xref: /openbmc/linux/drivers/block/rbd.c (revision 5104d265)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 
45 #include "rbd_types.h"
46 
47 #define RBD_DEBUG	/* Activate rbd_assert() calls */
48 
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define	SECTOR_SHIFT	9
56 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
57 
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 	unsigned int counter;
67 
68 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 	if (counter <= (unsigned int)INT_MAX)
70 		return (int)counter;
71 
72 	atomic_dec(v);
73 
74 	return -EINVAL;
75 }
76 
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 	int counter;
81 
82 	counter = atomic_dec_return(v);
83 	if (counter >= 0)
84 		return counter;
85 
86 	atomic_inc(v);
87 
88 	return -EINVAL;
89 }
90 
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93 
94 #define RBD_MINORS_PER_MAJOR	256		/* max minors per blkdev */
95 
96 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
97 #define RBD_MAX_SNAP_NAME_LEN	\
98 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99 
100 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
101 
102 #define RBD_SNAP_HEAD_NAME	"-"
103 
104 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
105 
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX	64
109 
110 #define RBD_OBJ_PREFIX_LEN_MAX	64
111 
112 /* Feature bits */
113 
114 #define RBD_FEATURE_LAYERING	(1<<0)
115 #define RBD_FEATURE_STRIPINGV2	(1<<1)
116 #define RBD_FEATURES_ALL \
117 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118 
119 /* Features supported by this (client software) implementation. */
120 
121 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
122 
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN		32
130 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
131 
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136 	/* These six fields never change for a given rbd image */
137 	char *object_prefix;
138 	__u8 obj_order;
139 	__u8 crypt_type;
140 	__u8 comp_type;
141 	u64 stripe_unit;
142 	u64 stripe_count;
143 	u64 features;		/* Might be changeable someday? */
144 
145 	/* The remaining fields need to be updated occasionally */
146 	u64 image_size;
147 	struct ceph_snap_context *snapc;
148 	char *snap_names;	/* format 1 only */
149 	u64 *snap_sizes;	/* format 1 only */
150 };
151 
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178 	u64		pool_id;
179 	const char	*pool_name;
180 
181 	const char	*image_id;
182 	const char	*image_name;
183 
184 	u64		snap_id;
185 	const char	*snap_name;
186 
187 	struct kref	kref;
188 };
189 
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194 	struct ceph_client	*client;
195 	struct kref		kref;
196 	struct list_head	node;
197 };
198 
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201 
202 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
203 
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206 
207 enum obj_request_type {
208 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210 
211 enum obj_req_flags {
212 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
213 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
214 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
215 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
216 };
217 
218 struct rbd_obj_request {
219 	const char		*object_name;
220 	u64			offset;		/* object start byte */
221 	u64			length;		/* bytes from offset */
222 	unsigned long		flags;
223 
224 	/*
225 	 * An object request associated with an image will have its
226 	 * img_data flag set; a standalone object request will not.
227 	 *
228 	 * A standalone object request will have which == BAD_WHICH
229 	 * and a null obj_request pointer.
230 	 *
231 	 * An object request initiated in support of a layered image
232 	 * object (to check for its existence before a write) will
233 	 * have which == BAD_WHICH and a non-null obj_request pointer.
234 	 *
235 	 * Finally, an object request for rbd image data will have
236 	 * which != BAD_WHICH, and will have a non-null img_request
237 	 * pointer.  The value of which will be in the range
238 	 * 0..(img_request->obj_request_count-1).
239 	 */
240 	union {
241 		struct rbd_obj_request	*obj_request;	/* STAT op */
242 		struct {
243 			struct rbd_img_request	*img_request;
244 			u64			img_offset;
245 			/* links for img_request->obj_requests list */
246 			struct list_head	links;
247 		};
248 	};
249 	u32			which;		/* posn image request list */
250 
251 	enum obj_request_type	type;
252 	union {
253 		struct bio	*bio_list;
254 		struct {
255 			struct page	**pages;
256 			u32		page_count;
257 		};
258 	};
259 	struct page		**copyup_pages;
260 	u32			copyup_page_count;
261 
262 	struct ceph_osd_request	*osd_req;
263 
264 	u64			xferred;	/* bytes transferred */
265 	int			result;
266 
267 	rbd_obj_callback_t	callback;
268 	struct completion	completion;
269 
270 	struct kref		kref;
271 };
272 
273 enum img_req_flags {
274 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
275 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
276 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
277 };
278 
279 struct rbd_img_request {
280 	struct rbd_device	*rbd_dev;
281 	u64			offset;	/* starting image byte offset */
282 	u64			length;	/* byte count from offset */
283 	unsigned long		flags;
284 	union {
285 		u64			snap_id;	/* for reads */
286 		struct ceph_snap_context *snapc;	/* for writes */
287 	};
288 	union {
289 		struct request		*rq;		/* block request */
290 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
291 	};
292 	struct page		**copyup_pages;
293 	u32			copyup_page_count;
294 	spinlock_t		completion_lock;/* protects next_completion */
295 	u32			next_completion;
296 	rbd_img_callback_t	callback;
297 	u64			xferred;/* aggregate bytes transferred */
298 	int			result;	/* first nonzero obj_request result */
299 
300 	u32			obj_request_count;
301 	struct list_head	obj_requests;	/* rbd_obj_request structs */
302 
303 	struct kref		kref;
304 };
305 
306 #define for_each_obj_request(ireq, oreq) \
307 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312 
313 struct rbd_mapping {
314 	u64                     size;
315 	u64                     features;
316 	bool			read_only;
317 };
318 
319 /*
320  * a single device
321  */
322 struct rbd_device {
323 	int			dev_id;		/* blkdev unique id */
324 
325 	int			major;		/* blkdev assigned major */
326 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
327 
328 	u32			image_format;	/* Either 1 or 2 */
329 	struct rbd_client	*rbd_client;
330 
331 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332 
333 	spinlock_t		lock;		/* queue, flags, open_count */
334 
335 	struct rbd_image_header	header;
336 	unsigned long		flags;		/* possibly lock protected */
337 	struct rbd_spec		*spec;
338 
339 	char			*header_name;
340 
341 	struct ceph_file_layout	layout;
342 
343 	struct ceph_osd_event   *watch_event;
344 	struct rbd_obj_request	*watch_request;
345 
346 	struct rbd_spec		*parent_spec;
347 	u64			parent_overlap;
348 	atomic_t		parent_ref;
349 	struct rbd_device	*parent;
350 
351 	/* protects updating the header */
352 	struct rw_semaphore     header_rwsem;
353 
354 	struct rbd_mapping	mapping;
355 
356 	struct list_head	node;
357 
358 	/* sysfs related */
359 	struct device		dev;
360 	unsigned long		open_count;	/* protected by lock */
361 };
362 
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
372 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
373 };
374 
375 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
376 
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379 
380 static LIST_HEAD(rbd_client_list);		/* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382 
383 /* Slab caches for frequently-allocated structures */
384 
385 static struct kmem_cache	*rbd_img_request_cache;
386 static struct kmem_cache	*rbd_obj_request_cache;
387 static struct kmem_cache	*rbd_segment_name_cache;
388 
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390 
391 static void rbd_dev_device_release(struct device *dev);
392 
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 		       size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 			  size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399 
400 static struct bus_attribute rbd_bus_attrs[] = {
401 	__ATTR(add, S_IWUSR, NULL, rbd_add),
402 	__ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 	__ATTR_NULL
404 };
405 
406 static struct bus_type rbd_bus_type = {
407 	.name		= "rbd",
408 	.bus_attrs	= rbd_bus_attrs,
409 };
410 
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414 
415 static struct device rbd_root_dev = {
416 	.init_name =    "rbd",
417 	.release =      rbd_root_dev_release,
418 };
419 
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 	struct va_format vaf;
424 	va_list args;
425 
426 	va_start(args, fmt);
427 	vaf.fmt = fmt;
428 	vaf.va = &args;
429 
430 	if (!rbd_dev)
431 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 	else if (rbd_dev->disk)
433 		printk(KERN_WARNING "%s: %s: %pV\n",
434 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 		printk(KERN_WARNING "%s: image %s: %pV\n",
437 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 		printk(KERN_WARNING "%s: id %s: %pV\n",
440 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 	else	/* punt */
442 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 			RBD_DRV_NAME, rbd_dev, &vaf);
444 	va_end(args);
445 }
446 
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)						\
449 		if (unlikely(!(expr))) {				\
450 			printk(KERN_ERR "\nAssertion failure in %s() "	\
451 						"at line %d:\n\n"	\
452 					"\trbd_assert(%s);\n\n",	\
453 					__func__, __LINE__, #expr);	\
454 			BUG();						\
455 		}
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)	((void) 0)
458 #endif /* !RBD_DEBUG */
459 
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463 
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 					u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 				u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 		u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474 
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 	bool removing = false;
479 
480 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 		return -EROFS;
482 
483 	spin_lock_irq(&rbd_dev->lock);
484 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 		removing = true;
486 	else
487 		rbd_dev->open_count++;
488 	spin_unlock_irq(&rbd_dev->lock);
489 	if (removing)
490 		return -ENOENT;
491 
492 	(void) get_device(&rbd_dev->dev);
493 	set_device_ro(bdev, rbd_dev->mapping.read_only);
494 
495 	return 0;
496 }
497 
498 static void rbd_release(struct gendisk *disk, fmode_t mode)
499 {
500 	struct rbd_device *rbd_dev = disk->private_data;
501 	unsigned long open_count_before;
502 
503 	spin_lock_irq(&rbd_dev->lock);
504 	open_count_before = rbd_dev->open_count--;
505 	spin_unlock_irq(&rbd_dev->lock);
506 	rbd_assert(open_count_before > 0);
507 
508 	put_device(&rbd_dev->dev);
509 }
510 
511 static const struct block_device_operations rbd_bd_ops = {
512 	.owner			= THIS_MODULE,
513 	.open			= rbd_open,
514 	.release		= rbd_release,
515 };
516 
517 /*
518  * Initialize an rbd client instance.  Success or not, this function
519  * consumes ceph_opts.  Caller holds client_mutex.
520  */
521 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
522 {
523 	struct rbd_client *rbdc;
524 	int ret = -ENOMEM;
525 
526 	dout("%s:\n", __func__);
527 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
528 	if (!rbdc)
529 		goto out_opt;
530 
531 	kref_init(&rbdc->kref);
532 	INIT_LIST_HEAD(&rbdc->node);
533 
534 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
535 	if (IS_ERR(rbdc->client))
536 		goto out_rbdc;
537 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
538 
539 	ret = ceph_open_session(rbdc->client);
540 	if (ret < 0)
541 		goto out_client;
542 
543 	spin_lock(&rbd_client_list_lock);
544 	list_add_tail(&rbdc->node, &rbd_client_list);
545 	spin_unlock(&rbd_client_list_lock);
546 
547 	dout("%s: rbdc %p\n", __func__, rbdc);
548 
549 	return rbdc;
550 out_client:
551 	ceph_destroy_client(rbdc->client);
552 out_rbdc:
553 	kfree(rbdc);
554 out_opt:
555 	if (ceph_opts)
556 		ceph_destroy_options(ceph_opts);
557 	dout("%s: error %d\n", __func__, ret);
558 
559 	return ERR_PTR(ret);
560 }
561 
562 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
563 {
564 	kref_get(&rbdc->kref);
565 
566 	return rbdc;
567 }
568 
569 /*
570  * Find a ceph client with specific addr and configuration.  If
571  * found, bump its reference count.
572  */
573 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
574 {
575 	struct rbd_client *client_node;
576 	bool found = false;
577 
578 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
579 		return NULL;
580 
581 	spin_lock(&rbd_client_list_lock);
582 	list_for_each_entry(client_node, &rbd_client_list, node) {
583 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
584 			__rbd_get_client(client_node);
585 
586 			found = true;
587 			break;
588 		}
589 	}
590 	spin_unlock(&rbd_client_list_lock);
591 
592 	return found ? client_node : NULL;
593 }
594 
595 /*
596  * mount options
597  */
598 enum {
599 	Opt_last_int,
600 	/* int args above */
601 	Opt_last_string,
602 	/* string args above */
603 	Opt_read_only,
604 	Opt_read_write,
605 	/* Boolean args above */
606 	Opt_last_bool,
607 };
608 
609 static match_table_t rbd_opts_tokens = {
610 	/* int args above */
611 	/* string args above */
612 	{Opt_read_only, "read_only"},
613 	{Opt_read_only, "ro"},		/* Alternate spelling */
614 	{Opt_read_write, "read_write"},
615 	{Opt_read_write, "rw"},		/* Alternate spelling */
616 	/* Boolean args above */
617 	{-1, NULL}
618 };
619 
620 struct rbd_options {
621 	bool	read_only;
622 };
623 
624 #define RBD_READ_ONLY_DEFAULT	false
625 
626 static int parse_rbd_opts_token(char *c, void *private)
627 {
628 	struct rbd_options *rbd_opts = private;
629 	substring_t argstr[MAX_OPT_ARGS];
630 	int token, intval, ret;
631 
632 	token = match_token(c, rbd_opts_tokens, argstr);
633 	if (token < 0)
634 		return -EINVAL;
635 
636 	if (token < Opt_last_int) {
637 		ret = match_int(&argstr[0], &intval);
638 		if (ret < 0) {
639 			pr_err("bad mount option arg (not int) "
640 			       "at '%s'\n", c);
641 			return ret;
642 		}
643 		dout("got int token %d val %d\n", token, intval);
644 	} else if (token > Opt_last_int && token < Opt_last_string) {
645 		dout("got string token %d val %s\n", token,
646 		     argstr[0].from);
647 	} else if (token > Opt_last_string && token < Opt_last_bool) {
648 		dout("got Boolean token %d\n", token);
649 	} else {
650 		dout("got token %d\n", token);
651 	}
652 
653 	switch (token) {
654 	case Opt_read_only:
655 		rbd_opts->read_only = true;
656 		break;
657 	case Opt_read_write:
658 		rbd_opts->read_only = false;
659 		break;
660 	default:
661 		rbd_assert(false);
662 		break;
663 	}
664 	return 0;
665 }
666 
667 /*
668  * Get a ceph client with specific addr and configuration, if one does
669  * not exist create it.  Either way, ceph_opts is consumed by this
670  * function.
671  */
672 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
673 {
674 	struct rbd_client *rbdc;
675 
676 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
677 	rbdc = rbd_client_find(ceph_opts);
678 	if (rbdc)	/* using an existing client */
679 		ceph_destroy_options(ceph_opts);
680 	else
681 		rbdc = rbd_client_create(ceph_opts);
682 	mutex_unlock(&client_mutex);
683 
684 	return rbdc;
685 }
686 
687 /*
688  * Destroy ceph client
689  *
690  * Caller must hold rbd_client_list_lock.
691  */
692 static void rbd_client_release(struct kref *kref)
693 {
694 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
695 
696 	dout("%s: rbdc %p\n", __func__, rbdc);
697 	spin_lock(&rbd_client_list_lock);
698 	list_del(&rbdc->node);
699 	spin_unlock(&rbd_client_list_lock);
700 
701 	ceph_destroy_client(rbdc->client);
702 	kfree(rbdc);
703 }
704 
705 /*
706  * Drop reference to ceph client node. If it's not referenced anymore, release
707  * it.
708  */
709 static void rbd_put_client(struct rbd_client *rbdc)
710 {
711 	if (rbdc)
712 		kref_put(&rbdc->kref, rbd_client_release);
713 }
714 
715 static bool rbd_image_format_valid(u32 image_format)
716 {
717 	return image_format == 1 || image_format == 2;
718 }
719 
720 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
721 {
722 	size_t size;
723 	u32 snap_count;
724 
725 	/* The header has to start with the magic rbd header text */
726 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
727 		return false;
728 
729 	/* The bio layer requires at least sector-sized I/O */
730 
731 	if (ondisk->options.order < SECTOR_SHIFT)
732 		return false;
733 
734 	/* If we use u64 in a few spots we may be able to loosen this */
735 
736 	if (ondisk->options.order > 8 * sizeof (int) - 1)
737 		return false;
738 
739 	/*
740 	 * The size of a snapshot header has to fit in a size_t, and
741 	 * that limits the number of snapshots.
742 	 */
743 	snap_count = le32_to_cpu(ondisk->snap_count);
744 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
745 	if (snap_count > size / sizeof (__le64))
746 		return false;
747 
748 	/*
749 	 * Not only that, but the size of the entire the snapshot
750 	 * header must also be representable in a size_t.
751 	 */
752 	size -= snap_count * sizeof (__le64);
753 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
754 		return false;
755 
756 	return true;
757 }
758 
759 /*
760  * Fill an rbd image header with information from the given format 1
761  * on-disk header.
762  */
763 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
764 				 struct rbd_image_header_ondisk *ondisk)
765 {
766 	struct rbd_image_header *header = &rbd_dev->header;
767 	bool first_time = header->object_prefix == NULL;
768 	struct ceph_snap_context *snapc;
769 	char *object_prefix = NULL;
770 	char *snap_names = NULL;
771 	u64 *snap_sizes = NULL;
772 	u32 snap_count;
773 	size_t size;
774 	int ret = -ENOMEM;
775 	u32 i;
776 
777 	/* Allocate this now to avoid having to handle failure below */
778 
779 	if (first_time) {
780 		size_t len;
781 
782 		len = strnlen(ondisk->object_prefix,
783 				sizeof (ondisk->object_prefix));
784 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
785 		if (!object_prefix)
786 			return -ENOMEM;
787 		memcpy(object_prefix, ondisk->object_prefix, len);
788 		object_prefix[len] = '\0';
789 	}
790 
791 	/* Allocate the snapshot context and fill it in */
792 
793 	snap_count = le32_to_cpu(ondisk->snap_count);
794 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
795 	if (!snapc)
796 		goto out_err;
797 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
798 	if (snap_count) {
799 		struct rbd_image_snap_ondisk *snaps;
800 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
801 
802 		/* We'll keep a copy of the snapshot names... */
803 
804 		if (snap_names_len > (u64)SIZE_MAX)
805 			goto out_2big;
806 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
807 		if (!snap_names)
808 			goto out_err;
809 
810 		/* ...as well as the array of their sizes. */
811 
812 		size = snap_count * sizeof (*header->snap_sizes);
813 		snap_sizes = kmalloc(size, GFP_KERNEL);
814 		if (!snap_sizes)
815 			goto out_err;
816 
817 		/*
818 		 * Copy the names, and fill in each snapshot's id
819 		 * and size.
820 		 *
821 		 * Note that rbd_dev_v1_header_info() guarantees the
822 		 * ondisk buffer we're working with has
823 		 * snap_names_len bytes beyond the end of the
824 		 * snapshot id array, this memcpy() is safe.
