1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 union { 341 struct request *rq; /* block request */ 342 struct rbd_obj_request *obj_request; /* obj req initiator */ 343 }; 344 345 struct list_head lock_item; 346 struct list_head object_extents; /* obj_req.ex structs */ 347 348 struct mutex state_mutex; 349 struct pending_result pending; 350 struct work_struct work; 351 int work_result; 352 struct kref kref; 353 }; 354 355 #define for_each_obj_request(ireq, oreq) \ 356 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 357 #define for_each_obj_request_safe(ireq, oreq, n) \ 358 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 359 360 enum rbd_watch_state { 361 RBD_WATCH_STATE_UNREGISTERED, 362 RBD_WATCH_STATE_REGISTERED, 363 RBD_WATCH_STATE_ERROR, 364 }; 365 366 enum rbd_lock_state { 367 RBD_LOCK_STATE_UNLOCKED, 368 RBD_LOCK_STATE_LOCKED, 369 RBD_LOCK_STATE_RELEASING, 370 }; 371 372 /* WatchNotify::ClientId */ 373 struct rbd_client_id { 374 u64 gid; 375 u64 handle; 376 }; 377 378 struct rbd_mapping { 379 u64 size; 380 u64 features; 381 }; 382 383 /* 384 * a single device 385 */ 386 struct rbd_device { 387 int dev_id; /* blkdev unique id */ 388 389 int major; /* blkdev assigned major */ 390 int minor; 391 struct gendisk *disk; /* blkdev's gendisk and rq */ 392 393 u32 image_format; /* Either 1 or 2 */ 394 struct rbd_client *rbd_client; 395 396 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 397 398 spinlock_t lock; /* queue, flags, open_count */ 399 400 struct rbd_image_header header; 401 unsigned long flags; /* possibly lock protected */ 402 struct rbd_spec *spec; 403 struct rbd_options *opts; 404 char *config_info; /* add{,_single_major} string */ 405 406 struct ceph_object_id header_oid; 407 struct ceph_object_locator header_oloc; 408 409 struct ceph_file_layout layout; /* used for all rbd requests */ 410 411 struct mutex watch_mutex; 412 enum rbd_watch_state watch_state; 413 struct ceph_osd_linger_request *watch_handle; 414 u64 watch_cookie; 415 struct delayed_work watch_dwork; 416 417 struct rw_semaphore lock_rwsem; 418 enum rbd_lock_state lock_state; 419 char lock_cookie[32]; 420 struct rbd_client_id owner_cid; 421 struct work_struct acquired_lock_work; 422 struct work_struct released_lock_work; 423 struct delayed_work lock_dwork; 424 struct work_struct unlock_work; 425 spinlock_t lock_lists_lock; 426 struct list_head acquiring_list; 427 struct list_head running_list; 428 struct completion acquire_wait; 429 int acquire_err; 430 struct completion releasing_wait; 431 432 spinlock_t object_map_lock; 433 u8 *object_map; 434 u64 object_map_size; /* in objects */ 435 u64 object_map_flags; 436 437 struct workqueue_struct *task_wq; 438 439 struct rbd_spec *parent_spec; 440 u64 parent_overlap; 441 atomic_t parent_ref; 442 struct rbd_device *parent; 443 444 /* Block layer tags. */ 445 struct blk_mq_tag_set tag_set; 446 447 /* protects updating the header */ 448 struct rw_semaphore header_rwsem; 449 450 struct rbd_mapping mapping; 451 452 struct list_head node; 453 454 /* sysfs related */ 455 struct device dev; 456 unsigned long open_count; /* protected by lock */ 457 }; 458 459 /* 460 * Flag bits for rbd_dev->flags: 461 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 462 * by rbd_dev->lock 463 */ 464 enum rbd_dev_flags { 465 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 466 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 467 }; 468 469 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 470 471 static LIST_HEAD(rbd_dev_list); /* devices */ 472 static DEFINE_SPINLOCK(rbd_dev_list_lock); 473 474 static LIST_HEAD(rbd_client_list); /* clients */ 475 static DEFINE_SPINLOCK(rbd_client_list_lock); 476 477 /* Slab caches for frequently-allocated structures */ 478 479 static struct kmem_cache *rbd_img_request_cache; 480 static struct kmem_cache *rbd_obj_request_cache; 481 482 static int rbd_major; 483 static DEFINE_IDA(rbd_dev_id_ida); 484 485 static struct workqueue_struct *rbd_wq; 486 487 static struct ceph_snap_context rbd_empty_snapc = { 488 .nref = REFCOUNT_INIT(1), 489 }; 490 491 /* 492 * single-major requires >= 0.75 version of userspace rbd utility. 493 */ 494 static bool single_major = true; 495 module_param(single_major, bool, 0444); 496 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 497 498 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count); 499 static ssize_t remove_store(struct bus_type *bus, const char *buf, 500 size_t count); 501 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 502 size_t count); 503 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 504 size_t count); 505 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 506 507 static int rbd_dev_id_to_minor(int dev_id) 508 { 509 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 510 } 511 512 static int minor_to_rbd_dev_id(int minor) 513 { 514 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 515 } 516 517 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 518 { 519 lockdep_assert_held(&rbd_dev->lock_rwsem); 520 521 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 522 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 523 } 524 525 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 526 { 527 bool is_lock_owner; 528 529 down_read(&rbd_dev->lock_rwsem); 530 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 531 up_read(&rbd_dev->lock_rwsem); 532 return is_lock_owner; 533 } 534 535 static ssize_t supported_features_show(struct bus_type *bus, char *buf) 536 { 537 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 538 } 539 540 static BUS_ATTR_WO(add); 541 static BUS_ATTR_WO(remove); 542 static BUS_ATTR_WO(add_single_major); 543 static BUS_ATTR_WO(remove_single_major); 544 static BUS_ATTR_RO(supported_features); 545 546 static struct attribute *rbd_bus_attrs[] = { 547 &bus_attr_add.attr, 548 &bus_attr_remove.attr, 549 &bus_attr_add_single_major.attr, 550 &bus_attr_remove_single_major.attr, 551 &bus_attr_supported_features.attr, 552 NULL, 553 }; 554 555 static umode_t rbd_bus_is_visible(struct kobject *kobj, 556 struct attribute *attr, int index) 557 { 558 if (!single_major && 559 (attr == &bus_attr_add_single_major.attr || 560 attr == &bus_attr_remove_single_major.attr)) 561 return 0; 562 563 return attr->mode; 564 } 565 566 static const struct attribute_group rbd_bus_group = { 567 .attrs = rbd_bus_attrs, 568 .is_visible = rbd_bus_is_visible, 569 }; 570 __ATTRIBUTE_GROUPS(rbd_bus); 571 572 static struct bus_type rbd_bus_type = { 573 .name = "rbd", 574 .bus_groups = rbd_bus_groups, 575 }; 576 577 static void rbd_root_dev_release(struct device *dev) 578 { 579 } 580 581 static struct device rbd_root_dev = { 582 .init_name = "rbd", 583 .release = rbd_root_dev_release, 584 }; 585 586 static __printf(2, 3) 587 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 588 { 589 struct va_format vaf; 590 va_list args; 591 592 va_start(args, fmt); 593 vaf.fmt = fmt; 594 vaf.va = &args; 595 596 if (!rbd_dev) 597 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 598 else if (rbd_dev->disk) 599 printk(KERN_WARNING "%s: %s: %pV\n", 600 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 601 else if (rbd_dev->spec && rbd_dev->spec->image_name) 602 printk(KERN_WARNING "%s: image %s: %pV\n", 603 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 604 else if (rbd_dev->spec && rbd_dev->spec->image_id) 605 printk(KERN_WARNING "%s: id %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 607 else /* punt */ 608 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 609 RBD_DRV_NAME, rbd_dev, &vaf); 610 va_end(args); 611 } 612 613 #ifdef RBD_DEBUG 614 #define rbd_assert(expr) \ 615 if (unlikely(!(expr))) { \ 616 printk(KERN_ERR "\nAssertion failure in %s() " \ 617 "at line %d:\n\n" \ 618 "\trbd_assert(%s);\n\n", \ 619 __func__, __LINE__, #expr); \ 620 BUG(); \ 621 } 622 #else /* !RBD_DEBUG */ 623 # define rbd_assert(expr) ((void) 0) 624 #endif /* !RBD_DEBUG */ 625 626 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 627 628 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 629 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 630 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 631 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 632 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 633 u64 snap_id); 634 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 635 u8 *order, u64 *snap_size); 636 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 637 u64 *snap_features); 638 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 639 640 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 641 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 642 643 /* 644 * Return true if nothing else is pending. 645 */ 646 static bool pending_result_dec(struct pending_result *pending, int *result) 647 { 648 rbd_assert(pending->num_pending > 0); 649 650 if (*result && !pending->result) 651 pending->result = *result; 652 if (--pending->num_pending) 653 return false; 654 655 *result = pending->result; 656 return true; 657 } 658 659 static int rbd_open(struct block_device *bdev, fmode_t mode) 660 { 661 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 662 bool removing = false; 663 664 spin_lock_irq(&rbd_dev->lock); 665 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 666 removing = true; 667 else 668 rbd_dev->open_count++; 669 spin_unlock_irq(&rbd_dev->lock); 670 if (removing) 671 return -ENOENT; 672 673 (void) get_device(&rbd_dev->dev); 674 675 return 0; 676 } 677 678 static void rbd_release(struct gendisk *disk, fmode_t mode) 679 { 680 struct rbd_device *rbd_dev = disk->private_data; 681 unsigned long open_count_before; 682 683 spin_lock_irq(&rbd_dev->lock); 684 open_count_before = rbd_dev->open_count--; 685 spin_unlock_irq(&rbd_dev->lock); 686 rbd_assert(open_count_before > 0); 687 688 put_device(&rbd_dev->dev); 689 } 690 691 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 692 { 693 int ro; 694 695 if (get_user(ro, (int __user *)arg)) 696 return -EFAULT; 697 698 /* Snapshots can't be marked read-write */ 699 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 700 return -EROFS; 701 702 /* Let blkdev_roset() handle it */ 703 return -ENOTTY; 704 } 705 706 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 707 unsigned int cmd, unsigned long arg) 708 { 709 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 710 int ret; 711 712 switch (cmd) { 713 case BLKROSET: 714 ret = rbd_ioctl_set_ro(rbd_dev, arg); 715 break; 716 default: 717 ret = -ENOTTY; 718 } 719 720 return ret; 721 } 722 723 #ifdef CONFIG_COMPAT 724 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 725 unsigned int cmd, unsigned long arg) 726 { 727 return rbd_ioctl(bdev, mode, cmd, arg); 728 } 729 #endif /* CONFIG_COMPAT */ 730 731 static const struct block_device_operations rbd_bd_ops = { 732 .owner = THIS_MODULE, 733 .open = rbd_open, 734 .release = rbd_release, 735 .ioctl = rbd_ioctl, 736 #ifdef CONFIG_COMPAT 737 .compat_ioctl = rbd_compat_ioctl, 738 #endif 739 }; 740 741 /* 742 * Initialize an rbd client instance. Success or not, this function 743 * consumes ceph_opts. Caller holds client_mutex. 744 */ 745 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 746 { 747 struct rbd_client *rbdc; 748 int ret = -ENOMEM; 749 750 dout("%s:\n", __func__); 751 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 752 if (!rbdc) 753 goto out_opt; 754 755 kref_init(&rbdc->kref); 756 INIT_LIST_HEAD(&rbdc->node); 757 758 rbdc->client = ceph_create_client(ceph_opts, rbdc); 759 if (IS_ERR(rbdc->client)) 760 goto out_rbdc; 761 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 762 763 ret = ceph_open_session(rbdc->client); 764 if (ret < 0) 765 goto out_client; 766 767 spin_lock(&rbd_client_list_lock); 768 list_add_tail(&rbdc->node, &rbd_client_list); 769 spin_unlock(&rbd_client_list_lock); 770 771 dout("%s: rbdc %p\n", __func__, rbdc); 772 773 return rbdc; 774 out_client: 775 ceph_destroy_client(rbdc->client); 776 out_rbdc: 777 kfree(rbdc); 778 out_opt: 779 if (ceph_opts) 780 ceph_destroy_options(ceph_opts); 781 dout("%s: error %d\n", __func__, ret); 782 783 return ERR_PTR(ret); 784 } 785 786 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 787 { 788 kref_get(&rbdc->kref); 789 790 return rbdc; 791 } 792 793 /* 794 * Find a ceph client with specific addr and configuration. If 795 * found, bump its reference count. 796 */ 797 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 798 { 799 struct rbd_client *client_node; 800 bool found = false; 801 802 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 803 return NULL; 804 805 spin_lock(&rbd_client_list_lock); 806 list_for_each_entry(client_node, &rbd_client_list, node) { 807 if (!ceph_compare_options(ceph_opts, client_node->client)) { 808 __rbd_get_client(client_node); 809 810 found = true; 811 break; 812 } 813 } 814 spin_unlock(&rbd_client_list_lock); 815 816 return found ? client_node : NULL; 817 } 818 819 /* 820 * (Per device) rbd map options 821 */ 822 enum { 823 Opt_queue_depth, 824 Opt_alloc_size, 825 Opt_lock_timeout, 826 Opt_last_int, 827 /* int args above */ 828 Opt_pool_ns, 829 Opt_last_string, 830 /* string args above */ 831 Opt_read_only, 832 Opt_read_write, 833 Opt_lock_on_read, 834 Opt_exclusive, 835 Opt_notrim, 836 Opt_err 837 }; 838 839 static match_table_t rbd_opts_tokens = { 840 {Opt_queue_depth, "queue_depth=%d"}, 841 {Opt_alloc_size, "alloc_size=%d"}, 842 {Opt_lock_timeout, "lock_timeout=%d"}, 843 /* int args above */ 844 {Opt_pool_ns, "_pool_ns=%s"}, 845 /* string args above */ 846 {Opt_read_only, "read_only"}, 847 {Opt_read_only, "ro"}, /* Alternate spelling */ 848 {Opt_read_write, "read_write"}, 849 {Opt_read_write, "rw"}, /* Alternate spelling */ 850 {Opt_lock_on_read, "lock_on_read"}, 851 {Opt_exclusive, "exclusive"}, 852 {Opt_notrim, "notrim"}, 853 {Opt_err, NULL} 854 }; 855 856 struct rbd_options { 857 int queue_depth; 858 int alloc_size; 859 unsigned long lock_timeout; 860 bool read_only; 861 bool lock_on_read; 862 bool exclusive; 863 bool trim; 864 }; 865 866 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 867 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 868 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 869 #define RBD_READ_ONLY_DEFAULT false 870 #define RBD_LOCK_ON_READ_DEFAULT false 871 #define RBD_EXCLUSIVE_DEFAULT false 872 #define RBD_TRIM_DEFAULT true 873 874 struct parse_rbd_opts_ctx { 875 struct rbd_spec *spec; 876 struct rbd_options *opts; 877 }; 878 879 static int parse_rbd_opts_token(char *c, void *private) 880 { 881 struct parse_rbd_opts_ctx *pctx = private; 882 substring_t argstr[MAX_OPT_ARGS]; 883 int token, intval, ret; 884 885 token = match_token(c, rbd_opts_tokens, argstr); 886 if (token < Opt_last_int) { 887 ret = match_int(&argstr[0], &intval); 888 if (ret < 0) { 889 pr_err("bad option arg (not int) at '%s'\n", c); 890 return ret; 891 } 892 dout("got int token %d val %d\n", token, intval); 893 } else if (token > Opt_last_int && token < Opt_last_string) { 894 dout("got string token %d val %s\n", token, argstr[0].from); 895 } else { 896 dout("got token %d\n", token); 897 } 898 899 switch (token) { 900 case Opt_queue_depth: 901 if (intval < 1) { 902 pr_err("queue_depth out of range\n"); 903 return -EINVAL; 904 } 905 pctx->opts->queue_depth = intval; 906 break; 907 case Opt_alloc_size: 908 if (intval < SECTOR_SIZE) { 909 pr_err("alloc_size out of range\n"); 910 return -EINVAL; 911 } 912 if (!is_power_of_2(intval)) { 913 pr_err("alloc_size must be a power of 2\n"); 914 return -EINVAL; 915 } 916 pctx->opts->alloc_size = intval; 917 break; 918 case Opt_lock_timeout: 919 /* 0 is "wait forever" (i.e. infinite timeout) */ 920 if (intval < 0 || intval > INT_MAX / 1000) { 921 pr_err("lock_timeout out of range\n"); 922 return -EINVAL; 923 } 924 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000); 925 break; 926 case Opt_pool_ns: 927 kfree(pctx->spec->pool_ns); 928 pctx->spec->pool_ns = match_strdup(argstr); 929 if (!pctx->spec->pool_ns) 930 return -ENOMEM; 931 break; 932 case Opt_read_only: 933 pctx->opts->read_only = true; 934 break; 935 case Opt_read_write: 936 pctx->opts->read_only = false; 937 break; 938 case Opt_lock_on_read: 939 pctx->opts->lock_on_read = true; 940 break; 941 case Opt_exclusive: 942 pctx->opts->exclusive = true; 943 break; 944 case Opt_notrim: 945 pctx->opts->trim = false; 946 break; 947 default: 948 /* libceph prints "bad option" msg */ 949 return -EINVAL; 950 } 951 952 return 0; 953 } 954 955 static char* obj_op_name(enum obj_operation_type op_type) 956 { 957 switch (op_type) { 958 case OBJ_OP_READ: 959 return "read"; 960 case OBJ_OP_WRITE: 961 return "write"; 962 case OBJ_OP_DISCARD: 963 return "discard"; 964 case OBJ_OP_ZEROOUT: 965 return "zeroout"; 966 default: 967 return "???"; 968 } 969 } 970 971 /* 972 * Destroy ceph client 973 * 974 * Caller must hold rbd_client_list_lock. 975 */ 976 static void rbd_client_release(struct kref *kref) 977 { 978 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 979 980 dout("%s: rbdc %p\n", __func__, rbdc); 981 spin_lock(&rbd_client_list_lock); 982 list_del(&rbdc->node); 983 spin_unlock(&rbd_client_list_lock); 984 985 ceph_destroy_client(rbdc->client); 986 kfree(rbdc); 987 } 988 989 /* 990 * Drop reference to ceph client node. If it's not referenced anymore, release 991 * it. 992 */ 993 static void rbd_put_client(struct rbd_client *rbdc) 994 { 995 if (rbdc) 996 kref_put(&rbdc->kref, rbd_client_release); 997 } 998 999 /* 1000 * Get a ceph client with specific addr and configuration, if one does 1001 * not exist create it. Either way, ceph_opts is consumed by this 1002 * function. 1003 */ 1004 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 1005 { 1006 struct rbd_client *rbdc; 1007 int ret; 1008 1009 mutex_lock(&client_mutex); 1010 rbdc = rbd_client_find(ceph_opts); 1011 if (rbdc) { 1012 ceph_destroy_options(ceph_opts); 1013 1014 /* 1015 * Using an existing client. Make sure ->pg_pools is up to 1016 * date before we look up the pool id in do_rbd_add(). 1017 */ 1018 ret = ceph_wait_for_latest_osdmap(rbdc->client, 1019 rbdc->client->options->mount_timeout); 1020 if (ret) { 1021 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 1022 rbd_put_client(rbdc); 1023 rbdc = ERR_PTR(ret); 1024 } 1025 } else { 1026 rbdc = rbd_client_create(ceph_opts); 1027 } 1028 mutex_unlock(&client_mutex); 1029 1030 return rbdc; 1031 } 1032 1033 static bool rbd_image_format_valid(u32 image_format) 1034 { 1035 return image_format == 1 || image_format == 2; 1036 } 1037 1038 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 1039 { 1040 size_t size; 1041 u32 snap_count; 1042 1043 /* The header has to start with the magic rbd header text */ 1044 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 1045 return false; 1046 1047 /* The bio layer requires at least sector-sized I/O */ 1048 1049 if (ondisk->options.order < SECTOR_SHIFT) 1050 return false; 1051 1052 /* If we use u64 in a few spots we may be able to loosen this */ 1053 1054 if (ondisk->options.order > 8 * sizeof (int) - 1) 1055 return false; 1056 1057 /* 1058 * The size of a snapshot header has to fit in a size_t, and 1059 * that limits the number of snapshots. 1060 */ 1061 snap_count = le32_to_cpu(ondisk->snap_count); 1062 size = SIZE_MAX - sizeof (struct ceph_snap_context); 1063 if (snap_count > size / sizeof (__le64)) 1064 return false; 1065 1066 /* 1067 * Not only that, but the size of the entire the snapshot 1068 * header must also be representable in a size_t. 1069 */ 1070 size -= snap_count * sizeof (__le64); 1071 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 1072 return false; 1073 1074 return true; 1075 } 1076 1077 /* 1078 * returns the size of an object in the image 1079 */ 1080 static u32 rbd_obj_bytes(struct rbd_image_header *header) 1081 { 1082 return 1U << header->obj_order; 1083 } 1084 1085 static void rbd_init_layout(struct rbd_device *rbd_dev) 1086 { 1087 if (rbd_dev->header.stripe_unit == 0 || 1088 rbd_dev->header.stripe_count == 0) { 1089 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 1090 rbd_dev->header.stripe_count = 1; 1091 } 1092 1093 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 1094 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 1095 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 1096 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 1097 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 1098 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 1099 } 1100 1101 /* 1102 * Fill an rbd image header with information from the given format 1 1103 * on-disk header. 1104 */ 1105 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1106 struct rbd_image_header_ondisk *ondisk) 1107 { 1108 struct rbd_image_header *header = &rbd_dev->header; 1109 bool first_time = header->object_prefix == NULL; 1110 struct ceph_snap_context *snapc; 1111 char *object_prefix = NULL; 1112 char *snap_names = NULL; 1113 u64 *snap_sizes = NULL; 1114 u32 snap_count; 1115 int ret = -ENOMEM; 1116 u32 i; 1117 1118 /* Allocate this now to avoid having to handle failure below */ 1119 1120 if (first_time) { 1121 object_prefix = kstrndup(ondisk->object_prefix, 1122 sizeof(ondisk->object_prefix), 1123 GFP_KERNEL); 1124 if (!object_prefix) 1125 return -ENOMEM; 1126 } 1127 1128 /* Allocate the snapshot context and fill it in */ 1129 1130 snap_count = le32_to_cpu(ondisk->snap_count); 1131 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1132 if (!snapc) 1133 goto out_err; 1134 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1135 if (snap_count) { 1136 struct rbd_image_snap_ondisk *snaps; 1137 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1138 1139 /* We'll keep a copy of the snapshot names... */ 1140 1141 if (snap_names_len > (u64)SIZE_MAX) 1142 goto out_2big; 1143 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1144 if (!snap_names) 1145 goto out_err; 1146 1147 /* ...as well as the array of their sizes. */ 1148 snap_sizes = kmalloc_array(snap_count, 1149 sizeof(*header->snap_sizes), 1150 GFP_KERNEL); 1151 if (!snap_sizes) 1152 goto out_err; 1153 1154 /* 1155 * Copy the names, and fill in each snapshot's id 1156 * and size. 1157 * 1158 * Note that rbd_dev_v1_header_info() guarantees the 1159 * ondisk buffer we're working with has 1160 * snap_names_len bytes beyond the end of the 1161 * snapshot id array, this memcpy() is safe. 1162 */ 1163 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1164 snaps = ondisk->snaps; 1165 for (i = 0; i < snap_count; i++) { 1166 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1167 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1168 } 1169 } 1170 1171 /* We won't fail any more, fill in the header */ 1172 1173 if (first_time) { 1174 header->object_prefix = object_prefix; 1175 header->obj_order = ondisk->options.order; 1176 rbd_init_layout(rbd_dev); 1177 } else { 1178 ceph_put_snap_context(header->snapc); 1179 kfree(header->snap_names); 1180 kfree(header->snap_sizes); 1181 } 1182 1183 /* The remaining fields always get updated (when we refresh) */ 1184 1185 header->image_size = le64_to_cpu(ondisk->image_size); 1186 header->snapc = snapc; 1187 header->snap_names = snap_names; 1188 header->snap_sizes = snap_sizes; 1189 1190 return 0; 1191 out_2big: 1192 ret = -EIO; 1193 out_err: 1194 kfree(snap_sizes); 1195 kfree(snap_names); 1196 ceph_put_snap_context(snapc); 1197 kfree(object_prefix); 1198 1199 return ret; 1200 } 1201 1202 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1203 { 1204 const char *snap_name; 1205 1206 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1207 1208 /* Skip over names until we find the one we are looking for */ 1209 1210 snap_name = rbd_dev->header.snap_names; 1211 while (which--) 1212 snap_name += strlen(snap_name) + 1; 1213 1214 return kstrdup(snap_name, GFP_KERNEL); 1215 } 1216 1217 /* 1218 * Snapshot id comparison function for use with qsort()/bsearch(). 1219 * Note that result is for snapshots in *descending* order. 1220 */ 1221 static int snapid_compare_reverse(const void *s1, const void *s2) 1222 { 1223 u64 snap_id1 = *(u64 *)s1; 1224 u64 snap_id2 = *(u64 *)s2; 1225 1226 if (snap_id1 < snap_id2) 1227 return 1; 1228 return snap_id1 == snap_id2 ? 0 : -1; 1229 } 1230 1231 /* 1232 * Search a snapshot context to see if the given snapshot id is 1233 * present. 1234 * 1235 * Returns the position of the snapshot id in the array if it's found, 1236 * or BAD_SNAP_INDEX otherwise. 1237 * 1238 * Note: The snapshot array is in kept sorted (by the osd) in 1239 * reverse order, highest snapshot id first. 