xref: /openbmc/linux/drivers/block/rbd.c (revision 5dcb1015)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_WRITE,
215 	OBJ_OP_READ,
216 	OBJ_OP_DISCARD,
217 };
218 
219 enum obj_req_flags {
220 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
221 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
222 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
223 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
224 };
225 
226 struct rbd_obj_request {
227 	const char		*object_name;
228 	u64			offset;		/* object start byte */
229 	u64			length;		/* bytes from offset */
230 	unsigned long		flags;
231 
232 	/*
233 	 * An object request associated with an image will have its
234 	 * img_data flag set; a standalone object request will not.
235 	 *
236 	 * A standalone object request will have which == BAD_WHICH
237 	 * and a null obj_request pointer.
238 	 *
239 	 * An object request initiated in support of a layered image
240 	 * object (to check for its existence before a write) will
241 	 * have which == BAD_WHICH and a non-null obj_request pointer.
242 	 *
243 	 * Finally, an object request for rbd image data will have
244 	 * which != BAD_WHICH, and will have a non-null img_request
245 	 * pointer.  The value of which will be in the range
246 	 * 0..(img_request->obj_request_count-1).
247 	 */
248 	union {
249 		struct rbd_obj_request	*obj_request;	/* STAT op */
250 		struct {
251 			struct rbd_img_request	*img_request;
252 			u64			img_offset;
253 			/* links for img_request->obj_requests list */
254 			struct list_head	links;
255 		};
256 	};
257 	u32			which;		/* posn image request list */
258 
259 	enum obj_request_type	type;
260 	union {
261 		struct bio	*bio_list;
262 		struct {
263 			struct page	**pages;
264 			u32		page_count;
265 		};
266 	};
267 	struct page		**copyup_pages;
268 	u32			copyup_page_count;
269 
270 	struct ceph_osd_request	*osd_req;
271 
272 	u64			xferred;	/* bytes transferred */
273 	int			result;
274 
275 	rbd_obj_callback_t	callback;
276 	struct completion	completion;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 	bool			read_only;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	struct list_head	rq_queue;	/* incoming rq queue */
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 	struct workqueue_struct	*rq_wq;
346 	struct work_struct	rq_work;
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 
352 	char			*header_name;
353 
354 	struct ceph_file_layout	layout;
355 
356 	struct ceph_osd_event   *watch_event;
357 	struct rbd_obj_request	*watch_request;
358 
359 	struct rbd_spec		*parent_spec;
360 	u64			parent_overlap;
361 	atomic_t		parent_ref;
362 	struct rbd_device	*parent;
363 
364 	/* protects updating the header */
365 	struct rw_semaphore     header_rwsem;
366 
367 	struct rbd_mapping	mapping;
368 
369 	struct list_head	node;
370 
371 	/* sysfs related */
372 	struct device		dev;
373 	unsigned long		open_count;	/* protected by lock */
374 };
375 
376 /*
377  * Flag bits for rbd_dev->flags.  If atomicity is required,
378  * rbd_dev->lock is used to protect access.
379  *
380  * Currently, only the "removing" flag (which is coupled with the
381  * "open_count" field) requires atomic access.
382  */
383 enum rbd_dev_flags {
384 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
385 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
386 };
387 
388 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
389 
390 static LIST_HEAD(rbd_dev_list);    /* devices */
391 static DEFINE_SPINLOCK(rbd_dev_list_lock);
392 
393 static LIST_HEAD(rbd_client_list);		/* clients */
394 static DEFINE_SPINLOCK(rbd_client_list_lock);
395 
396 /* Slab caches for frequently-allocated structures */
397 
398 static struct kmem_cache	*rbd_img_request_cache;
399 static struct kmem_cache	*rbd_obj_request_cache;
400 static struct kmem_cache	*rbd_segment_name_cache;
401 
402 static int rbd_major;
403 static DEFINE_IDA(rbd_dev_id_ida);
404 
405 /*
406  * Default to false for now, as single-major requires >= 0.75 version of
407  * userspace rbd utility.
408  */
409 static bool single_major = false;
410 module_param(single_major, bool, S_IRUGO);
411 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
412 
413 static int rbd_img_request_submit(struct rbd_img_request *img_request);
414 
415 static void rbd_dev_device_release(struct device *dev);
416 
417 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
418 		       size_t count);
419 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
420 			  size_t count);
421 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
422 				    size_t count);
423 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
424 				       size_t count);
425 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
426 static void rbd_spec_put(struct rbd_spec *spec);
427 
428 static int rbd_dev_id_to_minor(int dev_id)
429 {
430 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432 
433 static int minor_to_rbd_dev_id(int minor)
434 {
435 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
436 }
437 
438 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
439 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
440 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
441 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
442 
443 static struct attribute *rbd_bus_attrs[] = {
444 	&bus_attr_add.attr,
445 	&bus_attr_remove.attr,
446 	&bus_attr_add_single_major.attr,
447 	&bus_attr_remove_single_major.attr,
448 	NULL,
449 };
450 
451 static umode_t rbd_bus_is_visible(struct kobject *kobj,
452 				  struct attribute *attr, int index)
453 {
454 	if (!single_major &&
455 	    (attr == &bus_attr_add_single_major.attr ||
456 	     attr == &bus_attr_remove_single_major.attr))
457 		return 0;
458 
459 	return attr->mode;
460 }
461 
462 static const struct attribute_group rbd_bus_group = {
463 	.attrs = rbd_bus_attrs,
464 	.is_visible = rbd_bus_is_visible,
465 };
466 __ATTRIBUTE_GROUPS(rbd_bus);
467 
468 static struct bus_type rbd_bus_type = {
469 	.name		= "rbd",
470 	.bus_groups	= rbd_bus_groups,
471 };
472 
473 static void rbd_root_dev_release(struct device *dev)
474 {
475 }
476 
477 static struct device rbd_root_dev = {
478 	.init_name =    "rbd",
479 	.release =      rbd_root_dev_release,
480 };
481 
482 static __printf(2, 3)
483 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
484 {
485 	struct va_format vaf;
486 	va_list args;
487 
488 	va_start(args, fmt);
489 	vaf.fmt = fmt;
490 	vaf.va = &args;
491 
492 	if (!rbd_dev)
493 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
494 	else if (rbd_dev->disk)
495 		printk(KERN_WARNING "%s: %s: %pV\n",
496 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
497 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
498 		printk(KERN_WARNING "%s: image %s: %pV\n",
499 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
500 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
501 		printk(KERN_WARNING "%s: id %s: %pV\n",
502 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
503 	else	/* punt */
504 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
505 			RBD_DRV_NAME, rbd_dev, &vaf);
506 	va_end(args);
507 }
508 
509 #ifdef RBD_DEBUG
510 #define rbd_assert(expr)						\
511 		if (unlikely(!(expr))) {				\
512 			printk(KERN_ERR "\nAssertion failure in %s() "	\
513 						"at line %d:\n\n"	\
514 					"\trbd_assert(%s);\n\n",	\
515 					__func__, __LINE__, #expr);	\
516 			BUG();						\
517 		}
518 #else /* !RBD_DEBUG */
519 #  define rbd_assert(expr)	((void) 0)
520 #endif /* !RBD_DEBUG */
521 
522 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
523 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
524 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
525 
526 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
527 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
528 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
530 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
531 					u64 snap_id);
532 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
533 				u8 *order, u64 *snap_size);
534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
535 		u64 *snap_features);
536 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
537 
538 static int rbd_open(struct block_device *bdev, fmode_t mode)
539 {
540 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
541 	bool removing = false;
542 
543 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
544 		return -EROFS;
545 
546 	spin_lock_irq(&rbd_dev->lock);
547 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
548 		removing = true;
549 	else
550 		rbd_dev->open_count++;
551 	spin_unlock_irq(&rbd_dev->lock);
552 	if (removing)
553 		return -ENOENT;
554 
555 	(void) get_device(&rbd_dev->dev);
556 
557 	return 0;
558 }
559 
560 static void rbd_release(struct gendisk *disk, fmode_t mode)
561 {
562 	struct rbd_device *rbd_dev = disk->private_data;
563 	unsigned long open_count_before;
564 
565 	spin_lock_irq(&rbd_dev->lock);
566 	open_count_before = rbd_dev->open_count--;
567 	spin_unlock_irq(&rbd_dev->lock);
568 	rbd_assert(open_count_before > 0);
569 
570 	put_device(&rbd_dev->dev);
571 }
572 
573 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
574 {
575 	int ret = 0;
576 	int val;
577 	bool ro;
578 	bool ro_changed = false;
579 
580 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
581 	if (get_user(val, (int __user *)(arg)))
582 		return -EFAULT;
583 
584 	ro = val ? true : false;
585 	/* Snapshot doesn't allow to write*/
586 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
587 		return -EROFS;
588 
589 	spin_lock_irq(&rbd_dev->lock);
590 	/* prevent others open this device */
591 	if (rbd_dev->open_count > 1) {
592 		ret = -EBUSY;
593 		goto out;
594 	}
595 
596 	if (rbd_dev->mapping.read_only != ro) {
597 		rbd_dev->mapping.read_only = ro;
598 		ro_changed = true;
599 	}
600 
601 out:
602 	spin_unlock_irq(&rbd_dev->lock);
603 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
604 	if (ret == 0 && ro_changed)
605 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
606 
607 	return ret;
608 }
609 
610 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
611 			unsigned int cmd, unsigned long arg)
612 {
613 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
614 	int ret = 0;
615 
616 	switch (cmd) {
617 	case BLKROSET:
618 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
619 		break;
620 	default:
621 		ret = -ENOTTY;
622 	}
623 
624 	return ret;
625 }
626 
627 #ifdef CONFIG_COMPAT
628 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
629 				unsigned int cmd, unsigned long arg)
630 {
631 	return rbd_ioctl(bdev, mode, cmd, arg);
632 }
633 #endif /* CONFIG_COMPAT */
634 
635 static const struct block_device_operations rbd_bd_ops = {
636 	.owner			= THIS_MODULE,
637 	.open			= rbd_open,
638 	.release		= rbd_release,
639 	.ioctl			= rbd_ioctl,
640 #ifdef CONFIG_COMPAT
641 	.compat_ioctl		= rbd_compat_ioctl,
642 #endif
643 };
644 
645 /*
646  * Initialize an rbd client instance.  Success or not, this function
647  * consumes ceph_opts.  Caller holds client_mutex.
648  */
649 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
650 {
651 	struct rbd_client *rbdc;
652 	int ret = -ENOMEM;
653 
654 	dout("%s:\n", __func__);
655 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
656 	if (!rbdc)
657 		goto out_opt;
658 
659 	kref_init(&rbdc->kref);
660 	INIT_LIST_HEAD(&rbdc->node);
661 
662 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
663 	if (IS_ERR(rbdc->client))
664 		goto out_rbdc;
665 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
666 
667 	ret = ceph_open_session(rbdc->client);
668 	if (ret < 0)
669 		goto out_client;
670 
671 	spin_lock(&rbd_client_list_lock);
672 	list_add_tail(&rbdc->node, &rbd_client_list);
673 	spin_unlock(&rbd_client_list_lock);
674 
675 	dout("%s: rbdc %p\n", __func__, rbdc);
676 
677 	return rbdc;
678 out_client:
679 	ceph_destroy_client(rbdc->client);
680 out_rbdc:
681 	kfree(rbdc);
682 out_opt:
683 	if (ceph_opts)
684 		ceph_destroy_options(ceph_opts);
685 	dout("%s: error %d\n", __func__, ret);
686 
687 	return ERR_PTR(ret);
688 }
689 
690 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
691 {
692 	kref_get(&rbdc->kref);
693 
694 	return rbdc;
695 }
696 
697 /*
698  * Find a ceph client with specific addr and configuration.  If
699  * found, bump its reference count.
700  */
701 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
702 {
703 	struct rbd_client *client_node;
704 	bool found = false;
705 
706 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
707 		return NULL;
708 
709 	spin_lock(&rbd_client_list_lock);
710 	list_for_each_entry(client_node, &rbd_client_list, node) {
711 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
712 			__rbd_get_client(client_node);
713 
714 			found = true;
715 			break;
716 		}
717 	}
718 	spin_unlock(&rbd_client_list_lock);
719 
720 	return found ? client_node : NULL;
721 }
722 
723 /*
724  * mount options
725  */
726 enum {
727 	Opt_last_int,
728 	/* int args above */
729 	Opt_last_string,
730 	/* string args above */
731 	Opt_read_only,
732 	Opt_read_write,
733 	/* Boolean args above */
734 	Opt_last_bool,
735 };
736 
737 static match_table_t rbd_opts_tokens = {
738 	/* int args above */
739 	/* string args above */
740 	{Opt_read_only, "read_only"},
741 	{Opt_read_only, "ro"},		/* Alternate spelling */
742 	{Opt_read_write, "read_write"},
743 	{Opt_read_write, "rw"},		/* Alternate spelling */
744 	/* Boolean args above */
745 	{-1, NULL}
746 };
747 
748 struct rbd_options {
749 	bool	read_only;
750 };
751 
752 #define RBD_READ_ONLY_DEFAULT	false
753 
754 static int parse_rbd_opts_token(char *c, void *private)
755 {
756 	struct rbd_options *rbd_opts = private;
757 	substring_t argstr[MAX_OPT_ARGS];
758 	int token, intval, ret;
759 
760 	token = match_token(c, rbd_opts_tokens, argstr);
761 	if (token < 0)
762 		return -EINVAL;
763 
764 	if (token < Opt_last_int) {
765 		ret = match_int(&argstr[0], &intval);
766 		if (ret < 0) {
767 			pr_err("bad mount option arg (not int) "
768 			       "at '%s'\n", c);
769 			return ret;
770 		}
771 		dout("got int token %d val %d\n", token, intval);
772 	} else if (token > Opt_last_int && token < Opt_last_string) {
773 		dout("got string token %d val %s\n", token,
774 		     argstr[0].from);
775 	} else if (token > Opt_last_string && token < Opt_last_bool) {
776 		dout("got Boolean token %d\n", token);
777 	} else {
778 		dout("got token %d\n", token);
779 	}
780 
781 	switch (token) {
782 	case Opt_read_only:
783 		rbd_opts->read_only = true;
784 		break;
785 	case Opt_read_write:
786 		rbd_opts->read_only = false;
787 		break;
788 	default:
789 		rbd_assert(false);
790 		break;
791 	}
792 	return 0;
793 }
794 
795 static char* obj_op_name(enum obj_operation_type op_type)
796 {
797 	switch (op_type) {
798 	case OBJ_OP_READ:
799 		return "read";
800 	case OBJ_OP_WRITE:
801 		return "write";
802 	case OBJ_OP_DISCARD:
803 		return "discard";
804 	default:
805 		return "???";
806 	}
807 }
808 
809 /*
810  * Get a ceph client with specific addr and configuration, if one does
811  * not exist create it.  Either way, ceph_opts is consumed by this
812  * function.
813  */
814 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
815 {
816 	struct rbd_client *rbdc;
817 
818 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
819 	rbdc = rbd_client_find(ceph_opts);
820 	if (rbdc)	/* using an existing client */
821 		ceph_destroy_options(ceph_opts);
822 	else
823 		rbdc = rbd_client_create(ceph_opts);
824 	mutex_unlock(&client_mutex);
825 
826 	return rbdc;
827 }
828 
829 /*
830  * Destroy ceph client
831  *
832  * Caller must hold rbd_client_list_lock.
833  */
834 static void rbd_client_release(struct kref *kref)
835 {
836 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
837 
838 	dout("%s: rbdc %p\n", __func__, rbdc);
839 	spin_lock(&rbd_client_list_lock);
840 	list_del(&rbdc->node);
841 	spin_unlock(&rbd_client_list_lock);
842 
843 	ceph_destroy_client(rbdc->client);
844 	kfree(rbdc);
845 }
846 
847 /*
848  * Drop reference to ceph client node. If it's not referenced anymore, release
849  * it.
850  */
851 static void rbd_put_client(struct rbd_client *rbdc)
852 {
853 	if (rbdc)
854 		kref_put(&rbdc->kref, rbd_client_release);
855 }
856 
857 static bool rbd_image_format_valid(u32 image_format)
858 {
859 	return image_format == 1 || image_format == 2;
860 }
861 
862 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
863 {
864 	size_t size;
865 	u32 snap_count;
866 
867 	/* The header has to start with the magic rbd header text */
868 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
869 		return false;
870 
871 	/* The bio layer requires at least sector-sized I/O */
872 
873 	if (ondisk->options.order < SECTOR_SHIFT)
874 		return false;
875 
876 	/* If we use u64 in a few spots we may be able to loosen this */
877 
878 	if (ondisk->options.order > 8 * sizeof (int) - 1)
879 		return false;
880 
881 	/*
882 	 * The size of a snapshot header has to fit in a size_t, and
883 	 * that limits the number of snapshots.
884 	 */
885 	snap_count = le32_to_cpu(ondisk->snap_count);
886 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
887 	if (snap_count > size / sizeof (__le64))
888 		return false;
889 
890 	/*
891 	 * Not only that, but the size of the entire the snapshot
892 	 * header must also be representable in a size_t.
893 	 */
894 	size -= snap_count * sizeof (__le64);
895 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
896 		return false;
897 
898 	return true;
899 }
900 
901 /*
902  * Fill an rbd image header with information from the given format 1
903  * on-disk header.
904  */
905 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
906 				 struct rbd_image_header_ondisk *ondisk)
907 {
908 	struct rbd_image_header *header = &rbd_dev->header;
909 	bool first_time = header->object_prefix == NULL;
910 	struct ceph_snap_context *snapc;
911 	char *object_prefix = NULL;
912 	char *snap_names = NULL;
913 	u64 *snap_sizes = NULL;
914 	u32 snap_count;
915 	size_t size;
916 	int ret = -ENOMEM;
917 	u32 i;
918 
919 	/* Allocate this now to avoid having to handle failure below */
920 
921 	if (first_time) {
922 		size_t len;
923 
924 		len = strnlen(ondisk->object_prefix,
925 				sizeof (ondisk->object_prefix));
926 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
927 		if (!object_prefix)
928 			return -ENOMEM;
929 		memcpy(object_prefix, ondisk->object_prefix, len);
930 		object_prefix[len] = '\0';
931 	}
932 
933 	/* Allocate the snapshot context and fill it in */
934 
935 	snap_count = le32_to_cpu(ondisk->snap_count);
936 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
937 	if (!snapc)
938 		goto out_err;
939 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
940 	if (snap_count) {
941 		struct rbd_image_snap_ondisk *snaps;
942 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
943 
944 		/* We'll keep a copy of the snapshot names... */
945 
946 		if (snap_names_len > (u64)SIZE_MAX)
947 			goto out_2big;
948 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
949 		if (!snap_names)
950 			goto out_err;
951 
952 		/* ...as well as the array of their sizes. */
953 
954 		size = snap_count * sizeof (*header->snap_sizes);
955 		snap_sizes = kmalloc(size, GFP_KERNEL);
956 		if (!snap_sizes)
957 			goto out_err;
958 
959 		/*
960 		 * Copy the names, and fill in each snapshot's id
961 		 * and size.
962 		 *
963 		 * Note that rbd_dev_v1_header_info() guarantees the
964 		 * ondisk buffer we're working with has
965 		 * snap_names_len bytes beyond the end of the
966 		 * snapshot id array, this memcpy() is safe.
967 		 */
968 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
969 		snaps = ondisk->snaps;
970 		for (i = 0; i < snap_count; i++) {
971 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
972 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
973 		}
974 	}
975 
976 	/* We won't fail any more, fill in the header */
977 
978 	if (first_time) {
979 		header->object_prefix = object_prefix;
980 		header->obj_order = ondisk->options.order;
981 		header->crypt_type = ondisk->options.crypt_type;
982 		header->comp_type = ondisk->options.comp_type;
983 		/* The rest aren't used for format 1 images */
984 		header->stripe_unit = 0;
985 		header->stripe_count = 0;
986 		header->features = 0;
987 	} else {
988 		ceph_put_snap_context(header->snapc);
989 		kfree(header->snap_names);
990 		kfree(header->snap_sizes);
991 	}
992 
993 	/* The remaining fields always get updated (when we refresh) */
994 
995 	header->image_size = le64_to_cpu(ondisk->image_size);
996 	header->snapc = snapc;
997 	header->snap_names = snap_names;
998 	header->snap_sizes = snap_sizes;
999 
1000 	return 0;
1001 out_2big:
1002 	ret = -EIO;
1003 out_err:
1004 	kfree(snap_sizes);
1005 	kfree(snap_names);
1006 	ceph_put_snap_context(snapc);
1007 	kfree(object_prefix);
1008 
1009 	return ret;
1010 }
1011 
1012 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1013 {
1014 	const char *snap_name;
1015 
1016 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1017 
1018 	/* Skip over names until we find the one we are looking for */
1019 
1020 	snap_name = rbd_dev->header.snap_names;
1021 	while (which--)
1022 		snap_name += strlen(snap_name) + 1;
1023 
1024 	return kstrdup(snap_name, GFP_KERNEL);
1025 }
1026 
1027 /*
1028  * Snapshot id comparison function for use with qsort()/bsearch().
