xref: /openbmc/linux/drivers/block/rbd.c (revision 4bf3bd0f)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
120 
121 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
122 				 RBD_FEATURE_STRIPINGV2 |	\
123 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
124 				 RBD_FEATURE_DATA_POOL |	\
125 				 RBD_FEATURE_OPERATIONS)
126 
127 /* Features supported by this (client software) implementation. */
128 
129 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
130 
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN		32
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	s64 data_pool_id;
147 	u64 features;		/* Might be changeable someday? */
148 
149 	/* The remaining fields need to be updated occasionally */
150 	u64 image_size;
151 	struct ceph_snap_context *snapc;
152 	char *snap_names;	/* format 1 only */
153 	u64 *snap_sizes;	/* format 1 only */
154 };
155 
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182 	u64		pool_id;
183 	const char	*pool_name;
184 	const char	*pool_ns;	/* NULL if default, never "" */
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 
206 enum obj_request_type {
207 	OBJ_REQUEST_NODATA = 1,
208 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
209 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
210 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_READ = 1,
215 	OBJ_OP_WRITE,
216 	OBJ_OP_DISCARD,
217 };
218 
219 /*
220  * Writes go through the following state machine to deal with
221  * layering:
222  *
223  *                       need copyup
224  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225  *        |     ^                              |
226  *        v     \------------------------------/
227  *      done
228  *        ^
229  *        |
230  * RBD_OBJ_WRITE_FLAT
231  *
232  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
233  * there is a parent or not.
234  */
235 enum rbd_obj_write_state {
236 	RBD_OBJ_WRITE_FLAT = 1,
237 	RBD_OBJ_WRITE_GUARD,
238 	RBD_OBJ_WRITE_COPYUP,
239 };
240 
241 struct rbd_obj_request {
242 	struct ceph_object_extent ex;
243 	union {
244 		bool			tried_parent;	/* for reads */
245 		enum rbd_obj_write_state write_state;	/* for writes */
246 	};
247 
248 	struct rbd_img_request	*img_request;
249 	struct ceph_file_extent	*img_extents;
250 	u32			num_img_extents;
251 
252 	union {
253 		struct ceph_bio_iter	bio_pos;
254 		struct {
255 			struct ceph_bvec_iter	bvec_pos;
256 			u32			bvec_count;
257 			u32			bvec_idx;
258 		};
259 	};
260 	struct bio_vec		*copyup_bvecs;
261 	u32			copyup_bvec_count;
262 
263 	struct ceph_osd_request	*osd_req;
264 
265 	u64			xferred;	/* bytes transferred */
266 	int			result;
267 
268 	struct kref		kref;
269 };
270 
271 enum img_req_flags {
272 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
273 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
274 };
275 
276 struct rbd_img_request {
277 	struct rbd_device	*rbd_dev;
278 	enum obj_operation_type	op_type;
279 	enum obj_request_type	data_type;
280 	unsigned long		flags;
281 	union {
282 		u64			snap_id;	/* for reads */
283 		struct ceph_snap_context *snapc;	/* for writes */
284 	};
285 	union {
286 		struct request		*rq;		/* block request */
287 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
288 	};
289 	spinlock_t		completion_lock;
290 	u64			xferred;/* aggregate bytes transferred */
291 	int			result;	/* first nonzero obj_request result */
292 
293 	struct list_head	object_extents;	/* obj_req.ex structs */
294 	u32			obj_request_count;
295 	u32			pending_count;
296 
297 	struct kref		kref;
298 };
299 
300 #define for_each_obj_request(ireq, oreq) \
301 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
302 #define for_each_obj_request_safe(ireq, oreq, n) \
303 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
304 
305 enum rbd_watch_state {
306 	RBD_WATCH_STATE_UNREGISTERED,
307 	RBD_WATCH_STATE_REGISTERED,
308 	RBD_WATCH_STATE_ERROR,
309 };
310 
311 enum rbd_lock_state {
312 	RBD_LOCK_STATE_UNLOCKED,
313 	RBD_LOCK_STATE_LOCKED,
314 	RBD_LOCK_STATE_RELEASING,
315 };
316 
317 /* WatchNotify::ClientId */
318 struct rbd_client_id {
319 	u64 gid;
320 	u64 handle;
321 };
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	spinlock_t		lock;		/* queue, flags, open_count */
344 
345 	struct rbd_image_header	header;
346 	unsigned long		flags;		/* possibly lock protected */
347 	struct rbd_spec		*spec;
348 	struct rbd_options	*opts;
349 	char			*config_info;	/* add{,_single_major} string */
350 
351 	struct ceph_object_id	header_oid;
352 	struct ceph_object_locator header_oloc;
353 
354 	struct ceph_file_layout	layout;		/* used for all rbd requests */
355 
356 	struct mutex		watch_mutex;
357 	enum rbd_watch_state	watch_state;
358 	struct ceph_osd_linger_request *watch_handle;
359 	u64			watch_cookie;
360 	struct delayed_work	watch_dwork;
361 
362 	struct rw_semaphore	lock_rwsem;
363 	enum rbd_lock_state	lock_state;
364 	char			lock_cookie[32];
365 	struct rbd_client_id	owner_cid;
366 	struct work_struct	acquired_lock_work;
367 	struct work_struct	released_lock_work;
368 	struct delayed_work	lock_dwork;
369 	struct work_struct	unlock_work;
370 	wait_queue_head_t	lock_waitq;
371 
372 	struct workqueue_struct	*task_wq;
373 
374 	struct rbd_spec		*parent_spec;
375 	u64			parent_overlap;
376 	atomic_t		parent_ref;
377 	struct rbd_device	*parent;
378 
379 	/* Block layer tags. */
380 	struct blk_mq_tag_set	tag_set;
381 
382 	/* protects updating the header */
383 	struct rw_semaphore     header_rwsem;
384 
385 	struct rbd_mapping	mapping;
386 
387 	struct list_head	node;
388 
389 	/* sysfs related */
390 	struct device		dev;
391 	unsigned long		open_count;	/* protected by lock */
392 };
393 
394 /*
395  * Flag bits for rbd_dev->flags:
396  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397  *   by rbd_dev->lock
398  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
399  */
400 enum rbd_dev_flags {
401 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
402 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
403 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
404 };
405 
406 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
407 
408 static LIST_HEAD(rbd_dev_list);    /* devices */
409 static DEFINE_SPINLOCK(rbd_dev_list_lock);
410 
411 static LIST_HEAD(rbd_client_list);		/* clients */
412 static DEFINE_SPINLOCK(rbd_client_list_lock);
413 
414 /* Slab caches for frequently-allocated structures */
415 
416 static struct kmem_cache	*rbd_img_request_cache;
417 static struct kmem_cache	*rbd_obj_request_cache;
418 
419 static int rbd_major;
420 static DEFINE_IDA(rbd_dev_id_ida);
421 
422 static struct workqueue_struct *rbd_wq;
423 
424 /*
425  * single-major requires >= 0.75 version of userspace rbd utility.
426  */
427 static bool single_major = true;
428 module_param(single_major, bool, 0444);
429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
430 
431 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432 		       size_t count);
433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434 			  size_t count);
435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436 				    size_t count);
437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438 				       size_t count);
439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
440 
441 static int rbd_dev_id_to_minor(int dev_id)
442 {
443 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
444 }
445 
446 static int minor_to_rbd_dev_id(int minor)
447 {
448 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
449 }
450 
451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
452 {
453 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
454 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
455 }
456 
457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
458 {
459 	bool is_lock_owner;
460 
461 	down_read(&rbd_dev->lock_rwsem);
462 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
463 	up_read(&rbd_dev->lock_rwsem);
464 	return is_lock_owner;
465 }
466 
467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
468 {
469 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
470 }
471 
472 static BUS_ATTR(add, 0200, NULL, rbd_add);
473 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
477 
478 static struct attribute *rbd_bus_attrs[] = {
479 	&bus_attr_add.attr,
480 	&bus_attr_remove.attr,
481 	&bus_attr_add_single_major.attr,
482 	&bus_attr_remove_single_major.attr,
483 	&bus_attr_supported_features.attr,
484 	NULL,
485 };
486 
487 static umode_t rbd_bus_is_visible(struct kobject *kobj,
488 				  struct attribute *attr, int index)
489 {
490 	if (!single_major &&
491 	    (attr == &bus_attr_add_single_major.attr ||
492 	     attr == &bus_attr_remove_single_major.attr))
493 		return 0;
494 
495 	return attr->mode;
496 }
497 
498 static const struct attribute_group rbd_bus_group = {
499 	.attrs = rbd_bus_attrs,
500 	.is_visible = rbd_bus_is_visible,
501 };
502 __ATTRIBUTE_GROUPS(rbd_bus);
503 
504 static struct bus_type rbd_bus_type = {
505 	.name		= "rbd",
506 	.bus_groups	= rbd_bus_groups,
507 };
508 
509 static void rbd_root_dev_release(struct device *dev)
510 {
511 }
512 
513 static struct device rbd_root_dev = {
514 	.init_name =    "rbd",
515 	.release =      rbd_root_dev_release,
516 };
517 
518 static __printf(2, 3)
519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
520 {
521 	struct va_format vaf;
522 	va_list args;
523 
524 	va_start(args, fmt);
525 	vaf.fmt = fmt;
526 	vaf.va = &args;
527 
528 	if (!rbd_dev)
529 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
530 	else if (rbd_dev->disk)
531 		printk(KERN_WARNING "%s: %s: %pV\n",
532 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
533 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
534 		printk(KERN_WARNING "%s: image %s: %pV\n",
535 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
536 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
537 		printk(KERN_WARNING "%s: id %s: %pV\n",
538 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539 	else	/* punt */
540 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
541 			RBD_DRV_NAME, rbd_dev, &vaf);
542 	va_end(args);
543 }
544 
545 #ifdef RBD_DEBUG
546 #define rbd_assert(expr)						\
547 		if (unlikely(!(expr))) {				\
548 			printk(KERN_ERR "\nAssertion failure in %s() "	\
549 						"at line %d:\n\n"	\
550 					"\trbd_assert(%s);\n\n",	\
551 					__func__, __LINE__, #expr);	\
552 			BUG();						\
553 		}
554 #else /* !RBD_DEBUG */
555 #  define rbd_assert(expr)	((void) 0)
556 #endif /* !RBD_DEBUG */
557 
558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
559 
560 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
562 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565 					u64 snap_id);
566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
567 				u8 *order, u64 *snap_size);
568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
569 		u64 *snap_features);
570 
571 static int rbd_open(struct block_device *bdev, fmode_t mode)
572 {
573 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
574 	bool removing = false;
575 
576 	spin_lock_irq(&rbd_dev->lock);
577 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
578 		removing = true;
579 	else
580 		rbd_dev->open_count++;
581 	spin_unlock_irq(&rbd_dev->lock);
582 	if (removing)
583 		return -ENOENT;
584 
585 	(void) get_device(&rbd_dev->dev);
586 
587 	return 0;
588 }
589 
590 static void rbd_release(struct gendisk *disk, fmode_t mode)
591 {
592 	struct rbd_device *rbd_dev = disk->private_data;
593 	unsigned long open_count_before;
594 
595 	spin_lock_irq(&rbd_dev->lock);
596 	open_count_before = rbd_dev->open_count--;
597 	spin_unlock_irq(&rbd_dev->lock);
598 	rbd_assert(open_count_before > 0);
599 
600 	put_device(&rbd_dev->dev);
601 }
602 
603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
604 {
605 	int ro;
606 
607 	if (get_user(ro, (int __user *)arg))
608 		return -EFAULT;
609 
610 	/* Snapshots can't be marked read-write */
611 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
612 		return -EROFS;
613 
614 	/* Let blkdev_roset() handle it */
615 	return -ENOTTY;
616 }
617 
618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
619 			unsigned int cmd, unsigned long arg)
620 {
621 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
622 	int ret;
623 
624 	switch (cmd) {
625 	case BLKROSET:
626 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
627 		break;
628 	default:
629 		ret = -ENOTTY;
630 	}
631 
632 	return ret;
633 }
634 
635 #ifdef CONFIG_COMPAT
636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
637 				unsigned int cmd, unsigned long arg)
638 {
639 	return rbd_ioctl(bdev, mode, cmd, arg);
640 }
641 #endif /* CONFIG_COMPAT */
642 
643 static const struct block_device_operations rbd_bd_ops = {
644 	.owner			= THIS_MODULE,
645 	.open			= rbd_open,
646 	.release		= rbd_release,
647 	.ioctl			= rbd_ioctl,
648 #ifdef CONFIG_COMPAT
649 	.compat_ioctl		= rbd_compat_ioctl,
650 #endif
651 };
652 
653 /*
654  * Initialize an rbd client instance.  Success or not, this function
655  * consumes ceph_opts.  Caller holds client_mutex.
656  */
657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
658 {
659 	struct rbd_client *rbdc;
660 	int ret = -ENOMEM;
661 
662 	dout("%s:\n", __func__);
663 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
664 	if (!rbdc)
665 		goto out_opt;
666 
667 	kref_init(&rbdc->kref);
668 	INIT_LIST_HEAD(&rbdc->node);
669 
670 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
671 	if (IS_ERR(rbdc->client))
672 		goto out_rbdc;
673 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
674 
675 	ret = ceph_open_session(rbdc->client);
676 	if (ret < 0)
677 		goto out_client;
678 
679 	spin_lock(&rbd_client_list_lock);
680 	list_add_tail(&rbdc->node, &rbd_client_list);
681 	spin_unlock(&rbd_client_list_lock);
682 
683 	dout("%s: rbdc %p\n", __func__, rbdc);
684 
685 	return rbdc;
686 out_client:
687 	ceph_destroy_client(rbdc->client);
688 out_rbdc:
689 	kfree(rbdc);
690 out_opt:
691 	if (ceph_opts)
692 		ceph_destroy_options(ceph_opts);
693 	dout("%s: error %d\n", __func__, ret);
694 
695 	return ERR_PTR(ret);
696 }
697 
698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
699 {
700 	kref_get(&rbdc->kref);
701 
702 	return rbdc;
703 }
704 
705 /*
706  * Find a ceph client with specific addr and configuration.  If
707  * found, bump its reference count.