825 		 */
826 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
827 		snaps = ondisk->snaps;
828 		for (i = 0; i < snap_count; i++) {
829 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
830 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
831 		}
832 	}
833 
834 	/* We won't fail any more, fill in the header */
835 
836 	if (first_time) {
837 		header->object_prefix = object_prefix;
838 		header->obj_order = ondisk->options.order;
839 		header->crypt_type = ondisk->options.crypt_type;
840 		header->comp_type = ondisk->options.comp_type;
841 		/* The rest aren't used for format 1 images */
842 		header->stripe_unit = 0;
843 		header->stripe_count = 0;
844 		header->features = 0;
845 	} else {
846 		ceph_put_snap_context(header->snapc);
847 		kfree(header->snap_names);
848 		kfree(header->snap_sizes);
849 	}
850 
851 	/* The remaining fields always get updated (when we refresh) */
852 
853 	header->image_size = le64_to_cpu(ondisk->image_size);
854 	header->snapc = snapc;
855 	header->snap_names = snap_names;
856 	header->snap_sizes = snap_sizes;
857 
858 	/* Make sure mapping size is consistent with header info */
859 
860 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
861 		if (rbd_dev->mapping.size != header->image_size)
862 			rbd_dev->mapping.size = header->image_size;
863 
864 	return 0;
865 out_2big:
866 	ret = -EIO;
867 out_err:
868 	kfree(snap_sizes);
869 	kfree(snap_names);
870 	ceph_put_snap_context(snapc);
871 	kfree(object_prefix);
872 
873 	return ret;
874 }
875 
876 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
877 {
878 	const char *snap_name;
879 
880 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
881 
882 	/* Skip over names until we find the one we are looking for */
883 
884 	snap_name = rbd_dev->header.snap_names;
885 	while (which--)
886 		snap_name += strlen(snap_name) + 1;
887 
888 	return kstrdup(snap_name, GFP_KERNEL);
889 }
890 
891 /*
892  * Snapshot id comparison function for use with qsort()/bsearch().
893  * Note that result is for snapshots in *descending* order.
894  */
895 static int snapid_compare_reverse(const void *s1, const void *s2)
896 {
897 	u64 snap_id1 = *(u64 *)s1;
898 	u64 snap_id2 = *(u64 *)s2;
899 
900 	if (snap_id1 < snap_id2)
901 		return 1;
902 	return snap_id1 == snap_id2 ? 0 : -1;
903 }
904 
905 /*
906  * Search a snapshot context to see if the given snapshot id is
907  * present.
908  *
909  * Returns the position of the snapshot id in the array if it's found,
910  * or BAD_SNAP_INDEX otherwise.
911  *
912  * Note: The snapshot array is in kept sorted (by the osd) in
913  * reverse order, highest snapshot id first.
914  */
915 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
916 {
917 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
918 	u64 *found;
919 
920 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
921 				sizeof (snap_id), snapid_compare_reverse);
922 
923 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
924 }
925 
926 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
927 					u64 snap_id)
928 {
929 	u32 which;
930 
931 	which = rbd_dev_snap_index(rbd_dev, snap_id);
932 	if (which == BAD_SNAP_INDEX)
933 		return NULL;
934 
935 	return _rbd_dev_v1_snap_name(rbd_dev, which);
936 }
937 
938 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
939 {
940 	if (snap_id == CEPH_NOSNAP)
941 		return RBD_SNAP_HEAD_NAME;
942 
943 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
944 	if (rbd_dev->image_format == 1)
945 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
946 
947 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
948 }
949 
950 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
951 				u64 *snap_size)
952 {
953 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954 	if (snap_id == CEPH_NOSNAP) {
955 		*snap_size = rbd_dev->header.image_size;
956 	} else if (rbd_dev->image_format == 1) {
957 		u32 which;
958 
959 		which = rbd_dev_snap_index(rbd_dev, snap_id);
960 		if (which == BAD_SNAP_INDEX)
961 			return -ENOENT;
962 
963 		*snap_size = rbd_dev->header.snap_sizes[which];
964 	} else {
965 		u64 size = 0;
966 		int ret;
967 
968 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
969 		if (ret)
970 			return ret;
971 
972 		*snap_size = size;
973 	}
974 	return 0;
975 }
976 
977 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
978 			u64 *snap_features)
979 {
980 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
981 	if (snap_id == CEPH_NOSNAP) {
982 		*snap_features = rbd_dev->header.features;
983 	} else if (rbd_dev->image_format == 1) {
984 		*snap_features = 0;	/* No features for format 1 */
985 	} else {
986 		u64 features = 0;
987 		int ret;
988 
989 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
990 		if (ret)
991 			return ret;
992 
993 		*snap_features = features;
994 	}
995 	return 0;
996 }
997 
998 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
999 {
1000 	u64 snap_id = rbd_dev->spec->snap_id;
1001 	u64 size = 0;
1002 	u64 features = 0;
1003 	int ret;
1004 
1005 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1006 	if (ret)
1007 		return ret;
1008 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1009 	if (ret)
1010 		return ret;
1011 
1012 	rbd_dev->mapping.size = size;
1013 	rbd_dev->mapping.features = features;
1014 
1015 	return 0;
1016 }
1017 
1018 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1019 {
1020 	rbd_dev->mapping.size = 0;
1021 	rbd_dev->mapping.features = 0;
1022 }
1023 
1024 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1025 {
1026 	char *name;
1027 	u64 segment;
1028 	int ret;
1029 	char *name_format;
1030 
1031 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1032 	if (!name)
1033 		return NULL;
1034 	segment = offset >> rbd_dev->header.obj_order;
1035 	name_format = "%s.%012llx";
1036 	if (rbd_dev->image_format == 2)
1037 		name_format = "%s.%016llx";
1038 	ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1039 			rbd_dev->header.object_prefix, segment);
1040 	if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1041 		pr_err("error formatting segment name for #%llu (%d)\n",
1042 			segment, ret);
1043 		kfree(name);
1044 		name = NULL;
1045 	}
1046 
1047 	return name;
1048 }
1049 
1050 static void rbd_segment_name_free(const char *name)
1051 {
1052 	/* The explicit cast here is needed to drop the const qualifier */
1053 
1054 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1055 }
1056 
1057 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1058 {
1059 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1060 
1061 	return offset & (segment_size - 1);
1062 }
1063 
1064 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1065 				u64 offset, u64 length)
1066 {
1067 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1068 
1069 	offset &= segment_size - 1;
1070 
1071 	rbd_assert(length <= U64_MAX - offset);
1072 	if (offset + length > segment_size)
1073 		length = segment_size - offset;
1074 
1075 	return length;
1076 }
1077 
1078 /*
1079  * returns the size of an object in the image
1080  */
1081 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1082 {
1083 	return 1 << header->obj_order;
1084 }
1085 
1086 /*
1087  * bio helpers
1088  */
1089 
1090 static void bio_chain_put(struct bio *chain)
1091 {
1092 	struct bio *tmp;
1093 
1094 	while (chain) {
1095 		tmp = chain;
1096 		chain = chain->bi_next;
1097 		bio_put(tmp);
1098 	}
1099 }
1100 
1101 /*
1102  * zeros a bio chain, starting at specific offset
1103  */
1104 static void zero_bio_chain(struct bio *chain, int start_ofs)
1105 {
1106 	struct bio_vec *bv;
1107 	unsigned long flags;
1108 	void *buf;
1109 	int i;
1110 	int pos = 0;
1111 
1112 	while (chain) {
1113 		bio_for_each_segment(bv, chain, i) {
1114 			if (pos + bv->bv_len > start_ofs) {
1115 				int remainder = max(start_ofs - pos, 0);
1116 				buf = bvec_kmap_irq(bv, &flags);
1117 				memset(buf + remainder, 0,
1118 				       bv->bv_len - remainder);
1119 				flush_dcache_page(bv->bv_page);
1120 				bvec_kunmap_irq(buf, &flags);
1121 			}
1122 			pos += bv->bv_len;
1123 		}
1124 
1125 		chain = chain->bi_next;
1126 	}
1127 }
1128 
1129 /*
1130  * similar to zero_bio_chain(), zeros data defined by a page array,
1131  * starting at the given byte offset from the start of the array and
1132  * continuing up to the given end offset.  The pages array is
1133  * assumed to be big enough to hold all bytes up to the end.
1134  */
1135 static void zero_pages(struct page **pages, u64 offset, u64 end)
1136 {
1137 	struct page **page = &pages[offset >> PAGE_SHIFT];
1138 
1139 	rbd_assert(end > offset);
1140 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1141 	while (offset < end) {
1142 		size_t page_offset;
1143 		size_t length;
1144 		unsigned long flags;
1145 		void *kaddr;
1146 
1147 		page_offset = offset & ~PAGE_MASK;
1148 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1149 		local_irq_save(flags);
1150 		kaddr = kmap_atomic(*page);
1151 		memset(kaddr + page_offset, 0, length);
1152 		flush_dcache_page(*page);
1153 		kunmap_atomic(kaddr);
1154 		local_irq_restore(flags);
1155 
1156 		offset += length;
1157 		page++;
1158 	}
1159 }
1160 
1161 /*
1162  * Clone a portion of a bio, starting at the given byte offset
1163  * and continuing for the number of bytes indicated.
1164  */
1165 static struct bio *bio_clone_range(struct bio *bio_src,
1166 					unsigned int offset,
1167 					unsigned int len,
1168 					gfp_t gfpmask)
1169 {
1170 	struct bio_vec *bv;
1171 	unsigned int resid;
1172 	unsigned short idx;
1173 	unsigned int voff;
1174 	unsigned short end_idx;
1175 	unsigned short vcnt;
1176 	struct bio *bio;
1177 
1178 	/* Handle the easy case for the caller */
1179 
1180 	if (!offset && len == bio_src->bi_size)
1181 		return bio_clone(bio_src, gfpmask);
1182 
1183 	if (WARN_ON_ONCE(!len))
1184 		return NULL;
1185 	if (WARN_ON_ONCE(len > bio_src->bi_size))
1186 		return NULL;
1187 	if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1188 		return NULL;
1189 
1190 	/* Find first affected segment... */
1191 
1192 	resid = offset;
1193 	bio_for_each_segment(bv, bio_src, idx) {
1194 		if (resid < bv->bv_len)
1195 			break;
1196 		resid -= bv->bv_len;
1197 	}
1198 	voff = resid;
1199 
1200 	/* ...and the last affected segment */
1201 
1202 	resid += len;
1203 	__bio_for_each_segment(bv, bio_src, end_idx, idx) {
1204 		if (resid <= bv->bv_len)
1205 			break;
1206 		resid -= bv->bv_len;
1207 	}
1208 	vcnt = end_idx - idx + 1;
1209 
1210 	/* Build the clone */
1211 
1212 	bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1213 	if (!bio)
1214 		return NULL;	/* ENOMEM */
1215 
1216 	bio->bi_bdev = bio_src->bi_bdev;
1217 	bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1218 	bio->bi_rw = bio_src->bi_rw;
1219 	bio->bi_flags |= 1 << BIO_CLONED;
1220 
1221 	/*
1222 	 * Copy over our part of the bio_vec, then update the first
1223 	 * and last (or only) entries.
1224 	 */
1225 	memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1226 			vcnt * sizeof (struct bio_vec));
1227 	bio->bi_io_vec[0].bv_offset += voff;
1228 	if (vcnt > 1) {
1229 		bio->bi_io_vec[0].bv_len -= voff;
1230 		bio->bi_io_vec[vcnt - 1].bv_len = resid;
1231 	} else {
1232 		bio->bi_io_vec[0].bv_len = len;
1233 	}
1234 
1235 	bio->bi_vcnt = vcnt;
1236 	bio->bi_size = len;
1237 	bio->bi_idx = 0;
1238 
1239 	return bio;
1240 }
1241 
1242 /*
1243  * Clone a portion of a bio chain, starting at the given byte offset
1244  * into the first bio in the source chain and continuing for the
1245  * number of bytes indicated.  The result is another bio chain of
1246  * exactly the given length, or a null pointer on error.
1247  *
1248  * The bio_src and offset parameters are both in-out.  On entry they
1249  * refer to the first source bio and the offset into that bio where
1250  * the start of data to be cloned is located.
1251  *
1252  * On return, bio_src is updated to refer to the bio in the source
1253  * chain that contains first un-cloned byte, and *offset will
1254  * contain the offset of that byte within that bio.
1255  */
1256 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1257 					unsigned int *offset,
1258 					unsigned int len,
1259 					gfp_t gfpmask)
1260 {
1261 	struct bio *bi = *bio_src;
1262 	unsigned int off = *offset;
1263 	struct bio *chain = NULL;
1264 	struct bio **end;
1265 
1266 	/* Build up a chain of clone bios up to the limit */
1267 
1268 	if (!bi || off >= bi->bi_size || !len)
1269 		return NULL;		/* Nothing to clone */
1270 
1271 	end = &chain;
1272 	while (len) {
1273 		unsigned int bi_size;
1274 		struct bio *bio;
1275 
1276 		if (!bi) {
1277 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1278 			goto out_err;	/* EINVAL; ran out of bio's */
1279 		}
1280 		bi_size = min_t(unsigned int, bi->bi_size - off, len);
1281 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1282 		if (!bio)
1283 			goto out_err;	/* ENOMEM */
1284 
1285 		*end = bio;
1286 		end = &bio->bi_next;
1287 
1288 		off += bi_size;
1289 		if (off == bi->bi_size) {
1290 			bi = bi->bi_next;
1291 			off = 0;
1292 		}
1293 		len -= bi_size;
1294 	}
1295 	*bio_src = bi;
1296 	*offset = off;
1297 
1298 	return chain;
1299 out_err:
1300 	bio_chain_put(chain);
1301 
1302 	return NULL;
1303 }
1304 
1305 /*
1306  * The default/initial value for all object request flags is 0.  For
1307  * each flag, once its value is set to 1 it is never reset to 0
1308  * again.
1309  */
1310 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1311 {
1312 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1313 		struct rbd_device *rbd_dev;
1314 
1315 		rbd_dev = obj_request->img_request->rbd_dev;
1316 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1317 			obj_request);
1318 	}
1319 }
1320 
1321 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1322 {
1323 	smp_mb();
1324 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1325 }
1326 
1327 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1328 {
1329 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1330 		struct rbd_device *rbd_dev = NULL;
1331 
1332 		if (obj_request_img_data_test(obj_request))
1333 			rbd_dev = obj_request->img_request->rbd_dev;
1334 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1335 			obj_request);
1336 	}
1337 }
1338 
1339 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1340 {
1341 	smp_mb();
1342 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1343 }
1344 
1345 /*
1346  * This sets the KNOWN flag after (possibly) setting the EXISTS
1347  * flag.  The latter is set based on the "exists" value provided.
1348  *
1349  * Note that for our purposes once an object exists it never goes
1350  * away again.  It's possible that the response from two existence
1351  * checks are separated by the creation of the target object, and
1352  * the first ("doesn't exist") response arrives *after* the second
1353  * ("does exist").  In that case we ignore the second one.
1354  */
1355 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1356 				bool exists)
1357 {
1358 	if (exists)
1359 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1360 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1361 	smp_mb();
1362 }
1363 
1364 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1365 {
1366 	smp_mb();
1367 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1368 }
1369 
1370 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1371 {
1372 	smp_mb();
1373 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1374 }
1375 
1376 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1377 {
1378 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1379 		atomic_read(&obj_request->kref.refcount));
1380 	kref_get(&obj_request->kref);
1381 }
1382 
1383 static void rbd_obj_request_destroy(struct kref *kref);
1384 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1385 {
1386 	rbd_assert(obj_request != NULL);
1387 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1388 		atomic_read(&obj_request->kref.refcount));
1389 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1390 }
1391 
1392 static bool img_request_child_test(struct rbd_img_request *img_request);
1393 static void rbd_parent_request_destroy(struct kref *kref);
1394 static void rbd_img_request_destroy(struct kref *kref);
1395 static void rbd_img_request_put(struct rbd_img_request *img_request)
1396 {
1397 	rbd_assert(img_request != NULL);
1398 	dout("%s: img %p (was %d)\n", __func__, img_request,
1399 		atomic_read(&img_request->kref.refcount));
1400 	if (img_request_child_test(img_request))
1401 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1402 	else
1403 		kref_put(&img_request->kref, rbd_img_request_destroy);
1404 }
1405 
1406 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1407 					struct rbd_obj_request *obj_request)
1408 {
1409 	rbd_assert(obj_request->img_request == NULL);
1410 
1411 	/* Image request now owns object's original reference */
1412 	obj_request->img_request = img_request;
1413 	obj_request->which = img_request->obj_request_count;
1414 	rbd_assert(!obj_request_img_data_test(obj_request));
1415 	obj_request_img_data_set(obj_request);
1416 	rbd_assert(obj_request->which != BAD_WHICH);
1417 	img_request->obj_request_count++;
1418 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1419 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1420 		obj_request->which);
1421 }
1422 
1423 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1424 					struct rbd_obj_request *obj_request)
1425 {
1426 	rbd_assert(obj_request->which != BAD_WHICH);
1427 
1428 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1429 		obj_request->which);
1430 	list_del(&obj_request->links);
1431 	rbd_assert(img_request->obj_request_count > 0);
1432 	img_request->obj_request_count--;
1433 	rbd_assert(obj_request->which == img_request->obj_request_count);
1434 	obj_request->which = BAD_WHICH;
1435 	rbd_assert(obj_request_img_data_test(obj_request));
1436 	rbd_assert(obj_request->img_request == img_request);
1437 	obj_request->img_request = NULL;
1438 	obj_request->callback = NULL;
1439 	rbd_obj_request_put(obj_request);
1440 }
1441 
1442 static bool obj_request_type_valid(enum obj_request_type type)
1443 {
1444 	switch (type) {
1445 	case OBJ_REQUEST_NODATA:
1446 	case OBJ_REQUEST_BIO:
1447 	case OBJ_REQUEST_PAGES:
1448 		return true;
1449 	default:
1450 		return false;
1451 	}
1452 }
1453 
1454 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1455 				struct rbd_obj_request *obj_request)
1456 {
1457 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1458 
1459 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1460 }
1461 
1462 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1463 {
1464 
1465 	dout("%s: img %p\n", __func__, img_request);
1466 
1467 	/*
1468 	 * If no error occurred, compute the aggregate transfer
1469 	 * count for the image request.  We could instead use
1470 	 * atomic64_cmpxchg() to update it as each object request
1471 	 * completes; not clear which way is better off hand.
1472 	 */
1473 	if (!img_request->result) {
1474 		struct rbd_obj_request *obj_request;
1475 		u64 xferred = 0;
1476 
1477 		for_each_obj_request(img_request, obj_request)
1478 			xferred += obj_request->xferred;
1479 		img_request->xferred = xferred;
1480 	}
1481 
1482 	if (img_request->callback)
1483 		img_request->callback(img_request);
1484 	else
1485 		rbd_img_request_put(img_request);
1486 }
1487 
1488 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1489 
1490 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1491 {
1492 	dout("%s: obj %p\n", __func__, obj_request);
1493 
1494 	return wait_for_completion_interruptible(&obj_request->completion);
1495 }
1496 
1497 /*
1498  * The default/initial value for all image request flags is 0.  Each
1499  * is conditionally set to 1 at image request initialization time
1500  * and currently never change thereafter.
1501  */
1502 static void img_request_write_set(struct rbd_img_request *img_request)
1503 {
1504 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1505 	smp_mb();
1506 }
1507 
1508 static bool img_request_write_test(struct rbd_img_request *img_request)
1509 {
1510 	smp_mb();
1511 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1512 }
1513 
1514 static void img_request_child_set(struct rbd_img_request *img_request)
1515 {
1516 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1517 	smp_mb();
1518 }
1519 
1520 static void img_request_child_clear(struct rbd_img_request *img_request)
1521 {
1522 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1523 	smp_mb();
1524 }
1525 
1526 static bool img_request_child_test(struct rbd_img_request *img_request)
1527 {
1528 	smp_mb();
1529 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1530 }
1531 
1532 static void img_request_layered_set(struct rbd_img_request *img_request)
1533 {
1534 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1535 	smp_mb();
1536 }
1537 
1538 static void img_request_layered_clear(struct rbd_img_request *img_request)
1539 {
1540 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1541 	smp_mb();
1542 }
1543 
1544 static bool img_request_layered_test(struct rbd_img_request *img_request)
1545 {
1546 	smp_mb();
1547 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1548 }
1549 
1550 static void
1551 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1552 {
1553 	u64 xferred = obj_request->xferred;
1554 	u64 length = obj_request->length;
1555 
1556 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1557 		obj_request, obj_request->img_request, obj_request->result,
1558 		xferred, length);
1559 	/*
1560 	 * ENOENT means a hole in the image.  We zero-fill the
1561 	 * entire length of the request.  A short read also implies
1562 	 * zero-fill to the end of the request.  Either way we
1563 	 * update the xferred count to indicate the whole request
1564 	 * was satisfied.
