xref: /openbmc/linux/drivers/block/rbd.c (revision 588b48ca)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_req_flags {
214 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
215 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
216 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
217 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
218 };
219 
220 struct rbd_obj_request {
221 	const char		*object_name;
222 	u64			offset;		/* object start byte */
223 	u64			length;		/* bytes from offset */
224 	unsigned long		flags;
225 
226 	/*
227 	 * An object request associated with an image will have its
228 	 * img_data flag set; a standalone object request will not.
229 	 *
230 	 * A standalone object request will have which == BAD_WHICH
231 	 * and a null obj_request pointer.
232 	 *
233 	 * An object request initiated in support of a layered image
234 	 * object (to check for its existence before a write) will
235 	 * have which == BAD_WHICH and a non-null obj_request pointer.
236 	 *
237 	 * Finally, an object request for rbd image data will have
238 	 * which != BAD_WHICH, and will have a non-null img_request
239 	 * pointer.  The value of which will be in the range
240 	 * 0..(img_request->obj_request_count-1).
241 	 */
242 	union {
243 		struct rbd_obj_request	*obj_request;	/* STAT op */
244 		struct {
245 			struct rbd_img_request	*img_request;
246 			u64			img_offset;
247 			/* links for img_request->obj_requests list */
248 			struct list_head	links;
249 		};
250 	};
251 	u32			which;		/* posn image request list */
252 
253 	enum obj_request_type	type;
254 	union {
255 		struct bio	*bio_list;
256 		struct {
257 			struct page	**pages;
258 			u32		page_count;
259 		};
260 	};
261 	struct page		**copyup_pages;
262 	u32			copyup_page_count;
263 
264 	struct ceph_osd_request	*osd_req;
265 
266 	u64			xferred;	/* bytes transferred */
267 	int			result;
268 
269 	rbd_obj_callback_t	callback;
270 	struct completion	completion;
271 
272 	struct kref		kref;
273 };
274 
275 enum img_req_flags {
276 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
277 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
278 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
279 };
280 
281 struct rbd_img_request {
282 	struct rbd_device	*rbd_dev;
283 	u64			offset;	/* starting image byte offset */
284 	u64			length;	/* byte count from offset */
285 	unsigned long		flags;
286 	union {
287 		u64			snap_id;	/* for reads */
288 		struct ceph_snap_context *snapc;	/* for writes */
289 	};
290 	union {
291 		struct request		*rq;		/* block request */
292 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
293 	};
294 	struct page		**copyup_pages;
295 	u32			copyup_page_count;
296 	spinlock_t		completion_lock;/* protects next_completion */
297 	u32			next_completion;
298 	rbd_img_callback_t	callback;
299 	u64			xferred;/* aggregate bytes transferred */
300 	int			result;	/* first nonzero obj_request result */
301 
302 	u32			obj_request_count;
303 	struct list_head	obj_requests;	/* rbd_obj_request structs */
304 
305 	struct kref		kref;
306 };
307 
308 #define for_each_obj_request(ireq, oreq) \
309 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_from(ireq, oreq) \
311 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
312 #define for_each_obj_request_safe(ireq, oreq, n) \
313 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
314 
315 struct rbd_mapping {
316 	u64                     size;
317 	u64                     features;
318 	bool			read_only;
319 };
320 
321 /*
322  * a single device
323  */
324 struct rbd_device {
325 	int			dev_id;		/* blkdev unique id */
326 
327 	int			major;		/* blkdev assigned major */
328 	int			minor;
329 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
330 
331 	u32			image_format;	/* Either 1 or 2 */
332 	struct rbd_client	*rbd_client;
333 
334 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
335 
336 	struct list_head	rq_queue;	/* incoming rq queue */
337 	spinlock_t		lock;		/* queue, flags, open_count */
338 	struct workqueue_struct	*rq_wq;
339 	struct work_struct	rq_work;
340 
341 	struct rbd_image_header	header;
342 	unsigned long		flags;		/* possibly lock protected */
343 	struct rbd_spec		*spec;
344 
345 	char			*header_name;
346 
347 	struct ceph_file_layout	layout;
348 
349 	struct ceph_osd_event   *watch_event;
350 	struct rbd_obj_request	*watch_request;
351 
352 	struct rbd_spec		*parent_spec;
353 	u64			parent_overlap;
354 	atomic_t		parent_ref;
355 	struct rbd_device	*parent;
356 
357 	/* protects updating the header */
358 	struct rw_semaphore     header_rwsem;
359 
360 	struct rbd_mapping	mapping;
361 
362 	struct list_head	node;
363 
364 	/* sysfs related */
365 	struct device		dev;
366 	unsigned long		open_count;	/* protected by lock */
367 };
368 
369 /*
370  * Flag bits for rbd_dev->flags.  If atomicity is required,
371  * rbd_dev->lock is used to protect access.
372  *
373  * Currently, only the "removing" flag (which is coupled with the
374  * "open_count" field) requires atomic access.
375  */
376 enum rbd_dev_flags {
377 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
378 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
379 };
380 
381 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
382 
383 static LIST_HEAD(rbd_dev_list);    /* devices */
384 static DEFINE_SPINLOCK(rbd_dev_list_lock);
385 
386 static LIST_HEAD(rbd_client_list);		/* clients */
387 static DEFINE_SPINLOCK(rbd_client_list_lock);
388 
389 /* Slab caches for frequently-allocated structures */
390 
391 static struct kmem_cache	*rbd_img_request_cache;
392 static struct kmem_cache	*rbd_obj_request_cache;
393 static struct kmem_cache	*rbd_segment_name_cache;
394 
395 static int rbd_major;
396 static DEFINE_IDA(rbd_dev_id_ida);
397 
398 /*
399  * Default to false for now, as single-major requires >= 0.75 version of
400  * userspace rbd utility.
401  */
402 static bool single_major = false;
403 module_param(single_major, bool, S_IRUGO);
404 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
405 
406 static int rbd_img_request_submit(struct rbd_img_request *img_request);
407 
408 static void rbd_dev_device_release(struct device *dev);
409 
410 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
411 		       size_t count);
412 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
413 			  size_t count);
414 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
415 				    size_t count);
416 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
417 				       size_t count);
418 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
419 static void rbd_spec_put(struct rbd_spec *spec);
420 
421 static int rbd_dev_id_to_minor(int dev_id)
422 {
423 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
424 }
425 
426 static int minor_to_rbd_dev_id(int minor)
427 {
428 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
429 }
430 
431 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
432 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
433 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
434 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
435 
436 static struct attribute *rbd_bus_attrs[] = {
437 	&bus_attr_add.attr,
438 	&bus_attr_remove.attr,
439 	&bus_attr_add_single_major.attr,
440 	&bus_attr_remove_single_major.attr,
441 	NULL,
442 };
443 
444 static umode_t rbd_bus_is_visible(struct kobject *kobj,
445 				  struct attribute *attr, int index)
446 {
447 	if (!single_major &&
448 	    (attr == &bus_attr_add_single_major.attr ||
449 	     attr == &bus_attr_remove_single_major.attr))
450 		return 0;
451 
452 	return attr->mode;
453 }
454 
455 static const struct attribute_group rbd_bus_group = {
456 	.attrs = rbd_bus_attrs,
457 	.is_visible = rbd_bus_is_visible,
458 };
459 __ATTRIBUTE_GROUPS(rbd_bus);
460 
461 static struct bus_type rbd_bus_type = {
462 	.name		= "rbd",
463 	.bus_groups	= rbd_bus_groups,
464 };
465 
466 static void rbd_root_dev_release(struct device *dev)
467 {
468 }
469 
470 static struct device rbd_root_dev = {
471 	.init_name =    "rbd",
472 	.release =      rbd_root_dev_release,
473 };
474 
475 static __printf(2, 3)
476 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
477 {
478 	struct va_format vaf;
479 	va_list args;
480 
481 	va_start(args, fmt);
482 	vaf.fmt = fmt;
483 	vaf.va = &args;
484 
485 	if (!rbd_dev)
486 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
487 	else if (rbd_dev->disk)
488 		printk(KERN_WARNING "%s: %s: %pV\n",
489 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
490 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
491 		printk(KERN_WARNING "%s: image %s: %pV\n",
492 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
493 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
494 		printk(KERN_WARNING "%s: id %s: %pV\n",
495 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
496 	else	/* punt */
497 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
498 			RBD_DRV_NAME, rbd_dev, &vaf);
499 	va_end(args);
500 }
501 
502 #ifdef RBD_DEBUG
503 #define rbd_assert(expr)						\
504 		if (unlikely(!(expr))) {				\
505 			printk(KERN_ERR "\nAssertion failure in %s() "	\
506 						"at line %d:\n\n"	\
507 					"\trbd_assert(%s);\n\n",	\
508 					__func__, __LINE__, #expr);	\
509 			BUG();						\
510 		}
511 #else /* !RBD_DEBUG */
512 #  define rbd_assert(expr)	((void) 0)
513 #endif /* !RBD_DEBUG */
514 
515 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
516 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
517 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
518 
519 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
520 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
521 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
522 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
523 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
524 					u64 snap_id);
525 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
526 				u8 *order, u64 *snap_size);
527 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
528 		u64 *snap_features);
529 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
530 
531 static int rbd_open(struct block_device *bdev, fmode_t mode)
532 {
533 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
534 	bool removing = false;
535 
536 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
537 		return -EROFS;
538 
539 	spin_lock_irq(&rbd_dev->lock);
540 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
541 		removing = true;
542 	else
543 		rbd_dev->open_count++;
544 	spin_unlock_irq(&rbd_dev->lock);
545 	if (removing)
546 		return -ENOENT;
547 
548 	(void) get_device(&rbd_dev->dev);
549 
550 	return 0;
551 }
552 
553 static void rbd_release(struct gendisk *disk, fmode_t mode)
554 {
555 	struct rbd_device *rbd_dev = disk->private_data;
556 	unsigned long open_count_before;
557 
558 	spin_lock_irq(&rbd_dev->lock);
559 	open_count_before = rbd_dev->open_count--;
560 	spin_unlock_irq(&rbd_dev->lock);
561 	rbd_assert(open_count_before > 0);
562 
563 	put_device(&rbd_dev->dev);
564 }
565 
566 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
567 {
568 	int ret = 0;
569 	int val;
570 	bool ro;
571 	bool ro_changed = false;
572 
573 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
574 	if (get_user(val, (int __user *)(arg)))
575 		return -EFAULT;
576 
577 	ro = val ? true : false;
578 	/* Snapshot doesn't allow to write*/
579 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
580 		return -EROFS;
581 
582 	spin_lock_irq(&rbd_dev->lock);
583 	/* prevent others open this device */
584 	if (rbd_dev->open_count > 1) {
585 		ret = -EBUSY;
586 		goto out;
587 	}
588 
589 	if (rbd_dev->mapping.read_only != ro) {
590 		rbd_dev->mapping.read_only = ro;
591 		ro_changed = true;
592 	}
593 
594 out:
595 	spin_unlock_irq(&rbd_dev->lock);
596 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
597 	if (ret == 0 && ro_changed)
598 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
599 
600 	return ret;
601 }
602 
603 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
604 			unsigned int cmd, unsigned long arg)
605 {
606 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
607 	int ret = 0;
608 
609 	switch (cmd) {
610 	case BLKROSET:
611 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
612 		break;
613 	default:
614 		ret = -ENOTTY;
615 	}
616 
617 	return ret;
618 }
619 
620 #ifdef CONFIG_COMPAT
621 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
622 				unsigned int cmd, unsigned long arg)
623 {
624 	return rbd_ioctl(bdev, mode, cmd, arg);
625 }
626 #endif /* CONFIG_COMPAT */
627 
628 static const struct block_device_operations rbd_bd_ops = {
629 	.owner			= THIS_MODULE,
630 	.open			= rbd_open,
631 	.release		= rbd_release,
632 	.ioctl			= rbd_ioctl,
633 #ifdef CONFIG_COMPAT
634 	.compat_ioctl		= rbd_compat_ioctl,
635 #endif
636 };
637 
638 /*
639  * Initialize an rbd client instance.  Success or not, this function
640  * consumes ceph_opts.  Caller holds client_mutex.
641  */
642 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
643 {
644 	struct rbd_client *rbdc;
645 	int ret = -ENOMEM;
646 
647 	dout("%s:\n", __func__);
648 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
649 	if (!rbdc)
650 		goto out_opt;
651 
652 	kref_init(&rbdc->kref);
653 	INIT_LIST_HEAD(&rbdc->node);
654 
655 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
656 	if (IS_ERR(rbdc->client))
657 		goto out_rbdc;
658 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
659 
660 	ret = ceph_open_session(rbdc->client);
661 	if (ret < 0)
662 		goto out_client;
663 
664 	spin_lock(&rbd_client_list_lock);
665 	list_add_tail(&rbdc->node, &rbd_client_list);
666 	spin_unlock(&rbd_client_list_lock);
667 
668 	dout("%s: rbdc %p\n", __func__, rbdc);
669 
670 	return rbdc;
671 out_client:
672 	ceph_destroy_client(rbdc->client);
673 out_rbdc:
674 	kfree(rbdc);
675 out_opt:
676 	if (ceph_opts)
677 		ceph_destroy_options(ceph_opts);
678 	dout("%s: error %d\n", __func__, ret);
679 
680 	return ERR_PTR(ret);
681 }
682 
683 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
684 {
685 	kref_get(&rbdc->kref);
686 
687 	return rbdc;
688 }
689 
690 /*
691  * Find a ceph client with specific addr and configuration.  If
692  * found, bump its reference count.
693  */
694 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
695 {
696 	struct rbd_client *client_node;
697 	bool found = false;
698 
699 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
700 		return NULL;
701 
702 	spin_lock(&rbd_client_list_lock);
703 	list_for_each_entry(client_node, &rbd_client_list, node) {
704 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
705 			__rbd_get_client(client_node);
706 
707 			found = true;
708 			break;
709 		}
710 	}
711 	spin_unlock(&rbd_client_list_lock);
712 
713 	return found ? client_node : NULL;
714 }
715 
716 /*
717  * mount options
718  */
719 enum {
720 	Opt_last_int,
721 	/* int args above */
722 	Opt_last_string,
723 	/* string args above */
724 	Opt_read_only,
725 	Opt_read_write,
726 	/* Boolean args above */
727 	Opt_last_bool,
728 };
729 
730 static match_table_t rbd_opts_tokens = {
731 	/* int args above */
732 	/* string args above */
733 	{Opt_read_only, "read_only"},
734 	{Opt_read_only, "ro"},		/* Alternate spelling */
735 	{Opt_read_write, "read_write"},
736 	{Opt_read_write, "rw"},		/* Alternate spelling */
737 	/* Boolean args above */
738 	{-1, NULL}
739 };
740 
741 struct rbd_options {
742 	bool	read_only;
743 };
744 
745 #define RBD_READ_ONLY_DEFAULT	false
746 
747 static int parse_rbd_opts_token(char *c, void *private)
748 {
749 	struct rbd_options *rbd_opts = private;
750 	substring_t argstr[MAX_OPT_ARGS];
751 	int token, intval, ret;
752 
753 	token = match_token(c, rbd_opts_tokens, argstr);
754 	if (token < 0)
755 		return -EINVAL;
756 
757 	if (token < Opt_last_int) {
758 		ret = match_int(&argstr[0], &intval);
759 		if (ret < 0) {
760 			pr_err("bad mount option arg (not int) "
761 			       "at '%s'\n", c);
762 			return ret;
763 		}
764 		dout("got int token %d val %d\n", token, intval);
765 	} else if (token > Opt_last_int && token < Opt_last_string) {
766 		dout("got string token %d val %s\n", token,
767 		     argstr[0].from);
768 	} else if (token > Opt_last_string && token < Opt_last_bool) {
769 		dout("got Boolean token %d\n", token);
770 	} else {
771 		dout("got token %d\n", token);
772 	}
773 
774 	switch (token) {
775 	case Opt_read_only:
776 		rbd_opts->read_only = true;
777 		break;
778 	case Opt_read_write:
779 		rbd_opts->read_only = false;
780 		break;
781 	default:
782 		rbd_assert(false);
783 		break;
784 	}
785 	return 0;
786 }
787 
788 /*
789  * Get a ceph client with specific addr and configuration, if one does
790  * not exist create it.  Either way, ceph_opts is consumed by this
791  * function.
792  */
793 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
794 {
795 	struct rbd_client *rbdc;
796 
797 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
798 	rbdc = rbd_client_find(ceph_opts);
799 	if (rbdc)	/* using an existing client */
800 		ceph_destroy_options(ceph_opts);
801 	else
802 		rbdc = rbd_client_create(ceph_opts);
803 	mutex_unlock(&client_mutex);
804 
805 	return rbdc;
806 }
807 
808 /*
809  * Destroy ceph client
810  *
811  * Caller must hold rbd_client_list_lock.
812  */
813 static void rbd_client_release(struct kref *kref)
814 {
815 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
816 
817 	dout("%s: rbdc %p\n", __func__, rbdc);
818 	spin_lock(&rbd_client_list_lock);
819 	list_del(&rbdc->node);
820 	spin_unlock(&rbd_client_list_lock);
821 
822 	ceph_destroy_client(rbdc->client);
823 	kfree(rbdc);
824 }
825 
826 /*
827  * Drop reference to ceph client node. If it's not referenced anymore, release
828  * it.
829  */
830 static void rbd_put_client(struct rbd_client *rbdc)
831 {
832 	if (rbdc)
833 		kref_put(&rbdc->kref, rbd_client_release);
834 }
835 
836 static bool rbd_image_format_valid(u32 image_format)
837 {
838 	return image_format == 1 || image_format == 2;
839 }
840 
841 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
842 {
843 	size_t size;
844 	u32 snap_count;
845 
846 	/* The header has to start with the magic rbd header text */
847 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
848 		return false;
849 
850 	/* The bio layer requires at least sector-sized I/O */
851 
852 	if (ondisk->options.order < SECTOR_SHIFT)
853 		return false;
854 
855 	/* If we use u64 in a few spots we may be able to loosen this */
856 
857 	if (ondisk->options.order > 8 * sizeof (int) - 1)
858 		return false;
859 
860 	/*
861 	 * The size of a snapshot header has to fit in a size_t, and
862 	 * that limits the number of snapshots.
863 	 */
864 	snap_count = le32_to_cpu(ondisk->snap_count);
865 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
866 	if (snap_count > size / sizeof (__le64))
867 		return false;
868 
869 	/*
870 	 * Not only that, but the size of the entire the snapshot
871 	 * header must also be representable in a size_t.
872 	 */
873 	size -= snap_count * sizeof (__le64);
874 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
875 		return false;
876 
877 	return true;
878 }
879 
880 /*
881  * Fill an rbd image header with information from the given format 1
882  * on-disk header.
883  */
884 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
885 				 struct rbd_image_header_ondisk *ondisk)
886 {
887 	struct rbd_image_header *header = &rbd_dev->header;
888 	bool first_time = header->object_prefix == NULL;
889 	struct ceph_snap_context *snapc;
890 	char *object_prefix = NULL;
891 	char *snap_names = NULL;
892 	u64 *snap_sizes = NULL;
893 	u32 snap_count;
894 	size_t size;
895 	int ret = -ENOMEM;
896 	u32 i;
897 
898 	/* Allocate this now to avoid having to handle failure below */
899 
900 	if (first_time) {
901 		size_t len;
902 
903 		len = strnlen(ondisk->object_prefix,
904 				sizeof (ondisk->object_prefix));
905 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
906 		if (!object_prefix)
907 			return -ENOMEM;
908 		memcpy(object_prefix, ondisk->object_prefix, len);
909 		object_prefix[len] = '\0';
910 	}
911 
912 	/* Allocate the snapshot context and fill it in */
913 
914 	snap_count = le32_to_cpu(ondisk->snap_count);
915 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
916 	if (!snapc)
917 		goto out_err;
918 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
919 	if (snap_count) {
920 		struct rbd_image_snap_ondisk *snaps;
921 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
922 
923 		/* We'll keep a copy of the snapshot names... */
924 
925 		if (snap_names_len > (u64)SIZE_MAX)
926 			goto out_2big;
927 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
928 		if (!snap_names)
929 			goto out_err;
930 
931 		/* ...as well as the array of their sizes. */
932 
933 		size = snap_count * sizeof (*header->snap_sizes);
934 		snap_sizes = kmalloc(size, GFP_KERNEL);
935 		if (!snap_sizes)
936 			goto out_err;
937 
938 		/*
939 		 * Copy the names, and fill in each snapshot's id
940 		 * and size.
