1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 45 #include "rbd_types.h" 46 47 #define RBD_DEBUG /* Activate rbd_assert() calls */ 48 49 /* 50 * The basic unit of block I/O is a sector. It is interpreted in a 51 * number of contexts in Linux (blk, bio, genhd), but the default is 52 * universally 512 bytes. These symbols are just slightly more 53 * meaningful than the bare numbers they represent. 54 */ 55 #define SECTOR_SHIFT 9 56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 57 58 /* 59 * Increment the given counter and return its updated value. 60 * If the counter is already 0 it will not be incremented. 61 * If the counter is already at its maximum value returns 62 * -EINVAL without updating it. 63 */ 64 static int atomic_inc_return_safe(atomic_t *v) 65 { 66 unsigned int counter; 67 68 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 69 if (counter <= (unsigned int)INT_MAX) 70 return (int)counter; 71 72 atomic_dec(v); 73 74 return -EINVAL; 75 } 76 77 /* Decrement the counter. Return the resulting value, or -EINVAL */ 78 static int atomic_dec_return_safe(atomic_t *v) 79 { 80 int counter; 81 82 counter = atomic_dec_return(v); 83 if (counter >= 0) 84 return counter; 85 86 atomic_inc(v); 87 88 return -EINVAL; 89 } 90 91 #define RBD_DRV_NAME "rbd" 92 #define RBD_DRV_NAME_LONG "rbd (rados block device)" 93 94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */ 95 96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 97 #define RBD_MAX_SNAP_NAME_LEN \ 98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 99 100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 101 102 #define RBD_SNAP_HEAD_NAME "-" 103 104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 105 106 /* This allows a single page to hold an image name sent by OSD */ 107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 108 #define RBD_IMAGE_ID_LEN_MAX 64 109 110 #define RBD_OBJ_PREFIX_LEN_MAX 64 111 112 /* Feature bits */ 113 114 #define RBD_FEATURE_LAYERING (1<<0) 115 #define RBD_FEATURE_STRIPINGV2 (1<<1) 116 #define RBD_FEATURES_ALL \ 117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 118 119 /* Features supported by this (client software) implementation. */ 120 121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 122 123 /* 124 * An RBD device name will be "rbd#", where the "rbd" comes from 125 * RBD_DRV_NAME above, and # is a unique integer identifier. 126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 127 * enough to hold all possible device names. 128 */ 129 #define DEV_NAME_LEN 32 130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 131 132 /* 133 * block device image metadata (in-memory version) 134 */ 135 struct rbd_image_header { 136 /* These six fields never change for a given rbd image */ 137 char *object_prefix; 138 __u8 obj_order; 139 __u8 crypt_type; 140 __u8 comp_type; 141 u64 stripe_unit; 142 u64 stripe_count; 143 u64 features; /* Might be changeable someday? */ 144 145 /* The remaining fields need to be updated occasionally */ 146 u64 image_size; 147 struct ceph_snap_context *snapc; 148 char *snap_names; /* format 1 only */ 149 u64 *snap_sizes; /* format 1 only */ 150 }; 151 152 /* 153 * An rbd image specification. 154 * 155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 156 * identify an image. Each rbd_dev structure includes a pointer to 157 * an rbd_spec structure that encapsulates this identity. 158 * 159 * Each of the id's in an rbd_spec has an associated name. For a 160 * user-mapped image, the names are supplied and the id's associated 161 * with them are looked up. For a layered image, a parent image is 162 * defined by the tuple, and the names are looked up. 163 * 164 * An rbd_dev structure contains a parent_spec pointer which is 165 * non-null if the image it represents is a child in a layered 166 * image. This pointer will refer to the rbd_spec structure used 167 * by the parent rbd_dev for its own identity (i.e., the structure 168 * is shared between the parent and child). 169 * 170 * Since these structures are populated once, during the discovery 171 * phase of image construction, they are effectively immutable so 172 * we make no effort to synchronize access to them. 173 * 174 * Note that code herein does not assume the image name is known (it 175 * could be a null pointer). 176 */ 177 struct rbd_spec { 178 u64 pool_id; 179 const char *pool_name; 180 181 const char *image_id; 182 const char *image_name; 183 184 u64 snap_id; 185 const char *snap_name; 186 187 struct kref kref; 188 }; 189 190 /* 191 * an instance of the client. multiple devices may share an rbd client. 192 */ 193 struct rbd_client { 194 struct ceph_client *client; 195 struct kref kref; 196 struct list_head node; 197 }; 198 199 struct rbd_img_request; 200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 201 202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 203 204 struct rbd_obj_request; 205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 206 207 enum obj_request_type { 208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 209 }; 210 211 enum obj_req_flags { 212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 216 }; 217 218 struct rbd_obj_request { 219 const char *object_name; 220 u64 offset; /* object start byte */ 221 u64 length; /* bytes from offset */ 222 unsigned long flags; 223 224 /* 225 * An object request associated with an image will have its 226 * img_data flag set; a standalone object request will not. 227 * 228 * A standalone object request will have which == BAD_WHICH 229 * and a null obj_request pointer. 230 * 231 * An object request initiated in support of a layered image 232 * object (to check for its existence before a write) will 233 * have which == BAD_WHICH and a non-null obj_request pointer. 234 * 235 * Finally, an object request for rbd image data will have 236 * which != BAD_WHICH, and will have a non-null img_request 237 * pointer. The value of which will be in the range 238 * 0..(img_request->obj_request_count-1). 239 */ 240 union { 241 struct rbd_obj_request *obj_request; /* STAT op */ 242 struct { 243 struct rbd_img_request *img_request; 244 u64 img_offset; 245 /* links for img_request->obj_requests list */ 246 struct list_head links; 247 }; 248 }; 249 u32 which; /* posn image request list */ 250 251 enum obj_request_type type; 252 union { 253 struct bio *bio_list; 254 struct { 255 struct page **pages; 256 u32 page_count; 257 }; 258 }; 259 struct page **copyup_pages; 260 u32 copyup_page_count; 261 262 struct ceph_osd_request *osd_req; 263 264 u64 xferred; /* bytes transferred */ 265 int result; 266 267 rbd_obj_callback_t callback; 268 struct completion completion; 269 270 struct kref kref; 271 }; 272 273 enum img_req_flags { 274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 277 }; 278 279 struct rbd_img_request { 280 struct rbd_device *rbd_dev; 281 u64 offset; /* starting image byte offset */ 282 u64 length; /* byte count from offset */ 283 unsigned long flags; 284 union { 285 u64 snap_id; /* for reads */ 286 struct ceph_snap_context *snapc; /* for writes */ 287 }; 288 union { 289 struct request *rq; /* block request */ 290 struct rbd_obj_request *obj_request; /* obj req initiator */ 291 }; 292 struct page **copyup_pages; 293 u32 copyup_page_count; 294 spinlock_t completion_lock;/* protects next_completion */ 295 u32 next_completion; 296 rbd_img_callback_t callback; 297 u64 xferred;/* aggregate bytes transferred */ 298 int result; /* first nonzero obj_request result */ 299 300 u32 obj_request_count; 301 struct list_head obj_requests; /* rbd_obj_request structs */ 302 303 struct kref kref; 304 }; 305 306 #define for_each_obj_request(ireq, oreq) \ 307 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 308 #define for_each_obj_request_from(ireq, oreq) \ 309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 310 #define for_each_obj_request_safe(ireq, oreq, n) \ 311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 312 313 struct rbd_mapping { 314 u64 size; 315 u64 features; 316 bool read_only; 317 }; 318 319 /* 320 * a single device 321 */ 322 struct rbd_device { 323 int dev_id; /* blkdev unique id */ 324 325 int major; /* blkdev assigned major */ 326 struct gendisk *disk; /* blkdev's gendisk and rq */ 327 328 u32 image_format; /* Either 1 or 2 */ 329 struct rbd_client *rbd_client; 330 331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 332 333 spinlock_t lock; /* queue, flags, open_count */ 334 335 struct rbd_image_header header; 336 unsigned long flags; /* possibly lock protected */ 337 struct rbd_spec *spec; 338 339 char *header_name; 340 341 struct ceph_file_layout layout; 342 343 struct ceph_osd_event *watch_event; 344 struct rbd_obj_request *watch_request; 345 346 struct rbd_spec *parent_spec; 347 u64 parent_overlap; 348 atomic_t parent_ref; 349 struct rbd_device *parent; 350 351 /* protects updating the header */ 352 struct rw_semaphore header_rwsem; 353 354 struct rbd_mapping mapping; 355 356 struct list_head node; 357 358 /* sysfs related */ 359 struct device dev; 360 unsigned long open_count; /* protected by lock */ 361 }; 362 363 /* 364 * Flag bits for rbd_dev->flags. If atomicity is required, 365 * rbd_dev->lock is used to protect access. 366 * 367 * Currently, only the "removing" flag (which is coupled with the 368 * "open_count" field) requires atomic access. 369 */ 370 enum rbd_dev_flags { 371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 373 }; 374 375 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 376 377 static LIST_HEAD(rbd_dev_list); /* devices */ 378 static DEFINE_SPINLOCK(rbd_dev_list_lock); 379 380 static LIST_HEAD(rbd_client_list); /* clients */ 381 static DEFINE_SPINLOCK(rbd_client_list_lock); 382 383 /* Slab caches for frequently-allocated structures */ 384 385 static struct kmem_cache *rbd_img_request_cache; 386 static struct kmem_cache *rbd_obj_request_cache; 387 static struct kmem_cache *rbd_segment_name_cache; 388 389 static int rbd_img_request_submit(struct rbd_img_request *img_request); 390 391 static void rbd_dev_device_release(struct device *dev); 392 393 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 394 size_t count); 395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 396 size_t count); 397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 398 static void rbd_spec_put(struct rbd_spec *spec); 399 400 static struct bus_attribute rbd_bus_attrs[] = { 401 __ATTR(add, S_IWUSR, NULL, rbd_add), 402 __ATTR(remove, S_IWUSR, NULL, rbd_remove), 403 __ATTR_NULL 404 }; 405 406 static struct bus_type rbd_bus_type = { 407 .name = "rbd", 408 .bus_attrs = rbd_bus_attrs, 409 }; 410 411 static void rbd_root_dev_release(struct device *dev) 412 { 413 } 414 415 static struct device rbd_root_dev = { 416 .init_name = "rbd", 417 .release = rbd_root_dev_release, 418 }; 419 420 static __printf(2, 3) 421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 422 { 423 struct va_format vaf; 424 va_list args; 425 426 va_start(args, fmt); 427 vaf.fmt = fmt; 428 vaf.va = &args; 429 430 if (!rbd_dev) 431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 432 else if (rbd_dev->disk) 433 printk(KERN_WARNING "%s: %s: %pV\n", 434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 435 else if (rbd_dev->spec && rbd_dev->spec->image_name) 436 printk(KERN_WARNING "%s: image %s: %pV\n", 437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 438 else if (rbd_dev->spec && rbd_dev->spec->image_id) 439 printk(KERN_WARNING "%s: id %s: %pV\n", 440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 441 else /* punt */ 442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 443 RBD_DRV_NAME, rbd_dev, &vaf); 444 va_end(args); 445 } 446 447 #ifdef RBD_DEBUG 448 #define rbd_assert(expr) \ 449 if (unlikely(!(expr))) { \ 450 printk(KERN_ERR "\nAssertion failure in %s() " \ 451 "at line %d:\n\n" \ 452 "\trbd_assert(%s);\n\n", \ 453 __func__, __LINE__, #expr); \ 454 BUG(); \ 455 } 456 #else /* !RBD_DEBUG */ 457 # define rbd_assert(expr) ((void) 0) 458 #endif /* !RBD_DEBUG */ 459 460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 463 464 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev); 467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 468 u64 snap_id); 469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 470 u8 *order, u64 *snap_size); 471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 472 u64 *snap_features); 473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 474 475 static int rbd_open(struct block_device *bdev, fmode_t mode) 476 { 477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 478 bool removing = false; 479 480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 481 return -EROFS; 482 483 spin_lock_irq(&rbd_dev->lock); 484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 485 removing = true; 486 else 487 rbd_dev->open_count++; 488 spin_unlock_irq(&rbd_dev->lock); 489 if (removing) 490 return -ENOENT; 491 492 (void) get_device(&rbd_dev->dev); 493 set_device_ro(bdev, rbd_dev->mapping.read_only); 494 495 return 0; 496 } 497 498 static void rbd_release(struct gendisk *disk, fmode_t mode) 499 { 500 struct rbd_device *rbd_dev = disk->private_data; 501 unsigned long open_count_before; 502 503 spin_lock_irq(&rbd_dev->lock); 504 open_count_before = rbd_dev->open_count--; 505 spin_unlock_irq(&rbd_dev->lock); 506 rbd_assert(open_count_before > 0); 507 508 put_device(&rbd_dev->dev); 509 } 510 511 static const struct block_device_operations rbd_bd_ops = { 512 .owner = THIS_MODULE, 513 .open = rbd_open, 514 .release = rbd_release, 515 }; 516 517 /* 518 * Initialize an rbd client instance. Success or not, this function 519 * consumes ceph_opts. Caller holds client_mutex. 520 */ 521 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 522 { 523 struct rbd_client *rbdc; 524 int ret = -ENOMEM; 525 526 dout("%s:\n", __func__); 527 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 528 if (!rbdc) 529 goto out_opt; 530 531 kref_init(&rbdc->kref); 532 INIT_LIST_HEAD(&rbdc->node); 533 534 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 535 if (IS_ERR(rbdc->client)) 536 goto out_rbdc; 537 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 538 539 ret = ceph_open_session(rbdc->client); 540 if (ret < 0) 541 goto out_client; 542 543 spin_lock(&rbd_client_list_lock); 544 list_add_tail(&rbdc->node, &rbd_client_list); 545 spin_unlock(&rbd_client_list_lock); 546 547 dout("%s: rbdc %p\n", __func__, rbdc); 548 549 return rbdc; 550 out_client: 551 ceph_destroy_client(rbdc->client); 552 out_rbdc: 553 kfree(rbdc); 554 out_opt: 555 if (ceph_opts) 556 ceph_destroy_options(ceph_opts); 557 dout("%s: error %d\n", __func__, ret); 558 559 return ERR_PTR(ret); 560 } 561 562 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 563 { 564 kref_get(&rbdc->kref); 565 566 return rbdc; 567 } 568 569 /* 570 * Find a ceph client with specific addr and configuration. If 571 * found, bump its reference count. 572 */ 573 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 574 { 575 struct rbd_client *client_node; 576 bool found = false; 577 578 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 579 return NULL; 580 581 spin_lock(&rbd_client_list_lock); 582 list_for_each_entry(client_node, &rbd_client_list, node) { 583 if (!ceph_compare_options(ceph_opts, client_node->client)) { 584 __rbd_get_client(client_node); 585 586 found = true; 587 break; 588 } 589 } 590 spin_unlock(&rbd_client_list_lock); 591 592 return found ? client_node : NULL; 593 } 594 595 /* 596 * mount options 597 */ 598 enum { 599 Opt_last_int, 600 /* int args above */ 601 Opt_last_string, 602 /* string args above */ 603 Opt_read_only, 604 Opt_read_write, 605 /* Boolean args above */ 606 Opt_last_bool, 607 }; 608 609 static match_table_t rbd_opts_tokens = { 610 /* int args above */ 611 /* string args above */ 612 {Opt_read_only, "read_only"}, 613 {Opt_read_only, "ro"}, /* Alternate spelling */ 614 {Opt_read_write, "read_write"}, 615 {Opt_read_write, "rw"}, /* Alternate spelling */ 616 /* Boolean args above */ 617 {-1, NULL} 618 }; 619 620 struct rbd_options { 621 bool read_only; 622 }; 623 624 #define RBD_READ_ONLY_DEFAULT false 625 626 static int parse_rbd_opts_token(char *c, void *private) 627 { 628 struct rbd_options *rbd_opts = private; 629 substring_t argstr[MAX_OPT_ARGS]; 630 int token, intval, ret; 631 632 token = match_token(c, rbd_opts_tokens, argstr); 633 if (token < 0) 634 return -EINVAL; 635 636 if (token < Opt_last_int) { 637 ret = match_int(&argstr[0], &intval); 638 if (ret < 0) { 639 pr_err("bad mount option arg (not int) " 640 "at '%s'\n", c); 641 return ret; 642 } 643 dout("got int token %d val %d\n", token, intval); 644 } else if (token > Opt_last_int && token < Opt_last_string) { 645 dout("got string token %d val %s\n", token, 646 argstr[0].from); 647 } else if (token > Opt_last_string && token < Opt_last_bool) { 648 dout("got Boolean token %d\n", token); 649 } else { 650 dout("got token %d\n", token); 651 } 652 653 switch (token) { 654 case Opt_read_only: 655 rbd_opts->read_only = true; 656 break; 657 case Opt_read_write: 658 rbd_opts->read_only = false; 659 break; 660 default: 661 rbd_assert(false); 662 break; 663 } 664 return 0; 665 } 666 667 /* 668 * Get a ceph client with specific addr and configuration, if one does 669 * not exist create it. Either way, ceph_opts is consumed by this 670 * function. 671 */ 672 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 673 { 674 struct rbd_client *rbdc; 675 676 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 677 rbdc = rbd_client_find(ceph_opts); 678 if (rbdc) /* using an existing client */ 679 ceph_destroy_options(ceph_opts); 680 else 681 rbdc = rbd_client_create(ceph_opts); 682 mutex_unlock(&client_mutex); 683 684 return rbdc; 685 } 686 687 /* 688 * Destroy ceph client 689 * 690 * Caller must hold rbd_client_list_lock. 691 */ 692 static void rbd_client_release(struct kref *kref) 693 { 694 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 695 696 dout("%s: rbdc %p\n", __func__, rbdc); 697 spin_lock(&rbd_client_list_lock); 698 list_del(&rbdc->node); 699 spin_unlock(&rbd_client_list_lock); 700 701 ceph_destroy_client(rbdc->client); 702 kfree(rbdc); 703 } 704 705 /* 706 * Drop reference to ceph client node. If it's not referenced anymore, release 707 * it. 708 */ 709 static void rbd_put_client(struct rbd_client *rbdc) 710 { 711 if (rbdc) 712 kref_put(&rbdc->kref, rbd_client_release); 713 } 714 715 static bool rbd_image_format_valid(u32 image_format) 716 { 717 return image_format == 1 || image_format == 2; 718 } 719 720 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 721 { 722 size_t size; 723 u32 snap_count; 724 725 /* The header has to start with the magic rbd header text */ 726 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 727 return false; 728 729 /* The bio layer requires at least sector-sized I/O */ 730 731 if (ondisk->options.order < SECTOR_SHIFT) 732 return false; 733 734 /* If we use u64 in a few spots we may be able to loosen this */ 735 736 if (ondisk->options.order > 8 * sizeof (int) - 1) 737 return false; 738 739 /* 740 * The size of a snapshot header has to fit in a size_t, and 741 * that limits the number of snapshots. 