1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 119 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 120 121 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 122 RBD_FEATURE_STRIPINGV2 | \ 123 RBD_FEATURE_EXCLUSIVE_LOCK | \ 124 RBD_FEATURE_DATA_POOL | \ 125 RBD_FEATURE_OPERATIONS) 126 127 /* Features supported by this (client software) implementation. */ 128 129 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 130 131 /* 132 * An RBD device name will be "rbd#", where the "rbd" comes from 133 * RBD_DRV_NAME above, and # is a unique integer identifier. 134 */ 135 #define DEV_NAME_LEN 32 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 u64 stripe_unit; 145 u64 stripe_count; 146 s64 data_pool_id; 147 u64 features; /* Might be changeable someday? */ 148 149 /* The remaining fields need to be updated occasionally */ 150 u64 image_size; 151 struct ceph_snap_context *snapc; 152 char *snap_names; /* format 1 only */ 153 u64 *snap_sizes; /* format 1 only */ 154 }; 155 156 /* 157 * An rbd image specification. 158 * 159 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 160 * identify an image. Each rbd_dev structure includes a pointer to 161 * an rbd_spec structure that encapsulates this identity. 162 * 163 * Each of the id's in an rbd_spec has an associated name. For a 164 * user-mapped image, the names are supplied and the id's associated 165 * with them are looked up. For a layered image, a parent image is 166 * defined by the tuple, and the names are looked up. 167 * 168 * An rbd_dev structure contains a parent_spec pointer which is 169 * non-null if the image it represents is a child in a layered 170 * image. This pointer will refer to the rbd_spec structure used 171 * by the parent rbd_dev for its own identity (i.e., the structure 172 * is shared between the parent and child). 173 * 174 * Since these structures are populated once, during the discovery 175 * phase of image construction, they are effectively immutable so 176 * we make no effort to synchronize access to them. 177 * 178 * Note that code herein does not assume the image name is known (it 179 * could be a null pointer). 180 */ 181 struct rbd_spec { 182 u64 pool_id; 183 const char *pool_name; 184 const char *pool_ns; /* NULL if default, never "" */ 185 186 const char *image_id; 187 const char *image_name; 188 189 u64 snap_id; 190 const char *snap_name; 191 192 struct kref kref; 193 }; 194 195 /* 196 * an instance of the client. multiple devices may share an rbd client. 197 */ 198 struct rbd_client { 199 struct ceph_client *client; 200 struct kref kref; 201 struct list_head node; 202 }; 203 204 struct rbd_img_request; 205 206 enum obj_request_type { 207 OBJ_REQUEST_NODATA = 1, 208 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 209 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 210 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 211 }; 212 213 enum obj_operation_type { 214 OBJ_OP_READ = 1, 215 OBJ_OP_WRITE, 216 OBJ_OP_DISCARD, 217 }; 218 219 /* 220 * Writes go through the following state machine to deal with 221 * layering: 222 * 223 * need copyup 224 * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP 225 * | ^ | 226 * v \------------------------------/ 227 * done 228 * ^ 229 * | 230 * RBD_OBJ_WRITE_FLAT 231 * 232 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 233 * there is a parent or not. 234 */ 235 enum rbd_obj_write_state { 236 RBD_OBJ_WRITE_FLAT = 1, 237 RBD_OBJ_WRITE_GUARD, 238 RBD_OBJ_WRITE_COPYUP, 239 }; 240 241 struct rbd_obj_request { 242 struct ceph_object_extent ex; 243 union { 244 bool tried_parent; /* for reads */ 245 enum rbd_obj_write_state write_state; /* for writes */ 246 }; 247 248 struct rbd_img_request *img_request; 249 struct ceph_file_extent *img_extents; 250 u32 num_img_extents; 251 252 union { 253 struct ceph_bio_iter bio_pos; 254 struct { 255 struct ceph_bvec_iter bvec_pos; 256 u32 bvec_count; 257 u32 bvec_idx; 258 }; 259 }; 260 struct bio_vec *copyup_bvecs; 261 u32 copyup_bvec_count; 262 263 struct ceph_osd_request *osd_req; 264 265 u64 xferred; /* bytes transferred */ 266 int result; 267 268 struct kref kref; 269 }; 270 271 enum img_req_flags { 272 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 273 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 274 }; 275 276 struct rbd_img_request { 277 struct rbd_device *rbd_dev; 278 enum obj_operation_type op_type; 279 enum obj_request_type data_type; 280 unsigned long flags; 281 union { 282 u64 snap_id; /* for reads */ 283 struct ceph_snap_context *snapc; /* for writes */ 284 }; 285 union { 286 struct request *rq; /* block request */ 287 struct rbd_obj_request *obj_request; /* obj req initiator */ 288 }; 289 spinlock_t completion_lock; 290 u64 xferred;/* aggregate bytes transferred */ 291 int result; /* first nonzero obj_request result */ 292 293 struct list_head object_extents; /* obj_req.ex structs */ 294 u32 obj_request_count; 295 u32 pending_count; 296 297 struct kref kref; 298 }; 299 300 #define for_each_obj_request(ireq, oreq) \ 301 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 302 #define for_each_obj_request_safe(ireq, oreq, n) \ 303 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 304 305 enum rbd_watch_state { 306 RBD_WATCH_STATE_UNREGISTERED, 307 RBD_WATCH_STATE_REGISTERED, 308 RBD_WATCH_STATE_ERROR, 309 }; 310 311 enum rbd_lock_state { 312 RBD_LOCK_STATE_UNLOCKED, 313 RBD_LOCK_STATE_LOCKED, 314 RBD_LOCK_STATE_RELEASING, 315 }; 316 317 /* WatchNotify::ClientId */ 318 struct rbd_client_id { 319 u64 gid; 320 u64 handle; 321 }; 322 323 struct rbd_mapping { 324 u64 size; 325 u64 features; 326 }; 327 328 /* 329 * a single device 330 */ 331 struct rbd_device { 332 int dev_id; /* blkdev unique id */ 333 334 int major; /* blkdev assigned major */ 335 int minor; 336 struct gendisk *disk; /* blkdev's gendisk and rq */ 337 338 u32 image_format; /* Either 1 or 2 */ 339 struct rbd_client *rbd_client; 340 341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 342 343 spinlock_t lock; /* queue, flags, open_count */ 344 345 struct rbd_image_header header; 346 unsigned long flags; /* possibly lock protected */ 347 struct rbd_spec *spec; 348 struct rbd_options *opts; 349 char *config_info; /* add{,_single_major} string */ 350 351 struct ceph_object_id header_oid; 352 struct ceph_object_locator header_oloc; 353 354 struct ceph_file_layout layout; /* used for all rbd requests */ 355 356 struct mutex watch_mutex; 357 enum rbd_watch_state watch_state; 358 struct ceph_osd_linger_request *watch_handle; 359 u64 watch_cookie; 360 struct delayed_work watch_dwork; 361 362 struct rw_semaphore lock_rwsem; 363 enum rbd_lock_state lock_state; 364 char lock_cookie[32]; 365 struct rbd_client_id owner_cid; 366 struct work_struct acquired_lock_work; 367 struct work_struct released_lock_work; 368 struct delayed_work lock_dwork; 369 struct work_struct unlock_work; 370 wait_queue_head_t lock_waitq; 371 372 struct workqueue_struct *task_wq; 373 374 struct rbd_spec *parent_spec; 375 u64 parent_overlap; 376 atomic_t parent_ref; 377 struct rbd_device *parent; 378 379 /* Block layer tags. */ 380 struct blk_mq_tag_set tag_set; 381 382 /* protects updating the header */ 383 struct rw_semaphore header_rwsem; 384 385 struct rbd_mapping mapping; 386 387 struct list_head node; 388 389 /* sysfs related */ 390 struct device dev; 391 unsigned long open_count; /* protected by lock */ 392 }; 393 394 /* 395 * Flag bits for rbd_dev->flags: 396 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 397 * by rbd_dev->lock 398 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 399 */ 400 enum rbd_dev_flags { 401 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 402 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 403 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 404 }; 405 406 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 407 408 static LIST_HEAD(rbd_dev_list); /* devices */ 409 static DEFINE_SPINLOCK(rbd_dev_list_lock); 410 411 static LIST_HEAD(rbd_client_list); /* clients */ 412 static DEFINE_SPINLOCK(rbd_client_list_lock); 413 414 /* Slab caches for frequently-allocated structures */ 415 416 static struct kmem_cache *rbd_img_request_cache; 417 static struct kmem_cache *rbd_obj_request_cache; 418 419 static int rbd_major; 420 static DEFINE_IDA(rbd_dev_id_ida); 421 422 static struct workqueue_struct *rbd_wq; 423 424 /* 425 * single-major requires >= 0.75 version of userspace rbd utility. 426 */ 427 static bool single_major = true; 428 module_param(single_major, bool, 0444); 429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 430 431 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 432 size_t count); 433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 434 size_t count); 435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 436 size_t count); 437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 438 size_t count); 439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 440 441 static int rbd_dev_id_to_minor(int dev_id) 442 { 443 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 444 } 445 446 static int minor_to_rbd_dev_id(int minor) 447 { 448 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 449 } 450 451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 452 { 453 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 454 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 455 } 456 457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 458 { 459 bool is_lock_owner; 460 461 down_read(&rbd_dev->lock_rwsem); 462 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 463 up_read(&rbd_dev->lock_rwsem); 464 return is_lock_owner; 465 } 466 467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 468 { 469 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 470 } 471 472 static BUS_ATTR(add, 0200, NULL, rbd_add); 473 static BUS_ATTR(remove, 0200, NULL, rbd_remove); 474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major); 475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major); 476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL); 477 478 static struct attribute *rbd_bus_attrs[] = { 479 &bus_attr_add.attr, 480 &bus_attr_remove.attr, 481 &bus_attr_add_single_major.attr, 482 &bus_attr_remove_single_major.attr, 483 &bus_attr_supported_features.attr, 484 NULL, 485 }; 486 487 static umode_t rbd_bus_is_visible(struct kobject *kobj, 488 struct attribute *attr, int index) 489 { 490 if (!single_major && 491 (attr == &bus_attr_add_single_major.attr || 492 attr == &bus_attr_remove_single_major.attr)) 493 return 0; 494 495 return attr->mode; 496 } 497 498 static const struct attribute_group rbd_bus_group = { 499 .attrs = rbd_bus_attrs, 500 .is_visible = rbd_bus_is_visible, 501 }; 502 __ATTRIBUTE_GROUPS(rbd_bus); 503 504 static struct bus_type rbd_bus_type = { 505 .name = "rbd", 506 .bus_groups = rbd_bus_groups, 507 }; 508 509 static void rbd_root_dev_release(struct device *dev) 510 { 511 } 512 513 static struct device rbd_root_dev = { 514 .init_name = "rbd", 515 .release = rbd_root_dev_release, 516 }; 517 518 static __printf(2, 3) 519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 520 { 521 struct va_format vaf; 522 va_list args; 523 524 va_start(args, fmt); 525 vaf.fmt = fmt; 526 vaf.va = &args; 527 528 if (!rbd_dev) 529 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 530 else if (rbd_dev->disk) 531 printk(KERN_WARNING "%s: %s: %pV\n", 532 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 533 else if (rbd_dev->spec && rbd_dev->spec->image_name) 534 printk(KERN_WARNING "%s: image %s: %pV\n", 535 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 536 else if (rbd_dev->spec && rbd_dev->spec->image_id) 537 printk(KERN_WARNING "%s: id %s: %pV\n", 538 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 539 else /* punt */ 540 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 541 RBD_DRV_NAME, rbd_dev, &vaf); 542 va_end(args); 543 } 544 545 #ifdef RBD_DEBUG 546 #define rbd_assert(expr) \ 547 if (unlikely(!(expr))) { \ 548 printk(KERN_ERR "\nAssertion failure in %s() " \ 549 "at line %d:\n\n" \ 550 "\trbd_assert(%s);\n\n", \ 551 __func__, __LINE__, #expr); \ 552 BUG(); \ 553 } 554 #else /* !RBD_DEBUG */ 555 # define rbd_assert(expr) ((void) 0) 556 #endif /* !RBD_DEBUG */ 557 558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 559 560 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 562 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 565 u64 snap_id); 566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 567 u8 *order, u64 *snap_size); 568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 569 u64 *snap_features); 570 571 static int rbd_open(struct block_device *bdev, fmode_t mode) 572 { 573 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 574 bool removing = false; 575 576 spin_lock_irq(&rbd_dev->lock); 577 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 578 removing = true; 579 else 580 rbd_dev->open_count++; 581 spin_unlock_irq(&rbd_dev->lock); 582 if (removing) 583 return -ENOENT; 584 585 (void) get_device(&rbd_dev->dev); 586 587 return 0; 588 } 589 590 static void rbd_release(struct gendisk *disk, fmode_t mode) 591 { 592 struct rbd_device *rbd_dev = disk->private_data; 593 unsigned long open_count_before; 594 595 spin_lock_irq(&rbd_dev->lock); 596 open_count_before = rbd_dev->open_count--; 597 spin_unlock_irq(&rbd_dev->lock); 598 rbd_assert(open_count_before > 0); 599 600 put_device(&rbd_dev->dev); 601 } 602 603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 604 { 605 int ro; 606 607 if (get_user(ro, (int __user *)arg)) 608 return -EFAULT; 609 610 /* Snapshots can't be marked read-write */ 611 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 612 return -EROFS; 613 614 /* Let blkdev_roset() handle it */ 615 return -ENOTTY; 616 } 617 618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 619 unsigned int cmd, unsigned long arg) 620 { 621 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 622 int ret; 623 624 switch (cmd) { 625 case BLKROSET: 626 ret = rbd_ioctl_set_ro(rbd_dev, arg); 627 break; 628 default: 629 ret = -ENOTTY; 630 } 631 632 return ret; 633 } 634 635 #ifdef CONFIG_COMPAT 636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 637 unsigned int cmd, unsigned long arg) 638 { 639 return rbd_ioctl(bdev, mode, cmd, arg); 640 } 641 #endif /* CONFIG_COMPAT */ 642 643 static const struct block_device_operations rbd_bd_ops = { 644 .owner = THIS_MODULE, 645 .open = rbd_open, 646 .release = rbd_release, 647 .ioctl = rbd_ioctl, 648 #ifdef CONFIG_COMPAT 649 .compat_ioctl = rbd_compat_ioctl, 650 #endif 651 }; 652 653 /* 654 * Initialize an rbd client instance. Success or not, this function 655 * consumes ceph_opts. Caller holds client_mutex. 656 */ 657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 658 { 659 struct rbd_client *rbdc; 660 int ret = -ENOMEM; 661 662 dout("%s:\n", __func__); 663 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 664 if (!rbdc) 665 goto out_opt; 666 667 kref_init(&rbdc->kref); 668 INIT_LIST_HEAD(&rbdc->node); 669 670 rbdc->client = ceph_create_client(ceph_opts, rbdc); 671 if (IS_ERR(rbdc->client)) 672 goto out_rbdc; 673 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 674 675 ret = ceph_open_session(rbdc->client); 676 if (ret < 0) 677 goto out_client; 678 679 spin_lock(&rbd_client_list_lock); 680 list_add_tail(&rbdc->node, &rbd_client_list); 681 spin_unlock(&rbd_client_list_lock); 682 683 dout("%s: rbdc %p\n", __func__, rbdc); 684 685 return rbdc; 686 out_client: 687 ceph_destroy_client(rbdc->client); 688 out_rbdc: 689 kfree(rbdc); 690 out_opt: 691 if (ceph_opts) 692 ceph_destroy_options(ceph_opts); 693 dout("%s: error %d\n", __func__, ret); 694 695 return ERR_PTR(ret); 696 } 697 698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 699 { 700 kref_get(&rbdc->kref); 701 702 return rbdc; 703 } 704 705 /* 706 * Find a ceph client with specific addr and configuration. If 707 * found, bump its reference count. 708 */ 709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 710 { 711 struct rbd_client *client_node; 712 bool found = false; 713 714 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 715 return NULL; 716 717 spin_lock(&rbd_client_list_lock); 718 list_for_each_entry(client_node, &rbd_client_list, node) { 719 if (!ceph_compare_options(ceph_opts, client_node->client)) { 720 __rbd_get_client(client_node); 721 722 found = true; 723 break; 724 } 725 } 726 spin_unlock(&rbd_client_list_lock); 727 728 return found ? client_node : NULL; 729 } 730 731 /* 732 * (Per device) rbd map options 733 */ 734 enum { 735 Opt_queue_depth, 736 Opt_lock_timeout, 737 Opt_last_int, 738 /* int args above */ 739 Opt_pool_ns, 740 Opt_last_string, 741 /* string args above */ 742 Opt_read_only, 743 Opt_read_write, 744 Opt_lock_on_read, 745 Opt_exclusive, 746 Opt_notrim, 747 Opt_err 748 }; 749 750 static match_table_t rbd_opts_tokens = { 751 {Opt_queue_depth, "queue_depth=%d"}, 752 {Opt_lock_timeout, "lock_timeout=%d"}, 753 /* int args above */ 754 {Opt_pool_ns, "_pool_ns=%s"}, 755 /* string args above */ 756 {Opt_read_only, "read_only"}, 757 {Opt_read_only, "ro"}, /* Alternate spelling */ 758 {Opt_read_write, "read_write"}, 759 {Opt_read_write, "rw"}, /* Alternate spelling */ 760 {Opt_lock_on_read, "lock_on_read"}, 761 {Opt_exclusive, "exclusive"}, 762 {Opt_notrim, "notrim"}, 763 {Opt_err, NULL} 764 }; 765 766 struct rbd_options { 767 int queue_depth; 768 unsigned long lock_timeout; 769 bool read_only; 770 bool lock_on_read; 771 bool exclusive; 772 bool trim; 773 }; 774 775 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 776 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 777 #define RBD_READ_ONLY_DEFAULT false 778 #define RBD_LOCK_ON_READ_DEFAULT false 779 #define RBD_EXCLUSIVE_DEFAULT false 780 #define RBD_TRIM_DEFAULT true 781 782 struct parse_rbd_opts_ctx { 783 struct rbd_spec *spec; 784 struct rbd_options *opts; 785 }; 786 787 static int parse_rbd_opts_token(char *c, void *private) 788 { 789 struct parse_rbd_opts_ctx *pctx = private; 790 substring_t argstr[MAX_OPT_ARGS]; 791 int token, intval, ret; 792 793 token = match_token(c, rbd_opts_tokens, argstr); 794 if (token < Opt_last_int) { 795 ret = match_int(&argstr[0], &intval); 796 if (ret < 0) { 797 pr_err("bad option arg (not int) at '%s'\n", c); 798 return ret; 799 } 800 dout("got int token %d val %d\n", token, intval); 801 } else if (token > Opt_last_int && token < Opt_last_string) { 802 dout("got string token %d val %s\n", token, argstr[0].from); 803 } else { 804 dout("got token %d\n", token); 805 } 806 807 switch (token) { 808 case Opt_queue_depth: 809 if (intval < 1) { 810 pr_err("queue_depth out of range\n"); 811 return -EINVAL; 812 } 813 pctx->opts->queue_depth = intval; 814 break; 815 case Opt_lock_timeout: 816 /* 0 is "wait forever" (i.e. infinite timeout) */ 817 if (intval < 0 || intval > INT_MAX / 1000) { 818 pr_err("lock_timeout out of range\n"); 819 return -EINVAL; 820 } 821 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000); 822 break; 823 case Opt_pool_ns: 824 kfree(pctx->spec->pool_ns); 825 pctx->spec->pool_ns = match_strdup(argstr); 826 if (!pctx->spec->pool_ns) 827 return -ENOMEM; 828 break; 829 case Opt_read_only: 830 pctx->opts->read_only = true; 831 break; 832 case Opt_read_write: 833 pctx->opts->read_only = false; 834 break; 835 case Opt_lock_on_read: 836 pctx->opts->lock_on_read = true; 837 break; 838 case Opt_exclusive: 839 pctx->opts->exclusive = true; 840 break; 841 case Opt_notrim: 842 pctx->opts->trim = false; 843 break; 844 default: 845 /* libceph prints "bad option" msg */ 846 return -EINVAL; 847 } 848 849 return 0; 850 } 851 852 static char* obj_op_name(enum obj_operation_type op_type) 853 { 854 switch (op_type) { 855 case OBJ_OP_READ: 856 return "read"; 857 case OBJ_OP_WRITE: 858 return "write"; 859 case OBJ_OP_DISCARD: 860 return "discard"; 861 default: 862 return "???"; 863 } 864 } 865 866 /* 867 * Destroy ceph client 868 * 869 * Caller must hold rbd_client_list_lock. 870 */ 871 static void rbd_client_release(struct kref *kref) 872 { 873 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 874 875 dout("%s: rbdc %p\n", __func__, rbdc); 876 spin_lock(&rbd_client_list_lock); 877 list_del(&rbdc->node); 878 spin_unlock(&rbd_client_list_lock); 879 880 ceph_destroy_client(rbdc->client); 881 kfree(rbdc); 882 } 883 884 /* 885 * Drop reference to ceph client node. If it's not referenced anymore, release 886 * it. 887 */ 888 static void rbd_put_client(struct rbd_client *rbdc) 889 { 890 if (rbdc) 891 kref_put(&rbdc->kref, rbd_client_release); 892 } 893 894 static int wait_for_latest_osdmap(struct ceph_client *client) 895 { 896 u64 newest_epoch; 897 int ret; 898 899 ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch); 900 if (ret) 901 return ret; 902 903 if (client->osdc.osdmap->epoch >= newest_epoch) 904 return 0; 905 906 ceph_osdc_maybe_request_map(&client->osdc); 907 return ceph_monc_wait_osdmap(&client->monc, newest_epoch, 908 client->options->mount_timeout); 909 } 910 911 /* 912 * Get a ceph client with specific addr and configuration, if one does 913 * not exist create it. Either way, ceph_opts is consumed by this 914 * function. 915 */ 916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 917 { 918 struct rbd_client *rbdc; 919 int ret; 920 921 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 922 rbdc = rbd_client_find(ceph_opts); 923 if (rbdc) { 924 ceph_destroy_options(ceph_opts); 925 926 /* 927 * Using an existing client. Make sure ->pg_pools is up to 928 * date before we look up the pool id in do_rbd_add(). 