2917 		rbd_dev = obj_request->img_request->rbd_dev;
2918 		osdc = &rbd_dev->rbd_client->client->osdc;
2919 
2920 		return rbd_obj_request_submit(osdc, obj_request);
2921 	}
2922 
2923 	/*
2924 	 * It's a layered write.  The target object might exist but
2925 	 * we may not know that yet.  If we know it doesn't exist,
2926 	 * start by reading the data for the full target object from
2927 	 * the parent so we can use it for a copyup to the target.
2928 	 */
2929 	if (obj_request_known_test(obj_request))
2930 		return rbd_img_obj_parent_read_full(obj_request);
2931 
2932 	/* We don't know whether the target exists.  Go find out. */
2933 
2934 	return rbd_img_obj_exists_submit(obj_request);
2935 }
2936 
2937 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2938 {
2939 	struct rbd_obj_request *obj_request;
2940 	struct rbd_obj_request *next_obj_request;
2941 
2942 	dout("%s: img %p\n", __func__, img_request);
2943 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2944 		int ret;
2945 
2946 		ret = rbd_img_obj_request_submit(obj_request);
2947 		if (ret)
2948 			return ret;
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2955 {
2956 	struct rbd_obj_request *obj_request;
2957 	struct rbd_device *rbd_dev;
2958 	u64 obj_end;
2959 	u64 img_xferred;
2960 	int img_result;
2961 
2962 	rbd_assert(img_request_child_test(img_request));
2963 
2964 	/* First get what we need from the image request and release it */
2965 
2966 	obj_request = img_request->obj_request;
2967 	img_xferred = img_request->xferred;
2968 	img_result = img_request->result;
2969 	rbd_img_request_put(img_request);
2970 
2971 	/*
2972 	 * If the overlap has become 0 (most likely because the
2973 	 * image has been flattened) we need to re-submit the
2974 	 * original request.
2975 	 */
2976 	rbd_assert(obj_request);
2977 	rbd_assert(obj_request->img_request);
2978 	rbd_dev = obj_request->img_request->rbd_dev;
2979 	if (!rbd_dev->parent_overlap) {
2980 		struct ceph_osd_client *osdc;
2981 
2982 		osdc = &rbd_dev->rbd_client->client->osdc;
2983 		img_result = rbd_obj_request_submit(osdc, obj_request);
2984 		if (!img_result)
2985 			return;
2986 	}
2987 
2988 	obj_request->result = img_result;
2989 	if (obj_request->result)
2990 		goto out;
2991 
2992 	/*
2993 	 * We need to zero anything beyond the parent overlap
2994 	 * boundary.  Since rbd_img_obj_request_read_callback()
2995 	 * will zero anything beyond the end of a short read, an
2996 	 * easy way to do this is to pretend the data from the
2997 	 * parent came up short--ending at the overlap boundary.
2998 	 */
2999 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3000 	obj_end = obj_request->img_offset + obj_request->length;
3001 	if (obj_end > rbd_dev->parent_overlap) {
3002 		u64 xferred = 0;
3003 
3004 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3005 			xferred = rbd_dev->parent_overlap -
3006 					obj_request->img_offset;
3007 
3008 		obj_request->xferred = min(img_xferred, xferred);
3009 	} else {
3010 		obj_request->xferred = img_xferred;
3011 	}
3012 out:
3013 	rbd_img_obj_request_read_callback(obj_request);
3014 	rbd_obj_request_complete(obj_request);
3015 }
3016 
3017 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3018 {
3019 	struct rbd_img_request *img_request;
3020 	int result;
3021 
3022 	rbd_assert(obj_request_img_data_test(obj_request));
3023 	rbd_assert(obj_request->img_request != NULL);
3024 	rbd_assert(obj_request->result == (s32) -ENOENT);
3025 	rbd_assert(obj_request_type_valid(obj_request->type));
3026 
3027 	/* rbd_read_finish(obj_request, obj_request->length); */
3028 	img_request = rbd_parent_request_create(obj_request,
3029 						obj_request->img_offset,
3030 						obj_request->length);
3031 	result = -ENOMEM;
3032 	if (!img_request)
3033 		goto out_err;
3034 
3035 	if (obj_request->type == OBJ_REQUEST_BIO)
3036 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3037 						obj_request->bio_list);
3038 	else
3039 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3040 						obj_request->pages);
3041 	if (result)
3042 		goto out_err;
3043 
3044 	img_request->callback = rbd_img_parent_read_callback;
3045 	result = rbd_img_request_submit(img_request);
3046 	if (result)
3047 		goto out_err;
3048 
3049 	return;
3050 out_err:
3051 	if (img_request)
3052 		rbd_img_request_put(img_request);
3053 	obj_request->result = result;
3054 	obj_request->xferred = 0;
3055 	obj_request_done_set(obj_request);
3056 }
3057 
3058 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3059 {
3060 	struct rbd_obj_request *obj_request;
3061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3062 	int ret;
3063 
3064 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3065 							OBJ_REQUEST_NODATA);
3066 	if (!obj_request)
3067 		return -ENOMEM;
3068 
3069 	ret = -ENOMEM;
3070 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3071 						  obj_request);
3072 	if (!obj_request->osd_req)
3073 		goto out;
3074 
3075 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3076 					notify_id, 0, 0);
3077 	rbd_osd_req_format_read(obj_request);
3078 
3079 	ret = rbd_obj_request_submit(osdc, obj_request);
3080 	if (ret)
3081 		goto out;
3082 	ret = rbd_obj_request_wait(obj_request);
3083 out:
3084 	rbd_obj_request_put(obj_request);
3085 
3086 	return ret;
3087 }
3088 
3089 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3090 {
3091 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3092 	int ret;
3093 
3094 	if (!rbd_dev)
3095 		return;
3096 
3097 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3098 		rbd_dev->header_name, (unsigned long long)notify_id,
3099 		(unsigned int)opcode);
3100 
3101 	/*
3102 	 * Until adequate refresh error handling is in place, there is
3103 	 * not much we can do here, except warn.
3104 	 *
3105 	 * See http://tracker.ceph.com/issues/5040
3106 	 */
3107 	ret = rbd_dev_refresh(rbd_dev);
3108 	if (ret)
3109 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3110 
3111 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3112 	if (ret)
3113 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3114 }
3115 
3116 /*
3117  * Send a (un)watch request and wait for the ack.  Return a request
3118  * with a ref held on success or error.
3119  */
3120 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3121 						struct rbd_device *rbd_dev,
3122 						bool watch)
3123 {
3124 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3125 	struct rbd_obj_request *obj_request;
3126 	int ret;
3127 
3128 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3129 					     OBJ_REQUEST_NODATA);
3130 	if (!obj_request)
3131 		return ERR_PTR(-ENOMEM);
3132 
3133 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3134 						  obj_request);
3135 	if (!obj_request->osd_req) {
3136 		ret = -ENOMEM;
3137 		goto out;
3138 	}
3139 
3140 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3141 			      rbd_dev->watch_event->cookie, 0, watch);
3142 	rbd_osd_req_format_write(obj_request);
3143 
3144 	if (watch)
3145 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3146 
3147 	ret = rbd_obj_request_submit(osdc, obj_request);
3148 	if (ret)
3149 		goto out;
3150 
3151 	ret = rbd_obj_request_wait(obj_request);
3152 	if (ret)
3153 		goto out;
3154 
3155 	ret = obj_request->result;
3156 	if (ret) {
3157 		if (watch)
3158 			rbd_obj_request_end(obj_request);
3159 		goto out;
3160 	}
3161 
3162 	return obj_request;
3163 
3164 out:
3165 	rbd_obj_request_put(obj_request);
3166 	return ERR_PTR(ret);
3167 }
3168 
3169 /*
3170  * Initiate a watch request, synchronously.
3171  */
3172 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3173 {
3174 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3175 	struct rbd_obj_request *obj_request;
3176 	int ret;
3177 
3178 	rbd_assert(!rbd_dev->watch_event);
3179 	rbd_assert(!rbd_dev->watch_request);
3180 
3181 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3182 				     &rbd_dev->watch_event);
3183 	if (ret < 0)
3184 		return ret;
3185 
3186 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3187 	if (IS_ERR(obj_request)) {
3188 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3189 		rbd_dev->watch_event = NULL;
3190 		return PTR_ERR(obj_request);
3191 	}
3192 
3193 	/*
3194 	 * A watch request is set to linger, so the underlying osd
3195 	 * request won't go away until we unregister it.  We retain
3196 	 * a pointer to the object request during that time (in
3197 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3198 	 * We'll drop that reference after we've unregistered it in
3199 	 * rbd_dev_header_unwatch_sync().
3200 	 */
3201 	rbd_dev->watch_request = obj_request;
3202 
3203 	return 0;
3204 }
3205 
3206 /*
3207  * Tear down a watch request, synchronously.
3208  */
3209 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3210 {
3211 	struct rbd_obj_request *obj_request;
3212 
3213 	rbd_assert(rbd_dev->watch_event);
3214 	rbd_assert(rbd_dev->watch_request);
3215 
3216 	rbd_obj_request_end(rbd_dev->watch_request);
3217 	rbd_obj_request_put(rbd_dev->watch_request);
3218 	rbd_dev->watch_request = NULL;
3219 
3220 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3221 	if (!IS_ERR(obj_request))
3222 		rbd_obj_request_put(obj_request);
3223 	else
3224 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3225 			 PTR_ERR(obj_request));
3226 
3227 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3228 	rbd_dev->watch_event = NULL;
3229 }
3230 
3231 /*
3232  * Synchronous osd object method call.  Returns the number of bytes
3233  * returned in the outbound buffer, or a negative error code.
3234  */
3235 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3236 			     const char *object_name,
3237 			     const char *class_name,
3238 			     const char *method_name,
3239 			     const void *outbound,
3240 			     size_t outbound_size,
3241 			     void *inbound,
3242 			     size_t inbound_size)
3243 {
3244 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3245 	struct rbd_obj_request *obj_request;
3246 	struct page **pages;
3247 	u32 page_count;
3248 	int ret;
3249 
3250 	/*
3251 	 * Method calls are ultimately read operations.  The result
3252 	 * should placed into the inbound buffer provided.  They
3253 	 * also supply outbound data--parameters for the object
3254 	 * method.  Currently if this is present it will be a
3255 	 * snapshot id.