742 */ 743 snap_count = le32_to_cpu(ondisk->snap_count); 744 size = SIZE_MAX - sizeof (struct ceph_snap_context); 745 if (snap_count > size / sizeof (__le64)) 746 return false; 747 748 /* 749 * Not only that, but the size of the entire the snapshot 750 * header must also be representable in a size_t. 751 */ 752 size -= snap_count * sizeof (__le64); 753 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 754 return false; 755 756 return true; 757 } 758 759 /* 760 * Fill an rbd image header with information from the given format 1 761 * on-disk header. 762 */ 763 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 764 struct rbd_image_header_ondisk *ondisk) 765 { 766 struct rbd_image_header *header = &rbd_dev->header; 767 bool first_time = header->object_prefix == NULL; 768 struct ceph_snap_context *snapc; 769 char *object_prefix = NULL; 770 char *snap_names = NULL; 771 u64 *snap_sizes = NULL; 772 u32 snap_count; 773 size_t size; 774 int ret = -ENOMEM; 775 u32 i; 776 777 /* Allocate this now to avoid having to handle failure below */ 778 779 if (first_time) { 780 size_t len; 781 782 len = strnlen(ondisk->object_prefix, 783 sizeof (ondisk->object_prefix)); 784 object_prefix = kmalloc(len + 1, GFP_KERNEL); 785 if (!object_prefix) 786 return -ENOMEM; 787 memcpy(object_prefix, ondisk->object_prefix, len); 788 object_prefix[len] = '\0'; 789 } 790 791 /* Allocate the snapshot context and fill it in */ 792 793 snap_count = le32_to_cpu(ondisk->snap_count); 794 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 795 if (!snapc) 796 goto out_err; 797 snapc->seq = le64_to_cpu(ondisk->snap_seq); 798 if (snap_count) { 799 struct rbd_image_snap_ondisk *snaps; 800 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 801 802 /* We'll keep a copy of the snapshot names... */ 803 804 if (snap_names_len > (u64)SIZE_MAX) 805 goto out_2big; 806 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 807 if (!snap_names) 808 goto out_err; 809 810 /* ...as well as the array of their sizes. */ 811 812 size = snap_count * sizeof (*header->snap_sizes); 813 snap_sizes = kmalloc(size, GFP_KERNEL); 814 if (!snap_sizes) 815 goto out_err; 816 817 /* 818 * Copy the names, and fill in each snapshot's id 819 * and size. 820 * 821 * Note that rbd_dev_v1_header_info() guarantees the 822 * ondisk buffer we're working with has 823 * snap_names_len bytes beyond the end of the 824 * snapshot id array, this memcpy() is safe. 825 */ 826 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 827 snaps = ondisk->snaps; 828 for (i = 0; i < snap_count; i++) { 829 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 830 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 831 } 832 } 833 834 /* We won't fail any more, fill in the header */ 835 836 if (first_time) { 837 header->object_prefix = object_prefix; 838 header->obj_order = ondisk->options.order; 839 header->crypt_type = ondisk->options.crypt_type; 840 header->comp_type = ondisk->options.comp_type; 841 /* The rest aren't used for format 1 images */ 842 header->stripe_unit = 0; 843 header->stripe_count = 0; 844 header->features = 0; 845 } else { 846 ceph_put_snap_context(header->snapc); 847 kfree(header->snap_names); 848 kfree(header->snap_sizes); 849 } 850 851 /* The remaining fields always get updated (when we refresh) */ 852 853 header->image_size = le64_to_cpu(ondisk->image_size); 854 header->snapc = snapc; 855 header->snap_names = snap_names; 856 header->snap_sizes = snap_sizes; 857 858 /* Make sure mapping size is consistent with header info */ 859 860 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time) 861 if (rbd_dev->mapping.size != header->image_size) 862 rbd_dev->mapping.size = header->image_size; 863 864 return 0; 865 out_2big: 866 ret = -EIO; 867 out_err: 868 kfree(snap_sizes); 869 kfree(snap_names); 870 ceph_put_snap_context(snapc); 871 kfree(object_prefix); 872 873 return ret; 874 } 875 876 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 877 { 878 const char *snap_name; 879 880 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 881 882 /* Skip over names until we find the one we are looking for */ 883 884 snap_name = rbd_dev->header.snap_names; 885 while (which--) 886 snap_name += strlen(snap_name) + 1; 887 888 return kstrdup(snap_name, GFP_KERNEL); 889 } 890 891 /* 892 * Snapshot id comparison function for use with qsort()/bsearch(). 893 * Note that result is for snapshots in *descending* order. 894 */ 895 static int snapid_compare_reverse(const void *s1, const void *s2) 896 { 897 u64 snap_id1 = *(u64 *)s1; 898 u64 snap_id2 = *(u64 *)s2; 899 900 if (snap_id1 < snap_id2) 901 return 1; 902 return snap_id1 == snap_id2 ? 0 : -1; 903 } 904 905 /* 906 * Search a snapshot context to see if the given snapshot id is 907 * present. 908 * 909 * Returns the position of the snapshot id in the array if it's found, 910 * or BAD_SNAP_INDEX otherwise. 911 * 912 * Note: The snapshot array is in kept sorted (by the osd) in 913 * reverse order, highest snapshot id first. 914 */ 915 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 916 { 917 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 918 u64 *found; 919 920 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 921 sizeof (snap_id), snapid_compare_reverse); 922 923 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 924 } 925 926 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 927 u64 snap_id) 928 { 929 u32 which; 930 931 which = rbd_dev_snap_index(rbd_dev, snap_id); 932 if (which == BAD_SNAP_INDEX) 933 return NULL; 934 935 return _rbd_dev_v1_snap_name(rbd_dev, which); 936 } 937 938 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 939 { 940 if (snap_id == CEPH_NOSNAP) 941 return RBD_SNAP_HEAD_NAME; 942 943 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 944 if (rbd_dev->image_format == 1) 945 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 946 947 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 948 } 949 950 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 951 u64 *snap_size) 952 { 953 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 954 if (snap_id == CEPH_NOSNAP) { 955 *snap_size = rbd_dev->header.image_size; 956 } else if (rbd_dev->image_format == 1) { 957 u32 which; 958 959 which = rbd_dev_snap_index(rbd_dev, snap_id); 960 if (which == BAD_SNAP_INDEX) 961 return -ENOENT; 962 963 *snap_size = rbd_dev->header.snap_sizes[which]; 964 } else { 965 u64 size = 0; 966 int ret; 967 968 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 969 if (ret) 970 return ret; 971 972 *snap_size = size; 973 } 974 return 0; 975 } 976 977 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 978 u64 *snap_features) 979 { 980 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 981 if (snap_id == CEPH_NOSNAP) { 982 *snap_features = rbd_dev->header.features; 983 } else if (rbd_dev->image_format == 1) { 984 *snap_features = 0; /* No features for format 1 */ 985 } else { 986 u64 features = 0; 987 int ret; 988 989 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 990 if (ret) 991 return ret; 992 993 *snap_features = features; 994 } 995 return 0; 996 } 997 998 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 999 { 1000 u64 snap_id = rbd_dev->spec->snap_id; 1001 u64 size = 0; 1002 u64 features = 0; 1003 int ret; 1004 1005 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1006 if (ret) 1007 return ret; 1008 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1009 if (ret) 1010 return ret; 1011 1012 rbd_dev->mapping.size = size; 1013 rbd_dev->mapping.features = features; 1014 1015 return 0; 1016 } 1017 1018 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1019 { 1020 rbd_dev->mapping.size = 0; 1021 rbd_dev->mapping.features = 0; 1022 } 1023 1024 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1025 { 1026 char *name; 1027 u64 segment; 1028 int ret; 1029 char *name_format; 1030 1031 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1032 if (!name) 1033 return NULL; 1034 segment = offset >> rbd_dev->header.obj_order; 1035 name_format = "%s.%012llx"; 1036 if (rbd_dev->image_format == 2) 1037 name_format = "%s.%016llx"; 1038 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format, 1039 rbd_dev->header.object_prefix, segment); 1040 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) { 1041 pr_err("error formatting segment name for #%llu (%d)\n", 1042 segment, ret); 1043 kfree(name); 1044 name = NULL; 1045 } 1046 1047 return name; 1048 } 1049 1050 static void rbd_segment_name_free(const char *name) 1051 { 1052 /* The explicit cast here is needed to drop the const qualifier */ 1053 1054 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1055 } 1056 1057 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1058 { 1059 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1060 1061 return offset & (segment_size - 1); 1062 } 1063 1064 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1065 u64 offset, u64 length) 1066 { 1067 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1068 1069 offset &= segment_size - 1; 1070 1071 rbd_assert(length <= U64_MAX - offset); 1072 if (offset + length > segment_size) 1073 length = segment_size - offset; 1074 1075 return length; 1076 } 1077 1078 /* 1079 * returns the size of an object in the image 1080 */ 1081 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1082 { 1083 return 1 << header->obj_order; 1084 } 1085 1086 /* 1087 * bio helpers 1088 */ 1089 1090 static void bio_chain_put(struct bio *chain) 1091 { 1092 struct bio *tmp; 1093 1094 while (chain) { 1095 tmp = chain; 1096 chain = chain->bi_next; 1097 bio_put(tmp); 1098 } 1099 } 1100 1101 /* 1102 * zeros a bio chain, starting at specific offset 1103 */ 1104 static void zero_bio_chain(struct bio *chain, int start_ofs) 1105 { 1106 struct bio_vec *bv; 1107 unsigned long flags; 1108 void *buf; 1109 int i; 1110 int pos = 0; 1111 1112 while (chain) { 1113 bio_for_each_segment(bv, chain, i) { 1114 if (pos + bv->bv_len > start_ofs) { 1115 int remainder = max(start_ofs - pos, 0); 1116 buf = bvec_kmap_irq(bv, &flags); 1117 memset(buf + remainder, 0, 1118 bv->bv_len - remainder); 1119 flush_dcache_page(bv->bv_page); 1120 bvec_kunmap_irq(buf, &flags); 1121 } 1122 pos += bv->bv_len; 1123 } 1124 1125 chain = chain->bi_next; 1126 } 1127 } 1128 1129 /* 1130 * similar to zero_bio_chain(), zeros data defined by a page array, 1131 * starting at the given byte offset from the start of the array and 1132 * continuing up to the given end offset. The pages array is 1133 * assumed to be big enough to hold all bytes up to the end. 1134 */ 1135 static void zero_pages(struct page **pages, u64 offset, u64 end) 1136 { 1137 struct page **page = &pages[offset >> PAGE_SHIFT]; 1138 1139 rbd_assert(end > offset); 1140 rbd_assert(end - offset <= (u64)SIZE_MAX); 1141 while (offset < end) { 1142 size_t page_offset; 1143 size_t length; 1144 unsigned long flags; 1145 void *kaddr; 1146 1147 page_offset = offset & ~PAGE_MASK; 1148 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1149 local_irq_save(flags); 1150 kaddr = kmap_atomic(*page); 1151 memset(kaddr + page_offset, 0, length); 1152 flush_dcache_page(*page); 1153 kunmap_atomic(kaddr); 1154 local_irq_restore(flags); 1155 1156 offset += length; 1157 page++; 1158 } 1159 } 1160 1161 /* 1162 * Clone a portion of a bio, starting at the given byte offset 1163 * and continuing for the number of bytes indicated. 1164 */ 1165 static struct bio *bio_clone_range(struct bio *bio_src, 1166 unsigned int offset, 1167 unsigned int len, 1168 gfp_t gfpmask) 1169 { 1170 struct bio_vec *bv; 1171 unsigned int resid; 1172 unsigned short idx; 1173 unsigned int voff; 1174 unsigned short end_idx; 1175 unsigned short vcnt; 1176 struct bio *bio; 1177 1178 /* Handle the easy case for the caller */ 1179 1180 if (!offset && len == bio_src->bi_size) 1181 return bio_clone(bio_src, gfpmask); 1182 1183 if (WARN_ON_ONCE(!len)) 1184 return NULL; 1185 if (WARN_ON_ONCE(len > bio_src->bi_size)) 1186 return NULL; 1187 if (WARN_ON_ONCE(offset > bio_src->bi_size - len)) 1188 return NULL; 1189 1190 /* Find first affected segment... */ 1191 1192 resid = offset; 1193 bio_for_each_segment(bv, bio_src, idx) { 1194 if (resid < bv->bv_len) 1195 break; 1196 resid -= bv->bv_len; 1197 } 1198 voff = resid; 1199 1200 /* ...and the last affected segment */ 1201 1202 resid += len; 1203 __bio_for_each_segment(bv, bio_src, end_idx, idx) { 1204 if (resid <= bv->bv_len) 1205 break; 1206 resid -= bv->bv_len; 1207 } 1208 vcnt = end_idx - idx + 1; 1209 1210 /* Build the clone */ 1211 1212 bio = bio_alloc(gfpmask, (unsigned int) vcnt); 1213 if (!bio) 1214 return NULL; /* ENOMEM */ 1215 1216 bio->bi_bdev = bio_src->bi_bdev; 1217 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT); 1218 bio->bi_rw = bio_src->bi_rw; 1219 bio->bi_flags |= 1 << BIO_CLONED; 1220 1221 /* 1222 * Copy over our part of the bio_vec, then update the first 1223 * and last (or only) entries. 1224 */ 1225 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx], 1226 vcnt * sizeof (struct bio_vec)); 1227 bio->bi_io_vec[0].bv_offset += voff; 1228 if (vcnt > 1) { 1229 bio->bi_io_vec[0].bv_len -= voff; 1230 bio->bi_io_vec[vcnt - 1].bv_len = resid; 1231 } else { 1232 bio->bi_io_vec[0].bv_len = len; 1233 } 1234 1235 bio->bi_vcnt = vcnt; 1236 bio->bi_size = len; 1237 bio->bi_idx = 0; 1238 1239 return bio; 1240 } 1241 1242 /* 1243 * Clone a portion of a bio chain, starting at the given byte offset 1244 * into the first bio in the source chain and continuing for the 1245 * number of bytes indicated. The result is another bio chain of 1246 * exactly the given length, or a null pointer on error. 1247 * 1248 * The bio_src and offset parameters are both in-out. On entry they 1249 * refer to the first source bio and the offset into that bio where 1250 * the start of data to be cloned is located. 1251 * 1252 * On return, bio_src is updated to refer to the bio in the source 1253 * chain that contains first un-cloned byte, and *offset will 1254 * contain the offset of that byte within that bio. 1255 */ 1256 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1257 unsigned int *offset, 1258 unsigned int len, 1259 gfp_t gfpmask) 1260 { 1261 struct bio *bi = *bio_src; 1262 unsigned int off = *offset; 1263 struct bio *chain = NULL; 1264 struct bio **end; 1265 1266 /* Build up a chain of clone bios up to the limit */ 1267 1268 if (!bi || off >= bi->bi_size || !len) 1269 return NULL; /* Nothing to clone */ 1270 1271 end = &chain; 1272 while (len) { 1273 unsigned int bi_size; 1274 struct bio *bio; 1275 1276 if (!bi) { 1277 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1278 goto out_err; /* EINVAL; ran out of bio's */ 1279 } 1280 bi_size = min_t(unsigned int, bi->bi_size - off, len); 1281 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1282 if (!bio) 1283 goto out_err; /* ENOMEM */ 1284 1285 *end = bio; 1286 end = &bio->bi_next; 1287 1288 off += bi_size; 1289 if (off == bi->bi_size) { 1290 bi = bi->bi_next; 1291 off = 0; 1292 } 1293 len -= bi_size; 1294 } 1295 *bio_src = bi; 1296 *offset = off; 1297 1298 return chain; 1299 out_err: 1300 bio_chain_put(chain); 1301 1302 return NULL; 1303 } 1304 1305 /* 1306 * The default/initial value for all object request flags is 0. For 1307 * each flag, once its value is set to 1 it is never reset to 0 1308 * again. 1309 */ 1310 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1311 { 1312 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1313 struct rbd_device *rbd_dev; 1314 1315 rbd_dev = obj_request->img_request->rbd_dev; 1316 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n", 1317 obj_request); 1318 } 1319 } 1320 1321 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1322 { 1323 smp_mb(); 1324 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1325 } 1326 1327 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1328 { 1329 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1330 struct rbd_device *rbd_dev = NULL; 1331 1332 if (obj_request_img_data_test(obj_request)) 1333 rbd_dev = obj_request->img_request->rbd_dev; 1334 rbd_warn(rbd_dev, "obj_request %p already marked done\n", 1335 obj_request); 1336 } 1337 } 1338 1339 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1340 { 1341 smp_mb(); 1342 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1343 } 1344 1345 /* 1346 * This sets the KNOWN flag after (possibly) setting the EXISTS 1347 * flag. The latter is set based on the "exists" value provided. 