1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 #include <linux/idr.h> 45 #include <linux/workqueue.h> 46 47 #include "rbd_types.h" 48 49 #define RBD_DEBUG /* Activate rbd_assert() calls */ 50 51 /* 52 * The basic unit of block I/O is a sector. It is interpreted in a 53 * number of contexts in Linux (blk, bio, genhd), but the default is 54 * universally 512 bytes. These symbols are just slightly more 55 * meaningful than the bare numbers they represent. 56 */ 57 #define SECTOR_SHIFT 9 58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 59 60 /* 61 * Increment the given counter and return its updated value. 62 * If the counter is already 0 it will not be incremented. 63 * If the counter is already at its maximum value returns 64 * -EINVAL without updating it. 65 */ 66 static int atomic_inc_return_safe(atomic_t *v) 67 { 68 unsigned int counter; 69 70 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 71 if (counter <= (unsigned int)INT_MAX) 72 return (int)counter; 73 74 atomic_dec(v); 75 76 return -EINVAL; 77 } 78 79 /* Decrement the counter. Return the resulting value, or -EINVAL */ 80 static int atomic_dec_return_safe(atomic_t *v) 81 { 82 int counter; 83 84 counter = atomic_dec_return(v); 85 if (counter >= 0) 86 return counter; 87 88 atomic_inc(v); 89 90 return -EINVAL; 91 } 92 93 #define RBD_DRV_NAME "rbd" 94 95 #define RBD_MINORS_PER_MAJOR 256 96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 97 98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 99 #define RBD_MAX_SNAP_NAME_LEN \ 100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 101 102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 103 104 #define RBD_SNAP_HEAD_NAME "-" 105 106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 107 108 /* This allows a single page to hold an image name sent by OSD */ 109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 110 #define RBD_IMAGE_ID_LEN_MAX 64 111 112 #define RBD_OBJ_PREFIX_LEN_MAX 64 113 114 /* Feature bits */ 115 116 #define RBD_FEATURE_LAYERING (1<<0) 117 #define RBD_FEATURE_STRIPINGV2 (1<<1) 118 #define RBD_FEATURES_ALL \ 119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 120 121 /* Features supported by this (client software) implementation. */ 122 123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 124 125 /* 126 * An RBD device name will be "rbd#", where the "rbd" comes from 127 * RBD_DRV_NAME above, and # is a unique integer identifier. 128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 129 * enough to hold all possible device names. 130 */ 131 #define DEV_NAME_LEN 32 132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 133 134 /* 135 * block device image metadata (in-memory version) 136 */ 137 struct rbd_image_header { 138 /* These six fields never change for a given rbd image */ 139 char *object_prefix; 140 __u8 obj_order; 141 __u8 crypt_type; 142 __u8 comp_type; 143 u64 stripe_unit; 144 u64 stripe_count; 145 u64 features; /* Might be changeable someday? */ 146 147 /* The remaining fields need to be updated occasionally */ 148 u64 image_size; 149 struct ceph_snap_context *snapc; 150 char *snap_names; /* format 1 only */ 151 u64 *snap_sizes; /* format 1 only */ 152 }; 153 154 /* 155 * An rbd image specification. 156 * 157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 158 * identify an image. Each rbd_dev structure includes a pointer to 159 * an rbd_spec structure that encapsulates this identity. 160 * 161 * Each of the id's in an rbd_spec has an associated name. For a 162 * user-mapped image, the names are supplied and the id's associated 163 * with them are looked up. For a layered image, a parent image is 164 * defined by the tuple, and the names are looked up. 165 * 166 * An rbd_dev structure contains a parent_spec pointer which is 167 * non-null if the image it represents is a child in a layered 168 * image. This pointer will refer to the rbd_spec structure used 169 * by the parent rbd_dev for its own identity (i.e., the structure 170 * is shared between the parent and child). 171 * 172 * Since these structures are populated once, during the discovery 173 * phase of image construction, they are effectively immutable so 174 * we make no effort to synchronize access to them. 175 * 176 * Note that code herein does not assume the image name is known (it 177 * could be a null pointer). 178 */ 179 struct rbd_spec { 180 u64 pool_id; 181 const char *pool_name; 182 183 const char *image_id; 184 const char *image_name; 185 186 u64 snap_id; 187 const char *snap_name; 188 189 struct kref kref; 190 }; 191 192 /* 193 * an instance of the client. multiple devices may share an rbd client. 194 */ 195 struct rbd_client { 196 struct ceph_client *client; 197 struct kref kref; 198 struct list_head node; 199 }; 200 201 struct rbd_img_request; 202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 203 204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 205 206 struct rbd_obj_request; 207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 208 209 enum obj_request_type { 210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 211 }; 212 213 enum obj_req_flags { 214 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 215 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 216 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 217 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 218 }; 219 220 struct rbd_obj_request { 221 const char *object_name; 222 u64 offset; /* object start byte */ 223 u64 length; /* bytes from offset */ 224 unsigned long flags; 225 226 /* 227 * An object request associated with an image will have its 228 * img_data flag set; a standalone object request will not. 229 * 230 * A standalone object request will have which == BAD_WHICH 231 * and a null obj_request pointer. 232 * 233 * An object request initiated in support of a layered image 234 * object (to check for its existence before a write) will 235 * have which == BAD_WHICH and a non-null obj_request pointer. 236 * 237 * Finally, an object request for rbd image data will have 238 * which != BAD_WHICH, and will have a non-null img_request 239 * pointer. The value of which will be in the range 240 * 0..(img_request->obj_request_count-1). 241 */ 242 union { 243 struct rbd_obj_request *obj_request; /* STAT op */ 244 struct { 245 struct rbd_img_request *img_request; 246 u64 img_offset; 247 /* links for img_request->obj_requests list */ 248 struct list_head links; 249 }; 250 }; 251 u32 which; /* posn image request list */ 252 253 enum obj_request_type type; 254 union { 255 struct bio *bio_list; 256 struct { 257 struct page **pages; 258 u32 page_count; 259 }; 260 }; 261 struct page **copyup_pages; 262 u32 copyup_page_count; 263 264 struct ceph_osd_request *osd_req; 265 266 u64 xferred; /* bytes transferred */ 267 int result; 268 269 rbd_obj_callback_t callback; 270 struct completion completion; 271 272 struct kref kref; 273 }; 274 275 enum img_req_flags { 276 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 277 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 278 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 279 }; 280 281 struct rbd_img_request { 282 struct rbd_device *rbd_dev; 283 u64 offset; /* starting image byte offset */ 284 u64 length; /* byte count from offset */ 285 unsigned long flags; 286 union { 287 u64 snap_id; /* for reads */ 288 struct ceph_snap_context *snapc; /* for writes */ 289 }; 290 union { 291 struct request *rq; /* block request */ 292 struct rbd_obj_request *obj_request; /* obj req initiator */ 293 }; 294 struct page **copyup_pages; 295 u32 copyup_page_count; 296 spinlock_t completion_lock;/* protects next_completion */ 297 u32 next_completion; 298 rbd_img_callback_t callback; 299 u64 xferred;/* aggregate bytes transferred */ 300 int result; /* first nonzero obj_request result */ 301 302 u32 obj_request_count; 303 struct list_head obj_requests; /* rbd_obj_request structs */ 304 305 struct kref kref; 306 }; 307 308 #define for_each_obj_request(ireq, oreq) \ 309 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 310 #define for_each_obj_request_from(ireq, oreq) \ 311 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 312 #define for_each_obj_request_safe(ireq, oreq, n) \ 313 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 314 315 struct rbd_mapping { 316 u64 size; 317 u64 features; 318 bool read_only; 319 }; 320 321 /* 322 * a single device 323 */ 324 struct rbd_device { 325 int dev_id; /* blkdev unique id */ 326 327 int major; /* blkdev assigned major */ 328 int minor; 329 struct gendisk *disk; /* blkdev's gendisk and rq */ 330 331 u32 image_format; /* Either 1 or 2 */ 332 struct rbd_client *rbd_client; 333 334 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 335 336 struct list_head rq_queue; /* incoming rq queue */ 337 spinlock_t lock; /* queue, flags, open_count */ 338 struct workqueue_struct *rq_wq; 339 struct work_struct rq_work; 340 341 struct rbd_image_header header; 342 unsigned long flags; /* possibly lock protected */ 343 struct rbd_spec *spec; 344 345 char *header_name; 346 347 struct ceph_file_layout layout; 348 349 struct ceph_osd_event *watch_event; 350 struct rbd_obj_request *watch_request; 351 352 struct rbd_spec *parent_spec; 353 u64 parent_overlap; 354 atomic_t parent_ref; 355 struct rbd_device *parent; 356 357 /* protects updating the header */ 358 struct rw_semaphore header_rwsem; 359 360 struct rbd_mapping mapping; 361 362 struct list_head node; 363 364 /* sysfs related */ 365 struct device dev; 366 unsigned long open_count; /* protected by lock */ 367 }; 368 369 /* 370 * Flag bits for rbd_dev->flags. If atomicity is required, 371 * rbd_dev->lock is used to protect access. 372 * 373 * Currently, only the "removing" flag (which is coupled with the 374 * "open_count" field) requires atomic access. 375 */ 376 enum rbd_dev_flags { 377 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 378 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 379 }; 380 381 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 382 383 static LIST_HEAD(rbd_dev_list); /* devices */ 384 static DEFINE_SPINLOCK(rbd_dev_list_lock); 385 386 static LIST_HEAD(rbd_client_list); /* clients */ 387 static DEFINE_SPINLOCK(rbd_client_list_lock); 388 389 /* Slab caches for frequently-allocated structures */ 390 391 static struct kmem_cache *rbd_img_request_cache; 392 static struct kmem_cache *rbd_obj_request_cache; 393 static struct kmem_cache *rbd_segment_name_cache; 394 395 static int rbd_major; 396 static DEFINE_IDA(rbd_dev_id_ida); 397 398 /* 399 * Default to false for now, as single-major requires >= 0.75 version of 400 * userspace rbd utility. 401 */ 402 static bool single_major = false; 403 module_param(single_major, bool, S_IRUGO); 404 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 405 406 static int rbd_img_request_submit(struct rbd_img_request *img_request); 407 408 static void rbd_dev_device_release(struct device *dev); 409 410 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 411 size_t count); 412 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 413 size_t count); 414 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 415 size_t count); 416 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 417 size_t count); 418 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 419 static void rbd_spec_put(struct rbd_spec *spec); 420 421 static int rbd_dev_id_to_minor(int dev_id) 422 { 423 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 424 } 425 426 static int minor_to_rbd_dev_id(int minor) 427 { 428 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 429 } 430 431 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 432 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 433 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 434 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 435 436 static struct attribute *rbd_bus_attrs[] = { 437 &bus_attr_add.attr, 438 &bus_attr_remove.attr, 439 &bus_attr_add_single_major.attr, 440 &bus_attr_remove_single_major.attr, 441 NULL, 442 }; 443 444 static umode_t rbd_bus_is_visible(struct kobject *kobj, 445 struct attribute *attr, int index) 446 { 447 if (!single_major && 448 (attr == &bus_attr_add_single_major.attr || 449 attr == &bus_attr_remove_single_major.attr)) 450 return 0; 451 452 return attr->mode; 453 } 454 455 static const struct attribute_group rbd_bus_group = { 456 .attrs = rbd_bus_attrs, 457 .is_visible = rbd_bus_is_visible, 458 }; 459 __ATTRIBUTE_GROUPS(rbd_bus); 460 461 static struct bus_type rbd_bus_type = { 462 .name = "rbd", 463 .bus_groups = rbd_bus_groups, 464 }; 465 466 static void rbd_root_dev_release(struct device *dev) 467 { 468 } 469 470 static struct device rbd_root_dev = { 471 .init_name = "rbd", 472 .release = rbd_root_dev_release, 473 }; 474 475 static __printf(2, 3) 476 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 477 { 478 struct va_format vaf; 479 va_list args; 480 481 va_start(args, fmt); 482 vaf.fmt = fmt; 483 vaf.va = &args; 484 485 if (!rbd_dev) 486 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 487 else if (rbd_dev->disk) 488 printk(KERN_WARNING "%s: %s: %pV\n", 489 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 490 else if (rbd_dev->spec && rbd_dev->spec->image_name) 491 printk(KERN_WARNING "%s: image %s: %pV\n", 492 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 493 else if (rbd_dev->spec && rbd_dev->spec->image_id) 494 printk(KERN_WARNING "%s: id %s: %pV\n", 495 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 496 else /* punt */ 497 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 498 RBD_DRV_NAME, rbd_dev, &vaf); 499 va_end(args); 500 } 501 502 #ifdef RBD_DEBUG 503 #define rbd_assert(expr) \ 504 if (unlikely(!(expr))) { \ 505 printk(KERN_ERR "\nAssertion failure in %s() " \ 506 "at line %d:\n\n" \ 507 "\trbd_assert(%s);\n\n", \ 508 __func__, __LINE__, #expr); \ 509 BUG(); \ 510 } 511 #else /* !RBD_DEBUG */ 512 # define rbd_assert(expr) ((void) 0) 513 #endif /* !RBD_DEBUG */ 514 515 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 516 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 517 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 518 519 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 520 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 521 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 522 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 523 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 524 u64 snap_id); 525 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 526 u8 *order, u64 *snap_size); 527 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 528 u64 *snap_features); 529 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 530 531 static int rbd_open(struct block_device *bdev, fmode_t mode) 532 { 533 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 534 bool removing = false; 535 536 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 537 return -EROFS; 538 539 spin_lock_irq(&rbd_dev->lock); 540 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 541 removing = true; 542 else 543 rbd_dev->open_count++; 544 spin_unlock_irq(&rbd_dev->lock); 545 if (removing) 546 return -ENOENT; 547 548 (void) get_device(&rbd_dev->dev); 549 550 return 0; 551 } 552 553 static void rbd_release(struct gendisk *disk, fmode_t mode) 554 { 555 struct rbd_device *rbd_dev = disk->private_data; 556 unsigned long open_count_before; 557 558 spin_lock_irq(&rbd_dev->lock); 559 open_count_before = rbd_dev->open_count--; 560 spin_unlock_irq(&rbd_dev->lock); 561 rbd_assert(open_count_before > 0); 562 563 put_device(&rbd_dev->dev); 564 } 565 566 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 567 { 568 int ret = 0; 569 int val; 570 bool ro; 571 bool ro_changed = false; 572 573 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 574 if (get_user(val, (int __user *)(arg))) 575 return -EFAULT; 576 577 ro = val ? true : false; 578 /* Snapshot doesn't allow to write*/ 579 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 580 return -EROFS; 581 582 spin_lock_irq(&rbd_dev->lock); 583 /* prevent others open this device */ 584 if (rbd_dev->open_count > 1) { 585 ret = -EBUSY; 586 goto out; 587 } 588 589 if (rbd_dev->mapping.read_only != ro) { 590 rbd_dev->mapping.read_only = ro; 591 ro_changed = true; 592 } 593 594 out: 595 spin_unlock_irq(&rbd_dev->lock); 596 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 597 if (ret == 0 && ro_changed) 598 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 599 600 return ret; 601 } 602 603 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 604 unsigned int cmd, unsigned long arg) 605 { 606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 607 int ret = 0; 608 609 switch (cmd) { 610 case BLKROSET: 611 ret = rbd_ioctl_set_ro(rbd_dev, arg); 612 break; 613 default: 614 ret = -ENOTTY; 615 } 616 617 return ret; 618 } 619 620 #ifdef CONFIG_COMPAT 621 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 622 unsigned int cmd, unsigned long arg) 623 { 624 return rbd_ioctl(bdev, mode, cmd, arg); 625 } 626 #endif /* CONFIG_COMPAT */ 627 628 static const struct block_device_operations rbd_bd_ops = { 629 .owner = THIS_MODULE, 630 .open = rbd_open, 631 .release = rbd_release, 632 .ioctl = rbd_ioctl, 633 #ifdef CONFIG_COMPAT 634 .compat_ioctl = rbd_compat_ioctl, 635 #endif 636 }; 637 638 /* 639 * Initialize an rbd client instance. Success or not, this function 640 * consumes ceph_opts. Caller holds client_mutex. 641 */ 642 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 643 { 644 struct rbd_client *rbdc; 645 int ret = -ENOMEM; 646 647 dout("%s:\n", __func__); 648 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 649 if (!rbdc) 650 goto out_opt; 651 652 kref_init(&rbdc->kref); 653 INIT_LIST_HEAD(&rbdc->node); 654 655 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 656 if (IS_ERR(rbdc->client)) 657 goto out_rbdc; 658 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 659 660 ret = ceph_open_session(rbdc->client); 661 if (ret < 0) 662 goto out_client; 663 664 spin_lock(&rbd_client_list_lock); 665 list_add_tail(&rbdc->node, &rbd_client_list); 666 spin_unlock(&rbd_client_list_lock); 667 668 dout("%s: rbdc %p\n", __func__, rbdc); 669 670 return rbdc; 671 out_client: 672 ceph_destroy_client(rbdc->client); 673 out_rbdc: 674 kfree(rbdc); 675 out_opt: 676 if (ceph_opts) 677 ceph_destroy_options(ceph_opts); 678 dout("%s: error %d\n", __func__, ret); 679 680 return ERR_PTR(ret); 681 } 682 683 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 684 { 685 kref_get(&rbdc->kref); 686 687 return rbdc; 688 } 689 690 /* 691 * Find a ceph client with specific addr and configuration. If 692 * found, bump its reference count. 693 */ 694 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 695 { 696 struct rbd_client *client_node; 697 bool found = false; 698 699 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 700 return NULL; 701 702 spin_lock(&rbd_client_list_lock); 703 list_for_each_entry(client_node, &rbd_client_list, node) { 704 if (!ceph_compare_options(ceph_opts, client_node->client)) { 705 __rbd_get_client(client_node); 706 707 found = true; 708 break; 709 } 710 } 711 spin_unlock(&rbd_client_list_lock); 712 713 return found ? client_node : NULL; 714 } 715 716 /* 717 * mount options 718 */ 719 enum { 720 Opt_last_int, 721 /* int args above */ 722 Opt_last_string, 723 /* string args above */ 724 Opt_read_only, 725 Opt_read_write, 726 /* Boolean args above */ 727 Opt_last_bool, 728 }; 729 730 static match_table_t rbd_opts_tokens = { 731 /* int args above */ 732 /* string args above */ 733 {Opt_read_only, "read_only"}, 734 {Opt_read_only, "ro"}, /* Alternate spelling */ 735 {Opt_read_write, "read_write"}, 736 {Opt_read_write, "rw"}, /* Alternate spelling */ 737 /* Boolean args above */ 738 {-1, NULL} 739 }; 740 741 struct rbd_options { 742 bool read_only; 743 }; 744 745 #define RBD_READ_ONLY_DEFAULT false 746 747 static int parse_rbd_opts_token(char *c, void *private) 748 { 749 struct rbd_options *rbd_opts = private; 750 substring_t argstr[MAX_OPT_ARGS]; 751 int token, intval, ret; 752 753 token = match_token(c, rbd_opts_tokens, argstr); 754 if (token < 0) 755 return -EINVAL; 756 757 if (token < Opt_last_int) { 758 ret = match_int(&argstr[0], &intval); 759 if (ret < 0) { 760 pr_err("bad mount option arg (not int) " 761 "at '%s'\n", c); 762 return ret; 763 } 764 dout("got int token %d val %d\n", token, intval); 765 } else if (token > Opt_last_int && token < Opt_last_string) { 766 dout("got string token %d val %s\n", token, 767 argstr[0].from); 768 } else if (token > Opt_last_string && token < Opt_last_bool) { 769 dout("got Boolean token %d\n", token); 770 } else { 771 dout("got token %d\n", token); 772 } 773 774 switch (token) { 775 case Opt_read_only: 776 rbd_opts->read_only = true; 777 break; 778 case Opt_read_write: 779 rbd_opts->read_only = false; 780 break; 781 default: 782 rbd_assert(false); 783 break; 784 } 785 return 0; 786 } 787 788 /* 789 * Get a ceph client with specific addr and configuration, if one does 790 * not exist create it. Either way, ceph_opts is consumed by this 791 * function. 