xref: /openbmc/linux/drivers/block/rbd.c (revision 82df5b73)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697 	int ro;
698 
699 	if (get_user(ro, (int __user *)arg))
700 		return -EFAULT;
701 
702 	/*
703 	 * Both images mapped read-only and snapshots can't be marked
704 	 * read-write.
705 	 */
706 	if (!ro) {
707 		if (rbd_is_ro(rbd_dev))
708 			return -EROFS;
709 
710 		rbd_assert(!rbd_is_snap(rbd_dev));
711 	}
712 
713 	/* Let blkdev_roset() handle it */
714 	return -ENOTTY;
715 }
716 
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 			unsigned int cmd, unsigned long arg)
719 {
720 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721 	int ret;
722 
723 	switch (cmd) {
724 	case BLKROSET:
725 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
726 		break;
727 	default:
728 		ret = -ENOTTY;
729 	}
730 
731 	return ret;
732 }
733 
734 #ifdef CONFIG_COMPAT
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 				unsigned int cmd, unsigned long arg)
737 {
738 	return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741 
742 static const struct block_device_operations rbd_bd_ops = {
743 	.owner			= THIS_MODULE,
744 	.open			= rbd_open,
745 	.release		= rbd_release,
746 	.ioctl			= rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748 	.compat_ioctl		= rbd_compat_ioctl,
749 #endif
750 };
751 
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc;
759 	int ret = -ENOMEM;
760 
761 	dout("%s:\n", __func__);
762 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763 	if (!rbdc)
764 		goto out_opt;
765 
766 	kref_init(&rbdc->kref);
767 	INIT_LIST_HEAD(&rbdc->node);
768 
769 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 	if (IS_ERR(rbdc->client))
771 		goto out_rbdc;
772 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773 
774 	ret = ceph_open_session(rbdc->client);
775 	if (ret < 0)
776 		goto out_client;
777 
778 	spin_lock(&rbd_client_list_lock);
779 	list_add_tail(&rbdc->node, &rbd_client_list);
780 	spin_unlock(&rbd_client_list_lock);
781 
782 	dout("%s: rbdc %p\n", __func__, rbdc);
783 
784 	return rbdc;
785 out_client:
786 	ceph_destroy_client(rbdc->client);
787 out_rbdc:
788 	kfree(rbdc);
789 out_opt:
790 	if (ceph_opts)
791 		ceph_destroy_options(ceph_opts);
792 	dout("%s: error %d\n", __func__, ret);
793 
794 	return ERR_PTR(ret);
795 }
796 
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799 	kref_get(&rbdc->kref);
800 
801 	return rbdc;
802 }
803 
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810 	struct rbd_client *client_node;
811 	bool found = false;
812 
813 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814 		return NULL;
815 
816 	spin_lock(&rbd_client_list_lock);
817 	list_for_each_entry(client_node, &rbd_client_list, node) {
818 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 			__rbd_get_client(client_node);
820 
821 			found = true;
822 			break;
823 		}
824 	}
825 	spin_unlock(&rbd_client_list_lock);
826 
827 	return found ? client_node : NULL;
828 }
829 
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834 	Opt_queue_depth,
835 	Opt_alloc_size,
836 	Opt_lock_timeout,
837 	/* int args above */
838 	Opt_pool_ns,
839 	Opt_compression_hint,
840 	/* string args above */
841 	Opt_read_only,
842 	Opt_read_write,
843 	Opt_lock_on_read,
844 	Opt_exclusive,
845 	Opt_notrim,
846 };
847 
848 enum {
849 	Opt_compression_hint_none,
850 	Opt_compression_hint_compressible,
851 	Opt_compression_hint_incompressible,
852 };
853 
854 static const struct constant_table rbd_param_compression_hint[] = {
855 	{"none",		Opt_compression_hint_none},
856 	{"compressible",	Opt_compression_hint_compressible},
857 	{"incompressible",	Opt_compression_hint_incompressible},
858 	{}
859 };
860 
861 static const struct fs_parameter_spec rbd_parameters[] = {
862 	fsparam_u32	("alloc_size",			Opt_alloc_size),
863 	fsparam_enum	("compression_hint",		Opt_compression_hint,
864 			 rbd_param_compression_hint),
865 	fsparam_flag	("exclusive",			Opt_exclusive),
866 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
867 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
868 	fsparam_flag	("notrim",			Opt_notrim),
869 	fsparam_string	("_pool_ns",			Opt_pool_ns),
870 	fsparam_u32	("queue_depth",			Opt_queue_depth),
871 	fsparam_flag	("read_only",			Opt_read_only),
872 	fsparam_flag	("read_write",			Opt_read_write),
873 	fsparam_flag	("ro",				Opt_read_only),
874 	fsparam_flag	("rw",				Opt_read_write),
875 	{}
876 };
877 
878 struct rbd_options {
879 	int	queue_depth;
880 	int	alloc_size;
881 	unsigned long	lock_timeout;
882 	bool	read_only;
883 	bool	lock_on_read;
884 	bool	exclusive;
885 	bool	trim;
886 
887 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889 
890 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT	false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT	false
896 #define RBD_TRIM_DEFAULT	true
897 
898 struct rbd_parse_opts_ctx {
899 	struct rbd_spec		*spec;
900 	struct ceph_options	*copts;
901 	struct rbd_options	*opts;
902 };
903 
904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906 	switch (op_type) {
907 	case OBJ_OP_READ:
908 		return "read";
909 	case OBJ_OP_WRITE:
910 		return "write";
911 	case OBJ_OP_DISCARD:
912 		return "discard";
913 	case OBJ_OP_ZEROOUT:
914 		return "zeroout";
915 	default:
916 		return "???";
917 	}
918 }
919 
920 /*
921  * Destroy ceph client
922  *
923  * Caller must hold rbd_client_list_lock.
924  */
925 static void rbd_client_release(struct kref *kref)
926 {
927 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928 
929 	dout("%s: rbdc %p\n", __func__, rbdc);
930 	spin_lock(&rbd_client_list_lock);
931 	list_del(&rbdc->node);
932 	spin_unlock(&rbd_client_list_lock);
933 
934 	ceph_destroy_client(rbdc->client);
935 	kfree(rbdc);
936 }
937 
938 /*
939  * Drop reference to ceph client node. If it's not referenced anymore, release
940  * it.
941  */
942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944 	if (rbdc)
945 		kref_put(&rbdc->kref, rbd_client_release);
946 }
947 
948 /*
949  * Get a ceph client with specific addr and configuration, if one does
950  * not exist create it.  Either way, ceph_opts is consumed by this
951  * function.
952  */
953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955 	struct rbd_client *rbdc;
956 	int ret;
957 
958 	mutex_lock(&client_mutex);
959 	rbdc = rbd_client_find(ceph_opts);
960 	if (rbdc) {
961 		ceph_destroy_options(ceph_opts);
962 
963 		/*
964 		 * Using an existing client.  Make sure ->pg_pools is up to
965 		 * date before we look up the pool id in do_rbd_add().
966 		 */
967 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
968 					rbdc->client->options->mount_timeout);
969 		if (ret) {
970 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971 			rbd_put_client(rbdc);
972 			rbdc = ERR_PTR(ret);
973 		}
974 	} else {
975 		rbdc = rbd_client_create(ceph_opts);
976 	}
977 	mutex_unlock(&client_mutex);
978 
979 	return rbdc;
980 }
981 
982 static bool rbd_image_format_valid(u32 image_format)
983 {
984 	return image_format == 1 || image_format == 2;
985 }
986 
987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989 	size_t size;
990 	u32 snap_count;
991 
992 	/* The header has to start with the magic rbd header text */
993 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994 		return false;
995 
996 	/* The bio layer requires at least sector-sized I/O */
997 
998 	if (ondisk->options.order < SECTOR_SHIFT)
999 		return false;
1000 
1001 	/* If we use u64 in a few spots we may be able to loosen this */
1002 
1003 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1004 		return false;
1005 
1006 	/*
1007 	 * The size of a snapshot header has to fit in a size_t, and
1008 	 * that limits the number of snapshots.
1009 	 */
1010 	snap_count = le32_to_cpu(ondisk->snap_count);
1011 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012 	if (snap_count > size / sizeof (__le64))
1013 		return false;
1014 
1015 	/*
1016 	 * Not only that, but the size of the entire the snapshot
1017 	 * header must also be representable in a size_t.
1018 	 */
1019 	size -= snap_count * sizeof (__le64);
1020 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021 		return false;
1022 
1023 	return true;
1024 }
1025 
1026 /*
1027  * returns the size of an object in the image
1028  */
1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031 	return 1U << header->obj_order;
1032 }
1033 
1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036 	if (rbd_dev->header.stripe_unit == 0 ||
1037 	    rbd_dev->header.stripe_count == 0) {
1038 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039 		rbd_dev->header.stripe_count = 1;
1040 	}
1041 
1042 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049 
1050 /*
1051  * Fill an rbd image header with information from the given format 1
1052  * on-disk header.
1053  */
1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055 				 struct rbd_image_header_ondisk *ondisk)
1056 {
1057 	struct rbd_image_header *header = &rbd_dev->header;
1058 	bool first_time = header->object_prefix == NULL;
1059 	struct ceph_snap_context *snapc;
1060 	char *object_prefix = NULL;
1061 	char *snap_names = NULL;
1062 	u64 *snap_sizes = NULL;
1063 	u32 snap_count;
1064 	int ret = -ENOMEM;
1065 	u32 i;
1066 
1067 	/* Allocate this now to avoid having to handle failure below */
1068 
1069 	if (first_time) {
1070 		object_prefix = kstrndup(ondisk->object_prefix,
1071 					 sizeof(ondisk->object_prefix),
1072 					 GFP_KERNEL);
1073 		if (!object_prefix)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	/* Allocate the snapshot context and fill it in */
1078 
1079 	snap_count = le32_to_cpu(ondisk->snap_count);
1080 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081 	if (!snapc)
1082 		goto out_err;
1083 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084 	if (snap_count) {
1085 		struct rbd_image_snap_ondisk *snaps;
1086 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087 
1088 		/* We'll keep a copy of the snapshot names... */
1089 
1090 		if (snap_names_len > (u64)SIZE_MAX)
1091 			goto out_2big;
1092 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093 		if (!snap_names)
1094 			goto out_err;
1095 
1096 		/* ...as well as the array of their sizes. */
1097 		snap_sizes = kmalloc_array(snap_count,
1098 					   sizeof(*header->snap_sizes),
1099 					   GFP_KERNEL);
1100 		if (!snap_sizes)
1101 			goto out_err;
1102 
1103 		/*
1104 		 * Copy the names, and fill in each snapshot's id
1105 		 * and size.
1106 		 *
1107 		 * Note that rbd_dev_v1_header_info() guarantees the
1108 		 * ondisk buffer we're working with has
1109 		 * snap_names_len bytes beyond the end of the
1110 		 * snapshot id array, this memcpy() is safe.
1111 		 */
1112 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113 		snaps = ondisk->snaps;
1114 		for (i = 0; i < snap_count; i++) {
1115 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117 		}
1118 	}
1119 
1120 	/* We won't fail any more, fill in the header */
1121 
1122 	if (first_time) {
1123 		header->object_prefix = object_prefix;
1124 		header->obj_order = ondisk->options.order;
1125 		rbd_init_layout(rbd_dev);
1126 	} else {
1127 		ceph_put_snap_context(header->snapc);
1128 		kfree(header->snap_names);
1129 		kfree(header->snap_sizes);
1130 	}
1131 
1132 	/* The remaining fields always get updated (when we refresh) */
1133 
1134 	header->image_size = le64_to_cpu(ondisk->image_size);
1135 	header->snapc = snapc;
1136 	header->snap_names = snap_names;
1137 	header->snap_sizes = snap_sizes;
1138 
1139 	return 0;
1140 out_2big:
1141 	ret = -EIO;
1142 out_err:
1143 	kfree(snap_sizes);
1144 	kfree(snap_names);
1145 	ceph_put_snap_context(snapc);
1146 	kfree(object_prefix);
1147 
1148 	return ret;
1149 }
1150 
1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153 	const char *snap_name;
1154 
1155 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156 
1157 	/* Skip over names until we find the one we are looking for */
1158 
1159 	snap_name = rbd_dev->header.snap_names;
1160 	while (which--)
1161 		snap_name += strlen(snap_name) + 1;
1162 
1163 	return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165 
1166 /*
1167  * Snapshot id comparison function for use with qsort()/bsearch().
1168  * Note that result is for snapshots in *descending* order.
1169  */
1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172 	u64 snap_id1 = *(u64 *)s1;
1173 	u64 snap_id2 = *(u64 *)s2;
1174 
1175 	if (snap_id1 < snap_id2)
1176 		return 1;
1177 	return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179 
1180 /*
1181  * Search a snapshot context to see if the given snapshot id is
1182  * present.
1183  *
1184  * Returns the position of the snapshot id in the array if it's found,
1185  * or BAD_SNAP_INDEX otherwise.
1186  *
1187  * Note: The snapshot array is in kept sorted (by the osd) in
1188  * reverse order, highest snapshot id first.
1189  */
1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193 	u64 *found;
1194 
1195 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196 				sizeof (snap_id), snapid_compare_reverse);
1197 
1198 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200 
1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202 					u64 snap_id)
1203 {
1204 	u32 which;
1205 	const char *snap_name;
1206 
1207 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1208 	if (which == BAD_SNAP_INDEX)
1209 		return ERR_PTR(-ENOENT);
1210 
1211 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214 
1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217 	if (snap_id == CEPH_NOSNAP)
1218 		return RBD_SNAP_HEAD_NAME;
1219 
1220 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221 	if (rbd_dev->image_format == 1)
1222 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223 
1224 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226 
1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228 				u64 *snap_size)
1229 {
1230 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231 	if (snap_id == CEPH_NOSNAP) {
1232 		*snap_size = rbd_dev->header.image_size;
1233 	} else if (rbd_dev->image_format == 1) {
1234 		u32 which;
1235 
1236 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1237 		if (which == BAD_SNAP_INDEX)
1238 			return -ENOENT;
1239 
1240 		*snap_size = rbd_dev->header.snap_sizes[which];
1241 	} else {
1242 		u64 size = 0;
1243 		int ret;
1244 
1245 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246 		if (ret)
1247 			return ret;
1248 
1249 		*snap_size = size;
1250 	}
1251 	return 0;
1252 }
1253 
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256 	u64 snap_id = rbd_dev->spec->snap_id;
1257 	u64 size = 0;
1258 	int ret;
1259 
1260 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261 	if (ret)
1262 		return ret;
1263 
1264 	rbd_dev->mapping.size = size;
1265 	return 0;
1266 }
1267 
1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270 	rbd_dev->mapping.size = 0;
1271 }
1272 
1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275 	void *buf;
1276 	unsigned long flags;
1277 
1278 	buf = bvec_kmap_irq(bv, &flags);
1279 	memset(buf, 0, bv->bv_len);
1280 	flush_dcache_page(bv->bv_page);
1281 	bvec_kunmap_irq(buf, &flags);
1282 }
1283 
1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286 	struct ceph_bio_iter it = *bio_pos;
1287 
1288 	ceph_bio_iter_advance(&it, off);
1289 	ceph_bio_iter_advance_step(&it, bytes, ({
1290 		zero_bvec(&bv);
1291 	}));
1292 }
1293 
1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296 	struct ceph_bvec_iter it = *bvec_pos;
1297 
1298 	ceph_bvec_iter_advance(&it, off);
1299 	ceph_bvec_iter_advance_step(&it, bytes, ({
1300 		zero_bvec(&bv);
1301 	}));
1302 }
1303 
1304 /*
1305  * Zero a range in @obj_req data buffer defined by a bio (list) or
1306  * (private) bio_vec array.
1307  *
1308  * @off is relative to the start of the data buffer.
1309  */
1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311 			       u32 bytes)
1312 {
1313 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314 
1315 	switch (obj_req->img_request->data_type) {
1316 	case OBJ_REQUEST_BIO:
1317 		zero_bios(&obj_req->bio_pos, off, bytes);
1318 		break;
1319 	case OBJ_REQUEST_BVECS:
1320 	case OBJ_REQUEST_OWN_BVECS:
1321 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322 		break;
1323 	default:
1324 		BUG();
1325 	}
1326 }
1327 
1328 static void rbd_obj_request_destroy(struct kref *kref);
1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331 	rbd_assert(obj_request != NULL);
1332 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333 		kref_read(&obj_request->kref));
1334 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336 
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338 					struct rbd_obj_request *obj_request)
1339 {
1340 	rbd_assert(obj_request->img_request == NULL);
1341 
1342 	/* Image request now owns object's original reference */
1343 	obj_request->img_request = img_request;
1344 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346 
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348 					struct rbd_obj_request *obj_request)
1349 {
1350 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 	list_del(&obj_request->ex.oe_item);
1352 	rbd_assert(obj_request->img_request == img_request);
1353 	rbd_obj_request_put(obj_request);
1354 }
1355 
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1359 
1360 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1363 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365 
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375 
1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380 
1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384 
1385 	return !obj_req->ex.oe_off &&
1386 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388 
1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392 
1393 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394 					rbd_dev->layout.object_size;
1395 }
1396 
1397 /*
1398  * Must be called after rbd_obj_calc_img_extents().
1399  */
1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402 	if (!obj_req->num_img_extents ||
1403 	    (rbd_obj_is_entire(obj_req) &&
1404 	     !obj_req->img_request->snapc->num_snaps))
1405 		return false;
1406 
1407 	return true;
1408 }
1409 
1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412 	return ceph_file_extents_bytes(obj_req->img_extents,
1413 				       obj_req->num_img_extents);
1414 }
1415 
1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418 	switch (img_req->op_type) {
1419 	case OBJ_OP_READ:
1420 		return false;
1421 	case OBJ_OP_WRITE:
1422 	case OBJ_OP_DISCARD:
1423 	case OBJ_OP_ZEROOUT:
1424 		return true;
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1433 	int result;
1434 
1435 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436 	     osd_req->r_result, obj_req);
1437 
1438 	/*
1439 	 * Writes aren't allowed to return a data payload.  In some
1440 	 * guarded write cases (e.g. stat + zero on an empty object)
1441 	 * a stat response makes it through, but we don't care.
1442 	 */
1443 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444 		result = 0;
1445 	else
1446 		result = osd_req->r_result;
1447 
1448 	rbd_obj_handle_request(obj_req, result);
1449 }
1450 
1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1454 
1455 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1456 	osd_req->r_snapid = obj_request->img_request->snap_id;
1457 }
1458 
1459 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1460 {
1461 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1462 
1463 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1464 	ktime_get_real_ts64(&osd_req->r_mtime);
1465 	osd_req->r_data_offset = obj_request->ex.oe_off;
1466 }
1467 
1468 static struct ceph_osd_request *
1469 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1470 			  struct ceph_snap_context *snapc, int num_ops)
1471 {
1472 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1473 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1474 	struct ceph_osd_request *req;
1475 	const char *name_format = rbd_dev->image_format == 1 ?
1476 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1477 	int ret;
1478 
1479 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1480 	if (!req)
1481 		return ERR_PTR(-ENOMEM);
1482 
1483 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1484 	req->r_callback = rbd_osd_req_callback;
1485 	req->r_priv = obj_req;
1486 
1487 	/*
1488 	 * Data objects may be stored in a separate pool, but always in
1489 	 * the same namespace in that pool as the header in its pool.
1490 	 */
1491 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1492 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1493 
1494 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1495 			       rbd_dev->header.object_prefix,
1496 			       obj_req->ex.oe_objno);
1497 	if (ret)
1498 		return ERR_PTR(ret);
1499 
1500 	return req;
1501 }
1502 
1503 static struct ceph_osd_request *
1504 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1505 {
1506 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1507 					 num_ops);
1508 }
1509 
1510 static struct rbd_obj_request *rbd_obj_request_create(void)
1511 {
1512 	struct rbd_obj_request *obj_request;
1513 
1514 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1515 	if (!obj_request)
1516 		return NULL;
1517 
1518 	ceph_object_extent_init(&obj_request->ex);
1519 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1520 	mutex_init(&obj_request->state_mutex);
1521 	kref_init(&obj_request->kref);
1522 
1523 	dout("%s %p\n", __func__, obj_request);
1524 	return obj_request;
1525 }
1526 
1527 static void rbd_obj_request_destroy(struct kref *kref)
1528 {
1529 	struct rbd_obj_request *obj_request;
1530 	struct ceph_osd_request *osd_req;
1531 	u32 i;
1532 
1533 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1534 
1535 	dout("%s: obj %p\n", __func__, obj_request);
1536 
1537 	while (!list_empty(&obj_request->osd_reqs)) {
1538 		osd_req = list_first_entry(&obj_request->osd_reqs,
1539 				    struct ceph_osd_request, r_private_item);
1540 		list_del_init(&osd_req->r_private_item);
1541 		ceph_osdc_put_request(osd_req);
1542 	}
1543 
1544 	switch (obj_request->img_request->data_type) {
1545 	case OBJ_REQUEST_NODATA:
1546 	case OBJ_REQUEST_BIO:
1547 	case OBJ_REQUEST_BVECS:
1548 		break;		/* Nothing to do */
1549 	case OBJ_REQUEST_OWN_BVECS:
1550 		kfree(obj_request->bvec_pos.bvecs);
1551 		break;
1552 	default:
1553 		BUG();
1554 	}
1555 
1556 	kfree(obj_request->img_extents);
1557 	if (obj_request->copyup_bvecs) {
1558 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1559 			if (obj_request->copyup_bvecs[i].bv_page)
1560 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1561 		}
1562 		kfree(obj_request->copyup_bvecs);
1563 	}
1564 
1565 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1566 }
1567 
1568 /* It's OK to call this for a device with no parent */
1569 
1570 static void rbd_spec_put(struct rbd_spec *spec);
1571 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1572 {
1573 	rbd_dev_remove_parent(rbd_dev);
1574 	rbd_spec_put(rbd_dev->parent_spec);
1575 	rbd_dev->parent_spec = NULL;
1576 	rbd_dev->parent_overlap = 0;
1577 }
1578 
1579 /*
1580  * Parent image reference counting is used to determine when an
1581  * image's parent fields can be safely torn down--after there are no
1582  * more in-flight requests to the parent image.  When the last
1583  * reference is dropped, cleaning them up is safe.
1584  */
1585 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1586 {
1587 	int counter;
1588 
1589 	if (!rbd_dev->parent_spec)
1590 		return;
1591 
1592 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1593 	if (counter > 0)
1594 		return;
1595 
1596 	/* Last reference; clean up parent data structures */
1597 
1598 	if (!counter)
1599 		rbd_dev_unparent(rbd_dev);
1600 	else
1601 		rbd_warn(rbd_dev, "parent reference underflow");
1602 }
1603 
1604 /*
1605  * If an image has a non-zero parent overlap, get a reference to its
1606  * parent.
1607  *
1608  * Returns true if the rbd device has a parent with a non-zero
1609  * overlap and a reference for it was successfully taken, or
1610  * false otherwise.
