xref: /openbmc/linux/drivers/block/rbd.c (revision 7e4588e8)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 
46 #include "rbd_types.h"
47 
48 #define RBD_DEBUG	/* Activate rbd_assert() calls */
49 
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define	SECTOR_SHIFT	9
57 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
58 
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67 	unsigned int counter;
68 
69 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 	if (counter <= (unsigned int)INT_MAX)
71 		return (int)counter;
72 
73 	atomic_dec(v);
74 
75 	return -EINVAL;
76 }
77 
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81 	int counter;
82 
83 	counter = atomic_dec_return(v);
84 	if (counter >= 0)
85 		return counter;
86 
87 	atomic_inc(v);
88 
89 	return -EINVAL;
90 }
91 
92 #define RBD_DRV_NAME "rbd"
93 
94 #define RBD_MINORS_PER_MAJOR		256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
96 
97 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
98 #define RBD_MAX_SNAP_NAME_LEN	\
99 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100 
101 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
102 
103 #define RBD_SNAP_HEAD_NAME	"-"
104 
105 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
106 
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX	64
110 
111 #define RBD_OBJ_PREFIX_LEN_MAX	64
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING	(1<<0)
116 #define RBD_FEATURE_STRIPINGV2	(1<<1)
117 #define RBD_FEATURES_ALL \
118 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119 
120 /* Features supported by this (client software) implementation. */
121 
122 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
123 
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN		32
131 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
132 
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137 	/* These six fields never change for a given rbd image */
138 	char *object_prefix;
139 	__u8 obj_order;
140 	__u8 crypt_type;
141 	__u8 comp_type;
142 	u64 stripe_unit;
143 	u64 stripe_count;
144 	u64 features;		/* Might be changeable someday? */
145 
146 	/* The remaining fields need to be updated occasionally */
147 	u64 image_size;
148 	struct ceph_snap_context *snapc;
149 	char *snap_names;	/* format 1 only */
150 	u64 *snap_sizes;	/* format 1 only */
151 };
152 
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179 	u64		pool_id;
180 	const char	*pool_name;
181 
182 	const char	*image_id;
183 	const char	*image_name;
184 
185 	u64		snap_id;
186 	const char	*snap_name;
187 
188 	struct kref	kref;
189 };
190 
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195 	struct ceph_client	*client;
196 	struct kref		kref;
197 	struct list_head	node;
198 };
199 
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202 
203 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
204 
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207 
208 enum obj_request_type {
209 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211 
212 enum obj_req_flags {
213 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
214 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
215 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
216 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
217 };
218 
219 struct rbd_obj_request {
220 	const char		*object_name;
221 	u64			offset;		/* object start byte */
222 	u64			length;		/* bytes from offset */
223 	unsigned long		flags;
224 
225 	/*
226 	 * An object request associated with an image will have its
227 	 * img_data flag set; a standalone object request will not.
228 	 *
229 	 * A standalone object request will have which == BAD_WHICH
230 	 * and a null obj_request pointer.
231 	 *
232 	 * An object request initiated in support of a layered image
233 	 * object (to check for its existence before a write) will
234 	 * have which == BAD_WHICH and a non-null obj_request pointer.
235 	 *
236 	 * Finally, an object request for rbd image data will have
237 	 * which != BAD_WHICH, and will have a non-null img_request
238 	 * pointer.  The value of which will be in the range
239 	 * 0..(img_request->obj_request_count-1).
240 	 */
241 	union {
242 		struct rbd_obj_request	*obj_request;	/* STAT op */
243 		struct {
244 			struct rbd_img_request	*img_request;
245 			u64			img_offset;
246 			/* links for img_request->obj_requests list */
247 			struct list_head	links;
248 		};
249 	};
250 	u32			which;		/* posn image request list */
251 
252 	enum obj_request_type	type;
253 	union {
254 		struct bio	*bio_list;
255 		struct {
256 			struct page	**pages;
257 			u32		page_count;
258 		};
259 	};
260 	struct page		**copyup_pages;
261 	u32			copyup_page_count;
262 
263 	struct ceph_osd_request	*osd_req;
264 
265 	u64			xferred;	/* bytes transferred */
266 	int			result;
267 
268 	rbd_obj_callback_t	callback;
269 	struct completion	completion;
270 
271 	struct kref		kref;
272 };
273 
274 enum img_req_flags {
275 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
276 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
277 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
278 };
279 
280 struct rbd_img_request {
281 	struct rbd_device	*rbd_dev;
282 	u64			offset;	/* starting image byte offset */
283 	u64			length;	/* byte count from offset */
284 	unsigned long		flags;
285 	union {
286 		u64			snap_id;	/* for reads */
287 		struct ceph_snap_context *snapc;	/* for writes */
288 	};
289 	union {
290 		struct request		*rq;		/* block request */
291 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
292 	};
293 	struct page		**copyup_pages;
294 	u32			copyup_page_count;
295 	spinlock_t		completion_lock;/* protects next_completion */
296 	u32			next_completion;
297 	rbd_img_callback_t	callback;
298 	u64			xferred;/* aggregate bytes transferred */
299 	int			result;	/* first nonzero obj_request result */
300 
301 	u32			obj_request_count;
302 	struct list_head	obj_requests;	/* rbd_obj_request structs */
303 
304 	struct kref		kref;
305 };
306 
307 #define for_each_obj_request(ireq, oreq) \
308 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313 
314 struct rbd_mapping {
315 	u64                     size;
316 	u64                     features;
317 	bool			read_only;
318 };
319 
320 /*
321  * a single device
322  */
323 struct rbd_device {
324 	int			dev_id;		/* blkdev unique id */
325 
326 	int			major;		/* blkdev assigned major */
327 	int			minor;
328 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
329 
330 	u32			image_format;	/* Either 1 or 2 */
331 	struct rbd_client	*rbd_client;
332 
333 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334 
335 	spinlock_t		lock;		/* queue, flags, open_count */
336 
337 	struct rbd_image_header	header;
338 	unsigned long		flags;		/* possibly lock protected */
339 	struct rbd_spec		*spec;
340 
341 	char			*header_name;
342 
343 	struct ceph_file_layout	layout;
344 
345 	struct ceph_osd_event   *watch_event;
346 	struct rbd_obj_request	*watch_request;
347 
348 	struct rbd_spec		*parent_spec;
349 	u64			parent_overlap;
350 	atomic_t		parent_ref;
351 	struct rbd_device	*parent;
352 
353 	/* protects updating the header */
354 	struct rw_semaphore     header_rwsem;
355 
356 	struct rbd_mapping	mapping;
357 
358 	struct list_head	node;
359 
360 	/* sysfs related */
361 	struct device		dev;
362 	unsigned long		open_count;	/* protected by lock */
363 };
364 
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
374 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
375 };
376 
377 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
378 
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381 
382 static LIST_HEAD(rbd_client_list);		/* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384 
385 /* Slab caches for frequently-allocated structures */
386 
387 static struct kmem_cache	*rbd_img_request_cache;
388 static struct kmem_cache	*rbd_obj_request_cache;
389 static struct kmem_cache	*rbd_segment_name_cache;
390 
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393 
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401 
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403 
404 static void rbd_dev_device_release(struct device *dev);
405 
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407 		       size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409 			  size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411 				    size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413 				       size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416 
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421 
422 static int minor_to_rbd_dev_id(int minor)
423 {
424 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426 
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431 
432 static struct attribute *rbd_bus_attrs[] = {
433 	&bus_attr_add.attr,
434 	&bus_attr_remove.attr,
435 	&bus_attr_add_single_major.attr,
436 	&bus_attr_remove_single_major.attr,
437 	NULL,
438 };
439 
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 				  struct attribute *attr, int index)
442 {
443 	if (!single_major &&
444 	    (attr == &bus_attr_add_single_major.attr ||
445 	     attr == &bus_attr_remove_single_major.attr))
446 		return 0;
447 
448 	return attr->mode;
449 }
450 
451 static const struct attribute_group rbd_bus_group = {
452 	.attrs = rbd_bus_attrs,
453 	.is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456 
457 static struct bus_type rbd_bus_type = {
458 	.name		= "rbd",
459 	.bus_groups	= rbd_bus_groups,
460 };
461 
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465 
466 static struct device rbd_root_dev = {
467 	.init_name =    "rbd",
468 	.release =      rbd_root_dev_release,
469 };
470 
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474 	struct va_format vaf;
475 	va_list args;
476 
477 	va_start(args, fmt);
478 	vaf.fmt = fmt;
479 	vaf.va = &args;
480 
481 	if (!rbd_dev)
482 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 	else if (rbd_dev->disk)
484 		printk(KERN_WARNING "%s: %s: %pV\n",
485 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 		printk(KERN_WARNING "%s: image %s: %pV\n",
488 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 		printk(KERN_WARNING "%s: id %s: %pV\n",
491 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492 	else	/* punt */
493 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 			RBD_DRV_NAME, rbd_dev, &vaf);
495 	va_end(args);
496 }
497 
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)						\
500 		if (unlikely(!(expr))) {				\
501 			printk(KERN_ERR "\nAssertion failure in %s() "	\
502 						"at line %d:\n\n"	\
503 					"\trbd_assert(%s);\n\n",	\
504 					__func__, __LINE__, #expr);	\
505 			BUG();						\
506 		}
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)	((void) 0)
509 #endif /* !RBD_DEBUG */
510 
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514 
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519 					u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 				u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523 		u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525 
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 	bool removing = false;
530 
531 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532 		return -EROFS;
533 
534 	spin_lock_irq(&rbd_dev->lock);
535 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536 		removing = true;
537 	else
538 		rbd_dev->open_count++;
539 	spin_unlock_irq(&rbd_dev->lock);
540 	if (removing)
541 		return -ENOENT;
542 
543 	(void) get_device(&rbd_dev->dev);
544 
545 	return 0;
546 }
547 
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550 	struct rbd_device *rbd_dev = disk->private_data;
551 	unsigned long open_count_before;
552 
553 	spin_lock_irq(&rbd_dev->lock);
554 	open_count_before = rbd_dev->open_count--;
555 	spin_unlock_irq(&rbd_dev->lock);
556 	rbd_assert(open_count_before > 0);
557 
558 	put_device(&rbd_dev->dev);
559 }
560 
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563 	int ret = 0;
564 	int val;
565 	bool ro;
566 	bool ro_changed = false;
567 
568 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
569 	if (get_user(val, (int __user *)(arg)))
570 		return -EFAULT;
571 
572 	ro = val ? true : false;
573 	/* Snapshot doesn't allow to write*/
574 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575 		return -EROFS;
576 
577 	spin_lock_irq(&rbd_dev->lock);
578 	/* prevent others open this device */
579 	if (rbd_dev->open_count > 1) {
580 		ret = -EBUSY;
581 		goto out;
582 	}
583 
584 	if (rbd_dev->mapping.read_only != ro) {
585 		rbd_dev->mapping.read_only = ro;
586 		ro_changed = true;
587 	}
588 
589 out:
590 	spin_unlock_irq(&rbd_dev->lock);
591 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592 	if (ret == 0 && ro_changed)
593 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594 
595 	return ret;
596 }
597 
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599 			unsigned int cmd, unsigned long arg)
600 {
601 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602 	int ret = 0;
603 
604 	switch (cmd) {
605 	case BLKROSET:
606 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
607 		break;
608 	default:
609 		ret = -ENOTTY;
610 	}
611 
612 	return ret;
613 }
614 
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617 				unsigned int cmd, unsigned long arg)
618 {
619 	return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622 
623 static const struct block_device_operations rbd_bd_ops = {
624 	.owner			= THIS_MODULE,
625 	.open			= rbd_open,
626 	.release		= rbd_release,
627 	.ioctl			= rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629 	.compat_ioctl		= rbd_compat_ioctl,
630 #endif
631 };
632 
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639 	struct rbd_client *rbdc;
640 	int ret = -ENOMEM;
641 
642 	dout("%s:\n", __func__);
643 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644 	if (!rbdc)
645 		goto out_opt;
646 
647 	kref_init(&rbdc->kref);
648 	INIT_LIST_HEAD(&rbdc->node);
649 
650 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651 	if (IS_ERR(rbdc->client))
652 		goto out_rbdc;
653 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654 
655 	ret = ceph_open_session(rbdc->client);
656 	if (ret < 0)
657 		goto out_client;
658 
659 	spin_lock(&rbd_client_list_lock);
660 	list_add_tail(&rbdc->node, &rbd_client_list);
661 	spin_unlock(&rbd_client_list_lock);
662 
663 	dout("%s: rbdc %p\n", __func__, rbdc);
664 
665 	return rbdc;
666 out_client:
667 	ceph_destroy_client(rbdc->client);
668 out_rbdc:
669 	kfree(rbdc);
670 out_opt:
671 	if (ceph_opts)
672 		ceph_destroy_options(ceph_opts);
673 	dout("%s: error %d\n", __func__, ret);
674 
675 	return ERR_PTR(ret);
676 }
677 
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680 	kref_get(&rbdc->kref);
681 
682 	return rbdc;
683 }
684 
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691 	struct rbd_client *client_node;
692 	bool found = false;
693 
694 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695 		return NULL;
696 
697 	spin_lock(&rbd_client_list_lock);
698 	list_for_each_entry(client_node, &rbd_client_list, node) {
699 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
700 			__rbd_get_client(client_node);
701 
702 			found = true;
703 			break;
704 		}
705 	}
706 	spin_unlock(&rbd_client_list_lock);
707 
708 	return found ? client_node : NULL;
709 }
710 
711 /*
712  * mount options
713  */
714 enum {
715 	Opt_last_int,
716 	/* int args above */
717 	Opt_last_string,
718 	/* string args above */
719 	Opt_read_only,
720 	Opt_read_write,
721 	/* Boolean args above */
722 	Opt_last_bool,
723 };
724 
725 static match_table_t rbd_opts_tokens = {
726 	/* int args above */
727 	/* string args above */
728 	{Opt_read_only, "read_only"},
729 	{Opt_read_only, "ro"},		/* Alternate spelling */
730 	{Opt_read_write, "read_write"},
731 	{Opt_read_write, "rw"},		/* Alternate spelling */
732 	/* Boolean args above */
733 	{-1, NULL}
734 };
735 
736 struct rbd_options {
737 	bool	read_only;
738 };
739 
740 #define RBD_READ_ONLY_DEFAULT	false
741 
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744 	struct rbd_options *rbd_opts = private;
745 	substring_t argstr[MAX_OPT_ARGS];
746 	int token, intval, ret;
747 
748 	token = match_token(c, rbd_opts_tokens, argstr);
749 	if (token < 0)
750 		return -EINVAL;
751 
752 	if (token < Opt_last_int) {
753 		ret = match_int(&argstr[0], &intval);
754 		if (ret < 0) {
755 			pr_err("bad mount option arg (not int) "
756 			       "at '%s'\n", c);
757 			return ret;
758 		}
759 		dout("got int token %d val %d\n", token, intval);
760 	} else if (token > Opt_last_int && token < Opt_last_string) {
761 		dout("got string token %d val %s\n", token,
762 		     argstr[0].from);
763 	} else if (token > Opt_last_string && token < Opt_last_bool) {
764 		dout("got Boolean token %d\n", token);
765 	} else {
766 		dout("got token %d\n", token);
767 	}
768 
769 	switch (token) {
770 	case Opt_read_only:
771 		rbd_opts->read_only = true;
772 		break;
773 	case Opt_read_write:
774 		rbd_opts->read_only = false;
775 		break;
776 	default:
777 		rbd_assert(false);
778 		break;
779 	}
780 	return 0;
781 }
782 
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790 	struct rbd_client *rbdc;
791 
792 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793 	rbdc = rbd_client_find(ceph_opts);
794 	if (rbdc)	/* using an existing client */
795 		ceph_destroy_options(ceph_opts);
796 	else
797 		rbdc = rbd_client_create(ceph_opts);
798 	mutex_unlock(&client_mutex);
799 
800 	return rbdc;
801 }
802 
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811 
812 	dout("%s: rbdc %p\n", __func__, rbdc);
813 	spin_lock(&rbd_client_list_lock);
814 	list_del(&rbdc->node);
815 	spin_unlock(&rbd_client_list_lock);
816 
817 	ceph_destroy_client(rbdc->client);
818 	kfree(rbdc);
819 }
820 
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827 	if (rbdc)
828 		kref_put(&rbdc->kref, rbd_client_release);
829 }
830 
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833 	return image_format == 1 || image_format == 2;
834 }
835 
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838 	size_t size;
839 	u32 snap_count;
840 
841 	/* The header has to start with the magic rbd header text */
842 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843 		return false;
844 
845 	/* The bio layer requires at least sector-sized I/O */
846 
847 	if (ondisk->options.order < SECTOR_SHIFT)
848 		return false;
849 
850 	/* If we use u64 in a few spots we may be able to loosen this */
851 
852 	if (ondisk->options.order > 8 * sizeof (int) - 1)
853 		return false;
854 
855 	/*
856 	 * The size of a snapshot header has to fit in a size_t, and
857 	 * that limits the number of snapshots.
858 	 */
859 	snap_count = le32_to_cpu(ondisk->snap_count);
860 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
861 	if (snap_count > size / sizeof (__le64))
862 		return false;
863 
864 	/*
865 	 * Not only that, but the size of the entire the snapshot
866 	 * header must also be representable in a size_t.
867 	 */
868 	size -= snap_count * sizeof (__le64);
869 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870 		return false;
871 
872 	return true;
873 }
874 
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880 				 struct rbd_image_header_ondisk *ondisk)
881 {
882 	struct rbd_image_header *header = &rbd_dev->header;
883 	bool first_time = header->object_prefix == NULL;
884 	struct ceph_snap_context *snapc;
885 	char *object_prefix = NULL;
886 	char *snap_names = NULL;
887 	u64 *snap_sizes = NULL;
888 	u32 snap_count;
889 	size_t size;
890 	int ret = -ENOMEM;
891 	u32 i;
892 
893 	/* Allocate this now to avoid having to handle failure below */
894 
895 	if (first_time) {
896 		size_t len;
897 
898 		len = strnlen(ondisk->object_prefix,
899 				sizeof (ondisk->object_prefix));
900 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
901 		if (!object_prefix)
902 			return -ENOMEM;
903 		memcpy(object_prefix, ondisk->object_prefix, len);
904 		object_prefix[len] = '\0';
905 	}
906 
907 	/* Allocate the snapshot context and fill it in */
908 
909 	snap_count = le32_to_cpu(ondisk->snap_count);
910 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911 	if (!snapc)
912 		goto out_err;
913 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
914 	if (snap_count) {
915 		struct rbd_image_snap_ondisk *snaps;
916 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917 
918 		/* We'll keep a copy of the snapshot names... */
919 
920 		if (snap_names_len > (u64)SIZE_MAX)
921 			goto out_2big;
922 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923 		if (!snap_names)
924 			goto out_err;
925 
926 		/* ...as well as the array of their sizes. */
927 
928 		size = snap_count * sizeof (*header->snap_sizes);
929 		snap_sizes = kmalloc(size, GFP_KERNEL);
930 		if (!snap_sizes)
931 			goto out_err;
932 
933 		/*
934 		 * Copy the names, and fill in each snapshot's id
935 		 * and size.
936 		 *
937 		 * Note that rbd_dev_v1_header_info() guarantees the
938 		 * ondisk buffer we're working with has
939 		 * snap_names_len bytes beyond the end of the
940 		 * snapshot id array, this memcpy() is safe.