792 */ 793 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 794 { 795 struct rbd_client *rbdc; 796 797 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 798 rbdc = rbd_client_find(ceph_opts); 799 if (rbdc) /* using an existing client */ 800 ceph_destroy_options(ceph_opts); 801 else 802 rbdc = rbd_client_create(ceph_opts); 803 mutex_unlock(&client_mutex); 804 805 return rbdc; 806 } 807 808 /* 809 * Destroy ceph client 810 * 811 * Caller must hold rbd_client_list_lock. 812 */ 813 static void rbd_client_release(struct kref *kref) 814 { 815 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 816 817 dout("%s: rbdc %p\n", __func__, rbdc); 818 spin_lock(&rbd_client_list_lock); 819 list_del(&rbdc->node); 820 spin_unlock(&rbd_client_list_lock); 821 822 ceph_destroy_client(rbdc->client); 823 kfree(rbdc); 824 } 825 826 /* 827 * Drop reference to ceph client node. If it's not referenced anymore, release 828 * it. 829 */ 830 static void rbd_put_client(struct rbd_client *rbdc) 831 { 832 if (rbdc) 833 kref_put(&rbdc->kref, rbd_client_release); 834 } 835 836 static bool rbd_image_format_valid(u32 image_format) 837 { 838 return image_format == 1 || image_format == 2; 839 } 840 841 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 842 { 843 size_t size; 844 u32 snap_count; 845 846 /* The header has to start with the magic rbd header text */ 847 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 848 return false; 849 850 /* The bio layer requires at least sector-sized I/O */ 851 852 if (ondisk->options.order < SECTOR_SHIFT) 853 return false; 854 855 /* If we use u64 in a few spots we may be able to loosen this */ 856 857 if (ondisk->options.order > 8 * sizeof (int) - 1) 858 return false; 859 860 /* 861 * The size of a snapshot header has to fit in a size_t, and 862 * that limits the number of snapshots. 863 */ 864 snap_count = le32_to_cpu(ondisk->snap_count); 865 size = SIZE_MAX - sizeof (struct ceph_snap_context); 866 if (snap_count > size / sizeof (__le64)) 867 return false; 868 869 /* 870 * Not only that, but the size of the entire the snapshot 871 * header must also be representable in a size_t. 872 */ 873 size -= snap_count * sizeof (__le64); 874 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 875 return false; 876 877 return true; 878 } 879 880 /* 881 * Fill an rbd image header with information from the given format 1 882 * on-disk header. 883 */ 884 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 885 struct rbd_image_header_ondisk *ondisk) 886 { 887 struct rbd_image_header *header = &rbd_dev->header; 888 bool first_time = header->object_prefix == NULL; 889 struct ceph_snap_context *snapc; 890 char *object_prefix = NULL; 891 char *snap_names = NULL; 892 u64 *snap_sizes = NULL; 893 u32 snap_count; 894 size_t size; 895 int ret = -ENOMEM; 896 u32 i; 897 898 /* Allocate this now to avoid having to handle failure below */ 899 900 if (first_time) { 901 size_t len; 902 903 len = strnlen(ondisk->object_prefix, 904 sizeof (ondisk->object_prefix)); 905 object_prefix = kmalloc(len + 1, GFP_KERNEL); 906 if (!object_prefix) 907 return -ENOMEM; 908 memcpy(object_prefix, ondisk->object_prefix, len); 909 object_prefix[len] = '\0'; 910 } 911 912 /* Allocate the snapshot context and fill it in */ 913 914 snap_count = le32_to_cpu(ondisk->snap_count); 915 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 916 if (!snapc) 917 goto out_err; 918 snapc->seq = le64_to_cpu(ondisk->snap_seq); 919 if (snap_count) { 920 struct rbd_image_snap_ondisk *snaps; 921 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 922 923 /* We'll keep a copy of the snapshot names... */ 924 925 if (snap_names_len > (u64)SIZE_MAX) 926 goto out_2big; 927 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 928 if (!snap_names) 929 goto out_err; 930 931 /* ...as well as the array of their sizes. */ 932 933 size = snap_count * sizeof (*header->snap_sizes); 934 snap_sizes = kmalloc(size, GFP_KERNEL); 935 if (!snap_sizes) 936 goto out_err; 937 938 /* 939 * Copy the names, and fill in each snapshot's id 940 * and size. 941 * 942 * Note that rbd_dev_v1_header_info() guarantees the 943 * ondisk buffer we're working with has 944 * snap_names_len bytes beyond the end of the 945 * snapshot id array, this memcpy() is safe. 946 */ 947 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 948 snaps = ondisk->snaps; 949 for (i = 0; i < snap_count; i++) { 950 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 951 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 952 } 953 } 954 955 /* We won't fail any more, fill in the header */ 956 957 if (first_time) { 958 header->object_prefix = object_prefix; 959 header->obj_order = ondisk->options.order; 960 header->crypt_type = ondisk->options.crypt_type; 961 header->comp_type = ondisk->options.comp_type; 962 /* The rest aren't used for format 1 images */ 963 header->stripe_unit = 0; 964 header->stripe_count = 0; 965 header->features = 0; 966 } else { 967 ceph_put_snap_context(header->snapc); 968 kfree(header->snap_names); 969 kfree(header->snap_sizes); 970 } 971 972 /* The remaining fields always get updated (when we refresh) */ 973 974 header->image_size = le64_to_cpu(ondisk->image_size); 975 header->snapc = snapc; 976 header->snap_names = snap_names; 977 header->snap_sizes = snap_sizes; 978 979 return 0; 980 out_2big: 981 ret = -EIO; 982 out_err: 983 kfree(snap_sizes); 984 kfree(snap_names); 985 ceph_put_snap_context(snapc); 986 kfree(object_prefix); 987 988 return ret; 989 } 990 991 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 992 { 993 const char *snap_name; 994 995 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 996 997 /* Skip over names until we find the one we are looking for */ 998 999 snap_name = rbd_dev->header.snap_names; 1000 while (which--) 1001 snap_name += strlen(snap_name) + 1; 1002 1003 return kstrdup(snap_name, GFP_KERNEL); 1004 } 1005 1006 /* 1007 * Snapshot id comparison function for use with qsort()/bsearch(). 1008 * Note that result is for snapshots in *descending* order. 1009 */ 1010 static int snapid_compare_reverse(const void *s1, const void *s2) 1011 { 1012 u64 snap_id1 = *(u64 *)s1; 1013 u64 snap_id2 = *(u64 *)s2; 1014 1015 if (snap_id1 < snap_id2) 1016 return 1; 1017 return snap_id1 == snap_id2 ? 0 : -1; 1018 } 1019 1020 /* 1021 * Search a snapshot context to see if the given snapshot id is 1022 * present. 1023 * 1024 * Returns the position of the snapshot id in the array if it's found, 1025 * or BAD_SNAP_INDEX otherwise. 1026 * 1027 * Note: The snapshot array is in kept sorted (by the osd) in 1028 * reverse order, highest snapshot id first. 1029 */ 1030 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1031 { 1032 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1033 u64 *found; 1034 1035 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1036 sizeof (snap_id), snapid_compare_reverse); 1037 1038 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1039 } 1040 1041 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1042 u64 snap_id) 1043 { 1044 u32 which; 1045 const char *snap_name; 1046 1047 which = rbd_dev_snap_index(rbd_dev, snap_id); 1048 if (which == BAD_SNAP_INDEX) 1049 return ERR_PTR(-ENOENT); 1050 1051 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1052 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1053 } 1054 1055 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1056 { 1057 if (snap_id == CEPH_NOSNAP) 1058 return RBD_SNAP_HEAD_NAME; 1059 1060 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1061 if (rbd_dev->image_format == 1) 1062 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1063 1064 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1065 } 1066 1067 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1068 u64 *snap_size) 1069 { 1070 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1071 if (snap_id == CEPH_NOSNAP) { 1072 *snap_size = rbd_dev->header.image_size; 1073 } else if (rbd_dev->image_format == 1) { 1074 u32 which; 1075 1076 which = rbd_dev_snap_index(rbd_dev, snap_id); 1077 if (which == BAD_SNAP_INDEX) 1078 return -ENOENT; 1079 1080 *snap_size = rbd_dev->header.snap_sizes[which]; 1081 } else { 1082 u64 size = 0; 1083 int ret; 1084 1085 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1086 if (ret) 1087 return ret; 1088 1089 *snap_size = size; 1090 } 1091 return 0; 1092 } 1093 1094 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1095 u64 *snap_features) 1096 { 1097 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1098 if (snap_id == CEPH_NOSNAP) { 1099 *snap_features = rbd_dev->header.features; 1100 } else if (rbd_dev->image_format == 1) { 1101 *snap_features = 0; /* No features for format 1 */ 1102 } else { 1103 u64 features = 0; 1104 int ret; 1105 1106 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1107 if (ret) 1108 return ret; 1109 1110 *snap_features = features; 1111 } 1112 return 0; 1113 } 1114 1115 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1116 { 1117 u64 snap_id = rbd_dev->spec->snap_id; 1118 u64 size = 0; 1119 u64 features = 0; 1120 int ret; 1121 1122 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1123 if (ret) 1124 return ret; 1125 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1126 if (ret) 1127 return ret; 1128 1129 rbd_dev->mapping.size = size; 1130 rbd_dev->mapping.features = features; 1131 1132 return 0; 1133 } 1134 1135 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1136 { 1137 rbd_dev->mapping.size = 0; 1138 rbd_dev->mapping.features = 0; 1139 } 1140 1141 static void rbd_segment_name_free(const char *name) 1142 { 1143 /* The explicit cast here is needed to drop the const qualifier */ 1144 1145 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1146 } 1147 1148 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1149 { 1150 char *name; 1151 u64 segment; 1152 int ret; 1153 char *name_format; 1154 1155 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1156 if (!name) 1157 return NULL; 1158 segment = offset >> rbd_dev->header.obj_order; 1159 name_format = "%s.%012llx"; 1160 if (rbd_dev->image_format == 2) 1161 name_format = "%s.%016llx"; 1162 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1163 rbd_dev->header.object_prefix, segment); 1164 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1165 pr_err("error formatting segment name for #%llu (%d)\n", 1166 segment, ret); 1167 rbd_segment_name_free(name); 1168 name = NULL; 1169 } 1170 1171 return name; 1172 } 1173 1174 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1175 { 1176 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1177 1178 return offset & (segment_size - 1); 1179 } 1180 1181 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1182 u64 offset, u64 length) 1183 { 1184 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1185 1186 offset &= segment_size - 1; 1187 1188 rbd_assert(length <= U64_MAX - offset); 1189 if (offset + length > segment_size) 1190 length = segment_size - offset; 1191 1192 return length; 1193 } 1194 1195 /* 1196 * returns the size of an object in the image 1197 */ 1198 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1199 { 1200 return 1 << header->obj_order; 1201 } 1202 1203 /* 1204 * bio helpers 1205 */ 1206 1207 static void bio_chain_put(struct bio *chain) 1208 { 1209 struct bio *tmp; 1210 1211 while (chain) { 1212 tmp = chain; 1213 chain = chain->bi_next; 1214 bio_put(tmp); 1215 } 1216 } 1217 1218 /* 1219 * zeros a bio chain, starting at specific offset 1220 */ 1221 static void zero_bio_chain(struct bio *chain, int start_ofs) 1222 { 1223 struct bio_vec bv; 1224 struct bvec_iter iter; 1225 unsigned long flags; 1226 void *buf; 1227 int pos = 0; 1228 1229 while (chain) { 1230 bio_for_each_segment(bv, chain, iter) { 1231 if (pos + bv.bv_len > start_ofs) { 1232 int remainder = max(start_ofs - pos, 0); 1233 buf = bvec_kmap_irq(&bv, &flags); 1234 memset(buf + remainder, 0, 1235 bv.bv_len - remainder); 1236 flush_dcache_page(bv.bv_page); 1237 bvec_kunmap_irq(buf, &flags); 1238 } 1239 pos += bv.bv_len; 1240 } 1241 1242 chain = chain->bi_next; 1243 } 1244 } 1245 1246 /* 1247 * similar to zero_bio_chain(), zeros data defined by a page array, 1248 * starting at the given byte offset from the start of the array and 1249 * continuing up to the given end offset. The pages array is 1250 * assumed to be big enough to hold all bytes up to the end. 1251 */ 1252 static void zero_pages(struct page **pages, u64 offset, u64 end) 1253 { 1254 struct page **page = &pages[offset >> PAGE_SHIFT]; 1255 1256 rbd_assert(end > offset); 1257 rbd_assert(end - offset <= (u64)SIZE_MAX); 1258 while (offset < end) { 1259 size_t page_offset; 1260 size_t length; 1261 unsigned long flags; 1262 void *kaddr; 1263 1264 page_offset = offset & ~PAGE_MASK; 1265 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1266 local_irq_save(flags); 1267 kaddr = kmap_atomic(*page); 1268 memset(kaddr + page_offset, 0, length); 1269 flush_dcache_page(*page); 1270 kunmap_atomic(kaddr); 1271 local_irq_restore(flags); 1272 1273 offset += length; 1274 page++; 1275 } 1276 } 1277 1278 /* 1279 * Clone a portion of a bio, starting at the given byte offset 1280 * and continuing for the number of bytes indicated. 1281 */ 1282 static struct bio *bio_clone_range(struct bio *bio_src, 1283 unsigned int offset, 1284 unsigned int len, 1285 gfp_t gfpmask) 1286 { 1287 struct bio *bio; 1288 1289 bio = bio_clone(bio_src, gfpmask); 1290 if (!bio) 1291 return NULL; /* ENOMEM */ 1292 1293 bio_advance(bio, offset); 1294 bio->bi_iter.bi_size = len; 1295 1296 return bio; 1297 } 1298 1299 /* 1300 * Clone a portion of a bio chain, starting at the given byte offset 1301 * into the first bio in the source chain and continuing for the 1302 * number of bytes indicated. The result is another bio chain of 1303 * exactly the given length, or a null pointer on error. 1304 * 1305 * The bio_src and offset parameters are both in-out. On entry they 1306 * refer to the first source bio and the offset into that bio where 1307 * the start of data to be cloned is located. 1308 * 1309 * On return, bio_src is updated to refer to the bio in the source 1310 * chain that contains first un-cloned byte, and *offset will 1311 * contain the offset of that byte within that bio. 1312 */ 1313 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1314 unsigned int *offset, 1315 unsigned int len, 1316 gfp_t gfpmask) 1317 { 1318 struct bio *bi = *bio_src; 1319 unsigned int off = *offset; 1320 struct bio *chain = NULL; 1321 struct bio **end; 1322 1323 /* Build up a chain of clone bios up to the limit */ 1324 1325 if (!bi || off >= bi->bi_iter.bi_size || !len) 1326 return NULL; /* Nothing to clone */ 1327 1328 end = &chain; 1329 while (len) { 1330 unsigned int bi_size; 1331 struct bio *bio; 1332 1333 if (!bi) { 1334 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1335 goto out_err; /* EINVAL; ran out of bio's */ 1336 } 1337 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1338 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1339 if (!bio) 1340 goto out_err; /* ENOMEM */ 1341 1342 *end = bio; 1343 end = &bio->bi_next; 1344 1345 off += bi_size; 1346 if (off == bi->bi_iter.bi_size) { 1347 bi = bi->bi_next; 1348 off = 0; 1349 } 1350 len -= bi_size; 1351 } 1352 *bio_src = bi; 1353 *offset = off; 1354 1355 return chain; 1356 out_err: 1357 bio_chain_put(chain); 1358 1359 return NULL; 1360 } 1361 1362 /* 1363 * The default/initial value for all object request flags is 0. For 1364 * each flag, once its value is set to 1 it is never reset to 0 1365 * again. 1366 */ 1367 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1368 { 1369 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1370 struct rbd_device *rbd_dev; 1371 1372 rbd_dev = obj_request->img_request->rbd_dev; 1373 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1374 obj_request); 1375 } 1376 } 1377 1378 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1379 { 1380 smp_mb(); 1381 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1382 } 1383 1384 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1385 { 1386 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1387 struct rbd_device *rbd_dev = NULL; 1388 1389 if (obj_request_img_data_test(obj_request)) 1390 rbd_dev = obj_request->img_request->rbd_dev; 1391 rbd_warn(rbd_dev, "obj_request %p already marked done", 1392 obj_request); 1393 } 1394 } 1395 1396 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1397 { 1398 smp_mb(); 1399 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1400 } 1401 1402 /* 1403 * This sets the KNOWN flag after (possibly) setting the EXISTS 1404 * flag. The latter is set based on the "exists" value provided. 