1611  */
1612 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1613 {
1614 	int counter = 0;
1615 
1616 	if (!rbd_dev->parent_spec)
1617 		return false;
1618 
1619 	if (rbd_dev->parent_overlap)
1620 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1621 
1622 	if (counter < 0)
1623 		rbd_warn(rbd_dev, "parent reference overflow");
1624 
1625 	return counter > 0;
1626 }
1627 
1628 static void rbd_img_request_init(struct rbd_img_request *img_request,
1629 				 struct rbd_device *rbd_dev,
1630 				 enum obj_operation_type op_type)
1631 {
1632 	memset(img_request, 0, sizeof(*img_request));
1633 
1634 	img_request->rbd_dev = rbd_dev;
1635 	img_request->op_type = op_type;
1636 
1637 	INIT_LIST_HEAD(&img_request->lock_item);
1638 	INIT_LIST_HEAD(&img_request->object_extents);
1639 	mutex_init(&img_request->state_mutex);
1640 }
1641 
1642 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1643 {
1644 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1645 
1646 	lockdep_assert_held(&rbd_dev->header_rwsem);
1647 
1648 	if (rbd_img_is_write(img_req))
1649 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1650 	else
1651 		img_req->snap_id = rbd_dev->spec->snap_id;
1652 
1653 	if (rbd_dev_parent_get(rbd_dev))
1654 		img_request_layered_set(img_req);
1655 }
1656 
1657 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1658 {
1659 	struct rbd_obj_request *obj_request;
1660 	struct rbd_obj_request *next_obj_request;
1661 
1662 	dout("%s: img %p\n", __func__, img_request);
1663 
1664 	WARN_ON(!list_empty(&img_request->lock_item));
1665 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1666 		rbd_img_obj_request_del(img_request, obj_request);
1667 
1668 	if (img_request_layered_test(img_request))
1669 		rbd_dev_parent_put(img_request->rbd_dev);
1670 
1671 	if (rbd_img_is_write(img_request))
1672 		ceph_put_snap_context(img_request->snapc);
1673 
1674 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1675 		kmem_cache_free(rbd_img_request_cache, img_request);
1676 }
1677 
1678 #define BITS_PER_OBJ	2
1679 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1680 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1681 
1682 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1683 				   u64 *index, u8 *shift)
1684 {
1685 	u32 off;
1686 
1687 	rbd_assert(objno < rbd_dev->object_map_size);
1688 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1689 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1690 }
1691 
1692 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1693 {
1694 	u64 index;
1695 	u8 shift;
1696 
1697 	lockdep_assert_held(&rbd_dev->object_map_lock);
1698 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1699 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1700 }
1701 
1702 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1703 {
1704 	u64 index;
1705 	u8 shift;
1706 	u8 *p;
1707 
1708 	lockdep_assert_held(&rbd_dev->object_map_lock);
1709 	rbd_assert(!(val & ~OBJ_MASK));
1710 
1711 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1712 	p = &rbd_dev->object_map[index];
1713 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1714 }
1715 
1716 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1717 {
1718 	u8 state;
1719 
1720 	spin_lock(&rbd_dev->object_map_lock);
1721 	state = __rbd_object_map_get(rbd_dev, objno);
1722 	spin_unlock(&rbd_dev->object_map_lock);
1723 	return state;
1724 }
1725 
1726 static bool use_object_map(struct rbd_device *rbd_dev)
1727 {
1728 	/*
1729 	 * An image mapped read-only can't use the object map -- it isn't
1730 	 * loaded because the header lock isn't acquired.  Someone else can
1731 	 * write to the image and update the object map behind our back.
1732 	 *
1733 	 * A snapshot can't be written to, so using the object map is always
1734 	 * safe.
1735 	 */
1736 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1737 		return false;
1738 
1739 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1740 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1741 }
1742 
1743 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1744 {
1745 	u8 state;
1746 
1747 	/* fall back to default logic if object map is disabled or invalid */
1748 	if (!use_object_map(rbd_dev))
1749 		return true;
1750 
1751 	state = rbd_object_map_get(rbd_dev, objno);
1752 	return state != OBJECT_NONEXISTENT;
1753 }
1754 
1755 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1756 				struct ceph_object_id *oid)
1757 {
1758 	if (snap_id == CEPH_NOSNAP)
1759 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1760 				rbd_dev->spec->image_id);
1761 	else
1762 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1763 				rbd_dev->spec->image_id, snap_id);
1764 }
1765 
1766 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1767 {
1768 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1769 	CEPH_DEFINE_OID_ONSTACK(oid);
1770 	u8 lock_type;
1771 	char *lock_tag;
1772 	struct ceph_locker *lockers;
1773 	u32 num_lockers;
1774 	bool broke_lock = false;
1775 	int ret;
1776 
1777 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1778 
1779 again:
1780 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1781 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1782 	if (ret != -EBUSY || broke_lock) {
1783 		if (ret == -EEXIST)
1784 			ret = 0; /* already locked by myself */
1785 		if (ret)
1786 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1787 		return ret;
1788 	}
1789 
1790 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1791 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1792 				 &lockers, &num_lockers);
1793 	if (ret) {
1794 		if (ret == -ENOENT)
1795 			goto again;
1796 
1797 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1798 		return ret;
1799 	}
1800 
1801 	kfree(lock_tag);
1802 	if (num_lockers == 0)
1803 		goto again;
1804 
1805 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1806 		 ENTITY_NAME(lockers[0].id.name));
1807 
1808 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1809 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1810 				  &lockers[0].id.name);
1811 	ceph_free_lockers(lockers, num_lockers);
1812 	if (ret) {
1813 		if (ret == -ENOENT)
1814 			goto again;
1815 
1816 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1817 		return ret;
1818 	}
1819 
1820 	broke_lock = true;
1821 	goto again;
1822 }
1823 
1824 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1825 {
1826 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1827 	CEPH_DEFINE_OID_ONSTACK(oid);
1828 	int ret;
1829 
1830 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1831 
1832 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1833 			      "");
1834 	if (ret && ret != -ENOENT)
1835 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1836 }
1837 
1838 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1839 {
1840 	u8 struct_v;
1841 	u32 struct_len;
1842 	u32 header_len;
1843 	void *header_end;
1844 	int ret;
1845 
1846 	ceph_decode_32_safe(p, end, header_len, e_inval);
1847 	header_end = *p + header_len;
1848 
1849 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1850 				  &struct_len);
1851 	if (ret)
1852 		return ret;
1853 
1854 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1855 
1856 	*p = header_end;
1857 	return 0;
1858 
1859 e_inval:
1860 	return -EINVAL;
1861 }
1862 
1863 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1864 {
1865 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1866 	CEPH_DEFINE_OID_ONSTACK(oid);
1867 	struct page **pages;
1868 	void *p, *end;
1869 	size_t reply_len;
1870 	u64 num_objects;
1871 	u64 object_map_bytes;
1872 	u64 object_map_size;
1873 	int num_pages;
1874 	int ret;
1875 
1876 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1877 
1878 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1879 					   rbd_dev->mapping.size);
1880 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1881 					    BITS_PER_BYTE);
1882 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1883 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1884 	if (IS_ERR(pages))
1885 		return PTR_ERR(pages);
1886 
1887 	reply_len = num_pages * PAGE_SIZE;
1888 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1889 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1890 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1891 			     NULL, 0, pages, &reply_len);
1892 	if (ret)
1893 		goto out;
1894 
1895 	p = page_address(pages[0]);
1896 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1897 	ret = decode_object_map_header(&p, end, &object_map_size);
1898 	if (ret)
1899 		goto out;
1900 
1901 	if (object_map_size != num_objects) {
1902 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1903 			 object_map_size, num_objects);
1904 		ret = -EINVAL;
1905 		goto out;
1906 	}
1907 
1908 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1909 		ret = -EINVAL;
1910 		goto out;
1911 	}
1912 
1913 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1914 	if (!rbd_dev->object_map) {
1915 		ret = -ENOMEM;
1916 		goto out;
1917 	}
1918 
1919 	rbd_dev->object_map_size = object_map_size;
1920 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1921 				   offset_in_page(p), object_map_bytes);
1922 
1923 out:
1924 	ceph_release_page_vector(pages, num_pages);
1925 	return ret;
1926 }
1927 
1928 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1929 {
1930 	kvfree(rbd_dev->object_map);
1931 	rbd_dev->object_map = NULL;
1932 	rbd_dev->object_map_size = 0;
1933 }
1934 
1935 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1936 {
1937 	int ret;
1938 
1939 	ret = __rbd_object_map_load(rbd_dev);
1940 	if (ret)
1941 		return ret;
1942 
1943 	ret = rbd_dev_v2_get_flags(rbd_dev);
1944 	if (ret) {
1945 		rbd_object_map_free(rbd_dev);
1946 		return ret;
1947 	}
1948 
1949 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1950 		rbd_warn(rbd_dev, "object map is invalid");
1951 
1952 	return 0;
1953 }
1954 
1955 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1956 {
1957 	int ret;
1958 
1959 	ret = rbd_object_map_lock(rbd_dev);
1960 	if (ret)
1961 		return ret;
1962 
1963 	ret = rbd_object_map_load(rbd_dev);
1964 	if (ret) {
1965 		rbd_object_map_unlock(rbd_dev);
1966 		return ret;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1973 {
1974 	rbd_object_map_free(rbd_dev);
1975 	rbd_object_map_unlock(rbd_dev);
1976 }
1977 
1978 /*
1979  * This function needs snap_id (or more precisely just something to
1980  * distinguish between HEAD and snapshot object maps), new_state and
1981  * current_state that were passed to rbd_object_map_update().
1982  *
1983  * To avoid allocating and stashing a context we piggyback on the OSD
1984  * request.  A HEAD update has two ops (assert_locked).  For new_state
1985  * and current_state we decode our own object_map_update op, encoded in
1986  * rbd_cls_object_map_update().
1987  */
1988 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1989 					struct ceph_osd_request *osd_req)
1990 {
1991 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1992 	struct ceph_osd_data *osd_data;
1993 	u64 objno;
1994 	u8 state, new_state, uninitialized_var(current_state);
1995 	bool has_current_state;
1996 	void *p;
1997 
1998 	if (osd_req->r_result)
1999 		return osd_req->r_result;
2000 
2001 	/*
2002 	 * Nothing to do for a snapshot object map.
2003 	 */
2004 	if (osd_req->r_num_ops == 1)
2005 		return 0;
2006 
2007 	/*
2008 	 * Update in-memory HEAD object map.
2009 	 */
2010 	rbd_assert(osd_req->r_num_ops == 2);
2011 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2012 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2013 
2014 	p = page_address(osd_data->pages[0]);
2015 	objno = ceph_decode_64(&p);
2016 	rbd_assert(objno == obj_req->ex.oe_objno);
2017 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2018 	new_state = ceph_decode_8(&p);
2019 	has_current_state = ceph_decode_8(&p);
2020 	if (has_current_state)
2021 		current_state = ceph_decode_8(&p);
2022 
2023 	spin_lock(&rbd_dev->object_map_lock);
2024 	state = __rbd_object_map_get(rbd_dev, objno);
2025 	if (!has_current_state || current_state == state ||
2026 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2027 		__rbd_object_map_set(rbd_dev, objno, new_state);
2028 	spin_unlock(&rbd_dev->object_map_lock);
2029 
2030 	return 0;
2031 }
2032 
2033 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2034 {
2035 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2036 	int result;
2037 
2038 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2039 	     osd_req->r_result, obj_req);
2040 
2041 	result = rbd_object_map_update_finish(obj_req, osd_req);
2042 	rbd_obj_handle_request(obj_req, result);
2043 }
2044 
2045 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2046 {
2047 	u8 state = rbd_object_map_get(rbd_dev, objno);
2048 
2049 	if (state == new_state ||
2050 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2051 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2052 		return false;
2053 
2054 	return true;
2055 }
2056 
2057 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2058 				     int which, u64 objno, u8 new_state,
2059 				     const u8 *current_state)
2060 {
2061 	struct page **pages;
2062 	void *p, *start;
2063 	int ret;
2064 
2065 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2066 	if (ret)
2067 		return ret;
2068 
2069 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2070 	if (IS_ERR(pages))
2071 		return PTR_ERR(pages);
2072 
2073 	p = start = page_address(pages[0]);
2074 	ceph_encode_64(&p, objno);
2075 	ceph_encode_64(&p, objno + 1);
2076 	ceph_encode_8(&p, new_state);
2077 	if (current_state) {
2078 		ceph_encode_8(&p, 1);
2079 		ceph_encode_8(&p, *current_state);
2080 	} else {
2081 		ceph_encode_8(&p, 0);
2082 	}
2083 
2084 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2085 					  false, true);
2086 	return 0;
2087 }
2088 
2089 /*
2090  * Return:
2091  *   0 - object map update sent
2092  *   1 - object map update isn't needed
2093  *  <0 - error
2094  */
2095 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2096 				 u8 new_state, const u8 *current_state)
2097 {
2098 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2099 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2100 	struct ceph_osd_request *req;
2101 	int num_ops = 1;
2102 	int which = 0;
2103 	int ret;
2104 
2105 	if (snap_id == CEPH_NOSNAP) {
2106 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2107 			return 1;
2108 
2109 		num_ops++; /* assert_locked */
2110 	}
2111 
2112 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2113 	if (!req)
2114 		return -ENOMEM;
2115 
2116 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2117 	req->r_callback = rbd_object_map_callback;
2118 	req->r_priv = obj_req;
2119 
2120 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2121 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2122 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2123 	ktime_get_real_ts64(&req->r_mtime);
2124 
2125 	if (snap_id == CEPH_NOSNAP) {
2126 		/*
2127 		 * Protect against possible race conditions during lock
2128 		 * ownership transitions.
2129 		 */
2130 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2131 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2132 		if (ret)
2133 			return ret;
2134 	}
2135 
2136 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2137 					new_state, current_state);
2138 	if (ret)
2139 		return ret;
2140 
2141 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2142 	if (ret)
2143 		return ret;
2144 
2145 	ceph_osdc_start_request(osdc, req, false);
2146 	return 0;
2147 }
2148 
2149 static void prune_extents(struct ceph_file_extent *img_extents,
2150 			  u32 *num_img_extents, u64 overlap)
2151 {
2152 	u32 cnt = *num_img_extents;
2153 
2154 	/* drop extents completely beyond the overlap */
2155 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2156 		cnt--;
2157 
2158 	if (cnt) {
2159 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2160 
2161 		/* trim final overlapping extent */
2162 		if (ex->fe_off + ex->fe_len > overlap)
2163 			ex->fe_len = overlap - ex->fe_off;
2164 	}
2165 
2166 	*num_img_extents = cnt;
2167 }
2168 
2169 /*
2170  * Determine the byte range(s) covered by either just the object extent
2171  * or the entire object in the parent image.
2172  */
2173 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2174 				    bool entire)
2175 {
2176 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2177 	int ret;
2178 
2179 	if (!rbd_dev->parent_overlap)
2180 		return 0;
2181 
2182 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2183 				  entire ? 0 : obj_req->ex.oe_off,
2184 				  entire ? rbd_dev->layout.object_size :
2185 							obj_req->ex.oe_len,
2186 				  &obj_req->img_extents,
2187 				  &obj_req->num_img_extents);
2188 	if (ret)
2189 		return ret;
2190 
2191 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2192 		      rbd_dev->parent_overlap);
2193 	return 0;
2194 }
2195 
2196 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2197 {
2198 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2199 
2200 	switch (obj_req->img_request->data_type) {
2201 	case OBJ_REQUEST_BIO:
2202 		osd_req_op_extent_osd_data_bio(osd_req, which,
2203 					       &obj_req->bio_pos,
2204 					       obj_req->ex.oe_len);
2205 		break;
2206 	case OBJ_REQUEST_BVECS:
2207 	case OBJ_REQUEST_OWN_BVECS:
2208 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2209 							obj_req->ex.oe_len);
2210 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2211 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2212 						    &obj_req->bvec_pos);
2213 		break;
2214 	default:
2215 		BUG();
2216 	}
2217 }
2218 
2219 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2220 {
2221 	struct page **pages;
2222 
2223 	/*
2224 	 * The response data for a STAT call consists of:
2225 	 *     le64 length;
2226 	 *     struct {
2227 	 *         le32 tv_sec;
2228 	 *         le32 tv_nsec;
2229 	 *     } mtime;
2230 	 */
2231 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2232 	if (IS_ERR(pages))
2233 		return PTR_ERR(pages);
2234 
2235 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2236 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2237 				     8 + sizeof(struct ceph_timespec),
2238 				     0, false, true);
2239 	return 0;
2240 }
2241 
2242 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2243 				u32 bytes)
2244 {
2245 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2246 	int ret;
2247 
2248 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2249 	if (ret)
2250 		return ret;
2251 
2252 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2253 					  obj_req->copyup_bvec_count, bytes);
2254 	return 0;
2255 }
2256 
2257 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2258 {
2259 	obj_req->read_state = RBD_OBJ_READ_START;
2260 	return 0;
2261 }
2262 
2263 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2264 				      int which)
2265 {
2266 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2267 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2268 	u16 opcode;
2269 
2270 	if (!use_object_map(rbd_dev) ||
2271 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2272 		osd_req_op_alloc_hint_init(osd_req, which++,
2273 					   rbd_dev->layout.object_size,
2274 					   rbd_dev->layout.object_size,
2275 					   rbd_dev->opts->alloc_hint_flags);
2276 	}
2277 
2278 	if (rbd_obj_is_entire(obj_req))
2279 		opcode = CEPH_OSD_OP_WRITEFULL;
2280 	else
2281 		opcode = CEPH_OSD_OP_WRITE;
2282 
2283 	osd_req_op_extent_init(osd_req, which, opcode,
2284 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2285 	rbd_osd_setup_data(osd_req, which);
2286 }
2287 
2288 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2289 {
2290 	int ret;
2291 
2292 	/* reverse map the entire object onto the parent */
2293 	ret = rbd_obj_calc_img_extents(obj_req, true);
2294 	if (ret)
2295 		return ret;
2296 
2297 	if (rbd_obj_copyup_enabled(obj_req))
2298 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2299 
2300 	obj_req->write_state = RBD_OBJ_WRITE_START;
2301 	return 0;
2302 }
2303 
2304 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2305 {
2306 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2307 					  CEPH_OSD_OP_ZERO;
2308 }
2309 
2310 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2311 					int which)
2312 {
2313 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2314 
2315 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2316 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2317 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2318 	} else {
2319 		osd_req_op_extent_init(osd_req, which,
2320 				       truncate_or_zero_opcode(obj_req),
2321 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2322 				       0, 0);
2323 	}
2324 }
2325 
2326 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2327 {
2328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2329 	u64 off, next_off;
2330 	int ret;
2331 
2332 	/*
2333 	 * Align the range to alloc_size boundary and punt on discards
2334 	 * that are too small to free up any space.
2335 	 *
2336 	 * alloc_size == object_size && is_tail() is a special case for
2337 	 * filestore with filestore_punch_hole = false, needed to allow
2338 	 * truncate (in addition to delete).
2339 	 */
2340 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2341 	    !rbd_obj_is_tail(obj_req)) {
2342 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2343 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2344 				      rbd_dev->opts->alloc_size);
2345 		if (off >= next_off)
2346 			return 1;
2347 
2348 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2349 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2350 		     off, next_off - off);
2351 		obj_req->ex.oe_off = off;
2352 		obj_req->ex.oe_len = next_off - off;
2353 	}
2354 
2355 	/* reverse map the entire object onto the parent */
2356 	ret = rbd_obj_calc_img_extents(obj_req, true);
2357 	if (ret)
2358 		return ret;
2359 
2360 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2361 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2362 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2363 
2364 	obj_req->write_state = RBD_OBJ_WRITE_START;
2365 	return 0;
2366 }
2367 
2368 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2369 					int which)
2370 {
2371 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2372 	u16 opcode;
2373 
2374 	if (rbd_obj_is_entire(obj_req)) {
2375 		if (obj_req->num_img_extents) {
2376 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2377 				osd_req_op_init(osd_req, which++,
2378 						CEPH_OSD_OP_CREATE, 0);
2379 			opcode = CEPH_OSD_OP_TRUNCATE;
2380 		} else {
2381 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2382 			osd_req_op_init(osd_req, which++,
2383 					CEPH_OSD_OP_DELETE, 0);
2384 			opcode = 0;
2385 		}
2386 	} else {
2387 		opcode = truncate_or_zero_opcode(obj_req);
2388 	}
2389 
2390 	if (opcode)
2391 		osd_req_op_extent_init(osd_req, which, opcode,
2392 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2393 				       0, 0);
2394 }
2395 
2396 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2397 {
2398 	int ret;
2399 
2400 	/* reverse map the entire object onto the parent */
2401 	ret = rbd_obj_calc_img_extents(obj_req, true);
2402 	if (ret)
2403 		return ret;
2404 
2405 	if (rbd_obj_copyup_enabled(obj_req))
2406 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2407 	if (!obj_req->num_img_extents) {
2408 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2409 		if (rbd_obj_is_entire(obj_req))
2410 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2411 	}
2412 
2413 	obj_req->write_state = RBD_OBJ_WRITE_START;
2414 	return 0;
2415 }
2416 
2417 static int count_write_ops(struct rbd_obj_request *obj_req)
2418 {
2419 	struct rbd_img_request *img_req = obj_req->img_request;
2420 
2421 	switch (img_req->op_type) {
2422 	case OBJ_OP_WRITE:
2423 		if (!use_object_map(img_req->rbd_dev) ||
2424 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2425 			return 2; /* setallochint + write/writefull */
2426 
2427 		return 1; /* write/writefull */
2428 	case OBJ_OP_DISCARD:
2429 		return 1; /* delete/truncate/zero */
2430 	case OBJ_OP_ZEROOUT:
2431 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2432 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2433 			return 2; /* create + truncate */
2434 
2435 		return 1; /* delete/truncate/zero */
2436 	default:
2437 		BUG();
2438 	}
2439 }
2440 
2441 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2442 				    int which)
2443 {
2444 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2445 
2446 	switch (obj_req->img_request->op_type) {
2447 	case OBJ_OP_WRITE:
2448 		__rbd_osd_setup_write_ops(osd_req, which);
2449 		break;
2450 	case OBJ_OP_DISCARD:
2451 		__rbd_osd_setup_discard_ops(osd_req, which);
2452 		break;
2453 	case OBJ_OP_ZEROOUT:
2454 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2455 		break;
2456 	default:
2457 		BUG();
2458 	}
2459 }
2460 
2461 /*
2462  * Prune the list of object requests (adjust offset and/or length, drop
2463  * redundant requests).  Prepare object request state machines and image
2464  * request state machine for execution.