1565 	 */
1566 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1567 	if (obj_request->result == -ENOENT) {
1568 		if (obj_request->type == OBJ_REQUEST_BIO)
1569 			zero_bio_chain(obj_request->bio_list, 0);
1570 		else
1571 			zero_pages(obj_request->pages, 0, length);
1572 		obj_request->result = 0;
1573 		obj_request->xferred = length;
1574 	} else if (xferred < length && !obj_request->result) {
1575 		if (obj_request->type == OBJ_REQUEST_BIO)
1576 			zero_bio_chain(obj_request->bio_list, xferred);
1577 		else
1578 			zero_pages(obj_request->pages, xferred, length);
1579 		obj_request->xferred = length;
1580 	}
1581 	obj_request_done_set(obj_request);
1582 }
1583 
1584 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1585 {
1586 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1587 		obj_request->callback);
1588 	if (obj_request->callback)
1589 		obj_request->callback(obj_request);
1590 	else
1591 		complete_all(&obj_request->completion);
1592 }
1593 
1594 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1595 {
1596 	dout("%s: obj %p\n", __func__, obj_request);
1597 	obj_request_done_set(obj_request);
1598 }
1599 
1600 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1601 {
1602 	struct rbd_img_request *img_request = NULL;
1603 	struct rbd_device *rbd_dev = NULL;
1604 	bool layered = false;
1605 
1606 	if (obj_request_img_data_test(obj_request)) {
1607 		img_request = obj_request->img_request;
1608 		layered = img_request && img_request_layered_test(img_request);
1609 		rbd_dev = img_request->rbd_dev;
1610 	}
1611 
1612 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1613 		obj_request, img_request, obj_request->result,
1614 		obj_request->xferred, obj_request->length);
1615 	if (layered && obj_request->result == -ENOENT &&
1616 			obj_request->img_offset < rbd_dev->parent_overlap)
1617 		rbd_img_parent_read(obj_request);
1618 	else if (img_request)
1619 		rbd_img_obj_request_read_callback(obj_request);
1620 	else
1621 		obj_request_done_set(obj_request);
1622 }
1623 
1624 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1625 {
1626 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1627 		obj_request->result, obj_request->length);
1628 	/*
1629 	 * There is no such thing as a successful short write.  Set
1630 	 * it to our originally-requested length.
1631 	 */
1632 	obj_request->xferred = obj_request->length;
1633 	obj_request_done_set(obj_request);
1634 }
1635 
1636 /*
1637  * For a simple stat call there's nothing to do.  We'll do more if
1638  * this is part of a write sequence for a layered image.
1639  */
1640 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1641 {
1642 	dout("%s: obj %p\n", __func__, obj_request);
1643 	obj_request_done_set(obj_request);
1644 }
1645 
1646 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1647 				struct ceph_msg *msg)
1648 {
1649 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1650 	u16 opcode;
1651 
1652 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1653 	rbd_assert(osd_req == obj_request->osd_req);
1654 	if (obj_request_img_data_test(obj_request)) {
1655 		rbd_assert(obj_request->img_request);
1656 		rbd_assert(obj_request->which != BAD_WHICH);
1657 	} else {
1658 		rbd_assert(obj_request->which == BAD_WHICH);
1659 	}
1660 
1661 	if (osd_req->r_result < 0)
1662 		obj_request->result = osd_req->r_result;
1663 
1664 	BUG_ON(osd_req->r_num_ops > 2);
1665 
1666 	/*
1667 	 * We support a 64-bit length, but ultimately it has to be
1668 	 * passed to blk_end_request(), which takes an unsigned int.
1669 	 */
1670 	obj_request->xferred = osd_req->r_reply_op_len[0];
1671 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1672 	opcode = osd_req->r_ops[0].op;
1673 	switch (opcode) {
1674 	case CEPH_OSD_OP_READ:
1675 		rbd_osd_read_callback(obj_request);
1676 		break;
1677 	case CEPH_OSD_OP_WRITE:
1678 		rbd_osd_write_callback(obj_request);
1679 		break;
1680 	case CEPH_OSD_OP_STAT:
1681 		rbd_osd_stat_callback(obj_request);
1682 		break;
1683 	case CEPH_OSD_OP_CALL:
1684 	case CEPH_OSD_OP_NOTIFY_ACK:
1685 	case CEPH_OSD_OP_WATCH:
1686 		rbd_osd_trivial_callback(obj_request);
1687 		break;
1688 	default:
1689 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1690 			obj_request->object_name, (unsigned short) opcode);
1691 		break;
1692 	}
1693 
1694 	if (obj_request_done_test(obj_request))
1695 		rbd_obj_request_complete(obj_request);
1696 }
1697 
1698 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1699 {
1700 	struct rbd_img_request *img_request = obj_request->img_request;
1701 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1702 	u64 snap_id;
1703 
1704 	rbd_assert(osd_req != NULL);
1705 
1706 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1707 	ceph_osdc_build_request(osd_req, obj_request->offset,
1708 			NULL, snap_id, NULL);
1709 }
1710 
1711 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1712 {
1713 	struct rbd_img_request *img_request = obj_request->img_request;
1714 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1715 	struct ceph_snap_context *snapc;
1716 	struct timespec mtime = CURRENT_TIME;
1717 
1718 	rbd_assert(osd_req != NULL);
1719 
1720 	snapc = img_request ? img_request->snapc : NULL;
1721 	ceph_osdc_build_request(osd_req, obj_request->offset,
1722 			snapc, CEPH_NOSNAP, &mtime);
1723 }
1724 
1725 static struct ceph_osd_request *rbd_osd_req_create(
1726 					struct rbd_device *rbd_dev,
1727 					bool write_request,
1728 					struct rbd_obj_request *obj_request)
1729 {
1730 	struct ceph_snap_context *snapc = NULL;
1731 	struct ceph_osd_client *osdc;
1732 	struct ceph_osd_request *osd_req;
1733 
1734 	if (obj_request_img_data_test(obj_request)) {
1735 		struct rbd_img_request *img_request = obj_request->img_request;
1736 
1737 		rbd_assert(write_request ==
1738 				img_request_write_test(img_request));
1739 		if (write_request)
1740 			snapc = img_request->snapc;
1741 	}
1742 
1743 	/* Allocate and initialize the request, for the single op */
1744 
1745 	osdc = &rbd_dev->rbd_client->client->osdc;
1746 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1747 	if (!osd_req)
1748 		return NULL;	/* ENOMEM */
1749 
1750 	if (write_request)
1751 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1752 	else
1753 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1754 
1755 	osd_req->r_callback = rbd_osd_req_callback;
1756 	osd_req->r_priv = obj_request;
1757 
1758 	osd_req->r_oid_len = strlen(obj_request->object_name);
1759 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1760 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1761 
1762 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1763 
1764 	return osd_req;
1765 }
1766 
1767 /*
1768  * Create a copyup osd request based on the information in the
1769  * object request supplied.  A copyup request has two osd ops,
1770  * a copyup method call, and a "normal" write request.
1771  */
1772 static struct ceph_osd_request *
1773 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1774 {
1775 	struct rbd_img_request *img_request;
1776 	struct ceph_snap_context *snapc;
1777 	struct rbd_device *rbd_dev;
1778 	struct ceph_osd_client *osdc;
1779 	struct ceph_osd_request *osd_req;
1780 
1781 	rbd_assert(obj_request_img_data_test(obj_request));
1782 	img_request = obj_request->img_request;
1783 	rbd_assert(img_request);
1784 	rbd_assert(img_request_write_test(img_request));
1785 
1786 	/* Allocate and initialize the request, for the two ops */
1787 
1788 	snapc = img_request->snapc;
1789 	rbd_dev = img_request->rbd_dev;
1790 	osdc = &rbd_dev->rbd_client->client->osdc;
1791 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1792 	if (!osd_req)
1793 		return NULL;	/* ENOMEM */
1794 
1795 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1796 	osd_req->r_callback = rbd_osd_req_callback;
1797 	osd_req->r_priv = obj_request;
1798 
1799 	osd_req->r_oid_len = strlen(obj_request->object_name);
1800 	rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1801 	memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1802 
1803 	osd_req->r_file_layout = rbd_dev->layout;	/* struct */
1804 
1805 	return osd_req;
1806 }
1807 
1808 
1809 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1810 {
1811 	ceph_osdc_put_request(osd_req);
1812 }
1813 
1814 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1815 
1816 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1817 						u64 offset, u64 length,
1818 						enum obj_request_type type)
1819 {
1820 	struct rbd_obj_request *obj_request;
1821 	size_t size;
1822 	char *name;
1823 
1824 	rbd_assert(obj_request_type_valid(type));
1825 
1826 	size = strlen(object_name) + 1;
1827 	name = kmalloc(size, GFP_KERNEL);
1828 	if (!name)
1829 		return NULL;
1830 
1831 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1832 	if (!obj_request) {
1833 		kfree(name);
1834 		return NULL;
1835 	}
1836 
1837 	obj_request->object_name = memcpy(name, object_name, size);
1838 	obj_request->offset = offset;
1839 	obj_request->length = length;
1840 	obj_request->flags = 0;
1841 	obj_request->which = BAD_WHICH;
1842 	obj_request->type = type;
1843 	INIT_LIST_HEAD(&obj_request->links);
1844 	init_completion(&obj_request->completion);
1845 	kref_init(&obj_request->kref);
1846 
1847 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1848 		offset, length, (int)type, obj_request);
1849 
1850 	return obj_request;
1851 }
1852 
1853 static void rbd_obj_request_destroy(struct kref *kref)
1854 {
1855 	struct rbd_obj_request *obj_request;
1856 
1857 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1858 
1859 	dout("%s: obj %p\n", __func__, obj_request);
1860 
1861 	rbd_assert(obj_request->img_request == NULL);
1862 	rbd_assert(obj_request->which == BAD_WHICH);
1863 
1864 	if (obj_request->osd_req)
1865 		rbd_osd_req_destroy(obj_request->osd_req);
1866 
1867 	rbd_assert(obj_request_type_valid(obj_request->type));
1868 	switch (obj_request->type) {
1869 	case OBJ_REQUEST_NODATA:
1870 		break;		/* Nothing to do */
1871 	case OBJ_REQUEST_BIO:
1872 		if (obj_request->bio_list)
1873 			bio_chain_put(obj_request->bio_list);
1874 		break;
1875 	case OBJ_REQUEST_PAGES:
1876 		if (obj_request->pages)
1877 			ceph_release_page_vector(obj_request->pages,
1878 						obj_request->page_count);
1879 		break;
1880 	}
1881 
1882 	kfree(obj_request->object_name);
1883 	obj_request->object_name = NULL;
1884 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1885 }
1886 
1887 /* It's OK to call this for a device with no parent */
1888 
1889 static void rbd_spec_put(struct rbd_spec *spec);
1890 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1891 {
1892 	rbd_dev_remove_parent(rbd_dev);
1893 	rbd_spec_put(rbd_dev->parent_spec);
1894 	rbd_dev->parent_spec = NULL;
1895 	rbd_dev->parent_overlap = 0;
1896 }
1897 
1898 /*
1899  * Parent image reference counting is used to determine when an
1900  * image's parent fields can be safely torn down--after there are no
1901  * more in-flight requests to the parent image.  When the last
1902  * reference is dropped, cleaning them up is safe.
1903  */
1904 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1905 {
1906 	int counter;
1907 
1908 	if (!rbd_dev->parent_spec)
1909 		return;
1910 
1911 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1912 	if (counter > 0)
1913 		return;
1914 
1915 	/* Last reference; clean up parent data structures */
1916 
1917 	if (!counter)
1918 		rbd_dev_unparent(rbd_dev);
1919 	else
1920 		rbd_warn(rbd_dev, "parent reference underflow\n");
1921 }
1922 
1923 /*
1924  * If an image has a non-zero parent overlap, get a reference to its
1925  * parent.
1926  *
1927  * We must get the reference before checking for the overlap to
1928  * coordinate properly with zeroing the parent overlap in
1929  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1930  * drop it again if there is no overlap.
1931  *
1932  * Returns true if the rbd device has a parent with a non-zero
1933  * overlap and a reference for it was successfully taken, or
1934  * false otherwise.
1935  */
1936 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1937 {
1938 	int counter;
1939 
1940 	if (!rbd_dev->parent_spec)
1941 		return false;
1942 
1943 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1944 	if (counter > 0 && rbd_dev->parent_overlap)
1945 		return true;
1946 
1947 	/* Image was flattened, but parent is not yet torn down */
1948 
1949 	if (counter < 0)
1950 		rbd_warn(rbd_dev, "parent reference overflow\n");
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * Caller is responsible for filling in the list of object requests
1957  * that comprises the image request, and the Linux request pointer
1958  * (if there is one).
1959  */
1960 static struct rbd_img_request *rbd_img_request_create(
1961 					struct rbd_device *rbd_dev,
1962 					u64 offset, u64 length,
1963 					bool write_request)
1964 {
1965 	struct rbd_img_request *img_request;
1966 
1967 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1968 	if (!img_request)
1969 		return NULL;
1970 
1971 	if (write_request) {
1972 		down_read(&rbd_dev->header_rwsem);
1973 		ceph_get_snap_context(rbd_dev->header.snapc);
1974 		up_read(&rbd_dev->header_rwsem);
1975 	}
1976 
1977 	img_request->rq = NULL;
1978 	img_request->rbd_dev = rbd_dev;
1979 	img_request->offset = offset;
1980 	img_request->length = length;
1981 	img_request->flags = 0;
1982 	if (write_request) {
1983 		img_request_write_set(img_request);
1984 		img_request->snapc = rbd_dev->header.snapc;
1985 	} else {
1986 		img_request->snap_id = rbd_dev->spec->snap_id;
1987 	}
1988 	if (rbd_dev_parent_get(rbd_dev))
1989 		img_request_layered_set(img_request);
1990 	spin_lock_init(&img_request->completion_lock);
1991 	img_request->next_completion = 0;
1992 	img_request->callback = NULL;
1993 	img_request->result = 0;
1994 	img_request->obj_request_count = 0;
1995 	INIT_LIST_HEAD(&img_request->obj_requests);
1996 	kref_init(&img_request->kref);
1997 
1998 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1999 		write_request ? "write" : "read", offset, length,
2000 		img_request);
2001 
2002 	return img_request;
2003 }
2004 
2005 static void rbd_img_request_destroy(struct kref *kref)
2006 {
2007 	struct rbd_img_request *img_request;
2008 	struct rbd_obj_request *obj_request;
2009 	struct rbd_obj_request *next_obj_request;
2010 
2011 	img_request = container_of(kref, struct rbd_img_request, kref);
2012 
2013 	dout("%s: img %p\n", __func__, img_request);
2014 
2015 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2016 		rbd_img_obj_request_del(img_request, obj_request);
2017 	rbd_assert(img_request->obj_request_count == 0);
2018 
2019 	if (img_request_layered_test(img_request)) {
2020 		img_request_layered_clear(img_request);
2021 		rbd_dev_parent_put(img_request->rbd_dev);
2022 	}
2023 
2024 	if (img_request_write_test(img_request))
2025 		ceph_put_snap_context(img_request->snapc);
2026 
2027 	kmem_cache_free(rbd_img_request_cache, img_request);
2028 }
2029 
2030 static struct rbd_img_request *rbd_parent_request_create(
2031 					struct rbd_obj_request *obj_request,
2032 					u64 img_offset, u64 length)
2033 {
2034 	struct rbd_img_request *parent_request;
2035 	struct rbd_device *rbd_dev;
2036 
2037 	rbd_assert(obj_request->img_request);
2038 	rbd_dev = obj_request->img_request->rbd_dev;
2039 
2040 	parent_request = rbd_img_request_create(rbd_dev->parent,
2041 						img_offset, length, false);
2042 	if (!parent_request)
2043 		return NULL;
2044 
2045 	img_request_child_set(parent_request);
2046 	rbd_obj_request_get(obj_request);
2047 	parent_request->obj_request = obj_request;
2048 
2049 	return parent_request;
2050 }
2051 
2052 static void rbd_parent_request_destroy(struct kref *kref)
2053 {
2054 	struct rbd_img_request *parent_request;
2055 	struct rbd_obj_request *orig_request;
2056 
2057 	parent_request = container_of(kref, struct rbd_img_request, kref);
2058 	orig_request = parent_request->obj_request;
2059 
2060 	parent_request->obj_request = NULL;
2061 	rbd_obj_request_put(orig_request);
2062 	img_request_child_clear(parent_request);
2063 
2064 	rbd_img_request_destroy(kref);
2065 }
2066 
2067 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2068 {
2069 	struct rbd_img_request *img_request;
2070 	unsigned int xferred;
2071 	int result;
2072 	bool more;
2073 
2074 	rbd_assert(obj_request_img_data_test(obj_request));
2075 	img_request = obj_request->img_request;
2076 
2077 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2078 	xferred = (unsigned int)obj_request->xferred;
2079 	result = obj_request->result;
2080 	if (result) {
2081 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2082 
2083 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2084 			img_request_write_test(img_request) ? "write" : "read",
2085 			obj_request->length, obj_request->img_offset,
2086 			obj_request->offset);
2087 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2088 			result, xferred);
2089 		if (!img_request->result)
2090 			img_request->result = result;
2091 	}
2092 
2093 	/* Image object requests don't own their page array */
2094 
2095 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2096 		obj_request->pages = NULL;
2097 		obj_request->page_count = 0;
2098 	}
2099 
2100 	if (img_request_child_test(img_request)) {
2101 		rbd_assert(img_request->obj_request != NULL);
2102 		more = obj_request->which < img_request->obj_request_count - 1;
2103 	} else {
2104 		rbd_assert(img_request->rq != NULL);
2105 		more = blk_end_request(img_request->rq, result, xferred);
2106 	}
2107 
2108 	return more;
2109 }
2110 
2111 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2112 {
2113 	struct rbd_img_request *img_request;
2114 	u32 which = obj_request->which;
2115 	bool more = true;
2116 
2117 	rbd_assert(obj_request_img_data_test(obj_request));
2118 	img_request = obj_request->img_request;
2119 
2120 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2121 	rbd_assert(img_request != NULL);
2122 	rbd_assert(img_request->obj_request_count > 0);
2123 	rbd_assert(which != BAD_WHICH);
2124 	rbd_assert(which < img_request->obj_request_count);
2125 	rbd_assert(which >= img_request->next_completion);
2126 
2127 	spin_lock_irq(&img_request->completion_lock);
2128 	if (which != img_request->next_completion)
2129 		goto out;
2130 
2131 	for_each_obj_request_from(img_request, obj_request) {
2132 		rbd_assert(more);
2133 		rbd_assert(which < img_request->obj_request_count);
2134 
2135 		if (!obj_request_done_test(obj_request))
2136 			break;
2137 		more = rbd_img_obj_end_request(obj_request);
2138 		which++;
2139 	}
2140 
2141 	rbd_assert(more ^ (which == img_request->obj_request_count));
2142 	img_request->next_completion = which;
2143 out:
2144 	spin_unlock_irq(&img_request->completion_lock);
2145 
2146 	if (!more)
2147 		rbd_img_request_complete(img_request);
2148 }
2149 
2150 /*
2151  * Split up an image request into one or more object requests, each
2152  * to a different object.  The "type" parameter indicates whether
2153  * "data_desc" is the pointer to the head of a list of bio
2154  * structures, or the base of a page array.  In either case this
2155  * function assumes data_desc describes memory sufficient to hold
2156  * all data described by the image request.