929 */ 930 ret = wait_for_latest_osdmap(rbdc->client); 931 if (ret) { 932 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 933 rbd_put_client(rbdc); 934 rbdc = ERR_PTR(ret); 935 } 936 } else { 937 rbdc = rbd_client_create(ceph_opts); 938 } 939 mutex_unlock(&client_mutex); 940 941 return rbdc; 942 } 943 944 static bool rbd_image_format_valid(u32 image_format) 945 { 946 return image_format == 1 || image_format == 2; 947 } 948 949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 950 { 951 size_t size; 952 u32 snap_count; 953 954 /* The header has to start with the magic rbd header text */ 955 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 956 return false; 957 958 /* The bio layer requires at least sector-sized I/O */ 959 960 if (ondisk->options.order < SECTOR_SHIFT) 961 return false; 962 963 /* If we use u64 in a few spots we may be able to loosen this */ 964 965 if (ondisk->options.order > 8 * sizeof (int) - 1) 966 return false; 967 968 /* 969 * The size of a snapshot header has to fit in a size_t, and 970 * that limits the number of snapshots. 971 */ 972 snap_count = le32_to_cpu(ondisk->snap_count); 973 size = SIZE_MAX - sizeof (struct ceph_snap_context); 974 if (snap_count > size / sizeof (__le64)) 975 return false; 976 977 /* 978 * Not only that, but the size of the entire the snapshot 979 * header must also be representable in a size_t. 980 */ 981 size -= snap_count * sizeof (__le64); 982 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 983 return false; 984 985 return true; 986 } 987 988 /* 989 * returns the size of an object in the image 990 */ 991 static u32 rbd_obj_bytes(struct rbd_image_header *header) 992 { 993 return 1U << header->obj_order; 994 } 995 996 static void rbd_init_layout(struct rbd_device *rbd_dev) 997 { 998 if (rbd_dev->header.stripe_unit == 0 || 999 rbd_dev->header.stripe_count == 0) { 1000 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 1001 rbd_dev->header.stripe_count = 1; 1002 } 1003 1004 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 1005 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 1006 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 1007 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 1008 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 1009 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 1010 } 1011 1012 /* 1013 * Fill an rbd image header with information from the given format 1 1014 * on-disk header. 1015 */ 1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1017 struct rbd_image_header_ondisk *ondisk) 1018 { 1019 struct rbd_image_header *header = &rbd_dev->header; 1020 bool first_time = header->object_prefix == NULL; 1021 struct ceph_snap_context *snapc; 1022 char *object_prefix = NULL; 1023 char *snap_names = NULL; 1024 u64 *snap_sizes = NULL; 1025 u32 snap_count; 1026 int ret = -ENOMEM; 1027 u32 i; 1028 1029 /* Allocate this now to avoid having to handle failure below */ 1030 1031 if (first_time) { 1032 object_prefix = kstrndup(ondisk->object_prefix, 1033 sizeof(ondisk->object_prefix), 1034 GFP_KERNEL); 1035 if (!object_prefix) 1036 return -ENOMEM; 1037 } 1038 1039 /* Allocate the snapshot context and fill it in */ 1040 1041 snap_count = le32_to_cpu(ondisk->snap_count); 1042 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1043 if (!snapc) 1044 goto out_err; 1045 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1046 if (snap_count) { 1047 struct rbd_image_snap_ondisk *snaps; 1048 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1049 1050 /* We'll keep a copy of the snapshot names... */ 1051 1052 if (snap_names_len > (u64)SIZE_MAX) 1053 goto out_2big; 1054 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1055 if (!snap_names) 1056 goto out_err; 1057 1058 /* ...as well as the array of their sizes. */ 1059 snap_sizes = kmalloc_array(snap_count, 1060 sizeof(*header->snap_sizes), 1061 GFP_KERNEL); 1062 if (!snap_sizes) 1063 goto out_err; 1064 1065 /* 1066 * Copy the names, and fill in each snapshot's id 1067 * and size. 1068 * 1069 * Note that rbd_dev_v1_header_info() guarantees the 1070 * ondisk buffer we're working with has 1071 * snap_names_len bytes beyond the end of the 1072 * snapshot id array, this memcpy() is safe. 1073 */ 1074 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1075 snaps = ondisk->snaps; 1076 for (i = 0; i < snap_count; i++) { 1077 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1078 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1079 } 1080 } 1081 1082 /* We won't fail any more, fill in the header */ 1083 1084 if (first_time) { 1085 header->object_prefix = object_prefix; 1086 header->obj_order = ondisk->options.order; 1087 rbd_init_layout(rbd_dev); 1088 } else { 1089 ceph_put_snap_context(header->snapc); 1090 kfree(header->snap_names); 1091 kfree(header->snap_sizes); 1092 } 1093 1094 /* The remaining fields always get updated (when we refresh) */ 1095 1096 header->image_size = le64_to_cpu(ondisk->image_size); 1097 header->snapc = snapc; 1098 header->snap_names = snap_names; 1099 header->snap_sizes = snap_sizes; 1100 1101 return 0; 1102 out_2big: 1103 ret = -EIO; 1104 out_err: 1105 kfree(snap_sizes); 1106 kfree(snap_names); 1107 ceph_put_snap_context(snapc); 1108 kfree(object_prefix); 1109 1110 return ret; 1111 } 1112 1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1114 { 1115 const char *snap_name; 1116 1117 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1118 1119 /* Skip over names until we find the one we are looking for */ 1120 1121 snap_name = rbd_dev->header.snap_names; 1122 while (which--) 1123 snap_name += strlen(snap_name) + 1; 1124 1125 return kstrdup(snap_name, GFP_KERNEL); 1126 } 1127 1128 /* 1129 * Snapshot id comparison function for use with qsort()/bsearch(). 1130 * Note that result is for snapshots in *descending* order. 1131 */ 1132 static int snapid_compare_reverse(const void *s1, const void *s2) 1133 { 1134 u64 snap_id1 = *(u64 *)s1; 1135 u64 snap_id2 = *(u64 *)s2; 1136 1137 if (snap_id1 < snap_id2) 1138 return 1; 1139 return snap_id1 == snap_id2 ? 0 : -1; 1140 } 1141 1142 /* 1143 * Search a snapshot context to see if the given snapshot id is 1144 * present. 1145 * 1146 * Returns the position of the snapshot id in the array if it's found, 1147 * or BAD_SNAP_INDEX otherwise. 1148 * 1149 * Note: The snapshot array is in kept sorted (by the osd) in 1150 * reverse order, highest snapshot id first. 1151 */ 1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1153 { 1154 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1155 u64 *found; 1156 1157 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1158 sizeof (snap_id), snapid_compare_reverse); 1159 1160 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1161 } 1162 1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1164 u64 snap_id) 1165 { 1166 u32 which; 1167 const char *snap_name; 1168 1169 which = rbd_dev_snap_index(rbd_dev, snap_id); 1170 if (which == BAD_SNAP_INDEX) 1171 return ERR_PTR(-ENOENT); 1172 1173 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1174 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1175 } 1176 1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1178 { 1179 if (snap_id == CEPH_NOSNAP) 1180 return RBD_SNAP_HEAD_NAME; 1181 1182 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1183 if (rbd_dev->image_format == 1) 1184 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1185 1186 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1187 } 1188 1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1190 u64 *snap_size) 1191 { 1192 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1193 if (snap_id == CEPH_NOSNAP) { 1194 *snap_size = rbd_dev->header.image_size; 1195 } else if (rbd_dev->image_format == 1) { 1196 u32 which; 1197 1198 which = rbd_dev_snap_index(rbd_dev, snap_id); 1199 if (which == BAD_SNAP_INDEX) 1200 return -ENOENT; 1201 1202 *snap_size = rbd_dev->header.snap_sizes[which]; 1203 } else { 1204 u64 size = 0; 1205 int ret; 1206 1207 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1208 if (ret) 1209 return ret; 1210 1211 *snap_size = size; 1212 } 1213 return 0; 1214 } 1215 1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1217 u64 *snap_features) 1218 { 1219 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1220 if (snap_id == CEPH_NOSNAP) { 1221 *snap_features = rbd_dev->header.features; 1222 } else if (rbd_dev->image_format == 1) { 1223 *snap_features = 0; /* No features for format 1 */ 1224 } else { 1225 u64 features = 0; 1226 int ret; 1227 1228 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1229 if (ret) 1230 return ret; 1231 1232 *snap_features = features; 1233 } 1234 return 0; 1235 } 1236 1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1238 { 1239 u64 snap_id = rbd_dev->spec->snap_id; 1240 u64 size = 0; 1241 u64 features = 0; 1242 int ret; 1243 1244 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1245 if (ret) 1246 return ret; 1247 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1248 if (ret) 1249 return ret; 1250 1251 rbd_dev->mapping.size = size; 1252 rbd_dev->mapping.features = features; 1253 1254 return 0; 1255 } 1256 1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1258 { 1259 rbd_dev->mapping.size = 0; 1260 rbd_dev->mapping.features = 0; 1261 } 1262 1263 static void zero_bvec(struct bio_vec *bv) 1264 { 1265 void *buf; 1266 unsigned long flags; 1267 1268 buf = bvec_kmap_irq(bv, &flags); 1269 memset(buf, 0, bv->bv_len); 1270 flush_dcache_page(bv->bv_page); 1271 bvec_kunmap_irq(buf, &flags); 1272 } 1273 1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1275 { 1276 struct ceph_bio_iter it = *bio_pos; 1277 1278 ceph_bio_iter_advance(&it, off); 1279 ceph_bio_iter_advance_step(&it, bytes, ({ 1280 zero_bvec(&bv); 1281 })); 1282 } 1283 1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1285 { 1286 struct ceph_bvec_iter it = *bvec_pos; 1287 1288 ceph_bvec_iter_advance(&it, off); 1289 ceph_bvec_iter_advance_step(&it, bytes, ({ 1290 zero_bvec(&bv); 1291 })); 1292 } 1293 1294 /* 1295 * Zero a range in @obj_req data buffer defined by a bio (list) or 1296 * (private) bio_vec array. 1297 * 1298 * @off is relative to the start of the data buffer. 1299 */ 1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1301 u32 bytes) 1302 { 1303 switch (obj_req->img_request->data_type) { 1304 case OBJ_REQUEST_BIO: 1305 zero_bios(&obj_req->bio_pos, off, bytes); 1306 break; 1307 case OBJ_REQUEST_BVECS: 1308 case OBJ_REQUEST_OWN_BVECS: 1309 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1310 break; 1311 default: 1312 rbd_assert(0); 1313 } 1314 } 1315 1316 static void rbd_obj_request_destroy(struct kref *kref); 1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1318 { 1319 rbd_assert(obj_request != NULL); 1320 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1321 kref_read(&obj_request->kref)); 1322 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1323 } 1324 1325 static void rbd_img_request_get(struct rbd_img_request *img_request) 1326 { 1327 dout("%s: img %p (was %d)\n", __func__, img_request, 1328 kref_read(&img_request->kref)); 1329 kref_get(&img_request->kref); 1330 } 1331 1332 static void rbd_img_request_destroy(struct kref *kref); 1333 static void rbd_img_request_put(struct rbd_img_request *img_request) 1334 { 1335 rbd_assert(img_request != NULL); 1336 dout("%s: img %p (was %d)\n", __func__, img_request, 1337 kref_read(&img_request->kref)); 1338 kref_put(&img_request->kref, rbd_img_request_destroy); 1339 } 1340 1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1342 struct rbd_obj_request *obj_request) 1343 { 1344 rbd_assert(obj_request->img_request == NULL); 1345 1346 /* Image request now owns object's original reference */ 1347 obj_request->img_request = img_request; 1348 img_request->obj_request_count++; 1349 img_request->pending_count++; 1350 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1351 } 1352 1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1354 struct rbd_obj_request *obj_request) 1355 { 1356 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1357 list_del(&obj_request->ex.oe_item); 1358 rbd_assert(img_request->obj_request_count > 0); 1359 img_request->obj_request_count--; 1360 rbd_assert(obj_request->img_request == img_request); 1361 rbd_obj_request_put(obj_request); 1362 } 1363 1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1365 { 1366 struct ceph_osd_request *osd_req = obj_request->osd_req; 1367 1368 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1369 obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off, 1370 obj_request->ex.oe_len, osd_req); 1371 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1372 } 1373 1374 /* 1375 * The default/initial value for all image request flags is 0. Each 1376 * is conditionally set to 1 at image request initialization time 1377 * and currently never change thereafter. 1378 */ 1379 static void img_request_layered_set(struct rbd_img_request *img_request) 1380 { 1381 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1382 smp_mb(); 1383 } 1384 1385 static void img_request_layered_clear(struct rbd_img_request *img_request) 1386 { 1387 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1388 smp_mb(); 1389 } 1390 1391 static bool img_request_layered_test(struct rbd_img_request *img_request) 1392 { 1393 smp_mb(); 1394 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1395 } 1396 1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1398 { 1399 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1400 1401 return !obj_req->ex.oe_off && 1402 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1403 } 1404 1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1406 { 1407 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1408 1409 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1410 rbd_dev->layout.object_size; 1411 } 1412 1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1414 { 1415 return ceph_file_extents_bytes(obj_req->img_extents, 1416 obj_req->num_img_extents); 1417 } 1418 1419 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1420 { 1421 switch (img_req->op_type) { 1422 case OBJ_OP_READ: 1423 return false; 1424 case OBJ_OP_WRITE: 1425 case OBJ_OP_DISCARD: 1426 return true; 1427 default: 1428 BUG(); 1429 } 1430 } 1431 1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req); 1433 1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1435 { 1436 struct rbd_obj_request *obj_req = osd_req->r_priv; 1437 1438 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1439 osd_req->r_result, obj_req); 1440 rbd_assert(osd_req == obj_req->osd_req); 1441 1442 obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0; 1443 if (!obj_req->result && !rbd_img_is_write(obj_req->img_request)) 1444 obj_req->xferred = osd_req->r_result; 1445 else 1446 /* 1447 * Writes aren't allowed to return a data payload. In some 1448 * guarded write cases (e.g. stat + zero on an empty object) 1449 * a stat response makes it through, but we don't care. 1450 */ 1451 obj_req->xferred = 0; 1452 1453 rbd_obj_handle_request(obj_req); 1454 } 1455 1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1457 { 1458 struct ceph_osd_request *osd_req = obj_request->osd_req; 1459 1460 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1461 osd_req->r_snapid = obj_request->img_request->snap_id; 1462 } 1463 1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1465 { 1466 struct ceph_osd_request *osd_req = obj_request->osd_req; 1467 1468 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1469 ktime_get_real_ts64(&osd_req->r_mtime); 1470 osd_req->r_data_offset = obj_request->ex.oe_off; 1471 } 1472 1473 static struct ceph_osd_request * 1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops) 1475 { 1476 struct rbd_img_request *img_req = obj_req->img_request; 1477 struct rbd_device *rbd_dev = img_req->rbd_dev; 1478 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1479 struct ceph_osd_request *req; 1480 const char *name_format = rbd_dev->image_format == 1 ? 1481 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1482 1483 req = ceph_osdc_alloc_request(osdc, 1484 (rbd_img_is_write(img_req) ? img_req->snapc : NULL), 1485 num_ops, false, GFP_NOIO); 1486 if (!req) 1487 return NULL; 1488 1489 req->r_callback = rbd_osd_req_callback; 1490 req->r_priv = obj_req; 1491 1492 /* 1493 * Data objects may be stored in a separate pool, but always in 1494 * the same namespace in that pool as the header in its pool. 1495 */ 1496 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1497 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1498 1499 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1500 rbd_dev->header.object_prefix, obj_req->ex.oe_objno)) 1501 goto err_req; 1502 1503 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1504 goto err_req; 1505 1506 return req; 1507 1508 err_req: 1509 ceph_osdc_put_request(req); 1510 return NULL; 1511 } 1512 1513 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1514 { 1515 ceph_osdc_put_request(osd_req); 1516 } 1517 1518 static struct rbd_obj_request *rbd_obj_request_create(void) 1519 { 1520 struct rbd_obj_request *obj_request; 1521 1522 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1523 if (!obj_request) 1524 return NULL; 1525 1526 ceph_object_extent_init(&obj_request->ex); 1527 kref_init(&obj_request->kref); 1528 1529 dout("%s %p\n", __func__, obj_request); 1530 return obj_request; 1531 } 1532 1533 static void rbd_obj_request_destroy(struct kref *kref) 1534 { 1535 struct rbd_obj_request *obj_request; 1536 u32 i; 1537 1538 obj_request = container_of(kref, struct rbd_obj_request, kref); 1539 1540 dout("%s: obj %p\n", __func__, obj_request); 1541 1542 if (obj_request->osd_req) 1543 rbd_osd_req_destroy(obj_request->osd_req); 1544 1545 switch (obj_request->img_request->data_type) { 1546 case OBJ_REQUEST_NODATA: 1547 case OBJ_REQUEST_BIO: 1548 case OBJ_REQUEST_BVECS: 1549 break; /* Nothing to do */ 1550 case OBJ_REQUEST_OWN_BVECS: 1551 kfree(obj_request->bvec_pos.bvecs); 1552 break; 1553 default: 1554 rbd_assert(0); 1555 } 1556 1557 kfree(obj_request->img_extents); 1558 if (obj_request->copyup_bvecs) { 1559 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1560 if (obj_request->copyup_bvecs[i].bv_page) 1561 __free_page(obj_request->copyup_bvecs[i].bv_page); 1562 } 1563 kfree(obj_request->copyup_bvecs); 1564 } 1565 1566 kmem_cache_free(rbd_obj_request_cache, obj_request); 1567 } 1568 1569 /* It's OK to call this for a device with no parent */ 1570 1571 static void rbd_spec_put(struct rbd_spec *spec); 1572 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1573 { 1574 rbd_dev_remove_parent(rbd_dev); 1575 rbd_spec_put(rbd_dev->parent_spec); 1576 rbd_dev->parent_spec = NULL; 1577 rbd_dev->parent_overlap = 0; 1578 } 1579 1580 /* 1581 * Parent image reference counting is used to determine when an 1582 * image's parent fields can be safely torn down--after there are no 1583 * more in-flight requests to the parent image. When the last 1584 * reference is dropped, cleaning them up is safe. 1585 */ 1586 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1587 { 1588 int counter; 1589 1590 if (!rbd_dev->parent_spec) 1591 return; 1592 1593 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1594 if (counter > 0) 1595 return; 1596 1597 /* Last reference; clean up parent data structures */ 1598 1599 if (!counter) 1600 rbd_dev_unparent(rbd_dev); 1601 else 1602 rbd_warn(rbd_dev, "parent reference underflow"); 1603 } 1604 1605 /* 1606 * If an image has a non-zero parent overlap, get a reference to its 1607 * parent. 1608 * 1609 * Returns true if the rbd device has a parent with a non-zero 1610 * overlap and a reference for it was successfully taken, or 1611 * false otherwise. 1612 */ 1613 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1614 { 1615 int counter = 0; 1616 1617 if (!rbd_dev->parent_spec) 1618 return false; 1619 1620 down_read(&rbd_dev->header_rwsem); 1621 if (rbd_dev->parent_overlap) 1622 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1623 up_read(&rbd_dev->header_rwsem); 1624 1625 if (counter < 0) 1626 rbd_warn(rbd_dev, "parent reference overflow"); 1627 1628 return counter > 0; 1629 } 1630 1631 /* 1632 * Caller is responsible for filling in the list of object requests 1633 * that comprises the image request, and the Linux request pointer 1634 * (if there is one). 