xref: /openbmc/linux/drivers/block/rbd.c (revision 6774def6)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_WRITE,
215 	OBJ_OP_READ,
216 	OBJ_OP_DISCARD,
217 };
218 
219 enum obj_req_flags {
220 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
221 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
222 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
223 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
224 };
225 
226 struct rbd_obj_request {
227 	const char		*object_name;
228 	u64			offset;		/* object start byte */
229 	u64			length;		/* bytes from offset */
230 	unsigned long		flags;
231 
232 	/*
233 	 * An object request associated with an image will have its
234 	 * img_data flag set; a standalone object request will not.
235 	 *
236 	 * A standalone object request will have which == BAD_WHICH
237 	 * and a null obj_request pointer.
238 	 *
239 	 * An object request initiated in support of a layered image
240 	 * object (to check for its existence before a write) will
241 	 * have which == BAD_WHICH and a non-null obj_request pointer.
242 	 *
243 	 * Finally, an object request for rbd image data will have
244 	 * which != BAD_WHICH, and will have a non-null img_request
245 	 * pointer.  The value of which will be in the range
246 	 * 0..(img_request->obj_request_count-1).
247 	 */
248 	union {
249 		struct rbd_obj_request	*obj_request;	/* STAT op */
250 		struct {
251 			struct rbd_img_request	*img_request;
252 			u64			img_offset;
253 			/* links for img_request->obj_requests list */
254 			struct list_head	links;
255 		};
256 	};
257 	u32			which;		/* posn image request list */
258 
259 	enum obj_request_type	type;
260 	union {
261 		struct bio	*bio_list;
262 		struct {
263 			struct page	**pages;
264 			u32		page_count;
265 		};
266 	};
267 	struct page		**copyup_pages;
268 	u32			copyup_page_count;
269 
270 	struct ceph_osd_request	*osd_req;
271 
272 	u64			xferred;	/* bytes transferred */
273 	int			result;
274 
275 	rbd_obj_callback_t	callback;
276 	struct completion	completion;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 	bool			read_only;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	struct list_head	rq_queue;	/* incoming rq queue */
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 	struct work_struct	rq_work;
346 
347 	struct rbd_image_header	header;
348 	unsigned long		flags;		/* possibly lock protected */
349 	struct rbd_spec		*spec;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* protects updating the header */
364 	struct rw_semaphore     header_rwsem;
365 
366 	struct rbd_mapping	mapping;
367 
368 	struct list_head	node;
369 
370 	/* sysfs related */
371 	struct device		dev;
372 	unsigned long		open_count;	/* protected by lock */
373 };
374 
375 /*
376  * Flag bits for rbd_dev->flags.  If atomicity is required,
377  * rbd_dev->lock is used to protect access.
378  *
379  * Currently, only the "removing" flag (which is coupled with the
380  * "open_count" field) requires atomic access.
381  */
382 enum rbd_dev_flags {
383 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
384 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
385 };
386 
387 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
388 
389 static LIST_HEAD(rbd_dev_list);    /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391 
392 static LIST_HEAD(rbd_client_list);		/* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394 
395 /* Slab caches for frequently-allocated structures */
396 
397 static struct kmem_cache	*rbd_img_request_cache;
398 static struct kmem_cache	*rbd_obj_request_cache;
399 static struct kmem_cache	*rbd_segment_name_cache;
400 
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403 
404 static struct workqueue_struct *rbd_wq;
405 
406 /*
407  * Default to false for now, as single-major requires >= 0.75 version of
408  * userspace rbd utility.
409  */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413 
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415 
416 static void rbd_dev_device_release(struct device *dev);
417 
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 		       size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 			  size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 				    size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 				       size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428 
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433 
434 static int minor_to_rbd_dev_id(int minor)
435 {
436 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438 
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443 
444 static struct attribute *rbd_bus_attrs[] = {
445 	&bus_attr_add.attr,
446 	&bus_attr_remove.attr,
447 	&bus_attr_add_single_major.attr,
448 	&bus_attr_remove_single_major.attr,
449 	NULL,
450 };
451 
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 				  struct attribute *attr, int index)
454 {
455 	if (!single_major &&
456 	    (attr == &bus_attr_add_single_major.attr ||
457 	     attr == &bus_attr_remove_single_major.attr))
458 		return 0;
459 
460 	return attr->mode;
461 }
462 
463 static const struct attribute_group rbd_bus_group = {
464 	.attrs = rbd_bus_attrs,
465 	.is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468 
469 static struct bus_type rbd_bus_type = {
470 	.name		= "rbd",
471 	.bus_groups	= rbd_bus_groups,
472 };
473 
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477 
478 static struct device rbd_root_dev = {
479 	.init_name =    "rbd",
480 	.release =      rbd_root_dev_release,
481 };
482 
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 	struct va_format vaf;
487 	va_list args;
488 
489 	va_start(args, fmt);
490 	vaf.fmt = fmt;
491 	vaf.va = &args;
492 
493 	if (!rbd_dev)
494 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 	else if (rbd_dev->disk)
496 		printk(KERN_WARNING "%s: %s: %pV\n",
497 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 		printk(KERN_WARNING "%s: image %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 		printk(KERN_WARNING "%s: id %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 	else	/* punt */
505 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 			RBD_DRV_NAME, rbd_dev, &vaf);
507 	va_end(args);
508 }
509 
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr)						\
512 		if (unlikely(!(expr))) {				\
513 			printk(KERN_ERR "\nAssertion failure in %s() "	\
514 						"at line %d:\n\n"	\
515 					"\trbd_assert(%s);\n\n",	\
516 					__func__, __LINE__, #expr);	\
517 			BUG();						\
518 		}
519 #else /* !RBD_DEBUG */
520 #  define rbd_assert(expr)	((void) 0)
521 #endif /* !RBD_DEBUG */
522 
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526 
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 					u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534 				u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 		u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538 
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542 	bool removing = false;
543 
544 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545 		return -EROFS;
546 
547 	spin_lock_irq(&rbd_dev->lock);
548 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549 		removing = true;
550 	else
551 		rbd_dev->open_count++;
552 	spin_unlock_irq(&rbd_dev->lock);
553 	if (removing)
554 		return -ENOENT;
555 
556 	(void) get_device(&rbd_dev->dev);
557 
558 	return 0;
559 }
560 
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563 	struct rbd_device *rbd_dev = disk->private_data;
564 	unsigned long open_count_before;
565 
566 	spin_lock_irq(&rbd_dev->lock);
567 	open_count_before = rbd_dev->open_count--;
568 	spin_unlock_irq(&rbd_dev->lock);
569 	rbd_assert(open_count_before > 0);
570 
571 	put_device(&rbd_dev->dev);
572 }
573 
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576 	int ret = 0;
577 	int val;
578 	bool ro;
579 	bool ro_changed = false;
580 
581 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
582 	if (get_user(val, (int __user *)(arg)))
583 		return -EFAULT;
584 
585 	ro = val ? true : false;
586 	/* Snapshot doesn't allow to write*/
587 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588 		return -EROFS;
589 
590 	spin_lock_irq(&rbd_dev->lock);
591 	/* prevent others open this device */
592 	if (rbd_dev->open_count > 1) {
593 		ret = -EBUSY;
594 		goto out;
595 	}
596 
597 	if (rbd_dev->mapping.read_only != ro) {
598 		rbd_dev->mapping.read_only = ro;
599 		ro_changed = true;
600 	}
601 
602 out:
603 	spin_unlock_irq(&rbd_dev->lock);
604 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605 	if (ret == 0 && ro_changed)
606 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607 
608 	return ret;
609 }
610 
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612 			unsigned int cmd, unsigned long arg)
613 {
614 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615 	int ret = 0;
616 
617 	switch (cmd) {
618 	case BLKROSET:
619 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
620 		break;
621 	default:
622 		ret = -ENOTTY;
623 	}
624 
625 	return ret;
626 }
627 
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630 				unsigned int cmd, unsigned long arg)
631 {
632 	return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635 
636 static const struct block_device_operations rbd_bd_ops = {
637 	.owner			= THIS_MODULE,
638 	.open			= rbd_open,
639 	.release		= rbd_release,
640 	.ioctl			= rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642 	.compat_ioctl		= rbd_compat_ioctl,
643 #endif
644 };
645 
646 /*
647  * Initialize an rbd client instance.  Success or not, this function
648  * consumes ceph_opts.  Caller holds client_mutex.
649  */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652 	struct rbd_client *rbdc;
653 	int ret = -ENOMEM;
654 
655 	dout("%s:\n", __func__);
656 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657 	if (!rbdc)
658 		goto out_opt;
659 
660 	kref_init(&rbdc->kref);
661 	INIT_LIST_HEAD(&rbdc->node);
662 
663 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664 	if (IS_ERR(rbdc->client))
665 		goto out_rbdc;
666 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667 
668 	ret = ceph_open_session(rbdc->client);
669 	if (ret < 0)
670 		goto out_client;
671 
672 	spin_lock(&rbd_client_list_lock);
673 	list_add_tail(&rbdc->node, &rbd_client_list);
674 	spin_unlock(&rbd_client_list_lock);
675 
676 	dout("%s: rbdc %p\n", __func__, rbdc);
677 
678 	return rbdc;
679 out_client:
680 	ceph_destroy_client(rbdc->client);
681 out_rbdc:
682 	kfree(rbdc);
683 out_opt:
684 	if (ceph_opts)
685 		ceph_destroy_options(ceph_opts);
686 	dout("%s: error %d\n", __func__, ret);
687 
688 	return ERR_PTR(ret);
689 }
690 
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693 	kref_get(&rbdc->kref);
694 
695 	return rbdc;
696 }
697 
698 /*
699  * Find a ceph client with specific addr and configuration.  If
700  * found, bump its reference count.
701  */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704 	struct rbd_client *client_node;
705 	bool found = false;
706 
707 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708 		return NULL;
709 
710 	spin_lock(&rbd_client_list_lock);
711 	list_for_each_entry(client_node, &rbd_client_list, node) {
712 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
713 			__rbd_get_client(client_node);
714 
715 			found = true;
716 			break;
717 		}
718 	}
719 	spin_unlock(&rbd_client_list_lock);
720 
721 	return found ? client_node : NULL;
722 }
723 
724 /*
725  * mount options
726  */
727 enum {
728 	Opt_last_int,
729 	/* int args above */
730 	Opt_last_string,
731 	/* string args above */
732 	Opt_read_only,
733 	Opt_read_write,
734 	/* Boolean args above */
735 	Opt_last_bool,
736 };
737 
738 static match_table_t rbd_opts_tokens = {
739 	/* int args above */
740 	/* string args above */
741 	{Opt_read_only, "read_only"},
742 	{Opt_read_only, "ro"},		/* Alternate spelling */
743 	{Opt_read_write, "read_write"},
744 	{Opt_read_write, "rw"},		/* Alternate spelling */
745 	/* Boolean args above */
746 	{-1, NULL}
747 };
748 
749 struct rbd_options {
750 	bool	read_only;
751 };
752 
753 #define RBD_READ_ONLY_DEFAULT	false
754 
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757 	struct rbd_options *rbd_opts = private;
758 	substring_t argstr[MAX_OPT_ARGS];
759 	int token, intval, ret;
760 
761 	token = match_token(c, rbd_opts_tokens, argstr);
762 	if (token < 0)
763 		return -EINVAL;
764 
765 	if (token < Opt_last_int) {
766 		ret = match_int(&argstr[0], &intval);
767 		if (ret < 0) {
768 			pr_err("bad mount option arg (not int) "
769 			       "at '%s'\n", c);
770 			return ret;
771 		}
772 		dout("got int token %d val %d\n", token, intval);
773 	} else if (token > Opt_last_int && token < Opt_last_string) {
774 		dout("got string token %d val %s\n", token,
775 		     argstr[0].from);
776 	} else if (token > Opt_last_string && token < Opt_last_bool) {
777 		dout("got Boolean token %d\n", token);
778 	} else {
779 		dout("got token %d\n", token);
780 	}
781 
782 	switch (token) {
783 	case Opt_read_only:
784 		rbd_opts->read_only = true;
785 		break;
786 	case Opt_read_write:
787 		rbd_opts->read_only = false;
788 		break;
789 	default:
790 		rbd_assert(false);
791 		break;
792 	}
793 	return 0;
794 }
795 
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798 	switch (op_type) {
799 	case OBJ_OP_READ:
800 		return "read";
801 	case OBJ_OP_WRITE:
802 		return "write";
803 	case OBJ_OP_DISCARD:
804 		return "discard";
805 	default:
806 		return "???";
807 	}
808 }
809 
810 /*
811  * Get a ceph client with specific addr and configuration, if one does
812  * not exist create it.  Either way, ceph_opts is consumed by this
813  * function.
814  */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817 	struct rbd_client *rbdc;
818 
819 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820 	rbdc = rbd_client_find(ceph_opts);
821 	if (rbdc)	/* using an existing client */
822 		ceph_destroy_options(ceph_opts);
823 	else
824 		rbdc = rbd_client_create(ceph_opts);
825 	mutex_unlock(&client_mutex);
826 
827 	return rbdc;
828 }
829 
830 /*
831  * Destroy ceph client
832  *
833  * Caller must hold rbd_client_list_lock.
834  */
835 static void rbd_client_release(struct kref *kref)
836 {
837 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838 
839 	dout("%s: rbdc %p\n", __func__, rbdc);
840 	spin_lock(&rbd_client_list_lock);
841 	list_del(&rbdc->node);
842 	spin_unlock(&rbd_client_list_lock);
843 
844 	ceph_destroy_client(rbdc->client);
845 	kfree(rbdc);
846 }
847 
848 /*
849  * Drop reference to ceph client node. If it's not referenced anymore, release
850  * it.
851  */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854 	if (rbdc)
855 		kref_put(&rbdc->kref, rbd_client_release);
856 }
857 
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860 	return image_format == 1 || image_format == 2;
861 }
862 
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865 	size_t size;
866 	u32 snap_count;
867 
868 	/* The header has to start with the magic rbd header text */
869 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870 		return false;
871 
872 	/* The bio layer requires at least sector-sized I/O */
873 
874 	if (ondisk->options.order < SECTOR_SHIFT)
875 		return false;
876 
877 	/* If we use u64 in a few spots we may be able to loosen this */
878 
879 	if (ondisk->options.order > 8 * sizeof (int) - 1)
880 		return false;
881 
882 	/*
883 	 * The size of a snapshot header has to fit in a size_t, and
884 	 * that limits the number of snapshots.
885 	 */
886 	snap_count = le32_to_cpu(ondisk->snap_count);
887 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
888 	if (snap_count > size / sizeof (__le64))
889 		return false;
890 
891 	/*
892 	 * Not only that, but the size of the entire the snapshot
893 	 * header must also be representable in a size_t.
894 	 */
895 	size -= snap_count * sizeof (__le64);
896 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897 		return false;
898 
899 	return true;
900 }
901 
902 /*
903  * Fill an rbd image header with information from the given format 1
904  * on-disk header.
905  */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907 				 struct rbd_image_header_ondisk *ondisk)
908 {
909 	struct rbd_image_header *header = &rbd_dev->header;
910 	bool first_time = header->object_prefix == NULL;
911 	struct ceph_snap_context *snapc;
912 	char *object_prefix = NULL;
913 	char *snap_names = NULL;
914 	u64 *snap_sizes = NULL;
915 	u32 snap_count;
916 	size_t size;
917 	int ret = -ENOMEM;
918 	u32 i;
919 
920 	/* Allocate this now to avoid having to handle failure below */
921 
922 	if (first_time) {
923 		size_t len;
924 
925 		len = strnlen(ondisk->object_prefix,
926 				sizeof (ondisk->object_prefix));
927 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
928 		if (!object_prefix)
929 			return -ENOMEM;
930 		memcpy(object_prefix, ondisk->object_prefix, len);
931 		object_prefix[len] = '\0';
932 	}
933 
934 	/* Allocate the snapshot context and fill it in */
935 
936 	snap_count = le32_to_cpu(ondisk->snap_count);
937 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938 	if (!snapc)
939 		goto out_err;
940 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 	if (snap_count) {
942 		struct rbd_image_snap_ondisk *snaps;
943 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944 
945 		/* We'll keep a copy of the snapshot names... */
946 
947 		if (snap_names_len > (u64)SIZE_MAX)
948 			goto out_2big;
949 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950 		if (!snap_names)
951 			goto out_err;
952 
953 		/* ...as well as the array of their sizes. */
954 
955 		size = snap_count * sizeof (*header->snap_sizes);
956 		snap_sizes = kmalloc(size, GFP_KERNEL);
957 		if (!snap_sizes)
958 			goto out_err;
959 
960 		/*
961 		 * Copy the names, and fill in each snapshot's id
962 		 * and size.
963 		 *
964 		 * Note that rbd_dev_v1_header_info() guarantees the
965 		 * ondisk buffer we're working with has
966 		 * snap_names_len bytes beyond the end of the
967 		 * snapshot id array, this memcpy() is safe.
968 		 */
969 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970 		snaps = ondisk->snaps;
971 		for (i = 0; i < snap_count; i++) {
972 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974 		}
975 	}
976 
977 	/* We won't fail any more, fill in the header */
978 
979 	if (first_time) {
980 		header->object_prefix = object_prefix;
981 		header->obj_order = ondisk->options.order;
982 		header->crypt_type = ondisk->options.crypt_type;
983 		header->comp_type = ondisk->options.comp_type;
984 		/* The rest aren't used for format 1 images */
985 		header->stripe_unit = 0;
986 		header->stripe_count = 0;
987 		header->features = 0;
988 	} else {
989 		ceph_put_snap_context(header->snapc);
990 		kfree(header->snap_names);
991 		kfree(header->snap_sizes);
992 	}
993 
994 	/* The remaining fields always get updated (when we refresh) */
995 
996 	header->image_size = le64_to_cpu(ondisk->image_size);
997 	header->snapc = snapc;
998 	header->snap_names = snap_names;
999 	header->snap_sizes = snap_sizes;
1000 
1001 	return 0;
1002 out_2big:
1003 	ret = -EIO;
1004 out_err:
1005 	kfree(snap_sizes);
1006 	kfree(snap_names);
1007 	ceph_put_snap_context(snapc);
1008 	kfree(object_prefix);
1009 
1010 	return ret;
1011 }
1012 
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015 	const char *snap_name;
1016 
1017 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018 
1019 	/* Skip over names until we find the one we are looking for */
1020 
1021 	snap_name = rbd_dev->header.snap_names;
1022 	while (which--)
1023 		snap_name += strlen(snap_name) + 1;
1024 
1025 	return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027 
1028 /*
1029  * Snapshot id comparison function for use with qsort()/bsearch().
1030  * Note that result is for snapshots in *descending* order.
1031  */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034 	u64 snap_id1 = *(u64 *)s1;
1035 	u64 snap_id2 = *(u64 *)s2;
1036 
1037 	if (snap_id1 < snap_id2)
1038 		return 1;
1039 	return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041 
1042 /*
1043  * Search a snapshot context to see if the given snapshot id is
1044  * present.
1045  *
1046  * Returns the position of the snapshot id in the array if it's found,
1047  * or BAD_SNAP_INDEX otherwise.
1048  *
1049  * Note: The snapshot array is in kept sorted (by the osd) in
1050  * reverse order, highest snapshot id first.