708  */
709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
710 {
711 	struct rbd_client *client_node;
712 	bool found = false;
713 
714 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
715 		return NULL;
716 
717 	spin_lock(&rbd_client_list_lock);
718 	list_for_each_entry(client_node, &rbd_client_list, node) {
719 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
720 			__rbd_get_client(client_node);
721 
722 			found = true;
723 			break;
724 		}
725 	}
726 	spin_unlock(&rbd_client_list_lock);
727 
728 	return found ? client_node : NULL;
729 }
730 
731 /*
732  * (Per device) rbd map options
733  */
734 enum {
735 	Opt_queue_depth,
736 	Opt_lock_timeout,
737 	Opt_last_int,
738 	/* int args above */
739 	Opt_pool_ns,
740 	Opt_last_string,
741 	/* string args above */
742 	Opt_read_only,
743 	Opt_read_write,
744 	Opt_lock_on_read,
745 	Opt_exclusive,
746 	Opt_notrim,
747 	Opt_err
748 };
749 
750 static match_table_t rbd_opts_tokens = {
751 	{Opt_queue_depth, "queue_depth=%d"},
752 	{Opt_lock_timeout, "lock_timeout=%d"},
753 	/* int args above */
754 	{Opt_pool_ns, "_pool_ns=%s"},
755 	/* string args above */
756 	{Opt_read_only, "read_only"},
757 	{Opt_read_only, "ro"},		/* Alternate spelling */
758 	{Opt_read_write, "read_write"},
759 	{Opt_read_write, "rw"},		/* Alternate spelling */
760 	{Opt_lock_on_read, "lock_on_read"},
761 	{Opt_exclusive, "exclusive"},
762 	{Opt_notrim, "notrim"},
763 	{Opt_err, NULL}
764 };
765 
766 struct rbd_options {
767 	int	queue_depth;
768 	unsigned long	lock_timeout;
769 	bool	read_only;
770 	bool	lock_on_read;
771 	bool	exclusive;
772 	bool	trim;
773 };
774 
775 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
776 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
777 #define RBD_READ_ONLY_DEFAULT	false
778 #define RBD_LOCK_ON_READ_DEFAULT false
779 #define RBD_EXCLUSIVE_DEFAULT	false
780 #define RBD_TRIM_DEFAULT	true
781 
782 struct parse_rbd_opts_ctx {
783 	struct rbd_spec		*spec;
784 	struct rbd_options	*opts;
785 };
786 
787 static int parse_rbd_opts_token(char *c, void *private)
788 {
789 	struct parse_rbd_opts_ctx *pctx = private;
790 	substring_t argstr[MAX_OPT_ARGS];
791 	int token, intval, ret;
792 
793 	token = match_token(c, rbd_opts_tokens, argstr);
794 	if (token < Opt_last_int) {
795 		ret = match_int(&argstr[0], &intval);
796 		if (ret < 0) {
797 			pr_err("bad option arg (not int) at '%s'\n", c);
798 			return ret;
799 		}
800 		dout("got int token %d val %d\n", token, intval);
801 	} else if (token > Opt_last_int && token < Opt_last_string) {
802 		dout("got string token %d val %s\n", token, argstr[0].from);
803 	} else {
804 		dout("got token %d\n", token);
805 	}
806 
807 	switch (token) {
808 	case Opt_queue_depth:
809 		if (intval < 1) {
810 			pr_err("queue_depth out of range\n");
811 			return -EINVAL;
812 		}
813 		pctx->opts->queue_depth = intval;
814 		break;
815 	case Opt_lock_timeout:
816 		/* 0 is "wait forever" (i.e. infinite timeout) */
817 		if (intval < 0 || intval > INT_MAX / 1000) {
818 			pr_err("lock_timeout out of range\n");
819 			return -EINVAL;
820 		}
821 		pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
822 		break;
823 	case Opt_pool_ns:
824 		kfree(pctx->spec->pool_ns);
825 		pctx->spec->pool_ns = match_strdup(argstr);
826 		if (!pctx->spec->pool_ns)
827 			return -ENOMEM;
828 		break;
829 	case Opt_read_only:
830 		pctx->opts->read_only = true;
831 		break;
832 	case Opt_read_write:
833 		pctx->opts->read_only = false;
834 		break;
835 	case Opt_lock_on_read:
836 		pctx->opts->lock_on_read = true;
837 		break;
838 	case Opt_exclusive:
839 		pctx->opts->exclusive = true;
840 		break;
841 	case Opt_notrim:
842 		pctx->opts->trim = false;
843 		break;
844 	default:
845 		/* libceph prints "bad option" msg */
846 		return -EINVAL;
847 	}
848 
849 	return 0;
850 }
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	default:
862 		return "???";
863 	}
864 }
865 
866 /*
867  * Destroy ceph client
868  *
869  * Caller must hold rbd_client_list_lock.
870  */
871 static void rbd_client_release(struct kref *kref)
872 {
873 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
874 
875 	dout("%s: rbdc %p\n", __func__, rbdc);
876 	spin_lock(&rbd_client_list_lock);
877 	list_del(&rbdc->node);
878 	spin_unlock(&rbd_client_list_lock);
879 
880 	ceph_destroy_client(rbdc->client);
881 	kfree(rbdc);
882 }
883 
884 /*
885  * Drop reference to ceph client node. If it's not referenced anymore, release
886  * it.
887  */
888 static void rbd_put_client(struct rbd_client *rbdc)
889 {
890 	if (rbdc)
891 		kref_put(&rbdc->kref, rbd_client_release);
892 }
893 
894 static int wait_for_latest_osdmap(struct ceph_client *client)
895 {
896 	u64 newest_epoch;
897 	int ret;
898 
899 	ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
900 	if (ret)
901 		return ret;
902 
903 	if (client->osdc.osdmap->epoch >= newest_epoch)
904 		return 0;
905 
906 	ceph_osdc_maybe_request_map(&client->osdc);
907 	return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
908 				     client->options->mount_timeout);
909 }
910 
911 /*
912  * Get a ceph client with specific addr and configuration, if one does
913  * not exist create it.  Either way, ceph_opts is consumed by this
914  * function.
915  */
916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
917 {
918 	struct rbd_client *rbdc;
919 	int ret;
920 
921 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
922 	rbdc = rbd_client_find(ceph_opts);
923 	if (rbdc) {
924 		ceph_destroy_options(ceph_opts);
925 
926 		/*
927 		 * Using an existing client.  Make sure ->pg_pools is up to
928 		 * date before we look up the pool id in do_rbd_add().
929 		 */
930 		ret = wait_for_latest_osdmap(rbdc->client);
931 		if (ret) {
932 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
933 			rbd_put_client(rbdc);
934 			rbdc = ERR_PTR(ret);
935 		}
936 	} else {
937 		rbdc = rbd_client_create(ceph_opts);
938 	}
939 	mutex_unlock(&client_mutex);
940 
941 	return rbdc;
942 }
943 
944 static bool rbd_image_format_valid(u32 image_format)
945 {
946 	return image_format == 1 || image_format == 2;
947 }
948 
949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
950 {
951 	size_t size;
952 	u32 snap_count;
953 
954 	/* The header has to start with the magic rbd header text */
955 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
956 		return false;
957 
958 	/* The bio layer requires at least sector-sized I/O */
959 
960 	if (ondisk->options.order < SECTOR_SHIFT)
961 		return false;
962 
963 	/* If we use u64 in a few spots we may be able to loosen this */
964 
965 	if (ondisk->options.order > 8 * sizeof (int) - 1)
966 		return false;
967 
968 	/*
969 	 * The size of a snapshot header has to fit in a size_t, and
970 	 * that limits the number of snapshots.
971 	 */
972 	snap_count = le32_to_cpu(ondisk->snap_count);
973 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
974 	if (snap_count > size / sizeof (__le64))
975 		return false;
976 
977 	/*
978 	 * Not only that, but the size of the entire the snapshot
979 	 * header must also be representable in a size_t.
980 	 */
981 	size -= snap_count * sizeof (__le64);
982 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
983 		return false;
984 
985 	return true;
986 }
987 
988 /*
989  * returns the size of an object in the image
990  */
991 static u32 rbd_obj_bytes(struct rbd_image_header *header)
992 {
993 	return 1U << header->obj_order;
994 }
995 
996 static void rbd_init_layout(struct rbd_device *rbd_dev)
997 {
998 	if (rbd_dev->header.stripe_unit == 0 ||
999 	    rbd_dev->header.stripe_count == 0) {
1000 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1001 		rbd_dev->header.stripe_count = 1;
1002 	}
1003 
1004 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1005 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1006 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1007 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1008 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1009 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1010 }
1011 
1012 /*
1013  * Fill an rbd image header with information from the given format 1
1014  * on-disk header.
1015  */
1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1017 				 struct rbd_image_header_ondisk *ondisk)
1018 {
1019 	struct rbd_image_header *header = &rbd_dev->header;
1020 	bool first_time = header->object_prefix == NULL;
1021 	struct ceph_snap_context *snapc;
1022 	char *object_prefix = NULL;
1023 	char *snap_names = NULL;
1024 	u64 *snap_sizes = NULL;
1025 	u32 snap_count;
1026 	int ret = -ENOMEM;
1027 	u32 i;
1028 
1029 	/* Allocate this now to avoid having to handle failure below */
1030 
1031 	if (first_time) {
1032 		object_prefix = kstrndup(ondisk->object_prefix,
1033 					 sizeof(ondisk->object_prefix),
1034 					 GFP_KERNEL);
1035 		if (!object_prefix)
1036 			return -ENOMEM;
1037 	}
1038 
1039 	/* Allocate the snapshot context and fill it in */
1040 
1041 	snap_count = le32_to_cpu(ondisk->snap_count);
1042 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1043 	if (!snapc)
1044 		goto out_err;
1045 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1046 	if (snap_count) {
1047 		struct rbd_image_snap_ondisk *snaps;
1048 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1049 
1050 		/* We'll keep a copy of the snapshot names... */
1051 
1052 		if (snap_names_len > (u64)SIZE_MAX)
1053 			goto out_2big;
1054 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1055 		if (!snap_names)
1056 			goto out_err;
1057 
1058 		/* ...as well as the array of their sizes. */
1059 		snap_sizes = kmalloc_array(snap_count,
1060 					   sizeof(*header->snap_sizes),
1061 					   GFP_KERNEL);
1062 		if (!snap_sizes)
1063 			goto out_err;
1064 
1065 		/*
1066 		 * Copy the names, and fill in each snapshot's id
1067 		 * and size.
1068 		 *
1069 		 * Note that rbd_dev_v1_header_info() guarantees the
1070 		 * ondisk buffer we're working with has
1071 		 * snap_names_len bytes beyond the end of the
1072 		 * snapshot id array, this memcpy() is safe.
1073 		 */
1074 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1075 		snaps = ondisk->snaps;
1076 		for (i = 0; i < snap_count; i++) {
1077 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1078 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1079 		}
1080 	}
1081 
1082 	/* We won't fail any more, fill in the header */
1083 
1084 	if (first_time) {
1085 		header->object_prefix = object_prefix;
1086 		header->obj_order = ondisk->options.order;
1087 		rbd_init_layout(rbd_dev);
1088 	} else {
1089 		ceph_put_snap_context(header->snapc);
1090 		kfree(header->snap_names);
1091 		kfree(header->snap_sizes);
1092 	}
1093 
1094 	/* The remaining fields always get updated (when we refresh) */
1095 
1096 	header->image_size = le64_to_cpu(ondisk->image_size);
1097 	header->snapc = snapc;
1098 	header->snap_names = snap_names;
1099 	header->snap_sizes = snap_sizes;
1100 
1101 	return 0;
1102 out_2big:
1103 	ret = -EIO;
1104 out_err:
1105 	kfree(snap_sizes);
1106 	kfree(snap_names);
1107 	ceph_put_snap_context(snapc);
1108 	kfree(object_prefix);
1109 
1110 	return ret;
1111 }
1112 
1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1114 {
1115 	const char *snap_name;
1116 
1117 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1118 
1119 	/* Skip over names until we find the one we are looking for */
1120 
1121 	snap_name = rbd_dev->header.snap_names;
1122 	while (which--)
1123 		snap_name += strlen(snap_name) + 1;
1124 
1125 	return kstrdup(snap_name, GFP_KERNEL);
1126 }
1127 
1128 /*
1129  * Snapshot id comparison function for use with qsort()/bsearch().
1130  * Note that result is for snapshots in *descending* order.
1131  */
1132 static int snapid_compare_reverse(const void *s1, const void *s2)
1133 {
1134 	u64 snap_id1 = *(u64 *)s1;
1135 	u64 snap_id2 = *(u64 *)s2;
1136 
1137 	if (snap_id1 < snap_id2)
1138 		return 1;
1139 	return snap_id1 == snap_id2 ? 0 : -1;
1140 }
1141 
1142 /*
1143  * Search a snapshot context to see if the given snapshot id is
1144  * present.
1145  *
1146  * Returns the position of the snapshot id in the array if it's found,
1147  * or BAD_SNAP_INDEX otherwise.
1148  *
1149  * Note: The snapshot array is in kept sorted (by the osd) in
1150  * reverse order, highest snapshot id first.
1151  */
1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1153 {
1154 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1155 	u64 *found;
1156 
1157 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1158 				sizeof (snap_id), snapid_compare_reverse);
1159 
1160 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1161 }
1162 
1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1164 					u64 snap_id)
1165 {
1166 	u32 which;
1167 	const char *snap_name;
1168 
1169 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1170 	if (which == BAD_SNAP_INDEX)
1171 		return ERR_PTR(-ENOENT);
1172 
1173 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1174 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1175 }
1176 
1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1178 {
1179 	if (snap_id == CEPH_NOSNAP)
1180 		return RBD_SNAP_HEAD_NAME;
1181 
1182 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183 	if (rbd_dev->image_format == 1)
1184 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1185 
1186 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1187 }
1188 
1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1190 				u64 *snap_size)
1191 {
1192 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193 	if (snap_id == CEPH_NOSNAP) {
1194 		*snap_size = rbd_dev->header.image_size;
1195 	} else if (rbd_dev->image_format == 1) {
1196 		u32 which;
1197 
1198 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1199 		if (which == BAD_SNAP_INDEX)
1200 			return -ENOENT;
1201 
1202 		*snap_size = rbd_dev->header.snap_sizes[which];
1203 	} else {
1204 		u64 size = 0;
1205 		int ret;
1206 
1207 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1208 		if (ret)
1209 			return ret;
1210 
1211 		*snap_size = size;
1212 	}
1213 	return 0;
1214 }
1215 
1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1217 			u64 *snap_features)
1218 {
1219 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1220 	if (snap_id == CEPH_NOSNAP) {
1221 		*snap_features = rbd_dev->header.features;
1222 	} else if (rbd_dev->image_format == 1) {
1223 		*snap_features = 0;	/* No features for format 1 */
1224 	} else {
1225 		u64 features = 0;
1226 		int ret;
1227 
1228 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1229 		if (ret)
1230 			return ret;
1231 
1232 		*snap_features = features;
1233 	}
1234 	return 0;
1235 }
1236 
1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1238 {
1239 	u64 snap_id = rbd_dev->spec->snap_id;
1240 	u64 size = 0;
1241 	u64 features = 0;
1242 	int ret;
1243 
1244 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1245 	if (ret)
1246 		return ret;
1247 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1248 	if (ret)
1249 		return ret;
1250 
1251 	rbd_dev->mapping.size = size;
1252 	rbd_dev->mapping.features = features;
1253 
1254 	return 0;
1255 }
1256 
1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1258 {
1259 	rbd_dev->mapping.size = 0;
1260 	rbd_dev->mapping.features = 0;
1261 }
1262 
1263 static void zero_bvec(struct bio_vec *bv)
1264 {
1265 	void *buf;
1266 	unsigned long flags;
1267 
1268 	buf = bvec_kmap_irq(bv, &flags);
1269 	memset(buf, 0, bv->bv_len);
1270 	flush_dcache_page(bv->bv_page);
1271 	bvec_kunmap_irq(buf, &flags);
1272 }
1273 
1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1275 {
1276 	struct ceph_bio_iter it = *bio_pos;
1277 
1278 	ceph_bio_iter_advance(&it, off);
1279 	ceph_bio_iter_advance_step(&it, bytes, ({
1280 		zero_bvec(&bv);
1281 	}));
1282 }
1283 
1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1285 {
1286 	struct ceph_bvec_iter it = *bvec_pos;
1287 
1288 	ceph_bvec_iter_advance(&it, off);
1289 	ceph_bvec_iter_advance_step(&it, bytes, ({
1290 		zero_bvec(&bv);
1291 	}));
1292 }
1293 
1294 /*
1295  * Zero a range in @obj_req data buffer defined by a bio (list) or
1296  * (private) bio_vec array.
