xref: /openbmc/linux/drivers/block/rbd.c (revision 5bd8e16d)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 
45 #include "rbd_types.h"
46 
47 #define RBD_DEBUG	/* Activate rbd_assert() calls */
48 
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define	SECTOR_SHIFT	9
56 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
57 
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 	unsigned int counter;
67 
68 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 	if (counter <= (unsigned int)INT_MAX)
70 		return (int)counter;
71 
72 	atomic_dec(v);
73 
74 	return -EINVAL;
75 }
76 
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 	int counter;
81 
82 	counter = atomic_dec_return(v);
83 	if (counter >= 0)
84 		return counter;
85 
86 	atomic_inc(v);
87 
88 	return -EINVAL;
89 }
90 
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93 
94 #define RBD_MINORS_PER_MAJOR	256		/* max minors per blkdev */
95 
96 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
97 #define RBD_MAX_SNAP_NAME_LEN	\
98 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99 
100 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
101 
102 #define RBD_SNAP_HEAD_NAME	"-"
103 
104 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
105 
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX	64
109 
110 #define RBD_OBJ_PREFIX_LEN_MAX	64
111 
112 /* Feature bits */
113 
114 #define RBD_FEATURE_LAYERING	(1<<0)
115 #define RBD_FEATURE_STRIPINGV2	(1<<1)
116 #define RBD_FEATURES_ALL \
117 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118 
119 /* Features supported by this (client software) implementation. */
120 
121 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
122 
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN		32
130 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
131 
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136 	/* These six fields never change for a given rbd image */
137 	char *object_prefix;
138 	__u8 obj_order;
139 	__u8 crypt_type;
140 	__u8 comp_type;
141 	u64 stripe_unit;
142 	u64 stripe_count;
143 	u64 features;		/* Might be changeable someday? */
144 
145 	/* The remaining fields need to be updated occasionally */
146 	u64 image_size;
147 	struct ceph_snap_context *snapc;
148 	char *snap_names;	/* format 1 only */
149 	u64 *snap_sizes;	/* format 1 only */
150 };
151 
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178 	u64		pool_id;
179 	const char	*pool_name;
180 
181 	const char	*image_id;
182 	const char	*image_name;
183 
184 	u64		snap_id;
185 	const char	*snap_name;
186 
187 	struct kref	kref;
188 };
189 
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194 	struct ceph_client	*client;
195 	struct kref		kref;
196 	struct list_head	node;
197 };
198 
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201 
202 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
203 
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206 
207 enum obj_request_type {
208 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210 
211 enum obj_req_flags {
212 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
213 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
214 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
215 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
216 };
217 
218 struct rbd_obj_request {
219 	const char		*object_name;
220 	u64			offset;		/* object start byte */
221 	u64			length;		/* bytes from offset */
222 	unsigned long		flags;
223 
224 	/*
225 	 * An object request associated with an image will have its
226 	 * img_data flag set; a standalone object request will not.
227 	 *
228 	 * A standalone object request will have which == BAD_WHICH
229 	 * and a null obj_request pointer.
230 	 *
231 	 * An object request initiated in support of a layered image
232 	 * object (to check for its existence before a write) will
233 	 * have which == BAD_WHICH and a non-null obj_request pointer.
234 	 *
235 	 * Finally, an object request for rbd image data will have
236 	 * which != BAD_WHICH, and will have a non-null img_request
237 	 * pointer.  The value of which will be in the range
238 	 * 0..(img_request->obj_request_count-1).
239 	 */
240 	union {
241 		struct rbd_obj_request	*obj_request;	/* STAT op */
242 		struct {
243 			struct rbd_img_request	*img_request;
244 			u64			img_offset;
245 			/* links for img_request->obj_requests list */
246 			struct list_head	links;
247 		};
248 	};
249 	u32			which;		/* posn image request list */
250 
251 	enum obj_request_type	type;
252 	union {
253 		struct bio	*bio_list;
254 		struct {
255 			struct page	**pages;
256 			u32		page_count;
257 		};
258 	};
259 	struct page		**copyup_pages;
260 	u32			copyup_page_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	rbd_obj_callback_t	callback;
268 	struct completion	completion;
269 
270 	struct kref		kref;
271 };
272 
273 enum img_req_flags {
274 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
275 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
276 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
277 };
278 
279 struct rbd_img_request {
280 	struct rbd_device	*rbd_dev;
281 	u64			offset;	/* starting image byte offset */
282 	u64			length;	/* byte count from offset */
283 	unsigned long		flags;
284 	union {
285 		u64			snap_id;	/* for reads */
286 		struct ceph_snap_context *snapc;	/* for writes */
287 	};
288 	union {
289 		struct request		*rq;		/* block request */
290 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
291 	};
292 	struct page		**copyup_pages;
293 	u32			copyup_page_count;
294 	spinlock_t		completion_lock;/* protects next_completion */
295 	u32			next_completion;
296 	rbd_img_callback_t	callback;
297 	u64			xferred;/* aggregate bytes transferred */
298 	int			result;	/* first nonzero obj_request result */
299 
300 	u32			obj_request_count;
301 	struct list_head	obj_requests;	/* rbd_obj_request structs */
302 
303 	struct kref		kref;
304 };
305 
306 #define for_each_obj_request(ireq, oreq) \
307 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312 
313 struct rbd_mapping {
314 	u64                     size;
315 	u64                     features;
316 	bool			read_only;
317 };
318 
319 /*
320  * a single device
321  */
322 struct rbd_device {
323 	int			dev_id;		/* blkdev unique id */
324 
325 	int			major;		/* blkdev assigned major */
326 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
327 
328 	u32			image_format;	/* Either 1 or 2 */
329 	struct rbd_client	*rbd_client;
330 
331 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332 
333 	spinlock_t		lock;		/* queue, flags, open_count */
334 
335 	struct rbd_image_header	header;
336 	unsigned long		flags;		/* possibly lock protected */
337 	struct rbd_spec		*spec;
338 
339 	char			*header_name;
340 
341 	struct ceph_file_layout	layout;
342 
343 	struct ceph_osd_event   *watch_event;
344 	struct rbd_obj_request	*watch_request;
345 
346 	struct rbd_spec		*parent_spec;
347 	u64			parent_overlap;
348 	atomic_t		parent_ref;
349 	struct rbd_device	*parent;
350 
351 	/* protects updating the header */
352 	struct rw_semaphore     header_rwsem;
353 
354 	struct rbd_mapping	mapping;
355 
356 	struct list_head	node;
357 
358 	/* sysfs related */
359 	struct device		dev;
360 	unsigned long		open_count;	/* protected by lock */
361 };
362 
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
372 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
373 };
374 
375 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
376 
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379 
380 static LIST_HEAD(rbd_client_list);		/* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382 
383 /* Slab caches for frequently-allocated structures */
384 
385 static struct kmem_cache	*rbd_img_request_cache;
386 static struct kmem_cache	*rbd_obj_request_cache;
387 static struct kmem_cache	*rbd_segment_name_cache;
388 
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390 
391 static void rbd_dev_device_release(struct device *dev);
392 
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 		       size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 			  size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399 
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402 
403 static struct attribute *rbd_bus_attrs[] = {
404 	&bus_attr_add.attr,
405 	&bus_attr_remove.attr,
406 	NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409 
410 static struct bus_type rbd_bus_type = {
411 	.name		= "rbd",
412 	.bus_groups	= rbd_bus_groups,
413 };
414 
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418 
419 static struct device rbd_root_dev = {
420 	.init_name =    "rbd",
421 	.release =      rbd_root_dev_release,
422 };
423 
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427 	struct va_format vaf;
428 	va_list args;
429 
430 	va_start(args, fmt);
431 	vaf.fmt = fmt;
432 	vaf.va = &args;
433 
434 	if (!rbd_dev)
435 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436 	else if (rbd_dev->disk)
437 		printk(KERN_WARNING "%s: %s: %pV\n",
438 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
440 		printk(KERN_WARNING "%s: image %s: %pV\n",
441 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
443 		printk(KERN_WARNING "%s: id %s: %pV\n",
444 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445 	else	/* punt */
446 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447 			RBD_DRV_NAME, rbd_dev, &vaf);
448 	va_end(args);
449 }
450 
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)						\
453 		if (unlikely(!(expr))) {				\
454 			printk(KERN_ERR "\nAssertion failure in %s() "	\
455 						"at line %d:\n\n"	\
456 					"\trbd_assert(%s);\n\n",	\
457 					__func__, __LINE__, #expr);	\
458 			BUG();						\
459 		}
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)	((void) 0)
462 #endif /* !RBD_DEBUG */
463 
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467 
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472 					u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474 				u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476 		u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478 
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482 	bool removing = false;
483 
484 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485 		return -EROFS;
486 
487 	spin_lock_irq(&rbd_dev->lock);
488 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489 		removing = true;
490 	else
491 		rbd_dev->open_count++;
492 	spin_unlock_irq(&rbd_dev->lock);
493 	if (removing)
494 		return -ENOENT;
495 
496 	(void) get_device(&rbd_dev->dev);
497 	set_device_ro(bdev, rbd_dev->mapping.read_only);
498 
499 	return 0;
500 }
501 
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504 	struct rbd_device *rbd_dev = disk->private_data;
505 	unsigned long open_count_before;
506 
507 	spin_lock_irq(&rbd_dev->lock);
508 	open_count_before = rbd_dev->open_count--;
509 	spin_unlock_irq(&rbd_dev->lock);
510 	rbd_assert(open_count_before > 0);
511 
512 	put_device(&rbd_dev->dev);
513 }
514 
515 static const struct block_device_operations rbd_bd_ops = {
516 	.owner			= THIS_MODULE,
517 	.open			= rbd_open,
518 	.release		= rbd_release,
519 };
520 
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 	struct rbd_client *rbdc;
528 	int ret = -ENOMEM;
529 
530 	dout("%s:\n", __func__);
531 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 	if (!rbdc)
533 		goto out_opt;
534 
535 	kref_init(&rbdc->kref);
536 	INIT_LIST_HEAD(&rbdc->node);
537 
538 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539 	if (IS_ERR(rbdc->client))
540 		goto out_rbdc;
541 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542 
543 	ret = ceph_open_session(rbdc->client);
544 	if (ret < 0)
545 		goto out_client;
546 
547 	spin_lock(&rbd_client_list_lock);
548 	list_add_tail(&rbdc->node, &rbd_client_list);
549 	spin_unlock(&rbd_client_list_lock);
550 
551 	dout("%s: rbdc %p\n", __func__, rbdc);
552 
553 	return rbdc;
554 out_client:
555 	ceph_destroy_client(rbdc->client);
556 out_rbdc:
557 	kfree(rbdc);
558 out_opt:
559 	if (ceph_opts)
560 		ceph_destroy_options(ceph_opts);
561 	dout("%s: error %d\n", __func__, ret);
562 
563 	return ERR_PTR(ret);
564 }
565 
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568 	kref_get(&rbdc->kref);
569 
570 	return rbdc;
571 }
572 
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579 	struct rbd_client *client_node;
580 	bool found = false;
581 
582 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583 		return NULL;
584 
585 	spin_lock(&rbd_client_list_lock);
586 	list_for_each_entry(client_node, &rbd_client_list, node) {
587 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
588 			__rbd_get_client(client_node);
589 
590 			found = true;
591 			break;
592 		}
593 	}
594 	spin_unlock(&rbd_client_list_lock);
595 
596 	return found ? client_node : NULL;
597 }
598 
599 /*
600  * mount options
601  */
602 enum {
603 	Opt_last_int,
604 	/* int args above */
605 	Opt_last_string,
606 	/* string args above */
607 	Opt_read_only,
608 	Opt_read_write,
609 	/* Boolean args above */
610 	Opt_last_bool,
611 };
612 
613 static match_table_t rbd_opts_tokens = {
614 	/* int args above */
615 	/* string args above */
616 	{Opt_read_only, "read_only"},
617 	{Opt_read_only, "ro"},		/* Alternate spelling */
618 	{Opt_read_write, "read_write"},
619 	{Opt_read_write, "rw"},		/* Alternate spelling */
620 	/* Boolean args above */
621 	{-1, NULL}
622 };
623 
624 struct rbd_options {
625 	bool	read_only;
626 };
627 
628 #define RBD_READ_ONLY_DEFAULT	false
629 
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632 	struct rbd_options *rbd_opts = private;
633 	substring_t argstr[MAX_OPT_ARGS];
634 	int token, intval, ret;
635 
636 	token = match_token(c, rbd_opts_tokens, argstr);
637 	if (token < 0)
638 		return -EINVAL;
639 
640 	if (token < Opt_last_int) {
641 		ret = match_int(&argstr[0], &intval);
642 		if (ret < 0) {
643 			pr_err("bad mount option arg (not int) "
644 			       "at '%s'\n", c);
645 			return ret;
646 		}
647 		dout("got int token %d val %d\n", token, intval);
648 	} else if (token > Opt_last_int && token < Opt_last_string) {
649 		dout("got string token %d val %s\n", token,
650 		     argstr[0].from);
651 	} else if (token > Opt_last_string && token < Opt_last_bool) {
652 		dout("got Boolean token %d\n", token);
653 	} else {
654 		dout("got token %d\n", token);
655 	}
656 
657 	switch (token) {
658 	case Opt_read_only:
659 		rbd_opts->read_only = true;
660 		break;
661 	case Opt_read_write:
662 		rbd_opts->read_only = false;
663 		break;
664 	default:
665 		rbd_assert(false);
666 		break;
667 	}
668 	return 0;
669 }
670 
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678 	struct rbd_client *rbdc;
679 
680 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681 	rbdc = rbd_client_find(ceph_opts);
682 	if (rbdc)	/* using an existing client */
683 		ceph_destroy_options(ceph_opts);
684 	else
685 		rbdc = rbd_client_create(ceph_opts);
686 	mutex_unlock(&client_mutex);
687 
688 	return rbdc;
689 }
690 
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699 
700 	dout("%s: rbdc %p\n", __func__, rbdc);
701 	spin_lock(&rbd_client_list_lock);
702 	list_del(&rbdc->node);
703 	spin_unlock(&rbd_client_list_lock);
704 
705 	ceph_destroy_client(rbdc->client);
706 	kfree(rbdc);
707 }
708 
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715 	if (rbdc)
716 		kref_put(&rbdc->kref, rbd_client_release);
717 }
718 
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721 	return image_format == 1 || image_format == 2;
722 }
723 
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726 	size_t size;
727 	u32 snap_count;
728 
729 	/* The header has to start with the magic rbd header text */
730 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731 		return false;
732 
733 	/* The bio layer requires at least sector-sized I/O */
734 
735 	if (ondisk->options.order < SECTOR_SHIFT)
736 		return false;
737 
738 	/* If we use u64 in a few spots we may be able to loosen this */
739 
740 	if (ondisk->options.order > 8 * sizeof (int) - 1)
741 		return false;
742 
743 	/*
744 	 * The size of a snapshot header has to fit in a size_t, and
745 	 * that limits the number of snapshots.
746 	 */
747 	snap_count = le32_to_cpu(ondisk->snap_count);
748 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
749 	if (snap_count > size / sizeof (__le64))
750 		return false;
751 
752 	/*
753 	 * Not only that, but the size of the entire the snapshot
754 	 * header must also be representable in a size_t.
755 	 */
756 	size -= snap_count * sizeof (__le64);
757 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758 		return false;
759 
760 	return true;
761 }
762 
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768 				 struct rbd_image_header_ondisk *ondisk)
769 {
770 	struct rbd_image_header *header = &rbd_dev->header;
771 	bool first_time = header->object_prefix == NULL;
772 	struct ceph_snap_context *snapc;
773 	char *object_prefix = NULL;
774 	char *snap_names = NULL;
775 	u64 *snap_sizes = NULL;
776 	u32 snap_count;
777 	size_t size;
778 	int ret = -ENOMEM;
779 	u32 i;
780 
781 	/* Allocate this now to avoid having to handle failure below */
782 
783 	if (first_time) {
784 		size_t len;
785 
786 		len = strnlen(ondisk->object_prefix,
787 				sizeof (ondisk->object_prefix));
788 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
789 		if (!object_prefix)
790 			return -ENOMEM;
791 		memcpy(object_prefix, ondisk->object_prefix, len);
792 		object_prefix[len] = '\0';
793 	}
794 
795 	/* Allocate the snapshot context and fill it in */
796 
797 	snap_count = le32_to_cpu(ondisk->snap_count);
798 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799 	if (!snapc)
800 		goto out_err;
801 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
802 	if (snap_count) {
803 		struct rbd_image_snap_ondisk *snaps;
804 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805 
806 		/* We'll keep a copy of the snapshot names... */
807 
808 		if (snap_names_len > (u64)SIZE_MAX)
809 			goto out_2big;
810 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811 		if (!snap_names)
812 			goto out_err;
813 
814 		/* ...as well as the array of their sizes. */
815 
816 		size = snap_count * sizeof (*header->snap_sizes);
817 		snap_sizes = kmalloc(size, GFP_KERNEL);
818 		if (!snap_sizes)
819 			goto out_err;
820 
821 		/*
822 		 * Copy the names, and fill in each snapshot's id
823 		 * and size.
824 		 *
825 		 * Note that rbd_dev_v1_header_info() guarantees the
826 		 * ondisk buffer we're working with has
827 		 * snap_names_len bytes beyond the end of the
828 		 * snapshot id array, this memcpy() is safe.
