1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1ULL<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 126 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 127 128 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 129 RBD_FEATURE_STRIPINGV2 | \ 130 RBD_FEATURE_EXCLUSIVE_LOCK | \ 131 RBD_FEATURE_DATA_POOL) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 191 const char *image_id; 192 const char *image_name; 193 194 u64 snap_id; 195 const char *snap_name; 196 197 struct kref kref; 198 }; 199 200 /* 201 * an instance of the client. multiple devices may share an rbd client. 202 */ 203 struct rbd_client { 204 struct ceph_client *client; 205 struct kref kref; 206 struct list_head node; 207 }; 208 209 struct rbd_img_request; 210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 211 212 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 213 214 struct rbd_obj_request; 215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 219 }; 220 221 enum obj_operation_type { 222 OBJ_OP_WRITE, 223 OBJ_OP_READ, 224 OBJ_OP_DISCARD, 225 }; 226 227 enum obj_req_flags { 228 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 229 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 230 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 231 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 232 }; 233 234 struct rbd_obj_request { 235 u64 object_no; 236 u64 offset; /* object start byte */ 237 u64 length; /* bytes from offset */ 238 unsigned long flags; 239 240 /* 241 * An object request associated with an image will have its 242 * img_data flag set; a standalone object request will not. 243 * 244 * A standalone object request will have which == BAD_WHICH 245 * and a null obj_request pointer. 246 * 247 * An object request initiated in support of a layered image 248 * object (to check for its existence before a write) will 249 * have which == BAD_WHICH and a non-null obj_request pointer. 250 * 251 * Finally, an object request for rbd image data will have 252 * which != BAD_WHICH, and will have a non-null img_request 253 * pointer. The value of which will be in the range 254 * 0..(img_request->obj_request_count-1). 255 */ 256 union { 257 struct rbd_obj_request *obj_request; /* STAT op */ 258 struct { 259 struct rbd_img_request *img_request; 260 u64 img_offset; 261 /* links for img_request->obj_requests list */ 262 struct list_head links; 263 }; 264 }; 265 u32 which; /* posn image request list */ 266 267 enum obj_request_type type; 268 union { 269 struct bio *bio_list; 270 struct { 271 struct page **pages; 272 u32 page_count; 273 }; 274 }; 275 struct page **copyup_pages; 276 u32 copyup_page_count; 277 278 struct ceph_osd_request *osd_req; 279 280 u64 xferred; /* bytes transferred */ 281 int result; 282 283 rbd_obj_callback_t callback; 284 struct completion completion; 285 286 struct kref kref; 287 }; 288 289 enum img_req_flags { 290 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 291 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 292 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 293 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 294 }; 295 296 struct rbd_img_request { 297 struct rbd_device *rbd_dev; 298 u64 offset; /* starting image byte offset */ 299 u64 length; /* byte count from offset */ 300 unsigned long flags; 301 union { 302 u64 snap_id; /* for reads */ 303 struct ceph_snap_context *snapc; /* for writes */ 304 }; 305 union { 306 struct request *rq; /* block request */ 307 struct rbd_obj_request *obj_request; /* obj req initiator */ 308 }; 309 struct page **copyup_pages; 310 u32 copyup_page_count; 311 spinlock_t completion_lock;/* protects next_completion */ 312 u32 next_completion; 313 rbd_img_callback_t callback; 314 u64 xferred;/* aggregate bytes transferred */ 315 int result; /* first nonzero obj_request result */ 316 317 u32 obj_request_count; 318 struct list_head obj_requests; /* rbd_obj_request structs */ 319 320 struct kref kref; 321 }; 322 323 #define for_each_obj_request(ireq, oreq) \ 324 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 325 #define for_each_obj_request_from(ireq, oreq) \ 326 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 327 #define for_each_obj_request_safe(ireq, oreq, n) \ 328 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 329 330 enum rbd_watch_state { 331 RBD_WATCH_STATE_UNREGISTERED, 332 RBD_WATCH_STATE_REGISTERED, 333 RBD_WATCH_STATE_ERROR, 334 }; 335 336 enum rbd_lock_state { 337 RBD_LOCK_STATE_UNLOCKED, 338 RBD_LOCK_STATE_LOCKED, 339 RBD_LOCK_STATE_RELEASING, 340 }; 341 342 /* WatchNotify::ClientId */ 343 struct rbd_client_id { 344 u64 gid; 345 u64 handle; 346 }; 347 348 struct rbd_mapping { 349 u64 size; 350 u64 features; 351 }; 352 353 /* 354 * a single device 355 */ 356 struct rbd_device { 357 int dev_id; /* blkdev unique id */ 358 359 int major; /* blkdev assigned major */ 360 int minor; 361 struct gendisk *disk; /* blkdev's gendisk and rq */ 362 363 u32 image_format; /* Either 1 or 2 */ 364 struct rbd_client *rbd_client; 365 366 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 367 368 spinlock_t lock; /* queue, flags, open_count */ 369 370 struct rbd_image_header header; 371 unsigned long flags; /* possibly lock protected */ 372 struct rbd_spec *spec; 373 struct rbd_options *opts; 374 char *config_info; /* add{,_single_major} string */ 375 376 struct ceph_object_id header_oid; 377 struct ceph_object_locator header_oloc; 378 379 struct ceph_file_layout layout; /* used for all rbd requests */ 380 381 struct mutex watch_mutex; 382 enum rbd_watch_state watch_state; 383 struct ceph_osd_linger_request *watch_handle; 384 u64 watch_cookie; 385 struct delayed_work watch_dwork; 386 387 struct rw_semaphore lock_rwsem; 388 enum rbd_lock_state lock_state; 389 char lock_cookie[32]; 390 struct rbd_client_id owner_cid; 391 struct work_struct acquired_lock_work; 392 struct work_struct released_lock_work; 393 struct delayed_work lock_dwork; 394 struct work_struct unlock_work; 395 wait_queue_head_t lock_waitq; 396 397 struct workqueue_struct *task_wq; 398 399 struct rbd_spec *parent_spec; 400 u64 parent_overlap; 401 atomic_t parent_ref; 402 struct rbd_device *parent; 403 404 /* Block layer tags. */ 405 struct blk_mq_tag_set tag_set; 406 407 /* protects updating the header */ 408 struct rw_semaphore header_rwsem; 409 410 struct rbd_mapping mapping; 411 412 struct list_head node; 413 414 /* sysfs related */ 415 struct device dev; 416 unsigned long open_count; /* protected by lock */ 417 }; 418 419 /* 420 * Flag bits for rbd_dev->flags: 421 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 422 * by rbd_dev->lock 423 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 424 */ 425 enum rbd_dev_flags { 426 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 427 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 428 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 429 }; 430 431 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 432 433 static LIST_HEAD(rbd_dev_list); /* devices */ 434 static DEFINE_SPINLOCK(rbd_dev_list_lock); 435 436 static LIST_HEAD(rbd_client_list); /* clients */ 437 static DEFINE_SPINLOCK(rbd_client_list_lock); 438 439 /* Slab caches for frequently-allocated structures */ 440 441 static struct kmem_cache *rbd_img_request_cache; 442 static struct kmem_cache *rbd_obj_request_cache; 443 444 static struct bio_set *rbd_bio_clone; 445 446 static int rbd_major; 447 static DEFINE_IDA(rbd_dev_id_ida); 448 449 static struct workqueue_struct *rbd_wq; 450 451 /* 452 * single-major requires >= 0.75 version of userspace rbd utility. 453 */ 454 static bool single_major = true; 455 module_param(single_major, bool, S_IRUGO); 456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 457 458 static int rbd_img_request_submit(struct rbd_img_request *img_request); 459 460 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 461 size_t count); 462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 463 size_t count); 464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 465 size_t count); 466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 467 size_t count); 468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 469 static void rbd_spec_put(struct rbd_spec *spec); 470 471 static int rbd_dev_id_to_minor(int dev_id) 472 { 473 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 474 } 475 476 static int minor_to_rbd_dev_id(int minor) 477 { 478 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 479 } 480 481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 482 { 483 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 484 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 485 } 486 487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 488 { 489 bool is_lock_owner; 490 491 down_read(&rbd_dev->lock_rwsem); 492 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 493 up_read(&rbd_dev->lock_rwsem); 494 return is_lock_owner; 495 } 496 497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 498 { 499 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 500 } 501 502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL); 507 508 static struct attribute *rbd_bus_attrs[] = { 509 &bus_attr_add.attr, 510 &bus_attr_remove.attr, 511 &bus_attr_add_single_major.attr, 512 &bus_attr_remove_single_major.attr, 513 &bus_attr_supported_features.attr, 514 NULL, 515 }; 516 517 static umode_t rbd_bus_is_visible(struct kobject *kobj, 518 struct attribute *attr, int index) 519 { 520 if (!single_major && 521 (attr == &bus_attr_add_single_major.attr || 522 attr == &bus_attr_remove_single_major.attr)) 523 return 0; 524 525 return attr->mode; 526 } 527 528 static const struct attribute_group rbd_bus_group = { 529 .attrs = rbd_bus_attrs, 530 .is_visible = rbd_bus_is_visible, 531 }; 532 __ATTRIBUTE_GROUPS(rbd_bus); 533 534 static struct bus_type rbd_bus_type = { 535 .name = "rbd", 536 .bus_groups = rbd_bus_groups, 537 }; 538 539 static void rbd_root_dev_release(struct device *dev) 540 { 541 } 542 543 static struct device rbd_root_dev = { 544 .init_name = "rbd", 545 .release = rbd_root_dev_release, 546 }; 547 548 static __printf(2, 3) 549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 550 { 551 struct va_format vaf; 552 va_list args; 553 554 va_start(args, fmt); 555 vaf.fmt = fmt; 556 vaf.va = &args; 557 558 if (!rbd_dev) 559 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 560 else if (rbd_dev->disk) 561 printk(KERN_WARNING "%s: %s: %pV\n", 562 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 563 else if (rbd_dev->spec && rbd_dev->spec->image_name) 564 printk(KERN_WARNING "%s: image %s: %pV\n", 565 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 566 else if (rbd_dev->spec && rbd_dev->spec->image_id) 567 printk(KERN_WARNING "%s: id %s: %pV\n", 568 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 569 else /* punt */ 570 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 571 RBD_DRV_NAME, rbd_dev, &vaf); 572 va_end(args); 573 } 574 575 #ifdef RBD_DEBUG 576 #define rbd_assert(expr) \ 577 if (unlikely(!(expr))) { \ 578 printk(KERN_ERR "\nAssertion failure in %s() " \ 579 "at line %d:\n\n" \ 580 "\trbd_assert(%s);\n\n", \ 581 __func__, __LINE__, #expr); \ 582 BUG(); \ 583 } 584 #else /* !RBD_DEBUG */ 585 # define rbd_assert(expr) ((void) 0) 586 #endif /* !RBD_DEBUG */ 587 588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 592 593 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 595 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 598 u64 snap_id); 599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 600 u8 *order, u64 *snap_size); 601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 602 u64 *snap_features); 603 604 static int rbd_open(struct block_device *bdev, fmode_t mode) 605 { 606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 607 bool removing = false; 608 609 spin_lock_irq(&rbd_dev->lock); 610 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 611 removing = true; 612 else 613 rbd_dev->open_count++; 614 spin_unlock_irq(&rbd_dev->lock); 615 if (removing) 616 return -ENOENT; 617 618 (void) get_device(&rbd_dev->dev); 619 620 return 0; 621 } 622 623 static void rbd_release(struct gendisk *disk, fmode_t mode) 624 { 625 struct rbd_device *rbd_dev = disk->private_data; 626 unsigned long open_count_before; 627 628 spin_lock_irq(&rbd_dev->lock); 629 open_count_before = rbd_dev->open_count--; 630 spin_unlock_irq(&rbd_dev->lock); 631 rbd_assert(open_count_before > 0); 632 633 put_device(&rbd_dev->dev); 634 } 635 636 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 637 { 638 int ro; 639 640 if (get_user(ro, (int __user *)arg)) 641 return -EFAULT; 642 643 /* Snapshots can't be marked read-write */ 644 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 645 return -EROFS; 646 647 /* Let blkdev_roset() handle it */ 648 return -ENOTTY; 649 } 650 651 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 652 unsigned int cmd, unsigned long arg) 653 { 654 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 655 int ret; 656 657 switch (cmd) { 658 case BLKROSET: 659 ret = rbd_ioctl_set_ro(rbd_dev, arg); 660 break; 661 default: 662 ret = -ENOTTY; 663 } 664 665 return ret; 666 } 667 668 #ifdef CONFIG_COMPAT 669 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 670 unsigned int cmd, unsigned long arg) 671 { 672 return rbd_ioctl(bdev, mode, cmd, arg); 673 } 674 #endif /* CONFIG_COMPAT */ 675 676 static const struct block_device_operations rbd_bd_ops = { 677 .owner = THIS_MODULE, 678 .open = rbd_open, 679 .release = rbd_release, 680 .ioctl = rbd_ioctl, 681 #ifdef CONFIG_COMPAT 682 .compat_ioctl = rbd_compat_ioctl, 683 #endif 684 }; 685 686 /* 687 * Initialize an rbd client instance. Success or not, this function 688 * consumes ceph_opts. Caller holds client_mutex. 689 */ 690 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 691 { 692 struct rbd_client *rbdc; 693 int ret = -ENOMEM; 694 695 dout("%s:\n", __func__); 696 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 697 if (!rbdc) 698 goto out_opt; 699 700 kref_init(&rbdc->kref); 701 INIT_LIST_HEAD(&rbdc->node); 702 703 rbdc->client = ceph_create_client(ceph_opts, rbdc); 704 if (IS_ERR(rbdc->client)) 705 goto out_rbdc; 706 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 707 708 ret = ceph_open_session(rbdc->client); 709 if (ret < 0) 710 goto out_client; 711 712 spin_lock(&rbd_client_list_lock); 713 list_add_tail(&rbdc->node, &rbd_client_list); 714 spin_unlock(&rbd_client_list_lock); 715 716 dout("%s: rbdc %p\n", __func__, rbdc); 717 718 return rbdc; 719 out_client: 720 ceph_destroy_client(rbdc->client); 721 out_rbdc: 722 kfree(rbdc); 723 out_opt: 724 if (ceph_opts) 725 ceph_destroy_options(ceph_opts); 726 dout("%s: error %d\n", __func__, ret); 727 728 return ERR_PTR(ret); 729 } 730 731 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 732 { 733 kref_get(&rbdc->kref); 734 735 return rbdc; 736 } 737 738 /* 739 * Find a ceph client with specific addr and configuration. If 740 * found, bump its reference count. 741 */ 742 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 743 { 744 struct rbd_client *client_node; 745 bool found = false; 746 747 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 748 return NULL; 749 750 spin_lock(&rbd_client_list_lock); 751 list_for_each_entry(client_node, &rbd_client_list, node) { 752 if (!ceph_compare_options(ceph_opts, client_node->client)) { 753 __rbd_get_client(client_node); 754 755 found = true; 756 break; 757 } 758 } 759 spin_unlock(&rbd_client_list_lock); 760 761 return found ? client_node : NULL; 762 } 763 764 /* 765 * (Per device) rbd map options 766 */ 767 enum { 768 Opt_queue_depth, 769 Opt_last_int, 770 /* int args above */ 771 Opt_last_string, 772 /* string args above */ 773 Opt_read_only, 774 Opt_read_write, 775 Opt_lock_on_read, 776 Opt_exclusive, 777 Opt_err 778 }; 779 780 static match_table_t rbd_opts_tokens = { 781 {Opt_queue_depth, "queue_depth=%d"}, 782 /* int args above */ 783 /* string args above */ 784 {Opt_read_only, "read_only"}, 785 {Opt_read_only, "ro"}, /* Alternate spelling */ 786 {Opt_read_write, "read_write"}, 787 {Opt_read_write, "rw"}, /* Alternate spelling */ 788 {Opt_lock_on_read, "lock_on_read"}, 789 {Opt_exclusive, "exclusive"}, 790 {Opt_err, NULL} 791 }; 792 793 struct rbd_options { 794 int queue_depth; 795 bool read_only; 796 bool lock_on_read; 797 bool exclusive; 798 }; 799 800 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 801 #define RBD_READ_ONLY_DEFAULT false 802 #define RBD_LOCK_ON_READ_DEFAULT false 803 #define RBD_EXCLUSIVE_DEFAULT false 804 805 static int parse_rbd_opts_token(char *c, void *private) 806 { 807 struct rbd_options *rbd_opts = private; 808 substring_t argstr[MAX_OPT_ARGS]; 809 int token, intval, ret; 810 811 token = match_token(c, rbd_opts_tokens, argstr); 812 if (token < Opt_last_int) { 813 ret = match_int(&argstr[0], &intval); 814 if (ret < 0) { 815 pr_err("bad mount option arg (not int) at '%s'\n", c); 816 return ret; 817 } 818 dout("got int token %d val %d\n", token, intval); 819 } else if (token > Opt_last_int && token < Opt_last_string) { 820 dout("got string token %d val %s\n", token, argstr[0].from); 821 } else { 822 dout("got token %d\n", token); 823 } 824 825 switch (token) { 826 case Opt_queue_depth: 827 if (intval < 1) { 828 pr_err("queue_depth out of range\n"); 829 return -EINVAL; 830 } 831 rbd_opts->queue_depth = intval; 832 break; 833 case Opt_read_only: 834 rbd_opts->read_only = true; 835 break; 836 case Opt_read_write: 837 rbd_opts->read_only = false; 838 break; 839 case Opt_lock_on_read: 840 rbd_opts->lock_on_read = true; 841 break; 842 case Opt_exclusive: 843 rbd_opts->exclusive = true; 844 break; 845 default: 846 /* libceph prints "bad option" msg */ 847 return -EINVAL; 848 } 849 850 return 0; 851 } 852 853 static char* obj_op_name(enum obj_operation_type op_type) 854 { 855 switch (op_type) { 856 case OBJ_OP_READ: 857 return "read"; 858 case OBJ_OP_WRITE: 859 return "write"; 860 case OBJ_OP_DISCARD: 861 return "discard"; 862 default: 863 return "???"; 864 } 865 } 866 867 /* 868 * Get a ceph client with specific addr and configuration, if one does 869 * not exist create it. Either way, ceph_opts is consumed by this 870 * function. 871 */ 872 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 873 { 874 struct rbd_client *rbdc; 875 876 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 877 rbdc = rbd_client_find(ceph_opts); 878 if (rbdc) /* using an existing client */ 879 ceph_destroy_options(ceph_opts); 880 else 881 rbdc = rbd_client_create(ceph_opts); 882 mutex_unlock(&client_mutex); 883 884 return rbdc; 885 } 886 887 /* 888 * Destroy ceph client 889 * 890 * Caller must hold rbd_client_list_lock. 891 */ 892 static void rbd_client_release(struct kref *kref) 893 { 894 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 895 896 dout("%s: rbdc %p\n", __func__, rbdc); 897 spin_lock(&rbd_client_list_lock); 898 list_del(&rbdc->node); 899 spin_unlock(&rbd_client_list_lock); 900 901 ceph_destroy_client(rbdc->client); 902 kfree(rbdc); 903 } 904 905 /* 906 * Drop reference to ceph client node. If it's not referenced anymore, release 907 * it. 908 */ 909 static void rbd_put_client(struct rbd_client *rbdc) 910 { 911 if (rbdc) 912 kref_put(&rbdc->kref, rbd_client_release); 913 } 914 915 static bool rbd_image_format_valid(u32 image_format) 916 { 917 return image_format == 1 || image_format == 2; 918 } 919 920 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 921 { 922 size_t size; 923 u32 snap_count; 924 925 /* The header has to start with the magic rbd header text */ 926 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 927 return false; 928 929 /* The bio layer requires at least sector-sized I/O */ 930 931 if (ondisk->options.order < SECTOR_SHIFT) 932 return false; 933 934 /* If we use u64 in a few spots we may be able to loosen this */ 935 936 if (ondisk->options.order > 8 * sizeof (int) - 1) 937 return false; 938 939 /* 940 * The size of a snapshot header has to fit in a size_t, and 941 * that limits the number of snapshots. 942 */ 943 snap_count = le32_to_cpu(ondisk->snap_count); 944 size = SIZE_MAX - sizeof (struct ceph_snap_context); 945 if (snap_count > size / sizeof (__le64)) 946 return false; 947 948 /* 949 * Not only that, but the size of the entire the snapshot 950 * header must also be representable in a size_t. 951 */ 952 size -= snap_count * sizeof (__le64); 953 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 954 return false; 955 956 return true; 957 } 958 959 /* 960 * returns the size of an object in the image 961 */ 962 static u32 rbd_obj_bytes(struct rbd_image_header *header) 963 { 964 return 1U << header->obj_order; 965 } 966 967 static void rbd_init_layout(struct rbd_device *rbd_dev) 968 { 969 if (rbd_dev->header.stripe_unit == 0 || 970 rbd_dev->header.stripe_count == 0) { 971 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 972 rbd_dev->header.stripe_count = 1; 973 } 974 975 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 976 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 977 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 978 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 979 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 980 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 981 } 982 983 /* 984 * Fill an rbd image header with information from the given format 1 985 * on-disk header. 