1051  */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055 	u64 *found;
1056 
1057 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058 				sizeof (snap_id), snapid_compare_reverse);
1059 
1060 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062 
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064 					u64 snap_id)
1065 {
1066 	u32 which;
1067 	const char *snap_name;
1068 
1069 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1070 	if (which == BAD_SNAP_INDEX)
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076 
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079 	if (snap_id == CEPH_NOSNAP)
1080 		return RBD_SNAP_HEAD_NAME;
1081 
1082 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083 	if (rbd_dev->image_format == 1)
1084 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085 
1086 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088 
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090 				u64 *snap_size)
1091 {
1092 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093 	if (snap_id == CEPH_NOSNAP) {
1094 		*snap_size = rbd_dev->header.image_size;
1095 	} else if (rbd_dev->image_format == 1) {
1096 		u32 which;
1097 
1098 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1099 		if (which == BAD_SNAP_INDEX)
1100 			return -ENOENT;
1101 
1102 		*snap_size = rbd_dev->header.snap_sizes[which];
1103 	} else {
1104 		u64 size = 0;
1105 		int ret;
1106 
1107 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108 		if (ret)
1109 			return ret;
1110 
1111 		*snap_size = size;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117 			u64 *snap_features)
1118 {
1119 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120 	if (snap_id == CEPH_NOSNAP) {
1121 		*snap_features = rbd_dev->header.features;
1122 	} else if (rbd_dev->image_format == 1) {
1123 		*snap_features = 0;	/* No features for format 1 */
1124 	} else {
1125 		u64 features = 0;
1126 		int ret;
1127 
1128 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129 		if (ret)
1130 			return ret;
1131 
1132 		*snap_features = features;
1133 	}
1134 	return 0;
1135 }
1136 
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139 	u64 snap_id = rbd_dev->spec->snap_id;
1140 	u64 size = 0;
1141 	u64 features = 0;
1142 	int ret;
1143 
1144 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145 	if (ret)
1146 		return ret;
1147 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148 	if (ret)
1149 		return ret;
1150 
1151 	rbd_dev->mapping.size = size;
1152 	rbd_dev->mapping.features = features;
1153 
1154 	return 0;
1155 }
1156 
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159 	rbd_dev->mapping.size = 0;
1160 	rbd_dev->mapping.features = 0;
1161 }
1162 
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165 	/* The explicit cast here is needed to drop the const qualifier */
1166 
1167 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169 
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172 	char *name;
1173 	u64 segment;
1174 	int ret;
1175 	char *name_format;
1176 
1177 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178 	if (!name)
1179 		return NULL;
1180 	segment = offset >> rbd_dev->header.obj_order;
1181 	name_format = "%s.%012llx";
1182 	if (rbd_dev->image_format == 2)
1183 		name_format = "%s.%016llx";
1184 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185 			rbd_dev->header.object_prefix, segment);
1186 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187 		pr_err("error formatting segment name for #%llu (%d)\n",
1188 			segment, ret);
1189 		rbd_segment_name_free(name);
1190 		name = NULL;
1191 	}
1192 
1193 	return name;
1194 }
1195 
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199 
1200 	return offset & (segment_size - 1);
1201 }
1202 
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204 				u64 offset, u64 length)
1205 {
1206 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207 
1208 	offset &= segment_size - 1;
1209 
1210 	rbd_assert(length <= U64_MAX - offset);
1211 	if (offset + length > segment_size)
1212 		length = segment_size - offset;
1213 
1214 	return length;
1215 }
1216 
1217 /*
1218  * returns the size of an object in the image
1219  */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222 	return 1 << header->obj_order;
1223 }
1224 
1225 /*
1226  * bio helpers
1227  */
1228 
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231 	struct bio *tmp;
1232 
1233 	while (chain) {
1234 		tmp = chain;
1235 		chain = chain->bi_next;
1236 		bio_put(tmp);
1237 	}
1238 }
1239 
1240 /*
1241  * zeros a bio chain, starting at specific offset
1242  */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245 	struct bio_vec bv;
1246 	struct bvec_iter iter;
1247 	unsigned long flags;
1248 	void *buf;
1249 	int pos = 0;
1250 
1251 	while (chain) {
1252 		bio_for_each_segment(bv, chain, iter) {
1253 			if (pos + bv.bv_len > start_ofs) {
1254 				int remainder = max(start_ofs - pos, 0);
1255 				buf = bvec_kmap_irq(&bv, &flags);
1256 				memset(buf + remainder, 0,
1257 				       bv.bv_len - remainder);
1258 				flush_dcache_page(bv.bv_page);
1259 				bvec_kunmap_irq(buf, &flags);
1260 			}
1261 			pos += bv.bv_len;
1262 		}
1263 
1264 		chain = chain->bi_next;
1265 	}
1266 }
1267 
1268 /*
1269  * similar to zero_bio_chain(), zeros data defined by a page array,
1270  * starting at the given byte offset from the start of the array and
1271  * continuing up to the given end offset.  The pages array is
1272  * assumed to be big enough to hold all bytes up to the end.
1273  */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276 	struct page **page = &pages[offset >> PAGE_SHIFT];
1277 
1278 	rbd_assert(end > offset);
1279 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1280 	while (offset < end) {
1281 		size_t page_offset;
1282 		size_t length;
1283 		unsigned long flags;
1284 		void *kaddr;
1285 
1286 		page_offset = offset & ~PAGE_MASK;
1287 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288 		local_irq_save(flags);
1289 		kaddr = kmap_atomic(*page);
1290 		memset(kaddr + page_offset, 0, length);
1291 		flush_dcache_page(*page);
1292 		kunmap_atomic(kaddr);
1293 		local_irq_restore(flags);
1294 
1295 		offset += length;
1296 		page++;
1297 	}
1298 }
1299 
1300 /*
1301  * Clone a portion of a bio, starting at the given byte offset
1302  * and continuing for the number of bytes indicated.
1303  */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305 					unsigned int offset,
1306 					unsigned int len,
1307 					gfp_t gfpmask)
1308 {
1309 	struct bio *bio;
1310 
1311 	bio = bio_clone(bio_src, gfpmask);
1312 	if (!bio)
1313 		return NULL;	/* ENOMEM */
1314 
1315 	bio_advance(bio, offset);
1316 	bio->bi_iter.bi_size = len;
1317 
1318 	return bio;
1319 }
1320 
1321 /*
1322  * Clone a portion of a bio chain, starting at the given byte offset
1323  * into the first bio in the source chain and continuing for the
1324  * number of bytes indicated.  The result is another bio chain of
1325  * exactly the given length, or a null pointer on error.
1326  *
1327  * The bio_src and offset parameters are both in-out.  On entry they
1328  * refer to the first source bio and the offset into that bio where
1329  * the start of data to be cloned is located.
1330  *
1331  * On return, bio_src is updated to refer to the bio in the source
1332  * chain that contains first un-cloned byte, and *offset will
1333  * contain the offset of that byte within that bio.
1334  */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336 					unsigned int *offset,
1337 					unsigned int len,
1338 					gfp_t gfpmask)
1339 {
1340 	struct bio *bi = *bio_src;
1341 	unsigned int off = *offset;
1342 	struct bio *chain = NULL;
1343 	struct bio **end;
1344 
1345 	/* Build up a chain of clone bios up to the limit */
1346 
1347 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1348 		return NULL;		/* Nothing to clone */
1349 
1350 	end = &chain;
1351 	while (len) {
1352 		unsigned int bi_size;
1353 		struct bio *bio;
1354 
1355 		if (!bi) {
1356 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357 			goto out_err;	/* EINVAL; ran out of bio's */
1358 		}
1359 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 		if (!bio)
1362 			goto out_err;	/* ENOMEM */
1363 
1364 		*end = bio;
1365 		end = &bio->bi_next;
1366 
1367 		off += bi_size;
1368 		if (off == bi->bi_iter.bi_size) {
1369 			bi = bi->bi_next;
1370 			off = 0;
1371 		}
1372 		len -= bi_size;
1373 	}
1374 	*bio_src = bi;
1375 	*offset = off;
1376 
1377 	return chain;
1378 out_err:
1379 	bio_chain_put(chain);
1380 
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * The default/initial value for all object request flags is 0.  For
1386  * each flag, once its value is set to 1 it is never reset to 0
1387  * again.
1388  */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392 		struct rbd_device *rbd_dev;
1393 
1394 		rbd_dev = obj_request->img_request->rbd_dev;
1395 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396 			obj_request);
1397 	}
1398 }
1399 
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402 	smp_mb();
1403 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405 
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409 		struct rbd_device *rbd_dev = NULL;
1410 
1411 		if (obj_request_img_data_test(obj_request))
1412 			rbd_dev = obj_request->img_request->rbd_dev;
1413 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1414 			obj_request);
1415 	}
1416 }
1417 
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420 	smp_mb();
1421 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423 
1424 /*
1425  * This sets the KNOWN flag after (possibly) setting the EXISTS
1426  * flag.  The latter is set based on the "exists" value provided.
1427  *
1428  * Note that for our purposes once an object exists it never goes
1429  * away again.  It's possible that the response from two existence
1430  * checks are separated by the creation of the target object, and
1431  * the first ("doesn't exist") response arrives *after* the second
1432  * ("does exist").  In that case we ignore the second one.
1433  */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435 				bool exists)
1436 {
1437 	if (exists)
1438 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440 	smp_mb();
1441 }
1442 
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445 	smp_mb();
1446 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448 
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458 
1459 	return obj_request->img_offset <
1460 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462 
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466 		atomic_read(&obj_request->kref.refcount));
1467 	kref_get(&obj_request->kref);
1468 }
1469 
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473 	rbd_assert(obj_request != NULL);
1474 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 		atomic_read(&obj_request->kref.refcount));
1476 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478 
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481 	dout("%s: img %p (was %d)\n", __func__, img_request,
1482 	     atomic_read(&img_request->kref.refcount));
1483 	kref_get(&img_request->kref);
1484 }
1485 
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491 	rbd_assert(img_request != NULL);
1492 	dout("%s: img %p (was %d)\n", __func__, img_request,
1493 		atomic_read(&img_request->kref.refcount));
1494 	if (img_request_child_test(img_request))
1495 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 	else
1497 		kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499 
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501 					struct rbd_obj_request *obj_request)
1502 {
1503 	rbd_assert(obj_request->img_request == NULL);
1504 
1505 	/* Image request now owns object's original reference */
1506 	obj_request->img_request = img_request;
1507 	obj_request->which = img_request->obj_request_count;
1508 	rbd_assert(!obj_request_img_data_test(obj_request));
1509 	obj_request_img_data_set(obj_request);
1510 	rbd_assert(obj_request->which != BAD_WHICH);
1511 	img_request->obj_request_count++;
1512 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1513 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514 		obj_request->which);
1515 }
1516 
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518 					struct rbd_obj_request *obj_request)
1519 {
1520 	rbd_assert(obj_request->which != BAD_WHICH);
1521 
1522 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 		obj_request->which);
1524 	list_del(&obj_request->links);
1525 	rbd_assert(img_request->obj_request_count > 0);
1526 	img_request->obj_request_count--;
1527 	rbd_assert(obj_request->which == img_request->obj_request_count);
1528 	obj_request->which = BAD_WHICH;
1529 	rbd_assert(obj_request_img_data_test(obj_request));
1530 	rbd_assert(obj_request->img_request == img_request);
1531 	obj_request->img_request = NULL;
1532 	obj_request->callback = NULL;
1533 	rbd_obj_request_put(obj_request);
1534 }
1535 
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538 	switch (type) {
1539 	case OBJ_REQUEST_NODATA:
1540 	case OBJ_REQUEST_BIO:
1541 	case OBJ_REQUEST_PAGES:
1542 		return true;
1543 	default:
1544 		return false;
1545 	}
1546 }
1547 
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549 				struct rbd_obj_request *obj_request)
1550 {
1551 	dout("%s %p\n", __func__, obj_request);
1552 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554 
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560 
1561 /*
1562  * Wait for an object request to complete.  If interrupted, cancel the
1563  * underlying osd request.
1564  */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567 	int ret;
1568 
1569 	dout("%s %p\n", __func__, obj_request);
1570 
1571 	ret = wait_for_completion_interruptible(&obj_request->completion);
1572 	if (ret < 0) {
1573 		dout("%s %p interrupted\n", __func__, obj_request);
1574 		rbd_obj_request_end(obj_request);
1575 		return ret;
1576 	}
1577 
1578 	dout("%s %p done\n", __func__, obj_request);
1579 	return 0;
1580 }
1581 
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584 
1585 	dout("%s: img %p\n", __func__, img_request);
1586 
1587 	/*
1588 	 * If no error occurred, compute the aggregate transfer
1589 	 * count for the image request.  We could instead use
1590 	 * atomic64_cmpxchg() to update it as each object request
1591 	 * completes; not clear which way is better off hand.
1592 	 */
1593 	if (!img_request->result) {
1594 		struct rbd_obj_request *obj_request;
1595 		u64 xferred = 0;
1596 
1597 		for_each_obj_request(img_request, obj_request)
1598 			xferred += obj_request->xferred;
1599 		img_request->xferred = xferred;
1600 	}
1601 
1602 	if (img_request->callback)
1603 		img_request->callback(img_request);
1604 	else
1605 		rbd_img_request_put(img_request);
1606 }
1607 
1608 /*
1609  * The default/initial value for all image request flags is 0.  Each
1610  * is conditionally set to 1 at image request initialization time
1611  * and currently never change thereafter.
1612  */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1616 	smp_mb();
1617 }
1618 
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621 	smp_mb();
1622 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624 
1625 /*
1626  * Set the discard flag when the img_request is an discard request
1627  */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631 	smp_mb();
1632 }
1633 
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636 	smp_mb();
1637 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639 
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1643 	smp_mb();
1644 }
1645 
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649 	smp_mb();
1650 }
1651 
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654 	smp_mb();
1655 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657 
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661 	smp_mb();
1662 }
1663 
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667 	smp_mb();
1668 }
1669 
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672 	smp_mb();
1673 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675 
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679 	if (img_request_write_test(img_request))
1680 		return OBJ_OP_WRITE;
1681 	else if (img_request_discard_test(img_request))
1682 		return OBJ_OP_DISCARD;
1683 	else
1684 		return OBJ_OP_READ;
1685 }
1686 
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690 	u64 xferred = obj_request->xferred;
1691 	u64 length = obj_request->length;
1692 
1693 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694 		obj_request, obj_request->img_request, obj_request->result,
1695 		xferred, length);
1696 	/*
1697 	 * ENOENT means a hole in the image.  We zero-fill the entire
1698 	 * length of the request.  A short read also implies zero-fill
1699 	 * to the end of the request.  An error requires the whole
1700 	 * length of the request to be reported finished with an error
1701 	 * to the block layer.  In each case we update the xferred
1702 	 * count to indicate the whole request was satisfied.
1703 	 */
1704 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705 	if (obj_request->result == -ENOENT) {
1706 		if (obj_request->type == OBJ_REQUEST_BIO)
1707 			zero_bio_chain(obj_request->bio_list, 0);
1708 		else
1709 			zero_pages(obj_request->pages, 0, length);
1710 		obj_request->result = 0;
1711 	} else if (xferred < length && !obj_request->result) {
1712 		if (obj_request->type == OBJ_REQUEST_BIO)
1713 			zero_bio_chain(obj_request->bio_list, xferred);
1714 		else
1715 			zero_pages(obj_request->pages, xferred, length);
1716 	}
1717 	obj_request->xferred = length;
1718 	obj_request_done_set(obj_request);
1719 }
1720 
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1724 		obj_request->callback);
1725 	if (obj_request->callback)
1726 		obj_request->callback(obj_request);
1727 	else
1728 		complete_all(&obj_request->completion);
1729 }
1730 
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733 	dout("%s: obj %p\n", __func__, obj_request);
1734 	obj_request_done_set(obj_request);
1735 }
1736 
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739 	struct rbd_img_request *img_request = NULL;
1740 	struct rbd_device *rbd_dev = NULL;
1741 	bool layered = false;
1742 
1743 	if (obj_request_img_data_test(obj_request)) {
1744 		img_request = obj_request->img_request;
1745 		layered = img_request && img_request_layered_test(img_request);
1746 		rbd_dev = img_request->rbd_dev;
1747 	}
1748 
1749 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750 		obj_request, img_request, obj_request->result,
1751 		obj_request->xferred, obj_request->length);
1752 	if (layered && obj_request->result == -ENOENT &&
1753 			obj_request->img_offset < rbd_dev->parent_overlap)
1754 		rbd_img_parent_read(obj_request);
1755 	else if (img_request)
1756 		rbd_img_obj_request_read_callback(obj_request);
1757 	else
1758 		obj_request_done_set(obj_request);
1759 }
1760 
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764 		obj_request->result, obj_request->length);
1765 	/*
1766 	 * There is no such thing as a successful short write.  Set
1767 	 * it to our originally-requested length.
1768 	 */
1769 	obj_request->xferred = obj_request->length;
1770 	obj_request_done_set(obj_request);
1771 }
1772 
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776 		obj_request->result, obj_request->length);
1777 	/*
1778 	 * There is no such thing as a successful short discard.  Set
1779 	 * it to our originally-requested length.
1780 	 */
1781 	obj_request->xferred = obj_request->length;
1782 	/* discarding a non-existent object is not a problem */
1783 	if (obj_request->result == -ENOENT)
1784 		obj_request->result = 0;
1785 	obj_request_done_set(obj_request);
1786 }
1787 
1788 /*
1789  * For a simple stat call there's nothing to do.  We'll do more if
1790  * this is part of a write sequence for a layered image.
1791  */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794 	dout("%s: obj %p\n", __func__, obj_request);
1795 	obj_request_done_set(obj_request);
1796 }
1797 
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799 				struct ceph_msg *msg)
1800 {
1801 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1802 	u16 opcode;
1803 
1804 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805 	rbd_assert(osd_req == obj_request->osd_req);
1806 	if (obj_request_img_data_test(obj_request)) {
1807 		rbd_assert(obj_request->img_request);
1808 		rbd_assert(obj_request->which != BAD_WHICH);
1809 	} else {
1810 		rbd_assert(obj_request->which == BAD_WHICH);
1811 	}
1812 
1813 	if (osd_req->r_result < 0)
1814 		obj_request->result = osd_req->r_result;
1815 
1816 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817 
1818 	/*
1819 	 * We support a 64-bit length, but ultimately it has to be
1820 	 * passed to blk_end_request(), which takes an unsigned int.
1821 	 */
1822 	obj_request->xferred = osd_req->r_reply_op_len[0];
1823 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824 
1825 	opcode = osd_req->r_ops[0].op;
1826 	switch (opcode) {
1827 	case CEPH_OSD_OP_READ:
1828 		rbd_osd_read_callback(obj_request);
1829 		break;
1830 	case CEPH_OSD_OP_SETALLOCHINT:
1831 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 		/* fall through */
1833 	case CEPH_OSD_OP_WRITE:
1834 		rbd_osd_write_callback(obj_request);
1835 		break;
1836 	case CEPH_OSD_OP_STAT:
1837 		rbd_osd_stat_callback(obj_request);
1838 		break;
1839 	case CEPH_OSD_OP_DELETE:
1840 	case CEPH_OSD_OP_TRUNCATE:
1841 	case CEPH_OSD_OP_ZERO:
1842 		rbd_osd_discard_callback(obj_request);
1843 		break;
1844 	case CEPH_OSD_OP_CALL:
1845 	case CEPH_OSD_OP_NOTIFY_ACK:
1846 	case CEPH_OSD_OP_WATCH:
1847 		rbd_osd_trivial_callback(obj_request);
1848 		break;
1849 	default:
1850 		rbd_warn(NULL, "%s: unsupported op %hu",
1851 			obj_request->object_name, (unsigned short) opcode);
1852 		break;
1853 	}
1854 
1855 	if (obj_request_done_test(obj_request))
1856 		rbd_obj_request_complete(obj_request);
1857 }
1858 
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861 	struct rbd_img_request *img_request = obj_request->img_request;
1862 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1863 	u64 snap_id;
1864 
1865 	rbd_assert(osd_req != NULL);
1866 
1867 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868 	ceph_osdc_build_request(osd_req, obj_request->offset,
1869 			NULL, snap_id, NULL);
1870 }
1871 
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874 	struct rbd_img_request *img_request = obj_request->img_request;
1875 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 	struct ceph_snap_context *snapc;
1877 	struct timespec mtime = CURRENT_TIME;
1878 
1879 	rbd_assert(osd_req != NULL);
1880 
1881 	snapc = img_request ? img_request->snapc : NULL;
1882 	ceph_osdc_build_request(osd_req, obj_request->offset,
1883 			snapc, CEPH_NOSNAP, &mtime);
1884 }
1885 
1886 /*
1887  * Create an osd request.  A read request has one osd op (read).