1240 */ 1241 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1242 { 1243 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1244 u64 *found; 1245 1246 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1247 sizeof (snap_id), snapid_compare_reverse); 1248 1249 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1250 } 1251 1252 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1253 u64 snap_id) 1254 { 1255 u32 which; 1256 const char *snap_name; 1257 1258 which = rbd_dev_snap_index(rbd_dev, snap_id); 1259 if (which == BAD_SNAP_INDEX) 1260 return ERR_PTR(-ENOENT); 1261 1262 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1263 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1264 } 1265 1266 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1267 { 1268 if (snap_id == CEPH_NOSNAP) 1269 return RBD_SNAP_HEAD_NAME; 1270 1271 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1272 if (rbd_dev->image_format == 1) 1273 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1274 1275 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1276 } 1277 1278 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1279 u64 *snap_size) 1280 { 1281 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1282 if (snap_id == CEPH_NOSNAP) { 1283 *snap_size = rbd_dev->header.image_size; 1284 } else if (rbd_dev->image_format == 1) { 1285 u32 which; 1286 1287 which = rbd_dev_snap_index(rbd_dev, snap_id); 1288 if (which == BAD_SNAP_INDEX) 1289 return -ENOENT; 1290 1291 *snap_size = rbd_dev->header.snap_sizes[which]; 1292 } else { 1293 u64 size = 0; 1294 int ret; 1295 1296 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1297 if (ret) 1298 return ret; 1299 1300 *snap_size = size; 1301 } 1302 return 0; 1303 } 1304 1305 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1306 u64 *snap_features) 1307 { 1308 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1309 if (snap_id == CEPH_NOSNAP) { 1310 *snap_features = rbd_dev->header.features; 1311 } else if (rbd_dev->image_format == 1) { 1312 *snap_features = 0; /* No features for format 1 */ 1313 } else { 1314 u64 features = 0; 1315 int ret; 1316 1317 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1318 if (ret) 1319 return ret; 1320 1321 *snap_features = features; 1322 } 1323 return 0; 1324 } 1325 1326 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1327 { 1328 u64 snap_id = rbd_dev->spec->snap_id; 1329 u64 size = 0; 1330 u64 features = 0; 1331 int ret; 1332 1333 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1334 if (ret) 1335 return ret; 1336 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1337 if (ret) 1338 return ret; 1339 1340 rbd_dev->mapping.size = size; 1341 rbd_dev->mapping.features = features; 1342 1343 return 0; 1344 } 1345 1346 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1347 { 1348 rbd_dev->mapping.size = 0; 1349 rbd_dev->mapping.features = 0; 1350 } 1351 1352 static void zero_bvec(struct bio_vec *bv) 1353 { 1354 void *buf; 1355 unsigned long flags; 1356 1357 buf = bvec_kmap_irq(bv, &flags); 1358 memset(buf, 0, bv->bv_len); 1359 flush_dcache_page(bv->bv_page); 1360 bvec_kunmap_irq(buf, &flags); 1361 } 1362 1363 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1364 { 1365 struct ceph_bio_iter it = *bio_pos; 1366 1367 ceph_bio_iter_advance(&it, off); 1368 ceph_bio_iter_advance_step(&it, bytes, ({ 1369 zero_bvec(&bv); 1370 })); 1371 } 1372 1373 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1374 { 1375 struct ceph_bvec_iter it = *bvec_pos; 1376 1377 ceph_bvec_iter_advance(&it, off); 1378 ceph_bvec_iter_advance_step(&it, bytes, ({ 1379 zero_bvec(&bv); 1380 })); 1381 } 1382 1383 /* 1384 * Zero a range in @obj_req data buffer defined by a bio (list) or 1385 * (private) bio_vec array. 1386 * 1387 * @off is relative to the start of the data buffer. 1388 */ 1389 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1390 u32 bytes) 1391 { 1392 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1393 1394 switch (obj_req->img_request->data_type) { 1395 case OBJ_REQUEST_BIO: 1396 zero_bios(&obj_req->bio_pos, off, bytes); 1397 break; 1398 case OBJ_REQUEST_BVECS: 1399 case OBJ_REQUEST_OWN_BVECS: 1400 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1401 break; 1402 default: 1403 BUG(); 1404 } 1405 } 1406 1407 static void rbd_obj_request_destroy(struct kref *kref); 1408 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1409 { 1410 rbd_assert(obj_request != NULL); 1411 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1412 kref_read(&obj_request->kref)); 1413 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1414 } 1415 1416 static void rbd_img_request_destroy(struct kref *kref); 1417 static void rbd_img_request_put(struct rbd_img_request *img_request) 1418 { 1419 rbd_assert(img_request != NULL); 1420 dout("%s: img %p (was %d)\n", __func__, img_request, 1421 kref_read(&img_request->kref)); 1422 kref_put(&img_request->kref, rbd_img_request_destroy); 1423 } 1424 1425 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1426 struct rbd_obj_request *obj_request) 1427 { 1428 rbd_assert(obj_request->img_request == NULL); 1429 1430 /* Image request now owns object's original reference */ 1431 obj_request->img_request = img_request; 1432 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1433 } 1434 1435 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1436 struct rbd_obj_request *obj_request) 1437 { 1438 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1439 list_del(&obj_request->ex.oe_item); 1440 rbd_assert(obj_request->img_request == img_request); 1441 rbd_obj_request_put(obj_request); 1442 } 1443 1444 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1445 { 1446 struct rbd_obj_request *obj_req = osd_req->r_priv; 1447 1448 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1449 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1450 obj_req->ex.oe_off, obj_req->ex.oe_len); 1451 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1452 } 1453 1454 /* 1455 * The default/initial value for all image request flags is 0. Each 1456 * is conditionally set to 1 at image request initialization time 1457 * and currently never change thereafter. 1458 */ 1459 static void img_request_layered_set(struct rbd_img_request *img_request) 1460 { 1461 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1462 smp_mb(); 1463 } 1464 1465 static void img_request_layered_clear(struct rbd_img_request *img_request) 1466 { 1467 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1468 smp_mb(); 1469 } 1470 1471 static bool img_request_layered_test(struct rbd_img_request *img_request) 1472 { 1473 smp_mb(); 1474 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1475 } 1476 1477 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1478 { 1479 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1480 1481 return !obj_req->ex.oe_off && 1482 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1483 } 1484 1485 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1486 { 1487 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1488 1489 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1490 rbd_dev->layout.object_size; 1491 } 1492 1493 /* 1494 * Must be called after rbd_obj_calc_img_extents(). 1495 */ 1496 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req) 1497 { 1498 if (!obj_req->num_img_extents || 1499 (rbd_obj_is_entire(obj_req) && 1500 !obj_req->img_request->snapc->num_snaps)) 1501 return false; 1502 1503 return true; 1504 } 1505 1506 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1507 { 1508 return ceph_file_extents_bytes(obj_req->img_extents, 1509 obj_req->num_img_extents); 1510 } 1511 1512 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1513 { 1514 switch (img_req->op_type) { 1515 case OBJ_OP_READ: 1516 return false; 1517 case OBJ_OP_WRITE: 1518 case OBJ_OP_DISCARD: 1519 case OBJ_OP_ZEROOUT: 1520 return true; 1521 default: 1522 BUG(); 1523 } 1524 } 1525 1526 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1527 { 1528 struct rbd_obj_request *obj_req = osd_req->r_priv; 1529 int result; 1530 1531 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1532 osd_req->r_result, obj_req); 1533 1534 /* 1535 * Writes aren't allowed to return a data payload. In some 1536 * guarded write cases (e.g. stat + zero on an empty object) 1537 * a stat response makes it through, but we don't care. 1538 */ 1539 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1540 result = 0; 1541 else 1542 result = osd_req->r_result; 1543 1544 rbd_obj_handle_request(obj_req, result); 1545 } 1546 1547 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1548 { 1549 struct rbd_obj_request *obj_request = osd_req->r_priv; 1550 1551 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1552 osd_req->r_snapid = obj_request->img_request->snap_id; 1553 } 1554 1555 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1556 { 1557 struct rbd_obj_request *obj_request = osd_req->r_priv; 1558 1559 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1560 ktime_get_real_ts64(&osd_req->r_mtime); 1561 osd_req->r_data_offset = obj_request->ex.oe_off; 1562 } 1563 1564 static struct ceph_osd_request * 1565 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1566 struct ceph_snap_context *snapc, int num_ops) 1567 { 1568 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1569 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1570 struct ceph_osd_request *req; 1571 const char *name_format = rbd_dev->image_format == 1 ? 1572 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1573 int ret; 1574 1575 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1576 if (!req) 1577 return ERR_PTR(-ENOMEM); 1578 1579 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1580 req->r_callback = rbd_osd_req_callback; 1581 req->r_priv = obj_req; 1582 1583 /* 1584 * Data objects may be stored in a separate pool, but always in 1585 * the same namespace in that pool as the header in its pool. 1586 */ 1587 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1588 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1589 1590 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1591 rbd_dev->header.object_prefix, 1592 obj_req->ex.oe_objno); 1593 if (ret) 1594 return ERR_PTR(ret); 1595 1596 return req; 1597 } 1598 1599 static struct ceph_osd_request * 1600 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1601 { 1602 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1603 num_ops); 1604 } 1605 1606 static struct rbd_obj_request *rbd_obj_request_create(void) 1607 { 1608 struct rbd_obj_request *obj_request; 1609 1610 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1611 if (!obj_request) 1612 return NULL; 1613 1614 ceph_object_extent_init(&obj_request->ex); 1615 INIT_LIST_HEAD(&obj_request->osd_reqs); 1616 mutex_init(&obj_request->state_mutex); 1617 kref_init(&obj_request->kref); 1618 1619 dout("%s %p\n", __func__, obj_request); 1620 return obj_request; 1621 } 1622 1623 static void rbd_obj_request_destroy(struct kref *kref) 1624 { 1625 struct rbd_obj_request *obj_request; 1626 struct ceph_osd_request *osd_req; 1627 u32 i; 1628 1629 obj_request = container_of(kref, struct rbd_obj_request, kref); 1630 1631 dout("%s: obj %p\n", __func__, obj_request); 1632 1633 while (!list_empty(&obj_request->osd_reqs)) { 1634 osd_req = list_first_entry(&obj_request->osd_reqs, 1635 struct ceph_osd_request, r_private_item); 1636 list_del_init(&osd_req->r_private_item); 1637 ceph_osdc_put_request(osd_req); 1638 } 1639 1640 switch (obj_request->img_request->data_type) { 1641 case OBJ_REQUEST_NODATA: 1642 case OBJ_REQUEST_BIO: 1643 case OBJ_REQUEST_BVECS: 1644 break; /* Nothing to do */ 1645 case OBJ_REQUEST_OWN_BVECS: 1646 kfree(obj_request->bvec_pos.bvecs); 1647 break; 1648 default: 1649 BUG(); 1650 } 1651 1652 kfree(obj_request->img_extents); 1653 if (obj_request->copyup_bvecs) { 1654 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1655 if (obj_request->copyup_bvecs[i].bv_page) 1656 __free_page(obj_request->copyup_bvecs[i].bv_page); 1657 } 1658 kfree(obj_request->copyup_bvecs); 1659 } 1660 1661 kmem_cache_free(rbd_obj_request_cache, obj_request); 1662 } 1663 1664 /* It's OK to call this for a device with no parent */ 1665 1666 static void rbd_spec_put(struct rbd_spec *spec); 1667 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1668 { 1669 rbd_dev_remove_parent(rbd_dev); 1670 rbd_spec_put(rbd_dev->parent_spec); 1671 rbd_dev->parent_spec = NULL; 1672 rbd_dev->parent_overlap = 0; 1673 } 1674 1675 /* 1676 * Parent image reference counting is used to determine when an 1677 * image's parent fields can be safely torn down--after there are no 1678 * more in-flight requests to the parent image. When the last 1679 * reference is dropped, cleaning them up is safe. 1680 */ 1681 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1682 { 1683 int counter; 1684 1685 if (!rbd_dev->parent_spec) 1686 return; 1687 1688 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1689 if (counter > 0) 1690 return; 1691 1692 /* Last reference; clean up parent data structures */ 1693 1694 if (!counter) 1695 rbd_dev_unparent(rbd_dev); 1696 else 1697 rbd_warn(rbd_dev, "parent reference underflow"); 1698 } 1699 1700 /* 1701 * If an image has a non-zero parent overlap, get a reference to its 1702 * parent. 1703 * 1704 * Returns true if the rbd device has a parent with a non-zero 1705 * overlap and a reference for it was successfully taken, or 1706 * false otherwise. 1707 */ 1708 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1709 { 1710 int counter = 0; 1711 1712 if (!rbd_dev->parent_spec) 1713 return false; 1714 1715 down_read(&rbd_dev->header_rwsem); 1716 if (rbd_dev->parent_overlap) 1717 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1718 up_read(&rbd_dev->header_rwsem); 1719 1720 if (counter < 0) 1721 rbd_warn(rbd_dev, "parent reference overflow"); 1722 1723 return counter > 0; 1724 } 1725 1726 /* 1727 * Caller is responsible for filling in the list of object requests 1728 * that comprises the image request, and the Linux request pointer 1729 * (if there is one). 1730 */ 1731 static struct rbd_img_request *rbd_img_request_create( 1732 struct rbd_device *rbd_dev, 1733 enum obj_operation_type op_type, 1734 struct ceph_snap_context *snapc) 1735 { 1736 struct rbd_img_request *img_request; 1737 1738 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO); 1739 if (!img_request) 1740 return NULL; 1741 1742 img_request->rbd_dev = rbd_dev; 1743 img_request->op_type = op_type; 1744 if (!rbd_img_is_write(img_request)) 1745 img_request->snap_id = rbd_dev->spec->snap_id; 1746 else 1747 img_request->snapc = snapc; 1748 1749 if (rbd_dev_parent_get(rbd_dev)) 1750 img_request_layered_set(img_request); 1751 1752 INIT_LIST_HEAD(&img_request->lock_item); 1753 INIT_LIST_HEAD(&img_request->object_extents); 1754 mutex_init(&img_request->state_mutex); 1755 kref_init(&img_request->kref); 1756 1757 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev, 1758 obj_op_name(op_type), img_request); 1759 return img_request; 1760 } 1761 1762 static void rbd_img_request_destroy(struct kref *kref) 1763 { 1764 struct rbd_img_request *img_request; 1765 struct rbd_obj_request *obj_request; 1766 struct rbd_obj_request *next_obj_request; 1767 1768 img_request = container_of(kref, struct rbd_img_request, kref); 1769 1770 dout("%s: img %p\n", __func__, img_request); 1771 1772 WARN_ON(!list_empty(&img_request->lock_item)); 1773 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1774 rbd_img_obj_request_del(img_request, obj_request); 1775 1776 if (img_request_layered_test(img_request)) { 1777 img_request_layered_clear(img_request); 1778 rbd_dev_parent_put(img_request->rbd_dev); 1779 } 1780 1781 if (rbd_img_is_write(img_request)) 1782 ceph_put_snap_context(img_request->snapc); 1783 1784 kmem_cache_free(rbd_img_request_cache, img_request); 1785 } 1786 1787 #define BITS_PER_OBJ 2 1788 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1789 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1790 1791 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1792 u64 *index, u8 *shift) 1793 { 1794 u32 off; 1795 1796 rbd_assert(objno < rbd_dev->object_map_size); 1797 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1798 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1799 } 1800 1801 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1802 { 1803 u64 index; 1804 u8 shift; 1805 1806 lockdep_assert_held(&rbd_dev->object_map_lock); 1807 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1808 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1809 } 1810 1811 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1812 { 1813 u64 index; 1814 u8 shift; 1815 u8 *p; 1816 1817 lockdep_assert_held(&rbd_dev->object_map_lock); 1818 rbd_assert(!(val & ~OBJ_MASK)); 1819 1820 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1821 p = &rbd_dev->object_map[index]; 1822 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1823 } 1824 1825 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1826 { 1827 u8 state; 1828 1829 spin_lock(&rbd_dev->object_map_lock); 1830 state = __rbd_object_map_get(rbd_dev, objno); 1831 spin_unlock(&rbd_dev->object_map_lock); 1832 return state; 1833 } 1834 1835 static bool use_object_map(struct rbd_device *rbd_dev) 1836 { 1837 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1838 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1839 } 1840 1841 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1842 { 1843 u8 state; 1844 1845 /* fall back to default logic if object map is disabled or invalid */ 1846 if (!use_object_map(rbd_dev)) 1847 return true; 1848 1849 state = rbd_object_map_get(rbd_dev, objno); 1850 return state != OBJECT_NONEXISTENT; 1851 } 1852 1853 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1854 struct ceph_object_id *oid) 1855 { 1856 if (snap_id == CEPH_NOSNAP) 1857 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1858 rbd_dev->spec->image_id); 1859 else 1860 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1861 rbd_dev->spec->image_id, snap_id); 1862 } 1863 1864 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1865 { 1866 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1867 CEPH_DEFINE_OID_ONSTACK(oid); 1868 u8 lock_type; 1869 char *lock_tag; 1870 struct ceph_locker *lockers; 1871 u32 num_lockers; 1872 bool broke_lock = false; 1873 int ret; 1874 1875 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1876 1877 again: 1878 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1879 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1880 if (ret != -EBUSY || broke_lock) { 1881 if (ret == -EEXIST) 1882 ret = 0; /* already locked by myself */ 1883 if (ret) 1884 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1885 return ret; 1886 } 1887 1888 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1889 RBD_LOCK_NAME, &lock_type, &lock_tag, 1890 &lockers, &num_lockers); 1891 if (ret) { 1892 if (ret == -ENOENT) 1893 goto again; 1894 1895 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1896 return ret; 1897 } 1898 1899 kfree(lock_tag); 1900 if (num_lockers == 0) 1901 goto again; 1902 1903 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1904 ENTITY_NAME(lockers[0].id.name)); 1905 1906 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1907 RBD_LOCK_NAME, lockers[0].id.cookie, 1908 &lockers[0].id.name); 1909 ceph_free_lockers(lockers, num_lockers); 1910 if (ret) { 1911 if (ret == -ENOENT) 1912 goto again; 1913 1914 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1915 return ret; 1916 } 1917 1918 broke_lock = true; 1919 goto again; 1920 } 1921 1922 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1923 { 1924 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1925 CEPH_DEFINE_OID_ONSTACK(oid); 1926 int ret; 1927 1928 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1929 1930 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1931 ""); 1932 if (ret && ret != -ENOENT) 1933 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1934 } 1935 1936 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1937 { 1938 u8 struct_v; 1939 u32 struct_len; 1940 u32 header_len; 1941 void *header_end; 1942 int ret; 1943 1944 ceph_decode_32_safe(p, end, header_len, e_inval); 1945 header_end = *p + header_len; 1946 1947 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1948 &struct_len); 1949 if (ret) 1950 return ret; 1951 1952 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1953 1954 *p = header_end; 1955 return 0; 1956 1957 e_inval: 1958 return -EINVAL; 1959 } 1960 1961 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1962 { 1963 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1964 CEPH_DEFINE_OID_ONSTACK(oid); 1965 struct page **pages; 1966 void *p, *end; 1967 size_t reply_len; 1968 u64 num_objects; 1969 u64 object_map_bytes; 1970 u64 object_map_size; 1971 int num_pages; 1972 int ret; 1973 1974 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1975 1976 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1977 rbd_dev->mapping.size); 1978 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1979 BITS_PER_BYTE); 1980 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1981 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1982 if (IS_ERR(pages)) 1983 return PTR_ERR(pages); 1984 1985 reply_len = num_pages * PAGE_SIZE; 1986 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1987 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1988 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1989 NULL, 0, pages, &reply_len); 1990 if (ret) 1991 goto out; 1992 1993 p = page_address(pages[0]); 1994 end = p + min(reply_len, (size_t)PAGE_SIZE); 1995 ret = decode_object_map_header(&p, end, &object_map_size); 1996 if (ret) 1997 goto out; 1998 1999 if (object_map_size != num_objects) { 2000 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 2001 object_map_size, num_objects); 2002 ret = -EINVAL; 2003 goto out; 2004 } 2005 2006 if (offset_in_page(p) + object_map_bytes > reply_len) { 2007 ret = -EINVAL; 2008 goto out; 2009 } 2010 2011 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 2012 if (!rbd_dev->object_map) { 2013 ret = -ENOMEM; 2014 goto out; 2015 } 2016 2017 rbd_dev->object_map_size = object_map_size; 2018 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 2019 offset_in_page(p), object_map_bytes); 2020 2021 out: 2022 ceph_release_page_vector(pages, num_pages); 2023 return ret; 2024 } 2025 2026 static void rbd_object_map_free(struct rbd_device *rbd_dev) 2027 { 2028 kvfree(rbd_dev->object_map); 2029 rbd_dev->object_map = NULL; 2030 rbd_dev->object_map_size = 0; 2031 } 2032 2033 static int rbd_object_map_load(struct rbd_device *rbd_dev) 2034 { 2035 int ret; 2036 2037 ret = __rbd_object_map_load(rbd_dev); 2038 if (ret) 2039 return ret; 2040 2041 ret = rbd_dev_v2_get_flags(rbd_dev); 2042 if (ret) { 2043 rbd_object_map_free(rbd_dev); 2044 return ret; 2045 } 2046 2047 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 2048 rbd_warn(rbd_dev, "object map is invalid"); 2049 2050 return 0; 2051 } 2052 2053 static int rbd_object_map_open(struct rbd_device *rbd_dev) 2054 { 2055 int ret; 2056 2057 ret = rbd_object_map_lock(rbd_dev); 2058 if (ret) 2059 return ret; 2060 2061 ret = rbd_object_map_load(rbd_dev); 2062 if (ret) { 2063 rbd_object_map_unlock(rbd_dev); 2064 return ret; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static void rbd_object_map_close(struct rbd_device *rbd_dev) 2071 { 2072 rbd_object_map_free(rbd_dev); 2073 rbd_object_map_unlock(rbd_dev); 2074 } 2075 2076 /* 2077 * This function needs snap_id (or more precisely just something to 2078 * distinguish between HEAD and snapshot object maps), new_state and 2079 * current_state that were passed to rbd_object_map_update(). 2080 * 2081 * To avoid allocating and stashing a context we piggyback on the OSD 2082 * request. A HEAD update has two ops (assert_locked). For new_state 2083 * and current_state we decode our own object_map_update op, encoded in 2084 * rbd_cls_object_map_update(). 