2157  */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159 					enum obj_request_type type,
2160 					void *data_desc)
2161 {
2162 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2163 	struct rbd_obj_request *obj_request = NULL;
2164 	struct rbd_obj_request *next_obj_request;
2165 	bool write_request = img_request_write_test(img_request);
2166 	struct bio *bio_list = 0;
2167 	unsigned int bio_offset = 0;
2168 	struct page **pages = 0;
2169 	u64 img_offset;
2170 	u64 resid;
2171 	u16 opcode;
2172 
2173 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174 		(int)type, data_desc);
2175 
2176 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177 	img_offset = img_request->offset;
2178 	resid = img_request->length;
2179 	rbd_assert(resid > 0);
2180 
2181 	if (type == OBJ_REQUEST_BIO) {
2182 		bio_list = data_desc;
2183 		rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2184 	} else {
2185 		rbd_assert(type == OBJ_REQUEST_PAGES);
2186 		pages = data_desc;
2187 	}
2188 
2189 	while (resid) {
2190 		struct ceph_osd_request *osd_req;
2191 		const char *object_name;
2192 		u64 offset;
2193 		u64 length;
2194 
2195 		object_name = rbd_segment_name(rbd_dev, img_offset);
2196 		if (!object_name)
2197 			goto out_unwind;
2198 		offset = rbd_segment_offset(rbd_dev, img_offset);
2199 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2200 		obj_request = rbd_obj_request_create(object_name,
2201 						offset, length, type);
2202 		/* object request has its own copy of the object name */
2203 		rbd_segment_name_free(object_name);
2204 		if (!obj_request)
2205 			goto out_unwind;
2206 
2207 		if (type == OBJ_REQUEST_BIO) {
2208 			unsigned int clone_size;
2209 
2210 			rbd_assert(length <= (u64)UINT_MAX);
2211 			clone_size = (unsigned int)length;
2212 			obj_request->bio_list =
2213 					bio_chain_clone_range(&bio_list,
2214 								&bio_offset,
2215 								clone_size,
2216 								GFP_ATOMIC);
2217 			if (!obj_request->bio_list)
2218 				goto out_partial;
2219 		} else {
2220 			unsigned int page_count;
2221 
2222 			obj_request->pages = pages;
2223 			page_count = (u32)calc_pages_for(offset, length);
2224 			obj_request->page_count = page_count;
2225 			if ((offset + length) & ~PAGE_MASK)
2226 				page_count--;	/* more on last page */
2227 			pages += page_count;
2228 		}
2229 
2230 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2231 						obj_request);
2232 		if (!osd_req)
2233 			goto out_partial;
2234 		obj_request->osd_req = osd_req;
2235 		obj_request->callback = rbd_img_obj_callback;
2236 
2237 		osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2238 						0, 0);
2239 		if (type == OBJ_REQUEST_BIO)
2240 			osd_req_op_extent_osd_data_bio(osd_req, 0,
2241 					obj_request->bio_list, length);
2242 		else
2243 			osd_req_op_extent_osd_data_pages(osd_req, 0,
2244 					obj_request->pages, length,
2245 					offset & ~PAGE_MASK, false, false);
2246 
2247 		/*
2248 		 * set obj_request->img_request before formatting
2249 		 * the osd_request so that it gets the right snapc
2250 		 */
2251 		rbd_img_obj_request_add(img_request, obj_request);
2252 		if (write_request)
2253 			rbd_osd_req_format_write(obj_request);
2254 		else
2255 			rbd_osd_req_format_read(obj_request);
2256 
2257 		obj_request->img_offset = img_offset;
2258 
2259 		img_offset += length;
2260 		resid -= length;
2261 	}
2262 
2263 	return 0;
2264 
2265 out_partial:
2266 	rbd_obj_request_put(obj_request);
2267 out_unwind:
2268 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2269 		rbd_obj_request_put(obj_request);
2270 
2271 	return -ENOMEM;
2272 }
2273 
2274 static void
2275 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2276 {
2277 	struct rbd_img_request *img_request;
2278 	struct rbd_device *rbd_dev;
2279 	struct page **pages;
2280 	u32 page_count;
2281 
2282 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2283 	rbd_assert(obj_request_img_data_test(obj_request));
2284 	img_request = obj_request->img_request;
2285 	rbd_assert(img_request);
2286 
2287 	rbd_dev = img_request->rbd_dev;
2288 	rbd_assert(rbd_dev);
2289 
2290 	pages = obj_request->copyup_pages;
2291 	rbd_assert(pages != NULL);
2292 	obj_request->copyup_pages = NULL;
2293 	page_count = obj_request->copyup_page_count;
2294 	rbd_assert(page_count);
2295 	obj_request->copyup_page_count = 0;
2296 	ceph_release_page_vector(pages, page_count);
2297 
2298 	/*
2299 	 * We want the transfer count to reflect the size of the
2300 	 * original write request.  There is no such thing as a
2301 	 * successful short write, so if the request was successful
2302 	 * we can just set it to the originally-requested length.
2303 	 */
2304 	if (!obj_request->result)
2305 		obj_request->xferred = obj_request->length;
2306 
2307 	/* Finish up with the normal image object callback */
2308 
2309 	rbd_img_obj_callback(obj_request);
2310 }
2311 
2312 static void
2313 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2314 {
2315 	struct rbd_obj_request *orig_request;
2316 	struct ceph_osd_request *osd_req;
2317 	struct ceph_osd_client *osdc;
2318 	struct rbd_device *rbd_dev;
2319 	struct page **pages;
2320 	u32 page_count;
2321 	int img_result;
2322 	u64 parent_length;
2323 	u64 offset;
2324 	u64 length;
2325 
2326 	rbd_assert(img_request_child_test(img_request));
2327 
2328 	/* First get what we need from the image request */
2329 
2330 	pages = img_request->copyup_pages;
2331 	rbd_assert(pages != NULL);
2332 	img_request->copyup_pages = NULL;
2333 	page_count = img_request->copyup_page_count;
2334 	rbd_assert(page_count);
2335 	img_request->copyup_page_count = 0;
2336 
2337 	orig_request = img_request->obj_request;
2338 	rbd_assert(orig_request != NULL);
2339 	rbd_assert(obj_request_type_valid(orig_request->type));
2340 	img_result = img_request->result;
2341 	parent_length = img_request->length;
2342 	rbd_assert(parent_length == img_request->xferred);
2343 	rbd_img_request_put(img_request);
2344 
2345 	rbd_assert(orig_request->img_request);
2346 	rbd_dev = orig_request->img_request->rbd_dev;
2347 	rbd_assert(rbd_dev);
2348 
2349 	/*
2350 	 * If the overlap has become 0 (most likely because the
2351 	 * image has been flattened) we need to free the pages
2352 	 * and re-submit the original write request.
2353 	 */
2354 	if (!rbd_dev->parent_overlap) {
2355 		struct ceph_osd_client *osdc;
2356 
2357 		ceph_release_page_vector(pages, page_count);
2358 		osdc = &rbd_dev->rbd_client->client->osdc;
2359 		img_result = rbd_obj_request_submit(osdc, orig_request);
2360 		if (!img_result)
2361 			return;
2362 	}
2363 
2364 	if (img_result)
2365 		goto out_err;
2366 
2367 	/*
2368 	 * The original osd request is of no use to use any more.
2369 	 * We need a new one that can hold the two ops in a copyup
2370 	 * request.  Allocate the new copyup osd request for the
2371 	 * original request, and release the old one.
2372 	 */
2373 	img_result = -ENOMEM;
2374 	osd_req = rbd_osd_req_create_copyup(orig_request);
2375 	if (!osd_req)
2376 		goto out_err;
2377 	rbd_osd_req_destroy(orig_request->osd_req);
2378 	orig_request->osd_req = osd_req;
2379 	orig_request->copyup_pages = pages;
2380 	orig_request->copyup_page_count = page_count;
2381 
2382 	/* Initialize the copyup op */
2383 
2384 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2385 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2386 						false, false);
2387 
2388 	/* Then the original write request op */
2389 
2390 	offset = orig_request->offset;
2391 	length = orig_request->length;
2392 	osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2393 					offset, length, 0, 0);
2394 	if (orig_request->type == OBJ_REQUEST_BIO)
2395 		osd_req_op_extent_osd_data_bio(osd_req, 1,
2396 					orig_request->bio_list, length);
2397 	else
2398 		osd_req_op_extent_osd_data_pages(osd_req, 1,
2399 					orig_request->pages, length,
2400 					offset & ~PAGE_MASK, false, false);
2401 
2402 	rbd_osd_req_format_write(orig_request);
2403 
2404 	/* All set, send it off. */
2405 
2406 	orig_request->callback = rbd_img_obj_copyup_callback;
2407 	osdc = &rbd_dev->rbd_client->client->osdc;
2408 	img_result = rbd_obj_request_submit(osdc, orig_request);
2409 	if (!img_result)
2410 		return;
2411 out_err:
2412 	/* Record the error code and complete the request */
2413 
2414 	orig_request->result = img_result;
2415 	orig_request->xferred = 0;
2416 	obj_request_done_set(orig_request);
2417 	rbd_obj_request_complete(orig_request);
2418 }
2419 
2420 /*
2421  * Read from the parent image the range of data that covers the
2422  * entire target of the given object request.  This is used for
2423  * satisfying a layered image write request when the target of an
2424  * object request from the image request does not exist.
2425  *
2426  * A page array big enough to hold the returned data is allocated
2427  * and supplied to rbd_img_request_fill() as the "data descriptor."
2428  * When the read completes, this page array will be transferred to
2429  * the original object request for the copyup operation.
2430  *
2431  * If an error occurs, record it as the result of the original
2432  * object request and mark it done so it gets completed.
2433  */
2434 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2435 {
2436 	struct rbd_img_request *img_request = NULL;
2437 	struct rbd_img_request *parent_request = NULL;
2438 	struct rbd_device *rbd_dev;
2439 	u64 img_offset;
2440 	u64 length;
2441 	struct page **pages = NULL;
2442 	u32 page_count;
2443 	int result;
2444 
2445 	rbd_assert(obj_request_img_data_test(obj_request));
2446 	rbd_assert(obj_request_type_valid(obj_request->type));
2447 
2448 	img_request = obj_request->img_request;
2449 	rbd_assert(img_request != NULL);
2450 	rbd_dev = img_request->rbd_dev;
2451 	rbd_assert(rbd_dev->parent != NULL);
2452 
2453 	/*
2454 	 * Determine the byte range covered by the object in the
2455 	 * child image to which the original request was to be sent.
2456 	 */
2457 	img_offset = obj_request->img_offset - obj_request->offset;
2458 	length = (u64)1 << rbd_dev->header.obj_order;
2459 
2460 	/*
2461 	 * There is no defined parent data beyond the parent
2462 	 * overlap, so limit what we read at that boundary if
2463 	 * necessary.
2464 	 */
2465 	if (img_offset + length > rbd_dev->parent_overlap) {
2466 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2467 		length = rbd_dev->parent_overlap - img_offset;
2468 	}
2469 
2470 	/*
2471 	 * Allocate a page array big enough to receive the data read
2472 	 * from the parent.
2473 	 */
2474 	page_count = (u32)calc_pages_for(0, length);
2475 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2476 	if (IS_ERR(pages)) {
2477 		result = PTR_ERR(pages);
2478 		pages = NULL;
2479 		goto out_err;
2480 	}
2481 
2482 	result = -ENOMEM;
2483 	parent_request = rbd_parent_request_create(obj_request,
2484 						img_offset, length);
2485 	if (!parent_request)
2486 		goto out_err;
2487 
2488 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2489 	if (result)
2490 		goto out_err;
2491 	parent_request->copyup_pages = pages;
2492 	parent_request->copyup_page_count = page_count;
2493 
2494 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2495 	result = rbd_img_request_submit(parent_request);
2496 	if (!result)
2497 		return 0;
2498 
2499 	parent_request->copyup_pages = NULL;
2500 	parent_request->copyup_page_count = 0;
2501 	parent_request->obj_request = NULL;
2502 	rbd_obj_request_put(obj_request);
2503 out_err:
2504 	if (pages)
2505 		ceph_release_page_vector(pages, page_count);
2506 	if (parent_request)
2507 		rbd_img_request_put(parent_request);
2508 	obj_request->result = result;
2509 	obj_request->xferred = 0;
2510 	obj_request_done_set(obj_request);
2511 
2512 	return result;
2513 }
2514 
2515 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2516 {
2517 	struct rbd_obj_request *orig_request;
2518 	struct rbd_device *rbd_dev;
2519 	int result;
2520 
2521 	rbd_assert(!obj_request_img_data_test(obj_request));
2522 
2523 	/*
2524 	 * All we need from the object request is the original
2525 	 * request and the result of the STAT op.  Grab those, then
2526 	 * we're done with the request.
2527 	 */
2528 	orig_request = obj_request->obj_request;
2529 	obj_request->obj_request = NULL;
2530 	rbd_obj_request_put(orig_request);
2531 	rbd_assert(orig_request);
2532 	rbd_assert(orig_request->img_request);
2533 
2534 	result = obj_request->result;
2535 	obj_request->result = 0;
2536 
2537 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2538 		obj_request, orig_request, result,
2539 		obj_request->xferred, obj_request->length);
2540 	rbd_obj_request_put(obj_request);
2541 
2542 	/*
2543 	 * If the overlap has become 0 (most likely because the
2544 	 * image has been flattened) we need to free the pages
2545 	 * and re-submit the original write request.
2546 	 */
2547 	rbd_dev = orig_request->img_request->rbd_dev;
2548 	if (!rbd_dev->parent_overlap) {
2549 		struct ceph_osd_client *osdc;
2550 
2551 		osdc = &rbd_dev->rbd_client->client->osdc;
2552 		result = rbd_obj_request_submit(osdc, orig_request);
2553 		if (!result)
2554 			return;
2555 	}
2556 
2557 	/*
2558 	 * Our only purpose here is to determine whether the object
2559 	 * exists, and we don't want to treat the non-existence as
2560 	 * an error.  If something else comes back, transfer the
2561 	 * error to the original request and complete it now.
2562 	 */
2563 	if (!result) {
2564 		obj_request_existence_set(orig_request, true);
2565 	} else if (result == -ENOENT) {
2566 		obj_request_existence_set(orig_request, false);
2567 	} else if (result) {
2568 		orig_request->result = result;
2569 		goto out;
2570 	}
2571 
2572 	/*
2573 	 * Resubmit the original request now that we have recorded
2574 	 * whether the target object exists.
2575 	 */
2576 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2577 out:
2578 	if (orig_request->result)
2579 		rbd_obj_request_complete(orig_request);
2580 }
2581 
2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2583 {
2584 	struct rbd_obj_request *stat_request;
2585 	struct rbd_device *rbd_dev;
2586 	struct ceph_osd_client *osdc;
2587 	struct page **pages = NULL;
2588 	u32 page_count;
2589 	size_t size;
2590 	int ret;
2591 
2592 	/*
2593 	 * The response data for a STAT call consists of:
2594 	 *     le64 length;
2595 	 *     struct {
2596 	 *         le32 tv_sec;
2597 	 *         le32 tv_nsec;
2598 	 *     } mtime;
2599 	 */
2600 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2601 	page_count = (u32)calc_pages_for(0, size);
2602 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2603 	if (IS_ERR(pages))
2604 		return PTR_ERR(pages);
2605 
2606 	ret = -ENOMEM;
2607 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2608 							OBJ_REQUEST_PAGES);
2609 	if (!stat_request)
2610 		goto out;
2611 
2612 	rbd_obj_request_get(obj_request);
2613 	stat_request->obj_request = obj_request;
2614 	stat_request->pages = pages;
2615 	stat_request->page_count = page_count;
2616 
2617 	rbd_assert(obj_request->img_request);
2618 	rbd_dev = obj_request->img_request->rbd_dev;
2619 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2620 						stat_request);
2621 	if (!stat_request->osd_req)
2622 		goto out;
2623 	stat_request->callback = rbd_img_obj_exists_callback;
2624 
2625 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2626 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2627 					false, false);
2628 	rbd_osd_req_format_read(stat_request);
2629 
2630 	osdc = &rbd_dev->rbd_client->client->osdc;
2631 	ret = rbd_obj_request_submit(osdc, stat_request);
2632 out:
2633 	if (ret)
2634 		rbd_obj_request_put(obj_request);
2635 
2636 	return ret;
2637 }
2638 
2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2640 {
2641 	struct rbd_img_request *img_request;
2642 	struct rbd_device *rbd_dev;
2643 	bool known;
2644 
2645 	rbd_assert(obj_request_img_data_test(obj_request));
2646 
2647 	img_request = obj_request->img_request;
2648 	rbd_assert(img_request);
2649 	rbd_dev = img_request->rbd_dev;
2650 
2651 	/*
2652 	 * Only writes to layered images need special handling.
2653 	 * Reads and non-layered writes are simple object requests.
2654 	 * Layered writes that start beyond the end of the overlap
2655 	 * with the parent have no parent data, so they too are
2656 	 * simple object requests.  Finally, if the target object is
2657 	 * known to already exist, its parent data has already been
2658 	 * copied, so a write to the object can also be handled as a
2659 	 * simple object request.
2660 	 */
2661 	if (!img_request_write_test(img_request) ||
2662 		!img_request_layered_test(img_request) ||
2663 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2664 		((known = obj_request_known_test(obj_request)) &&
2665 			obj_request_exists_test(obj_request))) {
2666 
2667 		struct rbd_device *rbd_dev;
2668 		struct ceph_osd_client *osdc;
2669 
2670 		rbd_dev = obj_request->img_request->rbd_dev;
2671 		osdc = &rbd_dev->rbd_client->client->osdc;
2672 
2673 		return rbd_obj_request_submit(osdc, obj_request);
2674 	}
2675 
2676 	/*
2677 	 * It's a layered write.  The target object might exist but
2678 	 * we may not know that yet.  If we know it doesn't exist,
2679 	 * start by reading the data for the full target object from
2680 	 * the parent so we can use it for a copyup to the target.
2681 	 */
2682 	if (known)
2683 		return rbd_img_obj_parent_read_full(obj_request);
2684 
2685 	/* We don't know whether the target exists.  Go find out. */
2686 
2687 	return rbd_img_obj_exists_submit(obj_request);
2688 }
2689 
2690 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2691 {
2692 	struct rbd_obj_request *obj_request;
2693 	struct rbd_obj_request *next_obj_request;
2694 
2695 	dout("%s: img %p\n", __func__, img_request);
2696 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2697 		int ret;
2698 
2699 		ret = rbd_img_obj_request_submit(obj_request);
2700 		if (ret)
2701 			return ret;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2708 {
2709 	struct rbd_obj_request *obj_request;
2710 	struct rbd_device *rbd_dev;
2711 	u64 obj_end;
2712 	u64 img_xferred;
2713 	int img_result;
2714 
2715 	rbd_assert(img_request_child_test(img_request));
2716 
2717 	/* First get what we need from the image request and release it */
2718 
2719 	obj_request = img_request->obj_request;
2720 	img_xferred = img_request->xferred;
2721 	img_result = img_request->result;
2722 	rbd_img_request_put(img_request);
2723 
2724 	/*
2725 	 * If the overlap has become 0 (most likely because the
2726 	 * image has been flattened) we need to re-submit the
2727 	 * original request.
