1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_MAX_PARENT_CHAIN_LEN 16 100 101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 102 #define RBD_MAX_SNAP_NAME_LEN \ 103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 104 105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 106 107 #define RBD_SNAP_HEAD_NAME "-" 108 109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 110 111 /* This allows a single page to hold an image name sent by OSD */ 112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 113 #define RBD_IMAGE_ID_LEN_MAX 64 114 115 #define RBD_OBJ_PREFIX_LEN_MAX 64 116 117 /* Feature bits */ 118 119 #define RBD_FEATURE_LAYERING (1<<0) 120 #define RBD_FEATURE_STRIPINGV2 (1<<1) 121 #define RBD_FEATURES_ALL \ 122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 123 124 /* Features supported by this (client software) implementation. */ 125 126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 127 128 /* 129 * An RBD device name will be "rbd#", where the "rbd" comes from 130 * RBD_DRV_NAME above, and # is a unique integer identifier. 131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 132 * enough to hold all possible device names. 133 */ 134 #define DEV_NAME_LEN 32 135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 __u8 crypt_type; 145 __u8 comp_type; 146 u64 stripe_unit; 147 u64 stripe_count; 148 u64 features; /* Might be changeable someday? */ 149 150 /* The remaining fields need to be updated occasionally */ 151 u64 image_size; 152 struct ceph_snap_context *snapc; 153 char *snap_names; /* format 1 only */ 154 u64 *snap_sizes; /* format 1 only */ 155 }; 156 157 /* 158 * An rbd image specification. 159 * 160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 161 * identify an image. Each rbd_dev structure includes a pointer to 162 * an rbd_spec structure that encapsulates this identity. 163 * 164 * Each of the id's in an rbd_spec has an associated name. For a 165 * user-mapped image, the names are supplied and the id's associated 166 * with them are looked up. For a layered image, a parent image is 167 * defined by the tuple, and the names are looked up. 168 * 169 * An rbd_dev structure contains a parent_spec pointer which is 170 * non-null if the image it represents is a child in a layered 171 * image. This pointer will refer to the rbd_spec structure used 172 * by the parent rbd_dev for its own identity (i.e., the structure 173 * is shared between the parent and child). 174 * 175 * Since these structures are populated once, during the discovery 176 * phase of image construction, they are effectively immutable so 177 * we make no effort to synchronize access to them. 178 * 179 * Note that code herein does not assume the image name is known (it 180 * could be a null pointer). 181 */ 182 struct rbd_spec { 183 u64 pool_id; 184 const char *pool_name; 185 186 const char *image_id; 187 const char *image_name; 188 189 u64 snap_id; 190 const char *snap_name; 191 192 struct kref kref; 193 }; 194 195 /* 196 * an instance of the client. multiple devices may share an rbd client. 197 */ 198 struct rbd_client { 199 struct ceph_client *client; 200 struct kref kref; 201 struct list_head node; 202 }; 203 204 struct rbd_img_request; 205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 206 207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 208 209 struct rbd_obj_request; 210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 211 212 enum obj_request_type { 213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 214 }; 215 216 enum obj_operation_type { 217 OBJ_OP_WRITE, 218 OBJ_OP_READ, 219 OBJ_OP_DISCARD, 220 }; 221 222 enum obj_req_flags { 223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 227 }; 228 229 struct rbd_obj_request { 230 const char *object_name; 231 u64 offset; /* object start byte */ 232 u64 length; /* bytes from offset */ 233 unsigned long flags; 234 235 /* 236 * An object request associated with an image will have its 237 * img_data flag set; a standalone object request will not. 238 * 239 * A standalone object request will have which == BAD_WHICH 240 * and a null obj_request pointer. 241 * 242 * An object request initiated in support of a layered image 243 * object (to check for its existence before a write) will 244 * have which == BAD_WHICH and a non-null obj_request pointer. 245 * 246 * Finally, an object request for rbd image data will have 247 * which != BAD_WHICH, and will have a non-null img_request 248 * pointer. The value of which will be in the range 249 * 0..(img_request->obj_request_count-1). 250 */ 251 union { 252 struct rbd_obj_request *obj_request; /* STAT op */ 253 struct { 254 struct rbd_img_request *img_request; 255 u64 img_offset; 256 /* links for img_request->obj_requests list */ 257 struct list_head links; 258 }; 259 }; 260 u32 which; /* posn image request list */ 261 262 enum obj_request_type type; 263 union { 264 struct bio *bio_list; 265 struct { 266 struct page **pages; 267 u32 page_count; 268 }; 269 }; 270 struct page **copyup_pages; 271 u32 copyup_page_count; 272 273 struct ceph_osd_request *osd_req; 274 275 u64 xferred; /* bytes transferred */ 276 int result; 277 278 rbd_obj_callback_t callback; 279 struct completion completion; 280 281 struct kref kref; 282 }; 283 284 enum img_req_flags { 285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 289 }; 290 291 struct rbd_img_request { 292 struct rbd_device *rbd_dev; 293 u64 offset; /* starting image byte offset */ 294 u64 length; /* byte count from offset */ 295 unsigned long flags; 296 union { 297 u64 snap_id; /* for reads */ 298 struct ceph_snap_context *snapc; /* for writes */ 299 }; 300 union { 301 struct request *rq; /* block request */ 302 struct rbd_obj_request *obj_request; /* obj req initiator */ 303 }; 304 struct page **copyup_pages; 305 u32 copyup_page_count; 306 spinlock_t completion_lock;/* protects next_completion */ 307 u32 next_completion; 308 rbd_img_callback_t callback; 309 u64 xferred;/* aggregate bytes transferred */ 310 int result; /* first nonzero obj_request result */ 311 312 u32 obj_request_count; 313 struct list_head obj_requests; /* rbd_obj_request structs */ 314 315 struct kref kref; 316 }; 317 318 #define for_each_obj_request(ireq, oreq) \ 319 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_from(ireq, oreq) \ 321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 322 #define for_each_obj_request_safe(ireq, oreq, n) \ 323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 324 325 struct rbd_mapping { 326 u64 size; 327 u64 features; 328 bool read_only; 329 }; 330 331 /* 332 * a single device 333 */ 334 struct rbd_device { 335 int dev_id; /* blkdev unique id */ 336 337 int major; /* blkdev assigned major */ 338 int minor; 339 struct gendisk *disk; /* blkdev's gendisk and rq */ 340 341 u32 image_format; /* Either 1 or 2 */ 342 struct rbd_client *rbd_client; 343 344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 345 346 spinlock_t lock; /* queue, flags, open_count */ 347 348 struct rbd_image_header header; 349 unsigned long flags; /* possibly lock protected */ 350 struct rbd_spec *spec; 351 struct rbd_options *opts; 352 353 struct ceph_object_id header_oid; 354 struct ceph_object_locator header_oloc; 355 356 struct ceph_file_layout layout; 357 358 struct ceph_osd_linger_request *watch_handle; 359 360 struct rbd_spec *parent_spec; 361 u64 parent_overlap; 362 atomic_t parent_ref; 363 struct rbd_device *parent; 364 365 /* Block layer tags. */ 366 struct blk_mq_tag_set tag_set; 367 368 /* protects updating the header */ 369 struct rw_semaphore header_rwsem; 370 371 struct rbd_mapping mapping; 372 373 struct list_head node; 374 375 /* sysfs related */ 376 struct device dev; 377 unsigned long open_count; /* protected by lock */ 378 }; 379 380 /* 381 * Flag bits for rbd_dev->flags. If atomicity is required, 382 * rbd_dev->lock is used to protect access. 383 * 384 * Currently, only the "removing" flag (which is coupled with the 385 * "open_count" field) requires atomic access. 386 */ 387 enum rbd_dev_flags { 388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 390 }; 391 392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 393 394 static LIST_HEAD(rbd_dev_list); /* devices */ 395 static DEFINE_SPINLOCK(rbd_dev_list_lock); 396 397 static LIST_HEAD(rbd_client_list); /* clients */ 398 static DEFINE_SPINLOCK(rbd_client_list_lock); 399 400 /* Slab caches for frequently-allocated structures */ 401 402 static struct kmem_cache *rbd_img_request_cache; 403 static struct kmem_cache *rbd_obj_request_cache; 404 static struct kmem_cache *rbd_segment_name_cache; 405 406 static int rbd_major; 407 static DEFINE_IDA(rbd_dev_id_ida); 408 409 static struct workqueue_struct *rbd_wq; 410 411 /* 412 * Default to false for now, as single-major requires >= 0.75 version of 413 * userspace rbd utility. 414 */ 415 static bool single_major = false; 416 module_param(single_major, bool, S_IRUGO); 417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 418 419 static int rbd_img_request_submit(struct rbd_img_request *img_request); 420 421 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 422 size_t count); 423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 424 size_t count); 425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 426 size_t count); 427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 428 size_t count); 429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 430 static void rbd_spec_put(struct rbd_spec *spec); 431 432 static int rbd_dev_id_to_minor(int dev_id) 433 { 434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 435 } 436 437 static int minor_to_rbd_dev_id(int minor) 438 { 439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 440 } 441 442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 446 447 static struct attribute *rbd_bus_attrs[] = { 448 &bus_attr_add.attr, 449 &bus_attr_remove.attr, 450 &bus_attr_add_single_major.attr, 451 &bus_attr_remove_single_major.attr, 452 NULL, 453 }; 454 455 static umode_t rbd_bus_is_visible(struct kobject *kobj, 456 struct attribute *attr, int index) 457 { 458 if (!single_major && 459 (attr == &bus_attr_add_single_major.attr || 460 attr == &bus_attr_remove_single_major.attr)) 461 return 0; 462 463 return attr->mode; 464 } 465 466 static const struct attribute_group rbd_bus_group = { 467 .attrs = rbd_bus_attrs, 468 .is_visible = rbd_bus_is_visible, 469 }; 470 __ATTRIBUTE_GROUPS(rbd_bus); 471 472 static struct bus_type rbd_bus_type = { 473 .name = "rbd", 474 .bus_groups = rbd_bus_groups, 475 }; 476 477 static void rbd_root_dev_release(struct device *dev) 478 { 479 } 480 481 static struct device rbd_root_dev = { 482 .init_name = "rbd", 483 .release = rbd_root_dev_release, 484 }; 485 486 static __printf(2, 3) 487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 488 { 489 struct va_format vaf; 490 va_list args; 491 492 va_start(args, fmt); 493 vaf.fmt = fmt; 494 vaf.va = &args; 495 496 if (!rbd_dev) 497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 498 else if (rbd_dev->disk) 499 printk(KERN_WARNING "%s: %s: %pV\n", 500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 501 else if (rbd_dev->spec && rbd_dev->spec->image_name) 502 printk(KERN_WARNING "%s: image %s: %pV\n", 503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 504 else if (rbd_dev->spec && rbd_dev->spec->image_id) 505 printk(KERN_WARNING "%s: id %s: %pV\n", 506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 507 else /* punt */ 508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 509 RBD_DRV_NAME, rbd_dev, &vaf); 510 va_end(args); 511 } 512 513 #ifdef RBD_DEBUG 514 #define rbd_assert(expr) \ 515 if (unlikely(!(expr))) { \ 516 printk(KERN_ERR "\nAssertion failure in %s() " \ 517 "at line %d:\n\n" \ 518 "\trbd_assert(%s);\n\n", \ 519 __func__, __LINE__, #expr); \ 520 BUG(); \ 521 } 522 #else /* !RBD_DEBUG */ 523 # define rbd_assert(expr) ((void) 0) 524 #endif /* !RBD_DEBUG */ 525 526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 530 531 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 533 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 536 u64 snap_id); 537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 538 u8 *order, u64 *snap_size); 539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 540 u64 *snap_features); 541 542 static int rbd_open(struct block_device *bdev, fmode_t mode) 543 { 544 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 545 bool removing = false; 546 547 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 548 return -EROFS; 549 550 spin_lock_irq(&rbd_dev->lock); 551 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 552 removing = true; 553 else 554 rbd_dev->open_count++; 555 spin_unlock_irq(&rbd_dev->lock); 556 if (removing) 557 return -ENOENT; 558 559 (void) get_device(&rbd_dev->dev); 560 561 return 0; 562 } 563 564 static void rbd_release(struct gendisk *disk, fmode_t mode) 565 { 566 struct rbd_device *rbd_dev = disk->private_data; 567 unsigned long open_count_before; 568 569 spin_lock_irq(&rbd_dev->lock); 570 open_count_before = rbd_dev->open_count--; 571 spin_unlock_irq(&rbd_dev->lock); 572 rbd_assert(open_count_before > 0); 573 574 put_device(&rbd_dev->dev); 575 } 576 577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 578 { 579 int ret = 0; 580 int val; 581 bool ro; 582 bool ro_changed = false; 583 584 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 585 if (get_user(val, (int __user *)(arg))) 586 return -EFAULT; 587 588 ro = val ? true : false; 589 /* Snapshot doesn't allow to write*/ 590 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 591 return -EROFS; 592 593 spin_lock_irq(&rbd_dev->lock); 594 /* prevent others open this device */ 595 if (rbd_dev->open_count > 1) { 596 ret = -EBUSY; 597 goto out; 598 } 599 600 if (rbd_dev->mapping.read_only != ro) { 601 rbd_dev->mapping.read_only = ro; 602 ro_changed = true; 603 } 604 605 out: 606 spin_unlock_irq(&rbd_dev->lock); 607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 608 if (ret == 0 && ro_changed) 609 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 610 611 return ret; 612 } 613 614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 615 unsigned int cmd, unsigned long arg) 616 { 617 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 618 int ret = 0; 619 620 switch (cmd) { 621 case BLKROSET: 622 ret = rbd_ioctl_set_ro(rbd_dev, arg); 623 break; 624 default: 625 ret = -ENOTTY; 626 } 627 628 return ret; 629 } 630 631 #ifdef CONFIG_COMPAT 632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 633 unsigned int cmd, unsigned long arg) 634 { 635 return rbd_ioctl(bdev, mode, cmd, arg); 636 } 637 #endif /* CONFIG_COMPAT */ 638 639 static const struct block_device_operations rbd_bd_ops = { 640 .owner = THIS_MODULE, 641 .open = rbd_open, 642 .release = rbd_release, 643 .ioctl = rbd_ioctl, 644 #ifdef CONFIG_COMPAT 645 .compat_ioctl = rbd_compat_ioctl, 646 #endif 647 }; 648 649 /* 650 * Initialize an rbd client instance. Success or not, this function 651 * consumes ceph_opts. Caller holds client_mutex. 652 */ 653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 654 { 655 struct rbd_client *rbdc; 656 int ret = -ENOMEM; 657 658 dout("%s:\n", __func__); 659 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 660 if (!rbdc) 661 goto out_opt; 662 663 kref_init(&rbdc->kref); 664 INIT_LIST_HEAD(&rbdc->node); 665 666 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 667 if (IS_ERR(rbdc->client)) 668 goto out_rbdc; 669 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 670 671 ret = ceph_open_session(rbdc->client); 672 if (ret < 0) 673 goto out_client; 674 675 spin_lock(&rbd_client_list_lock); 676 list_add_tail(&rbdc->node, &rbd_client_list); 677 spin_unlock(&rbd_client_list_lock); 678 679 dout("%s: rbdc %p\n", __func__, rbdc); 680 681 return rbdc; 682 out_client: 683 ceph_destroy_client(rbdc->client); 684 out_rbdc: 685 kfree(rbdc); 686 out_opt: 687 if (ceph_opts) 688 ceph_destroy_options(ceph_opts); 689 dout("%s: error %d\n", __func__, ret); 690 691 return ERR_PTR(ret); 692 } 693 694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 695 { 696 kref_get(&rbdc->kref); 697 698 return rbdc; 699 } 700 701 /* 702 * Find a ceph client with specific addr and configuration. If 703 * found, bump its reference count. 704 */ 705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 706 { 707 struct rbd_client *client_node; 708 bool found = false; 709 710 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 711 return NULL; 712 713 spin_lock(&rbd_client_list_lock); 714 list_for_each_entry(client_node, &rbd_client_list, node) { 715 if (!ceph_compare_options(ceph_opts, client_node->client)) { 716 __rbd_get_client(client_node); 717 718 found = true; 719 break; 720 } 721 } 722 spin_unlock(&rbd_client_list_lock); 723 724 return found ? client_node : NULL; 725 } 726 727 /* 728 * (Per device) rbd map options 729 */ 730 enum { 731 Opt_queue_depth, 732 Opt_last_int, 733 /* int args above */ 734 Opt_last_string, 735 /* string args above */ 736 Opt_read_only, 737 Opt_read_write, 738 Opt_err 739 }; 740 741 static match_table_t rbd_opts_tokens = { 742 {Opt_queue_depth, "queue_depth=%d"}, 743 /* int args above */ 744 /* string args above */ 745 {Opt_read_only, "read_only"}, 746 {Opt_read_only, "ro"}, /* Alternate spelling */ 747 {Opt_read_write, "read_write"}, 748 {Opt_read_write, "rw"}, /* Alternate spelling */ 749 {Opt_err, NULL} 750 }; 751 752 struct rbd_options { 753 int queue_depth; 754 bool read_only; 755 }; 756 757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 758 #define RBD_READ_ONLY_DEFAULT false 759 760 static int parse_rbd_opts_token(char *c, void *private) 761 { 762 struct rbd_options *rbd_opts = private; 763 substring_t argstr[MAX_OPT_ARGS]; 764 int token, intval, ret; 765 766 token = match_token(c, rbd_opts_tokens, argstr); 767 if (token < Opt_last_int) { 768 ret = match_int(&argstr[0], &intval); 769 if (ret < 0) { 770 pr_err("bad mount option arg (not int) at '%s'\n", c); 771 return ret; 772 } 773 dout("got int token %d val %d\n", token, intval); 774 } else if (token > Opt_last_int && token < Opt_last_string) { 775 dout("got string token %d val %s\n", token, argstr[0].from); 776 } else { 777 dout("got token %d\n", token); 778 } 779 780 switch (token) { 781 case Opt_queue_depth: 782 if (intval < 1) { 783 pr_err("queue_depth out of range\n"); 784 return -EINVAL; 785 } 786 rbd_opts->queue_depth = intval; 787 break; 788 case Opt_read_only: 789 rbd_opts->read_only = true; 790 break; 791 case Opt_read_write: 792 rbd_opts->read_only = false; 793 break; 794 default: 795 /* libceph prints "bad option" msg */ 796 return -EINVAL; 797 } 798 799 return 0; 800 } 801 802 static char* obj_op_name(enum obj_operation_type op_type) 803 { 804 switch (op_type) { 805 case OBJ_OP_READ: 806 return "read"; 807 case OBJ_OP_WRITE: 808 return "write"; 809 case OBJ_OP_DISCARD: 810 return "discard"; 811 default: 812 return "???"; 813 } 814 } 815 816 /* 817 * Get a ceph client with specific addr and configuration, if one does 818 * not exist create it. Either way, ceph_opts is consumed by this 819 * function. 