1888  * A write request has either one (watch) or two (hint+write) osd ops.
1889  * (All rbd data writes are prefixed with an allocation hint op, but
1890  * technically osd watch is a write request, hence this distinction.)
1891  */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893 					struct rbd_device *rbd_dev,
1894 					enum obj_operation_type op_type,
1895 					unsigned int num_ops,
1896 					struct rbd_obj_request *obj_request)
1897 {
1898 	struct ceph_snap_context *snapc = NULL;
1899 	struct ceph_osd_client *osdc;
1900 	struct ceph_osd_request *osd_req;
1901 
1902 	if (obj_request_img_data_test(obj_request) &&
1903 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904 		struct rbd_img_request *img_request = obj_request->img_request;
1905 		if (op_type == OBJ_OP_WRITE) {
1906 			rbd_assert(img_request_write_test(img_request));
1907 		} else {
1908 			rbd_assert(img_request_discard_test(img_request));
1909 		}
1910 		snapc = img_request->snapc;
1911 	}
1912 
1913 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914 
1915 	/* Allocate and initialize the request, for the num_ops ops */
1916 
1917 	osdc = &rbd_dev->rbd_client->client->osdc;
1918 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919 					  GFP_ATOMIC);
1920 	if (!osd_req)
1921 		return NULL;	/* ENOMEM */
1922 
1923 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 	else
1926 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927 
1928 	osd_req->r_callback = rbd_osd_req_callback;
1929 	osd_req->r_priv = obj_request;
1930 
1931 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933 
1934 	return osd_req;
1935 }
1936 
1937 /*
1938  * Create a copyup osd request based on the information in the object
1939  * request supplied.  A copyup request has two or three osd ops, a
1940  * copyup method call, potentially a hint op, and a write or truncate
1941  * or zero op.
1942  */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946 	struct rbd_img_request *img_request;
1947 	struct ceph_snap_context *snapc;
1948 	struct rbd_device *rbd_dev;
1949 	struct ceph_osd_client *osdc;
1950 	struct ceph_osd_request *osd_req;
1951 	int num_osd_ops = 3;
1952 
1953 	rbd_assert(obj_request_img_data_test(obj_request));
1954 	img_request = obj_request->img_request;
1955 	rbd_assert(img_request);
1956 	rbd_assert(img_request_write_test(img_request) ||
1957 			img_request_discard_test(img_request));
1958 
1959 	if (img_request_discard_test(img_request))
1960 		num_osd_ops = 2;
1961 
1962 	/* Allocate and initialize the request, for all the ops */
1963 
1964 	snapc = img_request->snapc;
1965 	rbd_dev = img_request->rbd_dev;
1966 	osdc = &rbd_dev->rbd_client->client->osdc;
1967 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968 						false, GFP_ATOMIC);
1969 	if (!osd_req)
1970 		return NULL;	/* ENOMEM */
1971 
1972 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973 	osd_req->r_callback = rbd_osd_req_callback;
1974 	osd_req->r_priv = obj_request;
1975 
1976 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978 
1979 	return osd_req;
1980 }
1981 
1982 
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985 	ceph_osdc_put_request(osd_req);
1986 }
1987 
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989 
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991 						u64 offset, u64 length,
1992 						enum obj_request_type type)
1993 {
1994 	struct rbd_obj_request *obj_request;
1995 	size_t size;
1996 	char *name;
1997 
1998 	rbd_assert(obj_request_type_valid(type));
1999 
2000 	size = strlen(object_name) + 1;
2001 	name = kmalloc(size, GFP_KERNEL);
2002 	if (!name)
2003 		return NULL;
2004 
2005 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006 	if (!obj_request) {
2007 		kfree(name);
2008 		return NULL;
2009 	}
2010 
2011 	obj_request->object_name = memcpy(name, object_name, size);
2012 	obj_request->offset = offset;
2013 	obj_request->length = length;
2014 	obj_request->flags = 0;
2015 	obj_request->which = BAD_WHICH;
2016 	obj_request->type = type;
2017 	INIT_LIST_HEAD(&obj_request->links);
2018 	init_completion(&obj_request->completion);
2019 	kref_init(&obj_request->kref);
2020 
2021 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022 		offset, length, (int)type, obj_request);
2023 
2024 	return obj_request;
2025 }
2026 
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029 	struct rbd_obj_request *obj_request;
2030 
2031 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2032 
2033 	dout("%s: obj %p\n", __func__, obj_request);
2034 
2035 	rbd_assert(obj_request->img_request == NULL);
2036 	rbd_assert(obj_request->which == BAD_WHICH);
2037 
2038 	if (obj_request->osd_req)
2039 		rbd_osd_req_destroy(obj_request->osd_req);
2040 
2041 	rbd_assert(obj_request_type_valid(obj_request->type));
2042 	switch (obj_request->type) {
2043 	case OBJ_REQUEST_NODATA:
2044 		break;		/* Nothing to do */
2045 	case OBJ_REQUEST_BIO:
2046 		if (obj_request->bio_list)
2047 			bio_chain_put(obj_request->bio_list);
2048 		break;
2049 	case OBJ_REQUEST_PAGES:
2050 		if (obj_request->pages)
2051 			ceph_release_page_vector(obj_request->pages,
2052 						obj_request->page_count);
2053 		break;
2054 	}
2055 
2056 	kfree(obj_request->object_name);
2057 	obj_request->object_name = NULL;
2058 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060 
2061 /* It's OK to call this for a device with no parent */
2062 
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066 	rbd_dev_remove_parent(rbd_dev);
2067 	rbd_spec_put(rbd_dev->parent_spec);
2068 	rbd_dev->parent_spec = NULL;
2069 	rbd_dev->parent_overlap = 0;
2070 }
2071 
2072 /*
2073  * Parent image reference counting is used to determine when an
2074  * image's parent fields can be safely torn down--after there are no
2075  * more in-flight requests to the parent image.  When the last
2076  * reference is dropped, cleaning them up is safe.
2077  */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080 	int counter;
2081 
2082 	if (!rbd_dev->parent_spec)
2083 		return;
2084 
2085 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086 	if (counter > 0)
2087 		return;
2088 
2089 	/* Last reference; clean up parent data structures */
2090 
2091 	if (!counter)
2092 		rbd_dev_unparent(rbd_dev);
2093 	else
2094 		rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096 
2097 /*
2098  * If an image has a non-zero parent overlap, get a reference to its
2099  * parent.
2100  *
2101  * We must get the reference before checking for the overlap to
2102  * coordinate properly with zeroing the parent overlap in
2103  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2104  * drop it again if there is no overlap.
2105  *
2106  * Returns true if the rbd device has a parent with a non-zero
2107  * overlap and a reference for it was successfully taken, or
2108  * false otherwise.
2109  */
2110 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2111 {
2112 	int counter;
2113 
2114 	if (!rbd_dev->parent_spec)
2115 		return false;
2116 
2117 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 	if (counter > 0 && rbd_dev->parent_overlap)
2119 		return true;
2120 
2121 	/* Image was flattened, but parent is not yet torn down */
2122 
2123 	if (counter < 0)
2124 		rbd_warn(rbd_dev, "parent reference overflow");
2125 
2126 	return false;
2127 }
2128 
2129 /*
2130  * Caller is responsible for filling in the list of object requests
2131  * that comprises the image request, and the Linux request pointer
2132  * (if there is one).
2133  */
2134 static struct rbd_img_request *rbd_img_request_create(
2135 					struct rbd_device *rbd_dev,
2136 					u64 offset, u64 length,
2137 					enum obj_operation_type op_type,
2138 					struct ceph_snap_context *snapc)
2139 {
2140 	struct rbd_img_request *img_request;
2141 
2142 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2143 	if (!img_request)
2144 		return NULL;
2145 
2146 	img_request->rq = NULL;
2147 	img_request->rbd_dev = rbd_dev;
2148 	img_request->offset = offset;
2149 	img_request->length = length;
2150 	img_request->flags = 0;
2151 	if (op_type == OBJ_OP_DISCARD) {
2152 		img_request_discard_set(img_request);
2153 		img_request->snapc = snapc;
2154 	} else if (op_type == OBJ_OP_WRITE) {
2155 		img_request_write_set(img_request);
2156 		img_request->snapc = snapc;
2157 	} else {
2158 		img_request->snap_id = rbd_dev->spec->snap_id;
2159 	}
2160 	if (rbd_dev_parent_get(rbd_dev))
2161 		img_request_layered_set(img_request);
2162 	spin_lock_init(&img_request->completion_lock);
2163 	img_request->next_completion = 0;
2164 	img_request->callback = NULL;
2165 	img_request->result = 0;
2166 	img_request->obj_request_count = 0;
2167 	INIT_LIST_HEAD(&img_request->obj_requests);
2168 	kref_init(&img_request->kref);
2169 
2170 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2171 		obj_op_name(op_type), offset, length, img_request);
2172 
2173 	return img_request;
2174 }
2175 
2176 static void rbd_img_request_destroy(struct kref *kref)
2177 {
2178 	struct rbd_img_request *img_request;
2179 	struct rbd_obj_request *obj_request;
2180 	struct rbd_obj_request *next_obj_request;
2181 
2182 	img_request = container_of(kref, struct rbd_img_request, kref);
2183 
2184 	dout("%s: img %p\n", __func__, img_request);
2185 
2186 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2187 		rbd_img_obj_request_del(img_request, obj_request);
2188 	rbd_assert(img_request->obj_request_count == 0);
2189 
2190 	if (img_request_layered_test(img_request)) {
2191 		img_request_layered_clear(img_request);
2192 		rbd_dev_parent_put(img_request->rbd_dev);
2193 	}
2194 
2195 	if (img_request_write_test(img_request) ||
2196 		img_request_discard_test(img_request))
2197 		ceph_put_snap_context(img_request->snapc);
2198 
2199 	kmem_cache_free(rbd_img_request_cache, img_request);
2200 }
2201 
2202 static struct rbd_img_request *rbd_parent_request_create(
2203 					struct rbd_obj_request *obj_request,
2204 					u64 img_offset, u64 length)
2205 {
2206 	struct rbd_img_request *parent_request;
2207 	struct rbd_device *rbd_dev;
2208 
2209 	rbd_assert(obj_request->img_request);
2210 	rbd_dev = obj_request->img_request->rbd_dev;
2211 
2212 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2213 						length, OBJ_OP_READ, NULL);
2214 	if (!parent_request)
2215 		return NULL;
2216 
2217 	img_request_child_set(parent_request);
2218 	rbd_obj_request_get(obj_request);
2219 	parent_request->obj_request = obj_request;
2220 
2221 	return parent_request;
2222 }
2223 
2224 static void rbd_parent_request_destroy(struct kref *kref)
2225 {
2226 	struct rbd_img_request *parent_request;
2227 	struct rbd_obj_request *orig_request;
2228 
2229 	parent_request = container_of(kref, struct rbd_img_request, kref);
2230 	orig_request = parent_request->obj_request;
2231 
2232 	parent_request->obj_request = NULL;
2233 	rbd_obj_request_put(orig_request);
2234 	img_request_child_clear(parent_request);
2235 
2236 	rbd_img_request_destroy(kref);
2237 }
2238 
2239 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2240 {
2241 	struct rbd_img_request *img_request;
2242 	unsigned int xferred;
2243 	int result;
2244 	bool more;
2245 
2246 	rbd_assert(obj_request_img_data_test(obj_request));
2247 	img_request = obj_request->img_request;
2248 
2249 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2250 	xferred = (unsigned int)obj_request->xferred;
2251 	result = obj_request->result;
2252 	if (result) {
2253 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2254 		enum obj_operation_type op_type;
2255 
2256 		if (img_request_discard_test(img_request))
2257 			op_type = OBJ_OP_DISCARD;
2258 		else if (img_request_write_test(img_request))
2259 			op_type = OBJ_OP_WRITE;
2260 		else
2261 			op_type = OBJ_OP_READ;
2262 
2263 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2264 			obj_op_name(op_type), obj_request->length,
2265 			obj_request->img_offset, obj_request->offset);
2266 		rbd_warn(rbd_dev, "  result %d xferred %x",
2267 			result, xferred);
2268 		if (!img_request->result)
2269 			img_request->result = result;
2270 	}
2271 
2272 	/* Image object requests don't own their page array */
2273 
2274 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2275 		obj_request->pages = NULL;
2276 		obj_request->page_count = 0;
2277 	}
2278 
2279 	if (img_request_child_test(img_request)) {
2280 		rbd_assert(img_request->obj_request != NULL);
2281 		more = obj_request->which < img_request->obj_request_count - 1;
2282 	} else {
2283 		rbd_assert(img_request->rq != NULL);
2284 		more = blk_end_request(img_request->rq, result, xferred);
2285 	}
2286 
2287 	return more;
2288 }
2289 
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292 	struct rbd_img_request *img_request;
2293 	u32 which = obj_request->which;
2294 	bool more = true;
2295 
2296 	rbd_assert(obj_request_img_data_test(obj_request));
2297 	img_request = obj_request->img_request;
2298 
2299 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300 	rbd_assert(img_request != NULL);
2301 	rbd_assert(img_request->obj_request_count > 0);
2302 	rbd_assert(which != BAD_WHICH);
2303 	rbd_assert(which < img_request->obj_request_count);
2304 
2305 	spin_lock_irq(&img_request->completion_lock);
2306 	if (which != img_request->next_completion)
2307 		goto out;
2308 
2309 	for_each_obj_request_from(img_request, obj_request) {
2310 		rbd_assert(more);
2311 		rbd_assert(which < img_request->obj_request_count);
2312 
2313 		if (!obj_request_done_test(obj_request))
2314 			break;
2315 		more = rbd_img_obj_end_request(obj_request);
2316 		which++;
2317 	}
2318 
2319 	rbd_assert(more ^ (which == img_request->obj_request_count));
2320 	img_request->next_completion = which;
2321 out:
2322 	spin_unlock_irq(&img_request->completion_lock);
2323 	rbd_img_request_put(img_request);
2324 
2325 	if (!more)
2326 		rbd_img_request_complete(img_request);
2327 }
2328 
2329 /*
2330  * Add individual osd ops to the given ceph_osd_request and prepare
2331  * them for submission. num_ops is the current number of
2332  * osd operations already to the object request.
2333  */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335 				struct ceph_osd_request *osd_request,
2336 				enum obj_operation_type op_type,
2337 				unsigned int num_ops)
2338 {
2339 	struct rbd_img_request *img_request = obj_request->img_request;
2340 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2341 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342 	u64 offset = obj_request->offset;
2343 	u64 length = obj_request->length;
2344 	u64 img_end;
2345 	u16 opcode;
2346 
2347 	if (op_type == OBJ_OP_DISCARD) {
2348 		if (!offset && length == object_size &&
2349 		    (!img_request_layered_test(img_request) ||
2350 		     !obj_request_overlaps_parent(obj_request))) {
2351 			opcode = CEPH_OSD_OP_DELETE;
2352 		} else if ((offset + length == object_size)) {
2353 			opcode = CEPH_OSD_OP_TRUNCATE;
2354 		} else {
2355 			down_read(&rbd_dev->header_rwsem);
2356 			img_end = rbd_dev->header.image_size;
2357 			up_read(&rbd_dev->header_rwsem);
2358 
2359 			if (obj_request->img_offset + length == img_end)
2360 				opcode = CEPH_OSD_OP_TRUNCATE;
2361 			else
2362 				opcode = CEPH_OSD_OP_ZERO;
2363 		}
2364 	} else if (op_type == OBJ_OP_WRITE) {
2365 		opcode = CEPH_OSD_OP_WRITE;
2366 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2367 					object_size, object_size);
2368 		num_ops++;
2369 	} else {
2370 		opcode = CEPH_OSD_OP_READ;
2371 	}
2372 
2373 	osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2374 				0, 0);
2375 	if (obj_request->type == OBJ_REQUEST_BIO)
2376 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2377 					obj_request->bio_list, length);
2378 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2379 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2380 					obj_request->pages, length,
2381 					offset & ~PAGE_MASK, false, false);
2382 
2383 	/* Discards are also writes */
2384 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2385 		rbd_osd_req_format_write(obj_request);
2386 	else
2387 		rbd_osd_req_format_read(obj_request);
2388 }
2389 
2390 /*
2391  * Split up an image request into one or more object requests, each
2392  * to a different object.  The "type" parameter indicates whether
2393  * "data_desc" is the pointer to the head of a list of bio
2394  * structures, or the base of a page array.  In either case this
2395  * function assumes data_desc describes memory sufficient to hold
2396  * all data described by the image request.
2397  */
2398 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2399 					enum obj_request_type type,
2400 					void *data_desc)
2401 {
2402 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2403 	struct rbd_obj_request *obj_request = NULL;
2404 	struct rbd_obj_request *next_obj_request;
2405 	struct bio *bio_list = NULL;
2406 	unsigned int bio_offset = 0;
2407 	struct page **pages = NULL;
2408 	enum obj_operation_type op_type;
2409 	u64 img_offset;
2410 	u64 resid;
2411 
2412 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2413 		(int)type, data_desc);
2414 
2415 	img_offset = img_request->offset;
2416 	resid = img_request->length;
2417 	rbd_assert(resid > 0);
2418 	op_type = rbd_img_request_op_type(img_request);
2419 
2420 	if (type == OBJ_REQUEST_BIO) {
2421 		bio_list = data_desc;
2422 		rbd_assert(img_offset ==
2423 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2424 	} else if (type == OBJ_REQUEST_PAGES) {
2425 		pages = data_desc;
2426 	}
2427 
2428 	while (resid) {
2429 		struct ceph_osd_request *osd_req;
2430 		const char *object_name;
2431 		u64 offset;
2432 		u64 length;
2433 
2434 		object_name = rbd_segment_name(rbd_dev, img_offset);
2435 		if (!object_name)
2436 			goto out_unwind;
2437 		offset = rbd_segment_offset(rbd_dev, img_offset);
2438 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2439 		obj_request = rbd_obj_request_create(object_name,
2440 						offset, length, type);
2441 		/* object request has its own copy of the object name */
2442 		rbd_segment_name_free(object_name);
2443 		if (!obj_request)
2444 			goto out_unwind;
2445 
2446 		/*
2447 		 * set obj_request->img_request before creating the
2448 		 * osd_request so that it gets the right snapc
2449 		 */
2450 		rbd_img_obj_request_add(img_request, obj_request);
2451 
2452 		if (type == OBJ_REQUEST_BIO) {
2453 			unsigned int clone_size;
2454 
2455 			rbd_assert(length <= (u64)UINT_MAX);
2456 			clone_size = (unsigned int)length;
2457 			obj_request->bio_list =
2458 					bio_chain_clone_range(&bio_list,
2459 								&bio_offset,
2460 								clone_size,
2461 								GFP_ATOMIC);
2462 			if (!obj_request->bio_list)
2463 				goto out_unwind;
2464 		} else if (type == OBJ_REQUEST_PAGES) {
2465 			unsigned int page_count;
2466 
2467 			obj_request->pages = pages;
2468 			page_count = (u32)calc_pages_for(offset, length);
2469 			obj_request->page_count = page_count;
2470 			if ((offset + length) & ~PAGE_MASK)
2471 				page_count--;	/* more on last page */
2472 			pages += page_count;
2473 		}
2474 
2475 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2476 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2477 					obj_request);
2478 		if (!osd_req)
2479 			goto out_unwind;
2480 
2481 		obj_request->osd_req = osd_req;
2482 		obj_request->callback = rbd_img_obj_callback;
2483 		obj_request->img_offset = img_offset;
2484 
2485 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2486 
2487 		rbd_img_request_get(img_request);
2488 
2489 		img_offset += length;
2490 		resid -= length;
2491 	}
2492 
2493 	return 0;
2494 
2495 out_unwind:
2496 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2497 		rbd_img_obj_request_del(img_request, obj_request);
2498 
2499 	return -ENOMEM;
2500 }
2501 
2502 static void
2503 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2504 {
2505 	struct rbd_img_request *img_request;
2506 	struct rbd_device *rbd_dev;
2507 	struct page **pages;
2508 	u32 page_count;
2509 
2510 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2511 		obj_request->type == OBJ_REQUEST_NODATA);
2512 	rbd_assert(obj_request_img_data_test(obj_request));
2513 	img_request = obj_request->img_request;
2514 	rbd_assert(img_request);
2515 
2516 	rbd_dev = img_request->rbd_dev;
2517 	rbd_assert(rbd_dev);
2518 
2519 	pages = obj_request->copyup_pages;
2520 	rbd_assert(pages != NULL);
2521 	obj_request->copyup_pages = NULL;
2522 	page_count = obj_request->copyup_page_count;
2523 	rbd_assert(page_count);
2524 	obj_request->copyup_page_count = 0;
2525 	ceph_release_page_vector(pages, page_count);
2526 
2527 	/*
2528 	 * We want the transfer count to reflect the size of the
2529 	 * original write request.  There is no such thing as a
2530 	 * successful short write, so if the request was successful
2531 	 * we can just set it to the originally-requested length.