1405 * 1406 * Note that for our purposes once an object exists it never goes 1407 * away again. It's possible that the response from two existence 1408 * checks are separated by the creation of the target object, and 1409 * the first ("doesn't exist") response arrives *after* the second 1410 * ("does exist"). In that case we ignore the second one. 1411 */ 1412 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1413 bool exists) 1414 { 1415 if (exists) 1416 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1417 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1418 smp_mb(); 1419 } 1420 1421 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1422 { 1423 smp_mb(); 1424 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1425 } 1426 1427 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1428 { 1429 smp_mb(); 1430 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1431 } 1432 1433 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1434 { 1435 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1436 1437 return obj_request->img_offset < 1438 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1439 } 1440 1441 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1442 { 1443 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1444 atomic_read(&obj_request->kref.refcount)); 1445 kref_get(&obj_request->kref); 1446 } 1447 1448 static void rbd_obj_request_destroy(struct kref *kref); 1449 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1450 { 1451 rbd_assert(obj_request != NULL); 1452 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1453 atomic_read(&obj_request->kref.refcount)); 1454 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1455 } 1456 1457 static void rbd_img_request_get(struct rbd_img_request *img_request) 1458 { 1459 dout("%s: img %p (was %d)\n", __func__, img_request, 1460 atomic_read(&img_request->kref.refcount)); 1461 kref_get(&img_request->kref); 1462 } 1463 1464 static bool img_request_child_test(struct rbd_img_request *img_request); 1465 static void rbd_parent_request_destroy(struct kref *kref); 1466 static void rbd_img_request_destroy(struct kref *kref); 1467 static void rbd_img_request_put(struct rbd_img_request *img_request) 1468 { 1469 rbd_assert(img_request != NULL); 1470 dout("%s: img %p (was %d)\n", __func__, img_request, 1471 atomic_read(&img_request->kref.refcount)); 1472 if (img_request_child_test(img_request)) 1473 kref_put(&img_request->kref, rbd_parent_request_destroy); 1474 else 1475 kref_put(&img_request->kref, rbd_img_request_destroy); 1476 } 1477 1478 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1479 struct rbd_obj_request *obj_request) 1480 { 1481 rbd_assert(obj_request->img_request == NULL); 1482 1483 /* Image request now owns object's original reference */ 1484 obj_request->img_request = img_request; 1485 obj_request->which = img_request->obj_request_count; 1486 rbd_assert(!obj_request_img_data_test(obj_request)); 1487 obj_request_img_data_set(obj_request); 1488 rbd_assert(obj_request->which != BAD_WHICH); 1489 img_request->obj_request_count++; 1490 list_add_tail(&obj_request->links, &img_request->obj_requests); 1491 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1492 obj_request->which); 1493 } 1494 1495 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1496 struct rbd_obj_request *obj_request) 1497 { 1498 rbd_assert(obj_request->which != BAD_WHICH); 1499 1500 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1501 obj_request->which); 1502 list_del(&obj_request->links); 1503 rbd_assert(img_request->obj_request_count > 0); 1504 img_request->obj_request_count--; 1505 rbd_assert(obj_request->which == img_request->obj_request_count); 1506 obj_request->which = BAD_WHICH; 1507 rbd_assert(obj_request_img_data_test(obj_request)); 1508 rbd_assert(obj_request->img_request == img_request); 1509 obj_request->img_request = NULL; 1510 obj_request->callback = NULL; 1511 rbd_obj_request_put(obj_request); 1512 } 1513 1514 static bool obj_request_type_valid(enum obj_request_type type) 1515 { 1516 switch (type) { 1517 case OBJ_REQUEST_NODATA: 1518 case OBJ_REQUEST_BIO: 1519 case OBJ_REQUEST_PAGES: 1520 return true; 1521 default: 1522 return false; 1523 } 1524 } 1525 1526 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1527 struct rbd_obj_request *obj_request) 1528 { 1529 dout("%s %p\n", __func__, obj_request); 1530 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1531 } 1532 1533 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1534 { 1535 dout("%s %p\n", __func__, obj_request); 1536 ceph_osdc_cancel_request(obj_request->osd_req); 1537 } 1538 1539 /* 1540 * Wait for an object request to complete. If interrupted, cancel the 1541 * underlying osd request. 1542 */ 1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1544 { 1545 int ret; 1546 1547 dout("%s %p\n", __func__, obj_request); 1548 1549 ret = wait_for_completion_interruptible(&obj_request->completion); 1550 if (ret < 0) { 1551 dout("%s %p interrupted\n", __func__, obj_request); 1552 rbd_obj_request_end(obj_request); 1553 return ret; 1554 } 1555 1556 dout("%s %p done\n", __func__, obj_request); 1557 return 0; 1558 } 1559 1560 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1561 { 1562 1563 dout("%s: img %p\n", __func__, img_request); 1564 1565 /* 1566 * If no error occurred, compute the aggregate transfer 1567 * count for the image request. We could instead use 1568 * atomic64_cmpxchg() to update it as each object request 1569 * completes; not clear which way is better off hand. 1570 */ 1571 if (!img_request->result) { 1572 struct rbd_obj_request *obj_request; 1573 u64 xferred = 0; 1574 1575 for_each_obj_request(img_request, obj_request) 1576 xferred += obj_request->xferred; 1577 img_request->xferred = xferred; 1578 } 1579 1580 if (img_request->callback) 1581 img_request->callback(img_request); 1582 else 1583 rbd_img_request_put(img_request); 1584 } 1585 1586 /* 1587 * The default/initial value for all image request flags is 0. Each 1588 * is conditionally set to 1 at image request initialization time 1589 * and currently never change thereafter. 1590 */ 1591 static void img_request_write_set(struct rbd_img_request *img_request) 1592 { 1593 set_bit(IMG_REQ_WRITE, &img_request->flags); 1594 smp_mb(); 1595 } 1596 1597 static bool img_request_write_test(struct rbd_img_request *img_request) 1598 { 1599 smp_mb(); 1600 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1601 } 1602 1603 static void img_request_child_set(struct rbd_img_request *img_request) 1604 { 1605 set_bit(IMG_REQ_CHILD, &img_request->flags); 1606 smp_mb(); 1607 } 1608 1609 static void img_request_child_clear(struct rbd_img_request *img_request) 1610 { 1611 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1612 smp_mb(); 1613 } 1614 1615 static bool img_request_child_test(struct rbd_img_request *img_request) 1616 { 1617 smp_mb(); 1618 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1619 } 1620 1621 static void img_request_layered_set(struct rbd_img_request *img_request) 1622 { 1623 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1624 smp_mb(); 1625 } 1626 1627 static void img_request_layered_clear(struct rbd_img_request *img_request) 1628 { 1629 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1630 smp_mb(); 1631 } 1632 1633 static bool img_request_layered_test(struct rbd_img_request *img_request) 1634 { 1635 smp_mb(); 1636 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1637 } 1638 1639 static void 1640 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1641 { 1642 u64 xferred = obj_request->xferred; 1643 u64 length = obj_request->length; 1644 1645 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1646 obj_request, obj_request->img_request, obj_request->result, 1647 xferred, length); 1648 /* 1649 * ENOENT means a hole in the image. We zero-fill the entire 1650 * length of the request. A short read also implies zero-fill 1651 * to the end of the request. An error requires the whole 1652 * length of the request to be reported finished with an error 1653 * to the block layer. In each case we update the xferred 1654 * count to indicate the whole request was satisfied. 1655 */ 1656 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1657 if (obj_request->result == -ENOENT) { 1658 if (obj_request->type == OBJ_REQUEST_BIO) 1659 zero_bio_chain(obj_request->bio_list, 0); 1660 else 1661 zero_pages(obj_request->pages, 0, length); 1662 obj_request->result = 0; 1663 } else if (xferred < length && !obj_request->result) { 1664 if (obj_request->type == OBJ_REQUEST_BIO) 1665 zero_bio_chain(obj_request->bio_list, xferred); 1666 else 1667 zero_pages(obj_request->pages, xferred, length); 1668 } 1669 obj_request->xferred = length; 1670 obj_request_done_set(obj_request); 1671 } 1672 1673 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1674 { 1675 dout("%s: obj %p cb %p\n", __func__, obj_request, 1676 obj_request->callback); 1677 if (obj_request->callback) 1678 obj_request->callback(obj_request); 1679 else 1680 complete_all(&obj_request->completion); 1681 } 1682 1683 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1684 { 1685 dout("%s: obj %p\n", __func__, obj_request); 1686 obj_request_done_set(obj_request); 1687 } 1688 1689 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1690 { 1691 struct rbd_img_request *img_request = NULL; 1692 struct rbd_device *rbd_dev = NULL; 1693 bool layered = false; 1694 1695 if (obj_request_img_data_test(obj_request)) { 1696 img_request = obj_request->img_request; 1697 layered = img_request && img_request_layered_test(img_request); 1698 rbd_dev = img_request->rbd_dev; 1699 } 1700 1701 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1702 obj_request, img_request, obj_request->result, 1703 obj_request->xferred, obj_request->length); 1704 if (layered && obj_request->result == -ENOENT && 1705 obj_request->img_offset < rbd_dev->parent_overlap) 1706 rbd_img_parent_read(obj_request); 1707 else if (img_request) 1708 rbd_img_obj_request_read_callback(obj_request); 1709 else 1710 obj_request_done_set(obj_request); 1711 } 1712 1713 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1714 { 1715 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1716 obj_request->result, obj_request->length); 1717 /* 1718 * There is no such thing as a successful short write. Set 1719 * it to our originally-requested length. 1720 */ 1721 obj_request->xferred = obj_request->length; 1722 obj_request_done_set(obj_request); 1723 } 1724 1725 /* 1726 * For a simple stat call there's nothing to do. We'll do more if 1727 * this is part of a write sequence for a layered image. 1728 */ 1729 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1730 { 1731 dout("%s: obj %p\n", __func__, obj_request); 1732 obj_request_done_set(obj_request); 1733 } 1734 1735 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1736 struct ceph_msg *msg) 1737 { 1738 struct rbd_obj_request *obj_request = osd_req->r_priv; 1739 u16 opcode; 1740 1741 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1742 rbd_assert(osd_req == obj_request->osd_req); 1743 if (obj_request_img_data_test(obj_request)) { 1744 rbd_assert(obj_request->img_request); 1745 rbd_assert(obj_request->which != BAD_WHICH); 1746 } else { 1747 rbd_assert(obj_request->which == BAD_WHICH); 1748 } 1749 1750 if (osd_req->r_result < 0) 1751 obj_request->result = osd_req->r_result; 1752 1753 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1754 1755 /* 1756 * We support a 64-bit length, but ultimately it has to be 1757 * passed to blk_end_request(), which takes an unsigned int. 1758 */ 1759 obj_request->xferred = osd_req->r_reply_op_len[0]; 1760 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1761 1762 opcode = osd_req->r_ops[0].op; 1763 switch (opcode) { 1764 case CEPH_OSD_OP_READ: 1765 rbd_osd_read_callback(obj_request); 1766 break; 1767 case CEPH_OSD_OP_SETALLOCHINT: 1768 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1769 /* fall through */ 1770 case CEPH_OSD_OP_WRITE: 1771 rbd_osd_write_callback(obj_request); 1772 break; 1773 case CEPH_OSD_OP_STAT: 1774 rbd_osd_stat_callback(obj_request); 1775 break; 1776 case CEPH_OSD_OP_CALL: 1777 case CEPH_OSD_OP_NOTIFY_ACK: 1778 case CEPH_OSD_OP_WATCH: 1779 rbd_osd_trivial_callback(obj_request); 1780 break; 1781 default: 1782 rbd_warn(NULL, "%s: unsupported op %hu", 1783 obj_request->object_name, (unsigned short) opcode); 1784 break; 1785 } 1786 1787 if (obj_request_done_test(obj_request)) 1788 rbd_obj_request_complete(obj_request); 1789 } 1790 1791 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1792 { 1793 struct rbd_img_request *img_request = obj_request->img_request; 1794 struct ceph_osd_request *osd_req = obj_request->osd_req; 1795 u64 snap_id; 1796 1797 rbd_assert(osd_req != NULL); 1798 1799 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1800 ceph_osdc_build_request(osd_req, obj_request->offset, 1801 NULL, snap_id, NULL); 1802 } 1803 1804 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1805 { 1806 struct rbd_img_request *img_request = obj_request->img_request; 1807 struct ceph_osd_request *osd_req = obj_request->osd_req; 1808 struct ceph_snap_context *snapc; 1809 struct timespec mtime = CURRENT_TIME; 1810 1811 rbd_assert(osd_req != NULL); 1812 1813 snapc = img_request ? img_request->snapc : NULL; 1814 ceph_osdc_build_request(osd_req, obj_request->offset, 1815 snapc, CEPH_NOSNAP, &mtime); 1816 } 1817 1818 /* 1819 * Create an osd request. A read request has one osd op (read). 1820 * A write request has either one (watch) or two (hint+write) osd ops. 1821 * (All rbd data writes are prefixed with an allocation hint op, but 1822 * technically osd watch is a write request, hence this distinction.) 1823 */ 1824 static struct ceph_osd_request *rbd_osd_req_create( 1825 struct rbd_device *rbd_dev, 1826 bool write_request, 1827 unsigned int num_ops, 1828 struct rbd_obj_request *obj_request) 1829 { 1830 struct ceph_snap_context *snapc = NULL; 1831 struct ceph_osd_client *osdc; 1832 struct ceph_osd_request *osd_req; 1833 1834 if (obj_request_img_data_test(obj_request)) { 1835 struct rbd_img_request *img_request = obj_request->img_request; 1836 1837 rbd_assert(write_request == 1838 img_request_write_test(img_request)); 1839 if (write_request) 1840 snapc = img_request->snapc; 1841 } 1842 1843 rbd_assert(num_ops == 1 || (write_request && num_ops == 2)); 1844 1845 /* Allocate and initialize the request, for the num_ops ops */ 1846 1847 osdc = &rbd_dev->rbd_client->client->osdc; 1848 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1849 GFP_ATOMIC); 1850 if (!osd_req) 1851 return NULL; /* ENOMEM */ 1852 1853 if (write_request) 1854 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1855 else 1856 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1857 1858 osd_req->r_callback = rbd_osd_req_callback; 1859 osd_req->r_priv = obj_request; 1860 1861 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1862 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1863 1864 return osd_req; 1865 } 1866 1867 /* 1868 * Create a copyup osd request based on the information in the 1869 * object request supplied. A copyup request has three osd ops, 1870 * a copyup method call, a hint op, and a write op. 1871 */ 1872 static struct ceph_osd_request * 1873 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1874 { 1875 struct rbd_img_request *img_request; 1876 struct ceph_snap_context *snapc; 1877 struct rbd_device *rbd_dev; 1878 struct ceph_osd_client *osdc; 1879 struct ceph_osd_request *osd_req; 1880 1881 rbd_assert(obj_request_img_data_test(obj_request)); 1882 img_request = obj_request->img_request; 1883 rbd_assert(img_request); 1884 rbd_assert(img_request_write_test(img_request)); 1885 1886 /* Allocate and initialize the request, for the three ops */ 1887 1888 snapc = img_request->snapc; 1889 rbd_dev = img_request->rbd_dev; 1890 osdc = &rbd_dev->rbd_client->client->osdc; 1891 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC); 1892 if (!osd_req) 1893 return NULL; /* ENOMEM */ 1894 1895 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1896 osd_req->r_callback = rbd_osd_req_callback; 1897 osd_req->r_priv = obj_request; 1898 1899 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1900 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1901 1902 return osd_req; 1903 } 1904 1905 1906 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1907 { 1908 ceph_osdc_put_request(osd_req); 1909 } 1910 1911 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1912 1913 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1914 u64 offset, u64 length, 1915 enum obj_request_type type) 1916 { 1917 struct rbd_obj_request *obj_request; 1918 size_t size; 1919 char *name; 1920 1921 rbd_assert(obj_request_type_valid(type)); 1922 1923 size = strlen(object_name) + 1; 1924 name = kmalloc(size, GFP_KERNEL); 1925 if (!name) 1926 return NULL; 1927 1928 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 1929 if (!obj_request) { 1930 kfree(name); 1931 return NULL; 1932 } 1933 1934 obj_request->object_name = memcpy(name, object_name, size); 1935 obj_request->offset = offset; 1936 obj_request->length = length; 1937 obj_request->flags = 0; 1938 obj_request->which = BAD_WHICH; 1939 obj_request->type = type; 1940 INIT_LIST_HEAD(&obj_request->links); 1941 init_completion(&obj_request->completion); 1942 kref_init(&obj_request->kref); 1943 1944 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1945 offset, length, (int)type, obj_request); 1946 1947 return obj_request; 1948 } 1949 1950 static void rbd_obj_request_destroy(struct kref *kref) 1951 { 1952 struct rbd_obj_request *obj_request; 1953 1954 obj_request = container_of(kref, struct rbd_obj_request, kref); 1955 1956 dout("%s: obj %p\n", __func__, obj_request); 1957 1958 rbd_assert(obj_request->img_request == NULL); 1959 rbd_assert(obj_request->which == BAD_WHICH); 1960 1961 if (obj_request->osd_req) 1962 rbd_osd_req_destroy(obj_request->osd_req); 1963 1964 rbd_assert(obj_request_type_valid(obj_request->type)); 1965 switch (obj_request->type) { 1966 case OBJ_REQUEST_NODATA: 1967 break; /* Nothing to do */ 1968 case OBJ_REQUEST_BIO: 1969 if (obj_request->bio_list) 1970 bio_chain_put(obj_request->bio_list); 1971 break; 1972 case OBJ_REQUEST_PAGES: 1973 if (obj_request->pages) 1974 ceph_release_page_vector(obj_request->pages, 1975 obj_request->page_count); 1976 break; 1977 } 1978 1979 kfree(obj_request->object_name); 1980 obj_request->object_name = NULL; 1981 kmem_cache_free(rbd_obj_request_cache, obj_request); 1982 } 1983 1984 /* It's OK to call this for a device with no parent */ 1985 1986 static void rbd_spec_put(struct rbd_spec *spec); 1987 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1988 { 1989 rbd_dev_remove_parent(rbd_dev); 1990 rbd_spec_put(rbd_dev->parent_spec); 1991 rbd_dev->parent_spec = NULL; 1992 rbd_dev->parent_overlap = 0; 1993 } 1994 1995 /* 1996 * Parent image reference counting is used to determine when an 1997 * image's parent fields can be safely torn down--after there are no 1998 * more in-flight requests to the parent image. When the last 1999 * reference is dropped, cleaning them up is safe. 2000 */ 2001 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2002 { 2003 int counter; 2004 2005 if (!rbd_dev->parent_spec) 2006 return; 2007 2008 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2009 if (counter > 0) 2010 return; 2011 2012 /* Last reference; clean up parent data structures */ 2013 2014 if (!counter) 2015 rbd_dev_unparent(rbd_dev); 2016 else 2017 rbd_warn(rbd_dev, "parent reference underflow"); 2018 } 2019 2020 /* 2021 * If an image has a non-zero parent overlap, get a reference to its 2022 * parent. 2023 * 2024 * We must get the reference before checking for the overlap to 2025 * coordinate properly with zeroing the parent overlap in 2026 * rbd_dev_v2_parent_info() when an image gets flattened. We 2027 * drop it again if there is no overlap. 2028 * 2029 * Returns true if the rbd device has a parent with a non-zero 2030 * overlap and a reference for it was successfully taken, or 2031 * false otherwise. 2032 */ 2033 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2034 { 2035 int counter; 2036 2037 if (!rbd_dev->parent_spec) 2038 return false; 2039 2040 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2041 if (counter > 0 && rbd_dev->parent_overlap) 2042 return true; 2043 2044 /* Image was flattened, but parent is not yet torn down */ 2045 2046 if (counter < 0) 2047 rbd_warn(rbd_dev, "parent reference overflow"); 2048 2049 return false; 2050 } 2051 2052 /* 2053 * Caller is responsible for filling in the list of object requests 2054 * that comprises the image request, and the Linux request pointer 2055 * (if there is one). 