941 		 *
942 		 * Note that rbd_dev_v1_header_info() guarantees the
943 		 * ondisk buffer we're working with has
944 		 * snap_names_len bytes beyond the end of the
945 		 * snapshot id array, this memcpy() is safe.
946 		 */
947 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
948 		snaps = ondisk->snaps;
949 		for (i = 0; i < snap_count; i++) {
950 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
951 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
952 		}
953 	}
954 
955 	/* We won't fail any more, fill in the header */
956 
957 	if (first_time) {
958 		header->object_prefix = object_prefix;
959 		header->obj_order = ondisk->options.order;
960 		header->crypt_type = ondisk->options.crypt_type;
961 		header->comp_type = ondisk->options.comp_type;
962 		/* The rest aren't used for format 1 images */
963 		header->stripe_unit = 0;
964 		header->stripe_count = 0;
965 		header->features = 0;
966 	} else {
967 		ceph_put_snap_context(header->snapc);
968 		kfree(header->snap_names);
969 		kfree(header->snap_sizes);
970 	}
971 
972 	/* The remaining fields always get updated (when we refresh) */
973 
974 	header->image_size = le64_to_cpu(ondisk->image_size);
975 	header->snapc = snapc;
976 	header->snap_names = snap_names;
977 	header->snap_sizes = snap_sizes;
978 
979 	return 0;
980 out_2big:
981 	ret = -EIO;
982 out_err:
983 	kfree(snap_sizes);
984 	kfree(snap_names);
985 	ceph_put_snap_context(snapc);
986 	kfree(object_prefix);
987 
988 	return ret;
989 }
990 
991 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
992 {
993 	const char *snap_name;
994 
995 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
996 
997 	/* Skip over names until we find the one we are looking for */
998 
999 	snap_name = rbd_dev->header.snap_names;
1000 	while (which--)
1001 		snap_name += strlen(snap_name) + 1;
1002 
1003 	return kstrdup(snap_name, GFP_KERNEL);
1004 }
1005 
1006 /*
1007  * Snapshot id comparison function for use with qsort()/bsearch().
1008  * Note that result is for snapshots in *descending* order.
1009  */
1010 static int snapid_compare_reverse(const void *s1, const void *s2)
1011 {
1012 	u64 snap_id1 = *(u64 *)s1;
1013 	u64 snap_id2 = *(u64 *)s2;
1014 
1015 	if (snap_id1 < snap_id2)
1016 		return 1;
1017 	return snap_id1 == snap_id2 ? 0 : -1;
1018 }
1019 
1020 /*
1021  * Search a snapshot context to see if the given snapshot id is
1022  * present.
1023  *
1024  * Returns the position of the snapshot id in the array if it's found,
1025  * or BAD_SNAP_INDEX otherwise.
1026  *
1027  * Note: The snapshot array is in kept sorted (by the osd) in
1028  * reverse order, highest snapshot id first.
1029  */
1030 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1031 {
1032 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1033 	u64 *found;
1034 
1035 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1036 				sizeof (snap_id), snapid_compare_reverse);
1037 
1038 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1039 }
1040 
1041 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1042 					u64 snap_id)
1043 {
1044 	u32 which;
1045 	const char *snap_name;
1046 
1047 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1048 	if (which == BAD_SNAP_INDEX)
1049 		return ERR_PTR(-ENOENT);
1050 
1051 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1052 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1053 }
1054 
1055 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1056 {
1057 	if (snap_id == CEPH_NOSNAP)
1058 		return RBD_SNAP_HEAD_NAME;
1059 
1060 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1061 	if (rbd_dev->image_format == 1)
1062 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1063 
1064 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1065 }
1066 
1067 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1068 				u64 *snap_size)
1069 {
1070 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1071 	if (snap_id == CEPH_NOSNAP) {
1072 		*snap_size = rbd_dev->header.image_size;
1073 	} else if (rbd_dev->image_format == 1) {
1074 		u32 which;
1075 
1076 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 		if (which == BAD_SNAP_INDEX)
1078 			return -ENOENT;
1079 
1080 		*snap_size = rbd_dev->header.snap_sizes[which];
1081 	} else {
1082 		u64 size = 0;
1083 		int ret;
1084 
1085 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1086 		if (ret)
1087 			return ret;
1088 
1089 		*snap_size = size;
1090 	}
1091 	return 0;
1092 }
1093 
1094 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1095 			u64 *snap_features)
1096 {
1097 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1098 	if (snap_id == CEPH_NOSNAP) {
1099 		*snap_features = rbd_dev->header.features;
1100 	} else if (rbd_dev->image_format == 1) {
1101 		*snap_features = 0;	/* No features for format 1 */
1102 	} else {
1103 		u64 features = 0;
1104 		int ret;
1105 
1106 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1107 		if (ret)
1108 			return ret;
1109 
1110 		*snap_features = features;
1111 	}
1112 	return 0;
1113 }
1114 
1115 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1116 {
1117 	u64 snap_id = rbd_dev->spec->snap_id;
1118 	u64 size = 0;
1119 	u64 features = 0;
1120 	int ret;
1121 
1122 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1123 	if (ret)
1124 		return ret;
1125 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1126 	if (ret)
1127 		return ret;
1128 
1129 	rbd_dev->mapping.size = size;
1130 	rbd_dev->mapping.features = features;
1131 
1132 	return 0;
1133 }
1134 
1135 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1136 {
1137 	rbd_dev->mapping.size = 0;
1138 	rbd_dev->mapping.features = 0;
1139 }
1140 
1141 static void rbd_segment_name_free(const char *name)
1142 {
1143 	/* The explicit cast here is needed to drop the const qualifier */
1144 
1145 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1146 }
1147 
1148 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1149 {
1150 	char *name;
1151 	u64 segment;
1152 	int ret;
1153 	char *name_format;
1154 
1155 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1156 	if (!name)
1157 		return NULL;
1158 	segment = offset >> rbd_dev->header.obj_order;
1159 	name_format = "%s.%012llx";
1160 	if (rbd_dev->image_format == 2)
1161 		name_format = "%s.%016llx";
1162 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1163 			rbd_dev->header.object_prefix, segment);
1164 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1165 		pr_err("error formatting segment name for #%llu (%d)\n",
1166 			segment, ret);
1167 		rbd_segment_name_free(name);
1168 		name = NULL;
1169 	}
1170 
1171 	return name;
1172 }
1173 
1174 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1175 {
1176 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1177 
1178 	return offset & (segment_size - 1);
1179 }
1180 
1181 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1182 				u64 offset, u64 length)
1183 {
1184 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1185 
1186 	offset &= segment_size - 1;
1187 
1188 	rbd_assert(length <= U64_MAX - offset);
1189 	if (offset + length > segment_size)
1190 		length = segment_size - offset;
1191 
1192 	return length;
1193 }
1194 
1195 /*
1196  * returns the size of an object in the image
1197  */
1198 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1199 {
1200 	return 1 << header->obj_order;
1201 }
1202 
1203 /*
1204  * bio helpers
1205  */
1206 
1207 static void bio_chain_put(struct bio *chain)
1208 {
1209 	struct bio *tmp;
1210 
1211 	while (chain) {
1212 		tmp = chain;
1213 		chain = chain->bi_next;
1214 		bio_put(tmp);
1215 	}
1216 }
1217 
1218 /*
1219  * zeros a bio chain, starting at specific offset
1220  */
1221 static void zero_bio_chain(struct bio *chain, int start_ofs)
1222 {
1223 	struct bio_vec bv;
1224 	struct bvec_iter iter;
1225 	unsigned long flags;
1226 	void *buf;
1227 	int pos = 0;
1228 
1229 	while (chain) {
1230 		bio_for_each_segment(bv, chain, iter) {
1231 			if (pos + bv.bv_len > start_ofs) {
1232 				int remainder = max(start_ofs - pos, 0);
1233 				buf = bvec_kmap_irq(&bv, &flags);
1234 				memset(buf + remainder, 0,
1235 				       bv.bv_len - remainder);
1236 				flush_dcache_page(bv.bv_page);
1237 				bvec_kunmap_irq(buf, &flags);
1238 			}
1239 			pos += bv.bv_len;
1240 		}
1241 
1242 		chain = chain->bi_next;
1243 	}
1244 }
1245 
1246 /*
1247  * similar to zero_bio_chain(), zeros data defined by a page array,
1248  * starting at the given byte offset from the start of the array and
1249  * continuing up to the given end offset.  The pages array is
1250  * assumed to be big enough to hold all bytes up to the end.
1251  */
1252 static void zero_pages(struct page **pages, u64 offset, u64 end)
1253 {
1254 	struct page **page = &pages[offset >> PAGE_SHIFT];
1255 
1256 	rbd_assert(end > offset);
1257 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1258 	while (offset < end) {
1259 		size_t page_offset;
1260 		size_t length;
1261 		unsigned long flags;
1262 		void *kaddr;
1263 
1264 		page_offset = offset & ~PAGE_MASK;
1265 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1266 		local_irq_save(flags);
1267 		kaddr = kmap_atomic(*page);
1268 		memset(kaddr + page_offset, 0, length);
1269 		flush_dcache_page(*page);
1270 		kunmap_atomic(kaddr);
1271 		local_irq_restore(flags);
1272 
1273 		offset += length;
1274 		page++;
1275 	}
1276 }
1277 
1278 /*
1279  * Clone a portion of a bio, starting at the given byte offset
1280  * and continuing for the number of bytes indicated.
1281  */
1282 static struct bio *bio_clone_range(struct bio *bio_src,
1283 					unsigned int offset,
1284 					unsigned int len,
1285 					gfp_t gfpmask)
1286 {
1287 	struct bio *bio;
1288 
1289 	bio = bio_clone(bio_src, gfpmask);
1290 	if (!bio)
1291 		return NULL;	/* ENOMEM */
1292 
1293 	bio_advance(bio, offset);
1294 	bio->bi_iter.bi_size = len;
1295 
1296 	return bio;
1297 }
1298 
1299 /*
1300  * Clone a portion of a bio chain, starting at the given byte offset
1301  * into the first bio in the source chain and continuing for the
1302  * number of bytes indicated.  The result is another bio chain of
1303  * exactly the given length, or a null pointer on error.
1304  *
1305  * The bio_src and offset parameters are both in-out.  On entry they
1306  * refer to the first source bio and the offset into that bio where
1307  * the start of data to be cloned is located.
1308  *
1309  * On return, bio_src is updated to refer to the bio in the source
1310  * chain that contains first un-cloned byte, and *offset will
1311  * contain the offset of that byte within that bio.
1312  */
1313 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1314 					unsigned int *offset,
1315 					unsigned int len,
1316 					gfp_t gfpmask)
1317 {
1318 	struct bio *bi = *bio_src;
1319 	unsigned int off = *offset;
1320 	struct bio *chain = NULL;
1321 	struct bio **end;
1322 
1323 	/* Build up a chain of clone bios up to the limit */
1324 
1325 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1326 		return NULL;		/* Nothing to clone */
1327 
1328 	end = &chain;
1329 	while (len) {
1330 		unsigned int bi_size;
1331 		struct bio *bio;
1332 
1333 		if (!bi) {
1334 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1335 			goto out_err;	/* EINVAL; ran out of bio's */
1336 		}
1337 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1338 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1339 		if (!bio)
1340 			goto out_err;	/* ENOMEM */
1341 
1342 		*end = bio;
1343 		end = &bio->bi_next;
1344 
1345 		off += bi_size;
1346 		if (off == bi->bi_iter.bi_size) {
1347 			bi = bi->bi_next;
1348 			off = 0;
1349 		}
1350 		len -= bi_size;
1351 	}
1352 	*bio_src = bi;
1353 	*offset = off;
1354 
1355 	return chain;
1356 out_err:
1357 	bio_chain_put(chain);
1358 
1359 	return NULL;
1360 }
1361 
1362 /*
1363  * The default/initial value for all object request flags is 0.  For
1364  * each flag, once its value is set to 1 it is never reset to 0
1365  * again.
1366  */
1367 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1368 {
1369 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1370 		struct rbd_device *rbd_dev;
1371 
1372 		rbd_dev = obj_request->img_request->rbd_dev;
1373 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1374 			obj_request);
1375 	}
1376 }
1377 
1378 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1379 {
1380 	smp_mb();
1381 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1382 }
1383 
1384 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1385 {
1386 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1387 		struct rbd_device *rbd_dev = NULL;
1388 
1389 		if (obj_request_img_data_test(obj_request))
1390 			rbd_dev = obj_request->img_request->rbd_dev;
1391 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1392 			obj_request);
1393 	}
1394 }
1395 
1396 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1397 {
1398 	smp_mb();
1399 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1400 }
1401 
1402 /*
1403  * This sets the KNOWN flag after (possibly) setting the EXISTS
1404  * flag.  The latter is set based on the "exists" value provided.
1405  *
1406  * Note that for our purposes once an object exists it never goes
1407  * away again.  It's possible that the response from two existence
1408  * checks are separated by the creation of the target object, and
1409  * the first ("doesn't exist") response arrives *after* the second
1410  * ("does exist").  In that case we ignore the second one.
1411  */
1412 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1413 				bool exists)
1414 {
1415 	if (exists)
1416 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1417 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1418 	smp_mb();
1419 }
1420 
1421 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1422 {
1423 	smp_mb();
1424 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1425 }
1426 
1427 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1428 {
1429 	smp_mb();
1430 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1431 }
1432 
1433 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1434 {
1435 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1436 
1437 	return obj_request->img_offset <
1438 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1439 }
1440 
1441 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1442 {
1443 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1444 		atomic_read(&obj_request->kref.refcount));
1445 	kref_get(&obj_request->kref);
1446 }
1447 
1448 static void rbd_obj_request_destroy(struct kref *kref);
1449 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1450 {
1451 	rbd_assert(obj_request != NULL);
1452 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1453 		atomic_read(&obj_request->kref.refcount));
1454 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1455 }
1456 
1457 static void rbd_img_request_get(struct rbd_img_request *img_request)
1458 {
1459 	dout("%s: img %p (was %d)\n", __func__, img_request,
1460 	     atomic_read(&img_request->kref.refcount));
1461 	kref_get(&img_request->kref);
1462 }
1463 
1464 static bool img_request_child_test(struct rbd_img_request *img_request);
1465 static void rbd_parent_request_destroy(struct kref *kref);
1466 static void rbd_img_request_destroy(struct kref *kref);
1467 static void rbd_img_request_put(struct rbd_img_request *img_request)
1468 {
1469 	rbd_assert(img_request != NULL);
1470 	dout("%s: img %p (was %d)\n", __func__, img_request,
1471 		atomic_read(&img_request->kref.refcount));
1472 	if (img_request_child_test(img_request))
1473 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1474 	else
1475 		kref_put(&img_request->kref, rbd_img_request_destroy);
1476 }
1477 
1478 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1479 					struct rbd_obj_request *obj_request)
1480 {
1481 	rbd_assert(obj_request->img_request == NULL);
1482 
1483 	/* Image request now owns object's original reference */
1484 	obj_request->img_request = img_request;
1485 	obj_request->which = img_request->obj_request_count;
1486 	rbd_assert(!obj_request_img_data_test(obj_request));
1487 	obj_request_img_data_set(obj_request);
1488 	rbd_assert(obj_request->which != BAD_WHICH);
1489 	img_request->obj_request_count++;
1490 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1491 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1492 		obj_request->which);
1493 }
1494 
1495 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1496 					struct rbd_obj_request *obj_request)
1497 {
1498 	rbd_assert(obj_request->which != BAD_WHICH);
1499 
1500 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1501 		obj_request->which);
1502 	list_del(&obj_request->links);
1503 	rbd_assert(img_request->obj_request_count > 0);
1504 	img_request->obj_request_count--;
1505 	rbd_assert(obj_request->which == img_request->obj_request_count);
1506 	obj_request->which = BAD_WHICH;
1507 	rbd_assert(obj_request_img_data_test(obj_request));
1508 	rbd_assert(obj_request->img_request == img_request);
1509 	obj_request->img_request = NULL;
1510 	obj_request->callback = NULL;
1511 	rbd_obj_request_put(obj_request);
1512 }
1513 
1514 static bool obj_request_type_valid(enum obj_request_type type)
1515 {
1516 	switch (type) {
1517 	case OBJ_REQUEST_NODATA:
1518 	case OBJ_REQUEST_BIO:
1519 	case OBJ_REQUEST_PAGES:
1520 		return true;
1521 	default:
1522 		return false;
1523 	}
1524 }
1525 
1526 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1527 				struct rbd_obj_request *obj_request)
1528 {
1529 	dout("%s %p\n", __func__, obj_request);
1530 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1531 }
1532 
1533 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1534 {
1535 	dout("%s %p\n", __func__, obj_request);
1536 	ceph_osdc_cancel_request(obj_request->osd_req);
1537 }
1538 
1539 /*
1540  * Wait for an object request to complete.  If interrupted, cancel the
1541  * underlying osd request.
1542  */
1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1544 {
1545 	int ret;
1546 
1547 	dout("%s %p\n", __func__, obj_request);
1548 
1549 	ret = wait_for_completion_interruptible(&obj_request->completion);
1550 	if (ret < 0) {
1551 		dout("%s %p interrupted\n", __func__, obj_request);
1552 		rbd_obj_request_end(obj_request);
1553 		return ret;
1554 	}
1555 
1556 	dout("%s %p done\n", __func__, obj_request);
1557 	return 0;
1558 }
1559 
1560 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1561 {
1562 
1563 	dout("%s: img %p\n", __func__, img_request);
1564 
1565 	/*
1566 	 * If no error occurred, compute the aggregate transfer
1567 	 * count for the image request.  We could instead use
1568 	 * atomic64_cmpxchg() to update it as each object request
1569 	 * completes; not clear which way is better off hand.
1570 	 */
1571 	if (!img_request->result) {
1572 		struct rbd_obj_request *obj_request;
1573 		u64 xferred = 0;
1574 
1575 		for_each_obj_request(img_request, obj_request)
1576 			xferred += obj_request->xferred;
1577 		img_request->xferred = xferred;
1578 	}
1579 
1580 	if (img_request->callback)
1581 		img_request->callback(img_request);
1582 	else
1583 		rbd_img_request_put(img_request);
1584 }
1585 
1586 /*
1587  * The default/initial value for all image request flags is 0.  Each
1588  * is conditionally set to 1 at image request initialization time
1589  * and currently never change thereafter.
1590  */
1591 static void img_request_write_set(struct rbd_img_request *img_request)
1592 {
1593 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1594 	smp_mb();
1595 }
1596 
1597 static bool img_request_write_test(struct rbd_img_request *img_request)
1598 {
1599 	smp_mb();
1600 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1601 }
1602 
1603 static void img_request_child_set(struct rbd_img_request *img_request)
1604 {
1605 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1606 	smp_mb();
1607 }
1608 
1609 static void img_request_child_clear(struct rbd_img_request *img_request)
1610 {
1611 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1612 	smp_mb();
1613 }
1614 
1615 static bool img_request_child_test(struct rbd_img_request *img_request)
1616 {
1617 	smp_mb();
1618 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1619 }
1620 
1621 static void img_request_layered_set(struct rbd_img_request *img_request)
1622 {
1623 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1624 	smp_mb();
1625 }
1626 
1627 static void img_request_layered_clear(struct rbd_img_request *img_request)
1628 {
1629 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1630 	smp_mb();
1631 }
1632 
1633 static bool img_request_layered_test(struct rbd_img_request *img_request)
1634 {
1635 	smp_mb();
1636 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1637 }
1638 
1639 static void
1640 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1641 {
1642 	u64 xferred = obj_request->xferred;
1643 	u64 length = obj_request->length;
1644 
1645 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1646 		obj_request, obj_request->img_request, obj_request->result,
1647 		xferred, length);
1648 	/*
1649 	 * ENOENT means a hole in the image.  We zero-fill the entire
1650 	 * length of the request.  A short read also implies zero-fill
1651 	 * to the end of the request.  An error requires the whole
1652 	 * length of the request to be reported finished with an error
1653 	 * to the block layer.  In each case we update the xferred
1654 	 * count to indicate the whole request was satisfied.