2532 	 */
2533 	if (!obj_request->result)
2534 		obj_request->xferred = obj_request->length;
2535 
2536 	/* Finish up with the normal image object callback */
2537 
2538 	rbd_img_obj_callback(obj_request);
2539 }
2540 
2541 static void
2542 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2543 {
2544 	struct rbd_obj_request *orig_request;
2545 	struct ceph_osd_request *osd_req;
2546 	struct ceph_osd_client *osdc;
2547 	struct rbd_device *rbd_dev;
2548 	struct page **pages;
2549 	enum obj_operation_type op_type;
2550 	u32 page_count;
2551 	int img_result;
2552 	u64 parent_length;
2553 
2554 	rbd_assert(img_request_child_test(img_request));
2555 
2556 	/* First get what we need from the image request */
2557 
2558 	pages = img_request->copyup_pages;
2559 	rbd_assert(pages != NULL);
2560 	img_request->copyup_pages = NULL;
2561 	page_count = img_request->copyup_page_count;
2562 	rbd_assert(page_count);
2563 	img_request->copyup_page_count = 0;
2564 
2565 	orig_request = img_request->obj_request;
2566 	rbd_assert(orig_request != NULL);
2567 	rbd_assert(obj_request_type_valid(orig_request->type));
2568 	img_result = img_request->result;
2569 	parent_length = img_request->length;
2570 	rbd_assert(parent_length == img_request->xferred);
2571 	rbd_img_request_put(img_request);
2572 
2573 	rbd_assert(orig_request->img_request);
2574 	rbd_dev = orig_request->img_request->rbd_dev;
2575 	rbd_assert(rbd_dev);
2576 
2577 	/*
2578 	 * If the overlap has become 0 (most likely because the
2579 	 * image has been flattened) we need to free the pages
2580 	 * and re-submit the original write request.
2581 	 */
2582 	if (!rbd_dev->parent_overlap) {
2583 		struct ceph_osd_client *osdc;
2584 
2585 		ceph_release_page_vector(pages, page_count);
2586 		osdc = &rbd_dev->rbd_client->client->osdc;
2587 		img_result = rbd_obj_request_submit(osdc, orig_request);
2588 		if (!img_result)
2589 			return;
2590 	}
2591 
2592 	if (img_result)
2593 		goto out_err;
2594 
2595 	/*
2596 	 * The original osd request is of no use to use any more.
2597 	 * We need a new one that can hold the three ops in a copyup
2598 	 * request.  Allocate the new copyup osd request for the
2599 	 * original request, and release the old one.
2600 	 */
2601 	img_result = -ENOMEM;
2602 	osd_req = rbd_osd_req_create_copyup(orig_request);
2603 	if (!osd_req)
2604 		goto out_err;
2605 	rbd_osd_req_destroy(orig_request->osd_req);
2606 	orig_request->osd_req = osd_req;
2607 	orig_request->copyup_pages = pages;
2608 	orig_request->copyup_page_count = page_count;
2609 
2610 	/* Initialize the copyup op */
2611 
2612 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2613 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2614 						false, false);
2615 
2616 	/* Add the other op(s) */
2617 
2618 	op_type = rbd_img_request_op_type(orig_request->img_request);
2619 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2620 
2621 	/* All set, send it off. */
2622 
2623 	orig_request->callback = rbd_img_obj_copyup_callback;
2624 	osdc = &rbd_dev->rbd_client->client->osdc;
2625 	img_result = rbd_obj_request_submit(osdc, orig_request);
2626 	if (!img_result)
2627 		return;
2628 out_err:
2629 	/* Record the error code and complete the request */
2630 
2631 	orig_request->result = img_result;
2632 	orig_request->xferred = 0;
2633 	obj_request_done_set(orig_request);
2634 	rbd_obj_request_complete(orig_request);
2635 }
2636 
2637 /*
2638  * Read from the parent image the range of data that covers the
2639  * entire target of the given object request.  This is used for
2640  * satisfying a layered image write request when the target of an
2641  * object request from the image request does not exist.
2642  *
2643  * A page array big enough to hold the returned data is allocated
2644  * and supplied to rbd_img_request_fill() as the "data descriptor."
2645  * When the read completes, this page array will be transferred to
2646  * the original object request for the copyup operation.
2647  *
2648  * If an error occurs, record it as the result of the original
2649  * object request and mark it done so it gets completed.
2650  */
2651 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2652 {
2653 	struct rbd_img_request *img_request = NULL;
2654 	struct rbd_img_request *parent_request = NULL;
2655 	struct rbd_device *rbd_dev;
2656 	u64 img_offset;
2657 	u64 length;
2658 	struct page **pages = NULL;
2659 	u32 page_count;
2660 	int result;
2661 
2662 	rbd_assert(obj_request_img_data_test(obj_request));
2663 	rbd_assert(obj_request_type_valid(obj_request->type));
2664 
2665 	img_request = obj_request->img_request;
2666 	rbd_assert(img_request != NULL);
2667 	rbd_dev = img_request->rbd_dev;
2668 	rbd_assert(rbd_dev->parent != NULL);
2669 
2670 	/*
2671 	 * Determine the byte range covered by the object in the
2672 	 * child image to which the original request was to be sent.
2673 	 */
2674 	img_offset = obj_request->img_offset - obj_request->offset;
2675 	length = (u64)1 << rbd_dev->header.obj_order;
2676 
2677 	/*
2678 	 * There is no defined parent data beyond the parent
2679 	 * overlap, so limit what we read at that boundary if
2680 	 * necessary.
2681 	 */
2682 	if (img_offset + length > rbd_dev->parent_overlap) {
2683 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2684 		length = rbd_dev->parent_overlap - img_offset;
2685 	}
2686 
2687 	/*
2688 	 * Allocate a page array big enough to receive the data read
2689 	 * from the parent.
2690 	 */
2691 	page_count = (u32)calc_pages_for(0, length);
2692 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2693 	if (IS_ERR(pages)) {
2694 		result = PTR_ERR(pages);
2695 		pages = NULL;
2696 		goto out_err;
2697 	}
2698 
2699 	result = -ENOMEM;
2700 	parent_request = rbd_parent_request_create(obj_request,
2701 						img_offset, length);
2702 	if (!parent_request)
2703 		goto out_err;
2704 
2705 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2706 	if (result)
2707 		goto out_err;
2708 	parent_request->copyup_pages = pages;
2709 	parent_request->copyup_page_count = page_count;
2710 
2711 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2712 	result = rbd_img_request_submit(parent_request);
2713 	if (!result)
2714 		return 0;
2715 
2716 	parent_request->copyup_pages = NULL;
2717 	parent_request->copyup_page_count = 0;
2718 	parent_request->obj_request = NULL;
2719 	rbd_obj_request_put(obj_request);
2720 out_err:
2721 	if (pages)
2722 		ceph_release_page_vector(pages, page_count);
2723 	if (parent_request)
2724 		rbd_img_request_put(parent_request);
2725 	obj_request->result = result;
2726 	obj_request->xferred = 0;
2727 	obj_request_done_set(obj_request);
2728 
2729 	return result;
2730 }
2731 
2732 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2733 {
2734 	struct rbd_obj_request *orig_request;
2735 	struct rbd_device *rbd_dev;
2736 	int result;
2737 
2738 	rbd_assert(!obj_request_img_data_test(obj_request));
2739 
2740 	/*
2741 	 * All we need from the object request is the original
2742 	 * request and the result of the STAT op.  Grab those, then
2743 	 * we're done with the request.
2744 	 */
2745 	orig_request = obj_request->obj_request;
2746 	obj_request->obj_request = NULL;
2747 	rbd_obj_request_put(orig_request);
2748 	rbd_assert(orig_request);
2749 	rbd_assert(orig_request->img_request);
2750 
2751 	result = obj_request->result;
2752 	obj_request->result = 0;
2753 
2754 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2755 		obj_request, orig_request, result,
2756 		obj_request->xferred, obj_request->length);
2757 	rbd_obj_request_put(obj_request);
2758 
2759 	/*
2760 	 * If the overlap has become 0 (most likely because the
2761 	 * image has been flattened) we need to free the pages
2762 	 * and re-submit the original write request.
2763 	 */
2764 	rbd_dev = orig_request->img_request->rbd_dev;
2765 	if (!rbd_dev->parent_overlap) {
2766 		struct ceph_osd_client *osdc;
2767 
2768 		osdc = &rbd_dev->rbd_client->client->osdc;
2769 		result = rbd_obj_request_submit(osdc, orig_request);
2770 		if (!result)
2771 			return;
2772 	}
2773 
2774 	/*
2775 	 * Our only purpose here is to determine whether the object
2776 	 * exists, and we don't want to treat the non-existence as
2777 	 * an error.  If something else comes back, transfer the
2778 	 * error to the original request and complete it now.
2779 	 */
2780 	if (!result) {
2781 		obj_request_existence_set(orig_request, true);
2782 	} else if (result == -ENOENT) {
2783 		obj_request_existence_set(orig_request, false);
2784 	} else if (result) {
2785 		orig_request->result = result;
2786 		goto out;
2787 	}
2788 
2789 	/*
2790 	 * Resubmit the original request now that we have recorded
2791 	 * whether the target object exists.
2792 	 */
2793 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2794 out:
2795 	if (orig_request->result)
2796 		rbd_obj_request_complete(orig_request);
2797 }
2798 
2799 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2800 {
2801 	struct rbd_obj_request *stat_request;
2802 	struct rbd_device *rbd_dev;
2803 	struct ceph_osd_client *osdc;
2804 	struct page **pages = NULL;
2805 	u32 page_count;
2806 	size_t size;
2807 	int ret;
2808 
2809 	/*
2810 	 * The response data for a STAT call consists of:
2811 	 *     le64 length;
2812 	 *     struct {
2813 	 *         le32 tv_sec;
2814 	 *         le32 tv_nsec;
2815 	 *     } mtime;
2816 	 */
2817 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2818 	page_count = (u32)calc_pages_for(0, size);
2819 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2820 	if (IS_ERR(pages))
2821 		return PTR_ERR(pages);
2822 
2823 	ret = -ENOMEM;
2824 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2825 							OBJ_REQUEST_PAGES);
2826 	if (!stat_request)
2827 		goto out;
2828 
2829 	rbd_obj_request_get(obj_request);
2830 	stat_request->obj_request = obj_request;
2831 	stat_request->pages = pages;
2832 	stat_request->page_count = page_count;
2833 
2834 	rbd_assert(obj_request->img_request);
2835 	rbd_dev = obj_request->img_request->rbd_dev;
2836 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2837 						   stat_request);
2838 	if (!stat_request->osd_req)
2839 		goto out;
2840 	stat_request->callback = rbd_img_obj_exists_callback;
2841 
2842 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2843 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2844 					false, false);
2845 	rbd_osd_req_format_read(stat_request);
2846 
2847 	osdc = &rbd_dev->rbd_client->client->osdc;
2848 	ret = rbd_obj_request_submit(osdc, stat_request);
2849 out:
2850 	if (ret)
2851 		rbd_obj_request_put(obj_request);
2852 
2853 	return ret;
2854 }
2855 
2856 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2857 {
2858 	struct rbd_img_request *img_request;
2859 	struct rbd_device *rbd_dev;
2860 
2861 	rbd_assert(obj_request_img_data_test(obj_request));
2862 
2863 	img_request = obj_request->img_request;
2864 	rbd_assert(img_request);
2865 	rbd_dev = img_request->rbd_dev;
2866 
2867 	/* Reads */
2868 	if (!img_request_write_test(img_request) &&
2869 	    !img_request_discard_test(img_request))
2870 		return true;
2871 
2872 	/* Non-layered writes */
2873 	if (!img_request_layered_test(img_request))
2874 		return true;
2875 
2876 	/*
2877 	 * Layered writes outside of the parent overlap range don't
2878 	 * share any data with the parent.
2879 	 */
2880 	if (!obj_request_overlaps_parent(obj_request))
2881 		return true;
2882 
2883 	/*
2884 	 * Entire-object layered writes - we will overwrite whatever
2885 	 * parent data there is anyway.
2886 	 */
2887 	if (!obj_request->offset &&
2888 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2889 		return true;
2890 
2891 	/*
2892 	 * If the object is known to already exist, its parent data has
2893 	 * already been copied.
2894 	 */
2895 	if (obj_request_known_test(obj_request) &&
2896 	    obj_request_exists_test(obj_request))
2897 		return true;
2898 
2899 	return false;
2900 }
2901 
2902 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2903 {
2904 	if (img_obj_request_simple(obj_request)) {
2905 		struct rbd_device *rbd_dev;
2906 		struct ceph_osd_client *osdc;
2907 
2908 		rbd_dev = obj_request->img_request->rbd_dev;
2909 		osdc = &rbd_dev->rbd_client->client->osdc;
2910 
2911 		return rbd_obj_request_submit(osdc, obj_request);
2912 	}
2913 
2914 	/*
2915 	 * It's a layered write.  The target object might exist but
2916 	 * we may not know that yet.  If we know it doesn't exist,
2917 	 * start by reading the data for the full target object from
2918 	 * the parent so we can use it for a copyup to the target.
2919 	 */
2920 	if (obj_request_known_test(obj_request))
2921 		return rbd_img_obj_parent_read_full(obj_request);
2922 
2923 	/* We don't know whether the target exists.  Go find out. */
2924 
2925 	return rbd_img_obj_exists_submit(obj_request);
2926 }
2927 
2928 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2929 {
2930 	struct rbd_obj_request *obj_request;
2931 	struct rbd_obj_request *next_obj_request;
2932 
2933 	dout("%s: img %p\n", __func__, img_request);
2934 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2935 		int ret;
2936 
2937 		ret = rbd_img_obj_request_submit(obj_request);
2938 		if (ret)
2939 			return ret;
2940 	}
2941 
2942 	return 0;
2943 }
2944 
2945 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2946 {
2947 	struct rbd_obj_request *obj_request;
2948 	struct rbd_device *rbd_dev;
2949 	u64 obj_end;
2950 	u64 img_xferred;
2951 	int img_result;
2952 
2953 	rbd_assert(img_request_child_test(img_request));
2954 
2955 	/* First get what we need from the image request and release it */
2956 
2957 	obj_request = img_request->obj_request;
2958 	img_xferred = img_request->xferred;
2959 	img_result = img_request->result;
2960 	rbd_img_request_put(img_request);
2961 
2962 	/*
2963 	 * If the overlap has become 0 (most likely because the
2964 	 * image has been flattened) we need to re-submit the
2965 	 * original request.
2966 	 */
2967 	rbd_assert(obj_request);
2968 	rbd_assert(obj_request->img_request);
2969 	rbd_dev = obj_request->img_request->rbd_dev;
2970 	if (!rbd_dev->parent_overlap) {
2971 		struct ceph_osd_client *osdc;
2972 
2973 		osdc = &rbd_dev->rbd_client->client->osdc;
2974 		img_result = rbd_obj_request_submit(osdc, obj_request);
2975 		if (!img_result)
2976 			return;
2977 	}
2978 
2979 	obj_request->result = img_result;
2980 	if (obj_request->result)
2981 		goto out;
2982 
2983 	/*
2984 	 * We need to zero anything beyond the parent overlap
2985 	 * boundary.  Since rbd_img_obj_request_read_callback()
2986 	 * will zero anything beyond the end of a short read, an
2987 	 * easy way to do this is to pretend the data from the
2988 	 * parent came up short--ending at the overlap boundary.
2989 	 */
2990 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2991 	obj_end = obj_request->img_offset + obj_request->length;
2992 	if (obj_end > rbd_dev->parent_overlap) {
2993 		u64 xferred = 0;
2994 
2995 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2996 			xferred = rbd_dev->parent_overlap -
2997 					obj_request->img_offset;
2998 
2999 		obj_request->xferred = min(img_xferred, xferred);
3000 	} else {
3001 		obj_request->xferred = img_xferred;
3002 	}
3003 out:
3004 	rbd_img_obj_request_read_callback(obj_request);
3005 	rbd_obj_request_complete(obj_request);
3006 }
3007 
3008 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3009 {
3010 	struct rbd_img_request *img_request;
3011 	int result;
3012 
3013 	rbd_assert(obj_request_img_data_test(obj_request));
3014 	rbd_assert(obj_request->img_request != NULL);
3015 	rbd_assert(obj_request->result == (s32) -ENOENT);
3016 	rbd_assert(obj_request_type_valid(obj_request->type));
3017 
3018 	/* rbd_read_finish(obj_request, obj_request->length); */
3019 	img_request = rbd_parent_request_create(obj_request,
3020 						obj_request->img_offset,
3021 						obj_request->length);
3022 	result = -ENOMEM;
3023 	if (!img_request)
3024 		goto out_err;
3025 
3026 	if (obj_request->type == OBJ_REQUEST_BIO)
3027 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3028 						obj_request->bio_list);
3029 	else
3030 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3031 						obj_request->pages);
3032 	if (result)
3033 		goto out_err;
3034 
3035 	img_request->callback = rbd_img_parent_read_callback;
3036 	result = rbd_img_request_submit(img_request);
3037 	if (result)
3038 		goto out_err;
3039 
3040 	return;
3041 out_err:
3042 	if (img_request)
3043 		rbd_img_request_put(img_request);
3044 	obj_request->result = result;
3045 	obj_request->xferred = 0;
3046 	obj_request_done_set(obj_request);
3047 }
3048 
3049 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3050 {
3051 	struct rbd_obj_request *obj_request;
3052 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3053 	int ret;
3054 
3055 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3056 							OBJ_REQUEST_NODATA);
3057 	if (!obj_request)
3058 		return -ENOMEM;
3059 
3060 	ret = -ENOMEM;
3061 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3062 						  obj_request);
3063 	if (!obj_request->osd_req)
3064 		goto out;
3065 
3066 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3067 					notify_id, 0, 0);
3068 	rbd_osd_req_format_read(obj_request);
3069 
3070 	ret = rbd_obj_request_submit(osdc, obj_request);
3071 	if (ret)
3072 		goto out;
3073 	ret = rbd_obj_request_wait(obj_request);
3074 out:
3075 	rbd_obj_request_put(obj_request);
3076 
3077 	return ret;
3078 }
3079 
3080 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3081 {
3082 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3083 	int ret;
3084 
3085 	if (!rbd_dev)
3086 		return;
3087 
3088 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3089 		rbd_dev->header_name, (unsigned long long)notify_id,
3090 		(unsigned int)opcode);
3091 
3092 	/*
3093 	 * Until adequate refresh error handling is in place, there is
3094 	 * not much we can do here, except warn.