941 		 */
942 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943 		snaps = ondisk->snaps;
944 		for (i = 0; i < snap_count; i++) {
945 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947 		}
948 	}
949 
950 	/* We won't fail any more, fill in the header */
951 
952 	if (first_time) {
953 		header->object_prefix = object_prefix;
954 		header->obj_order = ondisk->options.order;
955 		header->crypt_type = ondisk->options.crypt_type;
956 		header->comp_type = ondisk->options.comp_type;
957 		/* The rest aren't used for format 1 images */
958 		header->stripe_unit = 0;
959 		header->stripe_count = 0;
960 		header->features = 0;
961 	} else {
962 		ceph_put_snap_context(header->snapc);
963 		kfree(header->snap_names);
964 		kfree(header->snap_sizes);
965 	}
966 
967 	/* The remaining fields always get updated (when we refresh) */
968 
969 	header->image_size = le64_to_cpu(ondisk->image_size);
970 	header->snapc = snapc;
971 	header->snap_names = snap_names;
972 	header->snap_sizes = snap_sizes;
973 
974 	/* Make sure mapping size is consistent with header info */
975 
976 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977 		if (rbd_dev->mapping.size != header->image_size)
978 			rbd_dev->mapping.size = header->image_size;
979 
980 	return 0;
981 out_2big:
982 	ret = -EIO;
983 out_err:
984 	kfree(snap_sizes);
985 	kfree(snap_names);
986 	ceph_put_snap_context(snapc);
987 	kfree(object_prefix);
988 
989 	return ret;
990 }
991 
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994 	const char *snap_name;
995 
996 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997 
998 	/* Skip over names until we find the one we are looking for */
999 
1000 	snap_name = rbd_dev->header.snap_names;
1001 	while (which--)
1002 		snap_name += strlen(snap_name) + 1;
1003 
1004 	return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006 
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013 	u64 snap_id1 = *(u64 *)s1;
1014 	u64 snap_id2 = *(u64 *)s2;
1015 
1016 	if (snap_id1 < snap_id2)
1017 		return 1;
1018 	return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020 
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034 	u64 *found;
1035 
1036 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037 				sizeof (snap_id), snapid_compare_reverse);
1038 
1039 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041 
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043 					u64 snap_id)
1044 {
1045 	u32 which;
1046 	const char *snap_name;
1047 
1048 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1049 	if (which == BAD_SNAP_INDEX)
1050 		return ERR_PTR(-ENOENT);
1051 
1052 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055 
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058 	if (snap_id == CEPH_NOSNAP)
1059 		return RBD_SNAP_HEAD_NAME;
1060 
1061 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062 	if (rbd_dev->image_format == 1)
1063 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064 
1065 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067 
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069 				u64 *snap_size)
1070 {
1071 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072 	if (snap_id == CEPH_NOSNAP) {
1073 		*snap_size = rbd_dev->header.image_size;
1074 	} else if (rbd_dev->image_format == 1) {
1075 		u32 which;
1076 
1077 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1078 		if (which == BAD_SNAP_INDEX)
1079 			return -ENOENT;
1080 
1081 		*snap_size = rbd_dev->header.snap_sizes[which];
1082 	} else {
1083 		u64 size = 0;
1084 		int ret;
1085 
1086 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087 		if (ret)
1088 			return ret;
1089 
1090 		*snap_size = size;
1091 	}
1092 	return 0;
1093 }
1094 
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096 			u64 *snap_features)
1097 {
1098 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 	if (snap_id == CEPH_NOSNAP) {
1100 		*snap_features = rbd_dev->header.features;
1101 	} else if (rbd_dev->image_format == 1) {
1102 		*snap_features = 0;	/* No features for format 1 */
1103 	} else {
1104 		u64 features = 0;
1105 		int ret;
1106 
1107 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108 		if (ret)
1109 			return ret;
1110 
1111 		*snap_features = features;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118 	u64 snap_id = rbd_dev->spec->snap_id;
1119 	u64 size = 0;
1120 	u64 features = 0;
1121 	int ret;
1122 
1123 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124 	if (ret)
1125 		return ret;
1126 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127 	if (ret)
1128 		return ret;
1129 
1130 	rbd_dev->mapping.size = size;
1131 	rbd_dev->mapping.features = features;
1132 
1133 	return 0;
1134 }
1135 
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138 	rbd_dev->mapping.size = 0;
1139 	rbd_dev->mapping.features = 0;
1140 }
1141 
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144 	char *name;
1145 	u64 segment;
1146 	int ret;
1147 	char *name_format;
1148 
1149 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150 	if (!name)
1151 		return NULL;
1152 	segment = offset >> rbd_dev->header.obj_order;
1153 	name_format = "%s.%012llx";
1154 	if (rbd_dev->image_format == 2)
1155 		name_format = "%s.%016llx";
1156 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157 			rbd_dev->header.object_prefix, segment);
1158 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159 		pr_err("error formatting segment name for #%llu (%d)\n",
1160 			segment, ret);
1161 		kfree(name);
1162 		name = NULL;
1163 	}
1164 
1165 	return name;
1166 }
1167 
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170 	/* The explicit cast here is needed to drop the const qualifier */
1171 
1172 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174 
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178 
1179 	return offset & (segment_size - 1);
1180 }
1181 
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183 				u64 offset, u64 length)
1184 {
1185 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186 
1187 	offset &= segment_size - 1;
1188 
1189 	rbd_assert(length <= U64_MAX - offset);
1190 	if (offset + length > segment_size)
1191 		length = segment_size - offset;
1192 
1193 	return length;
1194 }
1195 
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201 	return 1 << header->obj_order;
1202 }
1203 
1204 /*
1205  * bio helpers
1206  */
1207 
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210 	struct bio *tmp;
1211 
1212 	while (chain) {
1213 		tmp = chain;
1214 		chain = chain->bi_next;
1215 		bio_put(tmp);
1216 	}
1217 }
1218 
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224 	struct bio_vec bv;
1225 	struct bvec_iter iter;
1226 	unsigned long flags;
1227 	void *buf;
1228 	int pos = 0;
1229 
1230 	while (chain) {
1231 		bio_for_each_segment(bv, chain, iter) {
1232 			if (pos + bv.bv_len > start_ofs) {
1233 				int remainder = max(start_ofs - pos, 0);
1234 				buf = bvec_kmap_irq(&bv, &flags);
1235 				memset(buf + remainder, 0,
1236 				       bv.bv_len - remainder);
1237 				flush_dcache_page(bv.bv_page);
1238 				bvec_kunmap_irq(buf, &flags);
1239 			}
1240 			pos += bv.bv_len;
1241 		}
1242 
1243 		chain = chain->bi_next;
1244 	}
1245 }
1246 
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255 	struct page **page = &pages[offset >> PAGE_SHIFT];
1256 
1257 	rbd_assert(end > offset);
1258 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1259 	while (offset < end) {
1260 		size_t page_offset;
1261 		size_t length;
1262 		unsigned long flags;
1263 		void *kaddr;
1264 
1265 		page_offset = offset & ~PAGE_MASK;
1266 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267 		local_irq_save(flags);
1268 		kaddr = kmap_atomic(*page);
1269 		memset(kaddr + page_offset, 0, length);
1270 		flush_dcache_page(*page);
1271 		kunmap_atomic(kaddr);
1272 		local_irq_restore(flags);
1273 
1274 		offset += length;
1275 		page++;
1276 	}
1277 }
1278 
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284 					unsigned int offset,
1285 					unsigned int len,
1286 					gfp_t gfpmask)
1287 {
1288 	struct bio *bio;
1289 
1290 	bio = bio_clone(bio_src, gfpmask);
1291 	if (!bio)
1292 		return NULL;	/* ENOMEM */
1293 
1294 	bio_advance(bio, offset);
1295 	bio->bi_iter.bi_size = len;
1296 
1297 	return bio;
1298 }
1299 
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315 					unsigned int *offset,
1316 					unsigned int len,
1317 					gfp_t gfpmask)
1318 {
1319 	struct bio *bi = *bio_src;
1320 	unsigned int off = *offset;
1321 	struct bio *chain = NULL;
1322 	struct bio **end;
1323 
1324 	/* Build up a chain of clone bios up to the limit */
1325 
1326 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1327 		return NULL;		/* Nothing to clone */
1328 
1329 	end = &chain;
1330 	while (len) {
1331 		unsigned int bi_size;
1332 		struct bio *bio;
1333 
1334 		if (!bi) {
1335 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336 			goto out_err;	/* EINVAL; ran out of bio's */
1337 		}
1338 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340 		if (!bio)
1341 			goto out_err;	/* ENOMEM */
1342 
1343 		*end = bio;
1344 		end = &bio->bi_next;
1345 
1346 		off += bi_size;
1347 		if (off == bi->bi_iter.bi_size) {
1348 			bi = bi->bi_next;
1349 			off = 0;
1350 		}
1351 		len -= bi_size;
1352 	}
1353 	*bio_src = bi;
1354 	*offset = off;
1355 
1356 	return chain;
1357 out_err:
1358 	bio_chain_put(chain);
1359 
1360 	return NULL;
1361 }
1362 
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371 		struct rbd_device *rbd_dev;
1372 
1373 		rbd_dev = obj_request->img_request->rbd_dev;
1374 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375 			obj_request);
1376 	}
1377 }
1378 
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381 	smp_mb();
1382 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384 
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388 		struct rbd_device *rbd_dev = NULL;
1389 
1390 		if (obj_request_img_data_test(obj_request))
1391 			rbd_dev = obj_request->img_request->rbd_dev;
1392 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393 			obj_request);
1394 	}
1395 }
1396 
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399 	smp_mb();
1400 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402 
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414 				bool exists)
1415 {
1416 	if (exists)
1417 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419 	smp_mb();
1420 }
1421 
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424 	smp_mb();
1425 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427 
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430 	smp_mb();
1431 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433 
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437 
1438 	return obj_request->img_offset <
1439 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441 
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445 		atomic_read(&obj_request->kref.refcount));
1446 	kref_get(&obj_request->kref);
1447 }
1448 
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452 	rbd_assert(obj_request != NULL);
1453 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454 		atomic_read(&obj_request->kref.refcount));
1455 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457 
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460 	dout("%s: img %p (was %d)\n", __func__, img_request,
1461 	     atomic_read(&img_request->kref.refcount));
1462 	kref_get(&img_request->kref);
1463 }
1464 
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470 	rbd_assert(img_request != NULL);
1471 	dout("%s: img %p (was %d)\n", __func__, img_request,
1472 		atomic_read(&img_request->kref.refcount));
1473 	if (img_request_child_test(img_request))
1474 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1475 	else
1476 		kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478 
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480 					struct rbd_obj_request *obj_request)
1481 {
1482 	rbd_assert(obj_request->img_request == NULL);
1483 
1484 	/* Image request now owns object's original reference */
1485 	obj_request->img_request = img_request;
1486 	obj_request->which = img_request->obj_request_count;
1487 	rbd_assert(!obj_request_img_data_test(obj_request));
1488 	obj_request_img_data_set(obj_request);
1489 	rbd_assert(obj_request->which != BAD_WHICH);
1490 	img_request->obj_request_count++;
1491 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1492 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493 		obj_request->which);
1494 }
1495 
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497 					struct rbd_obj_request *obj_request)
1498 {
1499 	rbd_assert(obj_request->which != BAD_WHICH);
1500 
1501 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502 		obj_request->which);
1503 	list_del(&obj_request->links);
1504 	rbd_assert(img_request->obj_request_count > 0);
1505 	img_request->obj_request_count--;
1506 	rbd_assert(obj_request->which == img_request->obj_request_count);
1507 	obj_request->which = BAD_WHICH;
1508 	rbd_assert(obj_request_img_data_test(obj_request));
1509 	rbd_assert(obj_request->img_request == img_request);
1510 	obj_request->img_request = NULL;
1511 	obj_request->callback = NULL;
1512 	rbd_obj_request_put(obj_request);
1513 }
1514 
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517 	switch (type) {
1518 	case OBJ_REQUEST_NODATA:
1519 	case OBJ_REQUEST_BIO:
1520 	case OBJ_REQUEST_PAGES:
1521 		return true;
1522 	default:
1523 		return false;
1524 	}
1525 }
1526 
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528 				struct rbd_obj_request *obj_request)
1529 {
1530 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1531 
1532 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1533 }
1534 
1535 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1536 {
1537 
1538 	dout("%s: img %p\n", __func__, img_request);
1539 
1540 	/*
1541 	 * If no error occurred, compute the aggregate transfer
1542 	 * count for the image request.  We could instead use
1543 	 * atomic64_cmpxchg() to update it as each object request
1544 	 * completes; not clear which way is better off hand.
1545 	 */
1546 	if (!img_request->result) {
1547 		struct rbd_obj_request *obj_request;
1548 		u64 xferred = 0;
1549 
1550 		for_each_obj_request(img_request, obj_request)
1551 			xferred += obj_request->xferred;
1552 		img_request->xferred = xferred;
1553 	}
1554 
1555 	if (img_request->callback)
1556 		img_request->callback(img_request);
1557 	else
1558 		rbd_img_request_put(img_request);
1559 }
1560 
1561 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1562 
1563 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1564 {
1565 	dout("%s: obj %p\n", __func__, obj_request);
1566 
1567 	return wait_for_completion_interruptible(&obj_request->completion);
1568 }
1569 
1570 /*
1571  * The default/initial value for all image request flags is 0.  Each
1572  * is conditionally set to 1 at image request initialization time
1573  * and currently never change thereafter.
1574  */
1575 static void img_request_write_set(struct rbd_img_request *img_request)
1576 {
1577 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1578 	smp_mb();
1579 }
1580 
1581 static bool img_request_write_test(struct rbd_img_request *img_request)
1582 {
1583 	smp_mb();
1584 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1585 }
1586 
1587 static void img_request_child_set(struct rbd_img_request *img_request)
1588 {
1589 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1590 	smp_mb();
1591 }
1592 
1593 static void img_request_child_clear(struct rbd_img_request *img_request)
1594 {
1595 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1596 	smp_mb();
1597 }
1598 
1599 static bool img_request_child_test(struct rbd_img_request *img_request)
1600 {
1601 	smp_mb();
1602 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1603 }
1604 
1605 static void img_request_layered_set(struct rbd_img_request *img_request)
1606 {
1607 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1608 	smp_mb();
1609 }
1610 
1611 static void img_request_layered_clear(struct rbd_img_request *img_request)
1612 {
1613 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1614 	smp_mb();
1615 }
1616 
1617 static bool img_request_layered_test(struct rbd_img_request *img_request)
1618 {
1619 	smp_mb();
1620 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1621 }
1622 
1623 static void
1624 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1625 {
1626 	u64 xferred = obj_request->xferred;
1627 	u64 length = obj_request->length;
1628 
1629 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1630 		obj_request, obj_request->img_request, obj_request->result,
1631 		xferred, length);
1632 	/*
1633 	 * ENOENT means a hole in the image.  We zero-fill the entire
1634 	 * length of the request.  A short read also implies zero-fill
1635 	 * to the end of the request.  An error requires the whole
1636 	 * length of the request to be reported finished with an error
1637 	 * to the block layer.  In each case we update the xferred
1638 	 * count to indicate the whole request was satisfied.
1639 	 */
1640 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1641 	if (obj_request->result == -ENOENT) {
1642 		if (obj_request->type == OBJ_REQUEST_BIO)
1643 			zero_bio_chain(obj_request->bio_list, 0);
1644 		else
1645 			zero_pages(obj_request->pages, 0, length);
1646 		obj_request->result = 0;
1647 	} else if (xferred < length && !obj_request->result) {
1648 		if (obj_request->type == OBJ_REQUEST_BIO)
1649 			zero_bio_chain(obj_request->bio_list, xferred);
1650 		else
1651 			zero_pages(obj_request->pages, xferred, length);
1652 	}
1653 	obj_request->xferred = length;
1654 	obj_request_done_set(obj_request);
1655 }
1656 
1657 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1658 {
1659 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1660 		obj_request->callback);
1661 	if (obj_request->callback)
1662 		obj_request->callback(obj_request);
1663 	else
1664 		complete_all(&obj_request->completion);
1665 }
1666 
1667 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1668 {
1669 	dout("%s: obj %p\n", __func__, obj_request);
1670 	obj_request_done_set(obj_request);
1671 }
1672 
1673 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1674 {
1675 	struct rbd_img_request *img_request = NULL;
1676 	struct rbd_device *rbd_dev = NULL;
1677 	bool layered = false;
1678 
1679 	if (obj_request_img_data_test(obj_request)) {
1680 		img_request = obj_request->img_request;
1681 		layered = img_request && img_request_layered_test(img_request);
1682 		rbd_dev = img_request->rbd_dev;
1683 	}
1684 
1685 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1686 		obj_request, img_request, obj_request->result,
1687 		obj_request->xferred, obj_request->length);
1688 	if (layered && obj_request->result == -ENOENT &&
1689 			obj_request->img_offset < rbd_dev->parent_overlap)
1690 		rbd_img_parent_read(obj_request);
1691 	else if (img_request)
1692 		rbd_img_obj_request_read_callback(obj_request);
1693 	else
1694 		obj_request_done_set(obj_request);
1695 }
1696 
1697 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1698 {
1699 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1700 		obj_request->result, obj_request->length);
1701 	/*
1702 	 * There is no such thing as a successful short write.  Set
1703 	 * it to our originally-requested length.
1704 	 */
1705 	obj_request->xferred = obj_request->length;
1706 	obj_request_done_set(obj_request);
1707 }
1708 
1709 /*
1710  * For a simple stat call there's nothing to do.  We'll do more if
1711  * this is part of a write sequence for a layered image.
1712  */
1713 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1714 {
1715 	dout("%s: obj %p\n", __func__, obj_request);
1716 	obj_request_done_set(obj_request);
1717 }
1718 
1719 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1720 				struct ceph_msg *msg)
1721 {
1722 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1723 	u16 opcode;
1724 
1725 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1726 	rbd_assert(osd_req == obj_request->osd_req);
1727 	if (obj_request_img_data_test(obj_request)) {
1728 		rbd_assert(obj_request->img_request);
1729 		rbd_assert(obj_request->which != BAD_WHICH);
1730 	} else {
1731 		rbd_assert(obj_request->which == BAD_WHICH);
1732 	}
1733 
1734 	if (osd_req->r_result < 0)
1735 		obj_request->result = osd_req->r_result;
1736 
1737 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1738 
1739 	/*
1740 	 * We support a 64-bit length, but ultimately it has to be
1741 	 * passed to blk_end_request(), which takes an unsigned int.