1348 * 1349 * Note that for our purposes once an object exists it never goes 1350 * away again. It's possible that the response from two existence 1351 * checks are separated by the creation of the target object, and 1352 * the first ("doesn't exist") response arrives *after* the second 1353 * ("does exist"). In that case we ignore the second one. 1354 */ 1355 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1356 bool exists) 1357 { 1358 if (exists) 1359 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1360 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1361 smp_mb(); 1362 } 1363 1364 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1365 { 1366 smp_mb(); 1367 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1368 } 1369 1370 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1371 { 1372 smp_mb(); 1373 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1374 } 1375 1376 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1377 { 1378 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1379 atomic_read(&obj_request->kref.refcount)); 1380 kref_get(&obj_request->kref); 1381 } 1382 1383 static void rbd_obj_request_destroy(struct kref *kref); 1384 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1385 { 1386 rbd_assert(obj_request != NULL); 1387 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1388 atomic_read(&obj_request->kref.refcount)); 1389 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1390 } 1391 1392 static bool img_request_child_test(struct rbd_img_request *img_request); 1393 static void rbd_parent_request_destroy(struct kref *kref); 1394 static void rbd_img_request_destroy(struct kref *kref); 1395 static void rbd_img_request_put(struct rbd_img_request *img_request) 1396 { 1397 rbd_assert(img_request != NULL); 1398 dout("%s: img %p (was %d)\n", __func__, img_request, 1399 atomic_read(&img_request->kref.refcount)); 1400 if (img_request_child_test(img_request)) 1401 kref_put(&img_request->kref, rbd_parent_request_destroy); 1402 else 1403 kref_put(&img_request->kref, rbd_img_request_destroy); 1404 } 1405 1406 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1407 struct rbd_obj_request *obj_request) 1408 { 1409 rbd_assert(obj_request->img_request == NULL); 1410 1411 /* Image request now owns object's original reference */ 1412 obj_request->img_request = img_request; 1413 obj_request->which = img_request->obj_request_count; 1414 rbd_assert(!obj_request_img_data_test(obj_request)); 1415 obj_request_img_data_set(obj_request); 1416 rbd_assert(obj_request->which != BAD_WHICH); 1417 img_request->obj_request_count++; 1418 list_add_tail(&obj_request->links, &img_request->obj_requests); 1419 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1420 obj_request->which); 1421 } 1422 1423 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1424 struct rbd_obj_request *obj_request) 1425 { 1426 rbd_assert(obj_request->which != BAD_WHICH); 1427 1428 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1429 obj_request->which); 1430 list_del(&obj_request->links); 1431 rbd_assert(img_request->obj_request_count > 0); 1432 img_request->obj_request_count--; 1433 rbd_assert(obj_request->which == img_request->obj_request_count); 1434 obj_request->which = BAD_WHICH; 1435 rbd_assert(obj_request_img_data_test(obj_request)); 1436 rbd_assert(obj_request->img_request == img_request); 1437 obj_request->img_request = NULL; 1438 obj_request->callback = NULL; 1439 rbd_obj_request_put(obj_request); 1440 } 1441 1442 static bool obj_request_type_valid(enum obj_request_type type) 1443 { 1444 switch (type) { 1445 case OBJ_REQUEST_NODATA: 1446 case OBJ_REQUEST_BIO: 1447 case OBJ_REQUEST_PAGES: 1448 return true; 1449 default: 1450 return false; 1451 } 1452 } 1453 1454 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1455 struct rbd_obj_request *obj_request) 1456 { 1457 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request); 1458 1459 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1460 } 1461 1462 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1463 { 1464 1465 dout("%s: img %p\n", __func__, img_request); 1466 1467 /* 1468 * If no error occurred, compute the aggregate transfer 1469 * count for the image request. We could instead use 1470 * atomic64_cmpxchg() to update it as each object request 1471 * completes; not clear which way is better off hand. 1472 */ 1473 if (!img_request->result) { 1474 struct rbd_obj_request *obj_request; 1475 u64 xferred = 0; 1476 1477 for_each_obj_request(img_request, obj_request) 1478 xferred += obj_request->xferred; 1479 img_request->xferred = xferred; 1480 } 1481 1482 if (img_request->callback) 1483 img_request->callback(img_request); 1484 else 1485 rbd_img_request_put(img_request); 1486 } 1487 1488 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */ 1489 1490 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1491 { 1492 dout("%s: obj %p\n", __func__, obj_request); 1493 1494 return wait_for_completion_interruptible(&obj_request->completion); 1495 } 1496 1497 /* 1498 * The default/initial value for all image request flags is 0. Each 1499 * is conditionally set to 1 at image request initialization time 1500 * and currently never change thereafter. 1501 */ 1502 static void img_request_write_set(struct rbd_img_request *img_request) 1503 { 1504 set_bit(IMG_REQ_WRITE, &img_request->flags); 1505 smp_mb(); 1506 } 1507 1508 static bool img_request_write_test(struct rbd_img_request *img_request) 1509 { 1510 smp_mb(); 1511 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1512 } 1513 1514 static void img_request_child_set(struct rbd_img_request *img_request) 1515 { 1516 set_bit(IMG_REQ_CHILD, &img_request->flags); 1517 smp_mb(); 1518 } 1519 1520 static void img_request_child_clear(struct rbd_img_request *img_request) 1521 { 1522 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1523 smp_mb(); 1524 } 1525 1526 static bool img_request_child_test(struct rbd_img_request *img_request) 1527 { 1528 smp_mb(); 1529 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1530 } 1531 1532 static void img_request_layered_set(struct rbd_img_request *img_request) 1533 { 1534 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1535 smp_mb(); 1536 } 1537 1538 static void img_request_layered_clear(struct rbd_img_request *img_request) 1539 { 1540 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1541 smp_mb(); 1542 } 1543 1544 static bool img_request_layered_test(struct rbd_img_request *img_request) 1545 { 1546 smp_mb(); 1547 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1548 } 1549 1550 static void 1551 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1552 { 1553 u64 xferred = obj_request->xferred; 1554 u64 length = obj_request->length; 1555 1556 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1557 obj_request, obj_request->img_request, obj_request->result, 1558 xferred, length); 1559 /* 1560 * ENOENT means a hole in the image. We zero-fill the 1561 * entire length of the request. A short read also implies 1562 * zero-fill to the end of the request. Either way we 1563 * update the xferred count to indicate the whole request 1564 * was satisfied. 1565 */ 1566 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1567 if (obj_request->result == -ENOENT) { 1568 if (obj_request->type == OBJ_REQUEST_BIO) 1569 zero_bio_chain(obj_request->bio_list, 0); 1570 else 1571 zero_pages(obj_request->pages, 0, length); 1572 obj_request->result = 0; 1573 obj_request->xferred = length; 1574 } else if (xferred < length && !obj_request->result) { 1575 if (obj_request->type == OBJ_REQUEST_BIO) 1576 zero_bio_chain(obj_request->bio_list, xferred); 1577 else 1578 zero_pages(obj_request->pages, xferred, length); 1579 obj_request->xferred = length; 1580 } 1581 obj_request_done_set(obj_request); 1582 } 1583 1584 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1585 { 1586 dout("%s: obj %p cb %p\n", __func__, obj_request, 1587 obj_request->callback); 1588 if (obj_request->callback) 1589 obj_request->callback(obj_request); 1590 else 1591 complete_all(&obj_request->completion); 1592 } 1593 1594 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1595 { 1596 dout("%s: obj %p\n", __func__, obj_request); 1597 obj_request_done_set(obj_request); 1598 } 1599 1600 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1601 { 1602 struct rbd_img_request *img_request = NULL; 1603 struct rbd_device *rbd_dev = NULL; 1604 bool layered = false; 1605 1606 if (obj_request_img_data_test(obj_request)) { 1607 img_request = obj_request->img_request; 1608 layered = img_request && img_request_layered_test(img_request); 1609 rbd_dev = img_request->rbd_dev; 1610 } 1611 1612 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1613 obj_request, img_request, obj_request->result, 1614 obj_request->xferred, obj_request->length); 1615 if (layered && obj_request->result == -ENOENT && 1616 obj_request->img_offset < rbd_dev->parent_overlap) 1617 rbd_img_parent_read(obj_request); 1618 else if (img_request) 1619 rbd_img_obj_request_read_callback(obj_request); 1620 else 1621 obj_request_done_set(obj_request); 1622 } 1623 1624 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1625 { 1626 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1627 obj_request->result, obj_request->length); 1628 /* 1629 * There is no such thing as a successful short write. Set 1630 * it to our originally-requested length. 1631 */ 1632 obj_request->xferred = obj_request->length; 1633 obj_request_done_set(obj_request); 1634 } 1635 1636 /* 1637 * For a simple stat call there's nothing to do. We'll do more if 1638 * this is part of a write sequence for a layered image. 1639 */ 1640 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1641 { 1642 dout("%s: obj %p\n", __func__, obj_request); 1643 obj_request_done_set(obj_request); 1644 } 1645 1646 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1647 struct ceph_msg *msg) 1648 { 1649 struct rbd_obj_request *obj_request = osd_req->r_priv; 1650 u16 opcode; 1651 1652 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1653 rbd_assert(osd_req == obj_request->osd_req); 1654 if (obj_request_img_data_test(obj_request)) { 1655 rbd_assert(obj_request->img_request); 1656 rbd_assert(obj_request->which != BAD_WHICH); 1657 } else { 1658 rbd_assert(obj_request->which == BAD_WHICH); 1659 } 1660 1661 if (osd_req->r_result < 0) 1662 obj_request->result = osd_req->r_result; 1663 1664 BUG_ON(osd_req->r_num_ops > 2); 1665 1666 /* 1667 * We support a 64-bit length, but ultimately it has to be 1668 * passed to blk_end_request(), which takes an unsigned int. 1669 */ 1670 obj_request->xferred = osd_req->r_reply_op_len[0]; 1671 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1672 opcode = osd_req->r_ops[0].op; 1673 switch (opcode) { 1674 case CEPH_OSD_OP_READ: 1675 rbd_osd_read_callback(obj_request); 1676 break; 1677 case CEPH_OSD_OP_WRITE: 1678 rbd_osd_write_callback(obj_request); 1679 break; 1680 case CEPH_OSD_OP_STAT: 1681 rbd_osd_stat_callback(obj_request); 1682 break; 1683 case CEPH_OSD_OP_CALL: 1684 case CEPH_OSD_OP_NOTIFY_ACK: 1685 case CEPH_OSD_OP_WATCH: 1686 rbd_osd_trivial_callback(obj_request); 1687 break; 1688 default: 1689 rbd_warn(NULL, "%s: unsupported op %hu\n", 1690 obj_request->object_name, (unsigned short) opcode); 1691 break; 1692 } 1693 1694 if (obj_request_done_test(obj_request)) 1695 rbd_obj_request_complete(obj_request); 1696 } 1697 1698 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1699 { 1700 struct rbd_img_request *img_request = obj_request->img_request; 1701 struct ceph_osd_request *osd_req = obj_request->osd_req; 1702 u64 snap_id; 1703 1704 rbd_assert(osd_req != NULL); 1705 1706 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1707 ceph_osdc_build_request(osd_req, obj_request->offset, 1708 NULL, snap_id, NULL); 1709 } 1710 1711 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1712 { 1713 struct rbd_img_request *img_request = obj_request->img_request; 1714 struct ceph_osd_request *osd_req = obj_request->osd_req; 1715 struct ceph_snap_context *snapc; 1716 struct timespec mtime = CURRENT_TIME; 1717 1718 rbd_assert(osd_req != NULL); 1719 1720 snapc = img_request ? img_request->snapc : NULL; 1721 ceph_osdc_build_request(osd_req, obj_request->offset, 1722 snapc, CEPH_NOSNAP, &mtime); 1723 } 1724 1725 static struct ceph_osd_request *rbd_osd_req_create( 1726 struct rbd_device *rbd_dev, 1727 bool write_request, 1728 struct rbd_obj_request *obj_request) 1729 { 1730 struct ceph_snap_context *snapc = NULL; 1731 struct ceph_osd_client *osdc; 1732 struct ceph_osd_request *osd_req; 1733 1734 if (obj_request_img_data_test(obj_request)) { 1735 struct rbd_img_request *img_request = obj_request->img_request; 1736 1737 rbd_assert(write_request == 1738 img_request_write_test(img_request)); 1739 if (write_request) 1740 snapc = img_request->snapc; 1741 } 1742 1743 /* Allocate and initialize the request, for the single op */ 1744 1745 osdc = &rbd_dev->rbd_client->client->osdc; 1746 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC); 1747 if (!osd_req) 1748 return NULL; /* ENOMEM */ 1749 1750 if (write_request) 1751 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1752 else 1753 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1754 1755 osd_req->r_callback = rbd_osd_req_callback; 1756 osd_req->r_priv = obj_request; 1757 1758 osd_req->r_oid_len = strlen(obj_request->object_name); 1759 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid)); 1760 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len); 1761 1762 osd_req->r_file_layout = rbd_dev->layout; /* struct */ 1763 1764 return osd_req; 1765 } 1766 1767 /* 1768 * Create a copyup osd request based on the information in the 1769 * object request supplied. A copyup request has two osd ops, 1770 * a copyup method call, and a "normal" write request. 1771 */ 1772 static struct ceph_osd_request * 1773 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1774 { 1775 struct rbd_img_request *img_request; 1776 struct ceph_snap_context *snapc; 1777 struct rbd_device *rbd_dev; 1778 struct ceph_osd_client *osdc; 1779 struct ceph_osd_request *osd_req; 1780 1781 rbd_assert(obj_request_img_data_test(obj_request)); 1782 img_request = obj_request->img_request; 1783 rbd_assert(img_request); 1784 rbd_assert(img_request_write_test(img_request)); 1785 1786 /* Allocate and initialize the request, for the two ops */ 1787 1788 snapc = img_request->snapc; 1789 rbd_dev = img_request->rbd_dev; 1790 osdc = &rbd_dev->rbd_client->client->osdc; 1791 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC); 1792 if (!osd_req) 1793 return NULL; /* ENOMEM */ 1794 1795 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1796 osd_req->r_callback = rbd_osd_req_callback; 1797 osd_req->r_priv = obj_request; 1798 1799 osd_req->r_oid_len = strlen(obj_request->object_name); 1800 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid)); 1801 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len); 1802 1803 osd_req->r_file_layout = rbd_dev->layout; /* struct */ 1804 1805 return osd_req; 1806 } 1807 1808 1809 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1810 { 1811 ceph_osdc_put_request(osd_req); 1812 } 1813 1814 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1815 1816 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1817 u64 offset, u64 length, 1818 enum obj_request_type type) 1819 { 1820 struct rbd_obj_request *obj_request; 1821 size_t size; 1822 char *name; 1823 1824 rbd_assert(obj_request_type_valid(type)); 1825 1826 size = strlen(object_name) + 1; 1827 name = kmalloc(size, GFP_KERNEL); 1828 if (!name) 1829 return NULL; 1830 1831 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 1832 if (!obj_request) { 1833 kfree(name); 1834 return NULL; 1835 } 1836 1837 obj_request->object_name = memcpy(name, object_name, size); 1838 obj_request->offset = offset; 1839 obj_request->length = length; 1840 obj_request->flags = 0; 1841 obj_request->which = BAD_WHICH; 1842 obj_request->type = type; 1843 INIT_LIST_HEAD(&obj_request->links); 1844 init_completion(&obj_request->completion); 1845 kref_init(&obj_request->kref); 1846 1847 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1848 offset, length, (int)type, obj_request); 1849 1850 return obj_request; 1851 } 1852 1853 static void rbd_obj_request_destroy(struct kref *kref) 1854 { 1855 struct rbd_obj_request *obj_request; 1856 1857 obj_request = container_of(kref, struct rbd_obj_request, kref); 1858 1859 dout("%s: obj %p\n", __func__, obj_request); 1860 1861 rbd_assert(obj_request->img_request == NULL); 1862 rbd_assert(obj_request->which == BAD_WHICH); 1863 1864 if (obj_request->osd_req) 1865 rbd_osd_req_destroy(obj_request->osd_req); 1866 1867 rbd_assert(obj_request_type_valid(obj_request->type)); 1868 switch (obj_request->type) { 1869 case OBJ_REQUEST_NODATA: 1870 break; /* Nothing to do */ 1871 case OBJ_REQUEST_BIO: 1872 if (obj_request->bio_list) 1873 bio_chain_put(obj_request->bio_list); 1874 break; 1875 case OBJ_REQUEST_PAGES: 1876 if (obj_request->pages) 1877 ceph_release_page_vector(obj_request->pages, 1878 obj_request->page_count); 1879 break; 1880 } 1881 1882 kfree(obj_request->object_name); 1883 obj_request->object_name = NULL; 1884 kmem_cache_free(rbd_obj_request_cache, obj_request); 1885 } 1886 1887 /* It's OK to call this for a device with no parent */ 1888 1889 static void rbd_spec_put(struct rbd_spec *spec); 1890 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1891 { 1892 rbd_dev_remove_parent(rbd_dev); 1893 rbd_spec_put(rbd_dev->parent_spec); 1894 rbd_dev->parent_spec = NULL; 1895 rbd_dev->parent_overlap = 0; 1896 } 1897 1898 /* 1899 * Parent image reference counting is used to determine when an 1900 * image's parent fields can be safely torn down--after there are no 1901 * more in-flight requests to the parent image. When the last 1902 * reference is dropped, cleaning them up is safe. 1903 */ 1904 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1905 { 1906 int counter; 1907 1908 if (!rbd_dev->parent_spec) 1909 return; 1910 1911 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1912 if (counter > 0) 1913 return; 1914 1915 /* Last reference; clean up parent data structures */ 1916 1917 if (!counter) 1918 rbd_dev_unparent(rbd_dev); 1919 else 1920 rbd_warn(rbd_dev, "parent reference underflow\n"); 1921 } 1922 1923 /* 1924 * If an image has a non-zero parent overlap, get a reference to its 1925 * parent. 1926 * 1927 * We must get the reference before checking for the overlap to 1928 * coordinate properly with zeroing the parent overlap in 1929 * rbd_dev_v2_parent_info() when an image gets flattened. We 1930 * drop it again if there is no overlap. 1931 * 1932 * Returns true if the rbd device has a parent with a non-zero 1933 * overlap and a reference for it was successfully taken, or 1934 * false otherwise. 1935 */ 1936 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1937 { 1938 int counter; 1939 1940 if (!rbd_dev->parent_spec) 1941 return false; 1942 1943 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1944 if (counter > 0 && rbd_dev->parent_overlap) 1945 return true; 1946 1947 /* Image was flattened, but parent is not yet torn down */ 1948 1949 if (counter < 0) 1950 rbd_warn(rbd_dev, "parent reference overflow\n"); 1951 1952 return false; 1953 } 1954 1955 /* 1956 * Caller is responsible for filling in the list of object requests 1957 * that comprises the image request, and the Linux request pointer 1958 * (if there is one). 