2465  */
2466 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2467 {
2468 	struct rbd_obj_request *obj_req, *next_obj_req;
2469 	int ret;
2470 
2471 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2472 		switch (img_req->op_type) {
2473 		case OBJ_OP_READ:
2474 			ret = rbd_obj_init_read(obj_req);
2475 			break;
2476 		case OBJ_OP_WRITE:
2477 			ret = rbd_obj_init_write(obj_req);
2478 			break;
2479 		case OBJ_OP_DISCARD:
2480 			ret = rbd_obj_init_discard(obj_req);
2481 			break;
2482 		case OBJ_OP_ZEROOUT:
2483 			ret = rbd_obj_init_zeroout(obj_req);
2484 			break;
2485 		default:
2486 			BUG();
2487 		}
2488 		if (ret < 0)
2489 			return ret;
2490 		if (ret > 0) {
2491 			rbd_img_obj_request_del(img_req, obj_req);
2492 			continue;
2493 		}
2494 	}
2495 
2496 	img_req->state = RBD_IMG_START;
2497 	return 0;
2498 }
2499 
2500 union rbd_img_fill_iter {
2501 	struct ceph_bio_iter	bio_iter;
2502 	struct ceph_bvec_iter	bvec_iter;
2503 };
2504 
2505 struct rbd_img_fill_ctx {
2506 	enum obj_request_type	pos_type;
2507 	union rbd_img_fill_iter	*pos;
2508 	union rbd_img_fill_iter	iter;
2509 	ceph_object_extent_fn_t	set_pos_fn;
2510 	ceph_object_extent_fn_t	count_fn;
2511 	ceph_object_extent_fn_t	copy_fn;
2512 };
2513 
2514 static struct ceph_object_extent *alloc_object_extent(void *arg)
2515 {
2516 	struct rbd_img_request *img_req = arg;
2517 	struct rbd_obj_request *obj_req;
2518 
2519 	obj_req = rbd_obj_request_create();
2520 	if (!obj_req)
2521 		return NULL;
2522 
2523 	rbd_img_obj_request_add(img_req, obj_req);
2524 	return &obj_req->ex;
2525 }
2526 
2527 /*
2528  * While su != os && sc == 1 is technically not fancy (it's the same
2529  * layout as su == os && sc == 1), we can't use the nocopy path for it
2530  * because ->set_pos_fn() should be called only once per object.
2531  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2532  * treat su != os && sc == 1 as fancy.
2533  */
2534 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2535 {
2536 	return l->stripe_unit != l->object_size;
2537 }
2538 
2539 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2540 				       struct ceph_file_extent *img_extents,
2541 				       u32 num_img_extents,
2542 				       struct rbd_img_fill_ctx *fctx)
2543 {
2544 	u32 i;
2545 	int ret;
2546 
2547 	img_req->data_type = fctx->pos_type;
2548 
2549 	/*
2550 	 * Create object requests and set each object request's starting
2551 	 * position in the provided bio (list) or bio_vec array.
2552 	 */
2553 	fctx->iter = *fctx->pos;
2554 	for (i = 0; i < num_img_extents; i++) {
2555 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2556 					   img_extents[i].fe_off,
2557 					   img_extents[i].fe_len,
2558 					   &img_req->object_extents,
2559 					   alloc_object_extent, img_req,
2560 					   fctx->set_pos_fn, &fctx->iter);
2561 		if (ret)
2562 			return ret;
2563 	}
2564 
2565 	return __rbd_img_fill_request(img_req);
2566 }
2567 
2568 /*
2569  * Map a list of image extents to a list of object extents, create the
2570  * corresponding object requests (normally each to a different object,
2571  * but not always) and add them to @img_req.  For each object request,
2572  * set up its data descriptor to point to the corresponding chunk(s) of
2573  * @fctx->pos data buffer.
2574  *
2575  * Because ceph_file_to_extents() will merge adjacent object extents
2576  * together, each object request's data descriptor may point to multiple
2577  * different chunks of @fctx->pos data buffer.
2578  *
2579  * @fctx->pos data buffer is assumed to be large enough.
2580  */
2581 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2582 				struct ceph_file_extent *img_extents,
2583 				u32 num_img_extents,
2584 				struct rbd_img_fill_ctx *fctx)
2585 {
2586 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2587 	struct rbd_obj_request *obj_req;
2588 	u32 i;
2589 	int ret;
2590 
2591 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2592 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2593 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2594 						   num_img_extents, fctx);
2595 
2596 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2597 
2598 	/*
2599 	 * Create object requests and determine ->bvec_count for each object
2600 	 * request.  Note that ->bvec_count sum over all object requests may
2601 	 * be greater than the number of bio_vecs in the provided bio (list)
2602 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2603 	 * stripe unit boundaries.
2604 	 */
2605 	fctx->iter = *fctx->pos;
2606 	for (i = 0; i < num_img_extents; i++) {
2607 		ret = ceph_file_to_extents(&rbd_dev->layout,
2608 					   img_extents[i].fe_off,
2609 					   img_extents[i].fe_len,
2610 					   &img_req->object_extents,
2611 					   alloc_object_extent, img_req,
2612 					   fctx->count_fn, &fctx->iter);
2613 		if (ret)
2614 			return ret;
2615 	}
2616 
2617 	for_each_obj_request(img_req, obj_req) {
2618 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2619 					      sizeof(*obj_req->bvec_pos.bvecs),
2620 					      GFP_NOIO);
2621 		if (!obj_req->bvec_pos.bvecs)
2622 			return -ENOMEM;
2623 	}
2624 
2625 	/*
2626 	 * Fill in each object request's private bio_vec array, splitting and
2627 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2628 	 */
2629 	fctx->iter = *fctx->pos;
2630 	for (i = 0; i < num_img_extents; i++) {
2631 		ret = ceph_iterate_extents(&rbd_dev->layout,
2632 					   img_extents[i].fe_off,
2633 					   img_extents[i].fe_len,
2634 					   &img_req->object_extents,
2635 					   fctx->copy_fn, &fctx->iter);
2636 		if (ret)
2637 			return ret;
2638 	}
2639 
2640 	return __rbd_img_fill_request(img_req);
2641 }
2642 
2643 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2644 			       u64 off, u64 len)
2645 {
2646 	struct ceph_file_extent ex = { off, len };
2647 	union rbd_img_fill_iter dummy = {};
2648 	struct rbd_img_fill_ctx fctx = {
2649 		.pos_type = OBJ_REQUEST_NODATA,
2650 		.pos = &dummy,
2651 	};
2652 
2653 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2654 }
2655 
2656 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2657 {
2658 	struct rbd_obj_request *obj_req =
2659 	    container_of(ex, struct rbd_obj_request, ex);
2660 	struct ceph_bio_iter *it = arg;
2661 
2662 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2663 	obj_req->bio_pos = *it;
2664 	ceph_bio_iter_advance(it, bytes);
2665 }
2666 
2667 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2668 {
2669 	struct rbd_obj_request *obj_req =
2670 	    container_of(ex, struct rbd_obj_request, ex);
2671 	struct ceph_bio_iter *it = arg;
2672 
2673 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2674 	ceph_bio_iter_advance_step(it, bytes, ({
2675 		obj_req->bvec_count++;
2676 	}));
2677 
2678 }
2679 
2680 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2681 {
2682 	struct rbd_obj_request *obj_req =
2683 	    container_of(ex, struct rbd_obj_request, ex);
2684 	struct ceph_bio_iter *it = arg;
2685 
2686 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2687 	ceph_bio_iter_advance_step(it, bytes, ({
2688 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2689 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2690 	}));
2691 }
2692 
2693 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2694 				   struct ceph_file_extent *img_extents,
2695 				   u32 num_img_extents,
2696 				   struct ceph_bio_iter *bio_pos)
2697 {
2698 	struct rbd_img_fill_ctx fctx = {
2699 		.pos_type = OBJ_REQUEST_BIO,
2700 		.pos = (union rbd_img_fill_iter *)bio_pos,
2701 		.set_pos_fn = set_bio_pos,
2702 		.count_fn = count_bio_bvecs,
2703 		.copy_fn = copy_bio_bvecs,
2704 	};
2705 
2706 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2707 				    &fctx);
2708 }
2709 
2710 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2711 				 u64 off, u64 len, struct bio *bio)
2712 {
2713 	struct ceph_file_extent ex = { off, len };
2714 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2715 
2716 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2717 }
2718 
2719 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2720 {
2721 	struct rbd_obj_request *obj_req =
2722 	    container_of(ex, struct rbd_obj_request, ex);
2723 	struct ceph_bvec_iter *it = arg;
2724 
2725 	obj_req->bvec_pos = *it;
2726 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2727 	ceph_bvec_iter_advance(it, bytes);
2728 }
2729 
2730 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2731 {
2732 	struct rbd_obj_request *obj_req =
2733 	    container_of(ex, struct rbd_obj_request, ex);
2734 	struct ceph_bvec_iter *it = arg;
2735 
2736 	ceph_bvec_iter_advance_step(it, bytes, ({
2737 		obj_req->bvec_count++;
2738 	}));
2739 }
2740 
2741 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2742 {
2743 	struct rbd_obj_request *obj_req =
2744 	    container_of(ex, struct rbd_obj_request, ex);
2745 	struct ceph_bvec_iter *it = arg;
2746 
2747 	ceph_bvec_iter_advance_step(it, bytes, ({
2748 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2749 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2750 	}));
2751 }
2752 
2753 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2754 				     struct ceph_file_extent *img_extents,
2755 				     u32 num_img_extents,
2756 				     struct ceph_bvec_iter *bvec_pos)
2757 {
2758 	struct rbd_img_fill_ctx fctx = {
2759 		.pos_type = OBJ_REQUEST_BVECS,
2760 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2761 		.set_pos_fn = set_bvec_pos,
2762 		.count_fn = count_bvecs,
2763 		.copy_fn = copy_bvecs,
2764 	};
2765 
2766 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2767 				    &fctx);
2768 }
2769 
2770 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2771 				   struct ceph_file_extent *img_extents,
2772 				   u32 num_img_extents,
2773 				   struct bio_vec *bvecs)
2774 {
2775 	struct ceph_bvec_iter it = {
2776 		.bvecs = bvecs,
2777 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2778 							     num_img_extents) },
2779 	};
2780 
2781 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2782 					 &it);
2783 }
2784 
2785 static void rbd_img_handle_request_work(struct work_struct *work)
2786 {
2787 	struct rbd_img_request *img_req =
2788 	    container_of(work, struct rbd_img_request, work);
2789 
2790 	rbd_img_handle_request(img_req, img_req->work_result);
2791 }
2792 
2793 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2794 {
2795 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2796 	img_req->work_result = result;
2797 	queue_work(rbd_wq, &img_req->work);
2798 }
2799 
2800 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2801 {
2802 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2803 
2804 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2805 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2806 		return true;
2807 	}
2808 
2809 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2810 	     obj_req->ex.oe_objno);
2811 	return false;
2812 }
2813 
2814 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2815 {
2816 	struct ceph_osd_request *osd_req;
2817 	int ret;
2818 
2819 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2820 	if (IS_ERR(osd_req))
2821 		return PTR_ERR(osd_req);
2822 
2823 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2824 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2825 	rbd_osd_setup_data(osd_req, 0);
2826 	rbd_osd_format_read(osd_req);
2827 
2828 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2829 	if (ret)
2830 		return ret;
2831 
2832 	rbd_osd_submit(osd_req);
2833 	return 0;
2834 }
2835 
2836 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2837 {
2838 	struct rbd_img_request *img_req = obj_req->img_request;
2839 	struct rbd_device *parent = img_req->rbd_dev->parent;
2840 	struct rbd_img_request *child_img_req;
2841 	int ret;
2842 
2843 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2844 	if (!child_img_req)
2845 		return -ENOMEM;
2846 
2847 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2848 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2849 	child_img_req->obj_request = obj_req;
2850 
2851 	down_read(&parent->header_rwsem);
2852 	rbd_img_capture_header(child_img_req);
2853 	up_read(&parent->header_rwsem);
2854 
2855 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2856 	     obj_req);
2857 
2858 	if (!rbd_img_is_write(img_req)) {
2859 		switch (img_req->data_type) {
2860 		case OBJ_REQUEST_BIO:
2861 			ret = __rbd_img_fill_from_bio(child_img_req,
2862 						      obj_req->img_extents,
2863 						      obj_req->num_img_extents,
2864 						      &obj_req->bio_pos);
2865 			break;
2866 		case OBJ_REQUEST_BVECS:
2867 		case OBJ_REQUEST_OWN_BVECS:
2868 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2869 						      obj_req->img_extents,
2870 						      obj_req->num_img_extents,
2871 						      &obj_req->bvec_pos);
2872 			break;
2873 		default:
2874 			BUG();
2875 		}
2876 	} else {
2877 		ret = rbd_img_fill_from_bvecs(child_img_req,
2878 					      obj_req->img_extents,
2879 					      obj_req->num_img_extents,
2880 					      obj_req->copyup_bvecs);
2881 	}
2882 	if (ret) {
2883 		rbd_img_request_destroy(child_img_req);
2884 		return ret;
2885 	}
2886 
2887 	/* avoid parent chain recursion */
2888 	rbd_img_schedule(child_img_req, 0);
2889 	return 0;
2890 }
2891 
2892 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2893 {
2894 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2895 	int ret;
2896 
2897 again:
2898 	switch (obj_req->read_state) {
2899 	case RBD_OBJ_READ_START:
2900 		rbd_assert(!*result);
2901 
2902 		if (!rbd_obj_may_exist(obj_req)) {
2903 			*result = -ENOENT;
2904 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2905 			goto again;
2906 		}
2907 
2908 		ret = rbd_obj_read_object(obj_req);
2909 		if (ret) {
2910 			*result = ret;
2911 			return true;
2912 		}
2913 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2914 		return false;
2915 	case RBD_OBJ_READ_OBJECT:
2916 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2917 			/* reverse map this object extent onto the parent */
2918 			ret = rbd_obj_calc_img_extents(obj_req, false);
2919 			if (ret) {
2920 				*result = ret;
2921 				return true;
2922 			}
2923 			if (obj_req->num_img_extents) {
2924 				ret = rbd_obj_read_from_parent(obj_req);
2925 				if (ret) {
2926 					*result = ret;
2927 					return true;
2928 				}
2929 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2930 				return false;
2931 			}
2932 		}
2933 
2934 		/*
2935 		 * -ENOENT means a hole in the image -- zero-fill the entire
2936 		 * length of the request.  A short read also implies zero-fill
2937 		 * to the end of the request.
2938 		 */
2939 		if (*result == -ENOENT) {
2940 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2941 			*result = 0;
2942 		} else if (*result >= 0) {
2943 			if (*result < obj_req->ex.oe_len)
2944 				rbd_obj_zero_range(obj_req, *result,
2945 						obj_req->ex.oe_len - *result);
2946 			else
2947 				rbd_assert(*result == obj_req->ex.oe_len);
2948 			*result = 0;
2949 		}
2950 		return true;
2951 	case RBD_OBJ_READ_PARENT:
2952 		/*
2953 		 * The parent image is read only up to the overlap -- zero-fill
2954 		 * from the overlap to the end of the request.
2955 		 */
2956 		if (!*result) {
2957 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2958 
2959 			if (obj_overlap < obj_req->ex.oe_len)
2960 				rbd_obj_zero_range(obj_req, obj_overlap,
2961 					    obj_req->ex.oe_len - obj_overlap);
2962 		}
2963 		return true;
2964 	default:
2965 		BUG();
2966 	}
2967 }
2968 
2969 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2970 {
2971 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2972 
2973 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2974 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2975 
2976 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2977 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2978 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2979 		return true;
2980 	}
2981 
2982 	return false;
2983 }
2984 
2985 /*
2986  * Return:
2987  *   0 - object map update sent
2988  *   1 - object map update isn't needed
2989  *  <0 - error
2990  */
2991 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2992 {
2993 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2994 	u8 new_state;
2995 
2996 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2997 		return 1;
2998 
2999 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3000 		new_state = OBJECT_PENDING;
3001 	else
3002 		new_state = OBJECT_EXISTS;
3003 
3004 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3005 }
3006 
3007 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3008 {
3009 	struct ceph_osd_request *osd_req;
3010 	int num_ops = count_write_ops(obj_req);
3011 	int which = 0;
3012 	int ret;
3013 
3014 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3015 		num_ops++; /* stat */
3016 
3017 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3018 	if (IS_ERR(osd_req))
3019 		return PTR_ERR(osd_req);
3020 
3021 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3022 		ret = rbd_osd_setup_stat(osd_req, which++);
3023 		if (ret)
3024 			return ret;
3025 	}
3026 
3027 	rbd_osd_setup_write_ops(osd_req, which);
3028 	rbd_osd_format_write(osd_req);
3029 
3030 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031 	if (ret)
3032 		return ret;
3033 
3034 	rbd_osd_submit(osd_req);
3035 	return 0;
3036 }
3037 
3038 /*
3039  * copyup_bvecs pages are never highmem pages
3040  */
3041 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3042 {
3043 	struct ceph_bvec_iter it = {
3044 		.bvecs = bvecs,
3045 		.iter = { .bi_size = bytes },
3046 	};
3047 
3048 	ceph_bvec_iter_advance_step(&it, bytes, ({
3049 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3050 			       bv.bv_len))
3051 			return false;
3052 	}));
3053 	return true;
3054 }
3055 
3056 #define MODS_ONLY	U32_MAX
3057 
3058 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3059 				      u32 bytes)
3060 {
3061 	struct ceph_osd_request *osd_req;
3062 	int ret;
3063 
3064 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3065 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3066 
3067 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3068 	if (IS_ERR(osd_req))
3069 		return PTR_ERR(osd_req);
3070 
3071 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3072 	if (ret)
3073 		return ret;
3074 
3075 	rbd_osd_format_write(osd_req);
3076 
3077 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3078 	if (ret)
3079 		return ret;
3080 
3081 	rbd_osd_submit(osd_req);
3082 	return 0;
3083 }
3084 
3085 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3086 					u32 bytes)
3087 {
3088 	struct ceph_osd_request *osd_req;
3089 	int num_ops = count_write_ops(obj_req);
3090 	int which = 0;
3091 	int ret;
3092 
3093 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3094 
3095 	if (bytes != MODS_ONLY)
3096 		num_ops++; /* copyup */
3097 
3098 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3099 	if (IS_ERR(osd_req))
3100 		return PTR_ERR(osd_req);
3101 
3102 	if (bytes != MODS_ONLY) {
3103 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3104 		if (ret)
3105 			return ret;
3106 	}
3107 
3108 	rbd_osd_setup_write_ops(osd_req, which);
3109 	rbd_osd_format_write(osd_req);
3110 
3111 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3112 	if (ret)
3113 		return ret;
3114 
3115 	rbd_osd_submit(osd_req);
3116 	return 0;
3117 }
3118 
3119 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3120 {
3121 	u32 i;
3122 
3123 	rbd_assert(!obj_req->copyup_bvecs);
3124 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3125 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3126 					sizeof(*obj_req->copyup_bvecs),
3127 					GFP_NOIO);
3128 	if (!obj_req->copyup_bvecs)
3129 		return -ENOMEM;
3130 
3131 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3132 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3133 
3134 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3135 		if (!obj_req->copyup_bvecs[i].bv_page)
3136 			return -ENOMEM;
3137 
3138 		obj_req->copyup_bvecs[i].bv_offset = 0;
3139 		obj_req->copyup_bvecs[i].bv_len = len;
3140 		obj_overlap -= len;
3141 	}
3142 
3143 	rbd_assert(!obj_overlap);
3144 	return 0;
3145 }
3146 
3147 /*
3148  * The target object doesn't exist.  Read the data for the entire
3149  * target object up to the overlap point (if any) from the parent,
3150  * so we can use it for a copyup.
3151  */
3152 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3153 {
3154 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3155 	int ret;
3156 
3157 	rbd_assert(obj_req->num_img_extents);
3158 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3159 		      rbd_dev->parent_overlap);
3160 	if (!obj_req->num_img_extents) {
3161 		/*
3162 		 * The overlap has become 0 (most likely because the
3163 		 * image has been flattened).  Re-submit the original write
3164 		 * request -- pass MODS_ONLY since the copyup isn't needed
3165 		 * anymore.
3166 		 */
3167 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3168 	}
3169 
3170 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3171 	if (ret)
3172 		return ret;
3173 
3174 	return rbd_obj_read_from_parent(obj_req);
3175 }
3176 
3177 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3178 {
3179 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3180 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3181 	u8 new_state;
3182 	u32 i;
3183 	int ret;
3184 
3185 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3186 
3187 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3188 		return;
3189 
3190 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3191 		return;
3192 
3193 	for (i = 0; i < snapc->num_snaps; i++) {
3194 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3195 		    i + 1 < snapc->num_snaps)
3196 			new_state = OBJECT_EXISTS_CLEAN;
3197 		else
3198 			new_state = OBJECT_EXISTS;
3199 
3200 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3201 					    new_state, NULL);
3202 		if (ret < 0) {
3203 			obj_req->pending.result = ret;
3204 			return;
3205 		}
3206 
3207 		rbd_assert(!ret);
3208 		obj_req->pending.num_pending++;
3209 	}
3210 }
3211 
3212 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3213 {
3214 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3215 	int ret;
3216 
3217 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3218 
3219 	/*
3220 	 * Only send non-zero copyup data to save some I/O and network
3221 	 * bandwidth -- zero copyup data is equivalent to the object not
3222 	 * existing.
3223 	 */
3224 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3225 		bytes = 0;
3226 
3227 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3228 		/*
3229 		 * Send a copyup request with an empty snapshot context to
3230 		 * deep-copyup the object through all existing snapshots.
3231 		 * A second request with the current snapshot context will be
3232 		 * sent for the actual modification.