3095 	 *
3096 	 * See http://tracker.ceph.com/issues/5040
3097 	 */
3098 	ret = rbd_dev_refresh(rbd_dev);
3099 	if (ret)
3100 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3101 
3102 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3103 	if (ret)
3104 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3105 }
3106 
3107 /*
3108  * Send a (un)watch request and wait for the ack.  Return a request
3109  * with a ref held on success or error.
3110  */
3111 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3112 						struct rbd_device *rbd_dev,
3113 						bool watch)
3114 {
3115 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3116 	struct rbd_obj_request *obj_request;
3117 	int ret;
3118 
3119 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3120 					     OBJ_REQUEST_NODATA);
3121 	if (!obj_request)
3122 		return ERR_PTR(-ENOMEM);
3123 
3124 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3125 						  obj_request);
3126 	if (!obj_request->osd_req) {
3127 		ret = -ENOMEM;
3128 		goto out;
3129 	}
3130 
3131 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3132 			      rbd_dev->watch_event->cookie, 0, watch);
3133 	rbd_osd_req_format_write(obj_request);
3134 
3135 	if (watch)
3136 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3137 
3138 	ret = rbd_obj_request_submit(osdc, obj_request);
3139 	if (ret)
3140 		goto out;
3141 
3142 	ret = rbd_obj_request_wait(obj_request);
3143 	if (ret)
3144 		goto out;
3145 
3146 	ret = obj_request->result;
3147 	if (ret) {
3148 		if (watch)
3149 			rbd_obj_request_end(obj_request);
3150 		goto out;
3151 	}
3152 
3153 	return obj_request;
3154 
3155 out:
3156 	rbd_obj_request_put(obj_request);
3157 	return ERR_PTR(ret);
3158 }
3159 
3160 /*
3161  * Initiate a watch request, synchronously.
3162  */
3163 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3164 {
3165 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3166 	struct rbd_obj_request *obj_request;
3167 	int ret;
3168 
3169 	rbd_assert(!rbd_dev->watch_event);
3170 	rbd_assert(!rbd_dev->watch_request);
3171 
3172 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3173 				     &rbd_dev->watch_event);
3174 	if (ret < 0)
3175 		return ret;
3176 
3177 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3178 	if (IS_ERR(obj_request)) {
3179 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3180 		rbd_dev->watch_event = NULL;
3181 		return PTR_ERR(obj_request);
3182 	}
3183 
3184 	/*
3185 	 * A watch request is set to linger, so the underlying osd
3186 	 * request won't go away until we unregister it.  We retain
3187 	 * a pointer to the object request during that time (in
3188 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3189 	 * We'll drop that reference after we've unregistered it in
3190 	 * rbd_dev_header_unwatch_sync().
3191 	 */
3192 	rbd_dev->watch_request = obj_request;
3193 
3194 	return 0;
3195 }
3196 
3197 /*
3198  * Tear down a watch request, synchronously.
3199  */
3200 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3201 {
3202 	struct rbd_obj_request *obj_request;
3203 
3204 	rbd_assert(rbd_dev->watch_event);
3205 	rbd_assert(rbd_dev->watch_request);
3206 
3207 	rbd_obj_request_end(rbd_dev->watch_request);
3208 	rbd_obj_request_put(rbd_dev->watch_request);
3209 	rbd_dev->watch_request = NULL;
3210 
3211 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3212 	if (!IS_ERR(obj_request))
3213 		rbd_obj_request_put(obj_request);
3214 	else
3215 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3216 			 PTR_ERR(obj_request));
3217 
3218 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3219 	rbd_dev->watch_event = NULL;
3220 }
3221 
3222 /*
3223  * Synchronous osd object method call.  Returns the number of bytes
3224  * returned in the outbound buffer, or a negative error code.
3225  */
3226 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3227 			     const char *object_name,
3228 			     const char *class_name,
3229 			     const char *method_name,
3230 			     const void *outbound,
3231 			     size_t outbound_size,
3232 			     void *inbound,
3233 			     size_t inbound_size)
3234 {
3235 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3236 	struct rbd_obj_request *obj_request;
3237 	struct page **pages;
3238 	u32 page_count;
3239 	int ret;
3240 
3241 	/*
3242 	 * Method calls are ultimately read operations.  The result
3243 	 * should placed into the inbound buffer provided.  They
3244 	 * also supply outbound data--parameters for the object
3245 	 * method.  Currently if this is present it will be a
3246 	 * snapshot id.
3247 	 */
3248 	page_count = (u32)calc_pages_for(0, inbound_size);
3249 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3250 	if (IS_ERR(pages))
3251 		return PTR_ERR(pages);
3252 
3253 	ret = -ENOMEM;
3254 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3255 							OBJ_REQUEST_PAGES);
3256 	if (!obj_request)
3257 		goto out;
3258 
3259 	obj_request->pages = pages;
3260 	obj_request->page_count = page_count;
3261 
3262 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3263 						  obj_request);
3264 	if (!obj_request->osd_req)
3265 		goto out;
3266 
3267 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3268 					class_name, method_name);
3269 	if (outbound_size) {
3270 		struct ceph_pagelist *pagelist;
3271 
3272 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3273 		if (!pagelist)
3274 			goto out;
3275 
3276 		ceph_pagelist_init(pagelist);
3277 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3278 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3279 						pagelist);
3280 	}
3281 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3282 					obj_request->pages, inbound_size,
3283 					0, false, false);
3284 	rbd_osd_req_format_read(obj_request);
3285 
3286 	ret = rbd_obj_request_submit(osdc, obj_request);
3287 	if (ret)
3288 		goto out;
3289 	ret = rbd_obj_request_wait(obj_request);
3290 	if (ret)
3291 		goto out;
3292 
3293 	ret = obj_request->result;
3294 	if (ret < 0)
3295 		goto out;
3296 
3297 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3298 	ret = (int)obj_request->xferred;
3299 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3300 out:
3301 	if (obj_request)
3302 		rbd_obj_request_put(obj_request);
3303 	else
3304 		ceph_release_page_vector(pages, page_count);
3305 
3306 	return ret;
3307 }
3308 
3309 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3310 {
3311 	struct rbd_img_request *img_request;
3312 	struct ceph_snap_context *snapc = NULL;
3313 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3314 	u64 length = blk_rq_bytes(rq);
3315 	enum obj_operation_type op_type;
3316 	u64 mapping_size;
3317 	int result;
3318 
3319 	if (rq->cmd_flags & REQ_DISCARD)
3320 		op_type = OBJ_OP_DISCARD;
3321 	else if (rq->cmd_flags & REQ_WRITE)
3322 		op_type = OBJ_OP_WRITE;
3323 	else
3324 		op_type = OBJ_OP_READ;
3325 
3326 	/* Ignore/skip any zero-length requests */
3327 
3328 	if (!length) {
3329 		dout("%s: zero-length request\n", __func__);
3330 		result = 0;
3331 		goto err_rq;
3332 	}
3333 
3334 	/* Only reads are allowed to a read-only device */
3335 
3336 	if (op_type != OBJ_OP_READ) {
3337 		if (rbd_dev->mapping.read_only) {
3338 			result = -EROFS;
3339 			goto err_rq;
3340 		}
3341 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3342 	}
3343 
3344 	/*
3345 	 * Quit early if the mapped snapshot no longer exists.  It's
3346 	 * still possible the snapshot will have disappeared by the
3347 	 * time our request arrives at the osd, but there's no sense in
3348 	 * sending it if we already know.
3349 	 */
3350 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3351 		dout("request for non-existent snapshot");
3352 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3353 		result = -ENXIO;
3354 		goto err_rq;
3355 	}
3356 
3357 	if (offset && length > U64_MAX - offset + 1) {
3358 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3359 			 length);
3360 		result = -EINVAL;
3361 		goto err_rq;	/* Shouldn't happen */
3362 	}
3363 
3364 	down_read(&rbd_dev->header_rwsem);
3365 	mapping_size = rbd_dev->mapping.size;
3366 	if (op_type != OBJ_OP_READ) {
3367 		snapc = rbd_dev->header.snapc;
3368 		ceph_get_snap_context(snapc);
3369 	}
3370 	up_read(&rbd_dev->header_rwsem);
3371 
3372 	if (offset + length > mapping_size) {
3373 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3374 			 length, mapping_size);
3375 		result = -EIO;
3376 		goto err_rq;
3377 	}
3378 
3379 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3380 					     snapc);
3381 	if (!img_request) {
3382 		result = -ENOMEM;
3383 		goto err_rq;
3384 	}
3385 	img_request->rq = rq;
3386 
3387 	if (op_type == OBJ_OP_DISCARD)
3388 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3389 					      NULL);
3390 	else
3391 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3392 					      rq->bio);
3393 	if (result)
3394 		goto err_img_request;
3395 
3396 	result = rbd_img_request_submit(img_request);
3397 	if (result)
3398 		goto err_img_request;
3399 
3400 	return;
3401 
3402 err_img_request:
3403 	rbd_img_request_put(img_request);
3404 err_rq:
3405 	if (result)
3406 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3407 			 obj_op_name(op_type), length, offset, result);
3408 	if (snapc)
3409 		ceph_put_snap_context(snapc);
3410 	blk_end_request_all(rq, result);
3411 }
3412 
3413 static void rbd_request_workfn(struct work_struct *work)
3414 {
3415 	struct rbd_device *rbd_dev =
3416 	    container_of(work, struct rbd_device, rq_work);
3417 	struct request *rq, *next;
3418 	LIST_HEAD(requests);
3419 
3420 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3421 	list_splice_init(&rbd_dev->rq_queue, &requests);
3422 	spin_unlock_irq(&rbd_dev->lock);
3423 
3424 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3425 		list_del_init(&rq->queuelist);
3426 		rbd_handle_request(rbd_dev, rq);
3427 	}
3428 }
3429 
3430 /*
3431  * Called with q->queue_lock held and interrupts disabled, possibly on
3432  * the way to schedule().  Do not sleep here!
3433  */
3434 static void rbd_request_fn(struct request_queue *q)
3435 {
3436 	struct rbd_device *rbd_dev = q->queuedata;
3437 	struct request *rq;
3438 	int queued = 0;
3439 
3440 	rbd_assert(rbd_dev);
3441 
3442 	while ((rq = blk_fetch_request(q))) {
3443 		/* Ignore any non-FS requests that filter through. */
3444 		if (rq->cmd_type != REQ_TYPE_FS) {
3445 			dout("%s: non-fs request type %d\n", __func__,
3446 				(int) rq->cmd_type);
3447 			__blk_end_request_all(rq, 0);
3448 			continue;
3449 		}
3450 
3451 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3452 		queued++;
3453 	}
3454 
3455 	if (queued)
3456 		queue_work(rbd_wq, &rbd_dev->rq_work);
3457 }
3458 
3459 /*
3460  * a queue callback. Makes sure that we don't create a bio that spans across
3461  * multiple osd objects. One exception would be with a single page bios,
3462  * which we handle later at bio_chain_clone_range()
3463  */
3464 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3465 			  struct bio_vec *bvec)
3466 {
3467 	struct rbd_device *rbd_dev = q->queuedata;
3468 	sector_t sector_offset;
3469 	sector_t sectors_per_obj;
3470 	sector_t obj_sector_offset;
3471 	int ret;
3472 
3473 	/*
3474 	 * Find how far into its rbd object the partition-relative
3475 	 * bio start sector is to offset relative to the enclosing
3476 	 * device.
3477 	 */
3478 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3479 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3480 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3481 
3482 	/*
3483 	 * Compute the number of bytes from that offset to the end
3484 	 * of the object.  Account for what's already used by the bio.
3485 	 */
3486 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3487 	if (ret > bmd->bi_size)
3488 		ret -= bmd->bi_size;
3489 	else
3490 		ret = 0;
3491 
3492 	/*
3493 	 * Don't send back more than was asked for.  And if the bio
3494 	 * was empty, let the whole thing through because:  "Note
3495 	 * that a block device *must* allow a single page to be
3496 	 * added to an empty bio."
3497 	 */
3498 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3499 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3500 		ret = (int) bvec->bv_len;
3501 
3502 	return ret;
3503 }
3504 
3505 static void rbd_free_disk(struct rbd_device *rbd_dev)
3506 {
3507 	struct gendisk *disk = rbd_dev->disk;
3508 
3509 	if (!disk)
3510 		return;
3511 
3512 	rbd_dev->disk = NULL;
3513 	if (disk->flags & GENHD_FL_UP) {
3514 		del_gendisk(disk);
3515 		if (disk->queue)
3516 			blk_cleanup_queue(disk->queue);
3517 	}
3518 	put_disk(disk);
3519 }
3520 
3521 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3522 				const char *object_name,
3523 				u64 offset, u64 length, void *buf)
3524 
3525 {
3526 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3527 	struct rbd_obj_request *obj_request;
3528 	struct page **pages = NULL;
3529 	u32 page_count;
3530 	size_t size;
3531 	int ret;
3532 
3533 	page_count = (u32) calc_pages_for(offset, length);
3534 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3535 	if (IS_ERR(pages))
3536 		return PTR_ERR(pages);
3537 
3538 	ret = -ENOMEM;
3539 	obj_request = rbd_obj_request_create(object_name, offset, length,
3540 							OBJ_REQUEST_PAGES);
3541 	if (!obj_request)
3542 		goto out;
3543 
3544 	obj_request->pages = pages;
3545 	obj_request->page_count = page_count;
3546 
3547 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3548 						  obj_request);
3549 	if (!obj_request->osd_req)
3550 		goto out;
3551 
3552 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3553 					offset, length, 0, 0);
3554 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3555 					obj_request->pages,
3556 					obj_request->length,
3557 					obj_request->offset & ~PAGE_MASK,
3558 					false, false);
3559 	rbd_osd_req_format_read(obj_request);
3560 
3561 	ret = rbd_obj_request_submit(osdc, obj_request);
3562 	if (ret)
3563 		goto out;
3564 	ret = rbd_obj_request_wait(obj_request);
3565 	if (ret)
3566 		goto out;
3567 
3568 	ret = obj_request->result;
3569 	if (ret < 0)
3570 		goto out;
3571 
3572 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3573 	size = (size_t) obj_request->xferred;
3574 	ceph_copy_from_page_vector(pages, buf, 0, size);
3575 	rbd_assert(size <= (size_t)INT_MAX);
3576 	ret = (int)size;
3577 out:
3578 	if (obj_request)
3579 		rbd_obj_request_put(obj_request);
3580 	else
3581 		ceph_release_page_vector(pages, page_count);
3582 
3583 	return ret;
3584 }
3585 
3586 /*
3587  * Read the complete header for the given rbd device.  On successful
3588  * return, the rbd_dev->header field will contain up-to-date
3589  * information about the image.
3590  */
3591 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3592 {
3593 	struct rbd_image_header_ondisk *ondisk = NULL;
3594 	u32 snap_count = 0;
3595 	u64 names_size = 0;
3596 	u32 want_count;
3597 	int ret;
3598 
3599 	/*
3600 	 * The complete header will include an array of its 64-bit
3601 	 * snapshot ids, followed by the names of those snapshots as
3602 	 * a contiguous block of NUL-terminated strings.  Note that
3603 	 * the number of snapshots could change by the time we read
3604 	 * it in, in which case we re-read it.
3605 	 */
3606 	do {
3607 		size_t size;
3608 
3609 		kfree(ondisk);
3610 
3611 		size = sizeof (*ondisk);
3612 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3613 		size += names_size;
3614 		ondisk = kmalloc(size, GFP_KERNEL);
3615 		if (!ondisk)
3616 			return -ENOMEM;
3617 
3618 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3619 				       0, size, ondisk);
3620 		if (ret < 0)
3621 			goto out;
3622 		if ((size_t)ret < size) {
3623 			ret = -ENXIO;
3624 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3625 				size, ret);
3626 			goto out;
3627 		}
3628 		if (!rbd_dev_ondisk_valid(ondisk)) {
3629 			ret = -ENXIO;
3630 			rbd_warn(rbd_dev, "invalid header");
3631 			goto out;
3632 		}
3633 
3634 		names_size = le64_to_cpu(ondisk->snap_names_len);
3635 		want_count = snap_count;
3636 		snap_count = le32_to_cpu(ondisk->snap_count);
3637 	} while (snap_count != want_count);
3638 
3639 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3640 out:
3641 	kfree(ondisk);
3642 
3643 	return ret;
3644 }
3645 
3646 /*
3647  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3648  * has disappeared from the (just updated) snapshot context.
3649  */
3650 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3651 {
3652 	u64 snap_id;
3653 
3654 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3655 		return;
3656 
3657 	snap_id = rbd_dev->spec->snap_id;
3658 	if (snap_id == CEPH_NOSNAP)
3659 		return;
3660 
3661 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3662 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3663 }
3664 
3665 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3666 {
3667 	sector_t size;
3668 	bool removing;
3669 
3670 	/*
3671 	 * Don't hold the lock while doing disk operations,
3672 	 * or lock ordering will conflict with the bdev mutex via:
3673 	 * rbd_add() -> blkdev_get() -> rbd_open()
3674 	 */
3675 	spin_lock_irq(&rbd_dev->lock);
3676 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3677 	spin_unlock_irq(&rbd_dev->lock);
3678 	/*
3679 	 * If the device is being removed, rbd_dev->disk has
3680 	 * been destroyed, so don't try to update its size
3681 	 */
3682 	if (!removing) {
3683 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3684 		dout("setting size to %llu sectors", (unsigned long long)size);
3685 		set_capacity(rbd_dev->disk, size);
3686 		revalidate_disk(rbd_dev->disk);
3687 	}
3688 }
3689 
3690 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3691 {
3692 	u64 mapping_size;
3693 	int ret;
3694 
3695 	down_write(&rbd_dev->header_rwsem);
3696 	mapping_size = rbd_dev->mapping.size;
3697 
3698 	ret = rbd_dev_header_info(rbd_dev);
3699 	if (ret)
3700 		return ret;
3701 
3702 	/*
3703 	 * If there is a parent, see if it has disappeared due to the
3704 	 * mapped image getting flattened.
3705 	 */
3706 	if (rbd_dev->parent) {
3707 		ret = rbd_dev_v2_parent_info(rbd_dev);
3708 		if (ret)
3709 			return ret;
3710 	}
3711 
3712 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3713 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3714 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3715 	} else {
3716 		/* validate mapped snapshot's EXISTS flag */
3717 		rbd_exists_validate(rbd_dev);
3718 	}
3719 
3720 	up_write(&rbd_dev->header_rwsem);
3721 
3722 	if (mapping_size != rbd_dev->mapping.size)
3723 		rbd_dev_update_size(rbd_dev);
3724 
3725 	return 0;
3726 }
3727 
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730 	struct gendisk *disk;
3731 	struct request_queue *q;
3732 	u64 segment_size;
3733 
3734 	/* create gendisk info */
3735 	disk = alloc_disk(single_major ?