986 */ 987 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 988 struct rbd_image_header_ondisk *ondisk) 989 { 990 struct rbd_image_header *header = &rbd_dev->header; 991 bool first_time = header->object_prefix == NULL; 992 struct ceph_snap_context *snapc; 993 char *object_prefix = NULL; 994 char *snap_names = NULL; 995 u64 *snap_sizes = NULL; 996 u32 snap_count; 997 int ret = -ENOMEM; 998 u32 i; 999 1000 /* Allocate this now to avoid having to handle failure below */ 1001 1002 if (first_time) { 1003 object_prefix = kstrndup(ondisk->object_prefix, 1004 sizeof(ondisk->object_prefix), 1005 GFP_KERNEL); 1006 if (!object_prefix) 1007 return -ENOMEM; 1008 } 1009 1010 /* Allocate the snapshot context and fill it in */ 1011 1012 snap_count = le32_to_cpu(ondisk->snap_count); 1013 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1014 if (!snapc) 1015 goto out_err; 1016 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1017 if (snap_count) { 1018 struct rbd_image_snap_ondisk *snaps; 1019 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1020 1021 /* We'll keep a copy of the snapshot names... */ 1022 1023 if (snap_names_len > (u64)SIZE_MAX) 1024 goto out_2big; 1025 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1026 if (!snap_names) 1027 goto out_err; 1028 1029 /* ...as well as the array of their sizes. */ 1030 snap_sizes = kmalloc_array(snap_count, 1031 sizeof(*header->snap_sizes), 1032 GFP_KERNEL); 1033 if (!snap_sizes) 1034 goto out_err; 1035 1036 /* 1037 * Copy the names, and fill in each snapshot's id 1038 * and size. 1039 * 1040 * Note that rbd_dev_v1_header_info() guarantees the 1041 * ondisk buffer we're working with has 1042 * snap_names_len bytes beyond the end of the 1043 * snapshot id array, this memcpy() is safe. 1044 */ 1045 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1046 snaps = ondisk->snaps; 1047 for (i = 0; i < snap_count; i++) { 1048 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1049 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1050 } 1051 } 1052 1053 /* We won't fail any more, fill in the header */ 1054 1055 if (first_time) { 1056 header->object_prefix = object_prefix; 1057 header->obj_order = ondisk->options.order; 1058 rbd_init_layout(rbd_dev); 1059 } else { 1060 ceph_put_snap_context(header->snapc); 1061 kfree(header->snap_names); 1062 kfree(header->snap_sizes); 1063 } 1064 1065 /* The remaining fields always get updated (when we refresh) */ 1066 1067 header->image_size = le64_to_cpu(ondisk->image_size); 1068 header->snapc = snapc; 1069 header->snap_names = snap_names; 1070 header->snap_sizes = snap_sizes; 1071 1072 return 0; 1073 out_2big: 1074 ret = -EIO; 1075 out_err: 1076 kfree(snap_sizes); 1077 kfree(snap_names); 1078 ceph_put_snap_context(snapc); 1079 kfree(object_prefix); 1080 1081 return ret; 1082 } 1083 1084 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1085 { 1086 const char *snap_name; 1087 1088 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1089 1090 /* Skip over names until we find the one we are looking for */ 1091 1092 snap_name = rbd_dev->header.snap_names; 1093 while (which--) 1094 snap_name += strlen(snap_name) + 1; 1095 1096 return kstrdup(snap_name, GFP_KERNEL); 1097 } 1098 1099 /* 1100 * Snapshot id comparison function for use with qsort()/bsearch(). 1101 * Note that result is for snapshots in *descending* order. 1102 */ 1103 static int snapid_compare_reverse(const void *s1, const void *s2) 1104 { 1105 u64 snap_id1 = *(u64 *)s1; 1106 u64 snap_id2 = *(u64 *)s2; 1107 1108 if (snap_id1 < snap_id2) 1109 return 1; 1110 return snap_id1 == snap_id2 ? 0 : -1; 1111 } 1112 1113 /* 1114 * Search a snapshot context to see if the given snapshot id is 1115 * present. 1116 * 1117 * Returns the position of the snapshot id in the array if it's found, 1118 * or BAD_SNAP_INDEX otherwise. 1119 * 1120 * Note: The snapshot array is in kept sorted (by the osd) in 1121 * reverse order, highest snapshot id first. 1122 */ 1123 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1124 { 1125 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1126 u64 *found; 1127 1128 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1129 sizeof (snap_id), snapid_compare_reverse); 1130 1131 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1132 } 1133 1134 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1135 u64 snap_id) 1136 { 1137 u32 which; 1138 const char *snap_name; 1139 1140 which = rbd_dev_snap_index(rbd_dev, snap_id); 1141 if (which == BAD_SNAP_INDEX) 1142 return ERR_PTR(-ENOENT); 1143 1144 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1145 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1146 } 1147 1148 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1149 { 1150 if (snap_id == CEPH_NOSNAP) 1151 return RBD_SNAP_HEAD_NAME; 1152 1153 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1154 if (rbd_dev->image_format == 1) 1155 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1156 1157 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1158 } 1159 1160 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1161 u64 *snap_size) 1162 { 1163 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1164 if (snap_id == CEPH_NOSNAP) { 1165 *snap_size = rbd_dev->header.image_size; 1166 } else if (rbd_dev->image_format == 1) { 1167 u32 which; 1168 1169 which = rbd_dev_snap_index(rbd_dev, snap_id); 1170 if (which == BAD_SNAP_INDEX) 1171 return -ENOENT; 1172 1173 *snap_size = rbd_dev->header.snap_sizes[which]; 1174 } else { 1175 u64 size = 0; 1176 int ret; 1177 1178 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1179 if (ret) 1180 return ret; 1181 1182 *snap_size = size; 1183 } 1184 return 0; 1185 } 1186 1187 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1188 u64 *snap_features) 1189 { 1190 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1191 if (snap_id == CEPH_NOSNAP) { 1192 *snap_features = rbd_dev->header.features; 1193 } else if (rbd_dev->image_format == 1) { 1194 *snap_features = 0; /* No features for format 1 */ 1195 } else { 1196 u64 features = 0; 1197 int ret; 1198 1199 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1200 if (ret) 1201 return ret; 1202 1203 *snap_features = features; 1204 } 1205 return 0; 1206 } 1207 1208 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1209 { 1210 u64 snap_id = rbd_dev->spec->snap_id; 1211 u64 size = 0; 1212 u64 features = 0; 1213 int ret; 1214 1215 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1216 if (ret) 1217 return ret; 1218 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1219 if (ret) 1220 return ret; 1221 1222 rbd_dev->mapping.size = size; 1223 rbd_dev->mapping.features = features; 1224 1225 return 0; 1226 } 1227 1228 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1229 { 1230 rbd_dev->mapping.size = 0; 1231 rbd_dev->mapping.features = 0; 1232 } 1233 1234 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1235 { 1236 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1237 1238 return offset & (segment_size - 1); 1239 } 1240 1241 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1242 u64 offset, u64 length) 1243 { 1244 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1245 1246 offset &= segment_size - 1; 1247 1248 rbd_assert(length <= U64_MAX - offset); 1249 if (offset + length > segment_size) 1250 length = segment_size - offset; 1251 1252 return length; 1253 } 1254 1255 /* 1256 * bio helpers 1257 */ 1258 1259 static void bio_chain_put(struct bio *chain) 1260 { 1261 struct bio *tmp; 1262 1263 while (chain) { 1264 tmp = chain; 1265 chain = chain->bi_next; 1266 bio_put(tmp); 1267 } 1268 } 1269 1270 /* 1271 * zeros a bio chain, starting at specific offset 1272 */ 1273 static void zero_bio_chain(struct bio *chain, int start_ofs) 1274 { 1275 struct bio_vec bv; 1276 struct bvec_iter iter; 1277 unsigned long flags; 1278 void *buf; 1279 int pos = 0; 1280 1281 while (chain) { 1282 bio_for_each_segment(bv, chain, iter) { 1283 if (pos + bv.bv_len > start_ofs) { 1284 int remainder = max(start_ofs - pos, 0); 1285 buf = bvec_kmap_irq(&bv, &flags); 1286 memset(buf + remainder, 0, 1287 bv.bv_len - remainder); 1288 flush_dcache_page(bv.bv_page); 1289 bvec_kunmap_irq(buf, &flags); 1290 } 1291 pos += bv.bv_len; 1292 } 1293 1294 chain = chain->bi_next; 1295 } 1296 } 1297 1298 /* 1299 * similar to zero_bio_chain(), zeros data defined by a page array, 1300 * starting at the given byte offset from the start of the array and 1301 * continuing up to the given end offset. The pages array is 1302 * assumed to be big enough to hold all bytes up to the end. 1303 */ 1304 static void zero_pages(struct page **pages, u64 offset, u64 end) 1305 { 1306 struct page **page = &pages[offset >> PAGE_SHIFT]; 1307 1308 rbd_assert(end > offset); 1309 rbd_assert(end - offset <= (u64)SIZE_MAX); 1310 while (offset < end) { 1311 size_t page_offset; 1312 size_t length; 1313 unsigned long flags; 1314 void *kaddr; 1315 1316 page_offset = offset & ~PAGE_MASK; 1317 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1318 local_irq_save(flags); 1319 kaddr = kmap_atomic(*page); 1320 memset(kaddr + page_offset, 0, length); 1321 flush_dcache_page(*page); 1322 kunmap_atomic(kaddr); 1323 local_irq_restore(flags); 1324 1325 offset += length; 1326 page++; 1327 } 1328 } 1329 1330 /* 1331 * Clone a portion of a bio, starting at the given byte offset 1332 * and continuing for the number of bytes indicated. 1333 */ 1334 static struct bio *bio_clone_range(struct bio *bio_src, 1335 unsigned int offset, 1336 unsigned int len, 1337 gfp_t gfpmask) 1338 { 1339 struct bio *bio; 1340 1341 bio = bio_clone_fast(bio_src, gfpmask, rbd_bio_clone); 1342 if (!bio) 1343 return NULL; /* ENOMEM */ 1344 1345 bio_advance(bio, offset); 1346 bio->bi_iter.bi_size = len; 1347 1348 return bio; 1349 } 1350 1351 /* 1352 * Clone a portion of a bio chain, starting at the given byte offset 1353 * into the first bio in the source chain and continuing for the 1354 * number of bytes indicated. The result is another bio chain of 1355 * exactly the given length, or a null pointer on error. 1356 * 1357 * The bio_src and offset parameters are both in-out. On entry they 1358 * refer to the first source bio and the offset into that bio where 1359 * the start of data to be cloned is located. 1360 * 1361 * On return, bio_src is updated to refer to the bio in the source 1362 * chain that contains first un-cloned byte, and *offset will 1363 * contain the offset of that byte within that bio. 1364 */ 1365 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1366 unsigned int *offset, 1367 unsigned int len, 1368 gfp_t gfpmask) 1369 { 1370 struct bio *bi = *bio_src; 1371 unsigned int off = *offset; 1372 struct bio *chain = NULL; 1373 struct bio **end; 1374 1375 /* Build up a chain of clone bios up to the limit */ 1376 1377 if (!bi || off >= bi->bi_iter.bi_size || !len) 1378 return NULL; /* Nothing to clone */ 1379 1380 end = &chain; 1381 while (len) { 1382 unsigned int bi_size; 1383 struct bio *bio; 1384 1385 if (!bi) { 1386 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1387 goto out_err; /* EINVAL; ran out of bio's */ 1388 } 1389 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1390 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1391 if (!bio) 1392 goto out_err; /* ENOMEM */ 1393 1394 *end = bio; 1395 end = &bio->bi_next; 1396 1397 off += bi_size; 1398 if (off == bi->bi_iter.bi_size) { 1399 bi = bi->bi_next; 1400 off = 0; 1401 } 1402 len -= bi_size; 1403 } 1404 *bio_src = bi; 1405 *offset = off; 1406 1407 return chain; 1408 out_err: 1409 bio_chain_put(chain); 1410 1411 return NULL; 1412 } 1413 1414 /* 1415 * The default/initial value for all object request flags is 0. For 1416 * each flag, once its value is set to 1 it is never reset to 0 1417 * again. 1418 */ 1419 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1420 { 1421 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1422 struct rbd_device *rbd_dev; 1423 1424 rbd_dev = obj_request->img_request->rbd_dev; 1425 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1426 obj_request); 1427 } 1428 } 1429 1430 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1431 { 1432 smp_mb(); 1433 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1434 } 1435 1436 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1437 { 1438 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1439 struct rbd_device *rbd_dev = NULL; 1440 1441 if (obj_request_img_data_test(obj_request)) 1442 rbd_dev = obj_request->img_request->rbd_dev; 1443 rbd_warn(rbd_dev, "obj_request %p already marked done", 1444 obj_request); 1445 } 1446 } 1447 1448 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1449 { 1450 smp_mb(); 1451 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1452 } 1453 1454 /* 1455 * This sets the KNOWN flag after (possibly) setting the EXISTS 1456 * flag. The latter is set based on the "exists" value provided. 1457 * 1458 * Note that for our purposes once an object exists it never goes 1459 * away again. It's possible that the response from two existence 1460 * checks are separated by the creation of the target object, and 1461 * the first ("doesn't exist") response arrives *after* the second 1462 * ("does exist"). In that case we ignore the second one. 1463 */ 1464 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1465 bool exists) 1466 { 1467 if (exists) 1468 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1469 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1470 smp_mb(); 1471 } 1472 1473 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1474 { 1475 smp_mb(); 1476 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1477 } 1478 1479 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1480 { 1481 smp_mb(); 1482 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1483 } 1484 1485 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1486 { 1487 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1488 1489 return obj_request->img_offset < 1490 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1491 } 1492 1493 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1494 { 1495 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1496 kref_read(&obj_request->kref)); 1497 kref_get(&obj_request->kref); 1498 } 1499 1500 static void rbd_obj_request_destroy(struct kref *kref); 1501 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1502 { 1503 rbd_assert(obj_request != NULL); 1504 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1505 kref_read(&obj_request->kref)); 1506 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1507 } 1508 1509 static void rbd_img_request_get(struct rbd_img_request *img_request) 1510 { 1511 dout("%s: img %p (was %d)\n", __func__, img_request, 1512 kref_read(&img_request->kref)); 1513 kref_get(&img_request->kref); 1514 } 1515 1516 static bool img_request_child_test(struct rbd_img_request *img_request); 1517 static void rbd_parent_request_destroy(struct kref *kref); 1518 static void rbd_img_request_destroy(struct kref *kref); 1519 static void rbd_img_request_put(struct rbd_img_request *img_request) 1520 { 1521 rbd_assert(img_request != NULL); 1522 dout("%s: img %p (was %d)\n", __func__, img_request, 1523 kref_read(&img_request->kref)); 1524 if (img_request_child_test(img_request)) 1525 kref_put(&img_request->kref, rbd_parent_request_destroy); 1526 else 1527 kref_put(&img_request->kref, rbd_img_request_destroy); 1528 } 1529 1530 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1531 struct rbd_obj_request *obj_request) 1532 { 1533 rbd_assert(obj_request->img_request == NULL); 1534 1535 /* Image request now owns object's original reference */ 1536 obj_request->img_request = img_request; 1537 obj_request->which = img_request->obj_request_count; 1538 rbd_assert(!obj_request_img_data_test(obj_request)); 1539 obj_request_img_data_set(obj_request); 1540 rbd_assert(obj_request->which != BAD_WHICH); 1541 img_request->obj_request_count++; 1542 list_add_tail(&obj_request->links, &img_request->obj_requests); 1543 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1544 obj_request->which); 1545 } 1546 1547 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1548 struct rbd_obj_request *obj_request) 1549 { 1550 rbd_assert(obj_request->which != BAD_WHICH); 1551 1552 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1553 obj_request->which); 1554 list_del(&obj_request->links); 1555 rbd_assert(img_request->obj_request_count > 0); 1556 img_request->obj_request_count--; 1557 rbd_assert(obj_request->which == img_request->obj_request_count); 1558 obj_request->which = BAD_WHICH; 1559 rbd_assert(obj_request_img_data_test(obj_request)); 1560 rbd_assert(obj_request->img_request == img_request); 1561 obj_request->img_request = NULL; 1562 obj_request->callback = NULL; 1563 rbd_obj_request_put(obj_request); 1564 } 1565 1566 static bool obj_request_type_valid(enum obj_request_type type) 1567 { 1568 switch (type) { 1569 case OBJ_REQUEST_NODATA: 1570 case OBJ_REQUEST_BIO: 1571 case OBJ_REQUEST_PAGES: 1572 return true; 1573 default: 1574 return false; 1575 } 1576 } 1577 1578 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1579 1580 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1581 { 1582 struct ceph_osd_request *osd_req = obj_request->osd_req; 1583 1584 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1585 obj_request, obj_request->object_no, obj_request->offset, 1586 obj_request->length, osd_req); 1587 if (obj_request_img_data_test(obj_request)) { 1588 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1589 rbd_img_request_get(obj_request->img_request); 1590 } 1591 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1592 } 1593 1594 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1595 { 1596 1597 dout("%s: img %p\n", __func__, img_request); 1598 1599 /* 1600 * If no error occurred, compute the aggregate transfer 1601 * count for the image request. We could instead use 1602 * atomic64_cmpxchg() to update it as each object request 1603 * completes; not clear which way is better off hand. 1604 */ 1605 if (!img_request->result) { 1606 struct rbd_obj_request *obj_request; 1607 u64 xferred = 0; 1608 1609 for_each_obj_request(img_request, obj_request) 1610 xferred += obj_request->xferred; 1611 img_request->xferred = xferred; 1612 } 1613 1614 if (img_request->callback) 1615 img_request->callback(img_request); 1616 else 1617 rbd_img_request_put(img_request); 1618 } 1619 1620 /* 1621 * The default/initial value for all image request flags is 0. Each 1622 * is conditionally set to 1 at image request initialization time 1623 * and currently never change thereafter. 1624 */ 1625 static void img_request_write_set(struct rbd_img_request *img_request) 1626 { 1627 set_bit(IMG_REQ_WRITE, &img_request->flags); 1628 smp_mb(); 1629 } 1630 1631 static bool img_request_write_test(struct rbd_img_request *img_request) 1632 { 1633 smp_mb(); 1634 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1635 } 1636 1637 /* 1638 * Set the discard flag when the img_request is an discard request 1639 */ 1640 static void img_request_discard_set(struct rbd_img_request *img_request) 1641 { 1642 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1643 smp_mb(); 1644 } 1645 1646 static bool img_request_discard_test(struct rbd_img_request *img_request) 1647 { 1648 smp_mb(); 1649 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1650 } 1651 1652 static void img_request_child_set(struct rbd_img_request *img_request) 1653 { 1654 set_bit(IMG_REQ_CHILD, &img_request->flags); 1655 smp_mb(); 1656 } 1657 1658 static void img_request_child_clear(struct rbd_img_request *img_request) 1659 { 1660 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1661 smp_mb(); 1662 } 1663 1664 static bool img_request_child_test(struct rbd_img_request *img_request) 1665 { 1666 smp_mb(); 1667 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1668 } 1669 1670 static void img_request_layered_set(struct rbd_img_request *img_request) 1671 { 1672 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1673 smp_mb(); 1674 } 1675 1676 static void img_request_layered_clear(struct rbd_img_request *img_request) 1677 { 1678 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1679 smp_mb(); 1680 } 1681 1682 static bool img_request_layered_test(struct rbd_img_request *img_request) 1683 { 1684 smp_mb(); 1685 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1686 } 1687 1688 static enum obj_operation_type 1689 rbd_img_request_op_type(struct rbd_img_request *img_request) 1690 { 1691 if (img_request_write_test(img_request)) 1692 return OBJ_OP_WRITE; 1693 else if (img_request_discard_test(img_request)) 1694 return OBJ_OP_DISCARD; 1695 else 1696 return OBJ_OP_READ; 1697 } 1698 1699 static void 1700 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1701 { 1702 u64 xferred = obj_request->xferred; 1703 u64 length = obj_request->length; 1704 1705 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1706 obj_request, obj_request->img_request, obj_request->result, 1707 xferred, length); 1708 /* 1709 * ENOENT means a hole in the image. We zero-fill the entire 1710 * length of the request. A short read also implies zero-fill 1711 * to the end of the request. An error requires the whole 1712 * length of the request to be reported finished with an error 1713 * to the block layer. In each case we update the xferred 1714 * count to indicate the whole request was satisfied. 1715 */ 1716 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1717 if (obj_request->result == -ENOENT) { 1718 if (obj_request->type == OBJ_REQUEST_BIO) 1719 zero_bio_chain(obj_request->bio_list, 0); 1720 else 1721 zero_pages(obj_request->pages, 0, length); 1722 obj_request->result = 0; 1723 } else if (xferred < length && !obj_request->result) { 1724 if (obj_request->type == OBJ_REQUEST_BIO) 1725 zero_bio_chain(obj_request->bio_list, xferred); 1726 else 1727 zero_pages(obj_request->pages, xferred, length); 1728 } 1729 obj_request->xferred = length; 1730 obj_request_done_set(obj_request); 1731 } 1732 1733 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1734 { 1735 dout("%s: obj %p cb %p\n", __func__, obj_request, 1736 obj_request->callback); 1737 if (obj_request->callback) 1738 obj_request->callback(obj_request); 1739 else 1740 complete_all(&obj_request->completion); 1741 } 1742 1743 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1744 { 1745 obj_request->result = err; 1746 obj_request->xferred = 0; 1747 /* 1748 * kludge - mirror rbd_obj_request_submit() to match a put in 1749 * rbd_img_obj_callback() 1750 */ 1751 if (obj_request_img_data_test(obj_request)) { 1752 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1753 rbd_img_request_get(obj_request->img_request); 1754 } 1755 obj_request_done_set(obj_request); 1756 rbd_obj_request_complete(obj_request); 1757 } 1758 1759 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1760 { 1761 struct rbd_img_request *img_request = NULL; 1762 struct rbd_device *rbd_dev = NULL; 1763 bool layered = false; 1764 1765 if (obj_request_img_data_test(obj_request)) { 1766 img_request = obj_request->img_request; 1767 layered = img_request && img_request_layered_test(img_request); 1768 rbd_dev = img_request->rbd_dev; 1769 } 1770 1771 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1772 obj_request, img_request, obj_request->result, 1773 obj_request->xferred, obj_request->length); 1774 if (layered && obj_request->result == -ENOENT && 1775 obj_request->img_offset < rbd_dev->parent_overlap) 1776 rbd_img_parent_read(obj_request); 1777 else if (img_request) 1778 rbd_img_obj_request_read_callback(obj_request); 1779 else 1780 obj_request_done_set(obj_request); 1781 } 1782 1783 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1784 { 1785 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1786 obj_request->result, obj_request->length); 1787 /* 1788 * There is no such thing as a successful short write. Set 1789 * it to our originally-requested length. 