829 		 */
830 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831 		snaps = ondisk->snaps;
832 		for (i = 0; i < snap_count; i++) {
833 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835 		}
836 	}
837 
838 	/* We won't fail any more, fill in the header */
839 
840 	if (first_time) {
841 		header->object_prefix = object_prefix;
842 		header->obj_order = ondisk->options.order;
843 		header->crypt_type = ondisk->options.crypt_type;
844 		header->comp_type = ondisk->options.comp_type;
845 		/* The rest aren't used for format 1 images */
846 		header->stripe_unit = 0;
847 		header->stripe_count = 0;
848 		header->features = 0;
849 	} else {
850 		ceph_put_snap_context(header->snapc);
851 		kfree(header->snap_names);
852 		kfree(header->snap_sizes);
853 	}
854 
855 	/* The remaining fields always get updated (when we refresh) */
856 
857 	header->image_size = le64_to_cpu(ondisk->image_size);
858 	header->snapc = snapc;
859 	header->snap_names = snap_names;
860 	header->snap_sizes = snap_sizes;
861 
862 	/* Make sure mapping size is consistent with header info */
863 
864 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865 		if (rbd_dev->mapping.size != header->image_size)
866 			rbd_dev->mapping.size = header->image_size;
867 
868 	return 0;
869 out_2big:
870 	ret = -EIO;
871 out_err:
872 	kfree(snap_sizes);
873 	kfree(snap_names);
874 	ceph_put_snap_context(snapc);
875 	kfree(object_prefix);
876 
877 	return ret;
878 }
879 
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882 	const char *snap_name;
883 
884 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885 
886 	/* Skip over names until we find the one we are looking for */
887 
888 	snap_name = rbd_dev->header.snap_names;
889 	while (which--)
890 		snap_name += strlen(snap_name) + 1;
891 
892 	return kstrdup(snap_name, GFP_KERNEL);
893 }
894 
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901 	u64 snap_id1 = *(u64 *)s1;
902 	u64 snap_id2 = *(u64 *)s2;
903 
904 	if (snap_id1 < snap_id2)
905 		return 1;
906 	return snap_id1 == snap_id2 ? 0 : -1;
907 }
908 
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922 	u64 *found;
923 
924 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925 				sizeof (snap_id), snapid_compare_reverse);
926 
927 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929 
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931 					u64 snap_id)
932 {
933 	u32 which;
934 	const char *snap_name;
935 
936 	which = rbd_dev_snap_index(rbd_dev, snap_id);
937 	if (which == BAD_SNAP_INDEX)
938 		return ERR_PTR(-ENOENT);
939 
940 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943 
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946 	if (snap_id == CEPH_NOSNAP)
947 		return RBD_SNAP_HEAD_NAME;
948 
949 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950 	if (rbd_dev->image_format == 1)
951 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952 
953 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955 
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957 				u64 *snap_size)
958 {
959 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960 	if (snap_id == CEPH_NOSNAP) {
961 		*snap_size = rbd_dev->header.image_size;
962 	} else if (rbd_dev->image_format == 1) {
963 		u32 which;
964 
965 		which = rbd_dev_snap_index(rbd_dev, snap_id);
966 		if (which == BAD_SNAP_INDEX)
967 			return -ENOENT;
968 
969 		*snap_size = rbd_dev->header.snap_sizes[which];
970 	} else {
971 		u64 size = 0;
972 		int ret;
973 
974 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975 		if (ret)
976 			return ret;
977 
978 		*snap_size = size;
979 	}
980 	return 0;
981 }
982 
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984 			u64 *snap_features)
985 {
986 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987 	if (snap_id == CEPH_NOSNAP) {
988 		*snap_features = rbd_dev->header.features;
989 	} else if (rbd_dev->image_format == 1) {
990 		*snap_features = 0;	/* No features for format 1 */
991 	} else {
992 		u64 features = 0;
993 		int ret;
994 
995 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996 		if (ret)
997 			return ret;
998 
999 		*snap_features = features;
1000 	}
1001 	return 0;
1002 }
1003 
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006 	u64 snap_id = rbd_dev->spec->snap_id;
1007 	u64 size = 0;
1008 	u64 features = 0;
1009 	int ret;
1010 
1011 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012 	if (ret)
1013 		return ret;
1014 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015 	if (ret)
1016 		return ret;
1017 
1018 	rbd_dev->mapping.size = size;
1019 	rbd_dev->mapping.features = features;
1020 
1021 	return 0;
1022 }
1023 
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026 	rbd_dev->mapping.size = 0;
1027 	rbd_dev->mapping.features = 0;
1028 }
1029 
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032 	char *name;
1033 	u64 segment;
1034 	int ret;
1035 	char *name_format;
1036 
1037 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038 	if (!name)
1039 		return NULL;
1040 	segment = offset >> rbd_dev->header.obj_order;
1041 	name_format = "%s.%012llx";
1042 	if (rbd_dev->image_format == 2)
1043 		name_format = "%s.%016llx";
1044 	ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045 			rbd_dev->header.object_prefix, segment);
1046 	if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047 		pr_err("error formatting segment name for #%llu (%d)\n",
1048 			segment, ret);
1049 		kfree(name);
1050 		name = NULL;
1051 	}
1052 
1053 	return name;
1054 }
1055 
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058 	/* The explicit cast here is needed to drop the const qualifier */
1059 
1060 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062 
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066 
1067 	return offset & (segment_size - 1);
1068 }
1069 
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071 				u64 offset, u64 length)
1072 {
1073 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074 
1075 	offset &= segment_size - 1;
1076 
1077 	rbd_assert(length <= U64_MAX - offset);
1078 	if (offset + length > segment_size)
1079 		length = segment_size - offset;
1080 
1081 	return length;
1082 }
1083 
1084 /*
1085  * returns the size of an object in the image
1086  */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089 	return 1 << header->obj_order;
1090 }
1091 
1092 /*
1093  * bio helpers
1094  */
1095 
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098 	struct bio *tmp;
1099 
1100 	while (chain) {
1101 		tmp = chain;
1102 		chain = chain->bi_next;
1103 		bio_put(tmp);
1104 	}
1105 }
1106 
1107 /*
1108  * zeros a bio chain, starting at specific offset
1109  */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112 	struct bio_vec *bv;
1113 	unsigned long flags;
1114 	void *buf;
1115 	int i;
1116 	int pos = 0;
1117 
1118 	while (chain) {
1119 		bio_for_each_segment(bv, chain, i) {
1120 			if (pos + bv->bv_len > start_ofs) {
1121 				int remainder = max(start_ofs - pos, 0);
1122 				buf = bvec_kmap_irq(bv, &flags);
1123 				memset(buf + remainder, 0,
1124 				       bv->bv_len - remainder);
1125 				flush_dcache_page(bv->bv_page);
1126 				bvec_kunmap_irq(buf, &flags);
1127 			}
1128 			pos += bv->bv_len;
1129 		}
1130 
1131 		chain = chain->bi_next;
1132 	}
1133 }
1134 
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143 	struct page **page = &pages[offset >> PAGE_SHIFT];
1144 
1145 	rbd_assert(end > offset);
1146 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1147 	while (offset < end) {
1148 		size_t page_offset;
1149 		size_t length;
1150 		unsigned long flags;
1151 		void *kaddr;
1152 
1153 		page_offset = offset & ~PAGE_MASK;
1154 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155 		local_irq_save(flags);
1156 		kaddr = kmap_atomic(*page);
1157 		memset(kaddr + page_offset, 0, length);
1158 		flush_dcache_page(*page);
1159 		kunmap_atomic(kaddr);
1160 		local_irq_restore(flags);
1161 
1162 		offset += length;
1163 		page++;
1164 	}
1165 }
1166 
1167 /*
1168  * Clone a portion of a bio, starting at the given byte offset
1169  * and continuing for the number of bytes indicated.
1170  */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172 					unsigned int offset,
1173 					unsigned int len,
1174 					gfp_t gfpmask)
1175 {
1176 	struct bio_vec *bv;
1177 	unsigned int resid;
1178 	unsigned short idx;
1179 	unsigned int voff;
1180 	unsigned short end_idx;
1181 	unsigned short vcnt;
1182 	struct bio *bio;
1183 
1184 	/* Handle the easy case for the caller */
1185 
1186 	if (!offset && len == bio_src->bi_size)
1187 		return bio_clone(bio_src, gfpmask);
1188 
1189 	if (WARN_ON_ONCE(!len))
1190 		return NULL;
1191 	if (WARN_ON_ONCE(len > bio_src->bi_size))
1192 		return NULL;
1193 	if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1194 		return NULL;
1195 
1196 	/* Find first affected segment... */
1197 
1198 	resid = offset;
1199 	bio_for_each_segment(bv, bio_src, idx) {
1200 		if (resid < bv->bv_len)
1201 			break;
1202 		resid -= bv->bv_len;
1203 	}
1204 	voff = resid;
1205 
1206 	/* ...and the last affected segment */
1207 
1208 	resid += len;
1209 	__bio_for_each_segment(bv, bio_src, end_idx, idx) {
1210 		if (resid <= bv->bv_len)
1211 			break;
1212 		resid -= bv->bv_len;
1213 	}
1214 	vcnt = end_idx - idx + 1;
1215 
1216 	/* Build the clone */
1217 
1218 	bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219 	if (!bio)
1220 		return NULL;	/* ENOMEM */
1221 
1222 	bio->bi_bdev = bio_src->bi_bdev;
1223 	bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1224 	bio->bi_rw = bio_src->bi_rw;
1225 	bio->bi_flags |= 1 << BIO_CLONED;
1226 
1227 	/*
1228 	 * Copy over our part of the bio_vec, then update the first
1229 	 * and last (or only) entries.
1230 	 */
1231 	memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1232 			vcnt * sizeof (struct bio_vec));
1233 	bio->bi_io_vec[0].bv_offset += voff;
1234 	if (vcnt > 1) {
1235 		bio->bi_io_vec[0].bv_len -= voff;
1236 		bio->bi_io_vec[vcnt - 1].bv_len = resid;
1237 	} else {
1238 		bio->bi_io_vec[0].bv_len = len;
1239 	}
1240 
1241 	bio->bi_vcnt = vcnt;
1242 	bio->bi_size = len;
1243 	bio->bi_idx = 0;
1244 
1245 	return bio;
1246 }
1247 
1248 /*
1249  * Clone a portion of a bio chain, starting at the given byte offset
1250  * into the first bio in the source chain and continuing for the
1251  * number of bytes indicated.  The result is another bio chain of
1252  * exactly the given length, or a null pointer on error.
1253  *
1254  * The bio_src and offset parameters are both in-out.  On entry they
1255  * refer to the first source bio and the offset into that bio where
1256  * the start of data to be cloned is located.
1257  *
1258  * On return, bio_src is updated to refer to the bio in the source
1259  * chain that contains first un-cloned byte, and *offset will
1260  * contain the offset of that byte within that bio.
1261  */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263 					unsigned int *offset,
1264 					unsigned int len,
1265 					gfp_t gfpmask)
1266 {
1267 	struct bio *bi = *bio_src;
1268 	unsigned int off = *offset;
1269 	struct bio *chain = NULL;
1270 	struct bio **end;
1271 
1272 	/* Build up a chain of clone bios up to the limit */
1273 
1274 	if (!bi || off >= bi->bi_size || !len)
1275 		return NULL;		/* Nothing to clone */
1276 
1277 	end = &chain;
1278 	while (len) {
1279 		unsigned int bi_size;
1280 		struct bio *bio;
1281 
1282 		if (!bi) {
1283 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284 			goto out_err;	/* EINVAL; ran out of bio's */
1285 		}
1286 		bi_size = min_t(unsigned int, bi->bi_size - off, len);
1287 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288 		if (!bio)
1289 			goto out_err;	/* ENOMEM */
1290 
1291 		*end = bio;
1292 		end = &bio->bi_next;
1293 
1294 		off += bi_size;
1295 		if (off == bi->bi_size) {
1296 			bi = bi->bi_next;
1297 			off = 0;
1298 		}
1299 		len -= bi_size;
1300 	}
1301 	*bio_src = bi;
1302 	*offset = off;
1303 
1304 	return chain;
1305 out_err:
1306 	bio_chain_put(chain);
1307 
1308 	return NULL;
1309 }
1310 
1311 /*
1312  * The default/initial value for all object request flags is 0.  For
1313  * each flag, once its value is set to 1 it is never reset to 0
1314  * again.
1315  */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319 		struct rbd_device *rbd_dev;
1320 
1321 		rbd_dev = obj_request->img_request->rbd_dev;
1322 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323 			obj_request);
1324 	}
1325 }
1326 
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329 	smp_mb();
1330 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332 
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336 		struct rbd_device *rbd_dev = NULL;
1337 
1338 		if (obj_request_img_data_test(obj_request))
1339 			rbd_dev = obj_request->img_request->rbd_dev;
1340 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341 			obj_request);
1342 	}
1343 }
1344 
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347 	smp_mb();
1348 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350 
1351 /*
1352  * This sets the KNOWN flag after (possibly) setting the EXISTS
1353  * flag.  The latter is set based on the "exists" value provided.
1354  *
1355  * Note that for our purposes once an object exists it never goes
1356  * away again.  It's possible that the response from two existence
1357  * checks are separated by the creation of the target object, and
1358  * the first ("doesn't exist") response arrives *after* the second
1359  * ("does exist").  In that case we ignore the second one.
1360  */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362 				bool exists)
1363 {
1364 	if (exists)
1365 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367 	smp_mb();
1368 }
1369 
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372 	smp_mb();
1373 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375 
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378 	smp_mb();
1379 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381 
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385 		atomic_read(&obj_request->kref.refcount));
1386 	kref_get(&obj_request->kref);
1387 }
1388 
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392 	rbd_assert(obj_request != NULL);
1393 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394 		atomic_read(&obj_request->kref.refcount));
1395 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397 
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403 	rbd_assert(img_request != NULL);
1404 	dout("%s: img %p (was %d)\n", __func__, img_request,
1405 		atomic_read(&img_request->kref.refcount));
1406 	if (img_request_child_test(img_request))
1407 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1408 	else
1409 		kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411 
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413 					struct rbd_obj_request *obj_request)
1414 {
1415 	rbd_assert(obj_request->img_request == NULL);
1416 
1417 	/* Image request now owns object's original reference */
1418 	obj_request->img_request = img_request;
1419 	obj_request->which = img_request->obj_request_count;
1420 	rbd_assert(!obj_request_img_data_test(obj_request));
1421 	obj_request_img_data_set(obj_request);
1422 	rbd_assert(obj_request->which != BAD_WHICH);
1423 	img_request->obj_request_count++;
1424 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1425 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426 		obj_request->which);
1427 }
1428 
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430 					struct rbd_obj_request *obj_request)
1431 {
1432 	rbd_assert(obj_request->which != BAD_WHICH);
1433 
1434 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435 		obj_request->which);
1436 	list_del(&obj_request->links);
1437 	rbd_assert(img_request->obj_request_count > 0);
1438 	img_request->obj_request_count--;
1439 	rbd_assert(obj_request->which == img_request->obj_request_count);
1440 	obj_request->which = BAD_WHICH;
1441 	rbd_assert(obj_request_img_data_test(obj_request));
1442 	rbd_assert(obj_request->img_request == img_request);
1443 	obj_request->img_request = NULL;
1444 	obj_request->callback = NULL;
1445 	rbd_obj_request_put(obj_request);
1446 }
1447 
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450 	switch (type) {
1451 	case OBJ_REQUEST_NODATA:
1452 	case OBJ_REQUEST_BIO:
1453 	case OBJ_REQUEST_PAGES:
1454 		return true;
1455 	default:
1456 		return false;
1457 	}
1458 }
1459 
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461 				struct rbd_obj_request *obj_request)
1462 {
1463 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464 
1465 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467 
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470 
1471 	dout("%s: img %p\n", __func__, img_request);
1472 
1473 	/*
1474 	 * If no error occurred, compute the aggregate transfer
1475 	 * count for the image request.  We could instead use
1476 	 * atomic64_cmpxchg() to update it as each object request
1477 	 * completes; not clear which way is better off hand.
1478 	 */
1479 	if (!img_request->result) {
1480 		struct rbd_obj_request *obj_request;
1481 		u64 xferred = 0;
1482 
1483 		for_each_obj_request(img_request, obj_request)
1484 			xferred += obj_request->xferred;
1485 		img_request->xferred = xferred;
1486 	}
1487 
1488 	if (img_request->callback)
1489 		img_request->callback(img_request);
1490 	else
1491 		rbd_img_request_put(img_request);
1492 }
1493 
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495 
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498 	dout("%s: obj %p\n", __func__, obj_request);
1499 
1500 	return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502 
1503 /*
1504  * The default/initial value for all image request flags is 0.  Each
1505  * is conditionally set to 1 at image request initialization time
1506  * and currently never change thereafter.
1507  */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1511 	smp_mb();
1512 }
1513 
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516 	smp_mb();
1517 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519 
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1523 	smp_mb();
1524 }
1525 
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529 	smp_mb();
1530 }
1531 
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534 	smp_mb();
1535 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537 
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541 	smp_mb();
1542 }
1543 
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547 	smp_mb();
1548 }
1549 
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552 	smp_mb();
1553 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555 
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559 	u64 xferred = obj_request->xferred;
1560 	u64 length = obj_request->length;
1561 
1562 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563 		obj_request, obj_request->img_request, obj_request->result,
1564 		xferred, length);
1565 	/*
1566 	 * ENOENT means a hole in the image.  We zero-fill the entire
1567 	 * length of the request.  A short read also implies zero-fill
1568 	 * to the end of the request.  An error requires the whole
1569 	 * length of the request to be reported finished with an error
1570 	 * to the block layer.  In each case we update the xferred
1571 	 * count to indicate the whole request was satisfied.
1572 	 */
1573 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1574 	if (obj_request->result == -ENOENT) {
1575 		if (obj_request->type == OBJ_REQUEST_BIO)
1576 			zero_bio_chain(obj_request->bio_list, 0);
1577 		else
1578 			zero_pages(obj_request->pages, 0, length);
1579 		obj_request->result = 0;
1580 	} else if (xferred < length && !obj_request->result) {
1581 		if (obj_request->type == OBJ_REQUEST_BIO)
1582 			zero_bio_chain(obj_request->bio_list, xferred);
1583 		else
1584 			zero_pages(obj_request->pages, xferred, length);
1585 	}
1586 	obj_request->xferred = length;
1587 	obj_request_done_set(obj_request);
1588 }
1589 
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1593 		obj_request->callback);
1594 	if (obj_request->callback)
1595 		obj_request->callback(obj_request);
1596 	else
1597 		complete_all(&obj_request->completion);
1598 }
1599 
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602 	dout("%s: obj %p\n", __func__, obj_request);
1603 	obj_request_done_set(obj_request);
1604 }
1605 
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608 	struct rbd_img_request *img_request = NULL;
1609 	struct rbd_device *rbd_dev = NULL;
1610 	bool layered = false;
1611 
1612 	if (obj_request_img_data_test(obj_request)) {
1613 		img_request = obj_request->img_request;
1614 		layered = img_request && img_request_layered_test(img_request);
1615 		rbd_dev = img_request->rbd_dev;
1616 	}
1617 
1618 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619 		obj_request, img_request, obj_request->result,
1620 		obj_request->xferred, obj_request->length);
1621 	if (layered && obj_request->result == -ENOENT &&
1622 			obj_request->img_offset < rbd_dev->parent_overlap)
1623 		rbd_img_parent_read(obj_request);
1624 	else if (img_request)
1625 		rbd_img_obj_request_read_callback(obj_request);
1626 	else
1627 		obj_request_done_set(obj_request);
1628 }
1629 
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633 		obj_request->result, obj_request->length);
1634 	/*
1635 	 * There is no such thing as a successful short write.  Set
1636 	 * it to our originally-requested length.
1637 	 */
1638 	obj_request->xferred = obj_request->length;
1639 	obj_request_done_set(obj_request);
1640 }
1641 
1642 /*
1643  * For a simple stat call there's nothing to do.  We'll do more if
1644  * this is part of a write sequence for a layered image.
1645  */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648 	dout("%s: obj %p\n", __func__, obj_request);
1649 	obj_request_done_set(obj_request);
1650 }
1651 
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653 				struct ceph_msg *msg)
1654 {
1655 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1656 	u16 opcode;
1657 
1658 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659 	rbd_assert(osd_req == obj_request->osd_req);
1660 	if (obj_request_img_data_test(obj_request)) {
1661 		rbd_assert(obj_request->img_request);
1662 		rbd_assert(obj_request->which != BAD_WHICH);
1663 	} else {
1664 		rbd_assert(obj_request->which == BAD_WHICH);
1665 	}
1666 
1667 	if (osd_req->r_result < 0)
1668 		obj_request->result = osd_req->r_result;
1669 
1670 	BUG_ON(osd_req->r_num_ops > 2);
1671 
1672 	/*
1673 	 * We support a 64-bit length, but ultimately it has to be
1674 	 * passed to blk_end_request(), which takes an unsigned int.