2085 */ 2086 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 2087 struct ceph_osd_request *osd_req) 2088 { 2089 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2090 struct ceph_osd_data *osd_data; 2091 u64 objno; 2092 u8 state, new_state, current_state; 2093 bool has_current_state; 2094 void *p; 2095 2096 if (osd_req->r_result) 2097 return osd_req->r_result; 2098 2099 /* 2100 * Nothing to do for a snapshot object map. 2101 */ 2102 if (osd_req->r_num_ops == 1) 2103 return 0; 2104 2105 /* 2106 * Update in-memory HEAD object map. 2107 */ 2108 rbd_assert(osd_req->r_num_ops == 2); 2109 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 2110 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 2111 2112 p = page_address(osd_data->pages[0]); 2113 objno = ceph_decode_64(&p); 2114 rbd_assert(objno == obj_req->ex.oe_objno); 2115 rbd_assert(ceph_decode_64(&p) == objno + 1); 2116 new_state = ceph_decode_8(&p); 2117 has_current_state = ceph_decode_8(&p); 2118 if (has_current_state) 2119 current_state = ceph_decode_8(&p); 2120 2121 spin_lock(&rbd_dev->object_map_lock); 2122 state = __rbd_object_map_get(rbd_dev, objno); 2123 if (!has_current_state || current_state == state || 2124 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 2125 __rbd_object_map_set(rbd_dev, objno, new_state); 2126 spin_unlock(&rbd_dev->object_map_lock); 2127 2128 return 0; 2129 } 2130 2131 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 2132 { 2133 struct rbd_obj_request *obj_req = osd_req->r_priv; 2134 int result; 2135 2136 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2137 osd_req->r_result, obj_req); 2138 2139 result = rbd_object_map_update_finish(obj_req, osd_req); 2140 rbd_obj_handle_request(obj_req, result); 2141 } 2142 2143 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2144 { 2145 u8 state = rbd_object_map_get(rbd_dev, objno); 2146 2147 if (state == new_state || 2148 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2149 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2150 return false; 2151 2152 return true; 2153 } 2154 2155 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2156 int which, u64 objno, u8 new_state, 2157 const u8 *current_state) 2158 { 2159 struct page **pages; 2160 void *p, *start; 2161 int ret; 2162 2163 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2164 if (ret) 2165 return ret; 2166 2167 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2168 if (IS_ERR(pages)) 2169 return PTR_ERR(pages); 2170 2171 p = start = page_address(pages[0]); 2172 ceph_encode_64(&p, objno); 2173 ceph_encode_64(&p, objno + 1); 2174 ceph_encode_8(&p, new_state); 2175 if (current_state) { 2176 ceph_encode_8(&p, 1); 2177 ceph_encode_8(&p, *current_state); 2178 } else { 2179 ceph_encode_8(&p, 0); 2180 } 2181 2182 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2183 false, true); 2184 return 0; 2185 } 2186 2187 /* 2188 * Return: 2189 * 0 - object map update sent 2190 * 1 - object map update isn't needed 2191 * <0 - error 2192 */ 2193 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2194 u8 new_state, const u8 *current_state) 2195 { 2196 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2197 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2198 struct ceph_osd_request *req; 2199 int num_ops = 1; 2200 int which = 0; 2201 int ret; 2202 2203 if (snap_id == CEPH_NOSNAP) { 2204 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2205 return 1; 2206 2207 num_ops++; /* assert_locked */ 2208 } 2209 2210 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2211 if (!req) 2212 return -ENOMEM; 2213 2214 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2215 req->r_callback = rbd_object_map_callback; 2216 req->r_priv = obj_req; 2217 2218 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2219 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2220 req->r_flags = CEPH_OSD_FLAG_WRITE; 2221 ktime_get_real_ts64(&req->r_mtime); 2222 2223 if (snap_id == CEPH_NOSNAP) { 2224 /* 2225 * Protect against possible race conditions during lock 2226 * ownership transitions. 2227 */ 2228 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2229 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2230 if (ret) 2231 return ret; 2232 } 2233 2234 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2235 new_state, current_state); 2236 if (ret) 2237 return ret; 2238 2239 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2240 if (ret) 2241 return ret; 2242 2243 ceph_osdc_start_request(osdc, req, false); 2244 return 0; 2245 } 2246 2247 static void prune_extents(struct ceph_file_extent *img_extents, 2248 u32 *num_img_extents, u64 overlap) 2249 { 2250 u32 cnt = *num_img_extents; 2251 2252 /* drop extents completely beyond the overlap */ 2253 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2254 cnt--; 2255 2256 if (cnt) { 2257 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2258 2259 /* trim final overlapping extent */ 2260 if (ex->fe_off + ex->fe_len > overlap) 2261 ex->fe_len = overlap - ex->fe_off; 2262 } 2263 2264 *num_img_extents = cnt; 2265 } 2266 2267 /* 2268 * Determine the byte range(s) covered by either just the object extent 2269 * or the entire object in the parent image. 2270 */ 2271 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2272 bool entire) 2273 { 2274 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2275 int ret; 2276 2277 if (!rbd_dev->parent_overlap) 2278 return 0; 2279 2280 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2281 entire ? 0 : obj_req->ex.oe_off, 2282 entire ? rbd_dev->layout.object_size : 2283 obj_req->ex.oe_len, 2284 &obj_req->img_extents, 2285 &obj_req->num_img_extents); 2286 if (ret) 2287 return ret; 2288 2289 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2290 rbd_dev->parent_overlap); 2291 return 0; 2292 } 2293 2294 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2295 { 2296 struct rbd_obj_request *obj_req = osd_req->r_priv; 2297 2298 switch (obj_req->img_request->data_type) { 2299 case OBJ_REQUEST_BIO: 2300 osd_req_op_extent_osd_data_bio(osd_req, which, 2301 &obj_req->bio_pos, 2302 obj_req->ex.oe_len); 2303 break; 2304 case OBJ_REQUEST_BVECS: 2305 case OBJ_REQUEST_OWN_BVECS: 2306 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2307 obj_req->ex.oe_len); 2308 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2309 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2310 &obj_req->bvec_pos); 2311 break; 2312 default: 2313 BUG(); 2314 } 2315 } 2316 2317 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2318 { 2319 struct page **pages; 2320 2321 /* 2322 * The response data for a STAT call consists of: 2323 * le64 length; 2324 * struct { 2325 * le32 tv_sec; 2326 * le32 tv_nsec; 2327 * } mtime; 2328 */ 2329 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2330 if (IS_ERR(pages)) 2331 return PTR_ERR(pages); 2332 2333 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2334 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2335 8 + sizeof(struct ceph_timespec), 2336 0, false, true); 2337 return 0; 2338 } 2339 2340 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2341 u32 bytes) 2342 { 2343 struct rbd_obj_request *obj_req = osd_req->r_priv; 2344 int ret; 2345 2346 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2347 if (ret) 2348 return ret; 2349 2350 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2351 obj_req->copyup_bvec_count, bytes); 2352 return 0; 2353 } 2354 2355 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2356 { 2357 obj_req->read_state = RBD_OBJ_READ_START; 2358 return 0; 2359 } 2360 2361 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2362 int which) 2363 { 2364 struct rbd_obj_request *obj_req = osd_req->r_priv; 2365 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2366 u16 opcode; 2367 2368 if (!use_object_map(rbd_dev) || 2369 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2370 osd_req_op_alloc_hint_init(osd_req, which++, 2371 rbd_dev->layout.object_size, 2372 rbd_dev->layout.object_size); 2373 } 2374 2375 if (rbd_obj_is_entire(obj_req)) 2376 opcode = CEPH_OSD_OP_WRITEFULL; 2377 else 2378 opcode = CEPH_OSD_OP_WRITE; 2379 2380 osd_req_op_extent_init(osd_req, which, opcode, 2381 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2382 rbd_osd_setup_data(osd_req, which); 2383 } 2384 2385 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2386 { 2387 int ret; 2388 2389 /* reverse map the entire object onto the parent */ 2390 ret = rbd_obj_calc_img_extents(obj_req, true); 2391 if (ret) 2392 return ret; 2393 2394 if (rbd_obj_copyup_enabled(obj_req)) 2395 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2396 2397 obj_req->write_state = RBD_OBJ_WRITE_START; 2398 return 0; 2399 } 2400 2401 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2402 { 2403 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2404 CEPH_OSD_OP_ZERO; 2405 } 2406 2407 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2408 int which) 2409 { 2410 struct rbd_obj_request *obj_req = osd_req->r_priv; 2411 2412 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2413 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2414 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2415 } else { 2416 osd_req_op_extent_init(osd_req, which, 2417 truncate_or_zero_opcode(obj_req), 2418 obj_req->ex.oe_off, obj_req->ex.oe_len, 2419 0, 0); 2420 } 2421 } 2422 2423 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2424 { 2425 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2426 u64 off, next_off; 2427 int ret; 2428 2429 /* 2430 * Align the range to alloc_size boundary and punt on discards 2431 * that are too small to free up any space. 2432 * 2433 * alloc_size == object_size && is_tail() is a special case for 2434 * filestore with filestore_punch_hole = false, needed to allow 2435 * truncate (in addition to delete). 2436 */ 2437 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2438 !rbd_obj_is_tail(obj_req)) { 2439 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2440 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2441 rbd_dev->opts->alloc_size); 2442 if (off >= next_off) 2443 return 1; 2444 2445 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2446 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2447 off, next_off - off); 2448 obj_req->ex.oe_off = off; 2449 obj_req->ex.oe_len = next_off - off; 2450 } 2451 2452 /* reverse map the entire object onto the parent */ 2453 ret = rbd_obj_calc_img_extents(obj_req, true); 2454 if (ret) 2455 return ret; 2456 2457 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2458 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2459 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2460 2461 obj_req->write_state = RBD_OBJ_WRITE_START; 2462 return 0; 2463 } 2464 2465 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2466 int which) 2467 { 2468 struct rbd_obj_request *obj_req = osd_req->r_priv; 2469 u16 opcode; 2470 2471 if (rbd_obj_is_entire(obj_req)) { 2472 if (obj_req->num_img_extents) { 2473 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2474 osd_req_op_init(osd_req, which++, 2475 CEPH_OSD_OP_CREATE, 0); 2476 opcode = CEPH_OSD_OP_TRUNCATE; 2477 } else { 2478 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2479 osd_req_op_init(osd_req, which++, 2480 CEPH_OSD_OP_DELETE, 0); 2481 opcode = 0; 2482 } 2483 } else { 2484 opcode = truncate_or_zero_opcode(obj_req); 2485 } 2486 2487 if (opcode) 2488 osd_req_op_extent_init(osd_req, which, opcode, 2489 obj_req->ex.oe_off, obj_req->ex.oe_len, 2490 0, 0); 2491 } 2492 2493 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2494 { 2495 int ret; 2496 2497 /* reverse map the entire object onto the parent */ 2498 ret = rbd_obj_calc_img_extents(obj_req, true); 2499 if (ret) 2500 return ret; 2501 2502 if (rbd_obj_copyup_enabled(obj_req)) 2503 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2504 if (!obj_req->num_img_extents) { 2505 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2506 if (rbd_obj_is_entire(obj_req)) 2507 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2508 } 2509 2510 obj_req->write_state = RBD_OBJ_WRITE_START; 2511 return 0; 2512 } 2513 2514 static int count_write_ops(struct rbd_obj_request *obj_req) 2515 { 2516 struct rbd_img_request *img_req = obj_req->img_request; 2517 2518 switch (img_req->op_type) { 2519 case OBJ_OP_WRITE: 2520 if (!use_object_map(img_req->rbd_dev) || 2521 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2522 return 2; /* setallochint + write/writefull */ 2523 2524 return 1; /* write/writefull */ 2525 case OBJ_OP_DISCARD: 2526 return 1; /* delete/truncate/zero */ 2527 case OBJ_OP_ZEROOUT: 2528 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2529 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2530 return 2; /* create + truncate */ 2531 2532 return 1; /* delete/truncate/zero */ 2533 default: 2534 BUG(); 2535 } 2536 } 2537 2538 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2539 int which) 2540 { 2541 struct rbd_obj_request *obj_req = osd_req->r_priv; 2542 2543 switch (obj_req->img_request->op_type) { 2544 case OBJ_OP_WRITE: 2545 __rbd_osd_setup_write_ops(osd_req, which); 2546 break; 2547 case OBJ_OP_DISCARD: 2548 __rbd_osd_setup_discard_ops(osd_req, which); 2549 break; 2550 case OBJ_OP_ZEROOUT: 2551 __rbd_osd_setup_zeroout_ops(osd_req, which); 2552 break; 2553 default: 2554 BUG(); 2555 } 2556 } 2557 2558 /* 2559 * Prune the list of object requests (adjust offset and/or length, drop 2560 * redundant requests). Prepare object request state machines and image 2561 * request state machine for execution. 2562 */ 2563 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2564 { 2565 struct rbd_obj_request *obj_req, *next_obj_req; 2566 int ret; 2567 2568 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2569 switch (img_req->op_type) { 2570 case OBJ_OP_READ: 2571 ret = rbd_obj_init_read(obj_req); 2572 break; 2573 case OBJ_OP_WRITE: 2574 ret = rbd_obj_init_write(obj_req); 2575 break; 2576 case OBJ_OP_DISCARD: 2577 ret = rbd_obj_init_discard(obj_req); 2578 break; 2579 case OBJ_OP_ZEROOUT: 2580 ret = rbd_obj_init_zeroout(obj_req); 2581 break; 2582 default: 2583 BUG(); 2584 } 2585 if (ret < 0) 2586 return ret; 2587 if (ret > 0) { 2588 rbd_img_obj_request_del(img_req, obj_req); 2589 continue; 2590 } 2591 } 2592 2593 img_req->state = RBD_IMG_START; 2594 return 0; 2595 } 2596 2597 union rbd_img_fill_iter { 2598 struct ceph_bio_iter bio_iter; 2599 struct ceph_bvec_iter bvec_iter; 2600 }; 2601 2602 struct rbd_img_fill_ctx { 2603 enum obj_request_type pos_type; 2604 union rbd_img_fill_iter *pos; 2605 union rbd_img_fill_iter iter; 2606 ceph_object_extent_fn_t set_pos_fn; 2607 ceph_object_extent_fn_t count_fn; 2608 ceph_object_extent_fn_t copy_fn; 2609 }; 2610 2611 static struct ceph_object_extent *alloc_object_extent(void *arg) 2612 { 2613 struct rbd_img_request *img_req = arg; 2614 struct rbd_obj_request *obj_req; 2615 2616 obj_req = rbd_obj_request_create(); 2617 if (!obj_req) 2618 return NULL; 2619 2620 rbd_img_obj_request_add(img_req, obj_req); 2621 return &obj_req->ex; 2622 } 2623 2624 /* 2625 * While su != os && sc == 1 is technically not fancy (it's the same 2626 * layout as su == os && sc == 1), we can't use the nocopy path for it 2627 * because ->set_pos_fn() should be called only once per object. 2628 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2629 * treat su != os && sc == 1 as fancy. 2630 */ 2631 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2632 { 2633 return l->stripe_unit != l->object_size; 2634 } 2635 2636 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2637 struct ceph_file_extent *img_extents, 2638 u32 num_img_extents, 2639 struct rbd_img_fill_ctx *fctx) 2640 { 2641 u32 i; 2642 int ret; 2643 2644 img_req->data_type = fctx->pos_type; 2645 2646 /* 2647 * Create object requests and set each object request's starting 2648 * position in the provided bio (list) or bio_vec array. 2649 */ 2650 fctx->iter = *fctx->pos; 2651 for (i = 0; i < num_img_extents; i++) { 2652 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2653 img_extents[i].fe_off, 2654 img_extents[i].fe_len, 2655 &img_req->object_extents, 2656 alloc_object_extent, img_req, 2657 fctx->set_pos_fn, &fctx->iter); 2658 if (ret) 2659 return ret; 2660 } 2661 2662 return __rbd_img_fill_request(img_req); 2663 } 2664 2665 /* 2666 * Map a list of image extents to a list of object extents, create the 2667 * corresponding object requests (normally each to a different object, 2668 * but not always) and add them to @img_req. For each object request, 2669 * set up its data descriptor to point to the corresponding chunk(s) of 2670 * @fctx->pos data buffer. 2671 * 2672 * Because ceph_file_to_extents() will merge adjacent object extents 2673 * together, each object request's data descriptor may point to multiple 2674 * different chunks of @fctx->pos data buffer. 2675 * 2676 * @fctx->pos data buffer is assumed to be large enough. 2677 */ 2678 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2679 struct ceph_file_extent *img_extents, 2680 u32 num_img_extents, 2681 struct rbd_img_fill_ctx *fctx) 2682 { 2683 struct rbd_device *rbd_dev = img_req->rbd_dev; 2684 struct rbd_obj_request *obj_req; 2685 u32 i; 2686 int ret; 2687 2688 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2689 !rbd_layout_is_fancy(&rbd_dev->layout)) 2690 return rbd_img_fill_request_nocopy(img_req, img_extents, 2691 num_img_extents, fctx); 2692 2693 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2694 2695 /* 2696 * Create object requests and determine ->bvec_count for each object 2697 * request. Note that ->bvec_count sum over all object requests may 2698 * be greater than the number of bio_vecs in the provided bio (list) 2699 * or bio_vec array because when mapped, those bio_vecs can straddle 2700 * stripe unit boundaries. 2701 */ 2702 fctx->iter = *fctx->pos; 2703 for (i = 0; i < num_img_extents; i++) { 2704 ret = ceph_file_to_extents(&rbd_dev->layout, 2705 img_extents[i].fe_off, 2706 img_extents[i].fe_len, 2707 &img_req->object_extents, 2708 alloc_object_extent, img_req, 2709 fctx->count_fn, &fctx->iter); 2710 if (ret) 2711 return ret; 2712 } 2713 2714 for_each_obj_request(img_req, obj_req) { 2715 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2716 sizeof(*obj_req->bvec_pos.bvecs), 2717 GFP_NOIO); 2718 if (!obj_req->bvec_pos.bvecs) 2719 return -ENOMEM; 2720 } 2721 2722 /* 2723 * Fill in each object request's private bio_vec array, splitting and 2724 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2725 */ 2726 fctx->iter = *fctx->pos; 2727 for (i = 0; i < num_img_extents; i++) { 2728 ret = ceph_iterate_extents(&rbd_dev->layout, 2729 img_extents[i].fe_off, 2730 img_extents[i].fe_len, 2731 &img_req->object_extents, 2732 fctx->copy_fn, &fctx->iter); 2733 if (ret) 2734 return ret; 2735 } 2736 2737 return __rbd_img_fill_request(img_req); 2738 } 2739 2740 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2741 u64 off, u64 len) 2742 { 2743 struct ceph_file_extent ex = { off, len }; 2744 union rbd_img_fill_iter dummy; 2745 struct rbd_img_fill_ctx fctx = { 2746 .pos_type = OBJ_REQUEST_NODATA, 2747 .pos = &dummy, 2748 }; 2749 2750 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2751 } 2752 2753 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2754 { 2755 struct rbd_obj_request *obj_req = 2756 container_of(ex, struct rbd_obj_request, ex); 2757 struct ceph_bio_iter *it = arg; 2758 2759 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2760 obj_req->bio_pos = *it; 2761 ceph_bio_iter_advance(it, bytes); 2762 } 2763 2764 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2765 { 2766 struct rbd_obj_request *obj_req = 2767 container_of(ex, struct rbd_obj_request, ex); 2768 struct ceph_bio_iter *it = arg; 2769 2770 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2771 ceph_bio_iter_advance_step(it, bytes, ({ 2772 obj_req->bvec_count++; 2773 })); 2774 2775 } 2776 2777 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2778 { 2779 struct rbd_obj_request *obj_req = 2780 container_of(ex, struct rbd_obj_request, ex); 2781 struct ceph_bio_iter *it = arg; 2782 2783 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2784 ceph_bio_iter_advance_step(it, bytes, ({ 2785 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2786 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2787 })); 2788 } 2789 2790 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2791 struct ceph_file_extent *img_extents, 2792 u32 num_img_extents, 2793 struct ceph_bio_iter *bio_pos) 2794 { 2795 struct rbd_img_fill_ctx fctx = { 2796 .pos_type = OBJ_REQUEST_BIO, 2797 .pos = (union rbd_img_fill_iter *)bio_pos, 2798 .set_pos_fn = set_bio_pos, 2799 .count_fn = count_bio_bvecs, 2800 .copy_fn = copy_bio_bvecs, 2801 }; 2802 2803 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2804 &fctx); 2805 } 2806 2807 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2808 u64 off, u64 len, struct bio *bio) 2809 { 2810 struct ceph_file_extent ex = { off, len }; 2811 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2812 2813 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2814 } 2815 2816 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2817 { 2818 struct rbd_obj_request *obj_req = 2819 container_of(ex, struct rbd_obj_request, ex); 2820 struct ceph_bvec_iter *it = arg; 2821 2822 obj_req->bvec_pos = *it; 2823 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2824 ceph_bvec_iter_advance(it, bytes); 2825 } 2826 2827 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2828 { 2829 struct rbd_obj_request *obj_req = 2830 container_of(ex, struct rbd_obj_request, ex); 2831 struct ceph_bvec_iter *it = arg; 2832 2833 ceph_bvec_iter_advance_step(it, bytes, ({ 2834 obj_req->bvec_count++; 2835 })); 2836 } 2837 2838 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2839 { 2840 struct rbd_obj_request *obj_req = 2841 container_of(ex, struct rbd_obj_request, ex); 2842 struct ceph_bvec_iter *it = arg; 2843 2844 ceph_bvec_iter_advance_step(it, bytes, ({ 2845 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2846 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2847 })); 2848 } 2849 2850 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2851 struct ceph_file_extent *img_extents, 2852 u32 num_img_extents, 2853 struct ceph_bvec_iter *bvec_pos) 2854 { 2855 struct rbd_img_fill_ctx fctx = { 2856 .pos_type = OBJ_REQUEST_BVECS, 2857 .pos = (union rbd_img_fill_iter *)bvec_pos, 2858 .set_pos_fn = set_bvec_pos, 2859 .count_fn = count_bvecs, 2860 .copy_fn = copy_bvecs, 2861 }; 2862 2863 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2864 &fctx); 2865 } 2866 2867 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2868 struct ceph_file_extent *img_extents, 2869 u32 num_img_extents, 2870 struct bio_vec *bvecs) 2871 { 2872 struct ceph_bvec_iter it = { 2873 .bvecs = bvecs, 2874 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2875 num_img_extents) }, 2876 }; 2877 2878 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2879 &it); 2880 } 2881 2882 static void rbd_img_handle_request_work(struct work_struct *work) 2883 { 2884 struct rbd_img_request *img_req = 2885 container_of(work, struct rbd_img_request, work); 2886 2887 rbd_img_handle_request(img_req, img_req->work_result); 2888 } 2889 2890 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2891 { 2892 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2893 img_req->work_result = result; 2894 queue_work(rbd_wq, &img_req->work); 2895 } 2896 2897 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2898 { 2899 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2900 2901 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2902 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2903 return true; 2904 } 2905 2906 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2907 obj_req->ex.oe_objno); 2908 return false; 2909 } 2910 2911 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2912 { 2913 struct ceph_osd_request *osd_req; 2914 int ret; 2915 2916 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2917 if (IS_ERR(osd_req)) 2918 return PTR_ERR(osd_req); 2919 2920 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2921 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2922 rbd_osd_setup_data(osd_req, 0); 2923 rbd_osd_format_read(osd_req); 2924 2925 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2926 if (ret) 2927 return ret; 2928 2929 rbd_osd_submit(osd_req); 2930 return 0; 2931 } 2932 2933 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2934 { 2935 struct rbd_img_request *img_req = obj_req->img_request; 2936 struct rbd_img_request *child_img_req; 2937 int ret; 2938 2939 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent, 2940 OBJ_OP_READ, NULL); 2941 if (!child_img_req) 2942 return -ENOMEM; 2943 2944 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2945 child_img_req->obj_request = obj_req; 2946 2947 if (!rbd_img_is_write(img_req)) { 2948 switch (img_req->data_type) { 2949 case OBJ_REQUEST_BIO: 2950 ret = __rbd_img_fill_from_bio(child_img_req, 2951 obj_req->img_extents, 2952 obj_req->num_img_extents, 2953 &obj_req->bio_pos); 2954 break; 2955 case OBJ_REQUEST_BVECS: 2956 case OBJ_REQUEST_OWN_BVECS: 2957 ret = __rbd_img_fill_from_bvecs(child_img_req, 2958 obj_req->img_extents, 2959 obj_req->num_img_extents, 2960 &obj_req->bvec_pos); 2961 break; 2962 default: 2963 BUG(); 2964 } 2965 } else { 2966 ret = rbd_img_fill_from_bvecs(child_img_req, 2967 obj_req->img_extents, 2968 obj_req->num_img_extents, 2969 obj_req->copyup_bvecs); 2970 } 2971 if (ret) { 2972 rbd_img_request_put(child_img_req); 2973 return ret; 2974 } 2975 2976 /* avoid parent chain recursion */ 2977 rbd_img_schedule(child_img_req, 0); 2978 return 0; 2979 } 2980 2981 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2982 { 2983 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2984 int ret; 2985 2986 again: 2987 switch (obj_req->read_state) { 2988 case RBD_OBJ_READ_START: 2989 rbd_assert(!