2056 */ 2057 static struct rbd_img_request *rbd_img_request_create( 2058 struct rbd_device *rbd_dev, 2059 u64 offset, u64 length, 2060 bool write_request) 2061 { 2062 struct rbd_img_request *img_request; 2063 2064 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2065 if (!img_request) 2066 return NULL; 2067 2068 if (write_request) { 2069 down_read(&rbd_dev->header_rwsem); 2070 ceph_get_snap_context(rbd_dev->header.snapc); 2071 up_read(&rbd_dev->header_rwsem); 2072 } 2073 2074 img_request->rq = NULL; 2075 img_request->rbd_dev = rbd_dev; 2076 img_request->offset = offset; 2077 img_request->length = length; 2078 img_request->flags = 0; 2079 if (write_request) { 2080 img_request_write_set(img_request); 2081 img_request->snapc = rbd_dev->header.snapc; 2082 } else { 2083 img_request->snap_id = rbd_dev->spec->snap_id; 2084 } 2085 if (rbd_dev_parent_get(rbd_dev)) 2086 img_request_layered_set(img_request); 2087 spin_lock_init(&img_request->completion_lock); 2088 img_request->next_completion = 0; 2089 img_request->callback = NULL; 2090 img_request->result = 0; 2091 img_request->obj_request_count = 0; 2092 INIT_LIST_HEAD(&img_request->obj_requests); 2093 kref_init(&img_request->kref); 2094 2095 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2096 write_request ? "write" : "read", offset, length, 2097 img_request); 2098 2099 return img_request; 2100 } 2101 2102 static void rbd_img_request_destroy(struct kref *kref) 2103 { 2104 struct rbd_img_request *img_request; 2105 struct rbd_obj_request *obj_request; 2106 struct rbd_obj_request *next_obj_request; 2107 2108 img_request = container_of(kref, struct rbd_img_request, kref); 2109 2110 dout("%s: img %p\n", __func__, img_request); 2111 2112 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2113 rbd_img_obj_request_del(img_request, obj_request); 2114 rbd_assert(img_request->obj_request_count == 0); 2115 2116 if (img_request_layered_test(img_request)) { 2117 img_request_layered_clear(img_request); 2118 rbd_dev_parent_put(img_request->rbd_dev); 2119 } 2120 2121 if (img_request_write_test(img_request)) 2122 ceph_put_snap_context(img_request->snapc); 2123 2124 kmem_cache_free(rbd_img_request_cache, img_request); 2125 } 2126 2127 static struct rbd_img_request *rbd_parent_request_create( 2128 struct rbd_obj_request *obj_request, 2129 u64 img_offset, u64 length) 2130 { 2131 struct rbd_img_request *parent_request; 2132 struct rbd_device *rbd_dev; 2133 2134 rbd_assert(obj_request->img_request); 2135 rbd_dev = obj_request->img_request->rbd_dev; 2136 2137 parent_request = rbd_img_request_create(rbd_dev->parent, 2138 img_offset, length, false); 2139 if (!parent_request) 2140 return NULL; 2141 2142 img_request_child_set(parent_request); 2143 rbd_obj_request_get(obj_request); 2144 parent_request->obj_request = obj_request; 2145 2146 return parent_request; 2147 } 2148 2149 static void rbd_parent_request_destroy(struct kref *kref) 2150 { 2151 struct rbd_img_request *parent_request; 2152 struct rbd_obj_request *orig_request; 2153 2154 parent_request = container_of(kref, struct rbd_img_request, kref); 2155 orig_request = parent_request->obj_request; 2156 2157 parent_request->obj_request = NULL; 2158 rbd_obj_request_put(orig_request); 2159 img_request_child_clear(parent_request); 2160 2161 rbd_img_request_destroy(kref); 2162 } 2163 2164 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2165 { 2166 struct rbd_img_request *img_request; 2167 unsigned int xferred; 2168 int result; 2169 bool more; 2170 2171 rbd_assert(obj_request_img_data_test(obj_request)); 2172 img_request = obj_request->img_request; 2173 2174 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2175 xferred = (unsigned int)obj_request->xferred; 2176 result = obj_request->result; 2177 if (result) { 2178 struct rbd_device *rbd_dev = img_request->rbd_dev; 2179 2180 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2181 img_request_write_test(img_request) ? "write" : "read", 2182 obj_request->length, obj_request->img_offset, 2183 obj_request->offset); 2184 rbd_warn(rbd_dev, " result %d xferred %x", 2185 result, xferred); 2186 if (!img_request->result) 2187 img_request->result = result; 2188 } 2189 2190 /* Image object requests don't own their page array */ 2191 2192 if (obj_request->type == OBJ_REQUEST_PAGES) { 2193 obj_request->pages = NULL; 2194 obj_request->page_count = 0; 2195 } 2196 2197 if (img_request_child_test(img_request)) { 2198 rbd_assert(img_request->obj_request != NULL); 2199 more = obj_request->which < img_request->obj_request_count - 1; 2200 } else { 2201 rbd_assert(img_request->rq != NULL); 2202 more = blk_end_request(img_request->rq, result, xferred); 2203 } 2204 2205 return more; 2206 } 2207 2208 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2209 { 2210 struct rbd_img_request *img_request; 2211 u32 which = obj_request->which; 2212 bool more = true; 2213 2214 rbd_assert(obj_request_img_data_test(obj_request)); 2215 img_request = obj_request->img_request; 2216 2217 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2218 rbd_assert(img_request != NULL); 2219 rbd_assert(img_request->obj_request_count > 0); 2220 rbd_assert(which != BAD_WHICH); 2221 rbd_assert(which < img_request->obj_request_count); 2222 2223 spin_lock_irq(&img_request->completion_lock); 2224 if (which != img_request->next_completion) 2225 goto out; 2226 2227 for_each_obj_request_from(img_request, obj_request) { 2228 rbd_assert(more); 2229 rbd_assert(which < img_request->obj_request_count); 2230 2231 if (!obj_request_done_test(obj_request)) 2232 break; 2233 more = rbd_img_obj_end_request(obj_request); 2234 which++; 2235 } 2236 2237 rbd_assert(more ^ (which == img_request->obj_request_count)); 2238 img_request->next_completion = which; 2239 out: 2240 spin_unlock_irq(&img_request->completion_lock); 2241 rbd_img_request_put(img_request); 2242 2243 if (!more) 2244 rbd_img_request_complete(img_request); 2245 } 2246 2247 /* 2248 * Split up an image request into one or more object requests, each 2249 * to a different object. The "type" parameter indicates whether 2250 * "data_desc" is the pointer to the head of a list of bio 2251 * structures, or the base of a page array. In either case this 2252 * function assumes data_desc describes memory sufficient to hold 2253 * all data described by the image request. 2254 */ 2255 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2256 enum obj_request_type type, 2257 void *data_desc) 2258 { 2259 struct rbd_device *rbd_dev = img_request->rbd_dev; 2260 struct rbd_obj_request *obj_request = NULL; 2261 struct rbd_obj_request *next_obj_request; 2262 bool write_request = img_request_write_test(img_request); 2263 struct bio *bio_list = NULL; 2264 unsigned int bio_offset = 0; 2265 struct page **pages = NULL; 2266 u64 img_offset; 2267 u64 resid; 2268 u16 opcode; 2269 2270 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2271 (int)type, data_desc); 2272 2273 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 2274 img_offset = img_request->offset; 2275 resid = img_request->length; 2276 rbd_assert(resid > 0); 2277 2278 if (type == OBJ_REQUEST_BIO) { 2279 bio_list = data_desc; 2280 rbd_assert(img_offset == 2281 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2282 } else { 2283 rbd_assert(type == OBJ_REQUEST_PAGES); 2284 pages = data_desc; 2285 } 2286 2287 while (resid) { 2288 struct ceph_osd_request *osd_req; 2289 const char *object_name; 2290 u64 offset; 2291 u64 length; 2292 unsigned int which = 0; 2293 2294 object_name = rbd_segment_name(rbd_dev, img_offset); 2295 if (!object_name) 2296 goto out_unwind; 2297 offset = rbd_segment_offset(rbd_dev, img_offset); 2298 length = rbd_segment_length(rbd_dev, img_offset, resid); 2299 obj_request = rbd_obj_request_create(object_name, 2300 offset, length, type); 2301 /* object request has its own copy of the object name */ 2302 rbd_segment_name_free(object_name); 2303 if (!obj_request) 2304 goto out_unwind; 2305 2306 /* 2307 * set obj_request->img_request before creating the 2308 * osd_request so that it gets the right snapc 2309 */ 2310 rbd_img_obj_request_add(img_request, obj_request); 2311 2312 if (type == OBJ_REQUEST_BIO) { 2313 unsigned int clone_size; 2314 2315 rbd_assert(length <= (u64)UINT_MAX); 2316 clone_size = (unsigned int)length; 2317 obj_request->bio_list = 2318 bio_chain_clone_range(&bio_list, 2319 &bio_offset, 2320 clone_size, 2321 GFP_ATOMIC); 2322 if (!obj_request->bio_list) 2323 goto out_unwind; 2324 } else { 2325 unsigned int page_count; 2326 2327 obj_request->pages = pages; 2328 page_count = (u32)calc_pages_for(offset, length); 2329 obj_request->page_count = page_count; 2330 if ((offset + length) & ~PAGE_MASK) 2331 page_count--; /* more on last page */ 2332 pages += page_count; 2333 } 2334 2335 osd_req = rbd_osd_req_create(rbd_dev, write_request, 2336 (write_request ? 2 : 1), 2337 obj_request); 2338 if (!osd_req) 2339 goto out_unwind; 2340 obj_request->osd_req = osd_req; 2341 obj_request->callback = rbd_img_obj_callback; 2342 rbd_img_request_get(img_request); 2343 2344 if (write_request) { 2345 osd_req_op_alloc_hint_init(osd_req, which, 2346 rbd_obj_bytes(&rbd_dev->header), 2347 rbd_obj_bytes(&rbd_dev->header)); 2348 which++; 2349 } 2350 2351 osd_req_op_extent_init(osd_req, which, opcode, offset, length, 2352 0, 0); 2353 if (type == OBJ_REQUEST_BIO) 2354 osd_req_op_extent_osd_data_bio(osd_req, which, 2355 obj_request->bio_list, length); 2356 else 2357 osd_req_op_extent_osd_data_pages(osd_req, which, 2358 obj_request->pages, length, 2359 offset & ~PAGE_MASK, false, false); 2360 2361 if (write_request) 2362 rbd_osd_req_format_write(obj_request); 2363 else 2364 rbd_osd_req_format_read(obj_request); 2365 2366 obj_request->img_offset = img_offset; 2367 2368 img_offset += length; 2369 resid -= length; 2370 } 2371 2372 return 0; 2373 2374 out_unwind: 2375 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2376 rbd_img_obj_request_del(img_request, obj_request); 2377 2378 return -ENOMEM; 2379 } 2380 2381 static void 2382 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2383 { 2384 struct rbd_img_request *img_request; 2385 struct rbd_device *rbd_dev; 2386 struct page **pages; 2387 u32 page_count; 2388 2389 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2390 rbd_assert(obj_request_img_data_test(obj_request)); 2391 img_request = obj_request->img_request; 2392 rbd_assert(img_request); 2393 2394 rbd_dev = img_request->rbd_dev; 2395 rbd_assert(rbd_dev); 2396 2397 pages = obj_request->copyup_pages; 2398 rbd_assert(pages != NULL); 2399 obj_request->copyup_pages = NULL; 2400 page_count = obj_request->copyup_page_count; 2401 rbd_assert(page_count); 2402 obj_request->copyup_page_count = 0; 2403 ceph_release_page_vector(pages, page_count); 2404 2405 /* 2406 * We want the transfer count to reflect the size of the 2407 * original write request. There is no such thing as a 2408 * successful short write, so if the request was successful 2409 * we can just set it to the originally-requested length. 2410 */ 2411 if (!obj_request->result) 2412 obj_request->xferred = obj_request->length; 2413 2414 /* Finish up with the normal image object callback */ 2415 2416 rbd_img_obj_callback(obj_request); 2417 } 2418 2419 static void 2420 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2421 { 2422 struct rbd_obj_request *orig_request; 2423 struct ceph_osd_request *osd_req; 2424 struct ceph_osd_client *osdc; 2425 struct rbd_device *rbd_dev; 2426 struct page **pages; 2427 u32 page_count; 2428 int img_result; 2429 u64 parent_length; 2430 u64 offset; 2431 u64 length; 2432 2433 rbd_assert(img_request_child_test(img_request)); 2434 2435 /* First get what we need from the image request */ 2436 2437 pages = img_request->copyup_pages; 2438 rbd_assert(pages != NULL); 2439 img_request->copyup_pages = NULL; 2440 page_count = img_request->copyup_page_count; 2441 rbd_assert(page_count); 2442 img_request->copyup_page_count = 0; 2443 2444 orig_request = img_request->obj_request; 2445 rbd_assert(orig_request != NULL); 2446 rbd_assert(obj_request_type_valid(orig_request->type)); 2447 img_result = img_request->result; 2448 parent_length = img_request->length; 2449 rbd_assert(parent_length == img_request->xferred); 2450 rbd_img_request_put(img_request); 2451 2452 rbd_assert(orig_request->img_request); 2453 rbd_dev = orig_request->img_request->rbd_dev; 2454 rbd_assert(rbd_dev); 2455 2456 /* 2457 * If the overlap has become 0 (most likely because the 2458 * image has been flattened) we need to free the pages 2459 * and re-submit the original write request. 2460 */ 2461 if (!rbd_dev->parent_overlap) { 2462 struct ceph_osd_client *osdc; 2463 2464 ceph_release_page_vector(pages, page_count); 2465 osdc = &rbd_dev->rbd_client->client->osdc; 2466 img_result = rbd_obj_request_submit(osdc, orig_request); 2467 if (!img_result) 2468 return; 2469 } 2470 2471 if (img_result) 2472 goto out_err; 2473 2474 /* 2475 * The original osd request is of no use to use any more. 2476 * We need a new one that can hold the three ops in a copyup 2477 * request. Allocate the new copyup osd request for the 2478 * original request, and release the old one. 2479 */ 2480 img_result = -ENOMEM; 2481 osd_req = rbd_osd_req_create_copyup(orig_request); 2482 if (!osd_req) 2483 goto out_err; 2484 rbd_osd_req_destroy(orig_request->osd_req); 2485 orig_request->osd_req = osd_req; 2486 orig_request->copyup_pages = pages; 2487 orig_request->copyup_page_count = page_count; 2488 2489 /* Initialize the copyup op */ 2490 2491 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2492 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2493 false, false); 2494 2495 /* Then the hint op */ 2496 2497 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header), 2498 rbd_obj_bytes(&rbd_dev->header)); 2499 2500 /* And the original write request op */ 2501 2502 offset = orig_request->offset; 2503 length = orig_request->length; 2504 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE, 2505 offset, length, 0, 0); 2506 if (orig_request->type == OBJ_REQUEST_BIO) 2507 osd_req_op_extent_osd_data_bio(osd_req, 2, 2508 orig_request->bio_list, length); 2509 else 2510 osd_req_op_extent_osd_data_pages(osd_req, 2, 2511 orig_request->pages, length, 2512 offset & ~PAGE_MASK, false, false); 2513 2514 rbd_osd_req_format_write(orig_request); 2515 2516 /* All set, send it off. */ 2517 2518 orig_request->callback = rbd_img_obj_copyup_callback; 2519 osdc = &rbd_dev->rbd_client->client->osdc; 2520 img_result = rbd_obj_request_submit(osdc, orig_request); 2521 if (!img_result) 2522 return; 2523 out_err: 2524 /* Record the error code and complete the request */ 2525 2526 orig_request->result = img_result; 2527 orig_request->xferred = 0; 2528 obj_request_done_set(orig_request); 2529 rbd_obj_request_complete(orig_request); 2530 } 2531 2532 /* 2533 * Read from the parent image the range of data that covers the 2534 * entire target of the given object request. This is used for 2535 * satisfying a layered image write request when the target of an 2536 * object request from the image request does not exist. 2537 * 2538 * A page array big enough to hold the returned data is allocated 2539 * and supplied to rbd_img_request_fill() as the "data descriptor." 2540 * When the read completes, this page array will be transferred to 2541 * the original object request for the copyup operation. 2542 * 2543 * If an error occurs, record it as the result of the original 2544 * object request and mark it done so it gets completed. 2545 */ 2546 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2547 { 2548 struct rbd_img_request *img_request = NULL; 2549 struct rbd_img_request *parent_request = NULL; 2550 struct rbd_device *rbd_dev; 2551 u64 img_offset; 2552 u64 length; 2553 struct page **pages = NULL; 2554 u32 page_count; 2555 int result; 2556 2557 rbd_assert(obj_request_img_data_test(obj_request)); 2558 rbd_assert(obj_request_type_valid(obj_request->type)); 2559 2560 img_request = obj_request->img_request; 2561 rbd_assert(img_request != NULL); 2562 rbd_dev = img_request->rbd_dev; 2563 rbd_assert(rbd_dev->parent != NULL); 2564 2565 /* 2566 * Determine the byte range covered by the object in the 2567 * child image to which the original request was to be sent. 2568 */ 2569 img_offset = obj_request->img_offset - obj_request->offset; 2570 length = (u64)1 << rbd_dev->header.obj_order; 2571 2572 /* 2573 * There is no defined parent data beyond the parent 2574 * overlap, so limit what we read at that boundary if 2575 * necessary. 2576 */ 2577 if (img_offset + length > rbd_dev->parent_overlap) { 2578 rbd_assert(img_offset < rbd_dev->parent_overlap); 2579 length = rbd_dev->parent_overlap - img_offset; 2580 } 2581 2582 /* 2583 * Allocate a page array big enough to receive the data read 2584 * from the parent. 2585 */ 2586 page_count = (u32)calc_pages_for(0, length); 2587 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2588 if (IS_ERR(pages)) { 2589 result = PTR_ERR(pages); 2590 pages = NULL; 2591 goto out_err; 2592 } 2593 2594 result = -ENOMEM; 2595 parent_request = rbd_parent_request_create(obj_request, 2596 img_offset, length); 2597 if (!parent_request) 2598 goto out_err; 2599 2600 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2601 if (result) 2602 goto out_err; 2603 parent_request->copyup_pages = pages; 2604 parent_request->copyup_page_count = page_count; 2605 2606 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2607 result = rbd_img_request_submit(parent_request); 2608 if (!result) 2609 return 0; 2610 2611 parent_request->copyup_pages = NULL; 2612 parent_request->copyup_page_count = 0; 2613 parent_request->obj_request = NULL; 2614 rbd_obj_request_put(obj_request); 2615 out_err: 2616 if (pages) 2617 ceph_release_page_vector(pages, page_count); 2618 if (parent_request) 2619 rbd_img_request_put(parent_request); 2620 obj_request->result = result; 2621 obj_request->xferred = 0; 2622 obj_request_done_set(obj_request); 2623 2624 return result; 2625 } 2626 2627 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2628 { 2629 struct rbd_obj_request *orig_request; 2630 struct rbd_device *rbd_dev; 2631 int result; 2632 2633 rbd_assert(!obj_request_img_data_test(obj_request)); 2634 2635 /* 2636 * All we need from the object request is the original 2637 * request and the result of the STAT op. Grab those, then 2638 * we're done with the request. 2639 */ 2640 orig_request = obj_request->obj_request; 2641 obj_request->obj_request = NULL; 2642 rbd_obj_request_put(orig_request); 2643 rbd_assert(orig_request); 2644 rbd_assert(orig_request->img_request); 2645 2646 result = obj_request->result; 2647 obj_request->result = 0; 2648 2649 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2650 obj_request, orig_request, result, 2651 obj_request->xferred, obj_request->length); 2652 rbd_obj_request_put(obj_request); 2653 2654 /* 2655 * If the overlap has become 0 (most likely because the 2656 * image has been flattened) we need to free the pages 2657 * and re-submit the original write request. 2658 */ 2659 rbd_dev = orig_request->img_request->rbd_dev; 2660 if (!rbd_dev->parent_overlap) { 2661 struct ceph_osd_client *osdc; 2662 2663 osdc = &rbd_dev->rbd_client->client->osdc; 2664 result = rbd_obj_request_submit(osdc, orig_request); 2665 if (!result) 2666 return; 2667 } 2668 2669 /* 2670 * Our only purpose here is to determine whether the object 2671 * exists, and we don't want to treat the non-existence as 2672 * an error. If something else comes back, transfer the 2673 * error to the original request and complete it now. 2674 */ 2675 if (!result) { 2676 obj_request_existence_set(orig_request, true); 2677 } else if (result == -ENOENT) { 2678 obj_request_existence_set(orig_request, false); 2679 } else if (result) { 2680 orig_request->result = result; 2681 goto out; 2682 } 2683 2684 /* 2685 * Resubmit the original request now that we have recorded 2686 * whether the target object exists. 2687 */ 2688 orig_request->result = rbd_img_obj_request_submit(orig_request); 2689 out: 2690 if (orig_request->result) 2691 rbd_obj_request_complete(orig_request); 2692 } 2693 2694 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2695 { 2696 struct rbd_obj_request *stat_request; 2697 struct rbd_device *rbd_dev; 2698 struct ceph_osd_client *osdc; 2699 struct page **pages = NULL; 2700 u32 page_count; 2701 size_t size; 2702 int ret; 2703 2704 /* 2705 * The response data for a STAT call consists of: 2706 * le64 length; 2707 * struct { 2708 * le32 tv_sec; 2709 * le32 tv_nsec; 2710 * } mtime; 2711 */ 2712 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2713 page_count = (u32)calc_pages_for(0, size); 2714 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2715 if (IS_ERR(pages)) 2716 return PTR_ERR(pages); 2717 2718 ret = -ENOMEM; 2719 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2720 OBJ_REQUEST_PAGES); 2721 if (!stat_request) 2722 goto out; 2723 2724 rbd_obj_request_get(obj_request); 2725 stat_request->obj_request = obj_request; 2726 stat_request->pages = pages; 2727 stat_request->page_count = page_count; 2728 2729 rbd_assert(obj_request->img_request); 2730 rbd_dev = obj_request->img_request->rbd_dev; 2731 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2732 stat_request); 2733 if (!stat_request->osd_req) 2734 goto out; 2735 stat_request->callback = rbd_img_obj_exists_callback; 2736 2737 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2738 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2739 false, false); 2740 rbd_osd_req_format_read(stat_request); 2741 2742 osdc = &rbd_dev->rbd_client->client->osdc; 2743 ret = rbd_obj_request_submit(osdc, stat_request); 2744 out: 2745 if (ret) 2746 rbd_obj_request_put(obj_request); 2747 2748 return ret; 2749 } 2750 2751 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2752 { 2753 struct rbd_img_request *img_request; 2754 struct rbd_device *rbd_dev; 2755 bool known; 2756 2757 rbd_assert(obj_request_img_data_test(obj_request)); 2758 2759 img_request = obj_request->img_request; 2760 rbd_assert(img_request); 2761 rbd_dev = img_request->rbd_dev; 2762 2763 /* 2764 * Only writes to layered images need special handling. 