3233 		 */
3234 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3235 		if (ret) {
3236 			obj_req->pending.result = ret;
3237 			return;
3238 		}
3239 
3240 		obj_req->pending.num_pending++;
3241 		bytes = MODS_ONLY;
3242 	}
3243 
3244 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3245 	if (ret) {
3246 		obj_req->pending.result = ret;
3247 		return;
3248 	}
3249 
3250 	obj_req->pending.num_pending++;
3251 }
3252 
3253 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3254 {
3255 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3256 	int ret;
3257 
3258 again:
3259 	switch (obj_req->copyup_state) {
3260 	case RBD_OBJ_COPYUP_START:
3261 		rbd_assert(!*result);
3262 
3263 		ret = rbd_obj_copyup_read_parent(obj_req);
3264 		if (ret) {
3265 			*result = ret;
3266 			return true;
3267 		}
3268 		if (obj_req->num_img_extents)
3269 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3270 		else
3271 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3272 		return false;
3273 	case RBD_OBJ_COPYUP_READ_PARENT:
3274 		if (*result)
3275 			return true;
3276 
3277 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3278 				  rbd_obj_img_extents_bytes(obj_req))) {
3279 			dout("%s %p detected zeros\n", __func__, obj_req);
3280 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3281 		}
3282 
3283 		rbd_obj_copyup_object_maps(obj_req);
3284 		if (!obj_req->pending.num_pending) {
3285 			*result = obj_req->pending.result;
3286 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3287 			goto again;
3288 		}
3289 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3290 		return false;
3291 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3292 		if (!pending_result_dec(&obj_req->pending, result))
3293 			return false;
3294 		/* fall through */
3295 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3296 		if (*result) {
3297 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3298 				 *result);
3299 			return true;
3300 		}
3301 
3302 		rbd_obj_copyup_write_object(obj_req);
3303 		if (!obj_req->pending.num_pending) {
3304 			*result = obj_req->pending.result;
3305 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3306 			goto again;
3307 		}
3308 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3309 		return false;
3310 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3311 		if (!pending_result_dec(&obj_req->pending, result))
3312 			return false;
3313 		/* fall through */
3314 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3315 		return true;
3316 	default:
3317 		BUG();
3318 	}
3319 }
3320 
3321 /*
3322  * Return:
3323  *   0 - object map update sent
3324  *   1 - object map update isn't needed
3325  *  <0 - error
3326  */
3327 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3328 {
3329 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3330 	u8 current_state = OBJECT_PENDING;
3331 
3332 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3333 		return 1;
3334 
3335 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3336 		return 1;
3337 
3338 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3339 				     &current_state);
3340 }
3341 
3342 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3343 {
3344 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3345 	int ret;
3346 
3347 again:
3348 	switch (obj_req->write_state) {
3349 	case RBD_OBJ_WRITE_START:
3350 		rbd_assert(!*result);
3351 
3352 		if (rbd_obj_write_is_noop(obj_req))
3353 			return true;
3354 
3355 		ret = rbd_obj_write_pre_object_map(obj_req);
3356 		if (ret < 0) {
3357 			*result = ret;
3358 			return true;
3359 		}
3360 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3361 		if (ret > 0)
3362 			goto again;
3363 		return false;
3364 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3365 		if (*result) {
3366 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3367 				 *result);
3368 			return true;
3369 		}
3370 		ret = rbd_obj_write_object(obj_req);
3371 		if (ret) {
3372 			*result = ret;
3373 			return true;
3374 		}
3375 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3376 		return false;
3377 	case RBD_OBJ_WRITE_OBJECT:
3378 		if (*result == -ENOENT) {
3379 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3380 				*result = 0;
3381 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3382 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3383 				goto again;
3384 			}
3385 			/*
3386 			 * On a non-existent object:
3387 			 *   delete - -ENOENT, truncate/zero - 0
3388 			 */
3389 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3390 				*result = 0;
3391 		}
3392 		if (*result)
3393 			return true;
3394 
3395 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3396 		goto again;
3397 	case __RBD_OBJ_WRITE_COPYUP:
3398 		if (!rbd_obj_advance_copyup(obj_req, result))
3399 			return false;
3400 		/* fall through */
3401 	case RBD_OBJ_WRITE_COPYUP:
3402 		if (*result) {
3403 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3404 			return true;
3405 		}
3406 		ret = rbd_obj_write_post_object_map(obj_req);
3407 		if (ret < 0) {
3408 			*result = ret;
3409 			return true;
3410 		}
3411 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3412 		if (ret > 0)
3413 			goto again;
3414 		return false;
3415 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3416 		if (*result)
3417 			rbd_warn(rbd_dev, "post object map update failed: %d",
3418 				 *result);
3419 		return true;
3420 	default:
3421 		BUG();
3422 	}
3423 }
3424 
3425 /*
3426  * Return true if @obj_req is completed.
3427  */
3428 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3429 				     int *result)
3430 {
3431 	struct rbd_img_request *img_req = obj_req->img_request;
3432 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3433 	bool done;
3434 
3435 	mutex_lock(&obj_req->state_mutex);
3436 	if (!rbd_img_is_write(img_req))
3437 		done = rbd_obj_advance_read(obj_req, result);
3438 	else
3439 		done = rbd_obj_advance_write(obj_req, result);
3440 	mutex_unlock(&obj_req->state_mutex);
3441 
3442 	if (done && *result) {
3443 		rbd_assert(*result < 0);
3444 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3445 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3446 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3447 	}
3448 	return done;
3449 }
3450 
3451 /*
3452  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3453  * recursion.
3454  */
3455 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3456 {
3457 	if (__rbd_obj_handle_request(obj_req, &result))
3458 		rbd_img_handle_request(obj_req->img_request, result);
3459 }
3460 
3461 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3462 {
3463 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3464 
3465 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3466 		return false;
3467 
3468 	if (rbd_is_ro(rbd_dev))
3469 		return false;
3470 
3471 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3472 	if (rbd_dev->opts->lock_on_read ||
3473 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3474 		return true;
3475 
3476 	return rbd_img_is_write(img_req);
3477 }
3478 
3479 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3480 {
3481 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3482 	bool locked;
3483 
3484 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3485 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3486 	spin_lock(&rbd_dev->lock_lists_lock);
3487 	rbd_assert(list_empty(&img_req->lock_item));
3488 	if (!locked)
3489 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3490 	else
3491 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3492 	spin_unlock(&rbd_dev->lock_lists_lock);
3493 	return locked;
3494 }
3495 
3496 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3497 {
3498 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3499 	bool need_wakeup;
3500 
3501 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3502 	spin_lock(&rbd_dev->lock_lists_lock);
3503 	rbd_assert(!list_empty(&img_req->lock_item));
3504 	list_del_init(&img_req->lock_item);
3505 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3506 		       list_empty(&rbd_dev->running_list));
3507 	spin_unlock(&rbd_dev->lock_lists_lock);
3508 	if (need_wakeup)
3509 		complete(&rbd_dev->releasing_wait);
3510 }
3511 
3512 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3513 {
3514 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3515 
3516 	if (!need_exclusive_lock(img_req))
3517 		return 1;
3518 
3519 	if (rbd_lock_add_request(img_req))
3520 		return 1;
3521 
3522 	if (rbd_dev->opts->exclusive) {
3523 		WARN_ON(1); /* lock got released? */
3524 		return -EROFS;
3525 	}
3526 
3527 	/*
3528 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3529 	 * and cancel_delayed_work() in wake_lock_waiters().
3530 	 */
3531 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3532 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3533 	return 0;
3534 }
3535 
3536 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3537 {
3538 	struct rbd_obj_request *obj_req;
3539 
3540 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3541 
3542 	for_each_obj_request(img_req, obj_req) {
3543 		int result = 0;
3544 
3545 		if (__rbd_obj_handle_request(obj_req, &result)) {
3546 			if (result) {
3547 				img_req->pending.result = result;
3548 				return;
3549 			}
3550 		} else {
3551 			img_req->pending.num_pending++;
3552 		}
3553 	}
3554 }
3555 
3556 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3557 {
3558 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3559 	int ret;
3560 
3561 again:
3562 	switch (img_req->state) {
3563 	case RBD_IMG_START:
3564 		rbd_assert(!*result);
3565 
3566 		ret = rbd_img_exclusive_lock(img_req);
3567 		if (ret < 0) {
3568 			*result = ret;
3569 			return true;
3570 		}
3571 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3572 		if (ret > 0)
3573 			goto again;
3574 		return false;
3575 	case RBD_IMG_EXCLUSIVE_LOCK:
3576 		if (*result)
3577 			return true;
3578 
3579 		rbd_assert(!need_exclusive_lock(img_req) ||
3580 			   __rbd_is_lock_owner(rbd_dev));
3581 
3582 		rbd_img_object_requests(img_req);
3583 		if (!img_req->pending.num_pending) {
3584 			*result = img_req->pending.result;
3585 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3586 			goto again;
3587 		}
3588 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3589 		return false;
3590 	case __RBD_IMG_OBJECT_REQUESTS:
3591 		if (!pending_result_dec(&img_req->pending, result))
3592 			return false;
3593 		/* fall through */
3594 	case RBD_IMG_OBJECT_REQUESTS:
3595 		return true;
3596 	default:
3597 		BUG();
3598 	}
3599 }
3600 
3601 /*
3602  * Return true if @img_req is completed.
3603  */
3604 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3605 				     int *result)
3606 {
3607 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3608 	bool done;
3609 
3610 	if (need_exclusive_lock(img_req)) {
3611 		down_read(&rbd_dev->lock_rwsem);
3612 		mutex_lock(&img_req->state_mutex);
3613 		done = rbd_img_advance(img_req, result);
3614 		if (done)
3615 			rbd_lock_del_request(img_req);
3616 		mutex_unlock(&img_req->state_mutex);
3617 		up_read(&rbd_dev->lock_rwsem);
3618 	} else {
3619 		mutex_lock(&img_req->state_mutex);
3620 		done = rbd_img_advance(img_req, result);
3621 		mutex_unlock(&img_req->state_mutex);
3622 	}
3623 
3624 	if (done && *result) {
3625 		rbd_assert(*result < 0);
3626 		rbd_warn(rbd_dev, "%s%s result %d",
3627 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3628 		      obj_op_name(img_req->op_type), *result);
3629 	}
3630 	return done;
3631 }
3632 
3633 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3634 {
3635 again:
3636 	if (!__rbd_img_handle_request(img_req, &result))
3637 		return;
3638 
3639 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3640 		struct rbd_obj_request *obj_req = img_req->obj_request;
3641 
3642 		rbd_img_request_destroy(img_req);
3643 		if (__rbd_obj_handle_request(obj_req, &result)) {
3644 			img_req = obj_req->img_request;
3645 			goto again;
3646 		}
3647 	} else {
3648 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3649 
3650 		rbd_img_request_destroy(img_req);
3651 		blk_mq_end_request(rq, errno_to_blk_status(result));
3652 	}
3653 }
3654 
3655 static const struct rbd_client_id rbd_empty_cid;
3656 
3657 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3658 			  const struct rbd_client_id *rhs)
3659 {
3660 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3661 }
3662 
3663 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3664 {
3665 	struct rbd_client_id cid;
3666 
3667 	mutex_lock(&rbd_dev->watch_mutex);
3668 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3669 	cid.handle = rbd_dev->watch_cookie;
3670 	mutex_unlock(&rbd_dev->watch_mutex);
3671 	return cid;
3672 }
3673 
3674 /*
3675  * lock_rwsem must be held for write
3676  */
3677 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3678 			      const struct rbd_client_id *cid)
3679 {
3680 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3681 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3682 	     cid->gid, cid->handle);
3683 	rbd_dev->owner_cid = *cid; /* struct */
3684 }
3685 
3686 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3687 {
3688 	mutex_lock(&rbd_dev->watch_mutex);
3689 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3690 	mutex_unlock(&rbd_dev->watch_mutex);
3691 }
3692 
3693 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3694 {
3695 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3696 
3697 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3698 	strcpy(rbd_dev->lock_cookie, cookie);
3699 	rbd_set_owner_cid(rbd_dev, &cid);
3700 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3701 }
3702 
3703 /*
3704  * lock_rwsem must be held for write
3705  */
3706 static int rbd_lock(struct rbd_device *rbd_dev)
3707 {
3708 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3709 	char cookie[32];
3710 	int ret;
3711 
3712 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3713 		rbd_dev->lock_cookie[0] != '\0');
3714 
3715 	format_lock_cookie(rbd_dev, cookie);
3716 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3717 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3718 			    RBD_LOCK_TAG, "", 0);
3719 	if (ret)
3720 		return ret;
3721 
3722 	__rbd_lock(rbd_dev, cookie);
3723 	return 0;
3724 }
3725 
3726 /*
3727  * lock_rwsem must be held for write
3728  */
3729 static void rbd_unlock(struct rbd_device *rbd_dev)
3730 {
3731 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3732 	int ret;
3733 
3734 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3735 		rbd_dev->lock_cookie[0] == '\0');
3736 
3737 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3738 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3739 	if (ret && ret != -ENOENT)
3740 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3741 
3742 	/* treat errors as the image is unlocked */
3743 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3744 	rbd_dev->lock_cookie[0] = '\0';
3745 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3746 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3747 }
3748 
3749 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3750 				enum rbd_notify_op notify_op,
3751 				struct page ***preply_pages,
3752 				size_t *preply_len)
3753 {
3754 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3755 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3756 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3757 	int buf_size = sizeof(buf);
3758 	void *p = buf;
3759 
3760 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3761 
3762 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3763 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3764 	ceph_encode_32(&p, notify_op);
3765 	ceph_encode_64(&p, cid.gid);
3766 	ceph_encode_64(&p, cid.handle);
3767 
3768 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3769 				&rbd_dev->header_oloc, buf, buf_size,
3770 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3771 }
3772 
3773 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3774 			       enum rbd_notify_op notify_op)
3775 {
3776 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3777 }
3778 
3779 static void rbd_notify_acquired_lock(struct work_struct *work)
3780 {
3781 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3782 						  acquired_lock_work);
3783 
3784 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3785 }
3786 
3787 static void rbd_notify_released_lock(struct work_struct *work)
3788 {
3789 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3790 						  released_lock_work);
3791 
3792 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3793 }
3794 
3795 static int rbd_request_lock(struct rbd_device *rbd_dev)
3796 {
3797 	struct page **reply_pages;
3798 	size_t reply_len;
3799 	bool lock_owner_responded = false;
3800 	int ret;
3801 
3802 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3803 
3804 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3805 				   &reply_pages, &reply_len);
3806 	if (ret && ret != -ETIMEDOUT) {
3807 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3808 		goto out;
3809 	}
3810 
3811 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3812 		void *p = page_address(reply_pages[0]);
3813 		void *const end = p + reply_len;
3814 		u32 n;
3815 
3816 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3817 		while (n--) {
3818 			u8 struct_v;
3819 			u32 len;
3820 
3821 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3822 			p += 8 + 8; /* skip gid and cookie */
3823 
3824 			ceph_decode_32_safe(&p, end, len, e_inval);
3825 			if (!len)
3826 				continue;
3827 
3828 			if (lock_owner_responded) {
3829 				rbd_warn(rbd_dev,
3830 					 "duplicate lock owners detected");
3831 				ret = -EIO;
3832 				goto out;
3833 			}
3834 
3835 			lock_owner_responded = true;
3836 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3837 						  &struct_v, &len);
3838 			if (ret) {
3839 				rbd_warn(rbd_dev,
3840 					 "failed to decode ResponseMessage: %d",
3841 					 ret);
3842 				goto e_inval;
3843 			}
3844 
3845 			ret = ceph_decode_32(&p);
3846 		}
3847 	}
3848 
3849 	if (!lock_owner_responded) {
3850 		rbd_warn(rbd_dev, "no lock owners detected");
3851 		ret = -ETIMEDOUT;
3852 	}
3853 
3854 out:
3855 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3856 	return ret;
3857 
3858 e_inval:
3859 	ret = -EINVAL;
3860 	goto out;
3861 }
3862 
3863 /*
3864  * Either image request state machine(s) or rbd_add_acquire_lock()
3865  * (i.e. "rbd map").
3866  */
3867 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3868 {
3869 	struct rbd_img_request *img_req;
3870 
3871 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3872 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3873 
3874 	cancel_delayed_work(&rbd_dev->lock_dwork);
3875 	if (!completion_done(&rbd_dev->acquire_wait)) {
3876 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3877 			   list_empty(&rbd_dev->running_list));
3878 		rbd_dev->acquire_err = result;
3879 		complete_all(&rbd_dev->acquire_wait);
3880 		return;
3881 	}
3882 
3883 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3884 		mutex_lock(&img_req->state_mutex);
3885 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3886 		rbd_img_schedule(img_req, result);
3887 		mutex_unlock(&img_req->state_mutex);
3888 	}
3889 
3890 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3891 }
3892 
3893 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3894 			       struct ceph_locker **lockers, u32 *num_lockers)
3895 {
3896 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3897 	u8 lock_type;
3898 	char *lock_tag;
3899 	int ret;
3900 
3901 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902 
3903 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3904 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3905 				 &lock_type, &lock_tag, lockers, num_lockers);
3906 	if (ret)
3907 		return ret;
3908 
3909 	if (*num_lockers == 0) {
3910 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3911 		goto out;
3912 	}
3913 
3914 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3915 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3916 			 lock_tag);
3917 		ret = -EBUSY;
3918 		goto out;
3919 	}
3920 
3921 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3922 		rbd_warn(rbd_dev, "shared lock type detected");
3923 		ret = -EBUSY;
3924 		goto out;
3925 	}
3926 
3927 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3928 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3929 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3930 			 (*lockers)[0].id.cookie);
3931 		ret = -EBUSY;
3932 		goto out;
3933 	}
3934 
3935 out:
3936 	kfree(lock_tag);
3937 	return ret;
3938 }
3939 
3940 static int find_watcher(struct rbd_device *rbd_dev,
3941 			const struct ceph_locker *locker)
3942 {
3943 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3944 	struct ceph_watch_item *watchers;
3945 	u32 num_watchers;
3946 	u64 cookie;
3947 	int i;
3948 	int ret;
3949 
3950 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3951 				      &rbd_dev->header_oloc, &watchers,
3952 				      &num_watchers);
3953 	if (ret)
3954 		return ret;
3955 
3956 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3957 	for (i = 0; i < num_watchers; i++) {
3958 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3959 			    sizeof(locker->info.addr)) &&
3960 		    watchers[i].cookie == cookie) {
3961 			struct rbd_client_id cid = {
3962 				.gid = le64_to_cpu(watchers[i].name.num),
3963 				.handle = cookie,
3964 			};
3965 
3966 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3967 			     rbd_dev, cid.gid, cid.handle);
3968 			rbd_set_owner_cid(rbd_dev, &cid);
3969 			ret = 1;
3970 			goto out;
3971 		}
3972 	}
3973 
3974 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3975 	ret = 0;
3976 out:
3977 	kfree(watchers);
3978 	return ret;
3979 }
3980 
3981 /*
3982  * lock_rwsem must be held for write
3983  */
3984 static int rbd_try_lock(struct rbd_device *rbd_dev)
3985 {
3986 	struct ceph_client *client = rbd_dev->rbd_client->client;
3987 	struct ceph_locker *lockers;
3988 	u32 num_lockers;
3989 	int ret;
3990 
3991 	for (;;) {
3992 		ret = rbd_lock(rbd_dev);
3993 		if (ret != -EBUSY)
3994 			return ret;
3995 
3996 		/* determine if the current lock holder is still alive */
3997 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3998 		if (ret)
3999 			return ret;
4000 
4001 		if (num_lockers == 0)
4002 			goto again;
4003 
4004 		ret = find_watcher(rbd_dev, lockers);
4005 		if (ret)
4006 			goto out; /* request lock or error */
4007 
4008 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4009 			 ENTITY_NAME(lockers[0].id.name));
4010 
4011 		ret = ceph_monc_blacklist_add(&client->monc,
4012 					      &lockers[0].info.addr);
4013 		if (ret) {
4014 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4015 				 ENTITY_NAME(lockers[0].id.name), ret);
4016 			goto out;
4017 		}
4018 
4019 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4020 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4021 					  lockers[0].id.cookie,
4022 					  &lockers[0].id.name);
4023 		if (ret && ret != -ENOENT)
4024 			goto out;
4025 
4026 again:
4027 		ceph_free_lockers(lockers, num_lockers);
4028 	}
4029 
4030 out:
4031 	ceph_free_lockers(lockers, num_lockers);
4032 	return ret;
4033 }
4034 
4035 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4036 {
4037 	int ret;
4038 
4039 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4040 		ret = rbd_object_map_open(rbd_dev);
4041 		if (ret)
4042 			return ret;
4043 	}
4044 
4045 	return 0;
4046 }
4047 
4048 /*
4049  * Return:
4050  *   0 - lock acquired
4051  *   1 - caller should call rbd_request_lock()
4052  *  <0 - error
4053  */
4054 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4055 {
4056 	int ret;
4057 
4058 	down_read(&rbd_dev->lock_rwsem);
4059 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4060 	     rbd_dev->lock_state);
4061 	if (__rbd_is_lock_owner(rbd_dev)) {
4062 		up_read(&rbd_dev->lock_rwsem);
4063 		return 0;
4064 	}
4065 
4066 	up_read(&rbd_dev->lock_rwsem);
4067 	down_write(&rbd_dev->lock_rwsem);
4068 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4069 	     rbd_dev->lock_state);
4070 	if (__rbd_is_lock_owner(rbd_dev)) {
4071 		up_write(&rbd_dev->lock_rwsem);
4072 		return 0;
4073 	}
4074 
4075 	ret = rbd_try_lock(rbd_dev);
4076 	if (ret < 0) {
4077 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4078 		if (ret == -EBLACKLISTED)
4079 			goto out;
4080 
4081 		ret = 1; /* request lock anyway */
4082 	}
4083 	if (ret > 0) {
4084 		up_write(&rbd_dev->lock_rwsem);
4085 		return ret;
4086 	}
4087 
4088 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4089 	rbd_assert(list_empty(&rbd_dev->running_list));
4090 
4091 	ret = rbd_post_acquire_action(rbd_dev);
4092 	if (ret) {
4093 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4094 		/*
4095 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4096 		 * rbd_lock_add_request() would let the request through,
4097 		 * assuming that e.g. object map is locked and loaded.
4098 		 */
4099 		rbd_unlock(rbd_dev);
4100 	}
4101 
4102 out:
4103 	wake_lock_waiters(rbd_dev, ret);
4104 	up_write(&rbd_dev->lock_rwsem);
4105 	return ret;
4106 }
4107 
4108 static void rbd_acquire_lock(struct work_struct *work)
4109 {
4110 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4111 					    struct rbd_device, lock_dwork);
4112 	int ret;
4113 
4114 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4115 again:
4116 	ret = rbd_try_acquire_lock(rbd_dev);
4117 	if (ret <= 0) {
4118 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4119 		return;
4120 	}
4121 
4122 	ret = rbd_request_lock(rbd_dev);
4123 	if (ret == -ETIMEDOUT) {
4124 		goto again; /* treat this as a dead client */
4125 	} else if (ret == -EROFS) {
4126 		rbd_warn(rbd_dev, "peer will not release lock");
4127 		down_write(&rbd_dev->lock_rwsem);
4128 		wake_lock_waiters(rbd_dev, ret);
4129 		up_write(&rbd_dev->lock_rwsem);
4130 	} else if (ret < 0) {
4131 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4132 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4133 				 RBD_RETRY_DELAY);
4134 	} else {
4135 		/*
4136 		 * lock owner acked, but resend if we don't see them
4137 		 * release the lock
4138 		 */
4139 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4140 		     rbd_dev);
4141 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4142 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4143 	}
4144 }
4145 
4146 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4147 {
4148 	bool need_wait;
4149 
4150 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4151 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4152 
4153 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4154 		return false;
4155 
4156 	/*
4157 	 * Ensure that all in-flight IO is flushed.
4158 	 */
4159 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4160 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4161 	need_wait = !list_empty(&rbd_dev->running_list);
4162 	downgrade_write(&rbd_dev->lock_rwsem);
4163 	if (need_wait)
4164 		wait_for_completion(&rbd_dev->releasing_wait);
4165 	up_read(&rbd_dev->lock_rwsem);
4166 
4167 	down_write(&rbd_dev->lock_rwsem);
4168 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4169 		return false;
4170 
4171 	rbd_assert(list_empty(&rbd_dev->running_list));
4172 	return true;
4173 }
4174 
4175 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4176 {
4177 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4178 		rbd_object_map_close(rbd_dev);
4179 }
4180 
4181 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4182 {
4183 	rbd_assert(list_empty(&rbd_dev->running_list));
4184 
4185 	rbd_pre_release_action(rbd_dev);
4186 	rbd_unlock(rbd_dev);
4187 }
4188 
4189 /*
4190  * lock_rwsem must be held for write
4191  */
4192 static void rbd_release_lock(struct rbd_device *rbd_dev)
4193 {
4194 	if (!rbd_quiesce_lock(rbd_dev))
4195 		return;
4196 
4197 	__rbd_release_lock(rbd_dev);
4198 
4199 	/*
4200 	 * Give others a chance to grab the lock - we would re-acquire
4201 	 * almost immediately if we got new IO while draining the running
4202 	 * list otherwise.  We need to ack our own notifications, so this
4203 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4204 	 * way of maybe_kick_acquire().
