xref: /openbmc/linux/drivers/block/rbd.c (revision 8ff2c64c)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
664 {
665 	struct rbd_device *rbd_dev = disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	rbd_assert(obj_req->img_request->snapc);
1340 
1341 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1342 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1343 		     obj_req->ex.oe_objno);
1344 		return;
1345 	}
1346 
1347 	if (!obj_req->num_img_extents) {
1348 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1349 		     obj_req->ex.oe_objno);
1350 		return;
1351 	}
1352 
1353 	if (rbd_obj_is_entire(obj_req) &&
1354 	    !obj_req->img_request->snapc->num_snaps) {
1355 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1356 		     obj_req->ex.oe_objno);
1357 		return;
1358 	}
1359 
1360 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1361 }
1362 
1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1364 {
1365 	return ceph_file_extents_bytes(obj_req->img_extents,
1366 				       obj_req->num_img_extents);
1367 }
1368 
1369 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1370 {
1371 	switch (img_req->op_type) {
1372 	case OBJ_OP_READ:
1373 		return false;
1374 	case OBJ_OP_WRITE:
1375 	case OBJ_OP_DISCARD:
1376 	case OBJ_OP_ZEROOUT:
1377 		return true;
1378 	default:
1379 		BUG();
1380 	}
1381 }
1382 
1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1384 {
1385 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1386 	int result;
1387 
1388 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1389 	     osd_req->r_result, obj_req);
1390 
1391 	/*
1392 	 * Writes aren't allowed to return a data payload.  In some
1393 	 * guarded write cases (e.g. stat + zero on an empty object)
1394 	 * a stat response makes it through, but we don't care.
1395 	 */
1396 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1397 		result = 0;
1398 	else
1399 		result = osd_req->r_result;
1400 
1401 	rbd_obj_handle_request(obj_req, result);
1402 }
1403 
1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1405 {
1406 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1407 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1408 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1409 
1410 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1411 	osd_req->r_snapid = obj_request->img_request->snap_id;
1412 }
1413 
1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1415 {
1416 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1417 
1418 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1419 	ktime_get_real_ts64(&osd_req->r_mtime);
1420 	osd_req->r_data_offset = obj_request->ex.oe_off;
1421 }
1422 
1423 static struct ceph_osd_request *
1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1425 			  struct ceph_snap_context *snapc, int num_ops)
1426 {
1427 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1428 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1429 	struct ceph_osd_request *req;
1430 	const char *name_format = rbd_dev->image_format == 1 ?
1431 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1432 	int ret;
1433 
1434 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1435 	if (!req)
1436 		return ERR_PTR(-ENOMEM);
1437 
1438 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1439 	req->r_callback = rbd_osd_req_callback;
1440 	req->r_priv = obj_req;
1441 
1442 	/*
1443 	 * Data objects may be stored in a separate pool, but always in
1444 	 * the same namespace in that pool as the header in its pool.
1445 	 */
1446 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1447 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1448 
1449 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1450 			       rbd_dev->header.object_prefix,
1451 			       obj_req->ex.oe_objno);
1452 	if (ret)
1453 		return ERR_PTR(ret);
1454 
1455 	return req;
1456 }
1457 
1458 static struct ceph_osd_request *
1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1460 {
1461 	rbd_assert(obj_req->img_request->snapc);
1462 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1463 					 num_ops);
1464 }
1465 
1466 static struct rbd_obj_request *rbd_obj_request_create(void)
1467 {
1468 	struct rbd_obj_request *obj_request;
1469 
1470 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1471 	if (!obj_request)
1472 		return NULL;
1473 
1474 	ceph_object_extent_init(&obj_request->ex);
1475 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1476 	mutex_init(&obj_request->state_mutex);
1477 	kref_init(&obj_request->kref);
1478 
1479 	dout("%s %p\n", __func__, obj_request);
1480 	return obj_request;
1481 }
1482 
1483 static void rbd_obj_request_destroy(struct kref *kref)
1484 {
1485 	struct rbd_obj_request *obj_request;
1486 	struct ceph_osd_request *osd_req;
1487 	u32 i;
1488 
1489 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1490 
1491 	dout("%s: obj %p\n", __func__, obj_request);
1492 
1493 	while (!list_empty(&obj_request->osd_reqs)) {
1494 		osd_req = list_first_entry(&obj_request->osd_reqs,
1495 				    struct ceph_osd_request, r_private_item);
1496 		list_del_init(&osd_req->r_private_item);
1497 		ceph_osdc_put_request(osd_req);
1498 	}
1499 
1500 	switch (obj_request->img_request->data_type) {
1501 	case OBJ_REQUEST_NODATA:
1502 	case OBJ_REQUEST_BIO:
1503 	case OBJ_REQUEST_BVECS:
1504 		break;		/* Nothing to do */
1505 	case OBJ_REQUEST_OWN_BVECS:
1506 		kfree(obj_request->bvec_pos.bvecs);
1507 		break;
1508 	default:
1509 		BUG();
1510 	}
1511 
1512 	kfree(obj_request->img_extents);
1513 	if (obj_request->copyup_bvecs) {
1514 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1515 			if (obj_request->copyup_bvecs[i].bv_page)
1516 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1517 		}
1518 		kfree(obj_request->copyup_bvecs);
1519 	}
1520 
1521 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1522 }
1523 
1524 /* It's OK to call this for a device with no parent */
1525 
1526 static void rbd_spec_put(struct rbd_spec *spec);
1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1528 {
1529 	rbd_dev_remove_parent(rbd_dev);
1530 	rbd_spec_put(rbd_dev->parent_spec);
1531 	rbd_dev->parent_spec = NULL;
1532 	rbd_dev->parent_overlap = 0;
1533 }
1534 
1535 /*
1536  * Parent image reference counting is used to determine when an
1537  * image's parent fields can be safely torn down--after there are no
1538  * more in-flight requests to the parent image.  When the last
1539  * reference is dropped, cleaning them up is safe.
1540  */
1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1542 {
1543 	int counter;
1544 
1545 	if (!rbd_dev->parent_spec)
1546 		return;
1547 
1548 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1549 	if (counter > 0)
1550 		return;
1551 
1552 	/* Last reference; clean up parent data structures */
1553 
1554 	if (!counter)
1555 		rbd_dev_unparent(rbd_dev);
1556 	else
1557 		rbd_warn(rbd_dev, "parent reference underflow");
1558 }
1559 
1560 /*
1561  * If an image has a non-zero parent overlap, get a reference to its
1562  * parent.
1563  *
1564  * Returns true if the rbd device has a parent with a non-zero
1565  * overlap and a reference for it was successfully taken, or
1566  * false otherwise.
1567  */
1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1569 {
1570 	int counter = 0;
1571 
1572 	if (!rbd_dev->parent_spec)
1573 		return false;
1574 
1575 	if (rbd_dev->parent_overlap)
1576 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1577 
1578 	if (counter < 0)
1579 		rbd_warn(rbd_dev, "parent reference overflow");
1580 
1581 	return counter > 0;
1582 }
1583 
1584 static void rbd_img_request_init(struct rbd_img_request *img_request,
1585 				 struct rbd_device *rbd_dev,
1586 				 enum obj_operation_type op_type)
1587 {
1588 	memset(img_request, 0, sizeof(*img_request));
1589 
1590 	img_request->rbd_dev = rbd_dev;
1591 	img_request->op_type = op_type;
1592 
1593 	INIT_LIST_HEAD(&img_request->lock_item);
1594 	INIT_LIST_HEAD(&img_request->object_extents);
1595 	mutex_init(&img_request->state_mutex);
1596 }
1597 
1598 /*
1599  * Only snap_id is captured here, for reads.  For writes, snapshot
1600  * context is captured in rbd_img_object_requests() after exclusive
1601  * lock is ensured to be held.
1602  */
1603 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1604 {
1605 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1606 
1607 	lockdep_assert_held(&rbd_dev->header_rwsem);
1608 
1609 	if (!rbd_img_is_write(img_req))
1610 		img_req->snap_id = rbd_dev->spec->snap_id;
1611 
1612 	if (rbd_dev_parent_get(rbd_dev))
1613 		img_request_layered_set(img_req);
1614 }
1615 
1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1617 {
1618 	struct rbd_obj_request *obj_request;
1619 	struct rbd_obj_request *next_obj_request;
1620 
1621 	dout("%s: img %p\n", __func__, img_request);
1622 
1623 	WARN_ON(!list_empty(&img_request->lock_item));
1624 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1625 		rbd_img_obj_request_del(img_request, obj_request);
1626 
1627 	if (img_request_layered_test(img_request))
1628 		rbd_dev_parent_put(img_request->rbd_dev);
1629 
1630 	if (rbd_img_is_write(img_request))
1631 		ceph_put_snap_context(img_request->snapc);
1632 
1633 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1634 		kmem_cache_free(rbd_img_request_cache, img_request);
1635 }
1636 
1637 #define BITS_PER_OBJ	2
1638 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1639 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1640 
1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1642 				   u64 *index, u8 *shift)
1643 {
1644 	u32 off;
1645 
1646 	rbd_assert(objno < rbd_dev->object_map_size);
1647 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1648 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1649 }
1650 
1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1652 {
1653 	u64 index;
1654 	u8 shift;
1655 
1656 	lockdep_assert_held(&rbd_dev->object_map_lock);
1657 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1658 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1659 }
1660 
1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1662 {
1663 	u64 index;
1664 	u8 shift;
1665 	u8 *p;
1666 
1667 	lockdep_assert_held(&rbd_dev->object_map_lock);
1668 	rbd_assert(!(val & ~OBJ_MASK));
1669 
1670 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1671 	p = &rbd_dev->object_map[index];
1672 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1673 }
1674 
1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1676 {
1677 	u8 state;
1678 
1679 	spin_lock(&rbd_dev->object_map_lock);
1680 	state = __rbd_object_map_get(rbd_dev, objno);
1681 	spin_unlock(&rbd_dev->object_map_lock);
1682 	return state;
1683 }
1684 
1685 static bool use_object_map(struct rbd_device *rbd_dev)
1686 {
1687 	/*
1688 	 * An image mapped read-only can't use the object map -- it isn't
1689 	 * loaded because the header lock isn't acquired.  Someone else can
1690 	 * write to the image and update the object map behind our back.
1691 	 *
1692 	 * A snapshot can't be written to, so using the object map is always
1693 	 * safe.
1694 	 */
1695 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1696 		return false;
1697 
1698 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1699 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1700 }
1701 
1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1703 {
1704 	u8 state;
1705 
1706 	/* fall back to default logic if object map is disabled or invalid */
1707 	if (!use_object_map(rbd_dev))
1708 		return true;
1709 
1710 	state = rbd_object_map_get(rbd_dev, objno);
1711 	return state != OBJECT_NONEXISTENT;
1712 }
1713 
1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1715 				struct ceph_object_id *oid)
1716 {
1717 	if (snap_id == CEPH_NOSNAP)
1718 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1719 				rbd_dev->spec->image_id);
1720 	else
1721 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id, snap_id);
1723 }
1724 
1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1726 {
1727 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1728 	CEPH_DEFINE_OID_ONSTACK(oid);
1729 	u8 lock_type;
1730 	char *lock_tag;
1731 	struct ceph_locker *lockers;
1732 	u32 num_lockers;
1733 	bool broke_lock = false;
1734 	int ret;
1735 
1736 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1737 
1738 again:
1739 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1740 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1741 	if (ret != -EBUSY || broke_lock) {
1742 		if (ret == -EEXIST)
1743 			ret = 0; /* already locked by myself */
1744 		if (ret)
1745 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1746 		return ret;
1747 	}
1748 
1749 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1750 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1751 				 &lockers, &num_lockers);
1752 	if (ret) {
1753 		if (ret == -ENOENT)
1754 			goto again;
1755 
1756 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1757 		return ret;
1758 	}
1759 
1760 	kfree(lock_tag);
1761 	if (num_lockers == 0)
1762 		goto again;
1763 
1764 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1765 		 ENTITY_NAME(lockers[0].id.name));
1766 
1767 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1768 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1769 				  &lockers[0].id.name);
1770 	ceph_free_lockers(lockers, num_lockers);
1771 	if (ret) {
1772 		if (ret == -ENOENT)
1773 			goto again;
1774 
1775 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1776 		return ret;
1777 	}
1778 
1779 	broke_lock = true;
1780 	goto again;
1781 }
1782 
1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1784 {
1785 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1786 	CEPH_DEFINE_OID_ONSTACK(oid);
1787 	int ret;
1788 
1789 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1790 
1791 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1792 			      "");
1793 	if (ret && ret != -ENOENT)
1794 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1795 }
1796 
1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1798 {
1799 	u8 struct_v;
1800 	u32 struct_len;
1801 	u32 header_len;
1802 	void *header_end;
1803 	int ret;
1804 
1805 	ceph_decode_32_safe(p, end, header_len, e_inval);
1806 	header_end = *p + header_len;
1807 
1808 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1809 				  &struct_len);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1814 
1815 	*p = header_end;
1816 	return 0;
1817 
1818 e_inval:
1819 	return -EINVAL;
1820 }
1821 
1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1823 {
1824 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1825 	CEPH_DEFINE_OID_ONSTACK(oid);
1826 	struct page **pages;
1827 	void *p, *end;
1828 	size_t reply_len;
1829 	u64 num_objects;
1830 	u64 object_map_bytes;
1831 	u64 object_map_size;
1832 	int num_pages;
1833 	int ret;
1834 
1835 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1836 
1837 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1838 					   rbd_dev->mapping.size);
1839 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1840 					    BITS_PER_BYTE);
1841 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1842 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1843 	if (IS_ERR(pages))
1844 		return PTR_ERR(pages);
1845 
1846 	reply_len = num_pages * PAGE_SIZE;
1847 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1848 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1849 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1850 			     NULL, 0, pages, &reply_len);
1851 	if (ret)
1852 		goto out;
1853 
1854 	p = page_address(pages[0]);
1855 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1856 	ret = decode_object_map_header(&p, end, &object_map_size);
1857 	if (ret)
1858 		goto out;
1859 
1860 	if (object_map_size != num_objects) {
1861 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1862 			 object_map_size, num_objects);
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1868 		ret = -EINVAL;
1869 		goto out;
1870 	}
1871 
1872 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1873 	if (!rbd_dev->object_map) {
1874 		ret = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	rbd_dev->object_map_size = object_map_size;
1879 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1880 				   offset_in_page(p), object_map_bytes);
1881 
1882 out:
1883 	ceph_release_page_vector(pages, num_pages);
1884 	return ret;
1885 }
1886 
1887 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1888 {
1889 	kvfree(rbd_dev->object_map);
1890 	rbd_dev->object_map = NULL;
1891 	rbd_dev->object_map_size = 0;
1892 }
1893 
1894 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1895 {
1896 	int ret;
1897 
1898 	ret = __rbd_object_map_load(rbd_dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	ret = rbd_dev_v2_get_flags(rbd_dev);
1903 	if (ret) {
1904 		rbd_object_map_free(rbd_dev);
1905 		return ret;
1906 	}
1907 
1908 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1909 		rbd_warn(rbd_dev, "object map is invalid");
1910 
1911 	return 0;
1912 }
1913 
1914 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1915 {
1916 	int ret;
1917 
1918 	ret = rbd_object_map_lock(rbd_dev);
1919 	if (ret)
1920 		return ret;
1921 
1922 	ret = rbd_object_map_load(rbd_dev);
1923 	if (ret) {
1924 		rbd_object_map_unlock(rbd_dev);
1925 		return ret;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1932 {
1933 	rbd_object_map_free(rbd_dev);
1934 	rbd_object_map_unlock(rbd_dev);
1935 }
1936 
1937 /*
1938  * This function needs snap_id (or more precisely just something to
1939  * distinguish between HEAD and snapshot object maps), new_state and
1940  * current_state that were passed to rbd_object_map_update().
1941  *
1942  * To avoid allocating and stashing a context we piggyback on the OSD
1943  * request.  A HEAD update has two ops (assert_locked).  For new_state
1944  * and current_state we decode our own object_map_update op, encoded in
1945  * rbd_cls_object_map_update().
1946  */
1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1948 					struct ceph_osd_request *osd_req)
1949 {
1950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1951 	struct ceph_osd_data *osd_data;
1952 	u64 objno;
1953 	u8 state, new_state, current_state;
1954 	bool has_current_state;
1955 	void *p;
1956 
1957 	if (osd_req->r_result)
1958 		return osd_req->r_result;
1959 
1960 	/*
1961 	 * Nothing to do for a snapshot object map.
1962 	 */
1963 	if (osd_req->r_num_ops == 1)
1964 		return 0;
1965 
1966 	/*
1967 	 * Update in-memory HEAD object map.
1968 	 */
1969 	rbd_assert(osd_req->r_num_ops == 2);
1970 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1971 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1972 
1973 	p = page_address(osd_data->pages[0]);
1974 	objno = ceph_decode_64(&p);
1975 	rbd_assert(objno == obj_req->ex.oe_objno);
1976 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1977 	new_state = ceph_decode_8(&p);
1978 	has_current_state = ceph_decode_8(&p);
1979 	if (has_current_state)
1980 		current_state = ceph_decode_8(&p);
1981 
1982 	spin_lock(&rbd_dev->object_map_lock);
1983 	state = __rbd_object_map_get(rbd_dev, objno);
1984 	if (!has_current_state || current_state == state ||
1985 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1986 		__rbd_object_map_set(rbd_dev, objno, new_state);
1987 	spin_unlock(&rbd_dev->object_map_lock);
1988 
1989 	return 0;
1990 }
1991 
1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1993 {
1994 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1995 	int result;
1996 
1997 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1998 	     osd_req->r_result, obj_req);
1999 
2000 	result = rbd_object_map_update_finish(obj_req, osd_req);
2001 	rbd_obj_handle_request(obj_req, result);
2002 }
2003 
2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2005 {
2006 	u8 state = rbd_object_map_get(rbd_dev, objno);
2007 
2008 	if (state == new_state ||
2009 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2010 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2017 				     int which, u64 objno, u8 new_state,
2018 				     const u8 *current_state)
2019 {
2020 	struct page **pages;
2021 	void *p, *start;
2022 	int ret;
2023 
2024 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2025 	if (ret)
2026 		return ret;
2027 
2028 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2029 	if (IS_ERR(pages))
2030 		return PTR_ERR(pages);
2031 
2032 	p = start = page_address(pages[0]);
2033 	ceph_encode_64(&p, objno);
2034 	ceph_encode_64(&p, objno + 1);
2035 	ceph_encode_8(&p, new_state);
2036 	if (current_state) {
2037 		ceph_encode_8(&p, 1);
2038 		ceph_encode_8(&p, *current_state);
2039 	} else {
2040 		ceph_encode_8(&p, 0);
2041 	}
2042 
2043 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2044 					  false, true);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Return:
2050  *   0 - object map update sent
2051  *   1 - object map update isn't needed
2052  *  <0 - error
2053  */
2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2055 				 u8 new_state, const u8 *current_state)
2056 {
2057 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2059 	struct ceph_osd_request *req;
2060 	int num_ops = 1;
2061 	int which = 0;
2062 	int ret;
2063 
2064 	if (snap_id == CEPH_NOSNAP) {
2065 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2066 			return 1;
2067 
2068 		num_ops++; /* assert_locked */
2069 	}
2070 
2071 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2072 	if (!req)
2073 		return -ENOMEM;
2074 
2075 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2076 	req->r_callback = rbd_object_map_callback;
2077 	req->r_priv = obj_req;
2078 
2079 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2080 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2081 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2082 	ktime_get_real_ts64(&req->r_mtime);
2083 
2084 	if (snap_id == CEPH_NOSNAP) {
2085 		/*
2086 		 * Protect against possible race conditions during lock
2087 		 * ownership transitions.
2088 		 */
2089 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2090 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2096 					new_state, current_state);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2101 	if (ret)
2102 		return ret;
2103 
2104 	ceph_osdc_start_request(osdc, req);
2105 	return 0;
2106 }
2107 
2108 static void prune_extents(struct ceph_file_extent *img_extents,
2109 			  u32 *num_img_extents, u64 overlap)
2110 {
2111 	u32 cnt = *num_img_extents;
2112 
2113 	/* drop extents completely beyond the overlap */
2114 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2115 		cnt--;
2116 
2117 	if (cnt) {
2118 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2119 
2120 		/* trim final overlapping extent */
2121 		if (ex->fe_off + ex->fe_len > overlap)
2122 			ex->fe_len = overlap - ex->fe_off;
2123 	}
2124 
2125 	*num_img_extents = cnt;
2126 }
2127 
2128 /*
2129  * Determine the byte range(s) covered by either just the object extent
2130  * or the entire object in the parent image.