2765 * Reads and non-layered writes are simple object requests. 2766 * Layered writes that start beyond the end of the overlap 2767 * with the parent have no parent data, so they too are 2768 * simple object requests. Finally, if the target object is 2769 * known to already exist, its parent data has already been 2770 * copied, so a write to the object can also be handled as a 2771 * simple object request. 2772 */ 2773 if (!img_request_write_test(img_request) || 2774 !img_request_layered_test(img_request) || 2775 !obj_request_overlaps_parent(obj_request) || 2776 ((known = obj_request_known_test(obj_request)) && 2777 obj_request_exists_test(obj_request))) { 2778 2779 struct rbd_device *rbd_dev; 2780 struct ceph_osd_client *osdc; 2781 2782 rbd_dev = obj_request->img_request->rbd_dev; 2783 osdc = &rbd_dev->rbd_client->client->osdc; 2784 2785 return rbd_obj_request_submit(osdc, obj_request); 2786 } 2787 2788 /* 2789 * It's a layered write. The target object might exist but 2790 * we may not know that yet. If we know it doesn't exist, 2791 * start by reading the data for the full target object from 2792 * the parent so we can use it for a copyup to the target. 2793 */ 2794 if (known) 2795 return rbd_img_obj_parent_read_full(obj_request); 2796 2797 /* We don't know whether the target exists. Go find out. */ 2798 2799 return rbd_img_obj_exists_submit(obj_request); 2800 } 2801 2802 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2803 { 2804 struct rbd_obj_request *obj_request; 2805 struct rbd_obj_request *next_obj_request; 2806 2807 dout("%s: img %p\n", __func__, img_request); 2808 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2809 int ret; 2810 2811 ret = rbd_img_obj_request_submit(obj_request); 2812 if (ret) 2813 return ret; 2814 } 2815 2816 return 0; 2817 } 2818 2819 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2820 { 2821 struct rbd_obj_request *obj_request; 2822 struct rbd_device *rbd_dev; 2823 u64 obj_end; 2824 u64 img_xferred; 2825 int img_result; 2826 2827 rbd_assert(img_request_child_test(img_request)); 2828 2829 /* First get what we need from the image request and release it */ 2830 2831 obj_request = img_request->obj_request; 2832 img_xferred = img_request->xferred; 2833 img_result = img_request->result; 2834 rbd_img_request_put(img_request); 2835 2836 /* 2837 * If the overlap has become 0 (most likely because the 2838 * image has been flattened) we need to re-submit the 2839 * original request. 2840 */ 2841 rbd_assert(obj_request); 2842 rbd_assert(obj_request->img_request); 2843 rbd_dev = obj_request->img_request->rbd_dev; 2844 if (!rbd_dev->parent_overlap) { 2845 struct ceph_osd_client *osdc; 2846 2847 osdc = &rbd_dev->rbd_client->client->osdc; 2848 img_result = rbd_obj_request_submit(osdc, obj_request); 2849 if (!img_result) 2850 return; 2851 } 2852 2853 obj_request->result = img_result; 2854 if (obj_request->result) 2855 goto out; 2856 2857 /* 2858 * We need to zero anything beyond the parent overlap 2859 * boundary. Since rbd_img_obj_request_read_callback() 2860 * will zero anything beyond the end of a short read, an 2861 * easy way to do this is to pretend the data from the 2862 * parent came up short--ending at the overlap boundary. 2863 */ 2864 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2865 obj_end = obj_request->img_offset + obj_request->length; 2866 if (obj_end > rbd_dev->parent_overlap) { 2867 u64 xferred = 0; 2868 2869 if (obj_request->img_offset < rbd_dev->parent_overlap) 2870 xferred = rbd_dev->parent_overlap - 2871 obj_request->img_offset; 2872 2873 obj_request->xferred = min(img_xferred, xferred); 2874 } else { 2875 obj_request->xferred = img_xferred; 2876 } 2877 out: 2878 rbd_img_obj_request_read_callback(obj_request); 2879 rbd_obj_request_complete(obj_request); 2880 } 2881 2882 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2883 { 2884 struct rbd_img_request *img_request; 2885 int result; 2886 2887 rbd_assert(obj_request_img_data_test(obj_request)); 2888 rbd_assert(obj_request->img_request != NULL); 2889 rbd_assert(obj_request->result == (s32) -ENOENT); 2890 rbd_assert(obj_request_type_valid(obj_request->type)); 2891 2892 /* rbd_read_finish(obj_request, obj_request->length); */ 2893 img_request = rbd_parent_request_create(obj_request, 2894 obj_request->img_offset, 2895 obj_request->length); 2896 result = -ENOMEM; 2897 if (!img_request) 2898 goto out_err; 2899 2900 if (obj_request->type == OBJ_REQUEST_BIO) 2901 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2902 obj_request->bio_list); 2903 else 2904 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2905 obj_request->pages); 2906 if (result) 2907 goto out_err; 2908 2909 img_request->callback = rbd_img_parent_read_callback; 2910 result = rbd_img_request_submit(img_request); 2911 if (result) 2912 goto out_err; 2913 2914 return; 2915 out_err: 2916 if (img_request) 2917 rbd_img_request_put(img_request); 2918 obj_request->result = result; 2919 obj_request->xferred = 0; 2920 obj_request_done_set(obj_request); 2921 } 2922 2923 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 2924 { 2925 struct rbd_obj_request *obj_request; 2926 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2927 int ret; 2928 2929 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2930 OBJ_REQUEST_NODATA); 2931 if (!obj_request) 2932 return -ENOMEM; 2933 2934 ret = -ENOMEM; 2935 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2936 obj_request); 2937 if (!obj_request->osd_req) 2938 goto out; 2939 2940 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2941 notify_id, 0, 0); 2942 rbd_osd_req_format_read(obj_request); 2943 2944 ret = rbd_obj_request_submit(osdc, obj_request); 2945 if (ret) 2946 goto out; 2947 ret = rbd_obj_request_wait(obj_request); 2948 out: 2949 rbd_obj_request_put(obj_request); 2950 2951 return ret; 2952 } 2953 2954 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2955 { 2956 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2957 int ret; 2958 2959 if (!rbd_dev) 2960 return; 2961 2962 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2963 rbd_dev->header_name, (unsigned long long)notify_id, 2964 (unsigned int)opcode); 2965 2966 /* 2967 * Until adequate refresh error handling is in place, there is 2968 * not much we can do here, except warn. 2969 * 2970 * See http://tracker.ceph.com/issues/5040 2971 */ 2972 ret = rbd_dev_refresh(rbd_dev); 2973 if (ret) 2974 rbd_warn(rbd_dev, "refresh failed: %d", ret); 2975 2976 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 2977 if (ret) 2978 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 2979 } 2980 2981 /* 2982 * Send a (un)watch request and wait for the ack. Return a request 2983 * with a ref held on success or error. 2984 */ 2985 static struct rbd_obj_request *rbd_obj_watch_request_helper( 2986 struct rbd_device *rbd_dev, 2987 bool watch) 2988 { 2989 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2990 struct rbd_obj_request *obj_request; 2991 int ret; 2992 2993 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2994 OBJ_REQUEST_NODATA); 2995 if (!obj_request) 2996 return ERR_PTR(-ENOMEM); 2997 2998 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1, 2999 obj_request); 3000 if (!obj_request->osd_req) { 3001 ret = -ENOMEM; 3002 goto out; 3003 } 3004 3005 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3006 rbd_dev->watch_event->cookie, 0, watch); 3007 rbd_osd_req_format_write(obj_request); 3008 3009 if (watch) 3010 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3011 3012 ret = rbd_obj_request_submit(osdc, obj_request); 3013 if (ret) 3014 goto out; 3015 3016 ret = rbd_obj_request_wait(obj_request); 3017 if (ret) 3018 goto out; 3019 3020 ret = obj_request->result; 3021 if (ret) { 3022 if (watch) 3023 rbd_obj_request_end(obj_request); 3024 goto out; 3025 } 3026 3027 return obj_request; 3028 3029 out: 3030 rbd_obj_request_put(obj_request); 3031 return ERR_PTR(ret); 3032 } 3033 3034 /* 3035 * Initiate a watch request, synchronously. 3036 */ 3037 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3038 { 3039 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3040 struct rbd_obj_request *obj_request; 3041 int ret; 3042 3043 rbd_assert(!rbd_dev->watch_event); 3044 rbd_assert(!rbd_dev->watch_request); 3045 3046 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3047 &rbd_dev->watch_event); 3048 if (ret < 0) 3049 return ret; 3050 3051 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3052 if (IS_ERR(obj_request)) { 3053 ceph_osdc_cancel_event(rbd_dev->watch_event); 3054 rbd_dev->watch_event = NULL; 3055 return PTR_ERR(obj_request); 3056 } 3057 3058 /* 3059 * A watch request is set to linger, so the underlying osd 3060 * request won't go away until we unregister it. We retain 3061 * a pointer to the object request during that time (in 3062 * rbd_dev->watch_request), so we'll keep a reference to it. 3063 * We'll drop that reference after we've unregistered it in 3064 * rbd_dev_header_unwatch_sync(). 3065 */ 3066 rbd_dev->watch_request = obj_request; 3067 3068 return 0; 3069 } 3070 3071 /* 3072 * Tear down a watch request, synchronously. 3073 */ 3074 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3075 { 3076 struct rbd_obj_request *obj_request; 3077 3078 rbd_assert(rbd_dev->watch_event); 3079 rbd_assert(rbd_dev->watch_request); 3080 3081 rbd_obj_request_end(rbd_dev->watch_request); 3082 rbd_obj_request_put(rbd_dev->watch_request); 3083 rbd_dev->watch_request = NULL; 3084 3085 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3086 if (!IS_ERR(obj_request)) 3087 rbd_obj_request_put(obj_request); 3088 else 3089 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3090 PTR_ERR(obj_request)); 3091 3092 ceph_osdc_cancel_event(rbd_dev->watch_event); 3093 rbd_dev->watch_event = NULL; 3094 } 3095 3096 /* 3097 * Synchronous osd object method call. Returns the number of bytes 3098 * returned in the outbound buffer, or a negative error code. 3099 */ 3100 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3101 const char *object_name, 3102 const char *class_name, 3103 const char *method_name, 3104 const void *outbound, 3105 size_t outbound_size, 3106 void *inbound, 3107 size_t inbound_size) 3108 { 3109 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3110 struct rbd_obj_request *obj_request; 3111 struct page **pages; 3112 u32 page_count; 3113 int ret; 3114 3115 /* 3116 * Method calls are ultimately read operations. The result 3117 * should placed into the inbound buffer provided. They 3118 * also supply outbound data--parameters for the object 3119 * method. Currently if this is present it will be a 3120 * snapshot id. 3121 */ 3122 page_count = (u32)calc_pages_for(0, inbound_size); 3123 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3124 if (IS_ERR(pages)) 3125 return PTR_ERR(pages); 3126 3127 ret = -ENOMEM; 3128 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3129 OBJ_REQUEST_PAGES); 3130 if (!obj_request) 3131 goto out; 3132 3133 obj_request->pages = pages; 3134 obj_request->page_count = page_count; 3135 3136 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3137 obj_request); 3138 if (!obj_request->osd_req) 3139 goto out; 3140 3141 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3142 class_name, method_name); 3143 if (outbound_size) { 3144 struct ceph_pagelist *pagelist; 3145 3146 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3147 if (!pagelist) 3148 goto out; 3149 3150 ceph_pagelist_init(pagelist); 3151 ceph_pagelist_append(pagelist, outbound, outbound_size); 3152 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3153 pagelist); 3154 } 3155 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3156 obj_request->pages, inbound_size, 3157 0, false, false); 3158 rbd_osd_req_format_read(obj_request); 3159 3160 ret = rbd_obj_request_submit(osdc, obj_request); 3161 if (ret) 3162 goto out; 3163 ret = rbd_obj_request_wait(obj_request); 3164 if (ret) 3165 goto out; 3166 3167 ret = obj_request->result; 3168 if (ret < 0) 3169 goto out; 3170 3171 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3172 ret = (int)obj_request->xferred; 3173 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3174 out: 3175 if (obj_request) 3176 rbd_obj_request_put(obj_request); 3177 else 3178 ceph_release_page_vector(pages, page_count); 3179 3180 return ret; 3181 } 3182 3183 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq) 3184 { 3185 struct rbd_img_request *img_request; 3186 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3187 u64 length = blk_rq_bytes(rq); 3188 bool wr = rq_data_dir(rq) == WRITE; 3189 int result; 3190 3191 /* Ignore/skip any zero-length requests */ 3192 3193 if (!length) { 3194 dout("%s: zero-length request\n", __func__); 3195 result = 0; 3196 goto err_rq; 3197 } 3198 3199 /* Disallow writes to a read-only device */ 3200 3201 if (wr) { 3202 if (rbd_dev->mapping.read_only) { 3203 result = -EROFS; 3204 goto err_rq; 3205 } 3206 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3207 } 3208 3209 /* 3210 * Quit early if the mapped snapshot no longer exists. It's 3211 * still possible the snapshot will have disappeared by the 3212 * time our request arrives at the osd, but there's no sense in 3213 * sending it if we already know. 3214 */ 3215 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3216 dout("request for non-existent snapshot"); 3217 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3218 result = -ENXIO; 3219 goto err_rq; 3220 } 3221 3222 if (offset && length > U64_MAX - offset + 1) { 3223 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3224 length); 3225 result = -EINVAL; 3226 goto err_rq; /* Shouldn't happen */ 3227 } 3228 3229 if (offset + length > rbd_dev->mapping.size) { 3230 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3231 length, rbd_dev->mapping.size); 3232 result = -EIO; 3233 goto err_rq; 3234 } 3235 3236 img_request = rbd_img_request_create(rbd_dev, offset, length, wr); 3237 if (!img_request) { 3238 result = -ENOMEM; 3239 goto err_rq; 3240 } 3241 img_request->rq = rq; 3242 3243 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, rq->bio); 3244 if (result) 3245 goto err_img_request; 3246 3247 result = rbd_img_request_submit(img_request); 3248 if (result) 3249 goto err_img_request; 3250 3251 return; 3252 3253 err_img_request: 3254 rbd_img_request_put(img_request); 3255 err_rq: 3256 if (result) 3257 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3258 wr ? "write" : "read", length, offset, result); 3259 blk_end_request_all(rq, result); 3260 } 3261 3262 static void rbd_request_workfn(struct work_struct *work) 3263 { 3264 struct rbd_device *rbd_dev = 3265 container_of(work, struct rbd_device, rq_work); 3266 struct request *rq, *next; 3267 LIST_HEAD(requests); 3268 3269 spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */ 3270 list_splice_init(&rbd_dev->rq_queue, &requests); 3271 spin_unlock_irq(&rbd_dev->lock); 3272 3273 list_for_each_entry_safe(rq, next, &requests, queuelist) { 3274 list_del_init(&rq->queuelist); 3275 rbd_handle_request(rbd_dev, rq); 3276 } 3277 } 3278 3279 /* 3280 * Called with q->queue_lock held and interrupts disabled, possibly on 3281 * the way to schedule(). Do not sleep here! 3282 */ 3283 static void rbd_request_fn(struct request_queue *q) 3284 { 3285 struct rbd_device *rbd_dev = q->queuedata; 3286 struct request *rq; 3287 int queued = 0; 3288 3289 rbd_assert(rbd_dev); 3290 3291 while ((rq = blk_fetch_request(q))) { 3292 /* Ignore any non-FS requests that filter through. */ 3293 if (rq->cmd_type != REQ_TYPE_FS) { 3294 dout("%s: non-fs request type %d\n", __func__, 3295 (int) rq->cmd_type); 3296 __blk_end_request_all(rq, 0); 3297 continue; 3298 } 3299 3300 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue); 3301 queued++; 3302 } 3303 3304 if (queued) 3305 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work); 3306 } 3307 3308 /* 3309 * a queue callback. Makes sure that we don't create a bio that spans across 3310 * multiple osd objects. One exception would be with a single page bios, 3311 * which we handle later at bio_chain_clone_range() 3312 */ 3313 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3314 struct bio_vec *bvec) 3315 { 3316 struct rbd_device *rbd_dev = q->queuedata; 3317 sector_t sector_offset; 3318 sector_t sectors_per_obj; 3319 sector_t obj_sector_offset; 3320 int ret; 3321 3322 /* 3323 * Find how far into its rbd object the partition-relative 3324 * bio start sector is to offset relative to the enclosing 3325 * device. 3326 */ 3327 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3328 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3329 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3330 3331 /* 3332 * Compute the number of bytes from that offset to the end 3333 * of the object. Account for what's already used by the bio. 3334 */ 3335 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3336 if (ret > bmd->bi_size) 3337 ret -= bmd->bi_size; 3338 else 3339 ret = 0; 3340 3341 /* 3342 * Don't send back more than was asked for. And if the bio 3343 * was empty, let the whole thing through because: "Note 3344 * that a block device *must* allow a single page to be 3345 * added to an empty bio." 3346 */ 3347 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3348 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3349 ret = (int) bvec->bv_len; 3350 3351 return ret; 3352 } 3353 3354 static void rbd_free_disk(struct rbd_device *rbd_dev) 3355 { 3356 struct gendisk *disk = rbd_dev->disk; 3357 3358 if (!disk) 3359 return; 3360 3361 rbd_dev->disk = NULL; 3362 if (disk->flags & GENHD_FL_UP) { 3363 del_gendisk(disk); 3364 if (disk->queue) 3365 blk_cleanup_queue(disk->queue); 3366 } 3367 put_disk(disk); 3368 } 3369 3370 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3371 const char *object_name, 3372 u64 offset, u64 length, void *buf) 3373 3374 { 3375 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3376 struct rbd_obj_request *obj_request; 3377 struct page **pages = NULL; 3378 u32 page_count; 3379 size_t size; 3380 int ret; 3381 3382 page_count = (u32) calc_pages_for(offset, length); 3383 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3384 if (IS_ERR(pages)) 3385 ret = PTR_ERR(pages); 3386 3387 ret = -ENOMEM; 3388 obj_request = rbd_obj_request_create(object_name, offset, length, 3389 OBJ_REQUEST_PAGES); 3390 if (!obj_request) 3391 goto out; 3392 3393 obj_request->pages = pages; 3394 obj_request->page_count = page_count; 3395 3396 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3397 obj_request); 3398 if (!obj_request->osd_req) 3399 goto out; 3400 3401 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3402 offset, length, 0, 0); 3403 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3404 obj_request->pages, 3405 obj_request->length, 3406 obj_request->offset & ~PAGE_MASK, 3407 false, false); 3408 rbd_osd_req_format_read(obj_request); 3409 3410 ret = rbd_obj_request_submit(osdc, obj_request); 3411 if (ret) 3412 goto out; 3413 ret = rbd_obj_request_wait(obj_request); 3414 if (ret) 3415 goto out; 3416 3417 ret = obj_request->result; 3418 if (ret < 0) 3419 goto out; 3420 3421 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3422 size = (size_t) obj_request->xferred; 3423 ceph_copy_from_page_vector(pages, buf, 0, size); 3424 rbd_assert(size <= (size_t)INT_MAX); 3425 ret = (int)size; 3426 out: 3427 if (obj_request) 3428 rbd_obj_request_put(obj_request); 3429 else 3430 ceph_release_page_vector(pages, page_count); 3431 3432 return ret; 3433 } 3434 3435 /* 3436 * Read the complete header for the given rbd device. On successful 3437 * return, the rbd_dev->header field will contain up-to-date 3438 * information about the image. 