820 */ 821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 822 { 823 struct rbd_client *rbdc; 824 825 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 826 rbdc = rbd_client_find(ceph_opts); 827 if (rbdc) /* using an existing client */ 828 ceph_destroy_options(ceph_opts); 829 else 830 rbdc = rbd_client_create(ceph_opts); 831 mutex_unlock(&client_mutex); 832 833 return rbdc; 834 } 835 836 /* 837 * Destroy ceph client 838 * 839 * Caller must hold rbd_client_list_lock. 840 */ 841 static void rbd_client_release(struct kref *kref) 842 { 843 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 844 845 dout("%s: rbdc %p\n", __func__, rbdc); 846 spin_lock(&rbd_client_list_lock); 847 list_del(&rbdc->node); 848 spin_unlock(&rbd_client_list_lock); 849 850 ceph_destroy_client(rbdc->client); 851 kfree(rbdc); 852 } 853 854 /* 855 * Drop reference to ceph client node. If it's not referenced anymore, release 856 * it. 857 */ 858 static void rbd_put_client(struct rbd_client *rbdc) 859 { 860 if (rbdc) 861 kref_put(&rbdc->kref, rbd_client_release); 862 } 863 864 static bool rbd_image_format_valid(u32 image_format) 865 { 866 return image_format == 1 || image_format == 2; 867 } 868 869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 870 { 871 size_t size; 872 u32 snap_count; 873 874 /* The header has to start with the magic rbd header text */ 875 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 876 return false; 877 878 /* The bio layer requires at least sector-sized I/O */ 879 880 if (ondisk->options.order < SECTOR_SHIFT) 881 return false; 882 883 /* If we use u64 in a few spots we may be able to loosen this */ 884 885 if (ondisk->options.order > 8 * sizeof (int) - 1) 886 return false; 887 888 /* 889 * The size of a snapshot header has to fit in a size_t, and 890 * that limits the number of snapshots. 891 */ 892 snap_count = le32_to_cpu(ondisk->snap_count); 893 size = SIZE_MAX - sizeof (struct ceph_snap_context); 894 if (snap_count > size / sizeof (__le64)) 895 return false; 896 897 /* 898 * Not only that, but the size of the entire the snapshot 899 * header must also be representable in a size_t. 900 */ 901 size -= snap_count * sizeof (__le64); 902 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 903 return false; 904 905 return true; 906 } 907 908 /* 909 * Fill an rbd image header with information from the given format 1 910 * on-disk header. 911 */ 912 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 913 struct rbd_image_header_ondisk *ondisk) 914 { 915 struct rbd_image_header *header = &rbd_dev->header; 916 bool first_time = header->object_prefix == NULL; 917 struct ceph_snap_context *snapc; 918 char *object_prefix = NULL; 919 char *snap_names = NULL; 920 u64 *snap_sizes = NULL; 921 u32 snap_count; 922 size_t size; 923 int ret = -ENOMEM; 924 u32 i; 925 926 /* Allocate this now to avoid having to handle failure below */ 927 928 if (first_time) { 929 size_t len; 930 931 len = strnlen(ondisk->object_prefix, 932 sizeof (ondisk->object_prefix)); 933 object_prefix = kmalloc(len + 1, GFP_KERNEL); 934 if (!object_prefix) 935 return -ENOMEM; 936 memcpy(object_prefix, ondisk->object_prefix, len); 937 object_prefix[len] = '\0'; 938 } 939 940 /* Allocate the snapshot context and fill it in */ 941 942 snap_count = le32_to_cpu(ondisk->snap_count); 943 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 944 if (!snapc) 945 goto out_err; 946 snapc->seq = le64_to_cpu(ondisk->snap_seq); 947 if (snap_count) { 948 struct rbd_image_snap_ondisk *snaps; 949 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 950 951 /* We'll keep a copy of the snapshot names... */ 952 953 if (snap_names_len > (u64)SIZE_MAX) 954 goto out_2big; 955 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 956 if (!snap_names) 957 goto out_err; 958 959 /* ...as well as the array of their sizes. */ 960 961 size = snap_count * sizeof (*header->snap_sizes); 962 snap_sizes = kmalloc(size, GFP_KERNEL); 963 if (!snap_sizes) 964 goto out_err; 965 966 /* 967 * Copy the names, and fill in each snapshot's id 968 * and size. 969 * 970 * Note that rbd_dev_v1_header_info() guarantees the 971 * ondisk buffer we're working with has 972 * snap_names_len bytes beyond the end of the 973 * snapshot id array, this memcpy() is safe. 974 */ 975 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 976 snaps = ondisk->snaps; 977 for (i = 0; i < snap_count; i++) { 978 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 979 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 980 } 981 } 982 983 /* We won't fail any more, fill in the header */ 984 985 if (first_time) { 986 header->object_prefix = object_prefix; 987 header->obj_order = ondisk->options.order; 988 header->crypt_type = ondisk->options.crypt_type; 989 header->comp_type = ondisk->options.comp_type; 990 /* The rest aren't used for format 1 images */ 991 header->stripe_unit = 0; 992 header->stripe_count = 0; 993 header->features = 0; 994 } else { 995 ceph_put_snap_context(header->snapc); 996 kfree(header->snap_names); 997 kfree(header->snap_sizes); 998 } 999 1000 /* The remaining fields always get updated (when we refresh) */ 1001 1002 header->image_size = le64_to_cpu(ondisk->image_size); 1003 header->snapc = snapc; 1004 header->snap_names = snap_names; 1005 header->snap_sizes = snap_sizes; 1006 1007 return 0; 1008 out_2big: 1009 ret = -EIO; 1010 out_err: 1011 kfree(snap_sizes); 1012 kfree(snap_names); 1013 ceph_put_snap_context(snapc); 1014 kfree(object_prefix); 1015 1016 return ret; 1017 } 1018 1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1020 { 1021 const char *snap_name; 1022 1023 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1024 1025 /* Skip over names until we find the one we are looking for */ 1026 1027 snap_name = rbd_dev->header.snap_names; 1028 while (which--) 1029 snap_name += strlen(snap_name) + 1; 1030 1031 return kstrdup(snap_name, GFP_KERNEL); 1032 } 1033 1034 /* 1035 * Snapshot id comparison function for use with qsort()/bsearch(). 1036 * Note that result is for snapshots in *descending* order. 1037 */ 1038 static int snapid_compare_reverse(const void *s1, const void *s2) 1039 { 1040 u64 snap_id1 = *(u64 *)s1; 1041 u64 snap_id2 = *(u64 *)s2; 1042 1043 if (snap_id1 < snap_id2) 1044 return 1; 1045 return snap_id1 == snap_id2 ? 0 : -1; 1046 } 1047 1048 /* 1049 * Search a snapshot context to see if the given snapshot id is 1050 * present. 1051 * 1052 * Returns the position of the snapshot id in the array if it's found, 1053 * or BAD_SNAP_INDEX otherwise. 1054 * 1055 * Note: The snapshot array is in kept sorted (by the osd) in 1056 * reverse order, highest snapshot id first. 1057 */ 1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1059 { 1060 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1061 u64 *found; 1062 1063 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1064 sizeof (snap_id), snapid_compare_reverse); 1065 1066 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1067 } 1068 1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1070 u64 snap_id) 1071 { 1072 u32 which; 1073 const char *snap_name; 1074 1075 which = rbd_dev_snap_index(rbd_dev, snap_id); 1076 if (which == BAD_SNAP_INDEX) 1077 return ERR_PTR(-ENOENT); 1078 1079 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1080 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1081 } 1082 1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1084 { 1085 if (snap_id == CEPH_NOSNAP) 1086 return RBD_SNAP_HEAD_NAME; 1087 1088 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1089 if (rbd_dev->image_format == 1) 1090 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1091 1092 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1093 } 1094 1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1096 u64 *snap_size) 1097 { 1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1099 if (snap_id == CEPH_NOSNAP) { 1100 *snap_size = rbd_dev->header.image_size; 1101 } else if (rbd_dev->image_format == 1) { 1102 u32 which; 1103 1104 which = rbd_dev_snap_index(rbd_dev, snap_id); 1105 if (which == BAD_SNAP_INDEX) 1106 return -ENOENT; 1107 1108 *snap_size = rbd_dev->header.snap_sizes[which]; 1109 } else { 1110 u64 size = 0; 1111 int ret; 1112 1113 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1114 if (ret) 1115 return ret; 1116 1117 *snap_size = size; 1118 } 1119 return 0; 1120 } 1121 1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1123 u64 *snap_features) 1124 { 1125 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1126 if (snap_id == CEPH_NOSNAP) { 1127 *snap_features = rbd_dev->header.features; 1128 } else if (rbd_dev->image_format == 1) { 1129 *snap_features = 0; /* No features for format 1 */ 1130 } else { 1131 u64 features = 0; 1132 int ret; 1133 1134 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1135 if (ret) 1136 return ret; 1137 1138 *snap_features = features; 1139 } 1140 return 0; 1141 } 1142 1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1144 { 1145 u64 snap_id = rbd_dev->spec->snap_id; 1146 u64 size = 0; 1147 u64 features = 0; 1148 int ret; 1149 1150 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1151 if (ret) 1152 return ret; 1153 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1154 if (ret) 1155 return ret; 1156 1157 rbd_dev->mapping.size = size; 1158 rbd_dev->mapping.features = features; 1159 1160 return 0; 1161 } 1162 1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1164 { 1165 rbd_dev->mapping.size = 0; 1166 rbd_dev->mapping.features = 0; 1167 } 1168 1169 static void rbd_segment_name_free(const char *name) 1170 { 1171 /* The explicit cast here is needed to drop the const qualifier */ 1172 1173 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1174 } 1175 1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1177 { 1178 char *name; 1179 u64 segment; 1180 int ret; 1181 char *name_format; 1182 1183 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1184 if (!name) 1185 return NULL; 1186 segment = offset >> rbd_dev->header.obj_order; 1187 name_format = "%s.%012llx"; 1188 if (rbd_dev->image_format == 2) 1189 name_format = "%s.%016llx"; 1190 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1191 rbd_dev->header.object_prefix, segment); 1192 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1193 pr_err("error formatting segment name for #%llu (%d)\n", 1194 segment, ret); 1195 rbd_segment_name_free(name); 1196 name = NULL; 1197 } 1198 1199 return name; 1200 } 1201 1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1203 { 1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1205 1206 return offset & (segment_size - 1); 1207 } 1208 1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1210 u64 offset, u64 length) 1211 { 1212 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1213 1214 offset &= segment_size - 1; 1215 1216 rbd_assert(length <= U64_MAX - offset); 1217 if (offset + length > segment_size) 1218 length = segment_size - offset; 1219 1220 return length; 1221 } 1222 1223 /* 1224 * returns the size of an object in the image 1225 */ 1226 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1227 { 1228 return 1 << header->obj_order; 1229 } 1230 1231 /* 1232 * bio helpers 1233 */ 1234 1235 static void bio_chain_put(struct bio *chain) 1236 { 1237 struct bio *tmp; 1238 1239 while (chain) { 1240 tmp = chain; 1241 chain = chain->bi_next; 1242 bio_put(tmp); 1243 } 1244 } 1245 1246 /* 1247 * zeros a bio chain, starting at specific offset 1248 */ 1249 static void zero_bio_chain(struct bio *chain, int start_ofs) 1250 { 1251 struct bio_vec bv; 1252 struct bvec_iter iter; 1253 unsigned long flags; 1254 void *buf; 1255 int pos = 0; 1256 1257 while (chain) { 1258 bio_for_each_segment(bv, chain, iter) { 1259 if (pos + bv.bv_len > start_ofs) { 1260 int remainder = max(start_ofs - pos, 0); 1261 buf = bvec_kmap_irq(&bv, &flags); 1262 memset(buf + remainder, 0, 1263 bv.bv_len - remainder); 1264 flush_dcache_page(bv.bv_page); 1265 bvec_kunmap_irq(buf, &flags); 1266 } 1267 pos += bv.bv_len; 1268 } 1269 1270 chain = chain->bi_next; 1271 } 1272 } 1273 1274 /* 1275 * similar to zero_bio_chain(), zeros data defined by a page array, 1276 * starting at the given byte offset from the start of the array and 1277 * continuing up to the given end offset. The pages array is 1278 * assumed to be big enough to hold all bytes up to the end. 1279 */ 1280 static void zero_pages(struct page **pages, u64 offset, u64 end) 1281 { 1282 struct page **page = &pages[offset >> PAGE_SHIFT]; 1283 1284 rbd_assert(end > offset); 1285 rbd_assert(end - offset <= (u64)SIZE_MAX); 1286 while (offset < end) { 1287 size_t page_offset; 1288 size_t length; 1289 unsigned long flags; 1290 void *kaddr; 1291 1292 page_offset = offset & ~PAGE_MASK; 1293 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1294 local_irq_save(flags); 1295 kaddr = kmap_atomic(*page); 1296 memset(kaddr + page_offset, 0, length); 1297 flush_dcache_page(*page); 1298 kunmap_atomic(kaddr); 1299 local_irq_restore(flags); 1300 1301 offset += length; 1302 page++; 1303 } 1304 } 1305 1306 /* 1307 * Clone a portion of a bio, starting at the given byte offset 1308 * and continuing for the number of bytes indicated. 1309 */ 1310 static struct bio *bio_clone_range(struct bio *bio_src, 1311 unsigned int offset, 1312 unsigned int len, 1313 gfp_t gfpmask) 1314 { 1315 struct bio *bio; 1316 1317 bio = bio_clone(bio_src, gfpmask); 1318 if (!bio) 1319 return NULL; /* ENOMEM */ 1320 1321 bio_advance(bio, offset); 1322 bio->bi_iter.bi_size = len; 1323 1324 return bio; 1325 } 1326 1327 /* 1328 * Clone a portion of a bio chain, starting at the given byte offset 1329 * into the first bio in the source chain and continuing for the 1330 * number of bytes indicated. The result is another bio chain of 1331 * exactly the given length, or a null pointer on error. 1332 * 1333 * The bio_src and offset parameters are both in-out. On entry they 1334 * refer to the first source bio and the offset into that bio where 1335 * the start of data to be cloned is located. 1336 * 1337 * On return, bio_src is updated to refer to the bio in the source 1338 * chain that contains first un-cloned byte, and *offset will 1339 * contain the offset of that byte within that bio. 1340 */ 1341 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1342 unsigned int *offset, 1343 unsigned int len, 1344 gfp_t gfpmask) 1345 { 1346 struct bio *bi = *bio_src; 1347 unsigned int off = *offset; 1348 struct bio *chain = NULL; 1349 struct bio **end; 1350 1351 /* Build up a chain of clone bios up to the limit */ 1352 1353 if (!bi || off >= bi->bi_iter.bi_size || !len) 1354 return NULL; /* Nothing to clone */ 1355 1356 end = &chain; 1357 while (len) { 1358 unsigned int bi_size; 1359 struct bio *bio; 1360 1361 if (!bi) { 1362 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1363 goto out_err; /* EINVAL; ran out of bio's */ 1364 } 1365 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1366 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1367 if (!bio) 1368 goto out_err; /* ENOMEM */ 1369 1370 *end = bio; 1371 end = &bio->bi_next; 1372 1373 off += bi_size; 1374 if (off == bi->bi_iter.bi_size) { 1375 bi = bi->bi_next; 1376 off = 0; 1377 } 1378 len -= bi_size; 1379 } 1380 *bio_src = bi; 1381 *offset = off; 1382 1383 return chain; 1384 out_err: 1385 bio_chain_put(chain); 1386 1387 return NULL; 1388 } 1389 1390 /* 1391 * The default/initial value for all object request flags is 0. For 1392 * each flag, once its value is set to 1 it is never reset to 0 1393 * again. 1394 */ 1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1396 { 1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1398 struct rbd_device *rbd_dev; 1399 1400 rbd_dev = obj_request->img_request->rbd_dev; 1401 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1402 obj_request); 1403 } 1404 } 1405 1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1407 { 1408 smp_mb(); 1409 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1410 } 1411 1412 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1413 { 1414 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1415 struct rbd_device *rbd_dev = NULL; 1416 1417 if (obj_request_img_data_test(obj_request)) 1418 rbd_dev = obj_request->img_request->rbd_dev; 1419 rbd_warn(rbd_dev, "obj_request %p already marked done", 1420 obj_request); 1421 } 1422 } 1423 1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1425 { 1426 smp_mb(); 1427 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1428 } 1429 1430 /* 1431 * This sets the KNOWN flag after (possibly) setting the EXISTS 1432 * flag. The latter is set based on the "exists" value provided. 1433 * 1434 * Note that for our purposes once an object exists it never goes 1435 * away again. It's possible that the response from two existence 1436 * checks are separated by the creation of the target object, and 1437 * the first ("doesn't exist") response arrives *after* the second 1438 * ("does exist"). In that case we ignore the second one. 1439 */ 1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1441 bool exists) 1442 { 1443 if (exists) 1444 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1445 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1446 smp_mb(); 1447 } 1448 1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1450 { 1451 smp_mb(); 1452 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1453 } 1454 1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1456 { 1457 smp_mb(); 1458 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1459 } 1460 1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1462 { 1463 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1464 1465 return obj_request->img_offset < 1466 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1467 } 1468 1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1470 { 1471 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1472 atomic_read(&obj_request->kref.refcount)); 1473 kref_get(&obj_request->kref); 1474 } 1475 1476 static void rbd_obj_request_destroy(struct kref *kref); 1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1478 { 1479 rbd_assert(obj_request != NULL); 1480 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1481 atomic_read(&obj_request->kref.refcount)); 1482 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1483 } 1484 1485 static void rbd_img_request_get(struct rbd_img_request *img_request) 1486 { 1487 dout("%s: img %p (was %d)\n", __func__, img_request, 1488 atomic_read(&img_request->kref.refcount)); 1489 kref_get(&img_request->kref); 1490 } 1491 1492 static bool img_request_child_test(struct rbd_img_request *img_request); 1493 static void rbd_parent_request_destroy(struct kref *kref); 1494 static void rbd_img_request_destroy(struct kref *kref); 1495 static void rbd_img_request_put(struct rbd_img_request *img_request) 1496 { 1497 rbd_assert(img_request != NULL); 1498 dout("%s: img %p (was %d)\n", __func__, img_request, 1499 atomic_read(&img_request->kref.refcount)); 1500 if (img_request_child_test(img_request)) 1501 kref_put(&img_request->kref, rbd_parent_request_destroy); 1502 else 1503 kref_put(&img_request->kref, rbd_img_request_destroy); 1504 } 1505 1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1507 struct rbd_obj_request *obj_request) 1508 { 1509 rbd_assert(obj_request->img_request == NULL); 1510 1511 /* Image request now owns object's original reference */ 1512 obj_request->img_request = img_request; 1513 obj_request->which = img_request->obj_request_count; 1514 rbd_assert(!obj_request_img_data_test(obj_request)); 1515 obj_request_img_data_set(obj_request); 1516 rbd_assert(obj_request->which != BAD_WHICH); 1517 img_request->obj_request_count++; 1518 list_add_tail(&obj_request->links, &img_request->obj_requests); 1519 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1520 obj_request->which); 1521 } 1522 1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1524 struct rbd_obj_request *obj_request) 1525 { 1526 rbd_assert(obj_request->which != BAD_WHICH); 1527 1528 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1529 obj_request->which); 1530 list_del(&obj_request->links); 1531 rbd_assert(img_request->obj_request_count > 0); 1532 img_request->obj_request_count--; 1533 rbd_assert(obj_request->which == img_request->obj_request_count); 1534 obj_request->which = BAD_WHICH; 1535 rbd_assert(obj_request_img_data_test(obj_request)); 1536 rbd_assert(obj_request->img_request == img_request); 1537 obj_request->img_request = NULL; 1538 obj_request->callback = NULL; 1539 rbd_obj_request_put(obj_request); 1540 } 1541 1542 static bool obj_request_type_valid(enum obj_request_type type) 1543 { 1544 switch (type) { 1545 case OBJ_REQUEST_NODATA: 1546 case OBJ_REQUEST_BIO: 1547 case OBJ_REQUEST_PAGES: 1548 return true; 1549 default: 1550 return false; 1551 } 1552 } 1553 1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1555 struct rbd_obj_request *obj_request) 1556 { 1557 dout("%s %p\n", __func__, obj_request); 1558 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1559 } 1560 1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1562 { 1563 dout("%s %p\n", __func__, obj_request); 1564 ceph_osdc_cancel_request(obj_request->osd_req); 1565 } 1566 1567 /* 1568 * Wait for an object request to complete. If interrupted, cancel the 1569 * underlying osd request. 