1655 	 */
1656 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1657 	if (obj_request->result == -ENOENT) {
1658 		if (obj_request->type == OBJ_REQUEST_BIO)
1659 			zero_bio_chain(obj_request->bio_list, 0);
1660 		else
1661 			zero_pages(obj_request->pages, 0, length);
1662 		obj_request->result = 0;
1663 	} else if (xferred < length && !obj_request->result) {
1664 		if (obj_request->type == OBJ_REQUEST_BIO)
1665 			zero_bio_chain(obj_request->bio_list, xferred);
1666 		else
1667 			zero_pages(obj_request->pages, xferred, length);
1668 	}
1669 	obj_request->xferred = length;
1670 	obj_request_done_set(obj_request);
1671 }
1672 
1673 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1674 {
1675 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1676 		obj_request->callback);
1677 	if (obj_request->callback)
1678 		obj_request->callback(obj_request);
1679 	else
1680 		complete_all(&obj_request->completion);
1681 }
1682 
1683 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1684 {
1685 	dout("%s: obj %p\n", __func__, obj_request);
1686 	obj_request_done_set(obj_request);
1687 }
1688 
1689 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1690 {
1691 	struct rbd_img_request *img_request = NULL;
1692 	struct rbd_device *rbd_dev = NULL;
1693 	bool layered = false;
1694 
1695 	if (obj_request_img_data_test(obj_request)) {
1696 		img_request = obj_request->img_request;
1697 		layered = img_request && img_request_layered_test(img_request);
1698 		rbd_dev = img_request->rbd_dev;
1699 	}
1700 
1701 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1702 		obj_request, img_request, obj_request->result,
1703 		obj_request->xferred, obj_request->length);
1704 	if (layered && obj_request->result == -ENOENT &&
1705 			obj_request->img_offset < rbd_dev->parent_overlap)
1706 		rbd_img_parent_read(obj_request);
1707 	else if (img_request)
1708 		rbd_img_obj_request_read_callback(obj_request);
1709 	else
1710 		obj_request_done_set(obj_request);
1711 }
1712 
1713 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1714 {
1715 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1716 		obj_request->result, obj_request->length);
1717 	/*
1718 	 * There is no such thing as a successful short write.  Set
1719 	 * it to our originally-requested length.
1720 	 */
1721 	obj_request->xferred = obj_request->length;
1722 	obj_request_done_set(obj_request);
1723 }
1724 
1725 /*
1726  * For a simple stat call there's nothing to do.  We'll do more if
1727  * this is part of a write sequence for a layered image.
1728  */
1729 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1730 {
1731 	dout("%s: obj %p\n", __func__, obj_request);
1732 	obj_request_done_set(obj_request);
1733 }
1734 
1735 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1736 				struct ceph_msg *msg)
1737 {
1738 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1739 	u16 opcode;
1740 
1741 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1742 	rbd_assert(osd_req == obj_request->osd_req);
1743 	if (obj_request_img_data_test(obj_request)) {
1744 		rbd_assert(obj_request->img_request);
1745 		rbd_assert(obj_request->which != BAD_WHICH);
1746 	} else {
1747 		rbd_assert(obj_request->which == BAD_WHICH);
1748 	}
1749 
1750 	if (osd_req->r_result < 0)
1751 		obj_request->result = osd_req->r_result;
1752 
1753 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1754 
1755 	/*
1756 	 * We support a 64-bit length, but ultimately it has to be
1757 	 * passed to blk_end_request(), which takes an unsigned int.
1758 	 */
1759 	obj_request->xferred = osd_req->r_reply_op_len[0];
1760 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1761 
1762 	opcode = osd_req->r_ops[0].op;
1763 	switch (opcode) {
1764 	case CEPH_OSD_OP_READ:
1765 		rbd_osd_read_callback(obj_request);
1766 		break;
1767 	case CEPH_OSD_OP_SETALLOCHINT:
1768 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1769 		/* fall through */
1770 	case CEPH_OSD_OP_WRITE:
1771 		rbd_osd_write_callback(obj_request);
1772 		break;
1773 	case CEPH_OSD_OP_STAT:
1774 		rbd_osd_stat_callback(obj_request);
1775 		break;
1776 	case CEPH_OSD_OP_CALL:
1777 	case CEPH_OSD_OP_NOTIFY_ACK:
1778 	case CEPH_OSD_OP_WATCH:
1779 		rbd_osd_trivial_callback(obj_request);
1780 		break;
1781 	default:
1782 		rbd_warn(NULL, "%s: unsupported op %hu",
1783 			obj_request->object_name, (unsigned short) opcode);
1784 		break;
1785 	}
1786 
1787 	if (obj_request_done_test(obj_request))
1788 		rbd_obj_request_complete(obj_request);
1789 }
1790 
1791 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1792 {
1793 	struct rbd_img_request *img_request = obj_request->img_request;
1794 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1795 	u64 snap_id;
1796 
1797 	rbd_assert(osd_req != NULL);
1798 
1799 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1800 	ceph_osdc_build_request(osd_req, obj_request->offset,
1801 			NULL, snap_id, NULL);
1802 }
1803 
1804 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1805 {
1806 	struct rbd_img_request *img_request = obj_request->img_request;
1807 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1808 	struct ceph_snap_context *snapc;
1809 	struct timespec mtime = CURRENT_TIME;
1810 
1811 	rbd_assert(osd_req != NULL);
1812 
1813 	snapc = img_request ? img_request->snapc : NULL;
1814 	ceph_osdc_build_request(osd_req, obj_request->offset,
1815 			snapc, CEPH_NOSNAP, &mtime);
1816 }
1817 
1818 /*
1819  * Create an osd request.  A read request has one osd op (read).
1820  * A write request has either one (watch) or two (hint+write) osd ops.
1821  * (All rbd data writes are prefixed with an allocation hint op, but
1822  * technically osd watch is a write request, hence this distinction.)
1823  */
1824 static struct ceph_osd_request *rbd_osd_req_create(
1825 					struct rbd_device *rbd_dev,
1826 					bool write_request,
1827 					unsigned int num_ops,
1828 					struct rbd_obj_request *obj_request)
1829 {
1830 	struct ceph_snap_context *snapc = NULL;
1831 	struct ceph_osd_client *osdc;
1832 	struct ceph_osd_request *osd_req;
1833 
1834 	if (obj_request_img_data_test(obj_request)) {
1835 		struct rbd_img_request *img_request = obj_request->img_request;
1836 
1837 		rbd_assert(write_request ==
1838 				img_request_write_test(img_request));
1839 		if (write_request)
1840 			snapc = img_request->snapc;
1841 	}
1842 
1843 	rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1844 
1845 	/* Allocate and initialize the request, for the num_ops ops */
1846 
1847 	osdc = &rbd_dev->rbd_client->client->osdc;
1848 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1849 					  GFP_ATOMIC);
1850 	if (!osd_req)
1851 		return NULL;	/* ENOMEM */
1852 
1853 	if (write_request)
1854 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1855 	else
1856 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1857 
1858 	osd_req->r_callback = rbd_osd_req_callback;
1859 	osd_req->r_priv = obj_request;
1860 
1861 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1862 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1863 
1864 	return osd_req;
1865 }
1866 
1867 /*
1868  * Create a copyup osd request based on the information in the
1869  * object request supplied.  A copyup request has three osd ops,
1870  * a copyup method call, a hint op, and a write op.
1871  */
1872 static struct ceph_osd_request *
1873 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1874 {
1875 	struct rbd_img_request *img_request;
1876 	struct ceph_snap_context *snapc;
1877 	struct rbd_device *rbd_dev;
1878 	struct ceph_osd_client *osdc;
1879 	struct ceph_osd_request *osd_req;
1880 
1881 	rbd_assert(obj_request_img_data_test(obj_request));
1882 	img_request = obj_request->img_request;
1883 	rbd_assert(img_request);
1884 	rbd_assert(img_request_write_test(img_request));
1885 
1886 	/* Allocate and initialize the request, for the three ops */
1887 
1888 	snapc = img_request->snapc;
1889 	rbd_dev = img_request->rbd_dev;
1890 	osdc = &rbd_dev->rbd_client->client->osdc;
1891 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1892 	if (!osd_req)
1893 		return NULL;	/* ENOMEM */
1894 
1895 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1896 	osd_req->r_callback = rbd_osd_req_callback;
1897 	osd_req->r_priv = obj_request;
1898 
1899 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1900 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1901 
1902 	return osd_req;
1903 }
1904 
1905 
1906 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1907 {
1908 	ceph_osdc_put_request(osd_req);
1909 }
1910 
1911 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1912 
1913 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1914 						u64 offset, u64 length,
1915 						enum obj_request_type type)
1916 {
1917 	struct rbd_obj_request *obj_request;
1918 	size_t size;
1919 	char *name;
1920 
1921 	rbd_assert(obj_request_type_valid(type));
1922 
1923 	size = strlen(object_name) + 1;
1924 	name = kmalloc(size, GFP_KERNEL);
1925 	if (!name)
1926 		return NULL;
1927 
1928 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1929 	if (!obj_request) {
1930 		kfree(name);
1931 		return NULL;
1932 	}
1933 
1934 	obj_request->object_name = memcpy(name, object_name, size);
1935 	obj_request->offset = offset;
1936 	obj_request->length = length;
1937 	obj_request->flags = 0;
1938 	obj_request->which = BAD_WHICH;
1939 	obj_request->type = type;
1940 	INIT_LIST_HEAD(&obj_request->links);
1941 	init_completion(&obj_request->completion);
1942 	kref_init(&obj_request->kref);
1943 
1944 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1945 		offset, length, (int)type, obj_request);
1946 
1947 	return obj_request;
1948 }
1949 
1950 static void rbd_obj_request_destroy(struct kref *kref)
1951 {
1952 	struct rbd_obj_request *obj_request;
1953 
1954 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1955 
1956 	dout("%s: obj %p\n", __func__, obj_request);
1957 
1958 	rbd_assert(obj_request->img_request == NULL);
1959 	rbd_assert(obj_request->which == BAD_WHICH);
1960 
1961 	if (obj_request->osd_req)
1962 		rbd_osd_req_destroy(obj_request->osd_req);
1963 
1964 	rbd_assert(obj_request_type_valid(obj_request->type));
1965 	switch (obj_request->type) {
1966 	case OBJ_REQUEST_NODATA:
1967 		break;		/* Nothing to do */
1968 	case OBJ_REQUEST_BIO:
1969 		if (obj_request->bio_list)
1970 			bio_chain_put(obj_request->bio_list);
1971 		break;
1972 	case OBJ_REQUEST_PAGES:
1973 		if (obj_request->pages)
1974 			ceph_release_page_vector(obj_request->pages,
1975 						obj_request->page_count);
1976 		break;
1977 	}
1978 
1979 	kfree(obj_request->object_name);
1980 	obj_request->object_name = NULL;
1981 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1982 }
1983 
1984 /* It's OK to call this for a device with no parent */
1985 
1986 static void rbd_spec_put(struct rbd_spec *spec);
1987 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1988 {
1989 	rbd_dev_remove_parent(rbd_dev);
1990 	rbd_spec_put(rbd_dev->parent_spec);
1991 	rbd_dev->parent_spec = NULL;
1992 	rbd_dev->parent_overlap = 0;
1993 }
1994 
1995 /*
1996  * Parent image reference counting is used to determine when an
1997  * image's parent fields can be safely torn down--after there are no
1998  * more in-flight requests to the parent image.  When the last
1999  * reference is dropped, cleaning them up is safe.
2000  */
2001 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2002 {
2003 	int counter;
2004 
2005 	if (!rbd_dev->parent_spec)
2006 		return;
2007 
2008 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2009 	if (counter > 0)
2010 		return;
2011 
2012 	/* Last reference; clean up parent data structures */
2013 
2014 	if (!counter)
2015 		rbd_dev_unparent(rbd_dev);
2016 	else
2017 		rbd_warn(rbd_dev, "parent reference underflow");
2018 }
2019 
2020 /*
2021  * If an image has a non-zero parent overlap, get a reference to its
2022  * parent.
2023  *
2024  * We must get the reference before checking for the overlap to
2025  * coordinate properly with zeroing the parent overlap in
2026  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2027  * drop it again if there is no overlap.
2028  *
2029  * Returns true if the rbd device has a parent with a non-zero
2030  * overlap and a reference for it was successfully taken, or
2031  * false otherwise.
2032  */
2033 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2034 {
2035 	int counter;
2036 
2037 	if (!rbd_dev->parent_spec)
2038 		return false;
2039 
2040 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2041 	if (counter > 0 && rbd_dev->parent_overlap)
2042 		return true;
2043 
2044 	/* Image was flattened, but parent is not yet torn down */
2045 
2046 	if (counter < 0)
2047 		rbd_warn(rbd_dev, "parent reference overflow");
2048 
2049 	return false;
2050 }
2051 
2052 /*
2053  * Caller is responsible for filling in the list of object requests
2054  * that comprises the image request, and the Linux request pointer
2055  * (if there is one).
2056  */
2057 static struct rbd_img_request *rbd_img_request_create(
2058 					struct rbd_device *rbd_dev,
2059 					u64 offset, u64 length,
2060 					bool write_request)
2061 {
2062 	struct rbd_img_request *img_request;
2063 
2064 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2065 	if (!img_request)
2066 		return NULL;
2067 
2068 	if (write_request) {
2069 		down_read(&rbd_dev->header_rwsem);
2070 		ceph_get_snap_context(rbd_dev->header.snapc);
2071 		up_read(&rbd_dev->header_rwsem);
2072 	}
2073 
2074 	img_request->rq = NULL;
2075 	img_request->rbd_dev = rbd_dev;
2076 	img_request->offset = offset;
2077 	img_request->length = length;
2078 	img_request->flags = 0;
2079 	if (write_request) {
2080 		img_request_write_set(img_request);
2081 		img_request->snapc = rbd_dev->header.snapc;
2082 	} else {
2083 		img_request->snap_id = rbd_dev->spec->snap_id;
2084 	}
2085 	if (rbd_dev_parent_get(rbd_dev))
2086 		img_request_layered_set(img_request);
2087 	spin_lock_init(&img_request->completion_lock);
2088 	img_request->next_completion = 0;
2089 	img_request->callback = NULL;
2090 	img_request->result = 0;
2091 	img_request->obj_request_count = 0;
2092 	INIT_LIST_HEAD(&img_request->obj_requests);
2093 	kref_init(&img_request->kref);
2094 
2095 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2096 		write_request ? "write" : "read", offset, length,
2097 		img_request);
2098 
2099 	return img_request;
2100 }
2101 
2102 static void rbd_img_request_destroy(struct kref *kref)
2103 {
2104 	struct rbd_img_request *img_request;
2105 	struct rbd_obj_request *obj_request;
2106 	struct rbd_obj_request *next_obj_request;
2107 
2108 	img_request = container_of(kref, struct rbd_img_request, kref);
2109 
2110 	dout("%s: img %p\n", __func__, img_request);
2111 
2112 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2113 		rbd_img_obj_request_del(img_request, obj_request);
2114 	rbd_assert(img_request->obj_request_count == 0);
2115 
2116 	if (img_request_layered_test(img_request)) {
2117 		img_request_layered_clear(img_request);
2118 		rbd_dev_parent_put(img_request->rbd_dev);
2119 	}
2120 
2121 	if (img_request_write_test(img_request))
2122 		ceph_put_snap_context(img_request->snapc);
2123 
2124 	kmem_cache_free(rbd_img_request_cache, img_request);
2125 }
2126 
2127 static struct rbd_img_request *rbd_parent_request_create(
2128 					struct rbd_obj_request *obj_request,
2129 					u64 img_offset, u64 length)
2130 {
2131 	struct rbd_img_request *parent_request;
2132 	struct rbd_device *rbd_dev;
2133 
2134 	rbd_assert(obj_request->img_request);
2135 	rbd_dev = obj_request->img_request->rbd_dev;
2136 
2137 	parent_request = rbd_img_request_create(rbd_dev->parent,
2138 						img_offset, length, false);
2139 	if (!parent_request)
2140 		return NULL;
2141 
2142 	img_request_child_set(parent_request);
2143 	rbd_obj_request_get(obj_request);
2144 	parent_request->obj_request = obj_request;
2145 
2146 	return parent_request;
2147 }
2148 
2149 static void rbd_parent_request_destroy(struct kref *kref)
2150 {
2151 	struct rbd_img_request *parent_request;
2152 	struct rbd_obj_request *orig_request;
2153 
2154 	parent_request = container_of(kref, struct rbd_img_request, kref);
2155 	orig_request = parent_request->obj_request;
2156 
2157 	parent_request->obj_request = NULL;
2158 	rbd_obj_request_put(orig_request);
2159 	img_request_child_clear(parent_request);
2160 
2161 	rbd_img_request_destroy(kref);
2162 }
2163 
2164 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2165 {
2166 	struct rbd_img_request *img_request;
2167 	unsigned int xferred;
2168 	int result;
2169 	bool more;
2170 
2171 	rbd_assert(obj_request_img_data_test(obj_request));
2172 	img_request = obj_request->img_request;
2173 
2174 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2175 	xferred = (unsigned int)obj_request->xferred;
2176 	result = obj_request->result;
2177 	if (result) {
2178 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2179 
2180 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2181 			img_request_write_test(img_request) ? "write" : "read",
2182 			obj_request->length, obj_request->img_offset,
2183 			obj_request->offset);
2184 		rbd_warn(rbd_dev, "  result %d xferred %x",
2185 			result, xferred);
2186 		if (!img_request->result)
2187 			img_request->result = result;
2188 	}
2189 
2190 	/* Image object requests don't own their page array */
2191 
2192 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2193 		obj_request->pages = NULL;
2194 		obj_request->page_count = 0;
2195 	}
2196 
2197 	if (img_request_child_test(img_request)) {
2198 		rbd_assert(img_request->obj_request != NULL);
2199 		more = obj_request->which < img_request->obj_request_count - 1;
2200 	} else {
2201 		rbd_assert(img_request->rq != NULL);
2202 		more = blk_end_request(img_request->rq, result, xferred);
2203 	}
2204 
2205 	return more;
2206 }
2207 
2208 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2209 {
2210 	struct rbd_img_request *img_request;
2211 	u32 which = obj_request->which;
2212 	bool more = true;
2213 
2214 	rbd_assert(obj_request_img_data_test(obj_request));
2215 	img_request = obj_request->img_request;
2216 
2217 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2218 	rbd_assert(img_request != NULL);
2219 	rbd_assert(img_request->obj_request_count > 0);
2220 	rbd_assert(which != BAD_WHICH);
2221 	rbd_assert(which < img_request->obj_request_count);
2222 
2223 	spin_lock_irq(&img_request->completion_lock);
2224 	if (which != img_request->next_completion)
2225 		goto out;
2226 
2227 	for_each_obj_request_from(img_request, obj_request) {
2228 		rbd_assert(more);
2229 		rbd_assert(which < img_request->obj_request_count);
2230 
2231 		if (!obj_request_done_test(obj_request))
2232 			break;
2233 		more = rbd_img_obj_end_request(obj_request);
2234 		which++;
2235 	}
2236 
2237 	rbd_assert(more ^ (which == img_request->obj_request_count));
2238 	img_request->next_completion = which;
2239 out:
2240 	spin_unlock_irq(&img_request->completion_lock);
2241 	rbd_img_request_put(img_request);
2242 
2243 	if (!more)
2244 		rbd_img_request_complete(img_request);
2245 }
2246 
2247 /*
2248  * Split up an image request into one or more object requests, each
2249  * to a different object.  The "type" parameter indicates whether
2250  * "data_desc" is the pointer to the head of a list of bio
2251  * structures, or the base of a page array.  In either case this
2252  * function assumes data_desc describes memory sufficient to hold
2253  * all data described by the image request.