3439 */ 3440 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3441 { 3442 struct rbd_image_header_ondisk *ondisk = NULL; 3443 u32 snap_count = 0; 3444 u64 names_size = 0; 3445 u32 want_count; 3446 int ret; 3447 3448 /* 3449 * The complete header will include an array of its 64-bit 3450 * snapshot ids, followed by the names of those snapshots as 3451 * a contiguous block of NUL-terminated strings. Note that 3452 * the number of snapshots could change by the time we read 3453 * it in, in which case we re-read it. 3454 */ 3455 do { 3456 size_t size; 3457 3458 kfree(ondisk); 3459 3460 size = sizeof (*ondisk); 3461 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3462 size += names_size; 3463 ondisk = kmalloc(size, GFP_KERNEL); 3464 if (!ondisk) 3465 return -ENOMEM; 3466 3467 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3468 0, size, ondisk); 3469 if (ret < 0) 3470 goto out; 3471 if ((size_t)ret < size) { 3472 ret = -ENXIO; 3473 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3474 size, ret); 3475 goto out; 3476 } 3477 if (!rbd_dev_ondisk_valid(ondisk)) { 3478 ret = -ENXIO; 3479 rbd_warn(rbd_dev, "invalid header"); 3480 goto out; 3481 } 3482 3483 names_size = le64_to_cpu(ondisk->snap_names_len); 3484 want_count = snap_count; 3485 snap_count = le32_to_cpu(ondisk->snap_count); 3486 } while (snap_count != want_count); 3487 3488 ret = rbd_header_from_disk(rbd_dev, ondisk); 3489 out: 3490 kfree(ondisk); 3491 3492 return ret; 3493 } 3494 3495 /* 3496 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3497 * has disappeared from the (just updated) snapshot context. 3498 */ 3499 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3500 { 3501 u64 snap_id; 3502 3503 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3504 return; 3505 3506 snap_id = rbd_dev->spec->snap_id; 3507 if (snap_id == CEPH_NOSNAP) 3508 return; 3509 3510 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3511 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3512 } 3513 3514 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3515 { 3516 sector_t size; 3517 bool removing; 3518 3519 /* 3520 * Don't hold the lock while doing disk operations, 3521 * or lock ordering will conflict with the bdev mutex via: 3522 * rbd_add() -> blkdev_get() -> rbd_open() 3523 */ 3524 spin_lock_irq(&rbd_dev->lock); 3525 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3526 spin_unlock_irq(&rbd_dev->lock); 3527 /* 3528 * If the device is being removed, rbd_dev->disk has 3529 * been destroyed, so don't try to update its size 3530 */ 3531 if (!removing) { 3532 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3533 dout("setting size to %llu sectors", (unsigned long long)size); 3534 set_capacity(rbd_dev->disk, size); 3535 revalidate_disk(rbd_dev->disk); 3536 } 3537 } 3538 3539 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3540 { 3541 u64 mapping_size; 3542 int ret; 3543 3544 down_write(&rbd_dev->header_rwsem); 3545 mapping_size = rbd_dev->mapping.size; 3546 3547 ret = rbd_dev_header_info(rbd_dev); 3548 if (ret) 3549 return ret; 3550 3551 /* 3552 * If there is a parent, see if it has disappeared due to the 3553 * mapped image getting flattened. 3554 */ 3555 if (rbd_dev->parent) { 3556 ret = rbd_dev_v2_parent_info(rbd_dev); 3557 if (ret) 3558 return ret; 3559 } 3560 3561 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3562 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 3563 rbd_dev->mapping.size = rbd_dev->header.image_size; 3564 } else { 3565 /* validate mapped snapshot's EXISTS flag */ 3566 rbd_exists_validate(rbd_dev); 3567 } 3568 3569 up_write(&rbd_dev->header_rwsem); 3570 3571 if (mapping_size != rbd_dev->mapping.size) 3572 rbd_dev_update_size(rbd_dev); 3573 3574 return 0; 3575 } 3576 3577 static int rbd_init_disk(struct rbd_device *rbd_dev) 3578 { 3579 struct gendisk *disk; 3580 struct request_queue *q; 3581 u64 segment_size; 3582 3583 /* create gendisk info */ 3584 disk = alloc_disk(single_major ? 3585 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3586 RBD_MINORS_PER_MAJOR); 3587 if (!disk) 3588 return -ENOMEM; 3589 3590 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3591 rbd_dev->dev_id); 3592 disk->major = rbd_dev->major; 3593 disk->first_minor = rbd_dev->minor; 3594 if (single_major) 3595 disk->flags |= GENHD_FL_EXT_DEVT; 3596 disk->fops = &rbd_bd_ops; 3597 disk->private_data = rbd_dev; 3598 3599 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3600 if (!q) 3601 goto out_disk; 3602 3603 /* We use the default size, but let's be explicit about it. */ 3604 blk_queue_physical_block_size(q, SECTOR_SIZE); 3605 3606 /* set io sizes to object size */ 3607 segment_size = rbd_obj_bytes(&rbd_dev->header); 3608 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3609 blk_queue_max_segment_size(q, segment_size); 3610 blk_queue_io_min(q, segment_size); 3611 blk_queue_io_opt(q, segment_size); 3612 3613 blk_queue_merge_bvec(q, rbd_merge_bvec); 3614 disk->queue = q; 3615 3616 q->queuedata = rbd_dev; 3617 3618 rbd_dev->disk = disk; 3619 3620 return 0; 3621 out_disk: 3622 put_disk(disk); 3623 3624 return -ENOMEM; 3625 } 3626 3627 /* 3628 sysfs 3629 */ 3630 3631 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3632 { 3633 return container_of(dev, struct rbd_device, dev); 3634 } 3635 3636 static ssize_t rbd_size_show(struct device *dev, 3637 struct device_attribute *attr, char *buf) 3638 { 3639 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3640 3641 return sprintf(buf, "%llu\n", 3642 (unsigned long long)rbd_dev->mapping.size); 3643 } 3644 3645 /* 3646 * Note this shows the features for whatever's mapped, which is not 3647 * necessarily the base image. 3648 */ 3649 static ssize_t rbd_features_show(struct device *dev, 3650 struct device_attribute *attr, char *buf) 3651 { 3652 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3653 3654 return sprintf(buf, "0x%016llx\n", 3655 (unsigned long long)rbd_dev->mapping.features); 3656 } 3657 3658 static ssize_t rbd_major_show(struct device *dev, 3659 struct device_attribute *attr, char *buf) 3660 { 3661 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3662 3663 if (rbd_dev->major) 3664 return sprintf(buf, "%d\n", rbd_dev->major); 3665 3666 return sprintf(buf, "(none)\n"); 3667 } 3668 3669 static ssize_t rbd_minor_show(struct device *dev, 3670 struct device_attribute *attr, char *buf) 3671 { 3672 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3673 3674 return sprintf(buf, "%d\n", rbd_dev->minor); 3675 } 3676 3677 static ssize_t rbd_client_id_show(struct device *dev, 3678 struct device_attribute *attr, char *buf) 3679 { 3680 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3681 3682 return sprintf(buf, "client%lld\n", 3683 ceph_client_id(rbd_dev->rbd_client->client)); 3684 } 3685 3686 static ssize_t rbd_pool_show(struct device *dev, 3687 struct device_attribute *attr, char *buf) 3688 { 3689 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3690 3691 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3692 } 3693 3694 static ssize_t rbd_pool_id_show(struct device *dev, 3695 struct device_attribute *attr, char *buf) 3696 { 3697 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3698 3699 return sprintf(buf, "%llu\n", 3700 (unsigned long long) rbd_dev->spec->pool_id); 3701 } 3702 3703 static ssize_t rbd_name_show(struct device *dev, 3704 struct device_attribute *attr, char *buf) 3705 { 3706 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3707 3708 if (rbd_dev->spec->image_name) 3709 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3710 3711 return sprintf(buf, "(unknown)\n"); 3712 } 3713 3714 static ssize_t rbd_image_id_show(struct device *dev, 3715 struct device_attribute *attr, char *buf) 3716 { 3717 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3718 3719 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3720 } 3721 3722 /* 3723 * Shows the name of the currently-mapped snapshot (or 3724 * RBD_SNAP_HEAD_NAME for the base image). 3725 */ 3726 static ssize_t rbd_snap_show(struct device *dev, 3727 struct device_attribute *attr, 3728 char *buf) 3729 { 3730 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3731 3732 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3733 } 3734 3735 /* 3736 * For a v2 image, shows the chain of parent images, separated by empty 3737 * lines. For v1 images or if there is no parent, shows "(no parent 3738 * image)". 3739 */ 3740 static ssize_t rbd_parent_show(struct device *dev, 3741 struct device_attribute *attr, 3742 char *buf) 3743 { 3744 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3745 ssize_t count = 0; 3746 3747 if (!rbd_dev->parent) 3748 return sprintf(buf, "(no parent image)\n"); 3749 3750 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3751 struct rbd_spec *spec = rbd_dev->parent_spec; 3752 3753 count += sprintf(&buf[count], "%s" 3754 "pool_id %llu\npool_name %s\n" 3755 "image_id %s\nimage_name %s\n" 3756 "snap_id %llu\nsnap_name %s\n" 3757 "overlap %llu\n", 3758 !count ? "" : "\n", /* first? */ 3759 spec->pool_id, spec->pool_name, 3760 spec->image_id, spec->image_name ?: "(unknown)", 3761 spec->snap_id, spec->snap_name, 3762 rbd_dev->parent_overlap); 3763 } 3764 3765 return count; 3766 } 3767 3768 static ssize_t rbd_image_refresh(struct device *dev, 3769 struct device_attribute *attr, 3770 const char *buf, 3771 size_t size) 3772 { 3773 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3774 int ret; 3775 3776 ret = rbd_dev_refresh(rbd_dev); 3777 if (ret) 3778 return ret; 3779 3780 return size; 3781 } 3782 3783 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3784 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3785 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3786 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3787 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3788 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3789 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3790 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3791 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3792 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3793 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3794 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3795 3796 static struct attribute *rbd_attrs[] = { 3797 &dev_attr_size.attr, 3798 &dev_attr_features.attr, 3799 &dev_attr_major.attr, 3800 &dev_attr_minor.attr, 3801 &dev_attr_client_id.attr, 3802 &dev_attr_pool.attr, 3803 &dev_attr_pool_id.attr, 3804 &dev_attr_name.attr, 3805 &dev_attr_image_id.attr, 3806 &dev_attr_current_snap.attr, 3807 &dev_attr_parent.attr, 3808 &dev_attr_refresh.attr, 3809 NULL 3810 }; 3811 3812 static struct attribute_group rbd_attr_group = { 3813 .attrs = rbd_attrs, 3814 }; 3815 3816 static const struct attribute_group *rbd_attr_groups[] = { 3817 &rbd_attr_group, 3818 NULL 3819 }; 3820 3821 static void rbd_sysfs_dev_release(struct device *dev) 3822 { 3823 } 3824 3825 static struct device_type rbd_device_type = { 3826 .name = "rbd", 3827 .groups = rbd_attr_groups, 3828 .release = rbd_sysfs_dev_release, 3829 }; 3830 3831 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3832 { 3833 kref_get(&spec->kref); 3834 3835 return spec; 3836 } 3837 3838 static void rbd_spec_free(struct kref *kref); 3839 static void rbd_spec_put(struct rbd_spec *spec) 3840 { 3841 if (spec) 3842 kref_put(&spec->kref, rbd_spec_free); 3843 } 3844 3845 static struct rbd_spec *rbd_spec_alloc(void) 3846 { 3847 struct rbd_spec *spec; 3848 3849 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3850 if (!spec) 3851 return NULL; 3852 3853 spec->pool_id = CEPH_NOPOOL; 3854 spec->snap_id = CEPH_NOSNAP; 3855 kref_init(&spec->kref); 3856 3857 return spec; 3858 } 3859 3860 static void rbd_spec_free(struct kref *kref) 3861 { 3862 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3863 3864 kfree(spec->pool_name); 3865 kfree(spec->image_id); 3866 kfree(spec->image_name); 3867 kfree(spec->snap_name); 3868 kfree(spec); 3869 } 3870 3871 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3872 struct rbd_spec *spec) 3873 { 3874 struct rbd_device *rbd_dev; 3875 3876 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3877 if (!rbd_dev) 3878 return NULL; 3879 3880 spin_lock_init(&rbd_dev->lock); 3881 INIT_LIST_HEAD(&rbd_dev->rq_queue); 3882 INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn); 3883 rbd_dev->flags = 0; 3884 atomic_set(&rbd_dev->parent_ref, 0); 3885 INIT_LIST_HEAD(&rbd_dev->node); 3886 init_rwsem(&rbd_dev->header_rwsem); 3887 3888 rbd_dev->spec = spec; 3889 rbd_dev->rbd_client = rbdc; 3890 3891 /* Initialize the layout used for all rbd requests */ 3892 3893 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3894 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3895 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3896 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3897 3898 return rbd_dev; 3899 } 3900 3901 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3902 { 3903 rbd_put_client(rbd_dev->rbd_client); 3904 rbd_spec_put(rbd_dev->spec); 3905 kfree(rbd_dev); 3906 } 3907 3908 /* 3909 * Get the size and object order for an image snapshot, or if 3910 * snap_id is CEPH_NOSNAP, gets this information for the base 3911 * image. 3912 */ 3913 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3914 u8 *order, u64 *snap_size) 3915 { 3916 __le64 snapid = cpu_to_le64(snap_id); 3917 int ret; 3918 struct { 3919 u8 order; 3920 __le64 size; 3921 } __attribute__ ((packed)) size_buf = { 0 }; 3922 3923 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3924 "rbd", "get_size", 3925 &snapid, sizeof (snapid), 3926 &size_buf, sizeof (size_buf)); 3927 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3928 if (ret < 0) 3929 return ret; 3930 if (ret < sizeof (size_buf)) 3931 return -ERANGE; 3932 3933 if (order) { 3934 *order = size_buf.order; 3935 dout(" order %u", (unsigned int)*order); 3936 } 3937 *snap_size = le64_to_cpu(size_buf.size); 3938 3939 dout(" snap_id 0x%016llx snap_size = %llu\n", 3940 (unsigned long long)snap_id, 3941 (unsigned long long)*snap_size); 3942 3943 return 0; 3944 } 3945 3946 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3947 { 3948 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3949 &rbd_dev->header.obj_order, 3950 &rbd_dev->header.image_size); 3951 } 3952 3953 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3954 { 3955 void *reply_buf; 3956 int ret; 3957 void *p; 3958 3959 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3960 if (!reply_buf) 3961 return -ENOMEM; 3962 3963 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3964 "rbd", "get_object_prefix", NULL, 0, 3965 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 3966 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3967 if (ret < 0) 3968 goto out; 3969 3970 p = reply_buf; 3971 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3972 p + ret, NULL, GFP_NOIO); 3973 ret = 0; 3974 3975 if (IS_ERR(rbd_dev->header.object_prefix)) { 3976 ret = PTR_ERR(rbd_dev->header.object_prefix); 3977 rbd_dev->header.object_prefix = NULL; 3978 } else { 3979 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3980 } 3981 out: 3982 kfree(reply_buf); 3983 3984 return ret; 3985 } 3986 3987 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3988 u64 *snap_features) 3989 { 3990 __le64 snapid = cpu_to_le64(snap_id); 3991 struct { 3992 __le64 features; 3993 __le64 incompat; 3994 } __attribute__ ((packed)) features_buf = { 0 }; 3995 u64 incompat; 3996 int ret; 3997 3998 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3999 "rbd", "get_features", 4000 &snapid, sizeof (snapid), 4001 &features_buf, sizeof (features_buf)); 4002 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4003 if (ret < 0) 4004 return ret; 4005 if (ret < sizeof (features_buf)) 4006 return -ERANGE; 4007 4008 incompat = le64_to_cpu(features_buf.incompat); 4009 if (incompat & ~RBD_FEATURES_SUPPORTED) 4010 return -ENXIO; 4011 4012 *snap_features = le64_to_cpu(features_buf.features); 4013 4014 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4015 (unsigned long long)snap_id, 4016 (unsigned long long)*snap_features, 4017 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4018 4019 return 0; 4020 } 4021 4022 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4023 { 4024 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4025 &rbd_dev->header.features); 4026 } 4027 4028 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4029 { 4030 struct rbd_spec *parent_spec; 4031 size_t size; 4032 void *reply_buf = NULL; 4033 __le64 snapid; 4034 void *p; 4035 void *end; 4036 u64 pool_id; 4037 char *image_id; 4038 u64 snap_id; 4039 u64 overlap; 4040 int ret; 4041 4042 parent_spec = rbd_spec_alloc(); 4043 if (!parent_spec) 4044 return -ENOMEM; 4045 4046 size = sizeof (__le64) + /* pool_id */ 4047 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4048 sizeof (__le64) + /* snap_id */ 4049 sizeof (__le64); /* overlap */ 4050 reply_buf = kmalloc(size, GFP_KERNEL); 4051 if (!reply_buf) { 4052 ret = -ENOMEM; 4053 goto out_err; 4054 } 4055 4056 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4057 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4058 "rbd", "get_parent", 4059 &snapid, sizeof (snapid), 4060 reply_buf, size); 4061 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4062 if (ret < 0) 4063 goto out_err; 4064 4065 p = reply_buf; 4066 end = reply_buf + ret; 4067 ret = -ERANGE; 4068 ceph_decode_64_safe(&p, end, pool_id, out_err); 4069 if (pool_id == CEPH_NOPOOL) { 4070 /* 4071 * Either the parent never existed, or we have 4072 * record of it but the image got flattened so it no 4073 * longer has a parent. When the parent of a 4074 * layered image disappears we immediately set the 4075 * overlap to 0. The effect of this is that all new 4076 * requests will be treated as if the image had no 4077 * parent. 4078 */ 4079 if (rbd_dev->parent_overlap) { 4080 rbd_dev->parent_overlap = 0; 4081 smp_mb(); 4082 rbd_dev_parent_put(rbd_dev); 4083 pr_info("%s: clone image has been flattened\n", 4084 rbd_dev->disk->disk_name); 4085 } 4086 4087 goto out; /* No parent? No problem. */ 4088 } 4089 4090 /* The ceph file layout needs to fit pool id in 32 bits */ 4091 4092 ret = -EIO; 4093 if (pool_id > (u64)U32_MAX) { 4094 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4095 (unsigned long long)pool_id, U32_MAX); 4096 goto out_err; 4097 } 4098 4099 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4100 if (IS_ERR(image_id)) { 4101 ret = PTR_ERR(image_id); 4102 goto out_err; 4103 } 4104 ceph_decode_64_safe(&p, end, snap_id, out_err); 4105 ceph_decode_64_safe(&p, end, overlap, out_err); 4106 4107 /* 4108 * The parent won't change (except when the clone is 4109 * flattened, already handled that). So we only need to 4110 * record the parent spec we have not already done so. 4111 */ 4112 if (!rbd_dev->parent_spec) { 4113 parent_spec->pool_id = pool_id; 4114 parent_spec->image_id = image_id; 4115 parent_spec->snap_id = snap_id; 4116 rbd_dev->parent_spec = parent_spec; 4117 parent_spec = NULL; /* rbd_dev now owns this */ 4118 } else { 4119 kfree(image_id); 4120 } 4121 4122 /* 4123 * We always update the parent overlap. If it's zero we 4124 * treat it specially. 4125 */ 4126 rbd_dev->parent_overlap = overlap; 4127 smp_mb(); 4128 if (!overlap) { 4129 4130 /* A null parent_spec indicates it's the initial probe */ 4131 4132 if (parent_spec) { 4133 /* 4134 * The overlap has become zero, so the clone 4135 * must have been resized down to 0 at some 4136 * point. Treat this the same as a flatten. 4137 */ 4138 rbd_dev_parent_put(rbd_dev); 4139 pr_info("%s: clone image now standalone\n", 4140 rbd_dev->disk->disk_name); 4141 } else { 4142 /* 4143 * For the initial probe, if we find the 4144 * overlap is zero we just pretend there was 4145 * no parent image. 