1790 */ 1791 obj_request->xferred = obj_request->length; 1792 obj_request_done_set(obj_request); 1793 } 1794 1795 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1796 { 1797 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1798 obj_request->result, obj_request->length); 1799 /* 1800 * There is no such thing as a successful short discard. Set 1801 * it to our originally-requested length. 1802 */ 1803 obj_request->xferred = obj_request->length; 1804 /* discarding a non-existent object is not a problem */ 1805 if (obj_request->result == -ENOENT) 1806 obj_request->result = 0; 1807 obj_request_done_set(obj_request); 1808 } 1809 1810 /* 1811 * For a simple stat call there's nothing to do. We'll do more if 1812 * this is part of a write sequence for a layered image. 1813 */ 1814 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1815 { 1816 dout("%s: obj %p\n", __func__, obj_request); 1817 obj_request_done_set(obj_request); 1818 } 1819 1820 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1821 { 1822 dout("%s: obj %p\n", __func__, obj_request); 1823 1824 if (obj_request_img_data_test(obj_request)) 1825 rbd_osd_copyup_callback(obj_request); 1826 else 1827 obj_request_done_set(obj_request); 1828 } 1829 1830 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1831 { 1832 struct rbd_obj_request *obj_request = osd_req->r_priv; 1833 u16 opcode; 1834 1835 dout("%s: osd_req %p\n", __func__, osd_req); 1836 rbd_assert(osd_req == obj_request->osd_req); 1837 if (obj_request_img_data_test(obj_request)) { 1838 rbd_assert(obj_request->img_request); 1839 rbd_assert(obj_request->which != BAD_WHICH); 1840 } else { 1841 rbd_assert(obj_request->which == BAD_WHICH); 1842 } 1843 1844 if (osd_req->r_result < 0) 1845 obj_request->result = osd_req->r_result; 1846 1847 /* 1848 * We support a 64-bit length, but ultimately it has to be 1849 * passed to the block layer, which just supports a 32-bit 1850 * length field. 1851 */ 1852 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1853 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1854 1855 opcode = osd_req->r_ops[0].op; 1856 switch (opcode) { 1857 case CEPH_OSD_OP_READ: 1858 rbd_osd_read_callback(obj_request); 1859 break; 1860 case CEPH_OSD_OP_SETALLOCHINT: 1861 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1862 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1863 /* fall through */ 1864 case CEPH_OSD_OP_WRITE: 1865 case CEPH_OSD_OP_WRITEFULL: 1866 rbd_osd_write_callback(obj_request); 1867 break; 1868 case CEPH_OSD_OP_STAT: 1869 rbd_osd_stat_callback(obj_request); 1870 break; 1871 case CEPH_OSD_OP_DELETE: 1872 case CEPH_OSD_OP_TRUNCATE: 1873 case CEPH_OSD_OP_ZERO: 1874 rbd_osd_discard_callback(obj_request); 1875 break; 1876 case CEPH_OSD_OP_CALL: 1877 rbd_osd_call_callback(obj_request); 1878 break; 1879 default: 1880 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d", 1881 obj_request->object_no, opcode); 1882 break; 1883 } 1884 1885 if (obj_request_done_test(obj_request)) 1886 rbd_obj_request_complete(obj_request); 1887 } 1888 1889 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1890 { 1891 struct ceph_osd_request *osd_req = obj_request->osd_req; 1892 1893 rbd_assert(obj_request_img_data_test(obj_request)); 1894 osd_req->r_snapid = obj_request->img_request->snap_id; 1895 } 1896 1897 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1898 { 1899 struct ceph_osd_request *osd_req = obj_request->osd_req; 1900 1901 ktime_get_real_ts(&osd_req->r_mtime); 1902 osd_req->r_data_offset = obj_request->offset; 1903 } 1904 1905 static struct ceph_osd_request * 1906 __rbd_osd_req_create(struct rbd_device *rbd_dev, 1907 struct ceph_snap_context *snapc, 1908 int num_ops, unsigned int flags, 1909 struct rbd_obj_request *obj_request) 1910 { 1911 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1912 struct ceph_osd_request *req; 1913 const char *name_format = rbd_dev->image_format == 1 ? 1914 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1915 1916 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1917 if (!req) 1918 return NULL; 1919 1920 req->r_flags = flags; 1921 req->r_callback = rbd_osd_req_callback; 1922 req->r_priv = obj_request; 1923 1924 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1925 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1926 rbd_dev->header.object_prefix, obj_request->object_no)) 1927 goto err_req; 1928 1929 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1930 goto err_req; 1931 1932 return req; 1933 1934 err_req: 1935 ceph_osdc_put_request(req); 1936 return NULL; 1937 } 1938 1939 /* 1940 * Create an osd request. A read request has one osd op (read). 1941 * A write request has either one (watch) or two (hint+write) osd ops. 1942 * (All rbd data writes are prefixed with an allocation hint op, but 1943 * technically osd watch is a write request, hence this distinction.) 1944 */ 1945 static struct ceph_osd_request *rbd_osd_req_create( 1946 struct rbd_device *rbd_dev, 1947 enum obj_operation_type op_type, 1948 unsigned int num_ops, 1949 struct rbd_obj_request *obj_request) 1950 { 1951 struct ceph_snap_context *snapc = NULL; 1952 1953 if (obj_request_img_data_test(obj_request) && 1954 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1955 struct rbd_img_request *img_request = obj_request->img_request; 1956 if (op_type == OBJ_OP_WRITE) { 1957 rbd_assert(img_request_write_test(img_request)); 1958 } else { 1959 rbd_assert(img_request_discard_test(img_request)); 1960 } 1961 snapc = img_request->snapc; 1962 } 1963 1964 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1965 1966 return __rbd_osd_req_create(rbd_dev, snapc, num_ops, 1967 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ? 1968 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request); 1969 } 1970 1971 /* 1972 * Create a copyup osd request based on the information in the object 1973 * request supplied. A copyup request has two or three osd ops, a 1974 * copyup method call, potentially a hint op, and a write or truncate 1975 * or zero op. 1976 */ 1977 static struct ceph_osd_request * 1978 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1979 { 1980 struct rbd_img_request *img_request; 1981 int num_osd_ops = 3; 1982 1983 rbd_assert(obj_request_img_data_test(obj_request)); 1984 img_request = obj_request->img_request; 1985 rbd_assert(img_request); 1986 rbd_assert(img_request_write_test(img_request) || 1987 img_request_discard_test(img_request)); 1988 1989 if (img_request_discard_test(img_request)) 1990 num_osd_ops = 2; 1991 1992 return __rbd_osd_req_create(img_request->rbd_dev, 1993 img_request->snapc, num_osd_ops, 1994 CEPH_OSD_FLAG_WRITE, obj_request); 1995 } 1996 1997 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1998 { 1999 ceph_osdc_put_request(osd_req); 2000 } 2001 2002 static struct rbd_obj_request * 2003 rbd_obj_request_create(enum obj_request_type type) 2004 { 2005 struct rbd_obj_request *obj_request; 2006 2007 rbd_assert(obj_request_type_valid(type)); 2008 2009 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2010 if (!obj_request) 2011 return NULL; 2012 2013 obj_request->which = BAD_WHICH; 2014 obj_request->type = type; 2015 INIT_LIST_HEAD(&obj_request->links); 2016 init_completion(&obj_request->completion); 2017 kref_init(&obj_request->kref); 2018 2019 dout("%s %p\n", __func__, obj_request); 2020 return obj_request; 2021 } 2022 2023 static void rbd_obj_request_destroy(struct kref *kref) 2024 { 2025 struct rbd_obj_request *obj_request; 2026 2027 obj_request = container_of(kref, struct rbd_obj_request, kref); 2028 2029 dout("%s: obj %p\n", __func__, obj_request); 2030 2031 rbd_assert(obj_request->img_request == NULL); 2032 rbd_assert(obj_request->which == BAD_WHICH); 2033 2034 if (obj_request->osd_req) 2035 rbd_osd_req_destroy(obj_request->osd_req); 2036 2037 rbd_assert(obj_request_type_valid(obj_request->type)); 2038 switch (obj_request->type) { 2039 case OBJ_REQUEST_NODATA: 2040 break; /* Nothing to do */ 2041 case OBJ_REQUEST_BIO: 2042 if (obj_request->bio_list) 2043 bio_chain_put(obj_request->bio_list); 2044 break; 2045 case OBJ_REQUEST_PAGES: 2046 /* img_data requests don't own their page array */ 2047 if (obj_request->pages && 2048 !obj_request_img_data_test(obj_request)) 2049 ceph_release_page_vector(obj_request->pages, 2050 obj_request->page_count); 2051 break; 2052 } 2053 2054 kmem_cache_free(rbd_obj_request_cache, obj_request); 2055 } 2056 2057 /* It's OK to call this for a device with no parent */ 2058 2059 static void rbd_spec_put(struct rbd_spec *spec); 2060 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2061 { 2062 rbd_dev_remove_parent(rbd_dev); 2063 rbd_spec_put(rbd_dev->parent_spec); 2064 rbd_dev->parent_spec = NULL; 2065 rbd_dev->parent_overlap = 0; 2066 } 2067 2068 /* 2069 * Parent image reference counting is used to determine when an 2070 * image's parent fields can be safely torn down--after there are no 2071 * more in-flight requests to the parent image. When the last 2072 * reference is dropped, cleaning them up is safe. 2073 */ 2074 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2075 { 2076 int counter; 2077 2078 if (!rbd_dev->parent_spec) 2079 return; 2080 2081 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2082 if (counter > 0) 2083 return; 2084 2085 /* Last reference; clean up parent data structures */ 2086 2087 if (!counter) 2088 rbd_dev_unparent(rbd_dev); 2089 else 2090 rbd_warn(rbd_dev, "parent reference underflow"); 2091 } 2092 2093 /* 2094 * If an image has a non-zero parent overlap, get a reference to its 2095 * parent. 2096 * 2097 * Returns true if the rbd device has a parent with a non-zero 2098 * overlap and a reference for it was successfully taken, or 2099 * false otherwise. 2100 */ 2101 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2102 { 2103 int counter = 0; 2104 2105 if (!rbd_dev->parent_spec) 2106 return false; 2107 2108 down_read(&rbd_dev->header_rwsem); 2109 if (rbd_dev->parent_overlap) 2110 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2111 up_read(&rbd_dev->header_rwsem); 2112 2113 if (counter < 0) 2114 rbd_warn(rbd_dev, "parent reference overflow"); 2115 2116 return counter > 0; 2117 } 2118 2119 /* 2120 * Caller is responsible for filling in the list of object requests 2121 * that comprises the image request, and the Linux request pointer 2122 * (if there is one). 2123 */ 2124 static struct rbd_img_request *rbd_img_request_create( 2125 struct rbd_device *rbd_dev, 2126 u64 offset, u64 length, 2127 enum obj_operation_type op_type, 2128 struct ceph_snap_context *snapc) 2129 { 2130 struct rbd_img_request *img_request; 2131 2132 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2133 if (!img_request) 2134 return NULL; 2135 2136 img_request->rq = NULL; 2137 img_request->rbd_dev = rbd_dev; 2138 img_request->offset = offset; 2139 img_request->length = length; 2140 img_request->flags = 0; 2141 if (op_type == OBJ_OP_DISCARD) { 2142 img_request_discard_set(img_request); 2143 img_request->snapc = snapc; 2144 } else if (op_type == OBJ_OP_WRITE) { 2145 img_request_write_set(img_request); 2146 img_request->snapc = snapc; 2147 } else { 2148 img_request->snap_id = rbd_dev->spec->snap_id; 2149 } 2150 if (rbd_dev_parent_get(rbd_dev)) 2151 img_request_layered_set(img_request); 2152 spin_lock_init(&img_request->completion_lock); 2153 img_request->next_completion = 0; 2154 img_request->callback = NULL; 2155 img_request->result = 0; 2156 img_request->obj_request_count = 0; 2157 INIT_LIST_HEAD(&img_request->obj_requests); 2158 kref_init(&img_request->kref); 2159 2160 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2161 obj_op_name(op_type), offset, length, img_request); 2162 2163 return img_request; 2164 } 2165 2166 static void rbd_img_request_destroy(struct kref *kref) 2167 { 2168 struct rbd_img_request *img_request; 2169 struct rbd_obj_request *obj_request; 2170 struct rbd_obj_request *next_obj_request; 2171 2172 img_request = container_of(kref, struct rbd_img_request, kref); 2173 2174 dout("%s: img %p\n", __func__, img_request); 2175 2176 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2177 rbd_img_obj_request_del(img_request, obj_request); 2178 rbd_assert(img_request->obj_request_count == 0); 2179 2180 if (img_request_layered_test(img_request)) { 2181 img_request_layered_clear(img_request); 2182 rbd_dev_parent_put(img_request->rbd_dev); 2183 } 2184 2185 if (img_request_write_test(img_request) || 2186 img_request_discard_test(img_request)) 2187 ceph_put_snap_context(img_request->snapc); 2188 2189 kmem_cache_free(rbd_img_request_cache, img_request); 2190 } 2191 2192 static struct rbd_img_request *rbd_parent_request_create( 2193 struct rbd_obj_request *obj_request, 2194 u64 img_offset, u64 length) 2195 { 2196 struct rbd_img_request *parent_request; 2197 struct rbd_device *rbd_dev; 2198 2199 rbd_assert(obj_request->img_request); 2200 rbd_dev = obj_request->img_request->rbd_dev; 2201 2202 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2203 length, OBJ_OP_READ, NULL); 2204 if (!parent_request) 2205 return NULL; 2206 2207 img_request_child_set(parent_request); 2208 rbd_obj_request_get(obj_request); 2209 parent_request->obj_request = obj_request; 2210 2211 return parent_request; 2212 } 2213 2214 static void rbd_parent_request_destroy(struct kref *kref) 2215 { 2216 struct rbd_img_request *parent_request; 2217 struct rbd_obj_request *orig_request; 2218 2219 parent_request = container_of(kref, struct rbd_img_request, kref); 2220 orig_request = parent_request->obj_request; 2221 2222 parent_request->obj_request = NULL; 2223 rbd_obj_request_put(orig_request); 2224 img_request_child_clear(parent_request); 2225 2226 rbd_img_request_destroy(kref); 2227 } 2228 2229 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2230 { 2231 struct rbd_img_request *img_request; 2232 unsigned int xferred; 2233 int result; 2234 bool more; 2235 2236 rbd_assert(obj_request_img_data_test(obj_request)); 2237 img_request = obj_request->img_request; 2238 2239 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2240 xferred = (unsigned int)obj_request->xferred; 2241 result = obj_request->result; 2242 if (result) { 2243 struct rbd_device *rbd_dev = img_request->rbd_dev; 2244 enum obj_operation_type op_type; 2245 2246 if (img_request_discard_test(img_request)) 2247 op_type = OBJ_OP_DISCARD; 2248 else if (img_request_write_test(img_request)) 2249 op_type = OBJ_OP_WRITE; 2250 else 2251 op_type = OBJ_OP_READ; 2252 2253 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2254 obj_op_name(op_type), obj_request->length, 2255 obj_request->img_offset, obj_request->offset); 2256 rbd_warn(rbd_dev, " result %d xferred %x", 2257 result, xferred); 2258 if (!img_request->result) 2259 img_request->result = result; 2260 /* 2261 * Need to end I/O on the entire obj_request worth of 2262 * bytes in case of error. 2263 */ 2264 xferred = obj_request->length; 2265 } 2266 2267 if (img_request_child_test(img_request)) { 2268 rbd_assert(img_request->obj_request != NULL); 2269 more = obj_request->which < img_request->obj_request_count - 1; 2270 } else { 2271 blk_status_t status = errno_to_blk_status(result); 2272 2273 rbd_assert(img_request->rq != NULL); 2274 2275 more = blk_update_request(img_request->rq, status, xferred); 2276 if (!more) 2277 __blk_mq_end_request(img_request->rq, status); 2278 } 2279 2280 return more; 2281 } 2282 2283 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2284 { 2285 struct rbd_img_request *img_request; 2286 u32 which = obj_request->which; 2287 bool more = true; 2288 2289 rbd_assert(obj_request_img_data_test(obj_request)); 2290 img_request = obj_request->img_request; 2291 2292 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2293 rbd_assert(img_request != NULL); 2294 rbd_assert(img_request->obj_request_count > 0); 2295 rbd_assert(which != BAD_WHICH); 2296 rbd_assert(which < img_request->obj_request_count); 2297 2298 spin_lock_irq(&img_request->completion_lock); 2299 if (which != img_request->next_completion) 2300 goto out; 2301 2302 for_each_obj_request_from(img_request, obj_request) { 2303 rbd_assert(more); 2304 rbd_assert(which < img_request->obj_request_count); 2305 2306 if (!obj_request_done_test(obj_request)) 2307 break; 2308 more = rbd_img_obj_end_request(obj_request); 2309 which++; 2310 } 2311 2312 rbd_assert(more ^ (which == img_request->obj_request_count)); 2313 img_request->next_completion = which; 2314 out: 2315 spin_unlock_irq(&img_request->completion_lock); 2316 rbd_img_request_put(img_request); 2317 2318 if (!more) 2319 rbd_img_request_complete(img_request); 2320 } 2321 2322 /* 2323 * Add individual osd ops to the given ceph_osd_request and prepare 2324 * them for submission. num_ops is the current number of 2325 * osd operations already to the object request. 2326 */ 2327 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2328 struct ceph_osd_request *osd_request, 2329 enum obj_operation_type op_type, 2330 unsigned int num_ops) 2331 { 2332 struct rbd_img_request *img_request = obj_request->img_request; 2333 struct rbd_device *rbd_dev = img_request->rbd_dev; 2334 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2335 u64 offset = obj_request->offset; 2336 u64 length = obj_request->length; 2337 u64 img_end; 2338 u16 opcode; 2339 2340 if (op_type == OBJ_OP_DISCARD) { 2341 if (!offset && length == object_size && 2342 (!img_request_layered_test(img_request) || 2343 !obj_request_overlaps_parent(obj_request))) { 2344 opcode = CEPH_OSD_OP_DELETE; 2345 } else if ((offset + length == object_size)) { 2346 opcode = CEPH_OSD_OP_TRUNCATE; 2347 } else { 2348 down_read(&rbd_dev->header_rwsem); 2349 img_end = rbd_dev->header.image_size; 2350 up_read(&rbd_dev->header_rwsem); 2351 2352 if (obj_request->img_offset + length == img_end) 2353 opcode = CEPH_OSD_OP_TRUNCATE; 2354 else 2355 opcode = CEPH_OSD_OP_ZERO; 2356 } 2357 } else if (op_type == OBJ_OP_WRITE) { 2358 if (!offset && length == object_size) 2359 opcode = CEPH_OSD_OP_WRITEFULL; 2360 else 2361 opcode = CEPH_OSD_OP_WRITE; 2362 osd_req_op_alloc_hint_init(osd_request, num_ops, 2363 object_size, object_size); 2364 num_ops++; 2365 } else { 2366 opcode = CEPH_OSD_OP_READ; 2367 } 2368 2369 if (opcode == CEPH_OSD_OP_DELETE) 2370 osd_req_op_init(osd_request, num_ops, opcode, 0); 2371 else 2372 osd_req_op_extent_init(osd_request, num_ops, opcode, 2373 offset, length, 0, 0); 2374 2375 if (obj_request->type == OBJ_REQUEST_BIO) 2376 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2377 obj_request->bio_list, length); 2378 else if (obj_request->type == OBJ_REQUEST_PAGES) 2379 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2380 obj_request->pages, length, 2381 offset & ~PAGE_MASK, false, false); 2382 2383 /* Discards are also writes */ 2384 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2385 rbd_osd_req_format_write(obj_request); 2386 else 2387 rbd_osd_req_format_read(obj_request); 2388 } 2389 2390 /* 2391 * Split up an image request into one or more object requests, each 2392 * to a different object. The "type" parameter indicates whether 2393 * "data_desc" is the pointer to the head of a list of bio 2394 * structures, or the base of a page array. In either case this 2395 * function assumes data_desc describes memory sufficient to hold 2396 * all data described by the image request. 2397 */ 2398 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2399 enum obj_request_type type, 2400 void *data_desc) 2401 { 2402 struct rbd_device *rbd_dev = img_request->rbd_dev; 2403 struct rbd_obj_request *obj_request = NULL; 2404 struct rbd_obj_request *next_obj_request; 2405 struct bio *bio_list = NULL; 2406 unsigned int bio_offset = 0; 2407 struct page **pages = NULL; 2408 enum obj_operation_type op_type; 2409 u64 img_offset; 2410 u64 resid; 2411 2412 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2413 (int)type, data_desc); 2414 2415 img_offset = img_request->offset; 2416 resid = img_request->length; 2417 rbd_assert(resid > 0); 2418 op_type = rbd_img_request_op_type(img_request); 2419 2420 if (type == OBJ_REQUEST_BIO) { 2421 bio_list = data_desc; 2422 rbd_assert(img_offset == 2423 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2424 } else if (type == OBJ_REQUEST_PAGES) { 2425 pages = data_desc; 2426 } 2427 2428 while (resid) { 2429 struct ceph_osd_request *osd_req; 2430 u64 object_no = img_offset >> rbd_dev->header.obj_order; 2431 u64 offset = rbd_segment_offset(rbd_dev, img_offset); 2432 u64 length = rbd_segment_length(rbd_dev, img_offset, resid); 2433 2434 obj_request = rbd_obj_request_create(type); 2435 if (!obj_request) 2436 goto out_unwind; 2437 2438 obj_request->object_no = object_no; 2439 obj_request->offset = offset; 2440 obj_request->length = length; 2441 2442 /* 2443 * set obj_request->img_request before creating the 2444 * osd_request so that it gets the right snapc 2445 */ 2446 rbd_img_obj_request_add(img_request, obj_request); 2447 2448 if (type == OBJ_REQUEST_BIO) { 2449 unsigned int clone_size; 2450 2451 rbd_assert(length <= (u64)UINT_MAX); 2452 clone_size = (unsigned int)length; 2453 obj_request->bio_list = 2454 bio_chain_clone_range(&bio_list, 2455 &bio_offset, 2456 clone_size, 2457 GFP_NOIO); 2458 if (!obj_request->bio_list) 2459 goto out_unwind; 2460 } else if (type == OBJ_REQUEST_PAGES) { 2461 unsigned int page_count; 2462 2463 obj_request->pages = pages; 2464 page_count = (u32)calc_pages_for(offset, length); 2465 obj_request->page_count = page_count; 2466 if ((offset + length) & ~PAGE_MASK) 2467 page_count--; /* more on last page */ 2468 pages += page_count; 2469 } 2470 2471 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2472 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2473 obj_request); 2474 if (!osd_req) 2475 goto out_unwind; 2476 2477 obj_request->osd_req = osd_req; 2478 obj_request->callback = rbd_img_obj_callback; 2479 obj_request->img_offset = img_offset; 2480 2481 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2482 2483 img_offset += length; 2484 resid -= length; 2485 } 2486 2487 return 0; 2488 2489 out_unwind: 2490 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2491 rbd_img_obj_request_del(img_request, obj_request); 2492 2493 return -ENOMEM; 2494 } 2495 2496 static void 2497 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2498 { 2499 struct rbd_img_request *img_request; 2500 struct rbd_device *rbd_dev; 2501 struct page **pages; 2502 u32 page_count; 2503 2504 dout("%s: obj %p\n", __func__, obj_request); 2505 2506 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2507 obj_request->type == OBJ_REQUEST_NODATA); 2508 rbd_assert(obj_request_img_data_test(obj_request)); 2509 img_request = obj_request->img_request; 2510 rbd_assert(img_request); 2511 2512 rbd_dev = img_request->rbd_dev; 2513 rbd_assert(rbd_dev); 2514 2515 pages = obj_request->copyup_pages; 2516 rbd_assert(pages != NULL); 2517 obj_request->copyup_pages = NULL; 2518 page_count = obj_request->copyup_page_count; 2519 rbd_assert(page_count); 2520 obj_request->copyup_page_count = 0; 2521 ceph_release_page_vector(pages, page_count); 2522 2523 /* 2524 * We want the transfer count to reflect the size of the 2525 * original write request. There is no such thing as a 2526 * successful short write, so if the request was successful 2527 * we can just set it to the originally-requested length. 