1029  * Note that result is for snapshots in *descending* order.
1030  */
1031 static int snapid_compare_reverse(const void *s1, const void *s2)
1032 {
1033 	u64 snap_id1 = *(u64 *)s1;
1034 	u64 snap_id2 = *(u64 *)s2;
1035 
1036 	if (snap_id1 < snap_id2)
1037 		return 1;
1038 	return snap_id1 == snap_id2 ? 0 : -1;
1039 }
1040 
1041 /*
1042  * Search a snapshot context to see if the given snapshot id is
1043  * present.
1044  *
1045  * Returns the position of the snapshot id in the array if it's found,
1046  * or BAD_SNAP_INDEX otherwise.
1047  *
1048  * Note: The snapshot array is in kept sorted (by the osd) in
1049  * reverse order, highest snapshot id first.
1050  */
1051 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1052 {
1053 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1054 	u64 *found;
1055 
1056 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1057 				sizeof (snap_id), snapid_compare_reverse);
1058 
1059 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1060 }
1061 
1062 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1063 					u64 snap_id)
1064 {
1065 	u32 which;
1066 	const char *snap_name;
1067 
1068 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1069 	if (which == BAD_SNAP_INDEX)
1070 		return ERR_PTR(-ENOENT);
1071 
1072 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1073 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1074 }
1075 
1076 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1077 {
1078 	if (snap_id == CEPH_NOSNAP)
1079 		return RBD_SNAP_HEAD_NAME;
1080 
1081 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1082 	if (rbd_dev->image_format == 1)
1083 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1084 
1085 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1086 }
1087 
1088 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1089 				u64 *snap_size)
1090 {
1091 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092 	if (snap_id == CEPH_NOSNAP) {
1093 		*snap_size = rbd_dev->header.image_size;
1094 	} else if (rbd_dev->image_format == 1) {
1095 		u32 which;
1096 
1097 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1098 		if (which == BAD_SNAP_INDEX)
1099 			return -ENOENT;
1100 
1101 		*snap_size = rbd_dev->header.snap_sizes[which];
1102 	} else {
1103 		u64 size = 0;
1104 		int ret;
1105 
1106 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1107 		if (ret)
1108 			return ret;
1109 
1110 		*snap_size = size;
1111 	}
1112 	return 0;
1113 }
1114 
1115 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1116 			u64 *snap_features)
1117 {
1118 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1119 	if (snap_id == CEPH_NOSNAP) {
1120 		*snap_features = rbd_dev->header.features;
1121 	} else if (rbd_dev->image_format == 1) {
1122 		*snap_features = 0;	/* No features for format 1 */
1123 	} else {
1124 		u64 features = 0;
1125 		int ret;
1126 
1127 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1128 		if (ret)
1129 			return ret;
1130 
1131 		*snap_features = features;
1132 	}
1133 	return 0;
1134 }
1135 
1136 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1137 {
1138 	u64 snap_id = rbd_dev->spec->snap_id;
1139 	u64 size = 0;
1140 	u64 features = 0;
1141 	int ret;
1142 
1143 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1144 	if (ret)
1145 		return ret;
1146 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1147 	if (ret)
1148 		return ret;
1149 
1150 	rbd_dev->mapping.size = size;
1151 	rbd_dev->mapping.features = features;
1152 
1153 	return 0;
1154 }
1155 
1156 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1157 {
1158 	rbd_dev->mapping.size = 0;
1159 	rbd_dev->mapping.features = 0;
1160 }
1161 
1162 static void rbd_segment_name_free(const char *name)
1163 {
1164 	/* The explicit cast here is needed to drop the const qualifier */
1165 
1166 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1167 }
1168 
1169 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1170 {
1171 	char *name;
1172 	u64 segment;
1173 	int ret;
1174 	char *name_format;
1175 
1176 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1177 	if (!name)
1178 		return NULL;
1179 	segment = offset >> rbd_dev->header.obj_order;
1180 	name_format = "%s.%012llx";
1181 	if (rbd_dev->image_format == 2)
1182 		name_format = "%s.%016llx";
1183 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1184 			rbd_dev->header.object_prefix, segment);
1185 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1186 		pr_err("error formatting segment name for #%llu (%d)\n",
1187 			segment, ret);
1188 		rbd_segment_name_free(name);
1189 		name = NULL;
1190 	}
1191 
1192 	return name;
1193 }
1194 
1195 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1196 {
1197 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1198 
1199 	return offset & (segment_size - 1);
1200 }
1201 
1202 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1203 				u64 offset, u64 length)
1204 {
1205 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206 
1207 	offset &= segment_size - 1;
1208 
1209 	rbd_assert(length <= U64_MAX - offset);
1210 	if (offset + length > segment_size)
1211 		length = segment_size - offset;
1212 
1213 	return length;
1214 }
1215 
1216 /*
1217  * returns the size of an object in the image
1218  */
1219 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1220 {
1221 	return 1 << header->obj_order;
1222 }
1223 
1224 /*
1225  * bio helpers
1226  */
1227 
1228 static void bio_chain_put(struct bio *chain)
1229 {
1230 	struct bio *tmp;
1231 
1232 	while (chain) {
1233 		tmp = chain;
1234 		chain = chain->bi_next;
1235 		bio_put(tmp);
1236 	}
1237 }
1238 
1239 /*
1240  * zeros a bio chain, starting at specific offset
1241  */
1242 static void zero_bio_chain(struct bio *chain, int start_ofs)
1243 {
1244 	struct bio_vec bv;
1245 	struct bvec_iter iter;
1246 	unsigned long flags;
1247 	void *buf;
1248 	int pos = 0;
1249 
1250 	while (chain) {
1251 		bio_for_each_segment(bv, chain, iter) {
1252 			if (pos + bv.bv_len > start_ofs) {
1253 				int remainder = max(start_ofs - pos, 0);
1254 				buf = bvec_kmap_irq(&bv, &flags);
1255 				memset(buf + remainder, 0,
1256 				       bv.bv_len - remainder);
1257 				flush_dcache_page(bv.bv_page);
1258 				bvec_kunmap_irq(buf, &flags);
1259 			}
1260 			pos += bv.bv_len;
1261 		}
1262 
1263 		chain = chain->bi_next;
1264 	}
1265 }
1266 
1267 /*
1268  * similar to zero_bio_chain(), zeros data defined by a page array,
1269  * starting at the given byte offset from the start of the array and
1270  * continuing up to the given end offset.  The pages array is
1271  * assumed to be big enough to hold all bytes up to the end.
1272  */
1273 static void zero_pages(struct page **pages, u64 offset, u64 end)
1274 {
1275 	struct page **page = &pages[offset >> PAGE_SHIFT];
1276 
1277 	rbd_assert(end > offset);
1278 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1279 	while (offset < end) {
1280 		size_t page_offset;
1281 		size_t length;
1282 		unsigned long flags;
1283 		void *kaddr;
1284 
1285 		page_offset = offset & ~PAGE_MASK;
1286 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1287 		local_irq_save(flags);
1288 		kaddr = kmap_atomic(*page);
1289 		memset(kaddr + page_offset, 0, length);
1290 		flush_dcache_page(*page);
1291 		kunmap_atomic(kaddr);
1292 		local_irq_restore(flags);
1293 
1294 		offset += length;
1295 		page++;
1296 	}
1297 }
1298 
1299 /*
1300  * Clone a portion of a bio, starting at the given byte offset
1301  * and continuing for the number of bytes indicated.
1302  */
1303 static struct bio *bio_clone_range(struct bio *bio_src,
1304 					unsigned int offset,
1305 					unsigned int len,
1306 					gfp_t gfpmask)
1307 {
1308 	struct bio *bio;
1309 
1310 	bio = bio_clone(bio_src, gfpmask);
1311 	if (!bio)
1312 		return NULL;	/* ENOMEM */
1313 
1314 	bio_advance(bio, offset);
1315 	bio->bi_iter.bi_size = len;
1316 
1317 	return bio;
1318 }
1319 
1320 /*
1321  * Clone a portion of a bio chain, starting at the given byte offset
1322  * into the first bio in the source chain and continuing for the
1323  * number of bytes indicated.  The result is another bio chain of
1324  * exactly the given length, or a null pointer on error.
1325  *
1326  * The bio_src and offset parameters are both in-out.  On entry they
1327  * refer to the first source bio and the offset into that bio where
1328  * the start of data to be cloned is located.
1329  *
1330  * On return, bio_src is updated to refer to the bio in the source
1331  * chain that contains first un-cloned byte, and *offset will
1332  * contain the offset of that byte within that bio.
1333  */
1334 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1335 					unsigned int *offset,
1336 					unsigned int len,
1337 					gfp_t gfpmask)
1338 {
1339 	struct bio *bi = *bio_src;
1340 	unsigned int off = *offset;
1341 	struct bio *chain = NULL;
1342 	struct bio **end;
1343 
1344 	/* Build up a chain of clone bios up to the limit */
1345 
1346 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1347 		return NULL;		/* Nothing to clone */
1348 
1349 	end = &chain;
1350 	while (len) {
1351 		unsigned int bi_size;
1352 		struct bio *bio;
1353 
1354 		if (!bi) {
1355 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1356 			goto out_err;	/* EINVAL; ran out of bio's */
1357 		}
1358 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1359 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1360 		if (!bio)
1361 			goto out_err;	/* ENOMEM */
1362 
1363 		*end = bio;
1364 		end = &bio->bi_next;
1365 
1366 		off += bi_size;
1367 		if (off == bi->bi_iter.bi_size) {
1368 			bi = bi->bi_next;
1369 			off = 0;
1370 		}
1371 		len -= bi_size;
1372 	}
1373 	*bio_src = bi;
1374 	*offset = off;
1375 
1376 	return chain;
1377 out_err:
1378 	bio_chain_put(chain);
1379 
1380 	return NULL;
1381 }
1382 
1383 /*
1384  * The default/initial value for all object request flags is 0.  For
1385  * each flag, once its value is set to 1 it is never reset to 0
1386  * again.
1387  */
1388 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1389 {
1390 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1391 		struct rbd_device *rbd_dev;
1392 
1393 		rbd_dev = obj_request->img_request->rbd_dev;
1394 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1395 			obj_request);
1396 	}
1397 }
1398 
1399 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1400 {
1401 	smp_mb();
1402 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1403 }
1404 
1405 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1406 {
1407 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1408 		struct rbd_device *rbd_dev = NULL;
1409 
1410 		if (obj_request_img_data_test(obj_request))
1411 			rbd_dev = obj_request->img_request->rbd_dev;
1412 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1413 			obj_request);
1414 	}
1415 }
1416 
1417 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1418 {
1419 	smp_mb();
1420 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1421 }
1422 
1423 /*
1424  * This sets the KNOWN flag after (possibly) setting the EXISTS
1425  * flag.  The latter is set based on the "exists" value provided.
1426  *
1427  * Note that for our purposes once an object exists it never goes
1428  * away again.  It's possible that the response from two existence
1429  * checks are separated by the creation of the target object, and
1430  * the first ("doesn't exist") response arrives *after* the second
1431  * ("does exist").  In that case we ignore the second one.
1432  */
1433 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1434 				bool exists)
1435 {
1436 	if (exists)
1437 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1438 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1439 	smp_mb();
1440 }
1441 
1442 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1443 {
1444 	smp_mb();
1445 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1446 }
1447 
1448 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1449 {
1450 	smp_mb();
1451 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1452 }
1453 
1454 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1455 {
1456 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1457 
1458 	return obj_request->img_offset <
1459 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1460 }
1461 
1462 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1463 {
1464 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1465 		atomic_read(&obj_request->kref.refcount));
1466 	kref_get(&obj_request->kref);
1467 }
1468 
1469 static void rbd_obj_request_destroy(struct kref *kref);
1470 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1471 {
1472 	rbd_assert(obj_request != NULL);
1473 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1474 		atomic_read(&obj_request->kref.refcount));
1475 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1476 }
1477 
1478 static void rbd_img_request_get(struct rbd_img_request *img_request)
1479 {
1480 	dout("%s: img %p (was %d)\n", __func__, img_request,
1481 	     atomic_read(&img_request->kref.refcount));
1482 	kref_get(&img_request->kref);
1483 }
1484 
1485 static bool img_request_child_test(struct rbd_img_request *img_request);
1486 static void rbd_parent_request_destroy(struct kref *kref);
1487 static void rbd_img_request_destroy(struct kref *kref);
1488 static void rbd_img_request_put(struct rbd_img_request *img_request)
1489 {
1490 	rbd_assert(img_request != NULL);
1491 	dout("%s: img %p (was %d)\n", __func__, img_request,
1492 		atomic_read(&img_request->kref.refcount));
1493 	if (img_request_child_test(img_request))
1494 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1495 	else
1496 		kref_put(&img_request->kref, rbd_img_request_destroy);
1497 }
1498 
1499 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1500 					struct rbd_obj_request *obj_request)
1501 {
1502 	rbd_assert(obj_request->img_request == NULL);
1503 
1504 	/* Image request now owns object's original reference */
1505 	obj_request->img_request = img_request;
1506 	obj_request->which = img_request->obj_request_count;
1507 	rbd_assert(!obj_request_img_data_test(obj_request));
1508 	obj_request_img_data_set(obj_request);
1509 	rbd_assert(obj_request->which != BAD_WHICH);
1510 	img_request->obj_request_count++;
1511 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1512 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1513 		obj_request->which);
1514 }
1515 
1516 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1517 					struct rbd_obj_request *obj_request)
1518 {
1519 	rbd_assert(obj_request->which != BAD_WHICH);
1520 
1521 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1522 		obj_request->which);
1523 	list_del(&obj_request->links);
1524 	rbd_assert(img_request->obj_request_count > 0);
1525 	img_request->obj_request_count--;
1526 	rbd_assert(obj_request->which == img_request->obj_request_count);
1527 	obj_request->which = BAD_WHICH;
1528 	rbd_assert(obj_request_img_data_test(obj_request));
1529 	rbd_assert(obj_request->img_request == img_request);
1530 	obj_request->img_request = NULL;
1531 	obj_request->callback = NULL;
1532 	rbd_obj_request_put(obj_request);
1533 }
1534 
1535 static bool obj_request_type_valid(enum obj_request_type type)
1536 {
1537 	switch (type) {
1538 	case OBJ_REQUEST_NODATA:
1539 	case OBJ_REQUEST_BIO:
1540 	case OBJ_REQUEST_PAGES:
1541 		return true;
1542 	default:
1543 		return false;
1544 	}
1545 }
1546 
1547 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1548 				struct rbd_obj_request *obj_request)
1549 {
1550 	dout("%s %p\n", __func__, obj_request);
1551 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1552 }
1553 
1554 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1555 {
1556 	dout("%s %p\n", __func__, obj_request);
1557 	ceph_osdc_cancel_request(obj_request->osd_req);
1558 }
1559 
1560 /*
1561  * Wait for an object request to complete.  If interrupted, cancel the
1562  * underlying osd request.
1563  */
1564 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1565 {
1566 	int ret;
1567 
1568 	dout("%s %p\n", __func__, obj_request);
1569 
1570 	ret = wait_for_completion_interruptible(&obj_request->completion);
1571 	if (ret < 0) {
1572 		dout("%s %p interrupted\n", __func__, obj_request);
1573 		rbd_obj_request_end(obj_request);
1574 		return ret;
1575 	}
1576 
1577 	dout("%s %p done\n", __func__, obj_request);
1578 	return 0;
1579 }
1580 
1581 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1582 {
1583 
1584 	dout("%s: img %p\n", __func__, img_request);
1585 
1586 	/*
1587 	 * If no error occurred, compute the aggregate transfer
1588 	 * count for the image request.  We could instead use
1589 	 * atomic64_cmpxchg() to update it as each object request
1590 	 * completes; not clear which way is better off hand.
1591 	 */
1592 	if (!img_request->result) {
1593 		struct rbd_obj_request *obj_request;
1594 		u64 xferred = 0;
1595 
1596 		for_each_obj_request(img_request, obj_request)
1597 			xferred += obj_request->xferred;
1598 		img_request->xferred = xferred;
1599 	}
1600 
1601 	if (img_request->callback)
1602 		img_request->callback(img_request);
1603 	else
1604 		rbd_img_request_put(img_request);
1605 }
1606 
1607 /*
1608  * The default/initial value for all image request flags is 0.  Each
1609  * is conditionally set to 1 at image request initialization time
1610  * and currently never change thereafter.
1611  */
1612 static void img_request_write_set(struct rbd_img_request *img_request)
1613 {
1614 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1615 	smp_mb();
1616 }
1617 
1618 static bool img_request_write_test(struct rbd_img_request *img_request)
1619 {
1620 	smp_mb();
1621 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1622 }
1623 
1624 /*
1625  * Set the discard flag when the img_request is an discard request
1626  */
1627 static void img_request_discard_set(struct rbd_img_request *img_request)
1628 {
1629 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1630 	smp_mb();
1631 }
1632 
1633 static bool img_request_discard_test(struct rbd_img_request *img_request)
1634 {
1635 	smp_mb();
1636 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1637 }
1638 
1639 static void img_request_child_set(struct rbd_img_request *img_request)
1640 {
1641 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1642 	smp_mb();
1643 }
1644 
1645 static void img_request_child_clear(struct rbd_img_request *img_request)
1646 {
1647 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1648 	smp_mb();
1649 }
1650 
1651 static bool img_request_child_test(struct rbd_img_request *img_request)
1652 {
1653 	smp_mb();
1654 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1655 }
1656 
1657 static void img_request_layered_set(struct rbd_img_request *img_request)
1658 {
1659 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1660 	smp_mb();
1661 }
1662 
1663 static void img_request_layered_clear(struct rbd_img_request *img_request)
1664 {
1665 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1666 	smp_mb();
1667 }
1668 
1669 static bool img_request_layered_test(struct rbd_img_request *img_request)
1670 {
1671 	smp_mb();
1672 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1673 }
1674 
1675 static enum obj_operation_type
1676 rbd_img_request_op_type(struct rbd_img_request *img_request)
1677 {
1678 	if (img_request_write_test(img_request))
1679 		return OBJ_OP_WRITE;
1680 	else if (img_request_discard_test(img_request))
1681 		return OBJ_OP_DISCARD;
1682 	else
1683 		return OBJ_OP_READ;
1684 }
1685 
1686 static void
1687 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1688 {
1689 	u64 xferred = obj_request->xferred;
1690 	u64 length = obj_request->length;
1691 
1692 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1693 		obj_request, obj_request->img_request, obj_request->result,
1694 		xferred, length);
1695 	/*
1696 	 * ENOENT means a hole in the image.  We zero-fill the entire
1697 	 * length of the request.  A short read also implies zero-fill
1698 	 * to the end of the request.  An error requires the whole
1699 	 * length of the request to be reported finished with an error
1700 	 * to the block layer.  In each case we update the xferred
1701 	 * count to indicate the whole request was satisfied.
1702 	 */
1703 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1704 	if (obj_request->result == -ENOENT) {
1705 		if (obj_request->type == OBJ_REQUEST_BIO)
1706 			zero_bio_chain(obj_request->bio_list, 0);
1707 		else
1708 			zero_pages(obj_request->pages, 0, length);
1709 		obj_request->result = 0;
1710 	} else if (xferred < length && !obj_request->result) {
1711 		if (obj_request->type == OBJ_REQUEST_BIO)
1712 			zero_bio_chain(obj_request->bio_list, xferred);
1713 		else
1714 			zero_pages(obj_request->pages, xferred, length);
1715 	}
1716 	obj_request->xferred = length;
1717 	obj_request_done_set(obj_request);
1718 }
1719 
1720 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1721 {
1722 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1723 		obj_request->callback);
1724 	if (obj_request->callback)
1725 		obj_request->callback(obj_request);
1726 	else
1727 		complete_all(&obj_request->completion);
1728 }
1729 
1730 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1731 {
1732 	dout("%s: obj %p\n", __func__, obj_request);
1733 	obj_request_done_set(obj_request);
1734 }
1735 
1736 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1737 {
1738 	struct rbd_img_request *img_request = NULL;
1739 	struct rbd_device *rbd_dev = NULL;
1740 	bool layered = false;
1741 
1742 	if (obj_request_img_data_test(obj_request)) {
1743 		img_request = obj_request->img_request;
1744 		layered = img_request && img_request_layered_test(img_request);
1745 		rbd_dev = img_request->rbd_dev;
1746 	}
1747 
1748 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1749 		obj_request, img_request, obj_request->result,
1750 		obj_request->xferred, obj_request->length);
1751 	if (layered && obj_request->result == -ENOENT &&
1752 			obj_request->img_offset < rbd_dev->parent_overlap)
1753 		rbd_img_parent_read(obj_request);
1754 	else if (img_request)
1755 		rbd_img_obj_request_read_callback(obj_request);
1756 	else
1757 		obj_request_done_set(obj_request);
1758 }
1759 
1760 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1761 {
1762 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1763 		obj_request->result, obj_request->length);
1764 	/*
1765 	 * There is no such thing as a successful short write.  Set
1766 	 * it to our originally-requested length.