4205 	 */
4206 	cancel_delayed_work(&rbd_dev->lock_dwork);
4207 }
4208 
4209 static void rbd_release_lock_work(struct work_struct *work)
4210 {
4211 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4212 						  unlock_work);
4213 
4214 	down_write(&rbd_dev->lock_rwsem);
4215 	rbd_release_lock(rbd_dev);
4216 	up_write(&rbd_dev->lock_rwsem);
4217 }
4218 
4219 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4220 {
4221 	bool have_requests;
4222 
4223 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4224 	if (__rbd_is_lock_owner(rbd_dev))
4225 		return;
4226 
4227 	spin_lock(&rbd_dev->lock_lists_lock);
4228 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4229 	spin_unlock(&rbd_dev->lock_lists_lock);
4230 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4231 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4232 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4233 	}
4234 }
4235 
4236 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4237 				     void **p)
4238 {
4239 	struct rbd_client_id cid = { 0 };
4240 
4241 	if (struct_v >= 2) {
4242 		cid.gid = ceph_decode_64(p);
4243 		cid.handle = ceph_decode_64(p);
4244 	}
4245 
4246 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4247 	     cid.handle);
4248 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4249 		down_write(&rbd_dev->lock_rwsem);
4250 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4251 			/*
4252 			 * we already know that the remote client is
4253 			 * the owner
4254 			 */
4255 			up_write(&rbd_dev->lock_rwsem);
4256 			return;
4257 		}
4258 
4259 		rbd_set_owner_cid(rbd_dev, &cid);
4260 		downgrade_write(&rbd_dev->lock_rwsem);
4261 	} else {
4262 		down_read(&rbd_dev->lock_rwsem);
4263 	}
4264 
4265 	maybe_kick_acquire(rbd_dev);
4266 	up_read(&rbd_dev->lock_rwsem);
4267 }
4268 
4269 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4270 				     void **p)
4271 {
4272 	struct rbd_client_id cid = { 0 };
4273 
4274 	if (struct_v >= 2) {
4275 		cid.gid = ceph_decode_64(p);
4276 		cid.handle = ceph_decode_64(p);
4277 	}
4278 
4279 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4280 	     cid.handle);
4281 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4282 		down_write(&rbd_dev->lock_rwsem);
4283 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4284 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4285 			     __func__, rbd_dev, cid.gid, cid.handle,
4286 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4287 			up_write(&rbd_dev->lock_rwsem);
4288 			return;
4289 		}
4290 
4291 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4292 		downgrade_write(&rbd_dev->lock_rwsem);
4293 	} else {
4294 		down_read(&rbd_dev->lock_rwsem);
4295 	}
4296 
4297 	maybe_kick_acquire(rbd_dev);
4298 	up_read(&rbd_dev->lock_rwsem);
4299 }
4300 
4301 /*
4302  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4303  * ResponseMessage is needed.
4304  */
4305 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4306 				   void **p)
4307 {
4308 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4309 	struct rbd_client_id cid = { 0 };
4310 	int result = 1;
4311 
4312 	if (struct_v >= 2) {
4313 		cid.gid = ceph_decode_64(p);
4314 		cid.handle = ceph_decode_64(p);
4315 	}
4316 
4317 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4318 	     cid.handle);
4319 	if (rbd_cid_equal(&cid, &my_cid))
4320 		return result;
4321 
4322 	down_read(&rbd_dev->lock_rwsem);
4323 	if (__rbd_is_lock_owner(rbd_dev)) {
4324 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4325 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4326 			goto out_unlock;
4327 
4328 		/*
4329 		 * encode ResponseMessage(0) so the peer can detect
4330 		 * a missing owner
4331 		 */
4332 		result = 0;
4333 
4334 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4335 			if (!rbd_dev->opts->exclusive) {
4336 				dout("%s rbd_dev %p queueing unlock_work\n",
4337 				     __func__, rbd_dev);
4338 				queue_work(rbd_dev->task_wq,
4339 					   &rbd_dev->unlock_work);
4340 			} else {
4341 				/* refuse to release the lock */
4342 				result = -EROFS;
4343 			}
4344 		}
4345 	}
4346 
4347 out_unlock:
4348 	up_read(&rbd_dev->lock_rwsem);
4349 	return result;
4350 }
4351 
4352 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4353 				     u64 notify_id, u64 cookie, s32 *result)
4354 {
4355 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4356 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4357 	int buf_size = sizeof(buf);
4358 	int ret;
4359 
4360 	if (result) {
4361 		void *p = buf;
4362 
4363 		/* encode ResponseMessage */
4364 		ceph_start_encoding(&p, 1, 1,
4365 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4366 		ceph_encode_32(&p, *result);
4367 	} else {
4368 		buf_size = 0;
4369 	}
4370 
4371 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4372 				   &rbd_dev->header_oloc, notify_id, cookie,
4373 				   buf, buf_size);
4374 	if (ret)
4375 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4376 }
4377 
4378 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4379 				   u64 cookie)
4380 {
4381 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4382 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4383 }
4384 
4385 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4386 					  u64 notify_id, u64 cookie, s32 result)
4387 {
4388 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4389 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4390 }
4391 
4392 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4393 			 u64 notifier_id, void *data, size_t data_len)
4394 {
4395 	struct rbd_device *rbd_dev = arg;
4396 	void *p = data;
4397 	void *const end = p + data_len;
4398 	u8 struct_v = 0;
4399 	u32 len;
4400 	u32 notify_op;
4401 	int ret;
4402 
4403 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4404 	     __func__, rbd_dev, cookie, notify_id, data_len);
4405 	if (data_len) {
4406 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4407 					  &struct_v, &len);
4408 		if (ret) {
4409 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4410 				 ret);
4411 			return;
4412 		}
4413 
4414 		notify_op = ceph_decode_32(&p);
4415 	} else {
4416 		/* legacy notification for header updates */
4417 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4418 		len = 0;
4419 	}
4420 
4421 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4422 	switch (notify_op) {
4423 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4424 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4425 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4426 		break;
4427 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4428 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4429 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4430 		break;
4431 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4432 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4433 		if (ret <= 0)
4434 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4435 						      cookie, ret);
4436 		else
4437 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4438 		break;
4439 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4440 		ret = rbd_dev_refresh(rbd_dev);
4441 		if (ret)
4442 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4443 
4444 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445 		break;
4446 	default:
4447 		if (rbd_is_lock_owner(rbd_dev))
4448 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4449 						      cookie, -EOPNOTSUPP);
4450 		else
4451 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4452 		break;
4453 	}
4454 }
4455 
4456 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4457 
4458 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4459 {
4460 	struct rbd_device *rbd_dev = arg;
4461 
4462 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4463 
4464 	down_write(&rbd_dev->lock_rwsem);
4465 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4466 	up_write(&rbd_dev->lock_rwsem);
4467 
4468 	mutex_lock(&rbd_dev->watch_mutex);
4469 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4470 		__rbd_unregister_watch(rbd_dev);
4471 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4472 
4473 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4474 	}
4475 	mutex_unlock(&rbd_dev->watch_mutex);
4476 }
4477 
4478 /*
4479  * watch_mutex must be locked
4480  */
4481 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4482 {
4483 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4484 	struct ceph_osd_linger_request *handle;
4485 
4486 	rbd_assert(!rbd_dev->watch_handle);
4487 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4488 
4489 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4490 				 &rbd_dev->header_oloc, rbd_watch_cb,
4491 				 rbd_watch_errcb, rbd_dev);
4492 	if (IS_ERR(handle))
4493 		return PTR_ERR(handle);
4494 
4495 	rbd_dev->watch_handle = handle;
4496 	return 0;
4497 }
4498 
4499 /*
4500  * watch_mutex must be locked
4501  */
4502 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4503 {
4504 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505 	int ret;
4506 
4507 	rbd_assert(rbd_dev->watch_handle);
4508 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4509 
4510 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4511 	if (ret)
4512 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4513 
4514 	rbd_dev->watch_handle = NULL;
4515 }
4516 
4517 static int rbd_register_watch(struct rbd_device *rbd_dev)
4518 {
4519 	int ret;
4520 
4521 	mutex_lock(&rbd_dev->watch_mutex);
4522 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4523 	ret = __rbd_register_watch(rbd_dev);
4524 	if (ret)
4525 		goto out;
4526 
4527 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4528 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4529 
4530 out:
4531 	mutex_unlock(&rbd_dev->watch_mutex);
4532 	return ret;
4533 }
4534 
4535 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4536 {
4537 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4538 
4539 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4540 	cancel_work_sync(&rbd_dev->released_lock_work);
4541 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4542 	cancel_work_sync(&rbd_dev->unlock_work);
4543 }
4544 
4545 /*
4546  * header_rwsem must not be held to avoid a deadlock with
4547  * rbd_dev_refresh() when flushing notifies.
4548  */
4549 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4550 {
4551 	cancel_tasks_sync(rbd_dev);
4552 
4553 	mutex_lock(&rbd_dev->watch_mutex);
4554 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4555 		__rbd_unregister_watch(rbd_dev);
4556 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4557 	mutex_unlock(&rbd_dev->watch_mutex);
4558 
4559 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4560 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4561 }
4562 
4563 /*
4564  * lock_rwsem must be held for write
4565  */
4566 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4567 {
4568 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4569 	char cookie[32];
4570 	int ret;
4571 
4572 	if (!rbd_quiesce_lock(rbd_dev))
4573 		return;
4574 
4575 	format_lock_cookie(rbd_dev, cookie);
4576 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4577 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4578 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4579 				  RBD_LOCK_TAG, cookie);
4580 	if (ret) {
4581 		if (ret != -EOPNOTSUPP)
4582 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4583 				 ret);
4584 
4585 		/*
4586 		 * Lock cookie cannot be updated on older OSDs, so do
4587 		 * a manual release and queue an acquire.
4588 		 */
4589 		__rbd_release_lock(rbd_dev);
4590 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4591 	} else {
4592 		__rbd_lock(rbd_dev, cookie);
4593 		wake_lock_waiters(rbd_dev, 0);
4594 	}
4595 }
4596 
4597 static void rbd_reregister_watch(struct work_struct *work)
4598 {
4599 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4600 					    struct rbd_device, watch_dwork);
4601 	int ret;
4602 
4603 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4604 
4605 	mutex_lock(&rbd_dev->watch_mutex);
4606 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4607 		mutex_unlock(&rbd_dev->watch_mutex);
4608 		return;
4609 	}
4610 
4611 	ret = __rbd_register_watch(rbd_dev);
4612 	if (ret) {
4613 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4614 		if (ret != -EBLACKLISTED && ret != -ENOENT) {
4615 			queue_delayed_work(rbd_dev->task_wq,
4616 					   &rbd_dev->watch_dwork,
4617 					   RBD_RETRY_DELAY);
4618 			mutex_unlock(&rbd_dev->watch_mutex);
4619 			return;
4620 		}
4621 
4622 		mutex_unlock(&rbd_dev->watch_mutex);
4623 		down_write(&rbd_dev->lock_rwsem);
4624 		wake_lock_waiters(rbd_dev, ret);
4625 		up_write(&rbd_dev->lock_rwsem);
4626 		return;
4627 	}
4628 
4629 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4630 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4631 	mutex_unlock(&rbd_dev->watch_mutex);
4632 
4633 	down_write(&rbd_dev->lock_rwsem);
4634 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4635 		rbd_reacquire_lock(rbd_dev);
4636 	up_write(&rbd_dev->lock_rwsem);
4637 
4638 	ret = rbd_dev_refresh(rbd_dev);
4639 	if (ret)
4640 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4641 }
4642 
4643 /*
4644  * Synchronous osd object method call.  Returns the number of bytes
4645  * returned in the outbound buffer, or a negative error code.
4646  */
4647 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4648 			     struct ceph_object_id *oid,
4649 			     struct ceph_object_locator *oloc,
4650 			     const char *method_name,
4651 			     const void *outbound,
4652 			     size_t outbound_size,
4653 			     void *inbound,
4654 			     size_t inbound_size)
4655 {
4656 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4657 	struct page *req_page = NULL;
4658 	struct page *reply_page;
4659 	int ret;
4660 
4661 	/*
4662 	 * Method calls are ultimately read operations.  The result
4663 	 * should placed into the inbound buffer provided.  They
4664 	 * also supply outbound data--parameters for the object
4665 	 * method.  Currently if this is present it will be a
4666 	 * snapshot id.
4667 	 */
4668 	if (outbound) {
4669 		if (outbound_size > PAGE_SIZE)
4670 			return -E2BIG;
4671 
4672 		req_page = alloc_page(GFP_KERNEL);
4673 		if (!req_page)
4674 			return -ENOMEM;
4675 
4676 		memcpy(page_address(req_page), outbound, outbound_size);
4677 	}
4678 
4679 	reply_page = alloc_page(GFP_KERNEL);
4680 	if (!reply_page) {
4681 		if (req_page)
4682 			__free_page(req_page);
4683 		return -ENOMEM;
4684 	}
4685 
4686 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4687 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4688 			     &reply_page, &inbound_size);
4689 	if (!ret) {
4690 		memcpy(inbound, page_address(reply_page), inbound_size);
4691 		ret = inbound_size;
4692 	}
4693 
4694 	if (req_page)
4695 		__free_page(req_page);
4696 	__free_page(reply_page);
4697 	return ret;
4698 }
4699 
4700 static void rbd_queue_workfn(struct work_struct *work)
4701 {
4702 	struct rbd_img_request *img_request =
4703 	    container_of(work, struct rbd_img_request, work);
4704 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4705 	enum obj_operation_type op_type = img_request->op_type;
4706 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4707 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4708 	u64 length = blk_rq_bytes(rq);
4709 	u64 mapping_size;
4710 	int result;
4711 
4712 	/* Ignore/skip any zero-length requests */
4713 	if (!length) {
4714 		dout("%s: zero-length request\n", __func__);
4715 		result = 0;
4716 		goto err_img_request;
4717 	}
4718 
4719 	blk_mq_start_request(rq);
4720 
4721 	down_read(&rbd_dev->header_rwsem);
4722 	mapping_size = rbd_dev->mapping.size;
4723 	rbd_img_capture_header(img_request);
4724 	up_read(&rbd_dev->header_rwsem);
4725 
4726 	if (offset + length > mapping_size) {
4727 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4728 			 length, mapping_size);
4729 		result = -EIO;
4730 		goto err_img_request;
4731 	}
4732 
4733 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4734 	     img_request, obj_op_name(op_type), offset, length);
4735 
4736 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4737 		result = rbd_img_fill_nodata(img_request, offset, length);
4738 	else
4739 		result = rbd_img_fill_from_bio(img_request, offset, length,
4740 					       rq->bio);
4741 	if (result)
4742 		goto err_img_request;
4743 
4744 	rbd_img_handle_request(img_request, 0);
4745 	return;
4746 
4747 err_img_request:
4748 	rbd_img_request_destroy(img_request);
4749 	if (result)
4750 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4751 			 obj_op_name(op_type), length, offset, result);
4752 	blk_mq_end_request(rq, errno_to_blk_status(result));
4753 }
4754 
4755 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4756 		const struct blk_mq_queue_data *bd)
4757 {
4758 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4759 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4760 	enum obj_operation_type op_type;
4761 
4762 	switch (req_op(bd->rq)) {
4763 	case REQ_OP_DISCARD:
4764 		op_type = OBJ_OP_DISCARD;
4765 		break;
4766 	case REQ_OP_WRITE_ZEROES:
4767 		op_type = OBJ_OP_ZEROOUT;
4768 		break;
4769 	case REQ_OP_WRITE:
4770 		op_type = OBJ_OP_WRITE;
4771 		break;
4772 	case REQ_OP_READ:
4773 		op_type = OBJ_OP_READ;
4774 		break;
4775 	default:
4776 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4777 		return BLK_STS_IOERR;
4778 	}
4779 
4780 	rbd_img_request_init(img_req, rbd_dev, op_type);
4781 
4782 	if (rbd_img_is_write(img_req)) {
4783 		if (rbd_is_ro(rbd_dev)) {
4784 			rbd_warn(rbd_dev, "%s on read-only mapping",
4785 				 obj_op_name(img_req->op_type));
4786 			return BLK_STS_IOERR;
4787 		}
4788 		rbd_assert(!rbd_is_snap(rbd_dev));
4789 	}
4790 
4791 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4792 	queue_work(rbd_wq, &img_req->work);
4793 	return BLK_STS_OK;
4794 }
4795 
4796 static void rbd_free_disk(struct rbd_device *rbd_dev)
4797 {
4798 	blk_cleanup_queue(rbd_dev->disk->queue);
4799 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4800 	put_disk(rbd_dev->disk);
4801 	rbd_dev->disk = NULL;
4802 }
4803 
4804 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4805 			     struct ceph_object_id *oid,
4806 			     struct ceph_object_locator *oloc,
4807 			     void *buf, int buf_len)
4808 
4809 {
4810 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4811 	struct ceph_osd_request *req;
4812 	struct page **pages;
4813 	int num_pages = calc_pages_for(0, buf_len);
4814 	int ret;
4815 
4816 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4817 	if (!req)
4818 		return -ENOMEM;
4819 
4820 	ceph_oid_copy(&req->r_base_oid, oid);
4821 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4822 	req->r_flags = CEPH_OSD_FLAG_READ;
4823 
4824 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4825 	if (IS_ERR(pages)) {
4826 		ret = PTR_ERR(pages);
4827 		goto out_req;
4828 	}
4829 
4830 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4831 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4832 					 true);
4833 
4834 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4835 	if (ret)
4836 		goto out_req;
4837 
4838 	ceph_osdc_start_request(osdc, req, false);
4839 	ret = ceph_osdc_wait_request(osdc, req);
4840 	if (ret >= 0)
4841 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4842 
4843 out_req:
4844 	ceph_osdc_put_request(req);
4845 	return ret;
4846 }
4847 
4848 /*
4849  * Read the complete header for the given rbd device.  On successful
4850  * return, the rbd_dev->header field will contain up-to-date
4851  * information about the image.
4852  */
4853 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4854 {
4855 	struct rbd_image_header_ondisk *ondisk = NULL;
4856 	u32 snap_count = 0;
4857 	u64 names_size = 0;
4858 	u32 want_count;
4859 	int ret;
4860 
4861 	/*
4862 	 * The complete header will include an array of its 64-bit
4863 	 * snapshot ids, followed by the names of those snapshots as
4864 	 * a contiguous block of NUL-terminated strings.  Note that
4865 	 * the number of snapshots could change by the time we read
4866 	 * it in, in which case we re-read it.
4867 	 */
4868 	do {
4869 		size_t size;
4870 
4871 		kfree(ondisk);
4872 
4873 		size = sizeof (*ondisk);
4874 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4875 		size += names_size;
4876 		ondisk = kmalloc(size, GFP_KERNEL);
4877 		if (!ondisk)
4878 			return -ENOMEM;
4879 
4880 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4881 					&rbd_dev->header_oloc, ondisk, size);
4882 		if (ret < 0)
4883 			goto out;
4884 		if ((size_t)ret < size) {
4885 			ret = -ENXIO;
4886 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4887 				size, ret);
4888 			goto out;
4889 		}
4890 		if (!rbd_dev_ondisk_valid(ondisk)) {
4891 			ret = -ENXIO;
4892 			rbd_warn(rbd_dev, "invalid header");
4893 			goto out;
4894 		}
4895 
4896 		names_size = le64_to_cpu(ondisk->snap_names_len);
4897 		want_count = snap_count;
4898 		snap_count = le32_to_cpu(ondisk->snap_count);
4899 	} while (snap_count != want_count);
4900 
4901 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4902 out:
4903 	kfree(ondisk);
4904 
4905 	return ret;
4906 }
4907 
4908 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4909 {
4910 	sector_t size;
4911 
4912 	/*
4913 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4914 	 * try to update its size.  If REMOVING is set, updating size
4915 	 * is just useless work since the device can't be opened.
4916 	 */
4917 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4918 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4919 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4920 		dout("setting size to %llu sectors", (unsigned long long)size);
4921 		set_capacity(rbd_dev->disk, size);
4922 		revalidate_disk(rbd_dev->disk);
4923 	}
4924 }
4925 
4926 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4927 {
4928 	u64 mapping_size;
4929 	int ret;
4930 
4931 	down_write(&rbd_dev->header_rwsem);
4932 	mapping_size = rbd_dev->mapping.size;
4933 
4934 	ret = rbd_dev_header_info(rbd_dev);
4935 	if (ret)
4936 		goto out;
4937 
4938 	/*
4939 	 * If there is a parent, see if it has disappeared due to the
4940 	 * mapped image getting flattened.
4941 	 */
4942 	if (rbd_dev->parent) {
4943 		ret = rbd_dev_v2_parent_info(rbd_dev);
4944 		if (ret)
4945 			goto out;
4946 	}
4947 
4948 	rbd_assert(!rbd_is_snap(rbd_dev));
4949 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4950 
4951 out:
4952 	up_write(&rbd_dev->header_rwsem);
4953 	if (!ret && mapping_size != rbd_dev->mapping.size)
4954 		rbd_dev_update_size(rbd_dev);
4955 
4956 	return ret;
4957 }
4958 
4959 static const struct blk_mq_ops rbd_mq_ops = {
4960 	.queue_rq	= rbd_queue_rq,
4961 };
4962 
4963 static int rbd_init_disk(struct rbd_device *rbd_dev)
4964 {
4965 	struct gendisk *disk;
4966 	struct request_queue *q;
4967 	unsigned int objset_bytes =
4968 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4969 	int err;
4970 
4971 	/* create gendisk info */
4972 	disk = alloc_disk(single_major ?
4973 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4974 			  RBD_MINORS_PER_MAJOR);
4975 	if (!disk)
4976 		return -ENOMEM;
4977 
4978 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4979 		 rbd_dev->dev_id);
4980 	disk->major = rbd_dev->major;
4981 	disk->first_minor = rbd_dev->minor;
4982 	if (single_major)
4983 		disk->flags |= GENHD_FL_EXT_DEVT;
4984 	disk->fops = &rbd_bd_ops;
4985 	disk->private_data = rbd_dev;
4986 
4987 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4988 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4989 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4990 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4991 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4992 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4993 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4994 
4995 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4996 	if (err)
4997 		goto out_disk;
4998 
4999 	q = blk_mq_init_queue(&rbd_dev->tag_set);
5000 	if (IS_ERR(q)) {
5001 		err = PTR_ERR(q);
5002 		goto out_tag_set;
5003 	}
5004 
5005 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5006 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5007 
5008 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5009 	q->limits.max_sectors = queue_max_hw_sectors(q);
5010 	blk_queue_max_segments(q, USHRT_MAX);
5011 	blk_queue_max_segment_size(q, UINT_MAX);
5012 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5013 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5014 
5015 	if (rbd_dev->opts->trim) {
5016 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5017 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5018 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5019 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5020 	}
5021 
5022 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5023 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5024 
5025 	/*
5026 	 * disk_release() expects a queue ref from add_disk() and will
5027 	 * put it.  Hold an extra ref until add_disk() is called.