2254  */
2255 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2256 					enum obj_request_type type,
2257 					void *data_desc)
2258 {
2259 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2260 	struct rbd_obj_request *obj_request = NULL;
2261 	struct rbd_obj_request *next_obj_request;
2262 	bool write_request = img_request_write_test(img_request);
2263 	struct bio *bio_list = NULL;
2264 	unsigned int bio_offset = 0;
2265 	struct page **pages = NULL;
2266 	u64 img_offset;
2267 	u64 resid;
2268 	u16 opcode;
2269 
2270 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2271 		(int)type, data_desc);
2272 
2273 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2274 	img_offset = img_request->offset;
2275 	resid = img_request->length;
2276 	rbd_assert(resid > 0);
2277 
2278 	if (type == OBJ_REQUEST_BIO) {
2279 		bio_list = data_desc;
2280 		rbd_assert(img_offset ==
2281 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2282 	} else {
2283 		rbd_assert(type == OBJ_REQUEST_PAGES);
2284 		pages = data_desc;
2285 	}
2286 
2287 	while (resid) {
2288 		struct ceph_osd_request *osd_req;
2289 		const char *object_name;
2290 		u64 offset;
2291 		u64 length;
2292 		unsigned int which = 0;
2293 
2294 		object_name = rbd_segment_name(rbd_dev, img_offset);
2295 		if (!object_name)
2296 			goto out_unwind;
2297 		offset = rbd_segment_offset(rbd_dev, img_offset);
2298 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2299 		obj_request = rbd_obj_request_create(object_name,
2300 						offset, length, type);
2301 		/* object request has its own copy of the object name */
2302 		rbd_segment_name_free(object_name);
2303 		if (!obj_request)
2304 			goto out_unwind;
2305 
2306 		/*
2307 		 * set obj_request->img_request before creating the
2308 		 * osd_request so that it gets the right snapc
2309 		 */
2310 		rbd_img_obj_request_add(img_request, obj_request);
2311 
2312 		if (type == OBJ_REQUEST_BIO) {
2313 			unsigned int clone_size;
2314 
2315 			rbd_assert(length <= (u64)UINT_MAX);
2316 			clone_size = (unsigned int)length;
2317 			obj_request->bio_list =
2318 					bio_chain_clone_range(&bio_list,
2319 								&bio_offset,
2320 								clone_size,
2321 								GFP_ATOMIC);
2322 			if (!obj_request->bio_list)
2323 				goto out_unwind;
2324 		} else {
2325 			unsigned int page_count;
2326 
2327 			obj_request->pages = pages;
2328 			page_count = (u32)calc_pages_for(offset, length);
2329 			obj_request->page_count = page_count;
2330 			if ((offset + length) & ~PAGE_MASK)
2331 				page_count--;	/* more on last page */
2332 			pages += page_count;
2333 		}
2334 
2335 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2336 					     (write_request ? 2 : 1),
2337 					     obj_request);
2338 		if (!osd_req)
2339 			goto out_unwind;
2340 		obj_request->osd_req = osd_req;
2341 		obj_request->callback = rbd_img_obj_callback;
2342 		rbd_img_request_get(img_request);
2343 
2344 		if (write_request) {
2345 			osd_req_op_alloc_hint_init(osd_req, which,
2346 					     rbd_obj_bytes(&rbd_dev->header),
2347 					     rbd_obj_bytes(&rbd_dev->header));
2348 			which++;
2349 		}
2350 
2351 		osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2352 				       0, 0);
2353 		if (type == OBJ_REQUEST_BIO)
2354 			osd_req_op_extent_osd_data_bio(osd_req, which,
2355 					obj_request->bio_list, length);
2356 		else
2357 			osd_req_op_extent_osd_data_pages(osd_req, which,
2358 					obj_request->pages, length,
2359 					offset & ~PAGE_MASK, false, false);
2360 
2361 		if (write_request)
2362 			rbd_osd_req_format_write(obj_request);
2363 		else
2364 			rbd_osd_req_format_read(obj_request);
2365 
2366 		obj_request->img_offset = img_offset;
2367 
2368 		img_offset += length;
2369 		resid -= length;
2370 	}
2371 
2372 	return 0;
2373 
2374 out_unwind:
2375 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2376 		rbd_img_obj_request_del(img_request, obj_request);
2377 
2378 	return -ENOMEM;
2379 }
2380 
2381 static void
2382 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2383 {
2384 	struct rbd_img_request *img_request;
2385 	struct rbd_device *rbd_dev;
2386 	struct page **pages;
2387 	u32 page_count;
2388 
2389 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2390 	rbd_assert(obj_request_img_data_test(obj_request));
2391 	img_request = obj_request->img_request;
2392 	rbd_assert(img_request);
2393 
2394 	rbd_dev = img_request->rbd_dev;
2395 	rbd_assert(rbd_dev);
2396 
2397 	pages = obj_request->copyup_pages;
2398 	rbd_assert(pages != NULL);
2399 	obj_request->copyup_pages = NULL;
2400 	page_count = obj_request->copyup_page_count;
2401 	rbd_assert(page_count);
2402 	obj_request->copyup_page_count = 0;
2403 	ceph_release_page_vector(pages, page_count);
2404 
2405 	/*
2406 	 * We want the transfer count to reflect the size of the
2407 	 * original write request.  There is no such thing as a
2408 	 * successful short write, so if the request was successful
2409 	 * we can just set it to the originally-requested length.
2410 	 */
2411 	if (!obj_request->result)
2412 		obj_request->xferred = obj_request->length;
2413 
2414 	/* Finish up with the normal image object callback */
2415 
2416 	rbd_img_obj_callback(obj_request);
2417 }
2418 
2419 static void
2420 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2421 {
2422 	struct rbd_obj_request *orig_request;
2423 	struct ceph_osd_request *osd_req;
2424 	struct ceph_osd_client *osdc;
2425 	struct rbd_device *rbd_dev;
2426 	struct page **pages;
2427 	u32 page_count;
2428 	int img_result;
2429 	u64 parent_length;
2430 	u64 offset;
2431 	u64 length;
2432 
2433 	rbd_assert(img_request_child_test(img_request));
2434 
2435 	/* First get what we need from the image request */
2436 
2437 	pages = img_request->copyup_pages;
2438 	rbd_assert(pages != NULL);
2439 	img_request->copyup_pages = NULL;
2440 	page_count = img_request->copyup_page_count;
2441 	rbd_assert(page_count);
2442 	img_request->copyup_page_count = 0;
2443 
2444 	orig_request = img_request->obj_request;
2445 	rbd_assert(orig_request != NULL);
2446 	rbd_assert(obj_request_type_valid(orig_request->type));
2447 	img_result = img_request->result;
2448 	parent_length = img_request->length;
2449 	rbd_assert(parent_length == img_request->xferred);
2450 	rbd_img_request_put(img_request);
2451 
2452 	rbd_assert(orig_request->img_request);
2453 	rbd_dev = orig_request->img_request->rbd_dev;
2454 	rbd_assert(rbd_dev);
2455 
2456 	/*
2457 	 * If the overlap has become 0 (most likely because the
2458 	 * image has been flattened) we need to free the pages
2459 	 * and re-submit the original write request.
2460 	 */
2461 	if (!rbd_dev->parent_overlap) {
2462 		struct ceph_osd_client *osdc;
2463 
2464 		ceph_release_page_vector(pages, page_count);
2465 		osdc = &rbd_dev->rbd_client->client->osdc;
2466 		img_result = rbd_obj_request_submit(osdc, orig_request);
2467 		if (!img_result)
2468 			return;
2469 	}
2470 
2471 	if (img_result)
2472 		goto out_err;
2473 
2474 	/*
2475 	 * The original osd request is of no use to use any more.
2476 	 * We need a new one that can hold the three ops in a copyup
2477 	 * request.  Allocate the new copyup osd request for the
2478 	 * original request, and release the old one.
2479 	 */
2480 	img_result = -ENOMEM;
2481 	osd_req = rbd_osd_req_create_copyup(orig_request);
2482 	if (!osd_req)
2483 		goto out_err;
2484 	rbd_osd_req_destroy(orig_request->osd_req);
2485 	orig_request->osd_req = osd_req;
2486 	orig_request->copyup_pages = pages;
2487 	orig_request->copyup_page_count = page_count;
2488 
2489 	/* Initialize the copyup op */
2490 
2491 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2492 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2493 						false, false);
2494 
2495 	/* Then the hint op */
2496 
2497 	osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2498 				   rbd_obj_bytes(&rbd_dev->header));
2499 
2500 	/* And the original write request op */
2501 
2502 	offset = orig_request->offset;
2503 	length = orig_request->length;
2504 	osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2505 					offset, length, 0, 0);
2506 	if (orig_request->type == OBJ_REQUEST_BIO)
2507 		osd_req_op_extent_osd_data_bio(osd_req, 2,
2508 					orig_request->bio_list, length);
2509 	else
2510 		osd_req_op_extent_osd_data_pages(osd_req, 2,
2511 					orig_request->pages, length,
2512 					offset & ~PAGE_MASK, false, false);
2513 
2514 	rbd_osd_req_format_write(orig_request);
2515 
2516 	/* All set, send it off. */
2517 
2518 	orig_request->callback = rbd_img_obj_copyup_callback;
2519 	osdc = &rbd_dev->rbd_client->client->osdc;
2520 	img_result = rbd_obj_request_submit(osdc, orig_request);
2521 	if (!img_result)
2522 		return;
2523 out_err:
2524 	/* Record the error code and complete the request */
2525 
2526 	orig_request->result = img_result;
2527 	orig_request->xferred = 0;
2528 	obj_request_done_set(orig_request);
2529 	rbd_obj_request_complete(orig_request);
2530 }
2531 
2532 /*
2533  * Read from the parent image the range of data that covers the
2534  * entire target of the given object request.  This is used for
2535  * satisfying a layered image write request when the target of an
2536  * object request from the image request does not exist.
2537  *
2538  * A page array big enough to hold the returned data is allocated
2539  * and supplied to rbd_img_request_fill() as the "data descriptor."
2540  * When the read completes, this page array will be transferred to
2541  * the original object request for the copyup operation.
2542  *
2543  * If an error occurs, record it as the result of the original
2544  * object request and mark it done so it gets completed.
2545  */
2546 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2547 {
2548 	struct rbd_img_request *img_request = NULL;
2549 	struct rbd_img_request *parent_request = NULL;
2550 	struct rbd_device *rbd_dev;
2551 	u64 img_offset;
2552 	u64 length;
2553 	struct page **pages = NULL;
2554 	u32 page_count;
2555 	int result;
2556 
2557 	rbd_assert(obj_request_img_data_test(obj_request));
2558 	rbd_assert(obj_request_type_valid(obj_request->type));
2559 
2560 	img_request = obj_request->img_request;
2561 	rbd_assert(img_request != NULL);
2562 	rbd_dev = img_request->rbd_dev;
2563 	rbd_assert(rbd_dev->parent != NULL);
2564 
2565 	/*
2566 	 * Determine the byte range covered by the object in the
2567 	 * child image to which the original request was to be sent.
2568 	 */
2569 	img_offset = obj_request->img_offset - obj_request->offset;
2570 	length = (u64)1 << rbd_dev->header.obj_order;
2571 
2572 	/*
2573 	 * There is no defined parent data beyond the parent
2574 	 * overlap, so limit what we read at that boundary if
2575 	 * necessary.
2576 	 */
2577 	if (img_offset + length > rbd_dev->parent_overlap) {
2578 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2579 		length = rbd_dev->parent_overlap - img_offset;
2580 	}
2581 
2582 	/*
2583 	 * Allocate a page array big enough to receive the data read
2584 	 * from the parent.
2585 	 */
2586 	page_count = (u32)calc_pages_for(0, length);
2587 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2588 	if (IS_ERR(pages)) {
2589 		result = PTR_ERR(pages);
2590 		pages = NULL;
2591 		goto out_err;
2592 	}
2593 
2594 	result = -ENOMEM;
2595 	parent_request = rbd_parent_request_create(obj_request,
2596 						img_offset, length);
2597 	if (!parent_request)
2598 		goto out_err;
2599 
2600 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2601 	if (result)
2602 		goto out_err;
2603 	parent_request->copyup_pages = pages;
2604 	parent_request->copyup_page_count = page_count;
2605 
2606 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2607 	result = rbd_img_request_submit(parent_request);
2608 	if (!result)
2609 		return 0;
2610 
2611 	parent_request->copyup_pages = NULL;
2612 	parent_request->copyup_page_count = 0;
2613 	parent_request->obj_request = NULL;
2614 	rbd_obj_request_put(obj_request);
2615 out_err:
2616 	if (pages)
2617 		ceph_release_page_vector(pages, page_count);
2618 	if (parent_request)
2619 		rbd_img_request_put(parent_request);
2620 	obj_request->result = result;
2621 	obj_request->xferred = 0;
2622 	obj_request_done_set(obj_request);
2623 
2624 	return result;
2625 }
2626 
2627 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2628 {
2629 	struct rbd_obj_request *orig_request;
2630 	struct rbd_device *rbd_dev;
2631 	int result;
2632 
2633 	rbd_assert(!obj_request_img_data_test(obj_request));
2634 
2635 	/*
2636 	 * All we need from the object request is the original
2637 	 * request and the result of the STAT op.  Grab those, then
2638 	 * we're done with the request.
2639 	 */
2640 	orig_request = obj_request->obj_request;
2641 	obj_request->obj_request = NULL;
2642 	rbd_obj_request_put(orig_request);
2643 	rbd_assert(orig_request);
2644 	rbd_assert(orig_request->img_request);
2645 
2646 	result = obj_request->result;
2647 	obj_request->result = 0;
2648 
2649 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2650 		obj_request, orig_request, result,
2651 		obj_request->xferred, obj_request->length);
2652 	rbd_obj_request_put(obj_request);
2653 
2654 	/*
2655 	 * If the overlap has become 0 (most likely because the
2656 	 * image has been flattened) we need to free the pages
2657 	 * and re-submit the original write request.
2658 	 */
2659 	rbd_dev = orig_request->img_request->rbd_dev;
2660 	if (!rbd_dev->parent_overlap) {
2661 		struct ceph_osd_client *osdc;
2662 
2663 		osdc = &rbd_dev->rbd_client->client->osdc;
2664 		result = rbd_obj_request_submit(osdc, orig_request);
2665 		if (!result)
2666 			return;
2667 	}
2668 
2669 	/*
2670 	 * Our only purpose here is to determine whether the object
2671 	 * exists, and we don't want to treat the non-existence as
2672 	 * an error.  If something else comes back, transfer the
2673 	 * error to the original request and complete it now.
2674 	 */
2675 	if (!result) {
2676 		obj_request_existence_set(orig_request, true);
2677 	} else if (result == -ENOENT) {
2678 		obj_request_existence_set(orig_request, false);
2679 	} else if (result) {
2680 		orig_request->result = result;
2681 		goto out;
2682 	}
2683 
2684 	/*
2685 	 * Resubmit the original request now that we have recorded
2686 	 * whether the target object exists.
2687 	 */
2688 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2689 out:
2690 	if (orig_request->result)
2691 		rbd_obj_request_complete(orig_request);
2692 }
2693 
2694 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2695 {
2696 	struct rbd_obj_request *stat_request;
2697 	struct rbd_device *rbd_dev;
2698 	struct ceph_osd_client *osdc;
2699 	struct page **pages = NULL;
2700 	u32 page_count;
2701 	size_t size;
2702 	int ret;
2703 
2704 	/*
2705 	 * The response data for a STAT call consists of:
2706 	 *     le64 length;
2707 	 *     struct {
2708 	 *         le32 tv_sec;
2709 	 *         le32 tv_nsec;
2710 	 *     } mtime;
2711 	 */
2712 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2713 	page_count = (u32)calc_pages_for(0, size);
2714 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2715 	if (IS_ERR(pages))
2716 		return PTR_ERR(pages);
2717 
2718 	ret = -ENOMEM;
2719 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2720 							OBJ_REQUEST_PAGES);
2721 	if (!stat_request)
2722 		goto out;
2723 
2724 	rbd_obj_request_get(obj_request);
2725 	stat_request->obj_request = obj_request;
2726 	stat_request->pages = pages;
2727 	stat_request->page_count = page_count;
2728 
2729 	rbd_assert(obj_request->img_request);
2730 	rbd_dev = obj_request->img_request->rbd_dev;
2731 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2732 						   stat_request);
2733 	if (!stat_request->osd_req)
2734 		goto out;
2735 	stat_request->callback = rbd_img_obj_exists_callback;
2736 
2737 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2738 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2739 					false, false);
2740 	rbd_osd_req_format_read(stat_request);
2741 
2742 	osdc = &rbd_dev->rbd_client->client->osdc;
2743 	ret = rbd_obj_request_submit(osdc, stat_request);
2744 out:
2745 	if (ret)
2746 		rbd_obj_request_put(obj_request);
2747 
2748 	return ret;
2749 }
2750 
2751 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2752 {
2753 	struct rbd_img_request *img_request;
2754 	struct rbd_device *rbd_dev;
2755 	bool known;
2756 
2757 	rbd_assert(obj_request_img_data_test(obj_request));
2758 
2759 	img_request = obj_request->img_request;
2760 	rbd_assert(img_request);
2761 	rbd_dev = img_request->rbd_dev;
2762 
2763 	/*
2764 	 * Only writes to layered images need special handling.
2765 	 * Reads and non-layered writes are simple object requests.
2766 	 * Layered writes that start beyond the end of the overlap
2767 	 * with the parent have no parent data, so they too are
2768 	 * simple object requests.  Finally, if the target object is
2769 	 * known to already exist, its parent data has already been
2770 	 * copied, so a write to the object can also be handled as a
2771 	 * simple object request.
2772 	 */
2773 	if (!img_request_write_test(img_request) ||
2774 		!img_request_layered_test(img_request) ||
2775 		!obj_request_overlaps_parent(obj_request) ||
2776 		((known = obj_request_known_test(obj_request)) &&
2777 			obj_request_exists_test(obj_request))) {
2778 
2779 		struct rbd_device *rbd_dev;
2780 		struct ceph_osd_client *osdc;
2781 
2782 		rbd_dev = obj_request->img_request->rbd_dev;
2783 		osdc = &rbd_dev->rbd_client->client->osdc;
2784 
2785 		return rbd_obj_request_submit(osdc, obj_request);
2786 	}
2787 
2788 	/*
2789 	 * It's a layered write.  The target object might exist but
2790 	 * we may not know that yet.  If we know it doesn't exist,
2791 	 * start by reading the data for the full target object from
2792 	 * the parent so we can use it for a copyup to the target.
2793 	 */
2794 	if (known)
2795 		return rbd_img_obj_parent_read_full(obj_request);
2796 
2797 	/* We don't know whether the target exists.  Go find out. */
2798 
2799 	return rbd_img_obj_exists_submit(obj_request);
2800 }
2801 
2802 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2803 {
2804 	struct rbd_obj_request *obj_request;
2805 	struct rbd_obj_request *next_obj_request;
2806 
2807 	dout("%s: img %p\n", __func__, img_request);
2808 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2809 		int ret;
2810 
2811 		ret = rbd_img_obj_request_submit(obj_request);
2812 		if (ret)
2813 			return ret;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2820 {
2821 	struct rbd_obj_request *obj_request;
2822 	struct rbd_device *rbd_dev;
2823 	u64 obj_end;
2824 	u64 img_xferred;
2825 	int img_result;
2826 
2827 	rbd_assert(img_request_child_test(img_request));
2828 
2829 	/* First get what we need from the image request and release it */
2830 
2831 	obj_request = img_request->obj_request;
2832 	img_xferred = img_request->xferred;
2833 	img_result = img_request->result;
2834 	rbd_img_request_put(img_request);
2835 
2836 	/*
2837 	 * If the overlap has become 0 (most likely because the
2838 	 * image has been flattened) we need to re-submit the
2839 	 * original request.
2840 	 */
2841 	rbd_assert(obj_request);
2842 	rbd_assert(obj_request->img_request);
2843 	rbd_dev = obj_request->img_request->rbd_dev;
2844 	if (!rbd_dev->parent_overlap) {
2845 		struct ceph_osd_client *osdc;
2846 
2847 		osdc = &rbd_dev->rbd_client->client->osdc;
2848 		img_result = rbd_obj_request_submit(osdc, obj_request);
2849 		if (!img_result)
2850 			return;
2851 	}
2852 
2853 	obj_request->result = img_result;
2854 	if (obj_request->result)
2855 		goto out;
2856 
2857 	/*
2858 	 * We need to zero anything beyond the parent overlap
2859 	 * boundary.  Since rbd_img_obj_request_read_callback()
2860 	 * will zero anything beyond the end of a short read, an
2861 	 * easy way to do this is to pretend the data from the
2862 	 * parent came up short--ending at the overlap boundary.