4146 */ 4147 rbd_warn(rbd_dev, "ignoring parent with overlap 0"); 4148 } 4149 } 4150 out: 4151 ret = 0; 4152 out_err: 4153 kfree(reply_buf); 4154 rbd_spec_put(parent_spec); 4155 4156 return ret; 4157 } 4158 4159 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4160 { 4161 struct { 4162 __le64 stripe_unit; 4163 __le64 stripe_count; 4164 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4165 size_t size = sizeof (striping_info_buf); 4166 void *p; 4167 u64 obj_size; 4168 u64 stripe_unit; 4169 u64 stripe_count; 4170 int ret; 4171 4172 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4173 "rbd", "get_stripe_unit_count", NULL, 0, 4174 (char *)&striping_info_buf, size); 4175 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4176 if (ret < 0) 4177 return ret; 4178 if (ret < size) 4179 return -ERANGE; 4180 4181 /* 4182 * We don't actually support the "fancy striping" feature 4183 * (STRIPINGV2) yet, but if the striping sizes are the 4184 * defaults the behavior is the same as before. So find 4185 * out, and only fail if the image has non-default values. 4186 */ 4187 ret = -EINVAL; 4188 obj_size = (u64)1 << rbd_dev->header.obj_order; 4189 p = &striping_info_buf; 4190 stripe_unit = ceph_decode_64(&p); 4191 if (stripe_unit != obj_size) { 4192 rbd_warn(rbd_dev, "unsupported stripe unit " 4193 "(got %llu want %llu)", 4194 stripe_unit, obj_size); 4195 return -EINVAL; 4196 } 4197 stripe_count = ceph_decode_64(&p); 4198 if (stripe_count != 1) { 4199 rbd_warn(rbd_dev, "unsupported stripe count " 4200 "(got %llu want 1)", stripe_count); 4201 return -EINVAL; 4202 } 4203 rbd_dev->header.stripe_unit = stripe_unit; 4204 rbd_dev->header.stripe_count = stripe_count; 4205 4206 return 0; 4207 } 4208 4209 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4210 { 4211 size_t image_id_size; 4212 char *image_id; 4213 void *p; 4214 void *end; 4215 size_t size; 4216 void *reply_buf = NULL; 4217 size_t len = 0; 4218 char *image_name = NULL; 4219 int ret; 4220 4221 rbd_assert(!rbd_dev->spec->image_name); 4222 4223 len = strlen(rbd_dev->spec->image_id); 4224 image_id_size = sizeof (__le32) + len; 4225 image_id = kmalloc(image_id_size, GFP_KERNEL); 4226 if (!image_id) 4227 return NULL; 4228 4229 p = image_id; 4230 end = image_id + image_id_size; 4231 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4232 4233 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4234 reply_buf = kmalloc(size, GFP_KERNEL); 4235 if (!reply_buf) 4236 goto out; 4237 4238 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4239 "rbd", "dir_get_name", 4240 image_id, image_id_size, 4241 reply_buf, size); 4242 if (ret < 0) 4243 goto out; 4244 p = reply_buf; 4245 end = reply_buf + ret; 4246 4247 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4248 if (IS_ERR(image_name)) 4249 image_name = NULL; 4250 else 4251 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4252 out: 4253 kfree(reply_buf); 4254 kfree(image_id); 4255 4256 return image_name; 4257 } 4258 4259 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4260 { 4261 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4262 const char *snap_name; 4263 u32 which = 0; 4264 4265 /* Skip over names until we find the one we are looking for */ 4266 4267 snap_name = rbd_dev->header.snap_names; 4268 while (which < snapc->num_snaps) { 4269 if (!strcmp(name, snap_name)) 4270 return snapc->snaps[which]; 4271 snap_name += strlen(snap_name) + 1; 4272 which++; 4273 } 4274 return CEPH_NOSNAP; 4275 } 4276 4277 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4278 { 4279 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4280 u32 which; 4281 bool found = false; 4282 u64 snap_id; 4283 4284 for (which = 0; !found && which < snapc->num_snaps; which++) { 4285 const char *snap_name; 4286 4287 snap_id = snapc->snaps[which]; 4288 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4289 if (IS_ERR(snap_name)) { 4290 /* ignore no-longer existing snapshots */ 4291 if (PTR_ERR(snap_name) == -ENOENT) 4292 continue; 4293 else 4294 break; 4295 } 4296 found = !strcmp(name, snap_name); 4297 kfree(snap_name); 4298 } 4299 return found ? snap_id : CEPH_NOSNAP; 4300 } 4301 4302 /* 4303 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4304 * no snapshot by that name is found, or if an error occurs. 4305 */ 4306 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4307 { 4308 if (rbd_dev->image_format == 1) 4309 return rbd_v1_snap_id_by_name(rbd_dev, name); 4310 4311 return rbd_v2_snap_id_by_name(rbd_dev, name); 4312 } 4313 4314 /* 4315 * An image being mapped will have everything but the snap id. 4316 */ 4317 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4318 { 4319 struct rbd_spec *spec = rbd_dev->spec; 4320 4321 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4322 rbd_assert(spec->image_id && spec->image_name); 4323 rbd_assert(spec->snap_name); 4324 4325 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4326 u64 snap_id; 4327 4328 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4329 if (snap_id == CEPH_NOSNAP) 4330 return -ENOENT; 4331 4332 spec->snap_id = snap_id; 4333 } else { 4334 spec->snap_id = CEPH_NOSNAP; 4335 } 4336 4337 return 0; 4338 } 4339 4340 /* 4341 * A parent image will have all ids but none of the names. 4342 * 4343 * All names in an rbd spec are dynamically allocated. It's OK if we 4344 * can't figure out the name for an image id. 4345 */ 4346 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4347 { 4348 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4349 struct rbd_spec *spec = rbd_dev->spec; 4350 const char *pool_name; 4351 const char *image_name; 4352 const char *snap_name; 4353 int ret; 4354 4355 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4356 rbd_assert(spec->image_id); 4357 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4358 4359 /* Get the pool name; we have to make our own copy of this */ 4360 4361 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4362 if (!pool_name) { 4363 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4364 return -EIO; 4365 } 4366 pool_name = kstrdup(pool_name, GFP_KERNEL); 4367 if (!pool_name) 4368 return -ENOMEM; 4369 4370 /* Fetch the image name; tolerate failure here */ 4371 4372 image_name = rbd_dev_image_name(rbd_dev); 4373 if (!image_name) 4374 rbd_warn(rbd_dev, "unable to get image name"); 4375 4376 /* Fetch the snapshot name */ 4377 4378 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4379 if (IS_ERR(snap_name)) { 4380 ret = PTR_ERR(snap_name); 4381 goto out_err; 4382 } 4383 4384 spec->pool_name = pool_name; 4385 spec->image_name = image_name; 4386 spec->snap_name = snap_name; 4387 4388 return 0; 4389 4390 out_err: 4391 kfree(image_name); 4392 kfree(pool_name); 4393 return ret; 4394 } 4395 4396 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4397 { 4398 size_t size; 4399 int ret; 4400 void *reply_buf; 4401 void *p; 4402 void *end; 4403 u64 seq; 4404 u32 snap_count; 4405 struct ceph_snap_context *snapc; 4406 u32 i; 4407 4408 /* 4409 * We'll need room for the seq value (maximum snapshot id), 4410 * snapshot count, and array of that many snapshot ids. 4411 * For now we have a fixed upper limit on the number we're 4412 * prepared to receive. 4413 */ 4414 size = sizeof (__le64) + sizeof (__le32) + 4415 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4416 reply_buf = kzalloc(size, GFP_KERNEL); 4417 if (!reply_buf) 4418 return -ENOMEM; 4419 4420 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4421 "rbd", "get_snapcontext", NULL, 0, 4422 reply_buf, size); 4423 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4424 if (ret < 0) 4425 goto out; 4426 4427 p = reply_buf; 4428 end = reply_buf + ret; 4429 ret = -ERANGE; 4430 ceph_decode_64_safe(&p, end, seq, out); 4431 ceph_decode_32_safe(&p, end, snap_count, out); 4432 4433 /* 4434 * Make sure the reported number of snapshot ids wouldn't go 4435 * beyond the end of our buffer. But before checking that, 4436 * make sure the computed size of the snapshot context we 4437 * allocate is representable in a size_t. 4438 */ 4439 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4440 / sizeof (u64)) { 4441 ret = -EINVAL; 4442 goto out; 4443 } 4444 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4445 goto out; 4446 ret = 0; 4447 4448 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4449 if (!snapc) { 4450 ret = -ENOMEM; 4451 goto out; 4452 } 4453 snapc->seq = seq; 4454 for (i = 0; i < snap_count; i++) 4455 snapc->snaps[i] = ceph_decode_64(&p); 4456 4457 ceph_put_snap_context(rbd_dev->header.snapc); 4458 rbd_dev->header.snapc = snapc; 4459 4460 dout(" snap context seq = %llu, snap_count = %u\n", 4461 (unsigned long long)seq, (unsigned int)snap_count); 4462 out: 4463 kfree(reply_buf); 4464 4465 return ret; 4466 } 4467 4468 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4469 u64 snap_id) 4470 { 4471 size_t size; 4472 void *reply_buf; 4473 __le64 snapid; 4474 int ret; 4475 void *p; 4476 void *end; 4477 char *snap_name; 4478 4479 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4480 reply_buf = kmalloc(size, GFP_KERNEL); 4481 if (!reply_buf) 4482 return ERR_PTR(-ENOMEM); 4483 4484 snapid = cpu_to_le64(snap_id); 4485 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4486 "rbd", "get_snapshot_name", 4487 &snapid, sizeof (snapid), 4488 reply_buf, size); 4489 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4490 if (ret < 0) { 4491 snap_name = ERR_PTR(ret); 4492 goto out; 4493 } 4494 4495 p = reply_buf; 4496 end = reply_buf + ret; 4497 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4498 if (IS_ERR(snap_name)) 4499 goto out; 4500 4501 dout(" snap_id 0x%016llx snap_name = %s\n", 4502 (unsigned long long)snap_id, snap_name); 4503 out: 4504 kfree(reply_buf); 4505 4506 return snap_name; 4507 } 4508 4509 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4510 { 4511 bool first_time = rbd_dev->header.object_prefix == NULL; 4512 int ret; 4513 4514 ret = rbd_dev_v2_image_size(rbd_dev); 4515 if (ret) 4516 return ret; 4517 4518 if (first_time) { 4519 ret = rbd_dev_v2_header_onetime(rbd_dev); 4520 if (ret) 4521 return ret; 4522 } 4523 4524 ret = rbd_dev_v2_snap_context(rbd_dev); 4525 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4526 4527 return ret; 4528 } 4529 4530 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4531 { 4532 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4533 4534 if (rbd_dev->image_format == 1) 4535 return rbd_dev_v1_header_info(rbd_dev); 4536 4537 return rbd_dev_v2_header_info(rbd_dev); 4538 } 4539 4540 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4541 { 4542 struct device *dev; 4543 int ret; 4544 4545 dev = &rbd_dev->dev; 4546 dev->bus = &rbd_bus_type; 4547 dev->type = &rbd_device_type; 4548 dev->parent = &rbd_root_dev; 4549 dev->release = rbd_dev_device_release; 4550 dev_set_name(dev, "%d", rbd_dev->dev_id); 4551 ret = device_register(dev); 4552 4553 return ret; 4554 } 4555 4556 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4557 { 4558 device_unregister(&rbd_dev->dev); 4559 } 4560 4561 /* 4562 * Get a unique rbd identifier for the given new rbd_dev, and add 4563 * the rbd_dev to the global list. 4564 */ 4565 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4566 { 4567 int new_dev_id; 4568 4569 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4570 0, minor_to_rbd_dev_id(1 << MINORBITS), 4571 GFP_KERNEL); 4572 if (new_dev_id < 0) 4573 return new_dev_id; 4574 4575 rbd_dev->dev_id = new_dev_id; 4576 4577 spin_lock(&rbd_dev_list_lock); 4578 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4579 spin_unlock(&rbd_dev_list_lock); 4580 4581 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4582 4583 return 0; 4584 } 4585 4586 /* 4587 * Remove an rbd_dev from the global list, and record that its 4588 * identifier is no longer in use. 4589 */ 4590 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4591 { 4592 spin_lock(&rbd_dev_list_lock); 4593 list_del_init(&rbd_dev->node); 4594 spin_unlock(&rbd_dev_list_lock); 4595 4596 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4597 4598 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4599 } 4600 4601 /* 4602 * Skips over white space at *buf, and updates *buf to point to the 4603 * first found non-space character (if any). Returns the length of 4604 * the token (string of non-white space characters) found. Note 4605 * that *buf must be terminated with '\0'. 4606 */ 4607 static inline size_t next_token(const char **buf) 4608 { 4609 /* 4610 * These are the characters that produce nonzero for 4611 * isspace() in the "C" and "POSIX" locales. 4612 */ 4613 const char *spaces = " \f\n\r\t\v"; 4614 4615 *buf += strspn(*buf, spaces); /* Find start of token */ 4616 4617 return strcspn(*buf, spaces); /* Return token length */ 4618 } 4619 4620 /* 4621 * Finds the next token in *buf, and if the provided token buffer is 4622 * big enough, copies the found token into it. The result, if 4623 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4624 * must be terminated with '\0' on entry. 4625 * 4626 * Returns the length of the token found (not including the '\0'). 4627 * Return value will be 0 if no token is found, and it will be >= 4628 * token_size if the token would not fit. 4629 * 4630 * The *buf pointer will be updated to point beyond the end of the 4631 * found token. Note that this occurs even if the token buffer is 4632 * too small to hold it. 4633 */ 4634 static inline size_t copy_token(const char **buf, 4635 char *token, 4636 size_t token_size) 4637 { 4638 size_t len; 4639 4640 len = next_token(buf); 4641 if (len < token_size) { 4642 memcpy(token, *buf, len); 4643 *(token + len) = '\0'; 4644 } 4645 *buf += len; 4646 4647 return len; 4648 } 4649 4650 /* 4651 * Finds the next token in *buf, dynamically allocates a buffer big 4652 * enough to hold a copy of it, and copies the token into the new 4653 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4654 * that a duplicate buffer is created even for a zero-length token. 4655 * 4656 * Returns a pointer to the newly-allocated duplicate, or a null 4657 * pointer if memory for the duplicate was not available. If 4658 * the lenp argument is a non-null pointer, the length of the token 4659 * (not including the '\0') is returned in *lenp. 4660 * 4661 * If successful, the *buf pointer will be updated to point beyond 4662 * the end of the found token. 4663 * 4664 * Note: uses GFP_KERNEL for allocation. 4665 */ 4666 static inline char *dup_token(const char **buf, size_t *lenp) 4667 { 4668 char *dup; 4669 size_t len; 4670 4671 len = next_token(buf); 4672 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4673 if (!dup) 4674 return NULL; 4675 *(dup + len) = '\0'; 4676 *buf += len; 4677 4678 if (lenp) 4679 *lenp = len; 4680 4681 return dup; 4682 } 4683 4684 /* 4685 * Parse the options provided for an "rbd add" (i.e., rbd image 4686 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4687 * and the data written is passed here via a NUL-terminated buffer. 4688 * Returns 0 if successful or an error code otherwise. 4689 * 4690 * The information extracted from these options is recorded in 4691 * the other parameters which return dynamically-allocated 4692 * structures: 4693 * ceph_opts 4694 * The address of a pointer that will refer to a ceph options 4695 * structure. Caller must release the returned pointer using 4696 * ceph_destroy_options() when it is no longer needed. 4697 * rbd_opts 4698 * Address of an rbd options pointer. Fully initialized by 4699 * this function; caller must release with kfree(). 4700 * spec 4701 * Address of an rbd image specification pointer. Fully 4702 * initialized by this function based on parsed options. 4703 * Caller must release with rbd_spec_put(). 4704 * 4705 * The options passed take this form: 4706 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4707 * where: 4708 * <mon_addrs> 4709 * A comma-separated list of one or more monitor addresses. 4710 * A monitor address is an ip address, optionally followed 4711 * by a port number (separated by a colon). 4712 * I.e.: ip1[:port1][,ip2[:port2]...] 4713 * <options> 4714 * A comma-separated list of ceph and/or rbd options. 4715 * <pool_name> 4716 * The name of the rados pool containing the rbd image. 4717 * <image_name> 4718 * The name of the image in that pool to map. 4719 * <snap_id> 4720 * An optional snapshot id. If provided, the mapping will 4721 * present data from the image at the time that snapshot was 4722 * created. The image head is used if no snapshot id is 4723 * provided. Snapshot mappings are always read-only. 4724 */ 4725 static int rbd_add_parse_args(const char *buf, 4726 struct ceph_options **ceph_opts, 4727 struct rbd_options **opts, 4728 struct rbd_spec **rbd_spec) 4729 { 4730 size_t len; 4731 char *options; 4732 const char *mon_addrs; 4733 char *snap_name; 4734 size_t mon_addrs_size; 4735 struct rbd_spec *spec = NULL; 4736 struct rbd_options *rbd_opts = NULL; 4737 struct ceph_options *copts; 4738 int ret; 4739 4740 /* The first four tokens are required */ 4741 4742 len = next_token(&buf); 4743 if (!len) { 4744 rbd_warn(NULL, "no monitor address(es) provided"); 4745 return -EINVAL; 4746 } 4747 mon_addrs = buf; 4748 mon_addrs_size = len + 1; 4749 buf += len; 4750 4751 ret = -EINVAL; 4752 options = dup_token(&buf, NULL); 4753 if (!options) 4754 return -ENOMEM; 4755 if (!*options) { 4756 rbd_warn(NULL, "no options provided"); 4757 goto out_err; 4758 } 4759 4760 spec = rbd_spec_alloc(); 4761 if (!spec) 4762 goto out_mem; 4763 4764 spec->pool_name = dup_token(&buf, NULL); 4765 if (!spec->pool_name) 4766 goto out_mem; 4767 if (!*spec->pool_name) { 4768 rbd_warn(NULL, "no pool name provided"); 4769 goto out_err; 4770 } 4771 4772 spec->image_name = dup_token(&buf, NULL); 4773 if (!spec->image_name) 4774 goto out_mem; 4775 if (!*spec->image_name) { 4776 rbd_warn(NULL, "no image name provided"); 4777 goto out_err; 4778 } 4779 4780 /* 4781 * Snapshot name is optional; default is to use "-" 4782 * (indicating the head/no snapshot). 4783 */ 4784 len = next_token(&buf); 4785 if (!len) { 4786 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4787 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4788 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4789 ret = -ENAMETOOLONG; 4790 goto out_err; 4791 } 4792 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4793 if (!snap_name) 4794 goto out_mem; 4795 *(snap_name + len) = '\0'; 4796 spec->snap_name = snap_name; 4797 4798 /* Initialize all rbd options to the defaults */ 4799 4800 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4801 if (!rbd_opts) 4802 goto out_mem; 4803 4804 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4805 4806 copts = ceph_parse_options(options, mon_addrs, 4807 mon_addrs + mon_addrs_size - 1, 4808 parse_rbd_opts_token, rbd_opts); 4809 if (IS_ERR(copts)) { 4810 ret = PTR_ERR(copts); 4811 goto out_err; 4812 } 4813 kfree(options); 4814 4815 *ceph_opts = copts; 4816 *opts = rbd_opts; 4817 *rbd_spec = spec; 4818 4819 return 0; 4820 out_mem: 4821 ret = -ENOMEM; 4822 out_err: 4823 kfree(rbd_opts); 4824 rbd_spec_put(spec); 4825 kfree(options); 4826 4827 return ret; 4828 } 4829 4830 /* 4831 * Return pool id (>= 0) or a negative error code. 4832 */ 4833 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4834 { 4835 u64 newest_epoch; 4836 unsigned long timeout = rbdc->client->options->mount_timeout * HZ; 4837 int tries = 0; 4838 int ret; 4839 4840 again: 4841 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4842 if (ret == -ENOENT && tries++ < 1) { 4843 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4844 &newest_epoch); 4845 if (ret < 0) 4846 return ret; 4847 4848 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4849 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4850 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4851 newest_epoch, timeout); 4852 goto again; 4853 } else { 4854 /* the osdmap we have is new enough */ 4855 return -ENOENT; 4856 } 4857 } 4858 4859 return ret; 4860 } 4861 4862 /* 4863 * An rbd format 2 image has a unique identifier, distinct from the 4864 * name given to it by the user. Internally, that identifier is 4865 * what's used to specify the names of objects related to the image. 