*result); 2990 2991 if (!rbd_obj_may_exist(obj_req)) { 2992 *result = -ENOENT; 2993 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2994 goto again; 2995 } 2996 2997 ret = rbd_obj_read_object(obj_req); 2998 if (ret) { 2999 *result = ret; 3000 return true; 3001 } 3002 obj_req->read_state = RBD_OBJ_READ_OBJECT; 3003 return false; 3004 case RBD_OBJ_READ_OBJECT: 3005 if (*result == -ENOENT && rbd_dev->parent_overlap) { 3006 /* reverse map this object extent onto the parent */ 3007 ret = rbd_obj_calc_img_extents(obj_req, false); 3008 if (ret) { 3009 *result = ret; 3010 return true; 3011 } 3012 if (obj_req->num_img_extents) { 3013 ret = rbd_obj_read_from_parent(obj_req); 3014 if (ret) { 3015 *result = ret; 3016 return true; 3017 } 3018 obj_req->read_state = RBD_OBJ_READ_PARENT; 3019 return false; 3020 } 3021 } 3022 3023 /* 3024 * -ENOENT means a hole in the image -- zero-fill the entire 3025 * length of the request. A short read also implies zero-fill 3026 * to the end of the request. 3027 */ 3028 if (*result == -ENOENT) { 3029 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 3030 *result = 0; 3031 } else if (*result >= 0) { 3032 if (*result < obj_req->ex.oe_len) 3033 rbd_obj_zero_range(obj_req, *result, 3034 obj_req->ex.oe_len - *result); 3035 else 3036 rbd_assert(*result == obj_req->ex.oe_len); 3037 *result = 0; 3038 } 3039 return true; 3040 case RBD_OBJ_READ_PARENT: 3041 /* 3042 * The parent image is read only up to the overlap -- zero-fill 3043 * from the overlap to the end of the request. 3044 */ 3045 if (!*result) { 3046 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 3047 3048 if (obj_overlap < obj_req->ex.oe_len) 3049 rbd_obj_zero_range(obj_req, obj_overlap, 3050 obj_req->ex.oe_len - obj_overlap); 3051 } 3052 return true; 3053 default: 3054 BUG(); 3055 } 3056 } 3057 3058 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 3059 { 3060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3061 3062 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 3063 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 3064 3065 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 3066 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 3067 dout("%s %p noop for nonexistent\n", __func__, obj_req); 3068 return true; 3069 } 3070 3071 return false; 3072 } 3073 3074 /* 3075 * Return: 3076 * 0 - object map update sent 3077 * 1 - object map update isn't needed 3078 * <0 - error 3079 */ 3080 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 3081 { 3082 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3083 u8 new_state; 3084 3085 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3086 return 1; 3087 3088 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3089 new_state = OBJECT_PENDING; 3090 else 3091 new_state = OBJECT_EXISTS; 3092 3093 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 3094 } 3095 3096 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 3097 { 3098 struct ceph_osd_request *osd_req; 3099 int num_ops = count_write_ops(obj_req); 3100 int which = 0; 3101 int ret; 3102 3103 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 3104 num_ops++; /* stat */ 3105 3106 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3107 if (IS_ERR(osd_req)) 3108 return PTR_ERR(osd_req); 3109 3110 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3111 ret = rbd_osd_setup_stat(osd_req, which++); 3112 if (ret) 3113 return ret; 3114 } 3115 3116 rbd_osd_setup_write_ops(osd_req, which); 3117 rbd_osd_format_write(osd_req); 3118 3119 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3120 if (ret) 3121 return ret; 3122 3123 rbd_osd_submit(osd_req); 3124 return 0; 3125 } 3126 3127 /* 3128 * copyup_bvecs pages are never highmem pages 3129 */ 3130 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 3131 { 3132 struct ceph_bvec_iter it = { 3133 .bvecs = bvecs, 3134 .iter = { .bi_size = bytes }, 3135 }; 3136 3137 ceph_bvec_iter_advance_step(&it, bytes, ({ 3138 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 3139 bv.bv_len)) 3140 return false; 3141 })); 3142 return true; 3143 } 3144 3145 #define MODS_ONLY U32_MAX 3146 3147 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3148 u32 bytes) 3149 { 3150 struct ceph_osd_request *osd_req; 3151 int ret; 3152 3153 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3154 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3155 3156 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3157 if (IS_ERR(osd_req)) 3158 return PTR_ERR(osd_req); 3159 3160 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3161 if (ret) 3162 return ret; 3163 3164 rbd_osd_format_write(osd_req); 3165 3166 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3167 if (ret) 3168 return ret; 3169 3170 rbd_osd_submit(osd_req); 3171 return 0; 3172 } 3173 3174 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3175 u32 bytes) 3176 { 3177 struct ceph_osd_request *osd_req; 3178 int num_ops = count_write_ops(obj_req); 3179 int which = 0; 3180 int ret; 3181 3182 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3183 3184 if (bytes != MODS_ONLY) 3185 num_ops++; /* copyup */ 3186 3187 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3188 if (IS_ERR(osd_req)) 3189 return PTR_ERR(osd_req); 3190 3191 if (bytes != MODS_ONLY) { 3192 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3193 if (ret) 3194 return ret; 3195 } 3196 3197 rbd_osd_setup_write_ops(osd_req, which); 3198 rbd_osd_format_write(osd_req); 3199 3200 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3201 if (ret) 3202 return ret; 3203 3204 rbd_osd_submit(osd_req); 3205 return 0; 3206 } 3207 3208 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3209 { 3210 u32 i; 3211 3212 rbd_assert(!obj_req->copyup_bvecs); 3213 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3214 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3215 sizeof(*obj_req->copyup_bvecs), 3216 GFP_NOIO); 3217 if (!obj_req->copyup_bvecs) 3218 return -ENOMEM; 3219 3220 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3221 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3222 3223 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 3224 if (!obj_req->copyup_bvecs[i].bv_page) 3225 return -ENOMEM; 3226 3227 obj_req->copyup_bvecs[i].bv_offset = 0; 3228 obj_req->copyup_bvecs[i].bv_len = len; 3229 obj_overlap -= len; 3230 } 3231 3232 rbd_assert(!obj_overlap); 3233 return 0; 3234 } 3235 3236 /* 3237 * The target object doesn't exist. Read the data for the entire 3238 * target object up to the overlap point (if any) from the parent, 3239 * so we can use it for a copyup. 3240 */ 3241 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3242 { 3243 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3244 int ret; 3245 3246 rbd_assert(obj_req->num_img_extents); 3247 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3248 rbd_dev->parent_overlap); 3249 if (!obj_req->num_img_extents) { 3250 /* 3251 * The overlap has become 0 (most likely because the 3252 * image has been flattened). Re-submit the original write 3253 * request -- pass MODS_ONLY since the copyup isn't needed 3254 * anymore. 3255 */ 3256 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3257 } 3258 3259 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3260 if (ret) 3261 return ret; 3262 3263 return rbd_obj_read_from_parent(obj_req); 3264 } 3265 3266 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3267 { 3268 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3269 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3270 u8 new_state; 3271 u32 i; 3272 int ret; 3273 3274 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3275 3276 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3277 return; 3278 3279 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3280 return; 3281 3282 for (i = 0; i < snapc->num_snaps; i++) { 3283 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3284 i + 1 < snapc->num_snaps) 3285 new_state = OBJECT_EXISTS_CLEAN; 3286 else 3287 new_state = OBJECT_EXISTS; 3288 3289 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3290 new_state, NULL); 3291 if (ret < 0) { 3292 obj_req->pending.result = ret; 3293 return; 3294 } 3295 3296 rbd_assert(!ret); 3297 obj_req->pending.num_pending++; 3298 } 3299 } 3300 3301 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3302 { 3303 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3304 int ret; 3305 3306 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3307 3308 /* 3309 * Only send non-zero copyup data to save some I/O and network 3310 * bandwidth -- zero copyup data is equivalent to the object not 3311 * existing. 3312 */ 3313 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3314 bytes = 0; 3315 3316 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3317 /* 3318 * Send a copyup request with an empty snapshot context to 3319 * deep-copyup the object through all existing snapshots. 3320 * A second request with the current snapshot context will be 3321 * sent for the actual modification. 3322 */ 3323 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3324 if (ret) { 3325 obj_req->pending.result = ret; 3326 return; 3327 } 3328 3329 obj_req->pending.num_pending++; 3330 bytes = MODS_ONLY; 3331 } 3332 3333 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3334 if (ret) { 3335 obj_req->pending.result = ret; 3336 return; 3337 } 3338 3339 obj_req->pending.num_pending++; 3340 } 3341 3342 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3343 { 3344 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3345 int ret; 3346 3347 again: 3348 switch (obj_req->copyup_state) { 3349 case RBD_OBJ_COPYUP_START: 3350 rbd_assert(!*result); 3351 3352 ret = rbd_obj_copyup_read_parent(obj_req); 3353 if (ret) { 3354 *result = ret; 3355 return true; 3356 } 3357 if (obj_req->num_img_extents) 3358 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3359 else 3360 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3361 return false; 3362 case RBD_OBJ_COPYUP_READ_PARENT: 3363 if (*result) 3364 return true; 3365 3366 if (is_zero_bvecs(obj_req->copyup_bvecs, 3367 rbd_obj_img_extents_bytes(obj_req))) { 3368 dout("%s %p detected zeros\n", __func__, obj_req); 3369 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3370 } 3371 3372 rbd_obj_copyup_object_maps(obj_req); 3373 if (!obj_req->pending.num_pending) { 3374 *result = obj_req->pending.result; 3375 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3376 goto again; 3377 } 3378 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3379 return false; 3380 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3381 if (!pending_result_dec(&obj_req->pending, result)) 3382 return false; 3383 /* fall through */ 3384 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3385 if (*result) { 3386 rbd_warn(rbd_dev, "snap object map update failed: %d", 3387 *result); 3388 return true; 3389 } 3390 3391 rbd_obj_copyup_write_object(obj_req); 3392 if (!obj_req->pending.num_pending) { 3393 *result = obj_req->pending.result; 3394 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3395 goto again; 3396 } 3397 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3398 return false; 3399 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3400 if (!pending_result_dec(&obj_req->pending, result)) 3401 return false; 3402 /* fall through */ 3403 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3404 return true; 3405 default: 3406 BUG(); 3407 } 3408 } 3409 3410 /* 3411 * Return: 3412 * 0 - object map update sent 3413 * 1 - object map update isn't needed 3414 * <0 - error 3415 */ 3416 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3417 { 3418 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3419 u8 current_state = OBJECT_PENDING; 3420 3421 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3422 return 1; 3423 3424 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3425 return 1; 3426 3427 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3428 ¤t_state); 3429 } 3430 3431 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3432 { 3433 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3434 int ret; 3435 3436 again: 3437 switch (obj_req->write_state) { 3438 case RBD_OBJ_WRITE_START: 3439 rbd_assert(!*result); 3440 3441 if (rbd_obj_write_is_noop(obj_req)) 3442 return true; 3443 3444 ret = rbd_obj_write_pre_object_map(obj_req); 3445 if (ret < 0) { 3446 *result = ret; 3447 return true; 3448 } 3449 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3450 if (ret > 0) 3451 goto again; 3452 return false; 3453 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3454 if (*result) { 3455 rbd_warn(rbd_dev, "pre object map update failed: %d", 3456 *result); 3457 return true; 3458 } 3459 ret = rbd_obj_write_object(obj_req); 3460 if (ret) { 3461 *result = ret; 3462 return true; 3463 } 3464 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3465 return false; 3466 case RBD_OBJ_WRITE_OBJECT: 3467 if (*result == -ENOENT) { 3468 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3469 *result = 0; 3470 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3471 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3472 goto again; 3473 } 3474 /* 3475 * On a non-existent object: 3476 * delete - -ENOENT, truncate/zero - 0 3477 */ 3478 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3479 *result = 0; 3480 } 3481 if (*result) 3482 return true; 3483 3484 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3485 goto again; 3486 case __RBD_OBJ_WRITE_COPYUP: 3487 if (!rbd_obj_advance_copyup(obj_req, result)) 3488 return false; 3489 /* fall through */ 3490 case RBD_OBJ_WRITE_COPYUP: 3491 if (*result) { 3492 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3493 return true; 3494 } 3495 ret = rbd_obj_write_post_object_map(obj_req); 3496 if (ret < 0) { 3497 *result = ret; 3498 return true; 3499 } 3500 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3501 if (ret > 0) 3502 goto again; 3503 return false; 3504 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3505 if (*result) 3506 rbd_warn(rbd_dev, "post object map update failed: %d", 3507 *result); 3508 return true; 3509 default: 3510 BUG(); 3511 } 3512 } 3513 3514 /* 3515 * Return true if @obj_req is completed. 3516 */ 3517 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3518 int *result) 3519 { 3520 struct rbd_img_request *img_req = obj_req->img_request; 3521 struct rbd_device *rbd_dev = img_req->rbd_dev; 3522 bool done; 3523 3524 mutex_lock(&obj_req->state_mutex); 3525 if (!rbd_img_is_write(img_req)) 3526 done = rbd_obj_advance_read(obj_req, result); 3527 else 3528 done = rbd_obj_advance_write(obj_req, result); 3529 mutex_unlock(&obj_req->state_mutex); 3530 3531 if (done && *result) { 3532 rbd_assert(*result < 0); 3533 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3534 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3535 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3536 } 3537 return done; 3538 } 3539 3540 /* 3541 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3542 * recursion. 3543 */ 3544 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3545 { 3546 if (__rbd_obj_handle_request(obj_req, &result)) 3547 rbd_img_handle_request(obj_req->img_request, result); 3548 } 3549 3550 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3551 { 3552 struct rbd_device *rbd_dev = img_req->rbd_dev; 3553 3554 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3555 return false; 3556 3557 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 3558 return false; 3559 3560 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3561 if (rbd_dev->opts->lock_on_read || 3562 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3563 return true; 3564 3565 return rbd_img_is_write(img_req); 3566 } 3567 3568 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3569 { 3570 struct rbd_device *rbd_dev = img_req->rbd_dev; 3571 bool locked; 3572 3573 lockdep_assert_held(&rbd_dev->lock_rwsem); 3574 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3575 spin_lock(&rbd_dev->lock_lists_lock); 3576 rbd_assert(list_empty(&img_req->lock_item)); 3577 if (!locked) 3578 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3579 else 3580 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3581 spin_unlock(&rbd_dev->lock_lists_lock); 3582 return locked; 3583 } 3584 3585 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3586 { 3587 struct rbd_device *rbd_dev = img_req->rbd_dev; 3588 bool need_wakeup; 3589 3590 lockdep_assert_held(&rbd_dev->lock_rwsem); 3591 spin_lock(&rbd_dev->lock_lists_lock); 3592 rbd_assert(!list_empty(&img_req->lock_item)); 3593 list_del_init(&img_req->lock_item); 3594 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3595 list_empty(&rbd_dev->running_list)); 3596 spin_unlock(&rbd_dev->lock_lists_lock); 3597 if (need_wakeup) 3598 complete(&rbd_dev->releasing_wait); 3599 } 3600 3601 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3602 { 3603 struct rbd_device *rbd_dev = img_req->rbd_dev; 3604 3605 if (!need_exclusive_lock(img_req)) 3606 return 1; 3607 3608 if (rbd_lock_add_request(img_req)) 3609 return 1; 3610 3611 if (rbd_dev->opts->exclusive) { 3612 WARN_ON(1); /* lock got released? */ 3613 return -EROFS; 3614 } 3615 3616 /* 3617 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3618 * and cancel_delayed_work() in wake_lock_waiters(). 3619 */ 3620 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3621 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3622 return 0; 3623 } 3624 3625 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3626 { 3627 struct rbd_obj_request *obj_req; 3628 3629 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3630 3631 for_each_obj_request(img_req, obj_req) { 3632 int result = 0; 3633 3634 if (__rbd_obj_handle_request(obj_req, &result)) { 3635 if (result) { 3636 img_req->pending.result = result; 3637 return; 3638 } 3639 } else { 3640 img_req->pending.num_pending++; 3641 } 3642 } 3643 } 3644 3645 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3646 { 3647 struct rbd_device *rbd_dev = img_req->rbd_dev; 3648 int ret; 3649 3650 again: 3651 switch (img_req->state) { 3652 case RBD_IMG_START: 3653 rbd_assert(!*result); 3654 3655 ret = rbd_img_exclusive_lock(img_req); 3656 if (ret < 0) { 3657 *result = ret; 3658 return true; 3659 } 3660 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3661 if (ret > 0) 3662 goto again; 3663 return false; 3664 case RBD_IMG_EXCLUSIVE_LOCK: 3665 if (*result) 3666 return true; 3667 3668 rbd_assert(!need_exclusive_lock(img_req) || 3669 __rbd_is_lock_owner(rbd_dev)); 3670 3671 rbd_img_object_requests(img_req); 3672 if (!img_req->pending.num_pending) { 3673 *result = img_req->pending.result; 3674 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3675 goto again; 3676 } 3677 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3678 return false; 3679 case __RBD_IMG_OBJECT_REQUESTS: 3680 if (!pending_result_dec(&img_req->pending, result)) 3681 return false; 3682 /* fall through */ 3683 case RBD_IMG_OBJECT_REQUESTS: 3684 return true; 3685 default: 3686 BUG(); 3687 } 3688 } 3689 3690 /* 3691 * Return true if @img_req is completed. 3692 */ 3693 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3694 int *result) 3695 { 3696 struct rbd_device *rbd_dev = img_req->rbd_dev; 3697 bool done; 3698 3699 if (need_exclusive_lock(img_req)) { 3700 down_read(&rbd_dev->lock_rwsem); 3701 mutex_lock(&img_req->state_mutex); 3702 done = rbd_img_advance(img_req, result); 3703 if (done) 3704 rbd_lock_del_request(img_req); 3705 mutex_unlock(&img_req->state_mutex); 3706 up_read(&rbd_dev->lock_rwsem); 3707 } else { 3708 mutex_lock(&img_req->state_mutex); 3709 done = rbd_img_advance(img_req, result); 3710 mutex_unlock(&img_req->state_mutex); 3711 } 3712 3713 if (done && *result) { 3714 rbd_assert(*result < 0); 3715 rbd_warn(rbd_dev, "%s%s result %d", 3716 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3717 obj_op_name(img_req->op_type), *result); 3718 } 3719 return done; 3720 } 3721 3722 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3723 { 3724 again: 3725 if (!__rbd_img_handle_request(img_req, &result)) 3726 return; 3727 3728 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3729 struct rbd_obj_request *obj_req = img_req->obj_request; 3730 3731 rbd_img_request_put(img_req); 3732 if (__rbd_obj_handle_request(obj_req, &result)) { 3733 img_req = obj_req->img_request; 3734 goto again; 3735 } 3736 } else { 3737 struct request *rq = img_req->rq; 3738 3739 rbd_img_request_put(img_req); 3740 blk_mq_end_request(rq, errno_to_blk_status(result)); 3741 } 3742 } 3743 3744 static const struct rbd_client_id rbd_empty_cid; 3745 3746 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3747 const struct rbd_client_id *rhs) 3748 { 3749 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3750 } 3751 3752 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3753 { 3754 struct rbd_client_id cid; 3755 3756 mutex_lock(&rbd_dev->watch_mutex); 3757 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3758 cid.handle = rbd_dev->watch_cookie; 3759 mutex_unlock(&rbd_dev->watch_mutex); 3760 return cid; 3761 } 3762 3763 /* 3764 * lock_rwsem must be held for write 3765 */ 3766 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3767 const struct rbd_client_id *cid) 3768 { 3769 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3770 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3771 cid->gid, cid->handle); 3772 rbd_dev->owner_cid = *cid; /* struct */ 3773 } 3774 3775 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3776 { 3777 mutex_lock(&rbd_dev->watch_mutex); 3778 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3779 mutex_unlock(&rbd_dev->watch_mutex); 3780 } 3781 3782 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3783 { 3784 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3785 3786 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3787 strcpy(rbd_dev->lock_cookie, cookie); 3788 rbd_set_owner_cid(rbd_dev, &cid); 3789 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3790 } 3791 3792 /* 3793 * lock_rwsem must be held for write 3794 */ 3795 static int rbd_lock(struct rbd_device *rbd_dev) 3796 { 3797 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3798 char cookie[32]; 3799 int ret; 3800 3801 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3802 rbd_dev->lock_cookie[0] != '\0'); 3803 3804 format_lock_cookie(rbd_dev, cookie); 3805 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3806 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3807 RBD_LOCK_TAG, "", 0); 3808 if (ret) 3809 return ret; 3810 3811 __rbd_lock(rbd_dev, cookie); 3812 return 0; 3813 } 3814 3815 /* 3816 * lock_rwsem must be held for write 3817 */ 3818 static void rbd_unlock(struct rbd_device *rbd_dev) 3819 { 3820 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3821 int ret; 3822 3823 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3824 rbd_dev->lock_cookie[0] == '\0'); 3825 3826 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3827 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3828 if (ret && ret != -ENOENT) 3829 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3830 3831 /* treat errors as the image is unlocked */ 3832 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3833 rbd_dev->lock_cookie[0] = '\0'; 3834 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3835 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3836 } 3837 3838 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3839 enum rbd_notify_op notify_op, 3840 struct page ***preply_pages, 3841 size_t *preply_len) 3842 { 3843 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3844 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3845 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3846 int buf_size = sizeof(buf); 3847 void *p = buf; 3848 3849 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3850 3851 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3852 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3853 ceph_encode_32(&p, notify_op); 3854 ceph_encode_64(&p, cid.gid); 3855 ceph_encode_64(&p, cid.handle); 3856 3857 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3858 &rbd_dev->header_oloc, buf, buf_size, 3859 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3860 } 3861 3862 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3863 enum rbd_notify_op notify_op) 3864 { 3865 struct page **reply_pages; 3866 size_t reply_len; 3867 3868 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3869 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3870 } 3871 3872 static void rbd_notify_acquired_lock(struct work_struct *work) 3873 { 3874 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3875 acquired_lock_work); 3876 3877 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3878 } 3879 3880 static void rbd_notify_released_lock(struct work_struct *work) 3881 { 3882 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3883 released_lock_work); 3884 3885 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3886 } 3887 3888 static int rbd_request_lock(struct rbd_device *rbd_dev) 3889 { 3890 struct page **reply_pages; 3891 size_t reply_len; 3892 bool lock_owner_responded = false; 3893 int ret; 3894 3895 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3896 3897 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3898 &reply_pages, &reply_len); 3899 if (ret && ret != -ETIMEDOUT) { 3900 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3901 goto out; 3902 } 3903 3904 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3905 void *p = page_address(reply_pages[0]); 3906 void *const end = p + reply_len; 3907 u32 n; 3908 3909 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3910 while (n--) { 3911 u8 struct_v; 3912 u32 len; 3913 3914 ceph_decode_need(&p, end, 8 + 8, e_inval); 3915 p += 8 + 8; /* skip gid and cookie */ 3916 3917 ceph_decode_32_safe(&p, end, len, e_inval); 3918 if (!len) 3919 continue; 3920 3921 if (lock_owner_responded) { 3922 rbd_warn(rbd_dev, 3923 "duplicate lock owners detected"); 3924 ret = -EIO; 3925 goto out; 3926 } 3927 3928 lock_owner_responded = true; 3929 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3930 &struct_v, &len); 3931 if (ret) { 3932 rbd_warn(rbd_dev, 3933 "failed to decode ResponseMessage: %d", 3934 ret); 3935 goto e_inval; 3936 } 3937 3938 ret = ceph_decode_32(&p); 3939 } 3940 } 3941 3942 if (!lock_owner_responded) { 3943 rbd_warn(rbd_dev, "no lock owners detected"); 3944 ret = -ETIMEDOUT; 3945 } 3946 3947 out: 3948 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3949 return ret; 3950 3951 e_inval: 3952 ret = -EINVAL; 3953 goto out; 3954 } 3955 3956 /* 3957 * Either image request state machine(s) or rbd_add_acquire_lock() 3958 * (i.e. "rbd map"). 