1570 * 1571 * @timeout: in jiffies, 0 means "wait forever" 1572 */ 1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1574 unsigned long timeout) 1575 { 1576 long ret; 1577 1578 dout("%s %p\n", __func__, obj_request); 1579 ret = wait_for_completion_interruptible_timeout( 1580 &obj_request->completion, 1581 ceph_timeout_jiffies(timeout)); 1582 if (ret <= 0) { 1583 if (ret == 0) 1584 ret = -ETIMEDOUT; 1585 rbd_obj_request_end(obj_request); 1586 } else { 1587 ret = 0; 1588 } 1589 1590 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1591 return ret; 1592 } 1593 1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1595 { 1596 return __rbd_obj_request_wait(obj_request, 0); 1597 } 1598 1599 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1600 { 1601 1602 dout("%s: img %p\n", __func__, img_request); 1603 1604 /* 1605 * If no error occurred, compute the aggregate transfer 1606 * count for the image request. We could instead use 1607 * atomic64_cmpxchg() to update it as each object request 1608 * completes; not clear which way is better off hand. 1609 */ 1610 if (!img_request->result) { 1611 struct rbd_obj_request *obj_request; 1612 u64 xferred = 0; 1613 1614 for_each_obj_request(img_request, obj_request) 1615 xferred += obj_request->xferred; 1616 img_request->xferred = xferred; 1617 } 1618 1619 if (img_request->callback) 1620 img_request->callback(img_request); 1621 else 1622 rbd_img_request_put(img_request); 1623 } 1624 1625 /* 1626 * The default/initial value for all image request flags is 0. Each 1627 * is conditionally set to 1 at image request initialization time 1628 * and currently never change thereafter. 1629 */ 1630 static void img_request_write_set(struct rbd_img_request *img_request) 1631 { 1632 set_bit(IMG_REQ_WRITE, &img_request->flags); 1633 smp_mb(); 1634 } 1635 1636 static bool img_request_write_test(struct rbd_img_request *img_request) 1637 { 1638 smp_mb(); 1639 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1640 } 1641 1642 /* 1643 * Set the discard flag when the img_request is an discard request 1644 */ 1645 static void img_request_discard_set(struct rbd_img_request *img_request) 1646 { 1647 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1648 smp_mb(); 1649 } 1650 1651 static bool img_request_discard_test(struct rbd_img_request *img_request) 1652 { 1653 smp_mb(); 1654 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1655 } 1656 1657 static void img_request_child_set(struct rbd_img_request *img_request) 1658 { 1659 set_bit(IMG_REQ_CHILD, &img_request->flags); 1660 smp_mb(); 1661 } 1662 1663 static void img_request_child_clear(struct rbd_img_request *img_request) 1664 { 1665 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1666 smp_mb(); 1667 } 1668 1669 static bool img_request_child_test(struct rbd_img_request *img_request) 1670 { 1671 smp_mb(); 1672 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1673 } 1674 1675 static void img_request_layered_set(struct rbd_img_request *img_request) 1676 { 1677 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1678 smp_mb(); 1679 } 1680 1681 static void img_request_layered_clear(struct rbd_img_request *img_request) 1682 { 1683 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1684 smp_mb(); 1685 } 1686 1687 static bool img_request_layered_test(struct rbd_img_request *img_request) 1688 { 1689 smp_mb(); 1690 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1691 } 1692 1693 static enum obj_operation_type 1694 rbd_img_request_op_type(struct rbd_img_request *img_request) 1695 { 1696 if (img_request_write_test(img_request)) 1697 return OBJ_OP_WRITE; 1698 else if (img_request_discard_test(img_request)) 1699 return OBJ_OP_DISCARD; 1700 else 1701 return OBJ_OP_READ; 1702 } 1703 1704 static void 1705 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1706 { 1707 u64 xferred = obj_request->xferred; 1708 u64 length = obj_request->length; 1709 1710 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1711 obj_request, obj_request->img_request, obj_request->result, 1712 xferred, length); 1713 /* 1714 * ENOENT means a hole in the image. We zero-fill the entire 1715 * length of the request. A short read also implies zero-fill 1716 * to the end of the request. An error requires the whole 1717 * length of the request to be reported finished with an error 1718 * to the block layer. In each case we update the xferred 1719 * count to indicate the whole request was satisfied. 1720 */ 1721 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1722 if (obj_request->result == -ENOENT) { 1723 if (obj_request->type == OBJ_REQUEST_BIO) 1724 zero_bio_chain(obj_request->bio_list, 0); 1725 else 1726 zero_pages(obj_request->pages, 0, length); 1727 obj_request->result = 0; 1728 } else if (xferred < length && !obj_request->result) { 1729 if (obj_request->type == OBJ_REQUEST_BIO) 1730 zero_bio_chain(obj_request->bio_list, xferred); 1731 else 1732 zero_pages(obj_request->pages, xferred, length); 1733 } 1734 obj_request->xferred = length; 1735 obj_request_done_set(obj_request); 1736 } 1737 1738 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1739 { 1740 dout("%s: obj %p cb %p\n", __func__, obj_request, 1741 obj_request->callback); 1742 if (obj_request->callback) 1743 obj_request->callback(obj_request); 1744 else 1745 complete_all(&obj_request->completion); 1746 } 1747 1748 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1749 { 1750 struct rbd_img_request *img_request = NULL; 1751 struct rbd_device *rbd_dev = NULL; 1752 bool layered = false; 1753 1754 if (obj_request_img_data_test(obj_request)) { 1755 img_request = obj_request->img_request; 1756 layered = img_request && img_request_layered_test(img_request); 1757 rbd_dev = img_request->rbd_dev; 1758 } 1759 1760 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1761 obj_request, img_request, obj_request->result, 1762 obj_request->xferred, obj_request->length); 1763 if (layered && obj_request->result == -ENOENT && 1764 obj_request->img_offset < rbd_dev->parent_overlap) 1765 rbd_img_parent_read(obj_request); 1766 else if (img_request) 1767 rbd_img_obj_request_read_callback(obj_request); 1768 else 1769 obj_request_done_set(obj_request); 1770 } 1771 1772 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1773 { 1774 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1775 obj_request->result, obj_request->length); 1776 /* 1777 * There is no such thing as a successful short write. Set 1778 * it to our originally-requested length. 1779 */ 1780 obj_request->xferred = obj_request->length; 1781 obj_request_done_set(obj_request); 1782 } 1783 1784 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1785 { 1786 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1787 obj_request->result, obj_request->length); 1788 /* 1789 * There is no such thing as a successful short discard. Set 1790 * it to our originally-requested length. 1791 */ 1792 obj_request->xferred = obj_request->length; 1793 /* discarding a non-existent object is not a problem */ 1794 if (obj_request->result == -ENOENT) 1795 obj_request->result = 0; 1796 obj_request_done_set(obj_request); 1797 } 1798 1799 /* 1800 * For a simple stat call there's nothing to do. We'll do more if 1801 * this is part of a write sequence for a layered image. 1802 */ 1803 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1804 { 1805 dout("%s: obj %p\n", __func__, obj_request); 1806 obj_request_done_set(obj_request); 1807 } 1808 1809 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1810 { 1811 dout("%s: obj %p\n", __func__, obj_request); 1812 1813 if (obj_request_img_data_test(obj_request)) 1814 rbd_osd_copyup_callback(obj_request); 1815 else 1816 obj_request_done_set(obj_request); 1817 } 1818 1819 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1820 { 1821 struct rbd_obj_request *obj_request = osd_req->r_priv; 1822 u16 opcode; 1823 1824 dout("%s: osd_req %p\n", __func__, osd_req); 1825 rbd_assert(osd_req == obj_request->osd_req); 1826 if (obj_request_img_data_test(obj_request)) { 1827 rbd_assert(obj_request->img_request); 1828 rbd_assert(obj_request->which != BAD_WHICH); 1829 } else { 1830 rbd_assert(obj_request->which == BAD_WHICH); 1831 } 1832 1833 if (osd_req->r_result < 0) 1834 obj_request->result = osd_req->r_result; 1835 1836 /* 1837 * We support a 64-bit length, but ultimately it has to be 1838 * passed to the block layer, which just supports a 32-bit 1839 * length field. 1840 */ 1841 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1842 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1843 1844 opcode = osd_req->r_ops[0].op; 1845 switch (opcode) { 1846 case CEPH_OSD_OP_READ: 1847 rbd_osd_read_callback(obj_request); 1848 break; 1849 case CEPH_OSD_OP_SETALLOCHINT: 1850 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1851 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1852 /* fall through */ 1853 case CEPH_OSD_OP_WRITE: 1854 case CEPH_OSD_OP_WRITEFULL: 1855 rbd_osd_write_callback(obj_request); 1856 break; 1857 case CEPH_OSD_OP_STAT: 1858 rbd_osd_stat_callback(obj_request); 1859 break; 1860 case CEPH_OSD_OP_DELETE: 1861 case CEPH_OSD_OP_TRUNCATE: 1862 case CEPH_OSD_OP_ZERO: 1863 rbd_osd_discard_callback(obj_request); 1864 break; 1865 case CEPH_OSD_OP_CALL: 1866 rbd_osd_call_callback(obj_request); 1867 break; 1868 default: 1869 rbd_warn(NULL, "%s: unsupported op %hu", 1870 obj_request->object_name, (unsigned short) opcode); 1871 break; 1872 } 1873 1874 if (obj_request_done_test(obj_request)) 1875 rbd_obj_request_complete(obj_request); 1876 } 1877 1878 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1879 { 1880 struct rbd_img_request *img_request = obj_request->img_request; 1881 struct ceph_osd_request *osd_req = obj_request->osd_req; 1882 1883 if (img_request) 1884 osd_req->r_snapid = img_request->snap_id; 1885 } 1886 1887 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1888 { 1889 struct ceph_osd_request *osd_req = obj_request->osd_req; 1890 1891 osd_req->r_mtime = CURRENT_TIME; 1892 osd_req->r_data_offset = obj_request->offset; 1893 } 1894 1895 /* 1896 * Create an osd request. A read request has one osd op (read). 1897 * A write request has either one (watch) or two (hint+write) osd ops. 1898 * (All rbd data writes are prefixed with an allocation hint op, but 1899 * technically osd watch is a write request, hence this distinction.) 1900 */ 1901 static struct ceph_osd_request *rbd_osd_req_create( 1902 struct rbd_device *rbd_dev, 1903 enum obj_operation_type op_type, 1904 unsigned int num_ops, 1905 struct rbd_obj_request *obj_request) 1906 { 1907 struct ceph_snap_context *snapc = NULL; 1908 struct ceph_osd_client *osdc; 1909 struct ceph_osd_request *osd_req; 1910 1911 if (obj_request_img_data_test(obj_request) && 1912 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1913 struct rbd_img_request *img_request = obj_request->img_request; 1914 if (op_type == OBJ_OP_WRITE) { 1915 rbd_assert(img_request_write_test(img_request)); 1916 } else { 1917 rbd_assert(img_request_discard_test(img_request)); 1918 } 1919 snapc = img_request->snapc; 1920 } 1921 1922 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1923 1924 /* Allocate and initialize the request, for the num_ops ops */ 1925 1926 osdc = &rbd_dev->rbd_client->client->osdc; 1927 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1928 GFP_NOIO); 1929 if (!osd_req) 1930 goto fail; 1931 1932 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1933 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1934 else 1935 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1936 1937 osd_req->r_callback = rbd_osd_req_callback; 1938 osd_req->r_priv = obj_request; 1939 1940 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1941 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s", 1942 obj_request->object_name)) 1943 goto fail; 1944 1945 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO)) 1946 goto fail; 1947 1948 return osd_req; 1949 1950 fail: 1951 ceph_osdc_put_request(osd_req); 1952 return NULL; 1953 } 1954 1955 /* 1956 * Create a copyup osd request based on the information in the object 1957 * request supplied. A copyup request has two or three osd ops, a 1958 * copyup method call, potentially a hint op, and a write or truncate 1959 * or zero op. 1960 */ 1961 static struct ceph_osd_request * 1962 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1963 { 1964 struct rbd_img_request *img_request; 1965 struct ceph_snap_context *snapc; 1966 struct rbd_device *rbd_dev; 1967 struct ceph_osd_client *osdc; 1968 struct ceph_osd_request *osd_req; 1969 int num_osd_ops = 3; 1970 1971 rbd_assert(obj_request_img_data_test(obj_request)); 1972 img_request = obj_request->img_request; 1973 rbd_assert(img_request); 1974 rbd_assert(img_request_write_test(img_request) || 1975 img_request_discard_test(img_request)); 1976 1977 if (img_request_discard_test(img_request)) 1978 num_osd_ops = 2; 1979 1980 /* Allocate and initialize the request, for all the ops */ 1981 1982 snapc = img_request->snapc; 1983 rbd_dev = img_request->rbd_dev; 1984 osdc = &rbd_dev->rbd_client->client->osdc; 1985 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 1986 false, GFP_NOIO); 1987 if (!osd_req) 1988 goto fail; 1989 1990 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1991 osd_req->r_callback = rbd_osd_req_callback; 1992 osd_req->r_priv = obj_request; 1993 1994 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1995 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s", 1996 obj_request->object_name)) 1997 goto fail; 1998 1999 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO)) 2000 goto fail; 2001 2002 return osd_req; 2003 2004 fail: 2005 ceph_osdc_put_request(osd_req); 2006 return NULL; 2007 } 2008 2009 2010 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2011 { 2012 ceph_osdc_put_request(osd_req); 2013 } 2014 2015 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2016 2017 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2018 u64 offset, u64 length, 2019 enum obj_request_type type) 2020 { 2021 struct rbd_obj_request *obj_request; 2022 size_t size; 2023 char *name; 2024 2025 rbd_assert(obj_request_type_valid(type)); 2026 2027 size = strlen(object_name) + 1; 2028 name = kmalloc(size, GFP_NOIO); 2029 if (!name) 2030 return NULL; 2031 2032 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2033 if (!obj_request) { 2034 kfree(name); 2035 return NULL; 2036 } 2037 2038 obj_request->object_name = memcpy(name, object_name, size); 2039 obj_request->offset = offset; 2040 obj_request->length = length; 2041 obj_request->flags = 0; 2042 obj_request->which = BAD_WHICH; 2043 obj_request->type = type; 2044 INIT_LIST_HEAD(&obj_request->links); 2045 init_completion(&obj_request->completion); 2046 kref_init(&obj_request->kref); 2047 2048 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2049 offset, length, (int)type, obj_request); 2050 2051 return obj_request; 2052 } 2053 2054 static void rbd_obj_request_destroy(struct kref *kref) 2055 { 2056 struct rbd_obj_request *obj_request; 2057 2058 obj_request = container_of(kref, struct rbd_obj_request, kref); 2059 2060 dout("%s: obj %p\n", __func__, obj_request); 2061 2062 rbd_assert(obj_request->img_request == NULL); 2063 rbd_assert(obj_request->which == BAD_WHICH); 2064 2065 if (obj_request->osd_req) 2066 rbd_osd_req_destroy(obj_request->osd_req); 2067 2068 rbd_assert(obj_request_type_valid(obj_request->type)); 2069 switch (obj_request->type) { 2070 case OBJ_REQUEST_NODATA: 2071 break; /* Nothing to do */ 2072 case OBJ_REQUEST_BIO: 2073 if (obj_request->bio_list) 2074 bio_chain_put(obj_request->bio_list); 2075 break; 2076 case OBJ_REQUEST_PAGES: 2077 if (obj_request->pages) 2078 ceph_release_page_vector(obj_request->pages, 2079 obj_request->page_count); 2080 break; 2081 } 2082 2083 kfree(obj_request->object_name); 2084 obj_request->object_name = NULL; 2085 kmem_cache_free(rbd_obj_request_cache, obj_request); 2086 } 2087 2088 /* It's OK to call this for a device with no parent */ 2089 2090 static void rbd_spec_put(struct rbd_spec *spec); 2091 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2092 { 2093 rbd_dev_remove_parent(rbd_dev); 2094 rbd_spec_put(rbd_dev->parent_spec); 2095 rbd_dev->parent_spec = NULL; 2096 rbd_dev->parent_overlap = 0; 2097 } 2098 2099 /* 2100 * Parent image reference counting is used to determine when an 2101 * image's parent fields can be safely torn down--after there are no 2102 * more in-flight requests to the parent image. When the last 2103 * reference is dropped, cleaning them up is safe. 2104 */ 2105 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2106 { 2107 int counter; 2108 2109 if (!rbd_dev->parent_spec) 2110 return; 2111 2112 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2113 if (counter > 0) 2114 return; 2115 2116 /* Last reference; clean up parent data structures */ 2117 2118 if (!counter) 2119 rbd_dev_unparent(rbd_dev); 2120 else 2121 rbd_warn(rbd_dev, "parent reference underflow"); 2122 } 2123 2124 /* 2125 * If an image has a non-zero parent overlap, get a reference to its 2126 * parent. 2127 * 2128 * Returns true if the rbd device has a parent with a non-zero 2129 * overlap and a reference for it was successfully taken, or 2130 * false otherwise. 2131 */ 2132 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2133 { 2134 int counter = 0; 2135 2136 if (!rbd_dev->parent_spec) 2137 return false; 2138 2139 down_read(&rbd_dev->header_rwsem); 2140 if (rbd_dev->parent_overlap) 2141 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2142 up_read(&rbd_dev->header_rwsem); 2143 2144 if (counter < 0) 2145 rbd_warn(rbd_dev, "parent reference overflow"); 2146 2147 return counter > 0; 2148 } 2149 2150 /* 2151 * Caller is responsible for filling in the list of object requests 2152 * that comprises the image request, and the Linux request pointer 2153 * (if there is one). 