2863 	 */
2864 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2865 	obj_end = obj_request->img_offset + obj_request->length;
2866 	if (obj_end > rbd_dev->parent_overlap) {
2867 		u64 xferred = 0;
2868 
2869 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2870 			xferred = rbd_dev->parent_overlap -
2871 					obj_request->img_offset;
2872 
2873 		obj_request->xferred = min(img_xferred, xferred);
2874 	} else {
2875 		obj_request->xferred = img_xferred;
2876 	}
2877 out:
2878 	rbd_img_obj_request_read_callback(obj_request);
2879 	rbd_obj_request_complete(obj_request);
2880 }
2881 
2882 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2883 {
2884 	struct rbd_img_request *img_request;
2885 	int result;
2886 
2887 	rbd_assert(obj_request_img_data_test(obj_request));
2888 	rbd_assert(obj_request->img_request != NULL);
2889 	rbd_assert(obj_request->result == (s32) -ENOENT);
2890 	rbd_assert(obj_request_type_valid(obj_request->type));
2891 
2892 	/* rbd_read_finish(obj_request, obj_request->length); */
2893 	img_request = rbd_parent_request_create(obj_request,
2894 						obj_request->img_offset,
2895 						obj_request->length);
2896 	result = -ENOMEM;
2897 	if (!img_request)
2898 		goto out_err;
2899 
2900 	if (obj_request->type == OBJ_REQUEST_BIO)
2901 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2902 						obj_request->bio_list);
2903 	else
2904 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2905 						obj_request->pages);
2906 	if (result)
2907 		goto out_err;
2908 
2909 	img_request->callback = rbd_img_parent_read_callback;
2910 	result = rbd_img_request_submit(img_request);
2911 	if (result)
2912 		goto out_err;
2913 
2914 	return;
2915 out_err:
2916 	if (img_request)
2917 		rbd_img_request_put(img_request);
2918 	obj_request->result = result;
2919 	obj_request->xferred = 0;
2920 	obj_request_done_set(obj_request);
2921 }
2922 
2923 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2924 {
2925 	struct rbd_obj_request *obj_request;
2926 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2927 	int ret;
2928 
2929 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2930 							OBJ_REQUEST_NODATA);
2931 	if (!obj_request)
2932 		return -ENOMEM;
2933 
2934 	ret = -ENOMEM;
2935 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2936 						  obj_request);
2937 	if (!obj_request->osd_req)
2938 		goto out;
2939 
2940 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2941 					notify_id, 0, 0);
2942 	rbd_osd_req_format_read(obj_request);
2943 
2944 	ret = rbd_obj_request_submit(osdc, obj_request);
2945 	if (ret)
2946 		goto out;
2947 	ret = rbd_obj_request_wait(obj_request);
2948 out:
2949 	rbd_obj_request_put(obj_request);
2950 
2951 	return ret;
2952 }
2953 
2954 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2955 {
2956 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2957 	int ret;
2958 
2959 	if (!rbd_dev)
2960 		return;
2961 
2962 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2963 		rbd_dev->header_name, (unsigned long long)notify_id,
2964 		(unsigned int)opcode);
2965 
2966 	/*
2967 	 * Until adequate refresh error handling is in place, there is
2968 	 * not much we can do here, except warn.
2969 	 *
2970 	 * See http://tracker.ceph.com/issues/5040
2971 	 */
2972 	ret = rbd_dev_refresh(rbd_dev);
2973 	if (ret)
2974 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
2975 
2976 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2977 	if (ret)
2978 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
2979 }
2980 
2981 /*
2982  * Send a (un)watch request and wait for the ack.  Return a request
2983  * with a ref held on success or error.
2984  */
2985 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2986 						struct rbd_device *rbd_dev,
2987 						bool watch)
2988 {
2989 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2990 	struct rbd_obj_request *obj_request;
2991 	int ret;
2992 
2993 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2994 					     OBJ_REQUEST_NODATA);
2995 	if (!obj_request)
2996 		return ERR_PTR(-ENOMEM);
2997 
2998 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2999 						  obj_request);
3000 	if (!obj_request->osd_req) {
3001 		ret = -ENOMEM;
3002 		goto out;
3003 	}
3004 
3005 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3006 			      rbd_dev->watch_event->cookie, 0, watch);
3007 	rbd_osd_req_format_write(obj_request);
3008 
3009 	if (watch)
3010 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3011 
3012 	ret = rbd_obj_request_submit(osdc, obj_request);
3013 	if (ret)
3014 		goto out;
3015 
3016 	ret = rbd_obj_request_wait(obj_request);
3017 	if (ret)
3018 		goto out;
3019 
3020 	ret = obj_request->result;
3021 	if (ret) {
3022 		if (watch)
3023 			rbd_obj_request_end(obj_request);
3024 		goto out;
3025 	}
3026 
3027 	return obj_request;
3028 
3029 out:
3030 	rbd_obj_request_put(obj_request);
3031 	return ERR_PTR(ret);
3032 }
3033 
3034 /*
3035  * Initiate a watch request, synchronously.
3036  */
3037 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3038 {
3039 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3040 	struct rbd_obj_request *obj_request;
3041 	int ret;
3042 
3043 	rbd_assert(!rbd_dev->watch_event);
3044 	rbd_assert(!rbd_dev->watch_request);
3045 
3046 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3047 				     &rbd_dev->watch_event);
3048 	if (ret < 0)
3049 		return ret;
3050 
3051 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3052 	if (IS_ERR(obj_request)) {
3053 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3054 		rbd_dev->watch_event = NULL;
3055 		return PTR_ERR(obj_request);
3056 	}
3057 
3058 	/*
3059 	 * A watch request is set to linger, so the underlying osd
3060 	 * request won't go away until we unregister it.  We retain
3061 	 * a pointer to the object request during that time (in
3062 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3063 	 * We'll drop that reference after we've unregistered it in
3064 	 * rbd_dev_header_unwatch_sync().
3065 	 */
3066 	rbd_dev->watch_request = obj_request;
3067 
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Tear down a watch request, synchronously.
3073  */
3074 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3075 {
3076 	struct rbd_obj_request *obj_request;
3077 
3078 	rbd_assert(rbd_dev->watch_event);
3079 	rbd_assert(rbd_dev->watch_request);
3080 
3081 	rbd_obj_request_end(rbd_dev->watch_request);
3082 	rbd_obj_request_put(rbd_dev->watch_request);
3083 	rbd_dev->watch_request = NULL;
3084 
3085 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3086 	if (!IS_ERR(obj_request))
3087 		rbd_obj_request_put(obj_request);
3088 	else
3089 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3090 			 PTR_ERR(obj_request));
3091 
3092 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3093 	rbd_dev->watch_event = NULL;
3094 }
3095 
3096 /*
3097  * Synchronous osd object method call.  Returns the number of bytes
3098  * returned in the outbound buffer, or a negative error code.
3099  */
3100 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3101 			     const char *object_name,
3102 			     const char *class_name,
3103 			     const char *method_name,
3104 			     const void *outbound,
3105 			     size_t outbound_size,
3106 			     void *inbound,
3107 			     size_t inbound_size)
3108 {
3109 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3110 	struct rbd_obj_request *obj_request;
3111 	struct page **pages;
3112 	u32 page_count;
3113 	int ret;
3114 
3115 	/*
3116 	 * Method calls are ultimately read operations.  The result
3117 	 * should placed into the inbound buffer provided.  They
3118 	 * also supply outbound data--parameters for the object
3119 	 * method.  Currently if this is present it will be a
3120 	 * snapshot id.
3121 	 */
3122 	page_count = (u32)calc_pages_for(0, inbound_size);
3123 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3124 	if (IS_ERR(pages))
3125 		return PTR_ERR(pages);
3126 
3127 	ret = -ENOMEM;
3128 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3129 							OBJ_REQUEST_PAGES);
3130 	if (!obj_request)
3131 		goto out;
3132 
3133 	obj_request->pages = pages;
3134 	obj_request->page_count = page_count;
3135 
3136 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3137 						  obj_request);
3138 	if (!obj_request->osd_req)
3139 		goto out;
3140 
3141 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3142 					class_name, method_name);
3143 	if (outbound_size) {
3144 		struct ceph_pagelist *pagelist;
3145 
3146 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3147 		if (!pagelist)
3148 			goto out;
3149 
3150 		ceph_pagelist_init(pagelist);
3151 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3152 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3153 						pagelist);
3154 	}
3155 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3156 					obj_request->pages, inbound_size,
3157 					0, false, false);
3158 	rbd_osd_req_format_read(obj_request);
3159 
3160 	ret = rbd_obj_request_submit(osdc, obj_request);
3161 	if (ret)
3162 		goto out;
3163 	ret = rbd_obj_request_wait(obj_request);
3164 	if (ret)
3165 		goto out;
3166 
3167 	ret = obj_request->result;
3168 	if (ret < 0)
3169 		goto out;
3170 
3171 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3172 	ret = (int)obj_request->xferred;
3173 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3174 out:
3175 	if (obj_request)
3176 		rbd_obj_request_put(obj_request);
3177 	else
3178 		ceph_release_page_vector(pages, page_count);
3179 
3180 	return ret;
3181 }
3182 
3183 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3184 {
3185 	struct rbd_img_request *img_request;
3186 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3187 	u64 length = blk_rq_bytes(rq);
3188 	bool wr = rq_data_dir(rq) == WRITE;
3189 	int result;
3190 
3191 	/* Ignore/skip any zero-length requests */
3192 
3193 	if (!length) {
3194 		dout("%s: zero-length request\n", __func__);
3195 		result = 0;
3196 		goto err_rq;
3197 	}
3198 
3199 	/* Disallow writes to a read-only device */
3200 
3201 	if (wr) {
3202 		if (rbd_dev->mapping.read_only) {
3203 			result = -EROFS;
3204 			goto err_rq;
3205 		}
3206 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3207 	}
3208 
3209 	/*
3210 	 * Quit early if the mapped snapshot no longer exists.  It's
3211 	 * still possible the snapshot will have disappeared by the
3212 	 * time our request arrives at the osd, but there's no sense in
3213 	 * sending it if we already know.
3214 	 */
3215 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3216 		dout("request for non-existent snapshot");
3217 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3218 		result = -ENXIO;
3219 		goto err_rq;
3220 	}
3221 
3222 	if (offset && length > U64_MAX - offset + 1) {
3223 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3224 			 length);
3225 		result = -EINVAL;
3226 		goto err_rq;	/* Shouldn't happen */
3227 	}
3228 
3229 	if (offset + length > rbd_dev->mapping.size) {
3230 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3231 			 length, rbd_dev->mapping.size);
3232 		result = -EIO;
3233 		goto err_rq;
3234 	}
3235 
3236 	img_request = rbd_img_request_create(rbd_dev, offset, length, wr);
3237 	if (!img_request) {
3238 		result = -ENOMEM;
3239 		goto err_rq;
3240 	}
3241 	img_request->rq = rq;
3242 
3243 	result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, rq->bio);
3244 	if (result)
3245 		goto err_img_request;
3246 
3247 	result = rbd_img_request_submit(img_request);
3248 	if (result)
3249 		goto err_img_request;
3250 
3251 	return;
3252 
3253 err_img_request:
3254 	rbd_img_request_put(img_request);
3255 err_rq:
3256 	if (result)
3257 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3258 			 wr ? "write" : "read", length, offset, result);
3259 	blk_end_request_all(rq, result);
3260 }
3261 
3262 static void rbd_request_workfn(struct work_struct *work)
3263 {
3264 	struct rbd_device *rbd_dev =
3265 	    container_of(work, struct rbd_device, rq_work);
3266 	struct request *rq, *next;
3267 	LIST_HEAD(requests);
3268 
3269 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3270 	list_splice_init(&rbd_dev->rq_queue, &requests);
3271 	spin_unlock_irq(&rbd_dev->lock);
3272 
3273 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3274 		list_del_init(&rq->queuelist);
3275 		rbd_handle_request(rbd_dev, rq);
3276 	}
3277 }
3278 
3279 /*
3280  * Called with q->queue_lock held and interrupts disabled, possibly on
3281  * the way to schedule().  Do not sleep here!
3282  */
3283 static void rbd_request_fn(struct request_queue *q)
3284 {
3285 	struct rbd_device *rbd_dev = q->queuedata;
3286 	struct request *rq;
3287 	int queued = 0;
3288 
3289 	rbd_assert(rbd_dev);
3290 
3291 	while ((rq = blk_fetch_request(q))) {
3292 		/* Ignore any non-FS requests that filter through. */
3293 		if (rq->cmd_type != REQ_TYPE_FS) {
3294 			dout("%s: non-fs request type %d\n", __func__,
3295 				(int) rq->cmd_type);
3296 			__blk_end_request_all(rq, 0);
3297 			continue;
3298 		}
3299 
3300 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3301 		queued++;
3302 	}
3303 
3304 	if (queued)
3305 		queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3306 }
3307 
3308 /*
3309  * a queue callback. Makes sure that we don't create a bio that spans across
3310  * multiple osd objects. One exception would be with a single page bios,
3311  * which we handle later at bio_chain_clone_range()
3312  */
3313 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3314 			  struct bio_vec *bvec)
3315 {
3316 	struct rbd_device *rbd_dev = q->queuedata;
3317 	sector_t sector_offset;
3318 	sector_t sectors_per_obj;
3319 	sector_t obj_sector_offset;
3320 	int ret;
3321 
3322 	/*
3323 	 * Find how far into its rbd object the partition-relative
3324 	 * bio start sector is to offset relative to the enclosing
3325 	 * device.
3326 	 */
3327 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3328 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3329 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3330 
3331 	/*
3332 	 * Compute the number of bytes from that offset to the end
3333 	 * of the object.  Account for what's already used by the bio.
3334 	 */
3335 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3336 	if (ret > bmd->bi_size)
3337 		ret -= bmd->bi_size;
3338 	else
3339 		ret = 0;
3340 
3341 	/*
3342 	 * Don't send back more than was asked for.  And if the bio
3343 	 * was empty, let the whole thing through because:  "Note
3344 	 * that a block device *must* allow a single page to be
3345 	 * added to an empty bio."
3346 	 */
3347 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3348 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3349 		ret = (int) bvec->bv_len;
3350 
3351 	return ret;
3352 }
3353 
3354 static void rbd_free_disk(struct rbd_device *rbd_dev)
3355 {
3356 	struct gendisk *disk = rbd_dev->disk;
3357 
3358 	if (!disk)
3359 		return;
3360 
3361 	rbd_dev->disk = NULL;
3362 	if (disk->flags & GENHD_FL_UP) {
3363 		del_gendisk(disk);
3364 		if (disk->queue)
3365 			blk_cleanup_queue(disk->queue);
3366 	}
3367 	put_disk(disk);
3368 }
3369 
3370 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3371 				const char *object_name,
3372 				u64 offset, u64 length, void *buf)
3373 
3374 {
3375 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3376 	struct rbd_obj_request *obj_request;
3377 	struct page **pages = NULL;
3378 	u32 page_count;
3379 	size_t size;
3380 	int ret;
3381 
3382 	page_count = (u32) calc_pages_for(offset, length);
3383 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3384 	if (IS_ERR(pages))
3385 		ret = PTR_ERR(pages);
3386 
3387 	ret = -ENOMEM;
3388 	obj_request = rbd_obj_request_create(object_name, offset, length,
3389 							OBJ_REQUEST_PAGES);
3390 	if (!obj_request)
3391 		goto out;
3392 
3393 	obj_request->pages = pages;
3394 	obj_request->page_count = page_count;
3395 
3396 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3397 						  obj_request);
3398 	if (!obj_request->osd_req)
3399 		goto out;
3400 
3401 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3402 					offset, length, 0, 0);
3403 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3404 					obj_request->pages,
3405 					obj_request->length,
3406 					obj_request->offset & ~PAGE_MASK,
3407 					false, false);
3408 	rbd_osd_req_format_read(obj_request);
3409 
3410 	ret = rbd_obj_request_submit(osdc, obj_request);
3411 	if (ret)
3412 		goto out;
3413 	ret = rbd_obj_request_wait(obj_request);
3414 	if (ret)
3415 		goto out;
3416 
3417 	ret = obj_request->result;
3418 	if (ret < 0)
3419 		goto out;
3420 
3421 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3422 	size = (size_t) obj_request->xferred;
3423 	ceph_copy_from_page_vector(pages, buf, 0, size);
3424 	rbd_assert(size <= (size_t)INT_MAX);
3425 	ret = (int)size;
3426 out:
3427 	if (obj_request)
3428 		rbd_obj_request_put(obj_request);
3429 	else
3430 		ceph_release_page_vector(pages, page_count);
3431 
3432 	return ret;
3433 }
3434 
3435 /*
3436  * Read the complete header for the given rbd device.  On successful
3437  * return, the rbd_dev->header field will contain up-to-date
3438  * information about the image.
3439  */
3440 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3441 {
3442 	struct rbd_image_header_ondisk *ondisk = NULL;
3443 	u32 snap_count = 0;
3444 	u64 names_size = 0;
3445 	u32 want_count;
3446 	int ret;
3447 
3448 	/*
3449 	 * The complete header will include an array of its 64-bit
3450 	 * snapshot ids, followed by the names of those snapshots as
3451 	 * a contiguous block of NUL-terminated strings.  Note that
3452 	 * the number of snapshots could change by the time we read
3453 	 * it in, in which case we re-read it.
3454 	 */
3455 	do {
3456 		size_t size;
3457 
3458 		kfree(ondisk);
3459 
3460 		size = sizeof (*ondisk);
3461 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3462 		size += names_size;
3463 		ondisk = kmalloc(size, GFP_KERNEL);
3464 		if (!ondisk)
3465 			return -ENOMEM;
3466 
3467 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3468 				       0, size, ondisk);
3469 		if (ret < 0)
3470 			goto out;
3471 		if ((size_t)ret < size) {
3472 			ret = -ENXIO;
3473 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3474 				size, ret);
3475 			goto out;
3476 		}
3477 		if (!rbd_dev_ondisk_valid(ondisk)) {
3478 			ret = -ENXIO;
3479 			rbd_warn(rbd_dev, "invalid header");
3480 			goto out;
3481 		}
3482 
3483 		names_size = le64_to_cpu(ondisk->snap_names_len);
3484 		want_count = snap_count;
3485 		snap_count = le32_to_cpu(ondisk->snap_count);
3486 	} while (snap_count != want_count);
3487 
3488 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3489 out:
3490 	kfree(ondisk);
3491 
3492 	return ret;
3493 }
3494 
3495 /*
3496  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3497  * has disappeared from the (just updated) snapshot context.
3498  */
3499 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3500 {
3501 	u64 snap_id;
3502 
3503 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3504 		return;
3505 
3506 	snap_id = rbd_dev->spec->snap_id;
3507 	if (snap_id == CEPH_NOSNAP)
3508 		return;
3509 
3510 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3511 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3512 }
3513 
3514 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3515 {
3516 	sector_t size;
3517 	bool removing;
3518 
3519 	/*
3520 	 * Don't hold the lock while doing disk operations,
3521 	 * or lock ordering will conflict with the bdev mutex via:
3522 	 * rbd_add() -> blkdev_get() -> rbd_open()
3523 	 */
3524 	spin_lock_irq(&rbd_dev->lock);
3525 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3526 	spin_unlock_irq(&rbd_dev->lock);
3527 	/*
3528 	 * If the device is being removed, rbd_dev->disk has
3529 	 * been destroyed, so don't try to update its size
3530 	 */
3531 	if (!removing) {
3532 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3533 		dout("setting size to %llu sectors", (unsigned long long)size);
3534 		set_capacity(rbd_dev->disk, size);
3535 		revalidate_disk(rbd_dev->disk);
3536 	}
3537 }
3538 
3539 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3540 {
3541 	u64 mapping_size;
3542 	int ret;
3543 
3544 	down_write(&rbd_dev->header_rwsem);
3545 	mapping_size = rbd_dev->mapping.size;
3546 
3547 	ret = rbd_dev_header_info(rbd_dev);
3548 	if (ret)
3549 		return ret;
3550 
3551 	/*
3552 	 * If there is a parent, see if it has disappeared due to the
3553 	 * mapped image getting flattened.