3256 	 */
3257 	page_count = (u32)calc_pages_for(0, inbound_size);
3258 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3259 	if (IS_ERR(pages))
3260 		return PTR_ERR(pages);
3261 
3262 	ret = -ENOMEM;
3263 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3264 							OBJ_REQUEST_PAGES);
3265 	if (!obj_request)
3266 		goto out;
3267 
3268 	obj_request->pages = pages;
3269 	obj_request->page_count = page_count;
3270 
3271 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3272 						  obj_request);
3273 	if (!obj_request->osd_req)
3274 		goto out;
3275 
3276 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3277 					class_name, method_name);
3278 	if (outbound_size) {
3279 		struct ceph_pagelist *pagelist;
3280 
3281 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3282 		if (!pagelist)
3283 			goto out;
3284 
3285 		ceph_pagelist_init(pagelist);
3286 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3287 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3288 						pagelist);
3289 	}
3290 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3291 					obj_request->pages, inbound_size,
3292 					0, false, false);
3293 	rbd_osd_req_format_read(obj_request);
3294 
3295 	ret = rbd_obj_request_submit(osdc, obj_request);
3296 	if (ret)
3297 		goto out;
3298 	ret = rbd_obj_request_wait(obj_request);
3299 	if (ret)
3300 		goto out;
3301 
3302 	ret = obj_request->result;
3303 	if (ret < 0)
3304 		goto out;
3305 
3306 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3307 	ret = (int)obj_request->xferred;
3308 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3309 out:
3310 	if (obj_request)
3311 		rbd_obj_request_put(obj_request);
3312 	else
3313 		ceph_release_page_vector(pages, page_count);
3314 
3315 	return ret;
3316 }
3317 
3318 static void rbd_queue_workfn(struct work_struct *work)
3319 {
3320 	struct request *rq = blk_mq_rq_from_pdu(work);
3321 	struct rbd_device *rbd_dev = rq->q->queuedata;
3322 	struct rbd_img_request *img_request;
3323 	struct ceph_snap_context *snapc = NULL;
3324 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3325 	u64 length = blk_rq_bytes(rq);
3326 	enum obj_operation_type op_type;
3327 	u64 mapping_size;
3328 	int result;
3329 
3330 	if (rq->cmd_type != REQ_TYPE_FS) {
3331 		dout("%s: non-fs request type %d\n", __func__,
3332 			(int) rq->cmd_type);
3333 		result = -EIO;
3334 		goto err;
3335 	}
3336 
3337 	if (rq->cmd_flags & REQ_DISCARD)
3338 		op_type = OBJ_OP_DISCARD;
3339 	else if (rq->cmd_flags & REQ_WRITE)
3340 		op_type = OBJ_OP_WRITE;
3341 	else
3342 		op_type = OBJ_OP_READ;
3343 
3344 	/* Ignore/skip any zero-length requests */
3345 
3346 	if (!length) {
3347 		dout("%s: zero-length request\n", __func__);
3348 		result = 0;
3349 		goto err_rq;
3350 	}
3351 
3352 	/* Only reads are allowed to a read-only device */
3353 
3354 	if (op_type != OBJ_OP_READ) {
3355 		if (rbd_dev->mapping.read_only) {
3356 			result = -EROFS;
3357 			goto err_rq;
3358 		}
3359 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3360 	}
3361 
3362 	/*
3363 	 * Quit early if the mapped snapshot no longer exists.  It's
3364 	 * still possible the snapshot will have disappeared by the
3365 	 * time our request arrives at the osd, but there's no sense in
3366 	 * sending it if we already know.
3367 	 */
3368 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3369 		dout("request for non-existent snapshot");
3370 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3371 		result = -ENXIO;
3372 		goto err_rq;
3373 	}
3374 
3375 	if (offset && length > U64_MAX - offset + 1) {
3376 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3377 			 length);
3378 		result = -EINVAL;
3379 		goto err_rq;	/* Shouldn't happen */
3380 	}
3381 
3382 	blk_mq_start_request(rq);
3383 
3384 	down_read(&rbd_dev->header_rwsem);
3385 	mapping_size = rbd_dev->mapping.size;
3386 	if (op_type != OBJ_OP_READ) {
3387 		snapc = rbd_dev->header.snapc;
3388 		ceph_get_snap_context(snapc);
3389 	}
3390 	up_read(&rbd_dev->header_rwsem);
3391 
3392 	if (offset + length > mapping_size) {
3393 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3394 			 length, mapping_size);
3395 		result = -EIO;
3396 		goto err_rq;
3397 	}
3398 
3399 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3400 					     snapc);
3401 	if (!img_request) {
3402 		result = -ENOMEM;
3403 		goto err_rq;
3404 	}
3405 	img_request->rq = rq;
3406 
3407 	if (op_type == OBJ_OP_DISCARD)
3408 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3409 					      NULL);
3410 	else
3411 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3412 					      rq->bio);
3413 	if (result)
3414 		goto err_img_request;
3415 
3416 	result = rbd_img_request_submit(img_request);
3417 	if (result)
3418 		goto err_img_request;
3419 
3420 	return;
3421 
3422 err_img_request:
3423 	rbd_img_request_put(img_request);
3424 err_rq:
3425 	if (result)
3426 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3427 			 obj_op_name(op_type), length, offset, result);
3428 	ceph_put_snap_context(snapc);
3429 err:
3430 	blk_mq_end_request(rq, result);
3431 }
3432 
3433 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3434 		const struct blk_mq_queue_data *bd)
3435 {
3436 	struct request *rq = bd->rq;
3437 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3438 
3439 	queue_work(rbd_wq, work);
3440 	return BLK_MQ_RQ_QUEUE_OK;
3441 }
3442 
3443 /*
3444  * a queue callback. Makes sure that we don't create a bio that spans across
3445  * multiple osd objects. One exception would be with a single page bios,
3446  * which we handle later at bio_chain_clone_range()
3447  */
3448 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3449 			  struct bio_vec *bvec)
3450 {
3451 	struct rbd_device *rbd_dev = q->queuedata;
3452 	sector_t sector_offset;
3453 	sector_t sectors_per_obj;
3454 	sector_t obj_sector_offset;
3455 	int ret;
3456 
3457 	/*
3458 	 * Find how far into its rbd object the partition-relative
3459 	 * bio start sector is to offset relative to the enclosing
3460 	 * device.
3461 	 */
3462 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3463 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3464 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3465 
3466 	/*
3467 	 * Compute the number of bytes from that offset to the end
3468 	 * of the object.  Account for what's already used by the bio.
3469 	 */
3470 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3471 	if (ret > bmd->bi_size)
3472 		ret -= bmd->bi_size;
3473 	else
3474 		ret = 0;
3475 
3476 	/*
3477 	 * Don't send back more than was asked for.  And if the bio
3478 	 * was empty, let the whole thing through because:  "Note
3479 	 * that a block device *must* allow a single page to be
3480 	 * added to an empty bio."
3481 	 */
3482 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3483 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3484 		ret = (int) bvec->bv_len;
3485 
3486 	return ret;
3487 }
3488 
3489 static void rbd_free_disk(struct rbd_device *rbd_dev)
3490 {
3491 	struct gendisk *disk = rbd_dev->disk;
3492 
3493 	if (!disk)
3494 		return;
3495 
3496 	rbd_dev->disk = NULL;
3497 	if (disk->flags & GENHD_FL_UP) {
3498 		del_gendisk(disk);
3499 		if (disk->queue)
3500 			blk_cleanup_queue(disk->queue);
3501 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3502 	}
3503 	put_disk(disk);
3504 }
3505 
3506 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3507 				const char *object_name,
3508 				u64 offset, u64 length, void *buf)
3509 
3510 {
3511 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3512 	struct rbd_obj_request *obj_request;
3513 	struct page **pages = NULL;
3514 	u32 page_count;
3515 	size_t size;
3516 	int ret;
3517 
3518 	page_count = (u32) calc_pages_for(offset, length);
3519 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3520 	if (IS_ERR(pages))
3521 		return PTR_ERR(pages);
3522 
3523 	ret = -ENOMEM;
3524 	obj_request = rbd_obj_request_create(object_name, offset, length,
3525 							OBJ_REQUEST_PAGES);
3526 	if (!obj_request)
3527 		goto out;
3528 
3529 	obj_request->pages = pages;
3530 	obj_request->page_count = page_count;
3531 
3532 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3533 						  obj_request);
3534 	if (!obj_request->osd_req)
3535 		goto out;
3536 
3537 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3538 					offset, length, 0, 0);
3539 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3540 					obj_request->pages,
3541 					obj_request->length,
3542 					obj_request->offset & ~PAGE_MASK,
3543 					false, false);
3544 	rbd_osd_req_format_read(obj_request);
3545 
3546 	ret = rbd_obj_request_submit(osdc, obj_request);
3547 	if (ret)
3548 		goto out;
3549 	ret = rbd_obj_request_wait(obj_request);
3550 	if (ret)
3551 		goto out;
3552 
3553 	ret = obj_request->result;
3554 	if (ret < 0)
3555 		goto out;
3556 
3557 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3558 	size = (size_t) obj_request->xferred;
3559 	ceph_copy_from_page_vector(pages, buf, 0, size);
3560 	rbd_assert(size <= (size_t)INT_MAX);
3561 	ret = (int)size;
3562 out:
3563 	if (obj_request)
3564 		rbd_obj_request_put(obj_request);
3565 	else
3566 		ceph_release_page_vector(pages, page_count);
3567 
3568 	return ret;
3569 }
3570 
3571 /*
3572  * Read the complete header for the given rbd device.  On successful
3573  * return, the rbd_dev->header field will contain up-to-date
3574  * information about the image.
3575  */
3576 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3577 {
3578 	struct rbd_image_header_ondisk *ondisk = NULL;
3579 	u32 snap_count = 0;
3580 	u64 names_size = 0;
3581 	u32 want_count;
3582 	int ret;
3583 
3584 	/*
3585 	 * The complete header will include an array of its 64-bit
3586 	 * snapshot ids, followed by the names of those snapshots as
3587 	 * a contiguous block of NUL-terminated strings.  Note that
3588 	 * the number of snapshots could change by the time we read
3589 	 * it in, in which case we re-read it.
3590 	 */
3591 	do {
3592 		size_t size;
3593 
3594 		kfree(ondisk);
3595 
3596 		size = sizeof (*ondisk);
3597 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3598 		size += names_size;
3599 		ondisk = kmalloc(size, GFP_KERNEL);
3600 		if (!ondisk)
3601 			return -ENOMEM;
3602 
3603 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3604 				       0, size, ondisk);
3605 		if (ret < 0)
3606 			goto out;
3607 		if ((size_t)ret < size) {
3608 			ret = -ENXIO;
3609 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3610 				size, ret);
3611 			goto out;
3612 		}
3613 		if (!rbd_dev_ondisk_valid(ondisk)) {
3614 			ret = -ENXIO;
3615 			rbd_warn(rbd_dev, "invalid header");
3616 			goto out;
3617 		}
3618 
3619 		names_size = le64_to_cpu(ondisk->snap_names_len);
3620 		want_count = snap_count;
3621 		snap_count = le32_to_cpu(ondisk->snap_count);
3622 	} while (snap_count != want_count);
3623 
3624 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3625 out:
3626 	kfree(ondisk);
3627 
3628 	return ret;
3629 }
3630 
3631 /*
3632  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3633  * has disappeared from the (just updated) snapshot context.