3736 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3737 			  RBD_MINORS_PER_MAJOR);
3738 	if (!disk)
3739 		return -ENOMEM;
3740 
3741 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3742 		 rbd_dev->dev_id);
3743 	disk->major = rbd_dev->major;
3744 	disk->first_minor = rbd_dev->minor;
3745 	if (single_major)
3746 		disk->flags |= GENHD_FL_EXT_DEVT;
3747 	disk->fops = &rbd_bd_ops;
3748 	disk->private_data = rbd_dev;
3749 
3750 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3751 	if (!q)
3752 		goto out_disk;
3753 
3754 	/* We use the default size, but let's be explicit about it. */
3755 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3756 
3757 	/* set io sizes to object size */
3758 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3759 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3760 	blk_queue_max_segment_size(q, segment_size);
3761 	blk_queue_io_min(q, segment_size);
3762 	blk_queue_io_opt(q, segment_size);
3763 
3764 	/* enable the discard support */
3765 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3766 	q->limits.discard_granularity = segment_size;
3767 	q->limits.discard_alignment = segment_size;
3768 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3769 	q->limits.discard_zeroes_data = 1;
3770 
3771 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3772 	disk->queue = q;
3773 
3774 	q->queuedata = rbd_dev;
3775 
3776 	rbd_dev->disk = disk;
3777 
3778 	return 0;
3779 out_disk:
3780 	put_disk(disk);
3781 
3782 	return -ENOMEM;
3783 }
3784 
3785 /*
3786   sysfs
3787 */
3788 
3789 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3790 {
3791 	return container_of(dev, struct rbd_device, dev);
3792 }
3793 
3794 static ssize_t rbd_size_show(struct device *dev,
3795 			     struct device_attribute *attr, char *buf)
3796 {
3797 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3798 
3799 	return sprintf(buf, "%llu\n",
3800 		(unsigned long long)rbd_dev->mapping.size);
3801 }
3802 
3803 /*
3804  * Note this shows the features for whatever's mapped, which is not
3805  * necessarily the base image.
3806  */
3807 static ssize_t rbd_features_show(struct device *dev,
3808 			     struct device_attribute *attr, char *buf)
3809 {
3810 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3811 
3812 	return sprintf(buf, "0x%016llx\n",
3813 			(unsigned long long)rbd_dev->mapping.features);
3814 }
3815 
3816 static ssize_t rbd_major_show(struct device *dev,
3817 			      struct device_attribute *attr, char *buf)
3818 {
3819 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3820 
3821 	if (rbd_dev->major)
3822 		return sprintf(buf, "%d\n", rbd_dev->major);
3823 
3824 	return sprintf(buf, "(none)\n");
3825 }
3826 
3827 static ssize_t rbd_minor_show(struct device *dev,
3828 			      struct device_attribute *attr, char *buf)
3829 {
3830 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3831 
3832 	return sprintf(buf, "%d\n", rbd_dev->minor);
3833 }
3834 
3835 static ssize_t rbd_client_id_show(struct device *dev,
3836 				  struct device_attribute *attr, char *buf)
3837 {
3838 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3839 
3840 	return sprintf(buf, "client%lld\n",
3841 			ceph_client_id(rbd_dev->rbd_client->client));
3842 }
3843 
3844 static ssize_t rbd_pool_show(struct device *dev,
3845 			     struct device_attribute *attr, char *buf)
3846 {
3847 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848 
3849 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3850 }
3851 
3852 static ssize_t rbd_pool_id_show(struct device *dev,
3853 			     struct device_attribute *attr, char *buf)
3854 {
3855 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856 
3857 	return sprintf(buf, "%llu\n",
3858 			(unsigned long long) rbd_dev->spec->pool_id);
3859 }
3860 
3861 static ssize_t rbd_name_show(struct device *dev,
3862 			     struct device_attribute *attr, char *buf)
3863 {
3864 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865 
3866 	if (rbd_dev->spec->image_name)
3867 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3868 
3869 	return sprintf(buf, "(unknown)\n");
3870 }
3871 
3872 static ssize_t rbd_image_id_show(struct device *dev,
3873 			     struct device_attribute *attr, char *buf)
3874 {
3875 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3876 
3877 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3878 }
3879 
3880 /*
3881  * Shows the name of the currently-mapped snapshot (or
3882  * RBD_SNAP_HEAD_NAME for the base image).
3883  */
3884 static ssize_t rbd_snap_show(struct device *dev,
3885 			     struct device_attribute *attr,
3886 			     char *buf)
3887 {
3888 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3889 
3890 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3891 }
3892 
3893 /*
3894  * For a v2 image, shows the chain of parent images, separated by empty
3895  * lines.  For v1 images or if there is no parent, shows "(no parent
3896  * image)".
3897  */
3898 static ssize_t rbd_parent_show(struct device *dev,
3899 			       struct device_attribute *attr,
3900 			       char *buf)
3901 {
3902 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3903 	ssize_t count = 0;
3904 
3905 	if (!rbd_dev->parent)
3906 		return sprintf(buf, "(no parent image)\n");
3907 
3908 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3909 		struct rbd_spec *spec = rbd_dev->parent_spec;
3910 
3911 		count += sprintf(&buf[count], "%s"
3912 			    "pool_id %llu\npool_name %s\n"
3913 			    "image_id %s\nimage_name %s\n"
3914 			    "snap_id %llu\nsnap_name %s\n"
3915 			    "overlap %llu\n",
3916 			    !count ? "" : "\n", /* first? */
3917 			    spec->pool_id, spec->pool_name,
3918 			    spec->image_id, spec->image_name ?: "(unknown)",
3919 			    spec->snap_id, spec->snap_name,
3920 			    rbd_dev->parent_overlap);
3921 	}
3922 
3923 	return count;
3924 }
3925 
3926 static ssize_t rbd_image_refresh(struct device *dev,
3927 				 struct device_attribute *attr,
3928 				 const char *buf,
3929 				 size_t size)
3930 {
3931 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3932 	int ret;
3933 
3934 	ret = rbd_dev_refresh(rbd_dev);
3935 	if (ret)
3936 		return ret;
3937 
3938 	return size;
3939 }
3940 
3941 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3942 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3943 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3944 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3945 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3946 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3947 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3948 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3949 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3950 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3951 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3952 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3953 
3954 static struct attribute *rbd_attrs[] = {
3955 	&dev_attr_size.attr,
3956 	&dev_attr_features.attr,
3957 	&dev_attr_major.attr,
3958 	&dev_attr_minor.attr,
3959 	&dev_attr_client_id.attr,
3960 	&dev_attr_pool.attr,
3961 	&dev_attr_pool_id.attr,
3962 	&dev_attr_name.attr,
3963 	&dev_attr_image_id.attr,
3964 	&dev_attr_current_snap.attr,
3965 	&dev_attr_parent.attr,
3966 	&dev_attr_refresh.attr,
3967 	NULL
3968 };
3969 
3970 static struct attribute_group rbd_attr_group = {
3971 	.attrs = rbd_attrs,
3972 };
3973 
3974 static const struct attribute_group *rbd_attr_groups[] = {
3975 	&rbd_attr_group,
3976 	NULL
3977 };
3978 
3979 static void rbd_sysfs_dev_release(struct device *dev)
3980 {
3981 }
3982 
3983 static struct device_type rbd_device_type = {
3984 	.name		= "rbd",
3985 	.groups		= rbd_attr_groups,
3986 	.release	= rbd_sysfs_dev_release,
3987 };
3988 
3989 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3990 {
3991 	kref_get(&spec->kref);
3992 
3993 	return spec;
3994 }
3995 
3996 static void rbd_spec_free(struct kref *kref);
3997 static void rbd_spec_put(struct rbd_spec *spec)
3998 {
3999 	if (spec)
4000 		kref_put(&spec->kref, rbd_spec_free);
4001 }
4002 
4003 static struct rbd_spec *rbd_spec_alloc(void)
4004 {
4005 	struct rbd_spec *spec;
4006 
4007 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4008 	if (!spec)
4009 		return NULL;
4010 
4011 	spec->pool_id = CEPH_NOPOOL;
4012 	spec->snap_id = CEPH_NOSNAP;
4013 	kref_init(&spec->kref);
4014 
4015 	return spec;
4016 }
4017 
4018 static void rbd_spec_free(struct kref *kref)
4019 {
4020 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4021 
4022 	kfree(spec->pool_name);
4023 	kfree(spec->image_id);
4024 	kfree(spec->image_name);
4025 	kfree(spec->snap_name);
4026 	kfree(spec);
4027 }
4028 
4029 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4030 				struct rbd_spec *spec)
4031 {
4032 	struct rbd_device *rbd_dev;
4033 
4034 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4035 	if (!rbd_dev)
4036 		return NULL;
4037 
4038 	spin_lock_init(&rbd_dev->lock);
4039 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
4040 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4041 	rbd_dev->flags = 0;
4042 	atomic_set(&rbd_dev->parent_ref, 0);
4043 	INIT_LIST_HEAD(&rbd_dev->node);
4044 	init_rwsem(&rbd_dev->header_rwsem);
4045 
4046 	rbd_dev->spec = spec;
4047 	rbd_dev->rbd_client = rbdc;
4048 
4049 	/* Initialize the layout used for all rbd requests */
4050 
4051 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4052 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4053 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4054 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4055 
4056 	return rbd_dev;
4057 }
4058 
4059 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4060 {
4061 	rbd_put_client(rbd_dev->rbd_client);
4062 	rbd_spec_put(rbd_dev->spec);
4063 	kfree(rbd_dev);
4064 }
4065 
4066 /*
4067  * Get the size and object order for an image snapshot, or if
4068  * snap_id is CEPH_NOSNAP, gets this information for the base
4069  * image.
4070  */
4071 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4072 				u8 *order, u64 *snap_size)
4073 {
4074 	__le64 snapid = cpu_to_le64(snap_id);
4075 	int ret;
4076 	struct {
4077 		u8 order;
4078 		__le64 size;
4079 	} __attribute__ ((packed)) size_buf = { 0 };
4080 
4081 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4082 				"rbd", "get_size",
4083 				&snapid, sizeof (snapid),
4084 				&size_buf, sizeof (size_buf));
4085 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4086 	if (ret < 0)
4087 		return ret;
4088 	if (ret < sizeof (size_buf))
4089 		return -ERANGE;
4090 
4091 	if (order) {
4092 		*order = size_buf.order;
4093 		dout("  order %u", (unsigned int)*order);
4094 	}
4095 	*snap_size = le64_to_cpu(size_buf.size);
4096 
4097 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4098 		(unsigned long long)snap_id,
4099 		(unsigned long long)*snap_size);
4100 
4101 	return 0;
4102 }
4103 
4104 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4105 {
4106 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4107 					&rbd_dev->header.obj_order,
4108 					&rbd_dev->header.image_size);
4109 }
4110 
4111 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4112 {
4113 	void *reply_buf;
4114 	int ret;
4115 	void *p;
4116 
4117 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4118 	if (!reply_buf)
4119 		return -ENOMEM;
4120 
4121 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122 				"rbd", "get_object_prefix", NULL, 0,
4123 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4124 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4125 	if (ret < 0)
4126 		goto out;
4127 
4128 	p = reply_buf;
4129 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4130 						p + ret, NULL, GFP_NOIO);
4131 	ret = 0;
4132 
4133 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4134 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4135 		rbd_dev->header.object_prefix = NULL;
4136 	} else {
4137 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4138 	}
4139 out:
4140 	kfree(reply_buf);
4141 
4142 	return ret;
4143 }
4144 
4145 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4146 		u64 *snap_features)
4147 {
4148 	__le64 snapid = cpu_to_le64(snap_id);
4149 	struct {
4150 		__le64 features;
4151 		__le64 incompat;
4152 	} __attribute__ ((packed)) features_buf = { 0 };
4153 	u64 incompat;
4154 	int ret;
4155 
4156 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4157 				"rbd", "get_features",
4158 				&snapid, sizeof (snapid),
4159 				&features_buf, sizeof (features_buf));
4160 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4161 	if (ret < 0)
4162 		return ret;
4163 	if (ret < sizeof (features_buf))
4164 		return -ERANGE;
4165 
4166 	incompat = le64_to_cpu(features_buf.incompat);
4167 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4168 		return -ENXIO;
4169 
4170 	*snap_features = le64_to_cpu(features_buf.features);
4171 
4172 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4173 		(unsigned long long)snap_id,
4174 		(unsigned long long)*snap_features,
4175 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4176 
4177 	return 0;
4178 }
4179 
4180 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4181 {
4182 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4183 						&rbd_dev->header.features);
4184 }
4185 
4186 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4187 {
4188 	struct rbd_spec *parent_spec;
4189 	size_t size;
4190 	void *reply_buf = NULL;
4191 	__le64 snapid;
4192 	void *p;
4193 	void *end;
4194 	u64 pool_id;
4195 	char *image_id;
4196 	u64 snap_id;
4197 	u64 overlap;
4198 	int ret;
4199 
4200 	parent_spec = rbd_spec_alloc();
4201 	if (!parent_spec)
4202 		return -ENOMEM;
4203 
4204 	size = sizeof (__le64) +				/* pool_id */
4205 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4206 		sizeof (__le64) +				/* snap_id */
4207 		sizeof (__le64);				/* overlap */
4208 	reply_buf = kmalloc(size, GFP_KERNEL);
4209 	if (!reply_buf) {
4210 		ret = -ENOMEM;
4211 		goto out_err;
4212 	}
4213 
4214 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4215 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4216 				"rbd", "get_parent",
4217 				&snapid, sizeof (snapid),
4218 				reply_buf, size);
4219 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4220 	if (ret < 0)
4221 		goto out_err;
4222 
4223 	p = reply_buf;
4224 	end = reply_buf + ret;
4225 	ret = -ERANGE;
4226 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4227 	if (pool_id == CEPH_NOPOOL) {
4228 		/*
4229 		 * Either the parent never existed, or we have
4230 		 * record of it but the image got flattened so it no
4231 		 * longer has a parent.  When the parent of a
4232 		 * layered image disappears we immediately set the
4233 		 * overlap to 0.  The effect of this is that all new
4234 		 * requests will be treated as if the image had no
4235 		 * parent.
4236 		 */
4237 		if (rbd_dev->parent_overlap) {
4238 			rbd_dev->parent_overlap = 0;
4239 			smp_mb();
4240 			rbd_dev_parent_put(rbd_dev);
4241 			pr_info("%s: clone image has been flattened\n",
4242 				rbd_dev->disk->disk_name);
4243 		}
4244 
4245 		goto out;	/* No parent?  No problem. */
4246 	}
4247 
4248 	/* The ceph file layout needs to fit pool id in 32 bits */
4249 
4250 	ret = -EIO;
4251 	if (pool_id > (u64)U32_MAX) {
4252 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4253 			(unsigned long long)pool_id, U32_MAX);
4254 		goto out_err;
4255 	}
4256 
4257 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4258 	if (IS_ERR(image_id)) {
4259 		ret = PTR_ERR(image_id);
4260 		goto out_err;
4261 	}
4262 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4263 	ceph_decode_64_safe(&p, end, overlap, out_err);
4264 
4265 	/*
4266 	 * The parent won't change (except when the clone is
4267 	 * flattened, already handled that).  So we only need to
4268 	 * record the parent spec we have not already done so.
4269 	 */
4270 	if (!rbd_dev->parent_spec) {
4271 		parent_spec->pool_id = pool_id;
4272 		parent_spec->image_id = image_id;
4273 		parent_spec->snap_id = snap_id;
4274 		rbd_dev->parent_spec = parent_spec;
4275 		parent_spec = NULL;	/* rbd_dev now owns this */
4276 	} else {
4277 		kfree(image_id);
4278 	}
4279 
4280 	/*
4281 	 * We always update the parent overlap.  If it's zero we
4282 	 * treat it specially.
4283 	 */
4284 	rbd_dev->parent_overlap = overlap;
4285 	smp_mb();
4286 	if (!overlap) {
4287 
4288 		/* A null parent_spec indicates it's the initial probe */
4289 
4290 		if (parent_spec) {
4291 			/*
4292 			 * The overlap has become zero, so the clone
4293 			 * must have been resized down to 0 at some
4294 			 * point.  Treat this the same as a flatten.
4295 			 */
4296 			rbd_dev_parent_put(rbd_dev);
4297 			pr_info("%s: clone image now standalone\n",
4298 				rbd_dev->disk->disk_name);
4299 		} else {
4300 			/*
4301 			 * For the initial probe, if we find the
4302 			 * overlap is zero we just pretend there was
4303 			 * no parent image.
4304 			 */
4305 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4306 		}
4307 	}
4308 out:
4309 	ret = 0;
4310 out_err:
4311 	kfree(reply_buf);
4312 	rbd_spec_put(parent_spec);
4313 
4314 	return ret;
4315 }
4316 
4317 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4318 {
4319 	struct {
4320 		__le64 stripe_unit;
4321 		__le64 stripe_count;
4322 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4323 	size_t size = sizeof (striping_info_buf);
4324 	void *p;
4325 	u64 obj_size;
4326 	u64 stripe_unit;
4327 	u64 stripe_count;
4328 	int ret;
4329 
4330 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4331 				"rbd", "get_stripe_unit_count", NULL, 0,
4332 				(char *)&striping_info_buf, size);
4333 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4334 	if (ret < 0)
4335 		return ret;
4336 	if (ret < size)
4337 		return -ERANGE;
4338 
4339 	/*
4340 	 * We don't actually support the "fancy striping" feature
4341 	 * (STRIPINGV2) yet, but if the striping sizes are the
4342 	 * defaults the behavior is the same as before.  So find
4343 	 * out, and only fail if the image has non-default values.
4344 	 */
4345 	ret = -EINVAL;
4346 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4347 	p = &striping_info_buf;
4348 	stripe_unit = ceph_decode_64(&p);
4349 	if (stripe_unit != obj_size) {
4350 		rbd_warn(rbd_dev, "unsupported stripe unit "
4351 				"(got %llu want %llu)",
4352 				stripe_unit, obj_size);
4353 		return -EINVAL;
4354 	}
4355 	stripe_count = ceph_decode_64(&p);
4356 	if (stripe_count != 1) {
4357 		rbd_warn(rbd_dev, "unsupported stripe count "
4358 				"(got %llu want 1)", stripe_count);
4359 		return -EINVAL;
4360 	}
4361 	rbd_dev->header.stripe_unit = stripe_unit;
4362 	rbd_dev->header.stripe_count = stripe_count;
4363 
4364 	return 0;
4365 }
4366 
4367 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4368 {
4369 	size_t image_id_size;
4370 	char *image_id;
4371 	void *p;
4372 	void *end;
4373 	size_t size;
4374 	void *reply_buf = NULL;
4375 	size_t len = 0;
4376 	char *image_name = NULL;
4377 	int ret;
4378 
4379 	rbd_assert(!rbd_dev->spec->image_name);
4380 
4381 	len = strlen(rbd_dev->spec->image_id);
4382 	image_id_size = sizeof (__le32) + len;
4383 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4384 	if (!image_id)
4385 		return NULL;
4386 
4387 	p = image_id;
4388 	end = image_id + image_id_size;
4389 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4390 
4391 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4392 	reply_buf = kmalloc(size, GFP_KERNEL);
4393 	if (!reply_buf)
4394 		goto out;
4395 
4396 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4397 				"rbd", "dir_get_name",
4398 				image_id, image_id_size,
4399 				reply_buf, size);
4400 	if (ret < 0)
4401 		goto out;
4402 	p = reply_buf;
4403 	end = reply_buf + ret;
4404 
4405 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4406 	if (IS_ERR(image_name))
4407 		image_name = NULL;
4408 	else
4409 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4410 out:
4411 	kfree(reply_buf);
4412 	kfree(image_id);
4413 
4414 	return image_name;
4415 }
4416 
4417 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4418 {
4419 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4420 	const char *snap_name;
4421 	u32 which = 0;
4422 
4423 	/* Skip over names until we find the one we are looking for */
4424 
4425 	snap_name = rbd_dev->header.snap_names;
4426 	while (which < snapc->num_snaps) {
4427 		if (!strcmp(name, snap_name))
4428 			return snapc->snaps[which];
4429 		snap_name += strlen(snap_name) + 1;
4430 		which++;
4431 	}
4432 	return CEPH_NOSNAP;
4433 }
4434 
4435 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4436 {
4437 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4438 	u32 which;
4439 	bool found = false;
4440 	u64 snap_id;
4441 
4442 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4443 		const char *snap_name;
4444 
4445 		snap_id = snapc->snaps[which];
4446 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4447 		if (IS_ERR(snap_name)) {
4448 			/* ignore no-longer existing snapshots */
4449 			if (PTR_ERR(snap_name) == -ENOENT)
4450 				continue;
4451 			else
4452 				break;
4453 		}
4454 		found = !strcmp(name, snap_name);
4455 		kfree(snap_name);
4456 	}
4457 	return found ? snap_id : CEPH_NOSNAP;
4458 }
4459 
4460 /*
4461  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4462  * no snapshot by that name is found, or if an error occurs.