2728 	 */
2729 	rbd_assert(obj_request);
2730 	rbd_assert(obj_request->img_request);
2731 	rbd_dev = obj_request->img_request->rbd_dev;
2732 	if (!rbd_dev->parent_overlap) {
2733 		struct ceph_osd_client *osdc;
2734 
2735 		osdc = &rbd_dev->rbd_client->client->osdc;
2736 		img_result = rbd_obj_request_submit(osdc, obj_request);
2737 		if (!img_result)
2738 			return;
2739 	}
2740 
2741 	obj_request->result = img_result;
2742 	if (obj_request->result)
2743 		goto out;
2744 
2745 	/*
2746 	 * We need to zero anything beyond the parent overlap
2747 	 * boundary.  Since rbd_img_obj_request_read_callback()
2748 	 * will zero anything beyond the end of a short read, an
2749 	 * easy way to do this is to pretend the data from the
2750 	 * parent came up short--ending at the overlap boundary.
2751 	 */
2752 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2753 	obj_end = obj_request->img_offset + obj_request->length;
2754 	if (obj_end > rbd_dev->parent_overlap) {
2755 		u64 xferred = 0;
2756 
2757 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2758 			xferred = rbd_dev->parent_overlap -
2759 					obj_request->img_offset;
2760 
2761 		obj_request->xferred = min(img_xferred, xferred);
2762 	} else {
2763 		obj_request->xferred = img_xferred;
2764 	}
2765 out:
2766 	rbd_img_obj_request_read_callback(obj_request);
2767 	rbd_obj_request_complete(obj_request);
2768 }
2769 
2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2771 {
2772 	struct rbd_img_request *img_request;
2773 	int result;
2774 
2775 	rbd_assert(obj_request_img_data_test(obj_request));
2776 	rbd_assert(obj_request->img_request != NULL);
2777 	rbd_assert(obj_request->result == (s32) -ENOENT);
2778 	rbd_assert(obj_request_type_valid(obj_request->type));
2779 
2780 	/* rbd_read_finish(obj_request, obj_request->length); */
2781 	img_request = rbd_parent_request_create(obj_request,
2782 						obj_request->img_offset,
2783 						obj_request->length);
2784 	result = -ENOMEM;
2785 	if (!img_request)
2786 		goto out_err;
2787 
2788 	if (obj_request->type == OBJ_REQUEST_BIO)
2789 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790 						obj_request->bio_list);
2791 	else
2792 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2793 						obj_request->pages);
2794 	if (result)
2795 		goto out_err;
2796 
2797 	img_request->callback = rbd_img_parent_read_callback;
2798 	result = rbd_img_request_submit(img_request);
2799 	if (result)
2800 		goto out_err;
2801 
2802 	return;
2803 out_err:
2804 	if (img_request)
2805 		rbd_img_request_put(img_request);
2806 	obj_request->result = result;
2807 	obj_request->xferred = 0;
2808 	obj_request_done_set(obj_request);
2809 }
2810 
2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2812 {
2813 	struct rbd_obj_request *obj_request;
2814 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2815 	int ret;
2816 
2817 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2818 							OBJ_REQUEST_NODATA);
2819 	if (!obj_request)
2820 		return -ENOMEM;
2821 
2822 	ret = -ENOMEM;
2823 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2824 	if (!obj_request->osd_req)
2825 		goto out;
2826 	obj_request->callback = rbd_obj_request_put;
2827 
2828 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2829 					notify_id, 0, 0);
2830 	rbd_osd_req_format_read(obj_request);
2831 
2832 	ret = rbd_obj_request_submit(osdc, obj_request);
2833 out:
2834 	if (ret)
2835 		rbd_obj_request_put(obj_request);
2836 
2837 	return ret;
2838 }
2839 
2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2841 {
2842 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2843 	int ret;
2844 
2845 	if (!rbd_dev)
2846 		return;
2847 
2848 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2849 		rbd_dev->header_name, (unsigned long long)notify_id,
2850 		(unsigned int)opcode);
2851 	ret = rbd_dev_refresh(rbd_dev);
2852 	if (ret)
2853 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2854 
2855 	rbd_obj_notify_ack(rbd_dev, notify_id);
2856 }
2857 
2858 /*
2859  * Request sync osd watch/unwatch.  The value of "start" determines
2860  * whether a watch request is being initiated or torn down.
2861  */
2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2863 {
2864 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2865 	struct rbd_obj_request *obj_request;
2866 	int ret;
2867 
2868 	rbd_assert(start ^ !!rbd_dev->watch_event);
2869 	rbd_assert(start ^ !!rbd_dev->watch_request);
2870 
2871 	if (start) {
2872 		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2873 						&rbd_dev->watch_event);
2874 		if (ret < 0)
2875 			return ret;
2876 		rbd_assert(rbd_dev->watch_event != NULL);
2877 	}
2878 
2879 	ret = -ENOMEM;
2880 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2881 							OBJ_REQUEST_NODATA);
2882 	if (!obj_request)
2883 		goto out_cancel;
2884 
2885 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2886 	if (!obj_request->osd_req)
2887 		goto out_cancel;
2888 
2889 	if (start)
2890 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2891 	else
2892 		ceph_osdc_unregister_linger_request(osdc,
2893 					rbd_dev->watch_request->osd_req);
2894 
2895 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2896 				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2897 	rbd_osd_req_format_write(obj_request);
2898 
2899 	ret = rbd_obj_request_submit(osdc, obj_request);
2900 	if (ret)
2901 		goto out_cancel;
2902 	ret = rbd_obj_request_wait(obj_request);
2903 	if (ret)
2904 		goto out_cancel;
2905 	ret = obj_request->result;
2906 	if (ret)
2907 		goto out_cancel;
2908 
2909 	/*
2910 	 * A watch request is set to linger, so the underlying osd
2911 	 * request won't go away until we unregister it.  We retain
2912 	 * a pointer to the object request during that time (in
2913 	 * rbd_dev->watch_request), so we'll keep a reference to
2914 	 * it.  We'll drop that reference (below) after we've
2915 	 * unregistered it.
2916 	 */
2917 	if (start) {
2918 		rbd_dev->watch_request = obj_request;
2919 
2920 		return 0;
2921 	}
2922 
2923 	/* We have successfully torn down the watch request */
2924 
2925 	rbd_obj_request_put(rbd_dev->watch_request);
2926 	rbd_dev->watch_request = NULL;
2927 out_cancel:
2928 	/* Cancel the event if we're tearing down, or on error */
2929 	ceph_osdc_cancel_event(rbd_dev->watch_event);
2930 	rbd_dev->watch_event = NULL;
2931 	if (obj_request)
2932 		rbd_obj_request_put(obj_request);
2933 
2934 	return ret;
2935 }
2936 
2937 /*
2938  * Synchronous osd object method call.  Returns the number of bytes
2939  * returned in the outbound buffer, or a negative error code.
2940  */
2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2942 			     const char *object_name,
2943 			     const char *class_name,
2944 			     const char *method_name,
2945 			     const void *outbound,
2946 			     size_t outbound_size,
2947 			     void *inbound,
2948 			     size_t inbound_size)
2949 {
2950 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2951 	struct rbd_obj_request *obj_request;
2952 	struct page **pages;
2953 	u32 page_count;
2954 	int ret;
2955 
2956 	/*
2957 	 * Method calls are ultimately read operations.  The result
2958 	 * should placed into the inbound buffer provided.  They
2959 	 * also supply outbound data--parameters for the object
2960 	 * method.  Currently if this is present it will be a
2961 	 * snapshot id.
2962 	 */
2963 	page_count = (u32)calc_pages_for(0, inbound_size);
2964 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2965 	if (IS_ERR(pages))
2966 		return PTR_ERR(pages);
2967 
2968 	ret = -ENOMEM;
2969 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2970 							OBJ_REQUEST_PAGES);
2971 	if (!obj_request)
2972 		goto out;
2973 
2974 	obj_request->pages = pages;
2975 	obj_request->page_count = page_count;
2976 
2977 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2978 	if (!obj_request->osd_req)
2979 		goto out;
2980 
2981 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2982 					class_name, method_name);
2983 	if (outbound_size) {
2984 		struct ceph_pagelist *pagelist;
2985 
2986 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2987 		if (!pagelist)
2988 			goto out;
2989 
2990 		ceph_pagelist_init(pagelist);
2991 		ceph_pagelist_append(pagelist, outbound, outbound_size);
2992 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2993 						pagelist);
2994 	}
2995 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2996 					obj_request->pages, inbound_size,
2997 					0, false, false);
2998 	rbd_osd_req_format_read(obj_request);
2999 
3000 	ret = rbd_obj_request_submit(osdc, obj_request);
3001 	if (ret)
3002 		goto out;
3003 	ret = rbd_obj_request_wait(obj_request);
3004 	if (ret)
3005 		goto out;
3006 
3007 	ret = obj_request->result;
3008 	if (ret < 0)
3009 		goto out;
3010 
3011 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3012 	ret = (int)obj_request->xferred;
3013 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3014 out:
3015 	if (obj_request)
3016 		rbd_obj_request_put(obj_request);
3017 	else
3018 		ceph_release_page_vector(pages, page_count);
3019 
3020 	return ret;
3021 }
3022 
3023 static void rbd_request_fn(struct request_queue *q)
3024 		__releases(q->queue_lock) __acquires(q->queue_lock)
3025 {
3026 	struct rbd_device *rbd_dev = q->queuedata;
3027 	bool read_only = rbd_dev->mapping.read_only;
3028 	struct request *rq;
3029 	int result;
3030 
3031 	while ((rq = blk_fetch_request(q))) {
3032 		bool write_request = rq_data_dir(rq) == WRITE;
3033 		struct rbd_img_request *img_request;
3034 		u64 offset;
3035 		u64 length;
3036 
3037 		/* Ignore any non-FS requests that filter through. */
3038 
3039 		if (rq->cmd_type != REQ_TYPE_FS) {
3040 			dout("%s: non-fs request type %d\n", __func__,
3041 				(int) rq->cmd_type);
3042 			__blk_end_request_all(rq, 0);
3043 			continue;
3044 		}
3045 
3046 		/* Ignore/skip any zero-length requests */
3047 
3048 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3049 		length = (u64) blk_rq_bytes(rq);
3050 
3051 		if (!length) {
3052 			dout("%s: zero-length request\n", __func__);
3053 			__blk_end_request_all(rq, 0);
3054 			continue;
3055 		}
3056 
3057 		spin_unlock_irq(q->queue_lock);
3058 
3059 		/* Disallow writes to a read-only device */
3060 
3061 		if (write_request) {
3062 			result = -EROFS;
3063 			if (read_only)
3064 				goto end_request;
3065 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3066 		}
3067 
3068 		/*
3069 		 * Quit early if the mapped snapshot no longer
3070 		 * exists.  It's still possible the snapshot will
3071 		 * have disappeared by the time our request arrives
3072 		 * at the osd, but there's no sense in sending it if
3073 		 * we already know.
3074 		 */
3075 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3076 			dout("request for non-existent snapshot");
3077 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3078 			result = -ENXIO;
3079 			goto end_request;
3080 		}
3081 
3082 		result = -EINVAL;
3083 		if (offset && length > U64_MAX - offset + 1) {
3084 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3085 				offset, length);
3086 			goto end_request;	/* Shouldn't happen */
3087 		}
3088 
3089 		result = -EIO;
3090 		if (offset + length > rbd_dev->mapping.size) {
3091 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3092 				offset, length, rbd_dev->mapping.size);
3093 			goto end_request;
3094 		}
3095 
3096 		result = -ENOMEM;
3097 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3098 							write_request);
3099 		if (!img_request)
3100 			goto end_request;
3101 
3102 		img_request->rq = rq;
3103 
3104 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3105 						rq->bio);
3106 		if (!result)
3107 			result = rbd_img_request_submit(img_request);
3108 		if (result)
3109 			rbd_img_request_put(img_request);
3110 end_request:
3111 		spin_lock_irq(q->queue_lock);
3112 		if (result < 0) {
3113 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3114 				write_request ? "write" : "read",
3115 				length, offset, result);
3116 
3117 			__blk_end_request_all(rq, result);
3118 		}
3119 	}
3120 }
3121 
3122 /*
3123  * a queue callback. Makes sure that we don't create a bio that spans across
3124  * multiple osd objects. One exception would be with a single page bios,
3125  * which we handle later at bio_chain_clone_range()
3126  */
3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3128 			  struct bio_vec *bvec)
3129 {
3130 	struct rbd_device *rbd_dev = q->queuedata;
3131 	sector_t sector_offset;
3132 	sector_t sectors_per_obj;
3133 	sector_t obj_sector_offset;
3134 	int ret;
3135 
3136 	/*
3137 	 * Find how far into its rbd object the partition-relative
3138 	 * bio start sector is to offset relative to the enclosing
3139 	 * device.
3140 	 */
3141 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3142 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3143 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3144 
3145 	/*
3146 	 * Compute the number of bytes from that offset to the end
3147 	 * of the object.  Account for what's already used by the bio.
3148 	 */
3149 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3150 	if (ret > bmd->bi_size)
3151 		ret -= bmd->bi_size;
3152 	else
3153 		ret = 0;
3154 
3155 	/*
3156 	 * Don't send back more than was asked for.  And if the bio
3157 	 * was empty, let the whole thing through because:  "Note
3158 	 * that a block device *must* allow a single page to be
3159 	 * added to an empty bio."
3160 	 */
3161 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3162 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3163 		ret = (int) bvec->bv_len;
3164 
3165 	return ret;
3166 }
3167 
3168 static void rbd_free_disk(struct rbd_device *rbd_dev)
3169 {
3170 	struct gendisk *disk = rbd_dev->disk;
3171 
3172 	if (!disk)
3173 		return;
3174 
3175 	rbd_dev->disk = NULL;
3176 	if (disk->flags & GENHD_FL_UP) {
3177 		del_gendisk(disk);
3178 		if (disk->queue)
3179 			blk_cleanup_queue(disk->queue);
3180 	}
3181 	put_disk(disk);
3182 }
3183 
3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3185 				const char *object_name,
3186 				u64 offset, u64 length, void *buf)
3187 
3188 {
3189 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3190 	struct rbd_obj_request *obj_request;
3191 	struct page **pages = NULL;
3192 	u32 page_count;
3193 	size_t size;
3194 	int ret;
3195 
3196 	page_count = (u32) calc_pages_for(offset, length);
3197 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3198 	if (IS_ERR(pages))
3199 		ret = PTR_ERR(pages);
3200 
3201 	ret = -ENOMEM;
3202 	obj_request = rbd_obj_request_create(object_name, offset, length,
3203 							OBJ_REQUEST_PAGES);
3204 	if (!obj_request)
3205 		goto out;
3206 
3207 	obj_request->pages = pages;
3208 	obj_request->page_count = page_count;
3209 
3210 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3211 	if (!obj_request->osd_req)
3212 		goto out;
3213 
3214 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3215 					offset, length, 0, 0);
3216 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3217 					obj_request->pages,
3218 					obj_request->length,
3219 					obj_request->offset & ~PAGE_MASK,
3220 					false, false);
3221 	rbd_osd_req_format_read(obj_request);
3222 
3223 	ret = rbd_obj_request_submit(osdc, obj_request);
3224 	if (ret)
3225 		goto out;
3226 	ret = rbd_obj_request_wait(obj_request);
3227 	if (ret)
3228 		goto out;
3229 
3230 	ret = obj_request->result;
3231 	if (ret < 0)
3232 		goto out;
3233 
3234 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3235 	size = (size_t) obj_request->xferred;
3236 	ceph_copy_from_page_vector(pages, buf, 0, size);
3237 	rbd_assert(size <= (size_t)INT_MAX);
3238 	ret = (int)size;
3239 out:
3240 	if (obj_request)
3241 		rbd_obj_request_put(obj_request);
3242 	else
3243 		ceph_release_page_vector(pages, page_count);
3244 
3245 	return ret;
3246 }
3247 
3248 /*
3249  * Read the complete header for the given rbd device.  On successful
3250  * return, the rbd_dev->header field will contain up-to-date
3251  * information about the image.
3252  */
3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3254 {
3255 	struct rbd_image_header_ondisk *ondisk = NULL;
3256 	u32 snap_count = 0;
3257 	u64 names_size = 0;
3258 	u32 want_count;
3259 	int ret;
3260 
3261 	/*
3262 	 * The complete header will include an array of its 64-bit
3263 	 * snapshot ids, followed by the names of those snapshots as
3264 	 * a contiguous block of NUL-terminated strings.  Note that
3265 	 * the number of snapshots could change by the time we read
3266 	 * it in, in which case we re-read it.
3267 	 */
3268 	do {
3269 		size_t size;
3270 
3271 		kfree(ondisk);
3272 
3273 		size = sizeof (*ondisk);
3274 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3275 		size += names_size;
3276 		ondisk = kmalloc(size, GFP_KERNEL);
3277 		if (!ondisk)
3278 			return -ENOMEM;
3279 
3280 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3281 				       0, size, ondisk);
3282 		if (ret < 0)
3283 			goto out;
3284 		if ((size_t)ret < size) {
3285 			ret = -ENXIO;
3286 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3287 				size, ret);
3288 			goto out;
3289 		}
3290 		if (!rbd_dev_ondisk_valid(ondisk)) {
3291 			ret = -ENXIO;
3292 			rbd_warn(rbd_dev, "invalid header");
3293 			goto out;
3294 		}
3295 
3296 		names_size = le64_to_cpu(ondisk->snap_names_len);
3297 		want_count = snap_count;
3298 		snap_count = le32_to_cpu(ondisk->snap_count);
3299 	} while (snap_count != want_count);
3300 
3301 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3302 out:
3303 	kfree(ondisk);
3304 
3305 	return ret;
3306 }
3307 
3308 /*
3309  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3310  * has disappeared from the (just updated) snapshot context.