2131  */
2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2133 				    bool entire)
2134 {
2135 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2136 	int ret;
2137 
2138 	if (!rbd_dev->parent_overlap)
2139 		return 0;
2140 
2141 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2142 				  entire ? 0 : obj_req->ex.oe_off,
2143 				  entire ? rbd_dev->layout.object_size :
2144 							obj_req->ex.oe_len,
2145 				  &obj_req->img_extents,
2146 				  &obj_req->num_img_extents);
2147 	if (ret)
2148 		return ret;
2149 
2150 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2151 		      rbd_dev->parent_overlap);
2152 	return 0;
2153 }
2154 
2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2156 {
2157 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2158 
2159 	switch (obj_req->img_request->data_type) {
2160 	case OBJ_REQUEST_BIO:
2161 		osd_req_op_extent_osd_data_bio(osd_req, which,
2162 					       &obj_req->bio_pos,
2163 					       obj_req->ex.oe_len);
2164 		break;
2165 	case OBJ_REQUEST_BVECS:
2166 	case OBJ_REQUEST_OWN_BVECS:
2167 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2168 							obj_req->ex.oe_len);
2169 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2170 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2171 						    &obj_req->bvec_pos);
2172 		break;
2173 	default:
2174 		BUG();
2175 	}
2176 }
2177 
2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2179 {
2180 	struct page **pages;
2181 
2182 	/*
2183 	 * The response data for a STAT call consists of:
2184 	 *     le64 length;
2185 	 *     struct {
2186 	 *         le32 tv_sec;
2187 	 *         le32 tv_nsec;
2188 	 *     } mtime;
2189 	 */
2190 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2191 	if (IS_ERR(pages))
2192 		return PTR_ERR(pages);
2193 
2194 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2195 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2196 				     8 + sizeof(struct ceph_timespec),
2197 				     0, false, true);
2198 	return 0;
2199 }
2200 
2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2202 				u32 bytes)
2203 {
2204 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2205 	int ret;
2206 
2207 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2208 	if (ret)
2209 		return ret;
2210 
2211 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2212 					  obj_req->copyup_bvec_count, bytes);
2213 	return 0;
2214 }
2215 
2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2217 {
2218 	obj_req->read_state = RBD_OBJ_READ_START;
2219 	return 0;
2220 }
2221 
2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2223 				      int which)
2224 {
2225 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2226 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2227 	u16 opcode;
2228 
2229 	if (!use_object_map(rbd_dev) ||
2230 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2231 		osd_req_op_alloc_hint_init(osd_req, which++,
2232 					   rbd_dev->layout.object_size,
2233 					   rbd_dev->layout.object_size,
2234 					   rbd_dev->opts->alloc_hint_flags);
2235 	}
2236 
2237 	if (rbd_obj_is_entire(obj_req))
2238 		opcode = CEPH_OSD_OP_WRITEFULL;
2239 	else
2240 		opcode = CEPH_OSD_OP_WRITE;
2241 
2242 	osd_req_op_extent_init(osd_req, which, opcode,
2243 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2244 	rbd_osd_setup_data(osd_req, which);
2245 }
2246 
2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2248 {
2249 	int ret;
2250 
2251 	/* reverse map the entire object onto the parent */
2252 	ret = rbd_obj_calc_img_extents(obj_req, true);
2253 	if (ret)
2254 		return ret;
2255 
2256 	obj_req->write_state = RBD_OBJ_WRITE_START;
2257 	return 0;
2258 }
2259 
2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2261 {
2262 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2263 					  CEPH_OSD_OP_ZERO;
2264 }
2265 
2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2267 					int which)
2268 {
2269 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2270 
2271 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2272 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2273 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2274 	} else {
2275 		osd_req_op_extent_init(osd_req, which,
2276 				       truncate_or_zero_opcode(obj_req),
2277 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2278 				       0, 0);
2279 	}
2280 }
2281 
2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2283 {
2284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2285 	u64 off, next_off;
2286 	int ret;
2287 
2288 	/*
2289 	 * Align the range to alloc_size boundary and punt on discards
2290 	 * that are too small to free up any space.
2291 	 *
2292 	 * alloc_size == object_size && is_tail() is a special case for
2293 	 * filestore with filestore_punch_hole = false, needed to allow
2294 	 * truncate (in addition to delete).
2295 	 */
2296 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2297 	    !rbd_obj_is_tail(obj_req)) {
2298 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2299 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2300 				      rbd_dev->opts->alloc_size);
2301 		if (off >= next_off)
2302 			return 1;
2303 
2304 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2305 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2306 		     off, next_off - off);
2307 		obj_req->ex.oe_off = off;
2308 		obj_req->ex.oe_len = next_off - off;
2309 	}
2310 
2311 	/* reverse map the entire object onto the parent */
2312 	ret = rbd_obj_calc_img_extents(obj_req, true);
2313 	if (ret)
2314 		return ret;
2315 
2316 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2318 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2319 
2320 	obj_req->write_state = RBD_OBJ_WRITE_START;
2321 	return 0;
2322 }
2323 
2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2325 					int which)
2326 {
2327 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2328 	u16 opcode;
2329 
2330 	if (rbd_obj_is_entire(obj_req)) {
2331 		if (obj_req->num_img_extents) {
2332 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2333 				osd_req_op_init(osd_req, which++,
2334 						CEPH_OSD_OP_CREATE, 0);
2335 			opcode = CEPH_OSD_OP_TRUNCATE;
2336 		} else {
2337 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2338 			osd_req_op_init(osd_req, which++,
2339 					CEPH_OSD_OP_DELETE, 0);
2340 			opcode = 0;
2341 		}
2342 	} else {
2343 		opcode = truncate_or_zero_opcode(obj_req);
2344 	}
2345 
2346 	if (opcode)
2347 		osd_req_op_extent_init(osd_req, which, opcode,
2348 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2349 				       0, 0);
2350 }
2351 
2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2353 {
2354 	int ret;
2355 
2356 	/* reverse map the entire object onto the parent */
2357 	ret = rbd_obj_calc_img_extents(obj_req, true);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (!obj_req->num_img_extents) {
2362 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 		if (rbd_obj_is_entire(obj_req))
2364 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 	}
2366 
2367 	obj_req->write_state = RBD_OBJ_WRITE_START;
2368 	return 0;
2369 }
2370 
2371 static int count_write_ops(struct rbd_obj_request *obj_req)
2372 {
2373 	struct rbd_img_request *img_req = obj_req->img_request;
2374 
2375 	switch (img_req->op_type) {
2376 	case OBJ_OP_WRITE:
2377 		if (!use_object_map(img_req->rbd_dev) ||
2378 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2379 			return 2; /* setallochint + write/writefull */
2380 
2381 		return 1; /* write/writefull */
2382 	case OBJ_OP_DISCARD:
2383 		return 1; /* delete/truncate/zero */
2384 	case OBJ_OP_ZEROOUT:
2385 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2386 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2387 			return 2; /* create + truncate */
2388 
2389 		return 1; /* delete/truncate/zero */
2390 	default:
2391 		BUG();
2392 	}
2393 }
2394 
2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2396 				    int which)
2397 {
2398 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2399 
2400 	switch (obj_req->img_request->op_type) {
2401 	case OBJ_OP_WRITE:
2402 		__rbd_osd_setup_write_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_DISCARD:
2405 		__rbd_osd_setup_discard_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_ZEROOUT:
2408 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2409 		break;
2410 	default:
2411 		BUG();
2412 	}
2413 }
2414 
2415 /*
2416  * Prune the list of object requests (adjust offset and/or length, drop
2417  * redundant requests).  Prepare object request state machines and image
2418  * request state machine for execution.
2419  */
2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2421 {
2422 	struct rbd_obj_request *obj_req, *next_obj_req;
2423 	int ret;
2424 
2425 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2426 		switch (img_req->op_type) {
2427 		case OBJ_OP_READ:
2428 			ret = rbd_obj_init_read(obj_req);
2429 			break;
2430 		case OBJ_OP_WRITE:
2431 			ret = rbd_obj_init_write(obj_req);
2432 			break;
2433 		case OBJ_OP_DISCARD:
2434 			ret = rbd_obj_init_discard(obj_req);
2435 			break;
2436 		case OBJ_OP_ZEROOUT:
2437 			ret = rbd_obj_init_zeroout(obj_req);
2438 			break;
2439 		default:
2440 			BUG();
2441 		}
2442 		if (ret < 0)
2443 			return ret;
2444 		if (ret > 0) {
2445 			rbd_img_obj_request_del(img_req, obj_req);
2446 			continue;
2447 		}
2448 	}
2449 
2450 	img_req->state = RBD_IMG_START;
2451 	return 0;
2452 }
2453 
2454 union rbd_img_fill_iter {
2455 	struct ceph_bio_iter	bio_iter;
2456 	struct ceph_bvec_iter	bvec_iter;
2457 };
2458 
2459 struct rbd_img_fill_ctx {
2460 	enum obj_request_type	pos_type;
2461 	union rbd_img_fill_iter	*pos;
2462 	union rbd_img_fill_iter	iter;
2463 	ceph_object_extent_fn_t	set_pos_fn;
2464 	ceph_object_extent_fn_t	count_fn;
2465 	ceph_object_extent_fn_t	copy_fn;
2466 };
2467 
2468 static struct ceph_object_extent *alloc_object_extent(void *arg)
2469 {
2470 	struct rbd_img_request *img_req = arg;
2471 	struct rbd_obj_request *obj_req;
2472 
2473 	obj_req = rbd_obj_request_create();
2474 	if (!obj_req)
2475 		return NULL;
2476 
2477 	rbd_img_obj_request_add(img_req, obj_req);
2478 	return &obj_req->ex;
2479 }
2480 
2481 /*
2482  * While su != os && sc == 1 is technically not fancy (it's the same
2483  * layout as su == os && sc == 1), we can't use the nocopy path for it
2484  * because ->set_pos_fn() should be called only once per object.
2485  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2486  * treat su != os && sc == 1 as fancy.
2487  */
2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2489 {
2490 	return l->stripe_unit != l->object_size;
2491 }
2492 
2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2494 				       struct ceph_file_extent *img_extents,
2495 				       u32 num_img_extents,
2496 				       struct rbd_img_fill_ctx *fctx)
2497 {
2498 	u32 i;
2499 	int ret;
2500 
2501 	img_req->data_type = fctx->pos_type;
2502 
2503 	/*
2504 	 * Create object requests and set each object request's starting
2505 	 * position in the provided bio (list) or bio_vec array.
2506 	 */
2507 	fctx->iter = *fctx->pos;
2508 	for (i = 0; i < num_img_extents; i++) {
2509 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2510 					   img_extents[i].fe_off,
2511 					   img_extents[i].fe_len,
2512 					   &img_req->object_extents,
2513 					   alloc_object_extent, img_req,
2514 					   fctx->set_pos_fn, &fctx->iter);
2515 		if (ret)
2516 			return ret;
2517 	}
2518 
2519 	return __rbd_img_fill_request(img_req);
2520 }
2521 
2522 /*
2523  * Map a list of image extents to a list of object extents, create the
2524  * corresponding object requests (normally each to a different object,
2525  * but not always) and add them to @img_req.  For each object request,
2526  * set up its data descriptor to point to the corresponding chunk(s) of
2527  * @fctx->pos data buffer.
2528  *
2529  * Because ceph_file_to_extents() will merge adjacent object extents
2530  * together, each object request's data descriptor may point to multiple
2531  * different chunks of @fctx->pos data buffer.
2532  *
2533  * @fctx->pos data buffer is assumed to be large enough.
2534  */
2535 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2536 				struct ceph_file_extent *img_extents,
2537 				u32 num_img_extents,
2538 				struct rbd_img_fill_ctx *fctx)
2539 {
2540 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2541 	struct rbd_obj_request *obj_req;
2542 	u32 i;
2543 	int ret;
2544 
2545 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2546 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2547 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2548 						   num_img_extents, fctx);
2549 
2550 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2551 
2552 	/*
2553 	 * Create object requests and determine ->bvec_count for each object
2554 	 * request.  Note that ->bvec_count sum over all object requests may
2555 	 * be greater than the number of bio_vecs in the provided bio (list)
2556 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2557 	 * stripe unit boundaries.
2558 	 */
2559 	fctx->iter = *fctx->pos;
2560 	for (i = 0; i < num_img_extents; i++) {
2561 		ret = ceph_file_to_extents(&rbd_dev->layout,
2562 					   img_extents[i].fe_off,
2563 					   img_extents[i].fe_len,
2564 					   &img_req->object_extents,
2565 					   alloc_object_extent, img_req,
2566 					   fctx->count_fn, &fctx->iter);
2567 		if (ret)
2568 			return ret;
2569 	}
2570 
2571 	for_each_obj_request(img_req, obj_req) {
2572 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2573 					      sizeof(*obj_req->bvec_pos.bvecs),
2574 					      GFP_NOIO);
2575 		if (!obj_req->bvec_pos.bvecs)
2576 			return -ENOMEM;
2577 	}
2578 
2579 	/*
2580 	 * Fill in each object request's private bio_vec array, splitting and
2581 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2582 	 */
2583 	fctx->iter = *fctx->pos;
2584 	for (i = 0; i < num_img_extents; i++) {
2585 		ret = ceph_iterate_extents(&rbd_dev->layout,
2586 					   img_extents[i].fe_off,
2587 					   img_extents[i].fe_len,
2588 					   &img_req->object_extents,
2589 					   fctx->copy_fn, &fctx->iter);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	return __rbd_img_fill_request(img_req);
2595 }
2596 
2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2598 			       u64 off, u64 len)
2599 {
2600 	struct ceph_file_extent ex = { off, len };
2601 	union rbd_img_fill_iter dummy = {};
2602 	struct rbd_img_fill_ctx fctx = {
2603 		.pos_type = OBJ_REQUEST_NODATA,
2604 		.pos = &dummy,
2605 	};
2606 
2607 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2608 }
2609 
2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2611 {
2612 	struct rbd_obj_request *obj_req =
2613 	    container_of(ex, struct rbd_obj_request, ex);
2614 	struct ceph_bio_iter *it = arg;
2615 
2616 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2617 	obj_req->bio_pos = *it;
2618 	ceph_bio_iter_advance(it, bytes);
2619 }
2620 
2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2622 {
2623 	struct rbd_obj_request *obj_req =
2624 	    container_of(ex, struct rbd_obj_request, ex);
2625 	struct ceph_bio_iter *it = arg;
2626 
2627 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2628 	ceph_bio_iter_advance_step(it, bytes, ({
2629 		obj_req->bvec_count++;
2630 	}));
2631 
2632 }
2633 
2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2635 {
2636 	struct rbd_obj_request *obj_req =
2637 	    container_of(ex, struct rbd_obj_request, ex);
2638 	struct ceph_bio_iter *it = arg;
2639 
2640 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2641 	ceph_bio_iter_advance_step(it, bytes, ({
2642 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2643 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2644 	}));
2645 }
2646 
2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2648 				   struct ceph_file_extent *img_extents,
2649 				   u32 num_img_extents,
2650 				   struct ceph_bio_iter *bio_pos)
2651 {
2652 	struct rbd_img_fill_ctx fctx = {
2653 		.pos_type = OBJ_REQUEST_BIO,
2654 		.pos = (union rbd_img_fill_iter *)bio_pos,
2655 		.set_pos_fn = set_bio_pos,
2656 		.count_fn = count_bio_bvecs,
2657 		.copy_fn = copy_bio_bvecs,
2658 	};
2659 
2660 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2661 				    &fctx);
2662 }
2663 
2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2665 				 u64 off, u64 len, struct bio *bio)
2666 {
2667 	struct ceph_file_extent ex = { off, len };
2668 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2669 
2670 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2671 }
2672 
2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2674 {
2675 	struct rbd_obj_request *obj_req =
2676 	    container_of(ex, struct rbd_obj_request, ex);
2677 	struct ceph_bvec_iter *it = arg;
2678 
2679 	obj_req->bvec_pos = *it;
2680 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2681 	ceph_bvec_iter_advance(it, bytes);
2682 }
2683 
2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2685 {
2686 	struct rbd_obj_request *obj_req =
2687 	    container_of(ex, struct rbd_obj_request, ex);
2688 	struct ceph_bvec_iter *it = arg;
2689 
2690 	ceph_bvec_iter_advance_step(it, bytes, ({
2691 		obj_req->bvec_count++;
2692 	}));
2693 }
2694 
2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2696 {
2697 	struct rbd_obj_request *obj_req =
2698 	    container_of(ex, struct rbd_obj_request, ex);
2699 	struct ceph_bvec_iter *it = arg;
2700 
2701 	ceph_bvec_iter_advance_step(it, bytes, ({
2702 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2703 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2704 	}));
2705 }
2706 
2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2708 				     struct ceph_file_extent *img_extents,
2709 				     u32 num_img_extents,
2710 				     struct ceph_bvec_iter *bvec_pos)
2711 {
2712 	struct rbd_img_fill_ctx fctx = {
2713 		.pos_type = OBJ_REQUEST_BVECS,
2714 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2715 		.set_pos_fn = set_bvec_pos,
2716 		.count_fn = count_bvecs,
2717 		.copy_fn = copy_bvecs,
2718 	};
2719 
2720 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2721 				    &fctx);
2722 }
2723 
2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2725 				   struct ceph_file_extent *img_extents,
2726 				   u32 num_img_extents,
2727 				   struct bio_vec *bvecs)
2728 {
2729 	struct ceph_bvec_iter it = {
2730 		.bvecs = bvecs,
2731 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2732 							     num_img_extents) },
2733 	};
2734 
2735 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2736 					 &it);
2737 }
2738 
2739 static void rbd_img_handle_request_work(struct work_struct *work)
2740 {
2741 	struct rbd_img_request *img_req =
2742 	    container_of(work, struct rbd_img_request, work);
2743 
2744 	rbd_img_handle_request(img_req, img_req->work_result);
2745 }
2746 
2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2748 {
2749 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2750 	img_req->work_result = result;
2751 	queue_work(rbd_wq, &img_req->work);
2752 }
2753 
2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2755 {
2756 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2757 
2758 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2759 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2760 		return true;
2761 	}
2762 
2763 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2764 	     obj_req->ex.oe_objno);
2765 	return false;
2766 }
2767 
2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2769 {
2770 	struct ceph_osd_request *osd_req;
2771 	int ret;
2772 
2773 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2774 	if (IS_ERR(osd_req))
2775 		return PTR_ERR(osd_req);
2776 
2777 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2778 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2779 	rbd_osd_setup_data(osd_req, 0);
2780 	rbd_osd_format_read(osd_req);
2781 
2782 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2783 	if (ret)
2784 		return ret;
2785 
2786 	rbd_osd_submit(osd_req);
2787 	return 0;
2788 }
2789 
2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2791 {
2792 	struct rbd_img_request *img_req = obj_req->img_request;
2793 	struct rbd_device *parent = img_req->rbd_dev->parent;
2794 	struct rbd_img_request *child_img_req;
2795 	int ret;
2796 
2797 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2798 	if (!child_img_req)
2799 		return -ENOMEM;
2800 
2801 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2802 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2803 	child_img_req->obj_request = obj_req;
2804 
2805 	down_read(&parent->header_rwsem);
2806 	rbd_img_capture_header(child_img_req);
2807 	up_read(&parent->header_rwsem);
2808 
2809 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2810 	     obj_req);
2811 
2812 	if (!rbd_img_is_write(img_req)) {
2813 		switch (img_req->data_type) {
2814 		case OBJ_REQUEST_BIO:
2815 			ret = __rbd_img_fill_from_bio(child_img_req,
2816 						      obj_req->img_extents,
2817 						      obj_req->num_img_extents,
2818 						      &obj_req->bio_pos);
2819 			break;
2820 		case OBJ_REQUEST_BVECS:
2821 		case OBJ_REQUEST_OWN_BVECS:
2822 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2823 						      obj_req->img_extents,
2824 						      obj_req->num_img_extents,
2825 						      &obj_req->bvec_pos);
2826 			break;
2827 		default:
2828 			BUG();
2829 		}
2830 	} else {
2831 		ret = rbd_img_fill_from_bvecs(child_img_req,
2832 					      obj_req->img_extents,
2833 					      obj_req->num_img_extents,
2834 					      obj_req->copyup_bvecs);
2835 	}
2836 	if (ret) {
2837 		rbd_img_request_destroy(child_img_req);
2838 		return ret;
2839 	}
2840 
2841 	/* avoid parent chain recursion */
2842 	rbd_img_schedule(child_img_req, 0);
2843 	return 0;
2844 }
2845 
2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2847 {
2848 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2849 	int ret;
2850 
2851 again:
2852 	switch (obj_req->read_state) {
2853 	case RBD_OBJ_READ_START:
2854 		rbd_assert(!*result);
2855 
2856 		if (!rbd_obj_may_exist(obj_req)) {
2857 			*result = -ENOENT;
2858 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2859 			goto again;
2860 		}
2861 
2862 		ret = rbd_obj_read_object(obj_req);
2863 		if (ret) {
2864 			*result = ret;
2865 			return true;
2866 		}
2867 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2868 		return false;
2869 	case RBD_OBJ_READ_OBJECT:
2870 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2871 			/* reverse map this object extent onto the parent */
2872 			ret = rbd_obj_calc_img_extents(obj_req, false);
2873 			if (ret) {
2874 				*result = ret;
2875 				return true;
2876 			}
2877 			if (obj_req->num_img_extents) {
2878 				ret = rbd_obj_read_from_parent(obj_req);
2879 				if (ret) {
2880 					*result = ret;
2881 					return true;
2882 				}
2883 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2884 				return false;
2885 			}
2886 		}
2887 
2888 		/*
2889 		 * -ENOENT means a hole in the image -- zero-fill the entire
2890 		 * length of the request.  A short read also implies zero-fill
2891 		 * to the end of the request.