3554 	 */
3555 	if (rbd_dev->parent) {
3556 		ret = rbd_dev_v2_parent_info(rbd_dev);
3557 		if (ret)
3558 			return ret;
3559 	}
3560 
3561 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3562 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3563 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3564 	} else {
3565 		/* validate mapped snapshot's EXISTS flag */
3566 		rbd_exists_validate(rbd_dev);
3567 	}
3568 
3569 	up_write(&rbd_dev->header_rwsem);
3570 
3571 	if (mapping_size != rbd_dev->mapping.size)
3572 		rbd_dev_update_size(rbd_dev);
3573 
3574 	return 0;
3575 }
3576 
3577 static int rbd_init_disk(struct rbd_device *rbd_dev)
3578 {
3579 	struct gendisk *disk;
3580 	struct request_queue *q;
3581 	u64 segment_size;
3582 
3583 	/* create gendisk info */
3584 	disk = alloc_disk(single_major ?
3585 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3586 			  RBD_MINORS_PER_MAJOR);
3587 	if (!disk)
3588 		return -ENOMEM;
3589 
3590 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3591 		 rbd_dev->dev_id);
3592 	disk->major = rbd_dev->major;
3593 	disk->first_minor = rbd_dev->minor;
3594 	if (single_major)
3595 		disk->flags |= GENHD_FL_EXT_DEVT;
3596 	disk->fops = &rbd_bd_ops;
3597 	disk->private_data = rbd_dev;
3598 
3599 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3600 	if (!q)
3601 		goto out_disk;
3602 
3603 	/* We use the default size, but let's be explicit about it. */
3604 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3605 
3606 	/* set io sizes to object size */
3607 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3608 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3609 	blk_queue_max_segment_size(q, segment_size);
3610 	blk_queue_io_min(q, segment_size);
3611 	blk_queue_io_opt(q, segment_size);
3612 
3613 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3614 	disk->queue = q;
3615 
3616 	q->queuedata = rbd_dev;
3617 
3618 	rbd_dev->disk = disk;
3619 
3620 	return 0;
3621 out_disk:
3622 	put_disk(disk);
3623 
3624 	return -ENOMEM;
3625 }
3626 
3627 /*
3628   sysfs
3629 */
3630 
3631 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3632 {
3633 	return container_of(dev, struct rbd_device, dev);
3634 }
3635 
3636 static ssize_t rbd_size_show(struct device *dev,
3637 			     struct device_attribute *attr, char *buf)
3638 {
3639 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3640 
3641 	return sprintf(buf, "%llu\n",
3642 		(unsigned long long)rbd_dev->mapping.size);
3643 }
3644 
3645 /*
3646  * Note this shows the features for whatever's mapped, which is not
3647  * necessarily the base image.
3648  */
3649 static ssize_t rbd_features_show(struct device *dev,
3650 			     struct device_attribute *attr, char *buf)
3651 {
3652 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653 
3654 	return sprintf(buf, "0x%016llx\n",
3655 			(unsigned long long)rbd_dev->mapping.features);
3656 }
3657 
3658 static ssize_t rbd_major_show(struct device *dev,
3659 			      struct device_attribute *attr, char *buf)
3660 {
3661 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3662 
3663 	if (rbd_dev->major)
3664 		return sprintf(buf, "%d\n", rbd_dev->major);
3665 
3666 	return sprintf(buf, "(none)\n");
3667 }
3668 
3669 static ssize_t rbd_minor_show(struct device *dev,
3670 			      struct device_attribute *attr, char *buf)
3671 {
3672 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3673 
3674 	return sprintf(buf, "%d\n", rbd_dev->minor);
3675 }
3676 
3677 static ssize_t rbd_client_id_show(struct device *dev,
3678 				  struct device_attribute *attr, char *buf)
3679 {
3680 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3681 
3682 	return sprintf(buf, "client%lld\n",
3683 			ceph_client_id(rbd_dev->rbd_client->client));
3684 }
3685 
3686 static ssize_t rbd_pool_show(struct device *dev,
3687 			     struct device_attribute *attr, char *buf)
3688 {
3689 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3690 
3691 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3692 }
3693 
3694 static ssize_t rbd_pool_id_show(struct device *dev,
3695 			     struct device_attribute *attr, char *buf)
3696 {
3697 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3698 
3699 	return sprintf(buf, "%llu\n",
3700 			(unsigned long long) rbd_dev->spec->pool_id);
3701 }
3702 
3703 static ssize_t rbd_name_show(struct device *dev,
3704 			     struct device_attribute *attr, char *buf)
3705 {
3706 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3707 
3708 	if (rbd_dev->spec->image_name)
3709 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3710 
3711 	return sprintf(buf, "(unknown)\n");
3712 }
3713 
3714 static ssize_t rbd_image_id_show(struct device *dev,
3715 			     struct device_attribute *attr, char *buf)
3716 {
3717 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3718 
3719 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3720 }
3721 
3722 /*
3723  * Shows the name of the currently-mapped snapshot (or
3724  * RBD_SNAP_HEAD_NAME for the base image).
3725  */
3726 static ssize_t rbd_snap_show(struct device *dev,
3727 			     struct device_attribute *attr,
3728 			     char *buf)
3729 {
3730 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3731 
3732 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3733 }
3734 
3735 /*
3736  * For a v2 image, shows the chain of parent images, separated by empty
3737  * lines.  For v1 images or if there is no parent, shows "(no parent
3738  * image)".
3739  */
3740 static ssize_t rbd_parent_show(struct device *dev,
3741 			       struct device_attribute *attr,
3742 			       char *buf)
3743 {
3744 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3745 	ssize_t count = 0;
3746 
3747 	if (!rbd_dev->parent)
3748 		return sprintf(buf, "(no parent image)\n");
3749 
3750 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3751 		struct rbd_spec *spec = rbd_dev->parent_spec;
3752 
3753 		count += sprintf(&buf[count], "%s"
3754 			    "pool_id %llu\npool_name %s\n"
3755 			    "image_id %s\nimage_name %s\n"
3756 			    "snap_id %llu\nsnap_name %s\n"
3757 			    "overlap %llu\n",
3758 			    !count ? "" : "\n", /* first? */
3759 			    spec->pool_id, spec->pool_name,
3760 			    spec->image_id, spec->image_name ?: "(unknown)",
3761 			    spec->snap_id, spec->snap_name,
3762 			    rbd_dev->parent_overlap);
3763 	}
3764 
3765 	return count;
3766 }
3767 
3768 static ssize_t rbd_image_refresh(struct device *dev,
3769 				 struct device_attribute *attr,
3770 				 const char *buf,
3771 				 size_t size)
3772 {
3773 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3774 	int ret;
3775 
3776 	ret = rbd_dev_refresh(rbd_dev);
3777 	if (ret)
3778 		return ret;
3779 
3780 	return size;
3781 }
3782 
3783 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3784 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3785 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3786 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3787 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3788 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3789 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3790 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3791 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3792 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3793 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3794 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3795 
3796 static struct attribute *rbd_attrs[] = {
3797 	&dev_attr_size.attr,
3798 	&dev_attr_features.attr,
3799 	&dev_attr_major.attr,
3800 	&dev_attr_minor.attr,
3801 	&dev_attr_client_id.attr,
3802 	&dev_attr_pool.attr,
3803 	&dev_attr_pool_id.attr,
3804 	&dev_attr_name.attr,
3805 	&dev_attr_image_id.attr,
3806 	&dev_attr_current_snap.attr,
3807 	&dev_attr_parent.attr,
3808 	&dev_attr_refresh.attr,
3809 	NULL
3810 };
3811 
3812 static struct attribute_group rbd_attr_group = {
3813 	.attrs = rbd_attrs,
3814 };
3815 
3816 static const struct attribute_group *rbd_attr_groups[] = {
3817 	&rbd_attr_group,
3818 	NULL
3819 };
3820 
3821 static void rbd_sysfs_dev_release(struct device *dev)
3822 {
3823 }
3824 
3825 static struct device_type rbd_device_type = {
3826 	.name		= "rbd",
3827 	.groups		= rbd_attr_groups,
3828 	.release	= rbd_sysfs_dev_release,
3829 };
3830 
3831 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3832 {
3833 	kref_get(&spec->kref);
3834 
3835 	return spec;
3836 }
3837 
3838 static void rbd_spec_free(struct kref *kref);
3839 static void rbd_spec_put(struct rbd_spec *spec)
3840 {
3841 	if (spec)
3842 		kref_put(&spec->kref, rbd_spec_free);
3843 }
3844 
3845 static struct rbd_spec *rbd_spec_alloc(void)
3846 {
3847 	struct rbd_spec *spec;
3848 
3849 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3850 	if (!spec)
3851 		return NULL;
3852 
3853 	spec->pool_id = CEPH_NOPOOL;
3854 	spec->snap_id = CEPH_NOSNAP;
3855 	kref_init(&spec->kref);
3856 
3857 	return spec;
3858 }
3859 
3860 static void rbd_spec_free(struct kref *kref)
3861 {
3862 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3863 
3864 	kfree(spec->pool_name);
3865 	kfree(spec->image_id);
3866 	kfree(spec->image_name);
3867 	kfree(spec->snap_name);
3868 	kfree(spec);
3869 }
3870 
3871 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3872 				struct rbd_spec *spec)
3873 {
3874 	struct rbd_device *rbd_dev;
3875 
3876 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3877 	if (!rbd_dev)
3878 		return NULL;
3879 
3880 	spin_lock_init(&rbd_dev->lock);
3881 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
3882 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
3883 	rbd_dev->flags = 0;
3884 	atomic_set(&rbd_dev->parent_ref, 0);
3885 	INIT_LIST_HEAD(&rbd_dev->node);
3886 	init_rwsem(&rbd_dev->header_rwsem);
3887 
3888 	rbd_dev->spec = spec;
3889 	rbd_dev->rbd_client = rbdc;
3890 
3891 	/* Initialize the layout used for all rbd requests */
3892 
3893 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3894 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3895 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3896 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3897 
3898 	return rbd_dev;
3899 }
3900 
3901 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3902 {
3903 	rbd_put_client(rbd_dev->rbd_client);
3904 	rbd_spec_put(rbd_dev->spec);
3905 	kfree(rbd_dev);
3906 }
3907 
3908 /*
3909  * Get the size and object order for an image snapshot, or if
3910  * snap_id is CEPH_NOSNAP, gets this information for the base
3911  * image.
3912  */
3913 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3914 				u8 *order, u64 *snap_size)
3915 {
3916 	__le64 snapid = cpu_to_le64(snap_id);
3917 	int ret;
3918 	struct {
3919 		u8 order;
3920 		__le64 size;
3921 	} __attribute__ ((packed)) size_buf = { 0 };
3922 
3923 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3924 				"rbd", "get_size",
3925 				&snapid, sizeof (snapid),
3926 				&size_buf, sizeof (size_buf));
3927 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3928 	if (ret < 0)
3929 		return ret;
3930 	if (ret < sizeof (size_buf))
3931 		return -ERANGE;
3932 
3933 	if (order) {
3934 		*order = size_buf.order;
3935 		dout("  order %u", (unsigned int)*order);
3936 	}
3937 	*snap_size = le64_to_cpu(size_buf.size);
3938 
3939 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3940 		(unsigned long long)snap_id,
3941 		(unsigned long long)*snap_size);
3942 
3943 	return 0;
3944 }
3945 
3946 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3947 {
3948 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3949 					&rbd_dev->header.obj_order,
3950 					&rbd_dev->header.image_size);
3951 }
3952 
3953 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3954 {
3955 	void *reply_buf;
3956 	int ret;
3957 	void *p;
3958 
3959 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3960 	if (!reply_buf)
3961 		return -ENOMEM;
3962 
3963 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3964 				"rbd", "get_object_prefix", NULL, 0,
3965 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3966 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3967 	if (ret < 0)
3968 		goto out;
3969 
3970 	p = reply_buf;
3971 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3972 						p + ret, NULL, GFP_NOIO);
3973 	ret = 0;
3974 
3975 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3976 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3977 		rbd_dev->header.object_prefix = NULL;
3978 	} else {
3979 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3980 	}
3981 out:
3982 	kfree(reply_buf);
3983 
3984 	return ret;
3985 }
3986 
3987 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3988 		u64 *snap_features)
3989 {
3990 	__le64 snapid = cpu_to_le64(snap_id);
3991 	struct {
3992 		__le64 features;
3993 		__le64 incompat;
3994 	} __attribute__ ((packed)) features_buf = { 0 };
3995 	u64 incompat;
3996 	int ret;
3997 
3998 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3999 				"rbd", "get_features",
4000 				&snapid, sizeof (snapid),
4001 				&features_buf, sizeof (features_buf));
4002 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4003 	if (ret < 0)
4004 		return ret;
4005 	if (ret < sizeof (features_buf))
4006 		return -ERANGE;
4007 
4008 	incompat = le64_to_cpu(features_buf.incompat);
4009 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4010 		return -ENXIO;
4011 
4012 	*snap_features = le64_to_cpu(features_buf.features);
4013 
4014 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4015 		(unsigned long long)snap_id,
4016 		(unsigned long long)*snap_features,
4017 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4018 
4019 	return 0;
4020 }
4021 
4022 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4023 {
4024 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4025 						&rbd_dev->header.features);
4026 }
4027 
4028 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4029 {
4030 	struct rbd_spec *parent_spec;
4031 	size_t size;
4032 	void *reply_buf = NULL;
4033 	__le64 snapid;
4034 	void *p;
4035 	void *end;
4036 	u64 pool_id;
4037 	char *image_id;
4038 	u64 snap_id;
4039 	u64 overlap;
4040 	int ret;
4041 
4042 	parent_spec = rbd_spec_alloc();
4043 	if (!parent_spec)
4044 		return -ENOMEM;
4045 
4046 	size = sizeof (__le64) +				/* pool_id */
4047 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4048 		sizeof (__le64) +				/* snap_id */
4049 		sizeof (__le64);				/* overlap */
4050 	reply_buf = kmalloc(size, GFP_KERNEL);
4051 	if (!reply_buf) {
4052 		ret = -ENOMEM;
4053 		goto out_err;
4054 	}
4055 
4056 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4057 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4058 				"rbd", "get_parent",
4059 				&snapid, sizeof (snapid),
4060 				reply_buf, size);
4061 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4062 	if (ret < 0)
4063 		goto out_err;
4064 
4065 	p = reply_buf;
4066 	end = reply_buf + ret;
4067 	ret = -ERANGE;
4068 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4069 	if (pool_id == CEPH_NOPOOL) {
4070 		/*
4071 		 * Either the parent never existed, or we have
4072 		 * record of it but the image got flattened so it no
4073 		 * longer has a parent.  When the parent of a
4074 		 * layered image disappears we immediately set the
4075 		 * overlap to 0.  The effect of this is that all new
4076 		 * requests will be treated as if the image had no
4077 		 * parent.
4078 		 */
4079 		if (rbd_dev->parent_overlap) {
4080 			rbd_dev->parent_overlap = 0;
4081 			smp_mb();
4082 			rbd_dev_parent_put(rbd_dev);
4083 			pr_info("%s: clone image has been flattened\n",
4084 				rbd_dev->disk->disk_name);
4085 		}
4086 
4087 		goto out;	/* No parent?  No problem. */
4088 	}
4089 
4090 	/* The ceph file layout needs to fit pool id in 32 bits */
4091 
4092 	ret = -EIO;
4093 	if (pool_id > (u64)U32_MAX) {
4094 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4095 			(unsigned long long)pool_id, U32_MAX);
4096 		goto out_err;
4097 	}
4098 
4099 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4100 	if (IS_ERR(image_id)) {
4101 		ret = PTR_ERR(image_id);
4102 		goto out_err;
4103 	}
4104 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4105 	ceph_decode_64_safe(&p, end, overlap, out_err);
4106 
4107 	/*
4108 	 * The parent won't change (except when the clone is
4109 	 * flattened, already handled that).  So we only need to
4110 	 * record the parent spec we have not already done so.
4111 	 */
4112 	if (!rbd_dev->parent_spec) {
4113 		parent_spec->pool_id = pool_id;
4114 		parent_spec->image_id = image_id;
4115 		parent_spec->snap_id = snap_id;
4116 		rbd_dev->parent_spec = parent_spec;
4117 		parent_spec = NULL;	/* rbd_dev now owns this */
4118 	} else {
4119 		kfree(image_id);
4120 	}
4121 
4122 	/*
4123 	 * We always update the parent overlap.  If it's zero we
4124 	 * treat it specially.
4125 	 */
4126 	rbd_dev->parent_overlap = overlap;
4127 	smp_mb();
4128 	if (!overlap) {
4129 
4130 		/* A null parent_spec indicates it's the initial probe */
4131 
4132 		if (parent_spec) {
4133 			/*
4134 			 * The overlap has become zero, so the clone
4135 			 * must have been resized down to 0 at some
4136 			 * point.  Treat this the same as a flatten.
4137 			 */
4138 			rbd_dev_parent_put(rbd_dev);
4139 			pr_info("%s: clone image now standalone\n",
4140 				rbd_dev->disk->disk_name);
4141 		} else {
4142 			/*
4143 			 * For the initial probe, if we find the
4144 			 * overlap is zero we just pretend there was
4145 			 * no parent image.
4146 			 */
4147 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4148 		}
4149 	}
4150 out:
4151 	ret = 0;
4152 out_err:
4153 	kfree(reply_buf);
4154 	rbd_spec_put(parent_spec);
4155 
4156 	return ret;
4157 }
4158 
4159 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4160 {
4161 	struct {
4162 		__le64 stripe_unit;
4163 		__le64 stripe_count;
4164 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4165 	size_t size = sizeof (striping_info_buf);
4166 	void *p;
4167 	u64 obj_size;
4168 	u64 stripe_unit;
4169 	u64 stripe_count;
4170 	int ret;
4171 
4172 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4173 				"rbd", "get_stripe_unit_count", NULL, 0,
4174 				(char *)&striping_info_buf, size);
4175 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176 	if (ret < 0)
4177 		return ret;
4178 	if (ret < size)
4179 		return -ERANGE;
4180 
4181 	/*
4182 	 * We don't actually support the "fancy striping" feature
4183 	 * (STRIPINGV2) yet, but if the striping sizes are the
4184 	 * defaults the behavior is the same as before.  So find
4185 	 * out, and only fail if the image has non-default values.
4186 	 */
4187 	ret = -EINVAL;
4188 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4189 	p = &striping_info_buf;
4190 	stripe_unit = ceph_decode_64(&p);
4191 	if (stripe_unit != obj_size) {
4192 		rbd_warn(rbd_dev, "unsupported stripe unit "
4193 				"(got %llu want %llu)",
4194 				stripe_unit, obj_size);
4195 		return -EINVAL;
4196 	}
4197 	stripe_count = ceph_decode_64(&p);
4198 	if (stripe_count != 1) {
4199 		rbd_warn(rbd_dev, "unsupported stripe count "
4200 				"(got %llu want 1)", stripe_count);
4201 		return -EINVAL;
4202 	}
4203 	rbd_dev->header.stripe_unit = stripe_unit;
4204 	rbd_dev->header.stripe_count = stripe_count;
4205 
4206 	return 0;
4207 }
4208 
4209 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4210 {
4211 	size_t image_id_size;
4212 	char *image_id;
4213 	void *p;
4214 	void *end;
4215 	size_t size;
4216 	void *reply_buf = NULL;
4217 	size_t len = 0;
4218 	char *image_name = NULL;
4219 	int ret;
4220 
4221 	rbd_assert(!rbd_dev->spec->image_name);
4222 
4223 	len = strlen(rbd_dev->spec->image_id);
4224 	image_id_size = sizeof (__le32) + len;
4225 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4226 	if (!image_id)
4227 		return NULL;
4228 
4229 	p = image_id;
4230 	end = image_id + image_id_size;
4231 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4232 
4233 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4234 	reply_buf = kmalloc(size, GFP_KERNEL);
4235 	if (!reply_buf)
4236 		goto out;
4237 
4238 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4239 				"rbd", "dir_get_name",
4240 				image_id, image_id_size,
4241 				reply_buf, size);
4242 	if (ret < 0)
4243 		goto out;
4244 	p = reply_buf;
4245 	end = reply_buf + ret;
4246 
4247 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4248 	if (IS_ERR(image_name))
4249 		image_name = NULL;
4250 	else
4251 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4252 out:
4253 	kfree(reply_buf);
4254 	kfree(image_id);
4255 
4256 	return image_name;
4257 }
4258 
4259 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4260 {
4261 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4262 	const char *snap_name;
4263 	u32 which = 0;
4264 
4265 	/* Skip over names until we find the one we are looking for */
4266 
4267 	snap_name = rbd_dev->header.snap_names;
4268 	while (which < snapc->num_snaps) {
4269 		if (!strcmp(name, snap_name))
4270 			return snapc->snaps[which];
4271 		snap_name += strlen(snap_name) + 1;
4272 		which++;
4273 	}
4274 	return CEPH_NOSNAP;
4275 }
4276 
4277 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4278 {
4279 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4280 	u32 which;
4281 	bool found = false;
4282 	u64 snap_id;
4283 
4284 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4285 		const char *snap_name;
4286 
4287 		snap_id = snapc->snaps[which];
4288 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4289 		if (IS_ERR(snap_name)) {
4290 			/* ignore no-longer existing snapshots */
4291 			if (PTR_ERR(snap_name) == -ENOENT)
4292 				continue;
4293 			else
4294 				break;
4295 		}
4296 		found = !strcmp(name, snap_name);
4297 		kfree(snap_name);
4298 	}
4299 	return found ? snap_id : CEPH_NOSNAP;
4300 }
4301 
4302 /*
4303  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4304  * no snapshot by that name is found, or if an error occurs.