5028 	 */
5029 	WARN_ON(!blk_get_queue(q));
5030 	disk->queue = q;
5031 	q->queuedata = rbd_dev;
5032 
5033 	rbd_dev->disk = disk;
5034 
5035 	return 0;
5036 out_tag_set:
5037 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5038 out_disk:
5039 	put_disk(disk);
5040 	return err;
5041 }
5042 
5043 /*
5044   sysfs
5045 */
5046 
5047 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5048 {
5049 	return container_of(dev, struct rbd_device, dev);
5050 }
5051 
5052 static ssize_t rbd_size_show(struct device *dev,
5053 			     struct device_attribute *attr, char *buf)
5054 {
5055 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056 
5057 	return sprintf(buf, "%llu\n",
5058 		(unsigned long long)rbd_dev->mapping.size);
5059 }
5060 
5061 static ssize_t rbd_features_show(struct device *dev,
5062 			     struct device_attribute *attr, char *buf)
5063 {
5064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065 
5066 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5067 }
5068 
5069 static ssize_t rbd_major_show(struct device *dev,
5070 			      struct device_attribute *attr, char *buf)
5071 {
5072 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5073 
5074 	if (rbd_dev->major)
5075 		return sprintf(buf, "%d\n", rbd_dev->major);
5076 
5077 	return sprintf(buf, "(none)\n");
5078 }
5079 
5080 static ssize_t rbd_minor_show(struct device *dev,
5081 			      struct device_attribute *attr, char *buf)
5082 {
5083 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084 
5085 	return sprintf(buf, "%d\n", rbd_dev->minor);
5086 }
5087 
5088 static ssize_t rbd_client_addr_show(struct device *dev,
5089 				    struct device_attribute *attr, char *buf)
5090 {
5091 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5092 	struct ceph_entity_addr *client_addr =
5093 	    ceph_client_addr(rbd_dev->rbd_client->client);
5094 
5095 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5096 		       le32_to_cpu(client_addr->nonce));
5097 }
5098 
5099 static ssize_t rbd_client_id_show(struct device *dev,
5100 				  struct device_attribute *attr, char *buf)
5101 {
5102 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103 
5104 	return sprintf(buf, "client%lld\n",
5105 		       ceph_client_gid(rbd_dev->rbd_client->client));
5106 }
5107 
5108 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5109 				     struct device_attribute *attr, char *buf)
5110 {
5111 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112 
5113 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5114 }
5115 
5116 static ssize_t rbd_config_info_show(struct device *dev,
5117 				    struct device_attribute *attr, char *buf)
5118 {
5119 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120 
5121 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5122 }
5123 
5124 static ssize_t rbd_pool_show(struct device *dev,
5125 			     struct device_attribute *attr, char *buf)
5126 {
5127 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128 
5129 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5130 }
5131 
5132 static ssize_t rbd_pool_id_show(struct device *dev,
5133 			     struct device_attribute *attr, char *buf)
5134 {
5135 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136 
5137 	return sprintf(buf, "%llu\n",
5138 			(unsigned long long) rbd_dev->spec->pool_id);
5139 }
5140 
5141 static ssize_t rbd_pool_ns_show(struct device *dev,
5142 				struct device_attribute *attr, char *buf)
5143 {
5144 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145 
5146 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5147 }
5148 
5149 static ssize_t rbd_name_show(struct device *dev,
5150 			     struct device_attribute *attr, char *buf)
5151 {
5152 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153 
5154 	if (rbd_dev->spec->image_name)
5155 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5156 
5157 	return sprintf(buf, "(unknown)\n");
5158 }
5159 
5160 static ssize_t rbd_image_id_show(struct device *dev,
5161 			     struct device_attribute *attr, char *buf)
5162 {
5163 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164 
5165 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5166 }
5167 
5168 /*
5169  * Shows the name of the currently-mapped snapshot (or
5170  * RBD_SNAP_HEAD_NAME for the base image).
5171  */
5172 static ssize_t rbd_snap_show(struct device *dev,
5173 			     struct device_attribute *attr,
5174 			     char *buf)
5175 {
5176 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5177 
5178 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5179 }
5180 
5181 static ssize_t rbd_snap_id_show(struct device *dev,
5182 				struct device_attribute *attr, char *buf)
5183 {
5184 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5185 
5186 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5187 }
5188 
5189 /*
5190  * For a v2 image, shows the chain of parent images, separated by empty
5191  * lines.  For v1 images or if there is no parent, shows "(no parent
5192  * image)".
5193  */
5194 static ssize_t rbd_parent_show(struct device *dev,
5195 			       struct device_attribute *attr,
5196 			       char *buf)
5197 {
5198 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5199 	ssize_t count = 0;
5200 
5201 	if (!rbd_dev->parent)
5202 		return sprintf(buf, "(no parent image)\n");
5203 
5204 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5205 		struct rbd_spec *spec = rbd_dev->parent_spec;
5206 
5207 		count += sprintf(&buf[count], "%s"
5208 			    "pool_id %llu\npool_name %s\n"
5209 			    "pool_ns %s\n"
5210 			    "image_id %s\nimage_name %s\n"
5211 			    "snap_id %llu\nsnap_name %s\n"
5212 			    "overlap %llu\n",
5213 			    !count ? "" : "\n", /* first? */
5214 			    spec->pool_id, spec->pool_name,
5215 			    spec->pool_ns ?: "",
5216 			    spec->image_id, spec->image_name ?: "(unknown)",
5217 			    spec->snap_id, spec->snap_name,
5218 			    rbd_dev->parent_overlap);
5219 	}
5220 
5221 	return count;
5222 }
5223 
5224 static ssize_t rbd_image_refresh(struct device *dev,
5225 				 struct device_attribute *attr,
5226 				 const char *buf,
5227 				 size_t size)
5228 {
5229 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5230 	int ret;
5231 
5232 	ret = rbd_dev_refresh(rbd_dev);
5233 	if (ret)
5234 		return ret;
5235 
5236 	return size;
5237 }
5238 
5239 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5240 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5241 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5242 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5243 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5244 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5245 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5246 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5247 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5248 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5249 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5250 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5251 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5252 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5253 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5254 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5255 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5256 
5257 static struct attribute *rbd_attrs[] = {
5258 	&dev_attr_size.attr,
5259 	&dev_attr_features.attr,
5260 	&dev_attr_major.attr,
5261 	&dev_attr_minor.attr,
5262 	&dev_attr_client_addr.attr,
5263 	&dev_attr_client_id.attr,
5264 	&dev_attr_cluster_fsid.attr,
5265 	&dev_attr_config_info.attr,
5266 	&dev_attr_pool.attr,
5267 	&dev_attr_pool_id.attr,
5268 	&dev_attr_pool_ns.attr,
5269 	&dev_attr_name.attr,
5270 	&dev_attr_image_id.attr,
5271 	&dev_attr_current_snap.attr,
5272 	&dev_attr_snap_id.attr,
5273 	&dev_attr_parent.attr,
5274 	&dev_attr_refresh.attr,
5275 	NULL
5276 };
5277 
5278 static struct attribute_group rbd_attr_group = {
5279 	.attrs = rbd_attrs,
5280 };
5281 
5282 static const struct attribute_group *rbd_attr_groups[] = {
5283 	&rbd_attr_group,
5284 	NULL
5285 };
5286 
5287 static void rbd_dev_release(struct device *dev);
5288 
5289 static const struct device_type rbd_device_type = {
5290 	.name		= "rbd",
5291 	.groups		= rbd_attr_groups,
5292 	.release	= rbd_dev_release,
5293 };
5294 
5295 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5296 {
5297 	kref_get(&spec->kref);
5298 
5299 	return spec;
5300 }
5301 
5302 static void rbd_spec_free(struct kref *kref);
5303 static void rbd_spec_put(struct rbd_spec *spec)
5304 {
5305 	if (spec)
5306 		kref_put(&spec->kref, rbd_spec_free);
5307 }
5308 
5309 static struct rbd_spec *rbd_spec_alloc(void)
5310 {
5311 	struct rbd_spec *spec;
5312 
5313 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5314 	if (!spec)
5315 		return NULL;
5316 
5317 	spec->pool_id = CEPH_NOPOOL;
5318 	spec->snap_id = CEPH_NOSNAP;
5319 	kref_init(&spec->kref);
5320 
5321 	return spec;
5322 }
5323 
5324 static void rbd_spec_free(struct kref *kref)
5325 {
5326 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5327 
5328 	kfree(spec->pool_name);
5329 	kfree(spec->pool_ns);
5330 	kfree(spec->image_id);
5331 	kfree(spec->image_name);
5332 	kfree(spec->snap_name);
5333 	kfree(spec);
5334 }
5335 
5336 static void rbd_dev_free(struct rbd_device *rbd_dev)
5337 {
5338 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5339 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5340 
5341 	ceph_oid_destroy(&rbd_dev->header_oid);
5342 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5343 	kfree(rbd_dev->config_info);
5344 
5345 	rbd_put_client(rbd_dev->rbd_client);
5346 	rbd_spec_put(rbd_dev->spec);
5347 	kfree(rbd_dev->opts);
5348 	kfree(rbd_dev);
5349 }
5350 
5351 static void rbd_dev_release(struct device *dev)
5352 {
5353 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5354 	bool need_put = !!rbd_dev->opts;
5355 
5356 	if (need_put) {
5357 		destroy_workqueue(rbd_dev->task_wq);
5358 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5359 	}
5360 
5361 	rbd_dev_free(rbd_dev);
5362 
5363 	/*
5364 	 * This is racy, but way better than putting module outside of
5365 	 * the release callback.  The race window is pretty small, so
5366 	 * doing something similar to dm (dm-builtin.c) is overkill.
5367 	 */
5368 	if (need_put)
5369 		module_put(THIS_MODULE);
5370 }
5371 
5372 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5373 					   struct rbd_spec *spec)
5374 {
5375 	struct rbd_device *rbd_dev;
5376 
5377 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5378 	if (!rbd_dev)
5379 		return NULL;
5380 
5381 	spin_lock_init(&rbd_dev->lock);
5382 	INIT_LIST_HEAD(&rbd_dev->node);
5383 	init_rwsem(&rbd_dev->header_rwsem);
5384 
5385 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5386 	ceph_oid_init(&rbd_dev->header_oid);
5387 	rbd_dev->header_oloc.pool = spec->pool_id;
5388 	if (spec->pool_ns) {
5389 		WARN_ON(!*spec->pool_ns);
5390 		rbd_dev->header_oloc.pool_ns =
5391 		    ceph_find_or_create_string(spec->pool_ns,
5392 					       strlen(spec->pool_ns));
5393 	}
5394 
5395 	mutex_init(&rbd_dev->watch_mutex);
5396 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5397 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5398 
5399 	init_rwsem(&rbd_dev->lock_rwsem);
5400 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5401 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5402 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5403 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5404 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5405 	spin_lock_init(&rbd_dev->lock_lists_lock);
5406 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5407 	INIT_LIST_HEAD(&rbd_dev->running_list);
5408 	init_completion(&rbd_dev->acquire_wait);
5409 	init_completion(&rbd_dev->releasing_wait);
5410 
5411 	spin_lock_init(&rbd_dev->object_map_lock);
5412 
5413 	rbd_dev->dev.bus = &rbd_bus_type;
5414 	rbd_dev->dev.type = &rbd_device_type;
5415 	rbd_dev->dev.parent = &rbd_root_dev;
5416 	device_initialize(&rbd_dev->dev);
5417 
5418 	rbd_dev->rbd_client = rbdc;
5419 	rbd_dev->spec = spec;
5420 
5421 	return rbd_dev;
5422 }
5423 
5424 /*
5425  * Create a mapping rbd_dev.
5426  */
5427 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5428 					 struct rbd_spec *spec,
5429 					 struct rbd_options *opts)
5430 {
5431 	struct rbd_device *rbd_dev;
5432 
5433 	rbd_dev = __rbd_dev_create(rbdc, spec);
5434 	if (!rbd_dev)
5435 		return NULL;
5436 
5437 	rbd_dev->opts = opts;
5438 
5439 	/* get an id and fill in device name */
5440 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5441 					 minor_to_rbd_dev_id(1 << MINORBITS),
5442 					 GFP_KERNEL);
5443 	if (rbd_dev->dev_id < 0)
5444 		goto fail_rbd_dev;
5445 
5446 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5447 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5448 						   rbd_dev->name);
5449 	if (!rbd_dev->task_wq)
5450 		goto fail_dev_id;
5451 
5452 	/* we have a ref from do_rbd_add() */
5453 	__module_get(THIS_MODULE);
5454 
5455 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5456 	return rbd_dev;
5457 
5458 fail_dev_id:
5459 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5460 fail_rbd_dev:
5461 	rbd_dev_free(rbd_dev);
5462 	return NULL;
5463 }
5464 
5465 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5466 {
5467 	if (rbd_dev)
5468 		put_device(&rbd_dev->dev);
5469 }
5470 
5471 /*
5472  * Get the size and object order for an image snapshot, or if
5473  * snap_id is CEPH_NOSNAP, gets this information for the base
5474  * image.
5475  */
5476 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5477 				u8 *order, u64 *snap_size)
5478 {
5479 	__le64 snapid = cpu_to_le64(snap_id);
5480 	int ret;
5481 	struct {
5482 		u8 order;
5483 		__le64 size;
5484 	} __attribute__ ((packed)) size_buf = { 0 };
5485 
5486 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5487 				  &rbd_dev->header_oloc, "get_size",
5488 				  &snapid, sizeof(snapid),
5489 				  &size_buf, sizeof(size_buf));
5490 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5491 	if (ret < 0)
5492 		return ret;
5493 	if (ret < sizeof (size_buf))
5494 		return -ERANGE;
5495 
5496 	if (order) {
5497 		*order = size_buf.order;
5498 		dout("  order %u", (unsigned int)*order);
5499 	}
5500 	*snap_size = le64_to_cpu(size_buf.size);
5501 
5502 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5503 		(unsigned long long)snap_id,
5504 		(unsigned long long)*snap_size);
5505 
5506 	return 0;
5507 }
5508 
5509 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5510 {
5511 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5512 					&rbd_dev->header.obj_order,
5513 					&rbd_dev->header.image_size);
5514 }
5515 
5516 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5517 {
5518 	size_t size;
5519 	void *reply_buf;
5520 	int ret;
5521 	void *p;
5522 
5523 	/* Response will be an encoded string, which includes a length */
5524 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5525 	reply_buf = kzalloc(size, GFP_KERNEL);
5526 	if (!reply_buf)
5527 		return -ENOMEM;
5528 
5529 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5530 				  &rbd_dev->header_oloc, "get_object_prefix",
5531 				  NULL, 0, reply_buf, size);
5532 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5533 	if (ret < 0)
5534 		goto out;
5535 
5536 	p = reply_buf;
5537 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5538 						p + ret, NULL, GFP_NOIO);
5539 	ret = 0;
5540 
5541 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5542 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5543 		rbd_dev->header.object_prefix = NULL;
5544 	} else {
5545 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5546 	}
5547 out:
5548 	kfree(reply_buf);
5549 
5550 	return ret;
5551 }
5552 
5553 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5554 				     bool read_only, u64 *snap_features)
5555 {
5556 	struct {
5557 		__le64 snap_id;
5558 		u8 read_only;
5559 	} features_in;
5560 	struct {
5561 		__le64 features;
5562 		__le64 incompat;
5563 	} __attribute__ ((packed)) features_buf = { 0 };
5564 	u64 unsup;
5565 	int ret;
5566 
5567 	features_in.snap_id = cpu_to_le64(snap_id);
5568 	features_in.read_only = read_only;
5569 
5570 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5571 				  &rbd_dev->header_oloc, "get_features",
5572 				  &features_in, sizeof(features_in),
5573 				  &features_buf, sizeof(features_buf));
5574 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5575 	if (ret < 0)
5576 		return ret;
5577 	if (ret < sizeof (features_buf))
5578 		return -ERANGE;
5579 
5580 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5581 	if (unsup) {
5582 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5583 			 unsup);
5584 		return -ENXIO;
5585 	}
5586 
5587 	*snap_features = le64_to_cpu(features_buf.features);
5588 
5589 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5590 		(unsigned long long)snap_id,
5591 		(unsigned long long)*snap_features,
5592 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5593 
5594 	return 0;
5595 }
5596 
5597 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5598 {
5599 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5600 					 rbd_is_ro(rbd_dev),
5601 					 &rbd_dev->header.features);
5602 }
5603 
5604 /*
5605  * These are generic image flags, but since they are used only for
5606  * object map, store them in rbd_dev->object_map_flags.
5607  *
5608  * For the same reason, this function is called only on object map
5609  * (re)load and not on header refresh.
5610  */
5611 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5612 {
5613 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5614 	__le64 flags;
5615 	int ret;
5616 
5617 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5618 				  &rbd_dev->header_oloc, "get_flags",
5619 				  &snapid, sizeof(snapid),
5620 				  &flags, sizeof(flags));
5621 	if (ret < 0)
5622 		return ret;
5623 	if (ret < sizeof(flags))
5624 		return -EBADMSG;
5625 
5626 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5627 	return 0;
5628 }
5629 
5630 struct parent_image_info {
5631 	u64		pool_id;
5632 	const char	*pool_ns;
5633 	const char	*image_id;
5634 	u64		snap_id;
5635 
5636 	bool		has_overlap;
5637 	u64		overlap;
5638 };
5639 
5640 /*
5641  * The caller is responsible for @pii.
5642  */
5643 static int decode_parent_image_spec(void **p, void *end,
5644 				    struct parent_image_info *pii)
5645 {
5646 	u8 struct_v;
5647 	u32 struct_len;
5648 	int ret;
5649 
5650 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5651 				  &struct_v, &struct_len);
5652 	if (ret)
5653 		return ret;
5654 
5655 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5656 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5657 	if (IS_ERR(pii->pool_ns)) {
5658 		ret = PTR_ERR(pii->pool_ns);
5659 		pii->pool_ns = NULL;
5660 		return ret;
5661 	}
5662 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5663 	if (IS_ERR(pii->image_id)) {
5664 		ret = PTR_ERR(pii->image_id);
5665 		pii->image_id = NULL;
5666 		return ret;
5667 	}
5668 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5669 	return 0;
5670 
5671 e_inval:
5672 	return -EINVAL;
5673 }
5674 
5675 static int __get_parent_info(struct rbd_device *rbd_dev,
5676 			     struct page *req_page,
5677 			     struct page *reply_page,
5678 			     struct parent_image_info *pii)
5679 {
5680 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5681 	size_t reply_len = PAGE_SIZE;
5682 	void *p, *end;
5683 	int ret;
5684 
5685 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5686 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5687 			     req_page, sizeof(u64), &reply_page, &reply_len);
5688 	if (ret)
5689 		return ret == -EOPNOTSUPP ? 1 : ret;
5690 
5691 	p = page_address(reply_page);
5692 	end = p + reply_len;
5693 	ret = decode_parent_image_spec(&p, end, pii);
5694 	if (ret)
5695 		return ret;
5696 
5697 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5698 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5699 			     req_page, sizeof(u64), &reply_page, &reply_len);
5700 	if (ret)
5701 		return ret;
5702 
5703 	p = page_address(reply_page);
5704 	end = p + reply_len;
5705 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5706 	if (pii->has_overlap)
5707 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5708 
5709 	return 0;
5710 
5711 e_inval:
5712 	return -EINVAL;
5713 }
5714 
5715 /*
5716  * The caller is responsible for @pii.
5717  */
5718 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5719 				    struct page *req_page,
5720 				    struct page *reply_page,
5721 				    struct parent_image_info *pii)
5722 {
5723 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5724 	size_t reply_len = PAGE_SIZE;
5725 	void *p, *end;
5726 	int ret;
5727 
5728 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5729 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5730 			     req_page, sizeof(u64), &reply_page, &reply_len);
5731 	if (ret)
5732 		return ret;
5733 
5734 	p = page_address(reply_page);
5735 	end = p + reply_len;
5736 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5737 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5738 	if (IS_ERR(pii->image_id)) {
5739 		ret = PTR_ERR(pii->image_id);
5740 		pii->image_id = NULL;
5741 		return ret;
5742 	}
5743 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5744 	pii->has_overlap = true;
5745 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5746 
5747 	return 0;
5748 
5749 e_inval:
5750 	return -EINVAL;
5751 }
5752 
5753 static int get_parent_info(struct rbd_device *rbd_dev,
5754 			   struct parent_image_info *pii)
5755 {
5756 	struct page *req_page, *reply_page;
5757 	void *p;
5758 	int ret;
5759 
5760 	req_page = alloc_page(GFP_KERNEL);
5761 	if (!req_page)
5762 		return -ENOMEM;
5763 
5764 	reply_page = alloc_page(GFP_KERNEL);
5765 	if (!reply_page) {
5766 		__free_page(req_page);
5767 		return -ENOMEM;
5768 	}
5769 
5770 	p = page_address(req_page);
5771 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5772 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5773 	if (ret > 0)
5774 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5775 					       pii);
5776 
5777 	__free_page(req_page);
5778 	__free_page(reply_page);
5779 	return ret;
5780 }
5781 
5782 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5783 {
5784 	struct rbd_spec *parent_spec;
5785 	struct parent_image_info pii = { 0 };
5786 	int ret;
5787 
5788 	parent_spec = rbd_spec_alloc();
5789 	if (!parent_spec)
5790 		return -ENOMEM;
5791 
5792 	ret = get_parent_info(rbd_dev, &pii);
5793 	if (ret)
5794 		goto out_err;
5795 
5796 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5797 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5798 	     pii.has_overlap, pii.overlap);
5799 
5800 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5801 		/*
5802 		 * Either the parent never existed, or we have
5803 		 * record of it but the image got flattened so it no
5804 		 * longer has a parent.  When the parent of a
5805 		 * layered image disappears we immediately set the
5806 		 * overlap to 0.  The effect of this is that all new
5807 		 * requests will be treated as if the image had no
5808 		 * parent.
5809 		 *
5810 		 * If !pii.has_overlap, the parent image spec is not
5811 		 * applicable.  It's there to avoid duplication in each
5812 		 * snapshot record.
5813 		 */
5814 		if (rbd_dev->parent_overlap) {
5815 			rbd_dev->parent_overlap = 0;
5816 			rbd_dev_parent_put(rbd_dev);
5817 			pr_info("%s: clone image has been flattened\n",
5818 				rbd_dev->disk->disk_name);
5819 		}
5820 
5821 		goto out;	/* No parent?  No problem. */
5822 	}
5823 
5824 	/* The ceph file layout needs to fit pool id in 32 bits */
5825 
5826 	ret = -EIO;
5827 	if (pii.pool_id > (u64)U32_MAX) {
5828 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5829 			(unsigned long long)pii.pool_id, U32_MAX);
5830 		goto out_err;
5831 	}
5832 
5833 	/*
5834 	 * The parent won't change (except when the clone is
5835 	 * flattened, already handled that).  So we only need to
5836 	 * record the parent spec we have not already done so.
5837 	 */
5838 	if (!rbd_dev->parent_spec) {
5839 		parent_spec->pool_id = pii.pool_id;
5840 		if (pii.pool_ns && *pii.pool_ns) {
5841 			parent_spec->pool_ns = pii.pool_ns;
5842 			pii.pool_ns = NULL;
5843 		}
5844 		parent_spec->image_id = pii.image_id;
5845 		pii.image_id = NULL;
5846 		parent_spec->snap_id = pii.snap_id;
5847 
5848 		rbd_dev->parent_spec = parent_spec;
5849 		parent_spec = NULL;	/* rbd_dev now owns this */
5850 	}
5851 
5852 	/*
5853 	 * We always update the parent overlap.  If it's zero we issue
5854 	 * a warning, as we will proceed as if there was no parent.