2892 		 */
2893 		if (*result == -ENOENT) {
2894 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2895 			*result = 0;
2896 		} else if (*result >= 0) {
2897 			if (*result < obj_req->ex.oe_len)
2898 				rbd_obj_zero_range(obj_req, *result,
2899 						obj_req->ex.oe_len - *result);
2900 			else
2901 				rbd_assert(*result == obj_req->ex.oe_len);
2902 			*result = 0;
2903 		}
2904 		return true;
2905 	case RBD_OBJ_READ_PARENT:
2906 		/*
2907 		 * The parent image is read only up to the overlap -- zero-fill
2908 		 * from the overlap to the end of the request.
2909 		 */
2910 		if (!*result) {
2911 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2912 
2913 			if (obj_overlap < obj_req->ex.oe_len)
2914 				rbd_obj_zero_range(obj_req, obj_overlap,
2915 					    obj_req->ex.oe_len - obj_overlap);
2916 		}
2917 		return true;
2918 	default:
2919 		BUG();
2920 	}
2921 }
2922 
2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2924 {
2925 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2926 
2927 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2928 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2929 
2930 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2931 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2932 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2933 		return true;
2934 	}
2935 
2936 	return false;
2937 }
2938 
2939 /*
2940  * Return:
2941  *   0 - object map update sent
2942  *   1 - object map update isn't needed
2943  *  <0 - error
2944  */
2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2946 {
2947 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2948 	u8 new_state;
2949 
2950 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2951 		return 1;
2952 
2953 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2954 		new_state = OBJECT_PENDING;
2955 	else
2956 		new_state = OBJECT_EXISTS;
2957 
2958 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2959 }
2960 
2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2962 {
2963 	struct ceph_osd_request *osd_req;
2964 	int num_ops = count_write_ops(obj_req);
2965 	int which = 0;
2966 	int ret;
2967 
2968 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2969 		num_ops++; /* stat */
2970 
2971 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2972 	if (IS_ERR(osd_req))
2973 		return PTR_ERR(osd_req);
2974 
2975 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2976 		ret = rbd_osd_setup_stat(osd_req, which++);
2977 		if (ret)
2978 			return ret;
2979 	}
2980 
2981 	rbd_osd_setup_write_ops(osd_req, which);
2982 	rbd_osd_format_write(osd_req);
2983 
2984 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2985 	if (ret)
2986 		return ret;
2987 
2988 	rbd_osd_submit(osd_req);
2989 	return 0;
2990 }
2991 
2992 /*
2993  * copyup_bvecs pages are never highmem pages
2994  */
2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2996 {
2997 	struct ceph_bvec_iter it = {
2998 		.bvecs = bvecs,
2999 		.iter = { .bi_size = bytes },
3000 	};
3001 
3002 	ceph_bvec_iter_advance_step(&it, bytes, ({
3003 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3004 			return false;
3005 	}));
3006 	return true;
3007 }
3008 
3009 #define MODS_ONLY	U32_MAX
3010 
3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3012 				      u32 bytes)
3013 {
3014 	struct ceph_osd_request *osd_req;
3015 	int ret;
3016 
3017 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3018 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3019 
3020 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3021 	if (IS_ERR(osd_req))
3022 		return PTR_ERR(osd_req);
3023 
3024 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3025 	if (ret)
3026 		return ret;
3027 
3028 	rbd_osd_format_write(osd_req);
3029 
3030 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031 	if (ret)
3032 		return ret;
3033 
3034 	rbd_osd_submit(osd_req);
3035 	return 0;
3036 }
3037 
3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3039 					u32 bytes)
3040 {
3041 	struct ceph_osd_request *osd_req;
3042 	int num_ops = count_write_ops(obj_req);
3043 	int which = 0;
3044 	int ret;
3045 
3046 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3047 
3048 	if (bytes != MODS_ONLY)
3049 		num_ops++; /* copyup */
3050 
3051 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3052 	if (IS_ERR(osd_req))
3053 		return PTR_ERR(osd_req);
3054 
3055 	if (bytes != MODS_ONLY) {
3056 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 
3061 	rbd_osd_setup_write_ops(osd_req, which);
3062 	rbd_osd_format_write(osd_req);
3063 
3064 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3065 	if (ret)
3066 		return ret;
3067 
3068 	rbd_osd_submit(osd_req);
3069 	return 0;
3070 }
3071 
3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3073 {
3074 	u32 i;
3075 
3076 	rbd_assert(!obj_req->copyup_bvecs);
3077 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3078 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3079 					sizeof(*obj_req->copyup_bvecs),
3080 					GFP_NOIO);
3081 	if (!obj_req->copyup_bvecs)
3082 		return -ENOMEM;
3083 
3084 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3085 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3086 		struct page *page = alloc_page(GFP_NOIO);
3087 
3088 		if (!page)
3089 			return -ENOMEM;
3090 
3091 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3092 		obj_overlap -= len;
3093 	}
3094 
3095 	rbd_assert(!obj_overlap);
3096 	return 0;
3097 }
3098 
3099 /*
3100  * The target object doesn't exist.  Read the data for the entire
3101  * target object up to the overlap point (if any) from the parent,
3102  * so we can use it for a copyup.
3103  */
3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3105 {
3106 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3107 	int ret;
3108 
3109 	rbd_assert(obj_req->num_img_extents);
3110 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3111 		      rbd_dev->parent_overlap);
3112 	if (!obj_req->num_img_extents) {
3113 		/*
3114 		 * The overlap has become 0 (most likely because the
3115 		 * image has been flattened).  Re-submit the original write
3116 		 * request -- pass MODS_ONLY since the copyup isn't needed
3117 		 * anymore.
3118 		 */
3119 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3120 	}
3121 
3122 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3123 	if (ret)
3124 		return ret;
3125 
3126 	return rbd_obj_read_from_parent(obj_req);
3127 }
3128 
3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3130 {
3131 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3132 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3133 	u8 new_state;
3134 	u32 i;
3135 	int ret;
3136 
3137 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3138 
3139 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3140 		return;
3141 
3142 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3143 		return;
3144 
3145 	for (i = 0; i < snapc->num_snaps; i++) {
3146 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3147 		    i + 1 < snapc->num_snaps)
3148 			new_state = OBJECT_EXISTS_CLEAN;
3149 		else
3150 			new_state = OBJECT_EXISTS;
3151 
3152 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3153 					    new_state, NULL);
3154 		if (ret < 0) {
3155 			obj_req->pending.result = ret;
3156 			return;
3157 		}
3158 
3159 		rbd_assert(!ret);
3160 		obj_req->pending.num_pending++;
3161 	}
3162 }
3163 
3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3165 {
3166 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3167 	int ret;
3168 
3169 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3170 
3171 	/*
3172 	 * Only send non-zero copyup data to save some I/O and network
3173 	 * bandwidth -- zero copyup data is equivalent to the object not
3174 	 * existing.
3175 	 */
3176 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3177 		bytes = 0;
3178 
3179 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3180 		/*
3181 		 * Send a copyup request with an empty snapshot context to
3182 		 * deep-copyup the object through all existing snapshots.
3183 		 * A second request with the current snapshot context will be
3184 		 * sent for the actual modification.
3185 		 */
3186 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3187 		if (ret) {
3188 			obj_req->pending.result = ret;
3189 			return;
3190 		}
3191 
3192 		obj_req->pending.num_pending++;
3193 		bytes = MODS_ONLY;
3194 	}
3195 
3196 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3197 	if (ret) {
3198 		obj_req->pending.result = ret;
3199 		return;
3200 	}
3201 
3202 	obj_req->pending.num_pending++;
3203 }
3204 
3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3206 {
3207 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3208 	int ret;
3209 
3210 again:
3211 	switch (obj_req->copyup_state) {
3212 	case RBD_OBJ_COPYUP_START:
3213 		rbd_assert(!*result);
3214 
3215 		ret = rbd_obj_copyup_read_parent(obj_req);
3216 		if (ret) {
3217 			*result = ret;
3218 			return true;
3219 		}
3220 		if (obj_req->num_img_extents)
3221 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3222 		else
3223 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3224 		return false;
3225 	case RBD_OBJ_COPYUP_READ_PARENT:
3226 		if (*result)
3227 			return true;
3228 
3229 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3230 				  rbd_obj_img_extents_bytes(obj_req))) {
3231 			dout("%s %p detected zeros\n", __func__, obj_req);
3232 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3233 		}
3234 
3235 		rbd_obj_copyup_object_maps(obj_req);
3236 		if (!obj_req->pending.num_pending) {
3237 			*result = obj_req->pending.result;
3238 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3239 			goto again;
3240 		}
3241 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 		return false;
3243 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3244 		if (!pending_result_dec(&obj_req->pending, result))
3245 			return false;
3246 		fallthrough;
3247 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3248 		if (*result) {
3249 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3250 				 *result);
3251 			return true;
3252 		}
3253 
3254 		rbd_obj_copyup_write_object(obj_req);
3255 		if (!obj_req->pending.num_pending) {
3256 			*result = obj_req->pending.result;
3257 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3258 			goto again;
3259 		}
3260 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 		return false;
3262 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3263 		if (!pending_result_dec(&obj_req->pending, result))
3264 			return false;
3265 		fallthrough;
3266 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3267 		return true;
3268 	default:
3269 		BUG();
3270 	}
3271 }
3272 
3273 /*
3274  * Return:
3275  *   0 - object map update sent
3276  *   1 - object map update isn't needed
3277  *  <0 - error
3278  */
3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3280 {
3281 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282 	u8 current_state = OBJECT_PENDING;
3283 
3284 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3285 		return 1;
3286 
3287 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3288 		return 1;
3289 
3290 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3291 				     &current_state);
3292 }
3293 
3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3295 {
3296 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3297 	int ret;
3298 
3299 again:
3300 	switch (obj_req->write_state) {
3301 	case RBD_OBJ_WRITE_START:
3302 		rbd_assert(!*result);
3303 
3304 		rbd_obj_set_copyup_enabled(obj_req);
3305 		if (rbd_obj_write_is_noop(obj_req))
3306 			return true;
3307 
3308 		ret = rbd_obj_write_pre_object_map(obj_req);
3309 		if (ret < 0) {
3310 			*result = ret;
3311 			return true;
3312 		}
3313 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3314 		if (ret > 0)
3315 			goto again;
3316 		return false;
3317 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3318 		if (*result) {
3319 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3320 				 *result);
3321 			return true;
3322 		}
3323 		ret = rbd_obj_write_object(obj_req);
3324 		if (ret) {
3325 			*result = ret;
3326 			return true;
3327 		}
3328 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3329 		return false;
3330 	case RBD_OBJ_WRITE_OBJECT:
3331 		if (*result == -ENOENT) {
3332 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3333 				*result = 0;
3334 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3335 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3336 				goto again;
3337 			}
3338 			/*
3339 			 * On a non-existent object:
3340 			 *   delete - -ENOENT, truncate/zero - 0
3341 			 */
3342 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3343 				*result = 0;
3344 		}
3345 		if (*result)
3346 			return true;
3347 
3348 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3349 		goto again;
3350 	case __RBD_OBJ_WRITE_COPYUP:
3351 		if (!rbd_obj_advance_copyup(obj_req, result))
3352 			return false;
3353 		fallthrough;
3354 	case RBD_OBJ_WRITE_COPYUP:
3355 		if (*result) {
3356 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3357 			return true;
3358 		}
3359 		ret = rbd_obj_write_post_object_map(obj_req);
3360 		if (ret < 0) {
3361 			*result = ret;
3362 			return true;
3363 		}
3364 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3365 		if (ret > 0)
3366 			goto again;
3367 		return false;
3368 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3369 		if (*result)
3370 			rbd_warn(rbd_dev, "post object map update failed: %d",
3371 				 *result);
3372 		return true;
3373 	default:
3374 		BUG();
3375 	}
3376 }
3377 
3378 /*
3379  * Return true if @obj_req is completed.
3380  */
3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3382 				     int *result)
3383 {
3384 	struct rbd_img_request *img_req = obj_req->img_request;
3385 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3386 	bool done;
3387 
3388 	mutex_lock(&obj_req->state_mutex);
3389 	if (!rbd_img_is_write(img_req))
3390 		done = rbd_obj_advance_read(obj_req, result);
3391 	else
3392 		done = rbd_obj_advance_write(obj_req, result);
3393 	mutex_unlock(&obj_req->state_mutex);
3394 
3395 	if (done && *result) {
3396 		rbd_assert(*result < 0);
3397 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3398 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3399 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3400 	}
3401 	return done;
3402 }
3403 
3404 /*
3405  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3406  * recursion.
3407  */
3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3409 {
3410 	if (__rbd_obj_handle_request(obj_req, &result))
3411 		rbd_img_handle_request(obj_req->img_request, result);
3412 }
3413 
3414 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3415 {
3416 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3417 
3418 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3419 		return false;
3420 
3421 	if (rbd_is_ro(rbd_dev))
3422 		return false;
3423 
3424 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3425 	if (rbd_dev->opts->lock_on_read ||
3426 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3427 		return true;
3428 
3429 	return rbd_img_is_write(img_req);
3430 }
3431 
3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3433 {
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool locked;
3436 
3437 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3438 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3439 	spin_lock(&rbd_dev->lock_lists_lock);
3440 	rbd_assert(list_empty(&img_req->lock_item));
3441 	if (!locked)
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3443 	else
3444 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3445 	spin_unlock(&rbd_dev->lock_lists_lock);
3446 	return locked;
3447 }
3448 
3449 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 	bool need_wakeup;
3453 
3454 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3455 	spin_lock(&rbd_dev->lock_lists_lock);
3456 	rbd_assert(!list_empty(&img_req->lock_item));
3457 	list_del_init(&img_req->lock_item);
3458 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3459 		       list_empty(&rbd_dev->running_list));
3460 	spin_unlock(&rbd_dev->lock_lists_lock);
3461 	if (need_wakeup)
3462 		complete(&rbd_dev->releasing_wait);
3463 }
3464 
3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3466 {
3467 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3468 
3469 	if (!need_exclusive_lock(img_req))
3470 		return 1;
3471 
3472 	if (rbd_lock_add_request(img_req))
3473 		return 1;
3474 
3475 	if (rbd_dev->opts->exclusive) {
3476 		WARN_ON(1); /* lock got released? */
3477 		return -EROFS;
3478 	}
3479 
3480 	/*
3481 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 	 * and cancel_delayed_work() in wake_lock_waiters().
3483 	 */
3484 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 	return 0;
3487 }
3488 
3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 	struct rbd_obj_request *obj_req;
3493 
3494 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 	rbd_assert(!need_exclusive_lock(img_req) ||
3496 		   __rbd_is_lock_owner(rbd_dev));
3497 
3498 	if (rbd_img_is_write(img_req)) {
3499 		rbd_assert(!img_req->snapc);
3500 		down_read(&rbd_dev->header_rwsem);
3501 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502 		up_read(&rbd_dev->header_rwsem);
3503 	}
3504 
3505 	for_each_obj_request(img_req, obj_req) {
3506 		int result = 0;
3507 
3508 		if (__rbd_obj_handle_request(obj_req, &result)) {
3509 			if (result) {
3510 				img_req->pending.result = result;
3511 				return;
3512 			}
3513 		} else {
3514 			img_req->pending.num_pending++;
3515 		}
3516 	}
3517 }
3518 
3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520 {
3521 	int ret;
3522 
3523 again:
3524 	switch (img_req->state) {
3525 	case RBD_IMG_START:
3526 		rbd_assert(!*result);
3527 
3528 		ret = rbd_img_exclusive_lock(img_req);
3529 		if (ret < 0) {
3530 			*result = ret;
3531 			return true;
3532 		}
3533 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534 		if (ret > 0)
3535 			goto again;
3536 		return false;
3537 	case RBD_IMG_EXCLUSIVE_LOCK:
3538 		if (*result)
3539 			return true;
3540 
3541 		rbd_img_object_requests(img_req);
3542 		if (!img_req->pending.num_pending) {
3543 			*result = img_req->pending.result;
3544 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545 			goto again;
3546 		}
3547 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548 		return false;
3549 	case __RBD_IMG_OBJECT_REQUESTS:
3550 		if (!pending_result_dec(&img_req->pending, result))
3551 			return false;
3552 		fallthrough;
3553 	case RBD_IMG_OBJECT_REQUESTS:
3554 		return true;
3555 	default:
3556 		BUG();
3557 	}
3558 }
3559 
3560 /*
3561  * Return true if @img_req is completed.
3562  */
3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564 				     int *result)
3565 {
3566 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3567 	bool done;
3568 
3569 	if (need_exclusive_lock(img_req)) {
3570 		down_read(&rbd_dev->lock_rwsem);
3571 		mutex_lock(&img_req->state_mutex);
3572 		done = rbd_img_advance(img_req, result);
3573 		if (done)
3574 			rbd_lock_del_request(img_req);
3575 		mutex_unlock(&img_req->state_mutex);
3576 		up_read(&rbd_dev->lock_rwsem);
3577 	} else {
3578 		mutex_lock(&img_req->state_mutex);
3579 		done = rbd_img_advance(img_req, result);
3580 		mutex_unlock(&img_req->state_mutex);
3581 	}
3582 
3583 	if (done && *result) {
3584 		rbd_assert(*result < 0);
3585 		rbd_warn(rbd_dev, "%s%s result %d",
3586 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587 		      obj_op_name(img_req->op_type), *result);
3588 	}
3589 	return done;
3590 }
3591 
3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593 {
3594 again:
3595 	if (!__rbd_img_handle_request(img_req, &result))
3596 		return;
3597 
3598 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599 		struct rbd_obj_request *obj_req = img_req->obj_request;
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		if (__rbd_obj_handle_request(obj_req, &result)) {
3603 			img_req = obj_req->img_request;
3604 			goto again;
3605 		}
3606 	} else {
3607 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3608 
3609 		rbd_img_request_destroy(img_req);
3610 		blk_mq_end_request(rq, errno_to_blk_status(result));
3611 	}
3612 }
3613 
3614 static const struct rbd_client_id rbd_empty_cid;
3615 
3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617 			  const struct rbd_client_id *rhs)
3618 {
3619 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620 }
3621 
3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623 {
3624 	struct rbd_client_id cid;
3625 
3626 	mutex_lock(&rbd_dev->watch_mutex);
3627 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628 	cid.handle = rbd_dev->watch_cookie;
3629 	mutex_unlock(&rbd_dev->watch_mutex);
3630 	return cid;
3631 }
3632 
3633 /*
3634  * lock_rwsem must be held for write
3635  */
3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637 			      const struct rbd_client_id *cid)
3638 {
3639 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641 	     cid->gid, cid->handle);
3642 	rbd_dev->owner_cid = *cid; /* struct */
3643 }
3644 
3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646 {
3647 	mutex_lock(&rbd_dev->watch_mutex);
3648 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649 	mutex_unlock(&rbd_dev->watch_mutex);
3650 }
3651 
3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653 {
3654 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655 
3656 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657 	strcpy(rbd_dev->lock_cookie, cookie);
3658 	rbd_set_owner_cid(rbd_dev, &cid);
3659 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660 }
3661 
3662 /*
3663  * lock_rwsem must be held for write
3664  */
3665 static int rbd_lock(struct rbd_device *rbd_dev)
3666 {
3667 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668 	char cookie[32];
3669 	int ret;
3670 
3671 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672 		rbd_dev->lock_cookie[0] != '\0');
3673 
3674 	format_lock_cookie(rbd_dev, cookie);
3675 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677 			    RBD_LOCK_TAG, "", 0);
3678 	if (ret)
3679 		return ret;
3680 
3681 	__rbd_lock(rbd_dev, cookie);
3682 	return 0;
3683 }
3684 
3685 /*
3686  * lock_rwsem must be held for write
3687  */
3688 static void rbd_unlock(struct rbd_device *rbd_dev)
3689 {
3690 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691 	int ret;
3692 
3693 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694 		rbd_dev->lock_cookie[0] == '\0');
3695 
3696 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698 	if (ret && ret != -ENOENT)
3699 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700 
3701 	/* treat errors as the image is unlocked */
3702 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703 	rbd_dev->lock_cookie[0] = '\0';
3704 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706 }
3707 
3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709 				enum rbd_notify_op notify_op,
3710 				struct page ***preply_pages,
3711 				size_t *preply_len)
3712 {
3713 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716 	int buf_size = sizeof(buf);
3717 	void *p = buf;
3718 
3719 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720 
3721 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3722 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723 	ceph_encode_32(&p, notify_op);
3724 	ceph_encode_64(&p, cid.gid);
3725 	ceph_encode_64(&p, cid.handle);
3726 
3727 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728 				&rbd_dev->header_oloc, buf, buf_size,
3729 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730 }
3731 
3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733 			       enum rbd_notify_op notify_op)
3734 {
3735 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736 }
3737 
3738 static void rbd_notify_acquired_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  acquired_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744 }
3745 
3746 static void rbd_notify_released_lock(struct work_struct *work)
3747 {
3748 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749 						  released_lock_work);
3750 
3751 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752 }
3753 
3754 static int rbd_request_lock(struct rbd_device *rbd_dev)
3755 {
3756 	struct page **reply_pages;
3757 	size_t reply_len;
3758 	bool lock_owner_responded = false;
3759 	int ret;
3760 
3761 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762 
3763 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764 				   &reply_pages, &reply_len);
3765 	if (ret && ret != -ETIMEDOUT) {
3766 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767 		goto out;
3768 	}
3769 
3770 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771 		void *p = page_address(reply_pages[0]);
3772 		void *const end = p + reply_len;
3773 		u32 n;
3774 
3775 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776 		while (n--) {
3777 			u8 struct_v;
3778 			u32 len;
3779 
3780 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3781 			p += 8 + 8; /* skip gid and cookie */
3782 
3783 			ceph_decode_32_safe(&p, end, len, e_inval);
3784 			if (!len)
3785 				continue;
3786 
3787 			if (lock_owner_responded) {
3788 				rbd_warn(rbd_dev,
3789 					 "duplicate lock owners detected");
3790 				ret = -EIO;
3791 				goto out;
3792 			}
3793 
3794 			lock_owner_responded = true;
3795 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796 						  &struct_v, &len);
3797 			if (ret) {
3798 				rbd_warn(rbd_dev,
3799 					 "failed to decode ResponseMessage: %d",
3800 					 ret);
3801 				goto e_inval;
3802 			}
3803 
3804 			ret = ceph_decode_32(&p);
3805 		}
3806 	}
3807 
3808 	if (!lock_owner_responded) {
3809 		rbd_warn(rbd_dev, "no lock owners detected");
3810 		ret = -ETIMEDOUT;
3811 	}
3812 
3813 out:
3814 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815 	return ret;
3816 
3817 e_inval:
3818 	ret = -EINVAL;
3819 	goto out;
3820 }
3821 
3822 /*
3823  * Either image request state machine(s) or rbd_add_acquire_lock()
3824  * (i.e. "rbd map").