3634  */
3635 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3636 {
3637 	u64 snap_id;
3638 
3639 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3640 		return;
3641 
3642 	snap_id = rbd_dev->spec->snap_id;
3643 	if (snap_id == CEPH_NOSNAP)
3644 		return;
3645 
3646 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3647 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3648 }
3649 
3650 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3651 {
3652 	sector_t size;
3653 	bool removing;
3654 
3655 	/*
3656 	 * Don't hold the lock while doing disk operations,
3657 	 * or lock ordering will conflict with the bdev mutex via:
3658 	 * rbd_add() -> blkdev_get() -> rbd_open()
3659 	 */
3660 	spin_lock_irq(&rbd_dev->lock);
3661 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3662 	spin_unlock_irq(&rbd_dev->lock);
3663 	/*
3664 	 * If the device is being removed, rbd_dev->disk has
3665 	 * been destroyed, so don't try to update its size
3666 	 */
3667 	if (!removing) {
3668 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3669 		dout("setting size to %llu sectors", (unsigned long long)size);
3670 		set_capacity(rbd_dev->disk, size);
3671 		revalidate_disk(rbd_dev->disk);
3672 	}
3673 }
3674 
3675 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3676 {
3677 	u64 mapping_size;
3678 	int ret;
3679 
3680 	down_write(&rbd_dev->header_rwsem);
3681 	mapping_size = rbd_dev->mapping.size;
3682 
3683 	ret = rbd_dev_header_info(rbd_dev);
3684 	if (ret)
3685 		goto out;
3686 
3687 	/*
3688 	 * If there is a parent, see if it has disappeared due to the
3689 	 * mapped image getting flattened.
3690 	 */
3691 	if (rbd_dev->parent) {
3692 		ret = rbd_dev_v2_parent_info(rbd_dev);
3693 		if (ret)
3694 			goto out;
3695 	}
3696 
3697 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3698 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3699 	} else {
3700 		/* validate mapped snapshot's EXISTS flag */
3701 		rbd_exists_validate(rbd_dev);
3702 	}
3703 
3704 out:
3705 	up_write(&rbd_dev->header_rwsem);
3706 	if (!ret && mapping_size != rbd_dev->mapping.size)
3707 		rbd_dev_update_size(rbd_dev);
3708 
3709 	return ret;
3710 }
3711 
3712 static int rbd_init_request(void *data, struct request *rq,
3713 		unsigned int hctx_idx, unsigned int request_idx,
3714 		unsigned int numa_node)
3715 {
3716 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3717 
3718 	INIT_WORK(work, rbd_queue_workfn);
3719 	return 0;
3720 }
3721 
3722 static struct blk_mq_ops rbd_mq_ops = {
3723 	.queue_rq	= rbd_queue_rq,
3724 	.map_queue	= blk_mq_map_queue,
3725 	.init_request	= rbd_init_request,
3726 };
3727 
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730 	struct gendisk *disk;
3731 	struct request_queue *q;
3732 	u64 segment_size;
3733 	int err;
3734 
3735 	/* create gendisk info */
3736 	disk = alloc_disk(single_major ?
3737 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3738 			  RBD_MINORS_PER_MAJOR);
3739 	if (!disk)
3740 		return -ENOMEM;
3741 
3742 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3743 		 rbd_dev->dev_id);
3744 	disk->major = rbd_dev->major;
3745 	disk->first_minor = rbd_dev->minor;
3746 	if (single_major)
3747 		disk->flags |= GENHD_FL_EXT_DEVT;
3748 	disk->fops = &rbd_bd_ops;
3749 	disk->private_data = rbd_dev;
3750 
3751 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3752 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3753 	rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3754 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3755 	rbd_dev->tag_set.flags =
3756 		BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3757 	rbd_dev->tag_set.nr_hw_queues = 1;
3758 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3759 
3760 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3761 	if (err)
3762 		goto out_disk;
3763 
3764 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3765 	if (IS_ERR(q)) {
3766 		err = PTR_ERR(q);
3767 		goto out_tag_set;
3768 	}
3769 
3770 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3771 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3772 
3773 	/* set io sizes to object size */
3774 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3775 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3776 	blk_queue_max_segment_size(q, segment_size);
3777 	blk_queue_io_min(q, segment_size);
3778 	blk_queue_io_opt(q, segment_size);
3779 
3780 	/* enable the discard support */
3781 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3782 	q->limits.discard_granularity = segment_size;
3783 	q->limits.discard_alignment = segment_size;
3784 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3785 	q->limits.discard_zeroes_data = 1;
3786 
3787 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3788 	disk->queue = q;
3789 
3790 	q->queuedata = rbd_dev;
3791 
3792 	rbd_dev->disk = disk;
3793 
3794 	return 0;
3795 out_tag_set:
3796 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3797 out_disk:
3798 	put_disk(disk);
3799 	return err;
3800 }
3801 
3802 /*
3803   sysfs
3804 */
3805 
3806 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3807 {
3808 	return container_of(dev, struct rbd_device, dev);
3809 }
3810 
3811 static ssize_t rbd_size_show(struct device *dev,
3812 			     struct device_attribute *attr, char *buf)
3813 {
3814 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815 
3816 	return sprintf(buf, "%llu\n",
3817 		(unsigned long long)rbd_dev->mapping.size);
3818 }
3819 
3820 /*
3821  * Note this shows the features for whatever's mapped, which is not
3822  * necessarily the base image.
3823  */
3824 static ssize_t rbd_features_show(struct device *dev,
3825 			     struct device_attribute *attr, char *buf)
3826 {
3827 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828 
3829 	return sprintf(buf, "0x%016llx\n",
3830 			(unsigned long long)rbd_dev->mapping.features);
3831 }
3832 
3833 static ssize_t rbd_major_show(struct device *dev,
3834 			      struct device_attribute *attr, char *buf)
3835 {
3836 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837 
3838 	if (rbd_dev->major)
3839 		return sprintf(buf, "%d\n", rbd_dev->major);
3840 
3841 	return sprintf(buf, "(none)\n");
3842 }
3843 
3844 static ssize_t rbd_minor_show(struct device *dev,
3845 			      struct device_attribute *attr, char *buf)
3846 {
3847 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848 
3849 	return sprintf(buf, "%d\n", rbd_dev->minor);
3850 }
3851 
3852 static ssize_t rbd_client_id_show(struct device *dev,
3853 				  struct device_attribute *attr, char *buf)
3854 {
3855 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856 
3857 	return sprintf(buf, "client%lld\n",
3858 			ceph_client_id(rbd_dev->rbd_client->client));
3859 }
3860 
3861 static ssize_t rbd_pool_show(struct device *dev,
3862 			     struct device_attribute *attr, char *buf)
3863 {
3864 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865 
3866 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3867 }
3868 
3869 static ssize_t rbd_pool_id_show(struct device *dev,
3870 			     struct device_attribute *attr, char *buf)
3871 {
3872 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873 
3874 	return sprintf(buf, "%llu\n",
3875 			(unsigned long long) rbd_dev->spec->pool_id);
3876 }
3877 
3878 static ssize_t rbd_name_show(struct device *dev,
3879 			     struct device_attribute *attr, char *buf)
3880 {
3881 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3882 
3883 	if (rbd_dev->spec->image_name)
3884 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3885 
3886 	return sprintf(buf, "(unknown)\n");
3887 }
3888 
3889 static ssize_t rbd_image_id_show(struct device *dev,
3890 			     struct device_attribute *attr, char *buf)
3891 {
3892 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893 
3894 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3895 }
3896 
3897 /*
3898  * Shows the name of the currently-mapped snapshot (or
3899  * RBD_SNAP_HEAD_NAME for the base image).
3900  */
3901 static ssize_t rbd_snap_show(struct device *dev,
3902 			     struct device_attribute *attr,
3903 			     char *buf)
3904 {
3905 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3906 
3907 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3908 }
3909 
3910 /*
3911  * For a v2 image, shows the chain of parent images, separated by empty
3912  * lines.  For v1 images or if there is no parent, shows "(no parent
3913  * image)".