4463  */
4464 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4465 {
4466 	if (rbd_dev->image_format == 1)
4467 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4468 
4469 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4470 }
4471 
4472 /*
4473  * An image being mapped will have everything but the snap id.
4474  */
4475 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4476 {
4477 	struct rbd_spec *spec = rbd_dev->spec;
4478 
4479 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4480 	rbd_assert(spec->image_id && spec->image_name);
4481 	rbd_assert(spec->snap_name);
4482 
4483 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4484 		u64 snap_id;
4485 
4486 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4487 		if (snap_id == CEPH_NOSNAP)
4488 			return -ENOENT;
4489 
4490 		spec->snap_id = snap_id;
4491 	} else {
4492 		spec->snap_id = CEPH_NOSNAP;
4493 	}
4494 
4495 	return 0;
4496 }
4497 
4498 /*
4499  * A parent image will have all ids but none of the names.
4500  *
4501  * All names in an rbd spec are dynamically allocated.  It's OK if we
4502  * can't figure out the name for an image id.
4503  */
4504 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4505 {
4506 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507 	struct rbd_spec *spec = rbd_dev->spec;
4508 	const char *pool_name;
4509 	const char *image_name;
4510 	const char *snap_name;
4511 	int ret;
4512 
4513 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4514 	rbd_assert(spec->image_id);
4515 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4516 
4517 	/* Get the pool name; we have to make our own copy of this */
4518 
4519 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4520 	if (!pool_name) {
4521 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4522 		return -EIO;
4523 	}
4524 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4525 	if (!pool_name)
4526 		return -ENOMEM;
4527 
4528 	/* Fetch the image name; tolerate failure here */
4529 
4530 	image_name = rbd_dev_image_name(rbd_dev);
4531 	if (!image_name)
4532 		rbd_warn(rbd_dev, "unable to get image name");
4533 
4534 	/* Fetch the snapshot name */
4535 
4536 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4537 	if (IS_ERR(snap_name)) {
4538 		ret = PTR_ERR(snap_name);
4539 		goto out_err;
4540 	}
4541 
4542 	spec->pool_name = pool_name;
4543 	spec->image_name = image_name;
4544 	spec->snap_name = snap_name;
4545 
4546 	return 0;
4547 
4548 out_err:
4549 	kfree(image_name);
4550 	kfree(pool_name);
4551 	return ret;
4552 }
4553 
4554 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4555 {
4556 	size_t size;
4557 	int ret;
4558 	void *reply_buf;
4559 	void *p;
4560 	void *end;
4561 	u64 seq;
4562 	u32 snap_count;
4563 	struct ceph_snap_context *snapc;
4564 	u32 i;
4565 
4566 	/*
4567 	 * We'll need room for the seq value (maximum snapshot id),
4568 	 * snapshot count, and array of that many snapshot ids.
4569 	 * For now we have a fixed upper limit on the number we're
4570 	 * prepared to receive.
4571 	 */
4572 	size = sizeof (__le64) + sizeof (__le32) +
4573 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4574 	reply_buf = kzalloc(size, GFP_KERNEL);
4575 	if (!reply_buf)
4576 		return -ENOMEM;
4577 
4578 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4579 				"rbd", "get_snapcontext", NULL, 0,
4580 				reply_buf, size);
4581 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4582 	if (ret < 0)
4583 		goto out;
4584 
4585 	p = reply_buf;
4586 	end = reply_buf + ret;
4587 	ret = -ERANGE;
4588 	ceph_decode_64_safe(&p, end, seq, out);
4589 	ceph_decode_32_safe(&p, end, snap_count, out);
4590 
4591 	/*
4592 	 * Make sure the reported number of snapshot ids wouldn't go
4593 	 * beyond the end of our buffer.  But before checking that,
4594 	 * make sure the computed size of the snapshot context we
4595 	 * allocate is representable in a size_t.
4596 	 */
4597 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4598 				 / sizeof (u64)) {
4599 		ret = -EINVAL;
4600 		goto out;
4601 	}
4602 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4603 		goto out;
4604 	ret = 0;
4605 
4606 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4607 	if (!snapc) {
4608 		ret = -ENOMEM;
4609 		goto out;
4610 	}
4611 	snapc->seq = seq;
4612 	for (i = 0; i < snap_count; i++)
4613 		snapc->snaps[i] = ceph_decode_64(&p);
4614 
4615 	ceph_put_snap_context(rbd_dev->header.snapc);
4616 	rbd_dev->header.snapc = snapc;
4617 
4618 	dout("  snap context seq = %llu, snap_count = %u\n",
4619 		(unsigned long long)seq, (unsigned int)snap_count);
4620 out:
4621 	kfree(reply_buf);
4622 
4623 	return ret;
4624 }
4625 
4626 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4627 					u64 snap_id)
4628 {
4629 	size_t size;
4630 	void *reply_buf;
4631 	__le64 snapid;
4632 	int ret;
4633 	void *p;
4634 	void *end;
4635 	char *snap_name;
4636 
4637 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4638 	reply_buf = kmalloc(size, GFP_KERNEL);
4639 	if (!reply_buf)
4640 		return ERR_PTR(-ENOMEM);
4641 
4642 	snapid = cpu_to_le64(snap_id);
4643 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4644 				"rbd", "get_snapshot_name",
4645 				&snapid, sizeof (snapid),
4646 				reply_buf, size);
4647 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4648 	if (ret < 0) {
4649 		snap_name = ERR_PTR(ret);
4650 		goto out;
4651 	}
4652 
4653 	p = reply_buf;
4654 	end = reply_buf + ret;
4655 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4656 	if (IS_ERR(snap_name))
4657 		goto out;
4658 
4659 	dout("  snap_id 0x%016llx snap_name = %s\n",
4660 		(unsigned long long)snap_id, snap_name);
4661 out:
4662 	kfree(reply_buf);
4663 
4664 	return snap_name;
4665 }
4666 
4667 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4668 {
4669 	bool first_time = rbd_dev->header.object_prefix == NULL;
4670 	int ret;
4671 
4672 	ret = rbd_dev_v2_image_size(rbd_dev);
4673 	if (ret)
4674 		return ret;
4675 
4676 	if (first_time) {
4677 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4678 		if (ret)
4679 			return ret;
4680 	}
4681 
4682 	ret = rbd_dev_v2_snap_context(rbd_dev);
4683 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4684 
4685 	return ret;
4686 }
4687 
4688 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4689 {
4690 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4691 
4692 	if (rbd_dev->image_format == 1)
4693 		return rbd_dev_v1_header_info(rbd_dev);
4694 
4695 	return rbd_dev_v2_header_info(rbd_dev);
4696 }
4697 
4698 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4699 {
4700 	struct device *dev;
4701 	int ret;
4702 
4703 	dev = &rbd_dev->dev;
4704 	dev->bus = &rbd_bus_type;
4705 	dev->type = &rbd_device_type;
4706 	dev->parent = &rbd_root_dev;
4707 	dev->release = rbd_dev_device_release;
4708 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4709 	ret = device_register(dev);
4710 
4711 	return ret;
4712 }
4713 
4714 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4715 {
4716 	device_unregister(&rbd_dev->dev);
4717 }
4718 
4719 /*
4720  * Get a unique rbd identifier for the given new rbd_dev, and add
4721  * the rbd_dev to the global list.
4722  */
4723 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4724 {
4725 	int new_dev_id;
4726 
4727 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4728 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4729 				    GFP_KERNEL);
4730 	if (new_dev_id < 0)
4731 		return new_dev_id;
4732 
4733 	rbd_dev->dev_id = new_dev_id;
4734 
4735 	spin_lock(&rbd_dev_list_lock);
4736 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4737 	spin_unlock(&rbd_dev_list_lock);
4738 
4739 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4740 
4741 	return 0;
4742 }
4743 
4744 /*
4745  * Remove an rbd_dev from the global list, and record that its
4746  * identifier is no longer in use.
4747  */
4748 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4749 {
4750 	spin_lock(&rbd_dev_list_lock);
4751 	list_del_init(&rbd_dev->node);
4752 	spin_unlock(&rbd_dev_list_lock);
4753 
4754 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4755 
4756 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4757 }
4758 
4759 /*
4760  * Skips over white space at *buf, and updates *buf to point to the
4761  * first found non-space character (if any). Returns the length of
4762  * the token (string of non-white space characters) found.  Note
4763  * that *buf must be terminated with '\0'.
4764  */
4765 static inline size_t next_token(const char **buf)
4766 {
4767         /*
4768         * These are the characters that produce nonzero for
4769         * isspace() in the "C" and "POSIX" locales.
4770         */
4771         const char *spaces = " \f\n\r\t\v";
4772 
4773         *buf += strspn(*buf, spaces);	/* Find start of token */
4774 
4775 	return strcspn(*buf, spaces);   /* Return token length */
4776 }
4777 
4778 /*
4779  * Finds the next token in *buf, and if the provided token buffer is
4780  * big enough, copies the found token into it.  The result, if
4781  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4782  * must be terminated with '\0' on entry.
4783  *
4784  * Returns the length of the token found (not including the '\0').
4785  * Return value will be 0 if no token is found, and it will be >=
4786  * token_size if the token would not fit.
4787  *
4788  * The *buf pointer will be updated to point beyond the end of the
4789  * found token.  Note that this occurs even if the token buffer is
4790  * too small to hold it.
4791  */
4792 static inline size_t copy_token(const char **buf,
4793 				char *token,
4794 				size_t token_size)
4795 {
4796         size_t len;
4797 
4798 	len = next_token(buf);
4799 	if (len < token_size) {
4800 		memcpy(token, *buf, len);
4801 		*(token + len) = '\0';
4802 	}
4803 	*buf += len;
4804 
4805         return len;
4806 }
4807 
4808 /*
4809  * Finds the next token in *buf, dynamically allocates a buffer big
4810  * enough to hold a copy of it, and copies the token into the new
4811  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4812  * that a duplicate buffer is created even for a zero-length token.
4813  *
4814  * Returns a pointer to the newly-allocated duplicate, or a null
4815  * pointer if memory for the duplicate was not available.  If
4816  * the lenp argument is a non-null pointer, the length of the token
4817  * (not including the '\0') is returned in *lenp.
4818  *
4819  * If successful, the *buf pointer will be updated to point beyond
4820  * the end of the found token.
4821  *
4822  * Note: uses GFP_KERNEL for allocation.
4823  */
4824 static inline char *dup_token(const char **buf, size_t *lenp)
4825 {
4826 	char *dup;
4827 	size_t len;
4828 
4829 	len = next_token(buf);
4830 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4831 	if (!dup)
4832 		return NULL;
4833 	*(dup + len) = '\0';
4834 	*buf += len;
4835 
4836 	if (lenp)
4837 		*lenp = len;
4838 
4839 	return dup;
4840 }
4841 
4842 /*
4843  * Parse the options provided for an "rbd add" (i.e., rbd image
4844  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4845  * and the data written is passed here via a NUL-terminated buffer.
4846  * Returns 0 if successful or an error code otherwise.
4847  *
4848  * The information extracted from these options is recorded in
4849  * the other parameters which return dynamically-allocated
4850  * structures:
4851  *  ceph_opts
4852  *      The address of a pointer that will refer to a ceph options
4853  *      structure.  Caller must release the returned pointer using
4854  *      ceph_destroy_options() when it is no longer needed.
4855  *  rbd_opts
4856  *	Address of an rbd options pointer.  Fully initialized by
4857  *	this function; caller must release with kfree().
4858  *  spec
4859  *	Address of an rbd image specification pointer.  Fully
4860  *	initialized by this function based on parsed options.
4861  *	Caller must release with rbd_spec_put().
4862  *
4863  * The options passed take this form:
4864  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4865  * where:
4866  *  <mon_addrs>
4867  *      A comma-separated list of one or more monitor addresses.
4868  *      A monitor address is an ip address, optionally followed
4869  *      by a port number (separated by a colon).
4870  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4871  *  <options>
4872  *      A comma-separated list of ceph and/or rbd options.
4873  *  <pool_name>
4874  *      The name of the rados pool containing the rbd image.
4875  *  <image_name>
4876  *      The name of the image in that pool to map.
4877  *  <snap_id>
4878  *      An optional snapshot id.  If provided, the mapping will
4879  *      present data from the image at the time that snapshot was
4880  *      created.  The image head is used if no snapshot id is
4881  *      provided.  Snapshot mappings are always read-only.
4882  */
4883 static int rbd_add_parse_args(const char *buf,
4884 				struct ceph_options **ceph_opts,
4885 				struct rbd_options **opts,
4886 				struct rbd_spec **rbd_spec)
4887 {
4888 	size_t len;
4889 	char *options;
4890 	const char *mon_addrs;
4891 	char *snap_name;
4892 	size_t mon_addrs_size;
4893 	struct rbd_spec *spec = NULL;
4894 	struct rbd_options *rbd_opts = NULL;
4895 	struct ceph_options *copts;
4896 	int ret;
4897 
4898 	/* The first four tokens are required */
4899 
4900 	len = next_token(&buf);
4901 	if (!len) {
4902 		rbd_warn(NULL, "no monitor address(es) provided");
4903 		return -EINVAL;
4904 	}
4905 	mon_addrs = buf;
4906 	mon_addrs_size = len + 1;
4907 	buf += len;
4908 
4909 	ret = -EINVAL;
4910 	options = dup_token(&buf, NULL);
4911 	if (!options)
4912 		return -ENOMEM;
4913 	if (!*options) {
4914 		rbd_warn(NULL, "no options provided");
4915 		goto out_err;
4916 	}
4917 
4918 	spec = rbd_spec_alloc();
4919 	if (!spec)
4920 		goto out_mem;
4921 
4922 	spec->pool_name = dup_token(&buf, NULL);
4923 	if (!spec->pool_name)
4924 		goto out_mem;
4925 	if (!*spec->pool_name) {
4926 		rbd_warn(NULL, "no pool name provided");
4927 		goto out_err;
4928 	}
4929 
4930 	spec->image_name = dup_token(&buf, NULL);
4931 	if (!spec->image_name)
4932 		goto out_mem;
4933 	if (!*spec->image_name) {
4934 		rbd_warn(NULL, "no image name provided");
4935 		goto out_err;
4936 	}
4937 
4938 	/*
4939 	 * Snapshot name is optional; default is to use "-"
4940 	 * (indicating the head/no snapshot).
4941 	 */
4942 	len = next_token(&buf);
4943 	if (!len) {
4944 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4945 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4946 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4947 		ret = -ENAMETOOLONG;
4948 		goto out_err;
4949 	}
4950 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4951 	if (!snap_name)
4952 		goto out_mem;
4953 	*(snap_name + len) = '\0';
4954 	spec->snap_name = snap_name;
4955 
4956 	/* Initialize all rbd options to the defaults */
4957 
4958 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4959 	if (!rbd_opts)
4960 		goto out_mem;
4961 
4962 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4963 
4964 	copts = ceph_parse_options(options, mon_addrs,
4965 					mon_addrs + mon_addrs_size - 1,
4966 					parse_rbd_opts_token, rbd_opts);
4967 	if (IS_ERR(copts)) {
4968 		ret = PTR_ERR(copts);
4969 		goto out_err;
4970 	}
4971 	kfree(options);
4972 
4973 	*ceph_opts = copts;
4974 	*opts = rbd_opts;
4975 	*rbd_spec = spec;
4976 
4977 	return 0;
4978 out_mem:
4979 	ret = -ENOMEM;
4980 out_err:
4981 	kfree(rbd_opts);
4982 	rbd_spec_put(spec);
4983 	kfree(options);
4984 
4985 	return ret;
4986 }
4987 
4988 /*
4989  * Return pool id (>= 0) or a negative error code.
4990  */
4991 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4992 {
4993 	u64 newest_epoch;
4994 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4995 	int tries = 0;
4996 	int ret;
4997 
4998 again:
4999 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5000 	if (ret == -ENOENT && tries++ < 1) {
5001 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5002 					       &newest_epoch);
5003 		if (ret < 0)
5004 			return ret;
5005 
5006 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5007 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5008 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5009 						     newest_epoch, timeout);
5010 			goto again;
5011 		} else {
5012 			/* the osdmap we have is new enough */
5013 			return -ENOENT;
5014 		}
5015 	}
5016 
5017 	return ret;
5018 }
5019 
5020 /*
5021  * An rbd format 2 image has a unique identifier, distinct from the
5022  * name given to it by the user.  Internally, that identifier is
5023  * what's used to specify the names of objects related to the image.
5024  *
5025  * A special "rbd id" object is used to map an rbd image name to its
5026  * id.  If that object doesn't exist, then there is no v2 rbd image
5027  * with the supplied name.
5028  *
5029  * This function will record the given rbd_dev's image_id field if
5030  * it can be determined, and in that case will return 0.  If any
5031  * errors occur a negative errno will be returned and the rbd_dev's
5032  * image_id field will be unchanged (and should be NULL).
5033  */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036 	int ret;
5037 	size_t size;
5038 	char *object_name;
5039 	void *response;
5040 	char *image_id;
5041 
5042 	/*
5043 	 * When probing a parent image, the image id is already
5044 	 * known (and the image name likely is not).  There's no
5045 	 * need to fetch the image id again in this case.  We
5046 	 * do still need to set the image format though.
5047 	 */
5048 	if (rbd_dev->spec->image_id) {
5049 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050 
5051 		return 0;
5052 	}
5053 
5054 	/*
5055 	 * First, see if the format 2 image id file exists, and if
5056 	 * so, get the image's persistent id from it.
5057 	 */
5058 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059 	object_name = kmalloc(size, GFP_NOIO);
5060 	if (!object_name)
5061 		return -ENOMEM;
5062 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063 	dout("rbd id object name is %s\n", object_name);
5064 
5065 	/* Response will be an encoded string, which includes a length */
5066 
5067 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068 	response = kzalloc(size, GFP_NOIO);
5069 	if (!response) {
5070 		ret = -ENOMEM;
5071 		goto out;
5072 	}
5073 
5074 	/* If it doesn't exist we'll assume it's a format 1 image */
5075 
5076 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5077 				"rbd", "get_id", NULL, 0,
5078 				response, RBD_IMAGE_ID_LEN_MAX);
5079 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080 	if (ret == -ENOENT) {
5081 		image_id = kstrdup("", GFP_KERNEL);
5082 		ret = image_id ? 0 : -ENOMEM;
5083 		if (!ret)
5084 			rbd_dev->image_format = 1;
5085 	} else if (ret >= 0) {
5086 		void *p = response;
5087 
5088 		image_id = ceph_extract_encoded_string(&p, p + ret,
5089 						NULL, GFP_NOIO);
5090 		ret = PTR_ERR_OR_ZERO(image_id);
5091 		if (!ret)
5092 			rbd_dev->image_format = 2;
5093 	}
5094 
5095 	if (!ret) {
5096 		rbd_dev->spec->image_id = image_id;
5097 		dout("image_id is %s\n", image_id);
5098 	}
5099 out:
5100 	kfree(response);
5101 	kfree(object_name);
5102 
5103 	return ret;
5104 }
5105 
5106 /*
5107  * Undo whatever state changes are made by v1 or v2 header info
5108  * call.
5109  */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112 	struct rbd_image_header	*header;
5113 
5114 	/* Drop parent reference unless it's already been done (or none) */
5115 
5116 	if (rbd_dev->parent_overlap)
5117 		rbd_dev_parent_put(rbd_dev);
5118 
5119 	/* Free dynamic fields from the header, then zero it out */
5120 
5121 	header = &rbd_dev->header;
5122 	ceph_put_snap_context(header->snapc);
5123 	kfree(header->snap_sizes);
5124 	kfree(header->snap_names);
5125 	kfree(header->object_prefix);
5126 	memset(header, 0, sizeof (*header));
5127 }
5128 
5129 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5130 {
5131 	int ret;
5132 
5133 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5134 	if (ret)
5135 		goto out_err;
5136 
5137 	/*
5138 	 * Get the and check features for the image.  Currently the
5139 	 * features are assumed to never change.