2154 */ 2155 static struct rbd_img_request *rbd_img_request_create( 2156 struct rbd_device *rbd_dev, 2157 u64 offset, u64 length, 2158 enum obj_operation_type op_type, 2159 struct ceph_snap_context *snapc) 2160 { 2161 struct rbd_img_request *img_request; 2162 2163 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2164 if (!img_request) 2165 return NULL; 2166 2167 img_request->rq = NULL; 2168 img_request->rbd_dev = rbd_dev; 2169 img_request->offset = offset; 2170 img_request->length = length; 2171 img_request->flags = 0; 2172 if (op_type == OBJ_OP_DISCARD) { 2173 img_request_discard_set(img_request); 2174 img_request->snapc = snapc; 2175 } else if (op_type == OBJ_OP_WRITE) { 2176 img_request_write_set(img_request); 2177 img_request->snapc = snapc; 2178 } else { 2179 img_request->snap_id = rbd_dev->spec->snap_id; 2180 } 2181 if (rbd_dev_parent_get(rbd_dev)) 2182 img_request_layered_set(img_request); 2183 spin_lock_init(&img_request->completion_lock); 2184 img_request->next_completion = 0; 2185 img_request->callback = NULL; 2186 img_request->result = 0; 2187 img_request->obj_request_count = 0; 2188 INIT_LIST_HEAD(&img_request->obj_requests); 2189 kref_init(&img_request->kref); 2190 2191 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2192 obj_op_name(op_type), offset, length, img_request); 2193 2194 return img_request; 2195 } 2196 2197 static void rbd_img_request_destroy(struct kref *kref) 2198 { 2199 struct rbd_img_request *img_request; 2200 struct rbd_obj_request *obj_request; 2201 struct rbd_obj_request *next_obj_request; 2202 2203 img_request = container_of(kref, struct rbd_img_request, kref); 2204 2205 dout("%s: img %p\n", __func__, img_request); 2206 2207 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2208 rbd_img_obj_request_del(img_request, obj_request); 2209 rbd_assert(img_request->obj_request_count == 0); 2210 2211 if (img_request_layered_test(img_request)) { 2212 img_request_layered_clear(img_request); 2213 rbd_dev_parent_put(img_request->rbd_dev); 2214 } 2215 2216 if (img_request_write_test(img_request) || 2217 img_request_discard_test(img_request)) 2218 ceph_put_snap_context(img_request->snapc); 2219 2220 kmem_cache_free(rbd_img_request_cache, img_request); 2221 } 2222 2223 static struct rbd_img_request *rbd_parent_request_create( 2224 struct rbd_obj_request *obj_request, 2225 u64 img_offset, u64 length) 2226 { 2227 struct rbd_img_request *parent_request; 2228 struct rbd_device *rbd_dev; 2229 2230 rbd_assert(obj_request->img_request); 2231 rbd_dev = obj_request->img_request->rbd_dev; 2232 2233 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2234 length, OBJ_OP_READ, NULL); 2235 if (!parent_request) 2236 return NULL; 2237 2238 img_request_child_set(parent_request); 2239 rbd_obj_request_get(obj_request); 2240 parent_request->obj_request = obj_request; 2241 2242 return parent_request; 2243 } 2244 2245 static void rbd_parent_request_destroy(struct kref *kref) 2246 { 2247 struct rbd_img_request *parent_request; 2248 struct rbd_obj_request *orig_request; 2249 2250 parent_request = container_of(kref, struct rbd_img_request, kref); 2251 orig_request = parent_request->obj_request; 2252 2253 parent_request->obj_request = NULL; 2254 rbd_obj_request_put(orig_request); 2255 img_request_child_clear(parent_request); 2256 2257 rbd_img_request_destroy(kref); 2258 } 2259 2260 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2261 { 2262 struct rbd_img_request *img_request; 2263 unsigned int xferred; 2264 int result; 2265 bool more; 2266 2267 rbd_assert(obj_request_img_data_test(obj_request)); 2268 img_request = obj_request->img_request; 2269 2270 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2271 xferred = (unsigned int)obj_request->xferred; 2272 result = obj_request->result; 2273 if (result) { 2274 struct rbd_device *rbd_dev = img_request->rbd_dev; 2275 enum obj_operation_type op_type; 2276 2277 if (img_request_discard_test(img_request)) 2278 op_type = OBJ_OP_DISCARD; 2279 else if (img_request_write_test(img_request)) 2280 op_type = OBJ_OP_WRITE; 2281 else 2282 op_type = OBJ_OP_READ; 2283 2284 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2285 obj_op_name(op_type), obj_request->length, 2286 obj_request->img_offset, obj_request->offset); 2287 rbd_warn(rbd_dev, " result %d xferred %x", 2288 result, xferred); 2289 if (!img_request->result) 2290 img_request->result = result; 2291 /* 2292 * Need to end I/O on the entire obj_request worth of 2293 * bytes in case of error. 2294 */ 2295 xferred = obj_request->length; 2296 } 2297 2298 /* Image object requests don't own their page array */ 2299 2300 if (obj_request->type == OBJ_REQUEST_PAGES) { 2301 obj_request->pages = NULL; 2302 obj_request->page_count = 0; 2303 } 2304 2305 if (img_request_child_test(img_request)) { 2306 rbd_assert(img_request->obj_request != NULL); 2307 more = obj_request->which < img_request->obj_request_count - 1; 2308 } else { 2309 rbd_assert(img_request->rq != NULL); 2310 2311 more = blk_update_request(img_request->rq, result, xferred); 2312 if (!more) 2313 __blk_mq_end_request(img_request->rq, result); 2314 } 2315 2316 return more; 2317 } 2318 2319 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2320 { 2321 struct rbd_img_request *img_request; 2322 u32 which = obj_request->which; 2323 bool more = true; 2324 2325 rbd_assert(obj_request_img_data_test(obj_request)); 2326 img_request = obj_request->img_request; 2327 2328 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2329 rbd_assert(img_request != NULL); 2330 rbd_assert(img_request->obj_request_count > 0); 2331 rbd_assert(which != BAD_WHICH); 2332 rbd_assert(which < img_request->obj_request_count); 2333 2334 spin_lock_irq(&img_request->completion_lock); 2335 if (which != img_request->next_completion) 2336 goto out; 2337 2338 for_each_obj_request_from(img_request, obj_request) { 2339 rbd_assert(more); 2340 rbd_assert(which < img_request->obj_request_count); 2341 2342 if (!obj_request_done_test(obj_request)) 2343 break; 2344 more = rbd_img_obj_end_request(obj_request); 2345 which++; 2346 } 2347 2348 rbd_assert(more ^ (which == img_request->obj_request_count)); 2349 img_request->next_completion = which; 2350 out: 2351 spin_unlock_irq(&img_request->completion_lock); 2352 rbd_img_request_put(img_request); 2353 2354 if (!more) 2355 rbd_img_request_complete(img_request); 2356 } 2357 2358 /* 2359 * Add individual osd ops to the given ceph_osd_request and prepare 2360 * them for submission. num_ops is the current number of 2361 * osd operations already to the object request. 2362 */ 2363 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2364 struct ceph_osd_request *osd_request, 2365 enum obj_operation_type op_type, 2366 unsigned int num_ops) 2367 { 2368 struct rbd_img_request *img_request = obj_request->img_request; 2369 struct rbd_device *rbd_dev = img_request->rbd_dev; 2370 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2371 u64 offset = obj_request->offset; 2372 u64 length = obj_request->length; 2373 u64 img_end; 2374 u16 opcode; 2375 2376 if (op_type == OBJ_OP_DISCARD) { 2377 if (!offset && length == object_size && 2378 (!img_request_layered_test(img_request) || 2379 !obj_request_overlaps_parent(obj_request))) { 2380 opcode = CEPH_OSD_OP_DELETE; 2381 } else if ((offset + length == object_size)) { 2382 opcode = CEPH_OSD_OP_TRUNCATE; 2383 } else { 2384 down_read(&rbd_dev->header_rwsem); 2385 img_end = rbd_dev->header.image_size; 2386 up_read(&rbd_dev->header_rwsem); 2387 2388 if (obj_request->img_offset + length == img_end) 2389 opcode = CEPH_OSD_OP_TRUNCATE; 2390 else 2391 opcode = CEPH_OSD_OP_ZERO; 2392 } 2393 } else if (op_type == OBJ_OP_WRITE) { 2394 if (!offset && length == object_size) 2395 opcode = CEPH_OSD_OP_WRITEFULL; 2396 else 2397 opcode = CEPH_OSD_OP_WRITE; 2398 osd_req_op_alloc_hint_init(osd_request, num_ops, 2399 object_size, object_size); 2400 num_ops++; 2401 } else { 2402 opcode = CEPH_OSD_OP_READ; 2403 } 2404 2405 if (opcode == CEPH_OSD_OP_DELETE) 2406 osd_req_op_init(osd_request, num_ops, opcode, 0); 2407 else 2408 osd_req_op_extent_init(osd_request, num_ops, opcode, 2409 offset, length, 0, 0); 2410 2411 if (obj_request->type == OBJ_REQUEST_BIO) 2412 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2413 obj_request->bio_list, length); 2414 else if (obj_request->type == OBJ_REQUEST_PAGES) 2415 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2416 obj_request->pages, length, 2417 offset & ~PAGE_MASK, false, false); 2418 2419 /* Discards are also writes */ 2420 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2421 rbd_osd_req_format_write(obj_request); 2422 else 2423 rbd_osd_req_format_read(obj_request); 2424 } 2425 2426 /* 2427 * Split up an image request into one or more object requests, each 2428 * to a different object. The "type" parameter indicates whether 2429 * "data_desc" is the pointer to the head of a list of bio 2430 * structures, or the base of a page array. In either case this 2431 * function assumes data_desc describes memory sufficient to hold 2432 * all data described by the image request. 2433 */ 2434 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2435 enum obj_request_type type, 2436 void *data_desc) 2437 { 2438 struct rbd_device *rbd_dev = img_request->rbd_dev; 2439 struct rbd_obj_request *obj_request = NULL; 2440 struct rbd_obj_request *next_obj_request; 2441 struct bio *bio_list = NULL; 2442 unsigned int bio_offset = 0; 2443 struct page **pages = NULL; 2444 enum obj_operation_type op_type; 2445 u64 img_offset; 2446 u64 resid; 2447 2448 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2449 (int)type, data_desc); 2450 2451 img_offset = img_request->offset; 2452 resid = img_request->length; 2453 rbd_assert(resid > 0); 2454 op_type = rbd_img_request_op_type(img_request); 2455 2456 if (type == OBJ_REQUEST_BIO) { 2457 bio_list = data_desc; 2458 rbd_assert(img_offset == 2459 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2460 } else if (type == OBJ_REQUEST_PAGES) { 2461 pages = data_desc; 2462 } 2463 2464 while (resid) { 2465 struct ceph_osd_request *osd_req; 2466 const char *object_name; 2467 u64 offset; 2468 u64 length; 2469 2470 object_name = rbd_segment_name(rbd_dev, img_offset); 2471 if (!object_name) 2472 goto out_unwind; 2473 offset = rbd_segment_offset(rbd_dev, img_offset); 2474 length = rbd_segment_length(rbd_dev, img_offset, resid); 2475 obj_request = rbd_obj_request_create(object_name, 2476 offset, length, type); 2477 /* object request has its own copy of the object name */ 2478 rbd_segment_name_free(object_name); 2479 if (!obj_request) 2480 goto out_unwind; 2481 2482 /* 2483 * set obj_request->img_request before creating the 2484 * osd_request so that it gets the right snapc 2485 */ 2486 rbd_img_obj_request_add(img_request, obj_request); 2487 2488 if (type == OBJ_REQUEST_BIO) { 2489 unsigned int clone_size; 2490 2491 rbd_assert(length <= (u64)UINT_MAX); 2492 clone_size = (unsigned int)length; 2493 obj_request->bio_list = 2494 bio_chain_clone_range(&bio_list, 2495 &bio_offset, 2496 clone_size, 2497 GFP_NOIO); 2498 if (!obj_request->bio_list) 2499 goto out_unwind; 2500 } else if (type == OBJ_REQUEST_PAGES) { 2501 unsigned int page_count; 2502 2503 obj_request->pages = pages; 2504 page_count = (u32)calc_pages_for(offset, length); 2505 obj_request->page_count = page_count; 2506 if ((offset + length) & ~PAGE_MASK) 2507 page_count--; /* more on last page */ 2508 pages += page_count; 2509 } 2510 2511 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2512 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2513 obj_request); 2514 if (!osd_req) 2515 goto out_unwind; 2516 2517 obj_request->osd_req = osd_req; 2518 obj_request->callback = rbd_img_obj_callback; 2519 obj_request->img_offset = img_offset; 2520 2521 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2522 2523 rbd_img_request_get(img_request); 2524 2525 img_offset += length; 2526 resid -= length; 2527 } 2528 2529 return 0; 2530 2531 out_unwind: 2532 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2533 rbd_img_obj_request_del(img_request, obj_request); 2534 2535 return -ENOMEM; 2536 } 2537 2538 static void 2539 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2540 { 2541 struct rbd_img_request *img_request; 2542 struct rbd_device *rbd_dev; 2543 struct page **pages; 2544 u32 page_count; 2545 2546 dout("%s: obj %p\n", __func__, obj_request); 2547 2548 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2549 obj_request->type == OBJ_REQUEST_NODATA); 2550 rbd_assert(obj_request_img_data_test(obj_request)); 2551 img_request = obj_request->img_request; 2552 rbd_assert(img_request); 2553 2554 rbd_dev = img_request->rbd_dev; 2555 rbd_assert(rbd_dev); 2556 2557 pages = obj_request->copyup_pages; 2558 rbd_assert(pages != NULL); 2559 obj_request->copyup_pages = NULL; 2560 page_count = obj_request->copyup_page_count; 2561 rbd_assert(page_count); 2562 obj_request->copyup_page_count = 0; 2563 ceph_release_page_vector(pages, page_count); 2564 2565 /* 2566 * We want the transfer count to reflect the size of the 2567 * original write request. There is no such thing as a 2568 * successful short write, so if the request was successful 2569 * we can just set it to the originally-requested length. 2570 */ 2571 if (!obj_request->result) 2572 obj_request->xferred = obj_request->length; 2573 2574 obj_request_done_set(obj_request); 2575 } 2576 2577 static void 2578 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2579 { 2580 struct rbd_obj_request *orig_request; 2581 struct ceph_osd_request *osd_req; 2582 struct ceph_osd_client *osdc; 2583 struct rbd_device *rbd_dev; 2584 struct page **pages; 2585 enum obj_operation_type op_type; 2586 u32 page_count; 2587 int img_result; 2588 u64 parent_length; 2589 2590 rbd_assert(img_request_child_test(img_request)); 2591 2592 /* First get what we need from the image request */ 2593 2594 pages = img_request->copyup_pages; 2595 rbd_assert(pages != NULL); 2596 img_request->copyup_pages = NULL; 2597 page_count = img_request->copyup_page_count; 2598 rbd_assert(page_count); 2599 img_request->copyup_page_count = 0; 2600 2601 orig_request = img_request->obj_request; 2602 rbd_assert(orig_request != NULL); 2603 rbd_assert(obj_request_type_valid(orig_request->type)); 2604 img_result = img_request->result; 2605 parent_length = img_request->length; 2606 rbd_assert(parent_length == img_request->xferred); 2607 rbd_img_request_put(img_request); 2608 2609 rbd_assert(orig_request->img_request); 2610 rbd_dev = orig_request->img_request->rbd_dev; 2611 rbd_assert(rbd_dev); 2612 2613 /* 2614 * If the overlap has become 0 (most likely because the 2615 * image has been flattened) we need to free the pages 2616 * and re-submit the original write request. 2617 */ 2618 if (!rbd_dev->parent_overlap) { 2619 struct ceph_osd_client *osdc; 2620 2621 ceph_release_page_vector(pages, page_count); 2622 osdc = &rbd_dev->rbd_client->client->osdc; 2623 img_result = rbd_obj_request_submit(osdc, orig_request); 2624 if (!img_result) 2625 return; 2626 } 2627 2628 if (img_result) 2629 goto out_err; 2630 2631 /* 2632 * The original osd request is of no use to use any more. 2633 * We need a new one that can hold the three ops in a copyup 2634 * request. Allocate the new copyup osd request for the 2635 * original request, and release the old one. 2636 */ 2637 img_result = -ENOMEM; 2638 osd_req = rbd_osd_req_create_copyup(orig_request); 2639 if (!osd_req) 2640 goto out_err; 2641 rbd_osd_req_destroy(orig_request->osd_req); 2642 orig_request->osd_req = osd_req; 2643 orig_request->copyup_pages = pages; 2644 orig_request->copyup_page_count = page_count; 2645 2646 /* Initialize the copyup op */ 2647 2648 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2649 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2650 false, false); 2651 2652 /* Add the other op(s) */ 2653 2654 op_type = rbd_img_request_op_type(orig_request->img_request); 2655 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2656 2657 /* All set, send it off. */ 2658 2659 osdc = &rbd_dev->rbd_client->client->osdc; 2660 img_result = rbd_obj_request_submit(osdc, orig_request); 2661 if (!img_result) 2662 return; 2663 out_err: 2664 /* Record the error code and complete the request */ 2665 2666 orig_request->result = img_result; 2667 orig_request->xferred = 0; 2668 obj_request_done_set(orig_request); 2669 rbd_obj_request_complete(orig_request); 2670 } 2671 2672 /* 2673 * Read from the parent image the range of data that covers the 2674 * entire target of the given object request. This is used for 2675 * satisfying a layered image write request when the target of an 2676 * object request from the image request does not exist. 2677 * 2678 * A page array big enough to hold the returned data is allocated 2679 * and supplied to rbd_img_request_fill() as the "data descriptor." 2680 * When the read completes, this page array will be transferred to 2681 * the original object request for the copyup operation. 2682 * 2683 * If an error occurs, record it as the result of the original 2684 * object request and mark it done so it gets completed. 2685 */ 2686 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2687 { 2688 struct rbd_img_request *img_request = NULL; 2689 struct rbd_img_request *parent_request = NULL; 2690 struct rbd_device *rbd_dev; 2691 u64 img_offset; 2692 u64 length; 2693 struct page **pages = NULL; 2694 u32 page_count; 2695 int result; 2696 2697 rbd_assert(obj_request_img_data_test(obj_request)); 2698 rbd_assert(obj_request_type_valid(obj_request->type)); 2699 2700 img_request = obj_request->img_request; 2701 rbd_assert(img_request != NULL); 2702 rbd_dev = img_request->rbd_dev; 2703 rbd_assert(rbd_dev->parent != NULL); 2704 2705 /* 2706 * Determine the byte range covered by the object in the 2707 * child image to which the original request was to be sent. 2708 */ 2709 img_offset = obj_request->img_offset - obj_request->offset; 2710 length = (u64)1 << rbd_dev->header.obj_order; 2711 2712 /* 2713 * There is no defined parent data beyond the parent 2714 * overlap, so limit what we read at that boundary if 2715 * necessary. 2716 */ 2717 if (img_offset + length > rbd_dev->parent_overlap) { 2718 rbd_assert(img_offset < rbd_dev->parent_overlap); 2719 length = rbd_dev->parent_overlap - img_offset; 2720 } 2721 2722 /* 2723 * Allocate a page array big enough to receive the data read 2724 * from the parent. 2725 */ 2726 page_count = (u32)calc_pages_for(0, length); 2727 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2728 if (IS_ERR(pages)) { 2729 result = PTR_ERR(pages); 2730 pages = NULL; 2731 goto out_err; 2732 } 2733 2734 result = -ENOMEM; 2735 parent_request = rbd_parent_request_create(obj_request, 2736 img_offset, length); 2737 if (!parent_request) 2738 goto out_err; 2739 2740 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2741 if (result) 2742 goto out_err; 2743 parent_request->copyup_pages = pages; 2744 parent_request->copyup_page_count = page_count; 2745 2746 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2747 result = rbd_img_request_submit(parent_request); 2748 if (!result) 2749 return 0; 2750 2751 parent_request->copyup_pages = NULL; 2752 parent_request->copyup_page_count = 0; 2753 parent_request->obj_request = NULL; 2754 rbd_obj_request_put(obj_request); 2755 out_err: 2756 if (pages) 2757 ceph_release_page_vector(pages, page_count); 2758 if (parent_request) 2759 rbd_img_request_put(parent_request); 2760 obj_request->result = result; 2761 obj_request->xferred = 0; 2762 obj_request_done_set(obj_request); 2763 2764 return result; 2765 } 2766 2767 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2768 { 2769 struct rbd_obj_request *orig_request; 2770 struct rbd_device *rbd_dev; 2771 int result; 2772 2773 rbd_assert(!obj_request_img_data_test(obj_request)); 2774 2775 /* 2776 * All we need from the object request is the original 2777 * request and the result of the STAT op. Grab those, then 2778 * we're done with the request. 2779 */ 2780 orig_request = obj_request->obj_request; 2781 obj_request->obj_request = NULL; 2782 rbd_obj_request_put(orig_request); 2783 rbd_assert(orig_request); 2784 rbd_assert(orig_request->img_request); 2785 2786 result = obj_request->result; 2787 obj_request->result = 0; 2788 2789 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2790 obj_request, orig_request, result, 2791 obj_request->xferred, obj_request->length); 2792 rbd_obj_request_put(obj_request); 2793 2794 /* 2795 * If the overlap has become 0 (most likely because the 2796 * image has been flattened) we need to free the pages 2797 * and re-submit the original write request. 2798 */ 2799 rbd_dev = orig_request->img_request->rbd_dev; 2800 if (!rbd_dev->parent_overlap) { 2801 struct ceph_osd_client *osdc; 2802 2803 osdc = &rbd_dev->rbd_client->client->osdc; 2804 result = rbd_obj_request_submit(osdc, orig_request); 2805 if (!result) 2806 return; 2807 } 2808 2809 /* 2810 * Our only purpose here is to determine whether the object 2811 * exists, and we don't want to treat the non-existence as 2812 * an error. If something else comes back, transfer the 2813 * error to the original request and complete it now. 2814 */ 2815 if (!result) { 2816 obj_request_existence_set(orig_request, true); 2817 } else if (result == -ENOENT) { 2818 obj_request_existence_set(orig_request, false); 2819 } else if (result) { 2820 orig_request->result = result; 2821 goto out; 2822 } 2823 2824 /* 2825 * Resubmit the original request now that we have recorded 2826 * whether the target object exists. 