3825  */
3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827 {
3828 	struct rbd_img_request *img_req;
3829 
3830 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832 
3833 	cancel_delayed_work(&rbd_dev->lock_dwork);
3834 	if (!completion_done(&rbd_dev->acquire_wait)) {
3835 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836 			   list_empty(&rbd_dev->running_list));
3837 		rbd_dev->acquire_err = result;
3838 		complete_all(&rbd_dev->acquire_wait);
3839 		return;
3840 	}
3841 
3842 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3843 		mutex_lock(&img_req->state_mutex);
3844 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3845 		rbd_img_schedule(img_req, result);
3846 		mutex_unlock(&img_req->state_mutex);
3847 	}
3848 
3849 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3850 }
3851 
3852 static void free_locker(struct ceph_locker *locker)
3853 {
3854 	if (locker)
3855 		ceph_free_lockers(locker, 1);
3856 }
3857 
3858 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3859 {
3860 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3861 	struct ceph_locker *lockers;
3862 	u32 num_lockers;
3863 	u8 lock_type;
3864 	char *lock_tag;
3865 	u64 handle;
3866 	int ret;
3867 
3868 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3869 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3870 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3871 	if (ret) {
3872 		rbd_warn(rbd_dev, "failed to retrieve lockers: %d", ret);
3873 		return ERR_PTR(ret);
3874 	}
3875 
3876 	if (num_lockers == 0) {
3877 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3878 		lockers = NULL;
3879 		goto out;
3880 	}
3881 
3882 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3883 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3884 			 lock_tag);
3885 		goto err_busy;
3886 	}
3887 
3888 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3889 		rbd_warn(rbd_dev, "incompatible lock type detected");
3890 		goto err_busy;
3891 	}
3892 
3893 	WARN_ON(num_lockers != 1);
3894 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3895 		     &handle);
3896 	if (ret != 1) {
3897 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3898 			 lockers[0].id.cookie);
3899 		goto err_busy;
3900 	}
3901 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3902 		rbd_warn(rbd_dev, "locker has a blank address");
3903 		goto err_busy;
3904 	}
3905 
3906 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3907 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3908 	     &lockers[0].info.addr.in_addr,
3909 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3910 
3911 out:
3912 	kfree(lock_tag);
3913 	return lockers;
3914 
3915 err_busy:
3916 	kfree(lock_tag);
3917 	ceph_free_lockers(lockers, num_lockers);
3918 	return ERR_PTR(-EBUSY);
3919 }
3920 
3921 static int find_watcher(struct rbd_device *rbd_dev,
3922 			const struct ceph_locker *locker)
3923 {
3924 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3925 	struct ceph_watch_item *watchers;
3926 	u32 num_watchers;
3927 	u64 cookie;
3928 	int i;
3929 	int ret;
3930 
3931 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3932 				      &rbd_dev->header_oloc, &watchers,
3933 				      &num_watchers);
3934 	if (ret)
3935 		return ret;
3936 
3937 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3938 	for (i = 0; i < num_watchers; i++) {
3939 		/*
3940 		 * Ignore addr->type while comparing.  This mimics
3941 		 * entity_addr_t::get_legacy_str() + strcmp().
3942 		 */
3943 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3944 					    &locker->info.addr) &&
3945 		    watchers[i].cookie == cookie) {
3946 			struct rbd_client_id cid = {
3947 				.gid = le64_to_cpu(watchers[i].name.num),
3948 				.handle = cookie,
3949 			};
3950 
3951 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3952 			     rbd_dev, cid.gid, cid.handle);
3953 			rbd_set_owner_cid(rbd_dev, &cid);
3954 			ret = 1;
3955 			goto out;
3956 		}
3957 	}
3958 
3959 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3960 	ret = 0;
3961 out:
3962 	kfree(watchers);
3963 	return ret;
3964 }
3965 
3966 /*
3967  * lock_rwsem must be held for write
3968  */
3969 static int rbd_try_lock(struct rbd_device *rbd_dev)
3970 {
3971 	struct ceph_client *client = rbd_dev->rbd_client->client;
3972 	struct ceph_locker *locker;
3973 	int ret;
3974 
3975 	for (;;) {
3976 		locker = NULL;
3977 
3978 		ret = rbd_lock(rbd_dev);
3979 		if (ret != -EBUSY)
3980 			goto out;
3981 
3982 		/* determine if the current lock holder is still alive */
3983 		locker = get_lock_owner_info(rbd_dev);
3984 		if (IS_ERR(locker)) {
3985 			ret = PTR_ERR(locker);
3986 			locker = NULL;
3987 			goto out;
3988 		}
3989 		if (!locker)
3990 			goto again;
3991 
3992 		ret = find_watcher(rbd_dev, locker);
3993 		if (ret)
3994 			goto out; /* request lock or error */
3995 
3996 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3997 			 ENTITY_NAME(locker->id.name));
3998 
3999 		ret = ceph_monc_blocklist_add(&client->monc,
4000 					      &locker->info.addr);
4001 		if (ret) {
4002 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4003 				 ENTITY_NAME(locker->id.name), ret);
4004 			goto out;
4005 		}
4006 
4007 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4008 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4009 					  locker->id.cookie, &locker->id.name);
4010 		if (ret && ret != -ENOENT) {
4011 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4012 				 ret);
4013 			goto out;
4014 		}
4015 
4016 again:
4017 		free_locker(locker);
4018 	}
4019 
4020 out:
4021 	free_locker(locker);
4022 	return ret;
4023 }
4024 
4025 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4026 {
4027 	int ret;
4028 
4029 	ret = rbd_dev_refresh(rbd_dev);
4030 	if (ret)
4031 		return ret;
4032 
4033 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4034 		ret = rbd_object_map_open(rbd_dev);
4035 		if (ret)
4036 			return ret;
4037 	}
4038 
4039 	return 0;
4040 }
4041 
4042 /*
4043  * Return:
4044  *   0 - lock acquired
4045  *   1 - caller should call rbd_request_lock()
4046  *  <0 - error
4047  */
4048 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4049 {
4050 	int ret;
4051 
4052 	down_read(&rbd_dev->lock_rwsem);
4053 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4054 	     rbd_dev->lock_state);
4055 	if (__rbd_is_lock_owner(rbd_dev)) {
4056 		up_read(&rbd_dev->lock_rwsem);
4057 		return 0;
4058 	}
4059 
4060 	up_read(&rbd_dev->lock_rwsem);
4061 	down_write(&rbd_dev->lock_rwsem);
4062 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4063 	     rbd_dev->lock_state);
4064 	if (__rbd_is_lock_owner(rbd_dev)) {
4065 		up_write(&rbd_dev->lock_rwsem);
4066 		return 0;
4067 	}
4068 
4069 	ret = rbd_try_lock(rbd_dev);
4070 	if (ret < 0) {
4071 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4072 		if (ret == -EBLOCKLISTED)
4073 			goto out;
4074 
4075 		ret = 1; /* request lock anyway */
4076 	}
4077 	if (ret > 0) {
4078 		up_write(&rbd_dev->lock_rwsem);
4079 		return ret;
4080 	}
4081 
4082 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4083 	rbd_assert(list_empty(&rbd_dev->running_list));
4084 
4085 	ret = rbd_post_acquire_action(rbd_dev);
4086 	if (ret) {
4087 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4088 		/*
4089 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4090 		 * rbd_lock_add_request() would let the request through,
4091 		 * assuming that e.g. object map is locked and loaded.
4092 		 */
4093 		rbd_unlock(rbd_dev);
4094 	}
4095 
4096 out:
4097 	wake_lock_waiters(rbd_dev, ret);
4098 	up_write(&rbd_dev->lock_rwsem);
4099 	return ret;
4100 }
4101 
4102 static void rbd_acquire_lock(struct work_struct *work)
4103 {
4104 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4105 					    struct rbd_device, lock_dwork);
4106 	int ret;
4107 
4108 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4109 again:
4110 	ret = rbd_try_acquire_lock(rbd_dev);
4111 	if (ret <= 0) {
4112 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4113 		return;
4114 	}
4115 
4116 	ret = rbd_request_lock(rbd_dev);
4117 	if (ret == -ETIMEDOUT) {
4118 		goto again; /* treat this as a dead client */
4119 	} else if (ret == -EROFS) {
4120 		rbd_warn(rbd_dev, "peer will not release lock");
4121 		down_write(&rbd_dev->lock_rwsem);
4122 		wake_lock_waiters(rbd_dev, ret);
4123 		up_write(&rbd_dev->lock_rwsem);
4124 	} else if (ret < 0) {
4125 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4126 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4127 				 RBD_RETRY_DELAY);
4128 	} else {
4129 		/*
4130 		 * lock owner acked, but resend if we don't see them
4131 		 * release the lock
4132 		 */
4133 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4134 		     rbd_dev);
4135 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4136 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4137 	}
4138 }
4139 
4140 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4141 {
4142 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4143 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4144 
4145 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4146 		return false;
4147 
4148 	/*
4149 	 * Ensure that all in-flight IO is flushed.
4150 	 */
4151 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4152 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4153 	if (list_empty(&rbd_dev->running_list))
4154 		return true;
4155 
4156 	up_write(&rbd_dev->lock_rwsem);
4157 	wait_for_completion(&rbd_dev->releasing_wait);
4158 
4159 	down_write(&rbd_dev->lock_rwsem);
4160 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4161 		return false;
4162 
4163 	rbd_assert(list_empty(&rbd_dev->running_list));
4164 	return true;
4165 }
4166 
4167 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4168 {
4169 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4170 		rbd_object_map_close(rbd_dev);
4171 }
4172 
4173 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4174 {
4175 	rbd_assert(list_empty(&rbd_dev->running_list));
4176 
4177 	rbd_pre_release_action(rbd_dev);
4178 	rbd_unlock(rbd_dev);
4179 }
4180 
4181 /*
4182  * lock_rwsem must be held for write
4183  */
4184 static void rbd_release_lock(struct rbd_device *rbd_dev)
4185 {
4186 	if (!rbd_quiesce_lock(rbd_dev))
4187 		return;
4188 
4189 	__rbd_release_lock(rbd_dev);
4190 
4191 	/*
4192 	 * Give others a chance to grab the lock - we would re-acquire
4193 	 * almost immediately if we got new IO while draining the running
4194 	 * list otherwise.  We need to ack our own notifications, so this
4195 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4196 	 * way of maybe_kick_acquire().
4197 	 */
4198 	cancel_delayed_work(&rbd_dev->lock_dwork);
4199 }
4200 
4201 static void rbd_release_lock_work(struct work_struct *work)
4202 {
4203 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4204 						  unlock_work);
4205 
4206 	down_write(&rbd_dev->lock_rwsem);
4207 	rbd_release_lock(rbd_dev);
4208 	up_write(&rbd_dev->lock_rwsem);
4209 }
4210 
4211 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4212 {
4213 	bool have_requests;
4214 
4215 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4216 	if (__rbd_is_lock_owner(rbd_dev))
4217 		return;
4218 
4219 	spin_lock(&rbd_dev->lock_lists_lock);
4220 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4221 	spin_unlock(&rbd_dev->lock_lists_lock);
4222 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4223 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4224 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4225 	}
4226 }
4227 
4228 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4229 				     void **p)
4230 {
4231 	struct rbd_client_id cid = { 0 };
4232 
4233 	if (struct_v >= 2) {
4234 		cid.gid = ceph_decode_64(p);
4235 		cid.handle = ceph_decode_64(p);
4236 	}
4237 
4238 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4239 	     cid.handle);
4240 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4241 		down_write(&rbd_dev->lock_rwsem);
4242 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4243 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4244 			     __func__, rbd_dev, cid.gid, cid.handle);
4245 		} else {
4246 			rbd_set_owner_cid(rbd_dev, &cid);
4247 		}
4248 		downgrade_write(&rbd_dev->lock_rwsem);
4249 	} else {
4250 		down_read(&rbd_dev->lock_rwsem);
4251 	}
4252 
4253 	maybe_kick_acquire(rbd_dev);
4254 	up_read(&rbd_dev->lock_rwsem);
4255 }
4256 
4257 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4258 				     void **p)
4259 {
4260 	struct rbd_client_id cid = { 0 };
4261 
4262 	if (struct_v >= 2) {
4263 		cid.gid = ceph_decode_64(p);
4264 		cid.handle = ceph_decode_64(p);
4265 	}
4266 
4267 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4268 	     cid.handle);
4269 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4270 		down_write(&rbd_dev->lock_rwsem);
4271 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4272 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4273 			     __func__, rbd_dev, cid.gid, cid.handle,
4274 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4275 		} else {
4276 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4277 		}
4278 		downgrade_write(&rbd_dev->lock_rwsem);
4279 	} else {
4280 		down_read(&rbd_dev->lock_rwsem);
4281 	}
4282 
4283 	maybe_kick_acquire(rbd_dev);
4284 	up_read(&rbd_dev->lock_rwsem);
4285 }
4286 
4287 /*
4288  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4289  * ResponseMessage is needed.
4290  */
4291 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4292 				   void **p)
4293 {
4294 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4295 	struct rbd_client_id cid = { 0 };
4296 	int result = 1;
4297 
4298 	if (struct_v >= 2) {
4299 		cid.gid = ceph_decode_64(p);
4300 		cid.handle = ceph_decode_64(p);
4301 	}
4302 
4303 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4304 	     cid.handle);
4305 	if (rbd_cid_equal(&cid, &my_cid))
4306 		return result;
4307 
4308 	down_read(&rbd_dev->lock_rwsem);
4309 	if (__rbd_is_lock_owner(rbd_dev)) {
4310 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4311 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4312 			goto out_unlock;
4313 
4314 		/*
4315 		 * encode ResponseMessage(0) so the peer can detect
4316 		 * a missing owner
4317 		 */
4318 		result = 0;
4319 
4320 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4321 			if (!rbd_dev->opts->exclusive) {
4322 				dout("%s rbd_dev %p queueing unlock_work\n",
4323 				     __func__, rbd_dev);
4324 				queue_work(rbd_dev->task_wq,
4325 					   &rbd_dev->unlock_work);
4326 			} else {
4327 				/* refuse to release the lock */
4328 				result = -EROFS;
4329 			}
4330 		}
4331 	}
4332 
4333 out_unlock:
4334 	up_read(&rbd_dev->lock_rwsem);
4335 	return result;
4336 }
4337 
4338 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4339 				     u64 notify_id, u64 cookie, s32 *result)
4340 {
4341 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4342 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4343 	int buf_size = sizeof(buf);
4344 	int ret;
4345 
4346 	if (result) {
4347 		void *p = buf;
4348 
4349 		/* encode ResponseMessage */
4350 		ceph_start_encoding(&p, 1, 1,
4351 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4352 		ceph_encode_32(&p, *result);
4353 	} else {
4354 		buf_size = 0;
4355 	}
4356 
4357 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4358 				   &rbd_dev->header_oloc, notify_id, cookie,
4359 				   buf, buf_size);
4360 	if (ret)
4361 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4362 }
4363 
4364 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4365 				   u64 cookie)
4366 {
4367 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4368 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4369 }
4370 
4371 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4372 					  u64 notify_id, u64 cookie, s32 result)
4373 {
4374 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4375 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4376 }
4377 
4378 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4379 			 u64 notifier_id, void *data, size_t data_len)
4380 {
4381 	struct rbd_device *rbd_dev = arg;
4382 	void *p = data;
4383 	void *const end = p + data_len;
4384 	u8 struct_v = 0;
4385 	u32 len;
4386 	u32 notify_op;
4387 	int ret;
4388 
4389 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4390 	     __func__, rbd_dev, cookie, notify_id, data_len);
4391 	if (data_len) {
4392 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4393 					  &struct_v, &len);
4394 		if (ret) {
4395 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4396 				 ret);
4397 			return;
4398 		}
4399 
4400 		notify_op = ceph_decode_32(&p);
4401 	} else {
4402 		/* legacy notification for header updates */
4403 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4404 		len = 0;
4405 	}
4406 
4407 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4408 	switch (notify_op) {
4409 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4410 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4411 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4412 		break;
4413 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4414 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4415 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4416 		break;
4417 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4418 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4419 		if (ret <= 0)
4420 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4421 						      cookie, ret);
4422 		else
4423 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4424 		break;
4425 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4426 		ret = rbd_dev_refresh(rbd_dev);
4427 		if (ret)
4428 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4429 
4430 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4431 		break;
4432 	default:
4433 		if (rbd_is_lock_owner(rbd_dev))
4434 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4435 						      cookie, -EOPNOTSUPP);
4436 		else
4437 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4438 		break;
4439 	}
4440 }
4441 
4442 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4443 
4444 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4445 {
4446 	struct rbd_device *rbd_dev = arg;
4447 
4448 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4449 
4450 	down_write(&rbd_dev->lock_rwsem);
4451 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4452 	up_write(&rbd_dev->lock_rwsem);
4453 
4454 	mutex_lock(&rbd_dev->watch_mutex);
4455 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4456 		__rbd_unregister_watch(rbd_dev);
4457 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4458 
4459 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4460 	}
4461 	mutex_unlock(&rbd_dev->watch_mutex);
4462 }
4463 
4464 /*
4465  * watch_mutex must be locked
4466  */
4467 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4468 {
4469 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4470 	struct ceph_osd_linger_request *handle;
4471 
4472 	rbd_assert(!rbd_dev->watch_handle);
4473 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4474 
4475 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4476 				 &rbd_dev->header_oloc, rbd_watch_cb,
4477 				 rbd_watch_errcb, rbd_dev);
4478 	if (IS_ERR(handle))
4479 		return PTR_ERR(handle);
4480 
4481 	rbd_dev->watch_handle = handle;
4482 	return 0;
4483 }
4484 
4485 /*
4486  * watch_mutex must be locked
4487  */
4488 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4489 {
4490 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4491 	int ret;
4492 
4493 	rbd_assert(rbd_dev->watch_handle);
4494 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4495 
4496 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4497 	if (ret)
4498 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4499 
4500 	rbd_dev->watch_handle = NULL;
4501 }
4502 
4503 static int rbd_register_watch(struct rbd_device *rbd_dev)
4504 {
4505 	int ret;
4506 
4507 	mutex_lock(&rbd_dev->watch_mutex);
4508 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4509 	ret = __rbd_register_watch(rbd_dev);
4510 	if (ret)
4511 		goto out;
4512 
4513 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4514 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4515 
4516 out:
4517 	mutex_unlock(&rbd_dev->watch_mutex);
4518 	return ret;
4519 }
4520 
4521 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4522 {
4523 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4524 
4525 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4526 	cancel_work_sync(&rbd_dev->released_lock_work);
4527 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4528 	cancel_work_sync(&rbd_dev->unlock_work);
4529 }
4530 
4531 /*
4532  * header_rwsem must not be held to avoid a deadlock with
4533  * rbd_dev_refresh() when flushing notifies.