1297  *
1298  * @off is relative to the start of the data buffer.
1299  */
1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1301 			       u32 bytes)
1302 {
1303 	switch (obj_req->img_request->data_type) {
1304 	case OBJ_REQUEST_BIO:
1305 		zero_bios(&obj_req->bio_pos, off, bytes);
1306 		break;
1307 	case OBJ_REQUEST_BVECS:
1308 	case OBJ_REQUEST_OWN_BVECS:
1309 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1310 		break;
1311 	default:
1312 		rbd_assert(0);
1313 	}
1314 }
1315 
1316 static void rbd_obj_request_destroy(struct kref *kref);
1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1318 {
1319 	rbd_assert(obj_request != NULL);
1320 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1321 		kref_read(&obj_request->kref));
1322 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1323 }
1324 
1325 static void rbd_img_request_get(struct rbd_img_request *img_request)
1326 {
1327 	dout("%s: img %p (was %d)\n", __func__, img_request,
1328 	     kref_read(&img_request->kref));
1329 	kref_get(&img_request->kref);
1330 }
1331 
1332 static void rbd_img_request_destroy(struct kref *kref);
1333 static void rbd_img_request_put(struct rbd_img_request *img_request)
1334 {
1335 	rbd_assert(img_request != NULL);
1336 	dout("%s: img %p (was %d)\n", __func__, img_request,
1337 		kref_read(&img_request->kref));
1338 	kref_put(&img_request->kref, rbd_img_request_destroy);
1339 }
1340 
1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1342 					struct rbd_obj_request *obj_request)
1343 {
1344 	rbd_assert(obj_request->img_request == NULL);
1345 
1346 	/* Image request now owns object's original reference */
1347 	obj_request->img_request = img_request;
1348 	img_request->obj_request_count++;
1349 	img_request->pending_count++;
1350 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 }
1352 
1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1354 					struct rbd_obj_request *obj_request)
1355 {
1356 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1357 	list_del(&obj_request->ex.oe_item);
1358 	rbd_assert(img_request->obj_request_count > 0);
1359 	img_request->obj_request_count--;
1360 	rbd_assert(obj_request->img_request == img_request);
1361 	rbd_obj_request_put(obj_request);
1362 }
1363 
1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1365 {
1366 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1367 
1368 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1369 	     obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1370 	     obj_request->ex.oe_len, osd_req);
1371 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1372 }
1373 
1374 /*
1375  * The default/initial value for all image request flags is 0.  Each
1376  * is conditionally set to 1 at image request initialization time
1377  * and currently never change thereafter.
1378  */
1379 static void img_request_layered_set(struct rbd_img_request *img_request)
1380 {
1381 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1382 	smp_mb();
1383 }
1384 
1385 static void img_request_layered_clear(struct rbd_img_request *img_request)
1386 {
1387 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1388 	smp_mb();
1389 }
1390 
1391 static bool img_request_layered_test(struct rbd_img_request *img_request)
1392 {
1393 	smp_mb();
1394 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1395 }
1396 
1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1398 {
1399 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1400 
1401 	return !obj_req->ex.oe_off &&
1402 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1403 }
1404 
1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1406 {
1407 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1408 
1409 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1410 					rbd_dev->layout.object_size;
1411 }
1412 
1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1414 {
1415 	return ceph_file_extents_bytes(obj_req->img_extents,
1416 				       obj_req->num_img_extents);
1417 }
1418 
1419 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1420 {
1421 	switch (img_req->op_type) {
1422 	case OBJ_OP_READ:
1423 		return false;
1424 	case OBJ_OP_WRITE:
1425 	case OBJ_OP_DISCARD:
1426 		return true;
1427 	default:
1428 		BUG();
1429 	}
1430 }
1431 
1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1433 
1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1435 {
1436 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1437 
1438 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1439 	     osd_req->r_result, obj_req);
1440 	rbd_assert(osd_req == obj_req->osd_req);
1441 
1442 	obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1443 	if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1444 		obj_req->xferred = osd_req->r_result;
1445 	else
1446 		/*
1447 		 * Writes aren't allowed to return a data payload.  In some
1448 		 * guarded write cases (e.g. stat + zero on an empty object)
1449 		 * a stat response makes it through, but we don't care.
1450 		 */
1451 		obj_req->xferred = 0;
1452 
1453 	rbd_obj_handle_request(obj_req);
1454 }
1455 
1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1457 {
1458 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1459 
1460 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1461 	osd_req->r_snapid = obj_request->img_request->snap_id;
1462 }
1463 
1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1465 {
1466 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1467 
1468 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1469 	ktime_get_real_ts64(&osd_req->r_mtime);
1470 	osd_req->r_data_offset = obj_request->ex.oe_off;
1471 }
1472 
1473 static struct ceph_osd_request *
1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1475 {
1476 	struct rbd_img_request *img_req = obj_req->img_request;
1477 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1478 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1479 	struct ceph_osd_request *req;
1480 	const char *name_format = rbd_dev->image_format == 1 ?
1481 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1482 
1483 	req = ceph_osdc_alloc_request(osdc,
1484 			(rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1485 			num_ops, false, GFP_NOIO);
1486 	if (!req)
1487 		return NULL;
1488 
1489 	req->r_callback = rbd_osd_req_callback;
1490 	req->r_priv = obj_req;
1491 
1492 	/*
1493 	 * Data objects may be stored in a separate pool, but always in
1494 	 * the same namespace in that pool as the header in its pool.
1495 	 */
1496 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1497 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1498 
1499 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1500 			rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1501 		goto err_req;
1502 
1503 	return req;
1504 
1505 err_req:
1506 	ceph_osdc_put_request(req);
1507 	return NULL;
1508 }
1509 
1510 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1511 {
1512 	ceph_osdc_put_request(osd_req);
1513 }
1514 
1515 static struct rbd_obj_request *rbd_obj_request_create(void)
1516 {
1517 	struct rbd_obj_request *obj_request;
1518 
1519 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1520 	if (!obj_request)
1521 		return NULL;
1522 
1523 	ceph_object_extent_init(&obj_request->ex);
1524 	kref_init(&obj_request->kref);
1525 
1526 	dout("%s %p\n", __func__, obj_request);
1527 	return obj_request;
1528 }
1529 
1530 static void rbd_obj_request_destroy(struct kref *kref)
1531 {
1532 	struct rbd_obj_request *obj_request;
1533 	u32 i;
1534 
1535 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1536 
1537 	dout("%s: obj %p\n", __func__, obj_request);
1538 
1539 	if (obj_request->osd_req)
1540 		rbd_osd_req_destroy(obj_request->osd_req);
1541 
1542 	switch (obj_request->img_request->data_type) {
1543 	case OBJ_REQUEST_NODATA:
1544 	case OBJ_REQUEST_BIO:
1545 	case OBJ_REQUEST_BVECS:
1546 		break;		/* Nothing to do */
1547 	case OBJ_REQUEST_OWN_BVECS:
1548 		kfree(obj_request->bvec_pos.bvecs);
1549 		break;
1550 	default:
1551 		rbd_assert(0);
1552 	}
1553 
1554 	kfree(obj_request->img_extents);
1555 	if (obj_request->copyup_bvecs) {
1556 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1557 			if (obj_request->copyup_bvecs[i].bv_page)
1558 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1559 		}
1560 		kfree(obj_request->copyup_bvecs);
1561 	}
1562 
1563 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1564 }
1565 
1566 /* It's OK to call this for a device with no parent */
1567 
1568 static void rbd_spec_put(struct rbd_spec *spec);
1569 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1570 {
1571 	rbd_dev_remove_parent(rbd_dev);
1572 	rbd_spec_put(rbd_dev->parent_spec);
1573 	rbd_dev->parent_spec = NULL;
1574 	rbd_dev->parent_overlap = 0;
1575 }
1576 
1577 /*
1578  * Parent image reference counting is used to determine when an
1579  * image's parent fields can be safely torn down--after there are no
1580  * more in-flight requests to the parent image.  When the last
1581  * reference is dropped, cleaning them up is safe.
1582  */
1583 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1584 {
1585 	int counter;
1586 
1587 	if (!rbd_dev->parent_spec)
1588 		return;
1589 
1590 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1591 	if (counter > 0)
1592 		return;
1593 
1594 	/* Last reference; clean up parent data structures */
1595 
1596 	if (!counter)
1597 		rbd_dev_unparent(rbd_dev);
1598 	else
1599 		rbd_warn(rbd_dev, "parent reference underflow");
1600 }
1601 
1602 /*
1603  * If an image has a non-zero parent overlap, get a reference to its
1604  * parent.
1605  *
1606  * Returns true if the rbd device has a parent with a non-zero
1607  * overlap and a reference for it was successfully taken, or
1608  * false otherwise.
1609  */
1610 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1611 {
1612 	int counter = 0;
1613 
1614 	if (!rbd_dev->parent_spec)
1615 		return false;
1616 
1617 	down_read(&rbd_dev->header_rwsem);
1618 	if (rbd_dev->parent_overlap)
1619 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1620 	up_read(&rbd_dev->header_rwsem);
1621 
1622 	if (counter < 0)
1623 		rbd_warn(rbd_dev, "parent reference overflow");
1624 
1625 	return counter > 0;
1626 }
1627 
1628 /*
1629  * Caller is responsible for filling in the list of object requests
1630  * that comprises the image request, and the Linux request pointer
1631  * (if there is one).
1632  */
1633 static struct rbd_img_request *rbd_img_request_create(
1634 					struct rbd_device *rbd_dev,
1635 					enum obj_operation_type op_type,
1636 					struct ceph_snap_context *snapc)
1637 {
1638 	struct rbd_img_request *img_request;
1639 
1640 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1641 	if (!img_request)
1642 		return NULL;
1643 
1644 	img_request->rbd_dev = rbd_dev;
1645 	img_request->op_type = op_type;
1646 	if (!rbd_img_is_write(img_request))
1647 		img_request->snap_id = rbd_dev->spec->snap_id;
1648 	else
1649 		img_request->snapc = snapc;
1650 
1651 	if (rbd_dev_parent_get(rbd_dev))
1652 		img_request_layered_set(img_request);
1653 
1654 	spin_lock_init(&img_request->completion_lock);
1655 	INIT_LIST_HEAD(&img_request->object_extents);
1656 	kref_init(&img_request->kref);
1657 
1658 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1659 	     obj_op_name(op_type), img_request);
1660 	return img_request;
1661 }
1662 
1663 static void rbd_img_request_destroy(struct kref *kref)
1664 {
1665 	struct rbd_img_request *img_request;
1666 	struct rbd_obj_request *obj_request;
1667 	struct rbd_obj_request *next_obj_request;
1668 
1669 	img_request = container_of(kref, struct rbd_img_request, kref);
1670 
1671 	dout("%s: img %p\n", __func__, img_request);
1672 
1673 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1674 		rbd_img_obj_request_del(img_request, obj_request);
1675 	rbd_assert(img_request->obj_request_count == 0);
1676 
1677 	if (img_request_layered_test(img_request)) {
1678 		img_request_layered_clear(img_request);
1679 		rbd_dev_parent_put(img_request->rbd_dev);
1680 	}
1681 
1682 	if (rbd_img_is_write(img_request))
1683 		ceph_put_snap_context(img_request->snapc);
1684 
1685 	kmem_cache_free(rbd_img_request_cache, img_request);
1686 }
1687 
1688 static void prune_extents(struct ceph_file_extent *img_extents,
1689 			  u32 *num_img_extents, u64 overlap)
1690 {
1691 	u32 cnt = *num_img_extents;
1692 
1693 	/* drop extents completely beyond the overlap */
1694 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1695 		cnt--;
1696 
1697 	if (cnt) {
1698 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
1699 
1700 		/* trim final overlapping extent */
1701 		if (ex->fe_off + ex->fe_len > overlap)
1702 			ex->fe_len = overlap - ex->fe_off;
1703 	}
1704 
1705 	*num_img_extents = cnt;
1706 }
1707 
1708 /*
1709  * Determine the byte range(s) covered by either just the object extent
1710  * or the entire object in the parent image.