1742 	 */
1743 	obj_request->xferred = osd_req->r_reply_op_len[0];
1744 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1745 
1746 	opcode = osd_req->r_ops[0].op;
1747 	switch (opcode) {
1748 	case CEPH_OSD_OP_READ:
1749 		rbd_osd_read_callback(obj_request);
1750 		break;
1751 	case CEPH_OSD_OP_SETALLOCHINT:
1752 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1753 		/* fall through */
1754 	case CEPH_OSD_OP_WRITE:
1755 		rbd_osd_write_callback(obj_request);
1756 		break;
1757 	case CEPH_OSD_OP_STAT:
1758 		rbd_osd_stat_callback(obj_request);
1759 		break;
1760 	case CEPH_OSD_OP_CALL:
1761 	case CEPH_OSD_OP_NOTIFY_ACK:
1762 	case CEPH_OSD_OP_WATCH:
1763 		rbd_osd_trivial_callback(obj_request);
1764 		break;
1765 	default:
1766 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1767 			obj_request->object_name, (unsigned short) opcode);
1768 		break;
1769 	}
1770 
1771 	if (obj_request_done_test(obj_request))
1772 		rbd_obj_request_complete(obj_request);
1773 }
1774 
1775 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1776 {
1777 	struct rbd_img_request *img_request = obj_request->img_request;
1778 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1779 	u64 snap_id;
1780 
1781 	rbd_assert(osd_req != NULL);
1782 
1783 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1784 	ceph_osdc_build_request(osd_req, obj_request->offset,
1785 			NULL, snap_id, NULL);
1786 }
1787 
1788 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1789 {
1790 	struct rbd_img_request *img_request = obj_request->img_request;
1791 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1792 	struct ceph_snap_context *snapc;
1793 	struct timespec mtime = CURRENT_TIME;
1794 
1795 	rbd_assert(osd_req != NULL);
1796 
1797 	snapc = img_request ? img_request->snapc : NULL;
1798 	ceph_osdc_build_request(osd_req, obj_request->offset,
1799 			snapc, CEPH_NOSNAP, &mtime);
1800 }
1801 
1802 /*
1803  * Create an osd request.  A read request has one osd op (read).
1804  * A write request has either one (watch) or two (hint+write) osd ops.
1805  * (All rbd data writes are prefixed with an allocation hint op, but
1806  * technically osd watch is a write request, hence this distinction.)
1807  */
1808 static struct ceph_osd_request *rbd_osd_req_create(
1809 					struct rbd_device *rbd_dev,
1810 					bool write_request,
1811 					unsigned int num_ops,
1812 					struct rbd_obj_request *obj_request)
1813 {
1814 	struct ceph_snap_context *snapc = NULL;
1815 	struct ceph_osd_client *osdc;
1816 	struct ceph_osd_request *osd_req;
1817 
1818 	if (obj_request_img_data_test(obj_request)) {
1819 		struct rbd_img_request *img_request = obj_request->img_request;
1820 
1821 		rbd_assert(write_request ==
1822 				img_request_write_test(img_request));
1823 		if (write_request)
1824 			snapc = img_request->snapc;
1825 	}
1826 
1827 	rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1828 
1829 	/* Allocate and initialize the request, for the num_ops ops */
1830 
1831 	osdc = &rbd_dev->rbd_client->client->osdc;
1832 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1833 					  GFP_ATOMIC);
1834 	if (!osd_req)
1835 		return NULL;	/* ENOMEM */
1836 
1837 	if (write_request)
1838 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1839 	else
1840 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1841 
1842 	osd_req->r_callback = rbd_osd_req_callback;
1843 	osd_req->r_priv = obj_request;
1844 
1845 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1846 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1847 
1848 	return osd_req;
1849 }
1850 
1851 /*
1852  * Create a copyup osd request based on the information in the
1853  * object request supplied.  A copyup request has three osd ops,
1854  * a copyup method call, a hint op, and a write op.
1855  */
1856 static struct ceph_osd_request *
1857 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1858 {
1859 	struct rbd_img_request *img_request;
1860 	struct ceph_snap_context *snapc;
1861 	struct rbd_device *rbd_dev;
1862 	struct ceph_osd_client *osdc;
1863 	struct ceph_osd_request *osd_req;
1864 
1865 	rbd_assert(obj_request_img_data_test(obj_request));
1866 	img_request = obj_request->img_request;
1867 	rbd_assert(img_request);
1868 	rbd_assert(img_request_write_test(img_request));
1869 
1870 	/* Allocate and initialize the request, for the three ops */
1871 
1872 	snapc = img_request->snapc;
1873 	rbd_dev = img_request->rbd_dev;
1874 	osdc = &rbd_dev->rbd_client->client->osdc;
1875 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1876 	if (!osd_req)
1877 		return NULL;	/* ENOMEM */
1878 
1879 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1880 	osd_req->r_callback = rbd_osd_req_callback;
1881 	osd_req->r_priv = obj_request;
1882 
1883 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1884 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1885 
1886 	return osd_req;
1887 }
1888 
1889 
1890 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1891 {
1892 	ceph_osdc_put_request(osd_req);
1893 }
1894 
1895 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1896 
1897 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1898 						u64 offset, u64 length,
1899 						enum obj_request_type type)
1900 {
1901 	struct rbd_obj_request *obj_request;
1902 	size_t size;
1903 	char *name;
1904 
1905 	rbd_assert(obj_request_type_valid(type));
1906 
1907 	size = strlen(object_name) + 1;
1908 	name = kmalloc(size, GFP_KERNEL);
1909 	if (!name)
1910 		return NULL;
1911 
1912 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1913 	if (!obj_request) {
1914 		kfree(name);
1915 		return NULL;
1916 	}
1917 
1918 	obj_request->object_name = memcpy(name, object_name, size);
1919 	obj_request->offset = offset;
1920 	obj_request->length = length;
1921 	obj_request->flags = 0;
1922 	obj_request->which = BAD_WHICH;
1923 	obj_request->type = type;
1924 	INIT_LIST_HEAD(&obj_request->links);
1925 	init_completion(&obj_request->completion);
1926 	kref_init(&obj_request->kref);
1927 
1928 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1929 		offset, length, (int)type, obj_request);
1930 
1931 	return obj_request;
1932 }
1933 
1934 static void rbd_obj_request_destroy(struct kref *kref)
1935 {
1936 	struct rbd_obj_request *obj_request;
1937 
1938 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1939 
1940 	dout("%s: obj %p\n", __func__, obj_request);
1941 
1942 	rbd_assert(obj_request->img_request == NULL);
1943 	rbd_assert(obj_request->which == BAD_WHICH);
1944 
1945 	if (obj_request->osd_req)
1946 		rbd_osd_req_destroy(obj_request->osd_req);
1947 
1948 	rbd_assert(obj_request_type_valid(obj_request->type));
1949 	switch (obj_request->type) {
1950 	case OBJ_REQUEST_NODATA:
1951 		break;		/* Nothing to do */
1952 	case OBJ_REQUEST_BIO:
1953 		if (obj_request->bio_list)
1954 			bio_chain_put(obj_request->bio_list);
1955 		break;
1956 	case OBJ_REQUEST_PAGES:
1957 		if (obj_request->pages)
1958 			ceph_release_page_vector(obj_request->pages,
1959 						obj_request->page_count);
1960 		break;
1961 	}
1962 
1963 	kfree(obj_request->object_name);
1964 	obj_request->object_name = NULL;
1965 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1966 }
1967 
1968 /* It's OK to call this for a device with no parent */
1969 
1970 static void rbd_spec_put(struct rbd_spec *spec);
1971 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1972 {
1973 	rbd_dev_remove_parent(rbd_dev);
1974 	rbd_spec_put(rbd_dev->parent_spec);
1975 	rbd_dev->parent_spec = NULL;
1976 	rbd_dev->parent_overlap = 0;
1977 }
1978 
1979 /*
1980  * Parent image reference counting is used to determine when an
1981  * image's parent fields can be safely torn down--after there are no
1982  * more in-flight requests to the parent image.  When the last
1983  * reference is dropped, cleaning them up is safe.
1984  */
1985 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1986 {
1987 	int counter;
1988 
1989 	if (!rbd_dev->parent_spec)
1990 		return;
1991 
1992 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1993 	if (counter > 0)
1994 		return;
1995 
1996 	/* Last reference; clean up parent data structures */
1997 
1998 	if (!counter)
1999 		rbd_dev_unparent(rbd_dev);
2000 	else
2001 		rbd_warn(rbd_dev, "parent reference underflow\n");
2002 }
2003 
2004 /*
2005  * If an image has a non-zero parent overlap, get a reference to its
2006  * parent.
2007  *
2008  * We must get the reference before checking for the overlap to
2009  * coordinate properly with zeroing the parent overlap in
2010  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2011  * drop it again if there is no overlap.
2012  *
2013  * Returns true if the rbd device has a parent with a non-zero
2014  * overlap and a reference for it was successfully taken, or
2015  * false otherwise.
2016  */
2017 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2018 {
2019 	int counter;
2020 
2021 	if (!rbd_dev->parent_spec)
2022 		return false;
2023 
2024 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2025 	if (counter > 0 && rbd_dev->parent_overlap)
2026 		return true;
2027 
2028 	/* Image was flattened, but parent is not yet torn down */
2029 
2030 	if (counter < 0)
2031 		rbd_warn(rbd_dev, "parent reference overflow\n");
2032 
2033 	return false;
2034 }
2035 
2036 /*
2037  * Caller is responsible for filling in the list of object requests
2038  * that comprises the image request, and the Linux request pointer
2039  * (if there is one).
2040  */
2041 static struct rbd_img_request *rbd_img_request_create(
2042 					struct rbd_device *rbd_dev,
2043 					u64 offset, u64 length,
2044 					bool write_request)
2045 {
2046 	struct rbd_img_request *img_request;
2047 
2048 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2049 	if (!img_request)
2050 		return NULL;
2051 
2052 	if (write_request) {
2053 		down_read(&rbd_dev->header_rwsem);
2054 		ceph_get_snap_context(rbd_dev->header.snapc);
2055 		up_read(&rbd_dev->header_rwsem);
2056 	}
2057 
2058 	img_request->rq = NULL;
2059 	img_request->rbd_dev = rbd_dev;
2060 	img_request->offset = offset;
2061 	img_request->length = length;
2062 	img_request->flags = 0;
2063 	if (write_request) {
2064 		img_request_write_set(img_request);
2065 		img_request->snapc = rbd_dev->header.snapc;
2066 	} else {
2067 		img_request->snap_id = rbd_dev->spec->snap_id;
2068 	}
2069 	if (rbd_dev_parent_get(rbd_dev))
2070 		img_request_layered_set(img_request);
2071 	spin_lock_init(&img_request->completion_lock);
2072 	img_request->next_completion = 0;
2073 	img_request->callback = NULL;
2074 	img_request->result = 0;
2075 	img_request->obj_request_count = 0;
2076 	INIT_LIST_HEAD(&img_request->obj_requests);
2077 	kref_init(&img_request->kref);
2078 
2079 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2080 		write_request ? "write" : "read", offset, length,
2081 		img_request);
2082 
2083 	return img_request;
2084 }
2085 
2086 static void rbd_img_request_destroy(struct kref *kref)
2087 {
2088 	struct rbd_img_request *img_request;
2089 	struct rbd_obj_request *obj_request;
2090 	struct rbd_obj_request *next_obj_request;
2091 
2092 	img_request = container_of(kref, struct rbd_img_request, kref);
2093 
2094 	dout("%s: img %p\n", __func__, img_request);
2095 
2096 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2097 		rbd_img_obj_request_del(img_request, obj_request);
2098 	rbd_assert(img_request->obj_request_count == 0);
2099 
2100 	if (img_request_layered_test(img_request)) {
2101 		img_request_layered_clear(img_request);
2102 		rbd_dev_parent_put(img_request->rbd_dev);
2103 	}
2104 
2105 	if (img_request_write_test(img_request))
2106 		ceph_put_snap_context(img_request->snapc);
2107 
2108 	kmem_cache_free(rbd_img_request_cache, img_request);
2109 }
2110 
2111 static struct rbd_img_request *rbd_parent_request_create(
2112 					struct rbd_obj_request *obj_request,
2113 					u64 img_offset, u64 length)
2114 {
2115 	struct rbd_img_request *parent_request;
2116 	struct rbd_device *rbd_dev;
2117 
2118 	rbd_assert(obj_request->img_request);
2119 	rbd_dev = obj_request->img_request->rbd_dev;
2120 
2121 	parent_request = rbd_img_request_create(rbd_dev->parent,
2122 						img_offset, length, false);
2123 	if (!parent_request)
2124 		return NULL;
2125 
2126 	img_request_child_set(parent_request);
2127 	rbd_obj_request_get(obj_request);
2128 	parent_request->obj_request = obj_request;
2129 
2130 	return parent_request;
2131 }
2132 
2133 static void rbd_parent_request_destroy(struct kref *kref)
2134 {
2135 	struct rbd_img_request *parent_request;
2136 	struct rbd_obj_request *orig_request;
2137 
2138 	parent_request = container_of(kref, struct rbd_img_request, kref);
2139 	orig_request = parent_request->obj_request;
2140 
2141 	parent_request->obj_request = NULL;
2142 	rbd_obj_request_put(orig_request);
2143 	img_request_child_clear(parent_request);
2144 
2145 	rbd_img_request_destroy(kref);
2146 }
2147 
2148 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2149 {
2150 	struct rbd_img_request *img_request;
2151 	unsigned int xferred;
2152 	int result;
2153 	bool more;
2154 
2155 	rbd_assert(obj_request_img_data_test(obj_request));
2156 	img_request = obj_request->img_request;
2157 
2158 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2159 	xferred = (unsigned int)obj_request->xferred;
2160 	result = obj_request->result;
2161 	if (result) {
2162 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2163 
2164 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2165 			img_request_write_test(img_request) ? "write" : "read",
2166 			obj_request->length, obj_request->img_offset,
2167 			obj_request->offset);
2168 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2169 			result, xferred);
2170 		if (!img_request->result)
2171 			img_request->result = result;
2172 	}
2173 
2174 	/* Image object requests don't own their page array */
2175 
2176 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2177 		obj_request->pages = NULL;
2178 		obj_request->page_count = 0;
2179 	}
2180 
2181 	if (img_request_child_test(img_request)) {
2182 		rbd_assert(img_request->obj_request != NULL);
2183 		more = obj_request->which < img_request->obj_request_count - 1;
2184 	} else {
2185 		rbd_assert(img_request->rq != NULL);
2186 		more = blk_end_request(img_request->rq, result, xferred);
2187 	}
2188 
2189 	return more;
2190 }
2191 
2192 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2193 {
2194 	struct rbd_img_request *img_request;
2195 	u32 which = obj_request->which;
2196 	bool more = true;
2197 
2198 	rbd_assert(obj_request_img_data_test(obj_request));
2199 	img_request = obj_request->img_request;
2200 
2201 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2202 	rbd_assert(img_request != NULL);
2203 	rbd_assert(img_request->obj_request_count > 0);
2204 	rbd_assert(which != BAD_WHICH);
2205 	rbd_assert(which < img_request->obj_request_count);
2206 
2207 	spin_lock_irq(&img_request->completion_lock);
2208 	if (which != img_request->next_completion)
2209 		goto out;
2210 
2211 	for_each_obj_request_from(img_request, obj_request) {
2212 		rbd_assert(more);
2213 		rbd_assert(which < img_request->obj_request_count);
2214 
2215 		if (!obj_request_done_test(obj_request))
2216 			break;
2217 		more = rbd_img_obj_end_request(obj_request);
2218 		which++;
2219 	}
2220 
2221 	rbd_assert(more ^ (which == img_request->obj_request_count));
2222 	img_request->next_completion = which;
2223 out:
2224 	spin_unlock_irq(&img_request->completion_lock);
2225 	rbd_img_request_put(img_request);
2226 
2227 	if (!more)
2228 		rbd_img_request_complete(img_request);
2229 }
2230 
2231 /*
2232  * Split up an image request into one or more object requests, each
2233  * to a different object.  The "type" parameter indicates whether
2234  * "data_desc" is the pointer to the head of a list of bio
2235  * structures, or the base of a page array.  In either case this
2236  * function assumes data_desc describes memory sufficient to hold
2237  * all data described by the image request.
2238  */
2239 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2240 					enum obj_request_type type,
2241 					void *data_desc)
2242 {
2243 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2244 	struct rbd_obj_request *obj_request = NULL;
2245 	struct rbd_obj_request *next_obj_request;
2246 	bool write_request = img_request_write_test(img_request);
2247 	struct bio *bio_list = NULL;
2248 	unsigned int bio_offset = 0;
2249 	struct page **pages = NULL;
2250 	u64 img_offset;
2251 	u64 resid;
2252 	u16 opcode;
2253 
2254 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2255 		(int)type, data_desc);
2256 
2257 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2258 	img_offset = img_request->offset;
2259 	resid = img_request->length;
2260 	rbd_assert(resid > 0);
2261 
2262 	if (type == OBJ_REQUEST_BIO) {
2263 		bio_list = data_desc;
2264 		rbd_assert(img_offset ==
2265 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2266 	} else {
2267 		rbd_assert(type == OBJ_REQUEST_PAGES);
2268 		pages = data_desc;
2269 	}
2270 
2271 	while (resid) {
2272 		struct ceph_osd_request *osd_req;
2273 		const char *object_name;
2274 		u64 offset;
2275 		u64 length;
2276 		unsigned int which = 0;
2277 
2278 		object_name = rbd_segment_name(rbd_dev, img_offset);
2279 		if (!object_name)
2280 			goto out_unwind;
2281 		offset = rbd_segment_offset(rbd_dev, img_offset);
2282 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2283 		obj_request = rbd_obj_request_create(object_name,
2284 						offset, length, type);
2285 		/* object request has its own copy of the object name */
2286 		rbd_segment_name_free(object_name);
2287 		if (!obj_request)
2288 			goto out_unwind;
2289 
2290 		/*
2291 		 * set obj_request->img_request before creating the
2292 		 * osd_request so that it gets the right snapc
2293 		 */
2294 		rbd_img_obj_request_add(img_request, obj_request);
2295 
2296 		if (type == OBJ_REQUEST_BIO) {
2297 			unsigned int clone_size;
2298 
2299 			rbd_assert(length <= (u64)UINT_MAX);
2300 			clone_size = (unsigned int)length;
2301 			obj_request->bio_list =
2302 					bio_chain_clone_range(&bio_list,
2303 								&bio_offset,
2304 								clone_size,
2305 								GFP_ATOMIC);
2306 			if (!obj_request->bio_list)
2307 				goto out_unwind;
2308 		} else {
2309 			unsigned int page_count;
2310 
2311 			obj_request->pages = pages;
2312 			page_count = (u32)calc_pages_for(offset, length);
2313 			obj_request->page_count = page_count;
2314 			if ((offset + length) & ~PAGE_MASK)
2315 				page_count--;	/* more on last page */
2316 			pages += page_count;
2317 		}
2318 
2319 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2320 					     (write_request ? 2 : 1),
2321 					     obj_request);
2322 		if (!osd_req)
2323 			goto out_unwind;
2324 		obj_request->osd_req = osd_req;
2325 		obj_request->callback = rbd_img_obj_callback;
2326 		rbd_img_request_get(img_request);
2327 
2328 		if (write_request) {
2329 			osd_req_op_alloc_hint_init(osd_req, which,
2330 					     rbd_obj_bytes(&rbd_dev->header),
2331 					     rbd_obj_bytes(&rbd_dev->header));
2332 			which++;
2333 		}
2334 
2335 		osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2336 				       0, 0);
2337 		if (type == OBJ_REQUEST_BIO)
2338 			osd_req_op_extent_osd_data_bio(osd_req, which,
2339 					obj_request->bio_list, length);
2340 		else
2341 			osd_req_op_extent_osd_data_pages(osd_req, which,
2342 					obj_request->pages, length,
2343 					offset & ~PAGE_MASK, false, false);
2344 
2345 		if (write_request)
2346 			rbd_osd_req_format_write(obj_request);
2347 		else
2348 			rbd_osd_req_format_read(obj_request);
2349 
2350 		obj_request->img_offset = img_offset;
2351 
2352 		img_offset += length;
2353 		resid -= length;
2354 	}
2355 
2356 	return 0;
2357 
2358 out_unwind:
2359 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2360 		rbd_img_obj_request_del(img_request, obj_request);
2361 
2362 	return -ENOMEM;
2363 }
2364 
2365 static void
2366 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2367 {
2368 	struct rbd_img_request *img_request;
2369 	struct rbd_device *rbd_dev;
2370 	struct page **pages;
2371 	u32 page_count;
2372 
2373 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2374 	rbd_assert(obj_request_img_data_test(obj_request));
2375 	img_request = obj_request->img_request;
2376 	rbd_assert(img_request);
2377 
2378 	rbd_dev = img_request->rbd_dev;
2379 	rbd_assert(rbd_dev);
2380 
2381 	pages = obj_request->copyup_pages;
2382 	rbd_assert(pages != NULL);
2383 	obj_request->copyup_pages = NULL;
2384 	page_count = obj_request->copyup_page_count;
2385 	rbd_assert(page_count);
2386 	obj_request->copyup_page_count = 0;
2387 	ceph_release_page_vector(pages, page_count);
2388 
2389 	/*
2390 	 * We want the transfer count to reflect the size of the
2391 	 * original write request.  There is no such thing as a
2392 	 * successful short write, so if the request was successful
2393 	 * we can just set it to the originally-requested length.