1959 */ 1960 static struct rbd_img_request *rbd_img_request_create( 1961 struct rbd_device *rbd_dev, 1962 u64 offset, u64 length, 1963 bool write_request) 1964 { 1965 struct rbd_img_request *img_request; 1966 1967 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC); 1968 if (!img_request) 1969 return NULL; 1970 1971 if (write_request) { 1972 down_read(&rbd_dev->header_rwsem); 1973 ceph_get_snap_context(rbd_dev->header.snapc); 1974 up_read(&rbd_dev->header_rwsem); 1975 } 1976 1977 img_request->rq = NULL; 1978 img_request->rbd_dev = rbd_dev; 1979 img_request->offset = offset; 1980 img_request->length = length; 1981 img_request->flags = 0; 1982 if (write_request) { 1983 img_request_write_set(img_request); 1984 img_request->snapc = rbd_dev->header.snapc; 1985 } else { 1986 img_request->snap_id = rbd_dev->spec->snap_id; 1987 } 1988 if (rbd_dev_parent_get(rbd_dev)) 1989 img_request_layered_set(img_request); 1990 spin_lock_init(&img_request->completion_lock); 1991 img_request->next_completion = 0; 1992 img_request->callback = NULL; 1993 img_request->result = 0; 1994 img_request->obj_request_count = 0; 1995 INIT_LIST_HEAD(&img_request->obj_requests); 1996 kref_init(&img_request->kref); 1997 1998 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 1999 write_request ? "write" : "read", offset, length, 2000 img_request); 2001 2002 return img_request; 2003 } 2004 2005 static void rbd_img_request_destroy(struct kref *kref) 2006 { 2007 struct rbd_img_request *img_request; 2008 struct rbd_obj_request *obj_request; 2009 struct rbd_obj_request *next_obj_request; 2010 2011 img_request = container_of(kref, struct rbd_img_request, kref); 2012 2013 dout("%s: img %p\n", __func__, img_request); 2014 2015 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2016 rbd_img_obj_request_del(img_request, obj_request); 2017 rbd_assert(img_request->obj_request_count == 0); 2018 2019 if (img_request_layered_test(img_request)) { 2020 img_request_layered_clear(img_request); 2021 rbd_dev_parent_put(img_request->rbd_dev); 2022 } 2023 2024 if (img_request_write_test(img_request)) 2025 ceph_put_snap_context(img_request->snapc); 2026 2027 kmem_cache_free(rbd_img_request_cache, img_request); 2028 } 2029 2030 static struct rbd_img_request *rbd_parent_request_create( 2031 struct rbd_obj_request *obj_request, 2032 u64 img_offset, u64 length) 2033 { 2034 struct rbd_img_request *parent_request; 2035 struct rbd_device *rbd_dev; 2036 2037 rbd_assert(obj_request->img_request); 2038 rbd_dev = obj_request->img_request->rbd_dev; 2039 2040 parent_request = rbd_img_request_create(rbd_dev->parent, 2041 img_offset, length, false); 2042 if (!parent_request) 2043 return NULL; 2044 2045 img_request_child_set(parent_request); 2046 rbd_obj_request_get(obj_request); 2047 parent_request->obj_request = obj_request; 2048 2049 return parent_request; 2050 } 2051 2052 static void rbd_parent_request_destroy(struct kref *kref) 2053 { 2054 struct rbd_img_request *parent_request; 2055 struct rbd_obj_request *orig_request; 2056 2057 parent_request = container_of(kref, struct rbd_img_request, kref); 2058 orig_request = parent_request->obj_request; 2059 2060 parent_request->obj_request = NULL; 2061 rbd_obj_request_put(orig_request); 2062 img_request_child_clear(parent_request); 2063 2064 rbd_img_request_destroy(kref); 2065 } 2066 2067 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2068 { 2069 struct rbd_img_request *img_request; 2070 unsigned int xferred; 2071 int result; 2072 bool more; 2073 2074 rbd_assert(obj_request_img_data_test(obj_request)); 2075 img_request = obj_request->img_request; 2076 2077 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2078 xferred = (unsigned int)obj_request->xferred; 2079 result = obj_request->result; 2080 if (result) { 2081 struct rbd_device *rbd_dev = img_request->rbd_dev; 2082 2083 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n", 2084 img_request_write_test(img_request) ? "write" : "read", 2085 obj_request->length, obj_request->img_offset, 2086 obj_request->offset); 2087 rbd_warn(rbd_dev, " result %d xferred %x\n", 2088 result, xferred); 2089 if (!img_request->result) 2090 img_request->result = result; 2091 } 2092 2093 /* Image object requests don't own their page array */ 2094 2095 if (obj_request->type == OBJ_REQUEST_PAGES) { 2096 obj_request->pages = NULL; 2097 obj_request->page_count = 0; 2098 } 2099 2100 if (img_request_child_test(img_request)) { 2101 rbd_assert(img_request->obj_request != NULL); 2102 more = obj_request->which < img_request->obj_request_count - 1; 2103 } else { 2104 rbd_assert(img_request->rq != NULL); 2105 more = blk_end_request(img_request->rq, result, xferred); 2106 } 2107 2108 return more; 2109 } 2110 2111 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2112 { 2113 struct rbd_img_request *img_request; 2114 u32 which = obj_request->which; 2115 bool more = true; 2116 2117 rbd_assert(obj_request_img_data_test(obj_request)); 2118 img_request = obj_request->img_request; 2119 2120 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2121 rbd_assert(img_request != NULL); 2122 rbd_assert(img_request->obj_request_count > 0); 2123 rbd_assert(which != BAD_WHICH); 2124 rbd_assert(which < img_request->obj_request_count); 2125 rbd_assert(which >= img_request->next_completion); 2126 2127 spin_lock_irq(&img_request->completion_lock); 2128 if (which != img_request->next_completion) 2129 goto out; 2130 2131 for_each_obj_request_from(img_request, obj_request) { 2132 rbd_assert(more); 2133 rbd_assert(which < img_request->obj_request_count); 2134 2135 if (!obj_request_done_test(obj_request)) 2136 break; 2137 more = rbd_img_obj_end_request(obj_request); 2138 which++; 2139 } 2140 2141 rbd_assert(more ^ (which == img_request->obj_request_count)); 2142 img_request->next_completion = which; 2143 out: 2144 spin_unlock_irq(&img_request->completion_lock); 2145 2146 if (!more) 2147 rbd_img_request_complete(img_request); 2148 } 2149 2150 /* 2151 * Split up an image request into one or more object requests, each 2152 * to a different object. The "type" parameter indicates whether 2153 * "data_desc" is the pointer to the head of a list of bio 2154 * structures, or the base of a page array. In either case this 2155 * function assumes data_desc describes memory sufficient to hold 2156 * all data described by the image request. 2157 */ 2158 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2159 enum obj_request_type type, 2160 void *data_desc) 2161 { 2162 struct rbd_device *rbd_dev = img_request->rbd_dev; 2163 struct rbd_obj_request *obj_request = NULL; 2164 struct rbd_obj_request *next_obj_request; 2165 bool write_request = img_request_write_test(img_request); 2166 struct bio *bio_list = 0; 2167 unsigned int bio_offset = 0; 2168 struct page **pages = 0; 2169 u64 img_offset; 2170 u64 resid; 2171 u16 opcode; 2172 2173 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2174 (int)type, data_desc); 2175 2176 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 2177 img_offset = img_request->offset; 2178 resid = img_request->length; 2179 rbd_assert(resid > 0); 2180 2181 if (type == OBJ_REQUEST_BIO) { 2182 bio_list = data_desc; 2183 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT); 2184 } else { 2185 rbd_assert(type == OBJ_REQUEST_PAGES); 2186 pages = data_desc; 2187 } 2188 2189 while (resid) { 2190 struct ceph_osd_request *osd_req; 2191 const char *object_name; 2192 u64 offset; 2193 u64 length; 2194 2195 object_name = rbd_segment_name(rbd_dev, img_offset); 2196 if (!object_name) 2197 goto out_unwind; 2198 offset = rbd_segment_offset(rbd_dev, img_offset); 2199 length = rbd_segment_length(rbd_dev, img_offset, resid); 2200 obj_request = rbd_obj_request_create(object_name, 2201 offset, length, type); 2202 /* object request has its own copy of the object name */ 2203 rbd_segment_name_free(object_name); 2204 if (!obj_request) 2205 goto out_unwind; 2206 2207 if (type == OBJ_REQUEST_BIO) { 2208 unsigned int clone_size; 2209 2210 rbd_assert(length <= (u64)UINT_MAX); 2211 clone_size = (unsigned int)length; 2212 obj_request->bio_list = 2213 bio_chain_clone_range(&bio_list, 2214 &bio_offset, 2215 clone_size, 2216 GFP_ATOMIC); 2217 if (!obj_request->bio_list) 2218 goto out_partial; 2219 } else { 2220 unsigned int page_count; 2221 2222 obj_request->pages = pages; 2223 page_count = (u32)calc_pages_for(offset, length); 2224 obj_request->page_count = page_count; 2225 if ((offset + length) & ~PAGE_MASK) 2226 page_count--; /* more on last page */ 2227 pages += page_count; 2228 } 2229 2230 osd_req = rbd_osd_req_create(rbd_dev, write_request, 2231 obj_request); 2232 if (!osd_req) 2233 goto out_partial; 2234 obj_request->osd_req = osd_req; 2235 obj_request->callback = rbd_img_obj_callback; 2236 2237 osd_req_op_extent_init(osd_req, 0, opcode, offset, length, 2238 0, 0); 2239 if (type == OBJ_REQUEST_BIO) 2240 osd_req_op_extent_osd_data_bio(osd_req, 0, 2241 obj_request->bio_list, length); 2242 else 2243 osd_req_op_extent_osd_data_pages(osd_req, 0, 2244 obj_request->pages, length, 2245 offset & ~PAGE_MASK, false, false); 2246 2247 /* 2248 * set obj_request->img_request before formatting 2249 * the osd_request so that it gets the right snapc 2250 */ 2251 rbd_img_obj_request_add(img_request, obj_request); 2252 if (write_request) 2253 rbd_osd_req_format_write(obj_request); 2254 else 2255 rbd_osd_req_format_read(obj_request); 2256 2257 obj_request->img_offset = img_offset; 2258 2259 img_offset += length; 2260 resid -= length; 2261 } 2262 2263 return 0; 2264 2265 out_partial: 2266 rbd_obj_request_put(obj_request); 2267 out_unwind: 2268 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2269 rbd_obj_request_put(obj_request); 2270 2271 return -ENOMEM; 2272 } 2273 2274 static void 2275 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2276 { 2277 struct rbd_img_request *img_request; 2278 struct rbd_device *rbd_dev; 2279 struct page **pages; 2280 u32 page_count; 2281 2282 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2283 rbd_assert(obj_request_img_data_test(obj_request)); 2284 img_request = obj_request->img_request; 2285 rbd_assert(img_request); 2286 2287 rbd_dev = img_request->rbd_dev; 2288 rbd_assert(rbd_dev); 2289 2290 pages = obj_request->copyup_pages; 2291 rbd_assert(pages != NULL); 2292 obj_request->copyup_pages = NULL; 2293 page_count = obj_request->copyup_page_count; 2294 rbd_assert(page_count); 2295 obj_request->copyup_page_count = 0; 2296 ceph_release_page_vector(pages, page_count); 2297 2298 /* 2299 * We want the transfer count to reflect the size of the 2300 * original write request. There is no such thing as a 2301 * successful short write, so if the request was successful 2302 * we can just set it to the originally-requested length. 2303 */ 2304 if (!obj_request->result) 2305 obj_request->xferred = obj_request->length; 2306 2307 /* Finish up with the normal image object callback */ 2308 2309 rbd_img_obj_callback(obj_request); 2310 } 2311 2312 static void 2313 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2314 { 2315 struct rbd_obj_request *orig_request; 2316 struct ceph_osd_request *osd_req; 2317 struct ceph_osd_client *osdc; 2318 struct rbd_device *rbd_dev; 2319 struct page **pages; 2320 u32 page_count; 2321 int img_result; 2322 u64 parent_length; 2323 u64 offset; 2324 u64 length; 2325 2326 rbd_assert(img_request_child_test(img_request)); 2327 2328 /* First get what we need from the image request */ 2329 2330 pages = img_request->copyup_pages; 2331 rbd_assert(pages != NULL); 2332 img_request->copyup_pages = NULL; 2333 page_count = img_request->copyup_page_count; 2334 rbd_assert(page_count); 2335 img_request->copyup_page_count = 0; 2336 2337 orig_request = img_request->obj_request; 2338 rbd_assert(orig_request != NULL); 2339 rbd_assert(obj_request_type_valid(orig_request->type)); 2340 img_result = img_request->result; 2341 parent_length = img_request->length; 2342 rbd_assert(parent_length == img_request->xferred); 2343 rbd_img_request_put(img_request); 2344 2345 rbd_assert(orig_request->img_request); 2346 rbd_dev = orig_request->img_request->rbd_dev; 2347 rbd_assert(rbd_dev); 2348 2349 /* 2350 * If the overlap has become 0 (most likely because the 2351 * image has been flattened) we need to free the pages 2352 * and re-submit the original write request. 2353 */ 2354 if (!rbd_dev->parent_overlap) { 2355 struct ceph_osd_client *osdc; 2356 2357 ceph_release_page_vector(pages, page_count); 2358 osdc = &rbd_dev->rbd_client->client->osdc; 2359 img_result = rbd_obj_request_submit(osdc, orig_request); 2360 if (!img_result) 2361 return; 2362 } 2363 2364 if (img_result) 2365 goto out_err; 2366 2367 /* 2368 * The original osd request is of no use to use any more. 2369 * We need a new one that can hold the two ops in a copyup 2370 * request. Allocate the new copyup osd request for the 2371 * original request, and release the old one. 2372 */ 2373 img_result = -ENOMEM; 2374 osd_req = rbd_osd_req_create_copyup(orig_request); 2375 if (!osd_req) 2376 goto out_err; 2377 rbd_osd_req_destroy(orig_request->osd_req); 2378 orig_request->osd_req = osd_req; 2379 orig_request->copyup_pages = pages; 2380 orig_request->copyup_page_count = page_count; 2381 2382 /* Initialize the copyup op */ 2383 2384 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2385 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2386 false, false); 2387 2388 /* Then the original write request op */ 2389 2390 offset = orig_request->offset; 2391 length = orig_request->length; 2392 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE, 2393 offset, length, 0, 0); 2394 if (orig_request->type == OBJ_REQUEST_BIO) 2395 osd_req_op_extent_osd_data_bio(osd_req, 1, 2396 orig_request->bio_list, length); 2397 else 2398 osd_req_op_extent_osd_data_pages(osd_req, 1, 2399 orig_request->pages, length, 2400 offset & ~PAGE_MASK, false, false); 2401 2402 rbd_osd_req_format_write(orig_request); 2403 2404 /* All set, send it off. */ 2405 2406 orig_request->callback = rbd_img_obj_copyup_callback; 2407 osdc = &rbd_dev->rbd_client->client->osdc; 2408 img_result = rbd_obj_request_submit(osdc, orig_request); 2409 if (!img_result) 2410 return; 2411 out_err: 2412 /* Record the error code and complete the request */ 2413 2414 orig_request->result = img_result; 2415 orig_request->xferred = 0; 2416 obj_request_done_set(orig_request); 2417 rbd_obj_request_complete(orig_request); 2418 } 2419 2420 /* 2421 * Read from the parent image the range of data that covers the 2422 * entire target of the given object request. This is used for 2423 * satisfying a layered image write request when the target of an 2424 * object request from the image request does not exist. 2425 * 2426 * A page array big enough to hold the returned data is allocated 2427 * and supplied to rbd_img_request_fill() as the "data descriptor." 2428 * When the read completes, this page array will be transferred to 2429 * the original object request for the copyup operation. 2430 * 2431 * If an error occurs, record it as the result of the original 2432 * object request and mark it done so it gets completed. 2433 */ 2434 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2435 { 2436 struct rbd_img_request *img_request = NULL; 2437 struct rbd_img_request *parent_request = NULL; 2438 struct rbd_device *rbd_dev; 2439 u64 img_offset; 2440 u64 length; 2441 struct page **pages = NULL; 2442 u32 page_count; 2443 int result; 2444 2445 rbd_assert(obj_request_img_data_test(obj_request)); 2446 rbd_assert(obj_request_type_valid(obj_request->type)); 2447 2448 img_request = obj_request->img_request; 2449 rbd_assert(img_request != NULL); 2450 rbd_dev = img_request->rbd_dev; 2451 rbd_assert(rbd_dev->parent != NULL); 2452 2453 /* 2454 * Determine the byte range covered by the object in the 2455 * child image to which the original request was to be sent. 2456 */ 2457 img_offset = obj_request->img_offset - obj_request->offset; 2458 length = (u64)1 << rbd_dev->header.obj_order; 2459 2460 /* 2461 * There is no defined parent data beyond the parent 2462 * overlap, so limit what we read at that boundary if 2463 * necessary. 2464 */ 2465 if (img_offset + length > rbd_dev->parent_overlap) { 2466 rbd_assert(img_offset < rbd_dev->parent_overlap); 2467 length = rbd_dev->parent_overlap - img_offset; 2468 } 2469 2470 /* 2471 * Allocate a page array big enough to receive the data read 2472 * from the parent. 2473 */ 2474 page_count = (u32)calc_pages_for(0, length); 2475 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2476 if (IS_ERR(pages)) { 2477 result = PTR_ERR(pages); 2478 pages = NULL; 2479 goto out_err; 2480 } 2481 2482 result = -ENOMEM; 2483 parent_request = rbd_parent_request_create(obj_request, 2484 img_offset, length); 2485 if (!parent_request) 2486 goto out_err; 2487 2488 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2489 if (result) 2490 goto out_err; 2491 parent_request->copyup_pages = pages; 2492 parent_request->copyup_page_count = page_count; 2493 2494 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2495 result = rbd_img_request_submit(parent_request); 2496 if (!result) 2497 return 0; 2498 2499 parent_request->copyup_pages = NULL; 2500 parent_request->copyup_page_count = 0; 2501 parent_request->obj_request = NULL; 2502 rbd_obj_request_put(obj_request); 2503 out_err: 2504 if (pages) 2505 ceph_release_page_vector(pages, page_count); 2506 if (parent_request) 2507 rbd_img_request_put(parent_request); 2508 obj_request->result = result; 2509 obj_request->xferred = 0; 2510 obj_request_done_set(obj_request); 2511 2512 return result; 2513 } 2514 2515 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2516 { 2517 struct rbd_obj_request *orig_request; 2518 struct rbd_device *rbd_dev; 2519 int result; 2520 2521 rbd_assert(!obj_request_img_data_test(obj_request)); 2522 2523 /* 2524 * All we need from the object request is the original 2525 * request and the result of the STAT op. Grab those, then 2526 * we're done with the request. 2527 */ 2528 orig_request = obj_request->obj_request; 2529 obj_request->obj_request = NULL; 2530 rbd_obj_request_put(orig_request); 2531 rbd_assert(orig_request); 2532 rbd_assert(orig_request->img_request); 2533 2534 result = obj_request->result; 2535 obj_request->result = 0; 2536 2537 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2538 obj_request, orig_request, result, 2539 obj_request->xferred, obj_request->length); 2540 rbd_obj_request_put(obj_request); 2541 2542 /* 2543 * If the overlap has become 0 (most likely because the 2544 * image has been flattened) we need to free the pages 2545 * and re-submit the original write request. 2546 */ 2547 rbd_dev = orig_request->img_request->rbd_dev; 2548 if (!rbd_dev->parent_overlap) { 2549 struct ceph_osd_client *osdc; 2550 2551 osdc = &rbd_dev->rbd_client->client->osdc; 2552 result = rbd_obj_request_submit(osdc, orig_request); 2553 if (!result) 2554 return; 2555 } 2556 2557 /* 2558 * Our only purpose here is to determine whether the object 2559 * exists, and we don't want to treat the non-existence as 2560 * an error. If something else comes back, transfer the 2561 * error to the original request and complete it now. 2562 */ 2563 if (!result) { 2564 obj_request_existence_set(orig_request, true); 2565 } else if (result == -ENOENT) { 2566 obj_request_existence_set(orig_request, false); 2567 } else if (result) { 2568 orig_request->result = result; 2569 goto out; 2570 } 2571 2572 /* 2573 * Resubmit the original request now that we have recorded 2574 * whether the target object exists. 2575 */ 2576 orig_request->result = rbd_img_obj_request_submit(orig_request); 2577 out: 2578 if (orig_request->result) 2579 rbd_obj_request_complete(orig_request); 2580 } 2581 2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2583 { 2584 struct rbd_obj_request *stat_request; 2585 struct rbd_device *rbd_dev; 2586 struct ceph_osd_client *osdc; 2587 struct page **pages = NULL; 2588 u32 page_count; 2589 size_t size; 2590 int ret; 2591 2592 /* 2593 * The response data for a STAT call consists of: 2594 * le64 length; 2595 * struct { 2596 * le32 tv_sec; 2597 * le32 tv_nsec; 2598 * } mtime; 2599 */ 2600 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2601 page_count = (u32)calc_pages_for(0, size); 2602 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2603 if (IS_ERR(pages)) 2604 return PTR_ERR(pages); 2605 2606 ret = -ENOMEM; 2607 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2608 OBJ_REQUEST_PAGES); 2609 if (!stat_request) 2610 goto out; 2611 2612 rbd_obj_request_get(obj_request); 2613 stat_request->obj_request = obj_request; 2614 stat_request->pages = pages; 2615 stat_request->page_count = page_count; 2616 2617 rbd_assert(obj_request->img_request); 2618 rbd_dev = obj_request->img_request->rbd_dev; 2619 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 2620 stat_request); 2621 if (!stat_request->osd_req) 2622 goto out; 2623 stat_request->callback = rbd_img_obj_exists_callback; 2624 2625 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2626 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2627 false, false); 2628 rbd_osd_req_format_read(stat_request); 2629 2630 osdc = &rbd_dev->rbd_client->client->osdc; 2631 ret = rbd_obj_request_submit(osdc, stat_request); 2632 out: 2633 if (ret) 2634 rbd_obj_request_put(obj_request); 2635 2636 return ret; 2637 } 2638 2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2640 { 2641 struct rbd_img_request *img_request; 2642 struct rbd_device *rbd_dev; 2643 bool known; 2644 2645 rbd_assert(obj_request_img_data_test(obj_request)); 2646 2647 img_request = obj_request->img_request; 2648 rbd_assert(img_request); 2649 rbd_dev = img_request->rbd_dev; 2650 2651 /* 2652 * Only writes to layered images need special handling. 