3914  */
3915 static ssize_t rbd_parent_show(struct device *dev,
3916 			       struct device_attribute *attr,
3917 			       char *buf)
3918 {
3919 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3920 	ssize_t count = 0;
3921 
3922 	if (!rbd_dev->parent)
3923 		return sprintf(buf, "(no parent image)\n");
3924 
3925 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3926 		struct rbd_spec *spec = rbd_dev->parent_spec;
3927 
3928 		count += sprintf(&buf[count], "%s"
3929 			    "pool_id %llu\npool_name %s\n"
3930 			    "image_id %s\nimage_name %s\n"
3931 			    "snap_id %llu\nsnap_name %s\n"
3932 			    "overlap %llu\n",
3933 			    !count ? "" : "\n", /* first? */
3934 			    spec->pool_id, spec->pool_name,
3935 			    spec->image_id, spec->image_name ?: "(unknown)",
3936 			    spec->snap_id, spec->snap_name,
3937 			    rbd_dev->parent_overlap);
3938 	}
3939 
3940 	return count;
3941 }
3942 
3943 static ssize_t rbd_image_refresh(struct device *dev,
3944 				 struct device_attribute *attr,
3945 				 const char *buf,
3946 				 size_t size)
3947 {
3948 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3949 	int ret;
3950 
3951 	ret = rbd_dev_refresh(rbd_dev);
3952 	if (ret)
3953 		return ret;
3954 
3955 	return size;
3956 }
3957 
3958 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3959 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3960 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3961 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3962 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3963 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3964 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3965 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3966 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3967 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3968 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3969 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3970 
3971 static struct attribute *rbd_attrs[] = {
3972 	&dev_attr_size.attr,
3973 	&dev_attr_features.attr,
3974 	&dev_attr_major.attr,
3975 	&dev_attr_minor.attr,
3976 	&dev_attr_client_id.attr,
3977 	&dev_attr_pool.attr,
3978 	&dev_attr_pool_id.attr,
3979 	&dev_attr_name.attr,
3980 	&dev_attr_image_id.attr,
3981 	&dev_attr_current_snap.attr,
3982 	&dev_attr_parent.attr,
3983 	&dev_attr_refresh.attr,
3984 	NULL
3985 };
3986 
3987 static struct attribute_group rbd_attr_group = {
3988 	.attrs = rbd_attrs,
3989 };
3990 
3991 static const struct attribute_group *rbd_attr_groups[] = {
3992 	&rbd_attr_group,
3993 	NULL
3994 };
3995 
3996 static void rbd_sysfs_dev_release(struct device *dev)
3997 {
3998 }
3999 
4000 static struct device_type rbd_device_type = {
4001 	.name		= "rbd",
4002 	.groups		= rbd_attr_groups,
4003 	.release	= rbd_sysfs_dev_release,
4004 };
4005 
4006 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4007 {
4008 	kref_get(&spec->kref);
4009 
4010 	return spec;
4011 }
4012 
4013 static void rbd_spec_free(struct kref *kref);
4014 static void rbd_spec_put(struct rbd_spec *spec)
4015 {
4016 	if (spec)
4017 		kref_put(&spec->kref, rbd_spec_free);
4018 }
4019 
4020 static struct rbd_spec *rbd_spec_alloc(void)
4021 {
4022 	struct rbd_spec *spec;
4023 
4024 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4025 	if (!spec)
4026 		return NULL;
4027 
4028 	spec->pool_id = CEPH_NOPOOL;
4029 	spec->snap_id = CEPH_NOSNAP;
4030 	kref_init(&spec->kref);
4031 
4032 	return spec;
4033 }
4034 
4035 static void rbd_spec_free(struct kref *kref)
4036 {
4037 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4038 
4039 	kfree(spec->pool_name);
4040 	kfree(spec->image_id);
4041 	kfree(spec->image_name);
4042 	kfree(spec->snap_name);
4043 	kfree(spec);
4044 }
4045 
4046 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4047 				struct rbd_spec *spec)
4048 {
4049 	struct rbd_device *rbd_dev;
4050 
4051 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4052 	if (!rbd_dev)
4053 		return NULL;
4054 
4055 	spin_lock_init(&rbd_dev->lock);
4056 	rbd_dev->flags = 0;
4057 	atomic_set(&rbd_dev->parent_ref, 0);
4058 	INIT_LIST_HEAD(&rbd_dev->node);
4059 	init_rwsem(&rbd_dev->header_rwsem);
4060 
4061 	rbd_dev->spec = spec;
4062 	rbd_dev->rbd_client = rbdc;
4063 
4064 	/* Initialize the layout used for all rbd requests */
4065 
4066 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4067 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4068 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4069 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4070 
4071 	return rbd_dev;
4072 }
4073 
4074 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4075 {
4076 	rbd_put_client(rbd_dev->rbd_client);
4077 	rbd_spec_put(rbd_dev->spec);
4078 	kfree(rbd_dev);
4079 }
4080 
4081 /*
4082  * Get the size and object order for an image snapshot, or if
4083  * snap_id is CEPH_NOSNAP, gets this information for the base
4084  * image.
4085  */
4086 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4087 				u8 *order, u64 *snap_size)
4088 {
4089 	__le64 snapid = cpu_to_le64(snap_id);
4090 	int ret;
4091 	struct {
4092 		u8 order;
4093 		__le64 size;
4094 	} __attribute__ ((packed)) size_buf = { 0 };
4095 
4096 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4097 				"rbd", "get_size",
4098 				&snapid, sizeof (snapid),
4099 				&size_buf, sizeof (size_buf));
4100 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4101 	if (ret < 0)
4102 		return ret;
4103 	if (ret < sizeof (size_buf))
4104 		return -ERANGE;
4105 
4106 	if (order) {
4107 		*order = size_buf.order;
4108 		dout("  order %u", (unsigned int)*order);
4109 	}
4110 	*snap_size = le64_to_cpu(size_buf.size);
4111 
4112 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4113 		(unsigned long long)snap_id,
4114 		(unsigned long long)*snap_size);
4115 
4116 	return 0;
4117 }
4118 
4119 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4120 {
4121 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4122 					&rbd_dev->header.obj_order,
4123 					&rbd_dev->header.image_size);
4124 }
4125 
4126 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4127 {
4128 	void *reply_buf;
4129 	int ret;
4130 	void *p;
4131 
4132 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4133 	if (!reply_buf)
4134 		return -ENOMEM;
4135 
4136 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4137 				"rbd", "get_object_prefix", NULL, 0,
4138 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4139 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4140 	if (ret < 0)
4141 		goto out;
4142 
4143 	p = reply_buf;
4144 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4145 						p + ret, NULL, GFP_NOIO);
4146 	ret = 0;
4147 
4148 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4149 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4150 		rbd_dev->header.object_prefix = NULL;
4151 	} else {
4152 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4153 	}
4154 out:
4155 	kfree(reply_buf);
4156 
4157 	return ret;
4158 }
4159 
4160 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4161 		u64 *snap_features)
4162 {
4163 	__le64 snapid = cpu_to_le64(snap_id);
4164 	struct {
4165 		__le64 features;
4166 		__le64 incompat;
4167 	} __attribute__ ((packed)) features_buf = { 0 };
4168 	u64 incompat;
4169 	int ret;
4170 
4171 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4172 				"rbd", "get_features",
4173 				&snapid, sizeof (snapid),
4174 				&features_buf, sizeof (features_buf));
4175 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176 	if (ret < 0)
4177 		return ret;
4178 	if (ret < sizeof (features_buf))
4179 		return -ERANGE;
4180 
4181 	incompat = le64_to_cpu(features_buf.incompat);
4182 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4183 		return -ENXIO;
4184 
4185 	*snap_features = le64_to_cpu(features_buf.features);
4186 
4187 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4188 		(unsigned long long)snap_id,
4189 		(unsigned long long)*snap_features,
4190 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4191 
4192 	return 0;
4193 }
4194 
4195 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4196 {
4197 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4198 						&rbd_dev->header.features);
4199 }
4200 
4201 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4202 {
4203 	struct rbd_spec *parent_spec;
4204 	size_t size;
4205 	void *reply_buf = NULL;
4206 	__le64 snapid;
4207 	void *p;
4208 	void *end;
4209 	u64 pool_id;
4210 	char *image_id;
4211 	u64 snap_id;
4212 	u64 overlap;
4213 	int ret;
4214 
4215 	parent_spec = rbd_spec_alloc();
4216 	if (!parent_spec)
4217 		return -ENOMEM;
4218 
4219 	size = sizeof (__le64) +				/* pool_id */
4220 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4221 		sizeof (__le64) +				/* snap_id */
4222 		sizeof (__le64);				/* overlap */
4223 	reply_buf = kmalloc(size, GFP_KERNEL);
4224 	if (!reply_buf) {
4225 		ret = -ENOMEM;
4226 		goto out_err;
4227 	}
4228 
4229 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4230 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4231 				"rbd", "get_parent",
4232 				&snapid, sizeof (snapid),
4233 				reply_buf, size);
4234 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4235 	if (ret < 0)
4236 		goto out_err;
4237 
4238 	p = reply_buf;
4239 	end = reply_buf + ret;
4240 	ret = -ERANGE;
4241 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4242 	if (pool_id == CEPH_NOPOOL) {
4243 		/*
4244 		 * Either the parent never existed, or we have
4245 		 * record of it but the image got flattened so it no
4246 		 * longer has a parent.  When the parent of a
4247 		 * layered image disappears we immediately set the
4248 		 * overlap to 0.  The effect of this is that all new
4249 		 * requests will be treated as if the image had no
4250 		 * parent.
4251 		 */
4252 		if (rbd_dev->parent_overlap) {
4253 			rbd_dev->parent_overlap = 0;
4254 			rbd_dev_parent_put(rbd_dev);
4255 			pr_info("%s: clone image has been flattened\n",
4256 				rbd_dev->disk->disk_name);
4257 		}
4258 
4259 		goto out;	/* No parent?  No problem. */
4260 	}
4261 
4262 	/* The ceph file layout needs to fit pool id in 32 bits */
4263 
4264 	ret = -EIO;
4265 	if (pool_id > (u64)U32_MAX) {
4266 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4267 			(unsigned long long)pool_id, U32_MAX);
4268 		goto out_err;
4269 	}
4270 
4271 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4272 	if (IS_ERR(image_id)) {
4273 		ret = PTR_ERR(image_id);
4274 		goto out_err;
4275 	}
4276 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4277 	ceph_decode_64_safe(&p, end, overlap, out_err);
4278 
4279 	/*
4280 	 * The parent won't change (except when the clone is
4281 	 * flattened, already handled that).  So we only need to
4282 	 * record the parent spec we have not already done so.
4283 	 */
4284 	if (!rbd_dev->parent_spec) {
4285 		parent_spec->pool_id = pool_id;
4286 		parent_spec->image_id = image_id;
4287 		parent_spec->snap_id = snap_id;
4288 		rbd_dev->parent_spec = parent_spec;
4289 		parent_spec = NULL;	/* rbd_dev now owns this */
4290 	} else {
4291 		kfree(image_id);
4292 	}
4293 
4294 	/*
4295 	 * We always update the parent overlap.  If it's zero we issue
4296 	 * a warning, as we will proceed as if there was no parent.
4297 	 */
4298 	if (!overlap) {
4299 		if (parent_spec) {
4300 			/* refresh, careful to warn just once */
4301 			if (rbd_dev->parent_overlap)
4302 				rbd_warn(rbd_dev,
4303 				    "clone now standalone (overlap became 0)");
4304 		} else {
4305 			/* initial probe */
4306 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4307 		}
4308 	}
4309 	rbd_dev->parent_overlap = overlap;
4310 
4311 out:
4312 	ret = 0;
4313 out_err:
4314 	kfree(reply_buf);
4315 	rbd_spec_put(parent_spec);
4316 
4317 	return ret;
4318 }
4319 
4320 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4321 {
4322 	struct {
4323 		__le64 stripe_unit;
4324 		__le64 stripe_count;
4325 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4326 	size_t size = sizeof (striping_info_buf);
4327 	void *p;
4328 	u64 obj_size;
4329 	u64 stripe_unit;
4330 	u64 stripe_count;
4331 	int ret;
4332 
4333 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4334 				"rbd", "get_stripe_unit_count", NULL, 0,
4335 				(char *)&striping_info_buf, size);
4336 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4337 	if (ret < 0)
4338 		return ret;
4339 	if (ret < size)
4340 		return -ERANGE;
4341 
4342 	/*
4343 	 * We don't actually support the "fancy striping" feature
4344 	 * (STRIPINGV2) yet, but if the striping sizes are the
4345 	 * defaults the behavior is the same as before.  So find
4346 	 * out, and only fail if the image has non-default values.