1675 	 */
1676 	obj_request->xferred = osd_req->r_reply_op_len[0];
1677 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678 	opcode = osd_req->r_ops[0].op;
1679 	switch (opcode) {
1680 	case CEPH_OSD_OP_READ:
1681 		rbd_osd_read_callback(obj_request);
1682 		break;
1683 	case CEPH_OSD_OP_WRITE:
1684 		rbd_osd_write_callback(obj_request);
1685 		break;
1686 	case CEPH_OSD_OP_STAT:
1687 		rbd_osd_stat_callback(obj_request);
1688 		break;
1689 	case CEPH_OSD_OP_CALL:
1690 	case CEPH_OSD_OP_NOTIFY_ACK:
1691 	case CEPH_OSD_OP_WATCH:
1692 		rbd_osd_trivial_callback(obj_request);
1693 		break;
1694 	default:
1695 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1696 			obj_request->object_name, (unsigned short) opcode);
1697 		break;
1698 	}
1699 
1700 	if (obj_request_done_test(obj_request))
1701 		rbd_obj_request_complete(obj_request);
1702 }
1703 
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706 	struct rbd_img_request *img_request = obj_request->img_request;
1707 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1708 	u64 snap_id;
1709 
1710 	rbd_assert(osd_req != NULL);
1711 
1712 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713 	ceph_osdc_build_request(osd_req, obj_request->offset,
1714 			NULL, snap_id, NULL);
1715 }
1716 
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719 	struct rbd_img_request *img_request = obj_request->img_request;
1720 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1721 	struct ceph_snap_context *snapc;
1722 	struct timespec mtime = CURRENT_TIME;
1723 
1724 	rbd_assert(osd_req != NULL);
1725 
1726 	snapc = img_request ? img_request->snapc : NULL;
1727 	ceph_osdc_build_request(osd_req, obj_request->offset,
1728 			snapc, CEPH_NOSNAP, &mtime);
1729 }
1730 
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732 					struct rbd_device *rbd_dev,
1733 					bool write_request,
1734 					struct rbd_obj_request *obj_request)
1735 {
1736 	struct ceph_snap_context *snapc = NULL;
1737 	struct ceph_osd_client *osdc;
1738 	struct ceph_osd_request *osd_req;
1739 
1740 	if (obj_request_img_data_test(obj_request)) {
1741 		struct rbd_img_request *img_request = obj_request->img_request;
1742 
1743 		rbd_assert(write_request ==
1744 				img_request_write_test(img_request));
1745 		if (write_request)
1746 			snapc = img_request->snapc;
1747 	}
1748 
1749 	/* Allocate and initialize the request, for the single op */
1750 
1751 	osdc = &rbd_dev->rbd_client->client->osdc;
1752 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753 	if (!osd_req)
1754 		return NULL;	/* ENOMEM */
1755 
1756 	if (write_request)
1757 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758 	else
1759 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760 
1761 	osd_req->r_callback = rbd_osd_req_callback;
1762 	osd_req->r_priv = obj_request;
1763 
1764 	osd_req->r_oid_len = strlen(obj_request->object_name);
1765 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767 
1768 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1769 
1770 	return osd_req;
1771 }
1772 
1773 /*
1774  * Create a copyup osd request based on the information in the
1775  * object request supplied.  A copyup request has two osd ops,
1776  * a copyup method call, and a "normal" write request.
1777  */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781 	struct rbd_img_request *img_request;
1782 	struct ceph_snap_context *snapc;
1783 	struct rbd_device *rbd_dev;
1784 	struct ceph_osd_client *osdc;
1785 	struct ceph_osd_request *osd_req;
1786 
1787 	rbd_assert(obj_request_img_data_test(obj_request));
1788 	img_request = obj_request->img_request;
1789 	rbd_assert(img_request);
1790 	rbd_assert(img_request_write_test(img_request));
1791 
1792 	/* Allocate and initialize the request, for the two ops */
1793 
1794 	snapc = img_request->snapc;
1795 	rbd_dev = img_request->rbd_dev;
1796 	osdc = &rbd_dev->rbd_client->client->osdc;
1797 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798 	if (!osd_req)
1799 		return NULL;	/* ENOMEM */
1800 
1801 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802 	osd_req->r_callback = rbd_osd_req_callback;
1803 	osd_req->r_priv = obj_request;
1804 
1805 	osd_req->r_oid_len = strlen(obj_request->object_name);
1806 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808 
1809 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1810 
1811 	return osd_req;
1812 }
1813 
1814 
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817 	ceph_osdc_put_request(osd_req);
1818 }
1819 
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821 
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823 						u64 offset, u64 length,
1824 						enum obj_request_type type)
1825 {
1826 	struct rbd_obj_request *obj_request;
1827 	size_t size;
1828 	char *name;
1829 
1830 	rbd_assert(obj_request_type_valid(type));
1831 
1832 	size = strlen(object_name) + 1;
1833 	name = kmalloc(size, GFP_KERNEL);
1834 	if (!name)
1835 		return NULL;
1836 
1837 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838 	if (!obj_request) {
1839 		kfree(name);
1840 		return NULL;
1841 	}
1842 
1843 	obj_request->object_name = memcpy(name, object_name, size);
1844 	obj_request->offset = offset;
1845 	obj_request->length = length;
1846 	obj_request->flags = 0;
1847 	obj_request->which = BAD_WHICH;
1848 	obj_request->type = type;
1849 	INIT_LIST_HEAD(&obj_request->links);
1850 	init_completion(&obj_request->completion);
1851 	kref_init(&obj_request->kref);
1852 
1853 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854 		offset, length, (int)type, obj_request);
1855 
1856 	return obj_request;
1857 }
1858 
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861 	struct rbd_obj_request *obj_request;
1862 
1863 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1864 
1865 	dout("%s: obj %p\n", __func__, obj_request);
1866 
1867 	rbd_assert(obj_request->img_request == NULL);
1868 	rbd_assert(obj_request->which == BAD_WHICH);
1869 
1870 	if (obj_request->osd_req)
1871 		rbd_osd_req_destroy(obj_request->osd_req);
1872 
1873 	rbd_assert(obj_request_type_valid(obj_request->type));
1874 	switch (obj_request->type) {
1875 	case OBJ_REQUEST_NODATA:
1876 		break;		/* Nothing to do */
1877 	case OBJ_REQUEST_BIO:
1878 		if (obj_request->bio_list)
1879 			bio_chain_put(obj_request->bio_list);
1880 		break;
1881 	case OBJ_REQUEST_PAGES:
1882 		if (obj_request->pages)
1883 			ceph_release_page_vector(obj_request->pages,
1884 						obj_request->page_count);
1885 		break;
1886 	}
1887 
1888 	kfree(obj_request->object_name);
1889 	obj_request->object_name = NULL;
1890 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892 
1893 /* It's OK to call this for a device with no parent */
1894 
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898 	rbd_dev_remove_parent(rbd_dev);
1899 	rbd_spec_put(rbd_dev->parent_spec);
1900 	rbd_dev->parent_spec = NULL;
1901 	rbd_dev->parent_overlap = 0;
1902 }
1903 
1904 /*
1905  * Parent image reference counting is used to determine when an
1906  * image's parent fields can be safely torn down--after there are no
1907  * more in-flight requests to the parent image.  When the last
1908  * reference is dropped, cleaning them up is safe.
1909  */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912 	int counter;
1913 
1914 	if (!rbd_dev->parent_spec)
1915 		return;
1916 
1917 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918 	if (counter > 0)
1919 		return;
1920 
1921 	/* Last reference; clean up parent data structures */
1922 
1923 	if (!counter)
1924 		rbd_dev_unparent(rbd_dev);
1925 	else
1926 		rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928 
1929 /*
1930  * If an image has a non-zero parent overlap, get a reference to its
1931  * parent.
1932  *
1933  * We must get the reference before checking for the overlap to
1934  * coordinate properly with zeroing the parent overlap in
1935  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1936  * drop it again if there is no overlap.
1937  *
1938  * Returns true if the rbd device has a parent with a non-zero
1939  * overlap and a reference for it was successfully taken, or
1940  * false otherwise.
1941  */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944 	int counter;
1945 
1946 	if (!rbd_dev->parent_spec)
1947 		return false;
1948 
1949 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950 	if (counter > 0 && rbd_dev->parent_overlap)
1951 		return true;
1952 
1953 	/* Image was flattened, but parent is not yet torn down */
1954 
1955 	if (counter < 0)
1956 		rbd_warn(rbd_dev, "parent reference overflow\n");
1957 
1958 	return false;
1959 }
1960 
1961 /*
1962  * Caller is responsible for filling in the list of object requests
1963  * that comprises the image request, and the Linux request pointer
1964  * (if there is one).
1965  */
1966 static struct rbd_img_request *rbd_img_request_create(
1967 					struct rbd_device *rbd_dev,
1968 					u64 offset, u64 length,
1969 					bool write_request)
1970 {
1971 	struct rbd_img_request *img_request;
1972 
1973 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974 	if (!img_request)
1975 		return NULL;
1976 
1977 	if (write_request) {
1978 		down_read(&rbd_dev->header_rwsem);
1979 		ceph_get_snap_context(rbd_dev->header.snapc);
1980 		up_read(&rbd_dev->header_rwsem);
1981 	}
1982 
1983 	img_request->rq = NULL;
1984 	img_request->rbd_dev = rbd_dev;
1985 	img_request->offset = offset;
1986 	img_request->length = length;
1987 	img_request->flags = 0;
1988 	if (write_request) {
1989 		img_request_write_set(img_request);
1990 		img_request->snapc = rbd_dev->header.snapc;
1991 	} else {
1992 		img_request->snap_id = rbd_dev->spec->snap_id;
1993 	}
1994 	if (rbd_dev_parent_get(rbd_dev))
1995 		img_request_layered_set(img_request);
1996 	spin_lock_init(&img_request->completion_lock);
1997 	img_request->next_completion = 0;
1998 	img_request->callback = NULL;
1999 	img_request->result = 0;
2000 	img_request->obj_request_count = 0;
2001 	INIT_LIST_HEAD(&img_request->obj_requests);
2002 	kref_init(&img_request->kref);
2003 
2004 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005 		write_request ? "write" : "read", offset, length,
2006 		img_request);
2007 
2008 	return img_request;
2009 }
2010 
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013 	struct rbd_img_request *img_request;
2014 	struct rbd_obj_request *obj_request;
2015 	struct rbd_obj_request *next_obj_request;
2016 
2017 	img_request = container_of(kref, struct rbd_img_request, kref);
2018 
2019 	dout("%s: img %p\n", __func__, img_request);
2020 
2021 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022 		rbd_img_obj_request_del(img_request, obj_request);
2023 	rbd_assert(img_request->obj_request_count == 0);
2024 
2025 	if (img_request_layered_test(img_request)) {
2026 		img_request_layered_clear(img_request);
2027 		rbd_dev_parent_put(img_request->rbd_dev);
2028 	}
2029 
2030 	if (img_request_write_test(img_request))
2031 		ceph_put_snap_context(img_request->snapc);
2032 
2033 	kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035 
2036 static struct rbd_img_request *rbd_parent_request_create(
2037 					struct rbd_obj_request *obj_request,
2038 					u64 img_offset, u64 length)
2039 {
2040 	struct rbd_img_request *parent_request;
2041 	struct rbd_device *rbd_dev;
2042 
2043 	rbd_assert(obj_request->img_request);
2044 	rbd_dev = obj_request->img_request->rbd_dev;
2045 
2046 	parent_request = rbd_img_request_create(rbd_dev->parent,
2047 						img_offset, length, false);
2048 	if (!parent_request)
2049 		return NULL;
2050 
2051 	img_request_child_set(parent_request);
2052 	rbd_obj_request_get(obj_request);
2053 	parent_request->obj_request = obj_request;
2054 
2055 	return parent_request;
2056 }
2057 
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060 	struct rbd_img_request *parent_request;
2061 	struct rbd_obj_request *orig_request;
2062 
2063 	parent_request = container_of(kref, struct rbd_img_request, kref);
2064 	orig_request = parent_request->obj_request;
2065 
2066 	parent_request->obj_request = NULL;
2067 	rbd_obj_request_put(orig_request);
2068 	img_request_child_clear(parent_request);
2069 
2070 	rbd_img_request_destroy(kref);
2071 }
2072 
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075 	struct rbd_img_request *img_request;
2076 	unsigned int xferred;
2077 	int result;
2078 	bool more;
2079 
2080 	rbd_assert(obj_request_img_data_test(obj_request));
2081 	img_request = obj_request->img_request;
2082 
2083 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084 	xferred = (unsigned int)obj_request->xferred;
2085 	result = obj_request->result;
2086 	if (result) {
2087 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2088 
2089 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090 			img_request_write_test(img_request) ? "write" : "read",
2091 			obj_request->length, obj_request->img_offset,
2092 			obj_request->offset);
2093 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2094 			result, xferred);
2095 		if (!img_request->result)
2096 			img_request->result = result;
2097 	}
2098 
2099 	/* Image object requests don't own their page array */
2100 
2101 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2102 		obj_request->pages = NULL;
2103 		obj_request->page_count = 0;
2104 	}
2105 
2106 	if (img_request_child_test(img_request)) {
2107 		rbd_assert(img_request->obj_request != NULL);
2108 		more = obj_request->which < img_request->obj_request_count - 1;
2109 	} else {
2110 		rbd_assert(img_request->rq != NULL);
2111 		more = blk_end_request(img_request->rq, result, xferred);
2112 	}
2113 
2114 	return more;
2115 }
2116 
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119 	struct rbd_img_request *img_request;
2120 	u32 which = obj_request->which;
2121 	bool more = true;
2122 
2123 	rbd_assert(obj_request_img_data_test(obj_request));
2124 	img_request = obj_request->img_request;
2125 
2126 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127 	rbd_assert(img_request != NULL);
2128 	rbd_assert(img_request->obj_request_count > 0);
2129 	rbd_assert(which != BAD_WHICH);
2130 	rbd_assert(which < img_request->obj_request_count);
2131 	rbd_assert(which >= img_request->next_completion);
2132 
2133 	spin_lock_irq(&img_request->completion_lock);
2134 	if (which != img_request->next_completion)
2135 		goto out;
2136 
2137 	for_each_obj_request_from(img_request, obj_request) {
2138 		rbd_assert(more);
2139 		rbd_assert(which < img_request->obj_request_count);
2140 
2141 		if (!obj_request_done_test(obj_request))
2142 			break;
2143 		more = rbd_img_obj_end_request(obj_request);
2144 		which++;
2145 	}
2146 
2147 	rbd_assert(more ^ (which == img_request->obj_request_count));
2148 	img_request->next_completion = which;
2149 out:
2150 	spin_unlock_irq(&img_request->completion_lock);
2151 
2152 	if (!more)
2153 		rbd_img_request_complete(img_request);
2154 }
2155 
2156 /*
2157  * Split up an image request into one or more object requests, each
2158  * to a different object.  The "type" parameter indicates whether
2159  * "data_desc" is the pointer to the head of a list of bio
2160  * structures, or the base of a page array.  In either case this
2161  * function assumes data_desc describes memory sufficient to hold
2162  * all data described by the image request.
2163  */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165 					enum obj_request_type type,
2166 					void *data_desc)
2167 {
2168 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2169 	struct rbd_obj_request *obj_request = NULL;
2170 	struct rbd_obj_request *next_obj_request;
2171 	bool write_request = img_request_write_test(img_request);
2172 	struct bio *bio_list = NULL;
2173 	unsigned int bio_offset = 0;
2174 	struct page **pages = NULL;
2175 	u64 img_offset;
2176 	u64 resid;
2177 	u16 opcode;
2178 
2179 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180 		(int)type, data_desc);
2181 
2182 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183 	img_offset = img_request->offset;
2184 	resid = img_request->length;
2185 	rbd_assert(resid > 0);
2186 
2187 	if (type == OBJ_REQUEST_BIO) {
2188 		bio_list = data_desc;
2189 		rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2190 	} else {
2191 		rbd_assert(type == OBJ_REQUEST_PAGES);
2192 		pages = data_desc;
2193 	}
2194 
2195 	while (resid) {
2196 		struct ceph_osd_request *osd_req;
2197 		const char *object_name;
2198 		u64 offset;
2199 		u64 length;
2200 
2201 		object_name = rbd_segment_name(rbd_dev, img_offset);
2202 		if (!object_name)
2203 			goto out_unwind;
2204 		offset = rbd_segment_offset(rbd_dev, img_offset);
2205 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2206 		obj_request = rbd_obj_request_create(object_name,
2207 						offset, length, type);
2208 		/* object request has its own copy of the object name */
2209 		rbd_segment_name_free(object_name);
2210 		if (!obj_request)
2211 			goto out_unwind;
2212 		/*
2213 		 * set obj_request->img_request before creating the
2214 		 * osd_request so that it gets the right snapc
2215 		 */
2216 		rbd_img_obj_request_add(img_request, obj_request);
2217 
2218 		if (type == OBJ_REQUEST_BIO) {
2219 			unsigned int clone_size;
2220 
2221 			rbd_assert(length <= (u64)UINT_MAX);
2222 			clone_size = (unsigned int)length;
2223 			obj_request->bio_list =
2224 					bio_chain_clone_range(&bio_list,
2225 								&bio_offset,
2226 								clone_size,
2227 								GFP_ATOMIC);
2228 			if (!obj_request->bio_list)
2229 				goto out_partial;
2230 		} else {
2231 			unsigned int page_count;
2232 
2233 			obj_request->pages = pages;
2234 			page_count = (u32)calc_pages_for(offset, length);
2235 			obj_request->page_count = page_count;
2236 			if ((offset + length) & ~PAGE_MASK)
2237 				page_count--;	/* more on last page */
2238 			pages += page_count;
2239 		}
2240 
2241 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2242 						obj_request);
2243 		if (!osd_req)
2244 			goto out_partial;
2245 		obj_request->osd_req = osd_req;
2246 		obj_request->callback = rbd_img_obj_callback;
2247 
2248 		osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2249 						0, 0);
2250 		if (type == OBJ_REQUEST_BIO)
2251 			osd_req_op_extent_osd_data_bio(osd_req, 0,
2252 					obj_request->bio_list, length);
2253 		else
2254 			osd_req_op_extent_osd_data_pages(osd_req, 0,
2255 					obj_request->pages, length,
2256 					offset & ~PAGE_MASK, false, false);
2257 
2258 		if (write_request)
2259 			rbd_osd_req_format_write(obj_request);
2260 		else
2261 			rbd_osd_req_format_read(obj_request);
2262 
2263 		obj_request->img_offset = img_offset;
2264 
2265 		img_offset += length;
2266 		resid -= length;
2267 	}
2268 
2269 	return 0;
2270 
2271 out_partial:
2272 	rbd_obj_request_put(obj_request);
2273 out_unwind:
2274 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2275 		rbd_obj_request_put(obj_request);
2276 
2277 	return -ENOMEM;
2278 }
2279 
2280 static void
2281 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2282 {
2283 	struct rbd_img_request *img_request;
2284 	struct rbd_device *rbd_dev;
2285 	struct page **pages;
2286 	u32 page_count;
2287 
2288 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2289 	rbd_assert(obj_request_img_data_test(obj_request));
2290 	img_request = obj_request->img_request;
2291 	rbd_assert(img_request);
2292 
2293 	rbd_dev = img_request->rbd_dev;
2294 	rbd_assert(rbd_dev);
2295 
2296 	pages = obj_request->copyup_pages;
2297 	rbd_assert(pages != NULL);
2298 	obj_request->copyup_pages = NULL;
2299 	page_count = obj_request->copyup_page_count;
2300 	rbd_assert(page_count);
2301 	obj_request->copyup_page_count = 0;
2302 	ceph_release_page_vector(pages, page_count);
2303 
2304 	/*
2305 	 * We want the transfer count to reflect the size of the
2306 	 * original write request.  There is no such thing as a
2307 	 * successful short write, so if the request was successful
2308 	 * we can just set it to the originally-requested length.