5855 	 */
5856 	if (!pii.overlap) {
5857 		if (parent_spec) {
5858 			/* refresh, careful to warn just once */
5859 			if (rbd_dev->parent_overlap)
5860 				rbd_warn(rbd_dev,
5861 				    "clone now standalone (overlap became 0)");
5862 		} else {
5863 			/* initial probe */
5864 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5865 		}
5866 	}
5867 	rbd_dev->parent_overlap = pii.overlap;
5868 
5869 out:
5870 	ret = 0;
5871 out_err:
5872 	kfree(pii.pool_ns);
5873 	kfree(pii.image_id);
5874 	rbd_spec_put(parent_spec);
5875 	return ret;
5876 }
5877 
5878 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5879 {
5880 	struct {
5881 		__le64 stripe_unit;
5882 		__le64 stripe_count;
5883 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5884 	size_t size = sizeof (striping_info_buf);
5885 	void *p;
5886 	int ret;
5887 
5888 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5889 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5890 				NULL, 0, &striping_info_buf, size);
5891 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5892 	if (ret < 0)
5893 		return ret;
5894 	if (ret < size)
5895 		return -ERANGE;
5896 
5897 	p = &striping_info_buf;
5898 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5899 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5900 	return 0;
5901 }
5902 
5903 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5904 {
5905 	__le64 data_pool_id;
5906 	int ret;
5907 
5908 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5909 				  &rbd_dev->header_oloc, "get_data_pool",
5910 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5911 	if (ret < 0)
5912 		return ret;
5913 	if (ret < sizeof(data_pool_id))
5914 		return -EBADMSG;
5915 
5916 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5917 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5918 	return 0;
5919 }
5920 
5921 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5922 {
5923 	CEPH_DEFINE_OID_ONSTACK(oid);
5924 	size_t image_id_size;
5925 	char *image_id;
5926 	void *p;
5927 	void *end;
5928 	size_t size;
5929 	void *reply_buf = NULL;
5930 	size_t len = 0;
5931 	char *image_name = NULL;
5932 	int ret;
5933 
5934 	rbd_assert(!rbd_dev->spec->image_name);
5935 
5936 	len = strlen(rbd_dev->spec->image_id);
5937 	image_id_size = sizeof (__le32) + len;
5938 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5939 	if (!image_id)
5940 		return NULL;
5941 
5942 	p = image_id;
5943 	end = image_id + image_id_size;
5944 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5945 
5946 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5947 	reply_buf = kmalloc(size, GFP_KERNEL);
5948 	if (!reply_buf)
5949 		goto out;
5950 
5951 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5952 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5953 				  "dir_get_name", image_id, image_id_size,
5954 				  reply_buf, size);
5955 	if (ret < 0)
5956 		goto out;
5957 	p = reply_buf;
5958 	end = reply_buf + ret;
5959 
5960 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5961 	if (IS_ERR(image_name))
5962 		image_name = NULL;
5963 	else
5964 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5965 out:
5966 	kfree(reply_buf);
5967 	kfree(image_id);
5968 
5969 	return image_name;
5970 }
5971 
5972 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5973 {
5974 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5975 	const char *snap_name;
5976 	u32 which = 0;
5977 
5978 	/* Skip over names until we find the one we are looking for */
5979 
5980 	snap_name = rbd_dev->header.snap_names;
5981 	while (which < snapc->num_snaps) {
5982 		if (!strcmp(name, snap_name))
5983 			return snapc->snaps[which];
5984 		snap_name += strlen(snap_name) + 1;
5985 		which++;
5986 	}
5987 	return CEPH_NOSNAP;
5988 }
5989 
5990 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5991 {
5992 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5993 	u32 which;
5994 	bool found = false;
5995 	u64 snap_id;
5996 
5997 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5998 		const char *snap_name;
5999 
6000 		snap_id = snapc->snaps[which];
6001 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6002 		if (IS_ERR(snap_name)) {
6003 			/* ignore no-longer existing snapshots */
6004 			if (PTR_ERR(snap_name) == -ENOENT)
6005 				continue;
6006 			else
6007 				break;
6008 		}
6009 		found = !strcmp(name, snap_name);
6010 		kfree(snap_name);
6011 	}
6012 	return found ? snap_id : CEPH_NOSNAP;
6013 }
6014 
6015 /*
6016  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6017  * no snapshot by that name is found, or if an error occurs.
6018  */
6019 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6020 {
6021 	if (rbd_dev->image_format == 1)
6022 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6023 
6024 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6025 }
6026 
6027 /*
6028  * An image being mapped will have everything but the snap id.
6029  */
6030 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6031 {
6032 	struct rbd_spec *spec = rbd_dev->spec;
6033 
6034 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6035 	rbd_assert(spec->image_id && spec->image_name);
6036 	rbd_assert(spec->snap_name);
6037 
6038 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6039 		u64 snap_id;
6040 
6041 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6042 		if (snap_id == CEPH_NOSNAP)
6043 			return -ENOENT;
6044 
6045 		spec->snap_id = snap_id;
6046 	} else {
6047 		spec->snap_id = CEPH_NOSNAP;
6048 	}
6049 
6050 	return 0;
6051 }
6052 
6053 /*
6054  * A parent image will have all ids but none of the names.
6055  *
6056  * All names in an rbd spec are dynamically allocated.  It's OK if we
6057  * can't figure out the name for an image id.
6058  */
6059 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6060 {
6061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6062 	struct rbd_spec *spec = rbd_dev->spec;
6063 	const char *pool_name;
6064 	const char *image_name;
6065 	const char *snap_name;
6066 	int ret;
6067 
6068 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6069 	rbd_assert(spec->image_id);
6070 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6071 
6072 	/* Get the pool name; we have to make our own copy of this */
6073 
6074 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6075 	if (!pool_name) {
6076 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6077 		return -EIO;
6078 	}
6079 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6080 	if (!pool_name)
6081 		return -ENOMEM;
6082 
6083 	/* Fetch the image name; tolerate failure here */
6084 
6085 	image_name = rbd_dev_image_name(rbd_dev);
6086 	if (!image_name)
6087 		rbd_warn(rbd_dev, "unable to get image name");
6088 
6089 	/* Fetch the snapshot name */
6090 
6091 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6092 	if (IS_ERR(snap_name)) {
6093 		ret = PTR_ERR(snap_name);
6094 		goto out_err;
6095 	}
6096 
6097 	spec->pool_name = pool_name;
6098 	spec->image_name = image_name;
6099 	spec->snap_name = snap_name;
6100 
6101 	return 0;
6102 
6103 out_err:
6104 	kfree(image_name);
6105 	kfree(pool_name);
6106 	return ret;
6107 }
6108 
6109 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6110 {
6111 	size_t size;
6112 	int ret;
6113 	void *reply_buf;
6114 	void *p;
6115 	void *end;
6116 	u64 seq;
6117 	u32 snap_count;
6118 	struct ceph_snap_context *snapc;
6119 	u32 i;
6120 
6121 	/*
6122 	 * We'll need room for the seq value (maximum snapshot id),
6123 	 * snapshot count, and array of that many snapshot ids.
6124 	 * For now we have a fixed upper limit on the number we're
6125 	 * prepared to receive.
6126 	 */
6127 	size = sizeof (__le64) + sizeof (__le32) +
6128 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6129 	reply_buf = kzalloc(size, GFP_KERNEL);
6130 	if (!reply_buf)
6131 		return -ENOMEM;
6132 
6133 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6134 				  &rbd_dev->header_oloc, "get_snapcontext",
6135 				  NULL, 0, reply_buf, size);
6136 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6137 	if (ret < 0)
6138 		goto out;
6139 
6140 	p = reply_buf;
6141 	end = reply_buf + ret;
6142 	ret = -ERANGE;
6143 	ceph_decode_64_safe(&p, end, seq, out);
6144 	ceph_decode_32_safe(&p, end, snap_count, out);
6145 
6146 	/*
6147 	 * Make sure the reported number of snapshot ids wouldn't go
6148 	 * beyond the end of our buffer.  But before checking that,
6149 	 * make sure the computed size of the snapshot context we
6150 	 * allocate is representable in a size_t.
6151 	 */
6152 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6153 				 / sizeof (u64)) {
6154 		ret = -EINVAL;
6155 		goto out;
6156 	}
6157 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6158 		goto out;
6159 	ret = 0;
6160 
6161 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6162 	if (!snapc) {
6163 		ret = -ENOMEM;
6164 		goto out;
6165 	}
6166 	snapc->seq = seq;
6167 	for (i = 0; i < snap_count; i++)
6168 		snapc->snaps[i] = ceph_decode_64(&p);
6169 
6170 	ceph_put_snap_context(rbd_dev->header.snapc);
6171 	rbd_dev->header.snapc = snapc;
6172 
6173 	dout("  snap context seq = %llu, snap_count = %u\n",
6174 		(unsigned long long)seq, (unsigned int)snap_count);
6175 out:
6176 	kfree(reply_buf);
6177 
6178 	return ret;
6179 }
6180 
6181 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6182 					u64 snap_id)
6183 {
6184 	size_t size;
6185 	void *reply_buf;
6186 	__le64 snapid;
6187 	int ret;
6188 	void *p;
6189 	void *end;
6190 	char *snap_name;
6191 
6192 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6193 	reply_buf = kmalloc(size, GFP_KERNEL);
6194 	if (!reply_buf)
6195 		return ERR_PTR(-ENOMEM);
6196 
6197 	snapid = cpu_to_le64(snap_id);
6198 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6199 				  &rbd_dev->header_oloc, "get_snapshot_name",
6200 				  &snapid, sizeof(snapid), reply_buf, size);
6201 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6202 	if (ret < 0) {
6203 		snap_name = ERR_PTR(ret);
6204 		goto out;
6205 	}
6206 
6207 	p = reply_buf;
6208 	end = reply_buf + ret;
6209 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6210 	if (IS_ERR(snap_name))
6211 		goto out;
6212 
6213 	dout("  snap_id 0x%016llx snap_name = %s\n",
6214 		(unsigned long long)snap_id, snap_name);
6215 out:
6216 	kfree(reply_buf);
6217 
6218 	return snap_name;
6219 }
6220 
6221 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6222 {
6223 	bool first_time = rbd_dev->header.object_prefix == NULL;
6224 	int ret;
6225 
6226 	ret = rbd_dev_v2_image_size(rbd_dev);
6227 	if (ret)
6228 		return ret;
6229 
6230 	if (first_time) {
6231 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6232 		if (ret)
6233 			return ret;
6234 	}
6235 
6236 	ret = rbd_dev_v2_snap_context(rbd_dev);
6237 	if (ret && first_time) {
6238 		kfree(rbd_dev->header.object_prefix);
6239 		rbd_dev->header.object_prefix = NULL;
6240 	}
6241 
6242 	return ret;
6243 }
6244 
6245 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6246 {
6247 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6248 
6249 	if (rbd_dev->image_format == 1)
6250 		return rbd_dev_v1_header_info(rbd_dev);
6251 
6252 	return rbd_dev_v2_header_info(rbd_dev);
6253 }
6254 
6255 /*
6256  * Skips over white space at *buf, and updates *buf to point to the
6257  * first found non-space character (if any). Returns the length of
6258  * the token (string of non-white space characters) found.  Note
6259  * that *buf must be terminated with '\0'.
6260  */
6261 static inline size_t next_token(const char **buf)
6262 {
6263         /*
6264         * These are the characters that produce nonzero for
6265         * isspace() in the "C" and "POSIX" locales.
6266         */
6267         const char *spaces = " \f\n\r\t\v";
6268 
6269         *buf += strspn(*buf, spaces);	/* Find start of token */
6270 
6271 	return strcspn(*buf, spaces);   /* Return token length */
6272 }
6273 
6274 /*
6275  * Finds the next token in *buf, dynamically allocates a buffer big
6276  * enough to hold a copy of it, and copies the token into the new
6277  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6278  * that a duplicate buffer is created even for a zero-length token.
6279  *
6280  * Returns a pointer to the newly-allocated duplicate, or a null
6281  * pointer if memory for the duplicate was not available.  If
6282  * the lenp argument is a non-null pointer, the length of the token
6283  * (not including the '\0') is returned in *lenp.
6284  *
6285  * If successful, the *buf pointer will be updated to point beyond
6286  * the end of the found token.
6287  *
6288  * Note: uses GFP_KERNEL for allocation.
6289  */
6290 static inline char *dup_token(const char **buf, size_t *lenp)
6291 {
6292 	char *dup;
6293 	size_t len;
6294 
6295 	len = next_token(buf);
6296 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6297 	if (!dup)
6298 		return NULL;
6299 	*(dup + len) = '\0';
6300 	*buf += len;
6301 
6302 	if (lenp)
6303 		*lenp = len;
6304 
6305 	return dup;
6306 }
6307 
6308 static int rbd_parse_param(struct fs_parameter *param,
6309 			    struct rbd_parse_opts_ctx *pctx)
6310 {
6311 	struct rbd_options *opt = pctx->opts;
6312 	struct fs_parse_result result;
6313 	struct p_log log = {.prefix = "rbd"};
6314 	int token, ret;
6315 
6316 	ret = ceph_parse_param(param, pctx->copts, NULL);
6317 	if (ret != -ENOPARAM)
6318 		return ret;
6319 
6320 	token = __fs_parse(&log, rbd_parameters, param, &result);
6321 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6322 	if (token < 0) {
6323 		if (token == -ENOPARAM)
6324 			return inval_plog(&log, "Unknown parameter '%s'",
6325 					  param->key);
6326 		return token;
6327 	}
6328 
6329 	switch (token) {
6330 	case Opt_queue_depth:
6331 		if (result.uint_32 < 1)
6332 			goto out_of_range;
6333 		opt->queue_depth = result.uint_32;
6334 		break;
6335 	case Opt_alloc_size:
6336 		if (result.uint_32 < SECTOR_SIZE)
6337 			goto out_of_range;
6338 		if (!is_power_of_2(result.uint_32))
6339 			return inval_plog(&log, "alloc_size must be a power of 2");
6340 		opt->alloc_size = result.uint_32;
6341 		break;
6342 	case Opt_lock_timeout:
6343 		/* 0 is "wait forever" (i.e. infinite timeout) */
6344 		if (result.uint_32 > INT_MAX / 1000)
6345 			goto out_of_range;
6346 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6347 		break;
6348 	case Opt_pool_ns:
6349 		kfree(pctx->spec->pool_ns);
6350 		pctx->spec->pool_ns = param->string;
6351 		param->string = NULL;
6352 		break;
6353 	case Opt_compression_hint:
6354 		switch (result.uint_32) {
6355 		case Opt_compression_hint_none:
6356 			opt->alloc_hint_flags &=
6357 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6358 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6359 			break;
6360 		case Opt_compression_hint_compressible:
6361 			opt->alloc_hint_flags |=
6362 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6363 			opt->alloc_hint_flags &=
6364 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6365 			break;
6366 		case Opt_compression_hint_incompressible:
6367 			opt->alloc_hint_flags |=
6368 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6369 			opt->alloc_hint_flags &=
6370 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371 			break;
6372 		default:
6373 			BUG();
6374 		}
6375 		break;
6376 	case Opt_read_only:
6377 		opt->read_only = true;
6378 		break;
6379 	case Opt_read_write:
6380 		opt->read_only = false;
6381 		break;
6382 	case Opt_lock_on_read:
6383 		opt->lock_on_read = true;
6384 		break;
6385 	case Opt_exclusive:
6386 		opt->exclusive = true;
6387 		break;
6388 	case Opt_notrim:
6389 		opt->trim = false;
6390 		break;
6391 	default:
6392 		BUG();
6393 	}
6394 
6395 	return 0;
6396 
6397 out_of_range:
6398 	return inval_plog(&log, "%s out of range", param->key);
6399 }
6400 
6401 /*
6402  * This duplicates most of generic_parse_monolithic(), untying it from
6403  * fs_context and skipping standard superblock and security options.
6404  */
6405 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6406 {
6407 	char *key;
6408 	int ret = 0;
6409 
6410 	dout("%s '%s'\n", __func__, options);
6411 	while ((key = strsep(&options, ",")) != NULL) {
6412 		if (*key) {
6413 			struct fs_parameter param = {
6414 				.key	= key,
6415 				.type	= fs_value_is_flag,
6416 			};
6417 			char *value = strchr(key, '=');
6418 			size_t v_len = 0;
6419 
6420 			if (value) {
6421 				if (value == key)
6422 					continue;
6423 				*value++ = 0;
6424 				v_len = strlen(value);
6425 				param.string = kmemdup_nul(value, v_len,
6426 							   GFP_KERNEL);
6427 				if (!param.string)
6428 					return -ENOMEM;
6429 				param.type = fs_value_is_string;
6430 			}
6431 			param.size = v_len;
6432 
6433 			ret = rbd_parse_param(&param, pctx);
6434 			kfree(param.string);
6435 			if (ret)
6436 				break;
6437 		}
6438 	}
6439 
6440 	return ret;
6441 }
6442 
6443 /*
6444  * Parse the options provided for an "rbd add" (i.e., rbd image
6445  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6446  * and the data written is passed here via a NUL-terminated buffer.
6447  * Returns 0 if successful or an error code otherwise.
6448  *
6449  * The information extracted from these options is recorded in
6450  * the other parameters which return dynamically-allocated
6451  * structures:
6452  *  ceph_opts
6453  *      The address of a pointer that will refer to a ceph options
6454  *      structure.  Caller must release the returned pointer using
6455  *      ceph_destroy_options() when it is no longer needed.
6456  *  rbd_opts
6457  *	Address of an rbd options pointer.  Fully initialized by
6458  *	this function; caller must release with kfree().
6459  *  spec
6460  *	Address of an rbd image specification pointer.  Fully
6461  *	initialized by this function based on parsed options.
6462  *	Caller must release with rbd_spec_put().
6463  *
6464  * The options passed take this form:
6465  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6466  * where:
6467  *  <mon_addrs>
6468  *      A comma-separated list of one or more monitor addresses.
6469  *      A monitor address is an ip address, optionally followed
6470  *      by a port number (separated by a colon).
6471  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6472  *  <options>
6473  *      A comma-separated list of ceph and/or rbd options.
6474  *  <pool_name>
6475  *      The name of the rados pool containing the rbd image.
6476  *  <image_name>
6477  *      The name of the image in that pool to map.
6478  *  <snap_id>
6479  *      An optional snapshot id.  If provided, the mapping will
6480  *      present data from the image at the time that snapshot was
6481  *      created.  The image head is used if no snapshot id is
6482  *      provided.  Snapshot mappings are always read-only.
6483  */
6484 static int rbd_add_parse_args(const char *buf,
6485 				struct ceph_options **ceph_opts,
6486 				struct rbd_options **opts,
6487 				struct rbd_spec **rbd_spec)
6488 {
6489 	size_t len;
6490 	char *options;
6491 	const char *mon_addrs;
6492 	char *snap_name;
6493 	size_t mon_addrs_size;
6494 	struct rbd_parse_opts_ctx pctx = { 0 };
6495 	int ret;
6496 
6497 	/* The first four tokens are required */
6498 
6499 	len = next_token(&buf);
6500 	if (!len) {
6501 		rbd_warn(NULL, "no monitor address(es) provided");
6502 		return -EINVAL;
6503 	}
6504 	mon_addrs = buf;
6505 	mon_addrs_size = len;
6506 	buf += len;
6507 
6508 	ret = -EINVAL;
6509 	options = dup_token(&buf, NULL);
6510 	if (!options)
6511 		return -ENOMEM;
6512 	if (!*options) {
6513 		rbd_warn(NULL, "no options provided");
6514 		goto out_err;
6515 	}
6516 
6517 	pctx.spec = rbd_spec_alloc();
6518 	if (!pctx.spec)
6519 		goto out_mem;
6520 
6521 	pctx.spec->pool_name = dup_token(&buf, NULL);
6522 	if (!pctx.spec->pool_name)
6523 		goto out_mem;
6524 	if (!*pctx.spec->pool_name) {
6525 		rbd_warn(NULL, "no pool name provided");
6526 		goto out_err;
6527 	}
6528 
6529 	pctx.spec->image_name = dup_token(&buf, NULL);
6530 	if (!pctx.spec->image_name)
6531 		goto out_mem;
6532 	if (!*pctx.spec->image_name) {
6533 		rbd_warn(NULL, "no image name provided");
6534 		goto out_err;
6535 	}
6536 
6537 	/*
6538 	 * Snapshot name is optional; default is to use "-"
6539 	 * (indicating the head/no snapshot).
6540 	 */
6541 	len = next_token(&buf);
6542 	if (!len) {
6543 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6544 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6545 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6546 		ret = -ENAMETOOLONG;
6547 		goto out_err;
6548 	}
6549 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6550 	if (!snap_name)
6551 		goto out_mem;
6552 	*(snap_name + len) = '\0';
6553 	pctx.spec->snap_name = snap_name;
6554 
6555 	pctx.copts = ceph_alloc_options();
6556 	if (!pctx.copts)
6557 		goto out_mem;
6558 
6559 	/* Initialize all rbd options to the defaults */
6560 
6561 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6562 	if (!pctx.opts)
6563 		goto out_mem;
6564 
6565 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6566 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6567 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6568 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6569 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6570 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6571 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6572 
6573 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6574 	if (ret)
6575 		goto out_err;
6576 
6577 	ret = rbd_parse_options(options, &pctx);
6578 	if (ret)
6579 		goto out_err;
6580 
6581 	*ceph_opts = pctx.copts;
6582 	*opts = pctx.opts;
6583 	*rbd_spec = pctx.spec;
6584 	kfree(options);
6585 	return 0;
6586 
6587 out_mem:
6588 	ret = -ENOMEM;
6589 out_err:
6590 	kfree(pctx.opts);
6591 	ceph_destroy_options(pctx.copts);
6592 	rbd_spec_put(pctx.spec);
6593 	kfree(options);
6594 	return ret;
6595 }
6596 
6597 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6598 {
6599 	down_write(&rbd_dev->lock_rwsem);
6600 	if (__rbd_is_lock_owner(rbd_dev))
6601 		__rbd_release_lock(rbd_dev);
6602 	up_write(&rbd_dev->lock_rwsem);
6603 }
6604 
6605 /*
6606  * If the wait is interrupted, an error is returned even if the lock
6607  * was successfully acquired.  rbd_dev_image_unlock() will release it
6608  * if needed.
6609  */
6610 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6611 {
6612 	long ret;
6613 
6614 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6615 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6616 			return 0;
6617 
6618 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6619 		return -EINVAL;
6620 	}
6621 
6622 	if (rbd_is_ro(rbd_dev))
6623 		return 0;
6624 
6625 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6626 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6627 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6628 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6629 	if (ret > 0) {
6630 		ret = rbd_dev->acquire_err;
6631 	} else {
6632 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6633 		if (!ret)
6634 			ret = -ETIMEDOUT;
6635 	}
6636 
6637 	if (ret) {
6638 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6639 		return ret;
6640 	}
6641 
6642 	/*
6643 	 * The lock may have been released by now, unless automatic lock
6644 	 * transitions are disabled.