2528 */ 2529 if (!obj_request->result) 2530 obj_request->xferred = obj_request->length; 2531 2532 obj_request_done_set(obj_request); 2533 } 2534 2535 static void 2536 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2537 { 2538 struct rbd_obj_request *orig_request; 2539 struct ceph_osd_request *osd_req; 2540 struct rbd_device *rbd_dev; 2541 struct page **pages; 2542 enum obj_operation_type op_type; 2543 u32 page_count; 2544 int img_result; 2545 u64 parent_length; 2546 2547 rbd_assert(img_request_child_test(img_request)); 2548 2549 /* First get what we need from the image request */ 2550 2551 pages = img_request->copyup_pages; 2552 rbd_assert(pages != NULL); 2553 img_request->copyup_pages = NULL; 2554 page_count = img_request->copyup_page_count; 2555 rbd_assert(page_count); 2556 img_request->copyup_page_count = 0; 2557 2558 orig_request = img_request->obj_request; 2559 rbd_assert(orig_request != NULL); 2560 rbd_assert(obj_request_type_valid(orig_request->type)); 2561 img_result = img_request->result; 2562 parent_length = img_request->length; 2563 rbd_assert(img_result || parent_length == img_request->xferred); 2564 rbd_img_request_put(img_request); 2565 2566 rbd_assert(orig_request->img_request); 2567 rbd_dev = orig_request->img_request->rbd_dev; 2568 rbd_assert(rbd_dev); 2569 2570 /* 2571 * If the overlap has become 0 (most likely because the 2572 * image has been flattened) we need to free the pages 2573 * and re-submit the original write request. 2574 */ 2575 if (!rbd_dev->parent_overlap) { 2576 ceph_release_page_vector(pages, page_count); 2577 rbd_obj_request_submit(orig_request); 2578 return; 2579 } 2580 2581 if (img_result) 2582 goto out_err; 2583 2584 /* 2585 * The original osd request is of no use to use any more. 2586 * We need a new one that can hold the three ops in a copyup 2587 * request. Allocate the new copyup osd request for the 2588 * original request, and release the old one. 2589 */ 2590 img_result = -ENOMEM; 2591 osd_req = rbd_osd_req_create_copyup(orig_request); 2592 if (!osd_req) 2593 goto out_err; 2594 rbd_osd_req_destroy(orig_request->osd_req); 2595 orig_request->osd_req = osd_req; 2596 orig_request->copyup_pages = pages; 2597 orig_request->copyup_page_count = page_count; 2598 2599 /* Initialize the copyup op */ 2600 2601 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2602 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2603 false, false); 2604 2605 /* Add the other op(s) */ 2606 2607 op_type = rbd_img_request_op_type(orig_request->img_request); 2608 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2609 2610 /* All set, send it off. */ 2611 2612 rbd_obj_request_submit(orig_request); 2613 return; 2614 2615 out_err: 2616 ceph_release_page_vector(pages, page_count); 2617 rbd_obj_request_error(orig_request, img_result); 2618 } 2619 2620 /* 2621 * Read from the parent image the range of data that covers the 2622 * entire target of the given object request. This is used for 2623 * satisfying a layered image write request when the target of an 2624 * object request from the image request does not exist. 2625 * 2626 * A page array big enough to hold the returned data is allocated 2627 * and supplied to rbd_img_request_fill() as the "data descriptor." 2628 * When the read completes, this page array will be transferred to 2629 * the original object request for the copyup operation. 2630 * 2631 * If an error occurs, it is recorded as the result of the original 2632 * object request in rbd_img_obj_exists_callback(). 2633 */ 2634 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2635 { 2636 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2637 struct rbd_img_request *parent_request = NULL; 2638 u64 img_offset; 2639 u64 length; 2640 struct page **pages = NULL; 2641 u32 page_count; 2642 int result; 2643 2644 rbd_assert(rbd_dev->parent != NULL); 2645 2646 /* 2647 * Determine the byte range covered by the object in the 2648 * child image to which the original request was to be sent. 2649 */ 2650 img_offset = obj_request->img_offset - obj_request->offset; 2651 length = rbd_obj_bytes(&rbd_dev->header); 2652 2653 /* 2654 * There is no defined parent data beyond the parent 2655 * overlap, so limit what we read at that boundary if 2656 * necessary. 2657 */ 2658 if (img_offset + length > rbd_dev->parent_overlap) { 2659 rbd_assert(img_offset < rbd_dev->parent_overlap); 2660 length = rbd_dev->parent_overlap - img_offset; 2661 } 2662 2663 /* 2664 * Allocate a page array big enough to receive the data read 2665 * from the parent. 2666 */ 2667 page_count = (u32)calc_pages_for(0, length); 2668 pages = ceph_alloc_page_vector(page_count, GFP_NOIO); 2669 if (IS_ERR(pages)) { 2670 result = PTR_ERR(pages); 2671 pages = NULL; 2672 goto out_err; 2673 } 2674 2675 result = -ENOMEM; 2676 parent_request = rbd_parent_request_create(obj_request, 2677 img_offset, length); 2678 if (!parent_request) 2679 goto out_err; 2680 2681 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2682 if (result) 2683 goto out_err; 2684 2685 parent_request->copyup_pages = pages; 2686 parent_request->copyup_page_count = page_count; 2687 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2688 2689 result = rbd_img_request_submit(parent_request); 2690 if (!result) 2691 return 0; 2692 2693 parent_request->copyup_pages = NULL; 2694 parent_request->copyup_page_count = 0; 2695 parent_request->obj_request = NULL; 2696 rbd_obj_request_put(obj_request); 2697 out_err: 2698 if (pages) 2699 ceph_release_page_vector(pages, page_count); 2700 if (parent_request) 2701 rbd_img_request_put(parent_request); 2702 return result; 2703 } 2704 2705 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2706 { 2707 struct rbd_obj_request *orig_request; 2708 struct rbd_device *rbd_dev; 2709 int result; 2710 2711 rbd_assert(!obj_request_img_data_test(obj_request)); 2712 2713 /* 2714 * All we need from the object request is the original 2715 * request and the result of the STAT op. Grab those, then 2716 * we're done with the request. 2717 */ 2718 orig_request = obj_request->obj_request; 2719 obj_request->obj_request = NULL; 2720 rbd_obj_request_put(orig_request); 2721 rbd_assert(orig_request); 2722 rbd_assert(orig_request->img_request); 2723 2724 result = obj_request->result; 2725 obj_request->result = 0; 2726 2727 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2728 obj_request, orig_request, result, 2729 obj_request->xferred, obj_request->length); 2730 rbd_obj_request_put(obj_request); 2731 2732 /* 2733 * If the overlap has become 0 (most likely because the 2734 * image has been flattened) we need to re-submit the 2735 * original request. 2736 */ 2737 rbd_dev = orig_request->img_request->rbd_dev; 2738 if (!rbd_dev->parent_overlap) { 2739 rbd_obj_request_submit(orig_request); 2740 return; 2741 } 2742 2743 /* 2744 * Our only purpose here is to determine whether the object 2745 * exists, and we don't want to treat the non-existence as 2746 * an error. If something else comes back, transfer the 2747 * error to the original request and complete it now. 2748 */ 2749 if (!result) { 2750 obj_request_existence_set(orig_request, true); 2751 } else if (result == -ENOENT) { 2752 obj_request_existence_set(orig_request, false); 2753 } else { 2754 goto fail_orig_request; 2755 } 2756 2757 /* 2758 * Resubmit the original request now that we have recorded 2759 * whether the target object exists. 2760 */ 2761 result = rbd_img_obj_request_submit(orig_request); 2762 if (result) 2763 goto fail_orig_request; 2764 2765 return; 2766 2767 fail_orig_request: 2768 rbd_obj_request_error(orig_request, result); 2769 } 2770 2771 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2772 { 2773 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2774 struct rbd_obj_request *stat_request; 2775 struct page **pages; 2776 u32 page_count; 2777 size_t size; 2778 int ret; 2779 2780 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES); 2781 if (!stat_request) 2782 return -ENOMEM; 2783 2784 stat_request->object_no = obj_request->object_no; 2785 2786 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2787 stat_request); 2788 if (!stat_request->osd_req) { 2789 ret = -ENOMEM; 2790 goto fail_stat_request; 2791 } 2792 2793 /* 2794 * The response data for a STAT call consists of: 2795 * le64 length; 2796 * struct { 2797 * le32 tv_sec; 2798 * le32 tv_nsec; 2799 * } mtime; 2800 */ 2801 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2802 page_count = (u32)calc_pages_for(0, size); 2803 pages = ceph_alloc_page_vector(page_count, GFP_NOIO); 2804 if (IS_ERR(pages)) { 2805 ret = PTR_ERR(pages); 2806 goto fail_stat_request; 2807 } 2808 2809 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2810 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2811 false, false); 2812 2813 rbd_obj_request_get(obj_request); 2814 stat_request->obj_request = obj_request; 2815 stat_request->pages = pages; 2816 stat_request->page_count = page_count; 2817 stat_request->callback = rbd_img_obj_exists_callback; 2818 2819 rbd_obj_request_submit(stat_request); 2820 return 0; 2821 2822 fail_stat_request: 2823 rbd_obj_request_put(stat_request); 2824 return ret; 2825 } 2826 2827 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2828 { 2829 struct rbd_img_request *img_request = obj_request->img_request; 2830 struct rbd_device *rbd_dev = img_request->rbd_dev; 2831 2832 /* Reads */ 2833 if (!img_request_write_test(img_request) && 2834 !img_request_discard_test(img_request)) 2835 return true; 2836 2837 /* Non-layered writes */ 2838 if (!img_request_layered_test(img_request)) 2839 return true; 2840 2841 /* 2842 * Layered writes outside of the parent overlap range don't 2843 * share any data with the parent. 2844 */ 2845 if (!obj_request_overlaps_parent(obj_request)) 2846 return true; 2847 2848 /* 2849 * Entire-object layered writes - we will overwrite whatever 2850 * parent data there is anyway. 2851 */ 2852 if (!obj_request->offset && 2853 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2854 return true; 2855 2856 /* 2857 * If the object is known to already exist, its parent data has 2858 * already been copied. 2859 */ 2860 if (obj_request_known_test(obj_request) && 2861 obj_request_exists_test(obj_request)) 2862 return true; 2863 2864 return false; 2865 } 2866 2867 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2868 { 2869 rbd_assert(obj_request_img_data_test(obj_request)); 2870 rbd_assert(obj_request_type_valid(obj_request->type)); 2871 rbd_assert(obj_request->img_request); 2872 2873 if (img_obj_request_simple(obj_request)) { 2874 rbd_obj_request_submit(obj_request); 2875 return 0; 2876 } 2877 2878 /* 2879 * It's a layered write. The target object might exist but 2880 * we may not know that yet. If we know it doesn't exist, 2881 * start by reading the data for the full target object from 2882 * the parent so we can use it for a copyup to the target. 2883 */ 2884 if (obj_request_known_test(obj_request)) 2885 return rbd_img_obj_parent_read_full(obj_request); 2886 2887 /* We don't know whether the target exists. Go find out. */ 2888 2889 return rbd_img_obj_exists_submit(obj_request); 2890 } 2891 2892 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2893 { 2894 struct rbd_obj_request *obj_request; 2895 struct rbd_obj_request *next_obj_request; 2896 int ret = 0; 2897 2898 dout("%s: img %p\n", __func__, img_request); 2899 2900 rbd_img_request_get(img_request); 2901 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2902 ret = rbd_img_obj_request_submit(obj_request); 2903 if (ret) 2904 goto out_put_ireq; 2905 } 2906 2907 out_put_ireq: 2908 rbd_img_request_put(img_request); 2909 return ret; 2910 } 2911 2912 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2913 { 2914 struct rbd_obj_request *obj_request; 2915 struct rbd_device *rbd_dev; 2916 u64 obj_end; 2917 u64 img_xferred; 2918 int img_result; 2919 2920 rbd_assert(img_request_child_test(img_request)); 2921 2922 /* First get what we need from the image request and release it */ 2923 2924 obj_request = img_request->obj_request; 2925 img_xferred = img_request->xferred; 2926 img_result = img_request->result; 2927 rbd_img_request_put(img_request); 2928 2929 /* 2930 * If the overlap has become 0 (most likely because the 2931 * image has been flattened) we need to re-submit the 2932 * original request. 2933 */ 2934 rbd_assert(obj_request); 2935 rbd_assert(obj_request->img_request); 2936 rbd_dev = obj_request->img_request->rbd_dev; 2937 if (!rbd_dev->parent_overlap) { 2938 rbd_obj_request_submit(obj_request); 2939 return; 2940 } 2941 2942 obj_request->result = img_result; 2943 if (obj_request->result) 2944 goto out; 2945 2946 /* 2947 * We need to zero anything beyond the parent overlap 2948 * boundary. Since rbd_img_obj_request_read_callback() 2949 * will zero anything beyond the end of a short read, an 2950 * easy way to do this is to pretend the data from the 2951 * parent came up short--ending at the overlap boundary. 2952 */ 2953 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2954 obj_end = obj_request->img_offset + obj_request->length; 2955 if (obj_end > rbd_dev->parent_overlap) { 2956 u64 xferred = 0; 2957 2958 if (obj_request->img_offset < rbd_dev->parent_overlap) 2959 xferred = rbd_dev->parent_overlap - 2960 obj_request->img_offset; 2961 2962 obj_request->xferred = min(img_xferred, xferred); 2963 } else { 2964 obj_request->xferred = img_xferred; 2965 } 2966 out: 2967 rbd_img_obj_request_read_callback(obj_request); 2968 rbd_obj_request_complete(obj_request); 2969 } 2970 2971 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2972 { 2973 struct rbd_img_request *img_request; 2974 int result; 2975 2976 rbd_assert(obj_request_img_data_test(obj_request)); 2977 rbd_assert(obj_request->img_request != NULL); 2978 rbd_assert(obj_request->result == (s32) -ENOENT); 2979 rbd_assert(obj_request_type_valid(obj_request->type)); 2980 2981 /* rbd_read_finish(obj_request, obj_request->length); */ 2982 img_request = rbd_parent_request_create(obj_request, 2983 obj_request->img_offset, 2984 obj_request->length); 2985 result = -ENOMEM; 2986 if (!img_request) 2987 goto out_err; 2988 2989 if (obj_request->type == OBJ_REQUEST_BIO) 2990 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2991 obj_request->bio_list); 2992 else 2993 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2994 obj_request->pages); 2995 if (result) 2996 goto out_err; 2997 2998 img_request->callback = rbd_img_parent_read_callback; 2999 result = rbd_img_request_submit(img_request); 3000 if (result) 3001 goto out_err; 3002 3003 return; 3004 out_err: 3005 if (img_request) 3006 rbd_img_request_put(img_request); 3007 obj_request->result = result; 3008 obj_request->xferred = 0; 3009 obj_request_done_set(obj_request); 3010 } 3011 3012 static const struct rbd_client_id rbd_empty_cid; 3013 3014 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3015 const struct rbd_client_id *rhs) 3016 { 3017 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3018 } 3019 3020 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3021 { 3022 struct rbd_client_id cid; 3023 3024 mutex_lock(&rbd_dev->watch_mutex); 3025 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3026 cid.handle = rbd_dev->watch_cookie; 3027 mutex_unlock(&rbd_dev->watch_mutex); 3028 return cid; 3029 } 3030 3031 /* 3032 * lock_rwsem must be held for write 3033 */ 3034 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3035 const struct rbd_client_id *cid) 3036 { 3037 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3038 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3039 cid->gid, cid->handle); 3040 rbd_dev->owner_cid = *cid; /* struct */ 3041 } 3042 3043 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3044 { 3045 mutex_lock(&rbd_dev->watch_mutex); 3046 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3047 mutex_unlock(&rbd_dev->watch_mutex); 3048 } 3049 3050 /* 3051 * lock_rwsem must be held for write 3052 */ 3053 static int rbd_lock(struct rbd_device *rbd_dev) 3054 { 3055 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3056 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3057 char cookie[32]; 3058 int ret; 3059 3060 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3061 rbd_dev->lock_cookie[0] != '\0'); 3062 3063 format_lock_cookie(rbd_dev, cookie); 3064 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3065 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3066 RBD_LOCK_TAG, "", 0); 3067 if (ret) 3068 return ret; 3069 3070 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3071 strcpy(rbd_dev->lock_cookie, cookie); 3072 rbd_set_owner_cid(rbd_dev, &cid); 3073 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3074 return 0; 3075 } 3076 3077 /* 3078 * lock_rwsem must be held for write 3079 */ 3080 static void rbd_unlock(struct rbd_device *rbd_dev) 3081 { 3082 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3083 int ret; 3084 3085 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3086 rbd_dev->lock_cookie[0] == '\0'); 3087 3088 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3089 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3090 if (ret && ret != -ENOENT) 3091 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 3092 3093 /* treat errors as the image is unlocked */ 3094 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3095 rbd_dev->lock_cookie[0] = '\0'; 3096 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3097 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3098 } 3099 3100 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3101 enum rbd_notify_op notify_op, 3102 struct page ***preply_pages, 3103 size_t *preply_len) 3104 { 3105 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3106 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3107 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3108 char buf[buf_size]; 3109 void *p = buf; 3110 3111 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3112 3113 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3114 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3115 ceph_encode_32(&p, notify_op); 3116 ceph_encode_64(&p, cid.gid); 3117 ceph_encode_64(&p, cid.handle); 3118 3119 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3120 &rbd_dev->header_oloc, buf, buf_size, 3121 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3122 } 3123 3124 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3125 enum rbd_notify_op notify_op) 3126 { 3127 struct page **reply_pages; 3128 size_t reply_len; 3129 3130 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3131 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3132 } 3133 3134 static void rbd_notify_acquired_lock(struct work_struct *work) 3135 { 3136 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3137 acquired_lock_work); 3138 3139 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3140 } 3141 3142 static void rbd_notify_released_lock(struct work_struct *work) 3143 { 3144 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3145 released_lock_work); 3146 3147 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3148 } 3149 3150 static int rbd_request_lock(struct rbd_device *rbd_dev) 3151 { 3152 struct page **reply_pages; 3153 size_t reply_len; 3154 bool lock_owner_responded = false; 3155 int ret; 3156 3157 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3158 3159 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3160 &reply_pages, &reply_len); 3161 if (ret && ret != -ETIMEDOUT) { 3162 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3163 goto out; 3164 } 3165 3166 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3167 void *p = page_address(reply_pages[0]); 3168 void *const end = p + reply_len; 3169 u32 n; 3170 3171 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3172 while (n--) { 3173 u8 struct_v; 3174 u32 len; 3175 3176 ceph_decode_need(&p, end, 8 + 8, e_inval); 3177 p += 8 + 8; /* skip gid and cookie */ 3178 3179 ceph_decode_32_safe(&p, end, len, e_inval); 3180 if (!len) 3181 continue; 3182 3183 if (lock_owner_responded) { 3184 rbd_warn(rbd_dev, 3185 "duplicate lock owners detected"); 3186 ret = -EIO; 3187 goto out; 3188 } 3189 3190 lock_owner_responded = true; 3191 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3192 &struct_v, &len); 3193 if (ret) { 3194 rbd_warn(rbd_dev, 3195 "failed to decode ResponseMessage: %d", 3196 ret); 3197 goto e_inval; 3198 } 3199 3200 ret = ceph_decode_32(&p); 3201 } 3202 } 3203 3204 if (!lock_owner_responded) { 3205 rbd_warn(rbd_dev, "no lock owners detected"); 3206 ret = -ETIMEDOUT; 3207 } 3208 3209 out: 3210 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3211 return ret; 3212 3213 e_inval: 3214 ret = -EINVAL; 3215 goto out; 3216 } 3217 3218 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3219 { 3220 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3221 3222 cancel_delayed_work(&rbd_dev->lock_dwork); 3223 if (wake_all) 3224 wake_up_all(&rbd_dev->lock_waitq); 3225 else 3226 wake_up(&rbd_dev->lock_waitq); 3227 } 3228 3229 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3230 struct ceph_locker **lockers, u32 *num_lockers) 3231 { 3232 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3233 u8 lock_type; 3234 char *lock_tag; 3235 int ret; 3236 3237 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3238 3239 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3240 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3241 &lock_type, &lock_tag, lockers, num_lockers); 3242 if (ret) 3243 return ret; 3244 3245 if (*num_lockers == 0) { 3246 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3247 goto out; 3248 } 3249 3250 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3251 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3252 lock_tag); 3253 ret = -EBUSY; 3254 goto out; 3255 } 3256 3257 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3258 rbd_warn(rbd_dev, "shared lock type detected"); 3259 ret = -EBUSY; 3260 goto out; 3261 } 3262 3263 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3264 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3265 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3266 (*lockers)[0].id.cookie); 3267 ret = -EBUSY; 3268 goto out; 3269 } 3270 3271 out: 3272 kfree(lock_tag); 3273 return ret; 3274 } 3275 3276 static int find_watcher(struct rbd_device *rbd_dev, 3277 const struct ceph_locker *locker) 3278 { 3279 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3280 struct ceph_watch_item *watchers; 3281 u32 num_watchers; 3282 u64 cookie; 3283 int i; 3284 int ret; 3285 3286 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3287 &rbd_dev->header_oloc, &watchers, 3288 &num_watchers); 3289 if (ret) 3290 return ret; 3291 3292 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3293 for (i = 0; i < num_watchers; i++) { 3294 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3295 sizeof(locker->info.addr)) && 3296 watchers[i].cookie == cookie) { 3297 struct rbd_client_id cid = { 3298 .gid = le64_to_cpu(watchers[i].name.num), 3299 .handle = cookie, 3300 }; 3301 3302 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3303 rbd_dev, cid.gid, cid.handle); 3304 rbd_set_owner_cid(rbd_dev, &cid); 3305 ret = 1; 3306 goto out; 3307 } 3308 } 3309 3310 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3311 ret = 0; 3312 out: 3313 kfree(watchers); 3314 return ret; 3315 } 3316 3317 /* 3318 * lock_rwsem must be held for write 3319 */ 3320 static int rbd_try_lock(struct rbd_device *rbd_dev) 3321 { 3322 struct ceph_client *client = rbd_dev->rbd_client->client; 3323 struct ceph_locker *lockers; 3324 u32 num_lockers; 3325 int ret; 3326 3327 for (;;) { 3328 ret = rbd_lock(rbd_dev); 3329 if (ret != -EBUSY) 3330 return ret; 3331 3332 /* determine if the current lock holder is still alive */ 3333 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3334 if (ret) 3335 return ret; 3336 3337 if (num_lockers == 0) 3338 goto again; 3339 3340 ret = find_watcher(rbd_dev, lockers); 3341 if (ret) { 3342 if (ret > 0) 3343 ret = 0; /* have to request lock */ 3344 goto out; 3345 } 3346 3347 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3348 ENTITY_NAME(lockers[0].id.name)); 3349 3350 ret = ceph_monc_blacklist_add(&client->monc, 3351 &lockers[0].info.addr); 3352 if (ret) { 3353 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3354 ENTITY_NAME(lockers[0].id.name), ret); 3355 goto out; 3356 } 3357 3358 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3359 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3360 lockers[0].id.cookie, 3361 &lockers[0].id.name); 3362 if (ret && ret != -ENOENT) 3363 goto out; 3364 3365 again: 3366 ceph_free_lockers(lockers, num_lockers); 3367 } 3368 3369 out: 3370 ceph_free_lockers(lockers, num_lockers); 3371 return ret; 3372 } 3373 3374 /* 3375 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3376 */ 3377 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3378 int *pret) 3379 { 3380 enum rbd_lock_state lock_state; 3381 3382 down_read(&rbd_dev->lock_rwsem); 3383 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3384 rbd_dev->lock_state); 3385 if (__rbd_is_lock_owner(rbd_dev)) { 3386 lock_state = rbd_dev->lock_state; 3387 up_read(&rbd_dev->lock_rwsem); 3388 return lock_state; 3389 } 3390 3391 up_read(&rbd_dev->lock_rwsem); 3392 down_write(&rbd_dev->lock_rwsem); 3393 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3394 rbd_dev->lock_state); 3395 if (!