4534  */
4535 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4536 {
4537 	cancel_tasks_sync(rbd_dev);
4538 
4539 	mutex_lock(&rbd_dev->watch_mutex);
4540 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4541 		__rbd_unregister_watch(rbd_dev);
4542 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4543 	mutex_unlock(&rbd_dev->watch_mutex);
4544 
4545 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4546 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4547 }
4548 
4549 /*
4550  * lock_rwsem must be held for write
4551  */
4552 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4553 {
4554 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4555 	char cookie[32];
4556 	int ret;
4557 
4558 	if (!rbd_quiesce_lock(rbd_dev))
4559 		return;
4560 
4561 	format_lock_cookie(rbd_dev, cookie);
4562 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4563 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4564 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4565 				  RBD_LOCK_TAG, cookie);
4566 	if (ret) {
4567 		if (ret != -EOPNOTSUPP)
4568 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4569 				 ret);
4570 
4571 		/*
4572 		 * Lock cookie cannot be updated on older OSDs, so do
4573 		 * a manual release and queue an acquire.
4574 		 */
4575 		__rbd_release_lock(rbd_dev);
4576 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4577 	} else {
4578 		__rbd_lock(rbd_dev, cookie);
4579 		wake_lock_waiters(rbd_dev, 0);
4580 	}
4581 }
4582 
4583 static void rbd_reregister_watch(struct work_struct *work)
4584 {
4585 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4586 					    struct rbd_device, watch_dwork);
4587 	int ret;
4588 
4589 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4590 
4591 	mutex_lock(&rbd_dev->watch_mutex);
4592 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4593 		mutex_unlock(&rbd_dev->watch_mutex);
4594 		return;
4595 	}
4596 
4597 	ret = __rbd_register_watch(rbd_dev);
4598 	if (ret) {
4599 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4600 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4601 			queue_delayed_work(rbd_dev->task_wq,
4602 					   &rbd_dev->watch_dwork,
4603 					   RBD_RETRY_DELAY);
4604 			mutex_unlock(&rbd_dev->watch_mutex);
4605 			return;
4606 		}
4607 
4608 		mutex_unlock(&rbd_dev->watch_mutex);
4609 		down_write(&rbd_dev->lock_rwsem);
4610 		wake_lock_waiters(rbd_dev, ret);
4611 		up_write(&rbd_dev->lock_rwsem);
4612 		return;
4613 	}
4614 
4615 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4616 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4617 	mutex_unlock(&rbd_dev->watch_mutex);
4618 
4619 	down_write(&rbd_dev->lock_rwsem);
4620 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4621 		rbd_reacquire_lock(rbd_dev);
4622 	up_write(&rbd_dev->lock_rwsem);
4623 
4624 	ret = rbd_dev_refresh(rbd_dev);
4625 	if (ret)
4626 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4627 }
4628 
4629 /*
4630  * Synchronous osd object method call.  Returns the number of bytes
4631  * returned in the outbound buffer, or a negative error code.
4632  */
4633 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4634 			     struct ceph_object_id *oid,
4635 			     struct ceph_object_locator *oloc,
4636 			     const char *method_name,
4637 			     const void *outbound,
4638 			     size_t outbound_size,
4639 			     void *inbound,
4640 			     size_t inbound_size)
4641 {
4642 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4643 	struct page *req_page = NULL;
4644 	struct page *reply_page;
4645 	int ret;
4646 
4647 	/*
4648 	 * Method calls are ultimately read operations.  The result
4649 	 * should placed into the inbound buffer provided.  They
4650 	 * also supply outbound data--parameters for the object
4651 	 * method.  Currently if this is present it will be a
4652 	 * snapshot id.
4653 	 */
4654 	if (outbound) {
4655 		if (outbound_size > PAGE_SIZE)
4656 			return -E2BIG;
4657 
4658 		req_page = alloc_page(GFP_KERNEL);
4659 		if (!req_page)
4660 			return -ENOMEM;
4661 
4662 		memcpy(page_address(req_page), outbound, outbound_size);
4663 	}
4664 
4665 	reply_page = alloc_page(GFP_KERNEL);
4666 	if (!reply_page) {
4667 		if (req_page)
4668 			__free_page(req_page);
4669 		return -ENOMEM;
4670 	}
4671 
4672 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4673 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4674 			     &reply_page, &inbound_size);
4675 	if (!ret) {
4676 		memcpy(inbound, page_address(reply_page), inbound_size);
4677 		ret = inbound_size;
4678 	}
4679 
4680 	if (req_page)
4681 		__free_page(req_page);
4682 	__free_page(reply_page);
4683 	return ret;
4684 }
4685 
4686 static void rbd_queue_workfn(struct work_struct *work)
4687 {
4688 	struct rbd_img_request *img_request =
4689 	    container_of(work, struct rbd_img_request, work);
4690 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4691 	enum obj_operation_type op_type = img_request->op_type;
4692 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4693 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4694 	u64 length = blk_rq_bytes(rq);
4695 	u64 mapping_size;
4696 	int result;
4697 
4698 	/* Ignore/skip any zero-length requests */
4699 	if (!length) {
4700 		dout("%s: zero-length request\n", __func__);
4701 		result = 0;
4702 		goto err_img_request;
4703 	}
4704 
4705 	blk_mq_start_request(rq);
4706 
4707 	down_read(&rbd_dev->header_rwsem);
4708 	mapping_size = rbd_dev->mapping.size;
4709 	rbd_img_capture_header(img_request);
4710 	up_read(&rbd_dev->header_rwsem);
4711 
4712 	if (offset + length > mapping_size) {
4713 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4714 			 length, mapping_size);
4715 		result = -EIO;
4716 		goto err_img_request;
4717 	}
4718 
4719 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4720 	     img_request, obj_op_name(op_type), offset, length);
4721 
4722 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4723 		result = rbd_img_fill_nodata(img_request, offset, length);
4724 	else
4725 		result = rbd_img_fill_from_bio(img_request, offset, length,
4726 					       rq->bio);
4727 	if (result)
4728 		goto err_img_request;
4729 
4730 	rbd_img_handle_request(img_request, 0);
4731 	return;
4732 
4733 err_img_request:
4734 	rbd_img_request_destroy(img_request);
4735 	if (result)
4736 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4737 			 obj_op_name(op_type), length, offset, result);
4738 	blk_mq_end_request(rq, errno_to_blk_status(result));
4739 }
4740 
4741 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4742 		const struct blk_mq_queue_data *bd)
4743 {
4744 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4745 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4746 	enum obj_operation_type op_type;
4747 
4748 	switch (req_op(bd->rq)) {
4749 	case REQ_OP_DISCARD:
4750 		op_type = OBJ_OP_DISCARD;
4751 		break;
4752 	case REQ_OP_WRITE_ZEROES:
4753 		op_type = OBJ_OP_ZEROOUT;
4754 		break;
4755 	case REQ_OP_WRITE:
4756 		op_type = OBJ_OP_WRITE;
4757 		break;
4758 	case REQ_OP_READ:
4759 		op_type = OBJ_OP_READ;
4760 		break;
4761 	default:
4762 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4763 		return BLK_STS_IOERR;
4764 	}
4765 
4766 	rbd_img_request_init(img_req, rbd_dev, op_type);
4767 
4768 	if (rbd_img_is_write(img_req)) {
4769 		if (rbd_is_ro(rbd_dev)) {
4770 			rbd_warn(rbd_dev, "%s on read-only mapping",
4771 				 obj_op_name(img_req->op_type));
4772 			return BLK_STS_IOERR;
4773 		}
4774 		rbd_assert(!rbd_is_snap(rbd_dev));
4775 	}
4776 
4777 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4778 	queue_work(rbd_wq, &img_req->work);
4779 	return BLK_STS_OK;
4780 }
4781 
4782 static void rbd_free_disk(struct rbd_device *rbd_dev)
4783 {
4784 	put_disk(rbd_dev->disk);
4785 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4786 	rbd_dev->disk = NULL;
4787 }
4788 
4789 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4790 			     struct ceph_object_id *oid,
4791 			     struct ceph_object_locator *oloc,
4792 			     void *buf, int buf_len)
4793 
4794 {
4795 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4796 	struct ceph_osd_request *req;
4797 	struct page **pages;
4798 	int num_pages = calc_pages_for(0, buf_len);
4799 	int ret;
4800 
4801 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4802 	if (!req)
4803 		return -ENOMEM;
4804 
4805 	ceph_oid_copy(&req->r_base_oid, oid);
4806 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4807 	req->r_flags = CEPH_OSD_FLAG_READ;
4808 
4809 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4810 	if (IS_ERR(pages)) {
4811 		ret = PTR_ERR(pages);
4812 		goto out_req;
4813 	}
4814 
4815 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4816 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4817 					 true);
4818 
4819 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4820 	if (ret)
4821 		goto out_req;
4822 
4823 	ceph_osdc_start_request(osdc, req);
4824 	ret = ceph_osdc_wait_request(osdc, req);
4825 	if (ret >= 0)
4826 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4827 
4828 out_req:
4829 	ceph_osdc_put_request(req);
4830 	return ret;
4831 }
4832 
4833 /*
4834  * Read the complete header for the given rbd device.  On successful
4835  * return, the rbd_dev->header field will contain up-to-date
4836  * information about the image.
4837  */
4838 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4839 {
4840 	struct rbd_image_header_ondisk *ondisk = NULL;
4841 	u32 snap_count = 0;
4842 	u64 names_size = 0;
4843 	u32 want_count;
4844 	int ret;
4845 
4846 	/*
4847 	 * The complete header will include an array of its 64-bit
4848 	 * snapshot ids, followed by the names of those snapshots as
4849 	 * a contiguous block of NUL-terminated strings.  Note that
4850 	 * the number of snapshots could change by the time we read
4851 	 * it in, in which case we re-read it.
4852 	 */
4853 	do {
4854 		size_t size;
4855 
4856 		kfree(ondisk);
4857 
4858 		size = sizeof (*ondisk);
4859 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4860 		size += names_size;
4861 		ondisk = kmalloc(size, GFP_KERNEL);
4862 		if (!ondisk)
4863 			return -ENOMEM;
4864 
4865 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4866 					&rbd_dev->header_oloc, ondisk, size);
4867 		if (ret < 0)
4868 			goto out;
4869 		if ((size_t)ret < size) {
4870 			ret = -ENXIO;
4871 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4872 				size, ret);
4873 			goto out;
4874 		}
4875 		if (!rbd_dev_ondisk_valid(ondisk)) {
4876 			ret = -ENXIO;
4877 			rbd_warn(rbd_dev, "invalid header");
4878 			goto out;
4879 		}
4880 
4881 		names_size = le64_to_cpu(ondisk->snap_names_len);
4882 		want_count = snap_count;
4883 		snap_count = le32_to_cpu(ondisk->snap_count);
4884 	} while (snap_count != want_count);
4885 
4886 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4887 out:
4888 	kfree(ondisk);
4889 
4890 	return ret;
4891 }
4892 
4893 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4894 {
4895 	sector_t size;
4896 
4897 	/*
4898 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4899 	 * try to update its size.  If REMOVING is set, updating size
4900 	 * is just useless work since the device can't be opened.
4901 	 */
4902 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4903 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4904 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4905 		dout("setting size to %llu sectors", (unsigned long long)size);
4906 		set_capacity_and_notify(rbd_dev->disk, size);
4907 	}
4908 }
4909 
4910 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4911 {
4912 	u64 mapping_size;
4913 	int ret;
4914 
4915 	down_write(&rbd_dev->header_rwsem);
4916 	mapping_size = rbd_dev->mapping.size;
4917 
4918 	ret = rbd_dev_header_info(rbd_dev);
4919 	if (ret)
4920 		goto out;
4921 
4922 	/*
4923 	 * If there is a parent, see if it has disappeared due to the
4924 	 * mapped image getting flattened.
4925 	 */
4926 	if (rbd_dev->parent) {
4927 		ret = rbd_dev_v2_parent_info(rbd_dev);
4928 		if (ret)
4929 			goto out;
4930 	}
4931 
4932 	rbd_assert(!rbd_is_snap(rbd_dev));
4933 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4934 
4935 out:
4936 	up_write(&rbd_dev->header_rwsem);
4937 	if (!ret && mapping_size != rbd_dev->mapping.size)
4938 		rbd_dev_update_size(rbd_dev);
4939 
4940 	return ret;
4941 }
4942 
4943 static const struct blk_mq_ops rbd_mq_ops = {
4944 	.queue_rq	= rbd_queue_rq,
4945 };
4946 
4947 static int rbd_init_disk(struct rbd_device *rbd_dev)
4948 {
4949 	struct gendisk *disk;
4950 	struct request_queue *q;
4951 	unsigned int objset_bytes =
4952 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4953 	int err;
4954 
4955 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4956 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4957 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4958 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4959 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4960 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4961 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4962 
4963 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4964 	if (err)
4965 		return err;
4966 
4967 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4968 	if (IS_ERR(disk)) {
4969 		err = PTR_ERR(disk);
4970 		goto out_tag_set;
4971 	}
4972 	q = disk->queue;
4973 
4974 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4975 		 rbd_dev->dev_id);
4976 	disk->major = rbd_dev->major;
4977 	disk->first_minor = rbd_dev->minor;
4978 	if (single_major)
4979 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4980 	else
4981 		disk->minors = RBD_MINORS_PER_MAJOR;
4982 	disk->fops = &rbd_bd_ops;
4983 	disk->private_data = rbd_dev;
4984 
4985 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4986 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4987 
4988 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4989 	q->limits.max_sectors = queue_max_hw_sectors(q);
4990 	blk_queue_max_segments(q, USHRT_MAX);
4991 	blk_queue_max_segment_size(q, UINT_MAX);
4992 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4993 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4994 
4995 	if (rbd_dev->opts->trim) {
4996 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4997 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4998 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4999 	}
5000 
5001 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5002 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5003 
5004 	rbd_dev->disk = disk;
5005 
5006 	return 0;
5007 out_tag_set:
5008 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5009 	return err;
5010 }
5011 
5012 /*
5013   sysfs
5014 */
5015 
5016 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5017 {
5018 	return container_of(dev, struct rbd_device, dev);
5019 }
5020 
5021 static ssize_t rbd_size_show(struct device *dev,
5022 			     struct device_attribute *attr, char *buf)
5023 {
5024 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5025 
5026 	return sprintf(buf, "%llu\n",
5027 		(unsigned long long)rbd_dev->mapping.size);
5028 }
5029 
5030 static ssize_t rbd_features_show(struct device *dev,
5031 			     struct device_attribute *attr, char *buf)
5032 {
5033 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5034 
5035 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5036 }
5037 
5038 static ssize_t rbd_major_show(struct device *dev,
5039 			      struct device_attribute *attr, char *buf)
5040 {
5041 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5042 
5043 	if (rbd_dev->major)
5044 		return sprintf(buf, "%d\n", rbd_dev->major);
5045 
5046 	return sprintf(buf, "(none)\n");
5047 }
5048 
5049 static ssize_t rbd_minor_show(struct device *dev,
5050 			      struct device_attribute *attr, char *buf)
5051 {
5052 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5053 
5054 	return sprintf(buf, "%d\n", rbd_dev->minor);
5055 }
5056 
5057 static ssize_t rbd_client_addr_show(struct device *dev,
5058 				    struct device_attribute *attr, char *buf)
5059 {
5060 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5061 	struct ceph_entity_addr *client_addr =
5062 	    ceph_client_addr(rbd_dev->rbd_client->client);
5063 
5064 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5065 		       le32_to_cpu(client_addr->nonce));
5066 }
5067 
5068 static ssize_t rbd_client_id_show(struct device *dev,
5069 				  struct device_attribute *attr, char *buf)
5070 {
5071 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5072 
5073 	return sprintf(buf, "client%lld\n",
5074 		       ceph_client_gid(rbd_dev->rbd_client->client));
5075 }
5076 
5077 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5078 				     struct device_attribute *attr, char *buf)
5079 {
5080 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5081 
5082 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5083 }
5084 
5085 static ssize_t rbd_config_info_show(struct device *dev,
5086 				    struct device_attribute *attr, char *buf)
5087 {
5088 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5089 
5090 	if (!capable(CAP_SYS_ADMIN))
5091 		return -EPERM;
5092 
5093 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5094 }
5095 
5096 static ssize_t rbd_pool_show(struct device *dev,
5097 			     struct device_attribute *attr, char *buf)
5098 {
5099 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5100 
5101 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5102 }
5103 
5104 static ssize_t rbd_pool_id_show(struct device *dev,
5105 			     struct device_attribute *attr, char *buf)
5106 {
5107 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5108 
5109 	return sprintf(buf, "%llu\n",
5110 			(unsigned long long) rbd_dev->spec->pool_id);
5111 }
5112 
5113 static ssize_t rbd_pool_ns_show(struct device *dev,
5114 				struct device_attribute *attr, char *buf)
5115 {
5116 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117 
5118 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5119 }
5120 
5121 static ssize_t rbd_name_show(struct device *dev,
5122 			     struct device_attribute *attr, char *buf)
5123 {
5124 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5125 
5126 	if (rbd_dev->spec->image_name)
5127 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5128 
5129 	return sprintf(buf, "(unknown)\n");
5130 }
5131 
5132 static ssize_t rbd_image_id_show(struct device *dev,
5133 			     struct device_attribute *attr, char *buf)
5134 {
5135 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136 
5137 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5138 }
5139 
5140 /*
5141  * Shows the name of the currently-mapped snapshot (or
5142  * RBD_SNAP_HEAD_NAME for the base image).
5143  */
5144 static ssize_t rbd_snap_show(struct device *dev,
5145 			     struct device_attribute *attr,
5146 			     char *buf)
5147 {
5148 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5149 
5150 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5151 }
5152 
5153 static ssize_t rbd_snap_id_show(struct device *dev,
5154 				struct device_attribute *attr, char *buf)
5155 {
5156 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157 
5158 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5159 }
5160 
5161 /*
5162  * For a v2 image, shows the chain of parent images, separated by empty
5163  * lines.  For v1 images or if there is no parent, shows "(no parent
5164  * image)".
5165  */
5166 static ssize_t rbd_parent_show(struct device *dev,
5167 			       struct device_attribute *attr,
5168 			       char *buf)
5169 {
5170 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5171 	ssize_t count = 0;
5172 
5173 	if (!rbd_dev->parent)
5174 		return sprintf(buf, "(no parent image)\n");
5175 
5176 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5177 		struct rbd_spec *spec = rbd_dev->parent_spec;
5178 
5179 		count += sprintf(&buf[count], "%s"
5180 			    "pool_id %llu\npool_name %s\n"
5181 			    "pool_ns %s\n"
5182 			    "image_id %s\nimage_name %s\n"
5183 			    "snap_id %llu\nsnap_name %s\n"
5184 			    "overlap %llu\n",
5185 			    !count ? "" : "\n", /* first? */
5186 			    spec->pool_id, spec->pool_name,
5187 			    spec->pool_ns ?: "",
5188 			    spec->image_id, spec->image_name ?: "(unknown)",
5189 			    spec->snap_id, spec->snap_name,
5190 			    rbd_dev->parent_overlap);
5191 	}
5192 
5193 	return count;
5194 }
5195 
5196 static ssize_t rbd_image_refresh(struct device *dev,
5197 				 struct device_attribute *attr,
5198 				 const char *buf,
5199 				 size_t size)
5200 {
5201 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5202 	int ret;
5203 
5204 	if (!capable(CAP_SYS_ADMIN))
5205 		return -EPERM;
5206 
5207 	ret = rbd_dev_refresh(rbd_dev);
5208 	if (ret)
5209 		return ret;
5210 
5211 	return size;
5212 }
5213 
5214 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5215 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5216 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5217 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5218 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5219 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5220 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5221 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5222 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5223 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5224 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5225 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5226 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5227 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5228 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5229 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5230 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5231 
5232 static struct attribute *rbd_attrs[] = {
5233 	&dev_attr_size.attr,
5234 	&dev_attr_features.attr,
5235 	&dev_attr_major.attr,
5236 	&dev_attr_minor.attr,
5237 	&dev_attr_client_addr.attr,
5238 	&dev_attr_client_id.attr,
5239 	&dev_attr_cluster_fsid.attr,
5240 	&dev_attr_config_info.attr,
5241 	&dev_attr_pool.attr,
5242 	&dev_attr_pool_id.attr,
5243 	&dev_attr_pool_ns.attr,
5244 	&dev_attr_name.attr,
5245 	&dev_attr_image_id.attr,
5246 	&dev_attr_current_snap.attr,
5247 	&dev_attr_snap_id.attr,
5248 	&dev_attr_parent.attr,
5249 	&dev_attr_refresh.attr,
5250 	NULL
5251 };
5252 
5253 static struct attribute_group rbd_attr_group = {
5254 	.attrs = rbd_attrs,
5255 };
5256 
5257 static const struct attribute_group *rbd_attr_groups[] = {
5258 	&rbd_attr_group,
5259 	NULL
5260 };
5261 
5262 static void rbd_dev_release(struct device *dev);
5263 
5264 static const struct device_type rbd_device_type = {
5265 	.name		= "rbd",
5266 	.groups		= rbd_attr_groups,
5267 	.release	= rbd_dev_release,
5268 };
5269 
5270 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5271 {
5272 	kref_get(&spec->kref);
5273 
5274 	return spec;
5275 }
5276 
5277 static void rbd_spec_free(struct kref *kref);
5278 static void rbd_spec_put(struct rbd_spec *spec)
5279 {
5280 	if (spec)
5281 		kref_put(&spec->kref, rbd_spec_free);
5282 }
5283 
5284 static struct rbd_spec *rbd_spec_alloc(void)
5285 {
5286 	struct rbd_spec *spec;
5287 
5288 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5289 	if (!spec)
5290 		return NULL;
5291 
5292 	spec->pool_id = CEPH_NOPOOL;
5293 	spec->snap_id = CEPH_NOSNAP;
5294 	kref_init(&spec->kref);
5295 
5296 	return spec;
5297 }
5298 
5299 static void rbd_spec_free(struct kref *kref)
5300 {
5301 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5302 
5303 	kfree(spec->pool_name);
5304 	kfree(spec->pool_ns);
5305 	kfree(spec->image_id);
5306 	kfree(spec->image_name);
5307 	kfree(spec->snap_name);
5308 	kfree(spec);
5309 }
5310 
5311 static void rbd_dev_free(struct rbd_device *rbd_dev)
5312 {
5313 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5314 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5315 
5316 	ceph_oid_destroy(&rbd_dev->header_oid);
5317 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5318 	kfree(rbd_dev->config_info);
5319 
5320 	rbd_put_client(rbd_dev->rbd_client);
5321 	rbd_spec_put(rbd_dev->spec);
5322 	kfree(rbd_dev->opts);
5323 	kfree(rbd_dev);
5324 }
5325 
5326 static void rbd_dev_release(struct device *dev)
5327 {
5328 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5329 	bool need_put = !!rbd_dev->opts;
5330 
5331 	if (need_put) {
5332 		destroy_workqueue(rbd_dev->task_wq);
5333 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5334 	}
5335 
5336 	rbd_dev_free(rbd_dev);
5337 
5338 	/*
5339 	 * This is racy, but way better than putting module outside of
5340 	 * the release callback.  The race window is pretty small, so
5341 	 * doing something similar to dm (dm-builtin.c) is overkill.