2653 * Reads and non-layered writes are simple object requests. 2654 * Layered writes that start beyond the end of the overlap 2655 * with the parent have no parent data, so they too are 2656 * simple object requests. Finally, if the target object is 2657 * known to already exist, its parent data has already been 2658 * copied, so a write to the object can also be handled as a 2659 * simple object request. 2660 */ 2661 if (!img_request_write_test(img_request) || 2662 !img_request_layered_test(img_request) || 2663 rbd_dev->parent_overlap <= obj_request->img_offset || 2664 ((known = obj_request_known_test(obj_request)) && 2665 obj_request_exists_test(obj_request))) { 2666 2667 struct rbd_device *rbd_dev; 2668 struct ceph_osd_client *osdc; 2669 2670 rbd_dev = obj_request->img_request->rbd_dev; 2671 osdc = &rbd_dev->rbd_client->client->osdc; 2672 2673 return rbd_obj_request_submit(osdc, obj_request); 2674 } 2675 2676 /* 2677 * It's a layered write. The target object might exist but 2678 * we may not know that yet. If we know it doesn't exist, 2679 * start by reading the data for the full target object from 2680 * the parent so we can use it for a copyup to the target. 2681 */ 2682 if (known) 2683 return rbd_img_obj_parent_read_full(obj_request); 2684 2685 /* We don't know whether the target exists. Go find out. */ 2686 2687 return rbd_img_obj_exists_submit(obj_request); 2688 } 2689 2690 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2691 { 2692 struct rbd_obj_request *obj_request; 2693 struct rbd_obj_request *next_obj_request; 2694 2695 dout("%s: img %p\n", __func__, img_request); 2696 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2697 int ret; 2698 2699 ret = rbd_img_obj_request_submit(obj_request); 2700 if (ret) 2701 return ret; 2702 } 2703 2704 return 0; 2705 } 2706 2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2708 { 2709 struct rbd_obj_request *obj_request; 2710 struct rbd_device *rbd_dev; 2711 u64 obj_end; 2712 u64 img_xferred; 2713 int img_result; 2714 2715 rbd_assert(img_request_child_test(img_request)); 2716 2717 /* First get what we need from the image request and release it */ 2718 2719 obj_request = img_request->obj_request; 2720 img_xferred = img_request->xferred; 2721 img_result = img_request->result; 2722 rbd_img_request_put(img_request); 2723 2724 /* 2725 * If the overlap has become 0 (most likely because the 2726 * image has been flattened) we need to re-submit the 2727 * original request. 2728 */ 2729 rbd_assert(obj_request); 2730 rbd_assert(obj_request->img_request); 2731 rbd_dev = obj_request->img_request->rbd_dev; 2732 if (!rbd_dev->parent_overlap) { 2733 struct ceph_osd_client *osdc; 2734 2735 osdc = &rbd_dev->rbd_client->client->osdc; 2736 img_result = rbd_obj_request_submit(osdc, obj_request); 2737 if (!img_result) 2738 return; 2739 } 2740 2741 obj_request->result = img_result; 2742 if (obj_request->result) 2743 goto out; 2744 2745 /* 2746 * We need to zero anything beyond the parent overlap 2747 * boundary. Since rbd_img_obj_request_read_callback() 2748 * will zero anything beyond the end of a short read, an 2749 * easy way to do this is to pretend the data from the 2750 * parent came up short--ending at the overlap boundary. 2751 */ 2752 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2753 obj_end = obj_request->img_offset + obj_request->length; 2754 if (obj_end > rbd_dev->parent_overlap) { 2755 u64 xferred = 0; 2756 2757 if (obj_request->img_offset < rbd_dev->parent_overlap) 2758 xferred = rbd_dev->parent_overlap - 2759 obj_request->img_offset; 2760 2761 obj_request->xferred = min(img_xferred, xferred); 2762 } else { 2763 obj_request->xferred = img_xferred; 2764 } 2765 out: 2766 rbd_img_obj_request_read_callback(obj_request); 2767 rbd_obj_request_complete(obj_request); 2768 } 2769 2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2771 { 2772 struct rbd_img_request *img_request; 2773 int result; 2774 2775 rbd_assert(obj_request_img_data_test(obj_request)); 2776 rbd_assert(obj_request->img_request != NULL); 2777 rbd_assert(obj_request->result == (s32) -ENOENT); 2778 rbd_assert(obj_request_type_valid(obj_request->type)); 2779 2780 /* rbd_read_finish(obj_request, obj_request->length); */ 2781 img_request = rbd_parent_request_create(obj_request, 2782 obj_request->img_offset, 2783 obj_request->length); 2784 result = -ENOMEM; 2785 if (!img_request) 2786 goto out_err; 2787 2788 if (obj_request->type == OBJ_REQUEST_BIO) 2789 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2790 obj_request->bio_list); 2791 else 2792 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2793 obj_request->pages); 2794 if (result) 2795 goto out_err; 2796 2797 img_request->callback = rbd_img_parent_read_callback; 2798 result = rbd_img_request_submit(img_request); 2799 if (result) 2800 goto out_err; 2801 2802 return; 2803 out_err: 2804 if (img_request) 2805 rbd_img_request_put(img_request); 2806 obj_request->result = result; 2807 obj_request->xferred = 0; 2808 obj_request_done_set(obj_request); 2809 } 2810 2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id) 2812 { 2813 struct rbd_obj_request *obj_request; 2814 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2815 int ret; 2816 2817 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2818 OBJ_REQUEST_NODATA); 2819 if (!obj_request) 2820 return -ENOMEM; 2821 2822 ret = -ENOMEM; 2823 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2824 if (!obj_request->osd_req) 2825 goto out; 2826 obj_request->callback = rbd_obj_request_put; 2827 2828 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2829 notify_id, 0, 0); 2830 rbd_osd_req_format_read(obj_request); 2831 2832 ret = rbd_obj_request_submit(osdc, obj_request); 2833 out: 2834 if (ret) 2835 rbd_obj_request_put(obj_request); 2836 2837 return ret; 2838 } 2839 2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2841 { 2842 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2843 int ret; 2844 2845 if (!rbd_dev) 2846 return; 2847 2848 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2849 rbd_dev->header_name, (unsigned long long)notify_id, 2850 (unsigned int)opcode); 2851 ret = rbd_dev_refresh(rbd_dev); 2852 if (ret) 2853 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret); 2854 2855 rbd_obj_notify_ack(rbd_dev, notify_id); 2856 } 2857 2858 /* 2859 * Request sync osd watch/unwatch. The value of "start" determines 2860 * whether a watch request is being initiated or torn down. 2861 */ 2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start) 2863 { 2864 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2865 struct rbd_obj_request *obj_request; 2866 int ret; 2867 2868 rbd_assert(start ^ !!rbd_dev->watch_event); 2869 rbd_assert(start ^ !!rbd_dev->watch_request); 2870 2871 if (start) { 2872 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 2873 &rbd_dev->watch_event); 2874 if (ret < 0) 2875 return ret; 2876 rbd_assert(rbd_dev->watch_event != NULL); 2877 } 2878 2879 ret = -ENOMEM; 2880 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2881 OBJ_REQUEST_NODATA); 2882 if (!obj_request) 2883 goto out_cancel; 2884 2885 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request); 2886 if (!obj_request->osd_req) 2887 goto out_cancel; 2888 2889 if (start) 2890 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 2891 else 2892 ceph_osdc_unregister_linger_request(osdc, 2893 rbd_dev->watch_request->osd_req); 2894 2895 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 2896 rbd_dev->watch_event->cookie, 0, start ? 1 : 0); 2897 rbd_osd_req_format_write(obj_request); 2898 2899 ret = rbd_obj_request_submit(osdc, obj_request); 2900 if (ret) 2901 goto out_cancel; 2902 ret = rbd_obj_request_wait(obj_request); 2903 if (ret) 2904 goto out_cancel; 2905 ret = obj_request->result; 2906 if (ret) 2907 goto out_cancel; 2908 2909 /* 2910 * A watch request is set to linger, so the underlying osd 2911 * request won't go away until we unregister it. We retain 2912 * a pointer to the object request during that time (in 2913 * rbd_dev->watch_request), so we'll keep a reference to 2914 * it. We'll drop that reference (below) after we've 2915 * unregistered it. 2916 */ 2917 if (start) { 2918 rbd_dev->watch_request = obj_request; 2919 2920 return 0; 2921 } 2922 2923 /* We have successfully torn down the watch request */ 2924 2925 rbd_obj_request_put(rbd_dev->watch_request); 2926 rbd_dev->watch_request = NULL; 2927 out_cancel: 2928 /* Cancel the event if we're tearing down, or on error */ 2929 ceph_osdc_cancel_event(rbd_dev->watch_event); 2930 rbd_dev->watch_event = NULL; 2931 if (obj_request) 2932 rbd_obj_request_put(obj_request); 2933 2934 return ret; 2935 } 2936 2937 /* 2938 * Synchronous osd object method call. Returns the number of bytes 2939 * returned in the outbound buffer, or a negative error code. 2940 */ 2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 2942 const char *object_name, 2943 const char *class_name, 2944 const char *method_name, 2945 const void *outbound, 2946 size_t outbound_size, 2947 void *inbound, 2948 size_t inbound_size) 2949 { 2950 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2951 struct rbd_obj_request *obj_request; 2952 struct page **pages; 2953 u32 page_count; 2954 int ret; 2955 2956 /* 2957 * Method calls are ultimately read operations. The result 2958 * should placed into the inbound buffer provided. They 2959 * also supply outbound data--parameters for the object 2960 * method. Currently if this is present it will be a 2961 * snapshot id. 2962 */ 2963 page_count = (u32)calc_pages_for(0, inbound_size); 2964 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2965 if (IS_ERR(pages)) 2966 return PTR_ERR(pages); 2967 2968 ret = -ENOMEM; 2969 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 2970 OBJ_REQUEST_PAGES); 2971 if (!obj_request) 2972 goto out; 2973 2974 obj_request->pages = pages; 2975 obj_request->page_count = page_count; 2976 2977 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 2978 if (!obj_request->osd_req) 2979 goto out; 2980 2981 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 2982 class_name, method_name); 2983 if (outbound_size) { 2984 struct ceph_pagelist *pagelist; 2985 2986 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 2987 if (!pagelist) 2988 goto out; 2989 2990 ceph_pagelist_init(pagelist); 2991 ceph_pagelist_append(pagelist, outbound, outbound_size); 2992 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 2993 pagelist); 2994 } 2995 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 2996 obj_request->pages, inbound_size, 2997 0, false, false); 2998 rbd_osd_req_format_read(obj_request); 2999 3000 ret = rbd_obj_request_submit(osdc, obj_request); 3001 if (ret) 3002 goto out; 3003 ret = rbd_obj_request_wait(obj_request); 3004 if (ret) 3005 goto out; 3006 3007 ret = obj_request->result; 3008 if (ret < 0) 3009 goto out; 3010 3011 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3012 ret = (int)obj_request->xferred; 3013 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3014 out: 3015 if (obj_request) 3016 rbd_obj_request_put(obj_request); 3017 else 3018 ceph_release_page_vector(pages, page_count); 3019 3020 return ret; 3021 } 3022 3023 static void rbd_request_fn(struct request_queue *q) 3024 __releases(q->queue_lock) __acquires(q->queue_lock) 3025 { 3026 struct rbd_device *rbd_dev = q->queuedata; 3027 bool read_only = rbd_dev->mapping.read_only; 3028 struct request *rq; 3029 int result; 3030 3031 while ((rq = blk_fetch_request(q))) { 3032 bool write_request = rq_data_dir(rq) == WRITE; 3033 struct rbd_img_request *img_request; 3034 u64 offset; 3035 u64 length; 3036 3037 /* Ignore any non-FS requests that filter through. */ 3038 3039 if (rq->cmd_type != REQ_TYPE_FS) { 3040 dout("%s: non-fs request type %d\n", __func__, 3041 (int) rq->cmd_type); 3042 __blk_end_request_all(rq, 0); 3043 continue; 3044 } 3045 3046 /* Ignore/skip any zero-length requests */ 3047 3048 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT; 3049 length = (u64) blk_rq_bytes(rq); 3050 3051 if (!length) { 3052 dout("%s: zero-length request\n", __func__); 3053 __blk_end_request_all(rq, 0); 3054 continue; 3055 } 3056 3057 spin_unlock_irq(q->queue_lock); 3058 3059 /* Disallow writes to a read-only device */ 3060 3061 if (write_request) { 3062 result = -EROFS; 3063 if (read_only) 3064 goto end_request; 3065 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3066 } 3067 3068 /* 3069 * Quit early if the mapped snapshot no longer 3070 * exists. It's still possible the snapshot will 3071 * have disappeared by the time our request arrives 3072 * at the osd, but there's no sense in sending it if 3073 * we already know. 3074 */ 3075 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3076 dout("request for non-existent snapshot"); 3077 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3078 result = -ENXIO; 3079 goto end_request; 3080 } 3081 3082 result = -EINVAL; 3083 if (offset && length > U64_MAX - offset + 1) { 3084 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n", 3085 offset, length); 3086 goto end_request; /* Shouldn't happen */ 3087 } 3088 3089 result = -EIO; 3090 if (offset + length > rbd_dev->mapping.size) { 3091 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n", 3092 offset, length, rbd_dev->mapping.size); 3093 goto end_request; 3094 } 3095 3096 result = -ENOMEM; 3097 img_request = rbd_img_request_create(rbd_dev, offset, length, 3098 write_request); 3099 if (!img_request) 3100 goto end_request; 3101 3102 img_request->rq = rq; 3103 3104 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3105 rq->bio); 3106 if (!result) 3107 result = rbd_img_request_submit(img_request); 3108 if (result) 3109 rbd_img_request_put(img_request); 3110 end_request: 3111 spin_lock_irq(q->queue_lock); 3112 if (result < 0) { 3113 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n", 3114 write_request ? "write" : "read", 3115 length, offset, result); 3116 3117 __blk_end_request_all(rq, result); 3118 } 3119 } 3120 } 3121 3122 /* 3123 * a queue callback. Makes sure that we don't create a bio that spans across 3124 * multiple osd objects. One exception would be with a single page bios, 3125 * which we handle later at bio_chain_clone_range() 3126 */ 3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3128 struct bio_vec *bvec) 3129 { 3130 struct rbd_device *rbd_dev = q->queuedata; 3131 sector_t sector_offset; 3132 sector_t sectors_per_obj; 3133 sector_t obj_sector_offset; 3134 int ret; 3135 3136 /* 3137 * Find how far into its rbd object the partition-relative 3138 * bio start sector is to offset relative to the enclosing 3139 * device. 3140 */ 3141 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3142 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3143 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3144 3145 /* 3146 * Compute the number of bytes from that offset to the end 3147 * of the object. Account for what's already used by the bio. 3148 */ 3149 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3150 if (ret > bmd->bi_size) 3151 ret -= bmd->bi_size; 3152 else 3153 ret = 0; 3154 3155 /* 3156 * Don't send back more than was asked for. And if the bio 3157 * was empty, let the whole thing through because: "Note 3158 * that a block device *must* allow a single page to be 3159 * added to an empty bio." 3160 */ 3161 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3162 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3163 ret = (int) bvec->bv_len; 3164 3165 return ret; 3166 } 3167 3168 static void rbd_free_disk(struct rbd_device *rbd_dev) 3169 { 3170 struct gendisk *disk = rbd_dev->disk; 3171 3172 if (!disk) 3173 return; 3174 3175 rbd_dev->disk = NULL; 3176 if (disk->flags & GENHD_FL_UP) { 3177 del_gendisk(disk); 3178 if (disk->queue) 3179 blk_cleanup_queue(disk->queue); 3180 } 3181 put_disk(disk); 3182 } 3183 3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3185 const char *object_name, 3186 u64 offset, u64 length, void *buf) 3187 3188 { 3189 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3190 struct rbd_obj_request *obj_request; 3191 struct page **pages = NULL; 3192 u32 page_count; 3193 size_t size; 3194 int ret; 3195 3196 page_count = (u32) calc_pages_for(offset, length); 3197 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3198 if (IS_ERR(pages)) 3199 ret = PTR_ERR(pages); 3200 3201 ret = -ENOMEM; 3202 obj_request = rbd_obj_request_create(object_name, offset, length, 3203 OBJ_REQUEST_PAGES); 3204 if (!obj_request) 3205 goto out; 3206 3207 obj_request->pages = pages; 3208 obj_request->page_count = page_count; 3209 3210 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request); 3211 if (!obj_request->osd_req) 3212 goto out; 3213 3214 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3215 offset, length, 0, 0); 3216 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3217 obj_request->pages, 3218 obj_request->length, 3219 obj_request->offset & ~PAGE_MASK, 3220 false, false); 3221 rbd_osd_req_format_read(obj_request); 3222 3223 ret = rbd_obj_request_submit(osdc, obj_request); 3224 if (ret) 3225 goto out; 3226 ret = rbd_obj_request_wait(obj_request); 3227 if (ret) 3228 goto out; 3229 3230 ret = obj_request->result; 3231 if (ret < 0) 3232 goto out; 3233 3234 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3235 size = (size_t) obj_request->xferred; 3236 ceph_copy_from_page_vector(pages, buf, 0, size); 3237 rbd_assert(size <= (size_t)INT_MAX); 3238 ret = (int)size; 3239 out: 3240 if (obj_request) 3241 rbd_obj_request_put(obj_request); 3242 else 3243 ceph_release_page_vector(pages, page_count); 3244 3245 return ret; 3246 } 3247 3248 /* 3249 * Read the complete header for the given rbd device. On successful 3250 * return, the rbd_dev->header field will contain up-to-date 3251 * information about the image. 