1711  */
1712 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1713 				    bool entire)
1714 {
1715 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1716 	int ret;
1717 
1718 	if (!rbd_dev->parent_overlap)
1719 		return 0;
1720 
1721 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1722 				  entire ? 0 : obj_req->ex.oe_off,
1723 				  entire ? rbd_dev->layout.object_size :
1724 							obj_req->ex.oe_len,
1725 				  &obj_req->img_extents,
1726 				  &obj_req->num_img_extents);
1727 	if (ret)
1728 		return ret;
1729 
1730 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1731 		      rbd_dev->parent_overlap);
1732 	return 0;
1733 }
1734 
1735 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1736 {
1737 	switch (obj_req->img_request->data_type) {
1738 	case OBJ_REQUEST_BIO:
1739 		osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1740 					       &obj_req->bio_pos,
1741 					       obj_req->ex.oe_len);
1742 		break;
1743 	case OBJ_REQUEST_BVECS:
1744 	case OBJ_REQUEST_OWN_BVECS:
1745 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1746 							obj_req->ex.oe_len);
1747 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1748 		osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1749 						    &obj_req->bvec_pos);
1750 		break;
1751 	default:
1752 		rbd_assert(0);
1753 	}
1754 }
1755 
1756 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1757 {
1758 	obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1759 	if (!obj_req->osd_req)
1760 		return -ENOMEM;
1761 
1762 	osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1763 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1764 	rbd_osd_req_setup_data(obj_req, 0);
1765 
1766 	rbd_osd_req_format_read(obj_req);
1767 	return 0;
1768 }
1769 
1770 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1771 				unsigned int which)
1772 {
1773 	struct page **pages;
1774 
1775 	/*
1776 	 * The response data for a STAT call consists of:
1777 	 *     le64 length;
1778 	 *     struct {
1779 	 *         le32 tv_sec;
1780 	 *         le32 tv_nsec;
1781 	 *     } mtime;
1782 	 */
1783 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
1784 	if (IS_ERR(pages))
1785 		return PTR_ERR(pages);
1786 
1787 	osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1788 	osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1789 				     8 + sizeof(struct ceph_timespec),
1790 				     0, false, true);
1791 	return 0;
1792 }
1793 
1794 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1795 				  unsigned int which)
1796 {
1797 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1798 	u16 opcode;
1799 
1800 	osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1801 				   rbd_dev->layout.object_size,
1802 				   rbd_dev->layout.object_size);
1803 
1804 	if (rbd_obj_is_entire(obj_req))
1805 		opcode = CEPH_OSD_OP_WRITEFULL;
1806 	else
1807 		opcode = CEPH_OSD_OP_WRITE;
1808 
1809 	osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1810 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1811 	rbd_osd_req_setup_data(obj_req, which++);
1812 
1813 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1814 	rbd_osd_req_format_write(obj_req);
1815 }
1816 
1817 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1818 {
1819 	unsigned int num_osd_ops, which = 0;
1820 	int ret;
1821 
1822 	/* reverse map the entire object onto the parent */
1823 	ret = rbd_obj_calc_img_extents(obj_req, true);
1824 	if (ret)
1825 		return ret;
1826 
1827 	if (obj_req->num_img_extents) {
1828 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1829 		num_osd_ops = 3; /* stat + setallochint + write/writefull */
1830 	} else {
1831 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1832 		num_osd_ops = 2; /* setallochint + write/writefull */
1833 	}
1834 
1835 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1836 	if (!obj_req->osd_req)
1837 		return -ENOMEM;
1838 
1839 	if (obj_req->num_img_extents) {
1840 		ret = __rbd_obj_setup_stat(obj_req, which++);
1841 		if (ret)
1842 			return ret;
1843 	}
1844 
1845 	__rbd_obj_setup_write(obj_req, which);
1846 	return 0;
1847 }
1848 
1849 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1850 				    unsigned int which)
1851 {
1852 	u16 opcode;
1853 
1854 	if (rbd_obj_is_entire(obj_req)) {
1855 		if (obj_req->num_img_extents) {
1856 			osd_req_op_init(obj_req->osd_req, which++,
1857 					CEPH_OSD_OP_CREATE, 0);
1858 			opcode = CEPH_OSD_OP_TRUNCATE;
1859 		} else {
1860 			osd_req_op_init(obj_req->osd_req, which++,
1861 					CEPH_OSD_OP_DELETE, 0);
1862 			opcode = 0;
1863 		}
1864 	} else if (rbd_obj_is_tail(obj_req)) {
1865 		opcode = CEPH_OSD_OP_TRUNCATE;
1866 	} else {
1867 		opcode = CEPH_OSD_OP_ZERO;
1868 	}
1869 
1870 	if (opcode)
1871 		osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1872 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
1873 				       0, 0);
1874 
1875 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1876 	rbd_osd_req_format_write(obj_req);
1877 }
1878 
1879 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1880 {
1881 	unsigned int num_osd_ops, which = 0;
1882 	int ret;
1883 
1884 	/* reverse map the entire object onto the parent */
1885 	ret = rbd_obj_calc_img_extents(obj_req, true);
1886 	if (ret)
1887 		return ret;
1888 
1889 	if (rbd_obj_is_entire(obj_req)) {
1890 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1891 		if (obj_req->num_img_extents)
1892 			num_osd_ops = 2; /* create + truncate */
1893 		else
1894 			num_osd_ops = 1; /* delete */
1895 	} else {
1896 		if (obj_req->num_img_extents) {
1897 			obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1898 			num_osd_ops = 2; /* stat + truncate/zero */
1899 		} else {
1900 			obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1901 			num_osd_ops = 1; /* truncate/zero */
1902 		}
1903 	}
1904 
1905 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1906 	if (!obj_req->osd_req)
1907 		return -ENOMEM;
1908 
1909 	if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1910 		ret = __rbd_obj_setup_stat(obj_req, which++);
1911 		if (ret)
1912 			return ret;
1913 	}
1914 
1915 	__rbd_obj_setup_discard(obj_req, which);
1916 	return 0;
1917 }
1918 
1919 /*
1920  * For each object request in @img_req, allocate an OSD request, add
1921  * individual OSD ops and prepare them for submission.  The number of
1922  * OSD ops depends on op_type and the overlap point (if any).
1923  */
1924 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1925 {
1926 	struct rbd_obj_request *obj_req;
1927 	int ret;
1928 
1929 	for_each_obj_request(img_req, obj_req) {
1930 		switch (img_req->op_type) {
1931 		case OBJ_OP_READ:
1932 			ret = rbd_obj_setup_read(obj_req);
1933 			break;
1934 		case OBJ_OP_WRITE:
1935 			ret = rbd_obj_setup_write(obj_req);
1936 			break;
1937 		case OBJ_OP_DISCARD:
1938 			ret = rbd_obj_setup_discard(obj_req);
1939 			break;
1940 		default:
1941 			rbd_assert(0);
1942 		}
1943 		if (ret)
1944 			return ret;
1945 
1946 		ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
1947 		if (ret)
1948 			return ret;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 union rbd_img_fill_iter {
1955 	struct ceph_bio_iter	bio_iter;
1956 	struct ceph_bvec_iter	bvec_iter;
1957 };
1958 
1959 struct rbd_img_fill_ctx {
1960 	enum obj_request_type	pos_type;
1961 	union rbd_img_fill_iter	*pos;
1962 	union rbd_img_fill_iter	iter;
1963 	ceph_object_extent_fn_t	set_pos_fn;
1964 	ceph_object_extent_fn_t	count_fn;
1965 	ceph_object_extent_fn_t	copy_fn;
1966 };
1967 
1968 static struct ceph_object_extent *alloc_object_extent(void *arg)
1969 {
1970 	struct rbd_img_request *img_req = arg;
1971 	struct rbd_obj_request *obj_req;
1972 
1973 	obj_req = rbd_obj_request_create();
1974 	if (!obj_req)
1975 		return NULL;
1976 
1977 	rbd_img_obj_request_add(img_req, obj_req);
1978 	return &obj_req->ex;
1979 }
1980 
1981 /*
1982  * While su != os && sc == 1 is technically not fancy (it's the same
1983  * layout as su == os && sc == 1), we can't use the nocopy path for it
1984  * because ->set_pos_fn() should be called only once per object.
1985  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1986  * treat su != os && sc == 1 as fancy.
1987  */
1988 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1989 {
1990 	return l->stripe_unit != l->object_size;
1991 }
1992 
1993 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1994 				       struct ceph_file_extent *img_extents,
1995 				       u32 num_img_extents,
1996 				       struct rbd_img_fill_ctx *fctx)
1997 {
1998 	u32 i;
1999 	int ret;
2000 
2001 	img_req->data_type = fctx->pos_type;
2002 
2003 	/*
2004 	 * Create object requests and set each object request's starting
2005 	 * position in the provided bio (list) or bio_vec array.
2006 	 */
2007 	fctx->iter = *fctx->pos;
2008 	for (i = 0; i < num_img_extents; i++) {
2009 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2010 					   img_extents[i].fe_off,
2011 					   img_extents[i].fe_len,
2012 					   &img_req->object_extents,
2013 					   alloc_object_extent, img_req,
2014 					   fctx->set_pos_fn, &fctx->iter);
2015 		if (ret)
2016 			return ret;
2017 	}
2018 
2019 	return __rbd_img_fill_request(img_req);
2020 }
2021 
2022 /*
2023  * Map a list of image extents to a list of object extents, create the
2024  * corresponding object requests (normally each to a different object,
2025  * but not always) and add them to @img_req.  For each object request,
2026  * set up its data descriptor to point to the corresponding chunk(s) of
2027  * @fctx->pos data buffer.
2028  *
2029  * Because ceph_file_to_extents() will merge adjacent object extents
2030  * together, each object request's data descriptor may point to multiple
2031  * different chunks of @fctx->pos data buffer.
2032  *
2033  * @fctx->pos data buffer is assumed to be large enough.
2034  */
2035 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2036 				struct ceph_file_extent *img_extents,
2037 				u32 num_img_extents,
2038 				struct rbd_img_fill_ctx *fctx)
2039 {
2040 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2041 	struct rbd_obj_request *obj_req;
2042 	u32 i;
2043 	int ret;
2044 
2045 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2046 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2047 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2048 						   num_img_extents, fctx);
2049 
2050 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2051 
2052 	/*
2053 	 * Create object requests and determine ->bvec_count for each object
2054 	 * request.  Note that ->bvec_count sum over all object requests may
2055 	 * be greater than the number of bio_vecs in the provided bio (list)
2056 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2057 	 * stripe unit boundaries.
2058 	 */
2059 	fctx->iter = *fctx->pos;
2060 	for (i = 0; i < num_img_extents; i++) {
2061 		ret = ceph_file_to_extents(&rbd_dev->layout,
2062 					   img_extents[i].fe_off,
2063 					   img_extents[i].fe_len,
2064 					   &img_req->object_extents,
2065 					   alloc_object_extent, img_req,
2066 					   fctx->count_fn, &fctx->iter);
2067 		if (ret)
2068 			return ret;
2069 	}
2070 
2071 	for_each_obj_request(img_req, obj_req) {
2072 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2073 					      sizeof(*obj_req->bvec_pos.bvecs),
2074 					      GFP_NOIO);
2075 		if (!obj_req->bvec_pos.bvecs)
2076 			return -ENOMEM;
2077 	}
2078 
2079 	/*
2080 	 * Fill in each object request's private bio_vec array, splitting and
2081 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2082 	 */
2083 	fctx->iter = *fctx->pos;
2084 	for (i = 0; i < num_img_extents; i++) {
2085 		ret = ceph_iterate_extents(&rbd_dev->layout,
2086 					   img_extents[i].fe_off,
2087 					   img_extents[i].fe_len,
2088 					   &img_req->object_extents,
2089 					   fctx->copy_fn, &fctx->iter);
2090 		if (ret)
2091 			return ret;
2092 	}
2093 
2094 	return __rbd_img_fill_request(img_req);
2095 }
2096 
2097 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2098 			       u64 off, u64 len)
2099 {
2100 	struct ceph_file_extent ex = { off, len };
2101 	union rbd_img_fill_iter dummy;
2102 	struct rbd_img_fill_ctx fctx = {
2103 		.pos_type = OBJ_REQUEST_NODATA,
2104 		.pos = &dummy,
2105 	};
2106 
2107 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2108 }
2109 
2110 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2111 {
2112 	struct rbd_obj_request *obj_req =
2113 	    container_of(ex, struct rbd_obj_request, ex);
2114 	struct ceph_bio_iter *it = arg;
2115 
2116 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2117 	obj_req->bio_pos = *it;
2118 	ceph_bio_iter_advance(it, bytes);
2119 }
2120 
2121 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2122 {
2123 	struct rbd_obj_request *obj_req =
2124 	    container_of(ex, struct rbd_obj_request, ex);
2125 	struct ceph_bio_iter *it = arg;
2126 
2127 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2128 	ceph_bio_iter_advance_step(it, bytes, ({
2129 		obj_req->bvec_count++;
2130 	}));
2131 
2132 }
2133 
2134 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2135 {
2136 	struct rbd_obj_request *obj_req =
2137 	    container_of(ex, struct rbd_obj_request, ex);
2138 	struct ceph_bio_iter *it = arg;
2139 
2140 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2141 	ceph_bio_iter_advance_step(it, bytes, ({
2142 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2143 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2144 	}));
2145 }
2146 
2147 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2148 				   struct ceph_file_extent *img_extents,
2149 				   u32 num_img_extents,
2150 				   struct ceph_bio_iter *bio_pos)
2151 {
2152 	struct rbd_img_fill_ctx fctx = {
2153 		.pos_type = OBJ_REQUEST_BIO,
2154 		.pos = (union rbd_img_fill_iter *)bio_pos,
2155 		.set_pos_fn = set_bio_pos,
2156 		.count_fn = count_bio_bvecs,
2157 		.copy_fn = copy_bio_bvecs,
2158 	};
2159 
2160 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2161 				    &fctx);
2162 }
2163 
2164 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2165 				 u64 off, u64 len, struct bio *bio)
2166 {
2167 	struct ceph_file_extent ex = { off, len };
2168 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2169 
2170 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2171 }
2172 
2173 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2174 {
2175 	struct rbd_obj_request *obj_req =
2176 	    container_of(ex, struct rbd_obj_request, ex);
2177 	struct ceph_bvec_iter *it = arg;
2178 
2179 	obj_req->bvec_pos = *it;
2180 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2181 	ceph_bvec_iter_advance(it, bytes);
2182 }
2183 
2184 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2185 {
2186 	struct rbd_obj_request *obj_req =
2187 	    container_of(ex, struct rbd_obj_request, ex);
2188 	struct ceph_bvec_iter *it = arg;
2189 
2190 	ceph_bvec_iter_advance_step(it, bytes, ({
2191 		obj_req->bvec_count++;
2192 	}));
2193 }
2194 
2195 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2196 {
2197 	struct rbd_obj_request *obj_req =
2198 	    container_of(ex, struct rbd_obj_request, ex);
2199 	struct ceph_bvec_iter *it = arg;
2200 
2201 	ceph_bvec_iter_advance_step(it, bytes, ({
2202 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2203 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2204 	}));
2205 }
2206 
2207 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2208 				     struct ceph_file_extent *img_extents,
2209 				     u32 num_img_extents,
2210 				     struct ceph_bvec_iter *bvec_pos)
2211 {
2212 	struct rbd_img_fill_ctx fctx = {
2213 		.pos_type = OBJ_REQUEST_BVECS,
2214 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2215 		.set_pos_fn = set_bvec_pos,
2216 		.count_fn = count_bvecs,
2217 		.copy_fn = copy_bvecs,
2218 	};
2219 
2220 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2221 				    &fctx);
2222 }
2223 
2224 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2225 				   struct ceph_file_extent *img_extents,
2226 				   u32 num_img_extents,
2227 				   struct bio_vec *bvecs)
2228 {
2229 	struct ceph_bvec_iter it = {
2230 		.bvecs = bvecs,
2231 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2232 							     num_img_extents) },
2233 	};
2234 
2235 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2236 					 &it);
2237 }
2238 
2239 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2240 {
2241 	struct rbd_obj_request *obj_request;
2242 
2243 	dout("%s: img %p\n", __func__, img_request);
2244 
2245 	rbd_img_request_get(img_request);
2246 	for_each_obj_request(img_request, obj_request)
2247 		rbd_obj_request_submit(obj_request);
2248 
2249 	rbd_img_request_put(img_request);
2250 }
2251 
2252 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2253 {
2254 	struct rbd_img_request *img_req = obj_req->img_request;
2255 	struct rbd_img_request *child_img_req;
2256 	int ret;
2257 
2258 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2259 					       OBJ_OP_READ, NULL);
2260 	if (!child_img_req)
2261 		return -ENOMEM;
2262 
2263 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2264 	child_img_req->obj_request = obj_req;
2265 
2266 	if (!rbd_img_is_write(img_req)) {
2267 		switch (img_req->data_type) {
2268 		case OBJ_REQUEST_BIO:
2269 			ret = __rbd_img_fill_from_bio(child_img_req,
2270 						      obj_req->img_extents,
2271 						      obj_req->num_img_extents,
2272 						      &obj_req->bio_pos);
2273 			break;
2274 		case OBJ_REQUEST_BVECS:
2275 		case OBJ_REQUEST_OWN_BVECS:
2276 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2277 						      obj_req->img_extents,
2278 						      obj_req->num_img_extents,
2279 						      &obj_req->bvec_pos);
2280 			break;
2281 		default:
2282 			rbd_assert(0);
2283 		}
2284 	} else {
2285 		ret = rbd_img_fill_from_bvecs(child_img_req,
2286 					      obj_req->img_extents,
2287 					      obj_req->num_img_extents,
2288 					      obj_req->copyup_bvecs);
2289 	}
2290 	if (ret) {
2291 		rbd_img_request_put(child_img_req);
2292 		return ret;
2293 	}
2294 
2295 	rbd_img_request_submit(child_img_req);
2296 	return 0;
2297 }
2298 
2299 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2300 {
2301 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2302 	int ret;
2303 
2304 	if (obj_req->result == -ENOENT &&
2305 	    rbd_dev->parent_overlap && !obj_req->tried_parent) {
2306 		/* reverse map this object extent onto the parent */
2307 		ret = rbd_obj_calc_img_extents(obj_req, false);
2308 		if (ret) {
2309 			obj_req->result = ret;
2310 			return true;
2311 		}
2312 
2313 		if (obj_req->num_img_extents) {
2314 			obj_req->tried_parent = true;
2315 			ret = rbd_obj_read_from_parent(obj_req);
2316 			if (ret) {
2317 				obj_req->result = ret;
2318 				return true;
2319 			}
2320 			return false;
2321 		}
2322 	}
2323 
2324 	/*
2325 	 * -ENOENT means a hole in the image -- zero-fill the entire
2326 	 * length of the request.  A short read also implies zero-fill
2327 	 * to the end of the request.  In both cases we update xferred
2328 	 * count to indicate the whole request was satisfied.