2394 	 */
2395 	if (!obj_request->result)
2396 		obj_request->xferred = obj_request->length;
2397 
2398 	/* Finish up with the normal image object callback */
2399 
2400 	rbd_img_obj_callback(obj_request);
2401 }
2402 
2403 static void
2404 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2405 {
2406 	struct rbd_obj_request *orig_request;
2407 	struct ceph_osd_request *osd_req;
2408 	struct ceph_osd_client *osdc;
2409 	struct rbd_device *rbd_dev;
2410 	struct page **pages;
2411 	u32 page_count;
2412 	int img_result;
2413 	u64 parent_length;
2414 	u64 offset;
2415 	u64 length;
2416 
2417 	rbd_assert(img_request_child_test(img_request));
2418 
2419 	/* First get what we need from the image request */
2420 
2421 	pages = img_request->copyup_pages;
2422 	rbd_assert(pages != NULL);
2423 	img_request->copyup_pages = NULL;
2424 	page_count = img_request->copyup_page_count;
2425 	rbd_assert(page_count);
2426 	img_request->copyup_page_count = 0;
2427 
2428 	orig_request = img_request->obj_request;
2429 	rbd_assert(orig_request != NULL);
2430 	rbd_assert(obj_request_type_valid(orig_request->type));
2431 	img_result = img_request->result;
2432 	parent_length = img_request->length;
2433 	rbd_assert(parent_length == img_request->xferred);
2434 	rbd_img_request_put(img_request);
2435 
2436 	rbd_assert(orig_request->img_request);
2437 	rbd_dev = orig_request->img_request->rbd_dev;
2438 	rbd_assert(rbd_dev);
2439 
2440 	/*
2441 	 * If the overlap has become 0 (most likely because the
2442 	 * image has been flattened) we need to free the pages
2443 	 * and re-submit the original write request.
2444 	 */
2445 	if (!rbd_dev->parent_overlap) {
2446 		struct ceph_osd_client *osdc;
2447 
2448 		ceph_release_page_vector(pages, page_count);
2449 		osdc = &rbd_dev->rbd_client->client->osdc;
2450 		img_result = rbd_obj_request_submit(osdc, orig_request);
2451 		if (!img_result)
2452 			return;
2453 	}
2454 
2455 	if (img_result)
2456 		goto out_err;
2457 
2458 	/*
2459 	 * The original osd request is of no use to use any more.
2460 	 * We need a new one that can hold the three ops in a copyup
2461 	 * request.  Allocate the new copyup osd request for the
2462 	 * original request, and release the old one.
2463 	 */
2464 	img_result = -ENOMEM;
2465 	osd_req = rbd_osd_req_create_copyup(orig_request);
2466 	if (!osd_req)
2467 		goto out_err;
2468 	rbd_osd_req_destroy(orig_request->osd_req);
2469 	orig_request->osd_req = osd_req;
2470 	orig_request->copyup_pages = pages;
2471 	orig_request->copyup_page_count = page_count;
2472 
2473 	/* Initialize the copyup op */
2474 
2475 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2476 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2477 						false, false);
2478 
2479 	/* Then the hint op */
2480 
2481 	osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2482 				   rbd_obj_bytes(&rbd_dev->header));
2483 
2484 	/* And the original write request op */
2485 
2486 	offset = orig_request->offset;
2487 	length = orig_request->length;
2488 	osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2489 					offset, length, 0, 0);
2490 	if (orig_request->type == OBJ_REQUEST_BIO)
2491 		osd_req_op_extent_osd_data_bio(osd_req, 2,
2492 					orig_request->bio_list, length);
2493 	else
2494 		osd_req_op_extent_osd_data_pages(osd_req, 2,
2495 					orig_request->pages, length,
2496 					offset & ~PAGE_MASK, false, false);
2497 
2498 	rbd_osd_req_format_write(orig_request);
2499 
2500 	/* All set, send it off. */
2501 
2502 	orig_request->callback = rbd_img_obj_copyup_callback;
2503 	osdc = &rbd_dev->rbd_client->client->osdc;
2504 	img_result = rbd_obj_request_submit(osdc, orig_request);
2505 	if (!img_result)
2506 		return;
2507 out_err:
2508 	/* Record the error code and complete the request */
2509 
2510 	orig_request->result = img_result;
2511 	orig_request->xferred = 0;
2512 	obj_request_done_set(orig_request);
2513 	rbd_obj_request_complete(orig_request);
2514 }
2515 
2516 /*
2517  * Read from the parent image the range of data that covers the
2518  * entire target of the given object request.  This is used for
2519  * satisfying a layered image write request when the target of an
2520  * object request from the image request does not exist.
2521  *
2522  * A page array big enough to hold the returned data is allocated
2523  * and supplied to rbd_img_request_fill() as the "data descriptor."
2524  * When the read completes, this page array will be transferred to
2525  * the original object request for the copyup operation.
2526  *
2527  * If an error occurs, record it as the result of the original
2528  * object request and mark it done so it gets completed.
2529  */
2530 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2531 {
2532 	struct rbd_img_request *img_request = NULL;
2533 	struct rbd_img_request *parent_request = NULL;
2534 	struct rbd_device *rbd_dev;
2535 	u64 img_offset;
2536 	u64 length;
2537 	struct page **pages = NULL;
2538 	u32 page_count;
2539 	int result;
2540 
2541 	rbd_assert(obj_request_img_data_test(obj_request));
2542 	rbd_assert(obj_request_type_valid(obj_request->type));
2543 
2544 	img_request = obj_request->img_request;
2545 	rbd_assert(img_request != NULL);
2546 	rbd_dev = img_request->rbd_dev;
2547 	rbd_assert(rbd_dev->parent != NULL);
2548 
2549 	/*
2550 	 * Determine the byte range covered by the object in the
2551 	 * child image to which the original request was to be sent.
2552 	 */
2553 	img_offset = obj_request->img_offset - obj_request->offset;
2554 	length = (u64)1 << rbd_dev->header.obj_order;
2555 
2556 	/*
2557 	 * There is no defined parent data beyond the parent
2558 	 * overlap, so limit what we read at that boundary if
2559 	 * necessary.
2560 	 */
2561 	if (img_offset + length > rbd_dev->parent_overlap) {
2562 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2563 		length = rbd_dev->parent_overlap - img_offset;
2564 	}
2565 
2566 	/*
2567 	 * Allocate a page array big enough to receive the data read
2568 	 * from the parent.
2569 	 */
2570 	page_count = (u32)calc_pages_for(0, length);
2571 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2572 	if (IS_ERR(pages)) {
2573 		result = PTR_ERR(pages);
2574 		pages = NULL;
2575 		goto out_err;
2576 	}
2577 
2578 	result = -ENOMEM;
2579 	parent_request = rbd_parent_request_create(obj_request,
2580 						img_offset, length);
2581 	if (!parent_request)
2582 		goto out_err;
2583 
2584 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2585 	if (result)
2586 		goto out_err;
2587 	parent_request->copyup_pages = pages;
2588 	parent_request->copyup_page_count = page_count;
2589 
2590 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2591 	result = rbd_img_request_submit(parent_request);
2592 	if (!result)
2593 		return 0;
2594 
2595 	parent_request->copyup_pages = NULL;
2596 	parent_request->copyup_page_count = 0;
2597 	parent_request->obj_request = NULL;
2598 	rbd_obj_request_put(obj_request);
2599 out_err:
2600 	if (pages)
2601 		ceph_release_page_vector(pages, page_count);
2602 	if (parent_request)
2603 		rbd_img_request_put(parent_request);
2604 	obj_request->result = result;
2605 	obj_request->xferred = 0;
2606 	obj_request_done_set(obj_request);
2607 
2608 	return result;
2609 }
2610 
2611 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2612 {
2613 	struct rbd_obj_request *orig_request;
2614 	struct rbd_device *rbd_dev;
2615 	int result;
2616 
2617 	rbd_assert(!obj_request_img_data_test(obj_request));
2618 
2619 	/*
2620 	 * All we need from the object request is the original
2621 	 * request and the result of the STAT op.  Grab those, then
2622 	 * we're done with the request.
2623 	 */
2624 	orig_request = obj_request->obj_request;
2625 	obj_request->obj_request = NULL;
2626 	rbd_obj_request_put(orig_request);
2627 	rbd_assert(orig_request);
2628 	rbd_assert(orig_request->img_request);
2629 
2630 	result = obj_request->result;
2631 	obj_request->result = 0;
2632 
2633 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2634 		obj_request, orig_request, result,
2635 		obj_request->xferred, obj_request->length);
2636 	rbd_obj_request_put(obj_request);
2637 
2638 	/*
2639 	 * If the overlap has become 0 (most likely because the
2640 	 * image has been flattened) we need to free the pages
2641 	 * and re-submit the original write request.
2642 	 */
2643 	rbd_dev = orig_request->img_request->rbd_dev;
2644 	if (!rbd_dev->parent_overlap) {
2645 		struct ceph_osd_client *osdc;
2646 
2647 		osdc = &rbd_dev->rbd_client->client->osdc;
2648 		result = rbd_obj_request_submit(osdc, orig_request);
2649 		if (!result)
2650 			return;
2651 	}
2652 
2653 	/*
2654 	 * Our only purpose here is to determine whether the object
2655 	 * exists, and we don't want to treat the non-existence as
2656 	 * an error.  If something else comes back, transfer the
2657 	 * error to the original request and complete it now.
2658 	 */
2659 	if (!result) {
2660 		obj_request_existence_set(orig_request, true);
2661 	} else if (result == -ENOENT) {
2662 		obj_request_existence_set(orig_request, false);
2663 	} else if (result) {
2664 		orig_request->result = result;
2665 		goto out;
2666 	}
2667 
2668 	/*
2669 	 * Resubmit the original request now that we have recorded
2670 	 * whether the target object exists.
2671 	 */
2672 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2673 out:
2674 	if (orig_request->result)
2675 		rbd_obj_request_complete(orig_request);
2676 }
2677 
2678 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2679 {
2680 	struct rbd_obj_request *stat_request;
2681 	struct rbd_device *rbd_dev;
2682 	struct ceph_osd_client *osdc;
2683 	struct page **pages = NULL;
2684 	u32 page_count;
2685 	size_t size;
2686 	int ret;
2687 
2688 	/*
2689 	 * The response data for a STAT call consists of:
2690 	 *     le64 length;
2691 	 *     struct {
2692 	 *         le32 tv_sec;
2693 	 *         le32 tv_nsec;
2694 	 *     } mtime;
2695 	 */
2696 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2697 	page_count = (u32)calc_pages_for(0, size);
2698 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2699 	if (IS_ERR(pages))
2700 		return PTR_ERR(pages);
2701 
2702 	ret = -ENOMEM;
2703 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2704 							OBJ_REQUEST_PAGES);
2705 	if (!stat_request)
2706 		goto out;
2707 
2708 	rbd_obj_request_get(obj_request);
2709 	stat_request->obj_request = obj_request;
2710 	stat_request->pages = pages;
2711 	stat_request->page_count = page_count;
2712 
2713 	rbd_assert(obj_request->img_request);
2714 	rbd_dev = obj_request->img_request->rbd_dev;
2715 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2716 						   stat_request);
2717 	if (!stat_request->osd_req)
2718 		goto out;
2719 	stat_request->callback = rbd_img_obj_exists_callback;
2720 
2721 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2722 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2723 					false, false);
2724 	rbd_osd_req_format_read(stat_request);
2725 
2726 	osdc = &rbd_dev->rbd_client->client->osdc;
2727 	ret = rbd_obj_request_submit(osdc, stat_request);
2728 out:
2729 	if (ret)
2730 		rbd_obj_request_put(obj_request);
2731 
2732 	return ret;
2733 }
2734 
2735 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2736 {
2737 	struct rbd_img_request *img_request;
2738 	struct rbd_device *rbd_dev;
2739 	bool known;
2740 
2741 	rbd_assert(obj_request_img_data_test(obj_request));
2742 
2743 	img_request = obj_request->img_request;
2744 	rbd_assert(img_request);
2745 	rbd_dev = img_request->rbd_dev;
2746 
2747 	/*
2748 	 * Only writes to layered images need special handling.
2749 	 * Reads and non-layered writes are simple object requests.
2750 	 * Layered writes that start beyond the end of the overlap
2751 	 * with the parent have no parent data, so they too are
2752 	 * simple object requests.  Finally, if the target object is
2753 	 * known to already exist, its parent data has already been
2754 	 * copied, so a write to the object can also be handled as a
2755 	 * simple object request.
2756 	 */
2757 	if (!img_request_write_test(img_request) ||
2758 		!img_request_layered_test(img_request) ||
2759 		!obj_request_overlaps_parent(obj_request) ||
2760 		((known = obj_request_known_test(obj_request)) &&
2761 			obj_request_exists_test(obj_request))) {
2762 
2763 		struct rbd_device *rbd_dev;
2764 		struct ceph_osd_client *osdc;
2765 
2766 		rbd_dev = obj_request->img_request->rbd_dev;
2767 		osdc = &rbd_dev->rbd_client->client->osdc;
2768 
2769 		return rbd_obj_request_submit(osdc, obj_request);
2770 	}
2771 
2772 	/*
2773 	 * It's a layered write.  The target object might exist but
2774 	 * we may not know that yet.  If we know it doesn't exist,
2775 	 * start by reading the data for the full target object from
2776 	 * the parent so we can use it for a copyup to the target.
2777 	 */
2778 	if (known)
2779 		return rbd_img_obj_parent_read_full(obj_request);
2780 
2781 	/* We don't know whether the target exists.  Go find out. */
2782 
2783 	return rbd_img_obj_exists_submit(obj_request);
2784 }
2785 
2786 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2787 {
2788 	struct rbd_obj_request *obj_request;
2789 	struct rbd_obj_request *next_obj_request;
2790 
2791 	dout("%s: img %p\n", __func__, img_request);
2792 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2793 		int ret;
2794 
2795 		ret = rbd_img_obj_request_submit(obj_request);
2796 		if (ret)
2797 			return ret;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2804 {
2805 	struct rbd_obj_request *obj_request;
2806 	struct rbd_device *rbd_dev;
2807 	u64 obj_end;
2808 	u64 img_xferred;
2809 	int img_result;
2810 
2811 	rbd_assert(img_request_child_test(img_request));
2812 
2813 	/* First get what we need from the image request and release it */
2814 
2815 	obj_request = img_request->obj_request;
2816 	img_xferred = img_request->xferred;
2817 	img_result = img_request->result;
2818 	rbd_img_request_put(img_request);
2819 
2820 	/*
2821 	 * If the overlap has become 0 (most likely because the
2822 	 * image has been flattened) we need to re-submit the
2823 	 * original request.
2824 	 */
2825 	rbd_assert(obj_request);
2826 	rbd_assert(obj_request->img_request);
2827 	rbd_dev = obj_request->img_request->rbd_dev;
2828 	if (!rbd_dev->parent_overlap) {
2829 		struct ceph_osd_client *osdc;
2830 
2831 		osdc = &rbd_dev->rbd_client->client->osdc;
2832 		img_result = rbd_obj_request_submit(osdc, obj_request);
2833 		if (!img_result)
2834 			return;
2835 	}
2836 
2837 	obj_request->result = img_result;
2838 	if (obj_request->result)
2839 		goto out;
2840 
2841 	/*
2842 	 * We need to zero anything beyond the parent overlap
2843 	 * boundary.  Since rbd_img_obj_request_read_callback()
2844 	 * will zero anything beyond the end of a short read, an
2845 	 * easy way to do this is to pretend the data from the
2846 	 * parent came up short--ending at the overlap boundary.
2847 	 */
2848 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2849 	obj_end = obj_request->img_offset + obj_request->length;
2850 	if (obj_end > rbd_dev->parent_overlap) {
2851 		u64 xferred = 0;
2852 
2853 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2854 			xferred = rbd_dev->parent_overlap -
2855 					obj_request->img_offset;
2856 
2857 		obj_request->xferred = min(img_xferred, xferred);
2858 	} else {
2859 		obj_request->xferred = img_xferred;
2860 	}
2861 out:
2862 	rbd_img_obj_request_read_callback(obj_request);
2863 	rbd_obj_request_complete(obj_request);
2864 }
2865 
2866 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2867 {
2868 	struct rbd_img_request *img_request;
2869 	int result;
2870 
2871 	rbd_assert(obj_request_img_data_test(obj_request));
2872 	rbd_assert(obj_request->img_request != NULL);
2873 	rbd_assert(obj_request->result == (s32) -ENOENT);
2874 	rbd_assert(obj_request_type_valid(obj_request->type));
2875 
2876 	/* rbd_read_finish(obj_request, obj_request->length); */
2877 	img_request = rbd_parent_request_create(obj_request,
2878 						obj_request->img_offset,
2879 						obj_request->length);
2880 	result = -ENOMEM;
2881 	if (!img_request)
2882 		goto out_err;
2883 
2884 	if (obj_request->type == OBJ_REQUEST_BIO)
2885 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2886 						obj_request->bio_list);
2887 	else
2888 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2889 						obj_request->pages);
2890 	if (result)
2891 		goto out_err;
2892 
2893 	img_request->callback = rbd_img_parent_read_callback;
2894 	result = rbd_img_request_submit(img_request);
2895 	if (result)
2896 		goto out_err;
2897 
2898 	return;
2899 out_err:
2900 	if (img_request)
2901 		rbd_img_request_put(img_request);
2902 	obj_request->result = result;
2903 	obj_request->xferred = 0;
2904 	obj_request_done_set(obj_request);
2905 }
2906 
2907 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2908 {
2909 	struct rbd_obj_request *obj_request;
2910 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2911 	int ret;
2912 
2913 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2914 							OBJ_REQUEST_NODATA);
2915 	if (!obj_request)
2916 		return -ENOMEM;
2917 
2918 	ret = -ENOMEM;
2919 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2920 						  obj_request);
2921 	if (!obj_request->osd_req)
2922 		goto out;
2923 
2924 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2925 					notify_id, 0, 0);
2926 	rbd_osd_req_format_read(obj_request);
2927 
2928 	ret = rbd_obj_request_submit(osdc, obj_request);
2929 	if (ret)
2930 		goto out;
2931 	ret = rbd_obj_request_wait(obj_request);
2932 out:
2933 	rbd_obj_request_put(obj_request);
2934 
2935 	return ret;
2936 }
2937 
2938 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2939 {
2940 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2941 	int ret;
2942 
2943 	if (!rbd_dev)
2944 		return;
2945 
2946 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2947 		rbd_dev->header_name, (unsigned long long)notify_id,
2948 		(unsigned int)opcode);
2949 	ret = rbd_dev_refresh(rbd_dev);
2950 	if (ret)
2951 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2952 
2953 	rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2954 }
2955 
2956 /*
2957  * Initiate a watch request, synchronously.