3252 */ 3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3254 { 3255 struct rbd_image_header_ondisk *ondisk = NULL; 3256 u32 snap_count = 0; 3257 u64 names_size = 0; 3258 u32 want_count; 3259 int ret; 3260 3261 /* 3262 * The complete header will include an array of its 64-bit 3263 * snapshot ids, followed by the names of those snapshots as 3264 * a contiguous block of NUL-terminated strings. Note that 3265 * the number of snapshots could change by the time we read 3266 * it in, in which case we re-read it. 3267 */ 3268 do { 3269 size_t size; 3270 3271 kfree(ondisk); 3272 3273 size = sizeof (*ondisk); 3274 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3275 size += names_size; 3276 ondisk = kmalloc(size, GFP_KERNEL); 3277 if (!ondisk) 3278 return -ENOMEM; 3279 3280 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3281 0, size, ondisk); 3282 if (ret < 0) 3283 goto out; 3284 if ((size_t)ret < size) { 3285 ret = -ENXIO; 3286 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3287 size, ret); 3288 goto out; 3289 } 3290 if (!rbd_dev_ondisk_valid(ondisk)) { 3291 ret = -ENXIO; 3292 rbd_warn(rbd_dev, "invalid header"); 3293 goto out; 3294 } 3295 3296 names_size = le64_to_cpu(ondisk->snap_names_len); 3297 want_count = snap_count; 3298 snap_count = le32_to_cpu(ondisk->snap_count); 3299 } while (snap_count != want_count); 3300 3301 ret = rbd_header_from_disk(rbd_dev, ondisk); 3302 out: 3303 kfree(ondisk); 3304 3305 return ret; 3306 } 3307 3308 /* 3309 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3310 * has disappeared from the (just updated) snapshot context. 3311 */ 3312 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3313 { 3314 u64 snap_id; 3315 3316 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3317 return; 3318 3319 snap_id = rbd_dev->spec->snap_id; 3320 if (snap_id == CEPH_NOSNAP) 3321 return; 3322 3323 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3324 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3325 } 3326 3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3328 { 3329 u64 mapping_size; 3330 int ret; 3331 3332 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 3333 down_write(&rbd_dev->header_rwsem); 3334 mapping_size = rbd_dev->mapping.size; 3335 if (rbd_dev->image_format == 1) 3336 ret = rbd_dev_v1_header_info(rbd_dev); 3337 else 3338 ret = rbd_dev_v2_header_info(rbd_dev); 3339 3340 /* If it's a mapped snapshot, validate its EXISTS flag */ 3341 3342 rbd_exists_validate(rbd_dev); 3343 up_write(&rbd_dev->header_rwsem); 3344 3345 if (mapping_size != rbd_dev->mapping.size) { 3346 sector_t size; 3347 3348 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3349 dout("setting size to %llu sectors", (unsigned long long)size); 3350 set_capacity(rbd_dev->disk, size); 3351 revalidate_disk(rbd_dev->disk); 3352 } 3353 3354 return ret; 3355 } 3356 3357 static int rbd_init_disk(struct rbd_device *rbd_dev) 3358 { 3359 struct gendisk *disk; 3360 struct request_queue *q; 3361 u64 segment_size; 3362 3363 /* create gendisk info */ 3364 disk = alloc_disk(RBD_MINORS_PER_MAJOR); 3365 if (!disk) 3366 return -ENOMEM; 3367 3368 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3369 rbd_dev->dev_id); 3370 disk->major = rbd_dev->major; 3371 disk->first_minor = 0; 3372 disk->fops = &rbd_bd_ops; 3373 disk->private_data = rbd_dev; 3374 3375 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3376 if (!q) 3377 goto out_disk; 3378 3379 /* We use the default size, but let's be explicit about it. */ 3380 blk_queue_physical_block_size(q, SECTOR_SIZE); 3381 3382 /* set io sizes to object size */ 3383 segment_size = rbd_obj_bytes(&rbd_dev->header); 3384 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3385 blk_queue_max_segment_size(q, segment_size); 3386 blk_queue_io_min(q, segment_size); 3387 blk_queue_io_opt(q, segment_size); 3388 3389 blk_queue_merge_bvec(q, rbd_merge_bvec); 3390 disk->queue = q; 3391 3392 q->queuedata = rbd_dev; 3393 3394 rbd_dev->disk = disk; 3395 3396 return 0; 3397 out_disk: 3398 put_disk(disk); 3399 3400 return -ENOMEM; 3401 } 3402 3403 /* 3404 sysfs 3405 */ 3406 3407 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3408 { 3409 return container_of(dev, struct rbd_device, dev); 3410 } 3411 3412 static ssize_t rbd_size_show(struct device *dev, 3413 struct device_attribute *attr, char *buf) 3414 { 3415 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3416 3417 return sprintf(buf, "%llu\n", 3418 (unsigned long long)rbd_dev->mapping.size); 3419 } 3420 3421 /* 3422 * Note this shows the features for whatever's mapped, which is not 3423 * necessarily the base image. 3424 */ 3425 static ssize_t rbd_features_show(struct device *dev, 3426 struct device_attribute *attr, char *buf) 3427 { 3428 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3429 3430 return sprintf(buf, "0x%016llx\n", 3431 (unsigned long long)rbd_dev->mapping.features); 3432 } 3433 3434 static ssize_t rbd_major_show(struct device *dev, 3435 struct device_attribute *attr, char *buf) 3436 { 3437 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3438 3439 if (rbd_dev->major) 3440 return sprintf(buf, "%d\n", rbd_dev->major); 3441 3442 return sprintf(buf, "(none)\n"); 3443 3444 } 3445 3446 static ssize_t rbd_client_id_show(struct device *dev, 3447 struct device_attribute *attr, char *buf) 3448 { 3449 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3450 3451 return sprintf(buf, "client%lld\n", 3452 ceph_client_id(rbd_dev->rbd_client->client)); 3453 } 3454 3455 static ssize_t rbd_pool_show(struct device *dev, 3456 struct device_attribute *attr, char *buf) 3457 { 3458 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3459 3460 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3461 } 3462 3463 static ssize_t rbd_pool_id_show(struct device *dev, 3464 struct device_attribute *attr, char *buf) 3465 { 3466 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3467 3468 return sprintf(buf, "%llu\n", 3469 (unsigned long long) rbd_dev->spec->pool_id); 3470 } 3471 3472 static ssize_t rbd_name_show(struct device *dev, 3473 struct device_attribute *attr, char *buf) 3474 { 3475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3476 3477 if (rbd_dev->spec->image_name) 3478 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3479 3480 return sprintf(buf, "(unknown)\n"); 3481 } 3482 3483 static ssize_t rbd_image_id_show(struct device *dev, 3484 struct device_attribute *attr, char *buf) 3485 { 3486 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3487 3488 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3489 } 3490 3491 /* 3492 * Shows the name of the currently-mapped snapshot (or 3493 * RBD_SNAP_HEAD_NAME for the base image). 3494 */ 3495 static ssize_t rbd_snap_show(struct device *dev, 3496 struct device_attribute *attr, 3497 char *buf) 3498 { 3499 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3500 3501 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3502 } 3503 3504 /* 3505 * For an rbd v2 image, shows the pool id, image id, and snapshot id 3506 * for the parent image. If there is no parent, simply shows 3507 * "(no parent image)". 3508 */ 3509 static ssize_t rbd_parent_show(struct device *dev, 3510 struct device_attribute *attr, 3511 char *buf) 3512 { 3513 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3514 struct rbd_spec *spec = rbd_dev->parent_spec; 3515 int count; 3516 char *bufp = buf; 3517 3518 if (!spec) 3519 return sprintf(buf, "(no parent image)\n"); 3520 3521 count = sprintf(bufp, "pool_id %llu\npool_name %s\n", 3522 (unsigned long long) spec->pool_id, spec->pool_name); 3523 if (count < 0) 3524 return count; 3525 bufp += count; 3526 3527 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id, 3528 spec->image_name ? spec->image_name : "(unknown)"); 3529 if (count < 0) 3530 return count; 3531 bufp += count; 3532 3533 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n", 3534 (unsigned long long) spec->snap_id, spec->snap_name); 3535 if (count < 0) 3536 return count; 3537 bufp += count; 3538 3539 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap); 3540 if (count < 0) 3541 return count; 3542 bufp += count; 3543 3544 return (ssize_t) (bufp - buf); 3545 } 3546 3547 static ssize_t rbd_image_refresh(struct device *dev, 3548 struct device_attribute *attr, 3549 const char *buf, 3550 size_t size) 3551 { 3552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3553 int ret; 3554 3555 ret = rbd_dev_refresh(rbd_dev); 3556 if (ret) 3557 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret); 3558 3559 return ret < 0 ? ret : size; 3560 } 3561 3562 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3563 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3564 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3565 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3566 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3567 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3568 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3569 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3570 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3571 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3572 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3573 3574 static struct attribute *rbd_attrs[] = { 3575 &dev_attr_size.attr, 3576 &dev_attr_features.attr, 3577 &dev_attr_major.attr, 3578 &dev_attr_client_id.attr, 3579 &dev_attr_pool.attr, 3580 &dev_attr_pool_id.attr, 3581 &dev_attr_name.attr, 3582 &dev_attr_image_id.attr, 3583 &dev_attr_current_snap.attr, 3584 &dev_attr_parent.attr, 3585 &dev_attr_refresh.attr, 3586 NULL 3587 }; 3588 3589 static struct attribute_group rbd_attr_group = { 3590 .attrs = rbd_attrs, 3591 }; 3592 3593 static const struct attribute_group *rbd_attr_groups[] = { 3594 &rbd_attr_group, 3595 NULL 3596 }; 3597 3598 static void rbd_sysfs_dev_release(struct device *dev) 3599 { 3600 } 3601 3602 static struct device_type rbd_device_type = { 3603 .name = "rbd", 3604 .groups = rbd_attr_groups, 3605 .release = rbd_sysfs_dev_release, 3606 }; 3607 3608 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3609 { 3610 kref_get(&spec->kref); 3611 3612 return spec; 3613 } 3614 3615 static void rbd_spec_free(struct kref *kref); 3616 static void rbd_spec_put(struct rbd_spec *spec) 3617 { 3618 if (spec) 3619 kref_put(&spec->kref, rbd_spec_free); 3620 } 3621 3622 static struct rbd_spec *rbd_spec_alloc(void) 3623 { 3624 struct rbd_spec *spec; 3625 3626 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3627 if (!spec) 3628 return NULL; 3629 kref_init(&spec->kref); 3630 3631 return spec; 3632 } 3633 3634 static void rbd_spec_free(struct kref *kref) 3635 { 3636 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3637 3638 kfree(spec->pool_name); 3639 kfree(spec->image_id); 3640 kfree(spec->image_name); 3641 kfree(spec->snap_name); 3642 kfree(spec); 3643 } 3644 3645 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3646 struct rbd_spec *spec) 3647 { 3648 struct rbd_device *rbd_dev; 3649 3650 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3651 if (!rbd_dev) 3652 return NULL; 3653 3654 spin_lock_init(&rbd_dev->lock); 3655 rbd_dev->flags = 0; 3656 atomic_set(&rbd_dev->parent_ref, 0); 3657 INIT_LIST_HEAD(&rbd_dev->node); 3658 init_rwsem(&rbd_dev->header_rwsem); 3659 3660 rbd_dev->spec = spec; 3661 rbd_dev->rbd_client = rbdc; 3662 3663 /* Initialize the layout used for all rbd requests */ 3664 3665 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3666 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3667 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3668 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3669 3670 return rbd_dev; 3671 } 3672 3673 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3674 { 3675 rbd_put_client(rbd_dev->rbd_client); 3676 rbd_spec_put(rbd_dev->spec); 3677 kfree(rbd_dev); 3678 } 3679 3680 /* 3681 * Get the size and object order for an image snapshot, or if 3682 * snap_id is CEPH_NOSNAP, gets this information for the base 3683 * image. 3684 */ 3685 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3686 u8 *order, u64 *snap_size) 3687 { 3688 __le64 snapid = cpu_to_le64(snap_id); 3689 int ret; 3690 struct { 3691 u8 order; 3692 __le64 size; 3693 } __attribute__ ((packed)) size_buf = { 0 }; 3694 3695 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3696 "rbd", "get_size", 3697 &snapid, sizeof (snapid), 3698 &size_buf, sizeof (size_buf)); 3699 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3700 if (ret < 0) 3701 return ret; 3702 if (ret < sizeof (size_buf)) 3703 return -ERANGE; 3704 3705 if (order) 3706 *order = size_buf.order; 3707 *snap_size = le64_to_cpu(size_buf.size); 3708 3709 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n", 3710 (unsigned long long)snap_id, (unsigned int)*order, 3711 (unsigned long long)*snap_size); 3712 3713 return 0; 3714 } 3715 3716 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3717 { 3718 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3719 &rbd_dev->header.obj_order, 3720 &rbd_dev->header.image_size); 3721 } 3722 3723 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3724 { 3725 void *reply_buf; 3726 int ret; 3727 void *p; 3728 3729 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3730 if (!reply_buf) 3731 return -ENOMEM; 3732 3733 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3734 "rbd", "get_object_prefix", NULL, 0, 3735 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 3736 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3737 if (ret < 0) 3738 goto out; 3739 3740 p = reply_buf; 3741 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3742 p + ret, NULL, GFP_NOIO); 3743 ret = 0; 3744 3745 if (IS_ERR(rbd_dev->header.object_prefix)) { 3746 ret = PTR_ERR(rbd_dev->header.object_prefix); 3747 rbd_dev->header.object_prefix = NULL; 3748 } else { 3749 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3750 } 3751 out: 3752 kfree(reply_buf); 3753 3754 return ret; 3755 } 3756 3757 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3758 u64 *snap_features) 3759 { 3760 __le64 snapid = cpu_to_le64(snap_id); 3761 struct { 3762 __le64 features; 3763 __le64 incompat; 3764 } __attribute__ ((packed)) features_buf = { 0 }; 3765 u64 incompat; 3766 int ret; 3767 3768 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3769 "rbd", "get_features", 3770 &snapid, sizeof (snapid), 3771 &features_buf, sizeof (features_buf)); 3772 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3773 if (ret < 0) 3774 return ret; 3775 if (ret < sizeof (features_buf)) 3776 return -ERANGE; 3777 3778 incompat = le64_to_cpu(features_buf.incompat); 3779 if (incompat & ~RBD_FEATURES_SUPPORTED) 3780 return -ENXIO; 3781 3782 *snap_features = le64_to_cpu(features_buf.features); 3783 3784 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 3785 (unsigned long long)snap_id, 3786 (unsigned long long)*snap_features, 3787 (unsigned long long)le64_to_cpu(features_buf.incompat)); 3788 3789 return 0; 3790 } 3791 3792 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 3793 { 3794 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 3795 &rbd_dev->header.features); 3796 } 3797 3798 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 3799 { 3800 struct rbd_spec *parent_spec; 3801 size_t size; 3802 void *reply_buf = NULL; 3803 __le64 snapid; 3804 void *p; 3805 void *end; 3806 u64 pool_id; 3807 char *image_id; 3808 u64 snap_id; 3809 u64 overlap; 3810 int ret; 3811 3812 parent_spec = rbd_spec_alloc(); 3813 if (!parent_spec) 3814 return -ENOMEM; 3815 3816 size = sizeof (__le64) + /* pool_id */ 3817 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 3818 sizeof (__le64) + /* snap_id */ 3819 sizeof (__le64); /* overlap */ 3820 reply_buf = kmalloc(size, GFP_KERNEL); 3821 if (!reply_buf) { 3822 ret = -ENOMEM; 3823 goto out_err; 3824 } 3825 3826 snapid = cpu_to_le64(CEPH_NOSNAP); 3827 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3828 "rbd", "get_parent", 3829 &snapid, sizeof (snapid), 3830 reply_buf, size); 3831 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3832 if (ret < 0) 3833 goto out_err; 3834 3835 p = reply_buf; 3836 end = reply_buf + ret; 3837 ret = -ERANGE; 3838 ceph_decode_64_safe(&p, end, pool_id, out_err); 3839 if (pool_id == CEPH_NOPOOL) { 3840 /* 3841 * Either the parent never existed, or we have 3842 * record of it but the image got flattened so it no 3843 * longer has a parent. When the parent of a 3844 * layered image disappears we immediately set the 3845 * overlap to 0. The effect of this is that all new 3846 * requests will be treated as if the image had no 3847 * parent. 3848 */ 3849 if (rbd_dev->parent_overlap) { 3850 rbd_dev->parent_overlap = 0; 3851 smp_mb(); 3852 rbd_dev_parent_put(rbd_dev); 3853 pr_info("%s: clone image has been flattened\n", 3854 rbd_dev->disk->disk_name); 3855 } 3856 3857 goto out; /* No parent? No problem. */ 3858 } 3859 3860 /* The ceph file layout needs to fit pool id in 32 bits */ 3861 3862 ret = -EIO; 3863 if (pool_id > (u64)U32_MAX) { 3864 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n", 3865 (unsigned long long)pool_id, U32_MAX); 3866 goto out_err; 3867 } 3868 3869 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 3870 if (IS_ERR(image_id)) { 3871 ret = PTR_ERR(image_id); 3872 goto out_err; 3873 } 3874 ceph_decode_64_safe(&p, end, snap_id, out_err); 3875 ceph_decode_64_safe(&p, end, overlap, out_err); 3876 3877 /* 3878 * The parent won't change (except when the clone is 3879 * flattened, already handled that). So we only need to 3880 * record the parent spec we have not already done so. 3881 */ 3882 if (!rbd_dev->parent_spec) { 3883 parent_spec->pool_id = pool_id; 3884 parent_spec->image_id = image_id; 3885 parent_spec->snap_id = snap_id; 3886 rbd_dev->parent_spec = parent_spec; 3887 parent_spec = NULL; /* rbd_dev now owns this */ 3888 } 3889 3890 /* 3891 * We always update the parent overlap. If it's zero we 3892 * treat it specially. 3893 */ 3894 rbd_dev->parent_overlap = overlap; 3895 smp_mb(); 3896 if (!overlap) { 3897 3898 /* A null parent_spec indicates it's the initial probe */ 3899 3900 if (parent_spec) { 3901 /* 3902 * The overlap has become zero, so the clone 3903 * must have been resized down to 0 at some 3904 * point. Treat this the same as a flatten. 3905 */ 3906 rbd_dev_parent_put(rbd_dev); 3907 pr_info("%s: clone image now standalone\n", 3908 rbd_dev->disk->disk_name); 3909 } else { 3910 /* 3911 * For the initial probe, if we find the 3912 * overlap is zero we just pretend there was 3913 * no parent image. 3914 */ 3915 rbd_warn(rbd_dev, "ignoring parent of " 3916 "clone with overlap 0\n"); 3917 } 3918 } 3919 out: 3920 ret = 0; 3921 out_err: 3922 kfree(reply_buf); 3923 rbd_spec_put(parent_spec); 3924 3925 return ret; 3926 } 3927 3928 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 3929 { 3930 struct { 3931 __le64 stripe_unit; 3932 __le64 stripe_count; 3933 } __attribute__ ((packed)) striping_info_buf = { 0 }; 3934 size_t size = sizeof (striping_info_buf); 3935 void *p; 3936 u64 obj_size; 3937 u64 stripe_unit; 3938 u64 stripe_count; 3939 int ret; 3940 3941 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3942 "rbd", "get_stripe_unit_count", NULL, 0, 3943 (char *)&striping_info_buf, size); 3944 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3945 if (ret < 0) 3946 return ret; 3947 if (ret < size) 3948 return -ERANGE; 3949 3950 /* 3951 * We don't actually support the "fancy striping" feature 3952 * (STRIPINGV2) yet, but if the striping sizes are the 3953 * defaults the behavior is the same as before. So find 3954 * out, and only fail if the image has non-default values. 