3959 */ 3960 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3961 { 3962 struct rbd_img_request *img_req; 3963 3964 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3965 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3966 3967 cancel_delayed_work(&rbd_dev->lock_dwork); 3968 if (!completion_done(&rbd_dev->acquire_wait)) { 3969 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3970 list_empty(&rbd_dev->running_list)); 3971 rbd_dev->acquire_err = result; 3972 complete_all(&rbd_dev->acquire_wait); 3973 return; 3974 } 3975 3976 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3977 mutex_lock(&img_req->state_mutex); 3978 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3979 rbd_img_schedule(img_req, result); 3980 mutex_unlock(&img_req->state_mutex); 3981 } 3982 3983 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3984 } 3985 3986 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3987 struct ceph_locker **lockers, u32 *num_lockers) 3988 { 3989 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3990 u8 lock_type; 3991 char *lock_tag; 3992 int ret; 3993 3994 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3995 3996 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3997 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3998 &lock_type, &lock_tag, lockers, num_lockers); 3999 if (ret) 4000 return ret; 4001 4002 if (*num_lockers == 0) { 4003 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 4004 goto out; 4005 } 4006 4007 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 4008 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 4009 lock_tag); 4010 ret = -EBUSY; 4011 goto out; 4012 } 4013 4014 if (lock_type == CEPH_CLS_LOCK_SHARED) { 4015 rbd_warn(rbd_dev, "shared lock type detected"); 4016 ret = -EBUSY; 4017 goto out; 4018 } 4019 4020 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 4021 strlen(RBD_LOCK_COOKIE_PREFIX))) { 4022 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 4023 (*lockers)[0].id.cookie); 4024 ret = -EBUSY; 4025 goto out; 4026 } 4027 4028 out: 4029 kfree(lock_tag); 4030 return ret; 4031 } 4032 4033 static int find_watcher(struct rbd_device *rbd_dev, 4034 const struct ceph_locker *locker) 4035 { 4036 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4037 struct ceph_watch_item *watchers; 4038 u32 num_watchers; 4039 u64 cookie; 4040 int i; 4041 int ret; 4042 4043 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 4044 &rbd_dev->header_oloc, &watchers, 4045 &num_watchers); 4046 if (ret) 4047 return ret; 4048 4049 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 4050 for (i = 0; i < num_watchers; i++) { 4051 if (!memcmp(&watchers[i].addr, &locker->info.addr, 4052 sizeof(locker->info.addr)) && 4053 watchers[i].cookie == cookie) { 4054 struct rbd_client_id cid = { 4055 .gid = le64_to_cpu(watchers[i].name.num), 4056 .handle = cookie, 4057 }; 4058 4059 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 4060 rbd_dev, cid.gid, cid.handle); 4061 rbd_set_owner_cid(rbd_dev, &cid); 4062 ret = 1; 4063 goto out; 4064 } 4065 } 4066 4067 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 4068 ret = 0; 4069 out: 4070 kfree(watchers); 4071 return ret; 4072 } 4073 4074 /* 4075 * lock_rwsem must be held for write 4076 */ 4077 static int rbd_try_lock(struct rbd_device *rbd_dev) 4078 { 4079 struct ceph_client *client = rbd_dev->rbd_client->client; 4080 struct ceph_locker *lockers; 4081 u32 num_lockers; 4082 int ret; 4083 4084 for (;;) { 4085 ret = rbd_lock(rbd_dev); 4086 if (ret != -EBUSY) 4087 return ret; 4088 4089 /* determine if the current lock holder is still alive */ 4090 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 4091 if (ret) 4092 return ret; 4093 4094 if (num_lockers == 0) 4095 goto again; 4096 4097 ret = find_watcher(rbd_dev, lockers); 4098 if (ret) 4099 goto out; /* request lock or error */ 4100 4101 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4102 ENTITY_NAME(lockers[0].id.name)); 4103 4104 ret = ceph_monc_blacklist_add(&client->monc, 4105 &lockers[0].info.addr); 4106 if (ret) { 4107 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 4108 ENTITY_NAME(lockers[0].id.name), ret); 4109 goto out; 4110 } 4111 4112 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4113 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4114 lockers[0].id.cookie, 4115 &lockers[0].id.name); 4116 if (ret && ret != -ENOENT) 4117 goto out; 4118 4119 again: 4120 ceph_free_lockers(lockers, num_lockers); 4121 } 4122 4123 out: 4124 ceph_free_lockers(lockers, num_lockers); 4125 return ret; 4126 } 4127 4128 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4129 { 4130 int ret; 4131 4132 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4133 ret = rbd_object_map_open(rbd_dev); 4134 if (ret) 4135 return ret; 4136 } 4137 4138 return 0; 4139 } 4140 4141 /* 4142 * Return: 4143 * 0 - lock acquired 4144 * 1 - caller should call rbd_request_lock() 4145 * <0 - error 4146 */ 4147 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4148 { 4149 int ret; 4150 4151 down_read(&rbd_dev->lock_rwsem); 4152 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4153 rbd_dev->lock_state); 4154 if (__rbd_is_lock_owner(rbd_dev)) { 4155 up_read(&rbd_dev->lock_rwsem); 4156 return 0; 4157 } 4158 4159 up_read(&rbd_dev->lock_rwsem); 4160 down_write(&rbd_dev->lock_rwsem); 4161 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4162 rbd_dev->lock_state); 4163 if (__rbd_is_lock_owner(rbd_dev)) { 4164 up_write(&rbd_dev->lock_rwsem); 4165 return 0; 4166 } 4167 4168 ret = rbd_try_lock(rbd_dev); 4169 if (ret < 0) { 4170 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4171 if (ret == -EBLACKLISTED) 4172 goto out; 4173 4174 ret = 1; /* request lock anyway */ 4175 } 4176 if (ret > 0) { 4177 up_write(&rbd_dev->lock_rwsem); 4178 return ret; 4179 } 4180 4181 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4182 rbd_assert(list_empty(&rbd_dev->running_list)); 4183 4184 ret = rbd_post_acquire_action(rbd_dev); 4185 if (ret) { 4186 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4187 /* 4188 * Can't stay in RBD_LOCK_STATE_LOCKED because 4189 * rbd_lock_add_request() would let the request through, 4190 * assuming that e.g. object map is locked and loaded. 4191 */ 4192 rbd_unlock(rbd_dev); 4193 } 4194 4195 out: 4196 wake_lock_waiters(rbd_dev, ret); 4197 up_write(&rbd_dev->lock_rwsem); 4198 return ret; 4199 } 4200 4201 static void rbd_acquire_lock(struct work_struct *work) 4202 { 4203 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4204 struct rbd_device, lock_dwork); 4205 int ret; 4206 4207 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4208 again: 4209 ret = rbd_try_acquire_lock(rbd_dev); 4210 if (ret <= 0) { 4211 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4212 return; 4213 } 4214 4215 ret = rbd_request_lock(rbd_dev); 4216 if (ret == -ETIMEDOUT) { 4217 goto again; /* treat this as a dead client */ 4218 } else if (ret == -EROFS) { 4219 rbd_warn(rbd_dev, "peer will not release lock"); 4220 down_write(&rbd_dev->lock_rwsem); 4221 wake_lock_waiters(rbd_dev, ret); 4222 up_write(&rbd_dev->lock_rwsem); 4223 } else if (ret < 0) { 4224 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4225 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4226 RBD_RETRY_DELAY); 4227 } else { 4228 /* 4229 * lock owner acked, but resend if we don't see them 4230 * release the lock 4231 */ 4232 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 4233 rbd_dev); 4234 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4235 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4236 } 4237 } 4238 4239 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4240 { 4241 bool need_wait; 4242 4243 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4244 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4245 4246 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4247 return false; 4248 4249 /* 4250 * Ensure that all in-flight IO is flushed. 4251 */ 4252 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4253 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4254 need_wait = !list_empty(&rbd_dev->running_list); 4255 downgrade_write(&rbd_dev->lock_rwsem); 4256 if (need_wait) 4257 wait_for_completion(&rbd_dev->releasing_wait); 4258 up_read(&rbd_dev->lock_rwsem); 4259 4260 down_write(&rbd_dev->lock_rwsem); 4261 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4262 return false; 4263 4264 rbd_assert(list_empty(&rbd_dev->running_list)); 4265 return true; 4266 } 4267 4268 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4269 { 4270 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4271 rbd_object_map_close(rbd_dev); 4272 } 4273 4274 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4275 { 4276 rbd_assert(list_empty(&rbd_dev->running_list)); 4277 4278 rbd_pre_release_action(rbd_dev); 4279 rbd_unlock(rbd_dev); 4280 } 4281 4282 /* 4283 * lock_rwsem must be held for write 4284 */ 4285 static void rbd_release_lock(struct rbd_device *rbd_dev) 4286 { 4287 if (!rbd_quiesce_lock(rbd_dev)) 4288 return; 4289 4290 __rbd_release_lock(rbd_dev); 4291 4292 /* 4293 * Give others a chance to grab the lock - we would re-acquire 4294 * almost immediately if we got new IO while draining the running 4295 * list otherwise. We need to ack our own notifications, so this 4296 * lock_dwork will be requeued from rbd_handle_released_lock() by 4297 * way of maybe_kick_acquire(). 4298 */ 4299 cancel_delayed_work(&rbd_dev->lock_dwork); 4300 } 4301 4302 static void rbd_release_lock_work(struct work_struct *work) 4303 { 4304 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4305 unlock_work); 4306 4307 down_write(&rbd_dev->lock_rwsem); 4308 rbd_release_lock(rbd_dev); 4309 up_write(&rbd_dev->lock_rwsem); 4310 } 4311 4312 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4313 { 4314 bool have_requests; 4315 4316 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4317 if (__rbd_is_lock_owner(rbd_dev)) 4318 return; 4319 4320 spin_lock(&rbd_dev->lock_lists_lock); 4321 have_requests = !list_empty(&rbd_dev->acquiring_list); 4322 spin_unlock(&rbd_dev->lock_lists_lock); 4323 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4324 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4325 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4326 } 4327 } 4328 4329 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4330 void **p) 4331 { 4332 struct rbd_client_id cid = { 0 }; 4333 4334 if (struct_v >= 2) { 4335 cid.gid = ceph_decode_64(p); 4336 cid.handle = ceph_decode_64(p); 4337 } 4338 4339 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4340 cid.handle); 4341 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4342 down_write(&rbd_dev->lock_rwsem); 4343 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4344 /* 4345 * we already know that the remote client is 4346 * the owner 4347 */ 4348 up_write(&rbd_dev->lock_rwsem); 4349 return; 4350 } 4351 4352 rbd_set_owner_cid(rbd_dev, &cid); 4353 downgrade_write(&rbd_dev->lock_rwsem); 4354 } else { 4355 down_read(&rbd_dev->lock_rwsem); 4356 } 4357 4358 maybe_kick_acquire(rbd_dev); 4359 up_read(&rbd_dev->lock_rwsem); 4360 } 4361 4362 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4363 void **p) 4364 { 4365 struct rbd_client_id cid = { 0 }; 4366 4367 if (struct_v >= 2) { 4368 cid.gid = ceph_decode_64(p); 4369 cid.handle = ceph_decode_64(p); 4370 } 4371 4372 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4373 cid.handle); 4374 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4375 down_write(&rbd_dev->lock_rwsem); 4376 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4377 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 4378 __func__, rbd_dev, cid.gid, cid.handle, 4379 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4380 up_write(&rbd_dev->lock_rwsem); 4381 return; 4382 } 4383 4384 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4385 downgrade_write(&rbd_dev->lock_rwsem); 4386 } else { 4387 down_read(&rbd_dev->lock_rwsem); 4388 } 4389 4390 maybe_kick_acquire(rbd_dev); 4391 up_read(&rbd_dev->lock_rwsem); 4392 } 4393 4394 /* 4395 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4396 * ResponseMessage is needed. 4397 */ 4398 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4399 void **p) 4400 { 4401 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4402 struct rbd_client_id cid = { 0 }; 4403 int result = 1; 4404 4405 if (struct_v >= 2) { 4406 cid.gid = ceph_decode_64(p); 4407 cid.handle = ceph_decode_64(p); 4408 } 4409 4410 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4411 cid.handle); 4412 if (rbd_cid_equal(&cid, &my_cid)) 4413 return result; 4414 4415 down_read(&rbd_dev->lock_rwsem); 4416 if (__rbd_is_lock_owner(rbd_dev)) { 4417 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4418 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4419 goto out_unlock; 4420 4421 /* 4422 * encode ResponseMessage(0) so the peer can detect 4423 * a missing owner 4424 */ 4425 result = 0; 4426 4427 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4428 if (!rbd_dev->opts->exclusive) { 4429 dout("%s rbd_dev %p queueing unlock_work\n", 4430 __func__, rbd_dev); 4431 queue_work(rbd_dev->task_wq, 4432 &rbd_dev->unlock_work); 4433 } else { 4434 /* refuse to release the lock */ 4435 result = -EROFS; 4436 } 4437 } 4438 } 4439 4440 out_unlock: 4441 up_read(&rbd_dev->lock_rwsem); 4442 return result; 4443 } 4444 4445 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4446 u64 notify_id, u64 cookie, s32 *result) 4447 { 4448 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4449 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4450 int buf_size = sizeof(buf); 4451 int ret; 4452 4453 if (result) { 4454 void *p = buf; 4455 4456 /* encode ResponseMessage */ 4457 ceph_start_encoding(&p, 1, 1, 4458 buf_size - CEPH_ENCODING_START_BLK_LEN); 4459 ceph_encode_32(&p, *result); 4460 } else { 4461 buf_size = 0; 4462 } 4463 4464 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4465 &rbd_dev->header_oloc, notify_id, cookie, 4466 buf, buf_size); 4467 if (ret) 4468 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4469 } 4470 4471 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4472 u64 cookie) 4473 { 4474 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4475 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4476 } 4477 4478 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4479 u64 notify_id, u64 cookie, s32 result) 4480 { 4481 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4482 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4483 } 4484 4485 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4486 u64 notifier_id, void *data, size_t data_len) 4487 { 4488 struct rbd_device *rbd_dev = arg; 4489 void *p = data; 4490 void *const end = p + data_len; 4491 u8 struct_v = 0; 4492 u32 len; 4493 u32 notify_op; 4494 int ret; 4495 4496 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4497 __func__, rbd_dev, cookie, notify_id, data_len); 4498 if (data_len) { 4499 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4500 &struct_v, &len); 4501 if (ret) { 4502 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4503 ret); 4504 return; 4505 } 4506 4507 notify_op = ceph_decode_32(&p); 4508 } else { 4509 /* legacy notification for header updates */ 4510 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4511 len = 0; 4512 } 4513 4514 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4515 switch (notify_op) { 4516 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4517 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4518 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4519 break; 4520 case RBD_NOTIFY_OP_RELEASED_LOCK: 4521 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4522 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4523 break; 4524 case RBD_NOTIFY_OP_REQUEST_LOCK: 4525 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4526 if (ret <= 0) 4527 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4528 cookie, ret); 4529 else 4530 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4531 break; 4532 case RBD_NOTIFY_OP_HEADER_UPDATE: 4533 ret = rbd_dev_refresh(rbd_dev); 4534 if (ret) 4535 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4536 4537 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4538 break; 4539 default: 4540 if (rbd_is_lock_owner(rbd_dev)) 4541 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4542 cookie, -EOPNOTSUPP); 4543 else 4544 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4545 break; 4546 } 4547 } 4548 4549 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4550 4551 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4552 { 4553 struct rbd_device *rbd_dev = arg; 4554 4555 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4556 4557 down_write(&rbd_dev->lock_rwsem); 4558 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4559 up_write(&rbd_dev->lock_rwsem); 4560 4561 mutex_lock(&rbd_dev->watch_mutex); 4562 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4563 __rbd_unregister_watch(rbd_dev); 4564 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4565 4566 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4567 } 4568 mutex_unlock(&rbd_dev->watch_mutex); 4569 } 4570 4571 /* 4572 * watch_mutex must be locked 4573 */ 4574 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4575 { 4576 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4577 struct ceph_osd_linger_request *handle; 4578 4579 rbd_assert(!rbd_dev->watch_handle); 4580 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4581 4582 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4583 &rbd_dev->header_oloc, rbd_watch_cb, 4584 rbd_watch_errcb, rbd_dev); 4585 if (IS_ERR(handle)) 4586 return PTR_ERR(handle); 4587 4588 rbd_dev->watch_handle = handle; 4589 return 0; 4590 } 4591 4592 /* 4593 * watch_mutex must be locked 4594 */ 4595 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4596 { 4597 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4598 int ret; 4599 4600 rbd_assert(rbd_dev->watch_handle); 4601 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4602 4603 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4604 if (ret) 4605 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4606 4607 rbd_dev->watch_handle = NULL; 4608 } 4609 4610 static int rbd_register_watch(struct rbd_device *rbd_dev) 4611 { 4612 int ret; 4613 4614 mutex_lock(&rbd_dev->watch_mutex); 4615 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4616 ret = __rbd_register_watch(rbd_dev); 4617 if (ret) 4618 goto out; 4619 4620 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4621 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4622 4623 out: 4624 mutex_unlock(&rbd_dev->watch_mutex); 4625 return ret; 4626 } 4627 4628 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4629 { 4630 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4631 4632 cancel_work_sync(&rbd_dev->acquired_lock_work); 4633 cancel_work_sync(&rbd_dev->released_lock_work); 4634 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4635 cancel_work_sync(&rbd_dev->unlock_work); 4636 } 4637 4638 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4639 { 4640 cancel_tasks_sync(rbd_dev); 4641 4642 mutex_lock(&rbd_dev->watch_mutex); 4643 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4644 __rbd_unregister_watch(rbd_dev); 4645 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4646 mutex_unlock(&rbd_dev->watch_mutex); 4647 4648 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4649 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4650 } 4651 4652 /* 4653 * lock_rwsem must be held for write 4654 */ 4655 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4656 { 4657 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4658 char cookie[32]; 4659 int ret; 4660 4661 if (!rbd_quiesce_lock(rbd_dev)) 4662 return; 4663 4664 format_lock_cookie(rbd_dev, cookie); 4665 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4666 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4667 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4668 RBD_LOCK_TAG, cookie); 4669 if (ret) { 4670 if (ret != -EOPNOTSUPP) 4671 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4672 ret); 4673 4674 /* 4675 * Lock cookie cannot be updated on older OSDs, so do 4676 * a manual release and queue an acquire. 