5140 	 */
5141 	ret = rbd_dev_v2_features(rbd_dev);
5142 	if (ret)
5143 		goto out_err;
5144 
5145 	/* If the image supports fancy striping, get its parameters */
5146 
5147 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5148 		ret = rbd_dev_v2_striping_info(rbd_dev);
5149 		if (ret < 0)
5150 			goto out_err;
5151 	}
5152 	/* No support for crypto and compression type format 2 images */
5153 
5154 	return 0;
5155 out_err:
5156 	rbd_dev->header.features = 0;
5157 	kfree(rbd_dev->header.object_prefix);
5158 	rbd_dev->header.object_prefix = NULL;
5159 
5160 	return ret;
5161 }
5162 
5163 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5164 {
5165 	struct rbd_device *parent = NULL;
5166 	struct rbd_spec *parent_spec;
5167 	struct rbd_client *rbdc;
5168 	int ret;
5169 
5170 	if (!rbd_dev->parent_spec)
5171 		return 0;
5172 	/*
5173 	 * We need to pass a reference to the client and the parent
5174 	 * spec when creating the parent rbd_dev.  Images related by
5175 	 * parent/child relationships always share both.
5176 	 */
5177 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5178 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5179 
5180 	ret = -ENOMEM;
5181 	parent = rbd_dev_create(rbdc, parent_spec);
5182 	if (!parent)
5183 		goto out_err;
5184 
5185 	ret = rbd_dev_image_probe(parent, false);
5186 	if (ret < 0)
5187 		goto out_err;
5188 	rbd_dev->parent = parent;
5189 	atomic_set(&rbd_dev->parent_ref, 1);
5190 
5191 	return 0;
5192 out_err:
5193 	if (parent) {
5194 		rbd_dev_unparent(rbd_dev);
5195 		kfree(rbd_dev->header_name);
5196 		rbd_dev_destroy(parent);
5197 	} else {
5198 		rbd_put_client(rbdc);
5199 		rbd_spec_put(parent_spec);
5200 	}
5201 
5202 	return ret;
5203 }
5204 
5205 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5206 {
5207 	int ret;
5208 
5209 	/* Get an id and fill in device name. */
5210 
5211 	ret = rbd_dev_id_get(rbd_dev);
5212 	if (ret)
5213 		return ret;
5214 
5215 	BUILD_BUG_ON(DEV_NAME_LEN
5216 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5217 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5218 
5219 	/* Record our major and minor device numbers. */
5220 
5221 	if (!single_major) {
5222 		ret = register_blkdev(0, rbd_dev->name);
5223 		if (ret < 0)
5224 			goto err_out_id;
5225 
5226 		rbd_dev->major = ret;
5227 		rbd_dev->minor = 0;
5228 	} else {
5229 		rbd_dev->major = rbd_major;
5230 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5231 	}
5232 
5233 	/* Set up the blkdev mapping. */
5234 
5235 	ret = rbd_init_disk(rbd_dev);
5236 	if (ret)
5237 		goto err_out_blkdev;
5238 
5239 	ret = rbd_dev_mapping_set(rbd_dev);
5240 	if (ret)
5241 		goto err_out_disk;
5242 
5243 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5244 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5245 
5246 	ret = rbd_bus_add_dev(rbd_dev);
5247 	if (ret)
5248 		goto err_out_mapping;
5249 
5250 	/* Everything's ready.  Announce the disk to the world. */
5251 
5252 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5253 	add_disk(rbd_dev->disk);
5254 
5255 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5256 		(unsigned long long) rbd_dev->mapping.size);
5257 
5258 	return ret;
5259 
5260 err_out_mapping:
5261 	rbd_dev_mapping_clear(rbd_dev);
5262 err_out_disk:
5263 	rbd_free_disk(rbd_dev);
5264 err_out_blkdev:
5265 	if (!single_major)
5266 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5267 err_out_id:
5268 	rbd_dev_id_put(rbd_dev);
5269 	rbd_dev_mapping_clear(rbd_dev);
5270 
5271 	return ret;
5272 }
5273 
5274 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5275 {
5276 	struct rbd_spec *spec = rbd_dev->spec;
5277 	size_t size;
5278 
5279 	/* Record the header object name for this rbd image. */
5280 
5281 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5282 
5283 	if (rbd_dev->image_format == 1)
5284 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5285 	else
5286 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5287 
5288 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5289 	if (!rbd_dev->header_name)
5290 		return -ENOMEM;
5291 
5292 	if (rbd_dev->image_format == 1)
5293 		sprintf(rbd_dev->header_name, "%s%s",
5294 			spec->image_name, RBD_SUFFIX);
5295 	else
5296 		sprintf(rbd_dev->header_name, "%s%s",
5297 			RBD_HEADER_PREFIX, spec->image_id);
5298 	return 0;
5299 }
5300 
5301 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5302 {
5303 	rbd_dev_unprobe(rbd_dev);
5304 	kfree(rbd_dev->header_name);
5305 	rbd_dev->header_name = NULL;
5306 	rbd_dev->image_format = 0;
5307 	kfree(rbd_dev->spec->image_id);
5308 	rbd_dev->spec->image_id = NULL;
5309 
5310 	rbd_dev_destroy(rbd_dev);
5311 }
5312 
5313 /*
5314  * Probe for the existence of the header object for the given rbd
5315  * device.  If this image is the one being mapped (i.e., not a
5316  * parent), initiate a watch on its header object before using that
5317  * object to get detailed information about the rbd image.
5318  */
5319 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5320 {
5321 	int ret;
5322 
5323 	/*
5324 	 * Get the id from the image id object.  Unless there's an
5325 	 * error, rbd_dev->spec->image_id will be filled in with
5326 	 * a dynamically-allocated string, and rbd_dev->image_format
5327 	 * will be set to either 1 or 2.
5328 	 */
5329 	ret = rbd_dev_image_id(rbd_dev);
5330 	if (ret)
5331 		return ret;
5332 
5333 	ret = rbd_dev_header_name(rbd_dev);
5334 	if (ret)
5335 		goto err_out_format;
5336 
5337 	if (mapping) {
5338 		ret = rbd_dev_header_watch_sync(rbd_dev);
5339 		if (ret)
5340 			goto out_header_name;
5341 	}
5342 
5343 	ret = rbd_dev_header_info(rbd_dev);
5344 	if (ret)
5345 		goto err_out_watch;
5346 
5347 	/*
5348 	 * If this image is the one being mapped, we have pool name and
5349 	 * id, image name and id, and snap name - need to fill snap id.
5350 	 * Otherwise this is a parent image, identified by pool, image
5351 	 * and snap ids - need to fill in names for those ids.
5352 	 */
5353 	if (mapping)
5354 		ret = rbd_spec_fill_snap_id(rbd_dev);
5355 	else
5356 		ret = rbd_spec_fill_names(rbd_dev);
5357 	if (ret)
5358 		goto err_out_probe;
5359 
5360 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5361 		ret = rbd_dev_v2_parent_info(rbd_dev);
5362 		if (ret)
5363 			goto err_out_probe;
5364 
5365 		/*
5366 		 * Need to warn users if this image is the one being
5367 		 * mapped and has a parent.
5368 		 */
5369 		if (mapping && rbd_dev->parent_spec)
5370 			rbd_warn(rbd_dev,
5371 				 "WARNING: kernel layering is EXPERIMENTAL!");
5372 	}
5373 
5374 	ret = rbd_dev_probe_parent(rbd_dev);
5375 	if (ret)
5376 		goto err_out_probe;
5377 
5378 	dout("discovered format %u image, header name is %s\n",
5379 		rbd_dev->image_format, rbd_dev->header_name);
5380 	return 0;
5381 
5382 err_out_probe:
5383 	rbd_dev_unprobe(rbd_dev);
5384 err_out_watch:
5385 	if (mapping)
5386 		rbd_dev_header_unwatch_sync(rbd_dev);
5387 out_header_name:
5388 	kfree(rbd_dev->header_name);
5389 	rbd_dev->header_name = NULL;
5390 err_out_format:
5391 	rbd_dev->image_format = 0;
5392 	kfree(rbd_dev->spec->image_id);
5393 	rbd_dev->spec->image_id = NULL;
5394 	return ret;
5395 }
5396 
5397 static ssize_t do_rbd_add(struct bus_type *bus,
5398 			  const char *buf,
5399 			  size_t count)
5400 {
5401 	struct rbd_device *rbd_dev = NULL;
5402 	struct ceph_options *ceph_opts = NULL;
5403 	struct rbd_options *rbd_opts = NULL;
5404 	struct rbd_spec *spec = NULL;
5405 	struct rbd_client *rbdc;
5406 	bool read_only;
5407 	int rc = -ENOMEM;
5408 
5409 	if (!try_module_get(THIS_MODULE))
5410 		return -ENODEV;
5411 
5412 	/* parse add command */
5413 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5414 	if (rc < 0)
5415 		goto err_out_module;
5416 	read_only = rbd_opts->read_only;
5417 	kfree(rbd_opts);
5418 	rbd_opts = NULL;	/* done with this */
5419 
5420 	rbdc = rbd_get_client(ceph_opts);
5421 	if (IS_ERR(rbdc)) {
5422 		rc = PTR_ERR(rbdc);
5423 		goto err_out_args;
5424 	}
5425 
5426 	/* pick the pool */
5427 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5428 	if (rc < 0)
5429 		goto err_out_client;
5430 	spec->pool_id = (u64)rc;
5431 
5432 	/* The ceph file layout needs to fit pool id in 32 bits */
5433 
5434 	if (spec->pool_id > (u64)U32_MAX) {
5435 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5436 				(unsigned long long)spec->pool_id, U32_MAX);
5437 		rc = -EIO;
5438 		goto err_out_client;
5439 	}
5440 
5441 	rbd_dev = rbd_dev_create(rbdc, spec);
5442 	if (!rbd_dev)
5443 		goto err_out_client;
5444 	rbdc = NULL;		/* rbd_dev now owns this */
5445 	spec = NULL;		/* rbd_dev now owns this */
5446 
5447 	rc = rbd_dev_image_probe(rbd_dev, true);
5448 	if (rc < 0)
5449 		goto err_out_rbd_dev;
5450 
5451 	/* If we are mapping a snapshot it must be marked read-only */
5452 
5453 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5454 		read_only = true;
5455 	rbd_dev->mapping.read_only = read_only;
5456 
5457 	rc = rbd_dev_device_setup(rbd_dev);
5458 	if (rc) {
5459 		/*
5460 		 * rbd_dev_header_unwatch_sync() can't be moved into
5461 		 * rbd_dev_image_release() without refactoring, see
5462 		 * commit 1f3ef78861ac.
5463 		 */
5464 		rbd_dev_header_unwatch_sync(rbd_dev);
5465 		rbd_dev_image_release(rbd_dev);
5466 		goto err_out_module;
5467 	}
5468 
5469 	return count;
5470 
5471 err_out_rbd_dev:
5472 	rbd_dev_destroy(rbd_dev);
5473 err_out_client:
5474 	rbd_put_client(rbdc);
5475 err_out_args:
5476 	rbd_spec_put(spec);
5477 err_out_module:
5478 	module_put(THIS_MODULE);
5479 
5480 	dout("Error adding device %s\n", buf);
5481 
5482 	return (ssize_t)rc;
5483 }
5484 
5485 static ssize_t rbd_add(struct bus_type *bus,
5486 		       const char *buf,
5487 		       size_t count)
5488 {
5489 	if (single_major)
5490 		return -EINVAL;
5491 
5492 	return do_rbd_add(bus, buf, count);
5493 }
5494 
5495 static ssize_t rbd_add_single_major(struct bus_type *bus,
5496 				    const char *buf,
5497 				    size_t count)
5498 {
5499 	return do_rbd_add(bus, buf, count);
5500 }
5501 
5502 static void rbd_dev_device_release(struct device *dev)
5503 {
5504 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5505 
5506 	rbd_free_disk(rbd_dev);
5507 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508 	rbd_dev_mapping_clear(rbd_dev);
5509 	if (!single_major)
5510 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5511 	rbd_dev_id_put(rbd_dev);
5512 	rbd_dev_mapping_clear(rbd_dev);
5513 }
5514 
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517 	while (rbd_dev->parent) {
5518 		struct rbd_device *first = rbd_dev;
5519 		struct rbd_device *second = first->parent;
5520 		struct rbd_device *third;
5521 
5522 		/*
5523 		 * Follow to the parent with no grandparent and
5524 		 * remove it.
5525 		 */
5526 		while (second && (third = second->parent)) {
5527 			first = second;
5528 			second = third;
5529 		}
5530 		rbd_assert(second);
5531 		rbd_dev_image_release(second);
5532 		first->parent = NULL;
5533 		first->parent_overlap = 0;
5534 
5535 		rbd_assert(first->parent_spec);
5536 		rbd_spec_put(first->parent_spec);
5537 		first->parent_spec = NULL;
5538 	}
5539 }
5540 
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542 			     const char *buf,
5543 			     size_t count)
5544 {
5545 	struct rbd_device *rbd_dev = NULL;
5546 	struct list_head *tmp;
5547 	int dev_id;
5548 	unsigned long ul;
5549 	bool already = false;
5550 	int ret;
5551 
5552 	ret = kstrtoul(buf, 10, &ul);
5553 	if (ret)
5554 		return ret;
5555 
5556 	/* convert to int; abort if we lost anything in the conversion */
5557 	dev_id = (int)ul;
5558 	if (dev_id != ul)
5559 		return -EINVAL;
5560 
5561 	ret = -ENOENT;
5562 	spin_lock(&rbd_dev_list_lock);
5563 	list_for_each(tmp, &rbd_dev_list) {
5564 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5565 		if (rbd_dev->dev_id == dev_id) {
5566 			ret = 0;
5567 			break;
5568 		}
5569 	}
5570 	if (!ret) {
5571 		spin_lock_irq(&rbd_dev->lock);
5572 		if (rbd_dev->open_count)
5573 			ret = -EBUSY;
5574 		else
5575 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576 							&rbd_dev->flags);
5577 		spin_unlock_irq(&rbd_dev->lock);
5578 	}
5579 	spin_unlock(&rbd_dev_list_lock);
5580 	if (ret < 0 || already)
5581 		return ret;
5582 
5583 	rbd_dev_header_unwatch_sync(rbd_dev);
5584 	/*
5585 	 * flush remaining watch callbacks - these must be complete
5586 	 * before the osd_client is shutdown
5587 	 */
5588 	dout("%s: flushing notifies", __func__);
5589 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5590 
5591 	/*
5592 	 * Don't free anything from rbd_dev->disk until after all
5593 	 * notifies are completely processed. Otherwise
5594 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5595 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5596 	 */
5597 	rbd_bus_del_dev(rbd_dev);
5598 	rbd_dev_image_release(rbd_dev);
5599 	module_put(THIS_MODULE);
5600 
5601 	return count;
5602 }
5603 
5604 static ssize_t rbd_remove(struct bus_type *bus,
5605 			  const char *buf,
5606 			  size_t count)
5607 {
5608 	if (single_major)
5609 		return -EINVAL;
5610 
5611 	return do_rbd_remove(bus, buf, count);
5612 }
5613 
5614 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5615 				       const char *buf,
5616 				       size_t count)
5617 {
5618 	return do_rbd_remove(bus, buf, count);
5619 }
5620 
5621 /*
5622  * create control files in sysfs
5623  * /sys/bus/rbd/...
5624  */
5625 static int rbd_sysfs_init(void)
5626 {
5627 	int ret;
5628 
5629 	ret = device_register(&rbd_root_dev);
5630 	if (ret < 0)
5631 		return ret;
5632 
5633 	ret = bus_register(&rbd_bus_type);
5634 	if (ret < 0)
5635 		device_unregister(&rbd_root_dev);
5636 
5637 	return ret;
5638 }
5639 
5640 static void rbd_sysfs_cleanup(void)
5641 {
5642 	bus_unregister(&rbd_bus_type);
5643 	device_unregister(&rbd_root_dev);
5644 }
5645 
5646 static int rbd_slab_init(void)
5647 {
5648 	rbd_assert(!rbd_img_request_cache);
5649 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5650 					sizeof (struct rbd_img_request),
5651 					__alignof__(struct rbd_img_request),
5652 					0, NULL);
5653 	if (!rbd_img_request_cache)
5654 		return -ENOMEM;
5655 
5656 	rbd_assert(!rbd_obj_request_cache);
5657 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5658 					sizeof (struct rbd_obj_request),
5659 					__alignof__(struct rbd_obj_request),
5660 					0, NULL);
5661 	if (!rbd_obj_request_cache)
5662 		goto out_err;
5663 
5664 	rbd_assert(!rbd_segment_name_cache);
5665 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5666 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5667 	if (rbd_segment_name_cache)
5668 		return 0;
5669 out_err:
5670 	if (rbd_obj_request_cache) {
5671 		kmem_cache_destroy(rbd_obj_request_cache);
5672 		rbd_obj_request_cache = NULL;
5673 	}
5674 
5675 	kmem_cache_destroy(rbd_img_request_cache);
5676 	rbd_img_request_cache = NULL;
5677 
5678 	return -ENOMEM;
5679 }
5680 
5681 static void rbd_slab_exit(void)
5682 {
5683 	rbd_assert(rbd_segment_name_cache);
5684 	kmem_cache_destroy(rbd_segment_name_cache);
5685 	rbd_segment_name_cache = NULL;
5686 
5687 	rbd_assert(rbd_obj_request_cache);
5688 	kmem_cache_destroy(rbd_obj_request_cache);
5689 	rbd_obj_request_cache = NULL;
5690 
5691 	rbd_assert(rbd_img_request_cache);
5692 	kmem_cache_destroy(rbd_img_request_cache);
5693 	rbd_img_request_cache = NULL;
5694 }
5695 
5696 static int __init rbd_init(void)
5697 {
5698 	int rc;
5699 
5700 	if (!libceph_compatible(NULL)) {
5701 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5702 		return -EINVAL;
5703 	}
5704 
5705 	rc = rbd_slab_init();
5706 	if (rc)
5707 		return rc;
5708 
5709 	/*
5710 	 * The number of active work items is limited by the number of
5711 	 * rbd devices, so leave @max_active at default.
5712 	 */
5713 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5714 	if (!rbd_wq) {
5715 		rc = -ENOMEM;
5716 		goto err_out_slab;
5717 	}
5718 
5719 	if (single_major) {
5720 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5721 		if (rbd_major < 0) {
5722 			rc = rbd_major;
5723 			goto err_out_wq;
5724 		}
5725 	}
5726 
5727 	rc = rbd_sysfs_init();
5728 	if (rc)
5729 		goto err_out_blkdev;
5730 
5731 	if (single_major)
5732 		pr_info("loaded (major %d)\n", rbd_major);
5733 	else
5734 		pr_info("loaded\n");
5735 
5736 	return 0;
5737 
5738 err_out_blkdev:
5739 	if (single_major)
5740 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 err_out_wq:
5742 	destroy_workqueue(rbd_wq);
5743 err_out_slab:
5744 	rbd_slab_exit();
5745 	return rc;
5746 }
5747 
5748 static void __exit rbd_exit(void)
5749 {
5750 	ida_destroy(&rbd_dev_id_ida);
5751 	rbd_sysfs_cleanup();
5752 	if (single_major)
5753 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5754 	destroy_workqueue(rbd_wq);
5755 	rbd_slab_exit();
5756 }
5757 
5758 module_init(rbd_init);
5759 module_exit(rbd_exit);
5760 
5761 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5762 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5763 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5764 /* following authorship retained from original osdblk.c */
5765 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5766 
5767 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5768 MODULE_LICENSE("GPL");
5769