2827 */ 2828 orig_request->result = rbd_img_obj_request_submit(orig_request); 2829 out: 2830 if (orig_request->result) 2831 rbd_obj_request_complete(orig_request); 2832 } 2833 2834 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2835 { 2836 struct rbd_obj_request *stat_request; 2837 struct rbd_device *rbd_dev; 2838 struct ceph_osd_client *osdc; 2839 struct page **pages = NULL; 2840 u32 page_count; 2841 size_t size; 2842 int ret; 2843 2844 /* 2845 * The response data for a STAT call consists of: 2846 * le64 length; 2847 * struct { 2848 * le32 tv_sec; 2849 * le32 tv_nsec; 2850 * } mtime; 2851 */ 2852 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2853 page_count = (u32)calc_pages_for(0, size); 2854 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2855 if (IS_ERR(pages)) 2856 return PTR_ERR(pages); 2857 2858 ret = -ENOMEM; 2859 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2860 OBJ_REQUEST_PAGES); 2861 if (!stat_request) 2862 goto out; 2863 2864 rbd_obj_request_get(obj_request); 2865 stat_request->obj_request = obj_request; 2866 stat_request->pages = pages; 2867 stat_request->page_count = page_count; 2868 2869 rbd_assert(obj_request->img_request); 2870 rbd_dev = obj_request->img_request->rbd_dev; 2871 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2872 stat_request); 2873 if (!stat_request->osd_req) 2874 goto out; 2875 stat_request->callback = rbd_img_obj_exists_callback; 2876 2877 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2878 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2879 false, false); 2880 rbd_osd_req_format_read(stat_request); 2881 2882 osdc = &rbd_dev->rbd_client->client->osdc; 2883 ret = rbd_obj_request_submit(osdc, stat_request); 2884 out: 2885 if (ret) 2886 rbd_obj_request_put(obj_request); 2887 2888 return ret; 2889 } 2890 2891 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2892 { 2893 struct rbd_img_request *img_request; 2894 struct rbd_device *rbd_dev; 2895 2896 rbd_assert(obj_request_img_data_test(obj_request)); 2897 2898 img_request = obj_request->img_request; 2899 rbd_assert(img_request); 2900 rbd_dev = img_request->rbd_dev; 2901 2902 /* Reads */ 2903 if (!img_request_write_test(img_request) && 2904 !img_request_discard_test(img_request)) 2905 return true; 2906 2907 /* Non-layered writes */ 2908 if (!img_request_layered_test(img_request)) 2909 return true; 2910 2911 /* 2912 * Layered writes outside of the parent overlap range don't 2913 * share any data with the parent. 2914 */ 2915 if (!obj_request_overlaps_parent(obj_request)) 2916 return true; 2917 2918 /* 2919 * Entire-object layered writes - we will overwrite whatever 2920 * parent data there is anyway. 2921 */ 2922 if (!obj_request->offset && 2923 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2924 return true; 2925 2926 /* 2927 * If the object is known to already exist, its parent data has 2928 * already been copied. 2929 */ 2930 if (obj_request_known_test(obj_request) && 2931 obj_request_exists_test(obj_request)) 2932 return true; 2933 2934 return false; 2935 } 2936 2937 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2938 { 2939 if (img_obj_request_simple(obj_request)) { 2940 struct rbd_device *rbd_dev; 2941 struct ceph_osd_client *osdc; 2942 2943 rbd_dev = obj_request->img_request->rbd_dev; 2944 osdc = &rbd_dev->rbd_client->client->osdc; 2945 2946 return rbd_obj_request_submit(osdc, obj_request); 2947 } 2948 2949 /* 2950 * It's a layered write. The target object might exist but 2951 * we may not know that yet. If we know it doesn't exist, 2952 * start by reading the data for the full target object from 2953 * the parent so we can use it for a copyup to the target. 2954 */ 2955 if (obj_request_known_test(obj_request)) 2956 return rbd_img_obj_parent_read_full(obj_request); 2957 2958 /* We don't know whether the target exists. Go find out. */ 2959 2960 return rbd_img_obj_exists_submit(obj_request); 2961 } 2962 2963 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2964 { 2965 struct rbd_obj_request *obj_request; 2966 struct rbd_obj_request *next_obj_request; 2967 int ret = 0; 2968 2969 dout("%s: img %p\n", __func__, img_request); 2970 2971 rbd_img_request_get(img_request); 2972 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2973 ret = rbd_img_obj_request_submit(obj_request); 2974 if (ret) 2975 goto out_put_ireq; 2976 } 2977 2978 out_put_ireq: 2979 rbd_img_request_put(img_request); 2980 return ret; 2981 } 2982 2983 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2984 { 2985 struct rbd_obj_request *obj_request; 2986 struct rbd_device *rbd_dev; 2987 u64 obj_end; 2988 u64 img_xferred; 2989 int img_result; 2990 2991 rbd_assert(img_request_child_test(img_request)); 2992 2993 /* First get what we need from the image request and release it */ 2994 2995 obj_request = img_request->obj_request; 2996 img_xferred = img_request->xferred; 2997 img_result = img_request->result; 2998 rbd_img_request_put(img_request); 2999 3000 /* 3001 * If the overlap has become 0 (most likely because the 3002 * image has been flattened) we need to re-submit the 3003 * original request. 3004 */ 3005 rbd_assert(obj_request); 3006 rbd_assert(obj_request->img_request); 3007 rbd_dev = obj_request->img_request->rbd_dev; 3008 if (!rbd_dev->parent_overlap) { 3009 struct ceph_osd_client *osdc; 3010 3011 osdc = &rbd_dev->rbd_client->client->osdc; 3012 img_result = rbd_obj_request_submit(osdc, obj_request); 3013 if (!img_result) 3014 return; 3015 } 3016 3017 obj_request->result = img_result; 3018 if (obj_request->result) 3019 goto out; 3020 3021 /* 3022 * We need to zero anything beyond the parent overlap 3023 * boundary. Since rbd_img_obj_request_read_callback() 3024 * will zero anything beyond the end of a short read, an 3025 * easy way to do this is to pretend the data from the 3026 * parent came up short--ending at the overlap boundary. 3027 */ 3028 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3029 obj_end = obj_request->img_offset + obj_request->length; 3030 if (obj_end > rbd_dev->parent_overlap) { 3031 u64 xferred = 0; 3032 3033 if (obj_request->img_offset < rbd_dev->parent_overlap) 3034 xferred = rbd_dev->parent_overlap - 3035 obj_request->img_offset; 3036 3037 obj_request->xferred = min(img_xferred, xferred); 3038 } else { 3039 obj_request->xferred = img_xferred; 3040 } 3041 out: 3042 rbd_img_obj_request_read_callback(obj_request); 3043 rbd_obj_request_complete(obj_request); 3044 } 3045 3046 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3047 { 3048 struct rbd_img_request *img_request; 3049 int result; 3050 3051 rbd_assert(obj_request_img_data_test(obj_request)); 3052 rbd_assert(obj_request->img_request != NULL); 3053 rbd_assert(obj_request->result == (s32) -ENOENT); 3054 rbd_assert(obj_request_type_valid(obj_request->type)); 3055 3056 /* rbd_read_finish(obj_request, obj_request->length); */ 3057 img_request = rbd_parent_request_create(obj_request, 3058 obj_request->img_offset, 3059 obj_request->length); 3060 result = -ENOMEM; 3061 if (!img_request) 3062 goto out_err; 3063 3064 if (obj_request->type == OBJ_REQUEST_BIO) 3065 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3066 obj_request->bio_list); 3067 else 3068 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3069 obj_request->pages); 3070 if (result) 3071 goto out_err; 3072 3073 img_request->callback = rbd_img_parent_read_callback; 3074 result = rbd_img_request_submit(img_request); 3075 if (result) 3076 goto out_err; 3077 3078 return; 3079 out_err: 3080 if (img_request) 3081 rbd_img_request_put(img_request); 3082 obj_request->result = result; 3083 obj_request->xferred = 0; 3084 obj_request_done_set(obj_request); 3085 } 3086 3087 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev); 3088 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev); 3089 3090 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3091 u64 notifier_id, void *data, size_t data_len) 3092 { 3093 struct rbd_device *rbd_dev = arg; 3094 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3095 int ret; 3096 3097 dout("%s rbd_dev %p cookie %llu notify_id %llu\n", __func__, rbd_dev, 3098 cookie, notify_id); 3099 3100 /* 3101 * Until adequate refresh error handling is in place, there is 3102 * not much we can do here, except warn. 3103 * 3104 * See http://tracker.ceph.com/issues/5040 3105 */ 3106 ret = rbd_dev_refresh(rbd_dev); 3107 if (ret) 3108 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3109 3110 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3111 &rbd_dev->header_oloc, notify_id, cookie, 3112 NULL, 0); 3113 if (ret) 3114 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3115 } 3116 3117 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3118 { 3119 struct rbd_device *rbd_dev = arg; 3120 int ret; 3121 3122 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3123 3124 __rbd_dev_header_unwatch_sync(rbd_dev); 3125 3126 ret = rbd_dev_header_watch_sync(rbd_dev); 3127 if (ret) { 3128 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3129 return; 3130 } 3131 3132 ret = rbd_dev_refresh(rbd_dev); 3133 if (ret) 3134 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3135 } 3136 3137 /* 3138 * Initiate a watch request, synchronously. 3139 */ 3140 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3141 { 3142 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3143 struct ceph_osd_linger_request *handle; 3144 3145 rbd_assert(!rbd_dev->watch_handle); 3146 3147 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3148 &rbd_dev->header_oloc, rbd_watch_cb, 3149 rbd_watch_errcb, rbd_dev); 3150 if (IS_ERR(handle)) 3151 return PTR_ERR(handle); 3152 3153 rbd_dev->watch_handle = handle; 3154 return 0; 3155 } 3156 3157 static void __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3158 { 3159 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3160 int ret; 3161 3162 if (!rbd_dev->watch_handle) 3163 return; 3164 3165 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3166 if (ret) 3167 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3168 3169 rbd_dev->watch_handle = NULL; 3170 } 3171 3172 /* 3173 * Tear down a watch request, synchronously. 3174 */ 3175 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3176 { 3177 __rbd_dev_header_unwatch_sync(rbd_dev); 3178 3179 dout("%s flushing notifies\n", __func__); 3180 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3181 } 3182 3183 /* 3184 * Synchronous osd object method call. Returns the number of bytes 3185 * returned in the outbound buffer, or a negative error code. 3186 */ 3187 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3188 const char *object_name, 3189 const char *class_name, 3190 const char *method_name, 3191 const void *outbound, 3192 size_t outbound_size, 3193 void *inbound, 3194 size_t inbound_size) 3195 { 3196 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3197 struct rbd_obj_request *obj_request; 3198 struct page **pages; 3199 u32 page_count; 3200 int ret; 3201 3202 /* 3203 * Method calls are ultimately read operations. The result 3204 * should placed into the inbound buffer provided. They 3205 * also supply outbound data--parameters for the object 3206 * method. Currently if this is present it will be a 3207 * snapshot id. 3208 */ 3209 page_count = (u32)calc_pages_for(0, inbound_size); 3210 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3211 if (IS_ERR(pages)) 3212 return PTR_ERR(pages); 3213 3214 ret = -ENOMEM; 3215 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3216 OBJ_REQUEST_PAGES); 3217 if (!obj_request) 3218 goto out; 3219 3220 obj_request->pages = pages; 3221 obj_request->page_count = page_count; 3222 3223 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3224 obj_request); 3225 if (!obj_request->osd_req) 3226 goto out; 3227 3228 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3229 class_name, method_name); 3230 if (outbound_size) { 3231 struct ceph_pagelist *pagelist; 3232 3233 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3234 if (!pagelist) 3235 goto out; 3236 3237 ceph_pagelist_init(pagelist); 3238 ceph_pagelist_append(pagelist, outbound, outbound_size); 3239 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3240 pagelist); 3241 } 3242 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3243 obj_request->pages, inbound_size, 3244 0, false, false); 3245 rbd_osd_req_format_read(obj_request); 3246 3247 ret = rbd_obj_request_submit(osdc, obj_request); 3248 if (ret) 3249 goto out; 3250 ret = rbd_obj_request_wait(obj_request); 3251 if (ret) 3252 goto out; 3253 3254 ret = obj_request->result; 3255 if (ret < 0) 3256 goto out; 3257 3258 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3259 ret = (int)obj_request->xferred; 3260 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3261 out: 3262 if (obj_request) 3263 rbd_obj_request_put(obj_request); 3264 else 3265 ceph_release_page_vector(pages, page_count); 3266 3267 return ret; 3268 } 3269 3270 static void rbd_queue_workfn(struct work_struct *work) 3271 { 3272 struct request *rq = blk_mq_rq_from_pdu(work); 3273 struct rbd_device *rbd_dev = rq->q->queuedata; 3274 struct rbd_img_request *img_request; 3275 struct ceph_snap_context *snapc = NULL; 3276 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3277 u64 length = blk_rq_bytes(rq); 3278 enum obj_operation_type op_type; 3279 u64 mapping_size; 3280 int result; 3281 3282 if (rq->cmd_type != REQ_TYPE_FS) { 3283 dout("%s: non-fs request type %d\n", __func__, 3284 (int) rq->cmd_type); 3285 result = -EIO; 3286 goto err; 3287 } 3288 3289 if (rq->cmd_flags & REQ_DISCARD) 3290 op_type = OBJ_OP_DISCARD; 3291 else if (rq->cmd_flags & REQ_WRITE) 3292 op_type = OBJ_OP_WRITE; 3293 else 3294 op_type = OBJ_OP_READ; 3295 3296 /* Ignore/skip any zero-length requests */ 3297 3298 if (!length) { 3299 dout("%s: zero-length request\n", __func__); 3300 result = 0; 3301 goto err_rq; 3302 } 3303 3304 /* Only reads are allowed to a read-only device */ 3305 3306 if (op_type != OBJ_OP_READ) { 3307 if (rbd_dev->mapping.read_only) { 3308 result = -EROFS; 3309 goto err_rq; 3310 } 3311 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3312 } 3313 3314 /* 3315 * Quit early if the mapped snapshot no longer exists. It's 3316 * still possible the snapshot will have disappeared by the 3317 * time our request arrives at the osd, but there's no sense in 3318 * sending it if we already know. 3319 */ 3320 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3321 dout("request for non-existent snapshot"); 3322 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3323 result = -ENXIO; 3324 goto err_rq; 3325 } 3326 3327 if (offset && length > U64_MAX - offset + 1) { 3328 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3329 length); 3330 result = -EINVAL; 3331 goto err_rq; /* Shouldn't happen */ 3332 } 3333 3334 blk_mq_start_request(rq); 3335 3336 down_read(&rbd_dev->header_rwsem); 3337 mapping_size = rbd_dev->mapping.size; 3338 if (op_type != OBJ_OP_READ) { 3339 snapc = rbd_dev->header.snapc; 3340 ceph_get_snap_context(snapc); 3341 } 3342 up_read(&rbd_dev->header_rwsem); 3343 3344 if (offset + length > mapping_size) { 3345 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3346 length, mapping_size); 3347 result = -EIO; 3348 goto err_rq; 3349 } 3350 3351 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3352 snapc); 3353 if (!img_request) { 3354 result = -ENOMEM; 3355 goto err_rq; 3356 } 3357 img_request->rq = rq; 3358 snapc = NULL; /* img_request consumes a ref */ 3359 3360 if (op_type == OBJ_OP_DISCARD) 3361 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3362 NULL); 3363 else 3364 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3365 rq->bio); 3366 if (result) 3367 goto err_img_request; 3368 3369 result = rbd_img_request_submit(img_request); 3370 if (result) 3371 goto err_img_request; 3372 3373 return; 3374 3375 err_img_request: 3376 rbd_img_request_put(img_request); 3377 err_rq: 3378 if (result) 3379 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3380 obj_op_name(op_type), length, offset, result); 3381 ceph_put_snap_context(snapc); 3382 err: 3383 blk_mq_end_request(rq, result); 3384 } 3385 3386 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3387 const struct blk_mq_queue_data *bd) 3388 { 3389 struct request *rq = bd->rq; 3390 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3391 3392 queue_work(rbd_wq, work); 3393 return BLK_MQ_RQ_QUEUE_OK; 3394 } 3395 3396 static void rbd_free_disk(struct rbd_device *rbd_dev) 3397 { 3398 struct gendisk *disk = rbd_dev->disk; 3399 3400 if (!disk) 3401 return; 3402 3403 rbd_dev->disk = NULL; 3404 if (disk->flags & GENHD_FL_UP) { 3405 del_gendisk(disk); 3406 if (disk->queue) 3407 blk_cleanup_queue(disk->queue); 3408 blk_mq_free_tag_set(&rbd_dev->tag_set); 3409 } 3410 put_disk(disk); 3411 } 3412 3413 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3414 const char *object_name, 3415 u64 offset, u64 length, void *buf) 3416 3417 { 3418 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3419 struct rbd_obj_request *obj_request; 3420 struct page **pages = NULL; 3421 u32 page_count; 3422 size_t size; 3423 int ret; 3424 3425 page_count = (u32) calc_pages_for(offset, length); 3426 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3427 if (IS_ERR(pages)) 3428 return PTR_ERR(pages); 3429 3430 ret = -ENOMEM; 3431 obj_request = rbd_obj_request_create(object_name, offset, length, 3432 OBJ_REQUEST_PAGES); 3433 if (!obj_request) 3434 goto out; 3435 3436 obj_request->pages = pages; 3437 obj_request->page_count = page_count; 3438 3439 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3440 obj_request); 3441 if (!obj_request->osd_req) 3442 goto out; 3443 3444 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3445 offset, length, 0, 0); 3446 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3447 obj_request->pages, 3448 obj_request->length, 3449 obj_request->offset & ~PAGE_MASK, 3450 false, false); 3451 rbd_osd_req_format_read(obj_request); 3452 3453 ret = rbd_obj_request_submit(osdc, obj_request); 3454 if (ret) 3455 goto out; 3456 ret = rbd_obj_request_wait(obj_request); 3457 if (ret) 3458 goto out; 3459 3460 ret = obj_request->result; 3461 if (ret < 0) 3462 goto out; 3463 3464 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3465 size = (size_t) obj_request->xferred; 3466 ceph_copy_from_page_vector(pages, buf, 0, size); 3467 rbd_assert(size <= (size_t)INT_MAX); 3468 ret = (int)size; 3469 out: 3470 if (obj_request) 3471 rbd_obj_request_put(obj_request); 3472 else 3473 ceph_release_page_vector(pages, page_count); 3474 3475 return ret; 3476 } 3477 3478 /* 3479 * Read the complete header for the given rbd device. On successful 3480 * return, the rbd_dev->header field will contain up-to-date 3481 * information about the image. 3482 */ 3483 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3484 { 3485 struct rbd_image_header_ondisk *ondisk = NULL; 3486 u32 snap_count = 0; 3487 u64 names_size = 0; 3488 u32 want_count; 3489 int ret; 3490 3491 /* 3492 * The complete header will include an array of its 64-bit 3493 * snapshot ids, followed by the names of those snapshots as 3494 * a contiguous block of NUL-terminated strings. Note that 3495 * the number of snapshots could change by the time we read 3496 * it in, in which case we re-read it. 3497 */ 3498 do { 3499 size_t size; 3500 3501 kfree(ondisk); 3502 3503 size = sizeof (*ondisk); 3504 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3505 size += names_size; 3506 ondisk = kmalloc(size, GFP_KERNEL); 3507 if (!ondisk) 3508 return -ENOMEM; 3509 3510 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name, 3511 0, size, ondisk); 3512 if (ret < 0) 3513 goto out; 3514 if ((size_t)ret < size) { 3515 ret = -ENXIO; 3516 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3517 size, ret); 3518 goto out; 3519 } 3520 if (!rbd_dev_ondisk_valid(ondisk)) { 3521 ret = -ENXIO; 3522 rbd_warn(rbd_dev, "invalid header"); 3523 goto out; 3524 } 3525 3526 names_size = le64_to_cpu(ondisk->snap_names_len); 3527 want_count = snap_count; 3528 snap_count = le32_to_cpu(ondisk->snap_count); 3529 } while (snap_count != want_count); 3530 3531 ret = rbd_header_from_disk(rbd_dev, ondisk); 3532 out: 3533 kfree(ondisk); 3534 3535 return ret; 3536 } 3537 3538 /* 3539 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3540 * has disappeared from the (just updated) snapshot context. 