2958  */
2959 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2960 {
2961 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2962 	struct rbd_obj_request *obj_request;
2963 	int ret;
2964 
2965 	rbd_assert(!rbd_dev->watch_event);
2966 	rbd_assert(!rbd_dev->watch_request);
2967 
2968 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2969 				     &rbd_dev->watch_event);
2970 	if (ret < 0)
2971 		return ret;
2972 
2973 	rbd_assert(rbd_dev->watch_event);
2974 
2975 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2976 					     OBJ_REQUEST_NODATA);
2977 	if (!obj_request) {
2978 		ret = -ENOMEM;
2979 		goto out_cancel;
2980 	}
2981 
2982 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2983 						  obj_request);
2984 	if (!obj_request->osd_req) {
2985 		ret = -ENOMEM;
2986 		goto out_put;
2987 	}
2988 
2989 	ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2990 
2991 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2992 			      rbd_dev->watch_event->cookie, 0, 1);
2993 	rbd_osd_req_format_write(obj_request);
2994 
2995 	ret = rbd_obj_request_submit(osdc, obj_request);
2996 	if (ret)
2997 		goto out_linger;
2998 
2999 	ret = rbd_obj_request_wait(obj_request);
3000 	if (ret)
3001 		goto out_linger;
3002 
3003 	ret = obj_request->result;
3004 	if (ret)
3005 		goto out_linger;
3006 
3007 	/*
3008 	 * A watch request is set to linger, so the underlying osd
3009 	 * request won't go away until we unregister it.  We retain
3010 	 * a pointer to the object request during that time (in
3011 	 * rbd_dev->watch_request), so we'll keep a reference to
3012 	 * it.  We'll drop that reference (below) after we've
3013 	 * unregistered it.
3014 	 */
3015 	rbd_dev->watch_request = obj_request;
3016 
3017 	return 0;
3018 
3019 out_linger:
3020 	ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3021 out_put:
3022 	rbd_obj_request_put(obj_request);
3023 out_cancel:
3024 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3025 	rbd_dev->watch_event = NULL;
3026 
3027 	return ret;
3028 }
3029 
3030 /*
3031  * Tear down a watch request, synchronously.
3032  */
3033 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3034 {
3035 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3036 	struct rbd_obj_request *obj_request;
3037 	int ret;
3038 
3039 	rbd_assert(rbd_dev->watch_event);
3040 	rbd_assert(rbd_dev->watch_request);
3041 
3042 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3043 					     OBJ_REQUEST_NODATA);
3044 	if (!obj_request) {
3045 		ret = -ENOMEM;
3046 		goto out_cancel;
3047 	}
3048 
3049 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3050 						  obj_request);
3051 	if (!obj_request->osd_req) {
3052 		ret = -ENOMEM;
3053 		goto out_put;
3054 	}
3055 
3056 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3057 			      rbd_dev->watch_event->cookie, 0, 0);
3058 	rbd_osd_req_format_write(obj_request);
3059 
3060 	ret = rbd_obj_request_submit(osdc, obj_request);
3061 	if (ret)
3062 		goto out_put;
3063 
3064 	ret = rbd_obj_request_wait(obj_request);
3065 	if (ret)
3066 		goto out_put;
3067 
3068 	ret = obj_request->result;
3069 	if (ret)
3070 		goto out_put;
3071 
3072 	/* We have successfully torn down the watch request */
3073 
3074 	ceph_osdc_unregister_linger_request(osdc,
3075 					    rbd_dev->watch_request->osd_req);
3076 	rbd_obj_request_put(rbd_dev->watch_request);
3077 	rbd_dev->watch_request = NULL;
3078 
3079 out_put:
3080 	rbd_obj_request_put(obj_request);
3081 out_cancel:
3082 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3083 	rbd_dev->watch_event = NULL;
3084 
3085 	return ret;
3086 }
3087 
3088 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3089 {
3090 	int ret;
3091 
3092 	ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3093 	if (ret) {
3094 		rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3095 			 ret);
3096 	}
3097 }
3098 
3099 /*
3100  * Synchronous osd object method call.  Returns the number of bytes
3101  * returned in the outbound buffer, or a negative error code.
3102  */
3103 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3104 			     const char *object_name,
3105 			     const char *class_name,
3106 			     const char *method_name,
3107 			     const void *outbound,
3108 			     size_t outbound_size,
3109 			     void *inbound,
3110 			     size_t inbound_size)
3111 {
3112 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3113 	struct rbd_obj_request *obj_request;
3114 	struct page **pages;
3115 	u32 page_count;
3116 	int ret;
3117 
3118 	/*
3119 	 * Method calls are ultimately read operations.  The result
3120 	 * should placed into the inbound buffer provided.  They
3121 	 * also supply outbound data--parameters for the object
3122 	 * method.  Currently if this is present it will be a
3123 	 * snapshot id.
3124 	 */
3125 	page_count = (u32)calc_pages_for(0, inbound_size);
3126 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3127 	if (IS_ERR(pages))
3128 		return PTR_ERR(pages);
3129 
3130 	ret = -ENOMEM;
3131 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3132 							OBJ_REQUEST_PAGES);
3133 	if (!obj_request)
3134 		goto out;
3135 
3136 	obj_request->pages = pages;
3137 	obj_request->page_count = page_count;
3138 
3139 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3140 						  obj_request);
3141 	if (!obj_request->osd_req)
3142 		goto out;
3143 
3144 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3145 					class_name, method_name);
3146 	if (outbound_size) {
3147 		struct ceph_pagelist *pagelist;
3148 
3149 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3150 		if (!pagelist)
3151 			goto out;
3152 
3153 		ceph_pagelist_init(pagelist);
3154 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3155 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3156 						pagelist);
3157 	}
3158 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3159 					obj_request->pages, inbound_size,
3160 					0, false, false);
3161 	rbd_osd_req_format_read(obj_request);
3162 
3163 	ret = rbd_obj_request_submit(osdc, obj_request);
3164 	if (ret)
3165 		goto out;
3166 	ret = rbd_obj_request_wait(obj_request);
3167 	if (ret)
3168 		goto out;
3169 
3170 	ret = obj_request->result;
3171 	if (ret < 0)
3172 		goto out;
3173 
3174 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3175 	ret = (int)obj_request->xferred;
3176 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3177 out:
3178 	if (obj_request)
3179 		rbd_obj_request_put(obj_request);
3180 	else
3181 		ceph_release_page_vector(pages, page_count);
3182 
3183 	return ret;
3184 }
3185 
3186 static void rbd_request_fn(struct request_queue *q)
3187 		__releases(q->queue_lock) __acquires(q->queue_lock)
3188 {
3189 	struct rbd_device *rbd_dev = q->queuedata;
3190 	struct request *rq;
3191 	int result;
3192 
3193 	while ((rq = blk_fetch_request(q))) {
3194 		bool write_request = rq_data_dir(rq) == WRITE;
3195 		struct rbd_img_request *img_request;
3196 		u64 offset;
3197 		u64 length;
3198 
3199 		/* Ignore any non-FS requests that filter through. */
3200 
3201 		if (rq->cmd_type != REQ_TYPE_FS) {
3202 			dout("%s: non-fs request type %d\n", __func__,
3203 				(int) rq->cmd_type);
3204 			__blk_end_request_all(rq, 0);
3205 			continue;
3206 		}
3207 
3208 		/* Ignore/skip any zero-length requests */
3209 
3210 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3211 		length = (u64) blk_rq_bytes(rq);
3212 
3213 		if (!length) {
3214 			dout("%s: zero-length request\n", __func__);
3215 			__blk_end_request_all(rq, 0);
3216 			continue;
3217 		}
3218 
3219 		spin_unlock_irq(q->queue_lock);
3220 
3221 		/* Disallow writes to a read-only device */
3222 
3223 		if (write_request) {
3224 			result = -EROFS;
3225 			if (rbd_dev->mapping.read_only)
3226 				goto end_request;
3227 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3228 		}
3229 
3230 		/*
3231 		 * Quit early if the mapped snapshot no longer
3232 		 * exists.  It's still possible the snapshot will
3233 		 * have disappeared by the time our request arrives
3234 		 * at the osd, but there's no sense in sending it if
3235 		 * we already know.
3236 		 */
3237 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3238 			dout("request for non-existent snapshot");
3239 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3240 			result = -ENXIO;
3241 			goto end_request;
3242 		}
3243 
3244 		result = -EINVAL;
3245 		if (offset && length > U64_MAX - offset + 1) {
3246 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3247 				offset, length);
3248 			goto end_request;	/* Shouldn't happen */
3249 		}
3250 
3251 		result = -EIO;
3252 		if (offset + length > rbd_dev->mapping.size) {
3253 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3254 				offset, length, rbd_dev->mapping.size);
3255 			goto end_request;
3256 		}
3257 
3258 		result = -ENOMEM;
3259 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3260 							write_request);
3261 		if (!img_request)
3262 			goto end_request;
3263 
3264 		img_request->rq = rq;
3265 
3266 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3267 						rq->bio);
3268 		if (!result)
3269 			result = rbd_img_request_submit(img_request);
3270 		if (result)
3271 			rbd_img_request_put(img_request);
3272 end_request:
3273 		spin_lock_irq(q->queue_lock);
3274 		if (result < 0) {
3275 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3276 				write_request ? "write" : "read",
3277 				length, offset, result);
3278 
3279 			__blk_end_request_all(rq, result);
3280 		}
3281 	}
3282 }
3283 
3284 /*
3285  * a queue callback. Makes sure that we don't create a bio that spans across
3286  * multiple osd objects. One exception would be with a single page bios,
3287  * which we handle later at bio_chain_clone_range()
3288  */
3289 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3290 			  struct bio_vec *bvec)
3291 {
3292 	struct rbd_device *rbd_dev = q->queuedata;
3293 	sector_t sector_offset;
3294 	sector_t sectors_per_obj;
3295 	sector_t obj_sector_offset;
3296 	int ret;
3297 
3298 	/*
3299 	 * Find how far into its rbd object the partition-relative
3300 	 * bio start sector is to offset relative to the enclosing
3301 	 * device.
3302 	 */
3303 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3304 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3305 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3306 
3307 	/*
3308 	 * Compute the number of bytes from that offset to the end
3309 	 * of the object.  Account for what's already used by the bio.
3310 	 */
3311 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3312 	if (ret > bmd->bi_size)
3313 		ret -= bmd->bi_size;
3314 	else
3315 		ret = 0;
3316 
3317 	/*
3318 	 * Don't send back more than was asked for.  And if the bio
3319 	 * was empty, let the whole thing through because:  "Note
3320 	 * that a block device *must* allow a single page to be
3321 	 * added to an empty bio."
3322 	 */
3323 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3324 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3325 		ret = (int) bvec->bv_len;
3326 
3327 	return ret;
3328 }
3329 
3330 static void rbd_free_disk(struct rbd_device *rbd_dev)
3331 {
3332 	struct gendisk *disk = rbd_dev->disk;
3333 
3334 	if (!disk)
3335 		return;
3336 
3337 	rbd_dev->disk = NULL;
3338 	if (disk->flags & GENHD_FL_UP) {
3339 		del_gendisk(disk);
3340 		if (disk->queue)
3341 			blk_cleanup_queue(disk->queue);
3342 	}
3343 	put_disk(disk);
3344 }
3345 
3346 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3347 				const char *object_name,
3348 				u64 offset, u64 length, void *buf)
3349 
3350 {
3351 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3352 	struct rbd_obj_request *obj_request;
3353 	struct page **pages = NULL;
3354 	u32 page_count;
3355 	size_t size;
3356 	int ret;
3357 
3358 	page_count = (u32) calc_pages_for(offset, length);
3359 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3360 	if (IS_ERR(pages))
3361 		ret = PTR_ERR(pages);
3362 
3363 	ret = -ENOMEM;
3364 	obj_request = rbd_obj_request_create(object_name, offset, length,
3365 							OBJ_REQUEST_PAGES);
3366 	if (!obj_request)
3367 		goto out;
3368 
3369 	obj_request->pages = pages;
3370 	obj_request->page_count = page_count;
3371 
3372 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3373 						  obj_request);
3374 	if (!obj_request->osd_req)
3375 		goto out;
3376 
3377 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3378 					offset, length, 0, 0);
3379 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3380 					obj_request->pages,
3381 					obj_request->length,
3382 					obj_request->offset & ~PAGE_MASK,
3383 					false, false);
3384 	rbd_osd_req_format_read(obj_request);
3385 
3386 	ret = rbd_obj_request_submit(osdc, obj_request);
3387 	if (ret)
3388 		goto out;
3389 	ret = rbd_obj_request_wait(obj_request);
3390 	if (ret)
3391 		goto out;
3392 
3393 	ret = obj_request->result;
3394 	if (ret < 0)
3395 		goto out;
3396 
3397 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3398 	size = (size_t) obj_request->xferred;
3399 	ceph_copy_from_page_vector(pages, buf, 0, size);
3400 	rbd_assert(size <= (size_t)INT_MAX);
3401 	ret = (int)size;
3402 out:
3403 	if (obj_request)
3404 		rbd_obj_request_put(obj_request);
3405 	else
3406 		ceph_release_page_vector(pages, page_count);
3407 
3408 	return ret;
3409 }
3410 
3411 /*
3412  * Read the complete header for the given rbd device.  On successful
3413  * return, the rbd_dev->header field will contain up-to-date
3414  * information about the image.
3415  */
3416 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3417 {
3418 	struct rbd_image_header_ondisk *ondisk = NULL;
3419 	u32 snap_count = 0;
3420 	u64 names_size = 0;
3421 	u32 want_count;
3422 	int ret;
3423 
3424 	/*
3425 	 * The complete header will include an array of its 64-bit
3426 	 * snapshot ids, followed by the names of those snapshots as
3427 	 * a contiguous block of NUL-terminated strings.  Note that
3428 	 * the number of snapshots could change by the time we read
3429 	 * it in, in which case we re-read it.
3430 	 */
3431 	do {
3432 		size_t size;
3433 
3434 		kfree(ondisk);
3435 
3436 		size = sizeof (*ondisk);
3437 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3438 		size += names_size;
3439 		ondisk = kmalloc(size, GFP_KERNEL);
3440 		if (!ondisk)
3441 			return -ENOMEM;
3442 
3443 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3444 				       0, size, ondisk);
3445 		if (ret < 0)
3446 			goto out;
3447 		if ((size_t)ret < size) {
3448 			ret = -ENXIO;
3449 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3450 				size, ret);
3451 			goto out;
3452 		}
3453 		if (!rbd_dev_ondisk_valid(ondisk)) {
3454 			ret = -ENXIO;
3455 			rbd_warn(rbd_dev, "invalid header");
3456 			goto out;
3457 		}
3458 
3459 		names_size = le64_to_cpu(ondisk->snap_names_len);
3460 		want_count = snap_count;
3461 		snap_count = le32_to_cpu(ondisk->snap_count);
3462 	} while (snap_count != want_count);
3463 
3464 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3465 out:
3466 	kfree(ondisk);
3467 
3468 	return ret;
3469 }
3470 
3471 /*
3472  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3473  * has disappeared from the (just updated) snapshot context.
3474  */
3475 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3476 {
3477 	u64 snap_id;
3478 
3479 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3480 		return;
3481 
3482 	snap_id = rbd_dev->spec->snap_id;
3483 	if (snap_id == CEPH_NOSNAP)
3484 		return;
3485 
3486 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3487 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3488 }
3489 
3490 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3491 {
3492 	sector_t size;
3493 	bool removing;
3494 
3495 	/*
3496 	 * Don't hold the lock while doing disk operations,
3497 	 * or lock ordering will conflict with the bdev mutex via:
3498 	 * rbd_add() -> blkdev_get() -> rbd_open()
3499 	 */
3500 	spin_lock_irq(&rbd_dev->lock);
3501 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3502 	spin_unlock_irq(&rbd_dev->lock);
3503 	/*
3504 	 * If the device is being removed, rbd_dev->disk has
3505 	 * been destroyed, so don't try to update its size
3506 	 */
3507 	if (!removing) {
3508 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3509 		dout("setting size to %llu sectors", (unsigned long long)size);
3510 		set_capacity(rbd_dev->disk, size);
3511 		revalidate_disk(rbd_dev->disk);
3512 	}
3513 }
3514 
3515 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3516 {
3517 	u64 mapping_size;
3518 	int ret;
3519 
3520 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3521 	down_write(&rbd_dev->header_rwsem);
3522 	mapping_size = rbd_dev->mapping.size;
3523 	if (rbd_dev->image_format == 1)
3524 		ret = rbd_dev_v1_header_info(rbd_dev);
3525 	else
3526 		ret = rbd_dev_v2_header_info(rbd_dev);
3527 
3528 	/* If it's a mapped snapshot, validate its EXISTS flag */
3529 
3530 	rbd_exists_validate(rbd_dev);
3531 	up_write(&rbd_dev->header_rwsem);
3532 
3533 	if (mapping_size != rbd_dev->mapping.size) {
3534 		rbd_dev_update_size(rbd_dev);
3535 	}
3536 
3537 	return ret;
3538 }
3539 
3540 static int rbd_init_disk(struct rbd_device *rbd_dev)
3541 {
3542 	struct gendisk *disk;
3543 	struct request_queue *q;
3544 	u64 segment_size;
3545 
3546 	/* create gendisk info */
3547 	disk = alloc_disk(single_major ?
3548 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3549 			  RBD_MINORS_PER_MAJOR);
3550 	if (!disk)
3551 		return -ENOMEM;
3552 
3553 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3554 		 rbd_dev->dev_id);
3555 	disk->major = rbd_dev->major;
3556 	disk->first_minor = rbd_dev->minor;
3557 	if (single_major)
3558 		disk->flags |= GENHD_FL_EXT_DEVT;
3559 	disk->fops = &rbd_bd_ops;
3560 	disk->private_data = rbd_dev;
3561 
3562 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3563 	if (!q)
3564 		goto out_disk;
3565 
3566 	/* We use the default size, but let's be explicit about it. */
3567 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3568 
3569 	/* set io sizes to object size */
3570 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3571 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3572 	blk_queue_max_segment_size(q, segment_size);
3573 	blk_queue_io_min(q, segment_size);
3574 	blk_queue_io_opt(q, segment_size);
3575 
3576 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3577 	disk->queue = q;
3578 
3579 	q->queuedata = rbd_dev;
3580 
3581 	rbd_dev->disk = disk;
3582 
3583 	return 0;
3584 out_disk:
3585 	put_disk(disk);
3586 
3587 	return -ENOMEM;
3588 }
3589 
3590 /*
3591   sysfs
3592 */
3593 
3594 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3595 {
3596 	return container_of(dev, struct rbd_device, dev);
3597 }
3598 
3599 static ssize_t rbd_size_show(struct device *dev,
3600 			     struct device_attribute *attr, char *buf)
3601 {
3602 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3603 
3604 	return sprintf(buf, "%llu\n",
3605 		(unsigned long long)rbd_dev->mapping.size);
3606 }
3607 
3608 /*
3609  * Note this shows the features for whatever's mapped, which is not
3610  * necessarily the base image.