2329 	 */
2330 	if (obj_req->result == -ENOENT ||
2331 	    (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2332 		rbd_assert(!obj_req->xferred || !obj_req->result);
2333 		rbd_obj_zero_range(obj_req, obj_req->xferred,
2334 				   obj_req->ex.oe_len - obj_req->xferred);
2335 		obj_req->result = 0;
2336 		obj_req->xferred = obj_req->ex.oe_len;
2337 	}
2338 
2339 	return true;
2340 }
2341 
2342 /*
2343  * copyup_bvecs pages are never highmem pages
2344  */
2345 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2346 {
2347 	struct ceph_bvec_iter it = {
2348 		.bvecs = bvecs,
2349 		.iter = { .bi_size = bytes },
2350 	};
2351 
2352 	ceph_bvec_iter_advance_step(&it, bytes, ({
2353 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2354 			       bv.bv_len))
2355 			return false;
2356 	}));
2357 	return true;
2358 }
2359 
2360 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2361 {
2362 	unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2363 	int ret;
2364 
2365 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2366 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2367 	rbd_osd_req_destroy(obj_req->osd_req);
2368 
2369 	/*
2370 	 * Create a copyup request with the same number of OSD ops as
2371 	 * the original request.  The original request was stat + op(s),
2372 	 * the new copyup request will be copyup + the same op(s).
2373 	 */
2374 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2375 	if (!obj_req->osd_req)
2376 		return -ENOMEM;
2377 
2378 	ret = osd_req_op_cls_init(obj_req->osd_req, 0, "rbd", "copyup");
2379 	if (ret)
2380 		return ret;
2381 
2382 	/*
2383 	 * Only send non-zero copyup data to save some I/O and network
2384 	 * bandwidth -- zero copyup data is equivalent to the object not
2385 	 * existing.
2386 	 */
2387 	if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2388 		dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2389 		bytes = 0;
2390 	}
2391 	osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2392 					  obj_req->copyup_bvecs,
2393 					  obj_req->copyup_bvec_count,
2394 					  bytes);
2395 
2396 	switch (obj_req->img_request->op_type) {
2397 	case OBJ_OP_WRITE:
2398 		__rbd_obj_setup_write(obj_req, 1);
2399 		break;
2400 	case OBJ_OP_DISCARD:
2401 		rbd_assert(!rbd_obj_is_entire(obj_req));
2402 		__rbd_obj_setup_discard(obj_req, 1);
2403 		break;
2404 	default:
2405 		rbd_assert(0);
2406 	}
2407 
2408 	ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2409 	if (ret)
2410 		return ret;
2411 
2412 	rbd_obj_request_submit(obj_req);
2413 	return 0;
2414 }
2415 
2416 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2417 {
2418 	u32 i;
2419 
2420 	rbd_assert(!obj_req->copyup_bvecs);
2421 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2422 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2423 					sizeof(*obj_req->copyup_bvecs),
2424 					GFP_NOIO);
2425 	if (!obj_req->copyup_bvecs)
2426 		return -ENOMEM;
2427 
2428 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2429 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2430 
2431 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2432 		if (!obj_req->copyup_bvecs[i].bv_page)
2433 			return -ENOMEM;
2434 
2435 		obj_req->copyup_bvecs[i].bv_offset = 0;
2436 		obj_req->copyup_bvecs[i].bv_len = len;
2437 		obj_overlap -= len;
2438 	}
2439 
2440 	rbd_assert(!obj_overlap);
2441 	return 0;
2442 }
2443 
2444 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2445 {
2446 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2447 	int ret;
2448 
2449 	rbd_assert(obj_req->num_img_extents);
2450 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2451 		      rbd_dev->parent_overlap);
2452 	if (!obj_req->num_img_extents) {
2453 		/*
2454 		 * The overlap has become 0 (most likely because the
2455 		 * image has been flattened).  Use rbd_obj_issue_copyup()
2456 		 * to re-submit the original write request -- the copyup
2457 		 * operation itself will be a no-op, since someone must
2458 		 * have populated the child object while we weren't
2459 		 * looking.  Move to WRITE_FLAT state as we'll be done
2460 		 * with the operation once the null copyup completes.
2461 		 */
2462 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2463 		return rbd_obj_issue_copyup(obj_req, 0);
2464 	}
2465 
2466 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2467 	if (ret)
2468 		return ret;
2469 
2470 	obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2471 	return rbd_obj_read_from_parent(obj_req);
2472 }
2473 
2474 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2475 {
2476 	int ret;
2477 
2478 again:
2479 	switch (obj_req->write_state) {
2480 	case RBD_OBJ_WRITE_GUARD:
2481 		rbd_assert(!obj_req->xferred);
2482 		if (obj_req->result == -ENOENT) {
2483 			/*
2484 			 * The target object doesn't exist.  Read the data for
2485 			 * the entire target object up to the overlap point (if
2486 			 * any) from the parent, so we can use it for a copyup.
2487 			 */
2488 			ret = rbd_obj_handle_write_guard(obj_req);
2489 			if (ret) {
2490 				obj_req->result = ret;
2491 				return true;
2492 			}
2493 			return false;
2494 		}
2495 		/* fall through */
2496 	case RBD_OBJ_WRITE_FLAT:
2497 		if (!obj_req->result)
2498 			/*
2499 			 * There is no such thing as a successful short
2500 			 * write -- indicate the whole request was satisfied.
2501 			 */
2502 			obj_req->xferred = obj_req->ex.oe_len;
2503 		return true;
2504 	case RBD_OBJ_WRITE_COPYUP:
2505 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2506 		if (obj_req->result)
2507 			goto again;
2508 
2509 		rbd_assert(obj_req->xferred);
2510 		ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2511 		if (ret) {
2512 			obj_req->result = ret;
2513 			return true;
2514 		}
2515 		return false;
2516 	default:
2517 		BUG();
2518 	}
2519 }
2520 
2521 /*
2522  * Returns true if @obj_req is completed, or false otherwise.
2523  */
2524 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2525 {
2526 	switch (obj_req->img_request->op_type) {
2527 	case OBJ_OP_READ:
2528 		return rbd_obj_handle_read(obj_req);
2529 	case OBJ_OP_WRITE:
2530 		return rbd_obj_handle_write(obj_req);
2531 	case OBJ_OP_DISCARD:
2532 		if (rbd_obj_handle_write(obj_req)) {
2533 			/*
2534 			 * Hide -ENOENT from delete/truncate/zero -- discarding
2535 			 * a non-existent object is not a problem.
2536 			 */
2537 			if (obj_req->result == -ENOENT) {
2538 				obj_req->result = 0;
2539 				obj_req->xferred = obj_req->ex.oe_len;
2540 			}
2541 			return true;
2542 		}
2543 		return false;
2544 	default:
2545 		BUG();
2546 	}
2547 }
2548 
2549 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2550 {
2551 	struct rbd_img_request *img_req = obj_req->img_request;
2552 
2553 	rbd_assert((!obj_req->result &&
2554 		    obj_req->xferred == obj_req->ex.oe_len) ||
2555 		   (obj_req->result < 0 && !obj_req->xferred));
2556 	if (!obj_req->result) {
2557 		img_req->xferred += obj_req->xferred;
2558 		return;
2559 	}
2560 
2561 	rbd_warn(img_req->rbd_dev,
2562 		 "%s at objno %llu %llu~%llu result %d xferred %llu",
2563 		 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2564 		 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2565 		 obj_req->xferred);
2566 	if (!img_req->result) {
2567 		img_req->result = obj_req->result;
2568 		img_req->xferred = 0;
2569 	}
2570 }
2571 
2572 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2573 {
2574 	struct rbd_obj_request *obj_req = img_req->obj_request;
2575 
2576 	rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2577 	rbd_assert((!img_req->result &&
2578 		    img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2579 		   (img_req->result < 0 && !img_req->xferred));
2580 
2581 	obj_req->result = img_req->result;
2582 	obj_req->xferred = img_req->xferred;
2583 	rbd_img_request_put(img_req);
2584 }
2585 
2586 static void rbd_img_end_request(struct rbd_img_request *img_req)
2587 {
2588 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2589 	rbd_assert((!img_req->result &&
2590 		    img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2591 		   (img_req->result < 0 && !img_req->xferred));
2592 
2593 	blk_mq_end_request(img_req->rq,
2594 			   errno_to_blk_status(img_req->result));
2595 	rbd_img_request_put(img_req);
2596 }
2597 
2598 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2599 {
2600 	struct rbd_img_request *img_req;
2601 
2602 again:
2603 	if (!__rbd_obj_handle_request(obj_req))
2604 		return;
2605 
2606 	img_req = obj_req->img_request;
2607 	spin_lock(&img_req->completion_lock);
2608 	rbd_obj_end_request(obj_req);
2609 	rbd_assert(img_req->pending_count);
2610 	if (--img_req->pending_count) {
2611 		spin_unlock(&img_req->completion_lock);
2612 		return;
2613 	}
2614 
2615 	spin_unlock(&img_req->completion_lock);
2616 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2617 		obj_req = img_req->obj_request;
2618 		rbd_img_end_child_request(img_req);
2619 		goto again;
2620 	}
2621 	rbd_img_end_request(img_req);
2622 }
2623 
2624 static const struct rbd_client_id rbd_empty_cid;
2625 
2626 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2627 			  const struct rbd_client_id *rhs)
2628 {
2629 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2630 }
2631 
2632 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2633 {
2634 	struct rbd_client_id cid;
2635 
2636 	mutex_lock(&rbd_dev->watch_mutex);
2637 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2638 	cid.handle = rbd_dev->watch_cookie;
2639 	mutex_unlock(&rbd_dev->watch_mutex);
2640 	return cid;
2641 }
2642 
2643 /*
2644  * lock_rwsem must be held for write
2645  */
2646 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2647 			      const struct rbd_client_id *cid)
2648 {
2649 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2650 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2651 	     cid->gid, cid->handle);
2652 	rbd_dev->owner_cid = *cid; /* struct */
2653 }
2654 
2655 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2656 {
2657 	mutex_lock(&rbd_dev->watch_mutex);
2658 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2659 	mutex_unlock(&rbd_dev->watch_mutex);
2660 }
2661 
2662 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2663 {
2664 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2665 
2666 	strcpy(rbd_dev->lock_cookie, cookie);
2667 	rbd_set_owner_cid(rbd_dev, &cid);
2668 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2669 }
2670 
2671 /*
2672  * lock_rwsem must be held for write
2673  */
2674 static int rbd_lock(struct rbd_device *rbd_dev)
2675 {
2676 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2677 	char cookie[32];
2678 	int ret;
2679 
2680 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2681 		rbd_dev->lock_cookie[0] != '\0');
2682 
2683 	format_lock_cookie(rbd_dev, cookie);
2684 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2685 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2686 			    RBD_LOCK_TAG, "", 0);
2687 	if (ret)
2688 		return ret;
2689 
2690 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2691 	__rbd_lock(rbd_dev, cookie);
2692 	return 0;
2693 }
2694 
2695 /*
2696  * lock_rwsem must be held for write
2697  */
2698 static void rbd_unlock(struct rbd_device *rbd_dev)
2699 {
2700 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2701 	int ret;
2702 
2703 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2704 		rbd_dev->lock_cookie[0] == '\0');
2705 
2706 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2707 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
2708 	if (ret && ret != -ENOENT)
2709 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2710 
2711 	/* treat errors as the image is unlocked */
2712 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2713 	rbd_dev->lock_cookie[0] = '\0';
2714 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2715 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2716 }
2717 
2718 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2719 				enum rbd_notify_op notify_op,
2720 				struct page ***preply_pages,
2721 				size_t *preply_len)
2722 {
2723 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2724 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2725 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2726 	int buf_size = sizeof(buf);
2727 	void *p = buf;
2728 
2729 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2730 
2731 	/* encode *LockPayload NotifyMessage (op + ClientId) */
2732 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2733 	ceph_encode_32(&p, notify_op);
2734 	ceph_encode_64(&p, cid.gid);
2735 	ceph_encode_64(&p, cid.handle);
2736 
2737 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2738 				&rbd_dev->header_oloc, buf, buf_size,
2739 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2740 }
2741 
2742 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2743 			       enum rbd_notify_op notify_op)
2744 {
2745 	struct page **reply_pages;
2746 	size_t reply_len;
2747 
2748 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2749 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2750 }
2751 
2752 static void rbd_notify_acquired_lock(struct work_struct *work)
2753 {
2754 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2755 						  acquired_lock_work);
2756 
2757 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2758 }
2759 
2760 static void rbd_notify_released_lock(struct work_struct *work)
2761 {
2762 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2763 						  released_lock_work);
2764 
2765 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2766 }
2767 
2768 static int rbd_request_lock(struct rbd_device *rbd_dev)
2769 {
2770 	struct page **reply_pages;
2771 	size_t reply_len;
2772 	bool lock_owner_responded = false;
2773 	int ret;
2774 
2775 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2776 
2777 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2778 				   &reply_pages, &reply_len);
2779 	if (ret && ret != -ETIMEDOUT) {
2780 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2781 		goto out;
2782 	}
2783 
2784 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2785 		void *p = page_address(reply_pages[0]);
2786 		void *const end = p + reply_len;
2787 		u32 n;
2788 
2789 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2790 		while (n--) {
2791 			u8 struct_v;
2792 			u32 len;
2793 
2794 			ceph_decode_need(&p, end, 8 + 8, e_inval);
2795 			p += 8 + 8; /* skip gid and cookie */
2796 
2797 			ceph_decode_32_safe(&p, end, len, e_inval);
2798 			if (!len)
2799 				continue;
2800 
2801 			if (lock_owner_responded) {
2802 				rbd_warn(rbd_dev,
2803 					 "duplicate lock owners detected");
2804 				ret = -EIO;
2805 				goto out;
2806 			}
2807 
2808 			lock_owner_responded = true;
2809 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2810 						  &struct_v, &len);
2811 			if (ret) {
2812 				rbd_warn(rbd_dev,
2813 					 "failed to decode ResponseMessage: %d",
2814 					 ret);
2815 				goto e_inval;
2816 			}
2817 
2818 			ret = ceph_decode_32(&p);
2819 		}
2820 	}
2821 
2822 	if (!lock_owner_responded) {
2823 		rbd_warn(rbd_dev, "no lock owners detected");
2824 		ret = -ETIMEDOUT;
2825 	}
2826 
2827 out:
2828 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2829 	return ret;
2830 
2831 e_inval:
2832 	ret = -EINVAL;
2833 	goto out;
2834 }
2835 
2836 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2837 {
2838 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2839 
2840 	cancel_delayed_work(&rbd_dev->lock_dwork);
2841 	if (wake_all)
2842 		wake_up_all(&rbd_dev->lock_waitq);
2843 	else
2844 		wake_up(&rbd_dev->lock_waitq);
2845 }
2846 
2847 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2848 			       struct ceph_locker **lockers, u32 *num_lockers)
2849 {
2850 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2851 	u8 lock_type;
2852 	char *lock_tag;
2853 	int ret;
2854 
2855 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2856 
2857 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2858 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2859 				 &lock_type, &lock_tag, lockers, num_lockers);
2860 	if (ret)
2861 		return ret;
2862 
2863 	if (*num_lockers == 0) {
2864 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2865 		goto out;
2866 	}
2867 
2868 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2869 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2870 			 lock_tag);
2871 		ret = -EBUSY;
2872 		goto out;
2873 	}
2874 
2875 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
2876 		rbd_warn(rbd_dev, "shared lock type detected");
2877 		ret = -EBUSY;
2878 		goto out;
2879 	}
2880 
2881 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2882 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
2883 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2884 			 (*lockers)[0].id.cookie);
2885 		ret = -EBUSY;
2886 		goto out;
2887 	}
2888 
2889 out:
2890 	kfree(lock_tag);
2891 	return ret;
2892 }
2893 
2894 static int find_watcher(struct rbd_device *rbd_dev,
2895 			const struct ceph_locker *locker)
2896 {
2897 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2898 	struct ceph_watch_item *watchers;
2899 	u32 num_watchers;
2900 	u64 cookie;
2901 	int i;
2902 	int ret;
2903 
2904 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2905 				      &rbd_dev->header_oloc, &watchers,