1767 	 */
1768 	obj_request->xferred = obj_request->length;
1769 	obj_request_done_set(obj_request);
1770 }
1771 
1772 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1773 {
1774 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775 		obj_request->result, obj_request->length);
1776 	/*
1777 	 * There is no such thing as a successful short discard.  Set
1778 	 * it to our originally-requested length.
1779 	 */
1780 	obj_request->xferred = obj_request->length;
1781 	/* discarding a non-existent object is not a problem */
1782 	if (obj_request->result == -ENOENT)
1783 		obj_request->result = 0;
1784 	obj_request_done_set(obj_request);
1785 }
1786 
1787 /*
1788  * For a simple stat call there's nothing to do.  We'll do more if
1789  * this is part of a write sequence for a layered image.
1790  */
1791 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1792 {
1793 	dout("%s: obj %p\n", __func__, obj_request);
1794 	obj_request_done_set(obj_request);
1795 }
1796 
1797 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1798 				struct ceph_msg *msg)
1799 {
1800 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1801 	u16 opcode;
1802 
1803 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1804 	rbd_assert(osd_req == obj_request->osd_req);
1805 	if (obj_request_img_data_test(obj_request)) {
1806 		rbd_assert(obj_request->img_request);
1807 		rbd_assert(obj_request->which != BAD_WHICH);
1808 	} else {
1809 		rbd_assert(obj_request->which == BAD_WHICH);
1810 	}
1811 
1812 	if (osd_req->r_result < 0)
1813 		obj_request->result = osd_req->r_result;
1814 
1815 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1816 
1817 	/*
1818 	 * We support a 64-bit length, but ultimately it has to be
1819 	 * passed to blk_end_request(), which takes an unsigned int.
1820 	 */
1821 	obj_request->xferred = osd_req->r_reply_op_len[0];
1822 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1823 
1824 	opcode = osd_req->r_ops[0].op;
1825 	switch (opcode) {
1826 	case CEPH_OSD_OP_READ:
1827 		rbd_osd_read_callback(obj_request);
1828 		break;
1829 	case CEPH_OSD_OP_SETALLOCHINT:
1830 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1831 		/* fall through */
1832 	case CEPH_OSD_OP_WRITE:
1833 		rbd_osd_write_callback(obj_request);
1834 		break;
1835 	case CEPH_OSD_OP_STAT:
1836 		rbd_osd_stat_callback(obj_request);
1837 		break;
1838 	case CEPH_OSD_OP_DELETE:
1839 	case CEPH_OSD_OP_TRUNCATE:
1840 	case CEPH_OSD_OP_ZERO:
1841 		rbd_osd_discard_callback(obj_request);
1842 		break;
1843 	case CEPH_OSD_OP_CALL:
1844 	case CEPH_OSD_OP_NOTIFY_ACK:
1845 	case CEPH_OSD_OP_WATCH:
1846 		rbd_osd_trivial_callback(obj_request);
1847 		break;
1848 	default:
1849 		rbd_warn(NULL, "%s: unsupported op %hu",
1850 			obj_request->object_name, (unsigned short) opcode);
1851 		break;
1852 	}
1853 
1854 	if (obj_request_done_test(obj_request))
1855 		rbd_obj_request_complete(obj_request);
1856 }
1857 
1858 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1859 {
1860 	struct rbd_img_request *img_request = obj_request->img_request;
1861 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1862 	u64 snap_id;
1863 
1864 	rbd_assert(osd_req != NULL);
1865 
1866 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1867 	ceph_osdc_build_request(osd_req, obj_request->offset,
1868 			NULL, snap_id, NULL);
1869 }
1870 
1871 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1872 {
1873 	struct rbd_img_request *img_request = obj_request->img_request;
1874 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1875 	struct ceph_snap_context *snapc;
1876 	struct timespec mtime = CURRENT_TIME;
1877 
1878 	rbd_assert(osd_req != NULL);
1879 
1880 	snapc = img_request ? img_request->snapc : NULL;
1881 	ceph_osdc_build_request(osd_req, obj_request->offset,
1882 			snapc, CEPH_NOSNAP, &mtime);
1883 }
1884 
1885 /*
1886  * Create an osd request.  A read request has one osd op (read).
1887  * A write request has either one (watch) or two (hint+write) osd ops.
1888  * (All rbd data writes are prefixed with an allocation hint op, but
1889  * technically osd watch is a write request, hence this distinction.)
1890  */
1891 static struct ceph_osd_request *rbd_osd_req_create(
1892 					struct rbd_device *rbd_dev,
1893 					enum obj_operation_type op_type,
1894 					unsigned int num_ops,
1895 					struct rbd_obj_request *obj_request)
1896 {
1897 	struct ceph_snap_context *snapc = NULL;
1898 	struct ceph_osd_client *osdc;
1899 	struct ceph_osd_request *osd_req;
1900 
1901 	if (obj_request_img_data_test(obj_request) &&
1902 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1903 		struct rbd_img_request *img_request = obj_request->img_request;
1904 		if (op_type == OBJ_OP_WRITE) {
1905 			rbd_assert(img_request_write_test(img_request));
1906 		} else {
1907 			rbd_assert(img_request_discard_test(img_request));
1908 		}
1909 		snapc = img_request->snapc;
1910 	}
1911 
1912 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1913 
1914 	/* Allocate and initialize the request, for the num_ops ops */
1915 
1916 	osdc = &rbd_dev->rbd_client->client->osdc;
1917 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1918 					  GFP_ATOMIC);
1919 	if (!osd_req)
1920 		return NULL;	/* ENOMEM */
1921 
1922 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1923 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1924 	else
1925 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1926 
1927 	osd_req->r_callback = rbd_osd_req_callback;
1928 	osd_req->r_priv = obj_request;
1929 
1930 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1931 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1932 
1933 	return osd_req;
1934 }
1935 
1936 /*
1937  * Create a copyup osd request based on the information in the object
1938  * request supplied.  A copyup request has two or three osd ops, a
1939  * copyup method call, potentially a hint op, and a write or truncate
1940  * or zero op.
1941  */
1942 static struct ceph_osd_request *
1943 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1944 {
1945 	struct rbd_img_request *img_request;
1946 	struct ceph_snap_context *snapc;
1947 	struct rbd_device *rbd_dev;
1948 	struct ceph_osd_client *osdc;
1949 	struct ceph_osd_request *osd_req;
1950 	int num_osd_ops = 3;
1951 
1952 	rbd_assert(obj_request_img_data_test(obj_request));
1953 	img_request = obj_request->img_request;
1954 	rbd_assert(img_request);
1955 	rbd_assert(img_request_write_test(img_request) ||
1956 			img_request_discard_test(img_request));
1957 
1958 	if (img_request_discard_test(img_request))
1959 		num_osd_ops = 2;
1960 
1961 	/* Allocate and initialize the request, for all the ops */
1962 
1963 	snapc = img_request->snapc;
1964 	rbd_dev = img_request->rbd_dev;
1965 	osdc = &rbd_dev->rbd_client->client->osdc;
1966 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1967 						false, GFP_ATOMIC);
1968 	if (!osd_req)
1969 		return NULL;	/* ENOMEM */
1970 
1971 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1972 	osd_req->r_callback = rbd_osd_req_callback;
1973 	osd_req->r_priv = obj_request;
1974 
1975 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1976 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1977 
1978 	return osd_req;
1979 }
1980 
1981 
1982 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1983 {
1984 	ceph_osdc_put_request(osd_req);
1985 }
1986 
1987 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1988 
1989 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1990 						u64 offset, u64 length,
1991 						enum obj_request_type type)
1992 {
1993 	struct rbd_obj_request *obj_request;
1994 	size_t size;
1995 	char *name;
1996 
1997 	rbd_assert(obj_request_type_valid(type));
1998 
1999 	size = strlen(object_name) + 1;
2000 	name = kmalloc(size, GFP_KERNEL);
2001 	if (!name)
2002 		return NULL;
2003 
2004 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2005 	if (!obj_request) {
2006 		kfree(name);
2007 		return NULL;
2008 	}
2009 
2010 	obj_request->object_name = memcpy(name, object_name, size);
2011 	obj_request->offset = offset;
2012 	obj_request->length = length;
2013 	obj_request->flags = 0;
2014 	obj_request->which = BAD_WHICH;
2015 	obj_request->type = type;
2016 	INIT_LIST_HEAD(&obj_request->links);
2017 	init_completion(&obj_request->completion);
2018 	kref_init(&obj_request->kref);
2019 
2020 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2021 		offset, length, (int)type, obj_request);
2022 
2023 	return obj_request;
2024 }
2025 
2026 static void rbd_obj_request_destroy(struct kref *kref)
2027 {
2028 	struct rbd_obj_request *obj_request;
2029 
2030 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2031 
2032 	dout("%s: obj %p\n", __func__, obj_request);
2033 
2034 	rbd_assert(obj_request->img_request == NULL);
2035 	rbd_assert(obj_request->which == BAD_WHICH);
2036 
2037 	if (obj_request->osd_req)
2038 		rbd_osd_req_destroy(obj_request->osd_req);
2039 
2040 	rbd_assert(obj_request_type_valid(obj_request->type));
2041 	switch (obj_request->type) {
2042 	case OBJ_REQUEST_NODATA:
2043 		break;		/* Nothing to do */
2044 	case OBJ_REQUEST_BIO:
2045 		if (obj_request->bio_list)
2046 			bio_chain_put(obj_request->bio_list);
2047 		break;
2048 	case OBJ_REQUEST_PAGES:
2049 		if (obj_request->pages)
2050 			ceph_release_page_vector(obj_request->pages,
2051 						obj_request->page_count);
2052 		break;
2053 	}
2054 
2055 	kfree(obj_request->object_name);
2056 	obj_request->object_name = NULL;
2057 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2058 }
2059 
2060 /* It's OK to call this for a device with no parent */
2061 
2062 static void rbd_spec_put(struct rbd_spec *spec);
2063 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2064 {
2065 	rbd_dev_remove_parent(rbd_dev);
2066 	rbd_spec_put(rbd_dev->parent_spec);
2067 	rbd_dev->parent_spec = NULL;
2068 	rbd_dev->parent_overlap = 0;
2069 }
2070 
2071 /*
2072  * Parent image reference counting is used to determine when an
2073  * image's parent fields can be safely torn down--after there are no
2074  * more in-flight requests to the parent image.  When the last
2075  * reference is dropped, cleaning them up is safe.
2076  */
2077 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2078 {
2079 	int counter;
2080 
2081 	if (!rbd_dev->parent_spec)
2082 		return;
2083 
2084 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2085 	if (counter > 0)
2086 		return;
2087 
2088 	/* Last reference; clean up parent data structures */
2089 
2090 	if (!counter)
2091 		rbd_dev_unparent(rbd_dev);
2092 	else
2093 		rbd_warn(rbd_dev, "parent reference underflow");
2094 }
2095 
2096 /*
2097  * If an image has a non-zero parent overlap, get a reference to its
2098  * parent.
2099  *
2100  * We must get the reference before checking for the overlap to
2101  * coordinate properly with zeroing the parent overlap in
2102  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2103  * drop it again if there is no overlap.
2104  *
2105  * Returns true if the rbd device has a parent with a non-zero
2106  * overlap and a reference for it was successfully taken, or
2107  * false otherwise.
2108  */
2109 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2110 {
2111 	int counter;
2112 
2113 	if (!rbd_dev->parent_spec)
2114 		return false;
2115 
2116 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2117 	if (counter > 0 && rbd_dev->parent_overlap)
2118 		return true;
2119 
2120 	/* Image was flattened, but parent is not yet torn down */
2121 
2122 	if (counter < 0)
2123 		rbd_warn(rbd_dev, "parent reference overflow");
2124 
2125 	return false;
2126 }
2127 
2128 /*
2129  * Caller is responsible for filling in the list of object requests
2130  * that comprises the image request, and the Linux request pointer
2131  * (if there is one).
2132  */
2133 static struct rbd_img_request *rbd_img_request_create(
2134 					struct rbd_device *rbd_dev,
2135 					u64 offset, u64 length,
2136 					enum obj_operation_type op_type,
2137 					struct ceph_snap_context *snapc)
2138 {
2139 	struct rbd_img_request *img_request;
2140 
2141 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2142 	if (!img_request)
2143 		return NULL;
2144 
2145 	img_request->rq = NULL;
2146 	img_request->rbd_dev = rbd_dev;
2147 	img_request->offset = offset;
2148 	img_request->length = length;
2149 	img_request->flags = 0;
2150 	if (op_type == OBJ_OP_DISCARD) {
2151 		img_request_discard_set(img_request);
2152 		img_request->snapc = snapc;
2153 	} else if (op_type == OBJ_OP_WRITE) {
2154 		img_request_write_set(img_request);
2155 		img_request->snapc = snapc;
2156 	} else {
2157 		img_request->snap_id = rbd_dev->spec->snap_id;
2158 	}
2159 	if (rbd_dev_parent_get(rbd_dev))
2160 		img_request_layered_set(img_request);
2161 	spin_lock_init(&img_request->completion_lock);
2162 	img_request->next_completion = 0;
2163 	img_request->callback = NULL;
2164 	img_request->result = 0;
2165 	img_request->obj_request_count = 0;
2166 	INIT_LIST_HEAD(&img_request->obj_requests);
2167 	kref_init(&img_request->kref);
2168 
2169 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2170 		obj_op_name(op_type), offset, length, img_request);
2171 
2172 	return img_request;
2173 }
2174 
2175 static void rbd_img_request_destroy(struct kref *kref)
2176 {
2177 	struct rbd_img_request *img_request;
2178 	struct rbd_obj_request *obj_request;
2179 	struct rbd_obj_request *next_obj_request;
2180 
2181 	img_request = container_of(kref, struct rbd_img_request, kref);
2182 
2183 	dout("%s: img %p\n", __func__, img_request);
2184 
2185 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2186 		rbd_img_obj_request_del(img_request, obj_request);
2187 	rbd_assert(img_request->obj_request_count == 0);
2188 
2189 	if (img_request_layered_test(img_request)) {
2190 		img_request_layered_clear(img_request);
2191 		rbd_dev_parent_put(img_request->rbd_dev);
2192 	}
2193 
2194 	if (img_request_write_test(img_request) ||
2195 		img_request_discard_test(img_request))
2196 		ceph_put_snap_context(img_request->snapc);
2197 
2198 	kmem_cache_free(rbd_img_request_cache, img_request);
2199 }
2200 
2201 static struct rbd_img_request *rbd_parent_request_create(
2202 					struct rbd_obj_request *obj_request,
2203 					u64 img_offset, u64 length)
2204 {
2205 	struct rbd_img_request *parent_request;
2206 	struct rbd_device *rbd_dev;
2207 
2208 	rbd_assert(obj_request->img_request);
2209 	rbd_dev = obj_request->img_request->rbd_dev;
2210 
2211 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2212 						length, OBJ_OP_READ, NULL);
2213 	if (!parent_request)
2214 		return NULL;
2215 
2216 	img_request_child_set(parent_request);
2217 	rbd_obj_request_get(obj_request);
2218 	parent_request->obj_request = obj_request;
2219 
2220 	return parent_request;
2221 }
2222 
2223 static void rbd_parent_request_destroy(struct kref *kref)
2224 {
2225 	struct rbd_img_request *parent_request;
2226 	struct rbd_obj_request *orig_request;
2227 
2228 	parent_request = container_of(kref, struct rbd_img_request, kref);
2229 	orig_request = parent_request->obj_request;
2230 
2231 	parent_request->obj_request = NULL;
2232 	rbd_obj_request_put(orig_request);
2233 	img_request_child_clear(parent_request);
2234 
2235 	rbd_img_request_destroy(kref);
2236 }
2237 
2238 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2239 {
2240 	struct rbd_img_request *img_request;
2241 	unsigned int xferred;
2242 	int result;
2243 	bool more;
2244 
2245 	rbd_assert(obj_request_img_data_test(obj_request));
2246 	img_request = obj_request->img_request;
2247 
2248 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2249 	xferred = (unsigned int)obj_request->xferred;
2250 	result = obj_request->result;
2251 	if (result) {
2252 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2253 		enum obj_operation_type op_type;
2254 
2255 		if (img_request_discard_test(img_request))
2256 			op_type = OBJ_OP_DISCARD;
2257 		else if (img_request_write_test(img_request))
2258 			op_type = OBJ_OP_WRITE;
2259 		else
2260 			op_type = OBJ_OP_READ;
2261 
2262 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2263 			obj_op_name(op_type), obj_request->length,
2264 			obj_request->img_offset, obj_request->offset);
2265 		rbd_warn(rbd_dev, "  result %d xferred %x",
2266 			result, xferred);
2267 		if (!img_request->result)
2268 			img_request->result = result;
2269 	}
2270 
2271 	/* Image object requests don't own their page array */
2272 
2273 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2274 		obj_request->pages = NULL;
2275 		obj_request->page_count = 0;
2276 	}
2277 
2278 	if (img_request_child_test(img_request)) {
2279 		rbd_assert(img_request->obj_request != NULL);
2280 		more = obj_request->which < img_request->obj_request_count - 1;
2281 	} else {
2282 		rbd_assert(img_request->rq != NULL);
2283 		more = blk_end_request(img_request->rq, result, xferred);
2284 	}
2285 
2286 	return more;
2287 }
2288 
2289 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2290 {
2291 	struct rbd_img_request *img_request;
2292 	u32 which = obj_request->which;
2293 	bool more = true;
2294 
2295 	rbd_assert(obj_request_img_data_test(obj_request));
2296 	img_request = obj_request->img_request;
2297 
2298 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2299 	rbd_assert(img_request != NULL);
2300 	rbd_assert(img_request->obj_request_count > 0);
2301 	rbd_assert(which != BAD_WHICH);
2302 	rbd_assert(which < img_request->obj_request_count);
2303 
2304 	spin_lock_irq(&img_request->completion_lock);
2305 	if (which != img_request->next_completion)
2306 		goto out;
2307 
2308 	for_each_obj_request_from(img_request, obj_request) {
2309 		rbd_assert(more);
2310 		rbd_assert(which < img_request->obj_request_count);
2311 
2312 		if (!obj_request_done_test(obj_request))
2313 			break;
2314 		more = rbd_img_obj_end_request(obj_request);
2315 		which++;
2316 	}
2317 
2318 	rbd_assert(more ^ (which == img_request->obj_request_count));
2319 	img_request->next_completion = which;
2320 out:
2321 	spin_unlock_irq(&img_request->completion_lock);
2322 	rbd_img_request_put(img_request);
2323 
2324 	if (!more)
2325 		rbd_img_request_complete(img_request);
2326 }
2327 
2328 /*
2329  * Add individual osd ops to the given ceph_osd_request and prepare
2330  * them for submission. num_ops is the current number of
2331  * osd operations already to the object request.
2332  */
2333 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2334 				struct ceph_osd_request *osd_request,
2335 				enum obj_operation_type op_type,
2336 				unsigned int num_ops)
2337 {
2338 	struct rbd_img_request *img_request = obj_request->img_request;
2339 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2340 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2341 	u64 offset = obj_request->offset;
2342 	u64 length = obj_request->length;
2343 	u64 img_end;
2344 	u16 opcode;
2345 
2346 	if (op_type == OBJ_OP_DISCARD) {
2347 		if (!offset && length == object_size &&
2348 		    (!img_request_layered_test(img_request) ||
2349 		     !obj_request_overlaps_parent(obj_request))) {
2350 			opcode = CEPH_OSD_OP_DELETE;
2351 		} else if ((offset + length == object_size)) {
2352 			opcode = CEPH_OSD_OP_TRUNCATE;
2353 		} else {
2354 			down_read(&rbd_dev->header_rwsem);
2355 			img_end = rbd_dev->header.image_size;
2356 			up_read(&rbd_dev->header_rwsem);
2357 
2358 			if (obj_request->img_offset + length == img_end)
2359 				opcode = CEPH_OSD_OP_TRUNCATE;
2360 			else
2361 				opcode = CEPH_OSD_OP_ZERO;
2362 		}
2363 	} else if (op_type == OBJ_OP_WRITE) {
2364 		opcode = CEPH_OSD_OP_WRITE;
2365 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2366 					object_size, object_size);
2367 		num_ops++;
2368 	} else {
2369 		opcode = CEPH_OSD_OP_READ;
2370 	}
2371 
2372 	osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2373 				0, 0);
2374 	if (obj_request->type == OBJ_REQUEST_BIO)
2375 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2376 					obj_request->bio_list, length);
2377 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2378 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2379 					obj_request->pages, length,
2380 					offset & ~PAGE_MASK, false, false);
2381 
2382 	/* Discards are also writes */
2383 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2384 		rbd_osd_req_format_write(obj_request);
2385 	else
2386 		rbd_osd_req_format_read(obj_request);
2387 }
2388 
2389 /*
2390  * Split up an image request into one or more object requests, each
2391  * to a different object.  The "type" parameter indicates whether
2392  * "data_desc" is the pointer to the head of a list of bio
2393  * structures, or the base of a page array.  In either case this
2394  * function assumes data_desc describes memory sufficient to hold
2395  * all data described by the image request.