4347 	 */
4348 	ret = -EINVAL;
4349 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4350 	p = &striping_info_buf;
4351 	stripe_unit = ceph_decode_64(&p);
4352 	if (stripe_unit != obj_size) {
4353 		rbd_warn(rbd_dev, "unsupported stripe unit "
4354 				"(got %llu want %llu)",
4355 				stripe_unit, obj_size);
4356 		return -EINVAL;
4357 	}
4358 	stripe_count = ceph_decode_64(&p);
4359 	if (stripe_count != 1) {
4360 		rbd_warn(rbd_dev, "unsupported stripe count "
4361 				"(got %llu want 1)", stripe_count);
4362 		return -EINVAL;
4363 	}
4364 	rbd_dev->header.stripe_unit = stripe_unit;
4365 	rbd_dev->header.stripe_count = stripe_count;
4366 
4367 	return 0;
4368 }
4369 
4370 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4371 {
4372 	size_t image_id_size;
4373 	char *image_id;
4374 	void *p;
4375 	void *end;
4376 	size_t size;
4377 	void *reply_buf = NULL;
4378 	size_t len = 0;
4379 	char *image_name = NULL;
4380 	int ret;
4381 
4382 	rbd_assert(!rbd_dev->spec->image_name);
4383 
4384 	len = strlen(rbd_dev->spec->image_id);
4385 	image_id_size = sizeof (__le32) + len;
4386 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4387 	if (!image_id)
4388 		return NULL;
4389 
4390 	p = image_id;
4391 	end = image_id + image_id_size;
4392 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4393 
4394 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4395 	reply_buf = kmalloc(size, GFP_KERNEL);
4396 	if (!reply_buf)
4397 		goto out;
4398 
4399 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4400 				"rbd", "dir_get_name",
4401 				image_id, image_id_size,
4402 				reply_buf, size);
4403 	if (ret < 0)
4404 		goto out;
4405 	p = reply_buf;
4406 	end = reply_buf + ret;
4407 
4408 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4409 	if (IS_ERR(image_name))
4410 		image_name = NULL;
4411 	else
4412 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4413 out:
4414 	kfree(reply_buf);
4415 	kfree(image_id);
4416 
4417 	return image_name;
4418 }
4419 
4420 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4421 {
4422 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4423 	const char *snap_name;
4424 	u32 which = 0;
4425 
4426 	/* Skip over names until we find the one we are looking for */
4427 
4428 	snap_name = rbd_dev->header.snap_names;
4429 	while (which < snapc->num_snaps) {
4430 		if (!strcmp(name, snap_name))
4431 			return snapc->snaps[which];
4432 		snap_name += strlen(snap_name) + 1;
4433 		which++;
4434 	}
4435 	return CEPH_NOSNAP;
4436 }
4437 
4438 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441 	u32 which;
4442 	bool found = false;
4443 	u64 snap_id;
4444 
4445 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4446 		const char *snap_name;
4447 
4448 		snap_id = snapc->snaps[which];
4449 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4450 		if (IS_ERR(snap_name)) {
4451 			/* ignore no-longer existing snapshots */
4452 			if (PTR_ERR(snap_name) == -ENOENT)
4453 				continue;
4454 			else
4455 				break;
4456 		}
4457 		found = !strcmp(name, snap_name);
4458 		kfree(snap_name);
4459 	}
4460 	return found ? snap_id : CEPH_NOSNAP;
4461 }
4462 
4463 /*
4464  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4465  * no snapshot by that name is found, or if an error occurs.
4466  */
4467 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4468 {
4469 	if (rbd_dev->image_format == 1)
4470 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4471 
4472 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4473 }
4474 
4475 /*
4476  * An image being mapped will have everything but the snap id.
4477  */
4478 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4479 {
4480 	struct rbd_spec *spec = rbd_dev->spec;
4481 
4482 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4483 	rbd_assert(spec->image_id && spec->image_name);
4484 	rbd_assert(spec->snap_name);
4485 
4486 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4487 		u64 snap_id;
4488 
4489 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4490 		if (snap_id == CEPH_NOSNAP)
4491 			return -ENOENT;
4492 
4493 		spec->snap_id = snap_id;
4494 	} else {
4495 		spec->snap_id = CEPH_NOSNAP;
4496 	}
4497 
4498 	return 0;
4499 }
4500 
4501 /*
4502  * A parent image will have all ids but none of the names.
4503  *
4504  * All names in an rbd spec are dynamically allocated.  It's OK if we
4505  * can't figure out the name for an image id.
4506  */
4507 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4508 {
4509 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4510 	struct rbd_spec *spec = rbd_dev->spec;
4511 	const char *pool_name;
4512 	const char *image_name;
4513 	const char *snap_name;
4514 	int ret;
4515 
4516 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4517 	rbd_assert(spec->image_id);
4518 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4519 
4520 	/* Get the pool name; we have to make our own copy of this */
4521 
4522 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4523 	if (!pool_name) {
4524 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4525 		return -EIO;
4526 	}
4527 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4528 	if (!pool_name)
4529 		return -ENOMEM;
4530 
4531 	/* Fetch the image name; tolerate failure here */
4532 
4533 	image_name = rbd_dev_image_name(rbd_dev);
4534 	if (!image_name)
4535 		rbd_warn(rbd_dev, "unable to get image name");
4536 
4537 	/* Fetch the snapshot name */
4538 
4539 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4540 	if (IS_ERR(snap_name)) {
4541 		ret = PTR_ERR(snap_name);
4542 		goto out_err;
4543 	}
4544 
4545 	spec->pool_name = pool_name;
4546 	spec->image_name = image_name;
4547 	spec->snap_name = snap_name;
4548 
4549 	return 0;
4550 
4551 out_err:
4552 	kfree(image_name);
4553 	kfree(pool_name);
4554 	return ret;
4555 }
4556 
4557 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4558 {
4559 	size_t size;
4560 	int ret;
4561 	void *reply_buf;
4562 	void *p;
4563 	void *end;
4564 	u64 seq;
4565 	u32 snap_count;
4566 	struct ceph_snap_context *snapc;
4567 	u32 i;
4568 
4569 	/*
4570 	 * We'll need room for the seq value (maximum snapshot id),
4571 	 * snapshot count, and array of that many snapshot ids.
4572 	 * For now we have a fixed upper limit on the number we're
4573 	 * prepared to receive.
4574 	 */
4575 	size = sizeof (__le64) + sizeof (__le32) +
4576 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4577 	reply_buf = kzalloc(size, GFP_KERNEL);
4578 	if (!reply_buf)
4579 		return -ENOMEM;
4580 
4581 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4582 				"rbd", "get_snapcontext", NULL, 0,
4583 				reply_buf, size);
4584 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4585 	if (ret < 0)
4586 		goto out;
4587 
4588 	p = reply_buf;
4589 	end = reply_buf + ret;
4590 	ret = -ERANGE;
4591 	ceph_decode_64_safe(&p, end, seq, out);
4592 	ceph_decode_32_safe(&p, end, snap_count, out);
4593 
4594 	/*
4595 	 * Make sure the reported number of snapshot ids wouldn't go
4596 	 * beyond the end of our buffer.  But before checking that,
4597 	 * make sure the computed size of the snapshot context we
4598 	 * allocate is representable in a size_t.
4599 	 */
4600 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4601 				 / sizeof (u64)) {
4602 		ret = -EINVAL;
4603 		goto out;
4604 	}
4605 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4606 		goto out;
4607 	ret = 0;
4608 
4609 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4610 	if (!snapc) {
4611 		ret = -ENOMEM;
4612 		goto out;
4613 	}
4614 	snapc->seq = seq;
4615 	for (i = 0; i < snap_count; i++)
4616 		snapc->snaps[i] = ceph_decode_64(&p);
4617 
4618 	ceph_put_snap_context(rbd_dev->header.snapc);
4619 	rbd_dev->header.snapc = snapc;
4620 
4621 	dout("  snap context seq = %llu, snap_count = %u\n",
4622 		(unsigned long long)seq, (unsigned int)snap_count);
4623 out:
4624 	kfree(reply_buf);
4625 
4626 	return ret;
4627 }
4628 
4629 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4630 					u64 snap_id)
4631 {
4632 	size_t size;
4633 	void *reply_buf;
4634 	__le64 snapid;
4635 	int ret;
4636 	void *p;
4637 	void *end;
4638 	char *snap_name;
4639 
4640 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4641 	reply_buf = kmalloc(size, GFP_KERNEL);
4642 	if (!reply_buf)
4643 		return ERR_PTR(-ENOMEM);
4644 
4645 	snapid = cpu_to_le64(snap_id);
4646 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4647 				"rbd", "get_snapshot_name",
4648 				&snapid, sizeof (snapid),
4649 				reply_buf, size);
4650 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4651 	if (ret < 0) {
4652 		snap_name = ERR_PTR(ret);
4653 		goto out;
4654 	}
4655 
4656 	p = reply_buf;
4657 	end = reply_buf + ret;
4658 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4659 	if (IS_ERR(snap_name))
4660 		goto out;
4661 
4662 	dout("  snap_id 0x%016llx snap_name = %s\n",
4663 		(unsigned long long)snap_id, snap_name);
4664 out:
4665 	kfree(reply_buf);
4666 
4667 	return snap_name;
4668 }
4669 
4670 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4671 {
4672 	bool first_time = rbd_dev->header.object_prefix == NULL;
4673 	int ret;
4674 
4675 	ret = rbd_dev_v2_image_size(rbd_dev);
4676 	if (ret)
4677 		return ret;
4678 
4679 	if (first_time) {
4680 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4681 		if (ret)
4682 			return ret;
4683 	}
4684 
4685 	ret = rbd_dev_v2_snap_context(rbd_dev);
4686 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4687 
4688 	return ret;
4689 }
4690 
4691 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4692 {
4693 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4694 
4695 	if (rbd_dev->image_format == 1)
4696 		return rbd_dev_v1_header_info(rbd_dev);
4697 
4698 	return rbd_dev_v2_header_info(rbd_dev);
4699 }
4700 
4701 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4702 {
4703 	struct device *dev;
4704 	int ret;
4705 
4706 	dev = &rbd_dev->dev;
4707 	dev->bus = &rbd_bus_type;
4708 	dev->type = &rbd_device_type;
4709 	dev->parent = &rbd_root_dev;
4710 	dev->release = rbd_dev_device_release;
4711 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4712 	ret = device_register(dev);
4713 
4714 	return ret;
4715 }
4716 
4717 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4718 {
4719 	device_unregister(&rbd_dev->dev);
4720 }
4721 
4722 /*
4723  * Get a unique rbd identifier for the given new rbd_dev, and add
4724  * the rbd_dev to the global list.
4725  */
4726 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4727 {
4728 	int new_dev_id;
4729 
4730 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4731 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4732 				    GFP_KERNEL);
4733 	if (new_dev_id < 0)
4734 		return new_dev_id;
4735 
4736 	rbd_dev->dev_id = new_dev_id;
4737 
4738 	spin_lock(&rbd_dev_list_lock);
4739 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4740 	spin_unlock(&rbd_dev_list_lock);
4741 
4742 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4743 
4744 	return 0;
4745 }
4746 
4747 /*
4748  * Remove an rbd_dev from the global list, and record that its
4749  * identifier is no longer in use.