2309 	 */
2310 	if (!obj_request->result)
2311 		obj_request->xferred = obj_request->length;
2312 
2313 	/* Finish up with the normal image object callback */
2314 
2315 	rbd_img_obj_callback(obj_request);
2316 }
2317 
2318 static void
2319 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2320 {
2321 	struct rbd_obj_request *orig_request;
2322 	struct ceph_osd_request *osd_req;
2323 	struct ceph_osd_client *osdc;
2324 	struct rbd_device *rbd_dev;
2325 	struct page **pages;
2326 	u32 page_count;
2327 	int img_result;
2328 	u64 parent_length;
2329 	u64 offset;
2330 	u64 length;
2331 
2332 	rbd_assert(img_request_child_test(img_request));
2333 
2334 	/* First get what we need from the image request */
2335 
2336 	pages = img_request->copyup_pages;
2337 	rbd_assert(pages != NULL);
2338 	img_request->copyup_pages = NULL;
2339 	page_count = img_request->copyup_page_count;
2340 	rbd_assert(page_count);
2341 	img_request->copyup_page_count = 0;
2342 
2343 	orig_request = img_request->obj_request;
2344 	rbd_assert(orig_request != NULL);
2345 	rbd_assert(obj_request_type_valid(orig_request->type));
2346 	img_result = img_request->result;
2347 	parent_length = img_request->length;
2348 	rbd_assert(parent_length == img_request->xferred);
2349 	rbd_img_request_put(img_request);
2350 
2351 	rbd_assert(orig_request->img_request);
2352 	rbd_dev = orig_request->img_request->rbd_dev;
2353 	rbd_assert(rbd_dev);
2354 
2355 	/*
2356 	 * If the overlap has become 0 (most likely because the
2357 	 * image has been flattened) we need to free the pages
2358 	 * and re-submit the original write request.
2359 	 */
2360 	if (!rbd_dev->parent_overlap) {
2361 		struct ceph_osd_client *osdc;
2362 
2363 		ceph_release_page_vector(pages, page_count);
2364 		osdc = &rbd_dev->rbd_client->client->osdc;
2365 		img_result = rbd_obj_request_submit(osdc, orig_request);
2366 		if (!img_result)
2367 			return;
2368 	}
2369 
2370 	if (img_result)
2371 		goto out_err;
2372 
2373 	/*
2374 	 * The original osd request is of no use to use any more.
2375 	 * We need a new one that can hold the two ops in a copyup
2376 	 * request.  Allocate the new copyup osd request for the
2377 	 * original request, and release the old one.
2378 	 */
2379 	img_result = -ENOMEM;
2380 	osd_req = rbd_osd_req_create_copyup(orig_request);
2381 	if (!osd_req)
2382 		goto out_err;
2383 	rbd_osd_req_destroy(orig_request->osd_req);
2384 	orig_request->osd_req = osd_req;
2385 	orig_request->copyup_pages = pages;
2386 	orig_request->copyup_page_count = page_count;
2387 
2388 	/* Initialize the copyup op */
2389 
2390 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2391 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2392 						false, false);
2393 
2394 	/* Then the original write request op */
2395 
2396 	offset = orig_request->offset;
2397 	length = orig_request->length;
2398 	osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2399 					offset, length, 0, 0);
2400 	if (orig_request->type == OBJ_REQUEST_BIO)
2401 		osd_req_op_extent_osd_data_bio(osd_req, 1,
2402 					orig_request->bio_list, length);
2403 	else
2404 		osd_req_op_extent_osd_data_pages(osd_req, 1,
2405 					orig_request->pages, length,
2406 					offset & ~PAGE_MASK, false, false);
2407 
2408 	rbd_osd_req_format_write(orig_request);
2409 
2410 	/* All set, send it off. */
2411 
2412 	orig_request->callback = rbd_img_obj_copyup_callback;
2413 	osdc = &rbd_dev->rbd_client->client->osdc;
2414 	img_result = rbd_obj_request_submit(osdc, orig_request);
2415 	if (!img_result)
2416 		return;
2417 out_err:
2418 	/* Record the error code and complete the request */
2419 
2420 	orig_request->result = img_result;
2421 	orig_request->xferred = 0;
2422 	obj_request_done_set(orig_request);
2423 	rbd_obj_request_complete(orig_request);
2424 }
2425 
2426 /*
2427  * Read from the parent image the range of data that covers the
2428  * entire target of the given object request.  This is used for
2429  * satisfying a layered image write request when the target of an
2430  * object request from the image request does not exist.
2431  *
2432  * A page array big enough to hold the returned data is allocated
2433  * and supplied to rbd_img_request_fill() as the "data descriptor."
2434  * When the read completes, this page array will be transferred to
2435  * the original object request for the copyup operation.
2436  *
2437  * If an error occurs, record it as the result of the original
2438  * object request and mark it done so it gets completed.
2439  */
2440 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2441 {
2442 	struct rbd_img_request *img_request = NULL;
2443 	struct rbd_img_request *parent_request = NULL;
2444 	struct rbd_device *rbd_dev;
2445 	u64 img_offset;
2446 	u64 length;
2447 	struct page **pages = NULL;
2448 	u32 page_count;
2449 	int result;
2450 
2451 	rbd_assert(obj_request_img_data_test(obj_request));
2452 	rbd_assert(obj_request_type_valid(obj_request->type));
2453 
2454 	img_request = obj_request->img_request;
2455 	rbd_assert(img_request != NULL);
2456 	rbd_dev = img_request->rbd_dev;
2457 	rbd_assert(rbd_dev->parent != NULL);
2458 
2459 	/*
2460 	 * Determine the byte range covered by the object in the
2461 	 * child image to which the original request was to be sent.
2462 	 */
2463 	img_offset = obj_request->img_offset - obj_request->offset;
2464 	length = (u64)1 << rbd_dev->header.obj_order;
2465 
2466 	/*
2467 	 * There is no defined parent data beyond the parent
2468 	 * overlap, so limit what we read at that boundary if
2469 	 * necessary.
2470 	 */
2471 	if (img_offset + length > rbd_dev->parent_overlap) {
2472 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2473 		length = rbd_dev->parent_overlap - img_offset;
2474 	}
2475 
2476 	/*
2477 	 * Allocate a page array big enough to receive the data read
2478 	 * from the parent.
2479 	 */
2480 	page_count = (u32)calc_pages_for(0, length);
2481 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2482 	if (IS_ERR(pages)) {
2483 		result = PTR_ERR(pages);
2484 		pages = NULL;
2485 		goto out_err;
2486 	}
2487 
2488 	result = -ENOMEM;
2489 	parent_request = rbd_parent_request_create(obj_request,
2490 						img_offset, length);
2491 	if (!parent_request)
2492 		goto out_err;
2493 
2494 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2495 	if (result)
2496 		goto out_err;
2497 	parent_request->copyup_pages = pages;
2498 	parent_request->copyup_page_count = page_count;
2499 
2500 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2501 	result = rbd_img_request_submit(parent_request);
2502 	if (!result)
2503 		return 0;
2504 
2505 	parent_request->copyup_pages = NULL;
2506 	parent_request->copyup_page_count = 0;
2507 	parent_request->obj_request = NULL;
2508 	rbd_obj_request_put(obj_request);
2509 out_err:
2510 	if (pages)
2511 		ceph_release_page_vector(pages, page_count);
2512 	if (parent_request)
2513 		rbd_img_request_put(parent_request);
2514 	obj_request->result = result;
2515 	obj_request->xferred = 0;
2516 	obj_request_done_set(obj_request);
2517 
2518 	return result;
2519 }
2520 
2521 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2522 {
2523 	struct rbd_obj_request *orig_request;
2524 	struct rbd_device *rbd_dev;
2525 	int result;
2526 
2527 	rbd_assert(!obj_request_img_data_test(obj_request));
2528 
2529 	/*
2530 	 * All we need from the object request is the original
2531 	 * request and the result of the STAT op.  Grab those, then
2532 	 * we're done with the request.
2533 	 */
2534 	orig_request = obj_request->obj_request;
2535 	obj_request->obj_request = NULL;
2536 	rbd_obj_request_put(orig_request);
2537 	rbd_assert(orig_request);
2538 	rbd_assert(orig_request->img_request);
2539 
2540 	result = obj_request->result;
2541 	obj_request->result = 0;
2542 
2543 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2544 		obj_request, orig_request, result,
2545 		obj_request->xferred, obj_request->length);
2546 	rbd_obj_request_put(obj_request);
2547 
2548 	/*
2549 	 * If the overlap has become 0 (most likely because the
2550 	 * image has been flattened) we need to free the pages
2551 	 * and re-submit the original write request.
2552 	 */
2553 	rbd_dev = orig_request->img_request->rbd_dev;
2554 	if (!rbd_dev->parent_overlap) {
2555 		struct ceph_osd_client *osdc;
2556 
2557 		osdc = &rbd_dev->rbd_client->client->osdc;
2558 		result = rbd_obj_request_submit(osdc, orig_request);
2559 		if (!result)
2560 			return;
2561 	}
2562 
2563 	/*
2564 	 * Our only purpose here is to determine whether the object
2565 	 * exists, and we don't want to treat the non-existence as
2566 	 * an error.  If something else comes back, transfer the
2567 	 * error to the original request and complete it now.
2568 	 */
2569 	if (!result) {
2570 		obj_request_existence_set(orig_request, true);
2571 	} else if (result == -ENOENT) {
2572 		obj_request_existence_set(orig_request, false);
2573 	} else if (result) {
2574 		orig_request->result = result;
2575 		goto out;
2576 	}
2577 
2578 	/*
2579 	 * Resubmit the original request now that we have recorded
2580 	 * whether the target object exists.
2581 	 */
2582 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2583 out:
2584 	if (orig_request->result)
2585 		rbd_obj_request_complete(orig_request);
2586 }
2587 
2588 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2589 {
2590 	struct rbd_obj_request *stat_request;
2591 	struct rbd_device *rbd_dev;
2592 	struct ceph_osd_client *osdc;
2593 	struct page **pages = NULL;
2594 	u32 page_count;
2595 	size_t size;
2596 	int ret;
2597 
2598 	/*
2599 	 * The response data for a STAT call consists of:
2600 	 *     le64 length;
2601 	 *     struct {
2602 	 *         le32 tv_sec;
2603 	 *         le32 tv_nsec;
2604 	 *     } mtime;
2605 	 */
2606 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2607 	page_count = (u32)calc_pages_for(0, size);
2608 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2609 	if (IS_ERR(pages))
2610 		return PTR_ERR(pages);
2611 
2612 	ret = -ENOMEM;
2613 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2614 							OBJ_REQUEST_PAGES);
2615 	if (!stat_request)
2616 		goto out;
2617 
2618 	rbd_obj_request_get(obj_request);
2619 	stat_request->obj_request = obj_request;
2620 	stat_request->pages = pages;
2621 	stat_request->page_count = page_count;
2622 
2623 	rbd_assert(obj_request->img_request);
2624 	rbd_dev = obj_request->img_request->rbd_dev;
2625 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2626 						stat_request);
2627 	if (!stat_request->osd_req)
2628 		goto out;
2629 	stat_request->callback = rbd_img_obj_exists_callback;
2630 
2631 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2632 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2633 					false, false);
2634 	rbd_osd_req_format_read(stat_request);
2635 
2636 	osdc = &rbd_dev->rbd_client->client->osdc;
2637 	ret = rbd_obj_request_submit(osdc, stat_request);
2638 out:
2639 	if (ret)
2640 		rbd_obj_request_put(obj_request);
2641 
2642 	return ret;
2643 }
2644 
2645 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2646 {
2647 	struct rbd_img_request *img_request;
2648 	struct rbd_device *rbd_dev;
2649 	bool known;
2650 
2651 	rbd_assert(obj_request_img_data_test(obj_request));
2652 
2653 	img_request = obj_request->img_request;
2654 	rbd_assert(img_request);
2655 	rbd_dev = img_request->rbd_dev;
2656 
2657 	/*
2658 	 * Only writes to layered images need special handling.
2659 	 * Reads and non-layered writes are simple object requests.
2660 	 * Layered writes that start beyond the end of the overlap
2661 	 * with the parent have no parent data, so they too are
2662 	 * simple object requests.  Finally, if the target object is
2663 	 * known to already exist, its parent data has already been
2664 	 * copied, so a write to the object can also be handled as a
2665 	 * simple object request.
2666 	 */
2667 	if (!img_request_write_test(img_request) ||
2668 		!img_request_layered_test(img_request) ||
2669 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2670 		((known = obj_request_known_test(obj_request)) &&
2671 			obj_request_exists_test(obj_request))) {
2672 
2673 		struct rbd_device *rbd_dev;
2674 		struct ceph_osd_client *osdc;
2675 
2676 		rbd_dev = obj_request->img_request->rbd_dev;
2677 		osdc = &rbd_dev->rbd_client->client->osdc;
2678 
2679 		return rbd_obj_request_submit(osdc, obj_request);
2680 	}
2681 
2682 	/*
2683 	 * It's a layered write.  The target object might exist but
2684 	 * we may not know that yet.  If we know it doesn't exist,
2685 	 * start by reading the data for the full target object from
2686 	 * the parent so we can use it for a copyup to the target.
2687 	 */
2688 	if (known)
2689 		return rbd_img_obj_parent_read_full(obj_request);
2690 
2691 	/* We don't know whether the target exists.  Go find out. */
2692 
2693 	return rbd_img_obj_exists_submit(obj_request);
2694 }
2695 
2696 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2697 {
2698 	struct rbd_obj_request *obj_request;
2699 	struct rbd_obj_request *next_obj_request;
2700 
2701 	dout("%s: img %p\n", __func__, img_request);
2702 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2703 		int ret;
2704 
2705 		ret = rbd_img_obj_request_submit(obj_request);
2706 		if (ret)
2707 			return ret;
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2714 {
2715 	struct rbd_obj_request *obj_request;
2716 	struct rbd_device *rbd_dev;
2717 	u64 obj_end;
2718 	u64 img_xferred;
2719 	int img_result;
2720 
2721 	rbd_assert(img_request_child_test(img_request));
2722 
2723 	/* First get what we need from the image request and release it */
2724 
2725 	obj_request = img_request->obj_request;
2726 	img_xferred = img_request->xferred;
2727 	img_result = img_request->result;
2728 	rbd_img_request_put(img_request);
2729 
2730 	/*
2731 	 * If the overlap has become 0 (most likely because the
2732 	 * image has been flattened) we need to re-submit the
2733 	 * original request.
2734 	 */
2735 	rbd_assert(obj_request);
2736 	rbd_assert(obj_request->img_request);
2737 	rbd_dev = obj_request->img_request->rbd_dev;
2738 	if (!rbd_dev->parent_overlap) {
2739 		struct ceph_osd_client *osdc;
2740 
2741 		osdc = &rbd_dev->rbd_client->client->osdc;
2742 		img_result = rbd_obj_request_submit(osdc, obj_request);
2743 		if (!img_result)
2744 			return;
2745 	}
2746 
2747 	obj_request->result = img_result;
2748 	if (obj_request->result)
2749 		goto out;
2750 
2751 	/*
2752 	 * We need to zero anything beyond the parent overlap
2753 	 * boundary.  Since rbd_img_obj_request_read_callback()
2754 	 * will zero anything beyond the end of a short read, an
2755 	 * easy way to do this is to pretend the data from the
2756 	 * parent came up short--ending at the overlap boundary.
2757 	 */
2758 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2759 	obj_end = obj_request->img_offset + obj_request->length;
2760 	if (obj_end > rbd_dev->parent_overlap) {
2761 		u64 xferred = 0;
2762 
2763 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2764 			xferred = rbd_dev->parent_overlap -
2765 					obj_request->img_offset;
2766 
2767 		obj_request->xferred = min(img_xferred, xferred);
2768 	} else {
2769 		obj_request->xferred = img_xferred;
2770 	}
2771 out:
2772 	rbd_img_obj_request_read_callback(obj_request);
2773 	rbd_obj_request_complete(obj_request);
2774 }
2775 
2776 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2777 {
2778 	struct rbd_img_request *img_request;
2779 	int result;
2780 
2781 	rbd_assert(obj_request_img_data_test(obj_request));
2782 	rbd_assert(obj_request->img_request != NULL);
2783 	rbd_assert(obj_request->result == (s32) -ENOENT);
2784 	rbd_assert(obj_request_type_valid(obj_request->type));
2785 
2786 	/* rbd_read_finish(obj_request, obj_request->length); */
2787 	img_request = rbd_parent_request_create(obj_request,
2788 						obj_request->img_offset,
2789 						obj_request->length);
2790 	result = -ENOMEM;
2791 	if (!img_request)
2792 		goto out_err;
2793 
2794 	if (obj_request->type == OBJ_REQUEST_BIO)
2795 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2796 						obj_request->bio_list);
2797 	else
2798 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2799 						obj_request->pages);
2800 	if (result)
2801 		goto out_err;
2802 
2803 	img_request->callback = rbd_img_parent_read_callback;
2804 	result = rbd_img_request_submit(img_request);
2805 	if (result)
2806 		goto out_err;
2807 
2808 	return;
2809 out_err:
2810 	if (img_request)
2811 		rbd_img_request_put(img_request);
2812 	obj_request->result = result;
2813 	obj_request->xferred = 0;
2814 	obj_request_done_set(obj_request);
2815 }
2816 
2817 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2818 {
2819 	struct rbd_obj_request *obj_request;
2820 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2821 	int ret;
2822 
2823 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2824 							OBJ_REQUEST_NODATA);
2825 	if (!obj_request)
2826 		return -ENOMEM;
2827 
2828 	ret = -ENOMEM;
2829 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2830 	if (!obj_request->osd_req)
2831 		goto out;
2832 
2833 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2834 					notify_id, 0, 0);
2835 	rbd_osd_req_format_read(obj_request);
2836 
2837 	ret = rbd_obj_request_submit(osdc, obj_request);
2838 	if (ret)
2839 		goto out;
2840 	ret = rbd_obj_request_wait(obj_request);
2841 out:
2842 	rbd_obj_request_put(obj_request);
2843 
2844 	return ret;
2845 }
2846 
2847 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2848 {
2849 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2850 	int ret;
2851 
2852 	if (!rbd_dev)
2853 		return;
2854 
2855 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2856 		rbd_dev->header_name, (unsigned long long)notify_id,
2857 		(unsigned int)opcode);
2858 	ret = rbd_dev_refresh(rbd_dev);
2859 	if (ret)
2860 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2861 
2862 	rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2863 }
2864 
2865 /*
2866  * Request sync osd watch/unwatch.  The value of "start" determines
2867  * whether a watch request is being initiated or torn down.