3611  */
3612 static ssize_t rbd_features_show(struct device *dev,
3613 			     struct device_attribute *attr, char *buf)
3614 {
3615 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3616 
3617 	return sprintf(buf, "0x%016llx\n",
3618 			(unsigned long long)rbd_dev->mapping.features);
3619 }
3620 
3621 static ssize_t rbd_major_show(struct device *dev,
3622 			      struct device_attribute *attr, char *buf)
3623 {
3624 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3625 
3626 	if (rbd_dev->major)
3627 		return sprintf(buf, "%d\n", rbd_dev->major);
3628 
3629 	return sprintf(buf, "(none)\n");
3630 }
3631 
3632 static ssize_t rbd_minor_show(struct device *dev,
3633 			      struct device_attribute *attr, char *buf)
3634 {
3635 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3636 
3637 	return sprintf(buf, "%d\n", rbd_dev->minor);
3638 }
3639 
3640 static ssize_t rbd_client_id_show(struct device *dev,
3641 				  struct device_attribute *attr, char *buf)
3642 {
3643 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3644 
3645 	return sprintf(buf, "client%lld\n",
3646 			ceph_client_id(rbd_dev->rbd_client->client));
3647 }
3648 
3649 static ssize_t rbd_pool_show(struct device *dev,
3650 			     struct device_attribute *attr, char *buf)
3651 {
3652 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653 
3654 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3655 }
3656 
3657 static ssize_t rbd_pool_id_show(struct device *dev,
3658 			     struct device_attribute *attr, char *buf)
3659 {
3660 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3661 
3662 	return sprintf(buf, "%llu\n",
3663 			(unsigned long long) rbd_dev->spec->pool_id);
3664 }
3665 
3666 static ssize_t rbd_name_show(struct device *dev,
3667 			     struct device_attribute *attr, char *buf)
3668 {
3669 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3670 
3671 	if (rbd_dev->spec->image_name)
3672 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3673 
3674 	return sprintf(buf, "(unknown)\n");
3675 }
3676 
3677 static ssize_t rbd_image_id_show(struct device *dev,
3678 			     struct device_attribute *attr, char *buf)
3679 {
3680 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3681 
3682 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3683 }
3684 
3685 /*
3686  * Shows the name of the currently-mapped snapshot (or
3687  * RBD_SNAP_HEAD_NAME for the base image).
3688  */
3689 static ssize_t rbd_snap_show(struct device *dev,
3690 			     struct device_attribute *attr,
3691 			     char *buf)
3692 {
3693 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3694 
3695 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3696 }
3697 
3698 /*
3699  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3700  * for the parent image.  If there is no parent, simply shows
3701  * "(no parent image)".
3702  */
3703 static ssize_t rbd_parent_show(struct device *dev,
3704 			     struct device_attribute *attr,
3705 			     char *buf)
3706 {
3707 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3708 	struct rbd_spec *spec = rbd_dev->parent_spec;
3709 	int count;
3710 	char *bufp = buf;
3711 
3712 	if (!spec)
3713 		return sprintf(buf, "(no parent image)\n");
3714 
3715 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3716 			(unsigned long long) spec->pool_id, spec->pool_name);
3717 	if (count < 0)
3718 		return count;
3719 	bufp += count;
3720 
3721 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3722 			spec->image_name ? spec->image_name : "(unknown)");
3723 	if (count < 0)
3724 		return count;
3725 	bufp += count;
3726 
3727 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3728 			(unsigned long long) spec->snap_id, spec->snap_name);
3729 	if (count < 0)
3730 		return count;
3731 	bufp += count;
3732 
3733 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3734 	if (count < 0)
3735 		return count;
3736 	bufp += count;
3737 
3738 	return (ssize_t) (bufp - buf);
3739 }
3740 
3741 static ssize_t rbd_image_refresh(struct device *dev,
3742 				 struct device_attribute *attr,
3743 				 const char *buf,
3744 				 size_t size)
3745 {
3746 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3747 	int ret;
3748 
3749 	ret = rbd_dev_refresh(rbd_dev);
3750 	if (ret)
3751 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3752 
3753 	return ret < 0 ? ret : size;
3754 }
3755 
3756 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3757 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3758 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3759 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3760 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3761 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3762 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3763 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3764 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3765 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3766 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3767 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3768 
3769 static struct attribute *rbd_attrs[] = {
3770 	&dev_attr_size.attr,
3771 	&dev_attr_features.attr,
3772 	&dev_attr_major.attr,
3773 	&dev_attr_minor.attr,
3774 	&dev_attr_client_id.attr,
3775 	&dev_attr_pool.attr,
3776 	&dev_attr_pool_id.attr,
3777 	&dev_attr_name.attr,
3778 	&dev_attr_image_id.attr,
3779 	&dev_attr_current_snap.attr,
3780 	&dev_attr_parent.attr,
3781 	&dev_attr_refresh.attr,
3782 	NULL
3783 };
3784 
3785 static struct attribute_group rbd_attr_group = {
3786 	.attrs = rbd_attrs,
3787 };
3788 
3789 static const struct attribute_group *rbd_attr_groups[] = {
3790 	&rbd_attr_group,
3791 	NULL
3792 };
3793 
3794 static void rbd_sysfs_dev_release(struct device *dev)
3795 {
3796 }
3797 
3798 static struct device_type rbd_device_type = {
3799 	.name		= "rbd",
3800 	.groups		= rbd_attr_groups,
3801 	.release	= rbd_sysfs_dev_release,
3802 };
3803 
3804 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3805 {
3806 	kref_get(&spec->kref);
3807 
3808 	return spec;
3809 }
3810 
3811 static void rbd_spec_free(struct kref *kref);
3812 static void rbd_spec_put(struct rbd_spec *spec)
3813 {
3814 	if (spec)
3815 		kref_put(&spec->kref, rbd_spec_free);
3816 }
3817 
3818 static struct rbd_spec *rbd_spec_alloc(void)
3819 {
3820 	struct rbd_spec *spec;
3821 
3822 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3823 	if (!spec)
3824 		return NULL;
3825 	kref_init(&spec->kref);
3826 
3827 	return spec;
3828 }
3829 
3830 static void rbd_spec_free(struct kref *kref)
3831 {
3832 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3833 
3834 	kfree(spec->pool_name);
3835 	kfree(spec->image_id);
3836 	kfree(spec->image_name);
3837 	kfree(spec->snap_name);
3838 	kfree(spec);
3839 }
3840 
3841 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3842 				struct rbd_spec *spec)
3843 {
3844 	struct rbd_device *rbd_dev;
3845 
3846 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3847 	if (!rbd_dev)
3848 		return NULL;
3849 
3850 	spin_lock_init(&rbd_dev->lock);
3851 	rbd_dev->flags = 0;
3852 	atomic_set(&rbd_dev->parent_ref, 0);
3853 	INIT_LIST_HEAD(&rbd_dev->node);
3854 	init_rwsem(&rbd_dev->header_rwsem);
3855 
3856 	rbd_dev->spec = spec;
3857 	rbd_dev->rbd_client = rbdc;
3858 
3859 	/* Initialize the layout used for all rbd requests */
3860 
3861 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3862 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3863 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3864 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3865 
3866 	return rbd_dev;
3867 }
3868 
3869 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3870 {
3871 	rbd_put_client(rbd_dev->rbd_client);
3872 	rbd_spec_put(rbd_dev->spec);
3873 	kfree(rbd_dev);
3874 }
3875 
3876 /*
3877  * Get the size and object order for an image snapshot, or if
3878  * snap_id is CEPH_NOSNAP, gets this information for the base
3879  * image.
3880  */
3881 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3882 				u8 *order, u64 *snap_size)
3883 {
3884 	__le64 snapid = cpu_to_le64(snap_id);
3885 	int ret;
3886 	struct {
3887 		u8 order;
3888 		__le64 size;
3889 	} __attribute__ ((packed)) size_buf = { 0 };
3890 
3891 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3892 				"rbd", "get_size",
3893 				&snapid, sizeof (snapid),
3894 				&size_buf, sizeof (size_buf));
3895 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3896 	if (ret < 0)
3897 		return ret;
3898 	if (ret < sizeof (size_buf))
3899 		return -ERANGE;
3900 
3901 	if (order) {
3902 		*order = size_buf.order;
3903 		dout("  order %u", (unsigned int)*order);
3904 	}
3905 	*snap_size = le64_to_cpu(size_buf.size);
3906 
3907 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3908 		(unsigned long long)snap_id,
3909 		(unsigned long long)*snap_size);
3910 
3911 	return 0;
3912 }
3913 
3914 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3915 {
3916 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3917 					&rbd_dev->header.obj_order,
3918 					&rbd_dev->header.image_size);
3919 }
3920 
3921 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3922 {
3923 	void *reply_buf;
3924 	int ret;
3925 	void *p;
3926 
3927 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3928 	if (!reply_buf)
3929 		return -ENOMEM;
3930 
3931 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3932 				"rbd", "get_object_prefix", NULL, 0,
3933 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3934 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3935 	if (ret < 0)
3936 		goto out;
3937 
3938 	p = reply_buf;
3939 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3940 						p + ret, NULL, GFP_NOIO);
3941 	ret = 0;
3942 
3943 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3944 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3945 		rbd_dev->header.object_prefix = NULL;
3946 	} else {
3947 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3948 	}
3949 out:
3950 	kfree(reply_buf);
3951 
3952 	return ret;
3953 }
3954 
3955 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3956 		u64 *snap_features)
3957 {
3958 	__le64 snapid = cpu_to_le64(snap_id);
3959 	struct {
3960 		__le64 features;
3961 		__le64 incompat;
3962 	} __attribute__ ((packed)) features_buf = { 0 };
3963 	u64 incompat;
3964 	int ret;
3965 
3966 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3967 				"rbd", "get_features",
3968 				&snapid, sizeof (snapid),
3969 				&features_buf, sizeof (features_buf));
3970 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3971 	if (ret < 0)
3972 		return ret;
3973 	if (ret < sizeof (features_buf))
3974 		return -ERANGE;
3975 
3976 	incompat = le64_to_cpu(features_buf.incompat);
3977 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3978 		return -ENXIO;
3979 
3980 	*snap_features = le64_to_cpu(features_buf.features);
3981 
3982 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3983 		(unsigned long long)snap_id,
3984 		(unsigned long long)*snap_features,
3985 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3986 
3987 	return 0;
3988 }
3989 
3990 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3991 {
3992 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3993 						&rbd_dev->header.features);
3994 }
3995 
3996 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3997 {
3998 	struct rbd_spec *parent_spec;
3999 	size_t size;
4000 	void *reply_buf = NULL;
4001 	__le64 snapid;
4002 	void *p;
4003 	void *end;
4004 	u64 pool_id;
4005 	char *image_id;
4006 	u64 snap_id;
4007 	u64 overlap;
4008 	int ret;
4009 
4010 	parent_spec = rbd_spec_alloc();
4011 	if (!parent_spec)
4012 		return -ENOMEM;
4013 
4014 	size = sizeof (__le64) +				/* pool_id */
4015 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4016 		sizeof (__le64) +				/* snap_id */
4017 		sizeof (__le64);				/* overlap */
4018 	reply_buf = kmalloc(size, GFP_KERNEL);
4019 	if (!reply_buf) {
4020 		ret = -ENOMEM;
4021 		goto out_err;
4022 	}
4023 
4024 	snapid = cpu_to_le64(CEPH_NOSNAP);
4025 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4026 				"rbd", "get_parent",
4027 				&snapid, sizeof (snapid),
4028 				reply_buf, size);
4029 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4030 	if (ret < 0)
4031 		goto out_err;
4032 
4033 	p = reply_buf;
4034 	end = reply_buf + ret;
4035 	ret = -ERANGE;
4036 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4037 	if (pool_id == CEPH_NOPOOL) {
4038 		/*
4039 		 * Either the parent never existed, or we have
4040 		 * record of it but the image got flattened so it no
4041 		 * longer has a parent.  When the parent of a
4042 		 * layered image disappears we immediately set the
4043 		 * overlap to 0.  The effect of this is that all new
4044 		 * requests will be treated as if the image had no
4045 		 * parent.
4046 		 */
4047 		if (rbd_dev->parent_overlap) {
4048 			rbd_dev->parent_overlap = 0;
4049 			smp_mb();
4050 			rbd_dev_parent_put(rbd_dev);
4051 			pr_info("%s: clone image has been flattened\n",
4052 				rbd_dev->disk->disk_name);
4053 		}
4054 
4055 		goto out;	/* No parent?  No problem. */
4056 	}
4057 
4058 	/* The ceph file layout needs to fit pool id in 32 bits */
4059 
4060 	ret = -EIO;
4061 	if (pool_id > (u64)U32_MAX) {
4062 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4063 			(unsigned long long)pool_id, U32_MAX);
4064 		goto out_err;
4065 	}
4066 
4067 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4068 	if (IS_ERR(image_id)) {
4069 		ret = PTR_ERR(image_id);
4070 		goto out_err;
4071 	}
4072 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4073 	ceph_decode_64_safe(&p, end, overlap, out_err);
4074 
4075 	/*
4076 	 * The parent won't change (except when the clone is
4077 	 * flattened, already handled that).  So we only need to
4078 	 * record the parent spec we have not already done so.
4079 	 */
4080 	if (!rbd_dev->parent_spec) {
4081 		parent_spec->pool_id = pool_id;
4082 		parent_spec->image_id = image_id;
4083 		parent_spec->snap_id = snap_id;
4084 		rbd_dev->parent_spec = parent_spec;
4085 		parent_spec = NULL;	/* rbd_dev now owns this */
4086 	}
4087 
4088 	/*
4089 	 * We always update the parent overlap.  If it's zero we
4090 	 * treat it specially.
4091 	 */
4092 	rbd_dev->parent_overlap = overlap;
4093 	smp_mb();
4094 	if (!overlap) {
4095 
4096 		/* A null parent_spec indicates it's the initial probe */
4097 
4098 		if (parent_spec) {
4099 			/*
4100 			 * The overlap has become zero, so the clone
4101 			 * must have been resized down to 0 at some
4102 			 * point.  Treat this the same as a flatten.
4103 			 */
4104 			rbd_dev_parent_put(rbd_dev);
4105 			pr_info("%s: clone image now standalone\n",
4106 				rbd_dev->disk->disk_name);
4107 		} else {
4108 			/*
4109 			 * For the initial probe, if we find the
4110 			 * overlap is zero we just pretend there was
4111 			 * no parent image.
4112 			 */
4113 			rbd_warn(rbd_dev, "ignoring parent of "
4114 						"clone with overlap 0\n");
4115 		}
4116 	}
4117 out:
4118 	ret = 0;
4119 out_err:
4120 	kfree(reply_buf);
4121 	rbd_spec_put(parent_spec);
4122 
4123 	return ret;
4124 }
4125 
4126 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4127 {
4128 	struct {
4129 		__le64 stripe_unit;
4130 		__le64 stripe_count;
4131 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4132 	size_t size = sizeof (striping_info_buf);
4133 	void *p;
4134 	u64 obj_size;
4135 	u64 stripe_unit;
4136 	u64 stripe_count;
4137 	int ret;
4138 
4139 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4140 				"rbd", "get_stripe_unit_count", NULL, 0,
4141 				(char *)&striping_info_buf, size);
4142 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4143 	if (ret < 0)
4144 		return ret;
4145 	if (ret < size)
4146 		return -ERANGE;
4147 
4148 	/*
4149 	 * We don't actually support the "fancy striping" feature
4150 	 * (STRIPINGV2) yet, but if the striping sizes are the
4151 	 * defaults the behavior is the same as before.  So find
4152 	 * out, and only fail if the image has non-default values.
4153 	 */
4154 	ret = -EINVAL;
4155 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4156 	p = &striping_info_buf;
4157 	stripe_unit = ceph_decode_64(&p);
4158 	if (stripe_unit != obj_size) {
4159 		rbd_warn(rbd_dev, "unsupported stripe unit "
4160 				"(got %llu want %llu)",
4161 				stripe_unit, obj_size);
4162 		return -EINVAL;
4163 	}
4164 	stripe_count = ceph_decode_64(&p);
4165 	if (stripe_count != 1) {
4166 		rbd_warn(rbd_dev, "unsupported stripe count "
4167 				"(got %llu want 1)", stripe_count);
4168 		return -EINVAL;
4169 	}
4170 	rbd_dev->header.stripe_unit = stripe_unit;
4171 	rbd_dev->header.stripe_count = stripe_count;
4172 
4173 	return 0;
4174 }
4175 
4176 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4177 {
4178 	size_t image_id_size;
4179 	char *image_id;
4180 	void *p;
4181 	void *end;
4182 	size_t size;
4183 	void *reply_buf = NULL;
4184 	size_t len = 0;
4185 	char *image_name = NULL;
4186 	int ret;
4187 
4188 	rbd_assert(!rbd_dev->spec->image_name);
4189 
4190 	len = strlen(rbd_dev->spec->image_id);
4191 	image_id_size = sizeof (__le32) + len;
4192 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4193 	if (!image_id)
4194 		return NULL;
4195 
4196 	p = image_id;
4197 	end = image_id + image_id_size;
4198 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4199 
4200 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4201 	reply_buf = kmalloc(size, GFP_KERNEL);
4202 	if (!reply_buf)
4203 		goto out;
4204 
4205 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4206 				"rbd", "dir_get_name",
4207 				image_id, image_id_size,
4208 				reply_buf, size);
4209 	if (ret < 0)
4210 		goto out;
4211 	p = reply_buf;
4212 	end = reply_buf + ret;
4213 
4214 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4215 	if (IS_ERR(image_name))
4216 		image_name = NULL;
4217 	else
4218 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4219 out:
4220 	kfree(reply_buf);
4221 	kfree(image_id);
4222 
4223 	return image_name;
4224 }
4225 
4226 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4227 {
4228 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4229 	const char *snap_name;
4230 	u32 which = 0;
4231 
4232 	/* Skip over names until we find the one we are looking for */
4233 
4234 	snap_name = rbd_dev->header.snap_names;
4235 	while (which < snapc->num_snaps) {
4236 		if (!strcmp(name, snap_name))
4237 			return snapc->snaps[which];
4238 		snap_name += strlen(snap_name) + 1;
4239 		which++;
4240 	}
4241 	return CEPH_NOSNAP;
4242 }
4243 
4244 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4245 {
4246 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4247 	u32 which;
4248 	bool found = false;
4249 	u64 snap_id;
4250 
4251 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4252 		const char *snap_name;
4253 
4254 		snap_id = snapc->snaps[which];
4255 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4256 		if (IS_ERR(snap_name)) {
4257 			/* ignore no-longer existing snapshots */
4258 			if (PTR_ERR(snap_name) == -ENOENT)
4259 				continue;
4260 			else
4261 				break;
4262 		}
4263 		found = !strcmp(name, snap_name);
4264 		kfree(snap_name);
4265 	}
4266 	return found ? snap_id : CEPH_NOSNAP;
4267 }
4268 
4269 /*
4270  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4271  * no snapshot by that name is found, or if an error occurs.
4272  */
4273 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4274 {
4275 	if (rbd_dev->image_format == 1)
4276 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4277 
4278 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4279 }
4280 
4281 /*
4282  * When an rbd image has a parent image, it is identified by the
4283  * pool, image, and snapshot ids (not names).  This function fills
4284  * in the names for those ids.  (It's OK if we can't figure out the
4285  * name for an image id, but the pool and snapshot ids should always
4286  * exist and have names.)  All names in an rbd spec are dynamically
4287  * allocated.
4288  *
4289  * When an image being mapped (not a parent) is probed, we have the
4290  * pool name and pool id, image name and image id, and the snapshot
4291  * name.  The only thing we're missing is the snapshot id.