5342 	 */
5343 	if (need_put)
5344 		module_put(THIS_MODULE);
5345 }
5346 
5347 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5348 {
5349 	struct rbd_device *rbd_dev;
5350 
5351 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5352 	if (!rbd_dev)
5353 		return NULL;
5354 
5355 	spin_lock_init(&rbd_dev->lock);
5356 	INIT_LIST_HEAD(&rbd_dev->node);
5357 	init_rwsem(&rbd_dev->header_rwsem);
5358 
5359 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5360 	ceph_oid_init(&rbd_dev->header_oid);
5361 	rbd_dev->header_oloc.pool = spec->pool_id;
5362 	if (spec->pool_ns) {
5363 		WARN_ON(!*spec->pool_ns);
5364 		rbd_dev->header_oloc.pool_ns =
5365 		    ceph_find_or_create_string(spec->pool_ns,
5366 					       strlen(spec->pool_ns));
5367 	}
5368 
5369 	mutex_init(&rbd_dev->watch_mutex);
5370 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5371 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5372 
5373 	init_rwsem(&rbd_dev->lock_rwsem);
5374 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5375 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5376 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5377 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5378 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5379 	spin_lock_init(&rbd_dev->lock_lists_lock);
5380 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5381 	INIT_LIST_HEAD(&rbd_dev->running_list);
5382 	init_completion(&rbd_dev->acquire_wait);
5383 	init_completion(&rbd_dev->releasing_wait);
5384 
5385 	spin_lock_init(&rbd_dev->object_map_lock);
5386 
5387 	rbd_dev->dev.bus = &rbd_bus_type;
5388 	rbd_dev->dev.type = &rbd_device_type;
5389 	rbd_dev->dev.parent = &rbd_root_dev;
5390 	device_initialize(&rbd_dev->dev);
5391 
5392 	return rbd_dev;
5393 }
5394 
5395 /*
5396  * Create a mapping rbd_dev.
5397  */
5398 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5399 					 struct rbd_spec *spec,
5400 					 struct rbd_options *opts)
5401 {
5402 	struct rbd_device *rbd_dev;
5403 
5404 	rbd_dev = __rbd_dev_create(spec);
5405 	if (!rbd_dev)
5406 		return NULL;
5407 
5408 	/* get an id and fill in device name */
5409 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5410 					 minor_to_rbd_dev_id(1 << MINORBITS),
5411 					 GFP_KERNEL);
5412 	if (rbd_dev->dev_id < 0)
5413 		goto fail_rbd_dev;
5414 
5415 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5416 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5417 						   rbd_dev->name);
5418 	if (!rbd_dev->task_wq)
5419 		goto fail_dev_id;
5420 
5421 	/* we have a ref from do_rbd_add() */
5422 	__module_get(THIS_MODULE);
5423 
5424 	rbd_dev->rbd_client = rbdc;
5425 	rbd_dev->spec = spec;
5426 	rbd_dev->opts = opts;
5427 
5428 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5429 	return rbd_dev;
5430 
5431 fail_dev_id:
5432 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5433 fail_rbd_dev:
5434 	rbd_dev_free(rbd_dev);
5435 	return NULL;
5436 }
5437 
5438 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5439 {
5440 	if (rbd_dev)
5441 		put_device(&rbd_dev->dev);
5442 }
5443 
5444 /*
5445  * Get the size and object order for an image snapshot, or if
5446  * snap_id is CEPH_NOSNAP, gets this information for the base
5447  * image.
5448  */
5449 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5450 				u8 *order, u64 *snap_size)
5451 {
5452 	__le64 snapid = cpu_to_le64(snap_id);
5453 	int ret;
5454 	struct {
5455 		u8 order;
5456 		__le64 size;
5457 	} __attribute__ ((packed)) size_buf = { 0 };
5458 
5459 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5460 				  &rbd_dev->header_oloc, "get_size",
5461 				  &snapid, sizeof(snapid),
5462 				  &size_buf, sizeof(size_buf));
5463 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5464 	if (ret < 0)
5465 		return ret;
5466 	if (ret < sizeof (size_buf))
5467 		return -ERANGE;
5468 
5469 	if (order) {
5470 		*order = size_buf.order;
5471 		dout("  order %u", (unsigned int)*order);
5472 	}
5473 	*snap_size = le64_to_cpu(size_buf.size);
5474 
5475 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5476 		(unsigned long long)snap_id,
5477 		(unsigned long long)*snap_size);
5478 
5479 	return 0;
5480 }
5481 
5482 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5483 {
5484 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5485 					&rbd_dev->header.obj_order,
5486 					&rbd_dev->header.image_size);
5487 }
5488 
5489 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5490 {
5491 	size_t size;
5492 	void *reply_buf;
5493 	int ret;
5494 	void *p;
5495 
5496 	/* Response will be an encoded string, which includes a length */
5497 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5498 	reply_buf = kzalloc(size, GFP_KERNEL);
5499 	if (!reply_buf)
5500 		return -ENOMEM;
5501 
5502 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5503 				  &rbd_dev->header_oloc, "get_object_prefix",
5504 				  NULL, 0, reply_buf, size);
5505 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5506 	if (ret < 0)
5507 		goto out;
5508 
5509 	p = reply_buf;
5510 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5511 						p + ret, NULL, GFP_NOIO);
5512 	ret = 0;
5513 
5514 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5515 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5516 		rbd_dev->header.object_prefix = NULL;
5517 	} else {
5518 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5519 	}
5520 out:
5521 	kfree(reply_buf);
5522 
5523 	return ret;
5524 }
5525 
5526 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5527 				     bool read_only, u64 *snap_features)
5528 {
5529 	struct {
5530 		__le64 snap_id;
5531 		u8 read_only;
5532 	} features_in;
5533 	struct {
5534 		__le64 features;
5535 		__le64 incompat;
5536 	} __attribute__ ((packed)) features_buf = { 0 };
5537 	u64 unsup;
5538 	int ret;
5539 
5540 	features_in.snap_id = cpu_to_le64(snap_id);
5541 	features_in.read_only = read_only;
5542 
5543 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5544 				  &rbd_dev->header_oloc, "get_features",
5545 				  &features_in, sizeof(features_in),
5546 				  &features_buf, sizeof(features_buf));
5547 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5548 	if (ret < 0)
5549 		return ret;
5550 	if (ret < sizeof (features_buf))
5551 		return -ERANGE;
5552 
5553 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5554 	if (unsup) {
5555 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5556 			 unsup);
5557 		return -ENXIO;
5558 	}
5559 
5560 	*snap_features = le64_to_cpu(features_buf.features);
5561 
5562 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5563 		(unsigned long long)snap_id,
5564 		(unsigned long long)*snap_features,
5565 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5566 
5567 	return 0;
5568 }
5569 
5570 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5571 {
5572 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5573 					 rbd_is_ro(rbd_dev),
5574 					 &rbd_dev->header.features);
5575 }
5576 
5577 /*
5578  * These are generic image flags, but since they are used only for
5579  * object map, store them in rbd_dev->object_map_flags.
5580  *
5581  * For the same reason, this function is called only on object map
5582  * (re)load and not on header refresh.
5583  */
5584 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5585 {
5586 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5587 	__le64 flags;
5588 	int ret;
5589 
5590 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5591 				  &rbd_dev->header_oloc, "get_flags",
5592 				  &snapid, sizeof(snapid),
5593 				  &flags, sizeof(flags));
5594 	if (ret < 0)
5595 		return ret;
5596 	if (ret < sizeof(flags))
5597 		return -EBADMSG;
5598 
5599 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5600 	return 0;
5601 }
5602 
5603 struct parent_image_info {
5604 	u64		pool_id;
5605 	const char	*pool_ns;
5606 	const char	*image_id;
5607 	u64		snap_id;
5608 
5609 	bool		has_overlap;
5610 	u64		overlap;
5611 };
5612 
5613 /*
5614  * The caller is responsible for @pii.
5615  */
5616 static int decode_parent_image_spec(void **p, void *end,
5617 				    struct parent_image_info *pii)
5618 {
5619 	u8 struct_v;
5620 	u32 struct_len;
5621 	int ret;
5622 
5623 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5624 				  &struct_v, &struct_len);
5625 	if (ret)
5626 		return ret;
5627 
5628 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5629 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5630 	if (IS_ERR(pii->pool_ns)) {
5631 		ret = PTR_ERR(pii->pool_ns);
5632 		pii->pool_ns = NULL;
5633 		return ret;
5634 	}
5635 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5636 	if (IS_ERR(pii->image_id)) {
5637 		ret = PTR_ERR(pii->image_id);
5638 		pii->image_id = NULL;
5639 		return ret;
5640 	}
5641 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5642 	return 0;
5643 
5644 e_inval:
5645 	return -EINVAL;
5646 }
5647 
5648 static int __get_parent_info(struct rbd_device *rbd_dev,
5649 			     struct page *req_page,
5650 			     struct page *reply_page,
5651 			     struct parent_image_info *pii)
5652 {
5653 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5654 	size_t reply_len = PAGE_SIZE;
5655 	void *p, *end;
5656 	int ret;
5657 
5658 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5659 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5660 			     req_page, sizeof(u64), &reply_page, &reply_len);
5661 	if (ret)
5662 		return ret == -EOPNOTSUPP ? 1 : ret;
5663 
5664 	p = page_address(reply_page);
5665 	end = p + reply_len;
5666 	ret = decode_parent_image_spec(&p, end, pii);
5667 	if (ret)
5668 		return ret;
5669 
5670 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5671 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5672 			     req_page, sizeof(u64), &reply_page, &reply_len);
5673 	if (ret)
5674 		return ret;
5675 
5676 	p = page_address(reply_page);
5677 	end = p + reply_len;
5678 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5679 	if (pii->has_overlap)
5680 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5681 
5682 	return 0;
5683 
5684 e_inval:
5685 	return -EINVAL;
5686 }
5687 
5688 /*
5689  * The caller is responsible for @pii.
5690  */
5691 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5692 				    struct page *req_page,
5693 				    struct page *reply_page,
5694 				    struct parent_image_info *pii)
5695 {
5696 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5697 	size_t reply_len = PAGE_SIZE;
5698 	void *p, *end;
5699 	int ret;
5700 
5701 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5702 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5703 			     req_page, sizeof(u64), &reply_page, &reply_len);
5704 	if (ret)
5705 		return ret;
5706 
5707 	p = page_address(reply_page);
5708 	end = p + reply_len;
5709 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5710 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5711 	if (IS_ERR(pii->image_id)) {
5712 		ret = PTR_ERR(pii->image_id);
5713 		pii->image_id = NULL;
5714 		return ret;
5715 	}
5716 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5717 	pii->has_overlap = true;
5718 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5719 
5720 	return 0;
5721 
5722 e_inval:
5723 	return -EINVAL;
5724 }
5725 
5726 static int get_parent_info(struct rbd_device *rbd_dev,
5727 			   struct parent_image_info *pii)
5728 {
5729 	struct page *req_page, *reply_page;
5730 	void *p;
5731 	int ret;
5732 
5733 	req_page = alloc_page(GFP_KERNEL);
5734 	if (!req_page)
5735 		return -ENOMEM;
5736 
5737 	reply_page = alloc_page(GFP_KERNEL);
5738 	if (!reply_page) {
5739 		__free_page(req_page);
5740 		return -ENOMEM;
5741 	}
5742 
5743 	p = page_address(req_page);
5744 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5745 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5746 	if (ret > 0)
5747 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5748 					       pii);
5749 
5750 	__free_page(req_page);
5751 	__free_page(reply_page);
5752 	return ret;
5753 }
5754 
5755 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5756 {
5757 	struct rbd_spec *parent_spec;
5758 	struct parent_image_info pii = { 0 };
5759 	int ret;
5760 
5761 	parent_spec = rbd_spec_alloc();
5762 	if (!parent_spec)
5763 		return -ENOMEM;
5764 
5765 	ret = get_parent_info(rbd_dev, &pii);
5766 	if (ret)
5767 		goto out_err;
5768 
5769 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5770 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5771 	     pii.has_overlap, pii.overlap);
5772 
5773 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5774 		/*
5775 		 * Either the parent never existed, or we have
5776 		 * record of it but the image got flattened so it no
5777 		 * longer has a parent.  When the parent of a
5778 		 * layered image disappears we immediately set the
5779 		 * overlap to 0.  The effect of this is that all new
5780 		 * requests will be treated as if the image had no
5781 		 * parent.
5782 		 *
5783 		 * If !pii.has_overlap, the parent image spec is not
5784 		 * applicable.  It's there to avoid duplication in each
5785 		 * snapshot record.
5786 		 */
5787 		if (rbd_dev->parent_overlap) {
5788 			rbd_dev->parent_overlap = 0;
5789 			rbd_dev_parent_put(rbd_dev);
5790 			pr_info("%s: clone image has been flattened\n",
5791 				rbd_dev->disk->disk_name);
5792 		}
5793 
5794 		goto out;	/* No parent?  No problem. */
5795 	}
5796 
5797 	/* The ceph file layout needs to fit pool id in 32 bits */
5798 
5799 	ret = -EIO;
5800 	if (pii.pool_id > (u64)U32_MAX) {
5801 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5802 			(unsigned long long)pii.pool_id, U32_MAX);
5803 		goto out_err;
5804 	}
5805 
5806 	/*
5807 	 * The parent won't change (except when the clone is
5808 	 * flattened, already handled that).  So we only need to
5809 	 * record the parent spec we have not already done so.
5810 	 */
5811 	if (!rbd_dev->parent_spec) {
5812 		parent_spec->pool_id = pii.pool_id;
5813 		if (pii.pool_ns && *pii.pool_ns) {
5814 			parent_spec->pool_ns = pii.pool_ns;
5815 			pii.pool_ns = NULL;
5816 		}
5817 		parent_spec->image_id = pii.image_id;
5818 		pii.image_id = NULL;
5819 		parent_spec->snap_id = pii.snap_id;
5820 
5821 		rbd_dev->parent_spec = parent_spec;
5822 		parent_spec = NULL;	/* rbd_dev now owns this */
5823 	}
5824 
5825 	/*
5826 	 * We always update the parent overlap.  If it's zero we issue
5827 	 * a warning, as we will proceed as if there was no parent.
5828 	 */
5829 	if (!pii.overlap) {
5830 		if (parent_spec) {
5831 			/* refresh, careful to warn just once */
5832 			if (rbd_dev->parent_overlap)
5833 				rbd_warn(rbd_dev,
5834 				    "clone now standalone (overlap became 0)");
5835 		} else {
5836 			/* initial probe */
5837 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5838 		}
5839 	}
5840 	rbd_dev->parent_overlap = pii.overlap;
5841 
5842 out:
5843 	ret = 0;
5844 out_err:
5845 	kfree(pii.pool_ns);
5846 	kfree(pii.image_id);
5847 	rbd_spec_put(parent_spec);
5848 	return ret;
5849 }
5850 
5851 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5852 {
5853 	struct {
5854 		__le64 stripe_unit;
5855 		__le64 stripe_count;
5856 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5857 	size_t size = sizeof (striping_info_buf);
5858 	void *p;
5859 	int ret;
5860 
5861 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5862 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5863 				NULL, 0, &striping_info_buf, size);
5864 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5865 	if (ret < 0)
5866 		return ret;
5867 	if (ret < size)
5868 		return -ERANGE;
5869 
5870 	p = &striping_info_buf;
5871 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5872 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5873 	return 0;
5874 }
5875 
5876 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5877 {
5878 	__le64 data_pool_id;
5879 	int ret;
5880 
5881 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5882 				  &rbd_dev->header_oloc, "get_data_pool",
5883 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5884 	if (ret < 0)
5885 		return ret;
5886 	if (ret < sizeof(data_pool_id))
5887 		return -EBADMSG;
5888 
5889 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5890 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5891 	return 0;
5892 }
5893 
5894 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5895 {
5896 	CEPH_DEFINE_OID_ONSTACK(oid);
5897 	size_t image_id_size;
5898 	char *image_id;
5899 	void *p;
5900 	void *end;
5901 	size_t size;
5902 	void *reply_buf = NULL;
5903 	size_t len = 0;
5904 	char *image_name = NULL;
5905 	int ret;
5906 
5907 	rbd_assert(!rbd_dev->spec->image_name);
5908 
5909 	len = strlen(rbd_dev->spec->image_id);
5910 	image_id_size = sizeof (__le32) + len;
5911 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5912 	if (!image_id)
5913 		return NULL;
5914 
5915 	p = image_id;
5916 	end = image_id + image_id_size;
5917 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5918 
5919 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5920 	reply_buf = kmalloc(size, GFP_KERNEL);
5921 	if (!reply_buf)
5922 		goto out;
5923 
5924 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5925 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5926 				  "dir_get_name", image_id, image_id_size,
5927 				  reply_buf, size);
5928 	if (ret < 0)
5929 		goto out;
5930 	p = reply_buf;
5931 	end = reply_buf + ret;
5932 
5933 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5934 	if (IS_ERR(image_name))
5935 		image_name = NULL;
5936 	else
5937 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5938 out:
5939 	kfree(reply_buf);
5940 	kfree(image_id);
5941 
5942 	return image_name;
5943 }
5944 
5945 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5946 {
5947 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5948 	const char *snap_name;
5949 	u32 which = 0;
5950 
5951 	/* Skip over names until we find the one we are looking for */
5952 
5953 	snap_name = rbd_dev->header.snap_names;
5954 	while (which < snapc->num_snaps) {
5955 		if (!strcmp(name, snap_name))
5956 			return snapc->snaps[which];
5957 		snap_name += strlen(snap_name) + 1;
5958 		which++;
5959 	}
5960 	return CEPH_NOSNAP;
5961 }
5962 
5963 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5964 {
5965 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5966 	u32 which;
5967 	bool found = false;
5968 	u64 snap_id;
5969 
5970 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5971 		const char *snap_name;
5972 
5973 		snap_id = snapc->snaps[which];
5974 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5975 		if (IS_ERR(snap_name)) {
5976 			/* ignore no-longer existing snapshots */
5977 			if (PTR_ERR(snap_name) == -ENOENT)
5978 				continue;
5979 			else
5980 				break;
5981 		}
5982 		found = !strcmp(name, snap_name);
5983 		kfree(snap_name);
5984 	}
5985 	return found ? snap_id : CEPH_NOSNAP;
5986 }
5987 
5988 /*
5989  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5990  * no snapshot by that name is found, or if an error occurs.
5991  */
5992 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5993 {
5994 	if (rbd_dev->image_format == 1)
5995 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5996 
5997 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5998 }
5999 
6000 /*
6001  * An image being mapped will have everything but the snap id.