2868  */
2869 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2870 {
2871 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2872 	struct rbd_obj_request *obj_request;
2873 	int ret;
2874 
2875 	rbd_assert(start ^ !!rbd_dev->watch_event);
2876 	rbd_assert(start ^ !!rbd_dev->watch_request);
2877 
2878 	if (start) {
2879 		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2880 						&rbd_dev->watch_event);
2881 		if (ret < 0)
2882 			return ret;
2883 		rbd_assert(rbd_dev->watch_event != NULL);
2884 	}
2885 
2886 	ret = -ENOMEM;
2887 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2888 							OBJ_REQUEST_NODATA);
2889 	if (!obj_request)
2890 		goto out_cancel;
2891 
2892 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2893 	if (!obj_request->osd_req)
2894 		goto out_cancel;
2895 
2896 	if (start)
2897 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2898 	else
2899 		ceph_osdc_unregister_linger_request(osdc,
2900 					rbd_dev->watch_request->osd_req);
2901 
2902 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2903 				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2904 	rbd_osd_req_format_write(obj_request);
2905 
2906 	ret = rbd_obj_request_submit(osdc, obj_request);
2907 	if (ret)
2908 		goto out_cancel;
2909 	ret = rbd_obj_request_wait(obj_request);
2910 	if (ret)
2911 		goto out_cancel;
2912 	ret = obj_request->result;
2913 	if (ret)
2914 		goto out_cancel;
2915 
2916 	/*
2917 	 * A watch request is set to linger, so the underlying osd
2918 	 * request won't go away until we unregister it.  We retain
2919 	 * a pointer to the object request during that time (in
2920 	 * rbd_dev->watch_request), so we'll keep a reference to
2921 	 * it.  We'll drop that reference (below) after we've
2922 	 * unregistered it.
2923 	 */
2924 	if (start) {
2925 		rbd_dev->watch_request = obj_request;
2926 
2927 		return 0;
2928 	}
2929 
2930 	/* We have successfully torn down the watch request */
2931 
2932 	rbd_obj_request_put(rbd_dev->watch_request);
2933 	rbd_dev->watch_request = NULL;
2934 out_cancel:
2935 	/* Cancel the event if we're tearing down, or on error */
2936 	ceph_osdc_cancel_event(rbd_dev->watch_event);
2937 	rbd_dev->watch_event = NULL;
2938 	if (obj_request)
2939 		rbd_obj_request_put(obj_request);
2940 
2941 	return ret;
2942 }
2943 
2944 /*
2945  * Synchronous osd object method call.  Returns the number of bytes
2946  * returned in the outbound buffer, or a negative error code.
2947  */
2948 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2949 			     const char *object_name,
2950 			     const char *class_name,
2951 			     const char *method_name,
2952 			     const void *outbound,
2953 			     size_t outbound_size,
2954 			     void *inbound,
2955 			     size_t inbound_size)
2956 {
2957 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2958 	struct rbd_obj_request *obj_request;
2959 	struct page **pages;
2960 	u32 page_count;
2961 	int ret;
2962 
2963 	/*
2964 	 * Method calls are ultimately read operations.  The result
2965 	 * should placed into the inbound buffer provided.  They
2966 	 * also supply outbound data--parameters for the object
2967 	 * method.  Currently if this is present it will be a
2968 	 * snapshot id.
2969 	 */
2970 	page_count = (u32)calc_pages_for(0, inbound_size);
2971 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2972 	if (IS_ERR(pages))
2973 		return PTR_ERR(pages);
2974 
2975 	ret = -ENOMEM;
2976 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2977 							OBJ_REQUEST_PAGES);
2978 	if (!obj_request)
2979 		goto out;
2980 
2981 	obj_request->pages = pages;
2982 	obj_request->page_count = page_count;
2983 
2984 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2985 	if (!obj_request->osd_req)
2986 		goto out;
2987 
2988 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2989 					class_name, method_name);
2990 	if (outbound_size) {
2991 		struct ceph_pagelist *pagelist;
2992 
2993 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2994 		if (!pagelist)
2995 			goto out;
2996 
2997 		ceph_pagelist_init(pagelist);
2998 		ceph_pagelist_append(pagelist, outbound, outbound_size);
2999 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3000 						pagelist);
3001 	}
3002 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3003 					obj_request->pages, inbound_size,
3004 					0, false, false);
3005 	rbd_osd_req_format_read(obj_request);
3006 
3007 	ret = rbd_obj_request_submit(osdc, obj_request);
3008 	if (ret)
3009 		goto out;
3010 	ret = rbd_obj_request_wait(obj_request);
3011 	if (ret)
3012 		goto out;
3013 
3014 	ret = obj_request->result;
3015 	if (ret < 0)
3016 		goto out;
3017 
3018 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3019 	ret = (int)obj_request->xferred;
3020 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3021 out:
3022 	if (obj_request)
3023 		rbd_obj_request_put(obj_request);
3024 	else
3025 		ceph_release_page_vector(pages, page_count);
3026 
3027 	return ret;
3028 }
3029 
3030 static void rbd_request_fn(struct request_queue *q)
3031 		__releases(q->queue_lock) __acquires(q->queue_lock)
3032 {
3033 	struct rbd_device *rbd_dev = q->queuedata;
3034 	bool read_only = rbd_dev->mapping.read_only;
3035 	struct request *rq;
3036 	int result;
3037 
3038 	while ((rq = blk_fetch_request(q))) {
3039 		bool write_request = rq_data_dir(rq) == WRITE;
3040 		struct rbd_img_request *img_request;
3041 		u64 offset;
3042 		u64 length;
3043 
3044 		/* Ignore any non-FS requests that filter through. */
3045 
3046 		if (rq->cmd_type != REQ_TYPE_FS) {
3047 			dout("%s: non-fs request type %d\n", __func__,
3048 				(int) rq->cmd_type);
3049 			__blk_end_request_all(rq, 0);
3050 			continue;
3051 		}
3052 
3053 		/* Ignore/skip any zero-length requests */
3054 
3055 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3056 		length = (u64) blk_rq_bytes(rq);
3057 
3058 		if (!length) {
3059 			dout("%s: zero-length request\n", __func__);
3060 			__blk_end_request_all(rq, 0);
3061 			continue;
3062 		}
3063 
3064 		spin_unlock_irq(q->queue_lock);
3065 
3066 		/* Disallow writes to a read-only device */
3067 
3068 		if (write_request) {
3069 			result = -EROFS;
3070 			if (read_only)
3071 				goto end_request;
3072 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3073 		}
3074 
3075 		/*
3076 		 * Quit early if the mapped snapshot no longer
3077 		 * exists.  It's still possible the snapshot will
3078 		 * have disappeared by the time our request arrives
3079 		 * at the osd, but there's no sense in sending it if
3080 		 * we already know.
3081 		 */
3082 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3083 			dout("request for non-existent snapshot");
3084 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3085 			result = -ENXIO;
3086 			goto end_request;
3087 		}
3088 
3089 		result = -EINVAL;
3090 		if (offset && length > U64_MAX - offset + 1) {
3091 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3092 				offset, length);
3093 			goto end_request;	/* Shouldn't happen */
3094 		}
3095 
3096 		result = -EIO;
3097 		if (offset + length > rbd_dev->mapping.size) {
3098 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3099 				offset, length, rbd_dev->mapping.size);
3100 			goto end_request;
3101 		}
3102 
3103 		result = -ENOMEM;
3104 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3105 							write_request);
3106 		if (!img_request)
3107 			goto end_request;
3108 
3109 		img_request->rq = rq;
3110 
3111 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3112 						rq->bio);
3113 		if (!result)
3114 			result = rbd_img_request_submit(img_request);
3115 		if (result)
3116 			rbd_img_request_put(img_request);
3117 end_request:
3118 		spin_lock_irq(q->queue_lock);
3119 		if (result < 0) {
3120 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3121 				write_request ? "write" : "read",
3122 				length, offset, result);
3123 
3124 			__blk_end_request_all(rq, result);
3125 		}
3126 	}
3127 }
3128 
3129 /*
3130  * a queue callback. Makes sure that we don't create a bio that spans across
3131  * multiple osd objects. One exception would be with a single page bios,
3132  * which we handle later at bio_chain_clone_range()
3133  */
3134 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3135 			  struct bio_vec *bvec)
3136 {
3137 	struct rbd_device *rbd_dev = q->queuedata;
3138 	sector_t sector_offset;
3139 	sector_t sectors_per_obj;
3140 	sector_t obj_sector_offset;
3141 	int ret;
3142 
3143 	/*
3144 	 * Find how far into its rbd object the partition-relative
3145 	 * bio start sector is to offset relative to the enclosing
3146 	 * device.
3147 	 */
3148 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3149 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3150 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3151 
3152 	/*
3153 	 * Compute the number of bytes from that offset to the end
3154 	 * of the object.  Account for what's already used by the bio.
3155 	 */
3156 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3157 	if (ret > bmd->bi_size)
3158 		ret -= bmd->bi_size;
3159 	else
3160 		ret = 0;
3161 
3162 	/*
3163 	 * Don't send back more than was asked for.  And if the bio
3164 	 * was empty, let the whole thing through because:  "Note
3165 	 * that a block device *must* allow a single page to be
3166 	 * added to an empty bio."
3167 	 */
3168 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3169 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3170 		ret = (int) bvec->bv_len;
3171 
3172 	return ret;
3173 }
3174 
3175 static void rbd_free_disk(struct rbd_device *rbd_dev)
3176 {
3177 	struct gendisk *disk = rbd_dev->disk;
3178 
3179 	if (!disk)
3180 		return;
3181 
3182 	rbd_dev->disk = NULL;
3183 	if (disk->flags & GENHD_FL_UP) {
3184 		del_gendisk(disk);
3185 		if (disk->queue)
3186 			blk_cleanup_queue(disk->queue);
3187 	}
3188 	put_disk(disk);
3189 }
3190 
3191 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3192 				const char *object_name,
3193 				u64 offset, u64 length, void *buf)
3194 
3195 {
3196 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 	struct rbd_obj_request *obj_request;
3198 	struct page **pages = NULL;
3199 	u32 page_count;
3200 	size_t size;
3201 	int ret;
3202 
3203 	page_count = (u32) calc_pages_for(offset, length);
3204 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3205 	if (IS_ERR(pages))
3206 		ret = PTR_ERR(pages);
3207 
3208 	ret = -ENOMEM;
3209 	obj_request = rbd_obj_request_create(object_name, offset, length,
3210 							OBJ_REQUEST_PAGES);
3211 	if (!obj_request)
3212 		goto out;
3213 
3214 	obj_request->pages = pages;
3215 	obj_request->page_count = page_count;
3216 
3217 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3218 	if (!obj_request->osd_req)
3219 		goto out;
3220 
3221 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3222 					offset, length, 0, 0);
3223 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3224 					obj_request->pages,
3225 					obj_request->length,
3226 					obj_request->offset & ~PAGE_MASK,
3227 					false, false);
3228 	rbd_osd_req_format_read(obj_request);
3229 
3230 	ret = rbd_obj_request_submit(osdc, obj_request);
3231 	if (ret)
3232 		goto out;
3233 	ret = rbd_obj_request_wait(obj_request);
3234 	if (ret)
3235 		goto out;
3236 
3237 	ret = obj_request->result;
3238 	if (ret < 0)
3239 		goto out;
3240 
3241 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3242 	size = (size_t) obj_request->xferred;
3243 	ceph_copy_from_page_vector(pages, buf, 0, size);
3244 	rbd_assert(size <= (size_t)INT_MAX);
3245 	ret = (int)size;
3246 out:
3247 	if (obj_request)
3248 		rbd_obj_request_put(obj_request);
3249 	else
3250 		ceph_release_page_vector(pages, page_count);
3251 
3252 	return ret;
3253 }
3254 
3255 /*
3256  * Read the complete header for the given rbd device.  On successful
3257  * return, the rbd_dev->header field will contain up-to-date
3258  * information about the image.
3259  */
3260 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3261 {
3262 	struct rbd_image_header_ondisk *ondisk = NULL;
3263 	u32 snap_count = 0;
3264 	u64 names_size = 0;
3265 	u32 want_count;
3266 	int ret;
3267 
3268 	/*
3269 	 * The complete header will include an array of its 64-bit
3270 	 * snapshot ids, followed by the names of those snapshots as
3271 	 * a contiguous block of NUL-terminated strings.  Note that
3272 	 * the number of snapshots could change by the time we read
3273 	 * it in, in which case we re-read it.
3274 	 */
3275 	do {
3276 		size_t size;
3277 
3278 		kfree(ondisk);
3279 
3280 		size = sizeof (*ondisk);
3281 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3282 		size += names_size;
3283 		ondisk = kmalloc(size, GFP_KERNEL);
3284 		if (!ondisk)
3285 			return -ENOMEM;
3286 
3287 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3288 				       0, size, ondisk);
3289 		if (ret < 0)
3290 			goto out;
3291 		if ((size_t)ret < size) {
3292 			ret = -ENXIO;
3293 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3294 				size, ret);
3295 			goto out;
3296 		}
3297 		if (!rbd_dev_ondisk_valid(ondisk)) {
3298 			ret = -ENXIO;
3299 			rbd_warn(rbd_dev, "invalid header");
3300 			goto out;
3301 		}
3302 
3303 		names_size = le64_to_cpu(ondisk->snap_names_len);
3304 		want_count = snap_count;
3305 		snap_count = le32_to_cpu(ondisk->snap_count);
3306 	} while (snap_count != want_count);
3307 
3308 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3309 out:
3310 	kfree(ondisk);
3311 
3312 	return ret;
3313 }
3314 
3315 /*
3316  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3317  * has disappeared from the (just updated) snapshot context.
3318  */
3319 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3320 {
3321 	u64 snap_id;
3322 
3323 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3324 		return;
3325 
3326 	snap_id = rbd_dev->spec->snap_id;
3327 	if (snap_id == CEPH_NOSNAP)
3328 		return;
3329 
3330 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3331 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3332 }
3333 
3334 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3335 {
3336 	sector_t size;
3337 	bool removing;
3338 
3339 	/*
3340 	 * Don't hold the lock while doing disk operations,
3341 	 * or lock ordering will conflict with the bdev mutex via:
3342 	 * rbd_add() -> blkdev_get() -> rbd_open()
3343 	 */
3344 	spin_lock_irq(&rbd_dev->lock);
3345 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3346 	spin_unlock_irq(&rbd_dev->lock);
3347 	/*
3348 	 * If the device is being removed, rbd_dev->disk has
3349 	 * been destroyed, so don't try to update its size
3350 	 */
3351 	if (!removing) {
3352 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353 		dout("setting size to %llu sectors", (unsigned long long)size);
3354 		set_capacity(rbd_dev->disk, size);
3355 		revalidate_disk(rbd_dev->disk);
3356 	}
3357 }
3358 
3359 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3360 {
3361 	u64 mapping_size;
3362 	int ret;
3363 
3364 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3365 	down_write(&rbd_dev->header_rwsem);
3366 	mapping_size = rbd_dev->mapping.size;
3367 	if (rbd_dev->image_format == 1)
3368 		ret = rbd_dev_v1_header_info(rbd_dev);
3369 	else
3370 		ret = rbd_dev_v2_header_info(rbd_dev);
3371 
3372 	/* If it's a mapped snapshot, validate its EXISTS flag */
3373 
3374 	rbd_exists_validate(rbd_dev);
3375 	up_write(&rbd_dev->header_rwsem);
3376 
3377 	if (mapping_size != rbd_dev->mapping.size) {
3378 		rbd_dev_update_size(rbd_dev);
3379 	}
3380 
3381 	return ret;
3382 }
3383 
3384 static int rbd_init_disk(struct rbd_device *rbd_dev)
3385 {
3386 	struct gendisk *disk;
3387 	struct request_queue *q;
3388 	u64 segment_size;
3389 
3390 	/* create gendisk info */
3391 	disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3392 	if (!disk)
3393 		return -ENOMEM;
3394 
3395 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3396 		 rbd_dev->dev_id);
3397 	disk->major = rbd_dev->major;
3398 	disk->first_minor = 0;
3399 	disk->fops = &rbd_bd_ops;
3400 	disk->private_data = rbd_dev;
3401 
3402 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3403 	if (!q)
3404 		goto out_disk;
3405 
3406 	/* We use the default size, but let's be explicit about it. */
3407 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3408 
3409 	/* set io sizes to object size */
3410 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3411 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3412 	blk_queue_max_segment_size(q, segment_size);
3413 	blk_queue_io_min(q, segment_size);
3414 	blk_queue_io_opt(q, segment_size);
3415 
3416 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3417 	disk->queue = q;
3418 
3419 	q->queuedata = rbd_dev;
3420 
3421 	rbd_dev->disk = disk;
3422 
3423 	return 0;
3424 out_disk:
3425 	put_disk(disk);
3426 
3427 	return -ENOMEM;
3428 }
3429 
3430 /*
3431   sysfs
3432 */
3433 
3434 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3435 {
3436 	return container_of(dev, struct rbd_device, dev);
3437 }
3438 
3439 static ssize_t rbd_size_show(struct device *dev,
3440 			     struct device_attribute *attr, char *buf)
3441 {
3442 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3443 
3444 	return sprintf(buf, "%llu\n",
3445 		(unsigned long long)rbd_dev->mapping.size);
3446 }
3447 
3448 /*
3449  * Note this shows the features for whatever's mapped, which is not
3450  * necessarily the base image.