4677 */ 4678 __rbd_release_lock(rbd_dev); 4679 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4680 } else { 4681 __rbd_lock(rbd_dev, cookie); 4682 wake_lock_waiters(rbd_dev, 0); 4683 } 4684 } 4685 4686 static void rbd_reregister_watch(struct work_struct *work) 4687 { 4688 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4689 struct rbd_device, watch_dwork); 4690 int ret; 4691 4692 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4693 4694 mutex_lock(&rbd_dev->watch_mutex); 4695 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4696 mutex_unlock(&rbd_dev->watch_mutex); 4697 return; 4698 } 4699 4700 ret = __rbd_register_watch(rbd_dev); 4701 if (ret) { 4702 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4703 if (ret != -EBLACKLISTED && ret != -ENOENT) { 4704 queue_delayed_work(rbd_dev->task_wq, 4705 &rbd_dev->watch_dwork, 4706 RBD_RETRY_DELAY); 4707 mutex_unlock(&rbd_dev->watch_mutex); 4708 return; 4709 } 4710 4711 mutex_unlock(&rbd_dev->watch_mutex); 4712 down_write(&rbd_dev->lock_rwsem); 4713 wake_lock_waiters(rbd_dev, ret); 4714 up_write(&rbd_dev->lock_rwsem); 4715 return; 4716 } 4717 4718 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4719 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4720 mutex_unlock(&rbd_dev->watch_mutex); 4721 4722 down_write(&rbd_dev->lock_rwsem); 4723 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4724 rbd_reacquire_lock(rbd_dev); 4725 up_write(&rbd_dev->lock_rwsem); 4726 4727 ret = rbd_dev_refresh(rbd_dev); 4728 if (ret) 4729 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4730 } 4731 4732 /* 4733 * Synchronous osd object method call. Returns the number of bytes 4734 * returned in the outbound buffer, or a negative error code. 4735 */ 4736 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4737 struct ceph_object_id *oid, 4738 struct ceph_object_locator *oloc, 4739 const char *method_name, 4740 const void *outbound, 4741 size_t outbound_size, 4742 void *inbound, 4743 size_t inbound_size) 4744 { 4745 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4746 struct page *req_page = NULL; 4747 struct page *reply_page; 4748 int ret; 4749 4750 /* 4751 * Method calls are ultimately read operations. The result 4752 * should placed into the inbound buffer provided. They 4753 * also supply outbound data--parameters for the object 4754 * method. Currently if this is present it will be a 4755 * snapshot id. 4756 */ 4757 if (outbound) { 4758 if (outbound_size > PAGE_SIZE) 4759 return -E2BIG; 4760 4761 req_page = alloc_page(GFP_KERNEL); 4762 if (!req_page) 4763 return -ENOMEM; 4764 4765 memcpy(page_address(req_page), outbound, outbound_size); 4766 } 4767 4768 reply_page = alloc_page(GFP_KERNEL); 4769 if (!reply_page) { 4770 if (req_page) 4771 __free_page(req_page); 4772 return -ENOMEM; 4773 } 4774 4775 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4776 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4777 &reply_page, &inbound_size); 4778 if (!ret) { 4779 memcpy(inbound, page_address(reply_page), inbound_size); 4780 ret = inbound_size; 4781 } 4782 4783 if (req_page) 4784 __free_page(req_page); 4785 __free_page(reply_page); 4786 return ret; 4787 } 4788 4789 static void rbd_queue_workfn(struct work_struct *work) 4790 { 4791 struct request *rq = blk_mq_rq_from_pdu(work); 4792 struct rbd_device *rbd_dev = rq->q->queuedata; 4793 struct rbd_img_request *img_request; 4794 struct ceph_snap_context *snapc = NULL; 4795 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4796 u64 length = blk_rq_bytes(rq); 4797 enum obj_operation_type op_type; 4798 u64 mapping_size; 4799 int result; 4800 4801 switch (req_op(rq)) { 4802 case REQ_OP_DISCARD: 4803 op_type = OBJ_OP_DISCARD; 4804 break; 4805 case REQ_OP_WRITE_ZEROES: 4806 op_type = OBJ_OP_ZEROOUT; 4807 break; 4808 case REQ_OP_WRITE: 4809 op_type = OBJ_OP_WRITE; 4810 break; 4811 case REQ_OP_READ: 4812 op_type = OBJ_OP_READ; 4813 break; 4814 default: 4815 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 4816 result = -EIO; 4817 goto err; 4818 } 4819 4820 /* Ignore/skip any zero-length requests */ 4821 4822 if (!length) { 4823 dout("%s: zero-length request\n", __func__); 4824 result = 0; 4825 goto err_rq; 4826 } 4827 4828 if (op_type != OBJ_OP_READ && rbd_dev->spec->snap_id != CEPH_NOSNAP) { 4829 rbd_warn(rbd_dev, "%s on read-only snapshot", 4830 obj_op_name(op_type)); 4831 result = -EIO; 4832 goto err; 4833 } 4834 4835 /* 4836 * Quit early if the mapped snapshot no longer exists. It's 4837 * still possible the snapshot will have disappeared by the 4838 * time our request arrives at the osd, but there's no sense in 4839 * sending it if we already know. 4840 */ 4841 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4842 dout("request for non-existent snapshot"); 4843 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4844 result = -ENXIO; 4845 goto err_rq; 4846 } 4847 4848 if (offset && length > U64_MAX - offset + 1) { 4849 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4850 length); 4851 result = -EINVAL; 4852 goto err_rq; /* Shouldn't happen */ 4853 } 4854 4855 blk_mq_start_request(rq); 4856 4857 down_read(&rbd_dev->header_rwsem); 4858 mapping_size = rbd_dev->mapping.size; 4859 if (op_type != OBJ_OP_READ) { 4860 snapc = rbd_dev->header.snapc; 4861 ceph_get_snap_context(snapc); 4862 } 4863 up_read(&rbd_dev->header_rwsem); 4864 4865 if (offset + length > mapping_size) { 4866 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4867 length, mapping_size); 4868 result = -EIO; 4869 goto err_rq; 4870 } 4871 4872 img_request = rbd_img_request_create(rbd_dev, op_type, snapc); 4873 if (!img_request) { 4874 result = -ENOMEM; 4875 goto err_rq; 4876 } 4877 img_request->rq = rq; 4878 snapc = NULL; /* img_request consumes a ref */ 4879 4880 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4881 result = rbd_img_fill_nodata(img_request, offset, length); 4882 else 4883 result = rbd_img_fill_from_bio(img_request, offset, length, 4884 rq->bio); 4885 if (result) 4886 goto err_img_request; 4887 4888 rbd_img_handle_request(img_request, 0); 4889 return; 4890 4891 err_img_request: 4892 rbd_img_request_put(img_request); 4893 err_rq: 4894 if (result) 4895 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4896 obj_op_name(op_type), length, offset, result); 4897 ceph_put_snap_context(snapc); 4898 err: 4899 blk_mq_end_request(rq, errno_to_blk_status(result)); 4900 } 4901 4902 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4903 const struct blk_mq_queue_data *bd) 4904 { 4905 struct request *rq = bd->rq; 4906 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4907 4908 queue_work(rbd_wq, work); 4909 return BLK_STS_OK; 4910 } 4911 4912 static void rbd_free_disk(struct rbd_device *rbd_dev) 4913 { 4914 blk_cleanup_queue(rbd_dev->disk->queue); 4915 blk_mq_free_tag_set(&rbd_dev->tag_set); 4916 put_disk(rbd_dev->disk); 4917 rbd_dev->disk = NULL; 4918 } 4919 4920 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4921 struct ceph_object_id *oid, 4922 struct ceph_object_locator *oloc, 4923 void *buf, int buf_len) 4924 4925 { 4926 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4927 struct ceph_osd_request *req; 4928 struct page **pages; 4929 int num_pages = calc_pages_for(0, buf_len); 4930 int ret; 4931 4932 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4933 if (!req) 4934 return -ENOMEM; 4935 4936 ceph_oid_copy(&req->r_base_oid, oid); 4937 ceph_oloc_copy(&req->r_base_oloc, oloc); 4938 req->r_flags = CEPH_OSD_FLAG_READ; 4939 4940 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4941 if (IS_ERR(pages)) { 4942 ret = PTR_ERR(pages); 4943 goto out_req; 4944 } 4945 4946 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4947 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4948 true); 4949 4950 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4951 if (ret) 4952 goto out_req; 4953 4954 ceph_osdc_start_request(osdc, req, false); 4955 ret = ceph_osdc_wait_request(osdc, req); 4956 if (ret >= 0) 4957 ceph_copy_from_page_vector(pages, buf, 0, ret); 4958 4959 out_req: 4960 ceph_osdc_put_request(req); 4961 return ret; 4962 } 4963 4964 /* 4965 * Read the complete header for the given rbd device. On successful 4966 * return, the rbd_dev->header field will contain up-to-date 4967 * information about the image. 4968 */ 4969 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4970 { 4971 struct rbd_image_header_ondisk *ondisk = NULL; 4972 u32 snap_count = 0; 4973 u64 names_size = 0; 4974 u32 want_count; 4975 int ret; 4976 4977 /* 4978 * The complete header will include an array of its 64-bit 4979 * snapshot ids, followed by the names of those snapshots as 4980 * a contiguous block of NUL-terminated strings. Note that 4981 * the number of snapshots could change by the time we read 4982 * it in, in which case we re-read it. 4983 */ 4984 do { 4985 size_t size; 4986 4987 kfree(ondisk); 4988 4989 size = sizeof (*ondisk); 4990 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4991 size += names_size; 4992 ondisk = kmalloc(size, GFP_KERNEL); 4993 if (!ondisk) 4994 return -ENOMEM; 4995 4996 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4997 &rbd_dev->header_oloc, ondisk, size); 4998 if (ret < 0) 4999 goto out; 5000 if ((size_t)ret < size) { 5001 ret = -ENXIO; 5002 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 5003 size, ret); 5004 goto out; 5005 } 5006 if (!rbd_dev_ondisk_valid(ondisk)) { 5007 ret = -ENXIO; 5008 rbd_warn(rbd_dev, "invalid header"); 5009 goto out; 5010 } 5011 5012 names_size = le64_to_cpu(ondisk->snap_names_len); 5013 want_count = snap_count; 5014 snap_count = le32_to_cpu(ondisk->snap_count); 5015 } while (snap_count != want_count); 5016 5017 ret = rbd_header_from_disk(rbd_dev, ondisk); 5018 out: 5019 kfree(ondisk); 5020 5021 return ret; 5022 } 5023 5024 /* 5025 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 5026 * has disappeared from the (just updated) snapshot context. 5027 */ 5028 static void rbd_exists_validate(struct rbd_device *rbd_dev) 5029 { 5030 u64 snap_id; 5031 5032 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 5033 return; 5034 5035 snap_id = rbd_dev->spec->snap_id; 5036 if (snap_id == CEPH_NOSNAP) 5037 return; 5038 5039 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 5040 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5041 } 5042 5043 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 5044 { 5045 sector_t size; 5046 5047 /* 5048 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 5049 * try to update its size. If REMOVING is set, updating size 5050 * is just useless work since the device can't be opened. 5051 */ 5052 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 5053 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 5054 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 5055 dout("setting size to %llu sectors", (unsigned long long)size); 5056 set_capacity(rbd_dev->disk, size); 5057 revalidate_disk(rbd_dev->disk); 5058 } 5059 } 5060 5061 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 5062 { 5063 u64 mapping_size; 5064 int ret; 5065 5066 down_write(&rbd_dev->header_rwsem); 5067 mapping_size = rbd_dev->mapping.size; 5068 5069 ret = rbd_dev_header_info(rbd_dev); 5070 if (ret) 5071 goto out; 5072 5073 /* 5074 * If there is a parent, see if it has disappeared due to the 5075 * mapped image getting flattened. 5076 */ 5077 if (rbd_dev->parent) { 5078 ret = rbd_dev_v2_parent_info(rbd_dev); 5079 if (ret) 5080 goto out; 5081 } 5082 5083 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 5084 rbd_dev->mapping.size = rbd_dev->header.image_size; 5085 } else { 5086 /* validate mapped snapshot's EXISTS flag */ 5087 rbd_exists_validate(rbd_dev); 5088 } 5089 5090 out: 5091 up_write(&rbd_dev->header_rwsem); 5092 if (!ret && mapping_size != rbd_dev->mapping.size) 5093 rbd_dev_update_size(rbd_dev); 5094 5095 return ret; 5096 } 5097 5098 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 5099 unsigned int hctx_idx, unsigned int numa_node) 5100 { 5101 struct work_struct *work = blk_mq_rq_to_pdu(rq); 5102 5103 INIT_WORK(work, rbd_queue_workfn); 5104 return 0; 5105 } 5106 5107 static const struct blk_mq_ops rbd_mq_ops = { 5108 .queue_rq = rbd_queue_rq, 5109 .init_request = rbd_init_request, 5110 }; 5111 5112 static int rbd_init_disk(struct rbd_device *rbd_dev) 5113 { 5114 struct gendisk *disk; 5115 struct request_queue *q; 5116 unsigned int objset_bytes = 5117 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 5118 int err; 5119 5120 /* create gendisk info */ 5121 disk = alloc_disk(single_major ? 5122 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 5123 RBD_MINORS_PER_MAJOR); 5124 if (!disk) 5125 return -ENOMEM; 5126 5127 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 5128 rbd_dev->dev_id); 5129 disk->major = rbd_dev->major; 5130 disk->first_minor = rbd_dev->minor; 5131 if (single_major) 5132 disk->flags |= GENHD_FL_EXT_DEVT; 5133 disk->fops = &rbd_bd_ops; 5134 disk->private_data = rbd_dev; 5135 5136 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 5137 rbd_dev->tag_set.ops = &rbd_mq_ops; 5138 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 5139 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 5140 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 5141 rbd_dev->tag_set.nr_hw_queues = 1; 5142 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 5143 5144 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 5145 if (err) 5146 goto out_disk; 5147 5148 q = blk_mq_init_queue(&rbd_dev->tag_set); 5149 if (IS_ERR(q)) { 5150 err = PTR_ERR(q); 5151 goto out_tag_set; 5152 } 5153 5154 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 5155 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 5156 5157 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 5158 q->limits.max_sectors = queue_max_hw_sectors(q); 5159 blk_queue_max_segments(q, USHRT_MAX); 5160 blk_queue_max_segment_size(q, UINT_MAX); 5161 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 5162 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 5163 5164 if (rbd_dev->opts->trim) { 5165 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 5166 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 5167 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 5168 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 5169 } 5170 5171 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 5172 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 5173 5174 /* 5175 * disk_release() expects a queue ref from add_disk() and will 5176 * put it. Hold an extra ref until add_disk() is called. 5177 */ 5178 WARN_ON(!blk_get_queue(q)); 5179 disk->queue = q; 5180 q->queuedata = rbd_dev; 5181 5182 rbd_dev->disk = disk; 5183 5184 return 0; 5185 out_tag_set: 5186 blk_mq_free_tag_set(&rbd_dev->tag_set); 5187 out_disk: 5188 put_disk(disk); 5189 return err; 5190 } 5191 5192 /* 5193 sysfs 5194 */ 5195 5196 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5197 { 5198 return container_of(dev, struct rbd_device, dev); 5199 } 5200 5201 static ssize_t rbd_size_show(struct device *dev, 5202 struct device_attribute *attr, char *buf) 5203 { 5204 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5205 5206 return sprintf(buf, "%llu\n", 5207 (unsigned long long)rbd_dev->mapping.size); 5208 } 5209 5210 /* 5211 * Note this shows the features for whatever's mapped, which is not 5212 * necessarily the base image. 5213 */ 5214 static ssize_t rbd_features_show(struct device *dev, 5215 struct device_attribute *attr, char *buf) 5216 { 5217 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5218 5219 return sprintf(buf, "0x%016llx\n", 5220 (unsigned long long)rbd_dev->mapping.features); 5221 } 5222 5223 static ssize_t rbd_major_show(struct device *dev, 5224 struct device_attribute *attr, char *buf) 5225 { 5226 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5227 5228 if (rbd_dev->major) 5229 return sprintf(buf, "%d\n", rbd_dev->major); 5230 5231 return sprintf(buf, "(none)\n"); 5232 } 5233 5234 static ssize_t rbd_minor_show(struct device *dev, 5235 struct device_attribute *attr, char *buf) 5236 { 5237 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5238 5239 return sprintf(buf, "%d\n", rbd_dev->minor); 5240 } 5241 5242 static ssize_t rbd_client_addr_show(struct device *dev, 5243 struct device_attribute *attr, char *buf) 5244 { 5245 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5246 struct ceph_entity_addr *client_addr = 5247 ceph_client_addr(rbd_dev->rbd_client->client); 5248 5249 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5250 le32_to_cpu(client_addr->nonce)); 5251 } 5252 5253 static ssize_t rbd_client_id_show(struct device *dev, 5254 struct device_attribute *attr, char *buf) 5255 { 5256 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5257 5258 return sprintf(buf, "client%lld\n", 5259 ceph_client_gid(rbd_dev->rbd_client->client)); 5260 } 5261 5262 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5263 struct device_attribute *attr, char *buf) 5264 { 5265 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5266 5267 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5268 } 5269 5270 static ssize_t rbd_config_info_show(struct device *dev, 5271 struct device_attribute *attr, char *buf) 5272 { 5273 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5274 5275 return sprintf(buf, "%s\n", rbd_dev->config_info); 5276 } 5277 5278 static ssize_t rbd_pool_show(struct device *dev, 5279 struct device_attribute *attr, char *buf) 5280 { 5281 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5282 5283 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5284 } 5285 5286 static ssize_t rbd_pool_id_show(struct device *dev, 5287 struct device_attribute *attr, char *buf) 5288 { 5289 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5290 5291 return sprintf(buf, "%llu\n", 5292 (unsigned long long) rbd_dev->spec->pool_id); 5293 } 5294 5295 static ssize_t rbd_pool_ns_show(struct device *dev, 5296 struct device_attribute *attr, char *buf) 5297 { 5298 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5299 5300 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5301 } 5302 5303 static ssize_t rbd_name_show(struct device *dev, 5304 struct device_attribute *attr, char *buf) 5305 { 5306 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5307 5308 if (rbd_dev->spec->image_name) 5309 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5310 5311 return sprintf(buf, "(unknown)\n"); 5312 } 5313 5314 static ssize_t rbd_image_id_show(struct device *dev, 5315 struct device_attribute *attr, char *buf) 5316 { 5317 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5318 5319 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5320 } 5321 5322 /* 5323 * Shows the name of the currently-mapped snapshot (or 5324 * RBD_SNAP_HEAD_NAME for the base image). 5325 */ 5326 static ssize_t rbd_snap_show(struct device *dev, 5327 struct device_attribute *attr, 5328 char *buf) 5329 { 5330 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5331 5332 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5333 } 5334 5335 static ssize_t rbd_snap_id_show(struct device *dev, 5336 struct device_attribute *attr, char *buf) 5337 { 5338 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5339 5340 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5341 } 5342 5343 /* 5344 * For a v2 image, shows the chain of parent images, separated by empty 5345 * lines. For v1 images or if there is no parent, shows "(no parent 5346 * image)". 5347 */ 5348 static ssize_t rbd_parent_show(struct device *dev, 5349 struct device_attribute *attr, 5350 char *buf) 5351 { 5352 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5353 ssize_t count = 0; 5354 5355 if (!rbd_dev->parent) 5356 return sprintf(buf, "(no parent image)\n"); 5357 5358 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5359 struct rbd_spec *spec = rbd_dev->parent_spec; 5360 5361 count += sprintf(&buf[count], "%s" 5362 "pool_id %llu\npool_name %s\n" 5363 "pool_ns %s\n" 5364 "image_id %s\nimage_name %s\n" 5365 "snap_id %llu\nsnap_name %s\n" 5366 "overlap %llu\n", 5367 !count ? "" : "\n", /* first? */ 5368 spec->pool_id, spec->pool_name, 5369 spec->pool_ns ?: "", 5370 spec->image_id, spec->image_name ?: "(unknown)", 5371 spec->snap_id, spec->snap_name, 5372 rbd_dev->parent_overlap); 5373 } 5374 5375 return count; 5376 } 5377 5378 static ssize_t rbd_image_refresh(struct device *dev, 5379 struct device_attribute *attr, 5380 const char *buf, 5381 size_t size) 5382 { 5383 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5384 int ret; 5385 5386 ret = rbd_dev_refresh(rbd_dev); 5387 if (ret) 5388 return ret; 5389 5390 return size; 5391 } 5392 5393 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5394 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5395 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5396 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5397 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5398 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5399 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5400 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5401 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5402 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5403 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5404 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5405 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5406 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5407 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5408 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5409 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5410 5411 static struct attribute *rbd_attrs[] = { 5412 &dev_attr_size.attr, 5413 &dev_attr_features.attr, 5414 &dev_attr_major.attr, 5415 &dev_attr_minor.attr, 5416 &dev_attr_client_addr.attr, 5417 &dev_attr_client_id.attr, 5418 &dev_attr_cluster_fsid.attr, 5419 &dev_attr_config_info.attr, 5420 &dev_attr_pool.attr, 5421 &dev_attr_pool_id.attr, 5422 &dev_attr_pool_ns.attr, 5423 &dev_attr_name.attr, 5424 &dev_attr_image_id.attr, 5425 &dev_attr_current_snap.attr, 5426 &dev_attr_snap_id.attr, 5427 &dev_attr_parent.attr, 5428 &dev_attr_refresh.attr, 5429 NULL 5430 }; 5431 5432 static struct attribute_group rbd_attr_group = { 5433 .attrs = rbd_attrs, 5434 }; 5435 5436 static const struct attribute_group *rbd_attr_groups[] = { 5437 &rbd_attr_group, 5438 NULL 5439 }; 5440 5441 static void rbd_dev_release(struct device *dev); 5442 5443 static const struct device_type rbd_device_type = { 5444 .name = "rbd", 5445 .groups = rbd_attr_groups, 5446 .release = rbd_dev_release, 5447 }; 5448 5449 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5450 { 5451 kref_get(&spec->kref); 5452 5453 return spec; 5454 } 5455 5456 static void rbd_spec_free(struct kref *kref); 5457 static void rbd_spec_put(struct rbd_spec *spec) 5458 { 5459 if (spec) 5460 kref_put(&spec->kref, rbd_spec_free); 5461 } 5462 5463 static struct rbd_spec *rbd_spec_alloc(void) 5464 { 5465 struct rbd_spec *spec; 5466 5467 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5468 if (!spec) 5469 return NULL; 5470 5471 spec->pool_id = CEPH_NOPOOL; 5472 spec->snap_id = CEPH_NOSNAP; 5473 kref_init(&spec->kref); 5474 5475 return spec; 5476 } 5477 5478 static void rbd_spec_free(struct kref *kref) 5479 { 5480 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5481 5482 kfree(spec->pool_name); 5483 kfree(spec->pool_ns); 5484 kfree(spec->image_id); 5485 kfree(spec->image_name); 5486 kfree(spec->snap_name); 5487 kfree(spec); 5488 } 5489 5490 static void rbd_dev_free(struct rbd_device *rbd_dev) 5491 { 5492 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5493 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5494 5495 ceph_oid_destroy(&rbd_dev->header_oid); 5496 ceph_oloc_destroy(&rbd_dev->header_oloc); 5497 kfree(rbd_dev->config_info); 5498 5499 rbd_put_client(rbd_dev->rbd_client); 5500 rbd_spec_put(rbd_dev->spec); 5501 kfree(rbd_dev->opts); 5502 kfree(rbd_dev); 5503 } 5504 5505 static void rbd_dev_release(struct device *dev) 5506 { 5507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5508 bool need_put = !!rbd_dev->opts; 5509 5510 if (need_put) { 5511 destroy_workqueue(rbd_dev->task_wq); 5512 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5513 } 5514 5515 rbd_dev_free(rbd_dev); 5516 5517 /* 5518 * This is racy, but way better than putting module outside of 5519 * the release callback. The race window is pretty small, so 5520 * doing something similar to dm (dm-builtin.c) is overkill. 5521 */ 5522 if (need_put) 5523 module_put(THIS_MODULE); 5524 } 5525 5526 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 5527 struct rbd_spec *spec) 5528 { 5529 struct rbd_device *rbd_dev; 5530 5531 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5532 if (!rbd_dev) 5533 return NULL; 5534 5535 spin_lock_init(&rbd_dev->lock); 5536 INIT_LIST_HEAD(&rbd_dev->node); 5537 init_rwsem(&rbd_dev->header_rwsem); 5538 5539 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5540 ceph_oid_init(&rbd_dev->header_oid); 5541 rbd_dev->header_oloc.pool = spec->pool_id; 5542 if (spec->pool_ns) { 5543 WARN_ON(!*spec->pool_ns); 5544 rbd_dev->header_oloc.pool_ns = 5545 ceph_find_or_create_string(spec->pool_ns, 5546 strlen(spec->pool_ns)); 5547 } 5548 5549 mutex_init(&rbd_dev->watch_mutex); 5550 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5551 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5552 5553 init_rwsem(&rbd_dev->lock_rwsem); 5554 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5555 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5556 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5557 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5558 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5559 spin_lock_init(&rbd_dev->lock_lists_lock); 5560 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5561 INIT_LIST_HEAD(&rbd_dev->running_list); 5562 init_completion(&rbd_dev->acquire_wait); 5563 init_completion(&rbd_dev->releasing_wait); 5564 5565 spin_lock_init(&rbd_dev->object_map_lock); 5566 5567 rbd_dev->dev.bus = &rbd_bus_type; 5568 rbd_dev->dev.type = &rbd_device_type; 5569 rbd_dev->dev.parent = &rbd_root_dev; 5570 device_initialize(&rbd_dev->dev); 5571 5572 rbd_dev->rbd_client = rbdc; 5573 rbd_dev->spec = spec; 5574 5575 return rbd_dev; 5576 } 5577 5578 /* 5579 * Create a mapping rbd_dev. 5580 */ 5581 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5582 struct rbd_spec *spec, 5583 struct rbd_options *opts) 5584 { 5585 struct rbd_device *rbd_dev; 5586 5587 rbd_dev = __rbd_dev_create(rbdc, spec); 5588 if (!rbd_dev) 5589 return NULL; 5590 5591 rbd_dev->opts = opts; 5592 5593 /* get an id and fill in device name */ 5594 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5595 minor_to_rbd_dev_id(1 << MINORBITS), 5596 GFP_KERNEL); 5597 if (rbd_dev->dev_id < 0) 5598 goto fail_rbd_dev; 5599 5600 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5601 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5602 rbd_dev->name); 5603 if (!rbd_dev->task_wq) 5604 goto fail_dev_id; 5605 5606 /* we have a ref from do_rbd_add() */ 5607 __module_get(THIS_MODULE); 5608 5609 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5610 return rbd_dev; 5611 5612 fail_dev_id: 5613 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5614 fail_rbd_dev: 5615 rbd_dev_free(rbd_dev); 5616 return NULL; 5617 } 5618 5619 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5620 { 5621 if (rbd_dev) 5622 put_device(&rbd_dev->dev); 5623 } 5624 5625 /* 5626 * Get the size and object order for an image snapshot, or if 5627 * snap_id is CEPH_NOSNAP, gets this information for the base 5628 * image. 