3955 */ 3956 ret = -EINVAL; 3957 obj_size = (u64)1 << rbd_dev->header.obj_order; 3958 p = &striping_info_buf; 3959 stripe_unit = ceph_decode_64(&p); 3960 if (stripe_unit != obj_size) { 3961 rbd_warn(rbd_dev, "unsupported stripe unit " 3962 "(got %llu want %llu)", 3963 stripe_unit, obj_size); 3964 return -EINVAL; 3965 } 3966 stripe_count = ceph_decode_64(&p); 3967 if (stripe_count != 1) { 3968 rbd_warn(rbd_dev, "unsupported stripe count " 3969 "(got %llu want 1)", stripe_count); 3970 return -EINVAL; 3971 } 3972 rbd_dev->header.stripe_unit = stripe_unit; 3973 rbd_dev->header.stripe_count = stripe_count; 3974 3975 return 0; 3976 } 3977 3978 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 3979 { 3980 size_t image_id_size; 3981 char *image_id; 3982 void *p; 3983 void *end; 3984 size_t size; 3985 void *reply_buf = NULL; 3986 size_t len = 0; 3987 char *image_name = NULL; 3988 int ret; 3989 3990 rbd_assert(!rbd_dev->spec->image_name); 3991 3992 len = strlen(rbd_dev->spec->image_id); 3993 image_id_size = sizeof (__le32) + len; 3994 image_id = kmalloc(image_id_size, GFP_KERNEL); 3995 if (!image_id) 3996 return NULL; 3997 3998 p = image_id; 3999 end = image_id + image_id_size; 4000 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4001 4002 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4003 reply_buf = kmalloc(size, GFP_KERNEL); 4004 if (!reply_buf) 4005 goto out; 4006 4007 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4008 "rbd", "dir_get_name", 4009 image_id, image_id_size, 4010 reply_buf, size); 4011 if (ret < 0) 4012 goto out; 4013 p = reply_buf; 4014 end = reply_buf + ret; 4015 4016 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4017 if (IS_ERR(image_name)) 4018 image_name = NULL; 4019 else 4020 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4021 out: 4022 kfree(reply_buf); 4023 kfree(image_id); 4024 4025 return image_name; 4026 } 4027 4028 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4029 { 4030 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4031 const char *snap_name; 4032 u32 which = 0; 4033 4034 /* Skip over names until we find the one we are looking for */ 4035 4036 snap_name = rbd_dev->header.snap_names; 4037 while (which < snapc->num_snaps) { 4038 if (!strcmp(name, snap_name)) 4039 return snapc->snaps[which]; 4040 snap_name += strlen(snap_name) + 1; 4041 which++; 4042 } 4043 return CEPH_NOSNAP; 4044 } 4045 4046 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4047 { 4048 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4049 u32 which; 4050 bool found = false; 4051 u64 snap_id; 4052 4053 for (which = 0; !found && which < snapc->num_snaps; which++) { 4054 const char *snap_name; 4055 4056 snap_id = snapc->snaps[which]; 4057 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4058 if (IS_ERR(snap_name)) 4059 break; 4060 found = !strcmp(name, snap_name); 4061 kfree(snap_name); 4062 } 4063 return found ? snap_id : CEPH_NOSNAP; 4064 } 4065 4066 /* 4067 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4068 * no snapshot by that name is found, or if an error occurs. 4069 */ 4070 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4071 { 4072 if (rbd_dev->image_format == 1) 4073 return rbd_v1_snap_id_by_name(rbd_dev, name); 4074 4075 return rbd_v2_snap_id_by_name(rbd_dev, name); 4076 } 4077 4078 /* 4079 * When an rbd image has a parent image, it is identified by the 4080 * pool, image, and snapshot ids (not names). This function fills 4081 * in the names for those ids. (It's OK if we can't figure out the 4082 * name for an image id, but the pool and snapshot ids should always 4083 * exist and have names.) All names in an rbd spec are dynamically 4084 * allocated. 4085 * 4086 * When an image being mapped (not a parent) is probed, we have the 4087 * pool name and pool id, image name and image id, and the snapshot 4088 * name. The only thing we're missing is the snapshot id. 4089 */ 4090 static int rbd_dev_spec_update(struct rbd_device *rbd_dev) 4091 { 4092 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4093 struct rbd_spec *spec = rbd_dev->spec; 4094 const char *pool_name; 4095 const char *image_name; 4096 const char *snap_name; 4097 int ret; 4098 4099 /* 4100 * An image being mapped will have the pool name (etc.), but 4101 * we need to look up the snapshot id. 4102 */ 4103 if (spec->pool_name) { 4104 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4105 u64 snap_id; 4106 4107 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4108 if (snap_id == CEPH_NOSNAP) 4109 return -ENOENT; 4110 spec->snap_id = snap_id; 4111 } else { 4112 spec->snap_id = CEPH_NOSNAP; 4113 } 4114 4115 return 0; 4116 } 4117 4118 /* Get the pool name; we have to make our own copy of this */ 4119 4120 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4121 if (!pool_name) { 4122 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4123 return -EIO; 4124 } 4125 pool_name = kstrdup(pool_name, GFP_KERNEL); 4126 if (!pool_name) 4127 return -ENOMEM; 4128 4129 /* Fetch the image name; tolerate failure here */ 4130 4131 image_name = rbd_dev_image_name(rbd_dev); 4132 if (!image_name) 4133 rbd_warn(rbd_dev, "unable to get image name"); 4134 4135 /* Look up the snapshot name, and make a copy */ 4136 4137 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4138 if (!snap_name) { 4139 ret = -ENOMEM; 4140 goto out_err; 4141 } 4142 4143 spec->pool_name = pool_name; 4144 spec->image_name = image_name; 4145 spec->snap_name = snap_name; 4146 4147 return 0; 4148 out_err: 4149 kfree(image_name); 4150 kfree(pool_name); 4151 4152 return ret; 4153 } 4154 4155 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4156 { 4157 size_t size; 4158 int ret; 4159 void *reply_buf; 4160 void *p; 4161 void *end; 4162 u64 seq; 4163 u32 snap_count; 4164 struct ceph_snap_context *snapc; 4165 u32 i; 4166 4167 /* 4168 * We'll need room for the seq value (maximum snapshot id), 4169 * snapshot count, and array of that many snapshot ids. 4170 * For now we have a fixed upper limit on the number we're 4171 * prepared to receive. 4172 */ 4173 size = sizeof (__le64) + sizeof (__le32) + 4174 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4175 reply_buf = kzalloc(size, GFP_KERNEL); 4176 if (!reply_buf) 4177 return -ENOMEM; 4178 4179 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4180 "rbd", "get_snapcontext", NULL, 0, 4181 reply_buf, size); 4182 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4183 if (ret < 0) 4184 goto out; 4185 4186 p = reply_buf; 4187 end = reply_buf + ret; 4188 ret = -ERANGE; 4189 ceph_decode_64_safe(&p, end, seq, out); 4190 ceph_decode_32_safe(&p, end, snap_count, out); 4191 4192 /* 4193 * Make sure the reported number of snapshot ids wouldn't go 4194 * beyond the end of our buffer. But before checking that, 4195 * make sure the computed size of the snapshot context we 4196 * allocate is representable in a size_t. 4197 */ 4198 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4199 / sizeof (u64)) { 4200 ret = -EINVAL; 4201 goto out; 4202 } 4203 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4204 goto out; 4205 ret = 0; 4206 4207 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4208 if (!snapc) { 4209 ret = -ENOMEM; 4210 goto out; 4211 } 4212 snapc->seq = seq; 4213 for (i = 0; i < snap_count; i++) 4214 snapc->snaps[i] = ceph_decode_64(&p); 4215 4216 ceph_put_snap_context(rbd_dev->header.snapc); 4217 rbd_dev->header.snapc = snapc; 4218 4219 dout(" snap context seq = %llu, snap_count = %u\n", 4220 (unsigned long long)seq, (unsigned int)snap_count); 4221 out: 4222 kfree(reply_buf); 4223 4224 return ret; 4225 } 4226 4227 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4228 u64 snap_id) 4229 { 4230 size_t size; 4231 void *reply_buf; 4232 __le64 snapid; 4233 int ret; 4234 void *p; 4235 void *end; 4236 char *snap_name; 4237 4238 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4239 reply_buf = kmalloc(size, GFP_KERNEL); 4240 if (!reply_buf) 4241 return ERR_PTR(-ENOMEM); 4242 4243 snapid = cpu_to_le64(snap_id); 4244 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4245 "rbd", "get_snapshot_name", 4246 &snapid, sizeof (snapid), 4247 reply_buf, size); 4248 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4249 if (ret < 0) { 4250 snap_name = ERR_PTR(ret); 4251 goto out; 4252 } 4253 4254 p = reply_buf; 4255 end = reply_buf + ret; 4256 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4257 if (IS_ERR(snap_name)) 4258 goto out; 4259 4260 dout(" snap_id 0x%016llx snap_name = %s\n", 4261 (unsigned long long)snap_id, snap_name); 4262 out: 4263 kfree(reply_buf); 4264 4265 return snap_name; 4266 } 4267 4268 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4269 { 4270 bool first_time = rbd_dev->header.object_prefix == NULL; 4271 int ret; 4272 4273 ret = rbd_dev_v2_image_size(rbd_dev); 4274 if (ret) 4275 return ret; 4276 4277 if (first_time) { 4278 ret = rbd_dev_v2_header_onetime(rbd_dev); 4279 if (ret) 4280 return ret; 4281 } 4282 4283 /* 4284 * If the image supports layering, get the parent info. We 4285 * need to probe the first time regardless. Thereafter we 4286 * only need to if there's a parent, to see if it has 4287 * disappeared due to the mapped image getting flattened. 4288 */ 4289 if (rbd_dev->header.features & RBD_FEATURE_LAYERING && 4290 (first_time || rbd_dev->parent_spec)) { 4291 bool warn; 4292 4293 ret = rbd_dev_v2_parent_info(rbd_dev); 4294 if (ret) 4295 return ret; 4296 4297 /* 4298 * Print a warning if this is the initial probe and 4299 * the image has a parent. Don't print it if the 4300 * image now being probed is itself a parent. We 4301 * can tell at this point because we won't know its 4302 * pool name yet (just its pool id). 4303 */ 4304 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name; 4305 if (first_time && warn) 4306 rbd_warn(rbd_dev, "WARNING: kernel layering " 4307 "is EXPERIMENTAL!"); 4308 } 4309 4310 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) 4311 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 4312 rbd_dev->mapping.size = rbd_dev->header.image_size; 4313 4314 ret = rbd_dev_v2_snap_context(rbd_dev); 4315 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4316 4317 return ret; 4318 } 4319 4320 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4321 { 4322 struct device *dev; 4323 int ret; 4324 4325 dev = &rbd_dev->dev; 4326 dev->bus = &rbd_bus_type; 4327 dev->type = &rbd_device_type; 4328 dev->parent = &rbd_root_dev; 4329 dev->release = rbd_dev_device_release; 4330 dev_set_name(dev, "%d", rbd_dev->dev_id); 4331 ret = device_register(dev); 4332 4333 return ret; 4334 } 4335 4336 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4337 { 4338 device_unregister(&rbd_dev->dev); 4339 } 4340 4341 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0); 4342 4343 /* 4344 * Get a unique rbd identifier for the given new rbd_dev, and add 4345 * the rbd_dev to the global list. The minimum rbd id is 1. 4346 */ 4347 static void rbd_dev_id_get(struct rbd_device *rbd_dev) 4348 { 4349 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max); 4350 4351 spin_lock(&rbd_dev_list_lock); 4352 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4353 spin_unlock(&rbd_dev_list_lock); 4354 dout("rbd_dev %p given dev id %llu\n", rbd_dev, 4355 (unsigned long long) rbd_dev->dev_id); 4356 } 4357 4358 /* 4359 * Remove an rbd_dev from the global list, and record that its 4360 * identifier is no longer in use. 4361 */ 4362 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4363 { 4364 struct list_head *tmp; 4365 int rbd_id = rbd_dev->dev_id; 4366 int max_id; 4367 4368 rbd_assert(rbd_id > 0); 4369 4370 dout("rbd_dev %p released dev id %llu\n", rbd_dev, 4371 (unsigned long long) rbd_dev->dev_id); 4372 spin_lock(&rbd_dev_list_lock); 4373 list_del_init(&rbd_dev->node); 4374 4375 /* 4376 * If the id being "put" is not the current maximum, there 4377 * is nothing special we need to do. 4378 */ 4379 if (rbd_id != atomic64_read(&rbd_dev_id_max)) { 4380 spin_unlock(&rbd_dev_list_lock); 4381 return; 4382 } 4383 4384 /* 4385 * We need to update the current maximum id. Search the 4386 * list to find out what it is. We're more likely to find 4387 * the maximum at the end, so search the list backward. 4388 */ 4389 max_id = 0; 4390 list_for_each_prev(tmp, &rbd_dev_list) { 4391 struct rbd_device *rbd_dev; 4392 4393 rbd_dev = list_entry(tmp, struct rbd_device, node); 4394 if (rbd_dev->dev_id > max_id) 4395 max_id = rbd_dev->dev_id; 4396 } 4397 spin_unlock(&rbd_dev_list_lock); 4398 4399 /* 4400 * The max id could have been updated by rbd_dev_id_get(), in 4401 * which case it now accurately reflects the new maximum. 4402 * Be careful not to overwrite the maximum value in that 4403 * case. 4404 */ 4405 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id); 4406 dout(" max dev id has been reset\n"); 4407 } 4408 4409 /* 4410 * Skips over white space at *buf, and updates *buf to point to the 4411 * first found non-space character (if any). Returns the length of 4412 * the token (string of non-white space characters) found. Note 4413 * that *buf must be terminated with '\0'. 4414 */ 4415 static inline size_t next_token(const char **buf) 4416 { 4417 /* 4418 * These are the characters that produce nonzero for 4419 * isspace() in the "C" and "POSIX" locales. 4420 */ 4421 const char *spaces = " \f\n\r\t\v"; 4422 4423 *buf += strspn(*buf, spaces); /* Find start of token */ 4424 4425 return strcspn(*buf, spaces); /* Return token length */ 4426 } 4427 4428 /* 4429 * Finds the next token in *buf, and if the provided token buffer is 4430 * big enough, copies the found token into it. The result, if 4431 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4432 * must be terminated with '\0' on entry. 4433 * 4434 * Returns the length of the token found (not including the '\0'). 4435 * Return value will be 0 if no token is found, and it will be >= 4436 * token_size if the token would not fit. 4437 * 4438 * The *buf pointer will be updated to point beyond the end of the 4439 * found token. Note that this occurs even if the token buffer is 4440 * too small to hold it. 4441 */ 4442 static inline size_t copy_token(const char **buf, 4443 char *token, 4444 size_t token_size) 4445 { 4446 size_t len; 4447 4448 len = next_token(buf); 4449 if (len < token_size) { 4450 memcpy(token, *buf, len); 4451 *(token + len) = '\0'; 4452 } 4453 *buf += len; 4454 4455 return len; 4456 } 4457 4458 /* 4459 * Finds the next token in *buf, dynamically allocates a buffer big 4460 * enough to hold a copy of it, and copies the token into the new 4461 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4462 * that a duplicate buffer is created even for a zero-length token. 4463 * 4464 * Returns a pointer to the newly-allocated duplicate, or a null 4465 * pointer if memory for the duplicate was not available. If 4466 * the lenp argument is a non-null pointer, the length of the token 4467 * (not including the '\0') is returned in *lenp. 4468 * 4469 * If successful, the *buf pointer will be updated to point beyond 4470 * the end of the found token. 4471 * 4472 * Note: uses GFP_KERNEL for allocation. 4473 */ 4474 static inline char *dup_token(const char **buf, size_t *lenp) 4475 { 4476 char *dup; 4477 size_t len; 4478 4479 len = next_token(buf); 4480 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4481 if (!dup) 4482 return NULL; 4483 *(dup + len) = '\0'; 4484 *buf += len; 4485 4486 if (lenp) 4487 *lenp = len; 4488 4489 return dup; 4490 } 4491 4492 /* 4493 * Parse the options provided for an "rbd add" (i.e., rbd image 4494 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4495 * and the data written is passed here via a NUL-terminated buffer. 4496 * Returns 0 if successful or an error code otherwise. 4497 * 4498 * The information extracted from these options is recorded in 4499 * the other parameters which return dynamically-allocated 4500 * structures: 4501 * ceph_opts 4502 * The address of a pointer that will refer to a ceph options 4503 * structure. Caller must release the returned pointer using 4504 * ceph_destroy_options() when it is no longer needed. 4505 * rbd_opts 4506 * Address of an rbd options pointer. Fully initialized by 4507 * this function; caller must release with kfree(). 4508 * spec 4509 * Address of an rbd image specification pointer. Fully 4510 * initialized by this function based on parsed options. 4511 * Caller must release with rbd_spec_put(). 4512 * 4513 * The options passed take this form: 4514 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4515 * where: 4516 * <mon_addrs> 4517 * A comma-separated list of one or more monitor addresses. 4518 * A monitor address is an ip address, optionally followed 4519 * by a port number (separated by a colon). 4520 * I.e.: ip1[:port1][,ip2[:port2]...] 4521 * <options> 4522 * A comma-separated list of ceph and/or rbd options. 4523 * <pool_name> 4524 * The name of the rados pool containing the rbd image. 4525 * <image_name> 4526 * The name of the image in that pool to map. 4527 * <snap_id> 4528 * An optional snapshot id. If provided, the mapping will 4529 * present data from the image at the time that snapshot was 4530 * created. The image head is used if no snapshot id is 4531 * provided. Snapshot mappings are always read-only. 4532 */ 4533 static int rbd_add_parse_args(const char *buf, 4534 struct ceph_options **ceph_opts, 4535 struct rbd_options **opts, 4536 struct rbd_spec **rbd_spec) 4537 { 4538 size_t len; 4539 char *options; 4540 const char *mon_addrs; 4541 char *snap_name; 4542 size_t mon_addrs_size; 4543 struct rbd_spec *spec = NULL; 4544 struct rbd_options *rbd_opts = NULL; 4545 struct ceph_options *copts; 4546 int ret; 4547 4548 /* The first four tokens are required */ 4549 4550 len = next_token(&buf); 4551 if (!len) { 4552 rbd_warn(NULL, "no monitor address(es) provided"); 4553 return -EINVAL; 4554 } 4555 mon_addrs = buf; 4556 mon_addrs_size = len + 1; 4557 buf += len; 4558 4559 ret = -EINVAL; 4560 options = dup_token(&buf, NULL); 4561 if (!options) 4562 return -ENOMEM; 4563 if (!*options) { 4564 rbd_warn(NULL, "no options provided"); 4565 goto out_err; 4566 } 4567 4568 spec = rbd_spec_alloc(); 4569 if (!spec) 4570 goto out_mem; 4571 4572 spec->pool_name = dup_token(&buf, NULL); 4573 if (!spec->pool_name) 4574 goto out_mem; 4575 if (!*spec->pool_name) { 4576 rbd_warn(NULL, "no pool name provided"); 4577 goto out_err; 4578 } 4579 4580 spec->image_name = dup_token(&buf, NULL); 4581 if (!spec->image_name) 4582 goto out_mem; 4583 if (!