4750  */
4751 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4752 {
4753 	spin_lock(&rbd_dev_list_lock);
4754 	list_del_init(&rbd_dev->node);
4755 	spin_unlock(&rbd_dev_list_lock);
4756 
4757 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4758 
4759 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4760 }
4761 
4762 /*
4763  * Skips over white space at *buf, and updates *buf to point to the
4764  * first found non-space character (if any). Returns the length of
4765  * the token (string of non-white space characters) found.  Note
4766  * that *buf must be terminated with '\0'.
4767  */
4768 static inline size_t next_token(const char **buf)
4769 {
4770         /*
4771         * These are the characters that produce nonzero for
4772         * isspace() in the "C" and "POSIX" locales.
4773         */
4774         const char *spaces = " \f\n\r\t\v";
4775 
4776         *buf += strspn(*buf, spaces);	/* Find start of token */
4777 
4778 	return strcspn(*buf, spaces);   /* Return token length */
4779 }
4780 
4781 /*
4782  * Finds the next token in *buf, dynamically allocates a buffer big
4783  * enough to hold a copy of it, and copies the token into the new
4784  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4785  * that a duplicate buffer is created even for a zero-length token.
4786  *
4787  * Returns a pointer to the newly-allocated duplicate, or a null
4788  * pointer if memory for the duplicate was not available.  If
4789  * the lenp argument is a non-null pointer, the length of the token
4790  * (not including the '\0') is returned in *lenp.
4791  *
4792  * If successful, the *buf pointer will be updated to point beyond
4793  * the end of the found token.
4794  *
4795  * Note: uses GFP_KERNEL for allocation.
4796  */
4797 static inline char *dup_token(const char **buf, size_t *lenp)
4798 {
4799 	char *dup;
4800 	size_t len;
4801 
4802 	len = next_token(buf);
4803 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4804 	if (!dup)
4805 		return NULL;
4806 	*(dup + len) = '\0';
4807 	*buf += len;
4808 
4809 	if (lenp)
4810 		*lenp = len;
4811 
4812 	return dup;
4813 }
4814 
4815 /*
4816  * Parse the options provided for an "rbd add" (i.e., rbd image
4817  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4818  * and the data written is passed here via a NUL-terminated buffer.
4819  * Returns 0 if successful or an error code otherwise.
4820  *
4821  * The information extracted from these options is recorded in
4822  * the other parameters which return dynamically-allocated
4823  * structures:
4824  *  ceph_opts
4825  *      The address of a pointer that will refer to a ceph options
4826  *      structure.  Caller must release the returned pointer using
4827  *      ceph_destroy_options() when it is no longer needed.
4828  *  rbd_opts
4829  *	Address of an rbd options pointer.  Fully initialized by
4830  *	this function; caller must release with kfree().
4831  *  spec
4832  *	Address of an rbd image specification pointer.  Fully
4833  *	initialized by this function based on parsed options.
4834  *	Caller must release with rbd_spec_put().
4835  *
4836  * The options passed take this form:
4837  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4838  * where:
4839  *  <mon_addrs>
4840  *      A comma-separated list of one or more monitor addresses.
4841  *      A monitor address is an ip address, optionally followed
4842  *      by a port number (separated by a colon).
4843  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4844  *  <options>
4845  *      A comma-separated list of ceph and/or rbd options.
4846  *  <pool_name>
4847  *      The name of the rados pool containing the rbd image.
4848  *  <image_name>
4849  *      The name of the image in that pool to map.
4850  *  <snap_id>
4851  *      An optional snapshot id.  If provided, the mapping will
4852  *      present data from the image at the time that snapshot was
4853  *      created.  The image head is used if no snapshot id is
4854  *      provided.  Snapshot mappings are always read-only.
4855  */
4856 static int rbd_add_parse_args(const char *buf,
4857 				struct ceph_options **ceph_opts,
4858 				struct rbd_options **opts,
4859 				struct rbd_spec **rbd_spec)
4860 {
4861 	size_t len;
4862 	char *options;
4863 	const char *mon_addrs;
4864 	char *snap_name;
4865 	size_t mon_addrs_size;
4866 	struct rbd_spec *spec = NULL;
4867 	struct rbd_options *rbd_opts = NULL;
4868 	struct ceph_options *copts;
4869 	int ret;
4870 
4871 	/* The first four tokens are required */
4872 
4873 	len = next_token(&buf);
4874 	if (!len) {
4875 		rbd_warn(NULL, "no monitor address(es) provided");
4876 		return -EINVAL;
4877 	}
4878 	mon_addrs = buf;
4879 	mon_addrs_size = len + 1;
4880 	buf += len;
4881 
4882 	ret = -EINVAL;
4883 	options = dup_token(&buf, NULL);
4884 	if (!options)
4885 		return -ENOMEM;
4886 	if (!*options) {
4887 		rbd_warn(NULL, "no options provided");
4888 		goto out_err;
4889 	}
4890 
4891 	spec = rbd_spec_alloc();
4892 	if (!spec)
4893 		goto out_mem;
4894 
4895 	spec->pool_name = dup_token(&buf, NULL);
4896 	if (!spec->pool_name)
4897 		goto out_mem;
4898 	if (!*spec->pool_name) {
4899 		rbd_warn(NULL, "no pool name provided");
4900 		goto out_err;
4901 	}
4902 
4903 	spec->image_name = dup_token(&buf, NULL);
4904 	if (!spec->image_name)
4905 		goto out_mem;
4906 	if (!*spec->image_name) {
4907 		rbd_warn(NULL, "no image name provided");
4908 		goto out_err;
4909 	}
4910 
4911 	/*
4912 	 * Snapshot name is optional; default is to use "-"
4913 	 * (indicating the head/no snapshot).
4914 	 */
4915 	len = next_token(&buf);
4916 	if (!len) {
4917 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4918 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4919 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4920 		ret = -ENAMETOOLONG;
4921 		goto out_err;
4922 	}
4923 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4924 	if (!snap_name)
4925 		goto out_mem;
4926 	*(snap_name + len) = '\0';
4927 	spec->snap_name = snap_name;
4928 
4929 	/* Initialize all rbd options to the defaults */
4930 
4931 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4932 	if (!rbd_opts)
4933 		goto out_mem;
4934 
4935 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4936 
4937 	copts = ceph_parse_options(options, mon_addrs,
4938 					mon_addrs + mon_addrs_size - 1,
4939 					parse_rbd_opts_token, rbd_opts);
4940 	if (IS_ERR(copts)) {
4941 		ret = PTR_ERR(copts);
4942 		goto out_err;
4943 	}
4944 	kfree(options);
4945 
4946 	*ceph_opts = copts;
4947 	*opts = rbd_opts;
4948 	*rbd_spec = spec;
4949 
4950 	return 0;
4951 out_mem:
4952 	ret = -ENOMEM;
4953 out_err:
4954 	kfree(rbd_opts);
4955 	rbd_spec_put(spec);
4956 	kfree(options);
4957 
4958 	return ret;
4959 }
4960 
4961 /*
4962  * Return pool id (>= 0) or a negative error code.
4963  */
4964 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4965 {
4966 	u64 newest_epoch;
4967 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4968 	int tries = 0;
4969 	int ret;
4970 
4971 again:
4972 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4973 	if (ret == -ENOENT && tries++ < 1) {
4974 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4975 					       &newest_epoch);
4976 		if (ret < 0)
4977 			return ret;
4978 
4979 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4980 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4981 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4982 						     newest_epoch, timeout);
4983 			goto again;
4984 		} else {
4985 			/* the osdmap we have is new enough */
4986 			return -ENOENT;
4987 		}
4988 	}
4989 
4990 	return ret;
4991 }
4992 
4993 /*
4994  * An rbd format 2 image has a unique identifier, distinct from the
4995  * name given to it by the user.  Internally, that identifier is
4996  * what's used to specify the names of objects related to the image.
4997  *
4998  * A special "rbd id" object is used to map an rbd image name to its
4999  * id.  If that object doesn't exist, then there is no v2 rbd image
5000  * with the supplied name.
5001  *
5002  * This function will record the given rbd_dev's image_id field if
5003  * it can be determined, and in that case will return 0.  If any
5004  * errors occur a negative errno will be returned and the rbd_dev's
5005  * image_id field will be unchanged (and should be NULL).
5006  */
5007 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5008 {
5009 	int ret;
5010 	size_t size;
5011 	char *object_name;
5012 	void *response;
5013 	char *image_id;
5014 
5015 	/*
5016 	 * When probing a parent image, the image id is already
5017 	 * known (and the image name likely is not).  There's no
5018 	 * need to fetch the image id again in this case.  We
5019 	 * do still need to set the image format though.
5020 	 */
5021 	if (rbd_dev->spec->image_id) {
5022 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5023 
5024 		return 0;
5025 	}
5026 
5027 	/*
5028 	 * First, see if the format 2 image id file exists, and if
5029 	 * so, get the image's persistent id from it.
5030 	 */
5031 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5032 	object_name = kmalloc(size, GFP_NOIO);
5033 	if (!object_name)
5034 		return -ENOMEM;
5035 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5036 	dout("rbd id object name is %s\n", object_name);
5037 
5038 	/* Response will be an encoded string, which includes a length */
5039 
5040 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5041 	response = kzalloc(size, GFP_NOIO);
5042 	if (!response) {
5043 		ret = -ENOMEM;
5044 		goto out;
5045 	}
5046 
5047 	/* If it doesn't exist we'll assume it's a format 1 image */
5048 
5049 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5050 				"rbd", "get_id", NULL, 0,
5051 				response, RBD_IMAGE_ID_LEN_MAX);
5052 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5053 	if (ret == -ENOENT) {
5054 		image_id = kstrdup("", GFP_KERNEL);
5055 		ret = image_id ? 0 : -ENOMEM;
5056 		if (!ret)
5057 			rbd_dev->image_format = 1;
5058 	} else if (ret >= 0) {
5059 		void *p = response;
5060 
5061 		image_id = ceph_extract_encoded_string(&p, p + ret,
5062 						NULL, GFP_NOIO);
5063 		ret = PTR_ERR_OR_ZERO(image_id);
5064 		if (!ret)
5065 			rbd_dev->image_format = 2;
5066 	}
5067 
5068 	if (!ret) {
5069 		rbd_dev->spec->image_id = image_id;
5070 		dout("image_id is %s\n", image_id);
5071 	}
5072 out:
5073 	kfree(response);
5074 	kfree(object_name);
5075 
5076 	return ret;
5077 }
5078 
5079 /*
5080  * Undo whatever state changes are made by v1 or v2 header info
5081  * call.