3311  */
3312 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3313 {
3314 	u64 snap_id;
3315 
3316 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3317 		return;
3318 
3319 	snap_id = rbd_dev->spec->snap_id;
3320 	if (snap_id == CEPH_NOSNAP)
3321 		return;
3322 
3323 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3324 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3325 }
3326 
3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3328 {
3329 	u64 mapping_size;
3330 	int ret;
3331 
3332 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3333 	down_write(&rbd_dev->header_rwsem);
3334 	mapping_size = rbd_dev->mapping.size;
3335 	if (rbd_dev->image_format == 1)
3336 		ret = rbd_dev_v1_header_info(rbd_dev);
3337 	else
3338 		ret = rbd_dev_v2_header_info(rbd_dev);
3339 
3340 	/* If it's a mapped snapshot, validate its EXISTS flag */
3341 
3342 	rbd_exists_validate(rbd_dev);
3343 	up_write(&rbd_dev->header_rwsem);
3344 
3345 	if (mapping_size != rbd_dev->mapping.size) {
3346 		sector_t size;
3347 
3348 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3349 		dout("setting size to %llu sectors", (unsigned long long)size);
3350 		set_capacity(rbd_dev->disk, size);
3351 		revalidate_disk(rbd_dev->disk);
3352 	}
3353 
3354 	return ret;
3355 }
3356 
3357 static int rbd_init_disk(struct rbd_device *rbd_dev)
3358 {
3359 	struct gendisk *disk;
3360 	struct request_queue *q;
3361 	u64 segment_size;
3362 
3363 	/* create gendisk info */
3364 	disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3365 	if (!disk)
3366 		return -ENOMEM;
3367 
3368 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3369 		 rbd_dev->dev_id);
3370 	disk->major = rbd_dev->major;
3371 	disk->first_minor = 0;
3372 	disk->fops = &rbd_bd_ops;
3373 	disk->private_data = rbd_dev;
3374 
3375 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3376 	if (!q)
3377 		goto out_disk;
3378 
3379 	/* We use the default size, but let's be explicit about it. */
3380 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3381 
3382 	/* set io sizes to object size */
3383 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3384 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3385 	blk_queue_max_segment_size(q, segment_size);
3386 	blk_queue_io_min(q, segment_size);
3387 	blk_queue_io_opt(q, segment_size);
3388 
3389 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3390 	disk->queue = q;
3391 
3392 	q->queuedata = rbd_dev;
3393 
3394 	rbd_dev->disk = disk;
3395 
3396 	return 0;
3397 out_disk:
3398 	put_disk(disk);
3399 
3400 	return -ENOMEM;
3401 }
3402 
3403 /*
3404   sysfs
3405 */
3406 
3407 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3408 {
3409 	return container_of(dev, struct rbd_device, dev);
3410 }
3411 
3412 static ssize_t rbd_size_show(struct device *dev,
3413 			     struct device_attribute *attr, char *buf)
3414 {
3415 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3416 
3417 	return sprintf(buf, "%llu\n",
3418 		(unsigned long long)rbd_dev->mapping.size);
3419 }
3420 
3421 /*
3422  * Note this shows the features for whatever's mapped, which is not
3423  * necessarily the base image.
3424  */
3425 static ssize_t rbd_features_show(struct device *dev,
3426 			     struct device_attribute *attr, char *buf)
3427 {
3428 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3429 
3430 	return sprintf(buf, "0x%016llx\n",
3431 			(unsigned long long)rbd_dev->mapping.features);
3432 }
3433 
3434 static ssize_t rbd_major_show(struct device *dev,
3435 			      struct device_attribute *attr, char *buf)
3436 {
3437 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3438 
3439 	if (rbd_dev->major)
3440 		return sprintf(buf, "%d\n", rbd_dev->major);
3441 
3442 	return sprintf(buf, "(none)\n");
3443 
3444 }
3445 
3446 static ssize_t rbd_client_id_show(struct device *dev,
3447 				  struct device_attribute *attr, char *buf)
3448 {
3449 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3450 
3451 	return sprintf(buf, "client%lld\n",
3452 			ceph_client_id(rbd_dev->rbd_client->client));
3453 }
3454 
3455 static ssize_t rbd_pool_show(struct device *dev,
3456 			     struct device_attribute *attr, char *buf)
3457 {
3458 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3459 
3460 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3461 }
3462 
3463 static ssize_t rbd_pool_id_show(struct device *dev,
3464 			     struct device_attribute *attr, char *buf)
3465 {
3466 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467 
3468 	return sprintf(buf, "%llu\n",
3469 			(unsigned long long) rbd_dev->spec->pool_id);
3470 }
3471 
3472 static ssize_t rbd_name_show(struct device *dev,
3473 			     struct device_attribute *attr, char *buf)
3474 {
3475 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3476 
3477 	if (rbd_dev->spec->image_name)
3478 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3479 
3480 	return sprintf(buf, "(unknown)\n");
3481 }
3482 
3483 static ssize_t rbd_image_id_show(struct device *dev,
3484 			     struct device_attribute *attr, char *buf)
3485 {
3486 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487 
3488 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3489 }
3490 
3491 /*
3492  * Shows the name of the currently-mapped snapshot (or
3493  * RBD_SNAP_HEAD_NAME for the base image).
3494  */
3495 static ssize_t rbd_snap_show(struct device *dev,
3496 			     struct device_attribute *attr,
3497 			     char *buf)
3498 {
3499 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3500 
3501 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3502 }
3503 
3504 /*
3505  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3506  * for the parent image.  If there is no parent, simply shows
3507  * "(no parent image)".
3508  */
3509 static ssize_t rbd_parent_show(struct device *dev,
3510 			     struct device_attribute *attr,
3511 			     char *buf)
3512 {
3513 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514 	struct rbd_spec *spec = rbd_dev->parent_spec;
3515 	int count;
3516 	char *bufp = buf;
3517 
3518 	if (!spec)
3519 		return sprintf(buf, "(no parent image)\n");
3520 
3521 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3522 			(unsigned long long) spec->pool_id, spec->pool_name);
3523 	if (count < 0)
3524 		return count;
3525 	bufp += count;
3526 
3527 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3528 			spec->image_name ? spec->image_name : "(unknown)");
3529 	if (count < 0)
3530 		return count;
3531 	bufp += count;
3532 
3533 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3534 			(unsigned long long) spec->snap_id, spec->snap_name);
3535 	if (count < 0)
3536 		return count;
3537 	bufp += count;
3538 
3539 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3540 	if (count < 0)
3541 		return count;
3542 	bufp += count;
3543 
3544 	return (ssize_t) (bufp - buf);
3545 }
3546 
3547 static ssize_t rbd_image_refresh(struct device *dev,
3548 				 struct device_attribute *attr,
3549 				 const char *buf,
3550 				 size_t size)
3551 {
3552 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553 	int ret;
3554 
3555 	ret = rbd_dev_refresh(rbd_dev);
3556 	if (ret)
3557 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3558 
3559 	return ret < 0 ? ret : size;
3560 }
3561 
3562 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3563 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3564 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3565 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3566 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3567 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3568 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3569 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3570 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3571 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3572 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3573 
3574 static struct attribute *rbd_attrs[] = {
3575 	&dev_attr_size.attr,
3576 	&dev_attr_features.attr,
3577 	&dev_attr_major.attr,
3578 	&dev_attr_client_id.attr,
3579 	&dev_attr_pool.attr,
3580 	&dev_attr_pool_id.attr,
3581 	&dev_attr_name.attr,
3582 	&dev_attr_image_id.attr,
3583 	&dev_attr_current_snap.attr,
3584 	&dev_attr_parent.attr,
3585 	&dev_attr_refresh.attr,
3586 	NULL
3587 };
3588 
3589 static struct attribute_group rbd_attr_group = {
3590 	.attrs = rbd_attrs,
3591 };
3592 
3593 static const struct attribute_group *rbd_attr_groups[] = {
3594 	&rbd_attr_group,
3595 	NULL
3596 };
3597 
3598 static void rbd_sysfs_dev_release(struct device *dev)
3599 {
3600 }
3601 
3602 static struct device_type rbd_device_type = {
3603 	.name		= "rbd",
3604 	.groups		= rbd_attr_groups,
3605 	.release	= rbd_sysfs_dev_release,
3606 };
3607 
3608 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3609 {
3610 	kref_get(&spec->kref);
3611 
3612 	return spec;
3613 }
3614 
3615 static void rbd_spec_free(struct kref *kref);
3616 static void rbd_spec_put(struct rbd_spec *spec)
3617 {
3618 	if (spec)
3619 		kref_put(&spec->kref, rbd_spec_free);
3620 }
3621 
3622 static struct rbd_spec *rbd_spec_alloc(void)
3623 {
3624 	struct rbd_spec *spec;
3625 
3626 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3627 	if (!spec)
3628 		return NULL;
3629 	kref_init(&spec->kref);
3630 
3631 	return spec;
3632 }
3633 
3634 static void rbd_spec_free(struct kref *kref)
3635 {
3636 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3637 
3638 	kfree(spec->pool_name);
3639 	kfree(spec->image_id);
3640 	kfree(spec->image_name);
3641 	kfree(spec->snap_name);
3642 	kfree(spec);
3643 }
3644 
3645 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3646 				struct rbd_spec *spec)
3647 {
3648 	struct rbd_device *rbd_dev;
3649 
3650 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3651 	if (!rbd_dev)
3652 		return NULL;
3653 
3654 	spin_lock_init(&rbd_dev->lock);
3655 	rbd_dev->flags = 0;
3656 	atomic_set(&rbd_dev->parent_ref, 0);
3657 	INIT_LIST_HEAD(&rbd_dev->node);
3658 	init_rwsem(&rbd_dev->header_rwsem);
3659 
3660 	rbd_dev->spec = spec;
3661 	rbd_dev->rbd_client = rbdc;
3662 
3663 	/* Initialize the layout used for all rbd requests */
3664 
3665 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3666 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3667 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3668 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3669 
3670 	return rbd_dev;
3671 }
3672 
3673 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3674 {
3675 	rbd_put_client(rbd_dev->rbd_client);
3676 	rbd_spec_put(rbd_dev->spec);
3677 	kfree(rbd_dev);
3678 }
3679 
3680 /*
3681  * Get the size and object order for an image snapshot, or if
3682  * snap_id is CEPH_NOSNAP, gets this information for the base
3683  * image.
3684  */
3685 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3686 				u8 *order, u64 *snap_size)
3687 {
3688 	__le64 snapid = cpu_to_le64(snap_id);
3689 	int ret;
3690 	struct {
3691 		u8 order;
3692 		__le64 size;
3693 	} __attribute__ ((packed)) size_buf = { 0 };
3694 
3695 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3696 				"rbd", "get_size",
3697 				&snapid, sizeof (snapid),
3698 				&size_buf, sizeof (size_buf));
3699 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3700 	if (ret < 0)
3701 		return ret;
3702 	if (ret < sizeof (size_buf))
3703 		return -ERANGE;
3704 
3705 	if (order)
3706 		*order = size_buf.order;
3707 	*snap_size = le64_to_cpu(size_buf.size);
3708 
3709 	dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3710 		(unsigned long long)snap_id, (unsigned int)*order,
3711 		(unsigned long long)*snap_size);
3712 
3713 	return 0;
3714 }
3715 
3716 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3717 {
3718 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3719 					&rbd_dev->header.obj_order,
3720 					&rbd_dev->header.image_size);
3721 }
3722 
3723 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3724 {
3725 	void *reply_buf;
3726 	int ret;
3727 	void *p;
3728 
3729 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3730 	if (!reply_buf)
3731 		return -ENOMEM;
3732 
3733 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3734 				"rbd", "get_object_prefix", NULL, 0,
3735 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3736 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3737 	if (ret < 0)
3738 		goto out;
3739 
3740 	p = reply_buf;
3741 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3742 						p + ret, NULL, GFP_NOIO);
3743 	ret = 0;
3744 
3745 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3746 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3747 		rbd_dev->header.object_prefix = NULL;
3748 	} else {
3749 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3750 	}
3751 out:
3752 	kfree(reply_buf);
3753 
3754 	return ret;
3755 }
3756 
3757 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3758 		u64 *snap_features)
3759 {
3760 	__le64 snapid = cpu_to_le64(snap_id);
3761 	struct {
3762 		__le64 features;
3763 		__le64 incompat;
3764 	} __attribute__ ((packed)) features_buf = { 0 };
3765 	u64 incompat;
3766 	int ret;
3767 
3768 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3769 				"rbd", "get_features",
3770 				&snapid, sizeof (snapid),
3771 				&features_buf, sizeof (features_buf));
3772 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3773 	if (ret < 0)
3774 		return ret;
3775 	if (ret < sizeof (features_buf))
3776 		return -ERANGE;
3777 
3778 	incompat = le64_to_cpu(features_buf.incompat);
3779 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3780 		return -ENXIO;
3781 
3782 	*snap_features = le64_to_cpu(features_buf.features);
3783 
3784 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3785 		(unsigned long long)snap_id,
3786 		(unsigned long long)*snap_features,
3787 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3788 
3789 	return 0;
3790 }
3791 
3792 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3793 {
3794 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3795 						&rbd_dev->header.features);
3796 }
3797 
3798 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3799 {
3800 	struct rbd_spec *parent_spec;
3801 	size_t size;
3802 	void *reply_buf = NULL;
3803 	__le64 snapid;
3804 	void *p;
3805 	void *end;
3806 	u64 pool_id;
3807 	char *image_id;
3808 	u64 snap_id;
3809 	u64 overlap;
3810 	int ret;
3811 
3812 	parent_spec = rbd_spec_alloc();
3813 	if (!parent_spec)
3814 		return -ENOMEM;
3815 
3816 	size = sizeof (__le64) +				/* pool_id */
3817 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3818 		sizeof (__le64) +				/* snap_id */
3819 		sizeof (__le64);				/* overlap */
3820 	reply_buf = kmalloc(size, GFP_KERNEL);
3821 	if (!reply_buf) {
3822 		ret = -ENOMEM;
3823 		goto out_err;
3824 	}
3825 
3826 	snapid = cpu_to_le64(CEPH_NOSNAP);
3827 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3828 				"rbd", "get_parent",
3829 				&snapid, sizeof (snapid),
3830 				reply_buf, size);
3831 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3832 	if (ret < 0)
3833 		goto out_err;
3834 
3835 	p = reply_buf;
3836 	end = reply_buf + ret;
3837 	ret = -ERANGE;
3838 	ceph_decode_64_safe(&p, end, pool_id, out_err);
3839 	if (pool_id == CEPH_NOPOOL) {
3840 		/*
3841 		 * Either the parent never existed, or we have
3842 		 * record of it but the image got flattened so it no
3843 		 * longer has a parent.  When the parent of a
3844 		 * layered image disappears we immediately set the
3845 		 * overlap to 0.  The effect of this is that all new
3846 		 * requests will be treated as if the image had no
3847 		 * parent.
3848 		 */
3849 		if (rbd_dev->parent_overlap) {
3850 			rbd_dev->parent_overlap = 0;
3851 			smp_mb();
3852 			rbd_dev_parent_put(rbd_dev);
3853 			pr_info("%s: clone image has been flattened\n",
3854 				rbd_dev->disk->disk_name);
3855 		}
3856 
3857 		goto out;	/* No parent?  No problem. */
3858 	}
3859 
3860 	/* The ceph file layout needs to fit pool id in 32 bits */
3861 
3862 	ret = -EIO;
3863 	if (pool_id > (u64)U32_MAX) {
3864 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3865 			(unsigned long long)pool_id, U32_MAX);
3866 		goto out_err;
3867 	}
3868 
3869 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3870 	if (IS_ERR(image_id)) {
3871 		ret = PTR_ERR(image_id);
3872 		goto out_err;
3873 	}
3874 	ceph_decode_64_safe(&p, end, snap_id, out_err);
3875 	ceph_decode_64_safe(&p, end, overlap, out_err);
3876 
3877 	/*
3878 	 * The parent won't change (except when the clone is
3879 	 * flattened, already handled that).  So we only need to
3880 	 * record the parent spec we have not already done so.
3881 	 */
3882 	if (!rbd_dev->parent_spec) {
3883 		parent_spec->pool_id = pool_id;
3884 		parent_spec->image_id = image_id;
3885 		parent_spec->snap_id = snap_id;
3886 		rbd_dev->parent_spec = parent_spec;
3887 		parent_spec = NULL;	/* rbd_dev now owns this */
3888 	}
3889 
3890 	/*
3891 	 * We always update the parent overlap.  If it's zero we
3892 	 * treat it specially.
3893 	 */
3894 	rbd_dev->parent_overlap = overlap;
3895 	smp_mb();
3896 	if (!overlap) {
3897 
3898 		/* A null parent_spec indicates it's the initial probe */
3899 
3900 		if (parent_spec) {
3901 			/*
3902 			 * The overlap has become zero, so the clone
3903 			 * must have been resized down to 0 at some
3904 			 * point.  Treat this the same as a flatten.
3905 			 */
3906 			rbd_dev_parent_put(rbd_dev);
3907 			pr_info("%s: clone image now standalone\n",
3908 				rbd_dev->disk->disk_name);
3909 		} else {
3910 			/*
3911 			 * For the initial probe, if we find the
3912 			 * overlap is zero we just pretend there was
3913 			 * no parent image.
3914 			 */
3915 			rbd_warn(rbd_dev, "ignoring parent of "
3916 						"clone with overlap 0\n");
3917 		}
3918 	}
3919 out:
3920 	ret = 0;
3921 out_err:
3922 	kfree(reply_buf);
3923 	rbd_spec_put(parent_spec);
3924 
3925 	return ret;
3926 }
3927 
3928 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3929 {
3930 	struct {
3931 		__le64 stripe_unit;
3932 		__le64 stripe_count;
3933 	} __attribute__ ((packed)) striping_info_buf = { 0 };
3934 	size_t size = sizeof (striping_info_buf);
3935 	void *p;
3936 	u64 obj_size;
3937 	u64 stripe_unit;
3938 	u64 stripe_count;
3939 	int ret;
3940 
3941 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3942 				"rbd", "get_stripe_unit_count", NULL, 0,
3943 				(char *)&striping_info_buf, size);
3944 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3945 	if (ret < 0)
3946 		return ret;
3947 	if (ret < size)
3948 		return -ERANGE;
3949 
3950 	/*
3951 	 * We don't actually support the "fancy striping" feature
3952 	 * (STRIPINGV2) yet, but if the striping sizes are the
3953 	 * defaults the behavior is the same as before.  So find
3954 	 * out, and only fail if the image has non-default values.
3955 	 */
3956 	ret = -EINVAL;
3957 	obj_size = (u64)1 << rbd_dev->header.obj_order;
3958 	p = &striping_info_buf;
3959 	stripe_unit = ceph_decode_64(&p);
3960 	if (stripe_unit != obj_size) {
3961 		rbd_warn(rbd_dev, "unsupported stripe unit "
3962 				"(got %llu want %llu)",
3963 				stripe_unit, obj_size);
3964 		return -EINVAL;
3965 	}
3966 	stripe_count = ceph_decode_64(&p);
3967 	if (stripe_count != 1) {
3968 		rbd_warn(rbd_dev, "unsupported stripe count "
3969 				"(got %llu want 1)", stripe_count);
3970 		return -EINVAL;
3971 	}
3972 	rbd_dev->header.stripe_unit = stripe_unit;
3973 	rbd_dev->header.stripe_count = stripe_count;
3974 
3975 	return 0;
3976 }
3977 
3978 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3979 {
3980 	size_t image_id_size;
3981 	char *image_id;
3982 	void *p;
3983 	void *end;
3984 	size_t size;
3985 	void *reply_buf = NULL;
3986 	size_t len = 0;
3987 	char *image_name = NULL;
3988 	int ret;
3989 
3990 	rbd_assert(!rbd_dev->spec->image_name);
3991 
3992 	len = strlen(rbd_dev->spec->image_id);
3993 	image_id_size = sizeof (__le32) + len;
3994 	image_id = kmalloc(image_id_size, GFP_KERNEL);
3995 	if (!image_id)
3996 		return NULL;
3997 
3998 	p = image_id;
3999 	end = image_id + image_id_size;
4000 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4001 
4002 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4003 	reply_buf = kmalloc(size, GFP_KERNEL);
4004 	if (!reply_buf)
4005 		goto out;
4006 
4007 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4008 				"rbd", "dir_get_name",
4009 				image_id, image_id_size,
4010 				reply_buf, size);
4011 	if (ret < 0)
4012 		goto out;
4013 	p = reply_buf;
4014 	end = reply_buf + ret;
4015 
4016 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4017 	if (IS_ERR(image_name))
4018 		image_name = NULL;
4019 	else
4020 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4021 out:
4022 	kfree(reply_buf);
4023 	kfree(image_id);
4024 
4025 	return image_name;
4026 }
4027 
4028 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4029 {
4030 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4031 	const char *snap_name;
4032 	u32 which = 0;
4033 
4034 	/* Skip over names until we find the one we are looking for */
4035 
4036 	snap_name = rbd_dev->header.snap_names;
4037 	while (which < snapc->num_snaps) {
4038 		if (!strcmp(name, snap_name))
4039 			return snapc->snaps[which];
4040 		snap_name += strlen(snap_name) + 1;
4041 		which++;
4042 	}
4043 	return CEPH_NOSNAP;
4044 }
4045 
4046 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4047 {
4048 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4049 	u32 which;
4050 	bool found = false;
4051 	u64 snap_id;
4052 
4053 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4054 		const char *snap_name;
4055 
4056 		snap_id = snapc->snaps[which];
4057 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4058 		if (IS_ERR(snap_name))
4059 			break;
4060 		found = !strcmp(name, snap_name);
4061 		kfree(snap_name);
4062 	}
4063 	return found ? snap_id : CEPH_NOSNAP;
4064 }
4065 
4066 /*
4067  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4068  * no snapshot by that name is found, or if an error occurs.