3451  */
3452 static ssize_t rbd_features_show(struct device *dev,
3453 			     struct device_attribute *attr, char *buf)
3454 {
3455 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3456 
3457 	return sprintf(buf, "0x%016llx\n",
3458 			(unsigned long long)rbd_dev->mapping.features);
3459 }
3460 
3461 static ssize_t rbd_major_show(struct device *dev,
3462 			      struct device_attribute *attr, char *buf)
3463 {
3464 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3465 
3466 	if (rbd_dev->major)
3467 		return sprintf(buf, "%d\n", rbd_dev->major);
3468 
3469 	return sprintf(buf, "(none)\n");
3470 
3471 }
3472 
3473 static ssize_t rbd_client_id_show(struct device *dev,
3474 				  struct device_attribute *attr, char *buf)
3475 {
3476 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3477 
3478 	return sprintf(buf, "client%lld\n",
3479 			ceph_client_id(rbd_dev->rbd_client->client));
3480 }
3481 
3482 static ssize_t rbd_pool_show(struct device *dev,
3483 			     struct device_attribute *attr, char *buf)
3484 {
3485 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486 
3487 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3488 }
3489 
3490 static ssize_t rbd_pool_id_show(struct device *dev,
3491 			     struct device_attribute *attr, char *buf)
3492 {
3493 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3494 
3495 	return sprintf(buf, "%llu\n",
3496 			(unsigned long long) rbd_dev->spec->pool_id);
3497 }
3498 
3499 static ssize_t rbd_name_show(struct device *dev,
3500 			     struct device_attribute *attr, char *buf)
3501 {
3502 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503 
3504 	if (rbd_dev->spec->image_name)
3505 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3506 
3507 	return sprintf(buf, "(unknown)\n");
3508 }
3509 
3510 static ssize_t rbd_image_id_show(struct device *dev,
3511 			     struct device_attribute *attr, char *buf)
3512 {
3513 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514 
3515 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3516 }
3517 
3518 /*
3519  * Shows the name of the currently-mapped snapshot (or
3520  * RBD_SNAP_HEAD_NAME for the base image).
3521  */
3522 static ssize_t rbd_snap_show(struct device *dev,
3523 			     struct device_attribute *attr,
3524 			     char *buf)
3525 {
3526 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3527 
3528 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3529 }
3530 
3531 /*
3532  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3533  * for the parent image.  If there is no parent, simply shows
3534  * "(no parent image)".
3535  */
3536 static ssize_t rbd_parent_show(struct device *dev,
3537 			     struct device_attribute *attr,
3538 			     char *buf)
3539 {
3540 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3541 	struct rbd_spec *spec = rbd_dev->parent_spec;
3542 	int count;
3543 	char *bufp = buf;
3544 
3545 	if (!spec)
3546 		return sprintf(buf, "(no parent image)\n");
3547 
3548 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3549 			(unsigned long long) spec->pool_id, spec->pool_name);
3550 	if (count < 0)
3551 		return count;
3552 	bufp += count;
3553 
3554 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3555 			spec->image_name ? spec->image_name : "(unknown)");
3556 	if (count < 0)
3557 		return count;
3558 	bufp += count;
3559 
3560 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3561 			(unsigned long long) spec->snap_id, spec->snap_name);
3562 	if (count < 0)
3563 		return count;
3564 	bufp += count;
3565 
3566 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3567 	if (count < 0)
3568 		return count;
3569 	bufp += count;
3570 
3571 	return (ssize_t) (bufp - buf);
3572 }
3573 
3574 static ssize_t rbd_image_refresh(struct device *dev,
3575 				 struct device_attribute *attr,
3576 				 const char *buf,
3577 				 size_t size)
3578 {
3579 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580 	int ret;
3581 
3582 	ret = rbd_dev_refresh(rbd_dev);
3583 	if (ret)
3584 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3585 
3586 	return ret < 0 ? ret : size;
3587 }
3588 
3589 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3590 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3591 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3592 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3593 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3594 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3595 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3596 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3597 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3598 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3599 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3600 
3601 static struct attribute *rbd_attrs[] = {
3602 	&dev_attr_size.attr,
3603 	&dev_attr_features.attr,
3604 	&dev_attr_major.attr,
3605 	&dev_attr_client_id.attr,
3606 	&dev_attr_pool.attr,
3607 	&dev_attr_pool_id.attr,
3608 	&dev_attr_name.attr,
3609 	&dev_attr_image_id.attr,
3610 	&dev_attr_current_snap.attr,
3611 	&dev_attr_parent.attr,
3612 	&dev_attr_refresh.attr,
3613 	NULL
3614 };
3615 
3616 static struct attribute_group rbd_attr_group = {
3617 	.attrs = rbd_attrs,
3618 };
3619 
3620 static const struct attribute_group *rbd_attr_groups[] = {
3621 	&rbd_attr_group,
3622 	NULL
3623 };
3624 
3625 static void rbd_sysfs_dev_release(struct device *dev)
3626 {
3627 }
3628 
3629 static struct device_type rbd_device_type = {
3630 	.name		= "rbd",
3631 	.groups		= rbd_attr_groups,
3632 	.release	= rbd_sysfs_dev_release,
3633 };
3634 
3635 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3636 {
3637 	kref_get(&spec->kref);
3638 
3639 	return spec;
3640 }
3641 
3642 static void rbd_spec_free(struct kref *kref);
3643 static void rbd_spec_put(struct rbd_spec *spec)
3644 {
3645 	if (spec)
3646 		kref_put(&spec->kref, rbd_spec_free);
3647 }
3648 
3649 static struct rbd_spec *rbd_spec_alloc(void)
3650 {
3651 	struct rbd_spec *spec;
3652 
3653 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3654 	if (!spec)
3655 		return NULL;
3656 	kref_init(&spec->kref);
3657 
3658 	return spec;
3659 }
3660 
3661 static void rbd_spec_free(struct kref *kref)
3662 {
3663 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3664 
3665 	kfree(spec->pool_name);
3666 	kfree(spec->image_id);
3667 	kfree(spec->image_name);
3668 	kfree(spec->snap_name);
3669 	kfree(spec);
3670 }
3671 
3672 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3673 				struct rbd_spec *spec)
3674 {
3675 	struct rbd_device *rbd_dev;
3676 
3677 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3678 	if (!rbd_dev)
3679 		return NULL;
3680 
3681 	spin_lock_init(&rbd_dev->lock);
3682 	rbd_dev->flags = 0;
3683 	atomic_set(&rbd_dev->parent_ref, 0);
3684 	INIT_LIST_HEAD(&rbd_dev->node);
3685 	init_rwsem(&rbd_dev->header_rwsem);
3686 
3687 	rbd_dev->spec = spec;
3688 	rbd_dev->rbd_client = rbdc;
3689 
3690 	/* Initialize the layout used for all rbd requests */
3691 
3692 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3693 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3694 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3695 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3696 
3697 	return rbd_dev;
3698 }
3699 
3700 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3701 {
3702 	rbd_put_client(rbd_dev->rbd_client);
3703 	rbd_spec_put(rbd_dev->spec);
3704 	kfree(rbd_dev);
3705 }
3706 
3707 /*
3708  * Get the size and object order for an image snapshot, or if
3709  * snap_id is CEPH_NOSNAP, gets this information for the base
3710  * image.
3711  */
3712 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3713 				u8 *order, u64 *snap_size)
3714 {
3715 	__le64 snapid = cpu_to_le64(snap_id);
3716 	int ret;
3717 	struct {
3718 		u8 order;
3719 		__le64 size;
3720 	} __attribute__ ((packed)) size_buf = { 0 };
3721 
3722 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3723 				"rbd", "get_size",
3724 				&snapid, sizeof (snapid),
3725 				&size_buf, sizeof (size_buf));
3726 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3727 	if (ret < 0)
3728 		return ret;
3729 	if (ret < sizeof (size_buf))
3730 		return -ERANGE;
3731 
3732 	if (order) {
3733 		*order = size_buf.order;
3734 		dout("  order %u", (unsigned int)*order);
3735 	}
3736 	*snap_size = le64_to_cpu(size_buf.size);
3737 
3738 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3739 		(unsigned long long)snap_id,
3740 		(unsigned long long)*snap_size);
3741 
3742 	return 0;
3743 }
3744 
3745 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3746 {
3747 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3748 					&rbd_dev->header.obj_order,
3749 					&rbd_dev->header.image_size);
3750 }
3751 
3752 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3753 {
3754 	void *reply_buf;
3755 	int ret;
3756 	void *p;
3757 
3758 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3759 	if (!reply_buf)
3760 		return -ENOMEM;
3761 
3762 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3763 				"rbd", "get_object_prefix", NULL, 0,
3764 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3765 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3766 	if (ret < 0)
3767 		goto out;
3768 
3769 	p = reply_buf;
3770 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3771 						p + ret, NULL, GFP_NOIO);
3772 	ret = 0;
3773 
3774 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3775 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3776 		rbd_dev->header.object_prefix = NULL;
3777 	} else {
3778 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3779 	}
3780 out:
3781 	kfree(reply_buf);
3782 
3783 	return ret;
3784 }
3785 
3786 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3787 		u64 *snap_features)
3788 {
3789 	__le64 snapid = cpu_to_le64(snap_id);
3790 	struct {
3791 		__le64 features;
3792 		__le64 incompat;
3793 	} __attribute__ ((packed)) features_buf = { 0 };
3794 	u64 incompat;
3795 	int ret;
3796 
3797 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3798 				"rbd", "get_features",
3799 				&snapid, sizeof (snapid),
3800 				&features_buf, sizeof (features_buf));
3801 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3802 	if (ret < 0)
3803 		return ret;
3804 	if (ret < sizeof (features_buf))
3805 		return -ERANGE;
3806 
3807 	incompat = le64_to_cpu(features_buf.incompat);
3808 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3809 		return -ENXIO;
3810 
3811 	*snap_features = le64_to_cpu(features_buf.features);
3812 
3813 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3814 		(unsigned long long)snap_id,
3815 		(unsigned long long)*snap_features,
3816 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3817 
3818 	return 0;
3819 }
3820 
3821 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3822 {
3823 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3824 						&rbd_dev->header.features);
3825 }
3826 
3827 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3828 {
3829 	struct rbd_spec *parent_spec;
3830 	size_t size;
3831 	void *reply_buf = NULL;
3832 	__le64 snapid;
3833 	void *p;
3834 	void *end;
3835 	u64 pool_id;
3836 	char *image_id;
3837 	u64 snap_id;
3838 	u64 overlap;
3839 	int ret;
3840 
3841 	parent_spec = rbd_spec_alloc();
3842 	if (!parent_spec)
3843 		return -ENOMEM;
3844 
3845 	size = sizeof (__le64) +				/* pool_id */
3846 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3847 		sizeof (__le64) +				/* snap_id */
3848 		sizeof (__le64);				/* overlap */
3849 	reply_buf = kmalloc(size, GFP_KERNEL);
3850 	if (!reply_buf) {
3851 		ret = -ENOMEM;
3852 		goto out_err;
3853 	}
3854 
3855 	snapid = cpu_to_le64(CEPH_NOSNAP);
3856 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3857 				"rbd", "get_parent",
3858 				&snapid, sizeof (snapid),
3859 				reply_buf, size);
3860 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3861 	if (ret < 0)
3862 		goto out_err;
3863 
3864 	p = reply_buf;
3865 	end = reply_buf + ret;
3866 	ret = -ERANGE;
3867 	ceph_decode_64_safe(&p, end, pool_id, out_err);
3868 	if (pool_id == CEPH_NOPOOL) {
3869 		/*
3870 		 * Either the parent never existed, or we have
3871 		 * record of it but the image got flattened so it no
3872 		 * longer has a parent.  When the parent of a
3873 		 * layered image disappears we immediately set the
3874 		 * overlap to 0.  The effect of this is that all new
3875 		 * requests will be treated as if the image had no
3876 		 * parent.
3877 		 */
3878 		if (rbd_dev->parent_overlap) {
3879 			rbd_dev->parent_overlap = 0;
3880 			smp_mb();
3881 			rbd_dev_parent_put(rbd_dev);
3882 			pr_info("%s: clone image has been flattened\n",
3883 				rbd_dev->disk->disk_name);
3884 		}
3885 
3886 		goto out;	/* No parent?  No problem. */
3887 	}
3888 
3889 	/* The ceph file layout needs to fit pool id in 32 bits */
3890 
3891 	ret = -EIO;
3892 	if (pool_id > (u64)U32_MAX) {
3893 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3894 			(unsigned long long)pool_id, U32_MAX);
3895 		goto out_err;
3896 	}
3897 
3898 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3899 	if (IS_ERR(image_id)) {
3900 		ret = PTR_ERR(image_id);
3901 		goto out_err;
3902 	}
3903 	ceph_decode_64_safe(&p, end, snap_id, out_err);
3904 	ceph_decode_64_safe(&p, end, overlap, out_err);
3905 
3906 	/*
3907 	 * The parent won't change (except when the clone is
3908 	 * flattened, already handled that).  So we only need to
3909 	 * record the parent spec we have not already done so.
3910 	 */
3911 	if (!rbd_dev->parent_spec) {
3912 		parent_spec->pool_id = pool_id;
3913 		parent_spec->image_id = image_id;
3914 		parent_spec->snap_id = snap_id;
3915 		rbd_dev->parent_spec = parent_spec;
3916 		parent_spec = NULL;	/* rbd_dev now owns this */
3917 	}
3918 
3919 	/*
3920 	 * We always update the parent overlap.  If it's zero we
3921 	 * treat it specially.
3922 	 */
3923 	rbd_dev->parent_overlap = overlap;
3924 	smp_mb();
3925 	if (!overlap) {
3926 
3927 		/* A null parent_spec indicates it's the initial probe */
3928 
3929 		if (parent_spec) {
3930 			/*
3931 			 * The overlap has become zero, so the clone
3932 			 * must have been resized down to 0 at some
3933 			 * point.  Treat this the same as a flatten.
3934 			 */
3935 			rbd_dev_parent_put(rbd_dev);
3936 			pr_info("%s: clone image now standalone\n",
3937 				rbd_dev->disk->disk_name);
3938 		} else {
3939 			/*
3940 			 * For the initial probe, if we find the
3941 			 * overlap is zero we just pretend there was
3942 			 * no parent image.
3943 			 */
3944 			rbd_warn(rbd_dev, "ignoring parent of "
3945 						"clone with overlap 0\n");
3946 		}
3947 	}
3948 out:
3949 	ret = 0;
3950 out_err:
3951 	kfree(reply_buf);
3952 	rbd_spec_put(parent_spec);
3953 
3954 	return ret;
3955 }
3956 
3957 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3958 {
3959 	struct {
3960 		__le64 stripe_unit;
3961 		__le64 stripe_count;
3962 	} __attribute__ ((packed)) striping_info_buf = { 0 };
3963 	size_t size = sizeof (striping_info_buf);
3964 	void *p;
3965 	u64 obj_size;
3966 	u64 stripe_unit;
3967 	u64 stripe_count;
3968 	int ret;
3969 
3970 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3971 				"rbd", "get_stripe_unit_count", NULL, 0,
3972 				(char *)&striping_info_buf, size);
3973 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3974 	if (ret < 0)
3975 		return ret;
3976 	if (ret < size)
3977 		return -ERANGE;
3978 
3979 	/*
3980 	 * We don't actually support the "fancy striping" feature
3981 	 * (STRIPINGV2) yet, but if the striping sizes are the
3982 	 * defaults the behavior is the same as before.  So find
3983 	 * out, and only fail if the image has non-default values.
3984 	 */
3985 	ret = -EINVAL;
3986 	obj_size = (u64)1 << rbd_dev->header.obj_order;
3987 	p = &striping_info_buf;
3988 	stripe_unit = ceph_decode_64(&p);
3989 	if (stripe_unit != obj_size) {
3990 		rbd_warn(rbd_dev, "unsupported stripe unit "
3991 				"(got %llu want %llu)",
3992 				stripe_unit, obj_size);
3993 		return -EINVAL;
3994 	}
3995 	stripe_count = ceph_decode_64(&p);
3996 	if (stripe_count != 1) {
3997 		rbd_warn(rbd_dev, "unsupported stripe count "
3998 				"(got %llu want 1)", stripe_count);
3999 		return -EINVAL;
4000 	}
4001 	rbd_dev->header.stripe_unit = stripe_unit;
4002 	rbd_dev->header.stripe_count = stripe_count;
4003 
4004 	return 0;
4005 }
4006 
4007 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4008 {
4009 	size_t image_id_size;
4010 	char *image_id;
4011 	void *p;
4012 	void *end;
4013 	size_t size;
4014 	void *reply_buf = NULL;
4015 	size_t len = 0;
4016 	char *image_name = NULL;
4017 	int ret;
4018 
4019 	rbd_assert(!rbd_dev->spec->image_name);
4020 
4021 	len = strlen(rbd_dev->spec->image_id);
4022 	image_id_size = sizeof (__le32) + len;
4023 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4024 	if (!image_id)
4025 		return NULL;
4026 
4027 	p = image_id;
4028 	end = image_id + image_id_size;
4029 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4030 
4031 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4032 	reply_buf = kmalloc(size, GFP_KERNEL);
4033 	if (!reply_buf)
4034 		goto out;
4035 
4036 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4037 				"rbd", "dir_get_name",
4038 				image_id, image_id_size,
4039 				reply_buf, size);
4040 	if (ret < 0)
4041 		goto out;
4042 	p = reply_buf;
4043 	end = reply_buf + ret;
4044 
4045 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4046 	if (IS_ERR(image_name))
4047 		image_name = NULL;
4048 	else
4049 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4050 out:
4051 	kfree(reply_buf);
4052 	kfree(image_id);
4053 
4054 	return image_name;
4055 }
4056 
4057 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4058 {
4059 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4060 	const char *snap_name;
4061 	u32 which = 0;
4062 
4063 	/* Skip over names until we find the one we are looking for */
4064 
4065 	snap_name = rbd_dev->header.snap_names;
4066 	while (which < snapc->num_snaps) {
4067 		if (!strcmp(name, snap_name))
4068 			return snapc->snaps[which];
4069 		snap_name += strlen(snap_name) + 1;
4070 		which++;
4071 	}
4072 	return CEPH_NOSNAP;
4073 }
4074 
4075 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4076 {
4077 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4078 	u32 which;
4079 	bool found = false;
4080 	u64 snap_id;
4081 
4082 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4083 		const char *snap_name;
4084 
4085 		snap_id = snapc->snaps[which];
4086 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4087 		if (IS_ERR(snap_name)) {
4088 			/* ignore no-longer existing snapshots */
4089 			if (PTR_ERR(snap_name) == -ENOENT)
4090 				continue;
4091 			else
4092 				break;
4093 		}
4094 		found = !strcmp(name, snap_name);
4095 		kfree(snap_name);
4096 	}
4097 	return found ? snap_id : CEPH_NOSNAP;
4098 }
4099 
4100 /*
4101  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4102  * no snapshot by that name is found, or if an error occurs.
4103  */
4104 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4105 {
4106 	if (rbd_dev->image_format == 1)
4107 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4108 
4109 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4110 }
4111 
4112 /*
4113  * When an rbd image has a parent image, it is identified by the
4114  * pool, image, and snapshot ids (not names).  This function fills
4115  * in the names for those ids.  (It's OK if we can't figure out the
4116  * name for an image id, but the pool and snapshot ids should always
4117  * exist and have names.)  All names in an rbd spec are dynamically
4118  * allocated.