1635 */ 1636 static struct rbd_img_request *rbd_img_request_create( 1637 struct rbd_device *rbd_dev, 1638 enum obj_operation_type op_type, 1639 struct ceph_snap_context *snapc) 1640 { 1641 struct rbd_img_request *img_request; 1642 1643 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO); 1644 if (!img_request) 1645 return NULL; 1646 1647 img_request->rbd_dev = rbd_dev; 1648 img_request->op_type = op_type; 1649 if (!rbd_img_is_write(img_request)) 1650 img_request->snap_id = rbd_dev->spec->snap_id; 1651 else 1652 img_request->snapc = snapc; 1653 1654 if (rbd_dev_parent_get(rbd_dev)) 1655 img_request_layered_set(img_request); 1656 1657 spin_lock_init(&img_request->completion_lock); 1658 INIT_LIST_HEAD(&img_request->object_extents); 1659 kref_init(&img_request->kref); 1660 1661 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev, 1662 obj_op_name(op_type), img_request); 1663 return img_request; 1664 } 1665 1666 static void rbd_img_request_destroy(struct kref *kref) 1667 { 1668 struct rbd_img_request *img_request; 1669 struct rbd_obj_request *obj_request; 1670 struct rbd_obj_request *next_obj_request; 1671 1672 img_request = container_of(kref, struct rbd_img_request, kref); 1673 1674 dout("%s: img %p\n", __func__, img_request); 1675 1676 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1677 rbd_img_obj_request_del(img_request, obj_request); 1678 rbd_assert(img_request->obj_request_count == 0); 1679 1680 if (img_request_layered_test(img_request)) { 1681 img_request_layered_clear(img_request); 1682 rbd_dev_parent_put(img_request->rbd_dev); 1683 } 1684 1685 if (rbd_img_is_write(img_request)) 1686 ceph_put_snap_context(img_request->snapc); 1687 1688 kmem_cache_free(rbd_img_request_cache, img_request); 1689 } 1690 1691 static void prune_extents(struct ceph_file_extent *img_extents, 1692 u32 *num_img_extents, u64 overlap) 1693 { 1694 u32 cnt = *num_img_extents; 1695 1696 /* drop extents completely beyond the overlap */ 1697 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 1698 cnt--; 1699 1700 if (cnt) { 1701 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 1702 1703 /* trim final overlapping extent */ 1704 if (ex->fe_off + ex->fe_len > overlap) 1705 ex->fe_len = overlap - ex->fe_off; 1706 } 1707 1708 *num_img_extents = cnt; 1709 } 1710 1711 /* 1712 * Determine the byte range(s) covered by either just the object extent 1713 * or the entire object in the parent image. 1714 */ 1715 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 1716 bool entire) 1717 { 1718 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1719 int ret; 1720 1721 if (!rbd_dev->parent_overlap) 1722 return 0; 1723 1724 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 1725 entire ? 0 : obj_req->ex.oe_off, 1726 entire ? rbd_dev->layout.object_size : 1727 obj_req->ex.oe_len, 1728 &obj_req->img_extents, 1729 &obj_req->num_img_extents); 1730 if (ret) 1731 return ret; 1732 1733 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 1734 rbd_dev->parent_overlap); 1735 return 0; 1736 } 1737 1738 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which) 1739 { 1740 switch (obj_req->img_request->data_type) { 1741 case OBJ_REQUEST_BIO: 1742 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which, 1743 &obj_req->bio_pos, 1744 obj_req->ex.oe_len); 1745 break; 1746 case OBJ_REQUEST_BVECS: 1747 case OBJ_REQUEST_OWN_BVECS: 1748 rbd_assert(obj_req->bvec_pos.iter.bi_size == 1749 obj_req->ex.oe_len); 1750 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 1751 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which, 1752 &obj_req->bvec_pos); 1753 break; 1754 default: 1755 rbd_assert(0); 1756 } 1757 } 1758 1759 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req) 1760 { 1761 obj_req->osd_req = rbd_osd_req_create(obj_req, 1); 1762 if (!obj_req->osd_req) 1763 return -ENOMEM; 1764 1765 osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ, 1766 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1767 rbd_osd_req_setup_data(obj_req, 0); 1768 1769 rbd_osd_req_format_read(obj_req); 1770 return 0; 1771 } 1772 1773 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req, 1774 unsigned int which) 1775 { 1776 struct page **pages; 1777 1778 /* 1779 * The response data for a STAT call consists of: 1780 * le64 length; 1781 * struct { 1782 * le32 tv_sec; 1783 * le32 tv_nsec; 1784 * } mtime; 1785 */ 1786 pages = ceph_alloc_page_vector(1, GFP_NOIO); 1787 if (IS_ERR(pages)) 1788 return PTR_ERR(pages); 1789 1790 osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0); 1791 osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages, 1792 8 + sizeof(struct ceph_timespec), 1793 0, false, true); 1794 return 0; 1795 } 1796 1797 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req, 1798 unsigned int which) 1799 { 1800 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1801 u16 opcode; 1802 1803 osd_req_op_alloc_hint_init(obj_req->osd_req, which++, 1804 rbd_dev->layout.object_size, 1805 rbd_dev->layout.object_size); 1806 1807 if (rbd_obj_is_entire(obj_req)) 1808 opcode = CEPH_OSD_OP_WRITEFULL; 1809 else 1810 opcode = CEPH_OSD_OP_WRITE; 1811 1812 osd_req_op_extent_init(obj_req->osd_req, which, opcode, 1813 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1814 rbd_osd_req_setup_data(obj_req, which++); 1815 1816 rbd_assert(which == obj_req->osd_req->r_num_ops); 1817 rbd_osd_req_format_write(obj_req); 1818 } 1819 1820 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req) 1821 { 1822 unsigned int num_osd_ops, which = 0; 1823 int ret; 1824 1825 /* reverse map the entire object onto the parent */ 1826 ret = rbd_obj_calc_img_extents(obj_req, true); 1827 if (ret) 1828 return ret; 1829 1830 if (obj_req->num_img_extents) { 1831 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1832 num_osd_ops = 3; /* stat + setallochint + write/writefull */ 1833 } else { 1834 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1835 num_osd_ops = 2; /* setallochint + write/writefull */ 1836 } 1837 1838 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1839 if (!obj_req->osd_req) 1840 return -ENOMEM; 1841 1842 if (obj_req->num_img_extents) { 1843 ret = __rbd_obj_setup_stat(obj_req, which++); 1844 if (ret) 1845 return ret; 1846 } 1847 1848 __rbd_obj_setup_write(obj_req, which); 1849 return 0; 1850 } 1851 1852 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req, 1853 unsigned int which) 1854 { 1855 u16 opcode; 1856 1857 if (rbd_obj_is_entire(obj_req)) { 1858 if (obj_req->num_img_extents) { 1859 osd_req_op_init(obj_req->osd_req, which++, 1860 CEPH_OSD_OP_CREATE, 0); 1861 opcode = CEPH_OSD_OP_TRUNCATE; 1862 } else { 1863 osd_req_op_init(obj_req->osd_req, which++, 1864 CEPH_OSD_OP_DELETE, 0); 1865 opcode = 0; 1866 } 1867 } else if (rbd_obj_is_tail(obj_req)) { 1868 opcode = CEPH_OSD_OP_TRUNCATE; 1869 } else { 1870 opcode = CEPH_OSD_OP_ZERO; 1871 } 1872 1873 if (opcode) 1874 osd_req_op_extent_init(obj_req->osd_req, which++, opcode, 1875 obj_req->ex.oe_off, obj_req->ex.oe_len, 1876 0, 0); 1877 1878 rbd_assert(which == obj_req->osd_req->r_num_ops); 1879 rbd_osd_req_format_write(obj_req); 1880 } 1881 1882 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req) 1883 { 1884 unsigned int num_osd_ops, which = 0; 1885 int ret; 1886 1887 /* reverse map the entire object onto the parent */ 1888 ret = rbd_obj_calc_img_extents(obj_req, true); 1889 if (ret) 1890 return ret; 1891 1892 if (rbd_obj_is_entire(obj_req)) { 1893 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1894 if (obj_req->num_img_extents) 1895 num_osd_ops = 2; /* create + truncate */ 1896 else 1897 num_osd_ops = 1; /* delete */ 1898 } else { 1899 if (obj_req->num_img_extents) { 1900 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1901 num_osd_ops = 2; /* stat + truncate/zero */ 1902 } else { 1903 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1904 num_osd_ops = 1; /* truncate/zero */ 1905 } 1906 } 1907 1908 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1909 if (!obj_req->osd_req) 1910 return -ENOMEM; 1911 1912 if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) { 1913 ret = __rbd_obj_setup_stat(obj_req, which++); 1914 if (ret) 1915 return ret; 1916 } 1917 1918 __rbd_obj_setup_discard(obj_req, which); 1919 return 0; 1920 } 1921 1922 /* 1923 * For each object request in @img_req, allocate an OSD request, add 1924 * individual OSD ops and prepare them for submission. The number of 1925 * OSD ops depends on op_type and the overlap point (if any). 1926 */ 1927 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 1928 { 1929 struct rbd_obj_request *obj_req; 1930 int ret; 1931 1932 for_each_obj_request(img_req, obj_req) { 1933 switch (img_req->op_type) { 1934 case OBJ_OP_READ: 1935 ret = rbd_obj_setup_read(obj_req); 1936 break; 1937 case OBJ_OP_WRITE: 1938 ret = rbd_obj_setup_write(obj_req); 1939 break; 1940 case OBJ_OP_DISCARD: 1941 ret = rbd_obj_setup_discard(obj_req); 1942 break; 1943 default: 1944 rbd_assert(0); 1945 } 1946 if (ret) 1947 return ret; 1948 } 1949 1950 return 0; 1951 } 1952 1953 union rbd_img_fill_iter { 1954 struct ceph_bio_iter bio_iter; 1955 struct ceph_bvec_iter bvec_iter; 1956 }; 1957 1958 struct rbd_img_fill_ctx { 1959 enum obj_request_type pos_type; 1960 union rbd_img_fill_iter *pos; 1961 union rbd_img_fill_iter iter; 1962 ceph_object_extent_fn_t set_pos_fn; 1963 ceph_object_extent_fn_t count_fn; 1964 ceph_object_extent_fn_t copy_fn; 1965 }; 1966 1967 static struct ceph_object_extent *alloc_object_extent(void *arg) 1968 { 1969 struct rbd_img_request *img_req = arg; 1970 struct rbd_obj_request *obj_req; 1971 1972 obj_req = rbd_obj_request_create(); 1973 if (!obj_req) 1974 return NULL; 1975 1976 rbd_img_obj_request_add(img_req, obj_req); 1977 return &obj_req->ex; 1978 } 1979 1980 /* 1981 * While su != os && sc == 1 is technically not fancy (it's the same 1982 * layout as su == os && sc == 1), we can't use the nocopy path for it 1983 * because ->set_pos_fn() should be called only once per object. 1984 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 1985 * treat su != os && sc == 1 as fancy. 1986 */ 1987 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 1988 { 1989 return l->stripe_unit != l->object_size; 1990 } 1991 1992 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 1993 struct ceph_file_extent *img_extents, 1994 u32 num_img_extents, 1995 struct rbd_img_fill_ctx *fctx) 1996 { 1997 u32 i; 1998 int ret; 1999 2000 img_req->data_type = fctx->pos_type; 2001 2002 /* 2003 * Create object requests and set each object request's starting 2004 * position in the provided bio (list) or bio_vec array. 2005 */ 2006 fctx->iter = *fctx->pos; 2007 for (i = 0; i < num_img_extents; i++) { 2008 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2009 img_extents[i].fe_off, 2010 img_extents[i].fe_len, 2011 &img_req->object_extents, 2012 alloc_object_extent, img_req, 2013 fctx->set_pos_fn, &fctx->iter); 2014 if (ret) 2015 return ret; 2016 } 2017 2018 return __rbd_img_fill_request(img_req); 2019 } 2020 2021 /* 2022 * Map a list of image extents to a list of object extents, create the 2023 * corresponding object requests (normally each to a different object, 2024 * but not always) and add them to @img_req. For each object request, 2025 * set up its data descriptor to point to the corresponding chunk(s) of 2026 * @fctx->pos data buffer. 2027 * 2028 * Because ceph_file_to_extents() will merge adjacent object extents 2029 * together, each object request's data descriptor may point to multiple 2030 * different chunks of @fctx->pos data buffer. 2031 * 2032 * @fctx->pos data buffer is assumed to be large enough. 2033 */ 2034 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2035 struct ceph_file_extent *img_extents, 2036 u32 num_img_extents, 2037 struct rbd_img_fill_ctx *fctx) 2038 { 2039 struct rbd_device *rbd_dev = img_req->rbd_dev; 2040 struct rbd_obj_request *obj_req; 2041 u32 i; 2042 int ret; 2043 2044 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2045 !rbd_layout_is_fancy(&rbd_dev->layout)) 2046 return rbd_img_fill_request_nocopy(img_req, img_extents, 2047 num_img_extents, fctx); 2048 2049 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2050 2051 /* 2052 * Create object requests and determine ->bvec_count for each object 2053 * request. Note that ->bvec_count sum over all object requests may 2054 * be greater than the number of bio_vecs in the provided bio (list) 2055 * or bio_vec array because when mapped, those bio_vecs can straddle 2056 * stripe unit boundaries. 2057 */ 2058 fctx->iter = *fctx->pos; 2059 for (i = 0; i < num_img_extents; i++) { 2060 ret = ceph_file_to_extents(&rbd_dev->layout, 2061 img_extents[i].fe_off, 2062 img_extents[i].fe_len, 2063 &img_req->object_extents, 2064 alloc_object_extent, img_req, 2065 fctx->count_fn, &fctx->iter); 2066 if (ret) 2067 return ret; 2068 } 2069 2070 for_each_obj_request(img_req, obj_req) { 2071 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2072 sizeof(*obj_req->bvec_pos.bvecs), 2073 GFP_NOIO); 2074 if (!obj_req->bvec_pos.bvecs) 2075 return -ENOMEM; 2076 } 2077 2078 /* 2079 * Fill in each object request's private bio_vec array, splitting and 2080 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2081 */ 2082 fctx->iter = *fctx->pos; 2083 for (i = 0; i < num_img_extents; i++) { 2084 ret = ceph_iterate_extents(&rbd_dev->layout, 2085 img_extents[i].fe_off, 2086 img_extents[i].fe_len, 2087 &img_req->object_extents, 2088 fctx->copy_fn, &fctx->iter); 2089 if (ret) 2090 return ret; 2091 } 2092 2093 return __rbd_img_fill_request(img_req); 2094 } 2095 2096 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2097 u64 off, u64 len) 2098 { 2099 struct ceph_file_extent ex = { off, len }; 2100 union rbd_img_fill_iter dummy; 2101 struct rbd_img_fill_ctx fctx = { 2102 .pos_type = OBJ_REQUEST_NODATA, 2103 .pos = &dummy, 2104 }; 2105 2106 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2107 } 2108 2109 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2110 { 2111 struct rbd_obj_request *obj_req = 2112 container_of(ex, struct rbd_obj_request, ex); 2113 struct ceph_bio_iter *it = arg; 2114 2115 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2116 obj_req->bio_pos = *it; 2117 ceph_bio_iter_advance(it, bytes); 2118 } 2119 2120 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2121 { 2122 struct rbd_obj_request *obj_req = 2123 container_of(ex, struct rbd_obj_request, ex); 2124 struct ceph_bio_iter *it = arg; 2125 2126 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2127 ceph_bio_iter_advance_step(it, bytes, ({ 2128 obj_req->bvec_count++; 2129 })); 2130 2131 } 2132 2133 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2134 { 2135 struct rbd_obj_request *obj_req = 2136 container_of(ex, struct rbd_obj_request, ex); 2137 struct ceph_bio_iter *it = arg; 2138 2139 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2140 ceph_bio_iter_advance_step(it, bytes, ({ 2141 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2142 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2143 })); 2144 } 2145 2146 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2147 struct ceph_file_extent *img_extents, 2148 u32 num_img_extents, 2149 struct ceph_bio_iter *bio_pos) 2150 { 2151 struct rbd_img_fill_ctx fctx = { 2152 .pos_type = OBJ_REQUEST_BIO, 2153 .pos = (union rbd_img_fill_iter *)bio_pos, 2154 .set_pos_fn = set_bio_pos, 2155 .count_fn = count_bio_bvecs, 2156 .copy_fn = copy_bio_bvecs, 2157 }; 2158 2159 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2160 &fctx); 2161 } 2162 2163 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2164 u64 off, u64 len, struct bio *bio) 2165 { 2166 struct ceph_file_extent ex = { off, len }; 2167 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2168 2169 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2170 } 2171 2172 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2173 { 2174 struct rbd_obj_request *obj_req = 2175 container_of(ex, struct rbd_obj_request, ex); 2176 struct ceph_bvec_iter *it = arg; 2177 2178 obj_req->bvec_pos = *it; 2179 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2180 ceph_bvec_iter_advance(it, bytes); 2181 } 2182 2183 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2184 { 2185 struct rbd_obj_request *obj_req = 2186 container_of(ex, struct rbd_obj_request, ex); 2187 struct ceph_bvec_iter *it = arg; 2188 2189 ceph_bvec_iter_advance_step(it, bytes, ({ 2190 obj_req->bvec_count++; 2191 })); 2192 } 2193 2194 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2195 { 2196 struct rbd_obj_request *obj_req = 2197 container_of(ex, struct rbd_obj_request, ex); 2198 struct ceph_bvec_iter *it = arg; 2199 2200 ceph_bvec_iter_advance_step(it, bytes, ({ 2201 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2202 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2203 })); 2204 } 2205 2206 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2207 struct ceph_file_extent *img_extents, 2208 u32 num_img_extents, 2209 struct ceph_bvec_iter *bvec_pos) 2210 { 2211 struct rbd_img_fill_ctx fctx = { 2212 .pos_type = OBJ_REQUEST_BVECS, 2213 .pos = (union rbd_img_fill_iter *)bvec_pos, 2214 .set_pos_fn = set_bvec_pos, 2215 .count_fn = count_bvecs, 2216 .copy_fn = copy_bvecs, 2217 }; 2218 2219 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2220 &fctx); 2221 } 2222 2223 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2224 struct ceph_file_extent *img_extents, 2225 u32 num_img_extents, 2226 struct bio_vec *bvecs) 2227 { 2228 struct ceph_bvec_iter it = { 2229 .bvecs = bvecs, 2230 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2231 num_img_extents) }, 2232 }; 2233 2234 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2235 &it); 2236 } 2237 2238 static void rbd_img_request_submit(struct rbd_img_request *img_request) 2239 { 2240 struct rbd_obj_request *obj_request; 2241 2242 dout("%s: img %p\n", __func__, img_request); 2243 2244 rbd_img_request_get(img_request); 2245 for_each_obj_request(img_request, obj_request) 2246 rbd_obj_request_submit(obj_request); 2247 2248 rbd_img_request_put(img_request); 2249 } 2250 2251 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2252 { 2253 struct rbd_img_request *img_req = obj_req->img_request; 2254 struct rbd_img_request *child_img_req; 2255 int ret; 2256 2257 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent, 2258 OBJ_OP_READ, NULL); 2259 if (!child_img_req) 2260 return -ENOMEM; 2261 2262 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2263 child_img_req->obj_request = obj_req; 2264 2265 if (!rbd_img_is_write(img_req)) { 2266 switch (img_req->data_type) { 2267 case OBJ_REQUEST_BIO: 2268 ret = __rbd_img_fill_from_bio(child_img_req, 2269 obj_req->img_extents, 2270 obj_req->num_img_extents, 2271 &obj_req->bio_pos); 2272 break; 2273 case OBJ_REQUEST_BVECS: 2274 case OBJ_REQUEST_OWN_BVECS: 2275 ret = __rbd_img_fill_from_bvecs(child_img_req, 2276 obj_req->img_extents, 2277 obj_req->num_img_extents, 2278 &obj_req->bvec_pos); 2279 break; 2280 default: 2281 rbd_assert(0); 2282 } 2283 } else { 2284 ret = rbd_img_fill_from_bvecs(child_img_req, 2285 obj_req->img_extents, 2286 obj_req->num_img_extents, 2287 obj_req->copyup_bvecs); 2288 } 2289 if (ret) { 2290 rbd_img_request_put(child_img_req); 2291 return ret; 2292 } 2293 2294 rbd_img_request_submit(child_img_req); 2295 return 0; 2296 } 2297 2298 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req) 2299 { 2300 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2301 int ret; 2302 2303 if (obj_req->result == -ENOENT && 2304 rbd_dev->parent_overlap && !obj_req->tried_parent) { 2305 /* reverse map this object extent onto the parent */ 2306 ret = rbd_obj_calc_img_extents(obj_req, false); 2307 if (ret) { 2308 obj_req->result = ret; 2309 return true; 2310 } 2311 2312 if (obj_req->num_img_extents) { 2313 obj_req->tried_parent = true; 2314 ret = rbd_obj_read_from_parent(obj_req); 2315 if (ret) { 2316 obj_req->result = ret; 2317 return true; 2318 } 2319 return false; 2320 } 2321 } 2322 2323 /* 2324 * -ENOENT means a hole in the image -- zero-fill the entire 2325 * length of the request. A short read also implies zero-fill 2326 * to the end of the request. In both cases we update xferred 2327 * count to indicate the whole request was satisfied. 2328 */ 2329 if (obj_req->result == -ENOENT || 2330 (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) { 2331 rbd_assert(!obj_req->xferred || !obj_req->result); 2332 rbd_obj_zero_range(obj_req, obj_req->xferred, 2333 obj_req->ex.oe_len - obj_req->xferred); 2334 obj_req->result = 0; 2335 obj_req->xferred = obj_req->ex.oe_len; 2336 } 2337 2338 return true; 2339 } 2340 2341 /* 2342 * copyup_bvecs pages are never highmem pages 2343 */ 2344 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2345 { 2346 struct ceph_bvec_iter it = { 2347 .bvecs = bvecs, 2348 .iter = { .bi_size = bytes }, 2349 }; 2350 2351 ceph_bvec_iter_advance_step(&it, bytes, ({ 2352 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 2353 bv.bv_len)) 2354 return false; 2355 })); 2356 return true; 2357 } 2358 2359 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes) 2360 { 2361 unsigned int num_osd_ops = obj_req->osd_req->r_num_ops; 2362 int ret; 2363 2364 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 2365 rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT); 2366 rbd_osd_req_destroy(obj_req->osd_req); 2367 2368 /* 2369 * Create a copyup request with the same number of OSD ops as 2370 * the original request. The original request was stat + op(s), 2371 * the new copyup request will be copyup + the same op(s). 2372 */ 2373 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 2374 if (!obj_req->osd_req) 2375 return -ENOMEM; 2376 2377 ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd", 2378 "copyup"); 2379 if (ret) 2380 return ret; 2381 2382 /* 2383 * Only send non-zero copyup data to save some I/O and network 2384 * bandwidth -- zero copyup data is equivalent to the object not 2385 * existing. 