2396  */
2397 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2398 					enum obj_request_type type,
2399 					void *data_desc)
2400 {
2401 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2402 	struct rbd_obj_request *obj_request = NULL;
2403 	struct rbd_obj_request *next_obj_request;
2404 	struct bio *bio_list = NULL;
2405 	unsigned int bio_offset = 0;
2406 	struct page **pages = NULL;
2407 	enum obj_operation_type op_type;
2408 	u64 img_offset;
2409 	u64 resid;
2410 
2411 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2412 		(int)type, data_desc);
2413 
2414 	img_offset = img_request->offset;
2415 	resid = img_request->length;
2416 	rbd_assert(resid > 0);
2417 	op_type = rbd_img_request_op_type(img_request);
2418 
2419 	if (type == OBJ_REQUEST_BIO) {
2420 		bio_list = data_desc;
2421 		rbd_assert(img_offset ==
2422 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2423 	} else if (type == OBJ_REQUEST_PAGES) {
2424 		pages = data_desc;
2425 	}
2426 
2427 	while (resid) {
2428 		struct ceph_osd_request *osd_req;
2429 		const char *object_name;
2430 		u64 offset;
2431 		u64 length;
2432 
2433 		object_name = rbd_segment_name(rbd_dev, img_offset);
2434 		if (!object_name)
2435 			goto out_unwind;
2436 		offset = rbd_segment_offset(rbd_dev, img_offset);
2437 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2438 		obj_request = rbd_obj_request_create(object_name,
2439 						offset, length, type);
2440 		/* object request has its own copy of the object name */
2441 		rbd_segment_name_free(object_name);
2442 		if (!obj_request)
2443 			goto out_unwind;
2444 
2445 		/*
2446 		 * set obj_request->img_request before creating the
2447 		 * osd_request so that it gets the right snapc
2448 		 */
2449 		rbd_img_obj_request_add(img_request, obj_request);
2450 
2451 		if (type == OBJ_REQUEST_BIO) {
2452 			unsigned int clone_size;
2453 
2454 			rbd_assert(length <= (u64)UINT_MAX);
2455 			clone_size = (unsigned int)length;
2456 			obj_request->bio_list =
2457 					bio_chain_clone_range(&bio_list,
2458 								&bio_offset,
2459 								clone_size,
2460 								GFP_ATOMIC);
2461 			if (!obj_request->bio_list)
2462 				goto out_unwind;
2463 		} else if (type == OBJ_REQUEST_PAGES) {
2464 			unsigned int page_count;
2465 
2466 			obj_request->pages = pages;
2467 			page_count = (u32)calc_pages_for(offset, length);
2468 			obj_request->page_count = page_count;
2469 			if ((offset + length) & ~PAGE_MASK)
2470 				page_count--;	/* more on last page */
2471 			pages += page_count;
2472 		}
2473 
2474 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2475 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2476 					obj_request);
2477 		if (!osd_req)
2478 			goto out_unwind;
2479 
2480 		obj_request->osd_req = osd_req;
2481 		obj_request->callback = rbd_img_obj_callback;
2482 		obj_request->img_offset = img_offset;
2483 
2484 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2485 
2486 		rbd_img_request_get(img_request);
2487 
2488 		img_offset += length;
2489 		resid -= length;
2490 	}
2491 
2492 	return 0;
2493 
2494 out_unwind:
2495 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2496 		rbd_img_obj_request_del(img_request, obj_request);
2497 
2498 	return -ENOMEM;
2499 }
2500 
2501 static void
2502 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2503 {
2504 	struct rbd_img_request *img_request;
2505 	struct rbd_device *rbd_dev;
2506 	struct page **pages;
2507 	u32 page_count;
2508 
2509 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2510 		obj_request->type == OBJ_REQUEST_NODATA);
2511 	rbd_assert(obj_request_img_data_test(obj_request));
2512 	img_request = obj_request->img_request;
2513 	rbd_assert(img_request);
2514 
2515 	rbd_dev = img_request->rbd_dev;
2516 	rbd_assert(rbd_dev);
2517 
2518 	pages = obj_request->copyup_pages;
2519 	rbd_assert(pages != NULL);
2520 	obj_request->copyup_pages = NULL;
2521 	page_count = obj_request->copyup_page_count;
2522 	rbd_assert(page_count);
2523 	obj_request->copyup_page_count = 0;
2524 	ceph_release_page_vector(pages, page_count);
2525 
2526 	/*
2527 	 * We want the transfer count to reflect the size of the
2528 	 * original write request.  There is no such thing as a
2529 	 * successful short write, so if the request was successful
2530 	 * we can just set it to the originally-requested length.
2531 	 */
2532 	if (!obj_request->result)
2533 		obj_request->xferred = obj_request->length;
2534 
2535 	/* Finish up with the normal image object callback */
2536 
2537 	rbd_img_obj_callback(obj_request);
2538 }
2539 
2540 static void
2541 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2542 {
2543 	struct rbd_obj_request *orig_request;
2544 	struct ceph_osd_request *osd_req;
2545 	struct ceph_osd_client *osdc;
2546 	struct rbd_device *rbd_dev;
2547 	struct page **pages;
2548 	enum obj_operation_type op_type;
2549 	u32 page_count;
2550 	int img_result;
2551 	u64 parent_length;
2552 
2553 	rbd_assert(img_request_child_test(img_request));
2554 
2555 	/* First get what we need from the image request */
2556 
2557 	pages = img_request->copyup_pages;
2558 	rbd_assert(pages != NULL);
2559 	img_request->copyup_pages = NULL;
2560 	page_count = img_request->copyup_page_count;
2561 	rbd_assert(page_count);
2562 	img_request->copyup_page_count = 0;
2563 
2564 	orig_request = img_request->obj_request;
2565 	rbd_assert(orig_request != NULL);
2566 	rbd_assert(obj_request_type_valid(orig_request->type));
2567 	img_result = img_request->result;
2568 	parent_length = img_request->length;
2569 	rbd_assert(parent_length == img_request->xferred);
2570 	rbd_img_request_put(img_request);
2571 
2572 	rbd_assert(orig_request->img_request);
2573 	rbd_dev = orig_request->img_request->rbd_dev;
2574 	rbd_assert(rbd_dev);
2575 
2576 	/*
2577 	 * If the overlap has become 0 (most likely because the
2578 	 * image has been flattened) we need to free the pages
2579 	 * and re-submit the original write request.
2580 	 */
2581 	if (!rbd_dev->parent_overlap) {
2582 		struct ceph_osd_client *osdc;
2583 
2584 		ceph_release_page_vector(pages, page_count);
2585 		osdc = &rbd_dev->rbd_client->client->osdc;
2586 		img_result = rbd_obj_request_submit(osdc, orig_request);
2587 		if (!img_result)
2588 			return;
2589 	}
2590 
2591 	if (img_result)
2592 		goto out_err;
2593 
2594 	/*
2595 	 * The original osd request is of no use to use any more.
2596 	 * We need a new one that can hold the three ops in a copyup
2597 	 * request.  Allocate the new copyup osd request for the
2598 	 * original request, and release the old one.
2599 	 */
2600 	img_result = -ENOMEM;
2601 	osd_req = rbd_osd_req_create_copyup(orig_request);
2602 	if (!osd_req)
2603 		goto out_err;
2604 	rbd_osd_req_destroy(orig_request->osd_req);
2605 	orig_request->osd_req = osd_req;
2606 	orig_request->copyup_pages = pages;
2607 	orig_request->copyup_page_count = page_count;
2608 
2609 	/* Initialize the copyup op */
2610 
2611 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2612 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2613 						false, false);
2614 
2615 	/* Add the other op(s) */
2616 
2617 	op_type = rbd_img_request_op_type(orig_request->img_request);
2618 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2619 
2620 	/* All set, send it off. */
2621 
2622 	orig_request->callback = rbd_img_obj_copyup_callback;
2623 	osdc = &rbd_dev->rbd_client->client->osdc;
2624 	img_result = rbd_obj_request_submit(osdc, orig_request);
2625 	if (!img_result)
2626 		return;
2627 out_err:
2628 	/* Record the error code and complete the request */
2629 
2630 	orig_request->result = img_result;
2631 	orig_request->xferred = 0;
2632 	obj_request_done_set(orig_request);
2633 	rbd_obj_request_complete(orig_request);
2634 }
2635 
2636 /*
2637  * Read from the parent image the range of data that covers the
2638  * entire target of the given object request.  This is used for
2639  * satisfying a layered image write request when the target of an
2640  * object request from the image request does not exist.
2641  *
2642  * A page array big enough to hold the returned data is allocated
2643  * and supplied to rbd_img_request_fill() as the "data descriptor."
2644  * When the read completes, this page array will be transferred to
2645  * the original object request for the copyup operation.
2646  *
2647  * If an error occurs, record it as the result of the original
2648  * object request and mark it done so it gets completed.
2649  */
2650 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2651 {
2652 	struct rbd_img_request *img_request = NULL;
2653 	struct rbd_img_request *parent_request = NULL;
2654 	struct rbd_device *rbd_dev;
2655 	u64 img_offset;
2656 	u64 length;
2657 	struct page **pages = NULL;
2658 	u32 page_count;
2659 	int result;
2660 
2661 	rbd_assert(obj_request_img_data_test(obj_request));
2662 	rbd_assert(obj_request_type_valid(obj_request->type));
2663 
2664 	img_request = obj_request->img_request;
2665 	rbd_assert(img_request != NULL);
2666 	rbd_dev = img_request->rbd_dev;
2667 	rbd_assert(rbd_dev->parent != NULL);
2668 
2669 	/*
2670 	 * Determine the byte range covered by the object in the
2671 	 * child image to which the original request was to be sent.
2672 	 */
2673 	img_offset = obj_request->img_offset - obj_request->offset;
2674 	length = (u64)1 << rbd_dev->header.obj_order;
2675 
2676 	/*
2677 	 * There is no defined parent data beyond the parent
2678 	 * overlap, so limit what we read at that boundary if
2679 	 * necessary.
2680 	 */
2681 	if (img_offset + length > rbd_dev->parent_overlap) {
2682 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2683 		length = rbd_dev->parent_overlap - img_offset;
2684 	}
2685 
2686 	/*
2687 	 * Allocate a page array big enough to receive the data read
2688 	 * from the parent.
2689 	 */
2690 	page_count = (u32)calc_pages_for(0, length);
2691 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692 	if (IS_ERR(pages)) {
2693 		result = PTR_ERR(pages);
2694 		pages = NULL;
2695 		goto out_err;
2696 	}
2697 
2698 	result = -ENOMEM;
2699 	parent_request = rbd_parent_request_create(obj_request,
2700 						img_offset, length);
2701 	if (!parent_request)
2702 		goto out_err;
2703 
2704 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2705 	if (result)
2706 		goto out_err;
2707 	parent_request->copyup_pages = pages;
2708 	parent_request->copyup_page_count = page_count;
2709 
2710 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2711 	result = rbd_img_request_submit(parent_request);
2712 	if (!result)
2713 		return 0;
2714 
2715 	parent_request->copyup_pages = NULL;
2716 	parent_request->copyup_page_count = 0;
2717 	parent_request->obj_request = NULL;
2718 	rbd_obj_request_put(obj_request);
2719 out_err:
2720 	if (pages)
2721 		ceph_release_page_vector(pages, page_count);
2722 	if (parent_request)
2723 		rbd_img_request_put(parent_request);
2724 	obj_request->result = result;
2725 	obj_request->xferred = 0;
2726 	obj_request_done_set(obj_request);
2727 
2728 	return result;
2729 }
2730 
2731 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2732 {
2733 	struct rbd_obj_request *orig_request;
2734 	struct rbd_device *rbd_dev;
2735 	int result;
2736 
2737 	rbd_assert(!obj_request_img_data_test(obj_request));
2738 
2739 	/*
2740 	 * All we need from the object request is the original
2741 	 * request and the result of the STAT op.  Grab those, then
2742 	 * we're done with the request.
2743 	 */
2744 	orig_request = obj_request->obj_request;
2745 	obj_request->obj_request = NULL;
2746 	rbd_obj_request_put(orig_request);
2747 	rbd_assert(orig_request);
2748 	rbd_assert(orig_request->img_request);
2749 
2750 	result = obj_request->result;
2751 	obj_request->result = 0;
2752 
2753 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2754 		obj_request, orig_request, result,
2755 		obj_request->xferred, obj_request->length);
2756 	rbd_obj_request_put(obj_request);
2757 
2758 	/*
2759 	 * If the overlap has become 0 (most likely because the
2760 	 * image has been flattened) we need to free the pages
2761 	 * and re-submit the original write request.
2762 	 */
2763 	rbd_dev = orig_request->img_request->rbd_dev;
2764 	if (!rbd_dev->parent_overlap) {
2765 		struct ceph_osd_client *osdc;
2766 
2767 		osdc = &rbd_dev->rbd_client->client->osdc;
2768 		result = rbd_obj_request_submit(osdc, orig_request);
2769 		if (!result)
2770 			return;
2771 	}
2772 
2773 	/*
2774 	 * Our only purpose here is to determine whether the object
2775 	 * exists, and we don't want to treat the non-existence as
2776 	 * an error.  If something else comes back, transfer the
2777 	 * error to the original request and complete it now.
2778 	 */
2779 	if (!result) {
2780 		obj_request_existence_set(orig_request, true);
2781 	} else if (result == -ENOENT) {
2782 		obj_request_existence_set(orig_request, false);
2783 	} else if (result) {
2784 		orig_request->result = result;
2785 		goto out;
2786 	}
2787 
2788 	/*
2789 	 * Resubmit the original request now that we have recorded
2790 	 * whether the target object exists.
2791 	 */
2792 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2793 out:
2794 	if (orig_request->result)
2795 		rbd_obj_request_complete(orig_request);
2796 }
2797 
2798 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2799 {
2800 	struct rbd_obj_request *stat_request;
2801 	struct rbd_device *rbd_dev;
2802 	struct ceph_osd_client *osdc;
2803 	struct page **pages = NULL;
2804 	u32 page_count;
2805 	size_t size;
2806 	int ret;
2807 
2808 	/*
2809 	 * The response data for a STAT call consists of:
2810 	 *     le64 length;
2811 	 *     struct {
2812 	 *         le32 tv_sec;
2813 	 *         le32 tv_nsec;
2814 	 *     } mtime;
2815 	 */
2816 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2817 	page_count = (u32)calc_pages_for(0, size);
2818 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2819 	if (IS_ERR(pages))
2820 		return PTR_ERR(pages);
2821 
2822 	ret = -ENOMEM;
2823 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2824 							OBJ_REQUEST_PAGES);
2825 	if (!stat_request)
2826 		goto out;
2827 
2828 	rbd_obj_request_get(obj_request);
2829 	stat_request->obj_request = obj_request;
2830 	stat_request->pages = pages;
2831 	stat_request->page_count = page_count;
2832 
2833 	rbd_assert(obj_request->img_request);
2834 	rbd_dev = obj_request->img_request->rbd_dev;
2835 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2836 						   stat_request);
2837 	if (!stat_request->osd_req)
2838 		goto out;
2839 	stat_request->callback = rbd_img_obj_exists_callback;
2840 
2841 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2842 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2843 					false, false);
2844 	rbd_osd_req_format_read(stat_request);
2845 
2846 	osdc = &rbd_dev->rbd_client->client->osdc;
2847 	ret = rbd_obj_request_submit(osdc, stat_request);
2848 out:
2849 	if (ret)
2850 		rbd_obj_request_put(obj_request);
2851 
2852 	return ret;
2853 }
2854 
2855 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2856 {
2857 	struct rbd_img_request *img_request;
2858 	struct rbd_device *rbd_dev;
2859 
2860 	rbd_assert(obj_request_img_data_test(obj_request));
2861 
2862 	img_request = obj_request->img_request;
2863 	rbd_assert(img_request);
2864 	rbd_dev = img_request->rbd_dev;
2865 
2866 	/* Reads */
2867 	if (!img_request_write_test(img_request) &&
2868 	    !img_request_discard_test(img_request))
2869 		return true;
2870 
2871 	/* Non-layered writes */
2872 	if (!img_request_layered_test(img_request))
2873 		return true;
2874 
2875 	/*
2876 	 * Layered writes outside of the parent overlap range don't
2877 	 * share any data with the parent.
2878 	 */
2879 	if (!obj_request_overlaps_parent(obj_request))
2880 		return true;
2881 
2882 	/*
2883 	 * Entire-object layered writes - we will overwrite whatever
2884 	 * parent data there is anyway.
2885 	 */
2886 	if (!obj_request->offset &&
2887 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2888 		return true;
2889 
2890 	/*
2891 	 * If the object is known to already exist, its parent data has
2892 	 * already been copied.
2893 	 */
2894 	if (obj_request_known_test(obj_request) &&
2895 	    obj_request_exists_test(obj_request))
2896 		return true;
2897 
2898 	return false;
2899 }
2900 
2901 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2902 {
2903 	if (img_obj_request_simple(obj_request)) {
2904 		struct rbd_device *rbd_dev;
2905 		struct ceph_osd_client *osdc;
2906 
2907 		rbd_dev = obj_request->img_request->rbd_dev;
2908 		osdc = &rbd_dev->rbd_client->client->osdc;
2909 
2910 		return rbd_obj_request_submit(osdc, obj_request);
2911 	}
2912 
2913 	/*
2914 	 * It's a layered write.  The target object might exist but
2915 	 * we may not know that yet.  If we know it doesn't exist,
2916 	 * start by reading the data for the full target object from
2917 	 * the parent so we can use it for a copyup to the target.
2918 	 */
2919 	if (obj_request_known_test(obj_request))
2920 		return rbd_img_obj_parent_read_full(obj_request);
2921 
2922 	/* We don't know whether the target exists.  Go find out. */
2923 
2924 	return rbd_img_obj_exists_submit(obj_request);
2925 }
2926 
2927 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2928 {
2929 	struct rbd_obj_request *obj_request;
2930 	struct rbd_obj_request *next_obj_request;
2931 
2932 	dout("%s: img %p\n", __func__, img_request);
2933 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2934 		int ret;
2935 
2936 		ret = rbd_img_obj_request_submit(obj_request);
2937 		if (ret)
2938 			return ret;
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2945 {
2946 	struct rbd_obj_request *obj_request;
2947 	struct rbd_device *rbd_dev;
2948 	u64 obj_end;
2949 	u64 img_xferred;
2950 	int img_result;
2951 
2952 	rbd_assert(img_request_child_test(img_request));
2953 
2954 	/* First get what we need from the image request and release it */
2955 
2956 	obj_request = img_request->obj_request;
2957 	img_xferred = img_request->xferred;
2958 	img_result = img_request->result;
2959 	rbd_img_request_put(img_request);
2960 
2961 	/*
2962 	 * If the overlap has become 0 (most likely because the
2963 	 * image has been flattened) we need to re-submit the
2964 	 * original request.
2965 	 */
2966 	rbd_assert(obj_request);
2967 	rbd_assert(obj_request->img_request);
2968 	rbd_dev = obj_request->img_request->rbd_dev;
2969 	if (!rbd_dev->parent_overlap) {
2970 		struct ceph_osd_client *osdc;
2971 
2972 		osdc = &rbd_dev->rbd_client->client->osdc;
2973 		img_result = rbd_obj_request_submit(osdc, obj_request);
2974 		if (!img_result)
2975 			return;
2976 	}
2977 
2978 	obj_request->result = img_result;
2979 	if (obj_request->result)
2980 		goto out;
2981 
2982 	/*
2983 	 * We need to zero anything beyond the parent overlap
2984 	 * boundary.  Since rbd_img_obj_request_read_callback()
2985 	 * will zero anything beyond the end of a short read, an
2986 	 * easy way to do this is to pretend the data from the
2987 	 * parent came up short--ending at the overlap boundary.