4119  *
4120  * When an image being mapped (not a parent) is probed, we have the
4121  * pool name and pool id, image name and image id, and the snapshot
4122  * name.  The only thing we're missing is the snapshot id.
4123  */
4124 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4125 {
4126 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4127 	struct rbd_spec *spec = rbd_dev->spec;
4128 	const char *pool_name;
4129 	const char *image_name;
4130 	const char *snap_name;
4131 	int ret;
4132 
4133 	/*
4134 	 * An image being mapped will have the pool name (etc.), but
4135 	 * we need to look up the snapshot id.
4136 	 */
4137 	if (spec->pool_name) {
4138 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4139 			u64 snap_id;
4140 
4141 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4142 			if (snap_id == CEPH_NOSNAP)
4143 				return -ENOENT;
4144 			spec->snap_id = snap_id;
4145 		} else {
4146 			spec->snap_id = CEPH_NOSNAP;
4147 		}
4148 
4149 		return 0;
4150 	}
4151 
4152 	/* Get the pool name; we have to make our own copy of this */
4153 
4154 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4155 	if (!pool_name) {
4156 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4157 		return -EIO;
4158 	}
4159 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4160 	if (!pool_name)
4161 		return -ENOMEM;
4162 
4163 	/* Fetch the image name; tolerate failure here */
4164 
4165 	image_name = rbd_dev_image_name(rbd_dev);
4166 	if (!image_name)
4167 		rbd_warn(rbd_dev, "unable to get image name");
4168 
4169 	/* Look up the snapshot name, and make a copy */
4170 
4171 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4172 	if (IS_ERR(snap_name)) {
4173 		ret = PTR_ERR(snap_name);
4174 		goto out_err;
4175 	}
4176 
4177 	spec->pool_name = pool_name;
4178 	spec->image_name = image_name;
4179 	spec->snap_name = snap_name;
4180 
4181 	return 0;
4182 out_err:
4183 	kfree(image_name);
4184 	kfree(pool_name);
4185 
4186 	return ret;
4187 }
4188 
4189 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4190 {
4191 	size_t size;
4192 	int ret;
4193 	void *reply_buf;
4194 	void *p;
4195 	void *end;
4196 	u64 seq;
4197 	u32 snap_count;
4198 	struct ceph_snap_context *snapc;
4199 	u32 i;
4200 
4201 	/*
4202 	 * We'll need room for the seq value (maximum snapshot id),
4203 	 * snapshot count, and array of that many snapshot ids.
4204 	 * For now we have a fixed upper limit on the number we're
4205 	 * prepared to receive.
4206 	 */
4207 	size = sizeof (__le64) + sizeof (__le32) +
4208 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4209 	reply_buf = kzalloc(size, GFP_KERNEL);
4210 	if (!reply_buf)
4211 		return -ENOMEM;
4212 
4213 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4214 				"rbd", "get_snapcontext", NULL, 0,
4215 				reply_buf, size);
4216 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217 	if (ret < 0)
4218 		goto out;
4219 
4220 	p = reply_buf;
4221 	end = reply_buf + ret;
4222 	ret = -ERANGE;
4223 	ceph_decode_64_safe(&p, end, seq, out);
4224 	ceph_decode_32_safe(&p, end, snap_count, out);
4225 
4226 	/*
4227 	 * Make sure the reported number of snapshot ids wouldn't go
4228 	 * beyond the end of our buffer.  But before checking that,
4229 	 * make sure the computed size of the snapshot context we
4230 	 * allocate is representable in a size_t.
4231 	 */
4232 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4233 				 / sizeof (u64)) {
4234 		ret = -EINVAL;
4235 		goto out;
4236 	}
4237 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4238 		goto out;
4239 	ret = 0;
4240 
4241 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4242 	if (!snapc) {
4243 		ret = -ENOMEM;
4244 		goto out;
4245 	}
4246 	snapc->seq = seq;
4247 	for (i = 0; i < snap_count; i++)
4248 		snapc->snaps[i] = ceph_decode_64(&p);
4249 
4250 	ceph_put_snap_context(rbd_dev->header.snapc);
4251 	rbd_dev->header.snapc = snapc;
4252 
4253 	dout("  snap context seq = %llu, snap_count = %u\n",
4254 		(unsigned long long)seq, (unsigned int)snap_count);
4255 out:
4256 	kfree(reply_buf);
4257 
4258 	return ret;
4259 }
4260 
4261 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4262 					u64 snap_id)
4263 {
4264 	size_t size;
4265 	void *reply_buf;
4266 	__le64 snapid;
4267 	int ret;
4268 	void *p;
4269 	void *end;
4270 	char *snap_name;
4271 
4272 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4273 	reply_buf = kmalloc(size, GFP_KERNEL);
4274 	if (!reply_buf)
4275 		return ERR_PTR(-ENOMEM);
4276 
4277 	snapid = cpu_to_le64(snap_id);
4278 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4279 				"rbd", "get_snapshot_name",
4280 				&snapid, sizeof (snapid),
4281 				reply_buf, size);
4282 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4283 	if (ret < 0) {
4284 		snap_name = ERR_PTR(ret);
4285 		goto out;
4286 	}
4287 
4288 	p = reply_buf;
4289 	end = reply_buf + ret;
4290 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4291 	if (IS_ERR(snap_name))
4292 		goto out;
4293 
4294 	dout("  snap_id 0x%016llx snap_name = %s\n",
4295 		(unsigned long long)snap_id, snap_name);
4296 out:
4297 	kfree(reply_buf);
4298 
4299 	return snap_name;
4300 }
4301 
4302 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4303 {
4304 	bool first_time = rbd_dev->header.object_prefix == NULL;
4305 	int ret;
4306 
4307 	ret = rbd_dev_v2_image_size(rbd_dev);
4308 	if (ret)
4309 		return ret;
4310 
4311 	if (first_time) {
4312 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4313 		if (ret)
4314 			return ret;
4315 	}
4316 
4317 	/*
4318 	 * If the image supports layering, get the parent info.  We
4319 	 * need to probe the first time regardless.  Thereafter we
4320 	 * only need to if there's a parent, to see if it has
4321 	 * disappeared due to the mapped image getting flattened.
4322 	 */
4323 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4324 			(first_time || rbd_dev->parent_spec)) {
4325 		bool warn;
4326 
4327 		ret = rbd_dev_v2_parent_info(rbd_dev);
4328 		if (ret)
4329 			return ret;
4330 
4331 		/*
4332 		 * Print a warning if this is the initial probe and
4333 		 * the image has a parent.  Don't print it if the
4334 		 * image now being probed is itself a parent.  We
4335 		 * can tell at this point because we won't know its
4336 		 * pool name yet (just its pool id).
4337 		 */
4338 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4339 		if (first_time && warn)
4340 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4341 					"is EXPERIMENTAL!");
4342 	}
4343 
4344 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4345 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4346 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4347 
4348 	ret = rbd_dev_v2_snap_context(rbd_dev);
4349 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4350 
4351 	return ret;
4352 }
4353 
4354 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4355 {
4356 	struct device *dev;
4357 	int ret;
4358 
4359 	dev = &rbd_dev->dev;
4360 	dev->bus = &rbd_bus_type;
4361 	dev->type = &rbd_device_type;
4362 	dev->parent = &rbd_root_dev;
4363 	dev->release = rbd_dev_device_release;
4364 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4365 	ret = device_register(dev);
4366 
4367 	return ret;
4368 }
4369 
4370 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4371 {
4372 	device_unregister(&rbd_dev->dev);
4373 }
4374 
4375 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4376 
4377 /*
4378  * Get a unique rbd identifier for the given new rbd_dev, and add
4379  * the rbd_dev to the global list.  The minimum rbd id is 1.
4380  */
4381 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4382 {
4383 	rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4384 
4385 	spin_lock(&rbd_dev_list_lock);
4386 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4387 	spin_unlock(&rbd_dev_list_lock);
4388 	dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4389 		(unsigned long long) rbd_dev->dev_id);
4390 }
4391 
4392 /*
4393  * Remove an rbd_dev from the global list, and record that its
4394  * identifier is no longer in use.
4395  */
4396 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4397 {
4398 	struct list_head *tmp;
4399 	int rbd_id = rbd_dev->dev_id;
4400 	int max_id;
4401 
4402 	rbd_assert(rbd_id > 0);
4403 
4404 	dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4405 		(unsigned long long) rbd_dev->dev_id);
4406 	spin_lock(&rbd_dev_list_lock);
4407 	list_del_init(&rbd_dev->node);
4408 
4409 	/*
4410 	 * If the id being "put" is not the current maximum, there
4411 	 * is nothing special we need to do.
4412 	 */
4413 	if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4414 		spin_unlock(&rbd_dev_list_lock);
4415 		return;
4416 	}
4417 
4418 	/*
4419 	 * We need to update the current maximum id.  Search the
4420 	 * list to find out what it is.  We're more likely to find
4421 	 * the maximum at the end, so search the list backward.
4422 	 */
4423 	max_id = 0;
4424 	list_for_each_prev(tmp, &rbd_dev_list) {
4425 		struct rbd_device *rbd_dev;
4426 
4427 		rbd_dev = list_entry(tmp, struct rbd_device, node);
4428 		if (rbd_dev->dev_id > max_id)
4429 			max_id = rbd_dev->dev_id;
4430 	}
4431 	spin_unlock(&rbd_dev_list_lock);
4432 
4433 	/*
4434 	 * The max id could have been updated by rbd_dev_id_get(), in
4435 	 * which case it now accurately reflects the new maximum.
4436 	 * Be careful not to overwrite the maximum value in that
4437 	 * case.
4438 	 */
4439 	atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4440 	dout("  max dev id has been reset\n");
4441 }
4442 
4443 /*
4444  * Skips over white space at *buf, and updates *buf to point to the
4445  * first found non-space character (if any). Returns the length of
4446  * the token (string of non-white space characters) found.  Note
4447  * that *buf must be terminated with '\0'.
4448  */
4449 static inline size_t next_token(const char **buf)
4450 {
4451         /*
4452         * These are the characters that produce nonzero for
4453         * isspace() in the "C" and "POSIX" locales.
4454         */
4455         const char *spaces = " \f\n\r\t\v";
4456 
4457         *buf += strspn(*buf, spaces);	/* Find start of token */
4458 
4459 	return strcspn(*buf, spaces);   /* Return token length */
4460 }
4461 
4462 /*
4463  * Finds the next token in *buf, and if the provided token buffer is
4464  * big enough, copies the found token into it.  The result, if
4465  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4466  * must be terminated with '\0' on entry.
4467  *
4468  * Returns the length of the token found (not including the '\0').
4469  * Return value will be 0 if no token is found, and it will be >=
4470  * token_size if the token would not fit.
4471  *
4472  * The *buf pointer will be updated to point beyond the end of the
4473  * found token.  Note that this occurs even if the token buffer is
4474  * too small to hold it.
4475  */
4476 static inline size_t copy_token(const char **buf,
4477 				char *token,
4478 				size_t token_size)
4479 {
4480         size_t len;
4481 
4482 	len = next_token(buf);
4483 	if (len < token_size) {
4484 		memcpy(token, *buf, len);
4485 		*(token + len) = '\0';
4486 	}
4487 	*buf += len;
4488 
4489         return len;
4490 }
4491 
4492 /*
4493  * Finds the next token in *buf, dynamically allocates a buffer big
4494  * enough to hold a copy of it, and copies the token into the new
4495  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4496  * that a duplicate buffer is created even for a zero-length token.
4497  *
4498  * Returns a pointer to the newly-allocated duplicate, or a null
4499  * pointer if memory for the duplicate was not available.  If
4500  * the lenp argument is a non-null pointer, the length of the token
4501  * (not including the '\0') is returned in *lenp.
4502  *
4503  * If successful, the *buf pointer will be updated to point beyond
4504  * the end of the found token.
4505  *
4506  * Note: uses GFP_KERNEL for allocation.
4507  */
4508 static inline char *dup_token(const char **buf, size_t *lenp)
4509 {
4510 	char *dup;
4511 	size_t len;
4512 
4513 	len = next_token(buf);
4514 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4515 	if (!dup)
4516 		return NULL;
4517 	*(dup + len) = '\0';
4518 	*buf += len;
4519 
4520 	if (lenp)
4521 		*lenp = len;
4522 
4523 	return dup;
4524 }
4525 
4526 /*
4527  * Parse the options provided for an "rbd add" (i.e., rbd image
4528  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4529  * and the data written is passed here via a NUL-terminated buffer.
4530  * Returns 0 if successful or an error code otherwise.
4531  *
4532  * The information extracted from these options is recorded in
4533  * the other parameters which return dynamically-allocated
4534  * structures:
4535  *  ceph_opts
4536  *      The address of a pointer that will refer to a ceph options
4537  *      structure.  Caller must release the returned pointer using
4538  *      ceph_destroy_options() when it is no longer needed.
4539  *  rbd_opts
4540  *	Address of an rbd options pointer.  Fully initialized by
4541  *	this function; caller must release with kfree().
4542  *  spec
4543  *	Address of an rbd image specification pointer.  Fully
4544  *	initialized by this function based on parsed options.
4545  *	Caller must release with rbd_spec_put().
4546  *
4547  * The options passed take this form:
4548  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4549  * where:
4550  *  <mon_addrs>
4551  *      A comma-separated list of one or more monitor addresses.
4552  *      A monitor address is an ip address, optionally followed
4553  *      by a port number (separated by a colon).
4554  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4555  *  <options>
4556  *      A comma-separated list of ceph and/or rbd options.
4557  *  <pool_name>
4558  *      The name of the rados pool containing the rbd image.
4559  *  <image_name>
4560  *      The name of the image in that pool to map.
4561  *  <snap_id>
4562  *      An optional snapshot id.  If provided, the mapping will
4563  *      present data from the image at the time that snapshot was
4564  *      created.  The image head is used if no snapshot id is
4565  *      provided.  Snapshot mappings are always read-only.
4566  */
4567 static int rbd_add_parse_args(const char *buf,
4568 				struct ceph_options **ceph_opts,
4569 				struct rbd_options **opts,
4570 				struct rbd_spec **rbd_spec)
4571 {
4572 	size_t len;
4573 	char *options;
4574 	const char *mon_addrs;
4575 	char *snap_name;
4576 	size_t mon_addrs_size;
4577 	struct rbd_spec *spec = NULL;
4578 	struct rbd_options *rbd_opts = NULL;
4579 	struct ceph_options *copts;
4580 	int ret;
4581 
4582 	/* The first four tokens are required */
4583 
4584 	len = next_token(&buf);
4585 	if (!len) {
4586 		rbd_warn(NULL, "no monitor address(es) provided");
4587 		return -EINVAL;
4588 	}
4589 	mon_addrs = buf;
4590 	mon_addrs_size = len + 1;
4591 	buf += len;
4592 
4593 	ret = -EINVAL;
4594 	options = dup_token(&buf, NULL);
4595 	if (!options)
4596 		return -ENOMEM;
4597 	if (!*options) {
4598 		rbd_warn(NULL, "no options provided");
4599 		goto out_err;
4600 	}
4601 
4602 	spec = rbd_spec_alloc();
4603 	if (!spec)
4604 		goto out_mem;
4605 
4606 	spec->pool_name = dup_token(&buf, NULL);
4607 	if (!spec->pool_name)
4608 		goto out_mem;
4609 	if (!*spec->pool_name) {
4610 		rbd_warn(NULL, "no pool name provided");
4611 		goto out_err;
4612 	}
4613 
4614 	spec->image_name = dup_token(&buf, NULL);
4615 	if (!spec->image_name)
4616 		goto out_mem;
4617 	if (!*spec->image_name) {
4618 		rbd_warn(NULL, "no image name provided");
4619 		goto out_err;
4620 	}
4621 
4622 	/*
4623 	 * Snapshot name is optional; default is to use "-"
4624 	 * (indicating the head/no snapshot).
4625 	 */
4626 	len = next_token(&buf);
4627 	if (!len) {
4628 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4629 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4630 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4631 		ret = -ENAMETOOLONG;
4632 		goto out_err;
4633 	}
4634 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4635 	if (!snap_name)
4636 		goto out_mem;
4637 	*(snap_name + len) = '\0';
4638 	spec->snap_name = snap_name;
4639 
4640 	/* Initialize all rbd options to the defaults */
4641 
4642 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4643 	if (!rbd_opts)
4644 		goto out_mem;
4645 
4646 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4647 
4648 	copts = ceph_parse_options(options, mon_addrs,
4649 					mon_addrs + mon_addrs_size - 1,
4650 					parse_rbd_opts_token, rbd_opts);
4651 	if (IS_ERR(copts)) {
4652 		ret = PTR_ERR(copts);
4653 		goto out_err;
4654 	}
4655 	kfree(options);
4656 
4657 	*ceph_opts = copts;
4658 	*opts = rbd_opts;
4659 	*rbd_spec = spec;
4660 
4661 	return 0;
4662 out_mem:
4663 	ret = -ENOMEM;
4664 out_err:
4665 	kfree(rbd_opts);
4666 	rbd_spec_put(spec);
4667 	kfree(options);
4668 
4669 	return ret;
4670 }
4671 
4672 /*
4673  * An rbd format 2 image has a unique identifier, distinct from the
4674  * name given to it by the user.  Internally, that identifier is
4675  * what's used to specify the names of objects related to the image.
4676  *
4677  * A special "rbd id" object is used to map an rbd image name to its
4678  * id.  If that object doesn't exist, then there is no v2 rbd image
4679  * with the supplied name.
4680  *
4681  * This function will record the given rbd_dev's image_id field if
4682  * it can be determined, and in that case will return 0.  If any
4683  * errors occur a negative errno will be returned and the rbd_dev's
4684  * image_id field will be unchanged (and should be NULL).
4685  */
4686 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4687 {
4688 	int ret;
4689 	size_t size;
4690 	char *object_name;
4691 	void *response;
4692 	char *image_id;
4693 
4694 	/*
4695 	 * When probing a parent image, the image id is already
4696 	 * known (and the image name likely is not).  There's no
4697 	 * need to fetch the image id again in this case.  We
4698 	 * do still need to set the image format though.
4699 	 */
4700 	if (rbd_dev->spec->image_id) {
4701 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4702 
4703 		return 0;
4704 	}
4705 
4706 	/*
4707 	 * First, see if the format 2 image id file exists, and if
4708 	 * so, get the image's persistent id from it.