2386 */ 2387 if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) { 2388 dout("%s obj_req %p detected zeroes\n", __func__, obj_req); 2389 bytes = 0; 2390 } 2391 osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0, 2392 obj_req->copyup_bvecs, 2393 obj_req->copyup_bvec_count, 2394 bytes); 2395 2396 switch (obj_req->img_request->op_type) { 2397 case OBJ_OP_WRITE: 2398 __rbd_obj_setup_write(obj_req, 1); 2399 break; 2400 case OBJ_OP_DISCARD: 2401 rbd_assert(!rbd_obj_is_entire(obj_req)); 2402 __rbd_obj_setup_discard(obj_req, 1); 2403 break; 2404 default: 2405 rbd_assert(0); 2406 } 2407 2408 rbd_obj_request_submit(obj_req); 2409 return 0; 2410 } 2411 2412 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 2413 { 2414 u32 i; 2415 2416 rbd_assert(!obj_req->copyup_bvecs); 2417 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 2418 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 2419 sizeof(*obj_req->copyup_bvecs), 2420 GFP_NOIO); 2421 if (!obj_req->copyup_bvecs) 2422 return -ENOMEM; 2423 2424 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 2425 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 2426 2427 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 2428 if (!obj_req->copyup_bvecs[i].bv_page) 2429 return -ENOMEM; 2430 2431 obj_req->copyup_bvecs[i].bv_offset = 0; 2432 obj_req->copyup_bvecs[i].bv_len = len; 2433 obj_overlap -= len; 2434 } 2435 2436 rbd_assert(!obj_overlap); 2437 return 0; 2438 } 2439 2440 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req) 2441 { 2442 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2443 int ret; 2444 2445 rbd_assert(obj_req->num_img_extents); 2446 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2447 rbd_dev->parent_overlap); 2448 if (!obj_req->num_img_extents) { 2449 /* 2450 * The overlap has become 0 (most likely because the 2451 * image has been flattened). Use rbd_obj_issue_copyup() 2452 * to re-submit the original write request -- the copyup 2453 * operation itself will be a no-op, since someone must 2454 * have populated the child object while we weren't 2455 * looking. Move to WRITE_FLAT state as we'll be done 2456 * with the operation once the null copyup completes. 2457 */ 2458 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 2459 return rbd_obj_issue_copyup(obj_req, 0); 2460 } 2461 2462 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 2463 if (ret) 2464 return ret; 2465 2466 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 2467 return rbd_obj_read_from_parent(obj_req); 2468 } 2469 2470 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req) 2471 { 2472 int ret; 2473 2474 again: 2475 switch (obj_req->write_state) { 2476 case RBD_OBJ_WRITE_GUARD: 2477 rbd_assert(!obj_req->xferred); 2478 if (obj_req->result == -ENOENT) { 2479 /* 2480 * The target object doesn't exist. Read the data for 2481 * the entire target object up to the overlap point (if 2482 * any) from the parent, so we can use it for a copyup. 2483 */ 2484 ret = rbd_obj_handle_write_guard(obj_req); 2485 if (ret) { 2486 obj_req->result = ret; 2487 return true; 2488 } 2489 return false; 2490 } 2491 /* fall through */ 2492 case RBD_OBJ_WRITE_FLAT: 2493 if (!obj_req->result) 2494 /* 2495 * There is no such thing as a successful short 2496 * write -- indicate the whole request was satisfied. 2497 */ 2498 obj_req->xferred = obj_req->ex.oe_len; 2499 return true; 2500 case RBD_OBJ_WRITE_COPYUP: 2501 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 2502 if (obj_req->result) 2503 goto again; 2504 2505 rbd_assert(obj_req->xferred); 2506 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred); 2507 if (ret) { 2508 obj_req->result = ret; 2509 return true; 2510 } 2511 return false; 2512 default: 2513 BUG(); 2514 } 2515 } 2516 2517 /* 2518 * Returns true if @obj_req is completed, or false otherwise. 2519 */ 2520 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2521 { 2522 switch (obj_req->img_request->op_type) { 2523 case OBJ_OP_READ: 2524 return rbd_obj_handle_read(obj_req); 2525 case OBJ_OP_WRITE: 2526 return rbd_obj_handle_write(obj_req); 2527 case OBJ_OP_DISCARD: 2528 if (rbd_obj_handle_write(obj_req)) { 2529 /* 2530 * Hide -ENOENT from delete/truncate/zero -- discarding 2531 * a non-existent object is not a problem. 2532 */ 2533 if (obj_req->result == -ENOENT) { 2534 obj_req->result = 0; 2535 obj_req->xferred = obj_req->ex.oe_len; 2536 } 2537 return true; 2538 } 2539 return false; 2540 default: 2541 BUG(); 2542 } 2543 } 2544 2545 static void rbd_obj_end_request(struct rbd_obj_request *obj_req) 2546 { 2547 struct rbd_img_request *img_req = obj_req->img_request; 2548 2549 rbd_assert((!obj_req->result && 2550 obj_req->xferred == obj_req->ex.oe_len) || 2551 (obj_req->result < 0 && !obj_req->xferred)); 2552 if (!obj_req->result) { 2553 img_req->xferred += obj_req->xferred; 2554 return; 2555 } 2556 2557 rbd_warn(img_req->rbd_dev, 2558 "%s at objno %llu %llu~%llu result %d xferred %llu", 2559 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 2560 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result, 2561 obj_req->xferred); 2562 if (!img_req->result) { 2563 img_req->result = obj_req->result; 2564 img_req->xferred = 0; 2565 } 2566 } 2567 2568 static void rbd_img_end_child_request(struct rbd_img_request *img_req) 2569 { 2570 struct rbd_obj_request *obj_req = img_req->obj_request; 2571 2572 rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags)); 2573 rbd_assert((!img_req->result && 2574 img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) || 2575 (img_req->result < 0 && !img_req->xferred)); 2576 2577 obj_req->result = img_req->result; 2578 obj_req->xferred = img_req->xferred; 2579 rbd_img_request_put(img_req); 2580 } 2581 2582 static void rbd_img_end_request(struct rbd_img_request *img_req) 2583 { 2584 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 2585 rbd_assert((!img_req->result && 2586 img_req->xferred == blk_rq_bytes(img_req->rq)) || 2587 (img_req->result < 0 && !img_req->xferred)); 2588 2589 blk_mq_end_request(img_req->rq, 2590 errno_to_blk_status(img_req->result)); 2591 rbd_img_request_put(img_req); 2592 } 2593 2594 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2595 { 2596 struct rbd_img_request *img_req; 2597 2598 again: 2599 if (!__rbd_obj_handle_request(obj_req)) 2600 return; 2601 2602 img_req = obj_req->img_request; 2603 spin_lock(&img_req->completion_lock); 2604 rbd_obj_end_request(obj_req); 2605 rbd_assert(img_req->pending_count); 2606 if (--img_req->pending_count) { 2607 spin_unlock(&img_req->completion_lock); 2608 return; 2609 } 2610 2611 spin_unlock(&img_req->completion_lock); 2612 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 2613 obj_req = img_req->obj_request; 2614 rbd_img_end_child_request(img_req); 2615 goto again; 2616 } 2617 rbd_img_end_request(img_req); 2618 } 2619 2620 static const struct rbd_client_id rbd_empty_cid; 2621 2622 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 2623 const struct rbd_client_id *rhs) 2624 { 2625 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 2626 } 2627 2628 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 2629 { 2630 struct rbd_client_id cid; 2631 2632 mutex_lock(&rbd_dev->watch_mutex); 2633 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 2634 cid.handle = rbd_dev->watch_cookie; 2635 mutex_unlock(&rbd_dev->watch_mutex); 2636 return cid; 2637 } 2638 2639 /* 2640 * lock_rwsem must be held for write 2641 */ 2642 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 2643 const struct rbd_client_id *cid) 2644 { 2645 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 2646 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 2647 cid->gid, cid->handle); 2648 rbd_dev->owner_cid = *cid; /* struct */ 2649 } 2650 2651 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 2652 { 2653 mutex_lock(&rbd_dev->watch_mutex); 2654 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 2655 mutex_unlock(&rbd_dev->watch_mutex); 2656 } 2657 2658 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 2659 { 2660 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2661 2662 strcpy(rbd_dev->lock_cookie, cookie); 2663 rbd_set_owner_cid(rbd_dev, &cid); 2664 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 2665 } 2666 2667 /* 2668 * lock_rwsem must be held for write 2669 */ 2670 static int rbd_lock(struct rbd_device *rbd_dev) 2671 { 2672 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2673 char cookie[32]; 2674 int ret; 2675 2676 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 2677 rbd_dev->lock_cookie[0] != '\0'); 2678 2679 format_lock_cookie(rbd_dev, cookie); 2680 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2681 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 2682 RBD_LOCK_TAG, "", 0); 2683 if (ret) 2684 return ret; 2685 2686 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 2687 __rbd_lock(rbd_dev, cookie); 2688 return 0; 2689 } 2690 2691 /* 2692 * lock_rwsem must be held for write 2693 */ 2694 static void rbd_unlock(struct rbd_device *rbd_dev) 2695 { 2696 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2697 int ret; 2698 2699 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 2700 rbd_dev->lock_cookie[0] == '\0'); 2701 2702 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2703 RBD_LOCK_NAME, rbd_dev->lock_cookie); 2704 if (ret && ret != -ENOENT) 2705 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 2706 2707 /* treat errors as the image is unlocked */ 2708 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 2709 rbd_dev->lock_cookie[0] = '\0'; 2710 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 2711 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 2712 } 2713 2714 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 2715 enum rbd_notify_op notify_op, 2716 struct page ***preply_pages, 2717 size_t *preply_len) 2718 { 2719 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2720 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2721 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 2722 int buf_size = sizeof(buf); 2723 void *p = buf; 2724 2725 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 2726 2727 /* encode *LockPayload NotifyMessage (op + ClientId) */ 2728 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 2729 ceph_encode_32(&p, notify_op); 2730 ceph_encode_64(&p, cid.gid); 2731 ceph_encode_64(&p, cid.handle); 2732 2733 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 2734 &rbd_dev->header_oloc, buf, buf_size, 2735 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 2736 } 2737 2738 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 2739 enum rbd_notify_op notify_op) 2740 { 2741 struct page **reply_pages; 2742 size_t reply_len; 2743 2744 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 2745 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2746 } 2747 2748 static void rbd_notify_acquired_lock(struct work_struct *work) 2749 { 2750 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2751 acquired_lock_work); 2752 2753 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 2754 } 2755 2756 static void rbd_notify_released_lock(struct work_struct *work) 2757 { 2758 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2759 released_lock_work); 2760 2761 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 2762 } 2763 2764 static int rbd_request_lock(struct rbd_device *rbd_dev) 2765 { 2766 struct page **reply_pages; 2767 size_t reply_len; 2768 bool lock_owner_responded = false; 2769 int ret; 2770 2771 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2772 2773 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 2774 &reply_pages, &reply_len); 2775 if (ret && ret != -ETIMEDOUT) { 2776 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 2777 goto out; 2778 } 2779 2780 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 2781 void *p = page_address(reply_pages[0]); 2782 void *const end = p + reply_len; 2783 u32 n; 2784 2785 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 2786 while (n--) { 2787 u8 struct_v; 2788 u32 len; 2789 2790 ceph_decode_need(&p, end, 8 + 8, e_inval); 2791 p += 8 + 8; /* skip gid and cookie */ 2792 2793 ceph_decode_32_safe(&p, end, len, e_inval); 2794 if (!len) 2795 continue; 2796 2797 if (lock_owner_responded) { 2798 rbd_warn(rbd_dev, 2799 "duplicate lock owners detected"); 2800 ret = -EIO; 2801 goto out; 2802 } 2803 2804 lock_owner_responded = true; 2805 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 2806 &struct_v, &len); 2807 if (ret) { 2808 rbd_warn(rbd_dev, 2809 "failed to decode ResponseMessage: %d", 2810 ret); 2811 goto e_inval; 2812 } 2813 2814 ret = ceph_decode_32(&p); 2815 } 2816 } 2817 2818 if (!lock_owner_responded) { 2819 rbd_warn(rbd_dev, "no lock owners detected"); 2820 ret = -ETIMEDOUT; 2821 } 2822 2823 out: 2824 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2825 return ret; 2826 2827 e_inval: 2828 ret = -EINVAL; 2829 goto out; 2830 } 2831 2832 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 2833 { 2834 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 2835 2836 cancel_delayed_work(&rbd_dev->lock_dwork); 2837 if (wake_all) 2838 wake_up_all(&rbd_dev->lock_waitq); 2839 else 2840 wake_up(&rbd_dev->lock_waitq); 2841 } 2842 2843 static int get_lock_owner_info(struct rbd_device *rbd_dev, 2844 struct ceph_locker **lockers, u32 *num_lockers) 2845 { 2846 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2847 u8 lock_type; 2848 char *lock_tag; 2849 int ret; 2850 2851 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2852 2853 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 2854 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2855 &lock_type, &lock_tag, lockers, num_lockers); 2856 if (ret) 2857 return ret; 2858 2859 if (*num_lockers == 0) { 2860 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 2861 goto out; 2862 } 2863 2864 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 2865 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 2866 lock_tag); 2867 ret = -EBUSY; 2868 goto out; 2869 } 2870 2871 if (lock_type == CEPH_CLS_LOCK_SHARED) { 2872 rbd_warn(rbd_dev, "shared lock type detected"); 2873 ret = -EBUSY; 2874 goto out; 2875 } 2876 2877 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 2878 strlen(RBD_LOCK_COOKIE_PREFIX))) { 2879 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 2880 (*lockers)[0].id.cookie); 2881 ret = -EBUSY; 2882 goto out; 2883 } 2884 2885 out: 2886 kfree(lock_tag); 2887 return ret; 2888 } 2889 2890 static int find_watcher(struct rbd_device *rbd_dev, 2891 const struct ceph_locker *locker) 2892 { 2893 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2894 struct ceph_watch_item *watchers; 2895 u32 num_watchers; 2896 u64 cookie; 2897 int i; 2898 int ret; 2899 2900 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 2901 &rbd_dev->header_oloc, &watchers, 2902 &num_watchers); 2903 if (ret) 2904 return ret; 2905 2906 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 2907 for (i = 0; i < num_watchers; i++) { 2908 if (!memcmp(&watchers[i].addr, &locker->info.addr, 2909 sizeof(locker->info.addr)) && 2910 watchers[i].cookie == cookie) { 2911 struct rbd_client_id cid = { 2912 .gid = le64_to_cpu(watchers[i].name.num), 2913 .handle = cookie, 2914 }; 2915 2916 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 2917 rbd_dev, cid.gid, cid.handle); 2918 rbd_set_owner_cid(rbd_dev, &cid); 2919 ret = 1; 2920 goto out; 2921 } 2922 } 2923 2924 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 2925 ret = 0; 2926 out: 2927 kfree(watchers); 2928 return ret; 2929 } 2930 2931 /* 2932 * lock_rwsem must be held for write 2933 */ 2934 static int rbd_try_lock(struct rbd_device *rbd_dev) 2935 { 2936 struct ceph_client *client = rbd_dev->rbd_client->client; 2937 struct ceph_locker *lockers; 2938 u32 num_lockers; 2939 int ret; 2940 2941 for (;;) { 2942 ret = rbd_lock(rbd_dev); 2943 if (ret != -EBUSY) 2944 return ret; 2945 2946 /* determine if the current lock holder is still alive */ 2947 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 2948 if (ret) 2949 return ret; 2950 2951 if (num_lockers == 0) 2952 goto again; 2953 2954 ret = find_watcher(rbd_dev, lockers); 2955 if (ret) { 2956 if (ret > 0) 2957 ret = 0; /* have to request lock */ 2958 goto out; 2959 } 2960 2961 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 2962 ENTITY_NAME(lockers[0].id.name)); 2963 2964 ret = ceph_monc_blacklist_add(&client->monc, 2965 &lockers[0].info.addr); 2966 if (ret) { 2967 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 2968 ENTITY_NAME(lockers[0].id.name), ret); 2969 goto out; 2970 } 2971 2972 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 2973 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2974 lockers[0].id.cookie, 2975 &lockers[0].id.name); 2976 if (ret && ret != -ENOENT) 2977 goto out; 2978 2979 again: 2980 ceph_free_lockers(lockers, num_lockers); 2981 } 2982 2983 out: 2984 ceph_free_lockers(lockers, num_lockers); 2985 return ret; 2986 } 2987 2988 /* 2989 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 2990 */ 2991 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 2992 int *pret) 2993 { 2994 enum rbd_lock_state lock_state; 2995 2996 down_read(&rbd_dev->lock_rwsem); 2997 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 2998 rbd_dev->lock_state); 2999 if (__rbd_is_lock_owner(rbd_dev)) { 3000 lock_state = rbd_dev->lock_state; 3001 up_read(&rbd_dev->lock_rwsem); 3002 return lock_state; 3003 } 3004 3005 up_read(&rbd_dev->lock_rwsem); 3006 down_write(&rbd_dev->lock_rwsem); 3007 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3008 rbd_dev->lock_state); 3009 if (!__rbd_is_lock_owner(rbd_dev)) { 3010 *pret = rbd_try_lock(rbd_dev); 3011 if (*pret) 3012 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3013 } 3014 3015 lock_state = rbd_dev->lock_state; 3016 up_write(&rbd_dev->lock_rwsem); 3017 return lock_state; 3018 } 3019 3020 static void rbd_acquire_lock(struct work_struct *work) 3021 { 3022 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3023 struct rbd_device, lock_dwork); 3024 enum rbd_lock_state lock_state; 3025 int ret = 0; 3026 3027 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3028 again: 3029 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3030 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3031 if (lock_state == RBD_LOCK_STATE_LOCKED) 3032 wake_requests(rbd_dev, true); 3033 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3034 rbd_dev, lock_state, ret); 3035 return; 3036 } 3037 3038 ret = rbd_request_lock(rbd_dev); 3039 if (ret == -ETIMEDOUT) { 3040 goto again; /* treat this as a dead client */ 3041 } else if (ret == -EROFS) { 3042 rbd_warn(rbd_dev, "peer will not release lock"); 3043 /* 3044 * If this is rbd_add_acquire_lock(), we want to fail 3045 * immediately -- reuse BLACKLISTED flag. Otherwise we 3046 * want to block. 3047 */ 3048 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3049 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3050 /* wake "rbd map --exclusive" process */ 3051 wake_requests(rbd_dev, false); 3052 } 3053 } else if (ret < 0) { 3054 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3055 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3056 RBD_RETRY_DELAY); 3057 } else { 3058 /* 3059 * lock owner acked, but resend if we don't see them 3060 * release the lock 3061 */ 3062 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3063 rbd_dev); 3064 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3065 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3066 } 3067 } 3068 3069 /* 3070 * lock_rwsem must be held for write 3071 */ 3072 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3073 { 3074 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3075 rbd_dev->lock_state); 3076 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3077 return false; 3078 3079 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3080 downgrade_write(&rbd_dev->lock_rwsem); 3081 /* 3082 * Ensure that all in-flight IO is flushed. 3083 * 3084 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3085 * may be shared with other devices. 3086 */ 3087 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3088 up_read(&rbd_dev->lock_rwsem); 3089 3090 down_write(&rbd_dev->lock_rwsem); 3091 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3092 rbd_dev->lock_state); 3093 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3094 return false; 3095 3096 rbd_unlock(rbd_dev); 3097 /* 3098 * Give others a chance to grab the lock - we would re-acquire 3099 * almost immediately if we got new IO during ceph_osdc_sync() 3100 * otherwise. We need to ack our own notifications, so this 3101 * lock_dwork will be requeued from rbd_wait_state_locked() 3102 * after wake_requests() in rbd_handle_released_lock(). 3103 */ 3104 cancel_delayed_work(&rbd_dev->lock_dwork); 3105 return true; 3106 } 3107 3108 static void rbd_release_lock_work(struct work_struct *work) 3109 { 3110 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3111 unlock_work); 3112 3113 down_write(&rbd_dev->lock_rwsem); 3114 rbd_release_lock(rbd_dev); 3115 up_write(&rbd_dev->lock_rwsem); 3116 } 3117 3118 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3119 void **p) 3120 { 3121 struct rbd_client_id cid = { 0 }; 3122 3123 if (struct_v >= 2) { 3124 cid.gid = ceph_decode_64(p); 3125 cid.handle = ceph_decode_64(p); 3126 } 3127 3128 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3129 cid.handle); 3130 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3131 down_write(&rbd_dev->lock_rwsem); 3132 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3133 /* 3134 * we already know that the remote client is 3135 * the owner 3136 */ 3137 up_write(&rbd_dev->lock_rwsem); 3138 return; 3139 } 3140 3141 rbd_set_owner_cid(rbd_dev, &cid); 3142 downgrade_write(&rbd_dev->lock_rwsem); 3143 } else { 3144 down_read(&rbd_dev->lock_rwsem); 3145 } 3146 3147 if (!