4069  */
4070 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4071 {
4072 	if (rbd_dev->image_format == 1)
4073 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4074 
4075 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4076 }
4077 
4078 /*
4079  * When an rbd image has a parent image, it is identified by the
4080  * pool, image, and snapshot ids (not names).  This function fills
4081  * in the names for those ids.  (It's OK if we can't figure out the
4082  * name for an image id, but the pool and snapshot ids should always
4083  * exist and have names.)  All names in an rbd spec are dynamically
4084  * allocated.
4085  *
4086  * When an image being mapped (not a parent) is probed, we have the
4087  * pool name and pool id, image name and image id, and the snapshot
4088  * name.  The only thing we're missing is the snapshot id.
4089  */
4090 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4091 {
4092 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4093 	struct rbd_spec *spec = rbd_dev->spec;
4094 	const char *pool_name;
4095 	const char *image_name;
4096 	const char *snap_name;
4097 	int ret;
4098 
4099 	/*
4100 	 * An image being mapped will have the pool name (etc.), but
4101 	 * we need to look up the snapshot id.
4102 	 */
4103 	if (spec->pool_name) {
4104 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4105 			u64 snap_id;
4106 
4107 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4108 			if (snap_id == CEPH_NOSNAP)
4109 				return -ENOENT;
4110 			spec->snap_id = snap_id;
4111 		} else {
4112 			spec->snap_id = CEPH_NOSNAP;
4113 		}
4114 
4115 		return 0;
4116 	}
4117 
4118 	/* Get the pool name; we have to make our own copy of this */
4119 
4120 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4121 	if (!pool_name) {
4122 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4123 		return -EIO;
4124 	}
4125 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4126 	if (!pool_name)
4127 		return -ENOMEM;
4128 
4129 	/* Fetch the image name; tolerate failure here */
4130 
4131 	image_name = rbd_dev_image_name(rbd_dev);
4132 	if (!image_name)
4133 		rbd_warn(rbd_dev, "unable to get image name");
4134 
4135 	/* Look up the snapshot name, and make a copy */
4136 
4137 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4138 	if (!snap_name) {
4139 		ret = -ENOMEM;
4140 		goto out_err;
4141 	}
4142 
4143 	spec->pool_name = pool_name;
4144 	spec->image_name = image_name;
4145 	spec->snap_name = snap_name;
4146 
4147 	return 0;
4148 out_err:
4149 	kfree(image_name);
4150 	kfree(pool_name);
4151 
4152 	return ret;
4153 }
4154 
4155 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4156 {
4157 	size_t size;
4158 	int ret;
4159 	void *reply_buf;
4160 	void *p;
4161 	void *end;
4162 	u64 seq;
4163 	u32 snap_count;
4164 	struct ceph_snap_context *snapc;
4165 	u32 i;
4166 
4167 	/*
4168 	 * We'll need room for the seq value (maximum snapshot id),
4169 	 * snapshot count, and array of that many snapshot ids.
4170 	 * For now we have a fixed upper limit on the number we're
4171 	 * prepared to receive.
4172 	 */
4173 	size = sizeof (__le64) + sizeof (__le32) +
4174 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4175 	reply_buf = kzalloc(size, GFP_KERNEL);
4176 	if (!reply_buf)
4177 		return -ENOMEM;
4178 
4179 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4180 				"rbd", "get_snapcontext", NULL, 0,
4181 				reply_buf, size);
4182 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4183 	if (ret < 0)
4184 		goto out;
4185 
4186 	p = reply_buf;
4187 	end = reply_buf + ret;
4188 	ret = -ERANGE;
4189 	ceph_decode_64_safe(&p, end, seq, out);
4190 	ceph_decode_32_safe(&p, end, snap_count, out);
4191 
4192 	/*
4193 	 * Make sure the reported number of snapshot ids wouldn't go
4194 	 * beyond the end of our buffer.  But before checking that,
4195 	 * make sure the computed size of the snapshot context we
4196 	 * allocate is representable in a size_t.
4197 	 */
4198 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4199 				 / sizeof (u64)) {
4200 		ret = -EINVAL;
4201 		goto out;
4202 	}
4203 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4204 		goto out;
4205 	ret = 0;
4206 
4207 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4208 	if (!snapc) {
4209 		ret = -ENOMEM;
4210 		goto out;
4211 	}
4212 	snapc->seq = seq;
4213 	for (i = 0; i < snap_count; i++)
4214 		snapc->snaps[i] = ceph_decode_64(&p);
4215 
4216 	ceph_put_snap_context(rbd_dev->header.snapc);
4217 	rbd_dev->header.snapc = snapc;
4218 
4219 	dout("  snap context seq = %llu, snap_count = %u\n",
4220 		(unsigned long long)seq, (unsigned int)snap_count);
4221 out:
4222 	kfree(reply_buf);
4223 
4224 	return ret;
4225 }
4226 
4227 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4228 					u64 snap_id)
4229 {
4230 	size_t size;
4231 	void *reply_buf;
4232 	__le64 snapid;
4233 	int ret;
4234 	void *p;
4235 	void *end;
4236 	char *snap_name;
4237 
4238 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4239 	reply_buf = kmalloc(size, GFP_KERNEL);
4240 	if (!reply_buf)
4241 		return ERR_PTR(-ENOMEM);
4242 
4243 	snapid = cpu_to_le64(snap_id);
4244 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4245 				"rbd", "get_snapshot_name",
4246 				&snapid, sizeof (snapid),
4247 				reply_buf, size);
4248 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4249 	if (ret < 0) {
4250 		snap_name = ERR_PTR(ret);
4251 		goto out;
4252 	}
4253 
4254 	p = reply_buf;
4255 	end = reply_buf + ret;
4256 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4257 	if (IS_ERR(snap_name))
4258 		goto out;
4259 
4260 	dout("  snap_id 0x%016llx snap_name = %s\n",
4261 		(unsigned long long)snap_id, snap_name);
4262 out:
4263 	kfree(reply_buf);
4264 
4265 	return snap_name;
4266 }
4267 
4268 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4269 {
4270 	bool first_time = rbd_dev->header.object_prefix == NULL;
4271 	int ret;
4272 
4273 	ret = rbd_dev_v2_image_size(rbd_dev);
4274 	if (ret)
4275 		return ret;
4276 
4277 	if (first_time) {
4278 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4279 		if (ret)
4280 			return ret;
4281 	}
4282 
4283 	/*
4284 	 * If the image supports layering, get the parent info.  We
4285 	 * need to probe the first time regardless.  Thereafter we
4286 	 * only need to if there's a parent, to see if it has
4287 	 * disappeared due to the mapped image getting flattened.
4288 	 */
4289 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4290 			(first_time || rbd_dev->parent_spec)) {
4291 		bool warn;
4292 
4293 		ret = rbd_dev_v2_parent_info(rbd_dev);
4294 		if (ret)
4295 			return ret;
4296 
4297 		/*
4298 		 * Print a warning if this is the initial probe and
4299 		 * the image has a parent.  Don't print it if the
4300 		 * image now being probed is itself a parent.  We
4301 		 * can tell at this point because we won't know its
4302 		 * pool name yet (just its pool id).
4303 		 */
4304 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4305 		if (first_time && warn)
4306 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4307 					"is EXPERIMENTAL!");
4308 	}
4309 
4310 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4311 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4312 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4313 
4314 	ret = rbd_dev_v2_snap_context(rbd_dev);
4315 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4316 
4317 	return ret;
4318 }
4319 
4320 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4321 {
4322 	struct device *dev;
4323 	int ret;
4324 
4325 	dev = &rbd_dev->dev;
4326 	dev->bus = &rbd_bus_type;
4327 	dev->type = &rbd_device_type;
4328 	dev->parent = &rbd_root_dev;
4329 	dev->release = rbd_dev_device_release;
4330 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4331 	ret = device_register(dev);
4332 
4333 	return ret;
4334 }
4335 
4336 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4337 {
4338 	device_unregister(&rbd_dev->dev);
4339 }
4340 
4341 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4342 
4343 /*
4344  * Get a unique rbd identifier for the given new rbd_dev, and add
4345  * the rbd_dev to the global list.  The minimum rbd id is 1.
4346  */
4347 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4348 {
4349 	rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4350 
4351 	spin_lock(&rbd_dev_list_lock);
4352 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4353 	spin_unlock(&rbd_dev_list_lock);
4354 	dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4355 		(unsigned long long) rbd_dev->dev_id);
4356 }
4357 
4358 /*
4359  * Remove an rbd_dev from the global list, and record that its
4360  * identifier is no longer in use.
4361  */
4362 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4363 {
4364 	struct list_head *tmp;
4365 	int rbd_id = rbd_dev->dev_id;
4366 	int max_id;
4367 
4368 	rbd_assert(rbd_id > 0);
4369 
4370 	dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4371 		(unsigned long long) rbd_dev->dev_id);
4372 	spin_lock(&rbd_dev_list_lock);
4373 	list_del_init(&rbd_dev->node);
4374 
4375 	/*
4376 	 * If the id being "put" is not the current maximum, there
4377 	 * is nothing special we need to do.
4378 	 */
4379 	if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4380 		spin_unlock(&rbd_dev_list_lock);
4381 		return;
4382 	}
4383 
4384 	/*
4385 	 * We need to update the current maximum id.  Search the
4386 	 * list to find out what it is.  We're more likely to find
4387 	 * the maximum at the end, so search the list backward.
4388 	 */
4389 	max_id = 0;
4390 	list_for_each_prev(tmp, &rbd_dev_list) {
4391 		struct rbd_device *rbd_dev;
4392 
4393 		rbd_dev = list_entry(tmp, struct rbd_device, node);
4394 		if (rbd_dev->dev_id > max_id)
4395 			max_id = rbd_dev->dev_id;
4396 	}
4397 	spin_unlock(&rbd_dev_list_lock);
4398 
4399 	/*
4400 	 * The max id could have been updated by rbd_dev_id_get(), in
4401 	 * which case it now accurately reflects the new maximum.
4402 	 * Be careful not to overwrite the maximum value in that
4403 	 * case.
4404 	 */
4405 	atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4406 	dout("  max dev id has been reset\n");
4407 }
4408 
4409 /*
4410  * Skips over white space at *buf, and updates *buf to point to the
4411  * first found non-space character (if any). Returns the length of
4412  * the token (string of non-white space characters) found.  Note
4413  * that *buf must be terminated with '\0'.
4414  */
4415 static inline size_t next_token(const char **buf)
4416 {
4417         /*
4418         * These are the characters that produce nonzero for
4419         * isspace() in the "C" and "POSIX" locales.
4420         */
4421         const char *spaces = " \f\n\r\t\v";
4422 
4423         *buf += strspn(*buf, spaces);	/* Find start of token */
4424 
4425 	return strcspn(*buf, spaces);   /* Return token length */
4426 }
4427 
4428 /*
4429  * Finds the next token in *buf, and if the provided token buffer is
4430  * big enough, copies the found token into it.  The result, if
4431  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4432  * must be terminated with '\0' on entry.
4433  *
4434  * Returns the length of the token found (not including the '\0').
4435  * Return value will be 0 if no token is found, and it will be >=
4436  * token_size if the token would not fit.
4437  *
4438  * The *buf pointer will be updated to point beyond the end of the
4439  * found token.  Note that this occurs even if the token buffer is
4440  * too small to hold it.
4441  */
4442 static inline size_t copy_token(const char **buf,
4443 				char *token,
4444 				size_t token_size)
4445 {
4446         size_t len;
4447 
4448 	len = next_token(buf);
4449 	if (len < token_size) {
4450 		memcpy(token, *buf, len);
4451 		*(token + len) = '\0';
4452 	}
4453 	*buf += len;
4454 
4455         return len;
4456 }
4457 
4458 /*
4459  * Finds the next token in *buf, dynamically allocates a buffer big
4460  * enough to hold a copy of it, and copies the token into the new
4461  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4462  * that a duplicate buffer is created even for a zero-length token.
4463  *
4464  * Returns a pointer to the newly-allocated duplicate, or a null
4465  * pointer if memory for the duplicate was not available.  If
4466  * the lenp argument is a non-null pointer, the length of the token
4467  * (not including the '\0') is returned in *lenp.
4468  *
4469  * If successful, the *buf pointer will be updated to point beyond
4470  * the end of the found token.
4471  *
4472  * Note: uses GFP_KERNEL for allocation.
4473  */
4474 static inline char *dup_token(const char **buf, size_t *lenp)
4475 {
4476 	char *dup;
4477 	size_t len;
4478 
4479 	len = next_token(buf);
4480 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4481 	if (!dup)
4482 		return NULL;
4483 	*(dup + len) = '\0';
4484 	*buf += len;
4485 
4486 	if (lenp)
4487 		*lenp = len;
4488 
4489 	return dup;
4490 }
4491 
4492 /*
4493  * Parse the options provided for an "rbd add" (i.e., rbd image
4494  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4495  * and the data written is passed here via a NUL-terminated buffer.
4496  * Returns 0 if successful or an error code otherwise.
4497  *
4498  * The information extracted from these options is recorded in
4499  * the other parameters which return dynamically-allocated
4500  * structures:
4501  *  ceph_opts
4502  *      The address of a pointer that will refer to a ceph options
4503  *      structure.  Caller must release the returned pointer using
4504  *      ceph_destroy_options() when it is no longer needed.
4505  *  rbd_opts
4506  *	Address of an rbd options pointer.  Fully initialized by
4507  *	this function; caller must release with kfree().
4508  *  spec
4509  *	Address of an rbd image specification pointer.  Fully
4510  *	initialized by this function based on parsed options.
4511  *	Caller must release with rbd_spec_put().
4512  *
4513  * The options passed take this form:
4514  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4515  * where:
4516  *  <mon_addrs>
4517  *      A comma-separated list of one or more monitor addresses.
4518  *      A monitor address is an ip address, optionally followed
4519  *      by a port number (separated by a colon).
4520  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4521  *  <options>
4522  *      A comma-separated list of ceph and/or rbd options.
4523  *  <pool_name>
4524  *      The name of the rados pool containing the rbd image.
4525  *  <image_name>
4526  *      The name of the image in that pool to map.
4527  *  <snap_id>
4528  *      An optional snapshot id.  If provided, the mapping will
4529  *      present data from the image at the time that snapshot was
4530  *      created.  The image head is used if no snapshot id is
4531  *      provided.  Snapshot mappings are always read-only.
4532  */
4533 static int rbd_add_parse_args(const char *buf,
4534 				struct ceph_options **ceph_opts,
4535 				struct rbd_options **opts,
4536 				struct rbd_spec **rbd_spec)
4537 {
4538 	size_t len;
4539 	char *options;
4540 	const char *mon_addrs;
4541 	char *snap_name;
4542 	size_t mon_addrs_size;
4543 	struct rbd_spec *spec = NULL;
4544 	struct rbd_options *rbd_opts = NULL;
4545 	struct ceph_options *copts;
4546 	int ret;
4547 
4548 	/* The first four tokens are required */
4549 
4550 	len = next_token(&buf);
4551 	if (!len) {
4552 		rbd_warn(NULL, "no monitor address(es) provided");
4553 		return -EINVAL;
4554 	}
4555 	mon_addrs = buf;
4556 	mon_addrs_size = len + 1;
4557 	buf += len;
4558 
4559 	ret = -EINVAL;
4560 	options = dup_token(&buf, NULL);
4561 	if (!options)
4562 		return -ENOMEM;
4563 	if (!*options) {
4564 		rbd_warn(NULL, "no options provided");
4565 		goto out_err;
4566 	}
4567 
4568 	spec = rbd_spec_alloc();
4569 	if (!spec)
4570 		goto out_mem;
4571 
4572 	spec->pool_name = dup_token(&buf, NULL);
4573 	if (!spec->pool_name)
4574 		goto out_mem;
4575 	if (!*spec->pool_name) {
4576 		rbd_warn(NULL, "no pool name provided");
4577 		goto out_err;
4578 	}
4579 
4580 	spec->image_name = dup_token(&buf, NULL);
4581 	if (!spec->image_name)
4582 		goto out_mem;
4583 	if (!*spec->image_name) {
4584 		rbd_warn(NULL, "no image name provided");
4585 		goto out_err;
4586 	}
4587 
4588 	/*
4589 	 * Snapshot name is optional; default is to use "-"
4590 	 * (indicating the head/no snapshot).
4591 	 */
4592 	len = next_token(&buf);
4593 	if (!len) {
4594 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4595 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4596 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4597 		ret = -ENAMETOOLONG;
4598 		goto out_err;
4599 	}
4600 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4601 	if (!snap_name)
4602 		goto out_mem;
4603 	*(snap_name + len) = '\0';
4604 	spec->snap_name = snap_name;
4605 
4606 	/* Initialize all rbd options to the defaults */
4607 
4608 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4609 	if (!rbd_opts)
4610 		goto out_mem;
4611 
4612 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4613 
4614 	copts = ceph_parse_options(options, mon_addrs,
4615 					mon_addrs + mon_addrs_size - 1,
4616 					parse_rbd_opts_token, rbd_opts);
4617 	if (IS_ERR(copts)) {
4618 		ret = PTR_ERR(copts);
4619 		goto out_err;
4620 	}
4621 	kfree(options);
4622 
4623 	*ceph_opts = copts;
4624 	*opts = rbd_opts;
4625 	*rbd_spec = spec;
4626 
4627 	return 0;
4628 out_mem:
4629 	ret = -ENOMEM;
4630 out_err:
4631 	kfree(rbd_opts);
4632 	rbd_spec_put(spec);
4633 	kfree(options);
4634 
4635 	return ret;
4636 }
4637 
4638 /*
4639  * An rbd format 2 image has a unique identifier, distinct from the
4640  * name given to it by the user.  Internally, that identifier is
4641  * what's used to specify the names of objects related to the image.
4642  *
4643  * A special "rbd id" object is used to map an rbd image name to its
4644  * id.  If that object doesn't exist, then there is no v2 rbd image
4645  * with the supplied name.
4646  *
4647  * This function will record the given rbd_dev's image_id field if
4648  * it can be determined, and in that case will return 0.  If any
4649  * errors occur a negative errno will be returned and the rbd_dev's
4650  * image_id field will be unchanged (and should be NULL).
4651  */
4652 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4653 {
4654 	int ret;
4655 	size_t size;
4656 	char *object_name;
4657 	void *response;
4658 	char *image_id;
4659 
4660 	/*
4661 	 * When probing a parent image, the image id is already
4662 	 * known (and the image name likely is not).  There's no
4663 	 * need to fetch the image id again in this case.  We
4664 	 * do still need to set the image format though.