2906 				      &num_watchers);
2907 	if (ret)
2908 		return ret;
2909 
2910 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2911 	for (i = 0; i < num_watchers; i++) {
2912 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
2913 			    sizeof(locker->info.addr)) &&
2914 		    watchers[i].cookie == cookie) {
2915 			struct rbd_client_id cid = {
2916 				.gid = le64_to_cpu(watchers[i].name.num),
2917 				.handle = cookie,
2918 			};
2919 
2920 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2921 			     rbd_dev, cid.gid, cid.handle);
2922 			rbd_set_owner_cid(rbd_dev, &cid);
2923 			ret = 1;
2924 			goto out;
2925 		}
2926 	}
2927 
2928 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2929 	ret = 0;
2930 out:
2931 	kfree(watchers);
2932 	return ret;
2933 }
2934 
2935 /*
2936  * lock_rwsem must be held for write
2937  */
2938 static int rbd_try_lock(struct rbd_device *rbd_dev)
2939 {
2940 	struct ceph_client *client = rbd_dev->rbd_client->client;
2941 	struct ceph_locker *lockers;
2942 	u32 num_lockers;
2943 	int ret;
2944 
2945 	for (;;) {
2946 		ret = rbd_lock(rbd_dev);
2947 		if (ret != -EBUSY)
2948 			return ret;
2949 
2950 		/* determine if the current lock holder is still alive */
2951 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2952 		if (ret)
2953 			return ret;
2954 
2955 		if (num_lockers == 0)
2956 			goto again;
2957 
2958 		ret = find_watcher(rbd_dev, lockers);
2959 		if (ret) {
2960 			if (ret > 0)
2961 				ret = 0; /* have to request lock */
2962 			goto out;
2963 		}
2964 
2965 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2966 			 ENTITY_NAME(lockers[0].id.name));
2967 
2968 		ret = ceph_monc_blacklist_add(&client->monc,
2969 					      &lockers[0].info.addr);
2970 		if (ret) {
2971 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2972 				 ENTITY_NAME(lockers[0].id.name), ret);
2973 			goto out;
2974 		}
2975 
2976 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2977 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2978 					  lockers[0].id.cookie,
2979 					  &lockers[0].id.name);
2980 		if (ret && ret != -ENOENT)
2981 			goto out;
2982 
2983 again:
2984 		ceph_free_lockers(lockers, num_lockers);
2985 	}
2986 
2987 out:
2988 	ceph_free_lockers(lockers, num_lockers);
2989 	return ret;
2990 }
2991 
2992 /*
2993  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2994  */
2995 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2996 						int *pret)
2997 {
2998 	enum rbd_lock_state lock_state;
2999 
3000 	down_read(&rbd_dev->lock_rwsem);
3001 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3002 	     rbd_dev->lock_state);
3003 	if (__rbd_is_lock_owner(rbd_dev)) {
3004 		lock_state = rbd_dev->lock_state;
3005 		up_read(&rbd_dev->lock_rwsem);
3006 		return lock_state;
3007 	}
3008 
3009 	up_read(&rbd_dev->lock_rwsem);
3010 	down_write(&rbd_dev->lock_rwsem);
3011 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3012 	     rbd_dev->lock_state);
3013 	if (!__rbd_is_lock_owner(rbd_dev)) {
3014 		*pret = rbd_try_lock(rbd_dev);
3015 		if (*pret)
3016 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3017 	}
3018 
3019 	lock_state = rbd_dev->lock_state;
3020 	up_write(&rbd_dev->lock_rwsem);
3021 	return lock_state;
3022 }
3023 
3024 static void rbd_acquire_lock(struct work_struct *work)
3025 {
3026 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3027 					    struct rbd_device, lock_dwork);
3028 	enum rbd_lock_state lock_state;
3029 	int ret = 0;
3030 
3031 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3032 again:
3033 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3034 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3035 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3036 			wake_requests(rbd_dev, true);
3037 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3038 		     rbd_dev, lock_state, ret);
3039 		return;
3040 	}
3041 
3042 	ret = rbd_request_lock(rbd_dev);
3043 	if (ret == -ETIMEDOUT) {
3044 		goto again; /* treat this as a dead client */
3045 	} else if (ret == -EROFS) {
3046 		rbd_warn(rbd_dev, "peer will not release lock");
3047 		/*
3048 		 * If this is rbd_add_acquire_lock(), we want to fail
3049 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3050 		 * want to block.
3051 		 */
3052 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3053 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3054 			/* wake "rbd map --exclusive" process */
3055 			wake_requests(rbd_dev, false);
3056 		}
3057 	} else if (ret < 0) {
3058 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3059 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3060 				 RBD_RETRY_DELAY);
3061 	} else {
3062 		/*
3063 		 * lock owner acked, but resend if we don't see them
3064 		 * release the lock
3065 		 */
3066 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3067 		     rbd_dev);
3068 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3069 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3070 	}
3071 }
3072 
3073 /*
3074  * lock_rwsem must be held for write
3075  */
3076 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3077 {
3078 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3079 	     rbd_dev->lock_state);
3080 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3081 		return false;
3082 
3083 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3084 	downgrade_write(&rbd_dev->lock_rwsem);
3085 	/*
3086 	 * Ensure that all in-flight IO is flushed.
3087 	 *
3088 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3089 	 * may be shared with other devices.
3090 	 */
3091 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3092 	up_read(&rbd_dev->lock_rwsem);
3093 
3094 	down_write(&rbd_dev->lock_rwsem);
3095 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3096 	     rbd_dev->lock_state);
3097 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3098 		return false;
3099 
3100 	rbd_unlock(rbd_dev);
3101 	/*
3102 	 * Give others a chance to grab the lock - we would re-acquire
3103 	 * almost immediately if we got new IO during ceph_osdc_sync()
3104 	 * otherwise.  We need to ack our own notifications, so this
3105 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3106 	 * after wake_requests() in rbd_handle_released_lock().
3107 	 */
3108 	cancel_delayed_work(&rbd_dev->lock_dwork);
3109 	return true;
3110 }
3111 
3112 static void rbd_release_lock_work(struct work_struct *work)
3113 {
3114 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3115 						  unlock_work);
3116 
3117 	down_write(&rbd_dev->lock_rwsem);
3118 	rbd_release_lock(rbd_dev);
3119 	up_write(&rbd_dev->lock_rwsem);
3120 }
3121 
3122 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3123 				     void **p)
3124 {
3125 	struct rbd_client_id cid = { 0 };
3126 
3127 	if (struct_v >= 2) {
3128 		cid.gid = ceph_decode_64(p);
3129 		cid.handle = ceph_decode_64(p);
3130 	}
3131 
3132 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3133 	     cid.handle);
3134 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3135 		down_write(&rbd_dev->lock_rwsem);
3136 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3137 			/*
3138 			 * we already know that the remote client is
3139 			 * the owner
3140 			 */
3141 			up_write(&rbd_dev->lock_rwsem);
3142 			return;
3143 		}
3144 
3145 		rbd_set_owner_cid(rbd_dev, &cid);
3146 		downgrade_write(&rbd_dev->lock_rwsem);
3147 	} else {
3148 		down_read(&rbd_dev->lock_rwsem);
3149 	}
3150 
3151 	if (!__rbd_is_lock_owner(rbd_dev))
3152 		wake_requests(rbd_dev, false);
3153 	up_read(&rbd_dev->lock_rwsem);
3154 }
3155 
3156 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3157 				     void **p)
3158 {
3159 	struct rbd_client_id cid = { 0 };
3160 
3161 	if (struct_v >= 2) {
3162 		cid.gid = ceph_decode_64(p);
3163 		cid.handle = ceph_decode_64(p);
3164 	}
3165 
3166 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3167 	     cid.handle);
3168 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3169 		down_write(&rbd_dev->lock_rwsem);
3170 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3171 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3172 			     __func__, rbd_dev, cid.gid, cid.handle,
3173 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3174 			up_write(&rbd_dev->lock_rwsem);
3175 			return;
3176 		}
3177 
3178 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3179 		downgrade_write(&rbd_dev->lock_rwsem);
3180 	} else {
3181 		down_read(&rbd_dev->lock_rwsem);
3182 	}
3183 
3184 	if (!__rbd_is_lock_owner(rbd_dev))
3185 		wake_requests(rbd_dev, false);
3186 	up_read(&rbd_dev->lock_rwsem);
3187 }
3188 
3189 /*
3190  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3191  * ResponseMessage is needed.
3192  */
3193 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3194 				   void **p)
3195 {
3196 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3197 	struct rbd_client_id cid = { 0 };
3198 	int result = 1;
3199 
3200 	if (struct_v >= 2) {
3201 		cid.gid = ceph_decode_64(p);
3202 		cid.handle = ceph_decode_64(p);
3203 	}
3204 
3205 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3206 	     cid.handle);
3207 	if (rbd_cid_equal(&cid, &my_cid))
3208 		return result;
3209 
3210 	down_read(&rbd_dev->lock_rwsem);
3211 	if (__rbd_is_lock_owner(rbd_dev)) {
3212 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3213 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3214 			goto out_unlock;
3215 
3216 		/*
3217 		 * encode ResponseMessage(0) so the peer can detect
3218 		 * a missing owner
3219 		 */
3220 		result = 0;
3221 
3222 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3223 			if (!rbd_dev->opts->exclusive) {
3224 				dout("%s rbd_dev %p queueing unlock_work\n",
3225 				     __func__, rbd_dev);
3226 				queue_work(rbd_dev->task_wq,
3227 					   &rbd_dev->unlock_work);
3228 			} else {
3229 				/* refuse to release the lock */
3230 				result = -EROFS;
3231 			}
3232 		}
3233 	}
3234 
3235 out_unlock:
3236 	up_read(&rbd_dev->lock_rwsem);
3237 	return result;
3238 }
3239 
3240 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3241 				     u64 notify_id, u64 cookie, s32 *result)
3242 {
3243 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3244 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3245 	int buf_size = sizeof(buf);
3246 	int ret;
3247 
3248 	if (result) {
3249 		void *p = buf;
3250 
3251 		/* encode ResponseMessage */
3252 		ceph_start_encoding(&p, 1, 1,
3253 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3254 		ceph_encode_32(&p, *result);
3255 	} else {
3256 		buf_size = 0;
3257 	}
3258 
3259 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3260 				   &rbd_dev->header_oloc, notify_id, cookie,
3261 				   buf, buf_size);
3262 	if (ret)
3263 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3264 }
3265 
3266 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3267 				   u64 cookie)
3268 {
3269 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3270 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3271 }
3272 
3273 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3274 					  u64 notify_id, u64 cookie, s32 result)
3275 {
3276 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3277 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3278 }
3279 
3280 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3281 			 u64 notifier_id, void *data, size_t data_len)
3282 {
3283 	struct rbd_device *rbd_dev = arg;
3284 	void *p = data;
3285 	void *const end = p + data_len;
3286 	u8 struct_v = 0;
3287 	u32 len;
3288 	u32 notify_op;
3289 	int ret;
3290 
3291 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3292 	     __func__, rbd_dev, cookie, notify_id, data_len);
3293 	if (data_len) {
3294 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3295 					  &struct_v, &len);
3296 		if (ret) {
3297 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3298 				 ret);
3299 			return;
3300 		}
3301 
3302 		notify_op = ceph_decode_32(&p);
3303 	} else {
3304 		/* legacy notification for header updates */
3305 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3306 		len = 0;
3307 	}
3308 
3309 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3310 	switch (notify_op) {
3311 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3312 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3313 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3314 		break;
3315 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3316 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3317 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3318 		break;
3319 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3320 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3321 		if (ret <= 0)
3322 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3323 						      cookie, ret);
3324 		else
3325 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3326 		break;
3327 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3328 		ret = rbd_dev_refresh(rbd_dev);
3329 		if (ret)
3330 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3331 
3332 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3333 		break;
3334 	default:
3335 		if (rbd_is_lock_owner(rbd_dev))
3336 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3337 						      cookie, -EOPNOTSUPP);
3338 		else
3339 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3340 		break;
3341 	}
3342 }
3343 
3344 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3345 
3346 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3347 {
3348 	struct rbd_device *rbd_dev = arg;
3349 
3350 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3351 
3352 	down_write(&rbd_dev->lock_rwsem);
3353 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3354 	up_write(&rbd_dev->lock_rwsem);
3355 
3356 	mutex_lock(&rbd_dev->watch_mutex);
3357 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3358 		__rbd_unregister_watch(rbd_dev);
3359 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3360 
3361 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3362 	}
3363 	mutex_unlock(&rbd_dev->watch_mutex);
3364 }
3365 
3366 /*
3367  * watch_mutex must be locked
3368  */
3369 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3370 {
3371 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3372 	struct ceph_osd_linger_request *handle;
3373 
3374 	rbd_assert(!rbd_dev->watch_handle);
3375 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3376 
3377 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3378 				 &rbd_dev->header_oloc, rbd_watch_cb,
3379 				 rbd_watch_errcb, rbd_dev);
3380 	if (IS_ERR(handle))
3381 		return PTR_ERR(handle);
3382 
3383 	rbd_dev->watch_handle = handle;
3384 	return 0;
3385 }
3386 
3387 /*
3388  * watch_mutex must be locked
3389  */
3390 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3391 {
3392 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3393 	int ret;
3394 
3395 	rbd_assert(rbd_dev->watch_handle);
3396 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3397 
3398 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3399 	if (ret)
3400 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3401 
3402 	rbd_dev->watch_handle = NULL;
3403 }
3404 
3405 static int rbd_register_watch(struct rbd_device *rbd_dev)
3406 {
3407 	int ret;
3408 
3409 	mutex_lock(&rbd_dev->watch_mutex);
3410 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3411 	ret = __rbd_register_watch(rbd_dev);
3412 	if (ret)
3413 		goto out;
3414 
3415 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3416 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3417 
3418 out:
3419 	mutex_unlock(&rbd_dev->watch_mutex);
3420 	return ret;
3421 }
3422 
3423 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3424 {
3425 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3426 
3427 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3428 	cancel_work_sync(&rbd_dev->released_lock_work);
3429 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3430 	cancel_work_sync(&rbd_dev->unlock_work);
3431 }
3432 
3433 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3434 {
3435 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3436 	cancel_tasks_sync(rbd_dev);
3437 
3438 	mutex_lock(&rbd_dev->watch_mutex);
3439 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3440 		__rbd_unregister_watch(rbd_dev);
3441 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3442 	mutex_unlock(&rbd_dev->watch_mutex);
3443 
3444 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3445 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3446 }
3447 
3448 /*
3449  * lock_rwsem must be held for write
3450  */
3451 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3452 {
3453 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3454 	char cookie[32];
3455 	int ret;
3456 
3457 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3458 
3459 	format_lock_cookie(rbd_dev, cookie);
3460 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3461 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3462 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3463 				  RBD_LOCK_TAG, cookie);
3464 	if (ret) {
3465 		if (ret != -EOPNOTSUPP)
3466 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3467 				 ret);
3468 
3469 		/*
3470 		 * Lock cookie cannot be updated on older OSDs, so do
3471 		 * a manual release and queue an acquire.