6002  */
6003 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6004 {
6005 	struct rbd_spec *spec = rbd_dev->spec;
6006 
6007 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6008 	rbd_assert(spec->image_id && spec->image_name);
6009 	rbd_assert(spec->snap_name);
6010 
6011 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6012 		u64 snap_id;
6013 
6014 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6015 		if (snap_id == CEPH_NOSNAP)
6016 			return -ENOENT;
6017 
6018 		spec->snap_id = snap_id;
6019 	} else {
6020 		spec->snap_id = CEPH_NOSNAP;
6021 	}
6022 
6023 	return 0;
6024 }
6025 
6026 /*
6027  * A parent image will have all ids but none of the names.
6028  *
6029  * All names in an rbd spec are dynamically allocated.  It's OK if we
6030  * can't figure out the name for an image id.
6031  */
6032 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6033 {
6034 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6035 	struct rbd_spec *spec = rbd_dev->spec;
6036 	const char *pool_name;
6037 	const char *image_name;
6038 	const char *snap_name;
6039 	int ret;
6040 
6041 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6042 	rbd_assert(spec->image_id);
6043 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6044 
6045 	/* Get the pool name; we have to make our own copy of this */
6046 
6047 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6048 	if (!pool_name) {
6049 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6050 		return -EIO;
6051 	}
6052 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6053 	if (!pool_name)
6054 		return -ENOMEM;
6055 
6056 	/* Fetch the image name; tolerate failure here */
6057 
6058 	image_name = rbd_dev_image_name(rbd_dev);
6059 	if (!image_name)
6060 		rbd_warn(rbd_dev, "unable to get image name");
6061 
6062 	/* Fetch the snapshot name */
6063 
6064 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6065 	if (IS_ERR(snap_name)) {
6066 		ret = PTR_ERR(snap_name);
6067 		goto out_err;
6068 	}
6069 
6070 	spec->pool_name = pool_name;
6071 	spec->image_name = image_name;
6072 	spec->snap_name = snap_name;
6073 
6074 	return 0;
6075 
6076 out_err:
6077 	kfree(image_name);
6078 	kfree(pool_name);
6079 	return ret;
6080 }
6081 
6082 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6083 {
6084 	size_t size;
6085 	int ret;
6086 	void *reply_buf;
6087 	void *p;
6088 	void *end;
6089 	u64 seq;
6090 	u32 snap_count;
6091 	struct ceph_snap_context *snapc;
6092 	u32 i;
6093 
6094 	/*
6095 	 * We'll need room for the seq value (maximum snapshot id),
6096 	 * snapshot count, and array of that many snapshot ids.
6097 	 * For now we have a fixed upper limit on the number we're
6098 	 * prepared to receive.
6099 	 */
6100 	size = sizeof (__le64) + sizeof (__le32) +
6101 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6102 	reply_buf = kzalloc(size, GFP_KERNEL);
6103 	if (!reply_buf)
6104 		return -ENOMEM;
6105 
6106 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6107 				  &rbd_dev->header_oloc, "get_snapcontext",
6108 				  NULL, 0, reply_buf, size);
6109 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6110 	if (ret < 0)
6111 		goto out;
6112 
6113 	p = reply_buf;
6114 	end = reply_buf + ret;
6115 	ret = -ERANGE;
6116 	ceph_decode_64_safe(&p, end, seq, out);
6117 	ceph_decode_32_safe(&p, end, snap_count, out);
6118 
6119 	/*
6120 	 * Make sure the reported number of snapshot ids wouldn't go
6121 	 * beyond the end of our buffer.  But before checking that,
6122 	 * make sure the computed size of the snapshot context we
6123 	 * allocate is representable in a size_t.
6124 	 */
6125 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6126 				 / sizeof (u64)) {
6127 		ret = -EINVAL;
6128 		goto out;
6129 	}
6130 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6131 		goto out;
6132 	ret = 0;
6133 
6134 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6135 	if (!snapc) {
6136 		ret = -ENOMEM;
6137 		goto out;
6138 	}
6139 	snapc->seq = seq;
6140 	for (i = 0; i < snap_count; i++)
6141 		snapc->snaps[i] = ceph_decode_64(&p);
6142 
6143 	ceph_put_snap_context(rbd_dev->header.snapc);
6144 	rbd_dev->header.snapc = snapc;
6145 
6146 	dout("  snap context seq = %llu, snap_count = %u\n",
6147 		(unsigned long long)seq, (unsigned int)snap_count);
6148 out:
6149 	kfree(reply_buf);
6150 
6151 	return ret;
6152 }
6153 
6154 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6155 					u64 snap_id)
6156 {
6157 	size_t size;
6158 	void *reply_buf;
6159 	__le64 snapid;
6160 	int ret;
6161 	void *p;
6162 	void *end;
6163 	char *snap_name;
6164 
6165 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6166 	reply_buf = kmalloc(size, GFP_KERNEL);
6167 	if (!reply_buf)
6168 		return ERR_PTR(-ENOMEM);
6169 
6170 	snapid = cpu_to_le64(snap_id);
6171 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6172 				  &rbd_dev->header_oloc, "get_snapshot_name",
6173 				  &snapid, sizeof(snapid), reply_buf, size);
6174 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6175 	if (ret < 0) {
6176 		snap_name = ERR_PTR(ret);
6177 		goto out;
6178 	}
6179 
6180 	p = reply_buf;
6181 	end = reply_buf + ret;
6182 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6183 	if (IS_ERR(snap_name))
6184 		goto out;
6185 
6186 	dout("  snap_id 0x%016llx snap_name = %s\n",
6187 		(unsigned long long)snap_id, snap_name);
6188 out:
6189 	kfree(reply_buf);
6190 
6191 	return snap_name;
6192 }
6193 
6194 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6195 {
6196 	bool first_time = rbd_dev->header.object_prefix == NULL;
6197 	int ret;
6198 
6199 	ret = rbd_dev_v2_image_size(rbd_dev);
6200 	if (ret)
6201 		return ret;
6202 
6203 	if (first_time) {
6204 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6205 		if (ret)
6206 			return ret;
6207 	}
6208 
6209 	ret = rbd_dev_v2_snap_context(rbd_dev);
6210 	if (ret && first_time) {
6211 		kfree(rbd_dev->header.object_prefix);
6212 		rbd_dev->header.object_prefix = NULL;
6213 	}
6214 
6215 	return ret;
6216 }
6217 
6218 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6219 {
6220 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6221 
6222 	if (rbd_dev->image_format == 1)
6223 		return rbd_dev_v1_header_info(rbd_dev);
6224 
6225 	return rbd_dev_v2_header_info(rbd_dev);
6226 }
6227 
6228 /*
6229  * Skips over white space at *buf, and updates *buf to point to the
6230  * first found non-space character (if any). Returns the length of
6231  * the token (string of non-white space characters) found.  Note
6232  * that *buf must be terminated with '\0'.
6233  */
6234 static inline size_t next_token(const char **buf)
6235 {
6236         /*
6237         * These are the characters that produce nonzero for
6238         * isspace() in the "C" and "POSIX" locales.
6239         */
6240 	static const char spaces[] = " \f\n\r\t\v";
6241 
6242         *buf += strspn(*buf, spaces);	/* Find start of token */
6243 
6244 	return strcspn(*buf, spaces);   /* Return token length */
6245 }
6246 
6247 /*
6248  * Finds the next token in *buf, dynamically allocates a buffer big
6249  * enough to hold a copy of it, and copies the token into the new
6250  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6251  * that a duplicate buffer is created even for a zero-length token.
6252  *
6253  * Returns a pointer to the newly-allocated duplicate, or a null
6254  * pointer if memory for the duplicate was not available.  If
6255  * the lenp argument is a non-null pointer, the length of the token
6256  * (not including the '\0') is returned in *lenp.
6257  *
6258  * If successful, the *buf pointer will be updated to point beyond
6259  * the end of the found token.
6260  *
6261  * Note: uses GFP_KERNEL for allocation.
6262  */
6263 static inline char *dup_token(const char **buf, size_t *lenp)
6264 {
6265 	char *dup;
6266 	size_t len;
6267 
6268 	len = next_token(buf);
6269 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6270 	if (!dup)
6271 		return NULL;
6272 	*(dup + len) = '\0';
6273 	*buf += len;
6274 
6275 	if (lenp)
6276 		*lenp = len;
6277 
6278 	return dup;
6279 }
6280 
6281 static int rbd_parse_param(struct fs_parameter *param,
6282 			    struct rbd_parse_opts_ctx *pctx)
6283 {
6284 	struct rbd_options *opt = pctx->opts;
6285 	struct fs_parse_result result;
6286 	struct p_log log = {.prefix = "rbd"};
6287 	int token, ret;
6288 
6289 	ret = ceph_parse_param(param, pctx->copts, NULL);
6290 	if (ret != -ENOPARAM)
6291 		return ret;
6292 
6293 	token = __fs_parse(&log, rbd_parameters, param, &result);
6294 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6295 	if (token < 0) {
6296 		if (token == -ENOPARAM)
6297 			return inval_plog(&log, "Unknown parameter '%s'",
6298 					  param->key);
6299 		return token;
6300 	}
6301 
6302 	switch (token) {
6303 	case Opt_queue_depth:
6304 		if (result.uint_32 < 1)
6305 			goto out_of_range;
6306 		opt->queue_depth = result.uint_32;
6307 		break;
6308 	case Opt_alloc_size:
6309 		if (result.uint_32 < SECTOR_SIZE)
6310 			goto out_of_range;
6311 		if (!is_power_of_2(result.uint_32))
6312 			return inval_plog(&log, "alloc_size must be a power of 2");
6313 		opt->alloc_size = result.uint_32;
6314 		break;
6315 	case Opt_lock_timeout:
6316 		/* 0 is "wait forever" (i.e. infinite timeout) */
6317 		if (result.uint_32 > INT_MAX / 1000)
6318 			goto out_of_range;
6319 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6320 		break;
6321 	case Opt_pool_ns:
6322 		kfree(pctx->spec->pool_ns);
6323 		pctx->spec->pool_ns = param->string;
6324 		param->string = NULL;
6325 		break;
6326 	case Opt_compression_hint:
6327 		switch (result.uint_32) {
6328 		case Opt_compression_hint_none:
6329 			opt->alloc_hint_flags &=
6330 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6331 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6332 			break;
6333 		case Opt_compression_hint_compressible:
6334 			opt->alloc_hint_flags |=
6335 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6336 			opt->alloc_hint_flags &=
6337 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6338 			break;
6339 		case Opt_compression_hint_incompressible:
6340 			opt->alloc_hint_flags |=
6341 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6342 			opt->alloc_hint_flags &=
6343 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6344 			break;
6345 		default:
6346 			BUG();
6347 		}
6348 		break;
6349 	case Opt_read_only:
6350 		opt->read_only = true;
6351 		break;
6352 	case Opt_read_write:
6353 		opt->read_only = false;
6354 		break;
6355 	case Opt_lock_on_read:
6356 		opt->lock_on_read = true;
6357 		break;
6358 	case Opt_exclusive:
6359 		opt->exclusive = true;
6360 		break;
6361 	case Opt_notrim:
6362 		opt->trim = false;
6363 		break;
6364 	default:
6365 		BUG();
6366 	}
6367 
6368 	return 0;
6369 
6370 out_of_range:
6371 	return inval_plog(&log, "%s out of range", param->key);
6372 }
6373 
6374 /*
6375  * This duplicates most of generic_parse_monolithic(), untying it from
6376  * fs_context and skipping standard superblock and security options.
6377  */
6378 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6379 {
6380 	char *key;
6381 	int ret = 0;
6382 
6383 	dout("%s '%s'\n", __func__, options);
6384 	while ((key = strsep(&options, ",")) != NULL) {
6385 		if (*key) {
6386 			struct fs_parameter param = {
6387 				.key	= key,
6388 				.type	= fs_value_is_flag,
6389 			};
6390 			char *value = strchr(key, '=');
6391 			size_t v_len = 0;
6392 
6393 			if (value) {
6394 				if (value == key)
6395 					continue;
6396 				*value++ = 0;
6397 				v_len = strlen(value);
6398 				param.string = kmemdup_nul(value, v_len,
6399 							   GFP_KERNEL);
6400 				if (!param.string)
6401 					return -ENOMEM;
6402 				param.type = fs_value_is_string;
6403 			}
6404 			param.size = v_len;
6405 
6406 			ret = rbd_parse_param(&param, pctx);
6407 			kfree(param.string);
6408 			if (ret)
6409 				break;
6410 		}
6411 	}
6412 
6413 	return ret;
6414 }
6415 
6416 /*
6417  * Parse the options provided for an "rbd add" (i.e., rbd image
6418  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6419  * and the data written is passed here via a NUL-terminated buffer.
6420  * Returns 0 if successful or an error code otherwise.
6421  *
6422  * The information extracted from these options is recorded in
6423  * the other parameters which return dynamically-allocated
6424  * structures:
6425  *  ceph_opts
6426  *      The address of a pointer that will refer to a ceph options
6427  *      structure.  Caller must release the returned pointer using
6428  *      ceph_destroy_options() when it is no longer needed.
6429  *  rbd_opts
6430  *	Address of an rbd options pointer.  Fully initialized by
6431  *	this function; caller must release with kfree().
6432  *  spec
6433  *	Address of an rbd image specification pointer.  Fully
6434  *	initialized by this function based on parsed options.
6435  *	Caller must release with rbd_spec_put().
6436  *
6437  * The options passed take this form:
6438  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6439  * where:
6440  *  <mon_addrs>
6441  *      A comma-separated list of one or more monitor addresses.
6442  *      A monitor address is an ip address, optionally followed
6443  *      by a port number (separated by a colon).
6444  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6445  *  <options>
6446  *      A comma-separated list of ceph and/or rbd options.
6447  *  <pool_name>
6448  *      The name of the rados pool containing the rbd image.
6449  *  <image_name>
6450  *      The name of the image in that pool to map.
6451  *  <snap_id>
6452  *      An optional snapshot id.  If provided, the mapping will
6453  *      present data from the image at the time that snapshot was
6454  *      created.  The image head is used if no snapshot id is
6455  *      provided.  Snapshot mappings are always read-only.
6456  */
6457 static int rbd_add_parse_args(const char *buf,
6458 				struct ceph_options **ceph_opts,
6459 				struct rbd_options **opts,
6460 				struct rbd_spec **rbd_spec)
6461 {
6462 	size_t len;
6463 	char *options;
6464 	const char *mon_addrs;
6465 	char *snap_name;
6466 	size_t mon_addrs_size;
6467 	struct rbd_parse_opts_ctx pctx = { 0 };
6468 	int ret;
6469 
6470 	/* The first four tokens are required */
6471 
6472 	len = next_token(&buf);
6473 	if (!len) {
6474 		rbd_warn(NULL, "no monitor address(es) provided");
6475 		return -EINVAL;
6476 	}
6477 	mon_addrs = buf;
6478 	mon_addrs_size = len;
6479 	buf += len;
6480 
6481 	ret = -EINVAL;
6482 	options = dup_token(&buf, NULL);
6483 	if (!options)
6484 		return -ENOMEM;
6485 	if (!*options) {
6486 		rbd_warn(NULL, "no options provided");
6487 		goto out_err;
6488 	}
6489 
6490 	pctx.spec = rbd_spec_alloc();
6491 	if (!pctx.spec)
6492 		goto out_mem;
6493 
6494 	pctx.spec->pool_name = dup_token(&buf, NULL);
6495 	if (!pctx.spec->pool_name)
6496 		goto out_mem;
6497 	if (!*pctx.spec->pool_name) {
6498 		rbd_warn(NULL, "no pool name provided");
6499 		goto out_err;
6500 	}
6501 
6502 	pctx.spec->image_name = dup_token(&buf, NULL);
6503 	if (!pctx.spec->image_name)
6504 		goto out_mem;
6505 	if (!*pctx.spec->image_name) {
6506 		rbd_warn(NULL, "no image name provided");
6507 		goto out_err;
6508 	}
6509 
6510 	/*
6511 	 * Snapshot name is optional; default is to use "-"
6512 	 * (indicating the head/no snapshot).
6513 	 */
6514 	len = next_token(&buf);
6515 	if (!len) {
6516 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6517 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6518 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6519 		ret = -ENAMETOOLONG;
6520 		goto out_err;
6521 	}
6522 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6523 	if (!snap_name)
6524 		goto out_mem;
6525 	*(snap_name + len) = '\0';
6526 	pctx.spec->snap_name = snap_name;
6527 
6528 	pctx.copts = ceph_alloc_options();
6529 	if (!pctx.copts)
6530 		goto out_mem;
6531 
6532 	/* Initialize all rbd options to the defaults */
6533 
6534 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6535 	if (!pctx.opts)
6536 		goto out_mem;
6537 
6538 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6539 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6540 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6541 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6542 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6543 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6544 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6545 
6546 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6547 				 ',');
6548 	if (ret)
6549 		goto out_err;
6550 
6551 	ret = rbd_parse_options(options, &pctx);
6552 	if (ret)
6553 		goto out_err;
6554 
6555 	*ceph_opts = pctx.copts;
6556 	*opts = pctx.opts;
6557 	*rbd_spec = pctx.spec;
6558 	kfree(options);
6559 	return 0;
6560 
6561 out_mem:
6562 	ret = -ENOMEM;
6563 out_err:
6564 	kfree(pctx.opts);
6565 	ceph_destroy_options(pctx.copts);
6566 	rbd_spec_put(pctx.spec);
6567 	kfree(options);
6568 	return ret;
6569 }
6570 
6571 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6572 {
6573 	down_write(&rbd_dev->lock_rwsem);
6574 	if (__rbd_is_lock_owner(rbd_dev))
6575 		__rbd_release_lock(rbd_dev);
6576 	up_write(&rbd_dev->lock_rwsem);
6577 }
6578 
6579 /*
6580  * If the wait is interrupted, an error is returned even if the lock
6581  * was successfully acquired.  rbd_dev_image_unlock() will release it
6582  * if needed.
6583  */
6584 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6585 {
6586 	long ret;
6587 
6588 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6589 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6590 			return 0;
6591 
6592 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6593 		return -EINVAL;
6594 	}
6595 
6596 	if (rbd_is_ro(rbd_dev))
6597 		return 0;
6598 
6599 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6600 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6601 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6602 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6603 	if (ret > 0) {
6604 		ret = rbd_dev->acquire_err;
6605 	} else {
6606 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6607 		if (!ret)
6608 			ret = -ETIMEDOUT;
6609 	}
6610 
6611 	if (ret) {
6612 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6613 		return ret;
6614 	}
6615 
6616 	/*
6617 	 * The lock may have been released by now, unless automatic lock
6618 	 * transitions are disabled.
6619 	 */
6620 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6621 	return 0;
6622 }
6623 
6624 /*
6625  * An rbd format 2 image has a unique identifier, distinct from the
6626  * name given to it by the user.  Internally, that identifier is
6627  * what's used to specify the names of objects related to the image.
6628  *
6629  * A special "rbd id" object is used to map an rbd image name to its
6630  * id.  If that object doesn't exist, then there is no v2 rbd image
6631  * with the supplied name.
6632  *
6633  * This function will record the given rbd_dev's image_id field if
6634  * it can be determined, and in that case will return 0.  If any
6635  * errors occur a negative errno will be returned and the rbd_dev's
6636  * image_id field will be unchanged (and should be NULL).
6637  */
6638 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6639 {
6640 	int ret;
6641 	size_t size;
6642 	CEPH_DEFINE_OID_ONSTACK(oid);
6643 	void *response;
6644 	char *image_id;
6645 
6646 	/*
6647 	 * When probing a parent image, the image id is already
6648 	 * known (and the image name likely is not).  There's no
6649 	 * need to fetch the image id again in this case.  We
6650 	 * do still need to set the image format though.
6651 	 */
6652 	if (rbd_dev->spec->image_id) {
6653 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6654 
6655 		return 0;
6656 	}
6657 
6658 	/*
6659 	 * First, see if the format 2 image id file exists, and if
6660 	 * so, get the image's persistent id from it.
6661 	 */
6662 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6663 			       rbd_dev->spec->image_name);
6664 	if (ret)
6665 		return ret;
6666 
6667 	dout("rbd id object name is %s\n", oid.name);
6668 
6669 	/* Response will be an encoded string, which includes a length */
6670 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6671 	response = kzalloc(size, GFP_NOIO);
6672 	if (!response) {
6673 		ret = -ENOMEM;
6674 		goto out;
6675 	}
6676 
6677 	/* If it doesn't exist we'll assume it's a format 1 image */
6678 
6679 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6680 				  "get_id", NULL, 0,
6681 				  response, size);
6682 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6683 	if (ret == -ENOENT) {
6684 		image_id = kstrdup("", GFP_KERNEL);
6685 		ret = image_id ? 0 : -ENOMEM;
6686 		if (!ret)
6687 			rbd_dev->image_format = 1;
6688 	} else if (ret >= 0) {
6689 		void *p = response;
6690 
6691 		image_id = ceph_extract_encoded_string(&p, p + ret,
6692 						NULL, GFP_NOIO);
6693 		ret = PTR_ERR_OR_ZERO(image_id);
6694 		if (!ret)
6695 			rbd_dev->image_format = 2;
6696 	}
6697 
6698 	if (!ret) {
6699 		rbd_dev->spec->image_id = image_id;
6700 		dout("image_id is %s\n", image_id);
6701 	}
6702 out:
6703 	kfree(response);
6704 	ceph_oid_destroy(&oid);
6705 	return ret;
6706 }
6707 
6708 /*
6709  * Undo whatever state changes are made by v1 or v2 header info
6710  * call.