5629 */ 5630 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5631 u8 *order, u64 *snap_size) 5632 { 5633 __le64 snapid = cpu_to_le64(snap_id); 5634 int ret; 5635 struct { 5636 u8 order; 5637 __le64 size; 5638 } __attribute__ ((packed)) size_buf = { 0 }; 5639 5640 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5641 &rbd_dev->header_oloc, "get_size", 5642 &snapid, sizeof(snapid), 5643 &size_buf, sizeof(size_buf)); 5644 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5645 if (ret < 0) 5646 return ret; 5647 if (ret < sizeof (size_buf)) 5648 return -ERANGE; 5649 5650 if (order) { 5651 *order = size_buf.order; 5652 dout(" order %u", (unsigned int)*order); 5653 } 5654 *snap_size = le64_to_cpu(size_buf.size); 5655 5656 dout(" snap_id 0x%016llx snap_size = %llu\n", 5657 (unsigned long long)snap_id, 5658 (unsigned long long)*snap_size); 5659 5660 return 0; 5661 } 5662 5663 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 5664 { 5665 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 5666 &rbd_dev->header.obj_order, 5667 &rbd_dev->header.image_size); 5668 } 5669 5670 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5671 { 5672 void *reply_buf; 5673 int ret; 5674 void *p; 5675 5676 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 5677 if (!reply_buf) 5678 return -ENOMEM; 5679 5680 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5681 &rbd_dev->header_oloc, "get_object_prefix", 5682 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 5683 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5684 if (ret < 0) 5685 goto out; 5686 5687 p = reply_buf; 5688 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5689 p + ret, NULL, GFP_NOIO); 5690 ret = 0; 5691 5692 if (IS_ERR(rbd_dev->header.object_prefix)) { 5693 ret = PTR_ERR(rbd_dev->header.object_prefix); 5694 rbd_dev->header.object_prefix = NULL; 5695 } else { 5696 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5697 } 5698 out: 5699 kfree(reply_buf); 5700 5701 return ret; 5702 } 5703 5704 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5705 u64 *snap_features) 5706 { 5707 __le64 snapid = cpu_to_le64(snap_id); 5708 struct { 5709 __le64 features; 5710 __le64 incompat; 5711 } __attribute__ ((packed)) features_buf = { 0 }; 5712 u64 unsup; 5713 int ret; 5714 5715 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5716 &rbd_dev->header_oloc, "get_features", 5717 &snapid, sizeof(snapid), 5718 &features_buf, sizeof(features_buf)); 5719 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5720 if (ret < 0) 5721 return ret; 5722 if (ret < sizeof (features_buf)) 5723 return -ERANGE; 5724 5725 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5726 if (unsup) { 5727 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5728 unsup); 5729 return -ENXIO; 5730 } 5731 5732 *snap_features = le64_to_cpu(features_buf.features); 5733 5734 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5735 (unsigned long long)snap_id, 5736 (unsigned long long)*snap_features, 5737 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5738 5739 return 0; 5740 } 5741 5742 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5743 { 5744 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5745 &rbd_dev->header.features); 5746 } 5747 5748 /* 5749 * These are generic image flags, but since they are used only for 5750 * object map, store them in rbd_dev->object_map_flags. 5751 * 5752 * For the same reason, this function is called only on object map 5753 * (re)load and not on header refresh. 5754 */ 5755 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5756 { 5757 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5758 __le64 flags; 5759 int ret; 5760 5761 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5762 &rbd_dev->header_oloc, "get_flags", 5763 &snapid, sizeof(snapid), 5764 &flags, sizeof(flags)); 5765 if (ret < 0) 5766 return ret; 5767 if (ret < sizeof(flags)) 5768 return -EBADMSG; 5769 5770 rbd_dev->object_map_flags = le64_to_cpu(flags); 5771 return 0; 5772 } 5773 5774 struct parent_image_info { 5775 u64 pool_id; 5776 const char *pool_ns; 5777 const char *image_id; 5778 u64 snap_id; 5779 5780 bool has_overlap; 5781 u64 overlap; 5782 }; 5783 5784 /* 5785 * The caller is responsible for @pii. 5786 */ 5787 static int decode_parent_image_spec(void **p, void *end, 5788 struct parent_image_info *pii) 5789 { 5790 u8 struct_v; 5791 u32 struct_len; 5792 int ret; 5793 5794 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5795 &struct_v, &struct_len); 5796 if (ret) 5797 return ret; 5798 5799 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5800 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5801 if (IS_ERR(pii->pool_ns)) { 5802 ret = PTR_ERR(pii->pool_ns); 5803 pii->pool_ns = NULL; 5804 return ret; 5805 } 5806 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5807 if (IS_ERR(pii->image_id)) { 5808 ret = PTR_ERR(pii->image_id); 5809 pii->image_id = NULL; 5810 return ret; 5811 } 5812 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5813 return 0; 5814 5815 e_inval: 5816 return -EINVAL; 5817 } 5818 5819 static int __get_parent_info(struct rbd_device *rbd_dev, 5820 struct page *req_page, 5821 struct page *reply_page, 5822 struct parent_image_info *pii) 5823 { 5824 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5825 size_t reply_len = PAGE_SIZE; 5826 void *p, *end; 5827 int ret; 5828 5829 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5830 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5831 req_page, sizeof(u64), &reply_page, &reply_len); 5832 if (ret) 5833 return ret == -EOPNOTSUPP ? 1 : ret; 5834 5835 p = page_address(reply_page); 5836 end = p + reply_len; 5837 ret = decode_parent_image_spec(&p, end, pii); 5838 if (ret) 5839 return ret; 5840 5841 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5842 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5843 req_page, sizeof(u64), &reply_page, &reply_len); 5844 if (ret) 5845 return ret; 5846 5847 p = page_address(reply_page); 5848 end = p + reply_len; 5849 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5850 if (pii->has_overlap) 5851 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5852 5853 return 0; 5854 5855 e_inval: 5856 return -EINVAL; 5857 } 5858 5859 /* 5860 * The caller is responsible for @pii. 5861 */ 5862 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5863 struct page *req_page, 5864 struct page *reply_page, 5865 struct parent_image_info *pii) 5866 { 5867 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5868 size_t reply_len = PAGE_SIZE; 5869 void *p, *end; 5870 int ret; 5871 5872 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5873 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5874 req_page, sizeof(u64), &reply_page, &reply_len); 5875 if (ret) 5876 return ret; 5877 5878 p = page_address(reply_page); 5879 end = p + reply_len; 5880 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5881 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5882 if (IS_ERR(pii->image_id)) { 5883 ret = PTR_ERR(pii->image_id); 5884 pii->image_id = NULL; 5885 return ret; 5886 } 5887 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5888 pii->has_overlap = true; 5889 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5890 5891 return 0; 5892 5893 e_inval: 5894 return -EINVAL; 5895 } 5896 5897 static int get_parent_info(struct rbd_device *rbd_dev, 5898 struct parent_image_info *pii) 5899 { 5900 struct page *req_page, *reply_page; 5901 void *p; 5902 int ret; 5903 5904 req_page = alloc_page(GFP_KERNEL); 5905 if (!req_page) 5906 return -ENOMEM; 5907 5908 reply_page = alloc_page(GFP_KERNEL); 5909 if (!reply_page) { 5910 __free_page(req_page); 5911 return -ENOMEM; 5912 } 5913 5914 p = page_address(req_page); 5915 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5916 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5917 if (ret > 0) 5918 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5919 pii); 5920 5921 __free_page(req_page); 5922 __free_page(reply_page); 5923 return ret; 5924 } 5925 5926 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5927 { 5928 struct rbd_spec *parent_spec; 5929 struct parent_image_info pii = { 0 }; 5930 int ret; 5931 5932 parent_spec = rbd_spec_alloc(); 5933 if (!parent_spec) 5934 return -ENOMEM; 5935 5936 ret = get_parent_info(rbd_dev, &pii); 5937 if (ret) 5938 goto out_err; 5939 5940 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5941 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 5942 pii.has_overlap, pii.overlap); 5943 5944 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 5945 /* 5946 * Either the parent never existed, or we have 5947 * record of it but the image got flattened so it no 5948 * longer has a parent. When the parent of a 5949 * layered image disappears we immediately set the 5950 * overlap to 0. The effect of this is that all new 5951 * requests will be treated as if the image had no 5952 * parent. 5953 * 5954 * If !pii.has_overlap, the parent image spec is not 5955 * applicable. It's there to avoid duplication in each 5956 * snapshot record. 5957 */ 5958 if (rbd_dev->parent_overlap) { 5959 rbd_dev->parent_overlap = 0; 5960 rbd_dev_parent_put(rbd_dev); 5961 pr_info("%s: clone image has been flattened\n", 5962 rbd_dev->disk->disk_name); 5963 } 5964 5965 goto out; /* No parent? No problem. */ 5966 } 5967 5968 /* The ceph file layout needs to fit pool id in 32 bits */ 5969 5970 ret = -EIO; 5971 if (pii.pool_id > (u64)U32_MAX) { 5972 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5973 (unsigned long long)pii.pool_id, U32_MAX); 5974 goto out_err; 5975 } 5976 5977 /* 5978 * The parent won't change (except when the clone is 5979 * flattened, already handled that). So we only need to 5980 * record the parent spec we have not already done so. 5981 */ 5982 if (!rbd_dev->parent_spec) { 5983 parent_spec->pool_id = pii.pool_id; 5984 if (pii.pool_ns && *pii.pool_ns) { 5985 parent_spec->pool_ns = pii.pool_ns; 5986 pii.pool_ns = NULL; 5987 } 5988 parent_spec->image_id = pii.image_id; 5989 pii.image_id = NULL; 5990 parent_spec->snap_id = pii.snap_id; 5991 5992 rbd_dev->parent_spec = parent_spec; 5993 parent_spec = NULL; /* rbd_dev now owns this */ 5994 } 5995 5996 /* 5997 * We always update the parent overlap. If it's zero we issue 5998 * a warning, as we will proceed as if there was no parent. 5999 */ 6000 if (!pii.overlap) { 6001 if (parent_spec) { 6002 /* refresh, careful to warn just once */ 6003 if (rbd_dev->parent_overlap) 6004 rbd_warn(rbd_dev, 6005 "clone now standalone (overlap became 0)"); 6006 } else { 6007 /* initial probe */ 6008 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 6009 } 6010 } 6011 rbd_dev->parent_overlap = pii.overlap; 6012 6013 out: 6014 ret = 0; 6015 out_err: 6016 kfree(pii.pool_ns); 6017 kfree(pii.image_id); 6018 rbd_spec_put(parent_spec); 6019 return ret; 6020 } 6021 6022 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 6023 { 6024 struct { 6025 __le64 stripe_unit; 6026 __le64 stripe_count; 6027 } __attribute__ ((packed)) striping_info_buf = { 0 }; 6028 size_t size = sizeof (striping_info_buf); 6029 void *p; 6030 int ret; 6031 6032 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6033 &rbd_dev->header_oloc, "get_stripe_unit_count", 6034 NULL, 0, &striping_info_buf, size); 6035 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6036 if (ret < 0) 6037 return ret; 6038 if (ret < size) 6039 return -ERANGE; 6040 6041 p = &striping_info_buf; 6042 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 6043 rbd_dev->header.stripe_count = ceph_decode_64(&p); 6044 return 0; 6045 } 6046 6047 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 6048 { 6049 __le64 data_pool_id; 6050 int ret; 6051 6052 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6053 &rbd_dev->header_oloc, "get_data_pool", 6054 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 6055 if (ret < 0) 6056 return ret; 6057 if (ret < sizeof(data_pool_id)) 6058 return -EBADMSG; 6059 6060 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 6061 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 6062 return 0; 6063 } 6064 6065 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 6066 { 6067 CEPH_DEFINE_OID_ONSTACK(oid); 6068 size_t image_id_size; 6069 char *image_id; 6070 void *p; 6071 void *end; 6072 size_t size; 6073 void *reply_buf = NULL; 6074 size_t len = 0; 6075 char *image_name = NULL; 6076 int ret; 6077 6078 rbd_assert(!rbd_dev->spec->image_name); 6079 6080 len = strlen(rbd_dev->spec->image_id); 6081 image_id_size = sizeof (__le32) + len; 6082 image_id = kmalloc(image_id_size, GFP_KERNEL); 6083 if (!image_id) 6084 return NULL; 6085 6086 p = image_id; 6087 end = image_id + image_id_size; 6088 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 6089 6090 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 6091 reply_buf = kmalloc(size, GFP_KERNEL); 6092 if (!reply_buf) 6093 goto out; 6094 6095 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 6096 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6097 "dir_get_name", image_id, image_id_size, 6098 reply_buf, size); 6099 if (ret < 0) 6100 goto out; 6101 p = reply_buf; 6102 end = reply_buf + ret; 6103 6104 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 6105 if (IS_ERR(image_name)) 6106 image_name = NULL; 6107 else 6108 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 6109 out: 6110 kfree(reply_buf); 6111 kfree(image_id); 6112 6113 return image_name; 6114 } 6115 6116 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 6117 { 6118 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 6119 const char *snap_name; 6120 u32 which = 0; 6121 6122 /* Skip over names until we find the one we are looking for */ 6123 6124 snap_name = rbd_dev->header.snap_names; 6125 while (which < snapc->num_snaps) { 6126 if (!strcmp(name, snap_name)) 6127 return snapc->snaps[which]; 6128 snap_name += strlen(snap_name) + 1; 6129 which++; 6130 } 6131 return CEPH_NOSNAP; 6132 } 6133 6134 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 6135 { 6136 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 6137 u32 which; 6138 bool found = false; 6139 u64 snap_id; 6140 6141 for (which = 0; !found && which < snapc->num_snaps; which++) { 6142 const char *snap_name; 6143 6144 snap_id = snapc->snaps[which]; 6145 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 6146 if (IS_ERR(snap_name)) { 6147 /* ignore no-longer existing snapshots */ 6148 if (PTR_ERR(snap_name) == -ENOENT) 6149 continue; 6150 else 6151 break; 6152 } 6153 found = !strcmp(name, snap_name); 6154 kfree(snap_name); 6155 } 6156 return found ? snap_id : CEPH_NOSNAP; 6157 } 6158 6159 /* 6160 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 6161 * no snapshot by that name is found, or if an error occurs. 6162 */ 6163 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 6164 { 6165 if (rbd_dev->image_format == 1) 6166 return rbd_v1_snap_id_by_name(rbd_dev, name); 6167 6168 return rbd_v2_snap_id_by_name(rbd_dev, name); 6169 } 6170 6171 /* 6172 * An image being mapped will have everything but the snap id. 6173 */ 6174 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 6175 { 6176 struct rbd_spec *spec = rbd_dev->spec; 6177 6178 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 6179 rbd_assert(spec->image_id && spec->image_name); 6180 rbd_assert(spec->snap_name); 6181 6182 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 6183 u64 snap_id; 6184 6185 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 6186 if (snap_id == CEPH_NOSNAP) 6187 return -ENOENT; 6188 6189 spec->snap_id = snap_id; 6190 } else { 6191 spec->snap_id = CEPH_NOSNAP; 6192 } 6193 6194 return 0; 6195 } 6196 6197 /* 6198 * A parent image will have all ids but none of the names. 6199 * 6200 * All names in an rbd spec are dynamically allocated. It's OK if we 6201 * can't figure out the name for an image id. 6202 */ 6203 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6204 { 6205 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6206 struct rbd_spec *spec = rbd_dev->spec; 6207 const char *pool_name; 6208 const char *image_name; 6209 const char *snap_name; 6210 int ret; 6211 6212 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6213 rbd_assert(spec->image_id); 6214 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6215 6216 /* Get the pool name; we have to make our own copy of this */ 6217 6218 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6219 if (!pool_name) { 6220 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6221 return -EIO; 6222 } 6223 pool_name = kstrdup(pool_name, GFP_KERNEL); 6224 if (!pool_name) 6225 return -ENOMEM; 6226 6227 /* Fetch the image name; tolerate failure here */ 6228 6229 image_name = rbd_dev_image_name(rbd_dev); 6230 if (!image_name) 6231 rbd_warn(rbd_dev, "unable to get image name"); 6232 6233 /* Fetch the snapshot name */ 6234 6235 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6236 if (IS_ERR(snap_name)) { 6237 ret = PTR_ERR(snap_name); 6238 goto out_err; 6239 } 6240 6241 spec->pool_name = pool_name; 6242 spec->image_name = image_name; 6243 spec->snap_name = snap_name; 6244 6245 return 0; 6246 6247 out_err: 6248 kfree(image_name); 6249 kfree(pool_name); 6250 return ret; 6251 } 6252 6253 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 6254 { 6255 size_t size; 6256 int ret; 6257 void *reply_buf; 6258 void *p; 6259 void *end; 6260 u64 seq; 6261 u32 snap_count; 6262 struct ceph_snap_context *snapc; 6263 u32 i; 6264 6265 /* 6266 * We'll need room for the seq value (maximum snapshot id), 6267 * snapshot count, and array of that many snapshot ids. 6268 * For now we have a fixed upper limit on the number we're 6269 * prepared to receive. 6270 */ 6271 size = sizeof (__le64) + sizeof (__le32) + 6272 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6273 reply_buf = kzalloc(size, GFP_KERNEL); 6274 if (!reply_buf) 6275 return -ENOMEM; 6276 6277 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6278 &rbd_dev->header_oloc, "get_snapcontext", 6279 NULL, 0, reply_buf, size); 6280 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6281 if (ret < 0) 6282 goto out; 6283 6284 p = reply_buf; 6285 end = reply_buf + ret; 6286 ret = -ERANGE; 6287 ceph_decode_64_safe(&p, end, seq, out); 6288 ceph_decode_32_safe(&p, end, snap_count, out); 6289 6290 /* 6291 * Make sure the reported number of snapshot ids wouldn't go 6292 * beyond the end of our buffer. But before checking that, 6293 * make sure the computed size of the snapshot context we 6294 * allocate is representable in a size_t. 6295 */ 6296 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6297 / sizeof (u64)) { 6298 ret = -EINVAL; 6299 goto out; 6300 } 6301 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6302 goto out; 6303 ret = 0; 6304 6305 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6306 if (!snapc) { 6307 ret = -ENOMEM; 6308 goto out; 6309 } 6310 snapc->seq = seq; 6311 for (i = 0; i < snap_count; i++) 6312 snapc->snaps[i] = ceph_decode_64(&p); 6313 6314 ceph_put_snap_context(rbd_dev->header.snapc); 6315 rbd_dev->header.snapc = snapc; 6316 6317 dout(" snap context seq = %llu, snap_count = %u\n", 6318 (unsigned long long)seq, (unsigned int)snap_count); 6319 out: 6320 kfree(reply_buf); 6321 6322 return ret; 6323 } 6324 6325 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6326 u64 snap_id) 6327 { 6328 size_t size; 6329 void *reply_buf; 6330 __le64 snapid; 6331 int ret; 6332 void *p; 6333 void *end; 6334 char *snap_name; 6335 6336 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6337 reply_buf = kmalloc(size, GFP_KERNEL); 6338 if (!reply_buf) 6339 return ERR_PTR(-ENOMEM); 6340 6341 snapid = cpu_to_le64(snap_id); 6342 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6343 &rbd_dev->header_oloc, "get_snapshot_name", 6344 &snapid, sizeof(snapid), reply_buf, size); 6345 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6346 if (ret < 0) { 6347 snap_name = ERR_PTR(ret); 6348 goto out; 6349 } 6350 6351 p = reply_buf; 6352 end = reply_buf + ret; 6353 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6354 if (IS_ERR(snap_name)) 6355 goto out; 6356 6357 dout(" snap_id 0x%016llx snap_name = %s\n", 6358 (unsigned long long)snap_id, snap_name); 6359 out: 6360 kfree(reply_buf); 6361 6362 return snap_name; 6363 } 6364 6365 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 6366 { 6367 bool first_time = rbd_dev->header.object_prefix == NULL; 6368 int ret; 6369 6370 ret = rbd_dev_v2_image_size(rbd_dev); 6371 if (ret) 6372 return ret; 6373 6374 if (first_time) { 6375 ret = rbd_dev_v2_header_onetime(rbd_dev); 6376 if (ret) 6377 return ret; 6378 } 6379 6380 ret = rbd_dev_v2_snap_context(rbd_dev); 6381 if (ret && first_time) { 6382 kfree(rbd_dev->header.object_prefix); 6383 rbd_dev->header.object_prefix = NULL; 6384 } 6385 6386 return ret; 6387 } 6388 6389 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 6390 { 6391 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6392 6393 if (rbd_dev->image_format == 1) 6394 return rbd_dev_v1_header_info(rbd_dev); 6395 6396 return rbd_dev_v2_header_info(rbd_dev); 6397 } 6398 6399 /* 6400 * Skips over white space at *buf, and updates *buf to point to the 6401 * first found non-space character (if any). Returns the length of 6402 * the token (string of non-white space characters) found. Note 6403 * that *buf must be terminated with '\0'. 6404 */ 6405 static inline size_t next_token(const char **buf) 6406 { 6407 /* 6408 * These are the characters that produce nonzero for 6409 * isspace() in the "C" and "POSIX" locales. 6410 */ 6411 const char *spaces = " \f\n\r\t\v"; 6412 6413 *buf += strspn(*buf, spaces); /* Find start of token */ 6414 6415 return strcspn(*buf, spaces); /* Return token length */ 6416 } 6417 6418 /* 6419 * Finds the next token in *buf, dynamically allocates a buffer big 6420 * enough to hold a copy of it, and copies the token into the new 6421 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6422 * that a duplicate buffer is created even for a zero-length token. 6423 * 6424 * Returns a pointer to the newly-allocated duplicate, or a null 6425 * pointer if memory for the duplicate was not available. If 6426 * the lenp argument is a non-null pointer, the length of the token 6427 * (not including the '\0') is returned in *lenp. 6428 * 6429 * If successful, the *buf pointer will be updated to point beyond 6430 * the end of the found token. 6431 * 6432 * Note: uses GFP_KERNEL for allocation. 6433 */ 6434 static inline char *dup_token(const char **buf, size_t *lenp) 6435 { 6436 char *dup; 6437 size_t len; 6438 6439 len = next_token(buf); 6440 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6441 if (!dup) 6442 return NULL; 6443 *(dup + len) = '\0'; 6444 *buf += len; 6445 6446 if (lenp) 6447 *lenp = len; 6448 6449 return dup; 6450 } 6451 6452 /* 6453 * Parse the options provided for an "rbd add" (i.e., rbd image 6454 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6455 * and the data written is passed here via a NUL-terminated buffer. 6456 * Returns 0 if successful or an error code otherwise. 6457 * 6458 * The information extracted from these options is recorded in 6459 * the other parameters which return dynamically-allocated 6460 * structures: 6461 * ceph_opts 6462 * The address of a pointer that will refer to a ceph options 6463 * structure. Caller must release the returned pointer using 6464 * ceph_destroy_options() when it is no longer needed. 6465 * rbd_opts 6466 * Address of an rbd options pointer. Fully initialized by 6467 * this function; caller must release with kfree(). 6468 * spec 6469 * Address of an rbd image specification pointer. Fully 6470 * initialized by this function based on parsed options. 6471 * Caller must release with rbd_spec_put(). 6472 * 6473 * The options passed take this form: 6474 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6475 * where: 6476 * <mon_addrs> 6477 * A comma-separated list of one or more monitor addresses. 6478 * A monitor address is an ip address, optionally followed 6479 * by a port number (separated by a colon). 