3472 		 */
3473 		if (rbd_release_lock(rbd_dev))
3474 			queue_delayed_work(rbd_dev->task_wq,
3475 					   &rbd_dev->lock_dwork, 0);
3476 	} else {
3477 		__rbd_lock(rbd_dev, cookie);
3478 	}
3479 }
3480 
3481 static void rbd_reregister_watch(struct work_struct *work)
3482 {
3483 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3484 					    struct rbd_device, watch_dwork);
3485 	int ret;
3486 
3487 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3488 
3489 	mutex_lock(&rbd_dev->watch_mutex);
3490 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3491 		mutex_unlock(&rbd_dev->watch_mutex);
3492 		return;
3493 	}
3494 
3495 	ret = __rbd_register_watch(rbd_dev);
3496 	if (ret) {
3497 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3498 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3499 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3500 			wake_requests(rbd_dev, true);
3501 		} else {
3502 			queue_delayed_work(rbd_dev->task_wq,
3503 					   &rbd_dev->watch_dwork,
3504 					   RBD_RETRY_DELAY);
3505 		}
3506 		mutex_unlock(&rbd_dev->watch_mutex);
3507 		return;
3508 	}
3509 
3510 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3511 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3512 	mutex_unlock(&rbd_dev->watch_mutex);
3513 
3514 	down_write(&rbd_dev->lock_rwsem);
3515 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3516 		rbd_reacquire_lock(rbd_dev);
3517 	up_write(&rbd_dev->lock_rwsem);
3518 
3519 	ret = rbd_dev_refresh(rbd_dev);
3520 	if (ret)
3521 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3522 }
3523 
3524 /*
3525  * Synchronous osd object method call.  Returns the number of bytes
3526  * returned in the outbound buffer, or a negative error code.
3527  */
3528 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3529 			     struct ceph_object_id *oid,
3530 			     struct ceph_object_locator *oloc,
3531 			     const char *method_name,
3532 			     const void *outbound,
3533 			     size_t outbound_size,
3534 			     void *inbound,
3535 			     size_t inbound_size)
3536 {
3537 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3538 	struct page *req_page = NULL;
3539 	struct page *reply_page;
3540 	int ret;
3541 
3542 	/*
3543 	 * Method calls are ultimately read operations.  The result
3544 	 * should placed into the inbound buffer provided.  They
3545 	 * also supply outbound data--parameters for the object
3546 	 * method.  Currently if this is present it will be a
3547 	 * snapshot id.
3548 	 */
3549 	if (outbound) {
3550 		if (outbound_size > PAGE_SIZE)
3551 			return -E2BIG;
3552 
3553 		req_page = alloc_page(GFP_KERNEL);
3554 		if (!req_page)
3555 			return -ENOMEM;
3556 
3557 		memcpy(page_address(req_page), outbound, outbound_size);
3558 	}
3559 
3560 	reply_page = alloc_page(GFP_KERNEL);
3561 	if (!reply_page) {
3562 		if (req_page)
3563 			__free_page(req_page);
3564 		return -ENOMEM;
3565 	}
3566 
3567 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3568 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3569 			     reply_page, &inbound_size);
3570 	if (!ret) {
3571 		memcpy(inbound, page_address(reply_page), inbound_size);
3572 		ret = inbound_size;
3573 	}
3574 
3575 	if (req_page)
3576 		__free_page(req_page);
3577 	__free_page(reply_page);
3578 	return ret;
3579 }
3580 
3581 /*
3582  * lock_rwsem must be held for read
3583  */
3584 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3585 {
3586 	DEFINE_WAIT(wait);
3587 	unsigned long timeout;
3588 	int ret = 0;
3589 
3590 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3591 		return -EBLACKLISTED;
3592 
3593 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3594 		return 0;
3595 
3596 	if (!may_acquire) {
3597 		rbd_warn(rbd_dev, "exclusive lock required");
3598 		return -EROFS;
3599 	}
3600 
3601 	do {
3602 		/*
3603 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3604 		 * and cancel_delayed_work() in wake_requests().
3605 		 */
3606 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3607 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3608 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3609 					  TASK_UNINTERRUPTIBLE);
3610 		up_read(&rbd_dev->lock_rwsem);
3611 		timeout = schedule_timeout(ceph_timeout_jiffies(
3612 						rbd_dev->opts->lock_timeout));
3613 		down_read(&rbd_dev->lock_rwsem);
3614 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3615 			ret = -EBLACKLISTED;
3616 			break;
3617 		}
3618 		if (!timeout) {
3619 			rbd_warn(rbd_dev, "timed out waiting for lock");
3620 			ret = -ETIMEDOUT;
3621 			break;
3622 		}
3623 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3624 
3625 	finish_wait(&rbd_dev->lock_waitq, &wait);
3626 	return ret;
3627 }
3628 
3629 static void rbd_queue_workfn(struct work_struct *work)
3630 {
3631 	struct request *rq = blk_mq_rq_from_pdu(work);
3632 	struct rbd_device *rbd_dev = rq->q->queuedata;
3633 	struct rbd_img_request *img_request;
3634 	struct ceph_snap_context *snapc = NULL;
3635 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3636 	u64 length = blk_rq_bytes(rq);
3637 	enum obj_operation_type op_type;
3638 	u64 mapping_size;
3639 	bool must_be_locked;
3640 	int result;
3641 
3642 	switch (req_op(rq)) {
3643 	case REQ_OP_DISCARD:
3644 	case REQ_OP_WRITE_ZEROES:
3645 		op_type = OBJ_OP_DISCARD;
3646 		break;
3647 	case REQ_OP_WRITE:
3648 		op_type = OBJ_OP_WRITE;
3649 		break;
3650 	case REQ_OP_READ:
3651 		op_type = OBJ_OP_READ;
3652 		break;
3653 	default:
3654 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3655 		result = -EIO;
3656 		goto err;
3657 	}
3658 
3659 	/* Ignore/skip any zero-length requests */
3660 
3661 	if (!length) {
3662 		dout("%s: zero-length request\n", __func__);
3663 		result = 0;
3664 		goto err_rq;
3665 	}
3666 
3667 	rbd_assert(op_type == OBJ_OP_READ ||
3668 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
3669 
3670 	/*
3671 	 * Quit early if the mapped snapshot no longer exists.  It's
3672 	 * still possible the snapshot will have disappeared by the
3673 	 * time our request arrives at the osd, but there's no sense in
3674 	 * sending it if we already know.
3675 	 */
3676 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3677 		dout("request for non-existent snapshot");
3678 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3679 		result = -ENXIO;
3680 		goto err_rq;
3681 	}
3682 
3683 	if (offset && length > U64_MAX - offset + 1) {
3684 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3685 			 length);
3686 		result = -EINVAL;
3687 		goto err_rq;	/* Shouldn't happen */
3688 	}
3689 
3690 	blk_mq_start_request(rq);
3691 
3692 	down_read(&rbd_dev->header_rwsem);
3693 	mapping_size = rbd_dev->mapping.size;
3694 	if (op_type != OBJ_OP_READ) {
3695 		snapc = rbd_dev->header.snapc;
3696 		ceph_get_snap_context(snapc);
3697 	}
3698 	up_read(&rbd_dev->header_rwsem);
3699 
3700 	if (offset + length > mapping_size) {
3701 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3702 			 length, mapping_size);
3703 		result = -EIO;
3704 		goto err_rq;
3705 	}
3706 
3707 	must_be_locked =
3708 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3709 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3710 	if (must_be_locked) {
3711 		down_read(&rbd_dev->lock_rwsem);
3712 		result = rbd_wait_state_locked(rbd_dev,
3713 					       !rbd_dev->opts->exclusive);
3714 		if (result)
3715 			goto err_unlock;
3716 	}
3717 
3718 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3719 	if (!img_request) {
3720 		result = -ENOMEM;
3721 		goto err_unlock;
3722 	}
3723 	img_request->rq = rq;
3724 	snapc = NULL; /* img_request consumes a ref */
3725 
3726 	if (op_type == OBJ_OP_DISCARD)
3727 		result = rbd_img_fill_nodata(img_request, offset, length);
3728 	else
3729 		result = rbd_img_fill_from_bio(img_request, offset, length,
3730 					       rq->bio);
3731 	if (result)
3732 		goto err_img_request;
3733 
3734 	rbd_img_request_submit(img_request);
3735 	if (must_be_locked)
3736 		up_read(&rbd_dev->lock_rwsem);
3737 	return;
3738 
3739 err_img_request:
3740 	rbd_img_request_put(img_request);
3741 err_unlock:
3742 	if (must_be_locked)
3743 		up_read(&rbd_dev->lock_rwsem);
3744 err_rq:
3745 	if (result)
3746 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3747 			 obj_op_name(op_type), length, offset, result);
3748 	ceph_put_snap_context(snapc);
3749 err:
3750 	blk_mq_end_request(rq, errno_to_blk_status(result));
3751 }
3752 
3753 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3754 		const struct blk_mq_queue_data *bd)
3755 {
3756 	struct request *rq = bd->rq;
3757 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3758 
3759 	queue_work(rbd_wq, work);
3760 	return BLK_STS_OK;
3761 }
3762 
3763 static void rbd_free_disk(struct rbd_device *rbd_dev)
3764 {
3765 	blk_cleanup_queue(rbd_dev->disk->queue);
3766 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3767 	put_disk(rbd_dev->disk);
3768 	rbd_dev->disk = NULL;
3769 }
3770 
3771 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3772 			     struct ceph_object_id *oid,
3773 			     struct ceph_object_locator *oloc,
3774 			     void *buf, int buf_len)
3775 
3776 {
3777 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3778 	struct ceph_osd_request *req;
3779 	struct page **pages;
3780 	int num_pages = calc_pages_for(0, buf_len);
3781 	int ret;
3782 
3783 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3784 	if (!req)
3785 		return -ENOMEM;
3786 
3787 	ceph_oid_copy(&req->r_base_oid, oid);
3788 	ceph_oloc_copy(&req->r_base_oloc, oloc);
3789 	req->r_flags = CEPH_OSD_FLAG_READ;
3790 
3791 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3792 	if (IS_ERR(pages)) {
3793 		ret = PTR_ERR(pages);
3794 		goto out_req;
3795 	}
3796 
3797 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3798 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3799 					 true);
3800 
3801 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3802 	if (ret)
3803 		goto out_req;
3804 
3805 	ceph_osdc_start_request(osdc, req, false);
3806 	ret = ceph_osdc_wait_request(osdc, req);
3807 	if (ret >= 0)
3808 		ceph_copy_from_page_vector(pages, buf, 0, ret);
3809 
3810 out_req:
3811 	ceph_osdc_put_request(req);
3812 	return ret;
3813 }
3814 
3815 /*
3816  * Read the complete header for the given rbd device.  On successful
3817  * return, the rbd_dev->header field will contain up-to-date
3818  * information about the image.
3819  */
3820 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3821 {
3822 	struct rbd_image_header_ondisk *ondisk = NULL;
3823 	u32 snap_count = 0;
3824 	u64 names_size = 0;
3825 	u32 want_count;
3826 	int ret;
3827 
3828 	/*
3829 	 * The complete header will include an array of its 64-bit
3830 	 * snapshot ids, followed by the names of those snapshots as
3831 	 * a contiguous block of NUL-terminated strings.  Note that
3832 	 * the number of snapshots could change by the time we read
3833 	 * it in, in which case we re-read it.
3834 	 */
3835 	do {
3836 		size_t size;
3837 
3838 		kfree(ondisk);
3839 
3840 		size = sizeof (*ondisk);
3841 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3842 		size += names_size;
3843 		ondisk = kmalloc(size, GFP_KERNEL);
3844 		if (!ondisk)
3845 			return -ENOMEM;
3846 
3847 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3848 					&rbd_dev->header_oloc, ondisk, size);
3849 		if (ret < 0)
3850 			goto out;
3851 		if ((size_t)ret < size) {
3852 			ret = -ENXIO;
3853 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3854 				size, ret);
3855 			goto out;
3856 		}
3857 		if (!rbd_dev_ondisk_valid(ondisk)) {
3858 			ret = -ENXIO;
3859 			rbd_warn(rbd_dev, "invalid header");
3860 			goto out;
3861 		}
3862 
3863 		names_size = le64_to_cpu(ondisk->snap_names_len);
3864 		want_count = snap_count;
3865 		snap_count = le32_to_cpu(ondisk->snap_count);
3866 	} while (snap_count != want_count);
3867 
3868 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3869 out:
3870 	kfree(ondisk);
3871 
3872 	return ret;
3873 }
3874 
3875 /*
3876  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3877  * has disappeared from the (just updated) snapshot context.
3878  */
3879 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3880 {
3881 	u64 snap_id;
3882 
3883 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3884 		return;
3885 
3886 	snap_id = rbd_dev->spec->snap_id;
3887 	if (snap_id == CEPH_NOSNAP)
3888 		return;
3889 
3890 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3891 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3892 }
3893 
3894 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3895 {
3896 	sector_t size;
3897 
3898 	/*
3899 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3900 	 * try to update its size.  If REMOVING is set, updating size
3901 	 * is just useless work since the device can't be opened.
3902 	 */
3903 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3904 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3905 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3906 		dout("setting size to %llu sectors", (unsigned long long)size);
3907 		set_capacity(rbd_dev->disk, size);
3908 		revalidate_disk(rbd_dev->disk);
3909 	}
3910 }
3911 
3912 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3913 {
3914 	u64 mapping_size;
3915 	int ret;
3916 
3917 	down_write(&rbd_dev->header_rwsem);
3918 	mapping_size = rbd_dev->mapping.size;
3919 
3920 	ret = rbd_dev_header_info(rbd_dev);
3921 	if (ret)
3922 		goto out;
3923 
3924 	/*
3925 	 * If there is a parent, see if it has disappeared due to the
3926 	 * mapped image getting flattened.