3541 */ 3542 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3543 { 3544 u64 snap_id; 3545 3546 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3547 return; 3548 3549 snap_id = rbd_dev->spec->snap_id; 3550 if (snap_id == CEPH_NOSNAP) 3551 return; 3552 3553 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3554 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3555 } 3556 3557 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3558 { 3559 sector_t size; 3560 3561 /* 3562 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 3563 * try to update its size. If REMOVING is set, updating size 3564 * is just useless work since the device can't be opened. 3565 */ 3566 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 3567 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 3568 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3569 dout("setting size to %llu sectors", (unsigned long long)size); 3570 set_capacity(rbd_dev->disk, size); 3571 revalidate_disk(rbd_dev->disk); 3572 } 3573 } 3574 3575 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3576 { 3577 u64 mapping_size; 3578 int ret; 3579 3580 down_write(&rbd_dev->header_rwsem); 3581 mapping_size = rbd_dev->mapping.size; 3582 3583 ret = rbd_dev_header_info(rbd_dev); 3584 if (ret) 3585 goto out; 3586 3587 /* 3588 * If there is a parent, see if it has disappeared due to the 3589 * mapped image getting flattened. 3590 */ 3591 if (rbd_dev->parent) { 3592 ret = rbd_dev_v2_parent_info(rbd_dev); 3593 if (ret) 3594 goto out; 3595 } 3596 3597 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3598 rbd_dev->mapping.size = rbd_dev->header.image_size; 3599 } else { 3600 /* validate mapped snapshot's EXISTS flag */ 3601 rbd_exists_validate(rbd_dev); 3602 } 3603 3604 out: 3605 up_write(&rbd_dev->header_rwsem); 3606 if (!ret && mapping_size != rbd_dev->mapping.size) 3607 rbd_dev_update_size(rbd_dev); 3608 3609 return ret; 3610 } 3611 3612 static int rbd_init_request(void *data, struct request *rq, 3613 unsigned int hctx_idx, unsigned int request_idx, 3614 unsigned int numa_node) 3615 { 3616 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3617 3618 INIT_WORK(work, rbd_queue_workfn); 3619 return 0; 3620 } 3621 3622 static struct blk_mq_ops rbd_mq_ops = { 3623 .queue_rq = rbd_queue_rq, 3624 .map_queue = blk_mq_map_queue, 3625 .init_request = rbd_init_request, 3626 }; 3627 3628 static int rbd_init_disk(struct rbd_device *rbd_dev) 3629 { 3630 struct gendisk *disk; 3631 struct request_queue *q; 3632 u64 segment_size; 3633 int err; 3634 3635 /* create gendisk info */ 3636 disk = alloc_disk(single_major ? 3637 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3638 RBD_MINORS_PER_MAJOR); 3639 if (!disk) 3640 return -ENOMEM; 3641 3642 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3643 rbd_dev->dev_id); 3644 disk->major = rbd_dev->major; 3645 disk->first_minor = rbd_dev->minor; 3646 if (single_major) 3647 disk->flags |= GENHD_FL_EXT_DEVT; 3648 disk->fops = &rbd_bd_ops; 3649 disk->private_data = rbd_dev; 3650 3651 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3652 rbd_dev->tag_set.ops = &rbd_mq_ops; 3653 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3654 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3655 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3656 rbd_dev->tag_set.nr_hw_queues = 1; 3657 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3658 3659 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3660 if (err) 3661 goto out_disk; 3662 3663 q = blk_mq_init_queue(&rbd_dev->tag_set); 3664 if (IS_ERR(q)) { 3665 err = PTR_ERR(q); 3666 goto out_tag_set; 3667 } 3668 3669 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3670 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3671 3672 /* set io sizes to object size */ 3673 segment_size = rbd_obj_bytes(&rbd_dev->header); 3674 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3675 q->limits.max_sectors = queue_max_hw_sectors(q); 3676 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 3677 blk_queue_max_segment_size(q, segment_size); 3678 blk_queue_io_min(q, segment_size); 3679 blk_queue_io_opt(q, segment_size); 3680 3681 /* enable the discard support */ 3682 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3683 q->limits.discard_granularity = segment_size; 3684 q->limits.discard_alignment = segment_size; 3685 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 3686 q->limits.discard_zeroes_data = 1; 3687 3688 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 3689 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES; 3690 3691 disk->queue = q; 3692 3693 q->queuedata = rbd_dev; 3694 3695 rbd_dev->disk = disk; 3696 3697 return 0; 3698 out_tag_set: 3699 blk_mq_free_tag_set(&rbd_dev->tag_set); 3700 out_disk: 3701 put_disk(disk); 3702 return err; 3703 } 3704 3705 /* 3706 sysfs 3707 */ 3708 3709 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3710 { 3711 return container_of(dev, struct rbd_device, dev); 3712 } 3713 3714 static ssize_t rbd_size_show(struct device *dev, 3715 struct device_attribute *attr, char *buf) 3716 { 3717 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3718 3719 return sprintf(buf, "%llu\n", 3720 (unsigned long long)rbd_dev->mapping.size); 3721 } 3722 3723 /* 3724 * Note this shows the features for whatever's mapped, which is not 3725 * necessarily the base image. 3726 */ 3727 static ssize_t rbd_features_show(struct device *dev, 3728 struct device_attribute *attr, char *buf) 3729 { 3730 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3731 3732 return sprintf(buf, "0x%016llx\n", 3733 (unsigned long long)rbd_dev->mapping.features); 3734 } 3735 3736 static ssize_t rbd_major_show(struct device *dev, 3737 struct device_attribute *attr, char *buf) 3738 { 3739 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3740 3741 if (rbd_dev->major) 3742 return sprintf(buf, "%d\n", rbd_dev->major); 3743 3744 return sprintf(buf, "(none)\n"); 3745 } 3746 3747 static ssize_t rbd_minor_show(struct device *dev, 3748 struct device_attribute *attr, char *buf) 3749 { 3750 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3751 3752 return sprintf(buf, "%d\n", rbd_dev->minor); 3753 } 3754 3755 static ssize_t rbd_client_id_show(struct device *dev, 3756 struct device_attribute *attr, char *buf) 3757 { 3758 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3759 3760 return sprintf(buf, "client%lld\n", 3761 ceph_client_id(rbd_dev->rbd_client->client)); 3762 } 3763 3764 static ssize_t rbd_pool_show(struct device *dev, 3765 struct device_attribute *attr, char *buf) 3766 { 3767 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3768 3769 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3770 } 3771 3772 static ssize_t rbd_pool_id_show(struct device *dev, 3773 struct device_attribute *attr, char *buf) 3774 { 3775 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3776 3777 return sprintf(buf, "%llu\n", 3778 (unsigned long long) rbd_dev->spec->pool_id); 3779 } 3780 3781 static ssize_t rbd_name_show(struct device *dev, 3782 struct device_attribute *attr, char *buf) 3783 { 3784 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3785 3786 if (rbd_dev->spec->image_name) 3787 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3788 3789 return sprintf(buf, "(unknown)\n"); 3790 } 3791 3792 static ssize_t rbd_image_id_show(struct device *dev, 3793 struct device_attribute *attr, char *buf) 3794 { 3795 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3796 3797 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3798 } 3799 3800 /* 3801 * Shows the name of the currently-mapped snapshot (or 3802 * RBD_SNAP_HEAD_NAME for the base image). 3803 */ 3804 static ssize_t rbd_snap_show(struct device *dev, 3805 struct device_attribute *attr, 3806 char *buf) 3807 { 3808 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3809 3810 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3811 } 3812 3813 /* 3814 * For a v2 image, shows the chain of parent images, separated by empty 3815 * lines. For v1 images or if there is no parent, shows "(no parent 3816 * image)". 3817 */ 3818 static ssize_t rbd_parent_show(struct device *dev, 3819 struct device_attribute *attr, 3820 char *buf) 3821 { 3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3823 ssize_t count = 0; 3824 3825 if (!rbd_dev->parent) 3826 return sprintf(buf, "(no parent image)\n"); 3827 3828 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3829 struct rbd_spec *spec = rbd_dev->parent_spec; 3830 3831 count += sprintf(&buf[count], "%s" 3832 "pool_id %llu\npool_name %s\n" 3833 "image_id %s\nimage_name %s\n" 3834 "snap_id %llu\nsnap_name %s\n" 3835 "overlap %llu\n", 3836 !count ? "" : "\n", /* first? */ 3837 spec->pool_id, spec->pool_name, 3838 spec->image_id, spec->image_name ?: "(unknown)", 3839 spec->snap_id, spec->snap_name, 3840 rbd_dev->parent_overlap); 3841 } 3842 3843 return count; 3844 } 3845 3846 static ssize_t rbd_image_refresh(struct device *dev, 3847 struct device_attribute *attr, 3848 const char *buf, 3849 size_t size) 3850 { 3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3852 int ret; 3853 3854 ret = rbd_dev_refresh(rbd_dev); 3855 if (ret) 3856 return ret; 3857 3858 return size; 3859 } 3860 3861 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3862 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3863 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3864 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3865 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3866 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3867 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3868 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3869 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3870 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3871 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3872 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3873 3874 static struct attribute *rbd_attrs[] = { 3875 &dev_attr_size.attr, 3876 &dev_attr_features.attr, 3877 &dev_attr_major.attr, 3878 &dev_attr_minor.attr, 3879 &dev_attr_client_id.attr, 3880 &dev_attr_pool.attr, 3881 &dev_attr_pool_id.attr, 3882 &dev_attr_name.attr, 3883 &dev_attr_image_id.attr, 3884 &dev_attr_current_snap.attr, 3885 &dev_attr_parent.attr, 3886 &dev_attr_refresh.attr, 3887 NULL 3888 }; 3889 3890 static struct attribute_group rbd_attr_group = { 3891 .attrs = rbd_attrs, 3892 }; 3893 3894 static const struct attribute_group *rbd_attr_groups[] = { 3895 &rbd_attr_group, 3896 NULL 3897 }; 3898 3899 static void rbd_dev_release(struct device *dev); 3900 3901 static struct device_type rbd_device_type = { 3902 .name = "rbd", 3903 .groups = rbd_attr_groups, 3904 .release = rbd_dev_release, 3905 }; 3906 3907 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3908 { 3909 kref_get(&spec->kref); 3910 3911 return spec; 3912 } 3913 3914 static void rbd_spec_free(struct kref *kref); 3915 static void rbd_spec_put(struct rbd_spec *spec) 3916 { 3917 if (spec) 3918 kref_put(&spec->kref, rbd_spec_free); 3919 } 3920 3921 static struct rbd_spec *rbd_spec_alloc(void) 3922 { 3923 struct rbd_spec *spec; 3924 3925 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3926 if (!spec) 3927 return NULL; 3928 3929 spec->pool_id = CEPH_NOPOOL; 3930 spec->snap_id = CEPH_NOSNAP; 3931 kref_init(&spec->kref); 3932 3933 return spec; 3934 } 3935 3936 static void rbd_spec_free(struct kref *kref) 3937 { 3938 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3939 3940 kfree(spec->pool_name); 3941 kfree(spec->image_id); 3942 kfree(spec->image_name); 3943 kfree(spec->snap_name); 3944 kfree(spec); 3945 } 3946 3947 static void rbd_dev_release(struct device *dev) 3948 { 3949 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3950 bool need_put = !!rbd_dev->opts; 3951 3952 ceph_oid_destroy(&rbd_dev->header_oid); 3953 3954 rbd_put_client(rbd_dev->rbd_client); 3955 rbd_spec_put(rbd_dev->spec); 3956 kfree(rbd_dev->opts); 3957 kfree(rbd_dev); 3958 3959 /* 3960 * This is racy, but way better than putting module outside of 3961 * the release callback. The race window is pretty small, so 3962 * doing something similar to dm (dm-builtin.c) is overkill. 3963 */ 3964 if (need_put) 3965 module_put(THIS_MODULE); 3966 } 3967 3968 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3969 struct rbd_spec *spec, 3970 struct rbd_options *opts) 3971 { 3972 struct rbd_device *rbd_dev; 3973 3974 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3975 if (!rbd_dev) 3976 return NULL; 3977 3978 spin_lock_init(&rbd_dev->lock); 3979 rbd_dev->flags = 0; 3980 atomic_set(&rbd_dev->parent_ref, 0); 3981 INIT_LIST_HEAD(&rbd_dev->node); 3982 init_rwsem(&rbd_dev->header_rwsem); 3983 3984 ceph_oid_init(&rbd_dev->header_oid); 3985 ceph_oloc_init(&rbd_dev->header_oloc); 3986 3987 rbd_dev->dev.bus = &rbd_bus_type; 3988 rbd_dev->dev.type = &rbd_device_type; 3989 rbd_dev->dev.parent = &rbd_root_dev; 3990 device_initialize(&rbd_dev->dev); 3991 3992 rbd_dev->rbd_client = rbdc; 3993 rbd_dev->spec = spec; 3994 rbd_dev->opts = opts; 3995 3996 /* Initialize the layout used for all rbd requests */ 3997 3998 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3999 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4000 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4001 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4002 4003 /* 4004 * If this is a mapping rbd_dev (as opposed to a parent one), 4005 * pin our module. We have a ref from do_rbd_add(), so use 4006 * __module_get(). 4007 */ 4008 if (rbd_dev->opts) 4009 __module_get(THIS_MODULE); 4010 4011 return rbd_dev; 4012 } 4013 4014 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4015 { 4016 if (rbd_dev) 4017 put_device(&rbd_dev->dev); 4018 } 4019 4020 /* 4021 * Get the size and object order for an image snapshot, or if 4022 * snap_id is CEPH_NOSNAP, gets this information for the base 4023 * image. 4024 */ 4025 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4026 u8 *order, u64 *snap_size) 4027 { 4028 __le64 snapid = cpu_to_le64(snap_id); 4029 int ret; 4030 struct { 4031 u8 order; 4032 __le64 size; 4033 } __attribute__ ((packed)) size_buf = { 0 }; 4034 4035 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4036 "rbd", "get_size", 4037 &snapid, sizeof (snapid), 4038 &size_buf, sizeof (size_buf)); 4039 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4040 if (ret < 0) 4041 return ret; 4042 if (ret < sizeof (size_buf)) 4043 return -ERANGE; 4044 4045 if (order) { 4046 *order = size_buf.order; 4047 dout(" order %u", (unsigned int)*order); 4048 } 4049 *snap_size = le64_to_cpu(size_buf.size); 4050 4051 dout(" snap_id 0x%016llx snap_size = %llu\n", 4052 (unsigned long long)snap_id, 4053 (unsigned long long)*snap_size); 4054 4055 return 0; 4056 } 4057 4058 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4059 { 4060 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4061 &rbd_dev->header.obj_order, 4062 &rbd_dev->header.image_size); 4063 } 4064 4065 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4066 { 4067 void *reply_buf; 4068 int ret; 4069 void *p; 4070 4071 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4072 if (!reply_buf) 4073 return -ENOMEM; 4074 4075 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4076 "rbd", "get_object_prefix", NULL, 0, 4077 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4078 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4079 if (ret < 0) 4080 goto out; 4081 4082 p = reply_buf; 4083 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4084 p + ret, NULL, GFP_NOIO); 4085 ret = 0; 4086 4087 if (IS_ERR(rbd_dev->header.object_prefix)) { 4088 ret = PTR_ERR(rbd_dev->header.object_prefix); 4089 rbd_dev->header.object_prefix = NULL; 4090 } else { 4091 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4092 } 4093 out: 4094 kfree(reply_buf); 4095 4096 return ret; 4097 } 4098 4099 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4100 u64 *snap_features) 4101 { 4102 __le64 snapid = cpu_to_le64(snap_id); 4103 struct { 4104 __le64 features; 4105 __le64 incompat; 4106 } __attribute__ ((packed)) features_buf = { 0 }; 4107 u64 unsup; 4108 int ret; 4109 4110 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4111 "rbd", "get_features", 4112 &snapid, sizeof (snapid), 4113 &features_buf, sizeof (features_buf)); 4114 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4115 if (ret < 0) 4116 return ret; 4117 if (ret < sizeof (features_buf)) 4118 return -ERANGE; 4119 4120 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4121 if (unsup) { 4122 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4123 unsup); 4124 return -ENXIO; 4125 } 4126 4127 *snap_features = le64_to_cpu(features_buf.features); 4128 4129 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4130 (unsigned long long)snap_id, 4131 (unsigned long long)*snap_features, 4132 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4133 4134 return 0; 4135 } 4136 4137 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4138 { 4139 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4140 &rbd_dev->header.features); 4141 } 4142 4143 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4144 { 4145 struct rbd_spec *parent_spec; 4146 size_t size; 4147 void *reply_buf = NULL; 4148 __le64 snapid; 4149 void *p; 4150 void *end; 4151 u64 pool_id; 4152 char *image_id; 4153 u64 snap_id; 4154 u64 overlap; 4155 int ret; 4156 4157 parent_spec = rbd_spec_alloc(); 4158 if (!parent_spec) 4159 return -ENOMEM; 4160 4161 size = sizeof (__le64) + /* pool_id */ 4162 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4163 sizeof (__le64) + /* snap_id */ 4164 sizeof (__le64); /* overlap */ 4165 reply_buf = kmalloc(size, GFP_KERNEL); 4166 if (!reply_buf) { 4167 ret = -ENOMEM; 4168 goto out_err; 4169 } 4170 4171 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4172 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4173 "rbd", "get_parent", 4174 &snapid, sizeof (snapid), 4175 reply_buf, size); 4176 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4177 if (ret < 0) 4178 goto out_err; 4179 4180 p = reply_buf; 4181 end = reply_buf + ret; 4182 ret = -ERANGE; 4183 ceph_decode_64_safe(&p, end, pool_id, out_err); 4184 if (pool_id == CEPH_NOPOOL) { 4185 /* 4186 * Either the parent never existed, or we have 4187 * record of it but the image got flattened so it no 4188 * longer has a parent. When the parent of a 4189 * layered image disappears we immediately set the 4190 * overlap to 0. The effect of this is that all new 4191 * requests will be treated as if the image had no 4192 * parent. 