__rbd_is_lock_owner(rbd_dev)) 3148 wake_requests(rbd_dev, false); 3149 up_read(&rbd_dev->lock_rwsem); 3150 } 3151 3152 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3153 void **p) 3154 { 3155 struct rbd_client_id cid = { 0 }; 3156 3157 if (struct_v >= 2) { 3158 cid.gid = ceph_decode_64(p); 3159 cid.handle = ceph_decode_64(p); 3160 } 3161 3162 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3163 cid.handle); 3164 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3165 down_write(&rbd_dev->lock_rwsem); 3166 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3167 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3168 __func__, rbd_dev, cid.gid, cid.handle, 3169 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3170 up_write(&rbd_dev->lock_rwsem); 3171 return; 3172 } 3173 3174 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3175 downgrade_write(&rbd_dev->lock_rwsem); 3176 } else { 3177 down_read(&rbd_dev->lock_rwsem); 3178 } 3179 3180 if (!__rbd_is_lock_owner(rbd_dev)) 3181 wake_requests(rbd_dev, false); 3182 up_read(&rbd_dev->lock_rwsem); 3183 } 3184 3185 /* 3186 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3187 * ResponseMessage is needed. 3188 */ 3189 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3190 void **p) 3191 { 3192 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3193 struct rbd_client_id cid = { 0 }; 3194 int result = 1; 3195 3196 if (struct_v >= 2) { 3197 cid.gid = ceph_decode_64(p); 3198 cid.handle = ceph_decode_64(p); 3199 } 3200 3201 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3202 cid.handle); 3203 if (rbd_cid_equal(&cid, &my_cid)) 3204 return result; 3205 3206 down_read(&rbd_dev->lock_rwsem); 3207 if (__rbd_is_lock_owner(rbd_dev)) { 3208 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3209 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3210 goto out_unlock; 3211 3212 /* 3213 * encode ResponseMessage(0) so the peer can detect 3214 * a missing owner 3215 */ 3216 result = 0; 3217 3218 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3219 if (!rbd_dev->opts->exclusive) { 3220 dout("%s rbd_dev %p queueing unlock_work\n", 3221 __func__, rbd_dev); 3222 queue_work(rbd_dev->task_wq, 3223 &rbd_dev->unlock_work); 3224 } else { 3225 /* refuse to release the lock */ 3226 result = -EROFS; 3227 } 3228 } 3229 } 3230 3231 out_unlock: 3232 up_read(&rbd_dev->lock_rwsem); 3233 return result; 3234 } 3235 3236 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3237 u64 notify_id, u64 cookie, s32 *result) 3238 { 3239 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3240 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 3241 int buf_size = sizeof(buf); 3242 int ret; 3243 3244 if (result) { 3245 void *p = buf; 3246 3247 /* encode ResponseMessage */ 3248 ceph_start_encoding(&p, 1, 1, 3249 buf_size - CEPH_ENCODING_START_BLK_LEN); 3250 ceph_encode_32(&p, *result); 3251 } else { 3252 buf_size = 0; 3253 } 3254 3255 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3256 &rbd_dev->header_oloc, notify_id, cookie, 3257 buf, buf_size); 3258 if (ret) 3259 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3260 } 3261 3262 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3263 u64 cookie) 3264 { 3265 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3266 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3267 } 3268 3269 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3270 u64 notify_id, u64 cookie, s32 result) 3271 { 3272 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3273 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3274 } 3275 3276 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3277 u64 notifier_id, void *data, size_t data_len) 3278 { 3279 struct rbd_device *rbd_dev = arg; 3280 void *p = data; 3281 void *const end = p + data_len; 3282 u8 struct_v = 0; 3283 u32 len; 3284 u32 notify_op; 3285 int ret; 3286 3287 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3288 __func__, rbd_dev, cookie, notify_id, data_len); 3289 if (data_len) { 3290 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3291 &struct_v, &len); 3292 if (ret) { 3293 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3294 ret); 3295 return; 3296 } 3297 3298 notify_op = ceph_decode_32(&p); 3299 } else { 3300 /* legacy notification for header updates */ 3301 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3302 len = 0; 3303 } 3304 3305 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3306 switch (notify_op) { 3307 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3308 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3309 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3310 break; 3311 case RBD_NOTIFY_OP_RELEASED_LOCK: 3312 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3313 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3314 break; 3315 case RBD_NOTIFY_OP_REQUEST_LOCK: 3316 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3317 if (ret <= 0) 3318 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3319 cookie, ret); 3320 else 3321 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3322 break; 3323 case RBD_NOTIFY_OP_HEADER_UPDATE: 3324 ret = rbd_dev_refresh(rbd_dev); 3325 if (ret) 3326 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3327 3328 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3329 break; 3330 default: 3331 if (rbd_is_lock_owner(rbd_dev)) 3332 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3333 cookie, -EOPNOTSUPP); 3334 else 3335 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3336 break; 3337 } 3338 } 3339 3340 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3341 3342 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3343 { 3344 struct rbd_device *rbd_dev = arg; 3345 3346 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3347 3348 down_write(&rbd_dev->lock_rwsem); 3349 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3350 up_write(&rbd_dev->lock_rwsem); 3351 3352 mutex_lock(&rbd_dev->watch_mutex); 3353 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3354 __rbd_unregister_watch(rbd_dev); 3355 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3356 3357 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3358 } 3359 mutex_unlock(&rbd_dev->watch_mutex); 3360 } 3361 3362 /* 3363 * watch_mutex must be locked 3364 */ 3365 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3366 { 3367 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3368 struct ceph_osd_linger_request *handle; 3369 3370 rbd_assert(!rbd_dev->watch_handle); 3371 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3372 3373 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3374 &rbd_dev->header_oloc, rbd_watch_cb, 3375 rbd_watch_errcb, rbd_dev); 3376 if (IS_ERR(handle)) 3377 return PTR_ERR(handle); 3378 3379 rbd_dev->watch_handle = handle; 3380 return 0; 3381 } 3382 3383 /* 3384 * watch_mutex must be locked 3385 */ 3386 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3387 { 3388 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3389 int ret; 3390 3391 rbd_assert(rbd_dev->watch_handle); 3392 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3393 3394 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3395 if (ret) 3396 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3397 3398 rbd_dev->watch_handle = NULL; 3399 } 3400 3401 static int rbd_register_watch(struct rbd_device *rbd_dev) 3402 { 3403 int ret; 3404 3405 mutex_lock(&rbd_dev->watch_mutex); 3406 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3407 ret = __rbd_register_watch(rbd_dev); 3408 if (ret) 3409 goto out; 3410 3411 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3412 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3413 3414 out: 3415 mutex_unlock(&rbd_dev->watch_mutex); 3416 return ret; 3417 } 3418 3419 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3420 { 3421 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3422 3423 cancel_work_sync(&rbd_dev->acquired_lock_work); 3424 cancel_work_sync(&rbd_dev->released_lock_work); 3425 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3426 cancel_work_sync(&rbd_dev->unlock_work); 3427 } 3428 3429 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3430 { 3431 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3432 cancel_tasks_sync(rbd_dev); 3433 3434 mutex_lock(&rbd_dev->watch_mutex); 3435 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3436 __rbd_unregister_watch(rbd_dev); 3437 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3438 mutex_unlock(&rbd_dev->watch_mutex); 3439 3440 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3441 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3442 } 3443 3444 /* 3445 * lock_rwsem must be held for write 3446 */ 3447 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3448 { 3449 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3450 char cookie[32]; 3451 int ret; 3452 3453 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3454 3455 format_lock_cookie(rbd_dev, cookie); 3456 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3457 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3458 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3459 RBD_LOCK_TAG, cookie); 3460 if (ret) { 3461 if (ret != -EOPNOTSUPP) 3462 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3463 ret); 3464 3465 /* 3466 * Lock cookie cannot be updated on older OSDs, so do 3467 * a manual release and queue an acquire. 3468 */ 3469 if (rbd_release_lock(rbd_dev)) 3470 queue_delayed_work(rbd_dev->task_wq, 3471 &rbd_dev->lock_dwork, 0); 3472 } else { 3473 __rbd_lock(rbd_dev, cookie); 3474 } 3475 } 3476 3477 static void rbd_reregister_watch(struct work_struct *work) 3478 { 3479 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3480 struct rbd_device, watch_dwork); 3481 int ret; 3482 3483 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3484 3485 mutex_lock(&rbd_dev->watch_mutex); 3486 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3487 mutex_unlock(&rbd_dev->watch_mutex); 3488 return; 3489 } 3490 3491 ret = __rbd_register_watch(rbd_dev); 3492 if (ret) { 3493 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3494 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3495 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3496 wake_requests(rbd_dev, true); 3497 } else { 3498 queue_delayed_work(rbd_dev->task_wq, 3499 &rbd_dev->watch_dwork, 3500 RBD_RETRY_DELAY); 3501 } 3502 mutex_unlock(&rbd_dev->watch_mutex); 3503 return; 3504 } 3505 3506 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3507 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3508 mutex_unlock(&rbd_dev->watch_mutex); 3509 3510 down_write(&rbd_dev->lock_rwsem); 3511 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3512 rbd_reacquire_lock(rbd_dev); 3513 up_write(&rbd_dev->lock_rwsem); 3514 3515 ret = rbd_dev_refresh(rbd_dev); 3516 if (ret) 3517 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 3518 } 3519 3520 /* 3521 * Synchronous osd object method call. Returns the number of bytes 3522 * returned in the outbound buffer, or a negative error code. 3523 */ 3524 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3525 struct ceph_object_id *oid, 3526 struct ceph_object_locator *oloc, 3527 const char *method_name, 3528 const void *outbound, 3529 size_t outbound_size, 3530 void *inbound, 3531 size_t inbound_size) 3532 { 3533 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3534 struct page *req_page = NULL; 3535 struct page *reply_page; 3536 int ret; 3537 3538 /* 3539 * Method calls are ultimately read operations. The result 3540 * should placed into the inbound buffer provided. They 3541 * also supply outbound data--parameters for the object 3542 * method. Currently if this is present it will be a 3543 * snapshot id. 3544 */ 3545 if (outbound) { 3546 if (outbound_size > PAGE_SIZE) 3547 return -E2BIG; 3548 3549 req_page = alloc_page(GFP_KERNEL); 3550 if (!req_page) 3551 return -ENOMEM; 3552 3553 memcpy(page_address(req_page), outbound, outbound_size); 3554 } 3555 3556 reply_page = alloc_page(GFP_KERNEL); 3557 if (!reply_page) { 3558 if (req_page) 3559 __free_page(req_page); 3560 return -ENOMEM; 3561 } 3562 3563 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3564 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3565 reply_page, &inbound_size); 3566 if (!ret) { 3567 memcpy(inbound, page_address(reply_page), inbound_size); 3568 ret = inbound_size; 3569 } 3570 3571 if (req_page) 3572 __free_page(req_page); 3573 __free_page(reply_page); 3574 return ret; 3575 } 3576 3577 /* 3578 * lock_rwsem must be held for read 3579 */ 3580 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire) 3581 { 3582 DEFINE_WAIT(wait); 3583 unsigned long timeout; 3584 int ret = 0; 3585 3586 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) 3587 return -EBLACKLISTED; 3588 3589 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3590 return 0; 3591 3592 if (!may_acquire) { 3593 rbd_warn(rbd_dev, "exclusive lock required"); 3594 return -EROFS; 3595 } 3596 3597 do { 3598 /* 3599 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3600 * and cancel_delayed_work() in wake_requests(). 3601 */ 3602 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3603 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3604 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3605 TASK_UNINTERRUPTIBLE); 3606 up_read(&rbd_dev->lock_rwsem); 3607 timeout = schedule_timeout(ceph_timeout_jiffies( 3608 rbd_dev->opts->lock_timeout)); 3609 down_read(&rbd_dev->lock_rwsem); 3610 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 3611 ret = -EBLACKLISTED; 3612 break; 3613 } 3614 if (!timeout) { 3615 rbd_warn(rbd_dev, "timed out waiting for lock"); 3616 ret = -ETIMEDOUT; 3617 break; 3618 } 3619 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3620 3621 finish_wait(&rbd_dev->lock_waitq, &wait); 3622 return ret; 3623 } 3624 3625 static void rbd_queue_workfn(struct work_struct *work) 3626 { 3627 struct request *rq = blk_mq_rq_from_pdu(work); 3628 struct rbd_device *rbd_dev = rq->q->queuedata; 3629 struct rbd_img_request *img_request; 3630 struct ceph_snap_context *snapc = NULL; 3631 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3632 u64 length = blk_rq_bytes(rq); 3633 enum obj_operation_type op_type; 3634 u64 mapping_size; 3635 bool must_be_locked; 3636 int result; 3637 3638 switch (req_op(rq)) { 3639 case REQ_OP_DISCARD: 3640 case REQ_OP_WRITE_ZEROES: 3641 op_type = OBJ_OP_DISCARD; 3642 break; 3643 case REQ_OP_WRITE: 3644 op_type = OBJ_OP_WRITE; 3645 break; 3646 case REQ_OP_READ: 3647 op_type = OBJ_OP_READ; 3648 break; 3649 default: 3650 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 3651 result = -EIO; 3652 goto err; 3653 } 3654 3655 /* Ignore/skip any zero-length requests */ 3656 3657 if (!length) { 3658 dout("%s: zero-length request\n", __func__); 3659 result = 0; 3660 goto err_rq; 3661 } 3662 3663 rbd_assert(op_type == OBJ_OP_READ || 3664 rbd_dev->spec->snap_id == CEPH_NOSNAP); 3665 3666 /* 3667 * Quit early if the mapped snapshot no longer exists. It's 3668 * still possible the snapshot will have disappeared by the 3669 * time our request arrives at the osd, but there's no sense in 3670 * sending it if we already know. 3671 */ 3672 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3673 dout("request for non-existent snapshot"); 3674 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3675 result = -ENXIO; 3676 goto err_rq; 3677 } 3678 3679 if (offset && length > U64_MAX - offset + 1) { 3680 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3681 length); 3682 result = -EINVAL; 3683 goto err_rq; /* Shouldn't happen */ 3684 } 3685 3686 blk_mq_start_request(rq); 3687 3688 down_read(&rbd_dev->header_rwsem); 3689 mapping_size = rbd_dev->mapping.size; 3690 if (op_type != OBJ_OP_READ) { 3691 snapc = rbd_dev->header.snapc; 3692 ceph_get_snap_context(snapc); 3693 } 3694 up_read(&rbd_dev->header_rwsem); 3695 3696 if (offset + length > mapping_size) { 3697 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3698 length, mapping_size); 3699 result = -EIO; 3700 goto err_rq; 3701 } 3702 3703 must_be_locked = 3704 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 3705 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 3706 if (must_be_locked) { 3707 down_read(&rbd_dev->lock_rwsem); 3708 result = rbd_wait_state_locked(rbd_dev, 3709 !rbd_dev->opts->exclusive); 3710 if (result) 3711 goto err_unlock; 3712 } 3713 3714 img_request = rbd_img_request_create(rbd_dev, op_type, snapc); 3715 if (!img_request) { 3716 result = -ENOMEM; 3717 goto err_unlock; 3718 } 3719 img_request->rq = rq; 3720 snapc = NULL; /* img_request consumes a ref */ 3721 3722 if (op_type == OBJ_OP_DISCARD) 3723 result = rbd_img_fill_nodata(img_request, offset, length); 3724 else 3725 result = rbd_img_fill_from_bio(img_request, offset, length, 3726 rq->bio); 3727 if (result) 3728 goto err_img_request; 3729 3730 rbd_img_request_submit(img_request); 3731 if (must_be_locked) 3732 up_read(&rbd_dev->lock_rwsem); 3733 return; 3734 3735 err_img_request: 3736 rbd_img_request_put(img_request); 3737 err_unlock: 3738 if (must_be_locked) 3739 up_read(&rbd_dev->lock_rwsem); 3740 err_rq: 3741 if (result) 3742 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3743 obj_op_name(op_type), length, offset, result); 3744 ceph_put_snap_context(snapc); 3745 err: 3746 blk_mq_end_request(rq, errno_to_blk_status(result)); 3747 } 3748 3749 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3750 const struct blk_mq_queue_data *bd) 3751 { 3752 struct request *rq = bd->rq; 3753 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3754 3755 queue_work(rbd_wq, work); 3756 return BLK_STS_OK; 3757 } 3758 3759 static void rbd_free_disk(struct rbd_device *rbd_dev) 3760 { 3761 blk_cleanup_queue(rbd_dev->disk->queue); 3762 blk_mq_free_tag_set(&rbd_dev->tag_set); 3763 put_disk(rbd_dev->disk); 3764 rbd_dev->disk = NULL; 3765 } 3766 3767 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3768 struct ceph_object_id *oid, 3769 struct ceph_object_locator *oloc, 3770 void *buf, int buf_len) 3771 3772 { 3773 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3774 struct ceph_osd_request *req; 3775 struct page **pages; 3776 int num_pages = calc_pages_for(0, buf_len); 3777 int ret; 3778 3779 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 3780 if (!req) 3781 return -ENOMEM; 3782 3783 ceph_oid_copy(&req->r_base_oid, oid); 3784 ceph_oloc_copy(&req->r_base_oloc, oloc); 3785 req->r_flags = CEPH_OSD_FLAG_READ; 3786 3787 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 3788 if (ret) 3789 goto out_req; 3790 3791 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 3792 if (IS_ERR(pages)) { 3793 ret = PTR_ERR(pages); 3794 goto out_req; 3795 } 3796 3797 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 3798 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 3799 true); 3800 3801 ceph_osdc_start_request(osdc, req, false); 3802 ret = ceph_osdc_wait_request(osdc, req); 3803 if (ret >= 0) 3804 ceph_copy_from_page_vector(pages, buf, 0, ret); 3805 3806 out_req: 3807 ceph_osdc_put_request(req); 3808 return ret; 3809 } 3810 3811 /* 3812 * Read the complete header for the given rbd device. On successful 3813 * return, the rbd_dev->header field will contain up-to-date 3814 * information about the image. 3815 */ 3816 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3817 { 3818 struct rbd_image_header_ondisk *ondisk = NULL; 3819 u32 snap_count = 0; 3820 u64 names_size = 0; 3821 u32 want_count; 3822 int ret; 3823 3824 /* 3825 * The complete header will include an array of its 64-bit 3826 * snapshot ids, followed by the names of those snapshots as 3827 * a contiguous block of NUL-terminated strings. Note that 3828 * the number of snapshots could change by the time we read 3829 * it in, in which case we re-read it. 3830 */ 3831 do { 3832 size_t size; 3833 3834 kfree(ondisk); 3835 3836 size = sizeof (*ondisk); 3837 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3838 size += names_size; 3839 ondisk = kmalloc(size, GFP_KERNEL); 3840 if (!ondisk) 3841 return -ENOMEM; 3842 3843 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 3844 &rbd_dev->header_oloc, ondisk, size); 3845 if (ret < 0) 3846 goto out; 3847 if ((size_t)ret < size) { 3848 ret = -ENXIO; 3849 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3850 size, ret); 3851 goto out; 3852 } 3853 if (!rbd_dev_ondisk_valid(ondisk)) { 3854 ret = -ENXIO; 3855 rbd_warn(rbd_dev, "invalid header"); 3856 goto out; 3857 } 3858 3859 names_size = le64_to_cpu(ondisk->snap_names_len); 3860 want_count = snap_count; 3861 snap_count = le32_to_cpu(ondisk->snap_count); 3862 } while (snap_count != want_count); 3863 3864 ret = rbd_header_from_disk(rbd_dev, ondisk); 3865 out: 3866 kfree(ondisk); 3867 3868 return ret; 3869 } 3870 3871 /* 3872 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3873 * has disappeared from the (just updated) snapshot context. 3874 */ 3875 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3876 { 3877 u64 snap_id; 3878 3879 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3880 return; 3881 3882 snap_id = rbd_dev->spec->snap_id; 3883 if (snap_id == CEPH_NOSNAP) 3884 return; 3885 3886 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3887 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3888 } 3889 3890 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3891 { 3892 sector_t size; 3893 3894 /* 3895 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 3896 * try to update its size. If REMOVING is set, updating size 3897 * is just useless work since the device can't be opened. 