4665 	 */
4666 	if (rbd_dev->spec->image_id) {
4667 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4668 
4669 		return 0;
4670 	}
4671 
4672 	/*
4673 	 * First, see if the format 2 image id file exists, and if
4674 	 * so, get the image's persistent id from it.
4675 	 */
4676 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4677 	object_name = kmalloc(size, GFP_NOIO);
4678 	if (!object_name)
4679 		return -ENOMEM;
4680 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4681 	dout("rbd id object name is %s\n", object_name);
4682 
4683 	/* Response will be an encoded string, which includes a length */
4684 
4685 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4686 	response = kzalloc(size, GFP_NOIO);
4687 	if (!response) {
4688 		ret = -ENOMEM;
4689 		goto out;
4690 	}
4691 
4692 	/* If it doesn't exist we'll assume it's a format 1 image */
4693 
4694 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4695 				"rbd", "get_id", NULL, 0,
4696 				response, RBD_IMAGE_ID_LEN_MAX);
4697 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4698 	if (ret == -ENOENT) {
4699 		image_id = kstrdup("", GFP_KERNEL);
4700 		ret = image_id ? 0 : -ENOMEM;
4701 		if (!ret)
4702 			rbd_dev->image_format = 1;
4703 	} else if (ret > sizeof (__le32)) {
4704 		void *p = response;
4705 
4706 		image_id = ceph_extract_encoded_string(&p, p + ret,
4707 						NULL, GFP_NOIO);
4708 		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4709 		if (!ret)
4710 			rbd_dev->image_format = 2;
4711 	} else {
4712 		ret = -EINVAL;
4713 	}
4714 
4715 	if (!ret) {
4716 		rbd_dev->spec->image_id = image_id;
4717 		dout("image_id is %s\n", image_id);
4718 	}
4719 out:
4720 	kfree(response);
4721 	kfree(object_name);
4722 
4723 	return ret;
4724 }
4725 
4726 /*
4727  * Undo whatever state changes are made by v1 or v2 header info
4728  * call.
4729  */
4730 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4731 {
4732 	struct rbd_image_header	*header;
4733 
4734 	/* Drop parent reference unless it's already been done (or none) */
4735 
4736 	if (rbd_dev->parent_overlap)
4737 		rbd_dev_parent_put(rbd_dev);
4738 
4739 	/* Free dynamic fields from the header, then zero it out */
4740 
4741 	header = &rbd_dev->header;
4742 	ceph_put_snap_context(header->snapc);
4743 	kfree(header->snap_sizes);
4744 	kfree(header->snap_names);
4745 	kfree(header->object_prefix);
4746 	memset(header, 0, sizeof (*header));
4747 }
4748 
4749 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4750 {
4751 	int ret;
4752 
4753 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4754 	if (ret)
4755 		goto out_err;
4756 
4757 	/*
4758 	 * Get the and check features for the image.  Currently the
4759 	 * features are assumed to never change.
4760 	 */
4761 	ret = rbd_dev_v2_features(rbd_dev);
4762 	if (ret)
4763 		goto out_err;
4764 
4765 	/* If the image supports fancy striping, get its parameters */
4766 
4767 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4768 		ret = rbd_dev_v2_striping_info(rbd_dev);
4769 		if (ret < 0)
4770 			goto out_err;
4771 	}
4772 	/* No support for crypto and compression type format 2 images */
4773 
4774 	return 0;
4775 out_err:
4776 	rbd_dev->header.features = 0;
4777 	kfree(rbd_dev->header.object_prefix);
4778 	rbd_dev->header.object_prefix = NULL;
4779 
4780 	return ret;
4781 }
4782 
4783 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4784 {
4785 	struct rbd_device *parent = NULL;
4786 	struct rbd_spec *parent_spec;
4787 	struct rbd_client *rbdc;
4788 	int ret;
4789 
4790 	if (!rbd_dev->parent_spec)
4791 		return 0;
4792 	/*
4793 	 * We need to pass a reference to the client and the parent
4794 	 * spec when creating the parent rbd_dev.  Images related by
4795 	 * parent/child relationships always share both.
4796 	 */
4797 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4798 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4799 
4800 	ret = -ENOMEM;
4801 	parent = rbd_dev_create(rbdc, parent_spec);
4802 	if (!parent)
4803 		goto out_err;
4804 
4805 	ret = rbd_dev_image_probe(parent, false);
4806 	if (ret < 0)
4807 		goto out_err;
4808 	rbd_dev->parent = parent;
4809 	atomic_set(&rbd_dev->parent_ref, 1);
4810 
4811 	return 0;
4812 out_err:
4813 	if (parent) {
4814 		rbd_dev_unparent(rbd_dev);
4815 		kfree(rbd_dev->header_name);
4816 		rbd_dev_destroy(parent);
4817 	} else {
4818 		rbd_put_client(rbdc);
4819 		rbd_spec_put(parent_spec);
4820 	}
4821 
4822 	return ret;
4823 }
4824 
4825 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4826 {
4827 	int ret;
4828 
4829 	/* generate unique id: find highest unique id, add one */
4830 	rbd_dev_id_get(rbd_dev);
4831 
4832 	/* Fill in the device name, now that we have its id. */
4833 	BUILD_BUG_ON(DEV_NAME_LEN
4834 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4835 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4836 
4837 	/* Get our block major device number. */
4838 
4839 	ret = register_blkdev(0, rbd_dev->name);
4840 	if (ret < 0)
4841 		goto err_out_id;
4842 	rbd_dev->major = ret;
4843 
4844 	/* Set up the blkdev mapping. */
4845 
4846 	ret = rbd_init_disk(rbd_dev);
4847 	if (ret)
4848 		goto err_out_blkdev;
4849 
4850 	ret = rbd_dev_mapping_set(rbd_dev);
4851 	if (ret)
4852 		goto err_out_disk;
4853 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4854 
4855 	ret = rbd_bus_add_dev(rbd_dev);
4856 	if (ret)
4857 		goto err_out_mapping;
4858 
4859 	/* Everything's ready.  Announce the disk to the world. */
4860 
4861 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4862 	add_disk(rbd_dev->disk);
4863 
4864 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4865 		(unsigned long long) rbd_dev->mapping.size);
4866 
4867 	return ret;
4868 
4869 err_out_mapping:
4870 	rbd_dev_mapping_clear(rbd_dev);
4871 err_out_disk:
4872 	rbd_free_disk(rbd_dev);
4873 err_out_blkdev:
4874 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
4875 err_out_id:
4876 	rbd_dev_id_put(rbd_dev);
4877 	rbd_dev_mapping_clear(rbd_dev);
4878 
4879 	return ret;
4880 }
4881 
4882 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4883 {
4884 	struct rbd_spec *spec = rbd_dev->spec;
4885 	size_t size;
4886 
4887 	/* Record the header object name for this rbd image. */
4888 
4889 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4890 
4891 	if (rbd_dev->image_format == 1)
4892 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4893 	else
4894 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4895 
4896 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4897 	if (!rbd_dev->header_name)
4898 		return -ENOMEM;
4899 
4900 	if (rbd_dev->image_format == 1)
4901 		sprintf(rbd_dev->header_name, "%s%s",
4902 			spec->image_name, RBD_SUFFIX);
4903 	else
4904 		sprintf(rbd_dev->header_name, "%s%s",
4905 			RBD_HEADER_PREFIX, spec->image_id);
4906 	return 0;
4907 }
4908 
4909 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4910 {
4911 	rbd_dev_unprobe(rbd_dev);
4912 	kfree(rbd_dev->header_name);
4913 	rbd_dev->header_name = NULL;
4914 	rbd_dev->image_format = 0;
4915 	kfree(rbd_dev->spec->image_id);
4916 	rbd_dev->spec->image_id = NULL;
4917 
4918 	rbd_dev_destroy(rbd_dev);
4919 }
4920 
4921 /*
4922  * Probe for the existence of the header object for the given rbd
4923  * device.  If this image is the one being mapped (i.e., not a
4924  * parent), initiate a watch on its header object before using that
4925  * object to get detailed information about the rbd image.
4926  */
4927 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4928 {
4929 	int ret;
4930 	int tmp;
4931 
4932 	/*
4933 	 * Get the id from the image id object.  Unless there's an
4934 	 * error, rbd_dev->spec->image_id will be filled in with
4935 	 * a dynamically-allocated string, and rbd_dev->image_format
4936 	 * will be set to either 1 or 2.
4937 	 */
4938 	ret = rbd_dev_image_id(rbd_dev);
4939 	if (ret)
4940 		return ret;
4941 	rbd_assert(rbd_dev->spec->image_id);
4942 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4943 
4944 	ret = rbd_dev_header_name(rbd_dev);
4945 	if (ret)
4946 		goto err_out_format;
4947 
4948 	if (mapping) {
4949 		ret = rbd_dev_header_watch_sync(rbd_dev, true);
4950 		if (ret)
4951 			goto out_header_name;
4952 	}
4953 
4954 	if (rbd_dev->image_format == 1)
4955 		ret = rbd_dev_v1_header_info(rbd_dev);
4956 	else
4957 		ret = rbd_dev_v2_header_info(rbd_dev);
4958 	if (ret)
4959 		goto err_out_watch;
4960 
4961 	ret = rbd_dev_spec_update(rbd_dev);
4962 	if (ret)
4963 		goto err_out_probe;
4964 
4965 	ret = rbd_dev_probe_parent(rbd_dev);
4966 	if (ret)
4967 		goto err_out_probe;
4968 
4969 	dout("discovered format %u image, header name is %s\n",
4970 		rbd_dev->image_format, rbd_dev->header_name);
4971 
4972 	return 0;
4973 err_out_probe:
4974 	rbd_dev_unprobe(rbd_dev);
4975 err_out_watch:
4976 	if (mapping) {
4977 		tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4978 		if (tmp)
4979 			rbd_warn(rbd_dev, "unable to tear down "
4980 					"watch request (%d)\n", tmp);
4981 	}
4982 out_header_name:
4983 	kfree(rbd_dev->header_name);
4984 	rbd_dev->header_name = NULL;
4985 err_out_format:
4986 	rbd_dev->image_format = 0;
4987 	kfree(rbd_dev->spec->image_id);
4988 	rbd_dev->spec->image_id = NULL;
4989 
4990 	dout("probe failed, returning %d\n", ret);
4991 
4992 	return ret;
4993 }
4994 
4995 static ssize_t rbd_add(struct bus_type *bus,
4996 		       const char *buf,
4997 		       size_t count)
4998 {
4999 	struct rbd_device *rbd_dev = NULL;
5000 	struct ceph_options *ceph_opts = NULL;
5001 	struct rbd_options *rbd_opts = NULL;
5002 	struct rbd_spec *spec = NULL;
5003 	struct rbd_client *rbdc;
5004 	struct ceph_osd_client *osdc;
5005 	bool read_only;
5006 	int rc = -ENOMEM;
5007 
5008 	if (!try_module_get(THIS_MODULE))
5009 		return -ENODEV;
5010 
5011 	/* parse add command */
5012 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5013 	if (rc < 0)
5014 		goto err_out_module;
5015 	read_only = rbd_opts->read_only;
5016 	kfree(rbd_opts);
5017 	rbd_opts = NULL;	/* done with this */
5018 
5019 	rbdc = rbd_get_client(ceph_opts);
5020 	if (IS_ERR(rbdc)) {
5021 		rc = PTR_ERR(rbdc);
5022 		goto err_out_args;
5023 	}
5024 
5025 	/* pick the pool */
5026 	osdc = &rbdc->client->osdc;
5027 	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5028 	if (rc < 0)
5029 		goto err_out_client;
5030 	spec->pool_id = (u64)rc;
5031 
5032 	/* The ceph file layout needs to fit pool id in 32 bits */
5033 
5034 	if (spec->pool_id > (u64)U32_MAX) {
5035 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5036 				(unsigned long long)spec->pool_id, U32_MAX);
5037 		rc = -EIO;
5038 		goto err_out_client;
5039 	}
5040 
5041 	rbd_dev = rbd_dev_create(rbdc, spec);
5042 	if (!rbd_dev)
5043 		goto err_out_client;
5044 	rbdc = NULL;		/* rbd_dev now owns this */
5045 	spec = NULL;		/* rbd_dev now owns this */
5046 
5047 	rc = rbd_dev_image_probe(rbd_dev, true);
5048 	if (rc < 0)
5049 		goto err_out_rbd_dev;
5050 
5051 	/* If we are mapping a snapshot it must be marked read-only */
5052 
5053 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5054 		read_only = true;
5055 	rbd_dev->mapping.read_only = read_only;
5056 
5057 	rc = rbd_dev_device_setup(rbd_dev);
5058 	if (rc) {
5059 		rbd_dev_image_release(rbd_dev);
5060 		goto err_out_module;
5061 	}
5062 
5063 	return count;
5064 
5065 err_out_rbd_dev:
5066 	rbd_dev_destroy(rbd_dev);
5067 err_out_client:
5068 	rbd_put_client(rbdc);
5069 err_out_args:
5070 	rbd_spec_put(spec);
5071 err_out_module:
5072 	module_put(THIS_MODULE);
5073 
5074 	dout("Error adding device %s\n", buf);
5075 
5076 	return (ssize_t)rc;
5077 }
5078 
5079 static void rbd_dev_device_release(struct device *dev)
5080 {
5081 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082 
5083 	rbd_free_disk(rbd_dev);
5084 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5085 	rbd_dev_mapping_clear(rbd_dev);
5086 	unregister_blkdev(rbd_dev->major, rbd_dev->name);
5087 	rbd_dev->major = 0;
5088 	rbd_dev_id_put(rbd_dev);
5089 	rbd_dev_mapping_clear(rbd_dev);
5090 }
5091 
5092 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5093 {
5094 	while (rbd_dev->parent) {
5095 		struct rbd_device *first = rbd_dev;
5096 		struct rbd_device *second = first->parent;
5097 		struct rbd_device *third;
5098 
5099 		/*
5100 		 * Follow to the parent with no grandparent and
5101 		 * remove it.
5102 		 */
5103 		while (second && (third = second->parent)) {
5104 			first = second;
5105 			second = third;
5106 		}
5107 		rbd_assert(second);
5108 		rbd_dev_image_release(second);
5109 		first->parent = NULL;
5110 		first->parent_overlap = 0;
5111 
5112 		rbd_assert(first->parent_spec);
5113 		rbd_spec_put(first->parent_spec);
5114 		first->parent_spec = NULL;
5115 	}
5116 }
5117 
5118 static ssize_t rbd_remove(struct bus_type *bus,
5119 			  const char *buf,
5120 			  size_t count)
5121 {
5122 	struct rbd_device *rbd_dev = NULL;
5123 	struct list_head *tmp;
5124 	int dev_id;
5125 	unsigned long ul;
5126 	bool already = false;
5127 	int ret;
5128 
5129 	ret = strict_strtoul(buf, 10, &ul);
5130 	if (ret)
5131 		return ret;
5132 
5133 	/* convert to int; abort if we lost anything in the conversion */
5134 	dev_id = (int)ul;
5135 	if (dev_id != ul)
5136 		return -EINVAL;
5137 
5138 	ret = -ENOENT;
5139 	spin_lock(&rbd_dev_list_lock);
5140 	list_for_each(tmp, &rbd_dev_list) {
5141 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5142 		if (rbd_dev->dev_id == dev_id) {
5143 			ret = 0;
5144 			break;
5145 		}
5146 	}
5147 	if (!ret) {
5148 		spin_lock_irq(&rbd_dev->lock);
5149 		if (rbd_dev->open_count)
5150 			ret = -EBUSY;
5151 		else
5152 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5153 							&rbd_dev->flags);
5154 		spin_unlock_irq(&rbd_dev->lock);
5155 	}
5156 	spin_unlock(&rbd_dev_list_lock);
5157 	if (ret < 0 || already)
5158 		return ret;
5159 
5160 	rbd_bus_del_dev(rbd_dev);
5161 	ret = rbd_dev_header_watch_sync(rbd_dev, false);
5162 	if (ret)
5163 		rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5164 	rbd_dev_image_release(rbd_dev);
5165 	module_put(THIS_MODULE);
5166 
5167 	return count;
5168 }
5169 
5170 /*
5171  * create control files in sysfs
5172  * /sys/bus/rbd/...
5173  */
5174 static int rbd_sysfs_init(void)
5175 {
5176 	int ret;
5177 
5178 	ret = device_register(&rbd_root_dev);
5179 	if (ret < 0)
5180 		return ret;
5181 
5182 	ret = bus_register(&rbd_bus_type);
5183 	if (ret < 0)
5184 		device_unregister(&rbd_root_dev);
5185 
5186 	return ret;
5187 }
5188 
5189 static void rbd_sysfs_cleanup(void)
5190 {
5191 	bus_unregister(&rbd_bus_type);
5192 	device_unregister(&rbd_root_dev);
5193 }
5194 
5195 static int rbd_slab_init(void)
5196 {
5197 	rbd_assert(!rbd_img_request_cache);
5198 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5199 					sizeof (struct rbd_img_request),
5200 					__alignof__(struct rbd_img_request),
5201 					0, NULL);
5202 	if (!rbd_img_request_cache)
5203 		return -ENOMEM;
5204 
5205 	rbd_assert(!rbd_obj_request_cache);
5206 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5207 					sizeof (struct rbd_obj_request),
5208 					__alignof__(struct rbd_obj_request),
5209 					0, NULL);
5210 	if (!rbd_obj_request_cache)
5211 		goto out_err;
5212 
5213 	rbd_assert(!rbd_segment_name_cache);
5214 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5215 					MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5216 	if (rbd_segment_name_cache)
5217 		return 0;
5218 out_err:
5219 	if (rbd_obj_request_cache) {
5220 		kmem_cache_destroy(rbd_obj_request_cache);
5221 		rbd_obj_request_cache = NULL;
5222 	}
5223 
5224 	kmem_cache_destroy(rbd_img_request_cache);
5225 	rbd_img_request_cache = NULL;
5226 
5227 	return -ENOMEM;
5228 }
5229 
5230 static void rbd_slab_exit(void)
5231 {
5232 	rbd_assert(rbd_segment_name_cache);
5233 	kmem_cache_destroy(rbd_segment_name_cache);
5234 	rbd_segment_name_cache = NULL;
5235 
5236 	rbd_assert(rbd_obj_request_cache);
5237 	kmem_cache_destroy(rbd_obj_request_cache);
5238 	rbd_obj_request_cache = NULL;
5239 
5240 	rbd_assert(rbd_img_request_cache);
5241 	kmem_cache_destroy(rbd_img_request_cache);
5242 	rbd_img_request_cache = NULL;
5243 }
5244 
5245 static int __init rbd_init(void)
5246 {
5247 	int rc;
5248 
5249 	if (!libceph_compatible(NULL)) {
5250 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5251 
5252 		return -EINVAL;
5253 	}
5254 	rc = rbd_slab_init();
5255 	if (rc)
5256 		return rc;
5257 	rc = rbd_sysfs_init();
5258 	if (rc)
5259 		rbd_slab_exit();
5260 	else
5261 		pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5262 
5263 	return rc;
5264 }
5265 
5266 static void __exit rbd_exit(void)
5267 {
5268 	rbd_sysfs_cleanup();
5269 	rbd_slab_exit();
5270 }
5271 
5272 module_init(rbd_init);
5273 module_exit(rbd_exit);
5274 
5275 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5276 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5277 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5278 MODULE_DESCRIPTION("rados block device");
5279 
5280 /* following authorship retained from original osdblk.c */
5281 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5282 
5283 MODULE_LICENSE("GPL");
5284