5082  */
5083 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5084 {
5085 	struct rbd_image_header	*header;
5086 
5087 	rbd_dev_parent_put(rbd_dev);
5088 
5089 	/* Free dynamic fields from the header, then zero it out */
5090 
5091 	header = &rbd_dev->header;
5092 	ceph_put_snap_context(header->snapc);
5093 	kfree(header->snap_sizes);
5094 	kfree(header->snap_names);
5095 	kfree(header->object_prefix);
5096 	memset(header, 0, sizeof (*header));
5097 }
5098 
5099 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5100 {
5101 	int ret;
5102 
5103 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5104 	if (ret)
5105 		goto out_err;
5106 
5107 	/*
5108 	 * Get the and check features for the image.  Currently the
5109 	 * features are assumed to never change.
5110 	 */
5111 	ret = rbd_dev_v2_features(rbd_dev);
5112 	if (ret)
5113 		goto out_err;
5114 
5115 	/* If the image supports fancy striping, get its parameters */
5116 
5117 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5118 		ret = rbd_dev_v2_striping_info(rbd_dev);
5119 		if (ret < 0)
5120 			goto out_err;
5121 	}
5122 	/* No support for crypto and compression type format 2 images */
5123 
5124 	return 0;
5125 out_err:
5126 	rbd_dev->header.features = 0;
5127 	kfree(rbd_dev->header.object_prefix);
5128 	rbd_dev->header.object_prefix = NULL;
5129 
5130 	return ret;
5131 }
5132 
5133 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5134 {
5135 	struct rbd_device *parent = NULL;
5136 	struct rbd_spec *parent_spec;
5137 	struct rbd_client *rbdc;
5138 	int ret;
5139 
5140 	if (!rbd_dev->parent_spec)
5141 		return 0;
5142 	/*
5143 	 * We need to pass a reference to the client and the parent
5144 	 * spec when creating the parent rbd_dev.  Images related by
5145 	 * parent/child relationships always share both.
5146 	 */
5147 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5148 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5149 
5150 	ret = -ENOMEM;
5151 	parent = rbd_dev_create(rbdc, parent_spec);
5152 	if (!parent)
5153 		goto out_err;
5154 
5155 	ret = rbd_dev_image_probe(parent, false);
5156 	if (ret < 0)
5157 		goto out_err;
5158 	rbd_dev->parent = parent;
5159 	atomic_set(&rbd_dev->parent_ref, 1);
5160 
5161 	return 0;
5162 out_err:
5163 	if (parent) {
5164 		rbd_dev_unparent(rbd_dev);
5165 		kfree(rbd_dev->header_name);
5166 		rbd_dev_destroy(parent);
5167 	} else {
5168 		rbd_put_client(rbdc);
5169 		rbd_spec_put(parent_spec);
5170 	}
5171 
5172 	return ret;
5173 }
5174 
5175 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5176 {
5177 	int ret;
5178 
5179 	/* Get an id and fill in device name. */
5180 
5181 	ret = rbd_dev_id_get(rbd_dev);
5182 	if (ret)
5183 		return ret;
5184 
5185 	BUILD_BUG_ON(DEV_NAME_LEN
5186 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5187 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5188 
5189 	/* Record our major and minor device numbers. */
5190 
5191 	if (!single_major) {
5192 		ret = register_blkdev(0, rbd_dev->name);
5193 		if (ret < 0)
5194 			goto err_out_id;
5195 
5196 		rbd_dev->major = ret;
5197 		rbd_dev->minor = 0;
5198 	} else {
5199 		rbd_dev->major = rbd_major;
5200 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5201 	}
5202 
5203 	/* Set up the blkdev mapping. */
5204 
5205 	ret = rbd_init_disk(rbd_dev);
5206 	if (ret)
5207 		goto err_out_blkdev;
5208 
5209 	ret = rbd_dev_mapping_set(rbd_dev);
5210 	if (ret)
5211 		goto err_out_disk;
5212 
5213 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5214 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5215 
5216 	ret = rbd_bus_add_dev(rbd_dev);
5217 	if (ret)
5218 		goto err_out_mapping;
5219 
5220 	/* Everything's ready.  Announce the disk to the world. */
5221 
5222 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5223 	add_disk(rbd_dev->disk);
5224 
5225 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5226 		(unsigned long long) rbd_dev->mapping.size);
5227 
5228 	return ret;
5229 
5230 err_out_mapping:
5231 	rbd_dev_mapping_clear(rbd_dev);
5232 err_out_disk:
5233 	rbd_free_disk(rbd_dev);
5234 err_out_blkdev:
5235 	if (!single_major)
5236 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5237 err_out_id:
5238 	rbd_dev_id_put(rbd_dev);
5239 	rbd_dev_mapping_clear(rbd_dev);
5240 
5241 	return ret;
5242 }
5243 
5244 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5245 {
5246 	struct rbd_spec *spec = rbd_dev->spec;
5247 	size_t size;
5248 
5249 	/* Record the header object name for this rbd image. */
5250 
5251 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5252 
5253 	if (rbd_dev->image_format == 1)
5254 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5255 	else
5256 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5257 
5258 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5259 	if (!rbd_dev->header_name)
5260 		return -ENOMEM;
5261 
5262 	if (rbd_dev->image_format == 1)
5263 		sprintf(rbd_dev->header_name, "%s%s",
5264 			spec->image_name, RBD_SUFFIX);
5265 	else
5266 		sprintf(rbd_dev->header_name, "%s%s",
5267 			RBD_HEADER_PREFIX, spec->image_id);
5268 	return 0;
5269 }
5270 
5271 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5272 {
5273 	rbd_dev_unprobe(rbd_dev);
5274 	kfree(rbd_dev->header_name);
5275 	rbd_dev->header_name = NULL;
5276 	rbd_dev->image_format = 0;
5277 	kfree(rbd_dev->spec->image_id);
5278 	rbd_dev->spec->image_id = NULL;
5279 
5280 	rbd_dev_destroy(rbd_dev);
5281 }
5282 
5283 /*
5284  * Probe for the existence of the header object for the given rbd
5285  * device.  If this image is the one being mapped (i.e., not a
5286  * parent), initiate a watch on its header object before using that
5287  * object to get detailed information about the rbd image.
5288  */
5289 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5290 {
5291 	int ret;
5292 
5293 	/*
5294 	 * Get the id from the image id object.  Unless there's an
5295 	 * error, rbd_dev->spec->image_id will be filled in with
5296 	 * a dynamically-allocated string, and rbd_dev->image_format
5297 	 * will be set to either 1 or 2.
5298 	 */
5299 	ret = rbd_dev_image_id(rbd_dev);
5300 	if (ret)
5301 		return ret;
5302 
5303 	ret = rbd_dev_header_name(rbd_dev);
5304 	if (ret)
5305 		goto err_out_format;
5306 
5307 	if (mapping) {
5308 		ret = rbd_dev_header_watch_sync(rbd_dev);
5309 		if (ret) {
5310 			if (ret == -ENOENT)
5311 				pr_info("image %s/%s does not exist\n",
5312 					rbd_dev->spec->pool_name,
5313 					rbd_dev->spec->image_name);
5314 			goto out_header_name;
5315 		}
5316 	}
5317 
5318 	ret = rbd_dev_header_info(rbd_dev);
5319 	if (ret)
5320 		goto err_out_watch;
5321 
5322 	/*
5323 	 * If this image is the one being mapped, we have pool name and
5324 	 * id, image name and id, and snap name - need to fill snap id.
5325 	 * Otherwise this is a parent image, identified by pool, image
5326 	 * and snap ids - need to fill in names for those ids.
5327 	 */
5328 	if (mapping)
5329 		ret = rbd_spec_fill_snap_id(rbd_dev);
5330 	else
5331 		ret = rbd_spec_fill_names(rbd_dev);
5332 	if (ret) {
5333 		if (ret == -ENOENT)
5334 			pr_info("snap %s/%s@%s does not exist\n",
5335 				rbd_dev->spec->pool_name,
5336 				rbd_dev->spec->image_name,
5337 				rbd_dev->spec->snap_name);
5338 		goto err_out_probe;
5339 	}
5340 
5341 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5342 		ret = rbd_dev_v2_parent_info(rbd_dev);
5343 		if (ret)
5344 			goto err_out_probe;
5345 
5346 		/*
5347 		 * Need to warn users if this image is the one being
5348 		 * mapped and has a parent.
5349 		 */
5350 		if (mapping && rbd_dev->parent_spec)
5351 			rbd_warn(rbd_dev,
5352 				 "WARNING: kernel layering is EXPERIMENTAL!");
5353 	}
5354 
5355 	ret = rbd_dev_probe_parent(rbd_dev);
5356 	if (ret)
5357 		goto err_out_probe;
5358 
5359 	dout("discovered format %u image, header name is %s\n",
5360 		rbd_dev->image_format, rbd_dev->header_name);
5361 	return 0;
5362 
5363 err_out_probe:
5364 	rbd_dev_unprobe(rbd_dev);
5365 err_out_watch:
5366 	if (mapping)
5367 		rbd_dev_header_unwatch_sync(rbd_dev);
5368 out_header_name:
5369 	kfree(rbd_dev->header_name);
5370 	rbd_dev->header_name = NULL;
5371 err_out_format:
5372 	rbd_dev->image_format = 0;
5373 	kfree(rbd_dev->spec->image_id);
5374 	rbd_dev->spec->image_id = NULL;
5375 	return ret;
5376 }
5377 
5378 static ssize_t do_rbd_add(struct bus_type *bus,
5379 			  const char *buf,
5380 			  size_t count)
5381 {
5382 	struct rbd_device *rbd_dev = NULL;
5383 	struct ceph_options *ceph_opts = NULL;
5384 	struct rbd_options *rbd_opts = NULL;
5385 	struct rbd_spec *spec = NULL;
5386 	struct rbd_client *rbdc;
5387 	bool read_only;
5388 	int rc = -ENOMEM;
5389 
5390 	if (!try_module_get(THIS_MODULE))
5391 		return -ENODEV;
5392 
5393 	/* parse add command */
5394 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5395 	if (rc < 0)
5396 		goto err_out_module;
5397 	read_only = rbd_opts->read_only;
5398 	kfree(rbd_opts);
5399 	rbd_opts = NULL;	/* done with this */
5400 
5401 	rbdc = rbd_get_client(ceph_opts);
5402 	if (IS_ERR(rbdc)) {
5403 		rc = PTR_ERR(rbdc);
5404 		goto err_out_args;
5405 	}
5406 
5407 	/* pick the pool */
5408 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5409 	if (rc < 0) {
5410 		if (rc == -ENOENT)
5411 			pr_info("pool %s does not exist\n", spec->pool_name);
5412 		goto err_out_client;
5413 	}
5414 	spec->pool_id = (u64)rc;
5415 
5416 	/* The ceph file layout needs to fit pool id in 32 bits */
5417 
5418 	if (spec->pool_id > (u64)U32_MAX) {
5419 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5420 				(unsigned long long)spec->pool_id, U32_MAX);
5421 		rc = -EIO;
5422 		goto err_out_client;
5423 	}
5424 
5425 	rbd_dev = rbd_dev_create(rbdc, spec);
5426 	if (!rbd_dev)
5427 		goto err_out_client;
5428 	rbdc = NULL;		/* rbd_dev now owns this */
5429 	spec = NULL;		/* rbd_dev now owns this */
5430 
5431 	rc = rbd_dev_image_probe(rbd_dev, true);
5432 	if (rc < 0)
5433 		goto err_out_rbd_dev;
5434 
5435 	/* If we are mapping a snapshot it must be marked read-only */
5436 
5437 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5438 		read_only = true;
5439 	rbd_dev->mapping.read_only = read_only;
5440 
5441 	rc = rbd_dev_device_setup(rbd_dev);
5442 	if (rc) {
5443 		/*
5444 		 * rbd_dev_header_unwatch_sync() can't be moved into
5445 		 * rbd_dev_image_release() without refactoring, see
5446 		 * commit 1f3ef78861ac.