4709 	 */
4710 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4711 	object_name = kmalloc(size, GFP_NOIO);
4712 	if (!object_name)
4713 		return -ENOMEM;
4714 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4715 	dout("rbd id object name is %s\n", object_name);
4716 
4717 	/* Response will be an encoded string, which includes a length */
4718 
4719 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4720 	response = kzalloc(size, GFP_NOIO);
4721 	if (!response) {
4722 		ret = -ENOMEM;
4723 		goto out;
4724 	}
4725 
4726 	/* If it doesn't exist we'll assume it's a format 1 image */
4727 
4728 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4729 				"rbd", "get_id", NULL, 0,
4730 				response, RBD_IMAGE_ID_LEN_MAX);
4731 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4732 	if (ret == -ENOENT) {
4733 		image_id = kstrdup("", GFP_KERNEL);
4734 		ret = image_id ? 0 : -ENOMEM;
4735 		if (!ret)
4736 			rbd_dev->image_format = 1;
4737 	} else if (ret > sizeof (__le32)) {
4738 		void *p = response;
4739 
4740 		image_id = ceph_extract_encoded_string(&p, p + ret,
4741 						NULL, GFP_NOIO);
4742 		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4743 		if (!ret)
4744 			rbd_dev->image_format = 2;
4745 	} else {
4746 		ret = -EINVAL;
4747 	}
4748 
4749 	if (!ret) {
4750 		rbd_dev->spec->image_id = image_id;
4751 		dout("image_id is %s\n", image_id);
4752 	}
4753 out:
4754 	kfree(response);
4755 	kfree(object_name);
4756 
4757 	return ret;
4758 }
4759 
4760 /*
4761  * Undo whatever state changes are made by v1 or v2 header info
4762  * call.
4763  */
4764 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4765 {
4766 	struct rbd_image_header	*header;
4767 
4768 	/* Drop parent reference unless it's already been done (or none) */
4769 
4770 	if (rbd_dev->parent_overlap)
4771 		rbd_dev_parent_put(rbd_dev);
4772 
4773 	/* Free dynamic fields from the header, then zero it out */
4774 
4775 	header = &rbd_dev->header;
4776 	ceph_put_snap_context(header->snapc);
4777 	kfree(header->snap_sizes);
4778 	kfree(header->snap_names);
4779 	kfree(header->object_prefix);
4780 	memset(header, 0, sizeof (*header));
4781 }
4782 
4783 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4784 {
4785 	int ret;
4786 
4787 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4788 	if (ret)
4789 		goto out_err;
4790 
4791 	/*
4792 	 * Get the and check features for the image.  Currently the
4793 	 * features are assumed to never change.
4794 	 */
4795 	ret = rbd_dev_v2_features(rbd_dev);
4796 	if (ret)
4797 		goto out_err;
4798 
4799 	/* If the image supports fancy striping, get its parameters */
4800 
4801 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4802 		ret = rbd_dev_v2_striping_info(rbd_dev);
4803 		if (ret < 0)
4804 			goto out_err;
4805 	}
4806 	/* No support for crypto and compression type format 2 images */
4807 
4808 	return 0;
4809 out_err:
4810 	rbd_dev->header.features = 0;
4811 	kfree(rbd_dev->header.object_prefix);
4812 	rbd_dev->header.object_prefix = NULL;
4813 
4814 	return ret;
4815 }
4816 
4817 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4818 {
4819 	struct rbd_device *parent = NULL;
4820 	struct rbd_spec *parent_spec;
4821 	struct rbd_client *rbdc;
4822 	int ret;
4823 
4824 	if (!rbd_dev->parent_spec)
4825 		return 0;
4826 	/*
4827 	 * We need to pass a reference to the client and the parent
4828 	 * spec when creating the parent rbd_dev.  Images related by
4829 	 * parent/child relationships always share both.
4830 	 */
4831 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4832 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4833 
4834 	ret = -ENOMEM;
4835 	parent = rbd_dev_create(rbdc, parent_spec);
4836 	if (!parent)
4837 		goto out_err;
4838 
4839 	ret = rbd_dev_image_probe(parent, false);
4840 	if (ret < 0)
4841 		goto out_err;
4842 	rbd_dev->parent = parent;
4843 	atomic_set(&rbd_dev->parent_ref, 1);
4844 
4845 	return 0;
4846 out_err:
4847 	if (parent) {
4848 		rbd_dev_unparent(rbd_dev);
4849 		kfree(rbd_dev->header_name);
4850 		rbd_dev_destroy(parent);
4851 	} else {
4852 		rbd_put_client(rbdc);
4853 		rbd_spec_put(parent_spec);
4854 	}
4855 
4856 	return ret;
4857 }
4858 
4859 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4860 {
4861 	int ret;
4862 
4863 	/* generate unique id: find highest unique id, add one */
4864 	rbd_dev_id_get(rbd_dev);
4865 
4866 	/* Fill in the device name, now that we have its id. */
4867 	BUILD_BUG_ON(DEV_NAME_LEN
4868 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4869 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4870 
4871 	/* Get our block major device number. */
4872 
4873 	ret = register_blkdev(0, rbd_dev->name);
4874 	if (ret < 0)
4875 		goto err_out_id;
4876 	rbd_dev->major = ret;
4877 
4878 	/* Set up the blkdev mapping. */
4879 
4880 	ret = rbd_init_disk(rbd_dev);
4881 	if (ret)
4882 		goto err_out_blkdev;
4883 
4884 	ret = rbd_dev_mapping_set(rbd_dev);
4885 	if (ret)
4886 		goto err_out_disk;
4887 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4888 
4889 	ret = rbd_bus_add_dev(rbd_dev);
4890 	if (ret)
4891 		goto err_out_mapping;
4892 
4893 	/* Everything's ready.  Announce the disk to the world. */
4894 
4895 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4896 	add_disk(rbd_dev->disk);
4897 
4898 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4899 		(unsigned long long) rbd_dev->mapping.size);
4900 
4901 	return ret;
4902 
4903 err_out_mapping:
4904 	rbd_dev_mapping_clear(rbd_dev);
4905 err_out_disk:
4906 	rbd_free_disk(rbd_dev);
4907 err_out_blkdev:
4908 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
4909 err_out_id:
4910 	rbd_dev_id_put(rbd_dev);
4911 	rbd_dev_mapping_clear(rbd_dev);
4912 
4913 	return ret;
4914 }
4915 
4916 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4917 {
4918 	struct rbd_spec *spec = rbd_dev->spec;
4919 	size_t size;
4920 
4921 	/* Record the header object name for this rbd image. */
4922 
4923 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4924 
4925 	if (rbd_dev->image_format == 1)
4926 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4927 	else
4928 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4929 
4930 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4931 	if (!rbd_dev->header_name)
4932 		return -ENOMEM;
4933 
4934 	if (rbd_dev->image_format == 1)
4935 		sprintf(rbd_dev->header_name, "%s%s",
4936 			spec->image_name, RBD_SUFFIX);
4937 	else
4938 		sprintf(rbd_dev->header_name, "%s%s",
4939 			RBD_HEADER_PREFIX, spec->image_id);
4940 	return 0;
4941 }
4942 
4943 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4944 {
4945 	rbd_dev_unprobe(rbd_dev);
4946 	kfree(rbd_dev->header_name);
4947 	rbd_dev->header_name = NULL;
4948 	rbd_dev->image_format = 0;
4949 	kfree(rbd_dev->spec->image_id);
4950 	rbd_dev->spec->image_id = NULL;
4951 
4952 	rbd_dev_destroy(rbd_dev);
4953 }
4954 
4955 /*
4956  * Probe for the existence of the header object for the given rbd
4957  * device.  If this image is the one being mapped (i.e., not a
4958  * parent), initiate a watch on its header object before using that
4959  * object to get detailed information about the rbd image.
4960  */
4961 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4962 {
4963 	int ret;
4964 	int tmp;
4965 
4966 	/*
4967 	 * Get the id from the image id object.  Unless there's an
4968 	 * error, rbd_dev->spec->image_id will be filled in with
4969 	 * a dynamically-allocated string, and rbd_dev->image_format
4970 	 * will be set to either 1 or 2.
4971 	 */
4972 	ret = rbd_dev_image_id(rbd_dev);
4973 	if (ret)
4974 		return ret;
4975 	rbd_assert(rbd_dev->spec->image_id);
4976 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4977 
4978 	ret = rbd_dev_header_name(rbd_dev);
4979 	if (ret)
4980 		goto err_out_format;
4981 
4982 	if (mapping) {
4983 		ret = rbd_dev_header_watch_sync(rbd_dev, true);
4984 		if (ret)
4985 			goto out_header_name;
4986 	}
4987 
4988 	if (rbd_dev->image_format == 1)
4989 		ret = rbd_dev_v1_header_info(rbd_dev);
4990 	else
4991 		ret = rbd_dev_v2_header_info(rbd_dev);
4992 	if (ret)
4993 		goto err_out_watch;
4994 
4995 	ret = rbd_dev_spec_update(rbd_dev);
4996 	if (ret)
4997 		goto err_out_probe;
4998 
4999 	ret = rbd_dev_probe_parent(rbd_dev);
5000 	if (ret)
5001 		goto err_out_probe;
5002 
5003 	dout("discovered format %u image, header name is %s\n",
5004 		rbd_dev->image_format, rbd_dev->header_name);
5005 
5006 	return 0;
5007 err_out_probe:
5008 	rbd_dev_unprobe(rbd_dev);
5009 err_out_watch:
5010 	if (mapping) {
5011 		tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5012 		if (tmp)
5013 			rbd_warn(rbd_dev, "unable to tear down "
5014 					"watch request (%d)\n", tmp);
5015 	}
5016 out_header_name:
5017 	kfree(rbd_dev->header_name);
5018 	rbd_dev->header_name = NULL;
5019 err_out_format:
5020 	rbd_dev->image_format = 0;
5021 	kfree(rbd_dev->spec->image_id);
5022 	rbd_dev->spec->image_id = NULL;
5023 
5024 	dout("probe failed, returning %d\n", ret);
5025 
5026 	return ret;
5027 }
5028 
5029 static ssize_t rbd_add(struct bus_type *bus,
5030 		       const char *buf,
5031 		       size_t count)
5032 {
5033 	struct rbd_device *rbd_dev = NULL;
5034 	struct ceph_options *ceph_opts = NULL;
5035 	struct rbd_options *rbd_opts = NULL;
5036 	struct rbd_spec *spec = NULL;
5037 	struct rbd_client *rbdc;
5038 	struct ceph_osd_client *osdc;
5039 	bool read_only;
5040 	int rc = -ENOMEM;
5041 
5042 	if (!try_module_get(THIS_MODULE))
5043 		return -ENODEV;
5044 
5045 	/* parse add command */
5046 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5047 	if (rc < 0)
5048 		goto err_out_module;
5049 	read_only = rbd_opts->read_only;
5050 	kfree(rbd_opts);
5051 	rbd_opts = NULL;	/* done with this */
5052 
5053 	rbdc = rbd_get_client(ceph_opts);
5054 	if (IS_ERR(rbdc)) {
5055 		rc = PTR_ERR(rbdc);
5056 		goto err_out_args;
5057 	}
5058 
5059 	/* pick the pool */
5060 	osdc = &rbdc->client->osdc;
5061 	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5062 	if (rc < 0)
5063 		goto err_out_client;
5064 	spec->pool_id = (u64)rc;
5065 
5066 	/* The ceph file layout needs to fit pool id in 32 bits */
5067 
5068 	if (spec->pool_id > (u64)U32_MAX) {
5069 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5070 				(unsigned long long)spec->pool_id, U32_MAX);
5071 		rc = -EIO;
5072 		goto err_out_client;
5073 	}
5074 
5075 	rbd_dev = rbd_dev_create(rbdc, spec);
5076 	if (!rbd_dev)
5077 		goto err_out_client;
5078 	rbdc = NULL;		/* rbd_dev now owns this */
5079 	spec = NULL;		/* rbd_dev now owns this */
5080 
5081 	rc = rbd_dev_image_probe(rbd_dev, true);
5082 	if (rc < 0)
5083 		goto err_out_rbd_dev;
5084 
5085 	/* If we are mapping a snapshot it must be marked read-only */
5086 
5087 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5088 		read_only = true;
5089 	rbd_dev->mapping.read_only = read_only;
5090 
5091 	rc = rbd_dev_device_setup(rbd_dev);
5092 	if (rc) {
5093 		rbd_dev_image_release(rbd_dev);
5094 		goto err_out_module;
5095 	}
5096 
5097 	return count;
5098 
5099 err_out_rbd_dev:
5100 	rbd_dev_destroy(rbd_dev);
5101 err_out_client:
5102 	rbd_put_client(rbdc);
5103 err_out_args:
5104 	rbd_spec_put(spec);
5105 err_out_module:
5106 	module_put(THIS_MODULE);
5107 
5108 	dout("Error adding device %s\n", buf);
5109 
5110 	return (ssize_t)rc;
5111 }
5112 
5113 static void rbd_dev_device_release(struct device *dev)
5114 {
5115 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5116 
5117 	rbd_free_disk(rbd_dev);
5118 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5119 	rbd_dev_mapping_clear(rbd_dev);
5120 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
5121 	rbd_dev->major = 0;
5122 	rbd_dev_id_put(rbd_dev);
5123 	rbd_dev_mapping_clear(rbd_dev);
5124 }
5125 
5126 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5127 {
5128 	while (rbd_dev->parent) {
5129 		struct rbd_device *first = rbd_dev;
5130 		struct rbd_device *second = first->parent;
5131 		struct rbd_device *third;
5132 
5133 		/*
5134 		 * Follow to the parent with no grandparent and
5135 		 * remove it.
5136 		 */
5137 		while (second && (third = second->parent)) {
5138 			first = second;
5139 			second = third;
5140 		}
5141 		rbd_assert(second);
5142 		rbd_dev_image_release(second);
5143 		first->parent = NULL;
5144 		first->parent_overlap = 0;
5145 
5146 		rbd_assert(first->parent_spec);
5147 		rbd_spec_put(first->parent_spec);
5148 		first->parent_spec = NULL;
5149 	}
5150 }
5151 
5152 static ssize_t rbd_remove(struct bus_type *bus,
5153 			  const char *buf,
5154 			  size_t count)
5155 {
5156 	struct rbd_device *rbd_dev = NULL;
5157 	struct list_head *tmp;
5158 	int dev_id;
5159 	unsigned long ul;
5160 	bool already = false;
5161 	int ret;
5162 
5163 	ret = kstrtoul(buf, 10, &ul);
5164 	if (ret)
5165 		return ret;
5166 
5167 	/* convert to int; abort if we lost anything in the conversion */
5168 	dev_id = (int)ul;
5169 	if (dev_id != ul)
5170 		return -EINVAL;
5171 
5172 	ret = -ENOENT;
5173 	spin_lock(&rbd_dev_list_lock);
5174 	list_for_each(tmp, &rbd_dev_list) {
5175 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5176 		if (rbd_dev->dev_id == dev_id) {
5177 			ret = 0;
5178 			break;
5179 		}
5180 	}
5181 	if (!ret) {
5182 		spin_lock_irq(&rbd_dev->lock);
5183 		if (rbd_dev->open_count)
5184 			ret = -EBUSY;
5185 		else
5186 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5187 							&rbd_dev->flags);
5188 		spin_unlock_irq(&rbd_dev->lock);
5189 	}
5190 	spin_unlock(&rbd_dev_list_lock);
5191 	if (ret < 0 || already)
5192 		return ret;
5193 
5194 	ret = rbd_dev_header_watch_sync(rbd_dev, false);
5195 	if (ret)
5196 		rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5197 
5198 	/*
5199 	 * flush remaining watch callbacks - these must be complete
5200 	 * before the osd_client is shutdown
5201 	 */
5202 	dout("%s: flushing notifies", __func__);
5203 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5204 	/*
5205 	 * Don't free anything from rbd_dev->disk until after all
5206 	 * notifies are completely processed. Otherwise
5207 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5208 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5209 	 */
5210 	rbd_bus_del_dev(rbd_dev);
5211 	rbd_dev_image_release(rbd_dev);
5212 	module_put(THIS_MODULE);
5213 
5214 	return count;
5215 }
5216 
5217 /*
5218  * create control files in sysfs
5219  * /sys/bus/rbd/...
5220  */
5221 static int rbd_sysfs_init(void)
5222 {
5223 	int ret;
5224 
5225 	ret = device_register(&rbd_root_dev);
5226 	if (ret < 0)
5227 		return ret;
5228 
5229 	ret = bus_register(&rbd_bus_type);
5230 	if (ret < 0)
5231 		device_unregister(&rbd_root_dev);
5232 
5233 	return ret;
5234 }
5235 
5236 static void rbd_sysfs_cleanup(void)
5237 {
5238 	bus_unregister(&rbd_bus_type);
5239 	device_unregister(&rbd_root_dev);
5240 }
5241 
5242 static int rbd_slab_init(void)
5243 {
5244 	rbd_assert(!rbd_img_request_cache);
5245 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5246 					sizeof (struct rbd_img_request),
5247 					__alignof__(struct rbd_img_request),
5248 					0, NULL);
5249 	if (!rbd_img_request_cache)
5250 		return -ENOMEM;
5251 
5252 	rbd_assert(!rbd_obj_request_cache);
5253 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5254 					sizeof (struct rbd_obj_request),
5255 					__alignof__(struct rbd_obj_request),
5256 					0, NULL);
5257 	if (!rbd_obj_request_cache)
5258 		goto out_err;
5259 
5260 	rbd_assert(!rbd_segment_name_cache);
5261 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5262 					MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5263 	if (rbd_segment_name_cache)
5264 		return 0;
5265 out_err:
5266 	if (rbd_obj_request_cache) {
5267 		kmem_cache_destroy(rbd_obj_request_cache);
5268 		rbd_obj_request_cache = NULL;
5269 	}
5270 
5271 	kmem_cache_destroy(rbd_img_request_cache);
5272 	rbd_img_request_cache = NULL;
5273 
5274 	return -ENOMEM;
5275 }
5276 
5277 static void rbd_slab_exit(void)
5278 {
5279 	rbd_assert(rbd_segment_name_cache);
5280 	kmem_cache_destroy(rbd_segment_name_cache);
5281 	rbd_segment_name_cache = NULL;
5282 
5283 	rbd_assert(rbd_obj_request_cache);
5284 	kmem_cache_destroy(rbd_obj_request_cache);
5285 	rbd_obj_request_cache = NULL;
5286 
5287 	rbd_assert(rbd_img_request_cache);
5288 	kmem_cache_destroy(rbd_img_request_cache);
5289 	rbd_img_request_cache = NULL;
5290 }
5291 
5292 static int __init rbd_init(void)
5293 {
5294 	int rc;
5295 
5296 	if (!libceph_compatible(NULL)) {
5297 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5298 
5299 		return -EINVAL;
5300 	}
5301 	rc = rbd_slab_init();
5302 	if (rc)
5303 		return rc;
5304 	rc = rbd_sysfs_init();
5305 	if (rc)
5306 		rbd_slab_exit();
5307 	else
5308 		pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5309 
5310 	return rc;
5311 }
5312 
5313 static void __exit rbd_exit(void)
5314 {
5315 	rbd_sysfs_cleanup();
5316 	rbd_slab_exit();
5317 }
5318 
5319 module_init(rbd_init);
5320 module_exit(rbd_exit);
5321 
5322 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5323 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5324 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5325 MODULE_DESCRIPTION("rados block device");
5326 
5327 /* following authorship retained from original osdblk.c */
5328 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5329 
5330 MODULE_LICENSE("GPL");
5331