2988 	 */
2989 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2990 	obj_end = obj_request->img_offset + obj_request->length;
2991 	if (obj_end > rbd_dev->parent_overlap) {
2992 		u64 xferred = 0;
2993 
2994 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2995 			xferred = rbd_dev->parent_overlap -
2996 					obj_request->img_offset;
2997 
2998 		obj_request->xferred = min(img_xferred, xferred);
2999 	} else {
3000 		obj_request->xferred = img_xferred;
3001 	}
3002 out:
3003 	rbd_img_obj_request_read_callback(obj_request);
3004 	rbd_obj_request_complete(obj_request);
3005 }
3006 
3007 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3008 {
3009 	struct rbd_img_request *img_request;
3010 	int result;
3011 
3012 	rbd_assert(obj_request_img_data_test(obj_request));
3013 	rbd_assert(obj_request->img_request != NULL);
3014 	rbd_assert(obj_request->result == (s32) -ENOENT);
3015 	rbd_assert(obj_request_type_valid(obj_request->type));
3016 
3017 	/* rbd_read_finish(obj_request, obj_request->length); */
3018 	img_request = rbd_parent_request_create(obj_request,
3019 						obj_request->img_offset,
3020 						obj_request->length);
3021 	result = -ENOMEM;
3022 	if (!img_request)
3023 		goto out_err;
3024 
3025 	if (obj_request->type == OBJ_REQUEST_BIO)
3026 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3027 						obj_request->bio_list);
3028 	else
3029 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3030 						obj_request->pages);
3031 	if (result)
3032 		goto out_err;
3033 
3034 	img_request->callback = rbd_img_parent_read_callback;
3035 	result = rbd_img_request_submit(img_request);
3036 	if (result)
3037 		goto out_err;
3038 
3039 	return;
3040 out_err:
3041 	if (img_request)
3042 		rbd_img_request_put(img_request);
3043 	obj_request->result = result;
3044 	obj_request->xferred = 0;
3045 	obj_request_done_set(obj_request);
3046 }
3047 
3048 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3049 {
3050 	struct rbd_obj_request *obj_request;
3051 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3052 	int ret;
3053 
3054 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3055 							OBJ_REQUEST_NODATA);
3056 	if (!obj_request)
3057 		return -ENOMEM;
3058 
3059 	ret = -ENOMEM;
3060 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3061 						  obj_request);
3062 	if (!obj_request->osd_req)
3063 		goto out;
3064 
3065 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3066 					notify_id, 0, 0);
3067 	rbd_osd_req_format_read(obj_request);
3068 
3069 	ret = rbd_obj_request_submit(osdc, obj_request);
3070 	if (ret)
3071 		goto out;
3072 	ret = rbd_obj_request_wait(obj_request);
3073 out:
3074 	rbd_obj_request_put(obj_request);
3075 
3076 	return ret;
3077 }
3078 
3079 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3080 {
3081 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3082 	int ret;
3083 
3084 	if (!rbd_dev)
3085 		return;
3086 
3087 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3088 		rbd_dev->header_name, (unsigned long long)notify_id,
3089 		(unsigned int)opcode);
3090 
3091 	/*
3092 	 * Until adequate refresh error handling is in place, there is
3093 	 * not much we can do here, except warn.
3094 	 *
3095 	 * See http://tracker.ceph.com/issues/5040
3096 	 */
3097 	ret = rbd_dev_refresh(rbd_dev);
3098 	if (ret)
3099 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3100 
3101 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3102 	if (ret)
3103 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3104 }
3105 
3106 /*
3107  * Send a (un)watch request and wait for the ack.  Return a request
3108  * with a ref held on success or error.
3109  */
3110 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3111 						struct rbd_device *rbd_dev,
3112 						bool watch)
3113 {
3114 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3115 	struct rbd_obj_request *obj_request;
3116 	int ret;
3117 
3118 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3119 					     OBJ_REQUEST_NODATA);
3120 	if (!obj_request)
3121 		return ERR_PTR(-ENOMEM);
3122 
3123 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3124 						  obj_request);
3125 	if (!obj_request->osd_req) {
3126 		ret = -ENOMEM;
3127 		goto out;
3128 	}
3129 
3130 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3131 			      rbd_dev->watch_event->cookie, 0, watch);
3132 	rbd_osd_req_format_write(obj_request);
3133 
3134 	if (watch)
3135 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3136 
3137 	ret = rbd_obj_request_submit(osdc, obj_request);
3138 	if (ret)
3139 		goto out;
3140 
3141 	ret = rbd_obj_request_wait(obj_request);
3142 	if (ret)
3143 		goto out;
3144 
3145 	ret = obj_request->result;
3146 	if (ret) {
3147 		if (watch)
3148 			rbd_obj_request_end(obj_request);
3149 		goto out;
3150 	}
3151 
3152 	return obj_request;
3153 
3154 out:
3155 	rbd_obj_request_put(obj_request);
3156 	return ERR_PTR(ret);
3157 }
3158 
3159 /*
3160  * Initiate a watch request, synchronously.
3161  */
3162 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3163 {
3164 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3165 	struct rbd_obj_request *obj_request;
3166 	int ret;
3167 
3168 	rbd_assert(!rbd_dev->watch_event);
3169 	rbd_assert(!rbd_dev->watch_request);
3170 
3171 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3172 				     &rbd_dev->watch_event);
3173 	if (ret < 0)
3174 		return ret;
3175 
3176 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3177 	if (IS_ERR(obj_request)) {
3178 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3179 		rbd_dev->watch_event = NULL;
3180 		return PTR_ERR(obj_request);
3181 	}
3182 
3183 	/*
3184 	 * A watch request is set to linger, so the underlying osd
3185 	 * request won't go away until we unregister it.  We retain
3186 	 * a pointer to the object request during that time (in
3187 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3188 	 * We'll drop that reference after we've unregistered it in
3189 	 * rbd_dev_header_unwatch_sync().
3190 	 */
3191 	rbd_dev->watch_request = obj_request;
3192 
3193 	return 0;
3194 }
3195 
3196 /*
3197  * Tear down a watch request, synchronously.
3198  */
3199 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3200 {
3201 	struct rbd_obj_request *obj_request;
3202 
3203 	rbd_assert(rbd_dev->watch_event);
3204 	rbd_assert(rbd_dev->watch_request);
3205 
3206 	rbd_obj_request_end(rbd_dev->watch_request);
3207 	rbd_obj_request_put(rbd_dev->watch_request);
3208 	rbd_dev->watch_request = NULL;
3209 
3210 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3211 	if (!IS_ERR(obj_request))
3212 		rbd_obj_request_put(obj_request);
3213 	else
3214 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3215 			 PTR_ERR(obj_request));
3216 
3217 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3218 	rbd_dev->watch_event = NULL;
3219 }
3220 
3221 /*
3222  * Synchronous osd object method call.  Returns the number of bytes
3223  * returned in the outbound buffer, or a negative error code.
3224  */
3225 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3226 			     const char *object_name,
3227 			     const char *class_name,
3228 			     const char *method_name,
3229 			     const void *outbound,
3230 			     size_t outbound_size,
3231 			     void *inbound,
3232 			     size_t inbound_size)
3233 {
3234 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3235 	struct rbd_obj_request *obj_request;
3236 	struct page **pages;
3237 	u32 page_count;
3238 	int ret;
3239 
3240 	/*
3241 	 * Method calls are ultimately read operations.  The result
3242 	 * should placed into the inbound buffer provided.  They
3243 	 * also supply outbound data--parameters for the object
3244 	 * method.  Currently if this is present it will be a
3245 	 * snapshot id.
3246 	 */
3247 	page_count = (u32)calc_pages_for(0, inbound_size);
3248 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3249 	if (IS_ERR(pages))
3250 		return PTR_ERR(pages);
3251 
3252 	ret = -ENOMEM;
3253 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3254 							OBJ_REQUEST_PAGES);
3255 	if (!obj_request)
3256 		goto out;
3257 
3258 	obj_request->pages = pages;
3259 	obj_request->page_count = page_count;
3260 
3261 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3262 						  obj_request);
3263 	if (!obj_request->osd_req)
3264 		goto out;
3265 
3266 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3267 					class_name, method_name);
3268 	if (outbound_size) {
3269 		struct ceph_pagelist *pagelist;
3270 
3271 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3272 		if (!pagelist)
3273 			goto out;
3274 
3275 		ceph_pagelist_init(pagelist);
3276 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3277 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3278 						pagelist);
3279 	}
3280 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3281 					obj_request->pages, inbound_size,
3282 					0, false, false);
3283 	rbd_osd_req_format_read(obj_request);
3284 
3285 	ret = rbd_obj_request_submit(osdc, obj_request);
3286 	if (ret)
3287 		goto out;
3288 	ret = rbd_obj_request_wait(obj_request);
3289 	if (ret)
3290 		goto out;
3291 
3292 	ret = obj_request->result;
3293 	if (ret < 0)
3294 		goto out;
3295 
3296 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3297 	ret = (int)obj_request->xferred;
3298 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3299 out:
3300 	if (obj_request)
3301 		rbd_obj_request_put(obj_request);
3302 	else
3303 		ceph_release_page_vector(pages, page_count);
3304 
3305 	return ret;
3306 }
3307 
3308 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3309 {
3310 	struct rbd_img_request *img_request;
3311 	struct ceph_snap_context *snapc = NULL;
3312 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3313 	u64 length = blk_rq_bytes(rq);
3314 	enum obj_operation_type op_type;
3315 	u64 mapping_size;
3316 	int result;
3317 
3318 	if (rq->cmd_flags & REQ_DISCARD)
3319 		op_type = OBJ_OP_DISCARD;
3320 	else if (rq->cmd_flags & REQ_WRITE)
3321 		op_type = OBJ_OP_WRITE;
3322 	else
3323 		op_type = OBJ_OP_READ;
3324 
3325 	/* Ignore/skip any zero-length requests */
3326 
3327 	if (!length) {
3328 		dout("%s: zero-length request\n", __func__);
3329 		result = 0;
3330 		goto err_rq;
3331 	}
3332 
3333 	/* Only reads are allowed to a read-only device */
3334 
3335 	if (op_type != OBJ_OP_READ) {
3336 		if (rbd_dev->mapping.read_only) {
3337 			result = -EROFS;
3338 			goto err_rq;
3339 		}
3340 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3341 	}
3342 
3343 	/*
3344 	 * Quit early if the mapped snapshot no longer exists.  It's
3345 	 * still possible the snapshot will have disappeared by the
3346 	 * time our request arrives at the osd, but there's no sense in
3347 	 * sending it if we already know.
3348 	 */
3349 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3350 		dout("request for non-existent snapshot");
3351 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3352 		result = -ENXIO;
3353 		goto err_rq;
3354 	}
3355 
3356 	if (offset && length > U64_MAX - offset + 1) {
3357 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3358 			 length);
3359 		result = -EINVAL;
3360 		goto err_rq;	/* Shouldn't happen */
3361 	}
3362 
3363 	down_read(&rbd_dev->header_rwsem);
3364 	mapping_size = rbd_dev->mapping.size;
3365 	if (op_type != OBJ_OP_READ) {
3366 		snapc = rbd_dev->header.snapc;
3367 		ceph_get_snap_context(snapc);
3368 	}
3369 	up_read(&rbd_dev->header_rwsem);
3370 
3371 	if (offset + length > mapping_size) {
3372 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3373 			 length, mapping_size);
3374 		result = -EIO;
3375 		goto err_rq;
3376 	}
3377 
3378 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3379 					     snapc);
3380 	if (!img_request) {
3381 		result = -ENOMEM;
3382 		goto err_rq;
3383 	}
3384 	img_request->rq = rq;
3385 
3386 	if (op_type == OBJ_OP_DISCARD)
3387 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3388 					      NULL);
3389 	else
3390 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3391 					      rq->bio);
3392 	if (result)
3393 		goto err_img_request;
3394 
3395 	result = rbd_img_request_submit(img_request);
3396 	if (result)
3397 		goto err_img_request;
3398 
3399 	return;
3400 
3401 err_img_request:
3402 	rbd_img_request_put(img_request);
3403 err_rq:
3404 	if (result)
3405 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3406 			 obj_op_name(op_type), length, offset, result);
3407 	if (snapc)
3408 		ceph_put_snap_context(snapc);
3409 	blk_end_request_all(rq, result);
3410 }
3411 
3412 static void rbd_request_workfn(struct work_struct *work)
3413 {
3414 	struct rbd_device *rbd_dev =
3415 	    container_of(work, struct rbd_device, rq_work);
3416 	struct request *rq, *next;
3417 	LIST_HEAD(requests);
3418 
3419 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3420 	list_splice_init(&rbd_dev->rq_queue, &requests);
3421 	spin_unlock_irq(&rbd_dev->lock);
3422 
3423 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3424 		list_del_init(&rq->queuelist);
3425 		rbd_handle_request(rbd_dev, rq);
3426 	}
3427 }
3428 
3429 /*
3430  * Called with q->queue_lock held and interrupts disabled, possibly on
3431  * the way to schedule().  Do not sleep here!
3432  */
3433 static void rbd_request_fn(struct request_queue *q)
3434 {
3435 	struct rbd_device *rbd_dev = q->queuedata;
3436 	struct request *rq;
3437 	int queued = 0;
3438 
3439 	rbd_assert(rbd_dev);
3440 
3441 	while ((rq = blk_fetch_request(q))) {
3442 		/* Ignore any non-FS requests that filter through. */
3443 		if (rq->cmd_type != REQ_TYPE_FS) {
3444 			dout("%s: non-fs request type %d\n", __func__,
3445 				(int) rq->cmd_type);
3446 			__blk_end_request_all(rq, 0);
3447 			continue;
3448 		}
3449 
3450 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3451 		queued++;
3452 	}
3453 
3454 	if (queued)
3455 		queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3456 }
3457 
3458 /*
3459  * a queue callback. Makes sure that we don't create a bio that spans across
3460  * multiple osd objects. One exception would be with a single page bios,
3461  * which we handle later at bio_chain_clone_range()
3462  */
3463 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3464 			  struct bio_vec *bvec)
3465 {
3466 	struct rbd_device *rbd_dev = q->queuedata;
3467 	sector_t sector_offset;
3468 	sector_t sectors_per_obj;
3469 	sector_t obj_sector_offset;
3470 	int ret;
3471 
3472 	/*
3473 	 * Find how far into its rbd object the partition-relative
3474 	 * bio start sector is to offset relative to the enclosing
3475 	 * device.
3476 	 */
3477 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3478 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3479 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3480 
3481 	/*
3482 	 * Compute the number of bytes from that offset to the end
3483 	 * of the object.  Account for what's already used by the bio.
3484 	 */
3485 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3486 	if (ret > bmd->bi_size)
3487 		ret -= bmd->bi_size;
3488 	else
3489 		ret = 0;
3490 
3491 	/*
3492 	 * Don't send back more than was asked for.  And if the bio
3493 	 * was empty, let the whole thing through because:  "Note
3494 	 * that a block device *must* allow a single page to be
3495 	 * added to an empty bio."
3496 	 */
3497 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3498 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3499 		ret = (int) bvec->bv_len;
3500 
3501 	return ret;
3502 }
3503 
3504 static void rbd_free_disk(struct rbd_device *rbd_dev)
3505 {
3506 	struct gendisk *disk = rbd_dev->disk;
3507 
3508 	if (!disk)
3509 		return;
3510 
3511 	rbd_dev->disk = NULL;
3512 	if (disk->flags & GENHD_FL_UP) {
3513 		del_gendisk(disk);
3514 		if (disk->queue)
3515 			blk_cleanup_queue(disk->queue);
3516 	}
3517 	put_disk(disk);
3518 }
3519 
3520 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3521 				const char *object_name,
3522 				u64 offset, u64 length, void *buf)
3523 
3524 {
3525 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3526 	struct rbd_obj_request *obj_request;
3527 	struct page **pages = NULL;
3528 	u32 page_count;
3529 	size_t size;
3530 	int ret;
3531 
3532 	page_count = (u32) calc_pages_for(offset, length);
3533 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3534 	if (IS_ERR(pages))
3535 		ret = PTR_ERR(pages);
3536 
3537 	ret = -ENOMEM;
3538 	obj_request = rbd_obj_request_create(object_name, offset, length,
3539 							OBJ_REQUEST_PAGES);
3540 	if (!obj_request)
3541 		goto out;
3542 
3543 	obj_request->pages = pages;
3544 	obj_request->page_count = page_count;
3545 
3546 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3547 						  obj_request);
3548 	if (!obj_request->osd_req)
3549 		goto out;
3550 
3551 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3552 					offset, length, 0, 0);
3553 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3554 					obj_request->pages,
3555 					obj_request->length,
3556 					obj_request->offset & ~PAGE_MASK,
3557 					false, false);
3558 	rbd_osd_req_format_read(obj_request);
3559 
3560 	ret = rbd_obj_request_submit(osdc, obj_request);
3561 	if (ret)
3562 		goto out;
3563 	ret = rbd_obj_request_wait(obj_request);
3564 	if (ret)
3565 		goto out;
3566 
3567 	ret = obj_request->result;
3568 	if (ret < 0)
3569 		goto out;
3570 
3571 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3572 	size = (size_t) obj_request->xferred;
3573 	ceph_copy_from_page_vector(pages, buf, 0, size);
3574 	rbd_assert(size <= (size_t)INT_MAX);
3575 	ret = (int)size;
3576 out:
3577 	if (obj_request)
3578 		rbd_obj_request_put(obj_request);
3579 	else
3580 		ceph_release_page_vector(pages, page_count);
3581 
3582 	return ret;
3583 }
3584 
3585 /*
3586  * Read the complete header for the given rbd device.  On successful
3587  * return, the rbd_dev->header field will contain up-to-date
3588  * information about the image.
3589  */
3590 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3591 {
3592 	struct rbd_image_header_ondisk *ondisk = NULL;
3593 	u32 snap_count = 0;
3594 	u64 names_size = 0;
3595 	u32 want_count;
3596 	int ret;
3597 
3598 	/*
3599 	 * The complete header will include an array of its 64-bit
3600 	 * snapshot ids, followed by the names of those snapshots as
3601 	 * a contiguous block of NUL-terminated strings.  Note that
3602 	 * the number of snapshots could change by the time we read
3603 	 * it in, in which case we re-read it.
3604 	 */
3605 	do {
3606 		size_t size;
3607 
3608 		kfree(ondisk);
3609 
3610 		size = sizeof (*ondisk);
3611 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3612 		size += names_size;
3613 		ondisk = kmalloc(size, GFP_KERNEL);
3614 		if (!ondisk)
3615 			return -ENOMEM;
3616 
3617 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3618 				       0, size, ondisk);
3619 		if (ret < 0)
3620 			goto out;
3621 		if ((size_t)ret < size) {
3622 			ret = -ENXIO;
3623 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3624 				size, ret);
3625 			goto out;
3626 		}
3627 		if (!rbd_dev_ondisk_valid(ondisk)) {
3628 			ret = -ENXIO;
3629 			rbd_warn(rbd_dev, "invalid header");
3630 			goto out;
3631 		}
3632 
3633 		names_size = le64_to_cpu(ondisk->snap_names_len);
3634 		want_count = snap_count;
3635 		snap_count = le32_to_cpu(ondisk->snap_count);
3636 	} while (snap_count != want_count);
3637 
3638 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3639 out:
3640 	kfree(ondisk);
3641 
3642 	return ret;
3643 }
3644 
3645 /*
3646  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3647  * has disappeared from the (just updated) snapshot context.
3648  */
3649 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3650 {
3651 	u64 snap_id;
3652 
3653 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3654 		return;
3655 
3656 	snap_id = rbd_dev->spec->snap_id;
3657 	if (snap_id == CEPH_NOSNAP)
3658 		return;
3659 
3660 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3661 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3662 }
3663 
3664 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3665 {
3666 	sector_t size;
3667 	bool removing;
3668 
3669 	/*
3670 	 * Don't hold the lock while doing disk operations,
3671 	 * or lock ordering will conflict with the bdev mutex via:
3672 	 * rbd_add() -> blkdev_get() -> rbd_open()
3673 	 */
3674 	spin_lock_irq(&rbd_dev->lock);
3675 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3676 	spin_unlock_irq(&rbd_dev->lock);
3677 	/*
3678 	 * If the device is being removed, rbd_dev->disk has
3679 	 * been destroyed, so don't try to update its size
3680 	 */
3681 	if (!removing) {
3682 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3683 		dout("setting size to %llu sectors", (unsigned long long)size);
3684 		set_capacity(rbd_dev->disk, size);
3685 		revalidate_disk(rbd_dev->disk);
3686 	}
3687 }
3688 
3689 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3690 {
3691 	u64 mapping_size;
3692 	int ret;
3693 
3694 	down_write(&rbd_dev->header_rwsem);
3695 	mapping_size = rbd_dev->mapping.size;
3696 
3697 	ret = rbd_dev_header_info(rbd_dev);
3698 	if (ret)
3699 		return ret;
3700 
3701 	/*
3702 	 * If there is a parent, see if it has disappeared due to the
3703 	 * mapped image getting flattened.