3898 */ 3899 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 3900 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 3901 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3902 dout("setting size to %llu sectors", (unsigned long long)size); 3903 set_capacity(rbd_dev->disk, size); 3904 revalidate_disk(rbd_dev->disk); 3905 } 3906 } 3907 3908 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3909 { 3910 u64 mapping_size; 3911 int ret; 3912 3913 down_write(&rbd_dev->header_rwsem); 3914 mapping_size = rbd_dev->mapping.size; 3915 3916 ret = rbd_dev_header_info(rbd_dev); 3917 if (ret) 3918 goto out; 3919 3920 /* 3921 * If there is a parent, see if it has disappeared due to the 3922 * mapped image getting flattened. 3923 */ 3924 if (rbd_dev->parent) { 3925 ret = rbd_dev_v2_parent_info(rbd_dev); 3926 if (ret) 3927 goto out; 3928 } 3929 3930 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3931 rbd_dev->mapping.size = rbd_dev->header.image_size; 3932 } else { 3933 /* validate mapped snapshot's EXISTS flag */ 3934 rbd_exists_validate(rbd_dev); 3935 } 3936 3937 out: 3938 up_write(&rbd_dev->header_rwsem); 3939 if (!ret && mapping_size != rbd_dev->mapping.size) 3940 rbd_dev_update_size(rbd_dev); 3941 3942 return ret; 3943 } 3944 3945 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 3946 unsigned int hctx_idx, unsigned int numa_node) 3947 { 3948 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3949 3950 INIT_WORK(work, rbd_queue_workfn); 3951 return 0; 3952 } 3953 3954 static const struct blk_mq_ops rbd_mq_ops = { 3955 .queue_rq = rbd_queue_rq, 3956 .init_request = rbd_init_request, 3957 }; 3958 3959 static int rbd_init_disk(struct rbd_device *rbd_dev) 3960 { 3961 struct gendisk *disk; 3962 struct request_queue *q; 3963 unsigned int objset_bytes = 3964 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 3965 int err; 3966 3967 /* create gendisk info */ 3968 disk = alloc_disk(single_major ? 3969 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3970 RBD_MINORS_PER_MAJOR); 3971 if (!disk) 3972 return -ENOMEM; 3973 3974 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3975 rbd_dev->dev_id); 3976 disk->major = rbd_dev->major; 3977 disk->first_minor = rbd_dev->minor; 3978 if (single_major) 3979 disk->flags |= GENHD_FL_EXT_DEVT; 3980 disk->fops = &rbd_bd_ops; 3981 disk->private_data = rbd_dev; 3982 3983 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3984 rbd_dev->tag_set.ops = &rbd_mq_ops; 3985 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3986 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3987 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3988 rbd_dev->tag_set.nr_hw_queues = 1; 3989 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3990 3991 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3992 if (err) 3993 goto out_disk; 3994 3995 q = blk_mq_init_queue(&rbd_dev->tag_set); 3996 if (IS_ERR(q)) { 3997 err = PTR_ERR(q); 3998 goto out_tag_set; 3999 } 4000 4001 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4002 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4003 4004 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4005 q->limits.max_sectors = queue_max_hw_sectors(q); 4006 blk_queue_max_segments(q, USHRT_MAX); 4007 blk_queue_max_segment_size(q, UINT_MAX); 4008 blk_queue_io_min(q, objset_bytes); 4009 blk_queue_io_opt(q, objset_bytes); 4010 4011 if (rbd_dev->opts->trim) { 4012 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 4013 q->limits.discard_granularity = objset_bytes; 4014 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 4015 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 4016 } 4017 4018 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4019 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4020 4021 /* 4022 * disk_release() expects a queue ref from add_disk() and will 4023 * put it. Hold an extra ref until add_disk() is called. 4024 */ 4025 WARN_ON(!blk_get_queue(q)); 4026 disk->queue = q; 4027 q->queuedata = rbd_dev; 4028 4029 rbd_dev->disk = disk; 4030 4031 return 0; 4032 out_tag_set: 4033 blk_mq_free_tag_set(&rbd_dev->tag_set); 4034 out_disk: 4035 put_disk(disk); 4036 return err; 4037 } 4038 4039 /* 4040 sysfs 4041 */ 4042 4043 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4044 { 4045 return container_of(dev, struct rbd_device, dev); 4046 } 4047 4048 static ssize_t rbd_size_show(struct device *dev, 4049 struct device_attribute *attr, char *buf) 4050 { 4051 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4052 4053 return sprintf(buf, "%llu\n", 4054 (unsigned long long)rbd_dev->mapping.size); 4055 } 4056 4057 /* 4058 * Note this shows the features for whatever's mapped, which is not 4059 * necessarily the base image. 4060 */ 4061 static ssize_t rbd_features_show(struct device *dev, 4062 struct device_attribute *attr, char *buf) 4063 { 4064 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4065 4066 return sprintf(buf, "0x%016llx\n", 4067 (unsigned long long)rbd_dev->mapping.features); 4068 } 4069 4070 static ssize_t rbd_major_show(struct device *dev, 4071 struct device_attribute *attr, char *buf) 4072 { 4073 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4074 4075 if (rbd_dev->major) 4076 return sprintf(buf, "%d\n", rbd_dev->major); 4077 4078 return sprintf(buf, "(none)\n"); 4079 } 4080 4081 static ssize_t rbd_minor_show(struct device *dev, 4082 struct device_attribute *attr, char *buf) 4083 { 4084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4085 4086 return sprintf(buf, "%d\n", rbd_dev->minor); 4087 } 4088 4089 static ssize_t rbd_client_addr_show(struct device *dev, 4090 struct device_attribute *attr, char *buf) 4091 { 4092 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4093 struct ceph_entity_addr *client_addr = 4094 ceph_client_addr(rbd_dev->rbd_client->client); 4095 4096 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4097 le32_to_cpu(client_addr->nonce)); 4098 } 4099 4100 static ssize_t rbd_client_id_show(struct device *dev, 4101 struct device_attribute *attr, char *buf) 4102 { 4103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4104 4105 return sprintf(buf, "client%lld\n", 4106 ceph_client_gid(rbd_dev->rbd_client->client)); 4107 } 4108 4109 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4110 struct device_attribute *attr, char *buf) 4111 { 4112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4113 4114 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4115 } 4116 4117 static ssize_t rbd_config_info_show(struct device *dev, 4118 struct device_attribute *attr, char *buf) 4119 { 4120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4121 4122 return sprintf(buf, "%s\n", rbd_dev->config_info); 4123 } 4124 4125 static ssize_t rbd_pool_show(struct device *dev, 4126 struct device_attribute *attr, char *buf) 4127 { 4128 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4129 4130 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4131 } 4132 4133 static ssize_t rbd_pool_id_show(struct device *dev, 4134 struct device_attribute *attr, char *buf) 4135 { 4136 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4137 4138 return sprintf(buf, "%llu\n", 4139 (unsigned long long) rbd_dev->spec->pool_id); 4140 } 4141 4142 static ssize_t rbd_pool_ns_show(struct device *dev, 4143 struct device_attribute *attr, char *buf) 4144 { 4145 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4146 4147 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 4148 } 4149 4150 static ssize_t rbd_name_show(struct device *dev, 4151 struct device_attribute *attr, char *buf) 4152 { 4153 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4154 4155 if (rbd_dev->spec->image_name) 4156 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4157 4158 return sprintf(buf, "(unknown)\n"); 4159 } 4160 4161 static ssize_t rbd_image_id_show(struct device *dev, 4162 struct device_attribute *attr, char *buf) 4163 { 4164 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4165 4166 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4167 } 4168 4169 /* 4170 * Shows the name of the currently-mapped snapshot (or 4171 * RBD_SNAP_HEAD_NAME for the base image). 4172 */ 4173 static ssize_t rbd_snap_show(struct device *dev, 4174 struct device_attribute *attr, 4175 char *buf) 4176 { 4177 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4178 4179 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4180 } 4181 4182 static ssize_t rbd_snap_id_show(struct device *dev, 4183 struct device_attribute *attr, char *buf) 4184 { 4185 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4186 4187 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4188 } 4189 4190 /* 4191 * For a v2 image, shows the chain of parent images, separated by empty 4192 * lines. For v1 images or if there is no parent, shows "(no parent 4193 * image)". 4194 */ 4195 static ssize_t rbd_parent_show(struct device *dev, 4196 struct device_attribute *attr, 4197 char *buf) 4198 { 4199 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4200 ssize_t count = 0; 4201 4202 if (!rbd_dev->parent) 4203 return sprintf(buf, "(no parent image)\n"); 4204 4205 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4206 struct rbd_spec *spec = rbd_dev->parent_spec; 4207 4208 count += sprintf(&buf[count], "%s" 4209 "pool_id %llu\npool_name %s\n" 4210 "pool_ns %s\n" 4211 "image_id %s\nimage_name %s\n" 4212 "snap_id %llu\nsnap_name %s\n" 4213 "overlap %llu\n", 4214 !count ? "" : "\n", /* first? */ 4215 spec->pool_id, spec->pool_name, 4216 spec->pool_ns ?: "", 4217 spec->image_id, spec->image_name ?: "(unknown)", 4218 spec->snap_id, spec->snap_name, 4219 rbd_dev->parent_overlap); 4220 } 4221 4222 return count; 4223 } 4224 4225 static ssize_t rbd_image_refresh(struct device *dev, 4226 struct device_attribute *attr, 4227 const char *buf, 4228 size_t size) 4229 { 4230 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4231 int ret; 4232 4233 ret = rbd_dev_refresh(rbd_dev); 4234 if (ret) 4235 return ret; 4236 4237 return size; 4238 } 4239 4240 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 4241 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 4242 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 4243 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 4244 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 4245 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 4246 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 4247 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 4248 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 4249 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 4250 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 4251 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 4252 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 4253 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 4254 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 4255 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 4256 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 4257 4258 static struct attribute *rbd_attrs[] = { 4259 &dev_attr_size.attr, 4260 &dev_attr_features.attr, 4261 &dev_attr_major.attr, 4262 &dev_attr_minor.attr, 4263 &dev_attr_client_addr.attr, 4264 &dev_attr_client_id.attr, 4265 &dev_attr_cluster_fsid.attr, 4266 &dev_attr_config_info.attr, 4267 &dev_attr_pool.attr, 4268 &dev_attr_pool_id.attr, 4269 &dev_attr_pool_ns.attr, 4270 &dev_attr_name.attr, 4271 &dev_attr_image_id.attr, 4272 &dev_attr_current_snap.attr, 4273 &dev_attr_snap_id.attr, 4274 &dev_attr_parent.attr, 4275 &dev_attr_refresh.attr, 4276 NULL 4277 }; 4278 4279 static struct attribute_group rbd_attr_group = { 4280 .attrs = rbd_attrs, 4281 }; 4282 4283 static const struct attribute_group *rbd_attr_groups[] = { 4284 &rbd_attr_group, 4285 NULL 4286 }; 4287 4288 static void rbd_dev_release(struct device *dev); 4289 4290 static const struct device_type rbd_device_type = { 4291 .name = "rbd", 4292 .groups = rbd_attr_groups, 4293 .release = rbd_dev_release, 4294 }; 4295 4296 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4297 { 4298 kref_get(&spec->kref); 4299 4300 return spec; 4301 } 4302 4303 static void rbd_spec_free(struct kref *kref); 4304 static void rbd_spec_put(struct rbd_spec *spec) 4305 { 4306 if (spec) 4307 kref_put(&spec->kref, rbd_spec_free); 4308 } 4309 4310 static struct rbd_spec *rbd_spec_alloc(void) 4311 { 4312 struct rbd_spec *spec; 4313 4314 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4315 if (!spec) 4316 return NULL; 4317 4318 spec->pool_id = CEPH_NOPOOL; 4319 spec->snap_id = CEPH_NOSNAP; 4320 kref_init(&spec->kref); 4321 4322 return spec; 4323 } 4324 4325 static void rbd_spec_free(struct kref *kref) 4326 { 4327 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4328 4329 kfree(spec->pool_name); 4330 kfree(spec->pool_ns); 4331 kfree(spec->image_id); 4332 kfree(spec->image_name); 4333 kfree(spec->snap_name); 4334 kfree(spec); 4335 } 4336 4337 static void rbd_dev_free(struct rbd_device *rbd_dev) 4338 { 4339 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4340 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4341 4342 ceph_oid_destroy(&rbd_dev->header_oid); 4343 ceph_oloc_destroy(&rbd_dev->header_oloc); 4344 kfree(rbd_dev->config_info); 4345 4346 rbd_put_client(rbd_dev->rbd_client); 4347 rbd_spec_put(rbd_dev->spec); 4348 kfree(rbd_dev->opts); 4349 kfree(rbd_dev); 4350 } 4351 4352 static void rbd_dev_release(struct device *dev) 4353 { 4354 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4355 bool need_put = !!rbd_dev->opts; 4356 4357 if (need_put) { 4358 destroy_workqueue(rbd_dev->task_wq); 4359 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4360 } 4361 4362 rbd_dev_free(rbd_dev); 4363 4364 /* 4365 * This is racy, but way better than putting module outside of 4366 * the release callback. The race window is pretty small, so 4367 * doing something similar to dm (dm-builtin.c) is overkill. 4368 */ 4369 if (need_put) 4370 module_put(THIS_MODULE); 4371 } 4372 4373 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4374 struct rbd_spec *spec) 4375 { 4376 struct rbd_device *rbd_dev; 4377 4378 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4379 if (!rbd_dev) 4380 return NULL; 4381 4382 spin_lock_init(&rbd_dev->lock); 4383 INIT_LIST_HEAD(&rbd_dev->node); 4384 init_rwsem(&rbd_dev->header_rwsem); 4385 4386 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4387 ceph_oid_init(&rbd_dev->header_oid); 4388 rbd_dev->header_oloc.pool = spec->pool_id; 4389 if (spec->pool_ns) { 4390 WARN_ON(!*spec->pool_ns); 4391 rbd_dev->header_oloc.pool_ns = 4392 ceph_find_or_create_string(spec->pool_ns, 4393 strlen(spec->pool_ns)); 4394 } 4395 4396 mutex_init(&rbd_dev->watch_mutex); 4397 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4398 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4399 4400 init_rwsem(&rbd_dev->lock_rwsem); 4401 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4402 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4403 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4404 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4405 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4406 init_waitqueue_head(&rbd_dev->lock_waitq); 4407 4408 rbd_dev->dev.bus = &rbd_bus_type; 4409 rbd_dev->dev.type = &rbd_device_type; 4410 rbd_dev->dev.parent = &rbd_root_dev; 4411 device_initialize(&rbd_dev->dev); 4412 4413 rbd_dev->rbd_client = rbdc; 4414 rbd_dev->spec = spec; 4415 4416 return rbd_dev; 4417 } 4418 4419 /* 4420 * Create a mapping rbd_dev. 4421 */ 4422 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4423 struct rbd_spec *spec, 4424 struct rbd_options *opts) 4425 { 4426 struct rbd_device *rbd_dev; 4427 4428 rbd_dev = __rbd_dev_create(rbdc, spec); 4429 if (!rbd_dev) 4430 return NULL; 4431 4432 rbd_dev->opts = opts; 4433 4434 /* get an id and fill in device name */ 4435 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4436 minor_to_rbd_dev_id(1 << MINORBITS), 4437 GFP_KERNEL); 4438 if (rbd_dev->dev_id < 0) 4439 goto fail_rbd_dev; 4440 4441 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4442 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4443 rbd_dev->name); 4444 if (!rbd_dev->task_wq) 4445 goto fail_dev_id; 4446 4447 /* we have a ref from do_rbd_add() */ 4448 __module_get(THIS_MODULE); 4449 4450 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4451 return rbd_dev; 4452 4453 fail_dev_id: 4454 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4455 fail_rbd_dev: 4456 rbd_dev_free(rbd_dev); 4457 return NULL; 4458 } 4459 4460 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4461 { 4462 if (rbd_dev) 4463 put_device(&rbd_dev->dev); 4464 } 4465 4466 /* 4467 * Get the size and object order for an image snapshot, or if 4468 * snap_id is CEPH_NOSNAP, gets this information for the base 4469 * image. 4470 */ 4471 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4472 u8 *order, u64 *snap_size) 4473 { 4474 __le64 snapid = cpu_to_le64(snap_id); 4475 int ret; 4476 struct { 4477 u8 order; 4478 __le64 size; 4479 } __attribute__ ((packed)) size_buf = { 0 }; 4480 4481 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4482 &rbd_dev->header_oloc, "get_size", 4483 &snapid, sizeof(snapid), 4484 &size_buf, sizeof(size_buf)); 4485 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4486 if (ret < 0) 4487 return ret; 4488 if (ret < sizeof (size_buf)) 4489 return -ERANGE; 4490 4491 if (order) { 4492 *order = size_buf.order; 4493 dout(" order %u", (unsigned int)*order); 4494 } 4495 *snap_size = le64_to_cpu(size_buf.size); 4496 4497 dout(" snap_id 0x%016llx snap_size = %llu\n", 4498 (unsigned long long)snap_id, 4499 (unsigned long long)*snap_size); 4500 4501 return 0; 4502 } 4503 4504 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4505 { 4506 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4507 &rbd_dev->header.obj_order, 4508 &rbd_dev->header.image_size); 4509 } 4510 4511 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4512 { 4513 void *reply_buf; 4514 int ret; 4515 void *p; 4516 4517 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4518 if (!reply_buf) 4519 return -ENOMEM; 4520 4521 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4522 &rbd_dev->header_oloc, "get_object_prefix", 4523 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4524 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4525 if (ret < 0) 4526 goto out; 4527 4528 p = reply_buf; 4529 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4530 p + ret, NULL, GFP_NOIO); 4531 ret = 0; 4532 4533 if (IS_ERR(rbd_dev->header.object_prefix)) { 4534 ret = PTR_ERR(rbd_dev->header.object_prefix); 4535 rbd_dev->header.object_prefix = NULL; 4536 } else { 4537 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4538 } 4539 out: 4540 kfree(reply_buf); 4541 4542 return ret; 4543 } 4544 4545 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4546 u64 *snap_features) 4547 { 4548 __le64 snapid = cpu_to_le64(snap_id); 4549 struct { 4550 __le64 features; 4551 __le64 incompat; 4552 } __attribute__ ((packed)) features_buf = { 0 }; 4553 u64 unsup; 4554 int ret; 4555 4556 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4557 &rbd_dev->header_oloc, "get_features", 4558 &snapid, sizeof(snapid), 4559 &features_buf, sizeof(features_buf)); 4560 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4561 if (ret < 0) 4562 return ret; 4563 if (ret < sizeof (features_buf)) 4564 return -ERANGE; 4565 4566 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4567 if (unsup) { 4568 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4569 unsup); 4570 return -ENXIO; 4571 } 4572 4573 *snap_features = le64_to_cpu(features_buf.features); 4574 4575 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4576 (unsigned long long)snap_id, 4577 (unsigned long long)*snap_features, 4578 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4579 4580 return 0; 4581 } 4582 4583 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4584 { 4585 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4586 &rbd_dev->header.features); 4587 } 4588 4589 struct parent_image_info { 4590 u64 pool_id; 4591 const char *pool_ns; 4592 const char *image_id; 4593 u64 snap_id; 4594 4595 bool has_overlap; 4596 u64 overlap; 4597 }; 4598 4599 /* 4600 * The caller is responsible for @pii. 4601 */ 4602 static int decode_parent_image_spec(void **p, void *end, 4603 struct parent_image_info *pii) 4604 { 4605 u8 struct_v; 4606 u32 struct_len; 4607 int ret; 4608 4609 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 4610 &struct_v, &struct_len); 4611 if (ret) 4612 return ret; 4613 4614 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 4615 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 4616 if (IS_ERR(pii->pool_ns)) { 4617 ret = PTR_ERR(pii->pool_ns); 4618 pii->pool_ns = NULL; 4619 return ret; 4620 } 4621 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 4622 if (IS_ERR(pii->image_id)) { 4623 ret = PTR_ERR(pii->image_id); 4624 pii->image_id = NULL; 4625 return ret; 4626 } 4627 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 4628 return 0; 4629 4630 e_inval: 4631 return -EINVAL; 4632 } 4633 4634 static int __get_parent_info(struct rbd_device *rbd_dev, 4635 struct page *req_page, 4636 struct page *reply_page, 4637 struct parent_image_info *pii) 4638 { 4639 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4640 size_t reply_len = PAGE_SIZE; 4641 void *p, *end; 4642 int ret; 4643 4644 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 4645 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 4646 req_page, sizeof(u64), reply_page, &reply_len); 4647 if (ret) 4648 return ret == -EOPNOTSUPP ? 