4193 */ 4194 if (rbd_dev->parent_overlap) { 4195 rbd_dev->parent_overlap = 0; 4196 rbd_dev_parent_put(rbd_dev); 4197 pr_info("%s: clone image has been flattened\n", 4198 rbd_dev->disk->disk_name); 4199 } 4200 4201 goto out; /* No parent? No problem. */ 4202 } 4203 4204 /* The ceph file layout needs to fit pool id in 32 bits */ 4205 4206 ret = -EIO; 4207 if (pool_id > (u64)U32_MAX) { 4208 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4209 (unsigned long long)pool_id, U32_MAX); 4210 goto out_err; 4211 } 4212 4213 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4214 if (IS_ERR(image_id)) { 4215 ret = PTR_ERR(image_id); 4216 goto out_err; 4217 } 4218 ceph_decode_64_safe(&p, end, snap_id, out_err); 4219 ceph_decode_64_safe(&p, end, overlap, out_err); 4220 4221 /* 4222 * The parent won't change (except when the clone is 4223 * flattened, already handled that). So we only need to 4224 * record the parent spec we have not already done so. 4225 */ 4226 if (!rbd_dev->parent_spec) { 4227 parent_spec->pool_id = pool_id; 4228 parent_spec->image_id = image_id; 4229 parent_spec->snap_id = snap_id; 4230 rbd_dev->parent_spec = parent_spec; 4231 parent_spec = NULL; /* rbd_dev now owns this */ 4232 } else { 4233 kfree(image_id); 4234 } 4235 4236 /* 4237 * We always update the parent overlap. If it's zero we issue 4238 * a warning, as we will proceed as if there was no parent. 4239 */ 4240 if (!overlap) { 4241 if (parent_spec) { 4242 /* refresh, careful to warn just once */ 4243 if (rbd_dev->parent_overlap) 4244 rbd_warn(rbd_dev, 4245 "clone now standalone (overlap became 0)"); 4246 } else { 4247 /* initial probe */ 4248 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4249 } 4250 } 4251 rbd_dev->parent_overlap = overlap; 4252 4253 out: 4254 ret = 0; 4255 out_err: 4256 kfree(reply_buf); 4257 rbd_spec_put(parent_spec); 4258 4259 return ret; 4260 } 4261 4262 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4263 { 4264 struct { 4265 __le64 stripe_unit; 4266 __le64 stripe_count; 4267 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4268 size_t size = sizeof (striping_info_buf); 4269 void *p; 4270 u64 obj_size; 4271 u64 stripe_unit; 4272 u64 stripe_count; 4273 int ret; 4274 4275 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4276 "rbd", "get_stripe_unit_count", NULL, 0, 4277 (char *)&striping_info_buf, size); 4278 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4279 if (ret < 0) 4280 return ret; 4281 if (ret < size) 4282 return -ERANGE; 4283 4284 /* 4285 * We don't actually support the "fancy striping" feature 4286 * (STRIPINGV2) yet, but if the striping sizes are the 4287 * defaults the behavior is the same as before. So find 4288 * out, and only fail if the image has non-default values. 4289 */ 4290 ret = -EINVAL; 4291 obj_size = (u64)1 << rbd_dev->header.obj_order; 4292 p = &striping_info_buf; 4293 stripe_unit = ceph_decode_64(&p); 4294 if (stripe_unit != obj_size) { 4295 rbd_warn(rbd_dev, "unsupported stripe unit " 4296 "(got %llu want %llu)", 4297 stripe_unit, obj_size); 4298 return -EINVAL; 4299 } 4300 stripe_count = ceph_decode_64(&p); 4301 if (stripe_count != 1) { 4302 rbd_warn(rbd_dev, "unsupported stripe count " 4303 "(got %llu want 1)", stripe_count); 4304 return -EINVAL; 4305 } 4306 rbd_dev->header.stripe_unit = stripe_unit; 4307 rbd_dev->header.stripe_count = stripe_count; 4308 4309 return 0; 4310 } 4311 4312 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4313 { 4314 size_t image_id_size; 4315 char *image_id; 4316 void *p; 4317 void *end; 4318 size_t size; 4319 void *reply_buf = NULL; 4320 size_t len = 0; 4321 char *image_name = NULL; 4322 int ret; 4323 4324 rbd_assert(!rbd_dev->spec->image_name); 4325 4326 len = strlen(rbd_dev->spec->image_id); 4327 image_id_size = sizeof (__le32) + len; 4328 image_id = kmalloc(image_id_size, GFP_KERNEL); 4329 if (!image_id) 4330 return NULL; 4331 4332 p = image_id; 4333 end = image_id + image_id_size; 4334 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4335 4336 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4337 reply_buf = kmalloc(size, GFP_KERNEL); 4338 if (!reply_buf) 4339 goto out; 4340 4341 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4342 "rbd", "dir_get_name", 4343 image_id, image_id_size, 4344 reply_buf, size); 4345 if (ret < 0) 4346 goto out; 4347 p = reply_buf; 4348 end = reply_buf + ret; 4349 4350 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4351 if (IS_ERR(image_name)) 4352 image_name = NULL; 4353 else 4354 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4355 out: 4356 kfree(reply_buf); 4357 kfree(image_id); 4358 4359 return image_name; 4360 } 4361 4362 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4363 { 4364 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4365 const char *snap_name; 4366 u32 which = 0; 4367 4368 /* Skip over names until we find the one we are looking for */ 4369 4370 snap_name = rbd_dev->header.snap_names; 4371 while (which < snapc->num_snaps) { 4372 if (!strcmp(name, snap_name)) 4373 return snapc->snaps[which]; 4374 snap_name += strlen(snap_name) + 1; 4375 which++; 4376 } 4377 return CEPH_NOSNAP; 4378 } 4379 4380 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4381 { 4382 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4383 u32 which; 4384 bool found = false; 4385 u64 snap_id; 4386 4387 for (which = 0; !found && which < snapc->num_snaps; which++) { 4388 const char *snap_name; 4389 4390 snap_id = snapc->snaps[which]; 4391 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4392 if (IS_ERR(snap_name)) { 4393 /* ignore no-longer existing snapshots */ 4394 if (PTR_ERR(snap_name) == -ENOENT) 4395 continue; 4396 else 4397 break; 4398 } 4399 found = !strcmp(name, snap_name); 4400 kfree(snap_name); 4401 } 4402 return found ? snap_id : CEPH_NOSNAP; 4403 } 4404 4405 /* 4406 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4407 * no snapshot by that name is found, or if an error occurs. 4408 */ 4409 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4410 { 4411 if (rbd_dev->image_format == 1) 4412 return rbd_v1_snap_id_by_name(rbd_dev, name); 4413 4414 return rbd_v2_snap_id_by_name(rbd_dev, name); 4415 } 4416 4417 /* 4418 * An image being mapped will have everything but the snap id. 4419 */ 4420 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4421 { 4422 struct rbd_spec *spec = rbd_dev->spec; 4423 4424 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4425 rbd_assert(spec->image_id && spec->image_name); 4426 rbd_assert(spec->snap_name); 4427 4428 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4429 u64 snap_id; 4430 4431 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4432 if (snap_id == CEPH_NOSNAP) 4433 return -ENOENT; 4434 4435 spec->snap_id = snap_id; 4436 } else { 4437 spec->snap_id = CEPH_NOSNAP; 4438 } 4439 4440 return 0; 4441 } 4442 4443 /* 4444 * A parent image will have all ids but none of the names. 4445 * 4446 * All names in an rbd spec are dynamically allocated. It's OK if we 4447 * can't figure out the name for an image id. 4448 */ 4449 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4450 { 4451 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4452 struct rbd_spec *spec = rbd_dev->spec; 4453 const char *pool_name; 4454 const char *image_name; 4455 const char *snap_name; 4456 int ret; 4457 4458 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4459 rbd_assert(spec->image_id); 4460 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4461 4462 /* Get the pool name; we have to make our own copy of this */ 4463 4464 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4465 if (!pool_name) { 4466 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4467 return -EIO; 4468 } 4469 pool_name = kstrdup(pool_name, GFP_KERNEL); 4470 if (!pool_name) 4471 return -ENOMEM; 4472 4473 /* Fetch the image name; tolerate failure here */ 4474 4475 image_name = rbd_dev_image_name(rbd_dev); 4476 if (!image_name) 4477 rbd_warn(rbd_dev, "unable to get image name"); 4478 4479 /* Fetch the snapshot name */ 4480 4481 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4482 if (IS_ERR(snap_name)) { 4483 ret = PTR_ERR(snap_name); 4484 goto out_err; 4485 } 4486 4487 spec->pool_name = pool_name; 4488 spec->image_name = image_name; 4489 spec->snap_name = snap_name; 4490 4491 return 0; 4492 4493 out_err: 4494 kfree(image_name); 4495 kfree(pool_name); 4496 return ret; 4497 } 4498 4499 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4500 { 4501 size_t size; 4502 int ret; 4503 void *reply_buf; 4504 void *p; 4505 void *end; 4506 u64 seq; 4507 u32 snap_count; 4508 struct ceph_snap_context *snapc; 4509 u32 i; 4510 4511 /* 4512 * We'll need room for the seq value (maximum snapshot id), 4513 * snapshot count, and array of that many snapshot ids. 4514 * For now we have a fixed upper limit on the number we're 4515 * prepared to receive. 4516 */ 4517 size = sizeof (__le64) + sizeof (__le32) + 4518 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4519 reply_buf = kzalloc(size, GFP_KERNEL); 4520 if (!reply_buf) 4521 return -ENOMEM; 4522 4523 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4524 "rbd", "get_snapcontext", NULL, 0, 4525 reply_buf, size); 4526 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4527 if (ret < 0) 4528 goto out; 4529 4530 p = reply_buf; 4531 end = reply_buf + ret; 4532 ret = -ERANGE; 4533 ceph_decode_64_safe(&p, end, seq, out); 4534 ceph_decode_32_safe(&p, end, snap_count, out); 4535 4536 /* 4537 * Make sure the reported number of snapshot ids wouldn't go 4538 * beyond the end of our buffer. But before checking that, 4539 * make sure the computed size of the snapshot context we 4540 * allocate is representable in a size_t. 4541 */ 4542 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4543 / sizeof (u64)) { 4544 ret = -EINVAL; 4545 goto out; 4546 } 4547 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4548 goto out; 4549 ret = 0; 4550 4551 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4552 if (!snapc) { 4553 ret = -ENOMEM; 4554 goto out; 4555 } 4556 snapc->seq = seq; 4557 for (i = 0; i < snap_count; i++) 4558 snapc->snaps[i] = ceph_decode_64(&p); 4559 4560 ceph_put_snap_context(rbd_dev->header.snapc); 4561 rbd_dev->header.snapc = snapc; 4562 4563 dout(" snap context seq = %llu, snap_count = %u\n", 4564 (unsigned long long)seq, (unsigned int)snap_count); 4565 out: 4566 kfree(reply_buf); 4567 4568 return ret; 4569 } 4570 4571 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4572 u64 snap_id) 4573 { 4574 size_t size; 4575 void *reply_buf; 4576 __le64 snapid; 4577 int ret; 4578 void *p; 4579 void *end; 4580 char *snap_name; 4581 4582 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4583 reply_buf = kmalloc(size, GFP_KERNEL); 4584 if (!reply_buf) 4585 return ERR_PTR(-ENOMEM); 4586 4587 snapid = cpu_to_le64(snap_id); 4588 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name, 4589 "rbd", "get_snapshot_name", 4590 &snapid, sizeof (snapid), 4591 reply_buf, size); 4592 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4593 if (ret < 0) { 4594 snap_name = ERR_PTR(ret); 4595 goto out; 4596 } 4597 4598 p = reply_buf; 4599 end = reply_buf + ret; 4600 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4601 if (IS_ERR(snap_name)) 4602 goto out; 4603 4604 dout(" snap_id 0x%016llx snap_name = %s\n", 4605 (unsigned long long)snap_id, snap_name); 4606 out: 4607 kfree(reply_buf); 4608 4609 return snap_name; 4610 } 4611 4612 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4613 { 4614 bool first_time = rbd_dev->header.object_prefix == NULL; 4615 int ret; 4616 4617 ret = rbd_dev_v2_image_size(rbd_dev); 4618 if (ret) 4619 return ret; 4620 4621 if (first_time) { 4622 ret = rbd_dev_v2_header_onetime(rbd_dev); 4623 if (ret) 4624 return ret; 4625 } 4626 4627 ret = rbd_dev_v2_snap_context(rbd_dev); 4628 if (ret && first_time) { 4629 kfree(rbd_dev->header.object_prefix); 4630 rbd_dev->header.object_prefix = NULL; 4631 } 4632 4633 return ret; 4634 } 4635 4636 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4637 { 4638 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4639 4640 if (rbd_dev->image_format == 1) 4641 return rbd_dev_v1_header_info(rbd_dev); 4642 4643 return rbd_dev_v2_header_info(rbd_dev); 4644 } 4645 4646 /* 4647 * Get a unique rbd identifier for the given new rbd_dev, and add 4648 * the rbd_dev to the global list. 4649 */ 4650 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4651 { 4652 int new_dev_id; 4653 4654 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4655 0, minor_to_rbd_dev_id(1 << MINORBITS), 4656 GFP_KERNEL); 4657 if (new_dev_id < 0) 4658 return new_dev_id; 4659 4660 rbd_dev->dev_id = new_dev_id; 4661 4662 spin_lock(&rbd_dev_list_lock); 4663 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4664 spin_unlock(&rbd_dev_list_lock); 4665 4666 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4667 4668 return 0; 4669 } 4670 4671 /* 4672 * Remove an rbd_dev from the global list, and record that its 4673 * identifier is no longer in use. 4674 */ 4675 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4676 { 4677 spin_lock(&rbd_dev_list_lock); 4678 list_del_init(&rbd_dev->node); 4679 spin_unlock(&rbd_dev_list_lock); 4680 4681 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4682 4683 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4684 } 4685 4686 /* 4687 * Skips over white space at *buf, and updates *buf to point to the 4688 * first found non-space character (if any). Returns the length of 4689 * the token (string of non-white space characters) found. Note 4690 * that *buf must be terminated with '\0'. 4691 */ 4692 static inline size_t next_token(const char **buf) 4693 { 4694 /* 4695 * These are the characters that produce nonzero for 4696 * isspace() in the "C" and "POSIX" locales. 4697 */ 4698 const char *spaces = " \f\n\r\t\v"; 4699 4700 *buf += strspn(*buf, spaces); /* Find start of token */ 4701 4702 return strcspn(*buf, spaces); /* Return token length */ 4703 } 4704 4705 /* 4706 * Finds the next token in *buf, dynamically allocates a buffer big 4707 * enough to hold a copy of it, and copies the token into the new 4708 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4709 * that a duplicate buffer is created even for a zero-length token. 4710 * 4711 * Returns a pointer to the newly-allocated duplicate, or a null 4712 * pointer if memory for the duplicate was not available. If 4713 * the lenp argument is a non-null pointer, the length of the token 4714 * (not including the '\0') is returned in *lenp. 4715 * 4716 * If successful, the *buf pointer will be updated to point beyond 4717 * the end of the found token. 4718 * 4719 * Note: uses GFP_KERNEL for allocation. 4720 */ 4721 static inline char *dup_token(const char **buf, size_t *lenp) 4722 { 4723 char *dup; 4724 size_t len; 4725 4726 len = next_token(buf); 4727 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4728 if (!dup) 4729 return NULL; 4730 *(dup + len) = '\0'; 4731 *buf += len; 4732 4733 if (lenp) 4734 *lenp = len; 4735 4736 return dup; 4737 } 4738 4739 /* 4740 * Parse the options provided for an "rbd add" (i.e., rbd image 4741 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4742 * and the data written is passed here via a NUL-terminated buffer. 4743 * Returns 0 if successful or an error code otherwise. 4744 * 4745 * The information extracted from these options is recorded in 4746 * the other parameters which return dynamically-allocated 4747 * structures: 4748 * ceph_opts 4749 * The address of a pointer that will refer to a ceph options 4750 * structure. Caller must release the returned pointer using 4751 * ceph_destroy_options() when it is no longer needed. 4752 * rbd_opts 4753 * Address of an rbd options pointer. Fully initialized by 4754 * this function; caller must release with kfree(). 4755 * spec 4756 * Address of an rbd image specification pointer. Fully 4757 * initialized by this function based on parsed options. 4758 * Caller must release with rbd_spec_put(). 4759 * 4760 * The options passed take this form: 4761 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4762 * where: 4763 * <mon_addrs> 4764 * A comma-separated list of one or more monitor addresses. 4765 * A monitor address is an ip address, optionally followed 4766 * by a port number (separated by a colon). 4767 * I.e.: ip1[:port1][,ip2[:port2]...] 4768 * <options> 4769 * A comma-separated list of ceph and/or rbd options. 4770 * <pool_name> 4771 * The name of the rados pool containing the rbd image. 4772 * <image_name> 4773 * The name of the image in that pool to map. 4774 * <snap_id> 4775 * An optional snapshot id. If provided, the mapping will 4776 * present data from the image at the time that snapshot was 4777 * created. The image head is used if no snapshot id is 4778 * provided. Snapshot mappings are always read-only. 4779 */ 4780 static int rbd_add_parse_args(const char *buf, 4781 struct ceph_options **ceph_opts, 4782 struct rbd_options **opts, 4783 struct rbd_spec **rbd_spec) 4784 { 4785 size_t len; 4786 char *options; 4787 const char *mon_addrs; 4788 char *snap_name; 4789 size_t mon_addrs_size; 4790 struct rbd_spec *spec = NULL; 4791 struct rbd_options *rbd_opts = NULL; 4792 struct ceph_options *copts; 4793 int ret; 4794 4795 /* The first four tokens are required */ 4796 4797 len = next_token(&buf); 4798 if (!len) { 4799 rbd_warn(NULL, "no monitor address(es) provided"); 4800 return -EINVAL; 4801 } 4802 mon_addrs = buf; 4803 mon_addrs_size = len + 1; 4804 buf += len; 4805 4806 ret = -EINVAL; 4807 options = dup_token(&buf, NULL); 4808 if (!options) 4809 return -ENOMEM; 4810 if (!*options) { 4811 rbd_warn(NULL, "no options provided"); 4812 goto out_err; 4813 } 4814 4815 spec = rbd_spec_alloc(); 4816 if (!spec) 4817 goto out_mem; 4818 4819 spec->pool_name = dup_token(&buf, NULL); 4820 if (!spec->pool_name) 4821 goto out_mem; 4822 if (!*spec->pool_name) { 4823 rbd_warn(NULL, "no pool name provided"); 4824 goto out_err; 4825 } 4826 4827 spec->image_name = dup_token(&buf, NULL); 4828 if (!spec->image_name) 4829 goto out_mem; 4830 if (!*spec->image_name) { 4831 rbd_warn(NULL, "no image name provided"); 4832 goto out_err; 4833 } 4834 4835 /* 4836 * Snapshot name is optional; default is to use "-" 4837 * (indicating the head/no snapshot). 4838 */ 4839 len = next_token(&buf); 4840 if (!len) { 4841 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4842 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4843 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4844 ret = -ENAMETOOLONG; 4845 goto out_err; 4846 } 4847 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4848 if (!snap_name) 4849 goto out_mem; 4850 *(snap_name + len) = '\0'; 4851 spec->snap_name = snap_name; 4852 4853 /* Initialize all rbd options to the defaults */ 4854 4855 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4856 if (!rbd_opts) 4857 goto out_mem; 4858 4859 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4860 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 4861 4862 copts = ceph_parse_options(options, mon_addrs, 4863 mon_addrs + mon_addrs_size - 1, 4864 parse_rbd_opts_token, rbd_opts); 4865 if (IS_ERR(copts)) { 4866 ret = PTR_ERR(copts); 4867 goto out_err; 4868 } 4869 kfree(options); 4870 4871 *ceph_opts = copts; 4872 *opts = rbd_opts; 4873 *rbd_spec = spec; 4874 4875 return 0; 4876 out_mem: 4877 ret = -ENOMEM; 4878 out_err: 4879 kfree(rbd_opts); 4880 rbd_spec_put(spec); 4881 kfree(options); 4882 4883 return ret; 4884 } 4885 4886 /* 4887 * Return pool id (>= 0) or a negative error code. 4888 */ 4889 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4890 { 4891 struct ceph_options *opts = rbdc->client->options; 4892 u64 newest_epoch; 4893 int tries = 0; 4894 int ret; 4895 4896 again: 4897 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4898 if (ret == -ENOENT && tries++ < 1) { 4899 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 4900 &newest_epoch); 4901 if (ret < 0) 4902 return ret; 4903 4904 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4905 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 4906 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4907 newest_epoch, 4908 opts->mount_timeout); 4909 goto again; 4910 } else { 4911 /* the osdmap we have is new enough */ 4912 return -ENOENT; 4913 } 4914 } 4915 4916 return ret; 4917 } 4918 4919 /* 4920 * An rbd format 2 image has a unique identifier, distinct from the 4921 * name given to it by the user. Internally, that identifier is 4922 * what's used to specify the names of objects related to the image. 