__rbd_is_lock_owner(rbd_dev)) { 3396 *pret = rbd_try_lock(rbd_dev); 3397 if (*pret) 3398 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3399 } 3400 3401 lock_state = rbd_dev->lock_state; 3402 up_write(&rbd_dev->lock_rwsem); 3403 return lock_state; 3404 } 3405 3406 static void rbd_acquire_lock(struct work_struct *work) 3407 { 3408 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3409 struct rbd_device, lock_dwork); 3410 enum rbd_lock_state lock_state; 3411 int ret = 0; 3412 3413 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3414 again: 3415 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3416 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3417 if (lock_state == RBD_LOCK_STATE_LOCKED) 3418 wake_requests(rbd_dev, true); 3419 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3420 rbd_dev, lock_state, ret); 3421 return; 3422 } 3423 3424 ret = rbd_request_lock(rbd_dev); 3425 if (ret == -ETIMEDOUT) { 3426 goto again; /* treat this as a dead client */ 3427 } else if (ret == -EROFS) { 3428 rbd_warn(rbd_dev, "peer will not release lock"); 3429 /* 3430 * If this is rbd_add_acquire_lock(), we want to fail 3431 * immediately -- reuse BLACKLISTED flag. Otherwise we 3432 * want to block. 3433 */ 3434 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3435 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3436 /* wake "rbd map --exclusive" process */ 3437 wake_requests(rbd_dev, false); 3438 } 3439 } else if (ret < 0) { 3440 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3441 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3442 RBD_RETRY_DELAY); 3443 } else { 3444 /* 3445 * lock owner acked, but resend if we don't see them 3446 * release the lock 3447 */ 3448 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3449 rbd_dev); 3450 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3451 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3452 } 3453 } 3454 3455 /* 3456 * lock_rwsem must be held for write 3457 */ 3458 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3459 { 3460 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3461 rbd_dev->lock_state); 3462 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3463 return false; 3464 3465 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3466 downgrade_write(&rbd_dev->lock_rwsem); 3467 /* 3468 * Ensure that all in-flight IO is flushed. 3469 * 3470 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3471 * may be shared with other devices. 3472 */ 3473 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3474 up_read(&rbd_dev->lock_rwsem); 3475 3476 down_write(&rbd_dev->lock_rwsem); 3477 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3478 rbd_dev->lock_state); 3479 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3480 return false; 3481 3482 rbd_unlock(rbd_dev); 3483 /* 3484 * Give others a chance to grab the lock - we would re-acquire 3485 * almost immediately if we got new IO during ceph_osdc_sync() 3486 * otherwise. We need to ack our own notifications, so this 3487 * lock_dwork will be requeued from rbd_wait_state_locked() 3488 * after wake_requests() in rbd_handle_released_lock(). 3489 */ 3490 cancel_delayed_work(&rbd_dev->lock_dwork); 3491 return true; 3492 } 3493 3494 static void rbd_release_lock_work(struct work_struct *work) 3495 { 3496 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3497 unlock_work); 3498 3499 down_write(&rbd_dev->lock_rwsem); 3500 rbd_release_lock(rbd_dev); 3501 up_write(&rbd_dev->lock_rwsem); 3502 } 3503 3504 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3505 void **p) 3506 { 3507 struct rbd_client_id cid = { 0 }; 3508 3509 if (struct_v >= 2) { 3510 cid.gid = ceph_decode_64(p); 3511 cid.handle = ceph_decode_64(p); 3512 } 3513 3514 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3515 cid.handle); 3516 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3517 down_write(&rbd_dev->lock_rwsem); 3518 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3519 /* 3520 * we already know that the remote client is 3521 * the owner 3522 */ 3523 up_write(&rbd_dev->lock_rwsem); 3524 return; 3525 } 3526 3527 rbd_set_owner_cid(rbd_dev, &cid); 3528 downgrade_write(&rbd_dev->lock_rwsem); 3529 } else { 3530 down_read(&rbd_dev->lock_rwsem); 3531 } 3532 3533 if (!__rbd_is_lock_owner(rbd_dev)) 3534 wake_requests(rbd_dev, false); 3535 up_read(&rbd_dev->lock_rwsem); 3536 } 3537 3538 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3539 void **p) 3540 { 3541 struct rbd_client_id cid = { 0 }; 3542 3543 if (struct_v >= 2) { 3544 cid.gid = ceph_decode_64(p); 3545 cid.handle = ceph_decode_64(p); 3546 } 3547 3548 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3549 cid.handle); 3550 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3551 down_write(&rbd_dev->lock_rwsem); 3552 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3553 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3554 __func__, rbd_dev, cid.gid, cid.handle, 3555 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3556 up_write(&rbd_dev->lock_rwsem); 3557 return; 3558 } 3559 3560 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3561 downgrade_write(&rbd_dev->lock_rwsem); 3562 } else { 3563 down_read(&rbd_dev->lock_rwsem); 3564 } 3565 3566 if (!__rbd_is_lock_owner(rbd_dev)) 3567 wake_requests(rbd_dev, false); 3568 up_read(&rbd_dev->lock_rwsem); 3569 } 3570 3571 /* 3572 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3573 * ResponseMessage is needed. 3574 */ 3575 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3576 void **p) 3577 { 3578 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3579 struct rbd_client_id cid = { 0 }; 3580 int result = 1; 3581 3582 if (struct_v >= 2) { 3583 cid.gid = ceph_decode_64(p); 3584 cid.handle = ceph_decode_64(p); 3585 } 3586 3587 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3588 cid.handle); 3589 if (rbd_cid_equal(&cid, &my_cid)) 3590 return result; 3591 3592 down_read(&rbd_dev->lock_rwsem); 3593 if (__rbd_is_lock_owner(rbd_dev)) { 3594 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3595 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3596 goto out_unlock; 3597 3598 /* 3599 * encode ResponseMessage(0) so the peer can detect 3600 * a missing owner 3601 */ 3602 result = 0; 3603 3604 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3605 if (!rbd_dev->opts->exclusive) { 3606 dout("%s rbd_dev %p queueing unlock_work\n", 3607 __func__, rbd_dev); 3608 queue_work(rbd_dev->task_wq, 3609 &rbd_dev->unlock_work); 3610 } else { 3611 /* refuse to release the lock */ 3612 result = -EROFS; 3613 } 3614 } 3615 } 3616 3617 out_unlock: 3618 up_read(&rbd_dev->lock_rwsem); 3619 return result; 3620 } 3621 3622 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3623 u64 notify_id, u64 cookie, s32 *result) 3624 { 3625 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3626 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3627 char buf[buf_size]; 3628 int ret; 3629 3630 if (result) { 3631 void *p = buf; 3632 3633 /* encode ResponseMessage */ 3634 ceph_start_encoding(&p, 1, 1, 3635 buf_size - CEPH_ENCODING_START_BLK_LEN); 3636 ceph_encode_32(&p, *result); 3637 } else { 3638 buf_size = 0; 3639 } 3640 3641 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3642 &rbd_dev->header_oloc, notify_id, cookie, 3643 buf, buf_size); 3644 if (ret) 3645 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3646 } 3647 3648 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3649 u64 cookie) 3650 { 3651 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3652 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3653 } 3654 3655 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3656 u64 notify_id, u64 cookie, s32 result) 3657 { 3658 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3659 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3660 } 3661 3662 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3663 u64 notifier_id, void *data, size_t data_len) 3664 { 3665 struct rbd_device *rbd_dev = arg; 3666 void *p = data; 3667 void *const end = p + data_len; 3668 u8 struct_v = 0; 3669 u32 len; 3670 u32 notify_op; 3671 int ret; 3672 3673 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3674 __func__, rbd_dev, cookie, notify_id, data_len); 3675 if (data_len) { 3676 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3677 &struct_v, &len); 3678 if (ret) { 3679 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3680 ret); 3681 return; 3682 } 3683 3684 notify_op = ceph_decode_32(&p); 3685 } else { 3686 /* legacy notification for header updates */ 3687 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3688 len = 0; 3689 } 3690 3691 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3692 switch (notify_op) { 3693 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3694 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3695 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3696 break; 3697 case RBD_NOTIFY_OP_RELEASED_LOCK: 3698 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3699 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3700 break; 3701 case RBD_NOTIFY_OP_REQUEST_LOCK: 3702 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3703 if (ret <= 0) 3704 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3705 cookie, ret); 3706 else 3707 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3708 break; 3709 case RBD_NOTIFY_OP_HEADER_UPDATE: 3710 ret = rbd_dev_refresh(rbd_dev); 3711 if (ret) 3712 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3713 3714 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3715 break; 3716 default: 3717 if (rbd_is_lock_owner(rbd_dev)) 3718 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3719 cookie, -EOPNOTSUPP); 3720 else 3721 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3722 break; 3723 } 3724 } 3725 3726 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3727 3728 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3729 { 3730 struct rbd_device *rbd_dev = arg; 3731 3732 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3733 3734 down_write(&rbd_dev->lock_rwsem); 3735 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3736 up_write(&rbd_dev->lock_rwsem); 3737 3738 mutex_lock(&rbd_dev->watch_mutex); 3739 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3740 __rbd_unregister_watch(rbd_dev); 3741 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3742 3743 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3744 } 3745 mutex_unlock(&rbd_dev->watch_mutex); 3746 } 3747 3748 /* 3749 * watch_mutex must be locked 3750 */ 3751 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3752 { 3753 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3754 struct ceph_osd_linger_request *handle; 3755 3756 rbd_assert(!rbd_dev->watch_handle); 3757 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3758 3759 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3760 &rbd_dev->header_oloc, rbd_watch_cb, 3761 rbd_watch_errcb, rbd_dev); 3762 if (IS_ERR(handle)) 3763 return PTR_ERR(handle); 3764 3765 rbd_dev->watch_handle = handle; 3766 return 0; 3767 } 3768 3769 /* 3770 * watch_mutex must be locked 3771 */ 3772 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3773 { 3774 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3775 int ret; 3776 3777 rbd_assert(rbd_dev->watch_handle); 3778 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3779 3780 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3781 if (ret) 3782 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3783 3784 rbd_dev->watch_handle = NULL; 3785 } 3786 3787 static int rbd_register_watch(struct rbd_device *rbd_dev) 3788 { 3789 int ret; 3790 3791 mutex_lock(&rbd_dev->watch_mutex); 3792 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3793 ret = __rbd_register_watch(rbd_dev); 3794 if (ret) 3795 goto out; 3796 3797 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3798 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3799 3800 out: 3801 mutex_unlock(&rbd_dev->watch_mutex); 3802 return ret; 3803 } 3804 3805 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3806 { 3807 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3808 3809 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3810 cancel_work_sync(&rbd_dev->acquired_lock_work); 3811 cancel_work_sync(&rbd_dev->released_lock_work); 3812 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3813 cancel_work_sync(&rbd_dev->unlock_work); 3814 } 3815 3816 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3817 { 3818 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3819 cancel_tasks_sync(rbd_dev); 3820 3821 mutex_lock(&rbd_dev->watch_mutex); 3822 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3823 __rbd_unregister_watch(rbd_dev); 3824 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3825 mutex_unlock(&rbd_dev->watch_mutex); 3826 3827 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3828 } 3829 3830 /* 3831 * lock_rwsem must be held for write 3832 */ 3833 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3834 { 3835 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3836 char cookie[32]; 3837 int ret; 3838 3839 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3840 3841 format_lock_cookie(rbd_dev, cookie); 3842 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3843 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3844 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3845 RBD_LOCK_TAG, cookie); 3846 if (ret) { 3847 if (ret != -EOPNOTSUPP) 3848 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3849 ret); 3850 3851 /* 3852 * Lock cookie cannot be updated on older OSDs, so do 3853 * a manual release and queue an acquire. 3854 */ 3855 if (rbd_release_lock(rbd_dev)) 3856 queue_delayed_work(rbd_dev->task_wq, 3857 &rbd_dev->lock_dwork, 0); 3858 } else { 3859 strcpy(rbd_dev->lock_cookie, cookie); 3860 } 3861 } 3862 3863 static void rbd_reregister_watch(struct work_struct *work) 3864 { 3865 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3866 struct rbd_device, watch_dwork); 3867 int ret; 3868 3869 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3870 3871 mutex_lock(&rbd_dev->watch_mutex); 3872 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3873 mutex_unlock(&rbd_dev->watch_mutex); 3874 return; 3875 } 3876 3877 ret = __rbd_register_watch(rbd_dev); 3878 if (ret) { 3879 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3880 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3881 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3882 wake_requests(rbd_dev, true); 3883 } else { 3884 queue_delayed_work(rbd_dev->task_wq, 3885 &rbd_dev->watch_dwork, 3886 RBD_RETRY_DELAY); 3887 } 3888 mutex_unlock(&rbd_dev->watch_mutex); 3889 return; 3890 } 3891 3892 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3893 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3894 mutex_unlock(&rbd_dev->watch_mutex); 3895 3896 down_write(&rbd_dev->lock_rwsem); 3897 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3898 rbd_reacquire_lock(rbd_dev); 3899 up_write(&rbd_dev->lock_rwsem); 3900 3901 ret = rbd_dev_refresh(rbd_dev); 3902 if (ret) 3903 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3904 } 3905 3906 /* 3907 * Synchronous osd object method call. Returns the number of bytes 3908 * returned in the outbound buffer, or a negative error code. 3909 */ 3910 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3911 struct ceph_object_id *oid, 3912 struct ceph_object_locator *oloc, 3913 const char *method_name, 3914 const void *outbound, 3915 size_t outbound_size, 3916 void *inbound, 3917 size_t inbound_size) 3918 { 3919 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3920 struct page *req_page = NULL; 3921 struct page *reply_page; 3922 int ret; 3923 3924 /* 3925 * Method calls are ultimately read operations. The result 3926 * should placed into the inbound buffer provided. They 3927 * also supply outbound data--parameters for the object 3928 * method. Currently if this is present it will be a 3929 * snapshot id. 3930 */ 3931 if (outbound) { 3932 if (outbound_size > PAGE_SIZE) 3933 return -E2BIG; 3934 3935 req_page = alloc_page(GFP_KERNEL); 3936 if (!req_page) 3937 return -ENOMEM; 3938 3939 memcpy(page_address(req_page), outbound, outbound_size); 3940 } 3941 3942 reply_page = alloc_page(GFP_KERNEL); 3943 if (!reply_page) { 3944 if (req_page) 3945 __free_page(req_page); 3946 return -ENOMEM; 3947 } 3948 3949 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3950 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3951 reply_page, &inbound_size); 3952 if (!ret) { 3953 memcpy(inbound, page_address(reply_page), inbound_size); 3954 ret = inbound_size; 3955 } 3956 3957 if (req_page) 3958 __free_page(req_page); 3959 __free_page(reply_page); 3960 return ret; 3961 } 3962 3963 /* 3964 * lock_rwsem must be held for read 3965 */ 3966 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 3967 { 3968 DEFINE_WAIT(wait); 3969 3970 do { 3971 /* 3972 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3973 * and cancel_delayed_work() in wake_requests(). 