4305  */
4306 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4307 {
4308 	if (rbd_dev->image_format == 1)
4309 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4310 
4311 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4312 }
4313 
4314 /*
4315  * An image being mapped will have everything but the snap id.
4316  */
4317 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4318 {
4319 	struct rbd_spec *spec = rbd_dev->spec;
4320 
4321 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4322 	rbd_assert(spec->image_id && spec->image_name);
4323 	rbd_assert(spec->snap_name);
4324 
4325 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4326 		u64 snap_id;
4327 
4328 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4329 		if (snap_id == CEPH_NOSNAP)
4330 			return -ENOENT;
4331 
4332 		spec->snap_id = snap_id;
4333 	} else {
4334 		spec->snap_id = CEPH_NOSNAP;
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /*
4341  * A parent image will have all ids but none of the names.
4342  *
4343  * All names in an rbd spec are dynamically allocated.  It's OK if we
4344  * can't figure out the name for an image id.
4345  */
4346 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4347 {
4348 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4349 	struct rbd_spec *spec = rbd_dev->spec;
4350 	const char *pool_name;
4351 	const char *image_name;
4352 	const char *snap_name;
4353 	int ret;
4354 
4355 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4356 	rbd_assert(spec->image_id);
4357 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4358 
4359 	/* Get the pool name; we have to make our own copy of this */
4360 
4361 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4362 	if (!pool_name) {
4363 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4364 		return -EIO;
4365 	}
4366 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4367 	if (!pool_name)
4368 		return -ENOMEM;
4369 
4370 	/* Fetch the image name; tolerate failure here */
4371 
4372 	image_name = rbd_dev_image_name(rbd_dev);
4373 	if (!image_name)
4374 		rbd_warn(rbd_dev, "unable to get image name");
4375 
4376 	/* Fetch the snapshot name */
4377 
4378 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4379 	if (IS_ERR(snap_name)) {
4380 		ret = PTR_ERR(snap_name);
4381 		goto out_err;
4382 	}
4383 
4384 	spec->pool_name = pool_name;
4385 	spec->image_name = image_name;
4386 	spec->snap_name = snap_name;
4387 
4388 	return 0;
4389 
4390 out_err:
4391 	kfree(image_name);
4392 	kfree(pool_name);
4393 	return ret;
4394 }
4395 
4396 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4397 {
4398 	size_t size;
4399 	int ret;
4400 	void *reply_buf;
4401 	void *p;
4402 	void *end;
4403 	u64 seq;
4404 	u32 snap_count;
4405 	struct ceph_snap_context *snapc;
4406 	u32 i;
4407 
4408 	/*
4409 	 * We'll need room for the seq value (maximum snapshot id),
4410 	 * snapshot count, and array of that many snapshot ids.
4411 	 * For now we have a fixed upper limit on the number we're
4412 	 * prepared to receive.
4413 	 */
4414 	size = sizeof (__le64) + sizeof (__le32) +
4415 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4416 	reply_buf = kzalloc(size, GFP_KERNEL);
4417 	if (!reply_buf)
4418 		return -ENOMEM;
4419 
4420 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4421 				"rbd", "get_snapcontext", NULL, 0,
4422 				reply_buf, size);
4423 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4424 	if (ret < 0)
4425 		goto out;
4426 
4427 	p = reply_buf;
4428 	end = reply_buf + ret;
4429 	ret = -ERANGE;
4430 	ceph_decode_64_safe(&p, end, seq, out);
4431 	ceph_decode_32_safe(&p, end, snap_count, out);
4432 
4433 	/*
4434 	 * Make sure the reported number of snapshot ids wouldn't go
4435 	 * beyond the end of our buffer.  But before checking that,
4436 	 * make sure the computed size of the snapshot context we
4437 	 * allocate is representable in a size_t.
4438 	 */
4439 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4440 				 / sizeof (u64)) {
4441 		ret = -EINVAL;
4442 		goto out;
4443 	}
4444 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4445 		goto out;
4446 	ret = 0;
4447 
4448 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4449 	if (!snapc) {
4450 		ret = -ENOMEM;
4451 		goto out;
4452 	}
4453 	snapc->seq = seq;
4454 	for (i = 0; i < snap_count; i++)
4455 		snapc->snaps[i] = ceph_decode_64(&p);
4456 
4457 	ceph_put_snap_context(rbd_dev->header.snapc);
4458 	rbd_dev->header.snapc = snapc;
4459 
4460 	dout("  snap context seq = %llu, snap_count = %u\n",
4461 		(unsigned long long)seq, (unsigned int)snap_count);
4462 out:
4463 	kfree(reply_buf);
4464 
4465 	return ret;
4466 }
4467 
4468 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4469 					u64 snap_id)
4470 {
4471 	size_t size;
4472 	void *reply_buf;
4473 	__le64 snapid;
4474 	int ret;
4475 	void *p;
4476 	void *end;
4477 	char *snap_name;
4478 
4479 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4480 	reply_buf = kmalloc(size, GFP_KERNEL);
4481 	if (!reply_buf)
4482 		return ERR_PTR(-ENOMEM);
4483 
4484 	snapid = cpu_to_le64(snap_id);
4485 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4486 				"rbd", "get_snapshot_name",
4487 				&snapid, sizeof (snapid),
4488 				reply_buf, size);
4489 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4490 	if (ret < 0) {
4491 		snap_name = ERR_PTR(ret);
4492 		goto out;
4493 	}
4494 
4495 	p = reply_buf;
4496 	end = reply_buf + ret;
4497 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4498 	if (IS_ERR(snap_name))
4499 		goto out;
4500 
4501 	dout("  snap_id 0x%016llx snap_name = %s\n",
4502 		(unsigned long long)snap_id, snap_name);
4503 out:
4504 	kfree(reply_buf);
4505 
4506 	return snap_name;
4507 }
4508 
4509 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4510 {
4511 	bool first_time = rbd_dev->header.object_prefix == NULL;
4512 	int ret;
4513 
4514 	ret = rbd_dev_v2_image_size(rbd_dev);
4515 	if (ret)
4516 		return ret;
4517 
4518 	if (first_time) {
4519 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4520 		if (ret)
4521 			return ret;
4522 	}
4523 
4524 	ret = rbd_dev_v2_snap_context(rbd_dev);
4525 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4526 
4527 	return ret;
4528 }
4529 
4530 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4531 {
4532 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4533 
4534 	if (rbd_dev->image_format == 1)
4535 		return rbd_dev_v1_header_info(rbd_dev);
4536 
4537 	return rbd_dev_v2_header_info(rbd_dev);
4538 }
4539 
4540 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4541 {
4542 	struct device *dev;
4543 	int ret;
4544 
4545 	dev = &rbd_dev->dev;
4546 	dev->bus = &rbd_bus_type;
4547 	dev->type = &rbd_device_type;
4548 	dev->parent = &rbd_root_dev;
4549 	dev->release = rbd_dev_device_release;
4550 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4551 	ret = device_register(dev);
4552 
4553 	return ret;
4554 }
4555 
4556 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4557 {
4558 	device_unregister(&rbd_dev->dev);
4559 }
4560 
4561 /*
4562  * Get a unique rbd identifier for the given new rbd_dev, and add
4563  * the rbd_dev to the global list.
4564  */
4565 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4566 {
4567 	int new_dev_id;
4568 
4569 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4570 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4571 				    GFP_KERNEL);
4572 	if (new_dev_id < 0)
4573 		return new_dev_id;
4574 
4575 	rbd_dev->dev_id = new_dev_id;
4576 
4577 	spin_lock(&rbd_dev_list_lock);
4578 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4579 	spin_unlock(&rbd_dev_list_lock);
4580 
4581 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4582 
4583 	return 0;
4584 }
4585 
4586 /*
4587  * Remove an rbd_dev from the global list, and record that its
4588  * identifier is no longer in use.
4589  */
4590 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4591 {
4592 	spin_lock(&rbd_dev_list_lock);
4593 	list_del_init(&rbd_dev->node);
4594 	spin_unlock(&rbd_dev_list_lock);
4595 
4596 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4597 
4598 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4599 }
4600 
4601 /*
4602  * Skips over white space at *buf, and updates *buf to point to the
4603  * first found non-space character (if any). Returns the length of
4604  * the token (string of non-white space characters) found.  Note
4605  * that *buf must be terminated with '\0'.
4606  */
4607 static inline size_t next_token(const char **buf)
4608 {
4609         /*
4610         * These are the characters that produce nonzero for
4611         * isspace() in the "C" and "POSIX" locales.
4612         */
4613         const char *spaces = " \f\n\r\t\v";
4614 
4615         *buf += strspn(*buf, spaces);	/* Find start of token */
4616 
4617 	return strcspn(*buf, spaces);   /* Return token length */
4618 }
4619 
4620 /*
4621  * Finds the next token in *buf, and if the provided token buffer is
4622  * big enough, copies the found token into it.  The result, if
4623  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4624  * must be terminated with '\0' on entry.
4625  *
4626  * Returns the length of the token found (not including the '\0').
4627  * Return value will be 0 if no token is found, and it will be >=
4628  * token_size if the token would not fit.
4629  *
4630  * The *buf pointer will be updated to point beyond the end of the
4631  * found token.  Note that this occurs even if the token buffer is
4632  * too small to hold it.
4633  */
4634 static inline size_t copy_token(const char **buf,
4635 				char *token,
4636 				size_t token_size)
4637 {
4638         size_t len;
4639 
4640 	len = next_token(buf);
4641 	if (len < token_size) {
4642 		memcpy(token, *buf, len);
4643 		*(token + len) = '\0';
4644 	}
4645 	*buf += len;
4646 
4647         return len;
4648 }
4649 
4650 /*
4651  * Finds the next token in *buf, dynamically allocates a buffer big
4652  * enough to hold a copy of it, and copies the token into the new
4653  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4654  * that a duplicate buffer is created even for a zero-length token.
4655  *
4656  * Returns a pointer to the newly-allocated duplicate, or a null
4657  * pointer if memory for the duplicate was not available.  If
4658  * the lenp argument is a non-null pointer, the length of the token
4659  * (not including the '\0') is returned in *lenp.
4660  *
4661  * If successful, the *buf pointer will be updated to point beyond
4662  * the end of the found token.
4663  *
4664  * Note: uses GFP_KERNEL for allocation.
4665  */
4666 static inline char *dup_token(const char **buf, size_t *lenp)
4667 {
4668 	char *dup;
4669 	size_t len;
4670 
4671 	len = next_token(buf);
4672 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4673 	if (!dup)
4674 		return NULL;
4675 	*(dup + len) = '\0';
4676 	*buf += len;
4677 
4678 	if (lenp)
4679 		*lenp = len;
4680 
4681 	return dup;
4682 }
4683 
4684 /*
4685  * Parse the options provided for an "rbd add" (i.e., rbd image
4686  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4687  * and the data written is passed here via a NUL-terminated buffer.
4688  * Returns 0 if successful or an error code otherwise.
4689  *
4690  * The information extracted from these options is recorded in
4691  * the other parameters which return dynamically-allocated
4692  * structures:
4693  *  ceph_opts
4694  *      The address of a pointer that will refer to a ceph options
4695  *      structure.  Caller must release the returned pointer using
4696  *      ceph_destroy_options() when it is no longer needed.
4697  *  rbd_opts
4698  *	Address of an rbd options pointer.  Fully initialized by
4699  *	this function; caller must release with kfree().
4700  *  spec
4701  *	Address of an rbd image specification pointer.  Fully
4702  *	initialized by this function based on parsed options.
4703  *	Caller must release with rbd_spec_put().
4704  *
4705  * The options passed take this form:
4706  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4707  * where:
4708  *  <mon_addrs>
4709  *      A comma-separated list of one or more monitor addresses.
4710  *      A monitor address is an ip address, optionally followed
4711  *      by a port number (separated by a colon).
4712  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4713  *  <options>
4714  *      A comma-separated list of ceph and/or rbd options.
4715  *  <pool_name>
4716  *      The name of the rados pool containing the rbd image.
4717  *  <image_name>
4718  *      The name of the image in that pool to map.
4719  *  <snap_id>
4720  *      An optional snapshot id.  If provided, the mapping will
4721  *      present data from the image at the time that snapshot was
4722  *      created.  The image head is used if no snapshot id is
4723  *      provided.  Snapshot mappings are always read-only.
4724  */
4725 static int rbd_add_parse_args(const char *buf,
4726 				struct ceph_options **ceph_opts,
4727 				struct rbd_options **opts,
4728 				struct rbd_spec **rbd_spec)
4729 {
4730 	size_t len;
4731 	char *options;
4732 	const char *mon_addrs;
4733 	char *snap_name;
4734 	size_t mon_addrs_size;
4735 	struct rbd_spec *spec = NULL;
4736 	struct rbd_options *rbd_opts = NULL;
4737 	struct ceph_options *copts;
4738 	int ret;
4739 
4740 	/* The first four tokens are required */
4741 
4742 	len = next_token(&buf);
4743 	if (!len) {
4744 		rbd_warn(NULL, "no monitor address(es) provided");
4745 		return -EINVAL;
4746 	}
4747 	mon_addrs = buf;
4748 	mon_addrs_size = len + 1;
4749 	buf += len;
4750 
4751 	ret = -EINVAL;
4752 	options = dup_token(&buf, NULL);
4753 	if (!options)
4754 		return -ENOMEM;
4755 	if (!*options) {
4756 		rbd_warn(NULL, "no options provided");
4757 		goto out_err;
4758 	}
4759 
4760 	spec = rbd_spec_alloc();
4761 	if (!spec)
4762 		goto out_mem;
4763 
4764 	spec->pool_name = dup_token(&buf, NULL);
4765 	if (!spec->pool_name)
4766 		goto out_mem;
4767 	if (!*spec->pool_name) {
4768 		rbd_warn(NULL, "no pool name provided");
4769 		goto out_err;
4770 	}
4771 
4772 	spec->image_name = dup_token(&buf, NULL);
4773 	if (!spec->image_name)
4774 		goto out_mem;
4775 	if (!*spec->image_name) {
4776 		rbd_warn(NULL, "no image name provided");
4777 		goto out_err;
4778 	}
4779 
4780 	/*
4781 	 * Snapshot name is optional; default is to use "-"
4782 	 * (indicating the head/no snapshot).
4783 	 */
4784 	len = next_token(&buf);
4785 	if (!len) {
4786 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4787 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4788 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4789 		ret = -ENAMETOOLONG;
4790 		goto out_err;
4791 	}
4792 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4793 	if (!snap_name)
4794 		goto out_mem;
4795 	*(snap_name + len) = '\0';
4796 	spec->snap_name = snap_name;
4797 
4798 	/* Initialize all rbd options to the defaults */
4799 
4800 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4801 	if (!rbd_opts)
4802 		goto out_mem;
4803 
4804 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4805 
4806 	copts = ceph_parse_options(options, mon_addrs,
4807 					mon_addrs + mon_addrs_size - 1,
4808 					parse_rbd_opts_token, rbd_opts);
4809 	if (IS_ERR(copts)) {
4810 		ret = PTR_ERR(copts);
4811 		goto out_err;
4812 	}
4813 	kfree(options);
4814 
4815 	*ceph_opts = copts;
4816 	*opts = rbd_opts;
4817 	*rbd_spec = spec;
4818 
4819 	return 0;
4820 out_mem:
4821 	ret = -ENOMEM;
4822 out_err:
4823 	kfree(rbd_opts);
4824 	rbd_spec_put(spec);
4825 	kfree(options);
4826 
4827 	return ret;
4828 }
4829 
4830 /*
4831  * Return pool id (>= 0) or a negative error code.
4832  */
4833 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4834 {
4835 	u64 newest_epoch;
4836 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4837 	int tries = 0;
4838 	int ret;
4839 
4840 again:
4841 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4842 	if (ret == -ENOENT && tries++ < 1) {
4843 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4844 					       &newest_epoch);
4845 		if (ret < 0)
4846 			return ret;
4847 
4848 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4849 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4850 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4851 						     newest_epoch, timeout);
4852 			goto again;
4853 		} else {
4854 			/* the osdmap we have is new enough */
4855 			return -ENOENT;
4856 		}
4857 	}
4858 
4859 	return ret;
4860 }
4861 
4862 /*
4863  * An rbd format 2 image has a unique identifier, distinct from the
4864  * name given to it by the user.  Internally, that identifier is
4865  * what's used to specify the names of objects related to the image.
4866  *
4867  * A special "rbd id" object is used to map an rbd image name to its
4868  * id.  If that object doesn't exist, then there is no v2 rbd image
4869  * with the supplied name.
4870  *
4871  * This function will record the given rbd_dev's image_id field if
4872  * it can be determined, and in that case will return 0.  If any
4873  * errors occur a negative errno will be returned and the rbd_dev's
4874  * image_id field will be unchanged (and should be NULL).
4875  */
4876 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4877 {
4878 	int ret;
4879 	size_t size;
4880 	char *object_name;
4881 	void *response;
4882 	char *image_id;
4883 
4884 	/*
4885 	 * When probing a parent image, the image id is already
4886 	 * known (and the image name likely is not).  There's no
4887 	 * need to fetch the image id again in this case.  We
4888 	 * do still need to set the image format though.
4889 	 */
4890 	if (rbd_dev->spec->image_id) {
4891 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4892 
4893 		return 0;
4894 	}
4895 
4896 	/*
4897 	 * First, see if the format 2 image id file exists, and if
4898 	 * so, get the image's persistent id from it.
4899 	 */
4900 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4901 	object_name = kmalloc(size, GFP_NOIO);
4902 	if (!object_name)
4903 		return -ENOMEM;
4904 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4905 	dout("rbd id object name is %s\n", object_name);
4906 
4907 	/* Response will be an encoded string, which includes a length */
4908 
4909 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4910 	response = kzalloc(size, GFP_NOIO);
4911 	if (!response) {
4912 		ret = -ENOMEM;
4913 		goto out;
4914 	}
4915 
4916 	/* If it doesn't exist we'll assume it's a format 1 image */
4917 
4918 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4919 				"rbd", "get_id", NULL, 0,
4920 				response, RBD_IMAGE_ID_LEN_MAX);
4921 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4922 	if (ret == -ENOENT) {
4923 		image_id = kstrdup("", GFP_KERNEL);
4924 		ret = image_id ? 0 : -ENOMEM;
4925 		if (!ret)
4926 			rbd_dev->image_format = 1;
4927 	} else if (ret > sizeof (__le32)) {
4928 		void *p = response;
4929 
4930 		image_id = ceph_extract_encoded_string(&p, p + ret,
4931 						NULL, GFP_NOIO);
4932 		ret = PTR_ERR_OR_ZERO(image_id);
4933 		if (!ret)
4934 			rbd_dev->image_format = 2;
4935 	} else {
4936 		ret = -EINVAL;
4937 	}
4938 
4939 	if (!ret) {
4940 		rbd_dev->spec->image_id = image_id;
4941 		dout("image_id is %s\n", image_id);
4942 	}
4943 out:
4944 	kfree(response);
4945 	kfree(object_name);
4946 
4947 	return ret;
4948 }
4949 
4950 /*
4951  * Undo whatever state changes are made by v1 or v2 header info
4952  * call.