1 : ret; 4649 4650 p = page_address(reply_page); 4651 end = p + reply_len; 4652 ret = decode_parent_image_spec(&p, end, pii); 4653 if (ret) 4654 return ret; 4655 4656 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 4657 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 4658 req_page, sizeof(u64), reply_page, &reply_len); 4659 if (ret) 4660 return ret; 4661 4662 p = page_address(reply_page); 4663 end = p + reply_len; 4664 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 4665 if (pii->has_overlap) 4666 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 4667 4668 return 0; 4669 4670 e_inval: 4671 return -EINVAL; 4672 } 4673 4674 /* 4675 * The caller is responsible for @pii. 4676 */ 4677 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 4678 struct page *req_page, 4679 struct page *reply_page, 4680 struct parent_image_info *pii) 4681 { 4682 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4683 size_t reply_len = PAGE_SIZE; 4684 void *p, *end; 4685 int ret; 4686 4687 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 4688 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 4689 req_page, sizeof(u64), reply_page, &reply_len); 4690 if (ret) 4691 return ret; 4692 4693 p = page_address(reply_page); 4694 end = p + reply_len; 4695 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 4696 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4697 if (IS_ERR(pii->image_id)) { 4698 ret = PTR_ERR(pii->image_id); 4699 pii->image_id = NULL; 4700 return ret; 4701 } 4702 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 4703 pii->has_overlap = true; 4704 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 4705 4706 return 0; 4707 4708 e_inval: 4709 return -EINVAL; 4710 } 4711 4712 static int get_parent_info(struct rbd_device *rbd_dev, 4713 struct parent_image_info *pii) 4714 { 4715 struct page *req_page, *reply_page; 4716 void *p; 4717 int ret; 4718 4719 req_page = alloc_page(GFP_KERNEL); 4720 if (!req_page) 4721 return -ENOMEM; 4722 4723 reply_page = alloc_page(GFP_KERNEL); 4724 if (!reply_page) { 4725 __free_page(req_page); 4726 return -ENOMEM; 4727 } 4728 4729 p = page_address(req_page); 4730 ceph_encode_64(&p, rbd_dev->spec->snap_id); 4731 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 4732 if (ret > 0) 4733 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 4734 pii); 4735 4736 __free_page(req_page); 4737 __free_page(reply_page); 4738 return ret; 4739 } 4740 4741 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4742 { 4743 struct rbd_spec *parent_spec; 4744 struct parent_image_info pii = { 0 }; 4745 int ret; 4746 4747 parent_spec = rbd_spec_alloc(); 4748 if (!parent_spec) 4749 return -ENOMEM; 4750 4751 ret = get_parent_info(rbd_dev, &pii); 4752 if (ret) 4753 goto out_err; 4754 4755 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 4756 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 4757 pii.has_overlap, pii.overlap); 4758 4759 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 4760 /* 4761 * Either the parent never existed, or we have 4762 * record of it but the image got flattened so it no 4763 * longer has a parent. When the parent of a 4764 * layered image disappears we immediately set the 4765 * overlap to 0. The effect of this is that all new 4766 * requests will be treated as if the image had no 4767 * parent. 4768 * 4769 * If !pii.has_overlap, the parent image spec is not 4770 * applicable. It's there to avoid duplication in each 4771 * snapshot record. 4772 */ 4773 if (rbd_dev->parent_overlap) { 4774 rbd_dev->parent_overlap = 0; 4775 rbd_dev_parent_put(rbd_dev); 4776 pr_info("%s: clone image has been flattened\n", 4777 rbd_dev->disk->disk_name); 4778 } 4779 4780 goto out; /* No parent? No problem. */ 4781 } 4782 4783 /* The ceph file layout needs to fit pool id in 32 bits */ 4784 4785 ret = -EIO; 4786 if (pii.pool_id > (u64)U32_MAX) { 4787 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4788 (unsigned long long)pii.pool_id, U32_MAX); 4789 goto out_err; 4790 } 4791 4792 /* 4793 * The parent won't change (except when the clone is 4794 * flattened, already handled that). So we only need to 4795 * record the parent spec we have not already done so. 4796 */ 4797 if (!rbd_dev->parent_spec) { 4798 parent_spec->pool_id = pii.pool_id; 4799 if (pii.pool_ns && *pii.pool_ns) { 4800 parent_spec->pool_ns = pii.pool_ns; 4801 pii.pool_ns = NULL; 4802 } 4803 parent_spec->image_id = pii.image_id; 4804 pii.image_id = NULL; 4805 parent_spec->snap_id = pii.snap_id; 4806 4807 rbd_dev->parent_spec = parent_spec; 4808 parent_spec = NULL; /* rbd_dev now owns this */ 4809 } 4810 4811 /* 4812 * We always update the parent overlap. If it's zero we issue 4813 * a warning, as we will proceed as if there was no parent. 4814 */ 4815 if (!pii.overlap) { 4816 if (parent_spec) { 4817 /* refresh, careful to warn just once */ 4818 if (rbd_dev->parent_overlap) 4819 rbd_warn(rbd_dev, 4820 "clone now standalone (overlap became 0)"); 4821 } else { 4822 /* initial probe */ 4823 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4824 } 4825 } 4826 rbd_dev->parent_overlap = pii.overlap; 4827 4828 out: 4829 ret = 0; 4830 out_err: 4831 kfree(pii.pool_ns); 4832 kfree(pii.image_id); 4833 rbd_spec_put(parent_spec); 4834 return ret; 4835 } 4836 4837 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4838 { 4839 struct { 4840 __le64 stripe_unit; 4841 __le64 stripe_count; 4842 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4843 size_t size = sizeof (striping_info_buf); 4844 void *p; 4845 int ret; 4846 4847 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4848 &rbd_dev->header_oloc, "get_stripe_unit_count", 4849 NULL, 0, &striping_info_buf, size); 4850 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4851 if (ret < 0) 4852 return ret; 4853 if (ret < size) 4854 return -ERANGE; 4855 4856 p = &striping_info_buf; 4857 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 4858 rbd_dev->header.stripe_count = ceph_decode_64(&p); 4859 return 0; 4860 } 4861 4862 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 4863 { 4864 __le64 data_pool_id; 4865 int ret; 4866 4867 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4868 &rbd_dev->header_oloc, "get_data_pool", 4869 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 4870 if (ret < 0) 4871 return ret; 4872 if (ret < sizeof(data_pool_id)) 4873 return -EBADMSG; 4874 4875 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 4876 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 4877 return 0; 4878 } 4879 4880 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4881 { 4882 CEPH_DEFINE_OID_ONSTACK(oid); 4883 size_t image_id_size; 4884 char *image_id; 4885 void *p; 4886 void *end; 4887 size_t size; 4888 void *reply_buf = NULL; 4889 size_t len = 0; 4890 char *image_name = NULL; 4891 int ret; 4892 4893 rbd_assert(!rbd_dev->spec->image_name); 4894 4895 len = strlen(rbd_dev->spec->image_id); 4896 image_id_size = sizeof (__le32) + len; 4897 image_id = kmalloc(image_id_size, GFP_KERNEL); 4898 if (!image_id) 4899 return NULL; 4900 4901 p = image_id; 4902 end = image_id + image_id_size; 4903 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4904 4905 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4906 reply_buf = kmalloc(size, GFP_KERNEL); 4907 if (!reply_buf) 4908 goto out; 4909 4910 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 4911 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 4912 "dir_get_name", image_id, image_id_size, 4913 reply_buf, size); 4914 if (ret < 0) 4915 goto out; 4916 p = reply_buf; 4917 end = reply_buf + ret; 4918 4919 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4920 if (IS_ERR(image_name)) 4921 image_name = NULL; 4922 else 4923 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4924 out: 4925 kfree(reply_buf); 4926 kfree(image_id); 4927 4928 return image_name; 4929 } 4930 4931 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4932 { 4933 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4934 const char *snap_name; 4935 u32 which = 0; 4936 4937 /* Skip over names until we find the one we are looking for */ 4938 4939 snap_name = rbd_dev->header.snap_names; 4940 while (which < snapc->num_snaps) { 4941 if (!strcmp(name, snap_name)) 4942 return snapc->snaps[which]; 4943 snap_name += strlen(snap_name) + 1; 4944 which++; 4945 } 4946 return CEPH_NOSNAP; 4947 } 4948 4949 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4950 { 4951 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4952 u32 which; 4953 bool found = false; 4954 u64 snap_id; 4955 4956 for (which = 0; !found && which < snapc->num_snaps; which++) { 4957 const char *snap_name; 4958 4959 snap_id = snapc->snaps[which]; 4960 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4961 if (IS_ERR(snap_name)) { 4962 /* ignore no-longer existing snapshots */ 4963 if (PTR_ERR(snap_name) == -ENOENT) 4964 continue; 4965 else 4966 break; 4967 } 4968 found = !strcmp(name, snap_name); 4969 kfree(snap_name); 4970 } 4971 return found ? snap_id : CEPH_NOSNAP; 4972 } 4973 4974 /* 4975 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4976 * no snapshot by that name is found, or if an error occurs. 4977 */ 4978 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4979 { 4980 if (rbd_dev->image_format == 1) 4981 return rbd_v1_snap_id_by_name(rbd_dev, name); 4982 4983 return rbd_v2_snap_id_by_name(rbd_dev, name); 4984 } 4985 4986 /* 4987 * An image being mapped will have everything but the snap id. 4988 */ 4989 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4990 { 4991 struct rbd_spec *spec = rbd_dev->spec; 4992 4993 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4994 rbd_assert(spec->image_id && spec->image_name); 4995 rbd_assert(spec->snap_name); 4996 4997 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4998 u64 snap_id; 4999 5000 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5001 if (snap_id == CEPH_NOSNAP) 5002 return -ENOENT; 5003 5004 spec->snap_id = snap_id; 5005 } else { 5006 spec->snap_id = CEPH_NOSNAP; 5007 } 5008 5009 return 0; 5010 } 5011 5012 /* 5013 * A parent image will have all ids but none of the names. 5014 * 5015 * All names in an rbd spec are dynamically allocated. It's OK if we 5016 * can't figure out the name for an image id. 5017 */ 5018 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5019 { 5020 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5021 struct rbd_spec *spec = rbd_dev->spec; 5022 const char *pool_name; 5023 const char *image_name; 5024 const char *snap_name; 5025 int ret; 5026 5027 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5028 rbd_assert(spec->image_id); 5029 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5030 5031 /* Get the pool name; we have to make our own copy of this */ 5032 5033 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5034 if (!pool_name) { 5035 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5036 return -EIO; 5037 } 5038 pool_name = kstrdup(pool_name, GFP_KERNEL); 5039 if (!pool_name) 5040 return -ENOMEM; 5041 5042 /* Fetch the image name; tolerate failure here */ 5043 5044 image_name = rbd_dev_image_name(rbd_dev); 5045 if (!image_name) 5046 rbd_warn(rbd_dev, "unable to get image name"); 5047 5048 /* Fetch the snapshot name */ 5049 5050 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5051 if (IS_ERR(snap_name)) { 5052 ret = PTR_ERR(snap_name); 5053 goto out_err; 5054 } 5055 5056 spec->pool_name = pool_name; 5057 spec->image_name = image_name; 5058 spec->snap_name = snap_name; 5059 5060 return 0; 5061 5062 out_err: 5063 kfree(image_name); 5064 kfree(pool_name); 5065 return ret; 5066 } 5067 5068 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5069 { 5070 size_t size; 5071 int ret; 5072 void *reply_buf; 5073 void *p; 5074 void *end; 5075 u64 seq; 5076 u32 snap_count; 5077 struct ceph_snap_context *snapc; 5078 u32 i; 5079 5080 /* 5081 * We'll need room for the seq value (maximum snapshot id), 5082 * snapshot count, and array of that many snapshot ids. 5083 * For now we have a fixed upper limit on the number we're 5084 * prepared to receive. 5085 */ 5086 size = sizeof (__le64) + sizeof (__le32) + 5087 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5088 reply_buf = kzalloc(size, GFP_KERNEL); 5089 if (!reply_buf) 5090 return -ENOMEM; 5091 5092 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5093 &rbd_dev->header_oloc, "get_snapcontext", 5094 NULL, 0, reply_buf, size); 5095 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5096 if (ret < 0) 5097 goto out; 5098 5099 p = reply_buf; 5100 end = reply_buf + ret; 5101 ret = -ERANGE; 5102 ceph_decode_64_safe(&p, end, seq, out); 5103 ceph_decode_32_safe(&p, end, snap_count, out); 5104 5105 /* 5106 * Make sure the reported number of snapshot ids wouldn't go 5107 * beyond the end of our buffer. But before checking that, 5108 * make sure the computed size of the snapshot context we 5109 * allocate is representable in a size_t. 5110 */ 5111 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5112 / sizeof (u64)) { 5113 ret = -EINVAL; 5114 goto out; 5115 } 5116 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5117 goto out; 5118 ret = 0; 5119 5120 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5121 if (!snapc) { 5122 ret = -ENOMEM; 5123 goto out; 5124 } 5125 snapc->seq = seq; 5126 for (i = 0; i < snap_count; i++) 5127 snapc->snaps[i] = ceph_decode_64(&p); 5128 5129 ceph_put_snap_context(rbd_dev->header.snapc); 5130 rbd_dev->header.snapc = snapc; 5131 5132 dout(" snap context seq = %llu, snap_count = %u\n", 5133 (unsigned long long)seq, (unsigned int)snap_count); 5134 out: 5135 kfree(reply_buf); 5136 5137 return ret; 5138 } 5139 5140 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5141 u64 snap_id) 5142 { 5143 size_t size; 5144 void *reply_buf; 5145 __le64 snapid; 5146 int ret; 5147 void *p; 5148 void *end; 5149 char *snap_name; 5150 5151 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5152 reply_buf = kmalloc(size, GFP_KERNEL); 5153 if (!reply_buf) 5154 return ERR_PTR(-ENOMEM); 5155 5156 snapid = cpu_to_le64(snap_id); 5157 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5158 &rbd_dev->header_oloc, "get_snapshot_name", 5159 &snapid, sizeof(snapid), reply_buf, size); 5160 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5161 if (ret < 0) { 5162 snap_name = ERR_PTR(ret); 5163 goto out; 5164 } 5165 5166 p = reply_buf; 5167 end = reply_buf + ret; 5168 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5169 if (IS_ERR(snap_name)) 5170 goto out; 5171 5172 dout(" snap_id 0x%016llx snap_name = %s\n", 5173 (unsigned long long)snap_id, snap_name); 5174 out: 5175 kfree(reply_buf); 5176 5177 return snap_name; 5178 } 5179 5180 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5181 { 5182 bool first_time = rbd_dev->header.object_prefix == NULL; 5183 int ret; 5184 5185 ret = rbd_dev_v2_image_size(rbd_dev); 5186 if (ret) 5187 return ret; 5188 5189 if (first_time) { 5190 ret = rbd_dev_v2_header_onetime(rbd_dev); 5191 if (ret) 5192 return ret; 5193 } 5194 5195 ret = rbd_dev_v2_snap_context(rbd_dev); 5196 if (ret && first_time) { 5197 kfree(rbd_dev->header.object_prefix); 5198 rbd_dev->header.object_prefix = NULL; 5199 } 5200 5201 return ret; 5202 } 5203 5204 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5205 { 5206 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5207 5208 if (rbd_dev->image_format == 1) 5209 return rbd_dev_v1_header_info(rbd_dev); 5210 5211 return rbd_dev_v2_header_info(rbd_dev); 5212 } 5213 5214 /* 5215 * Skips over white space at *buf, and updates *buf to point to the 5216 * first found non-space character (if any). Returns the length of 5217 * the token (string of non-white space characters) found. Note 5218 * that *buf must be terminated with '\0'. 5219 */ 5220 static inline size_t next_token(const char **buf) 5221 { 5222 /* 5223 * These are the characters that produce nonzero for 5224 * isspace() in the "C" and "POSIX" locales. 5225 */ 5226 const char *spaces = " \f\n\r\t\v"; 5227 5228 *buf += strspn(*buf, spaces); /* Find start of token */ 5229 5230 return strcspn(*buf, spaces); /* Return token length */ 5231 } 5232 5233 /* 5234 * Finds the next token in *buf, dynamically allocates a buffer big 5235 * enough to hold a copy of it, and copies the token into the new 5236 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5237 * that a duplicate buffer is created even for a zero-length token. 5238 * 5239 * Returns a pointer to the newly-allocated duplicate, or a null 5240 * pointer if memory for the duplicate was not available. If 5241 * the lenp argument is a non-null pointer, the length of the token 5242 * (not including the '\0') is returned in *lenp. 5243 * 5244 * If successful, the *buf pointer will be updated to point beyond 5245 * the end of the found token. 5246 * 5247 * Note: uses GFP_KERNEL for allocation. 5248 */ 5249 static inline char *dup_token(const char **buf, size_t *lenp) 5250 { 5251 char *dup; 5252 size_t len; 5253 5254 len = next_token(buf); 5255 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5256 if (!dup) 5257 return NULL; 5258 *(dup + len) = '\0'; 5259 *buf += len; 5260 5261 if (lenp) 5262 *lenp = len; 5263 5264 return dup; 5265 } 5266 5267 /* 5268 * Parse the options provided for an "rbd add" (i.e., rbd image 5269 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5270 * and the data written is passed here via a NUL-terminated buffer. 5271 * Returns 0 if successful or an error code otherwise. 5272 * 5273 * The information extracted from these options is recorded in 5274 * the other parameters which return dynamically-allocated 5275 * structures: 5276 * ceph_opts 5277 * The address of a pointer that will refer to a ceph options 5278 * structure. Caller must release the returned pointer using 5279 * ceph_destroy_options() when it is no longer needed. 5280 * rbd_opts 5281 * Address of an rbd options pointer. Fully initialized by 5282 * this function; caller must release with kfree(). 5283 * spec 5284 * Address of an rbd image specification pointer. Fully 5285 * initialized by this function based on parsed options. 5286 * Caller must release with rbd_spec_put(). 5287 * 5288 * The options passed take this form: 5289 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5290 * where: 5291 * <mon_addrs> 5292 * A comma-separated list of one or more monitor addresses. 5293 * A monitor address is an ip address, optionally followed 5294 * by a port number (separated by a colon). 5295 * I.e.: ip1[:port1][,ip2[:port2]...] 5296 * <options> 5297 * A comma-separated list of ceph and/or rbd options. 5298 * <pool_name> 5299 * The name of the rados pool containing the rbd image. 5300 * <image_name> 5301 * The name of the image in that pool to map. 5302 * <snap_id> 5303 * An optional snapshot id. If provided, the mapping will 5304 * present data from the image at the time that snapshot was 5305 * created. The image head is used if no snapshot id is 5306 * provided. Snapshot mappings are always read-only. 5307 */ 5308 static int rbd_add_parse_args(const char *buf, 5309 struct ceph_options **ceph_opts, 5310 struct rbd_options **opts, 5311 struct rbd_spec **rbd_spec) 5312 { 5313 size_t len; 5314 char *options; 5315 const char *mon_addrs; 5316 char *snap_name; 5317 size_t mon_addrs_size; 5318 struct parse_rbd_opts_ctx pctx = { 0 }; 5319 struct ceph_options *copts; 5320 int ret; 5321 5322 /* The first four tokens are required */ 5323 5324 len = next_token(&buf); 5325 if (!len) { 5326 rbd_warn(NULL, "no monitor address(es) provided"); 5327 return -EINVAL; 5328 } 5329 mon_addrs = buf; 5330 mon_addrs_size = len + 1; 5331 buf += len; 5332 5333 ret = -EINVAL; 5334 options = dup_token(&buf, NULL); 5335 if (!options) 5336 return -ENOMEM; 5337 if (!*options) { 5338 rbd_warn(NULL, "no options provided"); 5339 goto out_err; 5340 } 5341 5342 pctx.spec = rbd_spec_alloc(); 5343 if (!pctx.spec) 5344 goto out_mem; 5345 5346 pctx.spec->pool_name = dup_token(&buf, NULL); 5347 if (!pctx.spec->pool_name) 5348 goto out_mem; 5349 if (!*pctx.spec->pool_name) { 5350 rbd_warn(NULL, "no pool name provided"); 5351 goto out_err; 5352 } 5353 5354 pctx.spec->image_name = dup_token(&buf, NULL); 5355 if (!pctx.spec->image_name) 5356 goto out_mem; 5357 if (!*pctx.spec->image_name) { 5358 rbd_warn(NULL, "no image name provided"); 5359 goto out_err; 5360 } 5361 5362 /* 5363 * Snapshot name is optional; default is to use "-" 5364 * (indicating the head/no snapshot). 