4923 * 4924 * A special "rbd id" object is used to map an rbd image name to its 4925 * id. If that object doesn't exist, then there is no v2 rbd image 4926 * with the supplied name. 4927 * 4928 * This function will record the given rbd_dev's image_id field if 4929 * it can be determined, and in that case will return 0. If any 4930 * errors occur a negative errno will be returned and the rbd_dev's 4931 * image_id field will be unchanged (and should be NULL). 4932 */ 4933 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4934 { 4935 int ret; 4936 size_t size; 4937 char *object_name; 4938 void *response; 4939 char *image_id; 4940 4941 /* 4942 * When probing a parent image, the image id is already 4943 * known (and the image name likely is not). There's no 4944 * need to fetch the image id again in this case. We 4945 * do still need to set the image format though. 4946 */ 4947 if (rbd_dev->spec->image_id) { 4948 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4949 4950 return 0; 4951 } 4952 4953 /* 4954 * First, see if the format 2 image id file exists, and if 4955 * so, get the image's persistent id from it. 4956 */ 4957 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4958 object_name = kmalloc(size, GFP_NOIO); 4959 if (!object_name) 4960 return -ENOMEM; 4961 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4962 dout("rbd id object name is %s\n", object_name); 4963 4964 /* Response will be an encoded string, which includes a length */ 4965 4966 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4967 response = kzalloc(size, GFP_NOIO); 4968 if (!response) { 4969 ret = -ENOMEM; 4970 goto out; 4971 } 4972 4973 /* If it doesn't exist we'll assume it's a format 1 image */ 4974 4975 ret = rbd_obj_method_sync(rbd_dev, object_name, 4976 "rbd", "get_id", NULL, 0, 4977 response, RBD_IMAGE_ID_LEN_MAX); 4978 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4979 if (ret == -ENOENT) { 4980 image_id = kstrdup("", GFP_KERNEL); 4981 ret = image_id ? 0 : -ENOMEM; 4982 if (!ret) 4983 rbd_dev->image_format = 1; 4984 } else if (ret >= 0) { 4985 void *p = response; 4986 4987 image_id = ceph_extract_encoded_string(&p, p + ret, 4988 NULL, GFP_NOIO); 4989 ret = PTR_ERR_OR_ZERO(image_id); 4990 if (!ret) 4991 rbd_dev->image_format = 2; 4992 } 4993 4994 if (!ret) { 4995 rbd_dev->spec->image_id = image_id; 4996 dout("image_id is %s\n", image_id); 4997 } 4998 out: 4999 kfree(response); 5000 kfree(object_name); 5001 5002 return ret; 5003 } 5004 5005 /* 5006 * Undo whatever state changes are made by v1 or v2 header info 5007 * call. 5008 */ 5009 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5010 { 5011 struct rbd_image_header *header; 5012 5013 rbd_dev_parent_put(rbd_dev); 5014 5015 /* Free dynamic fields from the header, then zero it out */ 5016 5017 header = &rbd_dev->header; 5018 ceph_put_snap_context(header->snapc); 5019 kfree(header->snap_sizes); 5020 kfree(header->snap_names); 5021 kfree(header->object_prefix); 5022 memset(header, 0, sizeof (*header)); 5023 } 5024 5025 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5026 { 5027 int ret; 5028 5029 ret = rbd_dev_v2_object_prefix(rbd_dev); 5030 if (ret) 5031 goto out_err; 5032 5033 /* 5034 * Get the and check features for the image. Currently the 5035 * features are assumed to never change. 5036 */ 5037 ret = rbd_dev_v2_features(rbd_dev); 5038 if (ret) 5039 goto out_err; 5040 5041 /* If the image supports fancy striping, get its parameters */ 5042 5043 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5044 ret = rbd_dev_v2_striping_info(rbd_dev); 5045 if (ret < 0) 5046 goto out_err; 5047 } 5048 /* No support for crypto and compression type format 2 images */ 5049 5050 return 0; 5051 out_err: 5052 rbd_dev->header.features = 0; 5053 kfree(rbd_dev->header.object_prefix); 5054 rbd_dev->header.object_prefix = NULL; 5055 5056 return ret; 5057 } 5058 5059 /* 5060 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5061 * rbd_dev_image_probe() recursion depth, which means it's also the 5062 * length of the already discovered part of the parent chain. 5063 */ 5064 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5065 { 5066 struct rbd_device *parent = NULL; 5067 int ret; 5068 5069 if (!rbd_dev->parent_spec) 5070 return 0; 5071 5072 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5073 pr_info("parent chain is too long (%d)\n", depth); 5074 ret = -EINVAL; 5075 goto out_err; 5076 } 5077 5078 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec, 5079 NULL); 5080 if (!parent) { 5081 ret = -ENOMEM; 5082 goto out_err; 5083 } 5084 5085 /* 5086 * Images related by parent/child relationships always share 5087 * rbd_client and spec/parent_spec, so bump their refcounts. 5088 */ 5089 __rbd_get_client(rbd_dev->rbd_client); 5090 rbd_spec_get(rbd_dev->parent_spec); 5091 5092 ret = rbd_dev_image_probe(parent, depth); 5093 if (ret < 0) 5094 goto out_err; 5095 5096 rbd_dev->parent = parent; 5097 atomic_set(&rbd_dev->parent_ref, 1); 5098 return 0; 5099 5100 out_err: 5101 rbd_dev_unparent(rbd_dev); 5102 rbd_dev_destroy(parent); 5103 return ret; 5104 } 5105 5106 /* 5107 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5108 * upon return. 5109 */ 5110 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5111 { 5112 int ret; 5113 5114 /* Get an id and fill in device name. */ 5115 5116 ret = rbd_dev_id_get(rbd_dev); 5117 if (ret) 5118 goto err_out_unlock; 5119 5120 BUILD_BUG_ON(DEV_NAME_LEN 5121 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5122 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5123 5124 /* Record our major and minor device numbers. */ 5125 5126 if (!single_major) { 5127 ret = register_blkdev(0, rbd_dev->name); 5128 if (ret < 0) 5129 goto err_out_id; 5130 5131 rbd_dev->major = ret; 5132 rbd_dev->minor = 0; 5133 } else { 5134 rbd_dev->major = rbd_major; 5135 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5136 } 5137 5138 /* Set up the blkdev mapping. */ 5139 5140 ret = rbd_init_disk(rbd_dev); 5141 if (ret) 5142 goto err_out_blkdev; 5143 5144 ret = rbd_dev_mapping_set(rbd_dev); 5145 if (ret) 5146 goto err_out_disk; 5147 5148 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5149 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5150 5151 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5152 ret = device_add(&rbd_dev->dev); 5153 if (ret) 5154 goto err_out_mapping; 5155 5156 /* Everything's ready. Announce the disk to the world. */ 5157 5158 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5159 up_write(&rbd_dev->header_rwsem); 5160 5161 add_disk(rbd_dev->disk); 5162 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5163 (unsigned long long) rbd_dev->mapping.size); 5164 5165 return ret; 5166 5167 err_out_mapping: 5168 rbd_dev_mapping_clear(rbd_dev); 5169 err_out_disk: 5170 rbd_free_disk(rbd_dev); 5171 err_out_blkdev: 5172 if (!single_major) 5173 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5174 err_out_id: 5175 rbd_dev_id_put(rbd_dev); 5176 err_out_unlock: 5177 up_write(&rbd_dev->header_rwsem); 5178 return ret; 5179 } 5180 5181 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5182 { 5183 struct rbd_spec *spec = rbd_dev->spec; 5184 int ret; 5185 5186 /* Record the header object name for this rbd image. */ 5187 5188 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5189 5190 rbd_dev->header_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 5191 if (rbd_dev->image_format == 1) 5192 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5193 spec->image_name, RBD_SUFFIX); 5194 else 5195 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5196 RBD_HEADER_PREFIX, spec->image_id); 5197 5198 return ret; 5199 } 5200 5201 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5202 { 5203 rbd_dev_unprobe(rbd_dev); 5204 rbd_dev->image_format = 0; 5205 kfree(rbd_dev->spec->image_id); 5206 rbd_dev->spec->image_id = NULL; 5207 5208 rbd_dev_destroy(rbd_dev); 5209 } 5210 5211 /* 5212 * Probe for the existence of the header object for the given rbd 5213 * device. If this image is the one being mapped (i.e., not a 5214 * parent), initiate a watch on its header object before using that 5215 * object to get detailed information about the rbd image. 5216 */ 5217 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5218 { 5219 int ret; 5220 5221 /* 5222 * Get the id from the image id object. Unless there's an 5223 * error, rbd_dev->spec->image_id will be filled in with 5224 * a dynamically-allocated string, and rbd_dev->image_format 5225 * will be set to either 1 or 2. 5226 */ 5227 ret = rbd_dev_image_id(rbd_dev); 5228 if (ret) 5229 return ret; 5230 5231 ret = rbd_dev_header_name(rbd_dev); 5232 if (ret) 5233 goto err_out_format; 5234 5235 if (!depth) { 5236 ret = rbd_dev_header_watch_sync(rbd_dev); 5237 if (ret) { 5238 if (ret == -ENOENT) 5239 pr_info("image %s/%s does not exist\n", 5240 rbd_dev->spec->pool_name, 5241 rbd_dev->spec->image_name); 5242 goto err_out_format; 5243 } 5244 } 5245 5246 ret = rbd_dev_header_info(rbd_dev); 5247 if (ret) 5248 goto err_out_watch; 5249 5250 /* 5251 * If this image is the one being mapped, we have pool name and 5252 * id, image name and id, and snap name - need to fill snap id. 5253 * Otherwise this is a parent image, identified by pool, image 5254 * and snap ids - need to fill in names for those ids. 5255 */ 5256 if (!depth) 5257 ret = rbd_spec_fill_snap_id(rbd_dev); 5258 else 5259 ret = rbd_spec_fill_names(rbd_dev); 5260 if (ret) { 5261 if (ret == -ENOENT) 5262 pr_info("snap %s/%s@%s does not exist\n", 5263 rbd_dev->spec->pool_name, 5264 rbd_dev->spec->image_name, 5265 rbd_dev->spec->snap_name); 5266 goto err_out_probe; 5267 } 5268 5269 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5270 ret = rbd_dev_v2_parent_info(rbd_dev); 5271 if (ret) 5272 goto err_out_probe; 5273 5274 /* 5275 * Need to warn users if this image is the one being 5276 * mapped and has a parent. 5277 */ 5278 if (!depth && rbd_dev->parent_spec) 5279 rbd_warn(rbd_dev, 5280 "WARNING: kernel layering is EXPERIMENTAL!"); 5281 } 5282 5283 ret = rbd_dev_probe_parent(rbd_dev, depth); 5284 if (ret) 5285 goto err_out_probe; 5286 5287 dout("discovered format %u image, header name is %s\n", 5288 rbd_dev->image_format, rbd_dev->header_oid.name); 5289 return 0; 5290 5291 err_out_probe: 5292 rbd_dev_unprobe(rbd_dev); 5293 err_out_watch: 5294 if (!depth) 5295 rbd_dev_header_unwatch_sync(rbd_dev); 5296 err_out_format: 5297 rbd_dev->image_format = 0; 5298 kfree(rbd_dev->spec->image_id); 5299 rbd_dev->spec->image_id = NULL; 5300 return ret; 5301 } 5302 5303 static ssize_t do_rbd_add(struct bus_type *bus, 5304 const char *buf, 5305 size_t count) 5306 { 5307 struct rbd_device *rbd_dev = NULL; 5308 struct ceph_options *ceph_opts = NULL; 5309 struct rbd_options *rbd_opts = NULL; 5310 struct rbd_spec *spec = NULL; 5311 struct rbd_client *rbdc; 5312 bool read_only; 5313 int rc; 5314 5315 if (!try_module_get(THIS_MODULE)) 5316 return -ENODEV; 5317 5318 /* parse add command */ 5319 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5320 if (rc < 0) 5321 goto out; 5322 5323 rbdc = rbd_get_client(ceph_opts); 5324 if (IS_ERR(rbdc)) { 5325 rc = PTR_ERR(rbdc); 5326 goto err_out_args; 5327 } 5328 5329 /* pick the pool */ 5330 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5331 if (rc < 0) { 5332 if (rc == -ENOENT) 5333 pr_info("pool %s does not exist\n", spec->pool_name); 5334 goto err_out_client; 5335 } 5336 spec->pool_id = (u64)rc; 5337 5338 /* The ceph file layout needs to fit pool id in 32 bits */ 5339 5340 if (spec->pool_id > (u64)U32_MAX) { 5341 rbd_warn(NULL, "pool id too large (%llu > %u)", 5342 (unsigned long long)spec->pool_id, U32_MAX); 5343 rc = -EIO; 5344 goto err_out_client; 5345 } 5346 5347 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5348 if (!rbd_dev) { 5349 rc = -ENOMEM; 5350 goto err_out_client; 5351 } 5352 rbdc = NULL; /* rbd_dev now owns this */ 5353 spec = NULL; /* rbd_dev now owns this */ 5354 rbd_opts = NULL; /* rbd_dev now owns this */ 5355 5356 down_write(&rbd_dev->header_rwsem); 5357 rc = rbd_dev_image_probe(rbd_dev, 0); 5358 if (rc < 0) 5359 goto err_out_rbd_dev; 5360 5361 /* If we are mapping a snapshot it must be marked read-only */ 5362 5363 read_only = rbd_dev->opts->read_only; 5364 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5365 read_only = true; 5366 rbd_dev->mapping.read_only = read_only; 5367 5368 rc = rbd_dev_device_setup(rbd_dev); 5369 if (rc) { 5370 /* 5371 * rbd_dev_header_unwatch_sync() can't be moved into 5372 * rbd_dev_image_release() without refactoring, see 5373 * commit 1f3ef78861ac. 5374 */ 5375 rbd_dev_header_unwatch_sync(rbd_dev); 5376 rbd_dev_image_release(rbd_dev); 5377 goto out; 5378 } 5379 5380 rc = count; 5381 out: 5382 module_put(THIS_MODULE); 5383 return rc; 5384 5385 err_out_rbd_dev: 5386 up_write(&rbd_dev->header_rwsem); 5387 rbd_dev_destroy(rbd_dev); 5388 err_out_client: 5389 rbd_put_client(rbdc); 5390 err_out_args: 5391 rbd_spec_put(spec); 5392 kfree(rbd_opts); 5393 goto out; 5394 } 5395 5396 static ssize_t rbd_add(struct bus_type *bus, 5397 const char *buf, 5398 size_t count) 5399 { 5400 if (single_major) 5401 return -EINVAL; 5402 5403 return do_rbd_add(bus, buf, count); 5404 } 5405 5406 static ssize_t rbd_add_single_major(struct bus_type *bus, 5407 const char *buf, 5408 size_t count) 5409 { 5410 return do_rbd_add(bus, buf, count); 5411 } 5412 5413 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5414 { 5415 rbd_free_disk(rbd_dev); 5416 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5417 device_del(&rbd_dev->dev); 5418 rbd_dev_mapping_clear(rbd_dev); 5419 if (!single_major) 5420 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5421 rbd_dev_id_put(rbd_dev); 5422 } 5423 5424 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5425 { 5426 while (rbd_dev->parent) { 5427 struct rbd_device *first = rbd_dev; 5428 struct rbd_device *second = first->parent; 5429 struct rbd_device *third; 5430 5431 /* 5432 * Follow to the parent with no grandparent and 5433 * remove it. 5434 */ 5435 while (second && (third = second->parent)) { 5436 first = second; 5437 second = third; 5438 } 5439 rbd_assert(second); 5440 rbd_dev_image_release(second); 5441 first->parent = NULL; 5442 first->parent_overlap = 0; 5443 5444 rbd_assert(first->parent_spec); 5445 rbd_spec_put(first->parent_spec); 5446 first->parent_spec = NULL; 5447 } 5448 } 5449 5450 static ssize_t do_rbd_remove(struct bus_type *bus, 5451 const char *buf, 5452 size_t count) 5453 { 5454 struct rbd_device *rbd_dev = NULL; 5455 struct list_head *tmp; 5456 int dev_id; 5457 unsigned long ul; 5458 bool already = false; 5459 int ret; 5460 5461 ret = kstrtoul(buf, 10, &ul); 5462 if (ret) 5463 return ret; 5464 5465 /* convert to int; abort if we lost anything in the conversion */ 5466 dev_id = (int)ul; 5467 if (dev_id != ul) 5468 return -EINVAL; 5469 5470 ret = -ENOENT; 5471 spin_lock(&rbd_dev_list_lock); 5472 list_for_each(tmp, &rbd_dev_list) { 5473 rbd_dev = list_entry(tmp, struct rbd_device, node); 5474 if (rbd_dev->dev_id == dev_id) { 5475 ret = 0; 5476 break; 5477 } 5478 } 5479 if (!ret) { 5480 spin_lock_irq(&rbd_dev->lock); 5481 if (rbd_dev->open_count) 5482 ret = -EBUSY; 5483 else 5484 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5485 &rbd_dev->flags); 5486 spin_unlock_irq(&rbd_dev->lock); 5487 } 5488 spin_unlock(&rbd_dev_list_lock); 5489 if (ret < 0 || already) 5490 return ret; 5491 5492 rbd_dev_header_unwatch_sync(rbd_dev); 5493 5494 /* 5495 * Don't free anything from rbd_dev->disk until after all 5496 * notifies are completely processed. Otherwise 5497 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5498 * in a potential use after free of rbd_dev->disk or rbd_dev. 5499 */ 5500 rbd_dev_device_release(rbd_dev); 5501 rbd_dev_image_release(rbd_dev); 5502 5503 return count; 5504 } 5505 5506 static ssize_t rbd_remove(struct bus_type *bus, 5507 const char *buf, 5508 size_t count) 5509 { 5510 if (single_major) 5511 return -EINVAL; 5512 5513 return do_rbd_remove(bus, buf, count); 5514 } 5515 5516 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5517 const char *buf, 5518 size_t count) 5519 { 5520 return do_rbd_remove(bus, buf, count); 5521 } 5522 5523 /* 5524 * create control files in sysfs 5525 * /sys/bus/rbd/... 5526 */ 5527 static int rbd_sysfs_init(void) 5528 { 5529 int ret; 5530 5531 ret = device_register(&rbd_root_dev); 5532 if (ret < 0) 5533 return ret; 5534 5535 ret = bus_register(&rbd_bus_type); 5536 if (ret < 0) 5537 device_unregister(&rbd_root_dev); 5538 5539 return ret; 5540 } 5541 5542 static void rbd_sysfs_cleanup(void) 5543 { 5544 bus_unregister(&rbd_bus_type); 5545 device_unregister(&rbd_root_dev); 5546 } 5547 5548 static int rbd_slab_init(void) 5549 { 5550 rbd_assert(!rbd_img_request_cache); 5551 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 5552 if (!rbd_img_request_cache) 5553 return -ENOMEM; 5554 5555 rbd_assert(!rbd_obj_request_cache); 5556 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 5557 if (!rbd_obj_request_cache) 5558 goto out_err; 5559 5560 rbd_assert(!rbd_segment_name_cache); 5561 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5562 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5563 if (rbd_segment_name_cache) 5564 return 0; 5565 out_err: 5566 kmem_cache_destroy(rbd_obj_request_cache); 5567 rbd_obj_request_cache = NULL; 5568 5569 kmem_cache_destroy(rbd_img_request_cache); 5570 rbd_img_request_cache = NULL; 5571 5572 return -ENOMEM; 5573 } 5574 5575 static void rbd_slab_exit(void) 5576 { 5577 rbd_assert(rbd_segment_name_cache); 5578 kmem_cache_destroy(rbd_segment_name_cache); 5579 rbd_segment_name_cache = NULL; 5580 5581 rbd_assert(rbd_obj_request_cache); 5582 kmem_cache_destroy(rbd_obj_request_cache); 5583 rbd_obj_request_cache = NULL; 5584 5585 rbd_assert(rbd_img_request_cache); 5586 kmem_cache_destroy(rbd_img_request_cache); 5587 rbd_img_request_cache = NULL; 5588 } 5589 5590 static int __init rbd_init(void) 5591 { 5592 int rc; 5593 5594 if (!libceph_compatible(NULL)) { 5595 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5596 return -EINVAL; 5597 } 5598 5599 rc = rbd_slab_init(); 5600 if (rc) 5601 return rc; 5602 5603 /* 5604 * The number of active work items is limited by the number of 5605 * rbd devices * queue depth, so leave @max_active at default. 5606 */ 5607 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5608 if (!rbd_wq) { 5609 rc = -ENOMEM; 5610 goto err_out_slab; 5611 } 5612 5613 if (single_major) { 5614 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5615 if (rbd_major < 0) { 5616 rc = rbd_major; 5617 goto err_out_wq; 5618 } 5619 } 5620 5621 rc = rbd_sysfs_init(); 5622 if (rc) 5623 goto err_out_blkdev; 5624 5625 if (single_major) 5626 pr_info("loaded (major %d)\n", rbd_major); 5627 else 5628 pr_info("loaded\n"); 5629 5630 return 0; 5631 5632 err_out_blkdev: 5633 if (single_major) 5634 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5635 err_out_wq: 5636 destroy_workqueue(rbd_wq); 5637 err_out_slab: 5638 rbd_slab_exit(); 5639 return rc; 5640 } 5641 5642 static void __exit rbd_exit(void) 5643 { 5644 ida_destroy(&rbd_dev_id_ida); 5645 rbd_sysfs_cleanup(); 5646 if (single_major) 5647 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5648 destroy_workqueue(rbd_wq); 5649 rbd_slab_exit(); 5650 } 5651 5652 module_init(rbd_init); 5653 module_exit(rbd_exit); 5654 5655 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5656 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5657 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5658 /* following authorship retained from original osdblk.c */ 5659 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5660 5661 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5662 MODULE_LICENSE("GPL"); 5663