4953  */
4954 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4955 {
4956 	struct rbd_image_header	*header;
4957 
4958 	/* Drop parent reference unless it's already been done (or none) */
4959 
4960 	if (rbd_dev->parent_overlap)
4961 		rbd_dev_parent_put(rbd_dev);
4962 
4963 	/* Free dynamic fields from the header, then zero it out */
4964 
4965 	header = &rbd_dev->header;
4966 	ceph_put_snap_context(header->snapc);
4967 	kfree(header->snap_sizes);
4968 	kfree(header->snap_names);
4969 	kfree(header->object_prefix);
4970 	memset(header, 0, sizeof (*header));
4971 }
4972 
4973 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4974 {
4975 	int ret;
4976 
4977 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4978 	if (ret)
4979 		goto out_err;
4980 
4981 	/*
4982 	 * Get the and check features for the image.  Currently the
4983 	 * features are assumed to never change.
4984 	 */
4985 	ret = rbd_dev_v2_features(rbd_dev);
4986 	if (ret)
4987 		goto out_err;
4988 
4989 	/* If the image supports fancy striping, get its parameters */
4990 
4991 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4992 		ret = rbd_dev_v2_striping_info(rbd_dev);
4993 		if (ret < 0)
4994 			goto out_err;
4995 	}
4996 	/* No support for crypto and compression type format 2 images */
4997 
4998 	return 0;
4999 out_err:
5000 	rbd_dev->header.features = 0;
5001 	kfree(rbd_dev->header.object_prefix);
5002 	rbd_dev->header.object_prefix = NULL;
5003 
5004 	return ret;
5005 }
5006 
5007 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5008 {
5009 	struct rbd_device *parent = NULL;
5010 	struct rbd_spec *parent_spec;
5011 	struct rbd_client *rbdc;
5012 	int ret;
5013 
5014 	if (!rbd_dev->parent_spec)
5015 		return 0;
5016 	/*
5017 	 * We need to pass a reference to the client and the parent
5018 	 * spec when creating the parent rbd_dev.  Images related by
5019 	 * parent/child relationships always share both.
5020 	 */
5021 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5022 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5023 
5024 	ret = -ENOMEM;
5025 	parent = rbd_dev_create(rbdc, parent_spec);
5026 	if (!parent)
5027 		goto out_err;
5028 
5029 	ret = rbd_dev_image_probe(parent, false);
5030 	if (ret < 0)
5031 		goto out_err;
5032 	rbd_dev->parent = parent;
5033 	atomic_set(&rbd_dev->parent_ref, 1);
5034 
5035 	return 0;
5036 out_err:
5037 	if (parent) {
5038 		rbd_dev_unparent(rbd_dev);
5039 		kfree(rbd_dev->header_name);
5040 		rbd_dev_destroy(parent);
5041 	} else {
5042 		rbd_put_client(rbdc);
5043 		rbd_spec_put(parent_spec);
5044 	}
5045 
5046 	return ret;
5047 }
5048 
5049 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5050 {
5051 	int ret;
5052 
5053 	/* Get an id and fill in device name. */
5054 
5055 	ret = rbd_dev_id_get(rbd_dev);
5056 	if (ret)
5057 		return ret;
5058 
5059 	BUILD_BUG_ON(DEV_NAME_LEN
5060 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5061 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5062 
5063 	/* Record our major and minor device numbers. */
5064 
5065 	if (!single_major) {
5066 		ret = register_blkdev(0, rbd_dev->name);
5067 		if (ret < 0)
5068 			goto err_out_id;
5069 
5070 		rbd_dev->major = ret;
5071 		rbd_dev->minor = 0;
5072 	} else {
5073 		rbd_dev->major = rbd_major;
5074 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5075 	}
5076 
5077 	/* Set up the blkdev mapping. */
5078 
5079 	ret = rbd_init_disk(rbd_dev);
5080 	if (ret)
5081 		goto err_out_blkdev;
5082 
5083 	ret = rbd_dev_mapping_set(rbd_dev);
5084 	if (ret)
5085 		goto err_out_disk;
5086 
5087 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5088 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5089 
5090 	rbd_dev->rq_wq = alloc_workqueue(rbd_dev->disk->disk_name, 0, 0);
5091 	if (!rbd_dev->rq_wq)
5092 		goto err_out_mapping;
5093 
5094 	ret = rbd_bus_add_dev(rbd_dev);
5095 	if (ret)
5096 		goto err_out_workqueue;
5097 
5098 	/* Everything's ready.  Announce the disk to the world. */
5099 
5100 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5101 	add_disk(rbd_dev->disk);
5102 
5103 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5104 		(unsigned long long) rbd_dev->mapping.size);
5105 
5106 	return ret;
5107 
5108 err_out_workqueue:
5109 	destroy_workqueue(rbd_dev->rq_wq);
5110 	rbd_dev->rq_wq = NULL;
5111 err_out_mapping:
5112 	rbd_dev_mapping_clear(rbd_dev);
5113 err_out_disk:
5114 	rbd_free_disk(rbd_dev);
5115 err_out_blkdev:
5116 	if (!single_major)
5117 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5118 err_out_id:
5119 	rbd_dev_id_put(rbd_dev);
5120 	rbd_dev_mapping_clear(rbd_dev);
5121 
5122 	return ret;
5123 }
5124 
5125 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5126 {
5127 	struct rbd_spec *spec = rbd_dev->spec;
5128 	size_t size;
5129 
5130 	/* Record the header object name for this rbd image. */
5131 
5132 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5133 
5134 	if (rbd_dev->image_format == 1)
5135 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5136 	else
5137 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5138 
5139 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5140 	if (!rbd_dev->header_name)
5141 		return -ENOMEM;
5142 
5143 	if (rbd_dev->image_format == 1)
5144 		sprintf(rbd_dev->header_name, "%s%s",
5145 			spec->image_name, RBD_SUFFIX);
5146 	else
5147 		sprintf(rbd_dev->header_name, "%s%s",
5148 			RBD_HEADER_PREFIX, spec->image_id);
5149 	return 0;
5150 }
5151 
5152 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5153 {
5154 	rbd_dev_unprobe(rbd_dev);
5155 	kfree(rbd_dev->header_name);
5156 	rbd_dev->header_name = NULL;
5157 	rbd_dev->image_format = 0;
5158 	kfree(rbd_dev->spec->image_id);
5159 	rbd_dev->spec->image_id = NULL;
5160 
5161 	rbd_dev_destroy(rbd_dev);
5162 }
5163 
5164 /*
5165  * Probe for the existence of the header object for the given rbd
5166  * device.  If this image is the one being mapped (i.e., not a
5167  * parent), initiate a watch on its header object before using that
5168  * object to get detailed information about the rbd image.
5169  */
5170 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5171 {
5172 	int ret;
5173 
5174 	/*
5175 	 * Get the id from the image id object.  Unless there's an
5176 	 * error, rbd_dev->spec->image_id will be filled in with
5177 	 * a dynamically-allocated string, and rbd_dev->image_format
5178 	 * will be set to either 1 or 2.
5179 	 */
5180 	ret = rbd_dev_image_id(rbd_dev);
5181 	if (ret)
5182 		return ret;
5183 
5184 	ret = rbd_dev_header_name(rbd_dev);
5185 	if (ret)
5186 		goto err_out_format;
5187 
5188 	if (mapping) {
5189 		ret = rbd_dev_header_watch_sync(rbd_dev);
5190 		if (ret)
5191 			goto out_header_name;
5192 	}
5193 
5194 	ret = rbd_dev_header_info(rbd_dev);
5195 	if (ret)
5196 		goto err_out_watch;
5197 
5198 	/*
5199 	 * If this image is the one being mapped, we have pool name and
5200 	 * id, image name and id, and snap name - need to fill snap id.
5201 	 * Otherwise this is a parent image, identified by pool, image
5202 	 * and snap ids - need to fill in names for those ids.
5203 	 */
5204 	if (mapping)
5205 		ret = rbd_spec_fill_snap_id(rbd_dev);
5206 	else
5207 		ret = rbd_spec_fill_names(rbd_dev);
5208 	if (ret)
5209 		goto err_out_probe;
5210 
5211 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5212 		ret = rbd_dev_v2_parent_info(rbd_dev);
5213 		if (ret)
5214 			goto err_out_probe;
5215 
5216 		/*
5217 		 * Need to warn users if this image is the one being
5218 		 * mapped and has a parent.
5219 		 */
5220 		if (mapping && rbd_dev->parent_spec)
5221 			rbd_warn(rbd_dev,
5222 				 "WARNING: kernel layering is EXPERIMENTAL!");
5223 	}
5224 
5225 	ret = rbd_dev_probe_parent(rbd_dev);
5226 	if (ret)
5227 		goto err_out_probe;
5228 
5229 	dout("discovered format %u image, header name is %s\n",
5230 		rbd_dev->image_format, rbd_dev->header_name);
5231 	return 0;
5232 
5233 err_out_probe:
5234 	rbd_dev_unprobe(rbd_dev);
5235 err_out_watch:
5236 	if (mapping)
5237 		rbd_dev_header_unwatch_sync(rbd_dev);
5238 out_header_name:
5239 	kfree(rbd_dev->header_name);
5240 	rbd_dev->header_name = NULL;
5241 err_out_format:
5242 	rbd_dev->image_format = 0;
5243 	kfree(rbd_dev->spec->image_id);
5244 	rbd_dev->spec->image_id = NULL;
5245 	return ret;
5246 }
5247 
5248 static ssize_t do_rbd_add(struct bus_type *bus,
5249 			  const char *buf,
5250 			  size_t count)
5251 {
5252 	struct rbd_device *rbd_dev = NULL;
5253 	struct ceph_options *ceph_opts = NULL;
5254 	struct rbd_options *rbd_opts = NULL;
5255 	struct rbd_spec *spec = NULL;
5256 	struct rbd_client *rbdc;
5257 	bool read_only;
5258 	int rc = -ENOMEM;
5259 
5260 	if (!try_module_get(THIS_MODULE))
5261 		return -ENODEV;
5262 
5263 	/* parse add command */
5264 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5265 	if (rc < 0)
5266 		goto err_out_module;
5267 	read_only = rbd_opts->read_only;
5268 	kfree(rbd_opts);
5269 	rbd_opts = NULL;	/* done with this */
5270 
5271 	rbdc = rbd_get_client(ceph_opts);
5272 	if (IS_ERR(rbdc)) {
5273 		rc = PTR_ERR(rbdc);
5274 		goto err_out_args;
5275 	}
5276 
5277 	/* pick the pool */
5278 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5279 	if (rc < 0)
5280 		goto err_out_client;
5281 	spec->pool_id = (u64)rc;
5282 
5283 	/* The ceph file layout needs to fit pool id in 32 bits */
5284 
5285 	if (spec->pool_id > (u64)U32_MAX) {
5286 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5287 				(unsigned long long)spec->pool_id, U32_MAX);
5288 		rc = -EIO;
5289 		goto err_out_client;
5290 	}
5291 
5292 	rbd_dev = rbd_dev_create(rbdc, spec);
5293 	if (!rbd_dev)
5294 		goto err_out_client;
5295 	rbdc = NULL;		/* rbd_dev now owns this */
5296 	spec = NULL;		/* rbd_dev now owns this */
5297 
5298 	rc = rbd_dev_image_probe(rbd_dev, true);
5299 	if (rc < 0)
5300 		goto err_out_rbd_dev;
5301 
5302 	/* If we are mapping a snapshot it must be marked read-only */
5303 
5304 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5305 		read_only = true;
5306 	rbd_dev->mapping.read_only = read_only;
5307 
5308 	rc = rbd_dev_device_setup(rbd_dev);
5309 	if (rc) {
5310 		/*
5311 		 * rbd_dev_header_unwatch_sync() can't be moved into
5312 		 * rbd_dev_image_release() without refactoring, see
5313 		 * commit 1f3ef78861ac.
5314 		 */
5315 		rbd_dev_header_unwatch_sync(rbd_dev);
5316 		rbd_dev_image_release(rbd_dev);
5317 		goto err_out_module;
5318 	}
5319 
5320 	return count;
5321 
5322 err_out_rbd_dev:
5323 	rbd_dev_destroy(rbd_dev);
5324 err_out_client:
5325 	rbd_put_client(rbdc);
5326 err_out_args:
5327 	rbd_spec_put(spec);
5328 err_out_module:
5329 	module_put(THIS_MODULE);
5330 
5331 	dout("Error adding device %s\n", buf);
5332 
5333 	return (ssize_t)rc;
5334 }
5335 
5336 static ssize_t rbd_add(struct bus_type *bus,
5337 		       const char *buf,
5338 		       size_t count)
5339 {
5340 	if (single_major)
5341 		return -EINVAL;
5342 
5343 	return do_rbd_add(bus, buf, count);
5344 }
5345 
5346 static ssize_t rbd_add_single_major(struct bus_type *bus,
5347 				    const char *buf,
5348 				    size_t count)
5349 {
5350 	return do_rbd_add(bus, buf, count);
5351 }
5352 
5353 static void rbd_dev_device_release(struct device *dev)
5354 {
5355 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5356 
5357 	destroy_workqueue(rbd_dev->rq_wq);
5358 	rbd_free_disk(rbd_dev);
5359 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5360 	rbd_dev_mapping_clear(rbd_dev);
5361 	if (!single_major)
5362 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5363 	rbd_dev_id_put(rbd_dev);
5364 	rbd_dev_mapping_clear(rbd_dev);
5365 }
5366 
5367 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5368 {
5369 	while (rbd_dev->parent) {
5370 		struct rbd_device *first = rbd_dev;
5371 		struct rbd_device *second = first->parent;
5372 		struct rbd_device *third;
5373 
5374 		/*
5375 		 * Follow to the parent with no grandparent and
5376 		 * remove it.
5377 		 */
5378 		while (second && (third = second->parent)) {
5379 			first = second;
5380 			second = third;
5381 		}
5382 		rbd_assert(second);
5383 		rbd_dev_image_release(second);
5384 		first->parent = NULL;
5385 		first->parent_overlap = 0;
5386 
5387 		rbd_assert(first->parent_spec);
5388 		rbd_spec_put(first->parent_spec);
5389 		first->parent_spec = NULL;
5390 	}
5391 }
5392 
5393 static ssize_t do_rbd_remove(struct bus_type *bus,
5394 			     const char *buf,
5395 			     size_t count)
5396 {
5397 	struct rbd_device *rbd_dev = NULL;
5398 	struct list_head *tmp;
5399 	int dev_id;
5400 	unsigned long ul;
5401 	bool already = false;
5402 	int ret;
5403 
5404 	ret = kstrtoul(buf, 10, &ul);
5405 	if (ret)
5406 		return ret;
5407 
5408 	/* convert to int; abort if we lost anything in the conversion */
5409 	dev_id = (int)ul;
5410 	if (dev_id != ul)
5411 		return -EINVAL;
5412 
5413 	ret = -ENOENT;
5414 	spin_lock(&rbd_dev_list_lock);
5415 	list_for_each(tmp, &rbd_dev_list) {
5416 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5417 		if (rbd_dev->dev_id == dev_id) {
5418 			ret = 0;
5419 			break;
5420 		}
5421 	}
5422 	if (!ret) {
5423 		spin_lock_irq(&rbd_dev->lock);
5424 		if (rbd_dev->open_count)
5425 			ret = -EBUSY;
5426 		else
5427 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5428 							&rbd_dev->flags);
5429 		spin_unlock_irq(&rbd_dev->lock);
5430 	}
5431 	spin_unlock(&rbd_dev_list_lock);
5432 	if (ret < 0 || already)
5433 		return ret;
5434 
5435 	rbd_dev_header_unwatch_sync(rbd_dev);
5436 	/*
5437 	 * flush remaining watch callbacks - these must be complete
5438 	 * before the osd_client is shutdown
5439 	 */
5440 	dout("%s: flushing notifies", __func__);
5441 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5442 
5443 	/*
5444 	 * Don't free anything from rbd_dev->disk until after all
5445 	 * notifies are completely processed. Otherwise
5446 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5447 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5448 	 */
5449 	rbd_bus_del_dev(rbd_dev);
5450 	rbd_dev_image_release(rbd_dev);
5451 	module_put(THIS_MODULE);
5452 
5453 	return count;
5454 }
5455 
5456 static ssize_t rbd_remove(struct bus_type *bus,
5457 			  const char *buf,
5458 			  size_t count)
5459 {
5460 	if (single_major)
5461 		return -EINVAL;
5462 
5463 	return do_rbd_remove(bus, buf, count);
5464 }
5465 
5466 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5467 				       const char *buf,
5468 				       size_t count)
5469 {
5470 	return do_rbd_remove(bus, buf, count);
5471 }
5472 
5473 /*
5474  * create control files in sysfs
5475  * /sys/bus/rbd/...
5476  */
5477 static int rbd_sysfs_init(void)
5478 {
5479 	int ret;
5480 
5481 	ret = device_register(&rbd_root_dev);
5482 	if (ret < 0)
5483 		return ret;
5484 
5485 	ret = bus_register(&rbd_bus_type);
5486 	if (ret < 0)
5487 		device_unregister(&rbd_root_dev);
5488 
5489 	return ret;
5490 }
5491 
5492 static void rbd_sysfs_cleanup(void)
5493 {
5494 	bus_unregister(&rbd_bus_type);
5495 	device_unregister(&rbd_root_dev);
5496 }
5497 
5498 static int rbd_slab_init(void)
5499 {
5500 	rbd_assert(!rbd_img_request_cache);
5501 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5502 					sizeof (struct rbd_img_request),
5503 					__alignof__(struct rbd_img_request),
5504 					0, NULL);
5505 	if (!rbd_img_request_cache)
5506 		return -ENOMEM;
5507 
5508 	rbd_assert(!rbd_obj_request_cache);
5509 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5510 					sizeof (struct rbd_obj_request),
5511 					__alignof__(struct rbd_obj_request),
5512 					0, NULL);
5513 	if (!rbd_obj_request_cache)
5514 		goto out_err;
5515 
5516 	rbd_assert(!rbd_segment_name_cache);
5517 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5518 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5519 	if (rbd_segment_name_cache)
5520 		return 0;
5521 out_err:
5522 	if (rbd_obj_request_cache) {
5523 		kmem_cache_destroy(rbd_obj_request_cache);
5524 		rbd_obj_request_cache = NULL;
5525 	}
5526 
5527 	kmem_cache_destroy(rbd_img_request_cache);
5528 	rbd_img_request_cache = NULL;
5529 
5530 	return -ENOMEM;
5531 }
5532 
5533 static void rbd_slab_exit(void)
5534 {
5535 	rbd_assert(rbd_segment_name_cache);
5536 	kmem_cache_destroy(rbd_segment_name_cache);
5537 	rbd_segment_name_cache = NULL;
5538 
5539 	rbd_assert(rbd_obj_request_cache);
5540 	kmem_cache_destroy(rbd_obj_request_cache);
5541 	rbd_obj_request_cache = NULL;
5542 
5543 	rbd_assert(rbd_img_request_cache);
5544 	kmem_cache_destroy(rbd_img_request_cache);
5545 	rbd_img_request_cache = NULL;
5546 }
5547 
5548 static int __init rbd_init(void)
5549 {
5550 	int rc;
5551 
5552 	if (!libceph_compatible(NULL)) {
5553 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5554 		return -EINVAL;
5555 	}
5556 
5557 	rc = rbd_slab_init();
5558 	if (rc)
5559 		return rc;
5560 
5561 	if (single_major) {
5562 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5563 		if (rbd_major < 0) {
5564 			rc = rbd_major;
5565 			goto err_out_slab;
5566 		}
5567 	}
5568 
5569 	rc = rbd_sysfs_init();
5570 	if (rc)
5571 		goto err_out_blkdev;
5572 
5573 	if (single_major)
5574 		pr_info("loaded (major %d)\n", rbd_major);
5575 	else
5576 		pr_info("loaded\n");
5577 
5578 	return 0;
5579 
5580 err_out_blkdev:
5581 	if (single_major)
5582 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5583 err_out_slab:
5584 	rbd_slab_exit();
5585 	return rc;
5586 }
5587 
5588 static void __exit rbd_exit(void)
5589 {
5590 	ida_destroy(&rbd_dev_id_ida);
5591 	rbd_sysfs_cleanup();
5592 	if (single_major)
5593 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5594 	rbd_slab_exit();
5595 }
5596 
5597 module_init(rbd_init);
5598 module_exit(rbd_exit);
5599 
5600 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5601 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5602 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5603 /* following authorship retained from original osdblk.c */
5604 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5605 
5606 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5607 MODULE_LICENSE("GPL");
5608