4292  */
4293 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4294 {
4295 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4296 	struct rbd_spec *spec = rbd_dev->spec;
4297 	const char *pool_name;
4298 	const char *image_name;
4299 	const char *snap_name;
4300 	int ret;
4301 
4302 	/*
4303 	 * An image being mapped will have the pool name (etc.), but
4304 	 * we need to look up the snapshot id.
4305 	 */
4306 	if (spec->pool_name) {
4307 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4308 			u64 snap_id;
4309 
4310 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4311 			if (snap_id == CEPH_NOSNAP)
4312 				return -ENOENT;
4313 			spec->snap_id = snap_id;
4314 		} else {
4315 			spec->snap_id = CEPH_NOSNAP;
4316 		}
4317 
4318 		return 0;
4319 	}
4320 
4321 	/* Get the pool name; we have to make our own copy of this */
4322 
4323 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4324 	if (!pool_name) {
4325 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4326 		return -EIO;
4327 	}
4328 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4329 	if (!pool_name)
4330 		return -ENOMEM;
4331 
4332 	/* Fetch the image name; tolerate failure here */
4333 
4334 	image_name = rbd_dev_image_name(rbd_dev);
4335 	if (!image_name)
4336 		rbd_warn(rbd_dev, "unable to get image name");
4337 
4338 	/* Look up the snapshot name, and make a copy */
4339 
4340 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4341 	if (IS_ERR(snap_name)) {
4342 		ret = PTR_ERR(snap_name);
4343 		goto out_err;
4344 	}
4345 
4346 	spec->pool_name = pool_name;
4347 	spec->image_name = image_name;
4348 	spec->snap_name = snap_name;
4349 
4350 	return 0;
4351 out_err:
4352 	kfree(image_name);
4353 	kfree(pool_name);
4354 
4355 	return ret;
4356 }
4357 
4358 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4359 {
4360 	size_t size;
4361 	int ret;
4362 	void *reply_buf;
4363 	void *p;
4364 	void *end;
4365 	u64 seq;
4366 	u32 snap_count;
4367 	struct ceph_snap_context *snapc;
4368 	u32 i;
4369 
4370 	/*
4371 	 * We'll need room for the seq value (maximum snapshot id),
4372 	 * snapshot count, and array of that many snapshot ids.
4373 	 * For now we have a fixed upper limit on the number we're
4374 	 * prepared to receive.
4375 	 */
4376 	size = sizeof (__le64) + sizeof (__le32) +
4377 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4378 	reply_buf = kzalloc(size, GFP_KERNEL);
4379 	if (!reply_buf)
4380 		return -ENOMEM;
4381 
4382 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4383 				"rbd", "get_snapcontext", NULL, 0,
4384 				reply_buf, size);
4385 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4386 	if (ret < 0)
4387 		goto out;
4388 
4389 	p = reply_buf;
4390 	end = reply_buf + ret;
4391 	ret = -ERANGE;
4392 	ceph_decode_64_safe(&p, end, seq, out);
4393 	ceph_decode_32_safe(&p, end, snap_count, out);
4394 
4395 	/*
4396 	 * Make sure the reported number of snapshot ids wouldn't go
4397 	 * beyond the end of our buffer.  But before checking that,
4398 	 * make sure the computed size of the snapshot context we
4399 	 * allocate is representable in a size_t.
4400 	 */
4401 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4402 				 / sizeof (u64)) {
4403 		ret = -EINVAL;
4404 		goto out;
4405 	}
4406 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4407 		goto out;
4408 	ret = 0;
4409 
4410 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4411 	if (!snapc) {
4412 		ret = -ENOMEM;
4413 		goto out;
4414 	}
4415 	snapc->seq = seq;
4416 	for (i = 0; i < snap_count; i++)
4417 		snapc->snaps[i] = ceph_decode_64(&p);
4418 
4419 	ceph_put_snap_context(rbd_dev->header.snapc);
4420 	rbd_dev->header.snapc = snapc;
4421 
4422 	dout("  snap context seq = %llu, snap_count = %u\n",
4423 		(unsigned long long)seq, (unsigned int)snap_count);
4424 out:
4425 	kfree(reply_buf);
4426 
4427 	return ret;
4428 }
4429 
4430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4431 					u64 snap_id)
4432 {
4433 	size_t size;
4434 	void *reply_buf;
4435 	__le64 snapid;
4436 	int ret;
4437 	void *p;
4438 	void *end;
4439 	char *snap_name;
4440 
4441 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4442 	reply_buf = kmalloc(size, GFP_KERNEL);
4443 	if (!reply_buf)
4444 		return ERR_PTR(-ENOMEM);
4445 
4446 	snapid = cpu_to_le64(snap_id);
4447 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4448 				"rbd", "get_snapshot_name",
4449 				&snapid, sizeof (snapid),
4450 				reply_buf, size);
4451 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4452 	if (ret < 0) {
4453 		snap_name = ERR_PTR(ret);
4454 		goto out;
4455 	}
4456 
4457 	p = reply_buf;
4458 	end = reply_buf + ret;
4459 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4460 	if (IS_ERR(snap_name))
4461 		goto out;
4462 
4463 	dout("  snap_id 0x%016llx snap_name = %s\n",
4464 		(unsigned long long)snap_id, snap_name);
4465 out:
4466 	kfree(reply_buf);
4467 
4468 	return snap_name;
4469 }
4470 
4471 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4472 {
4473 	bool first_time = rbd_dev->header.object_prefix == NULL;
4474 	int ret;
4475 
4476 	ret = rbd_dev_v2_image_size(rbd_dev);
4477 	if (ret)
4478 		return ret;
4479 
4480 	if (first_time) {
4481 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4482 		if (ret)
4483 			return ret;
4484 	}
4485 
4486 	/*
4487 	 * If the image supports layering, get the parent info.  We
4488 	 * need to probe the first time regardless.  Thereafter we
4489 	 * only need to if there's a parent, to see if it has
4490 	 * disappeared due to the mapped image getting flattened.
4491 	 */
4492 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4493 			(first_time || rbd_dev->parent_spec)) {
4494 		bool warn;
4495 
4496 		ret = rbd_dev_v2_parent_info(rbd_dev);
4497 		if (ret)
4498 			return ret;
4499 
4500 		/*
4501 		 * Print a warning if this is the initial probe and
4502 		 * the image has a parent.  Don't print it if the
4503 		 * image now being probed is itself a parent.  We
4504 		 * can tell at this point because we won't know its
4505 		 * pool name yet (just its pool id).
4506 		 */
4507 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4508 		if (first_time && warn)
4509 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4510 					"is EXPERIMENTAL!");
4511 	}
4512 
4513 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4514 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4515 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4516 
4517 	ret = rbd_dev_v2_snap_context(rbd_dev);
4518 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4519 
4520 	return ret;
4521 }
4522 
4523 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4524 {
4525 	struct device *dev;
4526 	int ret;
4527 
4528 	dev = &rbd_dev->dev;
4529 	dev->bus = &rbd_bus_type;
4530 	dev->type = &rbd_device_type;
4531 	dev->parent = &rbd_root_dev;
4532 	dev->release = rbd_dev_device_release;
4533 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4534 	ret = device_register(dev);
4535 
4536 	return ret;
4537 }
4538 
4539 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4540 {
4541 	device_unregister(&rbd_dev->dev);
4542 }
4543 
4544 /*
4545  * Get a unique rbd identifier for the given new rbd_dev, and add
4546  * the rbd_dev to the global list.
4547  */
4548 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4549 {
4550 	int new_dev_id;
4551 
4552 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4553 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4554 				    GFP_KERNEL);
4555 	if (new_dev_id < 0)
4556 		return new_dev_id;
4557 
4558 	rbd_dev->dev_id = new_dev_id;
4559 
4560 	spin_lock(&rbd_dev_list_lock);
4561 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4562 	spin_unlock(&rbd_dev_list_lock);
4563 
4564 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4565 
4566 	return 0;
4567 }
4568 
4569 /*
4570  * Remove an rbd_dev from the global list, and record that its
4571  * identifier is no longer in use.
4572  */
4573 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4574 {
4575 	spin_lock(&rbd_dev_list_lock);
4576 	list_del_init(&rbd_dev->node);
4577 	spin_unlock(&rbd_dev_list_lock);
4578 
4579 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4580 
4581 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4582 }
4583 
4584 /*
4585  * Skips over white space at *buf, and updates *buf to point to the
4586  * first found non-space character (if any). Returns the length of
4587  * the token (string of non-white space characters) found.  Note
4588  * that *buf must be terminated with '\0'.
4589  */
4590 static inline size_t next_token(const char **buf)
4591 {
4592         /*
4593         * These are the characters that produce nonzero for
4594         * isspace() in the "C" and "POSIX" locales.
4595         */
4596         const char *spaces = " \f\n\r\t\v";
4597 
4598         *buf += strspn(*buf, spaces);	/* Find start of token */
4599 
4600 	return strcspn(*buf, spaces);   /* Return token length */
4601 }
4602 
4603 /*
4604  * Finds the next token in *buf, and if the provided token buffer is
4605  * big enough, copies the found token into it.  The result, if
4606  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4607  * must be terminated with '\0' on entry.
4608  *
4609  * Returns the length of the token found (not including the '\0').
4610  * Return value will be 0 if no token is found, and it will be >=
4611  * token_size if the token would not fit.
4612  *
4613  * The *buf pointer will be updated to point beyond the end of the
4614  * found token.  Note that this occurs even if the token buffer is
4615  * too small to hold it.
4616  */
4617 static inline size_t copy_token(const char **buf,
4618 				char *token,
4619 				size_t token_size)
4620 {
4621         size_t len;
4622 
4623 	len = next_token(buf);
4624 	if (len < token_size) {
4625 		memcpy(token, *buf, len);
4626 		*(token + len) = '\0';
4627 	}
4628 	*buf += len;
4629 
4630         return len;
4631 }
4632 
4633 /*
4634  * Finds the next token in *buf, dynamically allocates a buffer big
4635  * enough to hold a copy of it, and copies the token into the new
4636  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4637  * that a duplicate buffer is created even for a zero-length token.
4638  *
4639  * Returns a pointer to the newly-allocated duplicate, or a null
4640  * pointer if memory for the duplicate was not available.  If
4641  * the lenp argument is a non-null pointer, the length of the token
4642  * (not including the '\0') is returned in *lenp.
4643  *
4644  * If successful, the *buf pointer will be updated to point beyond
4645  * the end of the found token.
4646  *
4647  * Note: uses GFP_KERNEL for allocation.
4648  */
4649 static inline char *dup_token(const char **buf, size_t *lenp)
4650 {
4651 	char *dup;
4652 	size_t len;
4653 
4654 	len = next_token(buf);
4655 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4656 	if (!dup)
4657 		return NULL;
4658 	*(dup + len) = '\0';
4659 	*buf += len;
4660 
4661 	if (lenp)
4662 		*lenp = len;
4663 
4664 	return dup;
4665 }
4666 
4667 /*
4668  * Parse the options provided for an "rbd add" (i.e., rbd image
4669  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4670  * and the data written is passed here via a NUL-terminated buffer.
4671  * Returns 0 if successful or an error code otherwise.
4672  *
4673  * The information extracted from these options is recorded in
4674  * the other parameters which return dynamically-allocated
4675  * structures:
4676  *  ceph_opts
4677  *      The address of a pointer that will refer to a ceph options
4678  *      structure.  Caller must release the returned pointer using
4679  *      ceph_destroy_options() when it is no longer needed.
4680  *  rbd_opts
4681  *	Address of an rbd options pointer.  Fully initialized by
4682  *	this function; caller must release with kfree().
4683  *  spec
4684  *	Address of an rbd image specification pointer.  Fully
4685  *	initialized by this function based on parsed options.
4686  *	Caller must release with rbd_spec_put().
4687  *
4688  * The options passed take this form:
4689  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4690  * where:
4691  *  <mon_addrs>
4692  *      A comma-separated list of one or more monitor addresses.
4693  *      A monitor address is an ip address, optionally followed
4694  *      by a port number (separated by a colon).
4695  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4696  *  <options>
4697  *      A comma-separated list of ceph and/or rbd options.
4698  *  <pool_name>
4699  *      The name of the rados pool containing the rbd image.
4700  *  <image_name>
4701  *      The name of the image in that pool to map.
4702  *  <snap_id>
4703  *      An optional snapshot id.  If provided, the mapping will
4704  *      present data from the image at the time that snapshot was
4705  *      created.  The image head is used if no snapshot id is
4706  *      provided.  Snapshot mappings are always read-only.
4707  */
4708 static int rbd_add_parse_args(const char *buf,
4709 				struct ceph_options **ceph_opts,
4710 				struct rbd_options **opts,
4711 				struct rbd_spec **rbd_spec)
4712 {
4713 	size_t len;
4714 	char *options;
4715 	const char *mon_addrs;
4716 	char *snap_name;
4717 	size_t mon_addrs_size;
4718 	struct rbd_spec *spec = NULL;
4719 	struct rbd_options *rbd_opts = NULL;
4720 	struct ceph_options *copts;
4721 	int ret;
4722 
4723 	/* The first four tokens are required */
4724 
4725 	len = next_token(&buf);
4726 	if (!len) {
4727 		rbd_warn(NULL, "no monitor address(es) provided");
4728 		return -EINVAL;
4729 	}
4730 	mon_addrs = buf;
4731 	mon_addrs_size = len + 1;
4732 	buf += len;
4733 
4734 	ret = -EINVAL;
4735 	options = dup_token(&buf, NULL);
4736 	if (!options)
4737 		return -ENOMEM;
4738 	if (!*options) {
4739 		rbd_warn(NULL, "no options provided");
4740 		goto out_err;
4741 	}
4742 
4743 	spec = rbd_spec_alloc();
4744 	if (!spec)
4745 		goto out_mem;
4746 
4747 	spec->pool_name = dup_token(&buf, NULL);
4748 	if (!spec->pool_name)
4749 		goto out_mem;
4750 	if (!*spec->pool_name) {
4751 		rbd_warn(NULL, "no pool name provided");
4752 		goto out_err;
4753 	}
4754 
4755 	spec->image_name = dup_token(&buf, NULL);
4756 	if (!spec->image_name)
4757 		goto out_mem;
4758 	if (!*spec->image_name) {
4759 		rbd_warn(NULL, "no image name provided");
4760 		goto out_err;
4761 	}
4762 
4763 	/*
4764 	 * Snapshot name is optional; default is to use "-"
4765 	 * (indicating the head/no snapshot).
4766 	 */
4767 	len = next_token(&buf);
4768 	if (!len) {
4769 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4770 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4771 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4772 		ret = -ENAMETOOLONG;
4773 		goto out_err;
4774 	}
4775 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4776 	if (!snap_name)
4777 		goto out_mem;
4778 	*(snap_name + len) = '\0';
4779 	spec->snap_name = snap_name;
4780 
4781 	/* Initialize all rbd options to the defaults */
4782 
4783 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4784 	if (!rbd_opts)
4785 		goto out_mem;
4786 
4787 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4788 
4789 	copts = ceph_parse_options(options, mon_addrs,
4790 					mon_addrs + mon_addrs_size - 1,
4791 					parse_rbd_opts_token, rbd_opts);
4792 	if (IS_ERR(copts)) {
4793 		ret = PTR_ERR(copts);
4794 		goto out_err;
4795 	}
4796 	kfree(options);
4797 
4798 	*ceph_opts = copts;
4799 	*opts = rbd_opts;
4800 	*rbd_spec = spec;
4801 
4802 	return 0;
4803 out_mem:
4804 	ret = -ENOMEM;
4805 out_err:
4806 	kfree(rbd_opts);
4807 	rbd_spec_put(spec);
4808 	kfree(options);
4809 
4810 	return ret;
4811 }
4812 
4813 /*
4814  * Return pool id (>= 0) or a negative error code.
4815  */
4816 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4817 {
4818 	u64 newest_epoch;
4819 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4820 	int tries = 0;
4821 	int ret;
4822 
4823 again:
4824 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4825 	if (ret == -ENOENT && tries++ < 1) {
4826 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4827 					       &newest_epoch);
4828 		if (ret < 0)
4829 			return ret;
4830 
4831 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4832 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4833 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4834 						     newest_epoch, timeout);
4835 			goto again;
4836 		} else {
4837 			/* the osdmap we have is new enough */
4838 			return -ENOENT;
4839 		}
4840 	}
4841 
4842 	return ret;
4843 }
4844 
4845 /*
4846  * An rbd format 2 image has a unique identifier, distinct from the
4847  * name given to it by the user.  Internally, that identifier is
4848  * what's used to specify the names of objects related to the image.
4849  *
4850  * A special "rbd id" object is used to map an rbd image name to its
4851  * id.  If that object doesn't exist, then there is no v2 rbd image
4852  * with the supplied name.
4853  *
4854  * This function will record the given rbd_dev's image_id field if
4855  * it can be determined, and in that case will return 0.  If any
4856  * errors occur a negative errno will be returned and the rbd_dev's
4857  * image_id field will be unchanged (and should be NULL).
4858  */
4859 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4860 {
4861 	int ret;
4862 	size_t size;
4863 	char *object_name;
4864 	void *response;
4865 	char *image_id;
4866 
4867 	/*
4868 	 * When probing a parent image, the image id is already
4869 	 * known (and the image name likely is not).  There's no
4870 	 * need to fetch the image id again in this case.  We
4871 	 * do still need to set the image format though.
4872 	 */
4873 	if (rbd_dev->spec->image_id) {
4874 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4875 
4876 		return 0;
4877 	}
4878 
4879 	/*
4880 	 * First, see if the format 2 image id file exists, and if
4881 	 * so, get the image's persistent id from it.
4882 	 */
4883 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4884 	object_name = kmalloc(size, GFP_NOIO);
4885 	if (!object_name)
4886 		return -ENOMEM;
4887 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4888 	dout("rbd id object name is %s\n", object_name);
4889 
4890 	/* Response will be an encoded string, which includes a length */
4891 
4892 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4893 	response = kzalloc(size, GFP_NOIO);
4894 	if (!response) {
4895 		ret = -ENOMEM;
4896 		goto out;
4897 	}
4898 
4899 	/* If it doesn't exist we'll assume it's a format 1 image */
4900 
4901 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4902 				"rbd", "get_id", NULL, 0,
4903 				response, RBD_IMAGE_ID_LEN_MAX);
4904 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4905 	if (ret == -ENOENT) {
4906 		image_id = kstrdup("", GFP_KERNEL);
4907 		ret = image_id ? 0 : -ENOMEM;
4908 		if (!ret)
4909 			rbd_dev->image_format = 1;
4910 	} else if (ret > sizeof (__le32)) {
4911 		void *p = response;
4912 
4913 		image_id = ceph_extract_encoded_string(&p, p + ret,
4914 						NULL, GFP_NOIO);
4915 		ret = PTR_ERR_OR_ZERO(image_id);
4916 		if (!ret)
4917 			rbd_dev->image_format = 2;
4918 	} else {
4919 		ret = -EINVAL;
4920 	}
4921 
4922 	if (!ret) {
4923 		rbd_dev->spec->image_id = image_id;
4924 		dout("image_id is %s\n", image_id);
4925 	}
4926 out:
4927 	kfree(response);
4928 	kfree(object_name);
4929 
4930 	return ret;
4931 }
4932 
4933 /*
4934  * Undo whatever state changes are made by v1 or v2 header info
4935  * call.