3974 */ 3975 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3976 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3977 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3978 TASK_UNINTERRUPTIBLE); 3979 up_read(&rbd_dev->lock_rwsem); 3980 schedule(); 3981 down_read(&rbd_dev->lock_rwsem); 3982 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 3983 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 3984 3985 finish_wait(&rbd_dev->lock_waitq, &wait); 3986 } 3987 3988 static void rbd_queue_workfn(struct work_struct *work) 3989 { 3990 struct request *rq = blk_mq_rq_from_pdu(work); 3991 struct rbd_device *rbd_dev = rq->q->queuedata; 3992 struct rbd_img_request *img_request; 3993 struct ceph_snap_context *snapc = NULL; 3994 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3995 u64 length = blk_rq_bytes(rq); 3996 enum obj_operation_type op_type; 3997 u64 mapping_size; 3998 bool must_be_locked; 3999 int result; 4000 4001 switch (req_op(rq)) { 4002 case REQ_OP_DISCARD: 4003 case REQ_OP_WRITE_ZEROES: 4004 op_type = OBJ_OP_DISCARD; 4005 break; 4006 case REQ_OP_WRITE: 4007 op_type = OBJ_OP_WRITE; 4008 break; 4009 case REQ_OP_READ: 4010 op_type = OBJ_OP_READ; 4011 break; 4012 default: 4013 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 4014 result = -EIO; 4015 goto err; 4016 } 4017 4018 /* Ignore/skip any zero-length requests */ 4019 4020 if (!length) { 4021 dout("%s: zero-length request\n", __func__); 4022 result = 0; 4023 goto err_rq; 4024 } 4025 4026 rbd_assert(op_type == OBJ_OP_READ || 4027 rbd_dev->spec->snap_id == CEPH_NOSNAP); 4028 4029 /* 4030 * Quit early if the mapped snapshot no longer exists. It's 4031 * still possible the snapshot will have disappeared by the 4032 * time our request arrives at the osd, but there's no sense in 4033 * sending it if we already know. 4034 */ 4035 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4036 dout("request for non-existent snapshot"); 4037 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4038 result = -ENXIO; 4039 goto err_rq; 4040 } 4041 4042 if (offset && length > U64_MAX - offset + 1) { 4043 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4044 length); 4045 result = -EINVAL; 4046 goto err_rq; /* Shouldn't happen */ 4047 } 4048 4049 blk_mq_start_request(rq); 4050 4051 down_read(&rbd_dev->header_rwsem); 4052 mapping_size = rbd_dev->mapping.size; 4053 if (op_type != OBJ_OP_READ) { 4054 snapc = rbd_dev->header.snapc; 4055 ceph_get_snap_context(snapc); 4056 } 4057 up_read(&rbd_dev->header_rwsem); 4058 4059 if (offset + length > mapping_size) { 4060 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4061 length, mapping_size); 4062 result = -EIO; 4063 goto err_rq; 4064 } 4065 4066 must_be_locked = 4067 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 4068 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 4069 if (must_be_locked) { 4070 down_read(&rbd_dev->lock_rwsem); 4071 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4072 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4073 if (rbd_dev->opts->exclusive) { 4074 rbd_warn(rbd_dev, "exclusive lock required"); 4075 result = -EROFS; 4076 goto err_unlock; 4077 } 4078 rbd_wait_state_locked(rbd_dev); 4079 } 4080 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4081 result = -EBLACKLISTED; 4082 goto err_unlock; 4083 } 4084 } 4085 4086 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4087 snapc); 4088 if (!img_request) { 4089 result = -ENOMEM; 4090 goto err_unlock; 4091 } 4092 img_request->rq = rq; 4093 snapc = NULL; /* img_request consumes a ref */ 4094 4095 if (op_type == OBJ_OP_DISCARD) 4096 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4097 NULL); 4098 else 4099 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4100 rq->bio); 4101 if (result) 4102 goto err_img_request; 4103 4104 result = rbd_img_request_submit(img_request); 4105 if (result) 4106 goto err_img_request; 4107 4108 if (must_be_locked) 4109 up_read(&rbd_dev->lock_rwsem); 4110 return; 4111 4112 err_img_request: 4113 rbd_img_request_put(img_request); 4114 err_unlock: 4115 if (must_be_locked) 4116 up_read(&rbd_dev->lock_rwsem); 4117 err_rq: 4118 if (result) 4119 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4120 obj_op_name(op_type), length, offset, result); 4121 ceph_put_snap_context(snapc); 4122 err: 4123 blk_mq_end_request(rq, errno_to_blk_status(result)); 4124 } 4125 4126 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4127 const struct blk_mq_queue_data *bd) 4128 { 4129 struct request *rq = bd->rq; 4130 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4131 4132 queue_work(rbd_wq, work); 4133 return BLK_STS_OK; 4134 } 4135 4136 static void rbd_free_disk(struct rbd_device *rbd_dev) 4137 { 4138 blk_cleanup_queue(rbd_dev->disk->queue); 4139 blk_mq_free_tag_set(&rbd_dev->tag_set); 4140 put_disk(rbd_dev->disk); 4141 rbd_dev->disk = NULL; 4142 } 4143 4144 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4145 struct ceph_object_id *oid, 4146 struct ceph_object_locator *oloc, 4147 void *buf, int buf_len) 4148 4149 { 4150 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4151 struct ceph_osd_request *req; 4152 struct page **pages; 4153 int num_pages = calc_pages_for(0, buf_len); 4154 int ret; 4155 4156 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4157 if (!req) 4158 return -ENOMEM; 4159 4160 ceph_oid_copy(&req->r_base_oid, oid); 4161 ceph_oloc_copy(&req->r_base_oloc, oloc); 4162 req->r_flags = CEPH_OSD_FLAG_READ; 4163 4164 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4165 if (ret) 4166 goto out_req; 4167 4168 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4169 if (IS_ERR(pages)) { 4170 ret = PTR_ERR(pages); 4171 goto out_req; 4172 } 4173 4174 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4175 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4176 true); 4177 4178 ceph_osdc_start_request(osdc, req, false); 4179 ret = ceph_osdc_wait_request(osdc, req); 4180 if (ret >= 0) 4181 ceph_copy_from_page_vector(pages, buf, 0, ret); 4182 4183 out_req: 4184 ceph_osdc_put_request(req); 4185 return ret; 4186 } 4187 4188 /* 4189 * Read the complete header for the given rbd device. On successful 4190 * return, the rbd_dev->header field will contain up-to-date 4191 * information about the image. 4192 */ 4193 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4194 { 4195 struct rbd_image_header_ondisk *ondisk = NULL; 4196 u32 snap_count = 0; 4197 u64 names_size = 0; 4198 u32 want_count; 4199 int ret; 4200 4201 /* 4202 * The complete header will include an array of its 64-bit 4203 * snapshot ids, followed by the names of those snapshots as 4204 * a contiguous block of NUL-terminated strings. Note that 4205 * the number of snapshots could change by the time we read 4206 * it in, in which case we re-read it. 4207 */ 4208 do { 4209 size_t size; 4210 4211 kfree(ondisk); 4212 4213 size = sizeof (*ondisk); 4214 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4215 size += names_size; 4216 ondisk = kmalloc(size, GFP_KERNEL); 4217 if (!ondisk) 4218 return -ENOMEM; 4219 4220 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4221 &rbd_dev->header_oloc, ondisk, size); 4222 if (ret < 0) 4223 goto out; 4224 if ((size_t)ret < size) { 4225 ret = -ENXIO; 4226 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4227 size, ret); 4228 goto out; 4229 } 4230 if (!rbd_dev_ondisk_valid(ondisk)) { 4231 ret = -ENXIO; 4232 rbd_warn(rbd_dev, "invalid header"); 4233 goto out; 4234 } 4235 4236 names_size = le64_to_cpu(ondisk->snap_names_len); 4237 want_count = snap_count; 4238 snap_count = le32_to_cpu(ondisk->snap_count); 4239 } while (snap_count != want_count); 4240 4241 ret = rbd_header_from_disk(rbd_dev, ondisk); 4242 out: 4243 kfree(ondisk); 4244 4245 return ret; 4246 } 4247 4248 /* 4249 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4250 * has disappeared from the (just updated) snapshot context. 4251 */ 4252 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4253 { 4254 u64 snap_id; 4255 4256 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4257 return; 4258 4259 snap_id = rbd_dev->spec->snap_id; 4260 if (snap_id == CEPH_NOSNAP) 4261 return; 4262 4263 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4264 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4265 } 4266 4267 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4268 { 4269 sector_t size; 4270 4271 /* 4272 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4273 * try to update its size. If REMOVING is set, updating size 4274 * is just useless work since the device can't be opened. 4275 */ 4276 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4277 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4278 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4279 dout("setting size to %llu sectors", (unsigned long long)size); 4280 set_capacity(rbd_dev->disk, size); 4281 revalidate_disk(rbd_dev->disk); 4282 } 4283 } 4284 4285 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4286 { 4287 u64 mapping_size; 4288 int ret; 4289 4290 down_write(&rbd_dev->header_rwsem); 4291 mapping_size = rbd_dev->mapping.size; 4292 4293 ret = rbd_dev_header_info(rbd_dev); 4294 if (ret) 4295 goto out; 4296 4297 /* 4298 * If there is a parent, see if it has disappeared due to the 4299 * mapped image getting flattened. 4300 */ 4301 if (rbd_dev->parent) { 4302 ret = rbd_dev_v2_parent_info(rbd_dev); 4303 if (ret) 4304 goto out; 4305 } 4306 4307 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4308 rbd_dev->mapping.size = rbd_dev->header.image_size; 4309 } else { 4310 /* validate mapped snapshot's EXISTS flag */ 4311 rbd_exists_validate(rbd_dev); 4312 } 4313 4314 out: 4315 up_write(&rbd_dev->header_rwsem); 4316 if (!ret && mapping_size != rbd_dev->mapping.size) 4317 rbd_dev_update_size(rbd_dev); 4318 4319 return ret; 4320 } 4321 4322 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 4323 unsigned int hctx_idx, unsigned int numa_node) 4324 { 4325 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4326 4327 INIT_WORK(work, rbd_queue_workfn); 4328 return 0; 4329 } 4330 4331 static const struct blk_mq_ops rbd_mq_ops = { 4332 .queue_rq = rbd_queue_rq, 4333 .init_request = rbd_init_request, 4334 }; 4335 4336 static int rbd_init_disk(struct rbd_device *rbd_dev) 4337 { 4338 struct gendisk *disk; 4339 struct request_queue *q; 4340 u64 segment_size; 4341 int err; 4342 4343 /* create gendisk info */ 4344 disk = alloc_disk(single_major ? 4345 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4346 RBD_MINORS_PER_MAJOR); 4347 if (!disk) 4348 return -ENOMEM; 4349 4350 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4351 rbd_dev->dev_id); 4352 disk->major = rbd_dev->major; 4353 disk->first_minor = rbd_dev->minor; 4354 if (single_major) 4355 disk->flags |= GENHD_FL_EXT_DEVT; 4356 disk->fops = &rbd_bd_ops; 4357 disk->private_data = rbd_dev; 4358 4359 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4360 rbd_dev->tag_set.ops = &rbd_mq_ops; 4361 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4362 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4363 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4364 rbd_dev->tag_set.nr_hw_queues = 1; 4365 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4366 4367 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4368 if (err) 4369 goto out_disk; 4370 4371 q = blk_mq_init_queue(&rbd_dev->tag_set); 4372 if (IS_ERR(q)) { 4373 err = PTR_ERR(q); 4374 goto out_tag_set; 4375 } 4376 4377 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4378 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4379 4380 /* set io sizes to object size */ 4381 segment_size = rbd_obj_bytes(&rbd_dev->header); 4382 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4383 q->limits.max_sectors = queue_max_hw_sectors(q); 4384 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 4385 blk_queue_max_segment_size(q, segment_size); 4386 blk_queue_io_min(q, segment_size); 4387 blk_queue_io_opt(q, segment_size); 4388 4389 /* enable the discard support */ 4390 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4391 q->limits.discard_granularity = segment_size; 4392 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4393 blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE); 4394 4395 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4396 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4397 4398 /* 4399 * disk_release() expects a queue ref from add_disk() and will 4400 * put it. Hold an extra ref until add_disk() is called. 4401 */ 4402 WARN_ON(!blk_get_queue(q)); 4403 disk->queue = q; 4404 q->queuedata = rbd_dev; 4405 4406 rbd_dev->disk = disk; 4407 4408 return 0; 4409 out_tag_set: 4410 blk_mq_free_tag_set(&rbd_dev->tag_set); 4411 out_disk: 4412 put_disk(disk); 4413 return err; 4414 } 4415 4416 /* 4417 sysfs 4418 */ 4419 4420 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4421 { 4422 return container_of(dev, struct rbd_device, dev); 4423 } 4424 4425 static ssize_t rbd_size_show(struct device *dev, 4426 struct device_attribute *attr, char *buf) 4427 { 4428 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4429 4430 return sprintf(buf, "%llu\n", 4431 (unsigned long long)rbd_dev->mapping.size); 4432 } 4433 4434 /* 4435 * Note this shows the features for whatever's mapped, which is not 4436 * necessarily the base image. 4437 */ 4438 static ssize_t rbd_features_show(struct device *dev, 4439 struct device_attribute *attr, char *buf) 4440 { 4441 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4442 4443 return sprintf(buf, "0x%016llx\n", 4444 (unsigned long long)rbd_dev->mapping.features); 4445 } 4446 4447 static ssize_t rbd_major_show(struct device *dev, 4448 struct device_attribute *attr, char *buf) 4449 { 4450 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4451 4452 if (rbd_dev->major) 4453 return sprintf(buf, "%d\n", rbd_dev->major); 4454 4455 return sprintf(buf, "(none)\n"); 4456 } 4457 4458 static ssize_t rbd_minor_show(struct device *dev, 4459 struct device_attribute *attr, char *buf) 4460 { 4461 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4462 4463 return sprintf(buf, "%d\n", rbd_dev->minor); 4464 } 4465 4466 static ssize_t rbd_client_addr_show(struct device *dev, 4467 struct device_attribute *attr, char *buf) 4468 { 4469 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4470 struct ceph_entity_addr *client_addr = 4471 ceph_client_addr(rbd_dev->rbd_client->client); 4472 4473 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4474 le32_to_cpu(client_addr->nonce)); 4475 } 4476 4477 static ssize_t rbd_client_id_show(struct device *dev, 4478 struct device_attribute *attr, char *buf) 4479 { 4480 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4481 4482 return sprintf(buf, "client%lld\n", 4483 ceph_client_gid(rbd_dev->rbd_client->client)); 4484 } 4485 4486 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4487 struct device_attribute *attr, char *buf) 4488 { 4489 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4490 4491 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4492 } 4493 4494 static ssize_t rbd_config_info_show(struct device *dev, 4495 struct device_attribute *attr, char *buf) 4496 { 4497 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4498 4499 return sprintf(buf, "%s\n", rbd_dev->config_info); 4500 } 4501 4502 static ssize_t rbd_pool_show(struct device *dev, 4503 struct device_attribute *attr, char *buf) 4504 { 4505 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4506 4507 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4508 } 4509 4510 static ssize_t rbd_pool_id_show(struct device *dev, 4511 struct device_attribute *attr, char *buf) 4512 { 4513 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4514 4515 return sprintf(buf, "%llu\n", 4516 (unsigned long long) rbd_dev->spec->pool_id); 4517 } 4518 4519 static ssize_t rbd_name_show(struct device *dev, 4520 struct device_attribute *attr, char *buf) 4521 { 4522 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4523 4524 if (rbd_dev->spec->image_name) 4525 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4526 4527 return sprintf(buf, "(unknown)\n"); 4528 } 4529 4530 static ssize_t rbd_image_id_show(struct device *dev, 4531 struct device_attribute *attr, char *buf) 4532 { 4533 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4534 4535 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4536 } 4537 4538 /* 4539 * Shows the name of the currently-mapped snapshot (or 4540 * RBD_SNAP_HEAD_NAME for the base image). 4541 */ 4542 static ssize_t rbd_snap_show(struct device *dev, 4543 struct device_attribute *attr, 4544 char *buf) 4545 { 4546 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4547 4548 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4549 } 4550 4551 static ssize_t rbd_snap_id_show(struct device *dev, 4552 struct device_attribute *attr, char *buf) 4553 { 4554 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4555 4556 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4557 } 4558 4559 /* 4560 * For a v2 image, shows the chain of parent images, separated by empty 4561 * lines. For v1 images or if there is no parent, shows "(no parent 4562 * image)". 4563 */ 4564 static ssize_t rbd_parent_show(struct device *dev, 4565 struct device_attribute *attr, 4566 char *buf) 4567 { 4568 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4569 ssize_t count = 0; 4570 4571 if (!rbd_dev->parent) 4572 return sprintf(buf, "(no parent image)\n"); 4573 4574 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4575 struct rbd_spec *spec = rbd_dev->parent_spec; 4576 4577 count += sprintf(&buf[count], "%s" 4578 "pool_id %llu\npool_name %s\n" 4579 "image_id %s\nimage_name %s\n" 4580 "snap_id %llu\nsnap_name %s\n" 4581 "overlap %llu\n", 4582 !count ? "" : "\n", /* first? */ 4583 spec->pool_id, spec->pool_name, 4584 spec->image_id, spec->image_name ?: "(unknown)", 4585 spec->snap_id, spec->snap_name, 4586 rbd_dev->parent_overlap); 4587 } 4588 4589 return count; 4590 } 4591 4592 static ssize_t rbd_image_refresh(struct device *dev, 4593 struct device_attribute *attr, 4594 const char *buf, 4595 size_t size) 4596 { 4597 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4598 int ret; 4599 4600 ret = rbd_dev_refresh(rbd_dev); 4601 if (ret) 4602 return ret; 4603 4604 return size; 4605 } 4606 4607 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4608 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4609 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4610 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4611 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4612 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4613 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4614 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4615 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4616 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4617 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4618 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4619 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4620 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4621 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4622 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4623 4624 static struct attribute *rbd_attrs[] = { 4625 &dev_attr_size.attr, 4626 &dev_attr_features.attr, 4627 &dev_attr_major.attr, 4628 &dev_attr_minor.attr, 4629 &dev_attr_client_addr.attr, 4630 &dev_attr_client_id.attr, 4631 &dev_attr_cluster_fsid.attr, 4632 &dev_attr_config_info.attr, 4633 &dev_attr_pool.attr, 4634 &dev_attr_pool_id.attr, 4635 &dev_attr_name.attr, 4636 &dev_attr_image_id.attr, 4637 &dev_attr_current_snap.attr, 4638 &dev_attr_snap_id.attr, 4639 &dev_attr_parent.attr, 4640 &dev_attr_refresh.attr, 4641 NULL 4642 }; 4643 4644 static struct attribute_group rbd_attr_group = { 4645 .attrs = rbd_attrs, 4646 }; 4647 4648 static const struct attribute_group *rbd_attr_groups[] = { 4649 &rbd_attr_group, 4650 NULL 4651 }; 4652 4653 static void rbd_dev_release(struct device *dev); 4654 4655 static const struct device_type rbd_device_type = { 4656 .name = "rbd", 4657 .groups = rbd_attr_groups, 4658 .release = rbd_dev_release, 4659 }; 4660 4661 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4662 { 4663 kref_get(&spec->kref); 4664 4665 return spec; 4666 } 4667 4668 static void rbd_spec_free(struct kref *kref); 4669 static void rbd_spec_put(struct rbd_spec *spec) 4670 { 4671 if (spec) 4672 kref_put(&spec->kref, rbd_spec_free); 4673 } 4674 4675 static struct rbd_spec *rbd_spec_alloc(void) 4676 { 4677 struct rbd_spec *spec; 4678 4679 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4680 if (!spec) 4681 return NULL; 4682 4683 spec->pool_id = CEPH_NOPOOL; 4684 spec->snap_id = CEPH_NOSNAP; 4685 kref_init(&spec->kref); 4686 4687 return spec; 4688 } 4689 4690 static void rbd_spec_free(struct kref *kref) 4691 { 4692 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4693 4694 kfree(spec->pool_name); 4695 kfree(spec->image_id); 4696 kfree(spec->image_name); 4697 kfree(spec->snap_name); 4698 kfree(spec); 4699 } 4700 4701 static void rbd_dev_free(struct rbd_device *rbd_dev) 4702 { 4703 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4704 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4705 4706 ceph_oid_destroy(&rbd_dev->header_oid); 4707 ceph_oloc_destroy(&rbd_dev->header_oloc); 4708 kfree(rbd_dev->config_info); 4709 4710 rbd_put_client(rbd_dev->rbd_client); 4711 rbd_spec_put(rbd_dev->spec); 4712 kfree(rbd_dev->opts); 4713 kfree(rbd_dev); 4714 } 4715 4716 static void rbd_dev_release(struct device *dev) 4717 { 4718 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4719 bool need_put = !!rbd_dev->opts; 4720 4721 if (need_put) { 4722 destroy_workqueue(rbd_dev->task_wq); 4723 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4724 } 4725 4726 rbd_dev_free(rbd_dev); 4727 4728 /* 4729 * This is racy, but way better than putting module outside of 4730 * the release callback. The race window is pretty small, so 4731 * doing something similar to dm (dm-builtin.c) is overkill. 4732 */ 4733 if (need_put) 4734 module_put(THIS_MODULE); 4735 } 4736 4737 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4738 struct rbd_spec *spec) 4739 { 4740 struct rbd_device *rbd_dev; 4741 4742 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4743 if (!rbd_dev) 4744 return NULL; 4745 4746 spin_lock_init(&rbd_dev->lock); 4747 INIT_LIST_HEAD(&rbd_dev->node); 4748 init_rwsem(&rbd_dev->header_rwsem); 4749 4750 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4751 ceph_oid_init(&rbd_dev->header_oid); 4752 rbd_dev->header_oloc.pool = spec->pool_id; 4753 4754 mutex_init(&rbd_dev->watch_mutex); 4755 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4756 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4757 4758 init_rwsem(&rbd_dev->lock_rwsem); 4759 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4760 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4761 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4762 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4763 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4764 init_waitqueue_head(&rbd_dev->lock_waitq); 4765 4766 rbd_dev->dev.bus = &rbd_bus_type; 4767 rbd_dev->dev.type = &rbd_device_type; 4768 rbd_dev->dev.parent = &rbd_root_dev; 4769 device_initialize(&rbd_dev->dev); 4770 4771 rbd_dev->rbd_client = rbdc; 4772 rbd_dev->spec = spec; 4773 4774 return rbd_dev; 4775 } 4776 4777 /* 4778 * Create a mapping rbd_dev. 4779 */ 4780 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4781 struct rbd_spec *spec, 4782 struct rbd_options *opts) 4783 { 4784 struct rbd_device *rbd_dev; 4785 4786 rbd_dev = __rbd_dev_create(rbdc, spec); 4787 if (!rbd_dev) 4788 return NULL; 4789 4790 rbd_dev->opts = opts; 4791 4792 /* get an id and fill in device name */ 4793 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4794 minor_to_rbd_dev_id(1 << MINORBITS), 4795 GFP_KERNEL); 4796 if (rbd_dev->dev_id < 0) 4797 goto fail_rbd_dev; 4798 4799 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4800 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4801 rbd_dev->name); 4802 if (!rbd_dev->task_wq) 4803 goto fail_dev_id; 4804 4805 /* we have a ref from do_rbd_add() */ 4806 __module_get(THIS_MODULE); 4807 4808 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4809 return rbd_dev; 4810 4811 fail_dev_id: 4812 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4813 fail_rbd_dev: 4814 rbd_dev_free(rbd_dev); 4815 return NULL; 4816 } 4817 4818 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4819 { 4820 if (rbd_dev) 4821 put_device(&rbd_dev->dev); 4822 } 4823 4824 /* 4825 * Get the size and object order for an image snapshot, or if 4826 * snap_id is CEPH_NOSNAP, gets this information for the base 4827 * image. 