5365 */ 5366 len = next_token(&buf); 5367 if (!len) { 5368 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5369 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5370 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5371 ret = -ENAMETOOLONG; 5372 goto out_err; 5373 } 5374 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5375 if (!snap_name) 5376 goto out_mem; 5377 *(snap_name + len) = '\0'; 5378 pctx.spec->snap_name = snap_name; 5379 5380 /* Initialize all rbd options to the defaults */ 5381 5382 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 5383 if (!pctx.opts) 5384 goto out_mem; 5385 5386 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 5387 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5388 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 5389 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5390 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5391 pctx.opts->trim = RBD_TRIM_DEFAULT; 5392 5393 copts = ceph_parse_options(options, mon_addrs, 5394 mon_addrs + mon_addrs_size - 1, 5395 parse_rbd_opts_token, &pctx); 5396 if (IS_ERR(copts)) { 5397 ret = PTR_ERR(copts); 5398 goto out_err; 5399 } 5400 kfree(options); 5401 5402 *ceph_opts = copts; 5403 *opts = pctx.opts; 5404 *rbd_spec = pctx.spec; 5405 5406 return 0; 5407 out_mem: 5408 ret = -ENOMEM; 5409 out_err: 5410 kfree(pctx.opts); 5411 rbd_spec_put(pctx.spec); 5412 kfree(options); 5413 5414 return ret; 5415 } 5416 5417 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5418 { 5419 down_write(&rbd_dev->lock_rwsem); 5420 if (__rbd_is_lock_owner(rbd_dev)) 5421 rbd_unlock(rbd_dev); 5422 up_write(&rbd_dev->lock_rwsem); 5423 } 5424 5425 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5426 { 5427 int ret; 5428 5429 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5430 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5431 return -EINVAL; 5432 } 5433 5434 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5435 down_read(&rbd_dev->lock_rwsem); 5436 ret = rbd_wait_state_locked(rbd_dev, true); 5437 up_read(&rbd_dev->lock_rwsem); 5438 if (ret) { 5439 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5440 return -EROFS; 5441 } 5442 5443 return 0; 5444 } 5445 5446 /* 5447 * An rbd format 2 image has a unique identifier, distinct from the 5448 * name given to it by the user. Internally, that identifier is 5449 * what's used to specify the names of objects related to the image. 5450 * 5451 * A special "rbd id" object is used to map an rbd image name to its 5452 * id. If that object doesn't exist, then there is no v2 rbd image 5453 * with the supplied name. 5454 * 5455 * This function will record the given rbd_dev's image_id field if 5456 * it can be determined, and in that case will return 0. If any 5457 * errors occur a negative errno will be returned and the rbd_dev's 5458 * image_id field will be unchanged (and should be NULL). 5459 */ 5460 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5461 { 5462 int ret; 5463 size_t size; 5464 CEPH_DEFINE_OID_ONSTACK(oid); 5465 void *response; 5466 char *image_id; 5467 5468 /* 5469 * When probing a parent image, the image id is already 5470 * known (and the image name likely is not). There's no 5471 * need to fetch the image id again in this case. We 5472 * do still need to set the image format though. 5473 */ 5474 if (rbd_dev->spec->image_id) { 5475 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5476 5477 return 0; 5478 } 5479 5480 /* 5481 * First, see if the format 2 image id file exists, and if 5482 * so, get the image's persistent id from it. 5483 */ 5484 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5485 rbd_dev->spec->image_name); 5486 if (ret) 5487 return ret; 5488 5489 dout("rbd id object name is %s\n", oid.name); 5490 5491 /* Response will be an encoded string, which includes a length */ 5492 5493 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5494 response = kzalloc(size, GFP_NOIO); 5495 if (!response) { 5496 ret = -ENOMEM; 5497 goto out; 5498 } 5499 5500 /* If it doesn't exist we'll assume it's a format 1 image */ 5501 5502 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5503 "get_id", NULL, 0, 5504 response, RBD_IMAGE_ID_LEN_MAX); 5505 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5506 if (ret == -ENOENT) { 5507 image_id = kstrdup("", GFP_KERNEL); 5508 ret = image_id ? 0 : -ENOMEM; 5509 if (!ret) 5510 rbd_dev->image_format = 1; 5511 } else if (ret >= 0) { 5512 void *p = response; 5513 5514 image_id = ceph_extract_encoded_string(&p, p + ret, 5515 NULL, GFP_NOIO); 5516 ret = PTR_ERR_OR_ZERO(image_id); 5517 if (!ret) 5518 rbd_dev->image_format = 2; 5519 } 5520 5521 if (!ret) { 5522 rbd_dev->spec->image_id = image_id; 5523 dout("image_id is %s\n", image_id); 5524 } 5525 out: 5526 kfree(response); 5527 ceph_oid_destroy(&oid); 5528 return ret; 5529 } 5530 5531 /* 5532 * Undo whatever state changes are made by v1 or v2 header info 5533 * call. 5534 */ 5535 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5536 { 5537 struct rbd_image_header *header; 5538 5539 rbd_dev_parent_put(rbd_dev); 5540 5541 /* Free dynamic fields from the header, then zero it out */ 5542 5543 header = &rbd_dev->header; 5544 ceph_put_snap_context(header->snapc); 5545 kfree(header->snap_sizes); 5546 kfree(header->snap_names); 5547 kfree(header->object_prefix); 5548 memset(header, 0, sizeof (*header)); 5549 } 5550 5551 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5552 { 5553 int ret; 5554 5555 ret = rbd_dev_v2_object_prefix(rbd_dev); 5556 if (ret) 5557 goto out_err; 5558 5559 /* 5560 * Get the and check features for the image. Currently the 5561 * features are assumed to never change. 5562 */ 5563 ret = rbd_dev_v2_features(rbd_dev); 5564 if (ret) 5565 goto out_err; 5566 5567 /* If the image supports fancy striping, get its parameters */ 5568 5569 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5570 ret = rbd_dev_v2_striping_info(rbd_dev); 5571 if (ret < 0) 5572 goto out_err; 5573 } 5574 5575 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5576 ret = rbd_dev_v2_data_pool(rbd_dev); 5577 if (ret) 5578 goto out_err; 5579 } 5580 5581 rbd_init_layout(rbd_dev); 5582 return 0; 5583 5584 out_err: 5585 rbd_dev->header.features = 0; 5586 kfree(rbd_dev->header.object_prefix); 5587 rbd_dev->header.object_prefix = NULL; 5588 return ret; 5589 } 5590 5591 /* 5592 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5593 * rbd_dev_image_probe() recursion depth, which means it's also the 5594 * length of the already discovered part of the parent chain. 5595 */ 5596 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5597 { 5598 struct rbd_device *parent = NULL; 5599 int ret; 5600 5601 if (!rbd_dev->parent_spec) 5602 return 0; 5603 5604 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5605 pr_info("parent chain is too long (%d)\n", depth); 5606 ret = -EINVAL; 5607 goto out_err; 5608 } 5609 5610 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5611 if (!parent) { 5612 ret = -ENOMEM; 5613 goto out_err; 5614 } 5615 5616 /* 5617 * Images related by parent/child relationships always share 5618 * rbd_client and spec/parent_spec, so bump their refcounts. 5619 */ 5620 __rbd_get_client(rbd_dev->rbd_client); 5621 rbd_spec_get(rbd_dev->parent_spec); 5622 5623 ret = rbd_dev_image_probe(parent, depth); 5624 if (ret < 0) 5625 goto out_err; 5626 5627 rbd_dev->parent = parent; 5628 atomic_set(&rbd_dev->parent_ref, 1); 5629 return 0; 5630 5631 out_err: 5632 rbd_dev_unparent(rbd_dev); 5633 rbd_dev_destroy(parent); 5634 return ret; 5635 } 5636 5637 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5638 { 5639 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5640 rbd_dev_mapping_clear(rbd_dev); 5641 rbd_free_disk(rbd_dev); 5642 if (!single_major) 5643 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5644 } 5645 5646 /* 5647 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5648 * upon return. 5649 */ 5650 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5651 { 5652 int ret; 5653 5654 /* Record our major and minor device numbers. */ 5655 5656 if (!single_major) { 5657 ret = register_blkdev(0, rbd_dev->name); 5658 if (ret < 0) 5659 goto err_out_unlock; 5660 5661 rbd_dev->major = ret; 5662 rbd_dev->minor = 0; 5663 } else { 5664 rbd_dev->major = rbd_major; 5665 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5666 } 5667 5668 /* Set up the blkdev mapping. */ 5669 5670 ret = rbd_init_disk(rbd_dev); 5671 if (ret) 5672 goto err_out_blkdev; 5673 5674 ret = rbd_dev_mapping_set(rbd_dev); 5675 if (ret) 5676 goto err_out_disk; 5677 5678 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5679 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 5680 5681 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5682 if (ret) 5683 goto err_out_mapping; 5684 5685 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5686 up_write(&rbd_dev->header_rwsem); 5687 return 0; 5688 5689 err_out_mapping: 5690 rbd_dev_mapping_clear(rbd_dev); 5691 err_out_disk: 5692 rbd_free_disk(rbd_dev); 5693 err_out_blkdev: 5694 if (!single_major) 5695 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5696 err_out_unlock: 5697 up_write(&rbd_dev->header_rwsem); 5698 return ret; 5699 } 5700 5701 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5702 { 5703 struct rbd_spec *spec = rbd_dev->spec; 5704 int ret; 5705 5706 /* Record the header object name for this rbd image. */ 5707 5708 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5709 if (rbd_dev->image_format == 1) 5710 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5711 spec->image_name, RBD_SUFFIX); 5712 else 5713 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5714 RBD_HEADER_PREFIX, spec->image_id); 5715 5716 return ret; 5717 } 5718 5719 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5720 { 5721 rbd_dev_unprobe(rbd_dev); 5722 if (rbd_dev->opts) 5723 rbd_unregister_watch(rbd_dev); 5724 rbd_dev->image_format = 0; 5725 kfree(rbd_dev->spec->image_id); 5726 rbd_dev->spec->image_id = NULL; 5727 } 5728 5729 /* 5730 * Probe for the existence of the header object for the given rbd 5731 * device. If this image is the one being mapped (i.e., not a 5732 * parent), initiate a watch on its header object before using that 5733 * object to get detailed information about the rbd image. 5734 */ 5735 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5736 { 5737 int ret; 5738 5739 /* 5740 * Get the id from the image id object. Unless there's an 5741 * error, rbd_dev->spec->image_id will be filled in with 5742 * a dynamically-allocated string, and rbd_dev->image_format 5743 * will be set to either 1 or 2. 5744 */ 5745 ret = rbd_dev_image_id(rbd_dev); 5746 if (ret) 5747 return ret; 5748 5749 ret = rbd_dev_header_name(rbd_dev); 5750 if (ret) 5751 goto err_out_format; 5752 5753 if (!depth) { 5754 ret = rbd_register_watch(rbd_dev); 5755 if (ret) { 5756 if (ret == -ENOENT) 5757 pr_info("image %s/%s%s%s does not exist\n", 5758 rbd_dev->spec->pool_name, 5759 rbd_dev->spec->pool_ns ?: "", 5760 rbd_dev->spec->pool_ns ? "/" : "", 5761 rbd_dev->spec->image_name); 5762 goto err_out_format; 5763 } 5764 } 5765 5766 ret = rbd_dev_header_info(rbd_dev); 5767 if (ret) 5768 goto err_out_watch; 5769 5770 /* 5771 * If this image is the one being mapped, we have pool name and 5772 * id, image name and id, and snap name - need to fill snap id. 5773 * Otherwise this is a parent image, identified by pool, image 5774 * and snap ids - need to fill in names for those ids. 5775 */ 5776 if (!depth) 5777 ret = rbd_spec_fill_snap_id(rbd_dev); 5778 else 5779 ret = rbd_spec_fill_names(rbd_dev); 5780 if (ret) { 5781 if (ret == -ENOENT) 5782 pr_info("snap %s/%s%s%s@%s does not exist\n", 5783 rbd_dev->spec->pool_name, 5784 rbd_dev->spec->pool_ns ?: "", 5785 rbd_dev->spec->pool_ns ? "/" : "", 5786 rbd_dev->spec->image_name, 5787 rbd_dev->spec->snap_name); 5788 goto err_out_probe; 5789 } 5790 5791 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5792 ret = rbd_dev_v2_parent_info(rbd_dev); 5793 if (ret) 5794 goto err_out_probe; 5795 5796 /* 5797 * Need to warn users if this image is the one being 5798 * mapped and has a parent. 5799 */ 5800 if (!depth && rbd_dev->parent_spec) 5801 rbd_warn(rbd_dev, 5802 "WARNING: kernel layering is EXPERIMENTAL!"); 5803 } 5804 5805 ret = rbd_dev_probe_parent(rbd_dev, depth); 5806 if (ret) 5807 goto err_out_probe; 5808 5809 dout("discovered format %u image, header name is %s\n", 5810 rbd_dev->image_format, rbd_dev->header_oid.name); 5811 return 0; 5812 5813 err_out_probe: 5814 rbd_dev_unprobe(rbd_dev); 5815 err_out_watch: 5816 if (!depth) 5817 rbd_unregister_watch(rbd_dev); 5818 err_out_format: 5819 rbd_dev->image_format = 0; 5820 kfree(rbd_dev->spec->image_id); 5821 rbd_dev->spec->image_id = NULL; 5822 return ret; 5823 } 5824 5825 static ssize_t do_rbd_add(struct bus_type *bus, 5826 const char *buf, 5827 size_t count) 5828 { 5829 struct rbd_device *rbd_dev = NULL; 5830 struct ceph_options *ceph_opts = NULL; 5831 struct rbd_options *rbd_opts = NULL; 5832 struct rbd_spec *spec = NULL; 5833 struct rbd_client *rbdc; 5834 int rc; 5835 5836 if (!try_module_get(THIS_MODULE)) 5837 return -ENODEV; 5838 5839 /* parse add command */ 5840 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5841 if (rc < 0) 5842 goto out; 5843 5844 rbdc = rbd_get_client(ceph_opts); 5845 if (IS_ERR(rbdc)) { 5846 rc = PTR_ERR(rbdc); 5847 goto err_out_args; 5848 } 5849 5850 /* pick the pool */ 5851 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 5852 if (rc < 0) { 5853 if (rc == -ENOENT) 5854 pr_info("pool %s does not exist\n", spec->pool_name); 5855 goto err_out_client; 5856 } 5857 spec->pool_id = (u64)rc; 5858 5859 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5860 if (!rbd_dev) { 5861 rc = -ENOMEM; 5862 goto err_out_client; 5863 } 5864 rbdc = NULL; /* rbd_dev now owns this */ 5865 spec = NULL; /* rbd_dev now owns this */ 5866 rbd_opts = NULL; /* rbd_dev now owns this */ 5867 5868 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 5869 if (!rbd_dev->config_info) { 5870 rc = -ENOMEM; 5871 goto err_out_rbd_dev; 5872 } 5873 5874 down_write(&rbd_dev->header_rwsem); 5875 rc = rbd_dev_image_probe(rbd_dev, 0); 5876 if (rc < 0) { 5877 up_write(&rbd_dev->header_rwsem); 5878 goto err_out_rbd_dev; 5879 } 5880 5881 /* If we are mapping a snapshot it must be marked read-only */ 5882 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5883 rbd_dev->opts->read_only = true; 5884 5885 rc = rbd_dev_device_setup(rbd_dev); 5886 if (rc) 5887 goto err_out_image_probe; 5888 5889 if (rbd_dev->opts->exclusive) { 5890 rc = rbd_add_acquire_lock(rbd_dev); 5891 if (rc) 5892 goto err_out_device_setup; 5893 } 5894 5895 /* Everything's ready. Announce the disk to the world. */ 5896 5897 rc = device_add(&rbd_dev->dev); 5898 if (rc) 5899 goto err_out_image_lock; 5900 5901 add_disk(rbd_dev->disk); 5902 /* see rbd_init_disk() */ 5903 blk_put_queue(rbd_dev->disk->queue); 5904 5905 spin_lock(&rbd_dev_list_lock); 5906 list_add_tail(&rbd_dev->node, &rbd_dev_list); 5907 spin_unlock(&rbd_dev_list_lock); 5908 5909 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 5910 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 5911 rbd_dev->header.features); 5912 rc = count; 5913 out: 5914 module_put(THIS_MODULE); 5915 return rc; 5916 5917 err_out_image_lock: 5918 rbd_dev_image_unlock(rbd_dev); 5919 err_out_device_setup: 5920 rbd_dev_device_release(rbd_dev); 5921 err_out_image_probe: 5922 rbd_dev_image_release(rbd_dev); 5923 err_out_rbd_dev: 5924 rbd_dev_destroy(rbd_dev); 5925 err_out_client: 5926 rbd_put_client(rbdc); 5927 err_out_args: 5928 rbd_spec_put(spec); 5929 kfree(rbd_opts); 5930 goto out; 5931 } 5932 5933 static ssize_t rbd_add(struct bus_type *bus, 5934 const char *buf, 5935 size_t count) 5936 { 5937 if (single_major) 5938 return -EINVAL; 5939 5940 return do_rbd_add(bus, buf, count); 5941 } 5942 5943 static ssize_t rbd_add_single_major(struct bus_type *bus, 5944 const char *buf, 5945 size_t count) 5946 { 5947 return do_rbd_add(bus, buf, count); 5948 } 5949 5950 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5951 { 5952 while (rbd_dev->parent) { 5953 struct rbd_device *first = rbd_dev; 5954 struct rbd_device *second = first->parent; 5955 struct rbd_device *third; 5956 5957 /* 5958 * Follow to the parent with no grandparent and 5959 * remove it. 5960 */ 5961 while (second && (third = second->parent)) { 5962 first = second; 5963 second = third; 5964 } 5965 rbd_assert(second); 5966 rbd_dev_image_release(second); 5967 rbd_dev_destroy(second); 5968 first->parent = NULL; 5969 first->parent_overlap = 0; 5970 5971 rbd_assert(first->parent_spec); 5972 rbd_spec_put(first->parent_spec); 5973 first->parent_spec = NULL; 5974 } 5975 } 5976 5977 static ssize_t do_rbd_remove(struct bus_type *bus, 5978 const char *buf, 5979 size_t count) 5980 { 5981 struct rbd_device *rbd_dev = NULL; 5982 struct list_head *tmp; 5983 int dev_id; 5984 char opt_buf[6]; 5985 bool already = false; 5986 bool force = false; 5987 int ret; 5988 5989 dev_id = -1; 5990 opt_buf[0] = '\0'; 5991 sscanf(buf, "%d %5s", &dev_id, opt_buf); 5992 if (dev_id < 0) { 5993 pr_err("dev_id out of range\n"); 5994 return -EINVAL; 5995 } 5996 if (opt_buf[0] != '\0') { 5997 if (!strcmp(opt_buf, "force")) { 5998 force = true; 5999 } else { 6000 pr_err("bad remove option at '%s'\n", opt_buf); 6001 return -EINVAL; 6002 } 6003 } 6004 6005 ret = -ENOENT; 6006 spin_lock(&rbd_dev_list_lock); 6007 list_for_each(tmp, &rbd_dev_list) { 6008 rbd_dev = list_entry(tmp, struct rbd_device, node); 6009 if (rbd_dev->dev_id == dev_id) { 6010 ret = 0; 6011 break; 6012 } 6013 } 6014 if (!ret) { 6015 spin_lock_irq(&rbd_dev->lock); 6016 if (rbd_dev->open_count && !force) 6017 ret = -EBUSY; 6018 else 6019 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6020 &rbd_dev->flags); 6021 spin_unlock_irq(&rbd_dev->lock); 6022 } 6023 spin_unlock(&rbd_dev_list_lock); 6024 if (ret < 0 || already) 6025 return ret; 6026 6027 if (force) { 6028 /* 6029 * Prevent new IO from being queued and wait for existing 6030 * IO to complete/fail. 6031 */ 6032 blk_mq_freeze_queue(rbd_dev->disk->queue); 6033 blk_set_queue_dying(rbd_dev->disk->queue); 6034 } 6035 6036 del_gendisk(rbd_dev->disk); 6037 spin_lock(&rbd_dev_list_lock); 6038 list_del_init(&rbd_dev->node); 6039 spin_unlock(&rbd_dev_list_lock); 6040 device_del(&rbd_dev->dev); 6041 6042 rbd_dev_image_unlock(rbd_dev); 6043 rbd_dev_device_release(rbd_dev); 6044 rbd_dev_image_release(rbd_dev); 6045 rbd_dev_destroy(rbd_dev); 6046 return count; 6047 } 6048 6049 static ssize_t rbd_remove(struct bus_type *bus, 6050 const char *buf, 6051 size_t count) 6052 { 6053 if (single_major) 6054 return -EINVAL; 6055 6056 return do_rbd_remove(bus, buf, count); 6057 } 6058 6059 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6060 const char *buf, 6061 size_t count) 6062 { 6063 return do_rbd_remove(bus, buf, count); 6064 } 6065 6066 /* 6067 * create control files in sysfs 6068 * /sys/bus/rbd/... 6069 */ 6070 static int rbd_sysfs_init(void) 6071 { 6072 int ret; 6073 6074 ret = device_register(&rbd_root_dev); 6075 if (ret < 0) 6076 return ret; 6077 6078 ret = bus_register(&rbd_bus_type); 6079 if (ret < 0) 6080 device_unregister(&rbd_root_dev); 6081 6082 return ret; 6083 } 6084 6085 static void rbd_sysfs_cleanup(void) 6086 { 6087 bus_unregister(&rbd_bus_type); 6088 device_unregister(&rbd_root_dev); 6089 } 6090 6091 static int rbd_slab_init(void) 6092 { 6093 rbd_assert(!rbd_img_request_cache); 6094 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6095 if (!rbd_img_request_cache) 6096 return -ENOMEM; 6097 6098 rbd_assert(!rbd_obj_request_cache); 6099 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6100 if (!rbd_obj_request_cache) 6101 goto out_err; 6102 6103 return 0; 6104 6105 out_err: 6106 kmem_cache_destroy(rbd_img_request_cache); 6107 rbd_img_request_cache = NULL; 6108 return -ENOMEM; 6109 } 6110 6111 static void rbd_slab_exit(void) 6112 { 6113 rbd_assert(rbd_obj_request_cache); 6114 kmem_cache_destroy(rbd_obj_request_cache); 6115 rbd_obj_request_cache = NULL; 6116 6117 rbd_assert(rbd_img_request_cache); 6118 kmem_cache_destroy(rbd_img_request_cache); 6119 rbd_img_request_cache = NULL; 6120 } 6121 6122 static int __init rbd_init(void) 6123 { 6124 int rc; 6125 6126 if (!libceph_compatible(NULL)) { 6127 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6128 return -EINVAL; 6129 } 6130 6131 rc = rbd_slab_init(); 6132 if (rc) 6133 return rc; 6134 6135 /* 6136 * The number of active work items is limited by the number of 6137 * rbd devices * queue depth, so leave @max_active at default. 6138 */ 6139 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6140 if (!rbd_wq) { 6141 rc = -ENOMEM; 6142 goto err_out_slab; 6143 } 6144 6145 if (single_major) { 6146 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6147 if (rbd_major < 0) { 6148 rc = rbd_major; 6149 goto err_out_wq; 6150 } 6151 } 6152 6153 rc = rbd_sysfs_init(); 6154 if (rc) 6155 goto err_out_blkdev; 6156 6157 if (single_major) 6158 pr_info("loaded (major %d)\n", rbd_major); 6159 else 6160 pr_info("loaded\n"); 6161 6162 return 0; 6163 6164 err_out_blkdev: 6165 if (single_major) 6166 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6167 err_out_wq: 6168 destroy_workqueue(rbd_wq); 6169 err_out_slab: 6170 rbd_slab_exit(); 6171 return rc; 6172 } 6173 6174 static void __exit rbd_exit(void) 6175 { 6176 ida_destroy(&rbd_dev_id_ida); 6177 rbd_sysfs_cleanup(); 6178 if (single_major) 6179 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6180 destroy_workqueue(rbd_wq); 6181 rbd_slab_exit(); 6182 } 6183 6184 module_init(rbd_init); 6185 module_exit(rbd_exit); 6186 6187 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6188 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6189 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6190 /* following authorship retained from original osdblk.c */ 6191 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6192 6193 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6194 MODULE_LICENSE("GPL"); 6195