5447 		 */
5448 		rbd_dev_header_unwatch_sync(rbd_dev);
5449 		rbd_dev_image_release(rbd_dev);
5450 		goto err_out_module;
5451 	}
5452 
5453 	return count;
5454 
5455 err_out_rbd_dev:
5456 	rbd_dev_destroy(rbd_dev);
5457 err_out_client:
5458 	rbd_put_client(rbdc);
5459 err_out_args:
5460 	rbd_spec_put(spec);
5461 err_out_module:
5462 	module_put(THIS_MODULE);
5463 
5464 	dout("Error adding device %s\n", buf);
5465 
5466 	return (ssize_t)rc;
5467 }
5468 
5469 static ssize_t rbd_add(struct bus_type *bus,
5470 		       const char *buf,
5471 		       size_t count)
5472 {
5473 	if (single_major)
5474 		return -EINVAL;
5475 
5476 	return do_rbd_add(bus, buf, count);
5477 }
5478 
5479 static ssize_t rbd_add_single_major(struct bus_type *bus,
5480 				    const char *buf,
5481 				    size_t count)
5482 {
5483 	return do_rbd_add(bus, buf, count);
5484 }
5485 
5486 static void rbd_dev_device_release(struct device *dev)
5487 {
5488 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5489 
5490 	rbd_free_disk(rbd_dev);
5491 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5492 	rbd_dev_mapping_clear(rbd_dev);
5493 	if (!single_major)
5494 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5495 	rbd_dev_id_put(rbd_dev);
5496 	rbd_dev_mapping_clear(rbd_dev);
5497 }
5498 
5499 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5500 {
5501 	while (rbd_dev->parent) {
5502 		struct rbd_device *first = rbd_dev;
5503 		struct rbd_device *second = first->parent;
5504 		struct rbd_device *third;
5505 
5506 		/*
5507 		 * Follow to the parent with no grandparent and
5508 		 * remove it.
5509 		 */
5510 		while (second && (third = second->parent)) {
5511 			first = second;
5512 			second = third;
5513 		}
5514 		rbd_assert(second);
5515 		rbd_dev_image_release(second);
5516 		first->parent = NULL;
5517 		first->parent_overlap = 0;
5518 
5519 		rbd_assert(first->parent_spec);
5520 		rbd_spec_put(first->parent_spec);
5521 		first->parent_spec = NULL;
5522 	}
5523 }
5524 
5525 static ssize_t do_rbd_remove(struct bus_type *bus,
5526 			     const char *buf,
5527 			     size_t count)
5528 {
5529 	struct rbd_device *rbd_dev = NULL;
5530 	struct list_head *tmp;
5531 	int dev_id;
5532 	unsigned long ul;
5533 	bool already = false;
5534 	int ret;
5535 
5536 	ret = kstrtoul(buf, 10, &ul);
5537 	if (ret)
5538 		return ret;
5539 
5540 	/* convert to int; abort if we lost anything in the conversion */
5541 	dev_id = (int)ul;
5542 	if (dev_id != ul)
5543 		return -EINVAL;
5544 
5545 	ret = -ENOENT;
5546 	spin_lock(&rbd_dev_list_lock);
5547 	list_for_each(tmp, &rbd_dev_list) {
5548 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5549 		if (rbd_dev->dev_id == dev_id) {
5550 			ret = 0;
5551 			break;
5552 		}
5553 	}
5554 	if (!ret) {
5555 		spin_lock_irq(&rbd_dev->lock);
5556 		if (rbd_dev->open_count)
5557 			ret = -EBUSY;
5558 		else
5559 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5560 							&rbd_dev->flags);
5561 		spin_unlock_irq(&rbd_dev->lock);
5562 	}
5563 	spin_unlock(&rbd_dev_list_lock);
5564 	if (ret < 0 || already)
5565 		return ret;
5566 
5567 	rbd_dev_header_unwatch_sync(rbd_dev);
5568 	/*
5569 	 * flush remaining watch callbacks - these must be complete
5570 	 * before the osd_client is shutdown
5571 	 */
5572 	dout("%s: flushing notifies", __func__);
5573 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5574 
5575 	/*
5576 	 * Don't free anything from rbd_dev->disk until after all
5577 	 * notifies are completely processed. Otherwise
5578 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5579 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5580 	 */
5581 	rbd_bus_del_dev(rbd_dev);
5582 	rbd_dev_image_release(rbd_dev);
5583 	module_put(THIS_MODULE);
5584 
5585 	return count;
5586 }
5587 
5588 static ssize_t rbd_remove(struct bus_type *bus,
5589 			  const char *buf,
5590 			  size_t count)
5591 {
5592 	if (single_major)
5593 		return -EINVAL;
5594 
5595 	return do_rbd_remove(bus, buf, count);
5596 }
5597 
5598 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5599 				       const char *buf,
5600 				       size_t count)
5601 {
5602 	return do_rbd_remove(bus, buf, count);
5603 }
5604 
5605 /*
5606  * create control files in sysfs
5607  * /sys/bus/rbd/...
5608  */
5609 static int rbd_sysfs_init(void)
5610 {
5611 	int ret;
5612 
5613 	ret = device_register(&rbd_root_dev);
5614 	if (ret < 0)
5615 		return ret;
5616 
5617 	ret = bus_register(&rbd_bus_type);
5618 	if (ret < 0)
5619 		device_unregister(&rbd_root_dev);
5620 
5621 	return ret;
5622 }
5623 
5624 static void rbd_sysfs_cleanup(void)
5625 {
5626 	bus_unregister(&rbd_bus_type);
5627 	device_unregister(&rbd_root_dev);
5628 }
5629 
5630 static int rbd_slab_init(void)
5631 {
5632 	rbd_assert(!rbd_img_request_cache);
5633 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5634 					sizeof (struct rbd_img_request),
5635 					__alignof__(struct rbd_img_request),
5636 					0, NULL);
5637 	if (!rbd_img_request_cache)
5638 		return -ENOMEM;
5639 
5640 	rbd_assert(!rbd_obj_request_cache);
5641 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5642 					sizeof (struct rbd_obj_request),
5643 					__alignof__(struct rbd_obj_request),
5644 					0, NULL);
5645 	if (!rbd_obj_request_cache)
5646 		goto out_err;
5647 
5648 	rbd_assert(!rbd_segment_name_cache);
5649 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5650 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5651 	if (rbd_segment_name_cache)
5652 		return 0;
5653 out_err:
5654 	if (rbd_obj_request_cache) {
5655 		kmem_cache_destroy(rbd_obj_request_cache);
5656 		rbd_obj_request_cache = NULL;
5657 	}
5658 
5659 	kmem_cache_destroy(rbd_img_request_cache);
5660 	rbd_img_request_cache = NULL;
5661 
5662 	return -ENOMEM;
5663 }
5664 
5665 static void rbd_slab_exit(void)
5666 {
5667 	rbd_assert(rbd_segment_name_cache);
5668 	kmem_cache_destroy(rbd_segment_name_cache);
5669 	rbd_segment_name_cache = NULL;
5670 
5671 	rbd_assert(rbd_obj_request_cache);
5672 	kmem_cache_destroy(rbd_obj_request_cache);
5673 	rbd_obj_request_cache = NULL;
5674 
5675 	rbd_assert(rbd_img_request_cache);
5676 	kmem_cache_destroy(rbd_img_request_cache);
5677 	rbd_img_request_cache = NULL;
5678 }
5679 
5680 static int __init rbd_init(void)
5681 {
5682 	int rc;
5683 
5684 	if (!libceph_compatible(NULL)) {
5685 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5686 		return -EINVAL;
5687 	}
5688 
5689 	rc = rbd_slab_init();
5690 	if (rc)
5691 		return rc;
5692 
5693 	/*
5694 	 * The number of active work items is limited by the number of
5695 	 * rbd devices * queue depth, so leave @max_active at default.
5696 	 */
5697 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5698 	if (!rbd_wq) {
5699 		rc = -ENOMEM;
5700 		goto err_out_slab;
5701 	}
5702 
5703 	if (single_major) {
5704 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5705 		if (rbd_major < 0) {
5706 			rc = rbd_major;
5707 			goto err_out_wq;
5708 		}
5709 	}
5710 
5711 	rc = rbd_sysfs_init();
5712 	if (rc)
5713 		goto err_out_blkdev;
5714 
5715 	if (single_major)
5716 		pr_info("loaded (major %d)\n", rbd_major);
5717 	else
5718 		pr_info("loaded\n");
5719 
5720 	return 0;
5721 
5722 err_out_blkdev:
5723 	if (single_major)
5724 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5725 err_out_wq:
5726 	destroy_workqueue(rbd_wq);
5727 err_out_slab:
5728 	rbd_slab_exit();
5729 	return rc;
5730 }
5731 
5732 static void __exit rbd_exit(void)
5733 {
5734 	ida_destroy(&rbd_dev_id_ida);
5735 	rbd_sysfs_cleanup();
5736 	if (single_major)
5737 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5738 	destroy_workqueue(rbd_wq);
5739 	rbd_slab_exit();
5740 }
5741 
5742 module_init(rbd_init);
5743 module_exit(rbd_exit);
5744 
5745 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5746 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5747 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5748 /* following authorship retained from original osdblk.c */
5749 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5750 
5751 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5752 MODULE_LICENSE("GPL");
5753