3704 	 */
3705 	if (rbd_dev->parent) {
3706 		ret = rbd_dev_v2_parent_info(rbd_dev);
3707 		if (ret)
3708 			return ret;
3709 	}
3710 
3711 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3712 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3713 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3714 	} else {
3715 		/* validate mapped snapshot's EXISTS flag */
3716 		rbd_exists_validate(rbd_dev);
3717 	}
3718 
3719 	up_write(&rbd_dev->header_rwsem);
3720 
3721 	if (mapping_size != rbd_dev->mapping.size)
3722 		rbd_dev_update_size(rbd_dev);
3723 
3724 	return 0;
3725 }
3726 
3727 static int rbd_init_disk(struct rbd_device *rbd_dev)
3728 {
3729 	struct gendisk *disk;
3730 	struct request_queue *q;
3731 	u64 segment_size;
3732 
3733 	/* create gendisk info */
3734 	disk = alloc_disk(single_major ?
3735 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3736 			  RBD_MINORS_PER_MAJOR);
3737 	if (!disk)
3738 		return -ENOMEM;
3739 
3740 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3741 		 rbd_dev->dev_id);
3742 	disk->major = rbd_dev->major;
3743 	disk->first_minor = rbd_dev->minor;
3744 	if (single_major)
3745 		disk->flags |= GENHD_FL_EXT_DEVT;
3746 	disk->fops = &rbd_bd_ops;
3747 	disk->private_data = rbd_dev;
3748 
3749 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3750 	if (!q)
3751 		goto out_disk;
3752 
3753 	/* We use the default size, but let's be explicit about it. */
3754 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3755 
3756 	/* set io sizes to object size */
3757 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3758 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3759 	blk_queue_max_segment_size(q, segment_size);
3760 	blk_queue_io_min(q, segment_size);
3761 	blk_queue_io_opt(q, segment_size);
3762 
3763 	/* enable the discard support */
3764 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3765 	q->limits.discard_granularity = segment_size;
3766 	q->limits.discard_alignment = segment_size;
3767 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3768 	q->limits.discard_zeroes_data = 1;
3769 
3770 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3771 	disk->queue = q;
3772 
3773 	q->queuedata = rbd_dev;
3774 
3775 	rbd_dev->disk = disk;
3776 
3777 	return 0;
3778 out_disk:
3779 	put_disk(disk);
3780 
3781 	return -ENOMEM;
3782 }
3783 
3784 /*
3785   sysfs
3786 */
3787 
3788 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3789 {
3790 	return container_of(dev, struct rbd_device, dev);
3791 }
3792 
3793 static ssize_t rbd_size_show(struct device *dev,
3794 			     struct device_attribute *attr, char *buf)
3795 {
3796 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3797 
3798 	return sprintf(buf, "%llu\n",
3799 		(unsigned long long)rbd_dev->mapping.size);
3800 }
3801 
3802 /*
3803  * Note this shows the features for whatever's mapped, which is not
3804  * necessarily the base image.
3805  */
3806 static ssize_t rbd_features_show(struct device *dev,
3807 			     struct device_attribute *attr, char *buf)
3808 {
3809 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810 
3811 	return sprintf(buf, "0x%016llx\n",
3812 			(unsigned long long)rbd_dev->mapping.features);
3813 }
3814 
3815 static ssize_t rbd_major_show(struct device *dev,
3816 			      struct device_attribute *attr, char *buf)
3817 {
3818 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3819 
3820 	if (rbd_dev->major)
3821 		return sprintf(buf, "%d\n", rbd_dev->major);
3822 
3823 	return sprintf(buf, "(none)\n");
3824 }
3825 
3826 static ssize_t rbd_minor_show(struct device *dev,
3827 			      struct device_attribute *attr, char *buf)
3828 {
3829 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3830 
3831 	return sprintf(buf, "%d\n", rbd_dev->minor);
3832 }
3833 
3834 static ssize_t rbd_client_id_show(struct device *dev,
3835 				  struct device_attribute *attr, char *buf)
3836 {
3837 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3838 
3839 	return sprintf(buf, "client%lld\n",
3840 			ceph_client_id(rbd_dev->rbd_client->client));
3841 }
3842 
3843 static ssize_t rbd_pool_show(struct device *dev,
3844 			     struct device_attribute *attr, char *buf)
3845 {
3846 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3847 
3848 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3849 }
3850 
3851 static ssize_t rbd_pool_id_show(struct device *dev,
3852 			     struct device_attribute *attr, char *buf)
3853 {
3854 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3855 
3856 	return sprintf(buf, "%llu\n",
3857 			(unsigned long long) rbd_dev->spec->pool_id);
3858 }
3859 
3860 static ssize_t rbd_name_show(struct device *dev,
3861 			     struct device_attribute *attr, char *buf)
3862 {
3863 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3864 
3865 	if (rbd_dev->spec->image_name)
3866 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3867 
3868 	return sprintf(buf, "(unknown)\n");
3869 }
3870 
3871 static ssize_t rbd_image_id_show(struct device *dev,
3872 			     struct device_attribute *attr, char *buf)
3873 {
3874 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3875 
3876 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3877 }
3878 
3879 /*
3880  * Shows the name of the currently-mapped snapshot (or
3881  * RBD_SNAP_HEAD_NAME for the base image).
3882  */
3883 static ssize_t rbd_snap_show(struct device *dev,
3884 			     struct device_attribute *attr,
3885 			     char *buf)
3886 {
3887 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888 
3889 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3890 }
3891 
3892 /*
3893  * For a v2 image, shows the chain of parent images, separated by empty
3894  * lines.  For v1 images or if there is no parent, shows "(no parent
3895  * image)".
3896  */
3897 static ssize_t rbd_parent_show(struct device *dev,
3898 			       struct device_attribute *attr,
3899 			       char *buf)
3900 {
3901 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3902 	ssize_t count = 0;
3903 
3904 	if (!rbd_dev->parent)
3905 		return sprintf(buf, "(no parent image)\n");
3906 
3907 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3908 		struct rbd_spec *spec = rbd_dev->parent_spec;
3909 
3910 		count += sprintf(&buf[count], "%s"
3911 			    "pool_id %llu\npool_name %s\n"
3912 			    "image_id %s\nimage_name %s\n"
3913 			    "snap_id %llu\nsnap_name %s\n"
3914 			    "overlap %llu\n",
3915 			    !count ? "" : "\n", /* first? */
3916 			    spec->pool_id, spec->pool_name,
3917 			    spec->image_id, spec->image_name ?: "(unknown)",
3918 			    spec->snap_id, spec->snap_name,
3919 			    rbd_dev->parent_overlap);
3920 	}
3921 
3922 	return count;
3923 }
3924 
3925 static ssize_t rbd_image_refresh(struct device *dev,
3926 				 struct device_attribute *attr,
3927 				 const char *buf,
3928 				 size_t size)
3929 {
3930 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3931 	int ret;
3932 
3933 	ret = rbd_dev_refresh(rbd_dev);
3934 	if (ret)
3935 		return ret;
3936 
3937 	return size;
3938 }
3939 
3940 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3941 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3942 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3943 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3944 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3945 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3946 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3947 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3948 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3949 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3950 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3951 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3952 
3953 static struct attribute *rbd_attrs[] = {
3954 	&dev_attr_size.attr,
3955 	&dev_attr_features.attr,
3956 	&dev_attr_major.attr,
3957 	&dev_attr_minor.attr,
3958 	&dev_attr_client_id.attr,
3959 	&dev_attr_pool.attr,
3960 	&dev_attr_pool_id.attr,
3961 	&dev_attr_name.attr,
3962 	&dev_attr_image_id.attr,
3963 	&dev_attr_current_snap.attr,
3964 	&dev_attr_parent.attr,
3965 	&dev_attr_refresh.attr,
3966 	NULL
3967 };
3968 
3969 static struct attribute_group rbd_attr_group = {
3970 	.attrs = rbd_attrs,
3971 };
3972 
3973 static const struct attribute_group *rbd_attr_groups[] = {
3974 	&rbd_attr_group,
3975 	NULL
3976 };
3977 
3978 static void rbd_sysfs_dev_release(struct device *dev)
3979 {
3980 }
3981 
3982 static struct device_type rbd_device_type = {
3983 	.name		= "rbd",
3984 	.groups		= rbd_attr_groups,
3985 	.release	= rbd_sysfs_dev_release,
3986 };
3987 
3988 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3989 {
3990 	kref_get(&spec->kref);
3991 
3992 	return spec;
3993 }
3994 
3995 static void rbd_spec_free(struct kref *kref);
3996 static void rbd_spec_put(struct rbd_spec *spec)
3997 {
3998 	if (spec)
3999 		kref_put(&spec->kref, rbd_spec_free);
4000 }
4001 
4002 static struct rbd_spec *rbd_spec_alloc(void)
4003 {
4004 	struct rbd_spec *spec;
4005 
4006 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4007 	if (!spec)
4008 		return NULL;
4009 
4010 	spec->pool_id = CEPH_NOPOOL;
4011 	spec->snap_id = CEPH_NOSNAP;
4012 	kref_init(&spec->kref);
4013 
4014 	return spec;
4015 }
4016 
4017 static void rbd_spec_free(struct kref *kref)
4018 {
4019 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4020 
4021 	kfree(spec->pool_name);
4022 	kfree(spec->image_id);
4023 	kfree(spec->image_name);
4024 	kfree(spec->snap_name);
4025 	kfree(spec);
4026 }
4027 
4028 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4029 				struct rbd_spec *spec)
4030 {
4031 	struct rbd_device *rbd_dev;
4032 
4033 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4034 	if (!rbd_dev)
4035 		return NULL;
4036 
4037 	spin_lock_init(&rbd_dev->lock);
4038 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
4039 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4040 	rbd_dev->flags = 0;
4041 	atomic_set(&rbd_dev->parent_ref, 0);
4042 	INIT_LIST_HEAD(&rbd_dev->node);
4043 	init_rwsem(&rbd_dev->header_rwsem);
4044 
4045 	rbd_dev->spec = spec;
4046 	rbd_dev->rbd_client = rbdc;
4047 
4048 	/* Initialize the layout used for all rbd requests */
4049 
4050 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4051 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4052 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4053 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4054 
4055 	return rbd_dev;
4056 }
4057 
4058 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4059 {
4060 	rbd_put_client(rbd_dev->rbd_client);
4061 	rbd_spec_put(rbd_dev->spec);
4062 	kfree(rbd_dev);
4063 }
4064 
4065 /*
4066  * Get the size and object order for an image snapshot, or if
4067  * snap_id is CEPH_NOSNAP, gets this information for the base
4068  * image.
4069  */
4070 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4071 				u8 *order, u64 *snap_size)
4072 {
4073 	__le64 snapid = cpu_to_le64(snap_id);
4074 	int ret;
4075 	struct {
4076 		u8 order;
4077 		__le64 size;
4078 	} __attribute__ ((packed)) size_buf = { 0 };
4079 
4080 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4081 				"rbd", "get_size",
4082 				&snapid, sizeof (snapid),
4083 				&size_buf, sizeof (size_buf));
4084 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4085 	if (ret < 0)
4086 		return ret;
4087 	if (ret < sizeof (size_buf))
4088 		return -ERANGE;
4089 
4090 	if (order) {
4091 		*order = size_buf.order;
4092 		dout("  order %u", (unsigned int)*order);
4093 	}
4094 	*snap_size = le64_to_cpu(size_buf.size);
4095 
4096 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4097 		(unsigned long long)snap_id,
4098 		(unsigned long long)*snap_size);
4099 
4100 	return 0;
4101 }
4102 
4103 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4104 {
4105 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4106 					&rbd_dev->header.obj_order,
4107 					&rbd_dev->header.image_size);
4108 }
4109 
4110 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4111 {
4112 	void *reply_buf;
4113 	int ret;
4114 	void *p;
4115 
4116 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4117 	if (!reply_buf)
4118 		return -ENOMEM;
4119 
4120 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4121 				"rbd", "get_object_prefix", NULL, 0,
4122 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4123 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4124 	if (ret < 0)
4125 		goto out;
4126 
4127 	p = reply_buf;
4128 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4129 						p + ret, NULL, GFP_NOIO);
4130 	ret = 0;
4131 
4132 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4133 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4134 		rbd_dev->header.object_prefix = NULL;
4135 	} else {
4136 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4137 	}
4138 out:
4139 	kfree(reply_buf);
4140 
4141 	return ret;
4142 }
4143 
4144 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4145 		u64 *snap_features)
4146 {
4147 	__le64 snapid = cpu_to_le64(snap_id);
4148 	struct {
4149 		__le64 features;
4150 		__le64 incompat;
4151 	} __attribute__ ((packed)) features_buf = { 0 };
4152 	u64 incompat;
4153 	int ret;
4154 
4155 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4156 				"rbd", "get_features",
4157 				&snapid, sizeof (snapid),
4158 				&features_buf, sizeof (features_buf));
4159 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4160 	if (ret < 0)
4161 		return ret;
4162 	if (ret < sizeof (features_buf))
4163 		return -ERANGE;
4164 
4165 	incompat = le64_to_cpu(features_buf.incompat);
4166 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4167 		return -ENXIO;
4168 
4169 	*snap_features = le64_to_cpu(features_buf.features);
4170 
4171 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4172 		(unsigned long long)snap_id,
4173 		(unsigned long long)*snap_features,
4174 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4175 
4176 	return 0;
4177 }
4178 
4179 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4180 {
4181 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4182 						&rbd_dev->header.features);
4183 }
4184 
4185 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4186 {
4187 	struct rbd_spec *parent_spec;
4188 	size_t size;
4189 	void *reply_buf = NULL;
4190 	__le64 snapid;
4191 	void *p;
4192 	void *end;
4193 	u64 pool_id;
4194 	char *image_id;
4195 	u64 snap_id;
4196 	u64 overlap;
4197 	int ret;
4198 
4199 	parent_spec = rbd_spec_alloc();
4200 	if (!parent_spec)
4201 		return -ENOMEM;
4202 
4203 	size = sizeof (__le64) +				/* pool_id */
4204 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4205 		sizeof (__le64) +				/* snap_id */
4206 		sizeof (__le64);				/* overlap */
4207 	reply_buf = kmalloc(size, GFP_KERNEL);
4208 	if (!reply_buf) {
4209 		ret = -ENOMEM;
4210 		goto out_err;
4211 	}
4212 
4213 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4214 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4215 				"rbd", "get_parent",
4216 				&snapid, sizeof (snapid),
4217 				reply_buf, size);
4218 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4219 	if (ret < 0)
4220 		goto out_err;
4221 
4222 	p = reply_buf;
4223 	end = reply_buf + ret;
4224 	ret = -ERANGE;
4225 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4226 	if (pool_id == CEPH_NOPOOL) {
4227 		/*
4228 		 * Either the parent never existed, or we have
4229 		 * record of it but the image got flattened so it no
4230 		 * longer has a parent.  When the parent of a
4231 		 * layered image disappears we immediately set the
4232 		 * overlap to 0.  The effect of this is that all new
4233 		 * requests will be treated as if the image had no
4234 		 * parent.
4235 		 */
4236 		if (rbd_dev->parent_overlap) {
4237 			rbd_dev->parent_overlap = 0;
4238 			smp_mb();
4239 			rbd_dev_parent_put(rbd_dev);
4240 			pr_info("%s: clone image has been flattened\n",
4241 				rbd_dev->disk->disk_name);
4242 		}
4243 
4244 		goto out;	/* No parent?  No problem. */
4245 	}
4246 
4247 	/* The ceph file layout needs to fit pool id in 32 bits */
4248 
4249 	ret = -EIO;
4250 	if (pool_id > (u64)U32_MAX) {
4251 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4252 			(unsigned long long)pool_id, U32_MAX);
4253 		goto out_err;
4254 	}
4255 
4256 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4257 	if (IS_ERR(image_id)) {
4258 		ret = PTR_ERR(image_id);
4259 		goto out_err;
4260 	}
4261 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4262 	ceph_decode_64_safe(&p, end, overlap, out_err);
4263 
4264 	/*
4265 	 * The parent won't change (except when the clone is
4266 	 * flattened, already handled that).  So we only need to
4267 	 * record the parent spec we have not already done so.
4268 	 */
4269 	if (!rbd_dev->parent_spec) {
4270 		parent_spec->pool_id = pool_id;
4271 		parent_spec->image_id = image_id;
4272 		parent_spec->snap_id = snap_id;
4273 		rbd_dev->parent_spec = parent_spec;
4274 		parent_spec = NULL;	/* rbd_dev now owns this */
4275 	} else {
4276 		kfree(image_id);
4277 	}
4278 
4279 	/*
4280 	 * We always update the parent overlap.  If it's zero we
4281 	 * treat it specially.
4282 	 */
4283 	rbd_dev->parent_overlap = overlap;
4284 	smp_mb();
4285 	if (!overlap) {
4286 
4287 		/* A null parent_spec indicates it's the initial probe */
4288 
4289 		if (parent_spec) {
4290 			/*
4291 			 * The overlap has become zero, so the clone
4292 			 * must have been resized down to 0 at some
4293 			 * point.  Treat this the same as a flatten.
4294 			 */
4295 			rbd_dev_parent_put(rbd_dev);
4296 			pr_info("%s: clone image now standalone\n",
4297 				rbd_dev->disk->disk_name);
4298 		} else {
4299 			/*
4300 			 * For the initial probe, if we find the
4301 			 * overlap is zero we just pretend there was
4302 			 * no parent image.
4303 			 */
4304 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4305 		}
4306 	}
4307 out:
4308 	ret = 0;
4309 out_err:
4310 	kfree(reply_buf);
4311 	rbd_spec_put(parent_spec);
4312 
4313 	return ret;
4314 }
4315 
4316 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4317 {
4318 	struct {
4319 		__le64 stripe_unit;
4320 		__le64 stripe_count;
4321 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4322 	size_t size = sizeof (striping_info_buf);
4323 	void *p;
4324 	u64 obj_size;
4325 	u64 stripe_unit;
4326 	u64 stripe_count;
4327 	int ret;
4328 
4329 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4330 				"rbd", "get_stripe_unit_count", NULL, 0,
4331 				(char *)&striping_info_buf, size);
4332 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4333 	if (ret < 0)
4334 		return ret;
4335 	if (ret < size)
4336 		return -ERANGE;
4337 
4338 	/*
4339 	 * We don't actually support the "fancy striping" feature
4340 	 * (STRIPINGV2) yet, but if the striping sizes are the
4341 	 * defaults the behavior is the same as before.  So find
4342 	 * out, and only fail if the image has non-default values.