4828 */ 4829 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4830 u8 *order, u64 *snap_size) 4831 { 4832 __le64 snapid = cpu_to_le64(snap_id); 4833 int ret; 4834 struct { 4835 u8 order; 4836 __le64 size; 4837 } __attribute__ ((packed)) size_buf = { 0 }; 4838 4839 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4840 &rbd_dev->header_oloc, "get_size", 4841 &snapid, sizeof(snapid), 4842 &size_buf, sizeof(size_buf)); 4843 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4844 if (ret < 0) 4845 return ret; 4846 if (ret < sizeof (size_buf)) 4847 return -ERANGE; 4848 4849 if (order) { 4850 *order = size_buf.order; 4851 dout(" order %u", (unsigned int)*order); 4852 } 4853 *snap_size = le64_to_cpu(size_buf.size); 4854 4855 dout(" snap_id 0x%016llx snap_size = %llu\n", 4856 (unsigned long long)snap_id, 4857 (unsigned long long)*snap_size); 4858 4859 return 0; 4860 } 4861 4862 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4863 { 4864 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4865 &rbd_dev->header.obj_order, 4866 &rbd_dev->header.image_size); 4867 } 4868 4869 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4870 { 4871 void *reply_buf; 4872 int ret; 4873 void *p; 4874 4875 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4876 if (!reply_buf) 4877 return -ENOMEM; 4878 4879 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4880 &rbd_dev->header_oloc, "get_object_prefix", 4881 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4882 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4883 if (ret < 0) 4884 goto out; 4885 4886 p = reply_buf; 4887 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4888 p + ret, NULL, GFP_NOIO); 4889 ret = 0; 4890 4891 if (IS_ERR(rbd_dev->header.object_prefix)) { 4892 ret = PTR_ERR(rbd_dev->header.object_prefix); 4893 rbd_dev->header.object_prefix = NULL; 4894 } else { 4895 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4896 } 4897 out: 4898 kfree(reply_buf); 4899 4900 return ret; 4901 } 4902 4903 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4904 u64 *snap_features) 4905 { 4906 __le64 snapid = cpu_to_le64(snap_id); 4907 struct { 4908 __le64 features; 4909 __le64 incompat; 4910 } __attribute__ ((packed)) features_buf = { 0 }; 4911 u64 unsup; 4912 int ret; 4913 4914 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4915 &rbd_dev->header_oloc, "get_features", 4916 &snapid, sizeof(snapid), 4917 &features_buf, sizeof(features_buf)); 4918 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4919 if (ret < 0) 4920 return ret; 4921 if (ret < sizeof (features_buf)) 4922 return -ERANGE; 4923 4924 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4925 if (unsup) { 4926 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4927 unsup); 4928 return -ENXIO; 4929 } 4930 4931 *snap_features = le64_to_cpu(features_buf.features); 4932 4933 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4934 (unsigned long long)snap_id, 4935 (unsigned long long)*snap_features, 4936 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4937 4938 return 0; 4939 } 4940 4941 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4942 { 4943 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4944 &rbd_dev->header.features); 4945 } 4946 4947 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4948 { 4949 struct rbd_spec *parent_spec; 4950 size_t size; 4951 void *reply_buf = NULL; 4952 __le64 snapid; 4953 void *p; 4954 void *end; 4955 u64 pool_id; 4956 char *image_id; 4957 u64 snap_id; 4958 u64 overlap; 4959 int ret; 4960 4961 parent_spec = rbd_spec_alloc(); 4962 if (!parent_spec) 4963 return -ENOMEM; 4964 4965 size = sizeof (__le64) + /* pool_id */ 4966 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4967 sizeof (__le64) + /* snap_id */ 4968 sizeof (__le64); /* overlap */ 4969 reply_buf = kmalloc(size, GFP_KERNEL); 4970 if (!reply_buf) { 4971 ret = -ENOMEM; 4972 goto out_err; 4973 } 4974 4975 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4976 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4977 &rbd_dev->header_oloc, "get_parent", 4978 &snapid, sizeof(snapid), reply_buf, size); 4979 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4980 if (ret < 0) 4981 goto out_err; 4982 4983 p = reply_buf; 4984 end = reply_buf + ret; 4985 ret = -ERANGE; 4986 ceph_decode_64_safe(&p, end, pool_id, out_err); 4987 if (pool_id == CEPH_NOPOOL) { 4988 /* 4989 * Either the parent never existed, or we have 4990 * record of it but the image got flattened so it no 4991 * longer has a parent. When the parent of a 4992 * layered image disappears we immediately set the 4993 * overlap to 0. The effect of this is that all new 4994 * requests will be treated as if the image had no 4995 * parent. 4996 */ 4997 if (rbd_dev->parent_overlap) { 4998 rbd_dev->parent_overlap = 0; 4999 rbd_dev_parent_put(rbd_dev); 5000 pr_info("%s: clone image has been flattened\n", 5001 rbd_dev->disk->disk_name); 5002 } 5003 5004 goto out; /* No parent? No problem. */ 5005 } 5006 5007 /* The ceph file layout needs to fit pool id in 32 bits */ 5008 5009 ret = -EIO; 5010 if (pool_id > (u64)U32_MAX) { 5011 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5012 (unsigned long long)pool_id, U32_MAX); 5013 goto out_err; 5014 } 5015 5016 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5017 if (IS_ERR(image_id)) { 5018 ret = PTR_ERR(image_id); 5019 goto out_err; 5020 } 5021 ceph_decode_64_safe(&p, end, snap_id, out_err); 5022 ceph_decode_64_safe(&p, end, overlap, out_err); 5023 5024 /* 5025 * The parent won't change (except when the clone is 5026 * flattened, already handled that). So we only need to 5027 * record the parent spec we have not already done so. 5028 */ 5029 if (!rbd_dev->parent_spec) { 5030 parent_spec->pool_id = pool_id; 5031 parent_spec->image_id = image_id; 5032 parent_spec->snap_id = snap_id; 5033 rbd_dev->parent_spec = parent_spec; 5034 parent_spec = NULL; /* rbd_dev now owns this */ 5035 } else { 5036 kfree(image_id); 5037 } 5038 5039 /* 5040 * We always update the parent overlap. If it's zero we issue 5041 * a warning, as we will proceed as if there was no parent. 5042 */ 5043 if (!overlap) { 5044 if (parent_spec) { 5045 /* refresh, careful to warn just once */ 5046 if (rbd_dev->parent_overlap) 5047 rbd_warn(rbd_dev, 5048 "clone now standalone (overlap became 0)"); 5049 } else { 5050 /* initial probe */ 5051 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5052 } 5053 } 5054 rbd_dev->parent_overlap = overlap; 5055 5056 out: 5057 ret = 0; 5058 out_err: 5059 kfree(reply_buf); 5060 rbd_spec_put(parent_spec); 5061 5062 return ret; 5063 } 5064 5065 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5066 { 5067 struct { 5068 __le64 stripe_unit; 5069 __le64 stripe_count; 5070 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5071 size_t size = sizeof (striping_info_buf); 5072 void *p; 5073 u64 obj_size; 5074 u64 stripe_unit; 5075 u64 stripe_count; 5076 int ret; 5077 5078 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5079 &rbd_dev->header_oloc, "get_stripe_unit_count", 5080 NULL, 0, &striping_info_buf, size); 5081 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5082 if (ret < 0) 5083 return ret; 5084 if (ret < size) 5085 return -ERANGE; 5086 5087 /* 5088 * We don't actually support the "fancy striping" feature 5089 * (STRIPINGV2) yet, but if the striping sizes are the 5090 * defaults the behavior is the same as before. So find 5091 * out, and only fail if the image has non-default values. 5092 */ 5093 ret = -EINVAL; 5094 obj_size = rbd_obj_bytes(&rbd_dev->header); 5095 p = &striping_info_buf; 5096 stripe_unit = ceph_decode_64(&p); 5097 if (stripe_unit != obj_size) { 5098 rbd_warn(rbd_dev, "unsupported stripe unit " 5099 "(got %llu want %llu)", 5100 stripe_unit, obj_size); 5101 return -EINVAL; 5102 } 5103 stripe_count = ceph_decode_64(&p); 5104 if (stripe_count != 1) { 5105 rbd_warn(rbd_dev, "unsupported stripe count " 5106 "(got %llu want 1)", stripe_count); 5107 return -EINVAL; 5108 } 5109 rbd_dev->header.stripe_unit = stripe_unit; 5110 rbd_dev->header.stripe_count = stripe_count; 5111 5112 return 0; 5113 } 5114 5115 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5116 { 5117 __le64 data_pool_id; 5118 int ret; 5119 5120 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5121 &rbd_dev->header_oloc, "get_data_pool", 5122 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5123 if (ret < 0) 5124 return ret; 5125 if (ret < sizeof(data_pool_id)) 5126 return -EBADMSG; 5127 5128 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5129 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5130 return 0; 5131 } 5132 5133 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5134 { 5135 CEPH_DEFINE_OID_ONSTACK(oid); 5136 size_t image_id_size; 5137 char *image_id; 5138 void *p; 5139 void *end; 5140 size_t size; 5141 void *reply_buf = NULL; 5142 size_t len = 0; 5143 char *image_name = NULL; 5144 int ret; 5145 5146 rbd_assert(!rbd_dev->spec->image_name); 5147 5148 len = strlen(rbd_dev->spec->image_id); 5149 image_id_size = sizeof (__le32) + len; 5150 image_id = kmalloc(image_id_size, GFP_KERNEL); 5151 if (!image_id) 5152 return NULL; 5153 5154 p = image_id; 5155 end = image_id + image_id_size; 5156 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5157 5158 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5159 reply_buf = kmalloc(size, GFP_KERNEL); 5160 if (!reply_buf) 5161 goto out; 5162 5163 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5164 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5165 "dir_get_name", image_id, image_id_size, 5166 reply_buf, size); 5167 if (ret < 0) 5168 goto out; 5169 p = reply_buf; 5170 end = reply_buf + ret; 5171 5172 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5173 if (IS_ERR(image_name)) 5174 image_name = NULL; 5175 else 5176 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5177 out: 5178 kfree(reply_buf); 5179 kfree(image_id); 5180 5181 return image_name; 5182 } 5183 5184 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5185 { 5186 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5187 const char *snap_name; 5188 u32 which = 0; 5189 5190 /* Skip over names until we find the one we are looking for */ 5191 5192 snap_name = rbd_dev->header.snap_names; 5193 while (which < snapc->num_snaps) { 5194 if (!strcmp(name, snap_name)) 5195 return snapc->snaps[which]; 5196 snap_name += strlen(snap_name) + 1; 5197 which++; 5198 } 5199 return CEPH_NOSNAP; 5200 } 5201 5202 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5203 { 5204 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5205 u32 which; 5206 bool found = false; 5207 u64 snap_id; 5208 5209 for (which = 0; !found && which < snapc->num_snaps; which++) { 5210 const char *snap_name; 5211 5212 snap_id = snapc->snaps[which]; 5213 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5214 if (IS_ERR(snap_name)) { 5215 /* ignore no-longer existing snapshots */ 5216 if (PTR_ERR(snap_name) == -ENOENT) 5217 continue; 5218 else 5219 break; 5220 } 5221 found = !strcmp(name, snap_name); 5222 kfree(snap_name); 5223 } 5224 return found ? snap_id : CEPH_NOSNAP; 5225 } 5226 5227 /* 5228 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5229 * no snapshot by that name is found, or if an error occurs. 5230 */ 5231 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5232 { 5233 if (rbd_dev->image_format == 1) 5234 return rbd_v1_snap_id_by_name(rbd_dev, name); 5235 5236 return rbd_v2_snap_id_by_name(rbd_dev, name); 5237 } 5238 5239 /* 5240 * An image being mapped will have everything but the snap id. 5241 */ 5242 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5243 { 5244 struct rbd_spec *spec = rbd_dev->spec; 5245 5246 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5247 rbd_assert(spec->image_id && spec->image_name); 5248 rbd_assert(spec->snap_name); 5249 5250 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5251 u64 snap_id; 5252 5253 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5254 if (snap_id == CEPH_NOSNAP) 5255 return -ENOENT; 5256 5257 spec->snap_id = snap_id; 5258 } else { 5259 spec->snap_id = CEPH_NOSNAP; 5260 } 5261 5262 return 0; 5263 } 5264 5265 /* 5266 * A parent image will have all ids but none of the names. 5267 * 5268 * All names in an rbd spec are dynamically allocated. It's OK if we 5269 * can't figure out the name for an image id. 5270 */ 5271 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5272 { 5273 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5274 struct rbd_spec *spec = rbd_dev->spec; 5275 const char *pool_name; 5276 const char *image_name; 5277 const char *snap_name; 5278 int ret; 5279 5280 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5281 rbd_assert(spec->image_id); 5282 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5283 5284 /* Get the pool name; we have to make our own copy of this */ 5285 5286 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5287 if (!pool_name) { 5288 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5289 return -EIO; 5290 } 5291 pool_name = kstrdup(pool_name, GFP_KERNEL); 5292 if (!pool_name) 5293 return -ENOMEM; 5294 5295 /* Fetch the image name; tolerate failure here */ 5296 5297 image_name = rbd_dev_image_name(rbd_dev); 5298 if (!image_name) 5299 rbd_warn(rbd_dev, "unable to get image name"); 5300 5301 /* Fetch the snapshot name */ 5302 5303 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5304 if (IS_ERR(snap_name)) { 5305 ret = PTR_ERR(snap_name); 5306 goto out_err; 5307 } 5308 5309 spec->pool_name = pool_name; 5310 spec->image_name = image_name; 5311 spec->snap_name = snap_name; 5312 5313 return 0; 5314 5315 out_err: 5316 kfree(image_name); 5317 kfree(pool_name); 5318 return ret; 5319 } 5320 5321 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5322 { 5323 size_t size; 5324 int ret; 5325 void *reply_buf; 5326 void *p; 5327 void *end; 5328 u64 seq; 5329 u32 snap_count; 5330 struct ceph_snap_context *snapc; 5331 u32 i; 5332 5333 /* 5334 * We'll need room for the seq value (maximum snapshot id), 5335 * snapshot count, and array of that many snapshot ids. 5336 * For now we have a fixed upper limit on the number we're 5337 * prepared to receive. 5338 */ 5339 size = sizeof (__le64) + sizeof (__le32) + 5340 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5341 reply_buf = kzalloc(size, GFP_KERNEL); 5342 if (!reply_buf) 5343 return -ENOMEM; 5344 5345 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5346 &rbd_dev->header_oloc, "get_snapcontext", 5347 NULL, 0, reply_buf, size); 5348 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5349 if (ret < 0) 5350 goto out; 5351 5352 p = reply_buf; 5353 end = reply_buf + ret; 5354 ret = -ERANGE; 5355 ceph_decode_64_safe(&p, end, seq, out); 5356 ceph_decode_32_safe(&p, end, snap_count, out); 5357 5358 /* 5359 * Make sure the reported number of snapshot ids wouldn't go 5360 * beyond the end of our buffer. But before checking that, 5361 * make sure the computed size of the snapshot context we 5362 * allocate is representable in a size_t. 5363 */ 5364 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5365 / sizeof (u64)) { 5366 ret = -EINVAL; 5367 goto out; 5368 } 5369 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5370 goto out; 5371 ret = 0; 5372 5373 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5374 if (!snapc) { 5375 ret = -ENOMEM; 5376 goto out; 5377 } 5378 snapc->seq = seq; 5379 for (i = 0; i < snap_count; i++) 5380 snapc->snaps[i] = ceph_decode_64(&p); 5381 5382 ceph_put_snap_context(rbd_dev->header.snapc); 5383 rbd_dev->header.snapc = snapc; 5384 5385 dout(" snap context seq = %llu, snap_count = %u\n", 5386 (unsigned long long)seq, (unsigned int)snap_count); 5387 out: 5388 kfree(reply_buf); 5389 5390 return ret; 5391 } 5392 5393 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5394 u64 snap_id) 5395 { 5396 size_t size; 5397 void *reply_buf; 5398 __le64 snapid; 5399 int ret; 5400 void *p; 5401 void *end; 5402 char *snap_name; 5403 5404 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5405 reply_buf = kmalloc(size, GFP_KERNEL); 5406 if (!reply_buf) 5407 return ERR_PTR(-ENOMEM); 5408 5409 snapid = cpu_to_le64(snap_id); 5410 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5411 &rbd_dev->header_oloc, "get_snapshot_name", 5412 &snapid, sizeof(snapid), reply_buf, size); 5413 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5414 if (ret < 0) { 5415 snap_name = ERR_PTR(ret); 5416 goto out; 5417 } 5418 5419 p = reply_buf; 5420 end = reply_buf + ret; 5421 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5422 if (IS_ERR(snap_name)) 5423 goto out; 5424 5425 dout(" snap_id 0x%016llx snap_name = %s\n", 5426 (unsigned long long)snap_id, snap_name); 5427 out: 5428 kfree(reply_buf); 5429 5430 return snap_name; 5431 } 5432 5433 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5434 { 5435 bool first_time = rbd_dev->header.object_prefix == NULL; 5436 int ret; 5437 5438 ret = rbd_dev_v2_image_size(rbd_dev); 5439 if (ret) 5440 return ret; 5441 5442 if (first_time) { 5443 ret = rbd_dev_v2_header_onetime(rbd_dev); 5444 if (ret) 5445 return ret; 5446 } 5447 5448 ret = rbd_dev_v2_snap_context(rbd_dev); 5449 if (ret && first_time) { 5450 kfree(rbd_dev->header.object_prefix); 5451 rbd_dev->header.object_prefix = NULL; 5452 } 5453 5454 return ret; 5455 } 5456 5457 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5458 { 5459 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5460 5461 if (rbd_dev->image_format == 1) 5462 return rbd_dev_v1_header_info(rbd_dev); 5463 5464 return rbd_dev_v2_header_info(rbd_dev); 5465 } 5466 5467 /* 5468 * Skips over white space at *buf, and updates *buf to point to the 5469 * first found non-space character (if any). Returns the length of 5470 * the token (string of non-white space characters) found. Note 5471 * that *buf must be terminated with '\0'. 5472 */ 5473 static inline size_t next_token(const char **buf) 5474 { 5475 /* 5476 * These are the characters that produce nonzero for 5477 * isspace() in the "C" and "POSIX" locales. 5478 */ 5479 const char *spaces = " \f\n\r\t\v"; 5480 5481 *buf += strspn(*buf, spaces); /* Find start of token */ 5482 5483 return strcspn(*buf, spaces); /* Return token length */ 5484 } 5485 5486 /* 5487 * Finds the next token in *buf, dynamically allocates a buffer big 5488 * enough to hold a copy of it, and copies the token into the new 5489 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5490 * that a duplicate buffer is created even for a zero-length token. 5491 * 5492 * Returns a pointer to the newly-allocated duplicate, or a null 5493 * pointer if memory for the duplicate was not available. If 5494 * the lenp argument is a non-null pointer, the length of the token 5495 * (not including the '\0') is returned in *lenp. 5496 * 5497 * If successful, the *buf pointer will be updated to point beyond 5498 * the end of the found token. 5499 * 5500 * Note: uses GFP_KERNEL for allocation. 5501 */ 5502 static inline char *dup_token(const char **buf, size_t *lenp) 5503 { 5504 char *dup; 5505 size_t len; 5506 5507 len = next_token(buf); 5508 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5509 if (!dup) 5510 return NULL; 5511 *(dup + len) = '\0'; 5512 *buf += len; 5513 5514 if (lenp) 5515 *lenp = len; 5516 5517 return dup; 5518 } 5519 5520 /* 5521 * Parse the options provided for an "rbd add" (i.e., rbd image 5522 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5523 * and the data written is passed here via a NUL-terminated buffer. 5524 * Returns 0 if successful or an error code otherwise. 5525 * 5526 * The information extracted from these options is recorded in 5527 * the other parameters which return dynamically-allocated 5528 * structures: 5529 * ceph_opts 5530 * The address of a pointer that will refer to a ceph options 5531 * structure. Caller must release the returned pointer using 5532 * ceph_destroy_options() when it is no longer needed. 5533 * rbd_opts 5534 * Address of an rbd options pointer. Fully initialized by 5535 * this function; caller must release with kfree(). 5536 * spec 5537 * Address of an rbd image specification pointer. Fully 5538 * initialized by this function based on parsed options. 5539 * Caller must release with rbd_spec_put(). 5540 * 5541 * The options passed take this form: 5542 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5543 * where: 5544 * <mon_addrs> 5545 * A comma-separated list of one or more monitor addresses. 5546 * A monitor address is an ip address, optionally followed 5547 * by a port number (separated by a colon). 5548 * I.e.: ip1[:port1][,ip2[:port2]...] 5549 * <options> 5550 * A comma-separated list of ceph and/or rbd options. 5551 * <pool_name> 5552 * The name of the rados pool containing the rbd image. 5553 * <image_name> 5554 * The name of the image in that pool to map. 5555 * <snap_id> 5556 * An optional snapshot id. If provided, the mapping will 5557 * present data from the image at the time that snapshot was 5558 * created. The image head is used if no snapshot id is 5559 * provided. Snapshot mappings are always read-only. 5560 */ 5561 static int rbd_add_parse_args(const char *buf, 5562 struct ceph_options **ceph_opts, 5563 struct rbd_options **opts, 5564 struct rbd_spec **rbd_spec) 5565 { 5566 size_t len; 5567 char *options; 5568 const char *mon_addrs; 5569 char *snap_name; 5570 size_t mon_addrs_size; 5571 struct rbd_spec *spec = NULL; 5572 struct rbd_options *rbd_opts = NULL; 5573 struct ceph_options *copts; 5574 int ret; 5575 5576 /* The first four tokens are required */ 5577 5578 len = next_token(&buf); 5579 if (!len) { 5580 rbd_warn(NULL, "no monitor address(es) provided"); 5581 return -EINVAL; 5582 } 5583 mon_addrs = buf; 5584 mon_addrs_size = len + 1; 5585 buf += len; 5586 5587 ret = -EINVAL; 5588 options = dup_token(&buf, NULL); 5589 if (!options) 5590 return -ENOMEM; 5591 if (!*options) { 5592 rbd_warn(NULL, "no options provided"); 5593 goto out_err; 5594 } 5595 5596 spec = rbd_spec_alloc(); 5597 if (!spec) 5598 goto out_mem; 5599 5600 spec->pool_name = dup_token(&buf, NULL); 5601 if (!spec->pool_name) 5602 goto out_mem; 5603 if (!*spec->pool_name) { 5604 rbd_warn(NULL, "no pool name provided"); 5605 goto out_err; 5606 } 5607 5608 spec->image_name = dup_token(&buf, NULL); 5609 if (!spec->image_name) 5610 goto out_mem; 5611 if (!*spec->image_name) { 5612 rbd_warn(NULL, "no image name provided"); 5613 goto out_err; 5614 } 5615 5616 /* 5617 * Snapshot name is optional; default is to use "-" 5618 * (indicating the head/no snapshot). 