4866 * 4867 * A special "rbd id" object is used to map an rbd image name to its 4868 * id. If that object doesn't exist, then there is no v2 rbd image 4869 * with the supplied name. 4870 * 4871 * This function will record the given rbd_dev's image_id field if 4872 * it can be determined, and in that case will return 0. If any 4873 * errors occur a negative errno will be returned and the rbd_dev's 4874 * image_id field will be unchanged (and should be NULL). 4875 */ 4876 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4877 { 4878 int ret; 4879 size_t size; 4880 char *object_name; 4881 void *response; 4882 char *image_id; 4883 4884 /* 4885 * When probing a parent image, the image id is already 4886 * known (and the image name likely is not). There's no 4887 * need to fetch the image id again in this case. We 4888 * do still need to set the image format though. 4889 */ 4890 if (rbd_dev->spec->image_id) { 4891 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4892 4893 return 0; 4894 } 4895 4896 /* 4897 * First, see if the format 2 image id file exists, and if 4898 * so, get the image's persistent id from it. 4899 */ 4900 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4901 object_name = kmalloc(size, GFP_NOIO); 4902 if (!object_name) 4903 return -ENOMEM; 4904 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4905 dout("rbd id object name is %s\n", object_name); 4906 4907 /* Response will be an encoded string, which includes a length */ 4908 4909 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4910 response = kzalloc(size, GFP_NOIO); 4911 if (!response) { 4912 ret = -ENOMEM; 4913 goto out; 4914 } 4915 4916 /* If it doesn't exist we'll assume it's a format 1 image */ 4917 4918 ret = rbd_obj_method_sync(rbd_dev, object_name, 4919 "rbd", "get_id", NULL, 0, 4920 response, RBD_IMAGE_ID_LEN_MAX); 4921 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4922 if (ret == -ENOENT) { 4923 image_id = kstrdup("", GFP_KERNEL); 4924 ret = image_id ? 0 : -ENOMEM; 4925 if (!ret) 4926 rbd_dev->image_format = 1; 4927 } else if (ret > sizeof (__le32)) { 4928 void *p = response; 4929 4930 image_id = ceph_extract_encoded_string(&p, p + ret, 4931 NULL, GFP_NOIO); 4932 ret = PTR_ERR_OR_ZERO(image_id); 4933 if (!ret) 4934 rbd_dev->image_format = 2; 4935 } else { 4936 ret = -EINVAL; 4937 } 4938 4939 if (!ret) { 4940 rbd_dev->spec->image_id = image_id; 4941 dout("image_id is %s\n", image_id); 4942 } 4943 out: 4944 kfree(response); 4945 kfree(object_name); 4946 4947 return ret; 4948 } 4949 4950 /* 4951 * Undo whatever state changes are made by v1 or v2 header info 4952 * call. 4953 */ 4954 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4955 { 4956 struct rbd_image_header *header; 4957 4958 /* Drop parent reference unless it's already been done (or none) */ 4959 4960 if (rbd_dev->parent_overlap) 4961 rbd_dev_parent_put(rbd_dev); 4962 4963 /* Free dynamic fields from the header, then zero it out */ 4964 4965 header = &rbd_dev->header; 4966 ceph_put_snap_context(header->snapc); 4967 kfree(header->snap_sizes); 4968 kfree(header->snap_names); 4969 kfree(header->object_prefix); 4970 memset(header, 0, sizeof (*header)); 4971 } 4972 4973 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 4974 { 4975 int ret; 4976 4977 ret = rbd_dev_v2_object_prefix(rbd_dev); 4978 if (ret) 4979 goto out_err; 4980 4981 /* 4982 * Get the and check features for the image. Currently the 4983 * features are assumed to never change. 4984 */ 4985 ret = rbd_dev_v2_features(rbd_dev); 4986 if (ret) 4987 goto out_err; 4988 4989 /* If the image supports fancy striping, get its parameters */ 4990 4991 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4992 ret = rbd_dev_v2_striping_info(rbd_dev); 4993 if (ret < 0) 4994 goto out_err; 4995 } 4996 /* No support for crypto and compression type format 2 images */ 4997 4998 return 0; 4999 out_err: 5000 rbd_dev->header.features = 0; 5001 kfree(rbd_dev->header.object_prefix); 5002 rbd_dev->header.object_prefix = NULL; 5003 5004 return ret; 5005 } 5006 5007 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5008 { 5009 struct rbd_device *parent = NULL; 5010 struct rbd_spec *parent_spec; 5011 struct rbd_client *rbdc; 5012 int ret; 5013 5014 if (!rbd_dev->parent_spec) 5015 return 0; 5016 /* 5017 * We need to pass a reference to the client and the parent 5018 * spec when creating the parent rbd_dev. Images related by 5019 * parent/child relationships always share both. 5020 */ 5021 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5022 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5023 5024 ret = -ENOMEM; 5025 parent = rbd_dev_create(rbdc, parent_spec); 5026 if (!parent) 5027 goto out_err; 5028 5029 ret = rbd_dev_image_probe(parent, false); 5030 if (ret < 0) 5031 goto out_err; 5032 rbd_dev->parent = parent; 5033 atomic_set(&rbd_dev->parent_ref, 1); 5034 5035 return 0; 5036 out_err: 5037 if (parent) { 5038 rbd_dev_unparent(rbd_dev); 5039 kfree(rbd_dev->header_name); 5040 rbd_dev_destroy(parent); 5041 } else { 5042 rbd_put_client(rbdc); 5043 rbd_spec_put(parent_spec); 5044 } 5045 5046 return ret; 5047 } 5048 5049 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5050 { 5051 int ret; 5052 5053 /* Get an id and fill in device name. */ 5054 5055 ret = rbd_dev_id_get(rbd_dev); 5056 if (ret) 5057 return ret; 5058 5059 BUILD_BUG_ON(DEV_NAME_LEN 5060 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5061 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5062 5063 /* Record our major and minor device numbers. */ 5064 5065 if (!single_major) { 5066 ret = register_blkdev(0, rbd_dev->name); 5067 if (ret < 0) 5068 goto err_out_id; 5069 5070 rbd_dev->major = ret; 5071 rbd_dev->minor = 0; 5072 } else { 5073 rbd_dev->major = rbd_major; 5074 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5075 } 5076 5077 /* Set up the blkdev mapping. */ 5078 5079 ret = rbd_init_disk(rbd_dev); 5080 if (ret) 5081 goto err_out_blkdev; 5082 5083 ret = rbd_dev_mapping_set(rbd_dev); 5084 if (ret) 5085 goto err_out_disk; 5086 5087 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5088 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5089 5090 rbd_dev->rq_wq = alloc_workqueue(rbd_dev->disk->disk_name, 0, 0); 5091 if (!rbd_dev->rq_wq) 5092 goto err_out_mapping; 5093 5094 ret = rbd_bus_add_dev(rbd_dev); 5095 if (ret) 5096 goto err_out_workqueue; 5097 5098 /* Everything's ready. Announce the disk to the world. */ 5099 5100 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5101 add_disk(rbd_dev->disk); 5102 5103 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5104 (unsigned long long) rbd_dev->mapping.size); 5105 5106 return ret; 5107 5108 err_out_workqueue: 5109 destroy_workqueue(rbd_dev->rq_wq); 5110 rbd_dev->rq_wq = NULL; 5111 err_out_mapping: 5112 rbd_dev_mapping_clear(rbd_dev); 5113 err_out_disk: 5114 rbd_free_disk(rbd_dev); 5115 err_out_blkdev: 5116 if (!single_major) 5117 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5118 err_out_id: 5119 rbd_dev_id_put(rbd_dev); 5120 rbd_dev_mapping_clear(rbd_dev); 5121 5122 return ret; 5123 } 5124 5125 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5126 { 5127 struct rbd_spec *spec = rbd_dev->spec; 5128 size_t size; 5129 5130 /* Record the header object name for this rbd image. */ 5131 5132 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5133 5134 if (rbd_dev->image_format == 1) 5135 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5136 else 5137 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5138 5139 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5140 if (!rbd_dev->header_name) 5141 return -ENOMEM; 5142 5143 if (rbd_dev->image_format == 1) 5144 sprintf(rbd_dev->header_name, "%s%s", 5145 spec->image_name, RBD_SUFFIX); 5146 else 5147 sprintf(rbd_dev->header_name, "%s%s", 5148 RBD_HEADER_PREFIX, spec->image_id); 5149 return 0; 5150 } 5151 5152 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5153 { 5154 rbd_dev_unprobe(rbd_dev); 5155 kfree(rbd_dev->header_name); 5156 rbd_dev->header_name = NULL; 5157 rbd_dev->image_format = 0; 5158 kfree(rbd_dev->spec->image_id); 5159 rbd_dev->spec->image_id = NULL; 5160 5161 rbd_dev_destroy(rbd_dev); 5162 } 5163 5164 /* 5165 * Probe for the existence of the header object for the given rbd 5166 * device. If this image is the one being mapped (i.e., not a 5167 * parent), initiate a watch on its header object before using that 5168 * object to get detailed information about the rbd image. 5169 */ 5170 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5171 { 5172 int ret; 5173 5174 /* 5175 * Get the id from the image id object. Unless there's an 5176 * error, rbd_dev->spec->image_id will be filled in with 5177 * a dynamically-allocated string, and rbd_dev->image_format 5178 * will be set to either 1 or 2. 5179 */ 5180 ret = rbd_dev_image_id(rbd_dev); 5181 if (ret) 5182 return ret; 5183 5184 ret = rbd_dev_header_name(rbd_dev); 5185 if (ret) 5186 goto err_out_format; 5187 5188 if (mapping) { 5189 ret = rbd_dev_header_watch_sync(rbd_dev); 5190 if (ret) 5191 goto out_header_name; 5192 } 5193 5194 ret = rbd_dev_header_info(rbd_dev); 5195 if (ret) 5196 goto err_out_watch; 5197 5198 /* 5199 * If this image is the one being mapped, we have pool name and 5200 * id, image name and id, and snap name - need to fill snap id. 5201 * Otherwise this is a parent image, identified by pool, image 5202 * and snap ids - need to fill in names for those ids. 5203 */ 5204 if (mapping) 5205 ret = rbd_spec_fill_snap_id(rbd_dev); 5206 else 5207 ret = rbd_spec_fill_names(rbd_dev); 5208 if (ret) 5209 goto err_out_probe; 5210 5211 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5212 ret = rbd_dev_v2_parent_info(rbd_dev); 5213 if (ret) 5214 goto err_out_probe; 5215 5216 /* 5217 * Need to warn users if this image is the one being 5218 * mapped and has a parent. 5219 */ 5220 if (mapping && rbd_dev->parent_spec) 5221 rbd_warn(rbd_dev, 5222 "WARNING: kernel layering is EXPERIMENTAL!"); 5223 } 5224 5225 ret = rbd_dev_probe_parent(rbd_dev); 5226 if (ret) 5227 goto err_out_probe; 5228 5229 dout("discovered format %u image, header name is %s\n", 5230 rbd_dev->image_format, rbd_dev->header_name); 5231 return 0; 5232 5233 err_out_probe: 5234 rbd_dev_unprobe(rbd_dev); 5235 err_out_watch: 5236 if (mapping) 5237 rbd_dev_header_unwatch_sync(rbd_dev); 5238 out_header_name: 5239 kfree(rbd_dev->header_name); 5240 rbd_dev->header_name = NULL; 5241 err_out_format: 5242 rbd_dev->image_format = 0; 5243 kfree(rbd_dev->spec->image_id); 5244 rbd_dev->spec->image_id = NULL; 5245 return ret; 5246 } 5247 5248 static ssize_t do_rbd_add(struct bus_type *bus, 5249 const char *buf, 5250 size_t count) 5251 { 5252 struct rbd_device *rbd_dev = NULL; 5253 struct ceph_options *ceph_opts = NULL; 5254 struct rbd_options *rbd_opts = NULL; 5255 struct rbd_spec *spec = NULL; 5256 struct rbd_client *rbdc; 5257 bool read_only; 5258 int rc = -ENOMEM; 5259 5260 if (!try_module_get(THIS_MODULE)) 5261 return -ENODEV; 5262 5263 /* parse add command */ 5264 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5265 if (rc < 0) 5266 goto err_out_module; 5267 read_only = rbd_opts->read_only; 5268 kfree(rbd_opts); 5269 rbd_opts = NULL; /* done with this */ 5270 5271 rbdc = rbd_get_client(ceph_opts); 5272 if (IS_ERR(rbdc)) { 5273 rc = PTR_ERR(rbdc); 5274 goto err_out_args; 5275 } 5276 5277 /* pick the pool */ 5278 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5279 if (rc < 0) 5280 goto err_out_client; 5281 spec->pool_id = (u64)rc; 5282 5283 /* The ceph file layout needs to fit pool id in 32 bits */ 5284 5285 if (spec->pool_id > (u64)U32_MAX) { 5286 rbd_warn(NULL, "pool id too large (%llu > %u)", 5287 (unsigned long long)spec->pool_id, U32_MAX); 5288 rc = -EIO; 5289 goto err_out_client; 5290 } 5291 5292 rbd_dev = rbd_dev_create(rbdc, spec); 5293 if (!rbd_dev) 5294 goto err_out_client; 5295 rbdc = NULL; /* rbd_dev now owns this */ 5296 spec = NULL; /* rbd_dev now owns this */ 5297 5298 rc = rbd_dev_image_probe(rbd_dev, true); 5299 if (rc < 0) 5300 goto err_out_rbd_dev; 5301 5302 /* If we are mapping a snapshot it must be marked read-only */ 5303 5304 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5305 read_only = true; 5306 rbd_dev->mapping.read_only = read_only; 5307 5308 rc = rbd_dev_device_setup(rbd_dev); 5309 if (rc) { 5310 /* 5311 * rbd_dev_header_unwatch_sync() can't be moved into 5312 * rbd_dev_image_release() without refactoring, see 5313 * commit 1f3ef78861ac. 5314 */ 5315 rbd_dev_header_unwatch_sync(rbd_dev); 5316 rbd_dev_image_release(rbd_dev); 5317 goto err_out_module; 5318 } 5319 5320 return count; 5321 5322 err_out_rbd_dev: 5323 rbd_dev_destroy(rbd_dev); 5324 err_out_client: 5325 rbd_put_client(rbdc); 5326 err_out_args: 5327 rbd_spec_put(spec); 5328 err_out_module: 5329 module_put(THIS_MODULE); 5330 5331 dout("Error adding device %s\n", buf); 5332 5333 return (ssize_t)rc; 5334 } 5335 5336 static ssize_t rbd_add(struct bus_type *bus, 5337 const char *buf, 5338 size_t count) 5339 { 5340 if (single_major) 5341 return -EINVAL; 5342 5343 return do_rbd_add(bus, buf, count); 5344 } 5345 5346 static ssize_t rbd_add_single_major(struct bus_type *bus, 5347 const char *buf, 5348 size_t count) 5349 { 5350 return do_rbd_add(bus, buf, count); 5351 } 5352 5353 static void rbd_dev_device_release(struct device *dev) 5354 { 5355 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5356 5357 destroy_workqueue(rbd_dev->rq_wq); 5358 rbd_free_disk(rbd_dev); 5359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5360 rbd_dev_mapping_clear(rbd_dev); 5361 if (!single_major) 5362 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5363 rbd_dev_id_put(rbd_dev); 5364 rbd_dev_mapping_clear(rbd_dev); 5365 } 5366 5367 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5368 { 5369 while (rbd_dev->parent) { 5370 struct rbd_device *first = rbd_dev; 5371 struct rbd_device *second = first->parent; 5372 struct rbd_device *third; 5373 5374 /* 5375 * Follow to the parent with no grandparent and 5376 * remove it. 5377 */ 5378 while (second && (third = second->parent)) { 5379 first = second; 5380 second = third; 5381 } 5382 rbd_assert(second); 5383 rbd_dev_image_release(second); 5384 first->parent = NULL; 5385 first->parent_overlap = 0; 5386 5387 rbd_assert(first->parent_spec); 5388 rbd_spec_put(first->parent_spec); 5389 first->parent_spec = NULL; 5390 } 5391 } 5392 5393 static ssize_t do_rbd_remove(struct bus_type *bus, 5394 const char *buf, 5395 size_t count) 5396 { 5397 struct rbd_device *rbd_dev = NULL; 5398 struct list_head *tmp; 5399 int dev_id; 5400 unsigned long ul; 5401 bool already = false; 5402 int ret; 5403 5404 ret = kstrtoul(buf, 10, &ul); 5405 if (ret) 5406 return ret; 5407 5408 /* convert to int; abort if we lost anything in the conversion */ 5409 dev_id = (int)ul; 5410 if (dev_id != ul) 5411 return -EINVAL; 5412 5413 ret = -ENOENT; 5414 spin_lock(&rbd_dev_list_lock); 5415 list_for_each(tmp, &rbd_dev_list) { 5416 rbd_dev = list_entry(tmp, struct rbd_device, node); 5417 if (rbd_dev->dev_id == dev_id) { 5418 ret = 0; 5419 break; 5420 } 5421 } 5422 if (!ret) { 5423 spin_lock_irq(&rbd_dev->lock); 5424 if (rbd_dev->open_count) 5425 ret = -EBUSY; 5426 else 5427 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5428 &rbd_dev->flags); 5429 spin_unlock_irq(&rbd_dev->lock); 5430 } 5431 spin_unlock(&rbd_dev_list_lock); 5432 if (ret < 0 || already) 5433 return ret; 5434 5435 rbd_dev_header_unwatch_sync(rbd_dev); 5436 /* 5437 * flush remaining watch callbacks - these must be complete 5438 * before the osd_client is shutdown 5439 */ 5440 dout("%s: flushing notifies", __func__); 5441 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5442 5443 /* 5444 * Don't free anything from rbd_dev->disk until after all 5445 * notifies are completely processed. Otherwise 5446 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5447 * in a potential use after free of rbd_dev->disk or rbd_dev. 5448 */ 5449 rbd_bus_del_dev(rbd_dev); 5450 rbd_dev_image_release(rbd_dev); 5451 module_put(THIS_MODULE); 5452 5453 return count; 5454 } 5455 5456 static ssize_t rbd_remove(struct bus_type *bus, 5457 const char *buf, 5458 size_t count) 5459 { 5460 if (single_major) 5461 return -EINVAL; 5462 5463 return do_rbd_remove(bus, buf, count); 5464 } 5465 5466 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5467 const char *buf, 5468 size_t count) 5469 { 5470 return do_rbd_remove(bus, buf, count); 5471 } 5472 5473 /* 5474 * create control files in sysfs 5475 * /sys/bus/rbd/... 5476 */ 5477 static int rbd_sysfs_init(void) 5478 { 5479 int ret; 5480 5481 ret = device_register(&rbd_root_dev); 5482 if (ret < 0) 5483 return ret; 5484 5485 ret = bus_register(&rbd_bus_type); 5486 if (ret < 0) 5487 device_unregister(&rbd_root_dev); 5488 5489 return ret; 5490 } 5491 5492 static void rbd_sysfs_cleanup(void) 5493 { 5494 bus_unregister(&rbd_bus_type); 5495 device_unregister(&rbd_root_dev); 5496 } 5497 5498 static int rbd_slab_init(void) 5499 { 5500 rbd_assert(!rbd_img_request_cache); 5501 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5502 sizeof (struct rbd_img_request), 5503 __alignof__(struct rbd_img_request), 5504 0, NULL); 5505 if (!rbd_img_request_cache) 5506 return -ENOMEM; 5507 5508 rbd_assert(!rbd_obj_request_cache); 5509 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5510 sizeof (struct rbd_obj_request), 5511 __alignof__(struct rbd_obj_request), 5512 0, NULL); 5513 if (!rbd_obj_request_cache) 5514 goto out_err; 5515 5516 rbd_assert(!rbd_segment_name_cache); 5517 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5518 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5519 if (rbd_segment_name_cache) 5520 return 0; 5521 out_err: 5522 if (rbd_obj_request_cache) { 5523 kmem_cache_destroy(rbd_obj_request_cache); 5524 rbd_obj_request_cache = NULL; 5525 } 5526 5527 kmem_cache_destroy(rbd_img_request_cache); 5528 rbd_img_request_cache = NULL; 5529 5530 return -ENOMEM; 5531 } 5532 5533 static void rbd_slab_exit(void) 5534 { 5535 rbd_assert(rbd_segment_name_cache); 5536 kmem_cache_destroy(rbd_segment_name_cache); 5537 rbd_segment_name_cache = NULL; 5538 5539 rbd_assert(rbd_obj_request_cache); 5540 kmem_cache_destroy(rbd_obj_request_cache); 5541 rbd_obj_request_cache = NULL; 5542 5543 rbd_assert(rbd_img_request_cache); 5544 kmem_cache_destroy(rbd_img_request_cache); 5545 rbd_img_request_cache = NULL; 5546 } 5547 5548 static int __init rbd_init(void) 5549 { 5550 int rc; 5551 5552 if (!libceph_compatible(NULL)) { 5553 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5554 return -EINVAL; 5555 } 5556 5557 rc = rbd_slab_init(); 5558 if (rc) 5559 return rc; 5560 5561 if (single_major) { 5562 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5563 if (rbd_major < 0) { 5564 rc = rbd_major; 5565 goto err_out_slab; 5566 } 5567 } 5568 5569 rc = rbd_sysfs_init(); 5570 if (rc) 5571 goto err_out_blkdev; 5572 5573 if (single_major) 5574 pr_info("loaded (major %d)\n", rbd_major); 5575 else 5576 pr_info("loaded\n"); 5577 5578 return 0; 5579 5580 err_out_blkdev: 5581 if (single_major) 5582 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5583 err_out_slab: 5584 rbd_slab_exit(); 5585 return rc; 5586 } 5587 5588 static void __exit rbd_exit(void) 5589 { 5590 ida_destroy(&rbd_dev_id_ida); 5591 rbd_sysfs_cleanup(); 5592 if (single_major) 5593 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5594 rbd_slab_exit(); 5595 } 5596 5597 module_init(rbd_init); 5598 module_exit(rbd_exit); 5599 5600 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5601 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5602 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5603 /* following authorship retained from original osdblk.c */ 5604 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5605 5606 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5607 MODULE_LICENSE("GPL"); 5608