6711  */
6712 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6713 {
6714 	struct rbd_image_header	*header;
6715 
6716 	rbd_dev_parent_put(rbd_dev);
6717 	rbd_object_map_free(rbd_dev);
6718 	rbd_dev_mapping_clear(rbd_dev);
6719 
6720 	/* Free dynamic fields from the header, then zero it out */
6721 
6722 	header = &rbd_dev->header;
6723 	ceph_put_snap_context(header->snapc);
6724 	kfree(header->snap_sizes);
6725 	kfree(header->snap_names);
6726 	kfree(header->object_prefix);
6727 	memset(header, 0, sizeof (*header));
6728 }
6729 
6730 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6731 {
6732 	int ret;
6733 
6734 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6735 	if (ret)
6736 		goto out_err;
6737 
6738 	/*
6739 	 * Get the and check features for the image.  Currently the
6740 	 * features are assumed to never change.
6741 	 */
6742 	ret = rbd_dev_v2_features(rbd_dev);
6743 	if (ret)
6744 		goto out_err;
6745 
6746 	/* If the image supports fancy striping, get its parameters */
6747 
6748 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6749 		ret = rbd_dev_v2_striping_info(rbd_dev);
6750 		if (ret < 0)
6751 			goto out_err;
6752 	}
6753 
6754 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6755 		ret = rbd_dev_v2_data_pool(rbd_dev);
6756 		if (ret)
6757 			goto out_err;
6758 	}
6759 
6760 	rbd_init_layout(rbd_dev);
6761 	return 0;
6762 
6763 out_err:
6764 	rbd_dev->header.features = 0;
6765 	kfree(rbd_dev->header.object_prefix);
6766 	rbd_dev->header.object_prefix = NULL;
6767 	return ret;
6768 }
6769 
6770 /*
6771  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6772  * rbd_dev_image_probe() recursion depth, which means it's also the
6773  * length of the already discovered part of the parent chain.
6774  */
6775 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6776 {
6777 	struct rbd_device *parent = NULL;
6778 	int ret;
6779 
6780 	if (!rbd_dev->parent_spec)
6781 		return 0;
6782 
6783 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6784 		pr_info("parent chain is too long (%d)\n", depth);
6785 		ret = -EINVAL;
6786 		goto out_err;
6787 	}
6788 
6789 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6790 	if (!parent) {
6791 		ret = -ENOMEM;
6792 		goto out_err;
6793 	}
6794 
6795 	/*
6796 	 * Images related by parent/child relationships always share
6797 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6798 	 */
6799 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6800 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6801 
6802 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6803 
6804 	ret = rbd_dev_image_probe(parent, depth);
6805 	if (ret < 0)
6806 		goto out_err;
6807 
6808 	rbd_dev->parent = parent;
6809 	atomic_set(&rbd_dev->parent_ref, 1);
6810 	return 0;
6811 
6812 out_err:
6813 	rbd_dev_unparent(rbd_dev);
6814 	rbd_dev_destroy(parent);
6815 	return ret;
6816 }
6817 
6818 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6819 {
6820 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6821 	rbd_free_disk(rbd_dev);
6822 	if (!single_major)
6823 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6824 }
6825 
6826 /*
6827  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6828  * upon return.
6829  */
6830 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6831 {
6832 	int ret;
6833 
6834 	/* Record our major and minor device numbers. */
6835 
6836 	if (!single_major) {
6837 		ret = register_blkdev(0, rbd_dev->name);
6838 		if (ret < 0)
6839 			goto err_out_unlock;
6840 
6841 		rbd_dev->major = ret;
6842 		rbd_dev->minor = 0;
6843 	} else {
6844 		rbd_dev->major = rbd_major;
6845 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6846 	}
6847 
6848 	/* Set up the blkdev mapping. */
6849 
6850 	ret = rbd_init_disk(rbd_dev);
6851 	if (ret)
6852 		goto err_out_blkdev;
6853 
6854 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6855 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6856 
6857 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6858 	if (ret)
6859 		goto err_out_disk;
6860 
6861 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6862 	up_write(&rbd_dev->header_rwsem);
6863 	return 0;
6864 
6865 err_out_disk:
6866 	rbd_free_disk(rbd_dev);
6867 err_out_blkdev:
6868 	if (!single_major)
6869 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6870 err_out_unlock:
6871 	up_write(&rbd_dev->header_rwsem);
6872 	return ret;
6873 }
6874 
6875 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6876 {
6877 	struct rbd_spec *spec = rbd_dev->spec;
6878 	int ret;
6879 
6880 	/* Record the header object name for this rbd image. */
6881 
6882 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6883 	if (rbd_dev->image_format == 1)
6884 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6885 				       spec->image_name, RBD_SUFFIX);
6886 	else
6887 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6888 				       RBD_HEADER_PREFIX, spec->image_id);
6889 
6890 	return ret;
6891 }
6892 
6893 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6894 {
6895 	if (!is_snap) {
6896 		pr_info("image %s/%s%s%s does not exist\n",
6897 			rbd_dev->spec->pool_name,
6898 			rbd_dev->spec->pool_ns ?: "",
6899 			rbd_dev->spec->pool_ns ? "/" : "",
6900 			rbd_dev->spec->image_name);
6901 	} else {
6902 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6903 			rbd_dev->spec->pool_name,
6904 			rbd_dev->spec->pool_ns ?: "",
6905 			rbd_dev->spec->pool_ns ? "/" : "",
6906 			rbd_dev->spec->image_name,
6907 			rbd_dev->spec->snap_name);
6908 	}
6909 }
6910 
6911 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6912 {
6913 	if (!rbd_is_ro(rbd_dev))
6914 		rbd_unregister_watch(rbd_dev);
6915 
6916 	rbd_dev_unprobe(rbd_dev);
6917 	rbd_dev->image_format = 0;
6918 	kfree(rbd_dev->spec->image_id);
6919 	rbd_dev->spec->image_id = NULL;
6920 }
6921 
6922 /*
6923  * Probe for the existence of the header object for the given rbd
6924  * device.  If this image is the one being mapped (i.e., not a
6925  * parent), initiate a watch on its header object before using that
6926  * object to get detailed information about the rbd image.
6927  *
6928  * On success, returns with header_rwsem held for write if called
6929  * with @depth == 0.
6930  */
6931 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6932 {
6933 	bool need_watch = !rbd_is_ro(rbd_dev);
6934 	int ret;
6935 
6936 	/*
6937 	 * Get the id from the image id object.  Unless there's an
6938 	 * error, rbd_dev->spec->image_id will be filled in with
6939 	 * a dynamically-allocated string, and rbd_dev->image_format
6940 	 * will be set to either 1 or 2.
6941 	 */
6942 	ret = rbd_dev_image_id(rbd_dev);
6943 	if (ret)
6944 		return ret;
6945 
6946 	ret = rbd_dev_header_name(rbd_dev);
6947 	if (ret)
6948 		goto err_out_format;
6949 
6950 	if (need_watch) {
6951 		ret = rbd_register_watch(rbd_dev);
6952 		if (ret) {
6953 			if (ret == -ENOENT)
6954 				rbd_print_dne(rbd_dev, false);
6955 			goto err_out_format;
6956 		}
6957 	}
6958 
6959 	if (!depth)
6960 		down_write(&rbd_dev->header_rwsem);
6961 
6962 	ret = rbd_dev_header_info(rbd_dev);
6963 	if (ret) {
6964 		if (ret == -ENOENT && !need_watch)
6965 			rbd_print_dne(rbd_dev, false);
6966 		goto err_out_probe;
6967 	}
6968 
6969 	/*
6970 	 * If this image is the one being mapped, we have pool name and
6971 	 * id, image name and id, and snap name - need to fill snap id.
6972 	 * Otherwise this is a parent image, identified by pool, image
6973 	 * and snap ids - need to fill in names for those ids.
6974 	 */
6975 	if (!depth)
6976 		ret = rbd_spec_fill_snap_id(rbd_dev);
6977 	else
6978 		ret = rbd_spec_fill_names(rbd_dev);
6979 	if (ret) {
6980 		if (ret == -ENOENT)
6981 			rbd_print_dne(rbd_dev, true);
6982 		goto err_out_probe;
6983 	}
6984 
6985 	ret = rbd_dev_mapping_set(rbd_dev);
6986 	if (ret)
6987 		goto err_out_probe;
6988 
6989 	if (rbd_is_snap(rbd_dev) &&
6990 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6991 		ret = rbd_object_map_load(rbd_dev);
6992 		if (ret)
6993 			goto err_out_probe;
6994 	}
6995 
6996 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6997 		ret = rbd_dev_v2_parent_info(rbd_dev);
6998 		if (ret)
6999 			goto err_out_probe;
7000 	}
7001 
7002 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7003 	if (ret)
7004 		goto err_out_probe;
7005 
7006 	dout("discovered format %u image, header name is %s\n",
7007 		rbd_dev->image_format, rbd_dev->header_oid.name);
7008 	return 0;
7009 
7010 err_out_probe:
7011 	if (!depth)
7012 		up_write(&rbd_dev->header_rwsem);
7013 	if (need_watch)
7014 		rbd_unregister_watch(rbd_dev);
7015 	rbd_dev_unprobe(rbd_dev);
7016 err_out_format:
7017 	rbd_dev->image_format = 0;
7018 	kfree(rbd_dev->spec->image_id);
7019 	rbd_dev->spec->image_id = NULL;
7020 	return ret;
7021 }
7022 
7023 static ssize_t do_rbd_add(const char *buf, size_t count)
7024 {
7025 	struct rbd_device *rbd_dev = NULL;
7026 	struct ceph_options *ceph_opts = NULL;
7027 	struct rbd_options *rbd_opts = NULL;
7028 	struct rbd_spec *spec = NULL;
7029 	struct rbd_client *rbdc;
7030 	int rc;
7031 
7032 	if (!capable(CAP_SYS_ADMIN))
7033 		return -EPERM;
7034 
7035 	if (!try_module_get(THIS_MODULE))
7036 		return -ENODEV;
7037 
7038 	/* parse add command */
7039 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7040 	if (rc < 0)
7041 		goto out;
7042 
7043 	rbdc = rbd_get_client(ceph_opts);
7044 	if (IS_ERR(rbdc)) {
7045 		rc = PTR_ERR(rbdc);
7046 		goto err_out_args;
7047 	}
7048 
7049 	/* pick the pool */
7050 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7051 	if (rc < 0) {
7052 		if (rc == -ENOENT)
7053 			pr_info("pool %s does not exist\n", spec->pool_name);
7054 		goto err_out_client;
7055 	}
7056 	spec->pool_id = (u64)rc;
7057 
7058 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7059 	if (!rbd_dev) {
7060 		rc = -ENOMEM;
7061 		goto err_out_client;
7062 	}
7063 	rbdc = NULL;		/* rbd_dev now owns this */
7064 	spec = NULL;		/* rbd_dev now owns this */
7065 	rbd_opts = NULL;	/* rbd_dev now owns this */
7066 
7067 	/* if we are mapping a snapshot it will be a read-only mapping */
7068 	if (rbd_dev->opts->read_only ||
7069 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7070 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7071 
7072 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7073 	if (!rbd_dev->config_info) {
7074 		rc = -ENOMEM;
7075 		goto err_out_rbd_dev;
7076 	}
7077 
7078 	rc = rbd_dev_image_probe(rbd_dev, 0);
7079 	if (rc < 0)
7080 		goto err_out_rbd_dev;
7081 
7082 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7083 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7084 			 rbd_dev->layout.object_size);
7085 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7086 	}
7087 
7088 	rc = rbd_dev_device_setup(rbd_dev);
7089 	if (rc)
7090 		goto err_out_image_probe;
7091 
7092 	rc = rbd_add_acquire_lock(rbd_dev);
7093 	if (rc)
7094 		goto err_out_image_lock;
7095 
7096 	/* Everything's ready.  Announce the disk to the world. */
7097 
7098 	rc = device_add(&rbd_dev->dev);
7099 	if (rc)
7100 		goto err_out_image_lock;
7101 
7102 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7103 	if (rc)
7104 		goto err_out_cleanup_disk;
7105 
7106 	spin_lock(&rbd_dev_list_lock);
7107 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7108 	spin_unlock(&rbd_dev_list_lock);
7109 
7110 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7111 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7112 		rbd_dev->header.features);
7113 	rc = count;
7114 out:
7115 	module_put(THIS_MODULE);
7116 	return rc;
7117 
7118 err_out_cleanup_disk:
7119 	rbd_free_disk(rbd_dev);
7120 err_out_image_lock:
7121 	rbd_dev_image_unlock(rbd_dev);
7122 	rbd_dev_device_release(rbd_dev);
7123 err_out_image_probe:
7124 	rbd_dev_image_release(rbd_dev);
7125 err_out_rbd_dev:
7126 	rbd_dev_destroy(rbd_dev);
7127 err_out_client:
7128 	rbd_put_client(rbdc);
7129 err_out_args:
7130 	rbd_spec_put(spec);
7131 	kfree(rbd_opts);
7132 	goto out;
7133 }
7134 
7135 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7136 {
7137 	if (single_major)
7138 		return -EINVAL;
7139 
7140 	return do_rbd_add(buf, count);
7141 }
7142 
7143 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7144 				      size_t count)
7145 {
7146 	return do_rbd_add(buf, count);
7147 }
7148 
7149 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7150 {
7151 	while (rbd_dev->parent) {
7152 		struct rbd_device *first = rbd_dev;
7153 		struct rbd_device *second = first->parent;
7154 		struct rbd_device *third;
7155 
7156 		/*
7157 		 * Follow to the parent with no grandparent and
7158 		 * remove it.
7159 		 */
7160 		while (second && (third = second->parent)) {
7161 			first = second;
7162 			second = third;
7163 		}
7164 		rbd_assert(second);
7165 		rbd_dev_image_release(second);
7166 		rbd_dev_destroy(second);
7167 		first->parent = NULL;
7168 		first->parent_overlap = 0;
7169 
7170 		rbd_assert(first->parent_spec);
7171 		rbd_spec_put(first->parent_spec);
7172 		first->parent_spec = NULL;
7173 	}
7174 }
7175 
7176 static ssize_t do_rbd_remove(const char *buf, size_t count)
7177 {
7178 	struct rbd_device *rbd_dev = NULL;
7179 	struct list_head *tmp;
7180 	int dev_id;
7181 	char opt_buf[6];
7182 	bool force = false;
7183 	int ret;
7184 
7185 	if (!capable(CAP_SYS_ADMIN))
7186 		return -EPERM;
7187 
7188 	dev_id = -1;
7189 	opt_buf[0] = '\0';
7190 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7191 	if (dev_id < 0) {
7192 		pr_err("dev_id out of range\n");
7193 		return -EINVAL;
7194 	}
7195 	if (opt_buf[0] != '\0') {
7196 		if (!strcmp(opt_buf, "force")) {
7197 			force = true;
7198 		} else {
7199 			pr_err("bad remove option at '%s'\n", opt_buf);
7200 			return -EINVAL;
7201 		}
7202 	}
7203 
7204 	ret = -ENOENT;
7205 	spin_lock(&rbd_dev_list_lock);
7206 	list_for_each(tmp, &rbd_dev_list) {
7207 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7208 		if (rbd_dev->dev_id == dev_id) {
7209 			ret = 0;
7210 			break;
7211 		}
7212 	}
7213 	if (!ret) {
7214 		spin_lock_irq(&rbd_dev->lock);
7215 		if (rbd_dev->open_count && !force)
7216 			ret = -EBUSY;
7217 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7218 					  &rbd_dev->flags))
7219 			ret = -EINPROGRESS;
7220 		spin_unlock_irq(&rbd_dev->lock);
7221 	}
7222 	spin_unlock(&rbd_dev_list_lock);
7223 	if (ret)
7224 		return ret;
7225 
7226 	if (force) {
7227 		/*
7228 		 * Prevent new IO from being queued and wait for existing
7229 		 * IO to complete/fail.
7230 		 */
7231 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7232 		blk_mark_disk_dead(rbd_dev->disk);
7233 	}
7234 
7235 	del_gendisk(rbd_dev->disk);
7236 	spin_lock(&rbd_dev_list_lock);
7237 	list_del_init(&rbd_dev->node);
7238 	spin_unlock(&rbd_dev_list_lock);
7239 	device_del(&rbd_dev->dev);
7240 
7241 	rbd_dev_image_unlock(rbd_dev);
7242 	rbd_dev_device_release(rbd_dev);
7243 	rbd_dev_image_release(rbd_dev);
7244 	rbd_dev_destroy(rbd_dev);
7245 	return count;
7246 }
7247 
7248 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7249 {
7250 	if (single_major)
7251 		return -EINVAL;
7252 
7253 	return do_rbd_remove(buf, count);
7254 }
7255 
7256 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7257 					 size_t count)
7258 {
7259 	return do_rbd_remove(buf, count);
7260 }
7261 
7262 /*
7263  * create control files in sysfs
7264  * /sys/bus/rbd/...
7265  */
7266 static int __init rbd_sysfs_init(void)
7267 {
7268 	int ret;
7269 
7270 	ret = device_register(&rbd_root_dev);
7271 	if (ret < 0) {
7272 		put_device(&rbd_root_dev);
7273 		return ret;
7274 	}
7275 
7276 	ret = bus_register(&rbd_bus_type);
7277 	if (ret < 0)
7278 		device_unregister(&rbd_root_dev);
7279 
7280 	return ret;
7281 }
7282 
7283 static void __exit rbd_sysfs_cleanup(void)
7284 {
7285 	bus_unregister(&rbd_bus_type);
7286 	device_unregister(&rbd_root_dev);
7287 }
7288 
7289 static int __init rbd_slab_init(void)
7290 {
7291 	rbd_assert(!rbd_img_request_cache);
7292 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7293 	if (!rbd_img_request_cache)
7294 		return -ENOMEM;
7295 
7296 	rbd_assert(!rbd_obj_request_cache);
7297 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7298 	if (!rbd_obj_request_cache)
7299 		goto out_err;
7300 
7301 	return 0;
7302 
7303 out_err:
7304 	kmem_cache_destroy(rbd_img_request_cache);
7305 	rbd_img_request_cache = NULL;
7306 	return -ENOMEM;
7307 }
7308 
7309 static void rbd_slab_exit(void)
7310 {
7311 	rbd_assert(rbd_obj_request_cache);
7312 	kmem_cache_destroy(rbd_obj_request_cache);
7313 	rbd_obj_request_cache = NULL;
7314 
7315 	rbd_assert(rbd_img_request_cache);
7316 	kmem_cache_destroy(rbd_img_request_cache);
7317 	rbd_img_request_cache = NULL;
7318 }
7319 
7320 static int __init rbd_init(void)
7321 {
7322 	int rc;
7323 
7324 	if (!libceph_compatible(NULL)) {
7325 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7326 		return -EINVAL;
7327 	}
7328 
7329 	rc = rbd_slab_init();
7330 	if (rc)
7331 		return rc;
7332 
7333 	/*
7334 	 * The number of active work items is limited by the number of
7335 	 * rbd devices * queue depth, so leave @max_active at default.
7336 	 */
7337 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7338 	if (!rbd_wq) {
7339 		rc = -ENOMEM;
7340 		goto err_out_slab;
7341 	}
7342 
7343 	if (single_major) {
7344 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7345 		if (rbd_major < 0) {
7346 			rc = rbd_major;
7347 			goto err_out_wq;
7348 		}
7349 	}
7350 
7351 	rc = rbd_sysfs_init();
7352 	if (rc)
7353 		goto err_out_blkdev;
7354 
7355 	if (single_major)
7356 		pr_info("loaded (major %d)\n", rbd_major);
7357 	else
7358 		pr_info("loaded\n");
7359 
7360 	return 0;
7361 
7362 err_out_blkdev:
7363 	if (single_major)
7364 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7365 err_out_wq:
7366 	destroy_workqueue(rbd_wq);
7367 err_out_slab:
7368 	rbd_slab_exit();
7369 	return rc;
7370 }
7371 
7372 static void __exit rbd_exit(void)
7373 {
7374 	ida_destroy(&rbd_dev_id_ida);
7375 	rbd_sysfs_cleanup();
7376 	if (single_major)
7377 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7378 	destroy_workqueue(rbd_wq);
7379 	rbd_slab_exit();
7380 }
7381 
7382 module_init(rbd_init);
7383 module_exit(rbd_exit);
7384 
7385 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7386 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7387 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7388 /* following authorship retained from original osdblk.c */
7389 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7390 
7391 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7392 MODULE_LICENSE("GPL");
7393