4343 	 */
4344 	ret = -EINVAL;
4345 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4346 	p = &striping_info_buf;
4347 	stripe_unit = ceph_decode_64(&p);
4348 	if (stripe_unit != obj_size) {
4349 		rbd_warn(rbd_dev, "unsupported stripe unit "
4350 				"(got %llu want %llu)",
4351 				stripe_unit, obj_size);
4352 		return -EINVAL;
4353 	}
4354 	stripe_count = ceph_decode_64(&p);
4355 	if (stripe_count != 1) {
4356 		rbd_warn(rbd_dev, "unsupported stripe count "
4357 				"(got %llu want 1)", stripe_count);
4358 		return -EINVAL;
4359 	}
4360 	rbd_dev->header.stripe_unit = stripe_unit;
4361 	rbd_dev->header.stripe_count = stripe_count;
4362 
4363 	return 0;
4364 }
4365 
4366 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4367 {
4368 	size_t image_id_size;
4369 	char *image_id;
4370 	void *p;
4371 	void *end;
4372 	size_t size;
4373 	void *reply_buf = NULL;
4374 	size_t len = 0;
4375 	char *image_name = NULL;
4376 	int ret;
4377 
4378 	rbd_assert(!rbd_dev->spec->image_name);
4379 
4380 	len = strlen(rbd_dev->spec->image_id);
4381 	image_id_size = sizeof (__le32) + len;
4382 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4383 	if (!image_id)
4384 		return NULL;
4385 
4386 	p = image_id;
4387 	end = image_id + image_id_size;
4388 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4389 
4390 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4391 	reply_buf = kmalloc(size, GFP_KERNEL);
4392 	if (!reply_buf)
4393 		goto out;
4394 
4395 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4396 				"rbd", "dir_get_name",
4397 				image_id, image_id_size,
4398 				reply_buf, size);
4399 	if (ret < 0)
4400 		goto out;
4401 	p = reply_buf;
4402 	end = reply_buf + ret;
4403 
4404 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4405 	if (IS_ERR(image_name))
4406 		image_name = NULL;
4407 	else
4408 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4409 out:
4410 	kfree(reply_buf);
4411 	kfree(image_id);
4412 
4413 	return image_name;
4414 }
4415 
4416 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4417 {
4418 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4419 	const char *snap_name;
4420 	u32 which = 0;
4421 
4422 	/* Skip over names until we find the one we are looking for */
4423 
4424 	snap_name = rbd_dev->header.snap_names;
4425 	while (which < snapc->num_snaps) {
4426 		if (!strcmp(name, snap_name))
4427 			return snapc->snaps[which];
4428 		snap_name += strlen(snap_name) + 1;
4429 		which++;
4430 	}
4431 	return CEPH_NOSNAP;
4432 }
4433 
4434 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4435 {
4436 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4437 	u32 which;
4438 	bool found = false;
4439 	u64 snap_id;
4440 
4441 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4442 		const char *snap_name;
4443 
4444 		snap_id = snapc->snaps[which];
4445 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4446 		if (IS_ERR(snap_name)) {
4447 			/* ignore no-longer existing snapshots */
4448 			if (PTR_ERR(snap_name) == -ENOENT)
4449 				continue;
4450 			else
4451 				break;
4452 		}
4453 		found = !strcmp(name, snap_name);
4454 		kfree(snap_name);
4455 	}
4456 	return found ? snap_id : CEPH_NOSNAP;
4457 }
4458 
4459 /*
4460  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4461  * no snapshot by that name is found, or if an error occurs.
4462  */
4463 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4464 {
4465 	if (rbd_dev->image_format == 1)
4466 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4467 
4468 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4469 }
4470 
4471 /*
4472  * An image being mapped will have everything but the snap id.
4473  */
4474 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4475 {
4476 	struct rbd_spec *spec = rbd_dev->spec;
4477 
4478 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4479 	rbd_assert(spec->image_id && spec->image_name);
4480 	rbd_assert(spec->snap_name);
4481 
4482 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4483 		u64 snap_id;
4484 
4485 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4486 		if (snap_id == CEPH_NOSNAP)
4487 			return -ENOENT;
4488 
4489 		spec->snap_id = snap_id;
4490 	} else {
4491 		spec->snap_id = CEPH_NOSNAP;
4492 	}
4493 
4494 	return 0;
4495 }
4496 
4497 /*
4498  * A parent image will have all ids but none of the names.
4499  *
4500  * All names in an rbd spec are dynamically allocated.  It's OK if we
4501  * can't figure out the name for an image id.
4502  */
4503 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4504 {
4505 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4506 	struct rbd_spec *spec = rbd_dev->spec;
4507 	const char *pool_name;
4508 	const char *image_name;
4509 	const char *snap_name;
4510 	int ret;
4511 
4512 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4513 	rbd_assert(spec->image_id);
4514 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4515 
4516 	/* Get the pool name; we have to make our own copy of this */
4517 
4518 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4519 	if (!pool_name) {
4520 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4521 		return -EIO;
4522 	}
4523 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4524 	if (!pool_name)
4525 		return -ENOMEM;
4526 
4527 	/* Fetch the image name; tolerate failure here */
4528 
4529 	image_name = rbd_dev_image_name(rbd_dev);
4530 	if (!image_name)
4531 		rbd_warn(rbd_dev, "unable to get image name");
4532 
4533 	/* Fetch the snapshot name */
4534 
4535 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4536 	if (IS_ERR(snap_name)) {
4537 		ret = PTR_ERR(snap_name);
4538 		goto out_err;
4539 	}
4540 
4541 	spec->pool_name = pool_name;
4542 	spec->image_name = image_name;
4543 	spec->snap_name = snap_name;
4544 
4545 	return 0;
4546 
4547 out_err:
4548 	kfree(image_name);
4549 	kfree(pool_name);
4550 	return ret;
4551 }
4552 
4553 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4554 {
4555 	size_t size;
4556 	int ret;
4557 	void *reply_buf;
4558 	void *p;
4559 	void *end;
4560 	u64 seq;
4561 	u32 snap_count;
4562 	struct ceph_snap_context *snapc;
4563 	u32 i;
4564 
4565 	/*
4566 	 * We'll need room for the seq value (maximum snapshot id),
4567 	 * snapshot count, and array of that many snapshot ids.
4568 	 * For now we have a fixed upper limit on the number we're
4569 	 * prepared to receive.
4570 	 */
4571 	size = sizeof (__le64) + sizeof (__le32) +
4572 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4573 	reply_buf = kzalloc(size, GFP_KERNEL);
4574 	if (!reply_buf)
4575 		return -ENOMEM;
4576 
4577 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4578 				"rbd", "get_snapcontext", NULL, 0,
4579 				reply_buf, size);
4580 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4581 	if (ret < 0)
4582 		goto out;
4583 
4584 	p = reply_buf;
4585 	end = reply_buf + ret;
4586 	ret = -ERANGE;
4587 	ceph_decode_64_safe(&p, end, seq, out);
4588 	ceph_decode_32_safe(&p, end, snap_count, out);
4589 
4590 	/*
4591 	 * Make sure the reported number of snapshot ids wouldn't go
4592 	 * beyond the end of our buffer.  But before checking that,
4593 	 * make sure the computed size of the snapshot context we
4594 	 * allocate is representable in a size_t.
4595 	 */
4596 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4597 				 / sizeof (u64)) {
4598 		ret = -EINVAL;
4599 		goto out;
4600 	}
4601 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4602 		goto out;
4603 	ret = 0;
4604 
4605 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4606 	if (!snapc) {
4607 		ret = -ENOMEM;
4608 		goto out;
4609 	}
4610 	snapc->seq = seq;
4611 	for (i = 0; i < snap_count; i++)
4612 		snapc->snaps[i] = ceph_decode_64(&p);
4613 
4614 	ceph_put_snap_context(rbd_dev->header.snapc);
4615 	rbd_dev->header.snapc = snapc;
4616 
4617 	dout("  snap context seq = %llu, snap_count = %u\n",
4618 		(unsigned long long)seq, (unsigned int)snap_count);
4619 out:
4620 	kfree(reply_buf);
4621 
4622 	return ret;
4623 }
4624 
4625 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4626 					u64 snap_id)
4627 {
4628 	size_t size;
4629 	void *reply_buf;
4630 	__le64 snapid;
4631 	int ret;
4632 	void *p;
4633 	void *end;
4634 	char *snap_name;
4635 
4636 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4637 	reply_buf = kmalloc(size, GFP_KERNEL);
4638 	if (!reply_buf)
4639 		return ERR_PTR(-ENOMEM);
4640 
4641 	snapid = cpu_to_le64(snap_id);
4642 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4643 				"rbd", "get_snapshot_name",
4644 				&snapid, sizeof (snapid),
4645 				reply_buf, size);
4646 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4647 	if (ret < 0) {
4648 		snap_name = ERR_PTR(ret);
4649 		goto out;
4650 	}
4651 
4652 	p = reply_buf;
4653 	end = reply_buf + ret;
4654 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4655 	if (IS_ERR(snap_name))
4656 		goto out;
4657 
4658 	dout("  snap_id 0x%016llx snap_name = %s\n",
4659 		(unsigned long long)snap_id, snap_name);
4660 out:
4661 	kfree(reply_buf);
4662 
4663 	return snap_name;
4664 }
4665 
4666 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4667 {
4668 	bool first_time = rbd_dev->header.object_prefix == NULL;
4669 	int ret;
4670 
4671 	ret = rbd_dev_v2_image_size(rbd_dev);
4672 	if (ret)
4673 		return ret;
4674 
4675 	if (first_time) {
4676 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4677 		if (ret)
4678 			return ret;
4679 	}
4680 
4681 	ret = rbd_dev_v2_snap_context(rbd_dev);
4682 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4683 
4684 	return ret;
4685 }
4686 
4687 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4688 {
4689 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4690 
4691 	if (rbd_dev->image_format == 1)
4692 		return rbd_dev_v1_header_info(rbd_dev);
4693 
4694 	return rbd_dev_v2_header_info(rbd_dev);
4695 }
4696 
4697 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4698 {
4699 	struct device *dev;
4700 	int ret;
4701 
4702 	dev = &rbd_dev->dev;
4703 	dev->bus = &rbd_bus_type;
4704 	dev->type = &rbd_device_type;
4705 	dev->parent = &rbd_root_dev;
4706 	dev->release = rbd_dev_device_release;
4707 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4708 	ret = device_register(dev);
4709 
4710 	return ret;
4711 }
4712 
4713 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4714 {
4715 	device_unregister(&rbd_dev->dev);
4716 }
4717 
4718 /*
4719  * Get a unique rbd identifier for the given new rbd_dev, and add
4720  * the rbd_dev to the global list.
4721  */
4722 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4723 {
4724 	int new_dev_id;
4725 
4726 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4727 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4728 				    GFP_KERNEL);
4729 	if (new_dev_id < 0)
4730 		return new_dev_id;
4731 
4732 	rbd_dev->dev_id = new_dev_id;
4733 
4734 	spin_lock(&rbd_dev_list_lock);
4735 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4736 	spin_unlock(&rbd_dev_list_lock);
4737 
4738 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4739 
4740 	return 0;
4741 }
4742 
4743 /*
4744  * Remove an rbd_dev from the global list, and record that its
4745  * identifier is no longer in use.
4746  */
4747 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4748 {
4749 	spin_lock(&rbd_dev_list_lock);
4750 	list_del_init(&rbd_dev->node);
4751 	spin_unlock(&rbd_dev_list_lock);
4752 
4753 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4754 
4755 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4756 }
4757 
4758 /*
4759  * Skips over white space at *buf, and updates *buf to point to the
4760  * first found non-space character (if any). Returns the length of
4761  * the token (string of non-white space characters) found.  Note
4762  * that *buf must be terminated with '\0'.
4763  */
4764 static inline size_t next_token(const char **buf)
4765 {
4766         /*
4767         * These are the characters that produce nonzero for
4768         * isspace() in the "C" and "POSIX" locales.
4769         */
4770         const char *spaces = " \f\n\r\t\v";
4771 
4772         *buf += strspn(*buf, spaces);	/* Find start of token */
4773 
4774 	return strcspn(*buf, spaces);   /* Return token length */
4775 }
4776 
4777 /*
4778  * Finds the next token in *buf, and if the provided token buffer is
4779  * big enough, copies the found token into it.  The result, if
4780  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4781  * must be terminated with '\0' on entry.
4782  *
4783  * Returns the length of the token found (not including the '\0').
4784  * Return value will be 0 if no token is found, and it will be >=
4785  * token_size if the token would not fit.
4786  *
4787  * The *buf pointer will be updated to point beyond the end of the
4788  * found token.  Note that this occurs even if the token buffer is
4789  * too small to hold it.
4790  */
4791 static inline size_t copy_token(const char **buf,
4792 				char *token,
4793 				size_t token_size)
4794 {
4795         size_t len;
4796 
4797 	len = next_token(buf);
4798 	if (len < token_size) {
4799 		memcpy(token, *buf, len);
4800 		*(token + len) = '\0';
4801 	}
4802 	*buf += len;
4803 
4804         return len;
4805 }
4806 
4807 /*
4808  * Finds the next token in *buf, dynamically allocates a buffer big
4809  * enough to hold a copy of it, and copies the token into the new
4810  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4811  * that a duplicate buffer is created even for a zero-length token.
4812  *
4813  * Returns a pointer to the newly-allocated duplicate, or a null
4814  * pointer if memory for the duplicate was not available.  If
4815  * the lenp argument is a non-null pointer, the length of the token
4816  * (not including the '\0') is returned in *lenp.
4817  *
4818  * If successful, the *buf pointer will be updated to point beyond
4819  * the end of the found token.
4820  *
4821  * Note: uses GFP_KERNEL for allocation.
4822  */
4823 static inline char *dup_token(const char **buf, size_t *lenp)
4824 {
4825 	char *dup;
4826 	size_t len;
4827 
4828 	len = next_token(buf);
4829 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4830 	if (!dup)
4831 		return NULL;
4832 	*(dup + len) = '\0';
4833 	*buf += len;
4834 
4835 	if (lenp)
4836 		*lenp = len;
4837 
4838 	return dup;
4839 }
4840 
4841 /*
4842  * Parse the options provided for an "rbd add" (i.e., rbd image
4843  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4844  * and the data written is passed here via a NUL-terminated buffer.
4845  * Returns 0 if successful or an error code otherwise.
4846  *
4847  * The information extracted from these options is recorded in
4848  * the other parameters which return dynamically-allocated
4849  * structures:
4850  *  ceph_opts
4851  *      The address of a pointer that will refer to a ceph options
4852  *      structure.  Caller must release the returned pointer using
4853  *      ceph_destroy_options() when it is no longer needed.
4854  *  rbd_opts
4855  *	Address of an rbd options pointer.  Fully initialized by
4856  *	this function; caller must release with kfree().
4857  *  spec
4858  *	Address of an rbd image specification pointer.  Fully
4859  *	initialized by this function based on parsed options.
4860  *	Caller must release with rbd_spec_put().
4861  *
4862  * The options passed take this form:
4863  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4864  * where:
4865  *  <mon_addrs>
4866  *      A comma-separated list of one or more monitor addresses.
4867  *      A monitor address is an ip address, optionally followed
4868  *      by a port number (separated by a colon).
4869  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4870  *  <options>
4871  *      A comma-separated list of ceph and/or rbd options.
4872  *  <pool_name>
4873  *      The name of the rados pool containing the rbd image.
4874  *  <image_name>
4875  *      The name of the image in that pool to map.
4876  *  <snap_id>
4877  *      An optional snapshot id.  If provided, the mapping will
4878  *      present data from the image at the time that snapshot was
4879  *      created.  The image head is used if no snapshot id is
4880  *      provided.  Snapshot mappings are always read-only.
4881  */
4882 static int rbd_add_parse_args(const char *buf,
4883 				struct ceph_options **ceph_opts,
4884 				struct rbd_options **opts,
4885 				struct rbd_spec **rbd_spec)
4886 {
4887 	size_t len;
4888 	char *options;
4889 	const char *mon_addrs;
4890 	char *snap_name;
4891 	size_t mon_addrs_size;
4892 	struct rbd_spec *spec = NULL;
4893 	struct rbd_options *rbd_opts = NULL;
4894 	struct ceph_options *copts;
4895 	int ret;
4896 
4897 	/* The first four tokens are required */
4898 
4899 	len = next_token(&buf);
4900 	if (!len) {
4901 		rbd_warn(NULL, "no monitor address(es) provided");
4902 		return -EINVAL;
4903 	}
4904 	mon_addrs = buf;
4905 	mon_addrs_size = len + 1;
4906 	buf += len;
4907 
4908 	ret = -EINVAL;
4909 	options = dup_token(&buf, NULL);
4910 	if (!options)
4911 		return -ENOMEM;
4912 	if (!*options) {
4913 		rbd_warn(NULL, "no options provided");
4914 		goto out_err;
4915 	}
4916 
4917 	spec = rbd_spec_alloc();
4918 	if (!spec)
4919 		goto out_mem;
4920 
4921 	spec->pool_name = dup_token(&buf, NULL);
4922 	if (!spec->pool_name)
4923 		goto out_mem;
4924 	if (!*spec->pool_name) {
4925 		rbd_warn(NULL, "no pool name provided");
4926 		goto out_err;
4927 	}
4928 
4929 	spec->image_name = dup_token(&buf, NULL);
4930 	if (!spec->image_name)
4931 		goto out_mem;
4932 	if (!*spec->image_name) {
4933 		rbd_warn(NULL, "no image name provided");
4934 		goto out_err;
4935 	}
4936 
4937 	/*
4938 	 * Snapshot name is optional; default is to use "-"
4939 	 * (indicating the head/no snapshot).
4940 	 */
4941 	len = next_token(&buf);
4942 	if (!len) {
4943 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4944 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4945 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4946 		ret = -ENAMETOOLONG;
4947 		goto out_err;
4948 	}
4949 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4950 	if (!snap_name)
4951 		goto out_mem;
4952 	*(snap_name + len) = '\0';
4953 	spec->snap_name = snap_name;
4954 
4955 	/* Initialize all rbd options to the defaults */
4956 
4957 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4958 	if (!rbd_opts)
4959 		goto out_mem;
4960 
4961 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4962 
4963 	copts = ceph_parse_options(options, mon_addrs,
4964 					mon_addrs + mon_addrs_size - 1,
4965 					parse_rbd_opts_token, rbd_opts);
4966 	if (IS_ERR(copts)) {
4967 		ret = PTR_ERR(copts);
4968 		goto out_err;
4969 	}
4970 	kfree(options);
4971 
4972 	*ceph_opts = copts;
4973 	*opts = rbd_opts;
4974 	*rbd_spec = spec;
4975 
4976 	return 0;
4977 out_mem:
4978 	ret = -ENOMEM;
4979 out_err:
4980 	kfree(rbd_opts);
4981 	rbd_spec_put(spec);
4982 	kfree(options);
4983 
4984 	return ret;
4985 }
4986 
4987 /*
4988  * Return pool id (>= 0) or a negative error code.
4989  */
4990 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4991 {
4992 	u64 newest_epoch;
4993 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4994 	int tries = 0;
4995 	int ret;
4996 
4997 again:
4998 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4999 	if (ret == -ENOENT && tries++ < 1) {
5000 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5001 					       &newest_epoch);
5002 		if (ret < 0)
5003 			return ret;
5004 
5005 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5006 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5007 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5008 						     newest_epoch, timeout);
5009 			goto again;
5010 		} else {
5011 			/* the osdmap we have is new enough */
5012 			return -ENOENT;
5013 		}
5014 	}
5015 
5016 	return ret;
5017 }
5018 
5019 /*
5020  * An rbd format 2 image has a unique identifier, distinct from the
5021  * name given to it by the user.  Internally, that identifier is
5022  * what's used to specify the names of objects related to the image.
5023  *
5024  * A special "rbd id" object is used to map an rbd image name to its
5025  * id.  If that object doesn't exist, then there is no v2 rbd image
5026  * with the supplied name.
5027  *
5028  * This function will record the given rbd_dev's image_id field if
5029  * it can be determined, and in that case will return 0.  If any
5030  * errors occur a negative errno will be returned and the rbd_dev's
5031  * image_id field will be unchanged (and should be NULL).
5032  */
5033 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5034 {
5035 	int ret;
5036 	size_t size;
5037 	char *object_name;
5038 	void *response;
5039 	char *image_id;
5040 
5041 	/*
5042 	 * When probing a parent image, the image id is already
5043 	 * known (and the image name likely is not).  There's no
5044 	 * need to fetch the image id again in this case.  We
5045 	 * do still need to set the image format though.
5046 	 */
5047 	if (rbd_dev->spec->image_id) {
5048 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5049 
5050 		return 0;
5051 	}
5052 
5053 	/*
5054 	 * First, see if the format 2 image id file exists, and if
5055 	 * so, get the image's persistent id from it.
5056 	 */
5057 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5058 	object_name = kmalloc(size, GFP_NOIO);
5059 	if (!object_name)
5060 		return -ENOMEM;
5061 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5062 	dout("rbd id object name is %s\n", object_name);
5063 
5064 	/* Response will be an encoded string, which includes a length */
5065 
5066 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5067 	response = kzalloc(size, GFP_NOIO);
5068 	if (!response) {
5069 		ret = -ENOMEM;
5070 		goto out;
5071 	}
5072 
5073 	/* If it doesn't exist we'll assume it's a format 1 image */
5074 
5075 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5076 				"rbd", "get_id", NULL, 0,
5077 				response, RBD_IMAGE_ID_LEN_MAX);
5078 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5079 	if (ret == -ENOENT) {
5080 		image_id = kstrdup("", GFP_KERNEL);
5081 		ret = image_id ? 0 : -ENOMEM;
5082 		if (!ret)
5083 			rbd_dev->image_format = 1;
5084 	} else if (ret >= 0) {
5085 		void *p = response;
5086 
5087 		image_id = ceph_extract_encoded_string(&p, p + ret,
5088 						NULL, GFP_NOIO);
5089 		ret = PTR_ERR_OR_ZERO(image_id);
5090 		if (!ret)
5091 			rbd_dev->image_format = 2;
5092 	}
5093 
5094 	if (!ret) {
5095 		rbd_dev->spec->image_id = image_id;
5096 		dout("image_id is %s\n", image_id);
5097 	}
5098 out:
5099 	kfree(response);
5100 	kfree(object_name);
5101 
5102 	return ret;
5103 }
5104 
5105 /*
5106  * Undo whatever state changes are made by v1 or v2 header info
5107  * call.