6480 * I.e.: ip1[:port1][,ip2[:port2]...] 6481 * <options> 6482 * A comma-separated list of ceph and/or rbd options. 6483 * <pool_name> 6484 * The name of the rados pool containing the rbd image. 6485 * <image_name> 6486 * The name of the image in that pool to map. 6487 * <snap_id> 6488 * An optional snapshot id. If provided, the mapping will 6489 * present data from the image at the time that snapshot was 6490 * created. The image head is used if no snapshot id is 6491 * provided. Snapshot mappings are always read-only. 6492 */ 6493 static int rbd_add_parse_args(const char *buf, 6494 struct ceph_options **ceph_opts, 6495 struct rbd_options **opts, 6496 struct rbd_spec **rbd_spec) 6497 { 6498 size_t len; 6499 char *options; 6500 const char *mon_addrs; 6501 char *snap_name; 6502 size_t mon_addrs_size; 6503 struct parse_rbd_opts_ctx pctx = { 0 }; 6504 struct ceph_options *copts; 6505 int ret; 6506 6507 /* The first four tokens are required */ 6508 6509 len = next_token(&buf); 6510 if (!len) { 6511 rbd_warn(NULL, "no monitor address(es) provided"); 6512 return -EINVAL; 6513 } 6514 mon_addrs = buf; 6515 mon_addrs_size = len + 1; 6516 buf += len; 6517 6518 ret = -EINVAL; 6519 options = dup_token(&buf, NULL); 6520 if (!options) 6521 return -ENOMEM; 6522 if (!*options) { 6523 rbd_warn(NULL, "no options provided"); 6524 goto out_err; 6525 } 6526 6527 pctx.spec = rbd_spec_alloc(); 6528 if (!pctx.spec) 6529 goto out_mem; 6530 6531 pctx.spec->pool_name = dup_token(&buf, NULL); 6532 if (!pctx.spec->pool_name) 6533 goto out_mem; 6534 if (!*pctx.spec->pool_name) { 6535 rbd_warn(NULL, "no pool name provided"); 6536 goto out_err; 6537 } 6538 6539 pctx.spec->image_name = dup_token(&buf, NULL); 6540 if (!pctx.spec->image_name) 6541 goto out_mem; 6542 if (!*pctx.spec->image_name) { 6543 rbd_warn(NULL, "no image name provided"); 6544 goto out_err; 6545 } 6546 6547 /* 6548 * Snapshot name is optional; default is to use "-" 6549 * (indicating the head/no snapshot). 6550 */ 6551 len = next_token(&buf); 6552 if (!len) { 6553 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6554 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6555 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6556 ret = -ENAMETOOLONG; 6557 goto out_err; 6558 } 6559 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6560 if (!snap_name) 6561 goto out_mem; 6562 *(snap_name + len) = '\0'; 6563 pctx.spec->snap_name = snap_name; 6564 6565 /* Initialize all rbd options to the defaults */ 6566 6567 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6568 if (!pctx.opts) 6569 goto out_mem; 6570 6571 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6572 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6573 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6574 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6575 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6576 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6577 pctx.opts->trim = RBD_TRIM_DEFAULT; 6578 6579 copts = ceph_parse_options(options, mon_addrs, 6580 mon_addrs + mon_addrs_size - 1, 6581 parse_rbd_opts_token, &pctx); 6582 if (IS_ERR(copts)) { 6583 ret = PTR_ERR(copts); 6584 goto out_err; 6585 } 6586 kfree(options); 6587 6588 *ceph_opts = copts; 6589 *opts = pctx.opts; 6590 *rbd_spec = pctx.spec; 6591 6592 return 0; 6593 out_mem: 6594 ret = -ENOMEM; 6595 out_err: 6596 kfree(pctx.opts); 6597 rbd_spec_put(pctx.spec); 6598 kfree(options); 6599 6600 return ret; 6601 } 6602 6603 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6604 { 6605 down_write(&rbd_dev->lock_rwsem); 6606 if (__rbd_is_lock_owner(rbd_dev)) 6607 __rbd_release_lock(rbd_dev); 6608 up_write(&rbd_dev->lock_rwsem); 6609 } 6610 6611 /* 6612 * If the wait is interrupted, an error is returned even if the lock 6613 * was successfully acquired. rbd_dev_image_unlock() will release it 6614 * if needed. 6615 */ 6616 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6617 { 6618 long ret; 6619 6620 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6621 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6622 return 0; 6623 6624 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6625 return -EINVAL; 6626 } 6627 6628 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6629 return 0; 6630 6631 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6632 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6633 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6634 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6635 if (ret > 0) 6636 ret = rbd_dev->acquire_err; 6637 else if (!ret) 6638 ret = -ETIMEDOUT; 6639 6640 if (ret) { 6641 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret); 6642 return ret; 6643 } 6644 6645 /* 6646 * The lock may have been released by now, unless automatic lock 6647 * transitions are disabled. 6648 */ 6649 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6650 return 0; 6651 } 6652 6653 /* 6654 * An rbd format 2 image has a unique identifier, distinct from the 6655 * name given to it by the user. Internally, that identifier is 6656 * what's used to specify the names of objects related to the image. 6657 * 6658 * A special "rbd id" object is used to map an rbd image name to its 6659 * id. If that object doesn't exist, then there is no v2 rbd image 6660 * with the supplied name. 6661 * 6662 * This function will record the given rbd_dev's image_id field if 6663 * it can be determined, and in that case will return 0. If any 6664 * errors occur a negative errno will be returned and the rbd_dev's 6665 * image_id field will be unchanged (and should be NULL). 6666 */ 6667 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6668 { 6669 int ret; 6670 size_t size; 6671 CEPH_DEFINE_OID_ONSTACK(oid); 6672 void *response; 6673 char *image_id; 6674 6675 /* 6676 * When probing a parent image, the image id is already 6677 * known (and the image name likely is not). There's no 6678 * need to fetch the image id again in this case. We 6679 * do still need to set the image format though. 6680 */ 6681 if (rbd_dev->spec->image_id) { 6682 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6683 6684 return 0; 6685 } 6686 6687 /* 6688 * First, see if the format 2 image id file exists, and if 6689 * so, get the image's persistent id from it. 6690 */ 6691 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6692 rbd_dev->spec->image_name); 6693 if (ret) 6694 return ret; 6695 6696 dout("rbd id object name is %s\n", oid.name); 6697 6698 /* Response will be an encoded string, which includes a length */ 6699 6700 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6701 response = kzalloc(size, GFP_NOIO); 6702 if (!response) { 6703 ret = -ENOMEM; 6704 goto out; 6705 } 6706 6707 /* If it doesn't exist we'll assume it's a format 1 image */ 6708 6709 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6710 "get_id", NULL, 0, 6711 response, RBD_IMAGE_ID_LEN_MAX); 6712 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6713 if (ret == -ENOENT) { 6714 image_id = kstrdup("", GFP_KERNEL); 6715 ret = image_id ? 0 : -ENOMEM; 6716 if (!ret) 6717 rbd_dev->image_format = 1; 6718 } else if (ret >= 0) { 6719 void *p = response; 6720 6721 image_id = ceph_extract_encoded_string(&p, p + ret, 6722 NULL, GFP_NOIO); 6723 ret = PTR_ERR_OR_ZERO(image_id); 6724 if (!ret) 6725 rbd_dev->image_format = 2; 6726 } 6727 6728 if (!ret) { 6729 rbd_dev->spec->image_id = image_id; 6730 dout("image_id is %s\n", image_id); 6731 } 6732 out: 6733 kfree(response); 6734 ceph_oid_destroy(&oid); 6735 return ret; 6736 } 6737 6738 /* 6739 * Undo whatever state changes are made by v1 or v2 header info 6740 * call. 6741 */ 6742 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6743 { 6744 struct rbd_image_header *header; 6745 6746 rbd_dev_parent_put(rbd_dev); 6747 rbd_object_map_free(rbd_dev); 6748 rbd_dev_mapping_clear(rbd_dev); 6749 6750 /* Free dynamic fields from the header, then zero it out */ 6751 6752 header = &rbd_dev->header; 6753 ceph_put_snap_context(header->snapc); 6754 kfree(header->snap_sizes); 6755 kfree(header->snap_names); 6756 kfree(header->object_prefix); 6757 memset(header, 0, sizeof (*header)); 6758 } 6759 6760 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 6761 { 6762 int ret; 6763 6764 ret = rbd_dev_v2_object_prefix(rbd_dev); 6765 if (ret) 6766 goto out_err; 6767 6768 /* 6769 * Get the and check features for the image. Currently the 6770 * features are assumed to never change. 6771 */ 6772 ret = rbd_dev_v2_features(rbd_dev); 6773 if (ret) 6774 goto out_err; 6775 6776 /* If the image supports fancy striping, get its parameters */ 6777 6778 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 6779 ret = rbd_dev_v2_striping_info(rbd_dev); 6780 if (ret < 0) 6781 goto out_err; 6782 } 6783 6784 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 6785 ret = rbd_dev_v2_data_pool(rbd_dev); 6786 if (ret) 6787 goto out_err; 6788 } 6789 6790 rbd_init_layout(rbd_dev); 6791 return 0; 6792 6793 out_err: 6794 rbd_dev->header.features = 0; 6795 kfree(rbd_dev->header.object_prefix); 6796 rbd_dev->header.object_prefix = NULL; 6797 return ret; 6798 } 6799 6800 /* 6801 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6802 * rbd_dev_image_probe() recursion depth, which means it's also the 6803 * length of the already discovered part of the parent chain. 6804 */ 6805 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6806 { 6807 struct rbd_device *parent = NULL; 6808 int ret; 6809 6810 if (!rbd_dev->parent_spec) 6811 return 0; 6812 6813 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6814 pr_info("parent chain is too long (%d)\n", depth); 6815 ret = -EINVAL; 6816 goto out_err; 6817 } 6818 6819 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 6820 if (!parent) { 6821 ret = -ENOMEM; 6822 goto out_err; 6823 } 6824 6825 /* 6826 * Images related by parent/child relationships always share 6827 * rbd_client and spec/parent_spec, so bump their refcounts. 6828 */ 6829 __rbd_get_client(rbd_dev->rbd_client); 6830 rbd_spec_get(rbd_dev->parent_spec); 6831 6832 ret = rbd_dev_image_probe(parent, depth); 6833 if (ret < 0) 6834 goto out_err; 6835 6836 rbd_dev->parent = parent; 6837 atomic_set(&rbd_dev->parent_ref, 1); 6838 return 0; 6839 6840 out_err: 6841 rbd_dev_unparent(rbd_dev); 6842 rbd_dev_destroy(parent); 6843 return ret; 6844 } 6845 6846 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6847 { 6848 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6849 rbd_free_disk(rbd_dev); 6850 if (!single_major) 6851 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6852 } 6853 6854 /* 6855 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6856 * upon return. 6857 */ 6858 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6859 { 6860 int ret; 6861 6862 /* Record our major and minor device numbers. */ 6863 6864 if (!single_major) { 6865 ret = register_blkdev(0, rbd_dev->name); 6866 if (ret < 0) 6867 goto err_out_unlock; 6868 6869 rbd_dev->major = ret; 6870 rbd_dev->minor = 0; 6871 } else { 6872 rbd_dev->major = rbd_major; 6873 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6874 } 6875 6876 /* Set up the blkdev mapping. */ 6877 6878 ret = rbd_init_disk(rbd_dev); 6879 if (ret) 6880 goto err_out_blkdev; 6881 6882 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6883 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 6884 6885 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6886 if (ret) 6887 goto err_out_disk; 6888 6889 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6890 up_write(&rbd_dev->header_rwsem); 6891 return 0; 6892 6893 err_out_disk: 6894 rbd_free_disk(rbd_dev); 6895 err_out_blkdev: 6896 if (!single_major) 6897 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6898 err_out_unlock: 6899 up_write(&rbd_dev->header_rwsem); 6900 return ret; 6901 } 6902 6903 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6904 { 6905 struct rbd_spec *spec = rbd_dev->spec; 6906 int ret; 6907 6908 /* Record the header object name for this rbd image. */ 6909 6910 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6911 if (rbd_dev->image_format == 1) 6912 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6913 spec->image_name, RBD_SUFFIX); 6914 else 6915 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6916 RBD_HEADER_PREFIX, spec->image_id); 6917 6918 return ret; 6919 } 6920 6921 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6922 { 6923 rbd_dev_unprobe(rbd_dev); 6924 if (rbd_dev->opts) 6925 rbd_unregister_watch(rbd_dev); 6926 rbd_dev->image_format = 0; 6927 kfree(rbd_dev->spec->image_id); 6928 rbd_dev->spec->image_id = NULL; 6929 } 6930 6931 /* 6932 * Probe for the existence of the header object for the given rbd 6933 * device. If this image is the one being mapped (i.e., not a 6934 * parent), initiate a watch on its header object before using that 6935 * object to get detailed information about the rbd image. 6936 */ 6937 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6938 { 6939 int ret; 6940 6941 /* 6942 * Get the id from the image id object. Unless there's an 6943 * error, rbd_dev->spec->image_id will be filled in with 6944 * a dynamically-allocated string, and rbd_dev->image_format 6945 * will be set to either 1 or 2. 6946 */ 6947 ret = rbd_dev_image_id(rbd_dev); 6948 if (ret) 6949 return ret; 6950 6951 ret = rbd_dev_header_name(rbd_dev); 6952 if (ret) 6953 goto err_out_format; 6954 6955 if (!depth) { 6956 ret = rbd_register_watch(rbd_dev); 6957 if (ret) { 6958 if (ret == -ENOENT) 6959 pr_info("image %s/%s%s%s does not exist\n", 6960 rbd_dev->spec->pool_name, 6961 rbd_dev->spec->pool_ns ?: "", 6962 rbd_dev->spec->pool_ns ? "/" : "", 6963 rbd_dev->spec->image_name); 6964 goto err_out_format; 6965 } 6966 } 6967 6968 ret = rbd_dev_header_info(rbd_dev); 6969 if (ret) 6970 goto err_out_watch; 6971 6972 /* 6973 * If this image is the one being mapped, we have pool name and 6974 * id, image name and id, and snap name - need to fill snap id. 6975 * Otherwise this is a parent image, identified by pool, image 6976 * and snap ids - need to fill in names for those ids. 6977 */ 6978 if (!depth) 6979 ret = rbd_spec_fill_snap_id(rbd_dev); 6980 else 6981 ret = rbd_spec_fill_names(rbd_dev); 6982 if (ret) { 6983 if (ret == -ENOENT) 6984 pr_info("snap %s/%s%s%s@%s does not exist\n", 6985 rbd_dev->spec->pool_name, 6986 rbd_dev->spec->pool_ns ?: "", 6987 rbd_dev->spec->pool_ns ? "/" : "", 6988 rbd_dev->spec->image_name, 6989 rbd_dev->spec->snap_name); 6990 goto err_out_probe; 6991 } 6992 6993 ret = rbd_dev_mapping_set(rbd_dev); 6994 if (ret) 6995 goto err_out_probe; 6996 6997 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && 6998 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6999 ret = rbd_object_map_load(rbd_dev); 7000 if (ret) 7001 goto err_out_probe; 7002 } 7003 7004 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 7005 ret = rbd_dev_v2_parent_info(rbd_dev); 7006 if (ret) 7007 goto err_out_probe; 7008 } 7009 7010 ret = rbd_dev_probe_parent(rbd_dev, depth); 7011 if (ret) 7012 goto err_out_probe; 7013 7014 dout("discovered format %u image, header name is %s\n", 7015 rbd_dev->image_format, rbd_dev->header_oid.name); 7016 return 0; 7017 7018 err_out_probe: 7019 rbd_dev_unprobe(rbd_dev); 7020 err_out_watch: 7021 if (!depth) 7022 rbd_unregister_watch(rbd_dev); 7023 err_out_format: 7024 rbd_dev->image_format = 0; 7025 kfree(rbd_dev->spec->image_id); 7026 rbd_dev->spec->image_id = NULL; 7027 return ret; 7028 } 7029 7030 static ssize_t do_rbd_add(struct bus_type *bus, 7031 const char *buf, 7032 size_t count) 7033 { 7034 struct rbd_device *rbd_dev = NULL; 7035 struct ceph_options *ceph_opts = NULL; 7036 struct rbd_options *rbd_opts = NULL; 7037 struct rbd_spec *spec = NULL; 7038 struct rbd_client *rbdc; 7039 int rc; 7040 7041 if (!try_module_get(THIS_MODULE)) 7042 return -ENODEV; 7043 7044 /* parse add command */ 7045 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7046 if (rc < 0) 7047 goto out; 7048 7049 rbdc = rbd_get_client(ceph_opts); 7050 if (IS_ERR(rbdc)) { 7051 rc = PTR_ERR(rbdc); 7052 goto err_out_args; 7053 } 7054 7055 /* pick the pool */ 7056 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7057 if (rc < 0) { 7058 if (rc == -ENOENT) 7059 pr_info("pool %s does not exist\n", spec->pool_name); 7060 goto err_out_client; 7061 } 7062 spec->pool_id = (u64)rc; 7063 7064 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7065 if (!rbd_dev) { 7066 rc = -ENOMEM; 7067 goto err_out_client; 7068 } 7069 rbdc = NULL; /* rbd_dev now owns this */ 7070 spec = NULL; /* rbd_dev now owns this */ 7071 rbd_opts = NULL; /* rbd_dev now owns this */ 7072 7073 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7074 if (!rbd_dev->config_info) { 7075 rc = -ENOMEM; 7076 goto err_out_rbd_dev; 7077 } 7078 7079 down_write(&rbd_dev->header_rwsem); 7080 rc = rbd_dev_image_probe(rbd_dev, 0); 7081 if (rc < 0) { 7082 up_write(&rbd_dev->header_rwsem); 7083 goto err_out_rbd_dev; 7084 } 7085 7086 /* If we are mapping a snapshot it must be marked read-only */ 7087 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 7088 rbd_dev->opts->read_only = true; 7089 7090 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7091 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7092 rbd_dev->layout.object_size); 7093 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7094 } 7095 7096 rc = rbd_dev_device_setup(rbd_dev); 7097 if (rc) 7098 goto err_out_image_probe; 7099 7100 rc = rbd_add_acquire_lock(rbd_dev); 7101 if (rc) 7102 goto err_out_image_lock; 7103 7104 /* Everything's ready. Announce the disk to the world. */ 7105 7106 rc = device_add(&rbd_dev->dev); 7107 if (rc) 7108 goto err_out_image_lock; 7109 7110 add_disk(rbd_dev->disk); 7111 /* see rbd_init_disk() */ 7112 blk_put_queue(rbd_dev->disk->queue); 7113 7114 spin_lock(&rbd_dev_list_lock); 7115 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7116 spin_unlock(&rbd_dev_list_lock); 7117 7118 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7119 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7120 rbd_dev->header.features); 7121 rc = count; 7122 out: 7123 module_put(THIS_MODULE); 7124 return rc; 7125 7126 err_out_image_lock: 7127 rbd_dev_image_unlock(rbd_dev); 7128 rbd_dev_device_release(rbd_dev); 7129 err_out_image_probe: 7130 rbd_dev_image_release(rbd_dev); 7131 err_out_rbd_dev: 7132 rbd_dev_destroy(rbd_dev); 7133 err_out_client: 7134 rbd_put_client(rbdc); 7135 err_out_args: 7136 rbd_spec_put(spec); 7137 kfree(rbd_opts); 7138 goto out; 7139 } 7140 7141 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count) 7142 { 7143 if (single_major) 7144 return -EINVAL; 7145 7146 return do_rbd_add(bus, buf, count); 7147 } 7148 7149 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 7150 size_t count) 7151 { 7152 return do_rbd_add(bus, buf, count); 7153 } 7154 7155 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7156 { 7157 while (rbd_dev->parent) { 7158 struct rbd_device *first = rbd_dev; 7159 struct rbd_device *second = first->parent; 7160 struct rbd_device *third; 7161 7162 /* 7163 * Follow to the parent with no grandparent and 7164 * remove it. 7165 */ 7166 while (second && (third = second->parent)) { 7167 first = second; 7168 second = third; 7169 } 7170 rbd_assert(second); 7171 rbd_dev_image_release(second); 7172 rbd_dev_destroy(second); 7173 first->parent = NULL; 7174 first->parent_overlap = 0; 7175 7176 rbd_assert(first->parent_spec); 7177 rbd_spec_put(first->parent_spec); 7178 first->parent_spec = NULL; 7179 } 7180 } 7181 7182 static ssize_t do_rbd_remove(struct bus_type *bus, 7183 const char *buf, 7184 size_t count) 7185 { 7186 struct rbd_device *rbd_dev = NULL; 7187 struct list_head *tmp; 7188 int dev_id; 7189 char opt_buf[6]; 7190 bool force = false; 7191 int ret; 7192 7193 dev_id = -1; 7194 opt_buf[0] = '\0'; 7195 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7196 if (dev_id < 0) { 7197 pr_err("dev_id out of range\n"); 7198 return -EINVAL; 7199 } 7200 if (opt_buf[0] != '\0') { 7201 if (!strcmp(opt_buf, "force")) { 7202 force = true; 7203 } else { 7204 pr_err("bad remove option at '%s'\n", opt_buf); 7205 return -EINVAL; 7206 } 7207 } 7208 7209 ret = -ENOENT; 7210 spin_lock(&rbd_dev_list_lock); 7211 list_for_each(tmp, &rbd_dev_list) { 7212 rbd_dev = list_entry(tmp, struct rbd_device, node); 7213 if (rbd_dev->dev_id == dev_id) { 7214 ret = 0; 7215 break; 7216 } 7217 } 7218 if (!ret) { 7219 spin_lock_irq(&rbd_dev->lock); 7220 if (rbd_dev->open_count && !force) 7221 ret = -EBUSY; 7222 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7223 &rbd_dev->flags)) 7224 ret = -EINPROGRESS; 7225 spin_unlock_irq(&rbd_dev->lock); 7226 } 7227 spin_unlock(&rbd_dev_list_lock); 7228 if (ret) 7229 return ret; 7230 7231 if (force) { 7232 /* 7233 * Prevent new IO from being queued and wait for existing 7234 * IO to complete/fail. 7235 */ 7236 blk_mq_freeze_queue(rbd_dev->disk->queue); 7237 blk_set_queue_dying(rbd_dev->disk->queue); 7238 } 7239 7240 del_gendisk(rbd_dev->disk); 7241 spin_lock(&rbd_dev_list_lock); 7242 list_del_init(&rbd_dev->node); 7243 spin_unlock(&rbd_dev_list_lock); 7244 device_del(&rbd_dev->dev); 7245 7246 rbd_dev_image_unlock(rbd_dev); 7247 rbd_dev_device_release(rbd_dev); 7248 rbd_dev_image_release(rbd_dev); 7249 rbd_dev_destroy(rbd_dev); 7250 return count; 7251 } 7252 7253 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count) 7254 { 7255 if (single_major) 7256 return -EINVAL; 7257 7258 return do_rbd_remove(bus, buf, count); 7259 } 7260 7261 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 7262 size_t count) 7263 { 7264 return do_rbd_remove(bus, buf, count); 7265 } 7266 7267 /* 7268 * create control files in sysfs 7269 * /sys/bus/rbd/... 7270 */ 7271 static int __init rbd_sysfs_init(void) 7272 { 7273 int ret; 7274 7275 ret = device_register(&rbd_root_dev); 7276 if (ret < 0) 7277 return ret; 7278 7279 ret = bus_register(&rbd_bus_type); 7280 if (ret < 0) 7281 device_unregister(&rbd_root_dev); 7282 7283 return ret; 7284 } 7285 7286 static void __exit rbd_sysfs_cleanup(void) 7287 { 7288 bus_unregister(&rbd_bus_type); 7289 device_unregister(&rbd_root_dev); 7290 } 7291 7292 static int __init rbd_slab_init(void) 7293 { 7294 rbd_assert(!rbd_img_request_cache); 7295 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7296 if (!rbd_img_request_cache) 7297 return -ENOMEM; 7298 7299 rbd_assert(!rbd_obj_request_cache); 7300 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7301 if (!rbd_obj_request_cache) 7302 goto out_err; 7303 7304 return 0; 7305 7306 out_err: 7307 kmem_cache_destroy(rbd_img_request_cache); 7308 rbd_img_request_cache = NULL; 7309 return -ENOMEM; 7310 } 7311 7312 static void rbd_slab_exit(void) 7313 { 7314 rbd_assert(rbd_obj_request_cache); 7315 kmem_cache_destroy(rbd_obj_request_cache); 7316 rbd_obj_request_cache = NULL; 7317 7318 rbd_assert(rbd_img_request_cache); 7319 kmem_cache_destroy(rbd_img_request_cache); 7320 rbd_img_request_cache = NULL; 7321 } 7322 7323 static int __init rbd_init(void) 7324 { 7325 int rc; 7326 7327 if (!libceph_compatible(NULL)) { 7328 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7329 return -EINVAL; 7330 } 7331 7332 rc = rbd_slab_init(); 7333 if (rc) 7334 return rc; 7335 7336 /* 7337 * The number of active work items is limited by the number of 7338 * rbd devices * queue depth, so leave @max_active at default. 7339 */ 7340 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7341 if (!rbd_wq) { 7342 rc = -ENOMEM; 7343 goto err_out_slab; 7344 } 7345 7346 if (single_major) { 7347 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7348 if (rbd_major < 0) { 7349 rc = rbd_major; 7350 goto err_out_wq; 7351 } 7352 } 7353 7354 rc = rbd_sysfs_init(); 7355 if (rc) 7356 goto err_out_blkdev; 7357 7358 if (single_major) 7359 pr_info("loaded (major %d)\n", rbd_major); 7360 else 7361 pr_info("loaded\n"); 7362 7363 return 0; 7364 7365 err_out_blkdev: 7366 if (single_major) 7367 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7368 err_out_wq: 7369 destroy_workqueue(rbd_wq); 7370 err_out_slab: 7371 rbd_slab_exit(); 7372 return rc; 7373 } 7374 7375 static void __exit rbd_exit(void) 7376 { 7377 ida_destroy(&rbd_dev_id_ida); 7378 rbd_sysfs_cleanup(); 7379 if (single_major) 7380 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7381 destroy_workqueue(rbd_wq); 7382 rbd_slab_exit(); 7383 } 7384 7385 module_init(rbd_init); 7386 module_exit(rbd_exit); 7387 7388 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7389 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7390 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7391 /* following authorship retained from original osdblk.c */ 7392 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7393 7394 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7395 MODULE_LICENSE("GPL"); 7396