*spec->image_name) { 4584 rbd_warn(NULL, "no image name provided"); 4585 goto out_err; 4586 } 4587 4588 /* 4589 * Snapshot name is optional; default is to use "-" 4590 * (indicating the head/no snapshot). 4591 */ 4592 len = next_token(&buf); 4593 if (!len) { 4594 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4595 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4596 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4597 ret = -ENAMETOOLONG; 4598 goto out_err; 4599 } 4600 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4601 if (!snap_name) 4602 goto out_mem; 4603 *(snap_name + len) = '\0'; 4604 spec->snap_name = snap_name; 4605 4606 /* Initialize all rbd options to the defaults */ 4607 4608 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4609 if (!rbd_opts) 4610 goto out_mem; 4611 4612 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4613 4614 copts = ceph_parse_options(options, mon_addrs, 4615 mon_addrs + mon_addrs_size - 1, 4616 parse_rbd_opts_token, rbd_opts); 4617 if (IS_ERR(copts)) { 4618 ret = PTR_ERR(copts); 4619 goto out_err; 4620 } 4621 kfree(options); 4622 4623 *ceph_opts = copts; 4624 *opts = rbd_opts; 4625 *rbd_spec = spec; 4626 4627 return 0; 4628 out_mem: 4629 ret = -ENOMEM; 4630 out_err: 4631 kfree(rbd_opts); 4632 rbd_spec_put(spec); 4633 kfree(options); 4634 4635 return ret; 4636 } 4637 4638 /* 4639 * An rbd format 2 image has a unique identifier, distinct from the 4640 * name given to it by the user. Internally, that identifier is 4641 * what's used to specify the names of objects related to the image. 4642 * 4643 * A special "rbd id" object is used to map an rbd image name to its 4644 * id. If that object doesn't exist, then there is no v2 rbd image 4645 * with the supplied name. 4646 * 4647 * This function will record the given rbd_dev's image_id field if 4648 * it can be determined, and in that case will return 0. If any 4649 * errors occur a negative errno will be returned and the rbd_dev's 4650 * image_id field will be unchanged (and should be NULL). 4651 */ 4652 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4653 { 4654 int ret; 4655 size_t size; 4656 char *object_name; 4657 void *response; 4658 char *image_id; 4659 4660 /* 4661 * When probing a parent image, the image id is already 4662 * known (and the image name likely is not). There's no 4663 * need to fetch the image id again in this case. We 4664 * do still need to set the image format though. 4665 */ 4666 if (rbd_dev->spec->image_id) { 4667 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4668 4669 return 0; 4670 } 4671 4672 /* 4673 * First, see if the format 2 image id file exists, and if 4674 * so, get the image's persistent id from it. 4675 */ 4676 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4677 object_name = kmalloc(size, GFP_NOIO); 4678 if (!object_name) 4679 return -ENOMEM; 4680 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4681 dout("rbd id object name is %s\n", object_name); 4682 4683 /* Response will be an encoded string, which includes a length */ 4684 4685 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4686 response = kzalloc(size, GFP_NOIO); 4687 if (!response) { 4688 ret = -ENOMEM; 4689 goto out; 4690 } 4691 4692 /* If it doesn't exist we'll assume it's a format 1 image */ 4693 4694 ret = rbd_obj_method_sync(rbd_dev, object_name, 4695 "rbd", "get_id", NULL, 0, 4696 response, RBD_IMAGE_ID_LEN_MAX); 4697 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4698 if (ret == -ENOENT) { 4699 image_id = kstrdup("", GFP_KERNEL); 4700 ret = image_id ? 0 : -ENOMEM; 4701 if (!ret) 4702 rbd_dev->image_format = 1; 4703 } else if (ret > sizeof (__le32)) { 4704 void *p = response; 4705 4706 image_id = ceph_extract_encoded_string(&p, p + ret, 4707 NULL, GFP_NOIO); 4708 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0; 4709 if (!ret) 4710 rbd_dev->image_format = 2; 4711 } else { 4712 ret = -EINVAL; 4713 } 4714 4715 if (!ret) { 4716 rbd_dev->spec->image_id = image_id; 4717 dout("image_id is %s\n", image_id); 4718 } 4719 out: 4720 kfree(response); 4721 kfree(object_name); 4722 4723 return ret; 4724 } 4725 4726 /* 4727 * Undo whatever state changes are made by v1 or v2 header info 4728 * call. 4729 */ 4730 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4731 { 4732 struct rbd_image_header *header; 4733 4734 /* Drop parent reference unless it's already been done (or none) */ 4735 4736 if (rbd_dev->parent_overlap) 4737 rbd_dev_parent_put(rbd_dev); 4738 4739 /* Free dynamic fields from the header, then zero it out */ 4740 4741 header = &rbd_dev->header; 4742 ceph_put_snap_context(header->snapc); 4743 kfree(header->snap_sizes); 4744 kfree(header->snap_names); 4745 kfree(header->object_prefix); 4746 memset(header, 0, sizeof (*header)); 4747 } 4748 4749 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 4750 { 4751 int ret; 4752 4753 ret = rbd_dev_v2_object_prefix(rbd_dev); 4754 if (ret) 4755 goto out_err; 4756 4757 /* 4758 * Get the and check features for the image. Currently the 4759 * features are assumed to never change. 4760 */ 4761 ret = rbd_dev_v2_features(rbd_dev); 4762 if (ret) 4763 goto out_err; 4764 4765 /* If the image supports fancy striping, get its parameters */ 4766 4767 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4768 ret = rbd_dev_v2_striping_info(rbd_dev); 4769 if (ret < 0) 4770 goto out_err; 4771 } 4772 /* No support for crypto and compression type format 2 images */ 4773 4774 return 0; 4775 out_err: 4776 rbd_dev->header.features = 0; 4777 kfree(rbd_dev->header.object_prefix); 4778 rbd_dev->header.object_prefix = NULL; 4779 4780 return ret; 4781 } 4782 4783 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 4784 { 4785 struct rbd_device *parent = NULL; 4786 struct rbd_spec *parent_spec; 4787 struct rbd_client *rbdc; 4788 int ret; 4789 4790 if (!rbd_dev->parent_spec) 4791 return 0; 4792 /* 4793 * We need to pass a reference to the client and the parent 4794 * spec when creating the parent rbd_dev. Images related by 4795 * parent/child relationships always share both. 4796 */ 4797 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 4798 rbdc = __rbd_get_client(rbd_dev->rbd_client); 4799 4800 ret = -ENOMEM; 4801 parent = rbd_dev_create(rbdc, parent_spec); 4802 if (!parent) 4803 goto out_err; 4804 4805 ret = rbd_dev_image_probe(parent, false); 4806 if (ret < 0) 4807 goto out_err; 4808 rbd_dev->parent = parent; 4809 atomic_set(&rbd_dev->parent_ref, 1); 4810 4811 return 0; 4812 out_err: 4813 if (parent) { 4814 rbd_dev_unparent(rbd_dev); 4815 kfree(rbd_dev->header_name); 4816 rbd_dev_destroy(parent); 4817 } else { 4818 rbd_put_client(rbdc); 4819 rbd_spec_put(parent_spec); 4820 } 4821 4822 return ret; 4823 } 4824 4825 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 4826 { 4827 int ret; 4828 4829 /* generate unique id: find highest unique id, add one */ 4830 rbd_dev_id_get(rbd_dev); 4831 4832 /* Fill in the device name, now that we have its id. */ 4833 BUILD_BUG_ON(DEV_NAME_LEN 4834 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 4835 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 4836 4837 /* Get our block major device number. */ 4838 4839 ret = register_blkdev(0, rbd_dev->name); 4840 if (ret < 0) 4841 goto err_out_id; 4842 rbd_dev->major = ret; 4843 4844 /* Set up the blkdev mapping. */ 4845 4846 ret = rbd_init_disk(rbd_dev); 4847 if (ret) 4848 goto err_out_blkdev; 4849 4850 ret = rbd_dev_mapping_set(rbd_dev); 4851 if (ret) 4852 goto err_out_disk; 4853 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 4854 4855 ret = rbd_bus_add_dev(rbd_dev); 4856 if (ret) 4857 goto err_out_mapping; 4858 4859 /* Everything's ready. Announce the disk to the world. */ 4860 4861 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4862 add_disk(rbd_dev->disk); 4863 4864 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 4865 (unsigned long long) rbd_dev->mapping.size); 4866 4867 return ret; 4868 4869 err_out_mapping: 4870 rbd_dev_mapping_clear(rbd_dev); 4871 err_out_disk: 4872 rbd_free_disk(rbd_dev); 4873 err_out_blkdev: 4874 unregister_blkdev(rbd_dev->major, rbd_dev->name); 4875 err_out_id: 4876 rbd_dev_id_put(rbd_dev); 4877 rbd_dev_mapping_clear(rbd_dev); 4878 4879 return ret; 4880 } 4881 4882 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 4883 { 4884 struct rbd_spec *spec = rbd_dev->spec; 4885 size_t size; 4886 4887 /* Record the header object name for this rbd image. */ 4888 4889 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4890 4891 if (rbd_dev->image_format == 1) 4892 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 4893 else 4894 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 4895 4896 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 4897 if (!rbd_dev->header_name) 4898 return -ENOMEM; 4899 4900 if (rbd_dev->image_format == 1) 4901 sprintf(rbd_dev->header_name, "%s%s", 4902 spec->image_name, RBD_SUFFIX); 4903 else 4904 sprintf(rbd_dev->header_name, "%s%s", 4905 RBD_HEADER_PREFIX, spec->image_id); 4906 return 0; 4907 } 4908 4909 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 4910 { 4911 rbd_dev_unprobe(rbd_dev); 4912 kfree(rbd_dev->header_name); 4913 rbd_dev->header_name = NULL; 4914 rbd_dev->image_format = 0; 4915 kfree(rbd_dev->spec->image_id); 4916 rbd_dev->spec->image_id = NULL; 4917 4918 rbd_dev_destroy(rbd_dev); 4919 } 4920 4921 /* 4922 * Probe for the existence of the header object for the given rbd 4923 * device. If this image is the one being mapped (i.e., not a 4924 * parent), initiate a watch on its header object before using that 4925 * object to get detailed information about the rbd image. 4926 */ 4927 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 4928 { 4929 int ret; 4930 int tmp; 4931 4932 /* 4933 * Get the id from the image id object. Unless there's an 4934 * error, rbd_dev->spec->image_id will be filled in with 4935 * a dynamically-allocated string, and rbd_dev->image_format 4936 * will be set to either 1 or 2. 4937 */ 4938 ret = rbd_dev_image_id(rbd_dev); 4939 if (ret) 4940 return ret; 4941 rbd_assert(rbd_dev->spec->image_id); 4942 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4943 4944 ret = rbd_dev_header_name(rbd_dev); 4945 if (ret) 4946 goto err_out_format; 4947 4948 if (mapping) { 4949 ret = rbd_dev_header_watch_sync(rbd_dev, true); 4950 if (ret) 4951 goto out_header_name; 4952 } 4953 4954 if (rbd_dev->image_format == 1) 4955 ret = rbd_dev_v1_header_info(rbd_dev); 4956 else 4957 ret = rbd_dev_v2_header_info(rbd_dev); 4958 if (ret) 4959 goto err_out_watch; 4960 4961 ret = rbd_dev_spec_update(rbd_dev); 4962 if (ret) 4963 goto err_out_probe; 4964 4965 ret = rbd_dev_probe_parent(rbd_dev); 4966 if (ret) 4967 goto err_out_probe; 4968 4969 dout("discovered format %u image, header name is %s\n", 4970 rbd_dev->image_format, rbd_dev->header_name); 4971 4972 return 0; 4973 err_out_probe: 4974 rbd_dev_unprobe(rbd_dev); 4975 err_out_watch: 4976 if (mapping) { 4977 tmp = rbd_dev_header_watch_sync(rbd_dev, false); 4978 if (tmp) 4979 rbd_warn(rbd_dev, "unable to tear down " 4980 "watch request (%d)\n", tmp); 4981 } 4982 out_header_name: 4983 kfree(rbd_dev->header_name); 4984 rbd_dev->header_name = NULL; 4985 err_out_format: 4986 rbd_dev->image_format = 0; 4987 kfree(rbd_dev->spec->image_id); 4988 rbd_dev->spec->image_id = NULL; 4989 4990 dout("probe failed, returning %d\n", ret); 4991 4992 return ret; 4993 } 4994 4995 static ssize_t rbd_add(struct bus_type *bus, 4996 const char *buf, 4997 size_t count) 4998 { 4999 struct rbd_device *rbd_dev = NULL; 5000 struct ceph_options *ceph_opts = NULL; 5001 struct rbd_options *rbd_opts = NULL; 5002 struct rbd_spec *spec = NULL; 5003 struct rbd_client *rbdc; 5004 struct ceph_osd_client *osdc; 5005 bool read_only; 5006 int rc = -ENOMEM; 5007 5008 if (!try_module_get(THIS_MODULE)) 5009 return -ENODEV; 5010 5011 /* parse add command */ 5012 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5013 if (rc < 0) 5014 goto err_out_module; 5015 read_only = rbd_opts->read_only; 5016 kfree(rbd_opts); 5017 rbd_opts = NULL; /* done with this */ 5018 5019 rbdc = rbd_get_client(ceph_opts); 5020 if (IS_ERR(rbdc)) { 5021 rc = PTR_ERR(rbdc); 5022 goto err_out_args; 5023 } 5024 5025 /* pick the pool */ 5026 osdc = &rbdc->client->osdc; 5027 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name); 5028 if (rc < 0) 5029 goto err_out_client; 5030 spec->pool_id = (u64)rc; 5031 5032 /* The ceph file layout needs to fit pool id in 32 bits */ 5033 5034 if (spec->pool_id > (u64)U32_MAX) { 5035 rbd_warn(NULL, "pool id too large (%llu > %u)\n", 5036 (unsigned long long)spec->pool_id, U32_MAX); 5037 rc = -EIO; 5038 goto err_out_client; 5039 } 5040 5041 rbd_dev = rbd_dev_create(rbdc, spec); 5042 if (!rbd_dev) 5043 goto err_out_client; 5044 rbdc = NULL; /* rbd_dev now owns this */ 5045 spec = NULL; /* rbd_dev now owns this */ 5046 5047 rc = rbd_dev_image_probe(rbd_dev, true); 5048 if (rc < 0) 5049 goto err_out_rbd_dev; 5050 5051 /* If we are mapping a snapshot it must be marked read-only */ 5052 5053 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5054 read_only = true; 5055 rbd_dev->mapping.read_only = read_only; 5056 5057 rc = rbd_dev_device_setup(rbd_dev); 5058 if (rc) { 5059 rbd_dev_image_release(rbd_dev); 5060 goto err_out_module; 5061 } 5062 5063 return count; 5064 5065 err_out_rbd_dev: 5066 rbd_dev_destroy(rbd_dev); 5067 err_out_client: 5068 rbd_put_client(rbdc); 5069 err_out_args: 5070 rbd_spec_put(spec); 5071 err_out_module: 5072 module_put(THIS_MODULE); 5073 5074 dout("Error adding device %s\n", buf); 5075 5076 return (ssize_t)rc; 5077 } 5078 5079 static void rbd_dev_device_release(struct device *dev) 5080 { 5081 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5082 5083 rbd_free_disk(rbd_dev); 5084 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5085 rbd_dev_mapping_clear(rbd_dev); 5086 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5087 rbd_dev->major = 0; 5088 rbd_dev_id_put(rbd_dev); 5089 rbd_dev_mapping_clear(rbd_dev); 5090 } 5091 5092 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5093 { 5094 while (rbd_dev->parent) { 5095 struct rbd_device *first = rbd_dev; 5096 struct rbd_device *second = first->parent; 5097 struct rbd_device *third; 5098 5099 /* 5100 * Follow to the parent with no grandparent and 5101 * remove it. 5102 */ 5103 while (second && (third = second->parent)) { 5104 first = second; 5105 second = third; 5106 } 5107 rbd_assert(second); 5108 rbd_dev_image_release(second); 5109 first->parent = NULL; 5110 first->parent_overlap = 0; 5111 5112 rbd_assert(first->parent_spec); 5113 rbd_spec_put(first->parent_spec); 5114 first->parent_spec = NULL; 5115 } 5116 } 5117 5118 static ssize_t rbd_remove(struct bus_type *bus, 5119 const char *buf, 5120 size_t count) 5121 { 5122 struct rbd_device *rbd_dev = NULL; 5123 struct list_head *tmp; 5124 int dev_id; 5125 unsigned long ul; 5126 bool already = false; 5127 int ret; 5128 5129 ret = strict_strtoul(buf, 10, &ul); 5130 if (ret) 5131 return ret; 5132 5133 /* convert to int; abort if we lost anything in the conversion */ 5134 dev_id = (int)ul; 5135 if (dev_id != ul) 5136 return -EINVAL; 5137 5138 ret = -ENOENT; 5139 spin_lock(&rbd_dev_list_lock); 5140 list_for_each(tmp, &rbd_dev_list) { 5141 rbd_dev = list_entry(tmp, struct rbd_device, node); 5142 if (rbd_dev->dev_id == dev_id) { 5143 ret = 0; 5144 break; 5145 } 5146 } 5147 if (!ret) { 5148 spin_lock_irq(&rbd_dev->lock); 5149 if (rbd_dev->open_count) 5150 ret = -EBUSY; 5151 else 5152 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5153 &rbd_dev->flags); 5154 spin_unlock_irq(&rbd_dev->lock); 5155 } 5156 spin_unlock(&rbd_dev_list_lock); 5157 if (ret < 0 || already) 5158 return ret; 5159 5160 rbd_bus_del_dev(rbd_dev); 5161 ret = rbd_dev_header_watch_sync(rbd_dev, false); 5162 if (ret) 5163 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret); 5164 rbd_dev_image_release(rbd_dev); 5165 module_put(THIS_MODULE); 5166 5167 return count; 5168 } 5169 5170 /* 5171 * create control files in sysfs 5172 * /sys/bus/rbd/... 5173 */ 5174 static int rbd_sysfs_init(void) 5175 { 5176 int ret; 5177 5178 ret = device_register(&rbd_root_dev); 5179 if (ret < 0) 5180 return ret; 5181 5182 ret = bus_register(&rbd_bus_type); 5183 if (ret < 0) 5184 device_unregister(&rbd_root_dev); 5185 5186 return ret; 5187 } 5188 5189 static void rbd_sysfs_cleanup(void) 5190 { 5191 bus_unregister(&rbd_bus_type); 5192 device_unregister(&rbd_root_dev); 5193 } 5194 5195 static int rbd_slab_init(void) 5196 { 5197 rbd_assert(!rbd_img_request_cache); 5198 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5199 sizeof (struct rbd_img_request), 5200 __alignof__(struct rbd_img_request), 5201 0, NULL); 5202 if (!rbd_img_request_cache) 5203 return -ENOMEM; 5204 5205 rbd_assert(!rbd_obj_request_cache); 5206 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5207 sizeof (struct rbd_obj_request), 5208 __alignof__(struct rbd_obj_request), 5209 0, NULL); 5210 if (!rbd_obj_request_cache) 5211 goto out_err; 5212 5213 rbd_assert(!rbd_segment_name_cache); 5214 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5215 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL); 5216 if (rbd_segment_name_cache) 5217 return 0; 5218 out_err: 5219 if (rbd_obj_request_cache) { 5220 kmem_cache_destroy(rbd_obj_request_cache); 5221 rbd_obj_request_cache = NULL; 5222 } 5223 5224 kmem_cache_destroy(rbd_img_request_cache); 5225 rbd_img_request_cache = NULL; 5226 5227 return -ENOMEM; 5228 } 5229 5230 static void rbd_slab_exit(void) 5231 { 5232 rbd_assert(rbd_segment_name_cache); 5233 kmem_cache_destroy(rbd_segment_name_cache); 5234 rbd_segment_name_cache = NULL; 5235 5236 rbd_assert(rbd_obj_request_cache); 5237 kmem_cache_destroy(rbd_obj_request_cache); 5238 rbd_obj_request_cache = NULL; 5239 5240 rbd_assert(rbd_img_request_cache); 5241 kmem_cache_destroy(rbd_img_request_cache); 5242 rbd_img_request_cache = NULL; 5243 } 5244 5245 static int __init rbd_init(void) 5246 { 5247 int rc; 5248 5249 if (!libceph_compatible(NULL)) { 5250 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5251 5252 return -EINVAL; 5253 } 5254 rc = rbd_slab_init(); 5255 if (rc) 5256 return rc; 5257 rc = rbd_sysfs_init(); 5258 if (rc) 5259 rbd_slab_exit(); 5260 else 5261 pr_info("loaded " RBD_DRV_NAME_LONG "\n"); 5262 5263 return rc; 5264 } 5265 5266 static void __exit rbd_exit(void) 5267 { 5268 rbd_sysfs_cleanup(); 5269 rbd_slab_exit(); 5270 } 5271 5272 module_init(rbd_init); 5273 module_exit(rbd_exit); 5274 5275 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5276 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5277 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5278 MODULE_DESCRIPTION("rados block device"); 5279 5280 /* following authorship retained from original osdblk.c */ 5281 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5282 5283 MODULE_LICENSE("GPL"); 5284