5619 */ 5620 len = next_token(&buf); 5621 if (!len) { 5622 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5623 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5624 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5625 ret = -ENAMETOOLONG; 5626 goto out_err; 5627 } 5628 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5629 if (!snap_name) 5630 goto out_mem; 5631 *(snap_name + len) = '\0'; 5632 spec->snap_name = snap_name; 5633 5634 /* Initialize all rbd options to the defaults */ 5635 5636 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5637 if (!rbd_opts) 5638 goto out_mem; 5639 5640 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5641 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5642 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5643 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5644 5645 copts = ceph_parse_options(options, mon_addrs, 5646 mon_addrs + mon_addrs_size - 1, 5647 parse_rbd_opts_token, rbd_opts); 5648 if (IS_ERR(copts)) { 5649 ret = PTR_ERR(copts); 5650 goto out_err; 5651 } 5652 kfree(options); 5653 5654 *ceph_opts = copts; 5655 *opts = rbd_opts; 5656 *rbd_spec = spec; 5657 5658 return 0; 5659 out_mem: 5660 ret = -ENOMEM; 5661 out_err: 5662 kfree(rbd_opts); 5663 rbd_spec_put(spec); 5664 kfree(options); 5665 5666 return ret; 5667 } 5668 5669 /* 5670 * Return pool id (>= 0) or a negative error code. 5671 */ 5672 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5673 { 5674 struct ceph_options *opts = rbdc->client->options; 5675 u64 newest_epoch; 5676 int tries = 0; 5677 int ret; 5678 5679 again: 5680 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5681 if (ret == -ENOENT && tries++ < 1) { 5682 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5683 &newest_epoch); 5684 if (ret < 0) 5685 return ret; 5686 5687 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5688 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5689 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5690 newest_epoch, 5691 opts->mount_timeout); 5692 goto again; 5693 } else { 5694 /* the osdmap we have is new enough */ 5695 return -ENOENT; 5696 } 5697 } 5698 5699 return ret; 5700 } 5701 5702 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5703 { 5704 down_write(&rbd_dev->lock_rwsem); 5705 if (__rbd_is_lock_owner(rbd_dev)) 5706 rbd_unlock(rbd_dev); 5707 up_write(&rbd_dev->lock_rwsem); 5708 } 5709 5710 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5711 { 5712 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5713 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5714 return -EINVAL; 5715 } 5716 5717 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5718 down_read(&rbd_dev->lock_rwsem); 5719 rbd_wait_state_locked(rbd_dev); 5720 up_read(&rbd_dev->lock_rwsem); 5721 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 5722 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5723 return -EROFS; 5724 } 5725 5726 return 0; 5727 } 5728 5729 /* 5730 * An rbd format 2 image has a unique identifier, distinct from the 5731 * name given to it by the user. Internally, that identifier is 5732 * what's used to specify the names of objects related to the image. 5733 * 5734 * A special "rbd id" object is used to map an rbd image name to its 5735 * id. If that object doesn't exist, then there is no v2 rbd image 5736 * with the supplied name. 5737 * 5738 * This function will record the given rbd_dev's image_id field if 5739 * it can be determined, and in that case will return 0. If any 5740 * errors occur a negative errno will be returned and the rbd_dev's 5741 * image_id field will be unchanged (and should be NULL). 5742 */ 5743 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5744 { 5745 int ret; 5746 size_t size; 5747 CEPH_DEFINE_OID_ONSTACK(oid); 5748 void *response; 5749 char *image_id; 5750 5751 /* 5752 * When probing a parent image, the image id is already 5753 * known (and the image name likely is not). There's no 5754 * need to fetch the image id again in this case. We 5755 * do still need to set the image format though. 5756 */ 5757 if (rbd_dev->spec->image_id) { 5758 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5759 5760 return 0; 5761 } 5762 5763 /* 5764 * First, see if the format 2 image id file exists, and if 5765 * so, get the image's persistent id from it. 5766 */ 5767 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5768 rbd_dev->spec->image_name); 5769 if (ret) 5770 return ret; 5771 5772 dout("rbd id object name is %s\n", oid.name); 5773 5774 /* Response will be an encoded string, which includes a length */ 5775 5776 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5777 response = kzalloc(size, GFP_NOIO); 5778 if (!response) { 5779 ret = -ENOMEM; 5780 goto out; 5781 } 5782 5783 /* If it doesn't exist we'll assume it's a format 1 image */ 5784 5785 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5786 "get_id", NULL, 0, 5787 response, RBD_IMAGE_ID_LEN_MAX); 5788 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5789 if (ret == -ENOENT) { 5790 image_id = kstrdup("", GFP_KERNEL); 5791 ret = image_id ? 0 : -ENOMEM; 5792 if (!ret) 5793 rbd_dev->image_format = 1; 5794 } else if (ret >= 0) { 5795 void *p = response; 5796 5797 image_id = ceph_extract_encoded_string(&p, p + ret, 5798 NULL, GFP_NOIO); 5799 ret = PTR_ERR_OR_ZERO(image_id); 5800 if (!ret) 5801 rbd_dev->image_format = 2; 5802 } 5803 5804 if (!ret) { 5805 rbd_dev->spec->image_id = image_id; 5806 dout("image_id is %s\n", image_id); 5807 } 5808 out: 5809 kfree(response); 5810 ceph_oid_destroy(&oid); 5811 return ret; 5812 } 5813 5814 /* 5815 * Undo whatever state changes are made by v1 or v2 header info 5816 * call. 5817 */ 5818 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5819 { 5820 struct rbd_image_header *header; 5821 5822 rbd_dev_parent_put(rbd_dev); 5823 5824 /* Free dynamic fields from the header, then zero it out */ 5825 5826 header = &rbd_dev->header; 5827 ceph_put_snap_context(header->snapc); 5828 kfree(header->snap_sizes); 5829 kfree(header->snap_names); 5830 kfree(header->object_prefix); 5831 memset(header, 0, sizeof (*header)); 5832 } 5833 5834 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5835 { 5836 int ret; 5837 5838 ret = rbd_dev_v2_object_prefix(rbd_dev); 5839 if (ret) 5840 goto out_err; 5841 5842 /* 5843 * Get the and check features for the image. Currently the 5844 * features are assumed to never change. 5845 */ 5846 ret = rbd_dev_v2_features(rbd_dev); 5847 if (ret) 5848 goto out_err; 5849 5850 /* If the image supports fancy striping, get its parameters */ 5851 5852 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5853 ret = rbd_dev_v2_striping_info(rbd_dev); 5854 if (ret < 0) 5855 goto out_err; 5856 } 5857 5858 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5859 ret = rbd_dev_v2_data_pool(rbd_dev); 5860 if (ret) 5861 goto out_err; 5862 } 5863 5864 rbd_init_layout(rbd_dev); 5865 return 0; 5866 5867 out_err: 5868 rbd_dev->header.features = 0; 5869 kfree(rbd_dev->header.object_prefix); 5870 rbd_dev->header.object_prefix = NULL; 5871 return ret; 5872 } 5873 5874 /* 5875 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5876 * rbd_dev_image_probe() recursion depth, which means it's also the 5877 * length of the already discovered part of the parent chain. 5878 */ 5879 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5880 { 5881 struct rbd_device *parent = NULL; 5882 int ret; 5883 5884 if (!rbd_dev->parent_spec) 5885 return 0; 5886 5887 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5888 pr_info("parent chain is too long (%d)\n", depth); 5889 ret = -EINVAL; 5890 goto out_err; 5891 } 5892 5893 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5894 if (!parent) { 5895 ret = -ENOMEM; 5896 goto out_err; 5897 } 5898 5899 /* 5900 * Images related by parent/child relationships always share 5901 * rbd_client and spec/parent_spec, so bump their refcounts. 5902 */ 5903 __rbd_get_client(rbd_dev->rbd_client); 5904 rbd_spec_get(rbd_dev->parent_spec); 5905 5906 ret = rbd_dev_image_probe(parent, depth); 5907 if (ret < 0) 5908 goto out_err; 5909 5910 rbd_dev->parent = parent; 5911 atomic_set(&rbd_dev->parent_ref, 1); 5912 return 0; 5913 5914 out_err: 5915 rbd_dev_unparent(rbd_dev); 5916 rbd_dev_destroy(parent); 5917 return ret; 5918 } 5919 5920 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5921 { 5922 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5923 rbd_dev_mapping_clear(rbd_dev); 5924 rbd_free_disk(rbd_dev); 5925 if (!single_major) 5926 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5927 } 5928 5929 /* 5930 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5931 * upon return. 5932 */ 5933 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5934 { 5935 int ret; 5936 5937 /* Record our major and minor device numbers. */ 5938 5939 if (!single_major) { 5940 ret = register_blkdev(0, rbd_dev->name); 5941 if (ret < 0) 5942 goto err_out_unlock; 5943 5944 rbd_dev->major = ret; 5945 rbd_dev->minor = 0; 5946 } else { 5947 rbd_dev->major = rbd_major; 5948 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5949 } 5950 5951 /* Set up the blkdev mapping. */ 5952 5953 ret = rbd_init_disk(rbd_dev); 5954 if (ret) 5955 goto err_out_blkdev; 5956 5957 ret = rbd_dev_mapping_set(rbd_dev); 5958 if (ret) 5959 goto err_out_disk; 5960 5961 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5962 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 5963 5964 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5965 if (ret) 5966 goto err_out_mapping; 5967 5968 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5969 up_write(&rbd_dev->header_rwsem); 5970 return 0; 5971 5972 err_out_mapping: 5973 rbd_dev_mapping_clear(rbd_dev); 5974 err_out_disk: 5975 rbd_free_disk(rbd_dev); 5976 err_out_blkdev: 5977 if (!single_major) 5978 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5979 err_out_unlock: 5980 up_write(&rbd_dev->header_rwsem); 5981 return ret; 5982 } 5983 5984 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5985 { 5986 struct rbd_spec *spec = rbd_dev->spec; 5987 int ret; 5988 5989 /* Record the header object name for this rbd image. */ 5990 5991 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5992 if (rbd_dev->image_format == 1) 5993 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5994 spec->image_name, RBD_SUFFIX); 5995 else 5996 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5997 RBD_HEADER_PREFIX, spec->image_id); 5998 5999 return ret; 6000 } 6001 6002 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6003 { 6004 rbd_dev_unprobe(rbd_dev); 6005 if (rbd_dev->opts) 6006 rbd_unregister_watch(rbd_dev); 6007 rbd_dev->image_format = 0; 6008 kfree(rbd_dev->spec->image_id); 6009 rbd_dev->spec->image_id = NULL; 6010 } 6011 6012 /* 6013 * Probe for the existence of the header object for the given rbd 6014 * device. If this image is the one being mapped (i.e., not a 6015 * parent), initiate a watch on its header object before using that 6016 * object to get detailed information about the rbd image. 6017 */ 6018 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6019 { 6020 int ret; 6021 6022 /* 6023 * Get the id from the image id object. Unless there's an 6024 * error, rbd_dev->spec->image_id will be filled in with 6025 * a dynamically-allocated string, and rbd_dev->image_format 6026 * will be set to either 1 or 2. 6027 */ 6028 ret = rbd_dev_image_id(rbd_dev); 6029 if (ret) 6030 return ret; 6031 6032 ret = rbd_dev_header_name(rbd_dev); 6033 if (ret) 6034 goto err_out_format; 6035 6036 if (!depth) { 6037 ret = rbd_register_watch(rbd_dev); 6038 if (ret) { 6039 if (ret == -ENOENT) 6040 pr_info("image %s/%s does not exist\n", 6041 rbd_dev->spec->pool_name, 6042 rbd_dev->spec->image_name); 6043 goto err_out_format; 6044 } 6045 } 6046 6047 ret = rbd_dev_header_info(rbd_dev); 6048 if (ret) 6049 goto err_out_watch; 6050 6051 /* 6052 * If this image is the one being mapped, we have pool name and 6053 * id, image name and id, and snap name - need to fill snap id. 6054 * Otherwise this is a parent image, identified by pool, image 6055 * and snap ids - need to fill in names for those ids. 6056 */ 6057 if (!depth) 6058 ret = rbd_spec_fill_snap_id(rbd_dev); 6059 else 6060 ret = rbd_spec_fill_names(rbd_dev); 6061 if (ret) { 6062 if (ret == -ENOENT) 6063 pr_info("snap %s/%s@%s does not exist\n", 6064 rbd_dev->spec->pool_name, 6065 rbd_dev->spec->image_name, 6066 rbd_dev->spec->snap_name); 6067 goto err_out_probe; 6068 } 6069 6070 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6071 ret = rbd_dev_v2_parent_info(rbd_dev); 6072 if (ret) 6073 goto err_out_probe; 6074 6075 /* 6076 * Need to warn users if this image is the one being 6077 * mapped and has a parent. 6078 */ 6079 if (!depth && rbd_dev->parent_spec) 6080 rbd_warn(rbd_dev, 6081 "WARNING: kernel layering is EXPERIMENTAL!"); 6082 } 6083 6084 ret = rbd_dev_probe_parent(rbd_dev, depth); 6085 if (ret) 6086 goto err_out_probe; 6087 6088 dout("discovered format %u image, header name is %s\n", 6089 rbd_dev->image_format, rbd_dev->header_oid.name); 6090 return 0; 6091 6092 err_out_probe: 6093 rbd_dev_unprobe(rbd_dev); 6094 err_out_watch: 6095 if (!depth) 6096 rbd_unregister_watch(rbd_dev); 6097 err_out_format: 6098 rbd_dev->image_format = 0; 6099 kfree(rbd_dev->spec->image_id); 6100 rbd_dev->spec->image_id = NULL; 6101 return ret; 6102 } 6103 6104 static ssize_t do_rbd_add(struct bus_type *bus, 6105 const char *buf, 6106 size_t count) 6107 { 6108 struct rbd_device *rbd_dev = NULL; 6109 struct ceph_options *ceph_opts = NULL; 6110 struct rbd_options *rbd_opts = NULL; 6111 struct rbd_spec *spec = NULL; 6112 struct rbd_client *rbdc; 6113 int rc; 6114 6115 if (!try_module_get(THIS_MODULE)) 6116 return -ENODEV; 6117 6118 /* parse add command */ 6119 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6120 if (rc < 0) 6121 goto out; 6122 6123 rbdc = rbd_get_client(ceph_opts); 6124 if (IS_ERR(rbdc)) { 6125 rc = PTR_ERR(rbdc); 6126 goto err_out_args; 6127 } 6128 6129 /* pick the pool */ 6130 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6131 if (rc < 0) { 6132 if (rc == -ENOENT) 6133 pr_info("pool %s does not exist\n", spec->pool_name); 6134 goto err_out_client; 6135 } 6136 spec->pool_id = (u64)rc; 6137 6138 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6139 if (!rbd_dev) { 6140 rc = -ENOMEM; 6141 goto err_out_client; 6142 } 6143 rbdc = NULL; /* rbd_dev now owns this */ 6144 spec = NULL; /* rbd_dev now owns this */ 6145 rbd_opts = NULL; /* rbd_dev now owns this */ 6146 6147 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6148 if (!rbd_dev->config_info) { 6149 rc = -ENOMEM; 6150 goto err_out_rbd_dev; 6151 } 6152 6153 down_write(&rbd_dev->header_rwsem); 6154 rc = rbd_dev_image_probe(rbd_dev, 0); 6155 if (rc < 0) { 6156 up_write(&rbd_dev->header_rwsem); 6157 goto err_out_rbd_dev; 6158 } 6159 6160 /* If we are mapping a snapshot it must be marked read-only */ 6161 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6162 rbd_dev->opts->read_only = true; 6163 6164 rc = rbd_dev_device_setup(rbd_dev); 6165 if (rc) 6166 goto err_out_image_probe; 6167 6168 if (rbd_dev->opts->exclusive) { 6169 rc = rbd_add_acquire_lock(rbd_dev); 6170 if (rc) 6171 goto err_out_device_setup; 6172 } 6173 6174 /* Everything's ready. Announce the disk to the world. */ 6175 6176 rc = device_add(&rbd_dev->dev); 6177 if (rc) 6178 goto err_out_image_lock; 6179 6180 add_disk(rbd_dev->disk); 6181 /* see rbd_init_disk() */ 6182 blk_put_queue(rbd_dev->disk->queue); 6183 6184 spin_lock(&rbd_dev_list_lock); 6185 list_add_tail(&rbd_dev->node, &rbd_dev_list); 6186 spin_unlock(&rbd_dev_list_lock); 6187 6188 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 6189 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 6190 rbd_dev->header.features); 6191 rc = count; 6192 out: 6193 module_put(THIS_MODULE); 6194 return rc; 6195 6196 err_out_image_lock: 6197 rbd_dev_image_unlock(rbd_dev); 6198 err_out_device_setup: 6199 rbd_dev_device_release(rbd_dev); 6200 err_out_image_probe: 6201 rbd_dev_image_release(rbd_dev); 6202 err_out_rbd_dev: 6203 rbd_dev_destroy(rbd_dev); 6204 err_out_client: 6205 rbd_put_client(rbdc); 6206 err_out_args: 6207 rbd_spec_put(spec); 6208 kfree(rbd_opts); 6209 goto out; 6210 } 6211 6212 static ssize_t rbd_add(struct bus_type *bus, 6213 const char *buf, 6214 size_t count) 6215 { 6216 if (single_major) 6217 return -EINVAL; 6218 6219 return do_rbd_add(bus, buf, count); 6220 } 6221 6222 static ssize_t rbd_add_single_major(struct bus_type *bus, 6223 const char *buf, 6224 size_t count) 6225 { 6226 return do_rbd_add(bus, buf, count); 6227 } 6228 6229 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6230 { 6231 while (rbd_dev->parent) { 6232 struct rbd_device *first = rbd_dev; 6233 struct rbd_device *second = first->parent; 6234 struct rbd_device *third; 6235 6236 /* 6237 * Follow to the parent with no grandparent and 6238 * remove it. 6239 */ 6240 while (second && (third = second->parent)) { 6241 first = second; 6242 second = third; 6243 } 6244 rbd_assert(second); 6245 rbd_dev_image_release(second); 6246 rbd_dev_destroy(second); 6247 first->parent = NULL; 6248 first->parent_overlap = 0; 6249 6250 rbd_assert(first->parent_spec); 6251 rbd_spec_put(first->parent_spec); 6252 first->parent_spec = NULL; 6253 } 6254 } 6255 6256 static ssize_t do_rbd_remove(struct bus_type *bus, 6257 const char *buf, 6258 size_t count) 6259 { 6260 struct rbd_device *rbd_dev = NULL; 6261 struct list_head *tmp; 6262 int dev_id; 6263 char opt_buf[6]; 6264 bool already = false; 6265 bool force = false; 6266 int ret; 6267 6268 dev_id = -1; 6269 opt_buf[0] = '\0'; 6270 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6271 if (dev_id < 0) { 6272 pr_err("dev_id out of range\n"); 6273 return -EINVAL; 6274 } 6275 if (opt_buf[0] != '\0') { 6276 if (!strcmp(opt_buf, "force")) { 6277 force = true; 6278 } else { 6279 pr_err("bad remove option at '%s'\n", opt_buf); 6280 return -EINVAL; 6281 } 6282 } 6283 6284 ret = -ENOENT; 6285 spin_lock(&rbd_dev_list_lock); 6286 list_for_each(tmp, &rbd_dev_list) { 6287 rbd_dev = list_entry(tmp, struct rbd_device, node); 6288 if (rbd_dev->dev_id == dev_id) { 6289 ret = 0; 6290 break; 6291 } 6292 } 6293 if (!ret) { 6294 spin_lock_irq(&rbd_dev->lock); 6295 if (rbd_dev->open_count && !force) 6296 ret = -EBUSY; 6297 else 6298 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6299 &rbd_dev->flags); 6300 spin_unlock_irq(&rbd_dev->lock); 6301 } 6302 spin_unlock(&rbd_dev_list_lock); 6303 if (ret < 0 || already) 6304 return ret; 6305 6306 if (force) { 6307 /* 6308 * Prevent new IO from being queued and wait for existing 6309 * IO to complete/fail. 6310 */ 6311 blk_mq_freeze_queue(rbd_dev->disk->queue); 6312 blk_set_queue_dying(rbd_dev->disk->queue); 6313 } 6314 6315 del_gendisk(rbd_dev->disk); 6316 spin_lock(&rbd_dev_list_lock); 6317 list_del_init(&rbd_dev->node); 6318 spin_unlock(&rbd_dev_list_lock); 6319 device_del(&rbd_dev->dev); 6320 6321 rbd_dev_image_unlock(rbd_dev); 6322 rbd_dev_device_release(rbd_dev); 6323 rbd_dev_image_release(rbd_dev); 6324 rbd_dev_destroy(rbd_dev); 6325 return count; 6326 } 6327 6328 static ssize_t rbd_remove(struct bus_type *bus, 6329 const char *buf, 6330 size_t count) 6331 { 6332 if (single_major) 6333 return -EINVAL; 6334 6335 return do_rbd_remove(bus, buf, count); 6336 } 6337 6338 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6339 const char *buf, 6340 size_t count) 6341 { 6342 return do_rbd_remove(bus, buf, count); 6343 } 6344 6345 /* 6346 * create control files in sysfs 6347 * /sys/bus/rbd/... 6348 */ 6349 static int rbd_sysfs_init(void) 6350 { 6351 int ret; 6352 6353 ret = device_register(&rbd_root_dev); 6354 if (ret < 0) 6355 return ret; 6356 6357 ret = bus_register(&rbd_bus_type); 6358 if (ret < 0) 6359 device_unregister(&rbd_root_dev); 6360 6361 return ret; 6362 } 6363 6364 static void rbd_sysfs_cleanup(void) 6365 { 6366 bus_unregister(&rbd_bus_type); 6367 device_unregister(&rbd_root_dev); 6368 } 6369 6370 static int rbd_slab_init(void) 6371 { 6372 rbd_assert(!rbd_img_request_cache); 6373 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6374 if (!rbd_img_request_cache) 6375 return -ENOMEM; 6376 6377 rbd_assert(!rbd_obj_request_cache); 6378 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6379 if (!rbd_obj_request_cache) 6380 goto out_err; 6381 6382 rbd_assert(!rbd_bio_clone); 6383 rbd_bio_clone = bioset_create(BIO_POOL_SIZE, 0, 0); 6384 if (!rbd_bio_clone) 6385 goto out_err_clone; 6386 6387 return 0; 6388 6389 out_err_clone: 6390 kmem_cache_destroy(rbd_obj_request_cache); 6391 rbd_obj_request_cache = NULL; 6392 out_err: 6393 kmem_cache_destroy(rbd_img_request_cache); 6394 rbd_img_request_cache = NULL; 6395 return -ENOMEM; 6396 } 6397 6398 static void rbd_slab_exit(void) 6399 { 6400 rbd_assert(rbd_obj_request_cache); 6401 kmem_cache_destroy(rbd_obj_request_cache); 6402 rbd_obj_request_cache = NULL; 6403 6404 rbd_assert(rbd_img_request_cache); 6405 kmem_cache_destroy(rbd_img_request_cache); 6406 rbd_img_request_cache = NULL; 6407 6408 rbd_assert(rbd_bio_clone); 6409 bioset_free(rbd_bio_clone); 6410 rbd_bio_clone = NULL; 6411 } 6412 6413 static int __init rbd_init(void) 6414 { 6415 int rc; 6416 6417 if (!libceph_compatible(NULL)) { 6418 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6419 return -EINVAL; 6420 } 6421 6422 rc = rbd_slab_init(); 6423 if (rc) 6424 return rc; 6425 6426 /* 6427 * The number of active work items is limited by the number of 6428 * rbd devices * queue depth, so leave @max_active at default. 6429 */ 6430 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6431 if (!rbd_wq) { 6432 rc = -ENOMEM; 6433 goto err_out_slab; 6434 } 6435 6436 if (single_major) { 6437 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6438 if (rbd_major < 0) { 6439 rc = rbd_major; 6440 goto err_out_wq; 6441 } 6442 } 6443 6444 rc = rbd_sysfs_init(); 6445 if (rc) 6446 goto err_out_blkdev; 6447 6448 if (single_major) 6449 pr_info("loaded (major %d)\n", rbd_major); 6450 else 6451 pr_info("loaded\n"); 6452 6453 return 0; 6454 6455 err_out_blkdev: 6456 if (single_major) 6457 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6458 err_out_wq: 6459 destroy_workqueue(rbd_wq); 6460 err_out_slab: 6461 rbd_slab_exit(); 6462 return rc; 6463 } 6464 6465 static void __exit rbd_exit(void) 6466 { 6467 ida_destroy(&rbd_dev_id_ida); 6468 rbd_sysfs_cleanup(); 6469 if (single_major) 6470 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6471 destroy_workqueue(rbd_wq); 6472 rbd_slab_exit(); 6473 } 6474 6475 module_init(rbd_init); 6476 module_exit(rbd_exit); 6477 6478 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6479 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6480 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6481 /* following authorship retained from original osdblk.c */ 6482 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6483 6484 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6485 MODULE_LICENSE("GPL"); 6486