4936  */
4937 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4938 {
4939 	struct rbd_image_header	*header;
4940 
4941 	/* Drop parent reference unless it's already been done (or none) */
4942 
4943 	if (rbd_dev->parent_overlap)
4944 		rbd_dev_parent_put(rbd_dev);
4945 
4946 	/* Free dynamic fields from the header, then zero it out */
4947 
4948 	header = &rbd_dev->header;
4949 	ceph_put_snap_context(header->snapc);
4950 	kfree(header->snap_sizes);
4951 	kfree(header->snap_names);
4952 	kfree(header->object_prefix);
4953 	memset(header, 0, sizeof (*header));
4954 }
4955 
4956 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4957 {
4958 	int ret;
4959 
4960 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4961 	if (ret)
4962 		goto out_err;
4963 
4964 	/*
4965 	 * Get the and check features for the image.  Currently the
4966 	 * features are assumed to never change.
4967 	 */
4968 	ret = rbd_dev_v2_features(rbd_dev);
4969 	if (ret)
4970 		goto out_err;
4971 
4972 	/* If the image supports fancy striping, get its parameters */
4973 
4974 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4975 		ret = rbd_dev_v2_striping_info(rbd_dev);
4976 		if (ret < 0)
4977 			goto out_err;
4978 	}
4979 	/* No support for crypto and compression type format 2 images */
4980 
4981 	return 0;
4982 out_err:
4983 	rbd_dev->header.features = 0;
4984 	kfree(rbd_dev->header.object_prefix);
4985 	rbd_dev->header.object_prefix = NULL;
4986 
4987 	return ret;
4988 }
4989 
4990 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4991 {
4992 	struct rbd_device *parent = NULL;
4993 	struct rbd_spec *parent_spec;
4994 	struct rbd_client *rbdc;
4995 	int ret;
4996 
4997 	if (!rbd_dev->parent_spec)
4998 		return 0;
4999 	/*
5000 	 * We need to pass a reference to the client and the parent
5001 	 * spec when creating the parent rbd_dev.  Images related by
5002 	 * parent/child relationships always share both.
5003 	 */
5004 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5005 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5006 
5007 	ret = -ENOMEM;
5008 	parent = rbd_dev_create(rbdc, parent_spec);
5009 	if (!parent)
5010 		goto out_err;
5011 
5012 	ret = rbd_dev_image_probe(parent, false);
5013 	if (ret < 0)
5014 		goto out_err;
5015 	rbd_dev->parent = parent;
5016 	atomic_set(&rbd_dev->parent_ref, 1);
5017 
5018 	return 0;
5019 out_err:
5020 	if (parent) {
5021 		rbd_dev_unparent(rbd_dev);
5022 		kfree(rbd_dev->header_name);
5023 		rbd_dev_destroy(parent);
5024 	} else {
5025 		rbd_put_client(rbdc);
5026 		rbd_spec_put(parent_spec);
5027 	}
5028 
5029 	return ret;
5030 }
5031 
5032 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5033 {
5034 	int ret;
5035 
5036 	/* Get an id and fill in device name. */
5037 
5038 	ret = rbd_dev_id_get(rbd_dev);
5039 	if (ret)
5040 		return ret;
5041 
5042 	BUILD_BUG_ON(DEV_NAME_LEN
5043 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5044 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5045 
5046 	/* Record our major and minor device numbers. */
5047 
5048 	if (!single_major) {
5049 		ret = register_blkdev(0, rbd_dev->name);
5050 		if (ret < 0)
5051 			goto err_out_id;
5052 
5053 		rbd_dev->major = ret;
5054 		rbd_dev->minor = 0;
5055 	} else {
5056 		rbd_dev->major = rbd_major;
5057 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5058 	}
5059 
5060 	/* Set up the blkdev mapping. */
5061 
5062 	ret = rbd_init_disk(rbd_dev);
5063 	if (ret)
5064 		goto err_out_blkdev;
5065 
5066 	ret = rbd_dev_mapping_set(rbd_dev);
5067 	if (ret)
5068 		goto err_out_disk;
5069 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5070 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5071 
5072 	ret = rbd_bus_add_dev(rbd_dev);
5073 	if (ret)
5074 		goto err_out_mapping;
5075 
5076 	/* Everything's ready.  Announce the disk to the world. */
5077 
5078 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5079 	add_disk(rbd_dev->disk);
5080 
5081 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5082 		(unsigned long long) rbd_dev->mapping.size);
5083 
5084 	return ret;
5085 
5086 err_out_mapping:
5087 	rbd_dev_mapping_clear(rbd_dev);
5088 err_out_disk:
5089 	rbd_free_disk(rbd_dev);
5090 err_out_blkdev:
5091 	if (!single_major)
5092 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5093 err_out_id:
5094 	rbd_dev_id_put(rbd_dev);
5095 	rbd_dev_mapping_clear(rbd_dev);
5096 
5097 	return ret;
5098 }
5099 
5100 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5101 {
5102 	struct rbd_spec *spec = rbd_dev->spec;
5103 	size_t size;
5104 
5105 	/* Record the header object name for this rbd image. */
5106 
5107 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5108 
5109 	if (rbd_dev->image_format == 1)
5110 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5111 	else
5112 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5113 
5114 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5115 	if (!rbd_dev->header_name)
5116 		return -ENOMEM;
5117 
5118 	if (rbd_dev->image_format == 1)
5119 		sprintf(rbd_dev->header_name, "%s%s",
5120 			spec->image_name, RBD_SUFFIX);
5121 	else
5122 		sprintf(rbd_dev->header_name, "%s%s",
5123 			RBD_HEADER_PREFIX, spec->image_id);
5124 	return 0;
5125 }
5126 
5127 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5128 {
5129 	rbd_dev_unprobe(rbd_dev);
5130 	kfree(rbd_dev->header_name);
5131 	rbd_dev->header_name = NULL;
5132 	rbd_dev->image_format = 0;
5133 	kfree(rbd_dev->spec->image_id);
5134 	rbd_dev->spec->image_id = NULL;
5135 
5136 	rbd_dev_destroy(rbd_dev);
5137 }
5138 
5139 /*
5140  * Probe for the existence of the header object for the given rbd
5141  * device.  If this image is the one being mapped (i.e., not a
5142  * parent), initiate a watch on its header object before using that
5143  * object to get detailed information about the rbd image.
5144  */
5145 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5146 {
5147 	int ret;
5148 
5149 	/*
5150 	 * Get the id from the image id object.  Unless there's an
5151 	 * error, rbd_dev->spec->image_id will be filled in with
5152 	 * a dynamically-allocated string, and rbd_dev->image_format
5153 	 * will be set to either 1 or 2.
5154 	 */
5155 	ret = rbd_dev_image_id(rbd_dev);
5156 	if (ret)
5157 		return ret;
5158 	rbd_assert(rbd_dev->spec->image_id);
5159 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5160 
5161 	ret = rbd_dev_header_name(rbd_dev);
5162 	if (ret)
5163 		goto err_out_format;
5164 
5165 	if (mapping) {
5166 		ret = rbd_dev_header_watch_sync(rbd_dev);
5167 		if (ret)
5168 			goto out_header_name;
5169 	}
5170 
5171 	if (rbd_dev->image_format == 1)
5172 		ret = rbd_dev_v1_header_info(rbd_dev);
5173 	else
5174 		ret = rbd_dev_v2_header_info(rbd_dev);
5175 	if (ret)
5176 		goto err_out_watch;
5177 
5178 	ret = rbd_dev_spec_update(rbd_dev);
5179 	if (ret)
5180 		goto err_out_probe;
5181 
5182 	ret = rbd_dev_probe_parent(rbd_dev);
5183 	if (ret)
5184 		goto err_out_probe;
5185 
5186 	dout("discovered format %u image, header name is %s\n",
5187 		rbd_dev->image_format, rbd_dev->header_name);
5188 
5189 	return 0;
5190 err_out_probe:
5191 	rbd_dev_unprobe(rbd_dev);
5192 err_out_watch:
5193 	if (mapping)
5194 		rbd_dev_header_unwatch_sync(rbd_dev);
5195 out_header_name:
5196 	kfree(rbd_dev->header_name);
5197 	rbd_dev->header_name = NULL;
5198 err_out_format:
5199 	rbd_dev->image_format = 0;
5200 	kfree(rbd_dev->spec->image_id);
5201 	rbd_dev->spec->image_id = NULL;
5202 
5203 	dout("probe failed, returning %d\n", ret);
5204 
5205 	return ret;
5206 }
5207 
5208 static ssize_t do_rbd_add(struct bus_type *bus,
5209 			  const char *buf,
5210 			  size_t count)
5211 {
5212 	struct rbd_device *rbd_dev = NULL;
5213 	struct ceph_options *ceph_opts = NULL;
5214 	struct rbd_options *rbd_opts = NULL;
5215 	struct rbd_spec *spec = NULL;
5216 	struct rbd_client *rbdc;
5217 	bool read_only;
5218 	int rc = -ENOMEM;
5219 
5220 	if (!try_module_get(THIS_MODULE))
5221 		return -ENODEV;
5222 
5223 	/* parse add command */
5224 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5225 	if (rc < 0)
5226 		goto err_out_module;
5227 	read_only = rbd_opts->read_only;
5228 	kfree(rbd_opts);
5229 	rbd_opts = NULL;	/* done with this */
5230 
5231 	rbdc = rbd_get_client(ceph_opts);
5232 	if (IS_ERR(rbdc)) {
5233 		rc = PTR_ERR(rbdc);
5234 		goto err_out_args;
5235 	}
5236 
5237 	/* pick the pool */
5238 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5239 	if (rc < 0)
5240 		goto err_out_client;
5241 	spec->pool_id = (u64)rc;
5242 
5243 	/* The ceph file layout needs to fit pool id in 32 bits */
5244 
5245 	if (spec->pool_id > (u64)U32_MAX) {
5246 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5247 				(unsigned long long)spec->pool_id, U32_MAX);
5248 		rc = -EIO;
5249 		goto err_out_client;
5250 	}
5251 
5252 	rbd_dev = rbd_dev_create(rbdc, spec);
5253 	if (!rbd_dev)
5254 		goto err_out_client;
5255 	rbdc = NULL;		/* rbd_dev now owns this */
5256 	spec = NULL;		/* rbd_dev now owns this */
5257 
5258 	rc = rbd_dev_image_probe(rbd_dev, true);
5259 	if (rc < 0)
5260 		goto err_out_rbd_dev;
5261 
5262 	/* If we are mapping a snapshot it must be marked read-only */
5263 
5264 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5265 		read_only = true;
5266 	rbd_dev->mapping.read_only = read_only;
5267 
5268 	rc = rbd_dev_device_setup(rbd_dev);
5269 	if (rc) {
5270 		/*
5271 		 * rbd_dev_header_unwatch_sync() can't be moved into
5272 		 * rbd_dev_image_release() without refactoring, see
5273 		 * commit 1f3ef78861ac.
5274 		 */
5275 		rbd_dev_header_unwatch_sync(rbd_dev);
5276 		rbd_dev_image_release(rbd_dev);
5277 		goto err_out_module;
5278 	}
5279 
5280 	return count;
5281 
5282 err_out_rbd_dev:
5283 	rbd_dev_destroy(rbd_dev);
5284 err_out_client:
5285 	rbd_put_client(rbdc);
5286 err_out_args:
5287 	rbd_spec_put(spec);
5288 err_out_module:
5289 	module_put(THIS_MODULE);
5290 
5291 	dout("Error adding device %s\n", buf);
5292 
5293 	return (ssize_t)rc;
5294 }
5295 
5296 static ssize_t rbd_add(struct bus_type *bus,
5297 		       const char *buf,
5298 		       size_t count)
5299 {
5300 	if (single_major)
5301 		return -EINVAL;
5302 
5303 	return do_rbd_add(bus, buf, count);
5304 }
5305 
5306 static ssize_t rbd_add_single_major(struct bus_type *bus,
5307 				    const char *buf,
5308 				    size_t count)
5309 {
5310 	return do_rbd_add(bus, buf, count);
5311 }
5312 
5313 static void rbd_dev_device_release(struct device *dev)
5314 {
5315 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5316 
5317 	rbd_free_disk(rbd_dev);
5318 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5319 	rbd_dev_mapping_clear(rbd_dev);
5320 	if (!single_major)
5321 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5322 	rbd_dev_id_put(rbd_dev);
5323 	rbd_dev_mapping_clear(rbd_dev);
5324 }
5325 
5326 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5327 {
5328 	while (rbd_dev->parent) {
5329 		struct rbd_device *first = rbd_dev;
5330 		struct rbd_device *second = first->parent;
5331 		struct rbd_device *third;
5332 
5333 		/*
5334 		 * Follow to the parent with no grandparent and
5335 		 * remove it.
5336 		 */
5337 		while (second && (third = second->parent)) {
5338 			first = second;
5339 			second = third;
5340 		}
5341 		rbd_assert(second);
5342 		rbd_dev_image_release(second);
5343 		first->parent = NULL;
5344 		first->parent_overlap = 0;
5345 
5346 		rbd_assert(first->parent_spec);
5347 		rbd_spec_put(first->parent_spec);
5348 		first->parent_spec = NULL;
5349 	}
5350 }
5351 
5352 static ssize_t do_rbd_remove(struct bus_type *bus,
5353 			     const char *buf,
5354 			     size_t count)
5355 {
5356 	struct rbd_device *rbd_dev = NULL;
5357 	struct list_head *tmp;
5358 	int dev_id;
5359 	unsigned long ul;
5360 	bool already = false;
5361 	int ret;
5362 
5363 	ret = kstrtoul(buf, 10, &ul);
5364 	if (ret)
5365 		return ret;
5366 
5367 	/* convert to int; abort if we lost anything in the conversion */
5368 	dev_id = (int)ul;
5369 	if (dev_id != ul)
5370 		return -EINVAL;
5371 
5372 	ret = -ENOENT;
5373 	spin_lock(&rbd_dev_list_lock);
5374 	list_for_each(tmp, &rbd_dev_list) {
5375 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5376 		if (rbd_dev->dev_id == dev_id) {
5377 			ret = 0;
5378 			break;
5379 		}
5380 	}
5381 	if (!ret) {
5382 		spin_lock_irq(&rbd_dev->lock);
5383 		if (rbd_dev->open_count)
5384 			ret = -EBUSY;
5385 		else
5386 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5387 							&rbd_dev->flags);
5388 		spin_unlock_irq(&rbd_dev->lock);
5389 	}
5390 	spin_unlock(&rbd_dev_list_lock);
5391 	if (ret < 0 || already)
5392 		return ret;
5393 
5394 	rbd_dev_header_unwatch_sync(rbd_dev);
5395 	/*
5396 	 * flush remaining watch callbacks - these must be complete
5397 	 * before the osd_client is shutdown
5398 	 */
5399 	dout("%s: flushing notifies", __func__);
5400 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5401 
5402 	/*
5403 	 * Don't free anything from rbd_dev->disk until after all
5404 	 * notifies are completely processed. Otherwise
5405 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5406 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5407 	 */
5408 	rbd_bus_del_dev(rbd_dev);
5409 	rbd_dev_image_release(rbd_dev);
5410 	module_put(THIS_MODULE);
5411 
5412 	return count;
5413 }
5414 
5415 static ssize_t rbd_remove(struct bus_type *bus,
5416 			  const char *buf,
5417 			  size_t count)
5418 {
5419 	if (single_major)
5420 		return -EINVAL;
5421 
5422 	return do_rbd_remove(bus, buf, count);
5423 }
5424 
5425 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5426 				       const char *buf,
5427 				       size_t count)
5428 {
5429 	return do_rbd_remove(bus, buf, count);
5430 }
5431 
5432 /*
5433  * create control files in sysfs
5434  * /sys/bus/rbd/...
5435  */
5436 static int rbd_sysfs_init(void)
5437 {
5438 	int ret;
5439 
5440 	ret = device_register(&rbd_root_dev);
5441 	if (ret < 0)
5442 		return ret;
5443 
5444 	ret = bus_register(&rbd_bus_type);
5445 	if (ret < 0)
5446 		device_unregister(&rbd_root_dev);
5447 
5448 	return ret;
5449 }
5450 
5451 static void rbd_sysfs_cleanup(void)
5452 {
5453 	bus_unregister(&rbd_bus_type);
5454 	device_unregister(&rbd_root_dev);
5455 }
5456 
5457 static int rbd_slab_init(void)
5458 {
5459 	rbd_assert(!rbd_img_request_cache);
5460 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5461 					sizeof (struct rbd_img_request),
5462 					__alignof__(struct rbd_img_request),
5463 					0, NULL);
5464 	if (!rbd_img_request_cache)
5465 		return -ENOMEM;
5466 
5467 	rbd_assert(!rbd_obj_request_cache);
5468 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5469 					sizeof (struct rbd_obj_request),
5470 					__alignof__(struct rbd_obj_request),
5471 					0, NULL);
5472 	if (!rbd_obj_request_cache)
5473 		goto out_err;
5474 
5475 	rbd_assert(!rbd_segment_name_cache);
5476 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5477 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5478 	if (rbd_segment_name_cache)
5479 		return 0;
5480 out_err:
5481 	if (rbd_obj_request_cache) {
5482 		kmem_cache_destroy(rbd_obj_request_cache);
5483 		rbd_obj_request_cache = NULL;
5484 	}
5485 
5486 	kmem_cache_destroy(rbd_img_request_cache);
5487 	rbd_img_request_cache = NULL;
5488 
5489 	return -ENOMEM;
5490 }
5491 
5492 static void rbd_slab_exit(void)
5493 {
5494 	rbd_assert(rbd_segment_name_cache);
5495 	kmem_cache_destroy(rbd_segment_name_cache);
5496 	rbd_segment_name_cache = NULL;
5497 
5498 	rbd_assert(rbd_obj_request_cache);
5499 	kmem_cache_destroy(rbd_obj_request_cache);
5500 	rbd_obj_request_cache = NULL;
5501 
5502 	rbd_assert(rbd_img_request_cache);
5503 	kmem_cache_destroy(rbd_img_request_cache);
5504 	rbd_img_request_cache = NULL;
5505 }
5506 
5507 static int __init rbd_init(void)
5508 {
5509 	int rc;
5510 
5511 	if (!libceph_compatible(NULL)) {
5512 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5513 		return -EINVAL;
5514 	}
5515 
5516 	rc = rbd_slab_init();
5517 	if (rc)
5518 		return rc;
5519 
5520 	if (single_major) {
5521 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5522 		if (rbd_major < 0) {
5523 			rc = rbd_major;
5524 			goto err_out_slab;
5525 		}
5526 	}
5527 
5528 	rc = rbd_sysfs_init();
5529 	if (rc)
5530 		goto err_out_blkdev;
5531 
5532 	if (single_major)
5533 		pr_info("loaded (major %d)\n", rbd_major);
5534 	else
5535 		pr_info("loaded\n");
5536 
5537 	return 0;
5538 
5539 err_out_blkdev:
5540 	if (single_major)
5541 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5542 err_out_slab:
5543 	rbd_slab_exit();
5544 	return rc;
5545 }
5546 
5547 static void __exit rbd_exit(void)
5548 {
5549 	ida_destroy(&rbd_dev_id_ida);
5550 	rbd_sysfs_cleanup();
5551 	if (single_major)
5552 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5553 	rbd_slab_exit();
5554 }
5555 
5556 module_init(rbd_init);
5557 module_exit(rbd_exit);
5558 
5559 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5560 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5561 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5562 /* following authorship retained from original osdblk.c */
5563 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5564 
5565 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5566 MODULE_LICENSE("GPL");
5567