5108  */
5109 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5110 {
5111 	struct rbd_image_header	*header;
5112 
5113 	/* Drop parent reference unless it's already been done (or none) */
5114 
5115 	if (rbd_dev->parent_overlap)
5116 		rbd_dev_parent_put(rbd_dev);
5117 
5118 	/* Free dynamic fields from the header, then zero it out */
5119 
5120 	header = &rbd_dev->header;
5121 	ceph_put_snap_context(header->snapc);
5122 	kfree(header->snap_sizes);
5123 	kfree(header->snap_names);
5124 	kfree(header->object_prefix);
5125 	memset(header, 0, sizeof (*header));
5126 }
5127 
5128 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5129 {
5130 	int ret;
5131 
5132 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5133 	if (ret)
5134 		goto out_err;
5135 
5136 	/*
5137 	 * Get the and check features for the image.  Currently the
5138 	 * features are assumed to never change.
5139 	 */
5140 	ret = rbd_dev_v2_features(rbd_dev);
5141 	if (ret)
5142 		goto out_err;
5143 
5144 	/* If the image supports fancy striping, get its parameters */
5145 
5146 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5147 		ret = rbd_dev_v2_striping_info(rbd_dev);
5148 		if (ret < 0)
5149 			goto out_err;
5150 	}
5151 	/* No support for crypto and compression type format 2 images */
5152 
5153 	return 0;
5154 out_err:
5155 	rbd_dev->header.features = 0;
5156 	kfree(rbd_dev->header.object_prefix);
5157 	rbd_dev->header.object_prefix = NULL;
5158 
5159 	return ret;
5160 }
5161 
5162 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5163 {
5164 	struct rbd_device *parent = NULL;
5165 	struct rbd_spec *parent_spec;
5166 	struct rbd_client *rbdc;
5167 	int ret;
5168 
5169 	if (!rbd_dev->parent_spec)
5170 		return 0;
5171 	/*
5172 	 * We need to pass a reference to the client and the parent
5173 	 * spec when creating the parent rbd_dev.  Images related by
5174 	 * parent/child relationships always share both.
5175 	 */
5176 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5177 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5178 
5179 	ret = -ENOMEM;
5180 	parent = rbd_dev_create(rbdc, parent_spec);
5181 	if (!parent)
5182 		goto out_err;
5183 
5184 	ret = rbd_dev_image_probe(parent, false);
5185 	if (ret < 0)
5186 		goto out_err;
5187 	rbd_dev->parent = parent;
5188 	atomic_set(&rbd_dev->parent_ref, 1);
5189 
5190 	return 0;
5191 out_err:
5192 	if (parent) {
5193 		rbd_dev_unparent(rbd_dev);
5194 		kfree(rbd_dev->header_name);
5195 		rbd_dev_destroy(parent);
5196 	} else {
5197 		rbd_put_client(rbdc);
5198 		rbd_spec_put(parent_spec);
5199 	}
5200 
5201 	return ret;
5202 }
5203 
5204 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5205 {
5206 	int ret;
5207 
5208 	/* Get an id and fill in device name. */
5209 
5210 	ret = rbd_dev_id_get(rbd_dev);
5211 	if (ret)
5212 		return ret;
5213 
5214 	BUILD_BUG_ON(DEV_NAME_LEN
5215 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5216 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5217 
5218 	/* Record our major and minor device numbers. */
5219 
5220 	if (!single_major) {
5221 		ret = register_blkdev(0, rbd_dev->name);
5222 		if (ret < 0)
5223 			goto err_out_id;
5224 
5225 		rbd_dev->major = ret;
5226 		rbd_dev->minor = 0;
5227 	} else {
5228 		rbd_dev->major = rbd_major;
5229 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5230 	}
5231 
5232 	/* Set up the blkdev mapping. */
5233 
5234 	ret = rbd_init_disk(rbd_dev);
5235 	if (ret)
5236 		goto err_out_blkdev;
5237 
5238 	ret = rbd_dev_mapping_set(rbd_dev);
5239 	if (ret)
5240 		goto err_out_disk;
5241 
5242 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5243 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5244 
5245 	rbd_dev->rq_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
5246 					 rbd_dev->disk->disk_name);
5247 	if (!rbd_dev->rq_wq) {
5248 		ret = -ENOMEM;
5249 		goto err_out_mapping;
5250 	}
5251 
5252 	ret = rbd_bus_add_dev(rbd_dev);
5253 	if (ret)
5254 		goto err_out_workqueue;
5255 
5256 	/* Everything's ready.  Announce the disk to the world. */
5257 
5258 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5259 	add_disk(rbd_dev->disk);
5260 
5261 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5262 		(unsigned long long) rbd_dev->mapping.size);
5263 
5264 	return ret;
5265 
5266 err_out_workqueue:
5267 	destroy_workqueue(rbd_dev->rq_wq);
5268 	rbd_dev->rq_wq = NULL;
5269 err_out_mapping:
5270 	rbd_dev_mapping_clear(rbd_dev);
5271 err_out_disk:
5272 	rbd_free_disk(rbd_dev);
5273 err_out_blkdev:
5274 	if (!single_major)
5275 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5276 err_out_id:
5277 	rbd_dev_id_put(rbd_dev);
5278 	rbd_dev_mapping_clear(rbd_dev);
5279 
5280 	return ret;
5281 }
5282 
5283 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5284 {
5285 	struct rbd_spec *spec = rbd_dev->spec;
5286 	size_t size;
5287 
5288 	/* Record the header object name for this rbd image. */
5289 
5290 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5291 
5292 	if (rbd_dev->image_format == 1)
5293 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5294 	else
5295 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5296 
5297 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5298 	if (!rbd_dev->header_name)
5299 		return -ENOMEM;
5300 
5301 	if (rbd_dev->image_format == 1)
5302 		sprintf(rbd_dev->header_name, "%s%s",
5303 			spec->image_name, RBD_SUFFIX);
5304 	else
5305 		sprintf(rbd_dev->header_name, "%s%s",
5306 			RBD_HEADER_PREFIX, spec->image_id);
5307 	return 0;
5308 }
5309 
5310 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5311 {
5312 	rbd_dev_unprobe(rbd_dev);
5313 	kfree(rbd_dev->header_name);
5314 	rbd_dev->header_name = NULL;
5315 	rbd_dev->image_format = 0;
5316 	kfree(rbd_dev->spec->image_id);
5317 	rbd_dev->spec->image_id = NULL;
5318 
5319 	rbd_dev_destroy(rbd_dev);
5320 }
5321 
5322 /*
5323  * Probe for the existence of the header object for the given rbd
5324  * device.  If this image is the one being mapped (i.e., not a
5325  * parent), initiate a watch on its header object before using that
5326  * object to get detailed information about the rbd image.
5327  */
5328 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5329 {
5330 	int ret;
5331 
5332 	/*
5333 	 * Get the id from the image id object.  Unless there's an
5334 	 * error, rbd_dev->spec->image_id will be filled in with
5335 	 * a dynamically-allocated string, and rbd_dev->image_format
5336 	 * will be set to either 1 or 2.
5337 	 */
5338 	ret = rbd_dev_image_id(rbd_dev);
5339 	if (ret)
5340 		return ret;
5341 
5342 	ret = rbd_dev_header_name(rbd_dev);
5343 	if (ret)
5344 		goto err_out_format;
5345 
5346 	if (mapping) {
5347 		ret = rbd_dev_header_watch_sync(rbd_dev);
5348 		if (ret)
5349 			goto out_header_name;
5350 	}
5351 
5352 	ret = rbd_dev_header_info(rbd_dev);
5353 	if (ret)
5354 		goto err_out_watch;
5355 
5356 	/*
5357 	 * If this image is the one being mapped, we have pool name and
5358 	 * id, image name and id, and snap name - need to fill snap id.
5359 	 * Otherwise this is a parent image, identified by pool, image
5360 	 * and snap ids - need to fill in names for those ids.
5361 	 */
5362 	if (mapping)
5363 		ret = rbd_spec_fill_snap_id(rbd_dev);
5364 	else
5365 		ret = rbd_spec_fill_names(rbd_dev);
5366 	if (ret)
5367 		goto err_out_probe;
5368 
5369 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5370 		ret = rbd_dev_v2_parent_info(rbd_dev);
5371 		if (ret)
5372 			goto err_out_probe;
5373 
5374 		/*
5375 		 * Need to warn users if this image is the one being
5376 		 * mapped and has a parent.
5377 		 */
5378 		if (mapping && rbd_dev->parent_spec)
5379 			rbd_warn(rbd_dev,
5380 				 "WARNING: kernel layering is EXPERIMENTAL!");
5381 	}
5382 
5383 	ret = rbd_dev_probe_parent(rbd_dev);
5384 	if (ret)
5385 		goto err_out_probe;
5386 
5387 	dout("discovered format %u image, header name is %s\n",
5388 		rbd_dev->image_format, rbd_dev->header_name);
5389 	return 0;
5390 
5391 err_out_probe:
5392 	rbd_dev_unprobe(rbd_dev);
5393 err_out_watch:
5394 	if (mapping)
5395 		rbd_dev_header_unwatch_sync(rbd_dev);
5396 out_header_name:
5397 	kfree(rbd_dev->header_name);
5398 	rbd_dev->header_name = NULL;
5399 err_out_format:
5400 	rbd_dev->image_format = 0;
5401 	kfree(rbd_dev->spec->image_id);
5402 	rbd_dev->spec->image_id = NULL;
5403 	return ret;
5404 }
5405 
5406 static ssize_t do_rbd_add(struct bus_type *bus,
5407 			  const char *buf,
5408 			  size_t count)
5409 {
5410 	struct rbd_device *rbd_dev = NULL;
5411 	struct ceph_options *ceph_opts = NULL;
5412 	struct rbd_options *rbd_opts = NULL;
5413 	struct rbd_spec *spec = NULL;
5414 	struct rbd_client *rbdc;
5415 	bool read_only;
5416 	int rc = -ENOMEM;
5417 
5418 	if (!try_module_get(THIS_MODULE))
5419 		return -ENODEV;
5420 
5421 	/* parse add command */
5422 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5423 	if (rc < 0)
5424 		goto err_out_module;
5425 	read_only = rbd_opts->read_only;
5426 	kfree(rbd_opts);
5427 	rbd_opts = NULL;	/* done with this */
5428 
5429 	rbdc = rbd_get_client(ceph_opts);
5430 	if (IS_ERR(rbdc)) {
5431 		rc = PTR_ERR(rbdc);
5432 		goto err_out_args;
5433 	}
5434 
5435 	/* pick the pool */
5436 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5437 	if (rc < 0)
5438 		goto err_out_client;
5439 	spec->pool_id = (u64)rc;
5440 
5441 	/* The ceph file layout needs to fit pool id in 32 bits */
5442 
5443 	if (spec->pool_id > (u64)U32_MAX) {
5444 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5445 				(unsigned long long)spec->pool_id, U32_MAX);
5446 		rc = -EIO;
5447 		goto err_out_client;
5448 	}
5449 
5450 	rbd_dev = rbd_dev_create(rbdc, spec);
5451 	if (!rbd_dev)
5452 		goto err_out_client;
5453 	rbdc = NULL;		/* rbd_dev now owns this */
5454 	spec = NULL;		/* rbd_dev now owns this */
5455 
5456 	rc = rbd_dev_image_probe(rbd_dev, true);
5457 	if (rc < 0)
5458 		goto err_out_rbd_dev;
5459 
5460 	/* If we are mapping a snapshot it must be marked read-only */
5461 
5462 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5463 		read_only = true;
5464 	rbd_dev->mapping.read_only = read_only;
5465 
5466 	rc = rbd_dev_device_setup(rbd_dev);
5467 	if (rc) {
5468 		/*
5469 		 * rbd_dev_header_unwatch_sync() can't be moved into
5470 		 * rbd_dev_image_release() without refactoring, see
5471 		 * commit 1f3ef78861ac.
5472 		 */
5473 		rbd_dev_header_unwatch_sync(rbd_dev);
5474 		rbd_dev_image_release(rbd_dev);
5475 		goto err_out_module;
5476 	}
5477 
5478 	return count;
5479 
5480 err_out_rbd_dev:
5481 	rbd_dev_destroy(rbd_dev);
5482 err_out_client:
5483 	rbd_put_client(rbdc);
5484 err_out_args:
5485 	rbd_spec_put(spec);
5486 err_out_module:
5487 	module_put(THIS_MODULE);
5488 
5489 	dout("Error adding device %s\n", buf);
5490 
5491 	return (ssize_t)rc;
5492 }
5493 
5494 static ssize_t rbd_add(struct bus_type *bus,
5495 		       const char *buf,
5496 		       size_t count)
5497 {
5498 	if (single_major)
5499 		return -EINVAL;
5500 
5501 	return do_rbd_add(bus, buf, count);
5502 }
5503 
5504 static ssize_t rbd_add_single_major(struct bus_type *bus,
5505 				    const char *buf,
5506 				    size_t count)
5507 {
5508 	return do_rbd_add(bus, buf, count);
5509 }
5510 
5511 static void rbd_dev_device_release(struct device *dev)
5512 {
5513 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5514 
5515 	destroy_workqueue(rbd_dev->rq_wq);
5516 	rbd_free_disk(rbd_dev);
5517 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5518 	rbd_dev_mapping_clear(rbd_dev);
5519 	if (!single_major)
5520 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5521 	rbd_dev_id_put(rbd_dev);
5522 	rbd_dev_mapping_clear(rbd_dev);
5523 }
5524 
5525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5526 {
5527 	while (rbd_dev->parent) {
5528 		struct rbd_device *first = rbd_dev;
5529 		struct rbd_device *second = first->parent;
5530 		struct rbd_device *third;
5531 
5532 		/*
5533 		 * Follow to the parent with no grandparent and
5534 		 * remove it.
5535 		 */
5536 		while (second && (third = second->parent)) {
5537 			first = second;
5538 			second = third;
5539 		}
5540 		rbd_assert(second);
5541 		rbd_dev_image_release(second);
5542 		first->parent = NULL;
5543 		first->parent_overlap = 0;
5544 
5545 		rbd_assert(first->parent_spec);
5546 		rbd_spec_put(first->parent_spec);
5547 		first->parent_spec = NULL;
5548 	}
5549 }
5550 
5551 static ssize_t do_rbd_remove(struct bus_type *bus,
5552 			     const char *buf,
5553 			     size_t count)
5554 {
5555 	struct rbd_device *rbd_dev = NULL;
5556 	struct list_head *tmp;
5557 	int dev_id;
5558 	unsigned long ul;
5559 	bool already = false;
5560 	int ret;
5561 
5562 	ret = kstrtoul(buf, 10, &ul);
5563 	if (ret)
5564 		return ret;
5565 
5566 	/* convert to int; abort if we lost anything in the conversion */
5567 	dev_id = (int)ul;
5568 	if (dev_id != ul)
5569 		return -EINVAL;
5570 
5571 	ret = -ENOENT;
5572 	spin_lock(&rbd_dev_list_lock);
5573 	list_for_each(tmp, &rbd_dev_list) {
5574 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5575 		if (rbd_dev->dev_id == dev_id) {
5576 			ret = 0;
5577 			break;
5578 		}
5579 	}
5580 	if (!ret) {
5581 		spin_lock_irq(&rbd_dev->lock);
5582 		if (rbd_dev->open_count)
5583 			ret = -EBUSY;
5584 		else
5585 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5586 							&rbd_dev->flags);
5587 		spin_unlock_irq(&rbd_dev->lock);
5588 	}
5589 	spin_unlock(&rbd_dev_list_lock);
5590 	if (ret < 0 || already)
5591 		return ret;
5592 
5593 	rbd_dev_header_unwatch_sync(rbd_dev);
5594 	/*
5595 	 * flush remaining watch callbacks - these must be complete
5596 	 * before the osd_client is shutdown
5597 	 */
5598 	dout("%s: flushing notifies", __func__);
5599 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5600 
5601 	/*
5602 	 * Don't free anything from rbd_dev->disk until after all
5603 	 * notifies are completely processed. Otherwise
5604 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5605 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5606 	 */
5607 	rbd_bus_del_dev(rbd_dev);
5608 	rbd_dev_image_release(rbd_dev);
5609 	module_put(THIS_MODULE);
5610 
5611 	return count;
5612 }
5613 
5614 static ssize_t rbd_remove(struct bus_type *bus,
5615 			  const char *buf,
5616 			  size_t count)
5617 {
5618 	if (single_major)
5619 		return -EINVAL;
5620 
5621 	return do_rbd_remove(bus, buf, count);
5622 }
5623 
5624 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5625 				       const char *buf,
5626 				       size_t count)
5627 {
5628 	return do_rbd_remove(bus, buf, count);
5629 }
5630 
5631 /*
5632  * create control files in sysfs
5633  * /sys/bus/rbd/...
5634  */
5635 static int rbd_sysfs_init(void)
5636 {
5637 	int ret;
5638 
5639 	ret = device_register(&rbd_root_dev);
5640 	if (ret < 0)
5641 		return ret;
5642 
5643 	ret = bus_register(&rbd_bus_type);
5644 	if (ret < 0)
5645 		device_unregister(&rbd_root_dev);
5646 
5647 	return ret;
5648 }
5649 
5650 static void rbd_sysfs_cleanup(void)
5651 {
5652 	bus_unregister(&rbd_bus_type);
5653 	device_unregister(&rbd_root_dev);
5654 }
5655 
5656 static int rbd_slab_init(void)
5657 {
5658 	rbd_assert(!rbd_img_request_cache);
5659 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5660 					sizeof (struct rbd_img_request),
5661 					__alignof__(struct rbd_img_request),
5662 					0, NULL);
5663 	if (!rbd_img_request_cache)
5664 		return -ENOMEM;
5665 
5666 	rbd_assert(!rbd_obj_request_cache);
5667 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5668 					sizeof (struct rbd_obj_request),
5669 					__alignof__(struct rbd_obj_request),
5670 					0, NULL);
5671 	if (!rbd_obj_request_cache)
5672 		goto out_err;
5673 
5674 	rbd_assert(!rbd_segment_name_cache);
5675 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5676 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5677 	if (rbd_segment_name_cache)
5678 		return 0;
5679 out_err:
5680 	if (rbd_obj_request_cache) {
5681 		kmem_cache_destroy(rbd_obj_request_cache);
5682 		rbd_obj_request_cache = NULL;
5683 	}
5684 
5685 	kmem_cache_destroy(rbd_img_request_cache);
5686 	rbd_img_request_cache = NULL;
5687 
5688 	return -ENOMEM;
5689 }
5690 
5691 static void rbd_slab_exit(void)
5692 {
5693 	rbd_assert(rbd_segment_name_cache);
5694 	kmem_cache_destroy(rbd_segment_name_cache);
5695 	rbd_segment_name_cache = NULL;
5696 
5697 	rbd_assert(rbd_obj_request_cache);
5698 	kmem_cache_destroy(rbd_obj_request_cache);
5699 	rbd_obj_request_cache = NULL;
5700 
5701 	rbd_assert(rbd_img_request_cache);
5702 	kmem_cache_destroy(rbd_img_request_cache);
5703 	rbd_img_request_cache = NULL;
5704 }
5705 
5706 static int __init rbd_init(void)
5707 {
5708 	int rc;
5709 
5710 	if (!libceph_compatible(NULL)) {
5711 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5712 		return -EINVAL;
5713 	}
5714 
5715 	rc = rbd_slab_init();
5716 	if (rc)
5717 		return rc;
5718 
5719 	if (single_major) {
5720 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5721 		if (rbd_major < 0) {
5722 			rc = rbd_major;
5723 			goto err_out_slab;
5724 		}
5725 	}
5726 
5727 	rc = rbd_sysfs_init();
5728 	if (rc)
5729 		goto err_out_blkdev;
5730 
5731 	if (single_major)
5732 		pr_info("loaded (major %d)\n", rbd_major);
5733 	else
5734 		pr_info("loaded\n");
5735 
5736 	return 0;
5737 
5738 err_out_blkdev:
5739 	if (single_major)
5740 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 err_out_slab:
5742 	rbd_slab_exit();
5743 	return rc;
5744 }
5745 
5746 static void __exit rbd_exit(void)
5747 {
5748 	ida_destroy(&rbd_dev_id_ida);
5749 	rbd_sysfs_cleanup();
5750 	if (single_major)
5751 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5752 	rbd_slab_exit();
5753 }
5754 
5755 module_init(rbd_init);
5756 module_exit(rbd_exit);
5757 
5758 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5759 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5760 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5761 /* following authorship retained from original osdblk.c */
5762 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5763 
5764 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5765 MODULE_LICENSE("GPL");
5766