6645 	 */
6646 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6647 	return 0;
6648 }
6649 
6650 /*
6651  * An rbd format 2 image has a unique identifier, distinct from the
6652  * name given to it by the user.  Internally, that identifier is
6653  * what's used to specify the names of objects related to the image.
6654  *
6655  * A special "rbd id" object is used to map an rbd image name to its
6656  * id.  If that object doesn't exist, then there is no v2 rbd image
6657  * with the supplied name.
6658  *
6659  * This function will record the given rbd_dev's image_id field if
6660  * it can be determined, and in that case will return 0.  If any
6661  * errors occur a negative errno will be returned and the rbd_dev's
6662  * image_id field will be unchanged (and should be NULL).
6663  */
6664 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6665 {
6666 	int ret;
6667 	size_t size;
6668 	CEPH_DEFINE_OID_ONSTACK(oid);
6669 	void *response;
6670 	char *image_id;
6671 
6672 	/*
6673 	 * When probing a parent image, the image id is already
6674 	 * known (and the image name likely is not).  There's no
6675 	 * need to fetch the image id again in this case.  We
6676 	 * do still need to set the image format though.
6677 	 */
6678 	if (rbd_dev->spec->image_id) {
6679 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6680 
6681 		return 0;
6682 	}
6683 
6684 	/*
6685 	 * First, see if the format 2 image id file exists, and if
6686 	 * so, get the image's persistent id from it.
6687 	 */
6688 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6689 			       rbd_dev->spec->image_name);
6690 	if (ret)
6691 		return ret;
6692 
6693 	dout("rbd id object name is %s\n", oid.name);
6694 
6695 	/* Response will be an encoded string, which includes a length */
6696 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6697 	response = kzalloc(size, GFP_NOIO);
6698 	if (!response) {
6699 		ret = -ENOMEM;
6700 		goto out;
6701 	}
6702 
6703 	/* If it doesn't exist we'll assume it's a format 1 image */
6704 
6705 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6706 				  "get_id", NULL, 0,
6707 				  response, size);
6708 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6709 	if (ret == -ENOENT) {
6710 		image_id = kstrdup("", GFP_KERNEL);
6711 		ret = image_id ? 0 : -ENOMEM;
6712 		if (!ret)
6713 			rbd_dev->image_format = 1;
6714 	} else if (ret >= 0) {
6715 		void *p = response;
6716 
6717 		image_id = ceph_extract_encoded_string(&p, p + ret,
6718 						NULL, GFP_NOIO);
6719 		ret = PTR_ERR_OR_ZERO(image_id);
6720 		if (!ret)
6721 			rbd_dev->image_format = 2;
6722 	}
6723 
6724 	if (!ret) {
6725 		rbd_dev->spec->image_id = image_id;
6726 		dout("image_id is %s\n", image_id);
6727 	}
6728 out:
6729 	kfree(response);
6730 	ceph_oid_destroy(&oid);
6731 	return ret;
6732 }
6733 
6734 /*
6735  * Undo whatever state changes are made by v1 or v2 header info
6736  * call.
6737  */
6738 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6739 {
6740 	struct rbd_image_header	*header;
6741 
6742 	rbd_dev_parent_put(rbd_dev);
6743 	rbd_object_map_free(rbd_dev);
6744 	rbd_dev_mapping_clear(rbd_dev);
6745 
6746 	/* Free dynamic fields from the header, then zero it out */
6747 
6748 	header = &rbd_dev->header;
6749 	ceph_put_snap_context(header->snapc);
6750 	kfree(header->snap_sizes);
6751 	kfree(header->snap_names);
6752 	kfree(header->object_prefix);
6753 	memset(header, 0, sizeof (*header));
6754 }
6755 
6756 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6757 {
6758 	int ret;
6759 
6760 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6761 	if (ret)
6762 		goto out_err;
6763 
6764 	/*
6765 	 * Get the and check features for the image.  Currently the
6766 	 * features are assumed to never change.
6767 	 */
6768 	ret = rbd_dev_v2_features(rbd_dev);
6769 	if (ret)
6770 		goto out_err;
6771 
6772 	/* If the image supports fancy striping, get its parameters */
6773 
6774 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6775 		ret = rbd_dev_v2_striping_info(rbd_dev);
6776 		if (ret < 0)
6777 			goto out_err;
6778 	}
6779 
6780 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6781 		ret = rbd_dev_v2_data_pool(rbd_dev);
6782 		if (ret)
6783 			goto out_err;
6784 	}
6785 
6786 	rbd_init_layout(rbd_dev);
6787 	return 0;
6788 
6789 out_err:
6790 	rbd_dev->header.features = 0;
6791 	kfree(rbd_dev->header.object_prefix);
6792 	rbd_dev->header.object_prefix = NULL;
6793 	return ret;
6794 }
6795 
6796 /*
6797  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6798  * rbd_dev_image_probe() recursion depth, which means it's also the
6799  * length of the already discovered part of the parent chain.
6800  */
6801 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6802 {
6803 	struct rbd_device *parent = NULL;
6804 	int ret;
6805 
6806 	if (!rbd_dev->parent_spec)
6807 		return 0;
6808 
6809 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6810 		pr_info("parent chain is too long (%d)\n", depth);
6811 		ret = -EINVAL;
6812 		goto out_err;
6813 	}
6814 
6815 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6816 	if (!parent) {
6817 		ret = -ENOMEM;
6818 		goto out_err;
6819 	}
6820 
6821 	/*
6822 	 * Images related by parent/child relationships always share
6823 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6824 	 */
6825 	__rbd_get_client(rbd_dev->rbd_client);
6826 	rbd_spec_get(rbd_dev->parent_spec);
6827 
6828 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6829 
6830 	ret = rbd_dev_image_probe(parent, depth);
6831 	if (ret < 0)
6832 		goto out_err;
6833 
6834 	rbd_dev->parent = parent;
6835 	atomic_set(&rbd_dev->parent_ref, 1);
6836 	return 0;
6837 
6838 out_err:
6839 	rbd_dev_unparent(rbd_dev);
6840 	rbd_dev_destroy(parent);
6841 	return ret;
6842 }
6843 
6844 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6845 {
6846 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6847 	rbd_free_disk(rbd_dev);
6848 	if (!single_major)
6849 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6850 }
6851 
6852 /*
6853  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6854  * upon return.
6855  */
6856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6857 {
6858 	int ret;
6859 
6860 	/* Record our major and minor device numbers. */
6861 
6862 	if (!single_major) {
6863 		ret = register_blkdev(0, rbd_dev->name);
6864 		if (ret < 0)
6865 			goto err_out_unlock;
6866 
6867 		rbd_dev->major = ret;
6868 		rbd_dev->minor = 0;
6869 	} else {
6870 		rbd_dev->major = rbd_major;
6871 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6872 	}
6873 
6874 	/* Set up the blkdev mapping. */
6875 
6876 	ret = rbd_init_disk(rbd_dev);
6877 	if (ret)
6878 		goto err_out_blkdev;
6879 
6880 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6881 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6882 
6883 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6884 	if (ret)
6885 		goto err_out_disk;
6886 
6887 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6888 	up_write(&rbd_dev->header_rwsem);
6889 	return 0;
6890 
6891 err_out_disk:
6892 	rbd_free_disk(rbd_dev);
6893 err_out_blkdev:
6894 	if (!single_major)
6895 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6896 err_out_unlock:
6897 	up_write(&rbd_dev->header_rwsem);
6898 	return ret;
6899 }
6900 
6901 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6902 {
6903 	struct rbd_spec *spec = rbd_dev->spec;
6904 	int ret;
6905 
6906 	/* Record the header object name for this rbd image. */
6907 
6908 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6909 	if (rbd_dev->image_format == 1)
6910 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6911 				       spec->image_name, RBD_SUFFIX);
6912 	else
6913 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6914 				       RBD_HEADER_PREFIX, spec->image_id);
6915 
6916 	return ret;
6917 }
6918 
6919 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6920 {
6921 	if (!is_snap) {
6922 		pr_info("image %s/%s%s%s does not exist\n",
6923 			rbd_dev->spec->pool_name,
6924 			rbd_dev->spec->pool_ns ?: "",
6925 			rbd_dev->spec->pool_ns ? "/" : "",
6926 			rbd_dev->spec->image_name);
6927 	} else {
6928 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6929 			rbd_dev->spec->pool_name,
6930 			rbd_dev->spec->pool_ns ?: "",
6931 			rbd_dev->spec->pool_ns ? "/" : "",
6932 			rbd_dev->spec->image_name,
6933 			rbd_dev->spec->snap_name);
6934 	}
6935 }
6936 
6937 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6938 {
6939 	if (!rbd_is_ro(rbd_dev))
6940 		rbd_unregister_watch(rbd_dev);
6941 
6942 	rbd_dev_unprobe(rbd_dev);
6943 	rbd_dev->image_format = 0;
6944 	kfree(rbd_dev->spec->image_id);
6945 	rbd_dev->spec->image_id = NULL;
6946 }
6947 
6948 /*
6949  * Probe for the existence of the header object for the given rbd
6950  * device.  If this image is the one being mapped (i.e., not a
6951  * parent), initiate a watch on its header object before using that
6952  * object to get detailed information about the rbd image.
6953  *
6954  * On success, returns with header_rwsem held for write if called
6955  * with @depth == 0.
6956  */
6957 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6958 {
6959 	bool need_watch = !rbd_is_ro(rbd_dev);
6960 	int ret;
6961 
6962 	/*
6963 	 * Get the id from the image id object.  Unless there's an
6964 	 * error, rbd_dev->spec->image_id will be filled in with
6965 	 * a dynamically-allocated string, and rbd_dev->image_format
6966 	 * will be set to either 1 or 2.
6967 	 */
6968 	ret = rbd_dev_image_id(rbd_dev);
6969 	if (ret)
6970 		return ret;
6971 
6972 	ret = rbd_dev_header_name(rbd_dev);
6973 	if (ret)
6974 		goto err_out_format;
6975 
6976 	if (need_watch) {
6977 		ret = rbd_register_watch(rbd_dev);
6978 		if (ret) {
6979 			if (ret == -ENOENT)
6980 				rbd_print_dne(rbd_dev, false);
6981 			goto err_out_format;
6982 		}
6983 	}
6984 
6985 	if (!depth)
6986 		down_write(&rbd_dev->header_rwsem);
6987 
6988 	ret = rbd_dev_header_info(rbd_dev);
6989 	if (ret) {
6990 		if (ret == -ENOENT && !need_watch)
6991 			rbd_print_dne(rbd_dev, false);
6992 		goto err_out_probe;
6993 	}
6994 
6995 	/*
6996 	 * If this image is the one being mapped, we have pool name and
6997 	 * id, image name and id, and snap name - need to fill snap id.
6998 	 * Otherwise this is a parent image, identified by pool, image
6999 	 * and snap ids - need to fill in names for those ids.
7000 	 */
7001 	if (!depth)
7002 		ret = rbd_spec_fill_snap_id(rbd_dev);
7003 	else
7004 		ret = rbd_spec_fill_names(rbd_dev);
7005 	if (ret) {
7006 		if (ret == -ENOENT)
7007 			rbd_print_dne(rbd_dev, true);
7008 		goto err_out_probe;
7009 	}
7010 
7011 	ret = rbd_dev_mapping_set(rbd_dev);
7012 	if (ret)
7013 		goto err_out_probe;
7014 
7015 	if (rbd_is_snap(rbd_dev) &&
7016 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7017 		ret = rbd_object_map_load(rbd_dev);
7018 		if (ret)
7019 			goto err_out_probe;
7020 	}
7021 
7022 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7023 		ret = rbd_dev_v2_parent_info(rbd_dev);
7024 		if (ret)
7025 			goto err_out_probe;
7026 	}
7027 
7028 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7029 	if (ret)
7030 		goto err_out_probe;
7031 
7032 	dout("discovered format %u image, header name is %s\n",
7033 		rbd_dev->image_format, rbd_dev->header_oid.name);
7034 	return 0;
7035 
7036 err_out_probe:
7037 	if (!depth)
7038 		up_write(&rbd_dev->header_rwsem);
7039 	if (need_watch)
7040 		rbd_unregister_watch(rbd_dev);
7041 	rbd_dev_unprobe(rbd_dev);
7042 err_out_format:
7043 	rbd_dev->image_format = 0;
7044 	kfree(rbd_dev->spec->image_id);
7045 	rbd_dev->spec->image_id = NULL;
7046 	return ret;
7047 }
7048 
7049 static ssize_t do_rbd_add(struct bus_type *bus,
7050 			  const char *buf,
7051 			  size_t count)
7052 {
7053 	struct rbd_device *rbd_dev = NULL;
7054 	struct ceph_options *ceph_opts = NULL;
7055 	struct rbd_options *rbd_opts = NULL;
7056 	struct rbd_spec *spec = NULL;
7057 	struct rbd_client *rbdc;
7058 	int rc;
7059 
7060 	if (!try_module_get(THIS_MODULE))
7061 		return -ENODEV;
7062 
7063 	/* parse add command */
7064 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7065 	if (rc < 0)
7066 		goto out;
7067 
7068 	rbdc = rbd_get_client(ceph_opts);
7069 	if (IS_ERR(rbdc)) {
7070 		rc = PTR_ERR(rbdc);
7071 		goto err_out_args;
7072 	}
7073 
7074 	/* pick the pool */
7075 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7076 	if (rc < 0) {
7077 		if (rc == -ENOENT)
7078 			pr_info("pool %s does not exist\n", spec->pool_name);
7079 		goto err_out_client;
7080 	}
7081 	spec->pool_id = (u64)rc;
7082 
7083 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7084 	if (!rbd_dev) {
7085 		rc = -ENOMEM;
7086 		goto err_out_client;
7087 	}
7088 	rbdc = NULL;		/* rbd_dev now owns this */
7089 	spec = NULL;		/* rbd_dev now owns this */
7090 	rbd_opts = NULL;	/* rbd_dev now owns this */
7091 
7092 	/* if we are mapping a snapshot it will be a read-only mapping */
7093 	if (rbd_dev->opts->read_only ||
7094 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7095 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7096 
7097 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7098 	if (!rbd_dev->config_info) {
7099 		rc = -ENOMEM;
7100 		goto err_out_rbd_dev;
7101 	}
7102 
7103 	rc = rbd_dev_image_probe(rbd_dev, 0);
7104 	if (rc < 0)
7105 		goto err_out_rbd_dev;
7106 
7107 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7108 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7109 			 rbd_dev->layout.object_size);
7110 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7111 	}
7112 
7113 	rc = rbd_dev_device_setup(rbd_dev);
7114 	if (rc)
7115 		goto err_out_image_probe;
7116 
7117 	rc = rbd_add_acquire_lock(rbd_dev);
7118 	if (rc)
7119 		goto err_out_image_lock;
7120 
7121 	/* Everything's ready.  Announce the disk to the world. */
7122 
7123 	rc = device_add(&rbd_dev->dev);
7124 	if (rc)
7125 		goto err_out_image_lock;
7126 
7127 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7128 	/* see rbd_init_disk() */
7129 	blk_put_queue(rbd_dev->disk->queue);
7130 
7131 	spin_lock(&rbd_dev_list_lock);
7132 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7133 	spin_unlock(&rbd_dev_list_lock);
7134 
7135 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7136 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7137 		rbd_dev->header.features);
7138 	rc = count;
7139 out:
7140 	module_put(THIS_MODULE);
7141 	return rc;
7142 
7143 err_out_image_lock:
7144 	rbd_dev_image_unlock(rbd_dev);
7145 	rbd_dev_device_release(rbd_dev);
7146 err_out_image_probe:
7147 	rbd_dev_image_release(rbd_dev);
7148 err_out_rbd_dev:
7149 	rbd_dev_destroy(rbd_dev);
7150 err_out_client:
7151 	rbd_put_client(rbdc);
7152 err_out_args:
7153 	rbd_spec_put(spec);
7154 	kfree(rbd_opts);
7155 	goto out;
7156 }
7157 
7158 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7159 {
7160 	if (single_major)
7161 		return -EINVAL;
7162 
7163 	return do_rbd_add(bus, buf, count);
7164 }
7165 
7166 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7167 				      size_t count)
7168 {
7169 	return do_rbd_add(bus, buf, count);
7170 }
7171 
7172 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7173 {
7174 	while (rbd_dev->parent) {
7175 		struct rbd_device *first = rbd_dev;
7176 		struct rbd_device *second = first->parent;
7177 		struct rbd_device *third;
7178 
7179 		/*
7180 		 * Follow to the parent with no grandparent and
7181 		 * remove it.
7182 		 */
7183 		while (second && (third = second->parent)) {
7184 			first = second;
7185 			second = third;
7186 		}
7187 		rbd_assert(second);
7188 		rbd_dev_image_release(second);
7189 		rbd_dev_destroy(second);
7190 		first->parent = NULL;
7191 		first->parent_overlap = 0;
7192 
7193 		rbd_assert(first->parent_spec);
7194 		rbd_spec_put(first->parent_spec);
7195 		first->parent_spec = NULL;
7196 	}
7197 }
7198 
7199 static ssize_t do_rbd_remove(struct bus_type *bus,
7200 			     const char *buf,
7201 			     size_t count)
7202 {
7203 	struct rbd_device *rbd_dev = NULL;
7204 	struct list_head *tmp;
7205 	int dev_id;
7206 	char opt_buf[6];
7207 	bool force = false;
7208 	int ret;
7209 
7210 	dev_id = -1;
7211 	opt_buf[0] = '\0';
7212 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7213 	if (dev_id < 0) {
7214 		pr_err("dev_id out of range\n");
7215 		return -EINVAL;
7216 	}
7217 	if (opt_buf[0] != '\0') {
7218 		if (!strcmp(opt_buf, "force")) {
7219 			force = true;
7220 		} else {
7221 			pr_err("bad remove option at '%s'\n", opt_buf);
7222 			return -EINVAL;
7223 		}
7224 	}
7225 
7226 	ret = -ENOENT;
7227 	spin_lock(&rbd_dev_list_lock);
7228 	list_for_each(tmp, &rbd_dev_list) {
7229 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7230 		if (rbd_dev->dev_id == dev_id) {
7231 			ret = 0;
7232 			break;
7233 		}
7234 	}
7235 	if (!ret) {
7236 		spin_lock_irq(&rbd_dev->lock);
7237 		if (rbd_dev->open_count && !force)
7238 			ret = -EBUSY;
7239 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7240 					  &rbd_dev->flags))
7241 			ret = -EINPROGRESS;
7242 		spin_unlock_irq(&rbd_dev->lock);
7243 	}
7244 	spin_unlock(&rbd_dev_list_lock);
7245 	if (ret)
7246 		return ret;
7247 
7248 	if (force) {
7249 		/*
7250 		 * Prevent new IO from being queued and wait for existing
7251 		 * IO to complete/fail.
7252 		 */
7253 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7254 		blk_set_queue_dying(rbd_dev->disk->queue);
7255 	}
7256 
7257 	del_gendisk(rbd_dev->disk);
7258 	spin_lock(&rbd_dev_list_lock);
7259 	list_del_init(&rbd_dev->node);
7260 	spin_unlock(&rbd_dev_list_lock);
7261 	device_del(&rbd_dev->dev);
7262 
7263 	rbd_dev_image_unlock(rbd_dev);
7264 	rbd_dev_device_release(rbd_dev);
7265 	rbd_dev_image_release(rbd_dev);
7266 	rbd_dev_destroy(rbd_dev);
7267 	return count;
7268 }
7269 
7270 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7271 {
7272 	if (single_major)
7273 		return -EINVAL;
7274 
7275 	return do_rbd_remove(bus, buf, count);
7276 }
7277 
7278 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7279 					 size_t count)
7280 {
7281 	return do_rbd_remove(bus, buf, count);
7282 }
7283 
7284 /*
7285  * create control files in sysfs
7286  * /sys/bus/rbd/...
7287  */
7288 static int __init rbd_sysfs_init(void)
7289 {
7290 	int ret;
7291 
7292 	ret = device_register(&rbd_root_dev);
7293 	if (ret < 0)
7294 		return ret;
7295 
7296 	ret = bus_register(&rbd_bus_type);
7297 	if (ret < 0)
7298 		device_unregister(&rbd_root_dev);
7299 
7300 	return ret;
7301 }
7302 
7303 static void __exit rbd_sysfs_cleanup(void)
7304 {
7305 	bus_unregister(&rbd_bus_type);
7306 	device_unregister(&rbd_root_dev);
7307 }
7308 
7309 static int __init rbd_slab_init(void)
7310 {
7311 	rbd_assert(!rbd_img_request_cache);
7312 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7313 	if (!rbd_img_request_cache)
7314 		return -ENOMEM;
7315 
7316 	rbd_assert(!rbd_obj_request_cache);
7317 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7318 	if (!rbd_obj_request_cache)
7319 		goto out_err;
7320 
7321 	return 0;
7322 
7323 out_err:
7324 	kmem_cache_destroy(rbd_img_request_cache);
7325 	rbd_img_request_cache = NULL;
7326 	return -ENOMEM;
7327 }
7328 
7329 static void rbd_slab_exit(void)
7330 {
7331 	rbd_assert(rbd_obj_request_cache);
7332 	kmem_cache_destroy(rbd_obj_request_cache);
7333 	rbd_obj_request_cache = NULL;
7334 
7335 	rbd_assert(rbd_img_request_cache);
7336 	kmem_cache_destroy(rbd_img_request_cache);
7337 	rbd_img_request_cache = NULL;
7338 }
7339 
7340 static int __init rbd_init(void)
7341 {
7342 	int rc;
7343 
7344 	if (!libceph_compatible(NULL)) {
7345 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7346 		return -EINVAL;
7347 	}
7348 
7349 	rc = rbd_slab_init();
7350 	if (rc)
7351 		return rc;
7352 
7353 	/*
7354 	 * The number of active work items is limited by the number of
7355 	 * rbd devices * queue depth, so leave @max_active at default.
7356 	 */
7357 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7358 	if (!rbd_wq) {
7359 		rc = -ENOMEM;
7360 		goto err_out_slab;
7361 	}
7362 
7363 	if (single_major) {
7364 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7365 		if (rbd_major < 0) {
7366 			rc = rbd_major;
7367 			goto err_out_wq;
7368 		}
7369 	}
7370 
7371 	rc = rbd_sysfs_init();
7372 	if (rc)
7373 		goto err_out_blkdev;
7374 
7375 	if (single_major)
7376 		pr_info("loaded (major %d)\n", rbd_major);
7377 	else
7378 		pr_info("loaded\n");
7379 
7380 	return 0;
7381 
7382 err_out_blkdev:
7383 	if (single_major)
7384 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7385 err_out_wq:
7386 	destroy_workqueue(rbd_wq);
7387 err_out_slab:
7388 	rbd_slab_exit();
7389 	return rc;
7390 }
7391 
7392 static void __exit rbd_exit(void)
7393 {
7394 	ida_destroy(&rbd_dev_id_ida);
7395 	rbd_sysfs_cleanup();
7396 	if (single_major)
7397 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7398 	destroy_workqueue(rbd_wq);
7399 	rbd_slab_exit();
7400 }
7401 
7402 module_init(rbd_init);
7403 module_exit(rbd_exit);
7404 
7405 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7406 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7407 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7408 /* following authorship retained from original osdblk.c */
7409 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7410 
7411 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7412 MODULE_LICENSE("GPL");
7413