3927 	 */
3928 	if (rbd_dev->parent) {
3929 		ret = rbd_dev_v2_parent_info(rbd_dev);
3930 		if (ret)
3931 			goto out;
3932 	}
3933 
3934 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3935 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3936 	} else {
3937 		/* validate mapped snapshot's EXISTS flag */
3938 		rbd_exists_validate(rbd_dev);
3939 	}
3940 
3941 out:
3942 	up_write(&rbd_dev->header_rwsem);
3943 	if (!ret && mapping_size != rbd_dev->mapping.size)
3944 		rbd_dev_update_size(rbd_dev);
3945 
3946 	return ret;
3947 }
3948 
3949 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3950 		unsigned int hctx_idx, unsigned int numa_node)
3951 {
3952 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3953 
3954 	INIT_WORK(work, rbd_queue_workfn);
3955 	return 0;
3956 }
3957 
3958 static const struct blk_mq_ops rbd_mq_ops = {
3959 	.queue_rq	= rbd_queue_rq,
3960 	.init_request	= rbd_init_request,
3961 };
3962 
3963 static int rbd_init_disk(struct rbd_device *rbd_dev)
3964 {
3965 	struct gendisk *disk;
3966 	struct request_queue *q;
3967 	unsigned int objset_bytes =
3968 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3969 	int err;
3970 
3971 	/* create gendisk info */
3972 	disk = alloc_disk(single_major ?
3973 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3974 			  RBD_MINORS_PER_MAJOR);
3975 	if (!disk)
3976 		return -ENOMEM;
3977 
3978 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3979 		 rbd_dev->dev_id);
3980 	disk->major = rbd_dev->major;
3981 	disk->first_minor = rbd_dev->minor;
3982 	if (single_major)
3983 		disk->flags |= GENHD_FL_EXT_DEVT;
3984 	disk->fops = &rbd_bd_ops;
3985 	disk->private_data = rbd_dev;
3986 
3987 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3988 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3989 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3990 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3991 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3992 	rbd_dev->tag_set.nr_hw_queues = 1;
3993 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3994 
3995 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3996 	if (err)
3997 		goto out_disk;
3998 
3999 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4000 	if (IS_ERR(q)) {
4001 		err = PTR_ERR(q);
4002 		goto out_tag_set;
4003 	}
4004 
4005 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4006 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4007 
4008 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4009 	q->limits.max_sectors = queue_max_hw_sectors(q);
4010 	blk_queue_max_segments(q, USHRT_MAX);
4011 	blk_queue_max_segment_size(q, UINT_MAX);
4012 	blk_queue_io_min(q, objset_bytes);
4013 	blk_queue_io_opt(q, objset_bytes);
4014 
4015 	if (rbd_dev->opts->trim) {
4016 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4017 		q->limits.discard_granularity = objset_bytes;
4018 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4019 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4020 	}
4021 
4022 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4023 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4024 
4025 	/*
4026 	 * disk_release() expects a queue ref from add_disk() and will
4027 	 * put it.  Hold an extra ref until add_disk() is called.
4028 	 */
4029 	WARN_ON(!blk_get_queue(q));
4030 	disk->queue = q;
4031 	q->queuedata = rbd_dev;
4032 
4033 	rbd_dev->disk = disk;
4034 
4035 	return 0;
4036 out_tag_set:
4037 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4038 out_disk:
4039 	put_disk(disk);
4040 	return err;
4041 }
4042 
4043 /*
4044   sysfs
4045 */
4046 
4047 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4048 {
4049 	return container_of(dev, struct rbd_device, dev);
4050 }
4051 
4052 static ssize_t rbd_size_show(struct device *dev,
4053 			     struct device_attribute *attr, char *buf)
4054 {
4055 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4056 
4057 	return sprintf(buf, "%llu\n",
4058 		(unsigned long long)rbd_dev->mapping.size);
4059 }
4060 
4061 /*
4062  * Note this shows the features for whatever's mapped, which is not
4063  * necessarily the base image.
4064  */
4065 static ssize_t rbd_features_show(struct device *dev,
4066 			     struct device_attribute *attr, char *buf)
4067 {
4068 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4069 
4070 	return sprintf(buf, "0x%016llx\n",
4071 			(unsigned long long)rbd_dev->mapping.features);
4072 }
4073 
4074 static ssize_t rbd_major_show(struct device *dev,
4075 			      struct device_attribute *attr, char *buf)
4076 {
4077 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4078 
4079 	if (rbd_dev->major)
4080 		return sprintf(buf, "%d\n", rbd_dev->major);
4081 
4082 	return sprintf(buf, "(none)\n");
4083 }
4084 
4085 static ssize_t rbd_minor_show(struct device *dev,
4086 			      struct device_attribute *attr, char *buf)
4087 {
4088 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4089 
4090 	return sprintf(buf, "%d\n", rbd_dev->minor);
4091 }
4092 
4093 static ssize_t rbd_client_addr_show(struct device *dev,
4094 				    struct device_attribute *attr, char *buf)
4095 {
4096 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4097 	struct ceph_entity_addr *client_addr =
4098 	    ceph_client_addr(rbd_dev->rbd_client->client);
4099 
4100 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4101 		       le32_to_cpu(client_addr->nonce));
4102 }
4103 
4104 static ssize_t rbd_client_id_show(struct device *dev,
4105 				  struct device_attribute *attr, char *buf)
4106 {
4107 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4108 
4109 	return sprintf(buf, "client%lld\n",
4110 		       ceph_client_gid(rbd_dev->rbd_client->client));
4111 }
4112 
4113 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4114 				     struct device_attribute *attr, char *buf)
4115 {
4116 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4117 
4118 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4119 }
4120 
4121 static ssize_t rbd_config_info_show(struct device *dev,
4122 				    struct device_attribute *attr, char *buf)
4123 {
4124 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4125 
4126 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4127 }
4128 
4129 static ssize_t rbd_pool_show(struct device *dev,
4130 			     struct device_attribute *attr, char *buf)
4131 {
4132 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4133 
4134 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4135 }
4136 
4137 static ssize_t rbd_pool_id_show(struct device *dev,
4138 			     struct device_attribute *attr, char *buf)
4139 {
4140 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4141 
4142 	return sprintf(buf, "%llu\n",
4143 			(unsigned long long) rbd_dev->spec->pool_id);
4144 }
4145 
4146 static ssize_t rbd_pool_ns_show(struct device *dev,
4147 				struct device_attribute *attr, char *buf)
4148 {
4149 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4150 
4151 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4152 }
4153 
4154 static ssize_t rbd_name_show(struct device *dev,
4155 			     struct device_attribute *attr, char *buf)
4156 {
4157 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4158 
4159 	if (rbd_dev->spec->image_name)
4160 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4161 
4162 	return sprintf(buf, "(unknown)\n");
4163 }
4164 
4165 static ssize_t rbd_image_id_show(struct device *dev,
4166 			     struct device_attribute *attr, char *buf)
4167 {
4168 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4169 
4170 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4171 }
4172 
4173 /*
4174  * Shows the name of the currently-mapped snapshot (or
4175  * RBD_SNAP_HEAD_NAME for the base image).
4176  */
4177 static ssize_t rbd_snap_show(struct device *dev,
4178 			     struct device_attribute *attr,
4179 			     char *buf)
4180 {
4181 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4182 
4183 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4184 }
4185 
4186 static ssize_t rbd_snap_id_show(struct device *dev,
4187 				struct device_attribute *attr, char *buf)
4188 {
4189 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4190 
4191 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4192 }
4193 
4194 /*
4195  * For a v2 image, shows the chain of parent images, separated by empty
4196  * lines.  For v1 images or if there is no parent, shows "(no parent
4197  * image)".
4198  */
4199 static ssize_t rbd_parent_show(struct device *dev,
4200 			       struct device_attribute *attr,
4201 			       char *buf)
4202 {
4203 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4204 	ssize_t count = 0;
4205 
4206 	if (!rbd_dev->parent)
4207 		return sprintf(buf, "(no parent image)\n");
4208 
4209 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4210 		struct rbd_spec *spec = rbd_dev->parent_spec;
4211 
4212 		count += sprintf(&buf[count], "%s"
4213 			    "pool_id %llu\npool_name %s\n"
4214 			    "pool_ns %s\n"
4215 			    "image_id %s\nimage_name %s\n"
4216 			    "snap_id %llu\nsnap_name %s\n"
4217 			    "overlap %llu\n",
4218 			    !count ? "" : "\n", /* first? */
4219 			    spec->pool_id, spec->pool_name,
4220 			    spec->pool_ns ?: "",
4221 			    spec->image_id, spec->image_name ?: "(unknown)",
4222 			    spec->snap_id, spec->snap_name,
4223 			    rbd_dev->parent_overlap);
4224 	}
4225 
4226 	return count;
4227 }
4228 
4229 static ssize_t rbd_image_refresh(struct device *dev,
4230 				 struct device_attribute *attr,
4231 				 const char *buf,
4232 				 size_t size)
4233 {
4234 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4235 	int ret;
4236 
4237 	ret = rbd_dev_refresh(rbd_dev);
4238 	if (ret)
4239 		return ret;
4240 
4241 	return size;
4242 }
4243 
4244 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4245 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4246 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4247 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4248 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4249 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4250 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4251 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4252 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4253 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4254 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4255 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4256 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4257 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4258 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4259 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4260 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4261 
4262 static struct attribute *rbd_attrs[] = {
4263 	&dev_attr_size.attr,
4264 	&dev_attr_features.attr,
4265 	&dev_attr_major.attr,
4266 	&dev_attr_minor.attr,
4267 	&dev_attr_client_addr.attr,
4268 	&dev_attr_client_id.attr,
4269 	&dev_attr_cluster_fsid.attr,
4270 	&dev_attr_config_info.attr,
4271 	&dev_attr_pool.attr,
4272 	&dev_attr_pool_id.attr,
4273 	&dev_attr_pool_ns.attr,
4274 	&dev_attr_name.attr,
4275 	&dev_attr_image_id.attr,
4276 	&dev_attr_current_snap.attr,
4277 	&dev_attr_snap_id.attr,
4278 	&dev_attr_parent.attr,
4279 	&dev_attr_refresh.attr,
4280 	NULL
4281 };
4282 
4283 static struct attribute_group rbd_attr_group = {
4284 	.attrs = rbd_attrs,
4285 };
4286 
4287 static const struct attribute_group *rbd_attr_groups[] = {
4288 	&rbd_attr_group,
4289 	NULL
4290 };
4291 
4292 static void rbd_dev_release(struct device *dev);
4293 
4294 static const struct device_type rbd_device_type = {
4295 	.name		= "rbd",
4296 	.groups		= rbd_attr_groups,
4297 	.release	= rbd_dev_release,
4298 };
4299 
4300 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4301 {
4302 	kref_get(&spec->kref);
4303 
4304 	return spec;
4305 }
4306 
4307 static void rbd_spec_free(struct kref *kref);
4308 static void rbd_spec_put(struct rbd_spec *spec)
4309 {
4310 	if (spec)
4311 		kref_put(&spec->kref, rbd_spec_free);
4312 }
4313 
4314 static struct rbd_spec *rbd_spec_alloc(void)
4315 {
4316 	struct rbd_spec *spec;
4317 
4318 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4319 	if (!spec)
4320 		return NULL;
4321 
4322 	spec->pool_id = CEPH_NOPOOL;
4323 	spec->snap_id = CEPH_NOSNAP;
4324 	kref_init(&spec->kref);
4325 
4326 	return spec;
4327 }
4328 
4329 static void rbd_spec_free(struct kref *kref)
4330 {
4331 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4332 
4333 	kfree(spec->pool_name);
4334 	kfree(spec->pool_ns);
4335 	kfree(spec->image_id);
4336 	kfree(spec->image_name);
4337 	kfree(spec->snap_name);
4338 	kfree(spec);
4339 }
4340 
4341 static void rbd_dev_free(struct rbd_device *rbd_dev)
4342 {
4343 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4344 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4345 
4346 	ceph_oid_destroy(&rbd_dev->header_oid);
4347 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4348 	kfree(rbd_dev->config_info);
4349 
4350 	rbd_put_client(rbd_dev->rbd_client);
4351 	rbd_spec_put(rbd_dev->spec);
4352 	kfree(rbd_dev->opts);
4353 	kfree(rbd_dev);
4354 }
4355 
4356 static void rbd_dev_release(struct device *dev)
4357 {
4358 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4359 	bool need_put = !!rbd_dev->opts;
4360 
4361 	if (need_put) {
4362 		destroy_workqueue(rbd_dev->task_wq);
4363 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4364 	}
4365 
4366 	rbd_dev_free(rbd_dev);
4367 
4368 	/*
4369 	 * This is racy, but way better than putting module outside of
4370 	 * the release callback.  The race window is pretty small, so
4371 	 * doing something similar to dm (dm-builtin.c) is overkill.
4372 	 */
4373 	if (need_put)
4374 		module_put(THIS_MODULE);
4375 }
4376 
4377 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4378 					   struct rbd_spec *spec)
4379 {
4380 	struct rbd_device *rbd_dev;
4381 
4382 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4383 	if (!rbd_dev)
4384 		return NULL;
4385 
4386 	spin_lock_init(&rbd_dev->lock);
4387 	INIT_LIST_HEAD(&rbd_dev->node);
4388 	init_rwsem(&rbd_dev->header_rwsem);
4389 
4390 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4391 	ceph_oid_init(&rbd_dev->header_oid);
4392 	rbd_dev->header_oloc.pool = spec->pool_id;
4393 	if (spec->pool_ns) {
4394 		WARN_ON(!*spec->pool_ns);
4395 		rbd_dev->header_oloc.pool_ns =
4396 		    ceph_find_or_create_string(spec->pool_ns,
4397 					       strlen(spec->pool_ns));
4398 	}
4399 
4400 	mutex_init(&rbd_dev->watch_mutex);
4401 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4402 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4403 
4404 	init_rwsem(&rbd_dev->lock_rwsem);
4405 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4406 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4407 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4408 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4409 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4410 	init_waitqueue_head(&rbd_dev->lock_waitq);
4411 
4412 	rbd_dev->dev.bus = &rbd_bus_type;
4413 	rbd_dev->dev.type = &rbd_device_type;
4414 	rbd_dev->dev.parent = &rbd_root_dev;
4415 	device_initialize(&rbd_dev->dev);
4416 
4417 	rbd_dev->rbd_client = rbdc;
4418 	rbd_dev->spec = spec;
4419 
4420 	return rbd_dev;
4421 }
4422 
4423 /*
4424  * Create a mapping rbd_dev.
4425  */
4426 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4427 					 struct rbd_spec *spec,
4428 					 struct rbd_options *opts)
4429 {
4430 	struct rbd_device *rbd_dev;
4431 
4432 	rbd_dev = __rbd_dev_create(rbdc, spec);
4433 	if (!rbd_dev)
4434 		return NULL;
4435 
4436 	rbd_dev->opts = opts;
4437 
4438 	/* get an id and fill in device name */
4439 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4440 					 minor_to_rbd_dev_id(1 << MINORBITS),
4441 					 GFP_KERNEL);
4442 	if (rbd_dev->dev_id < 0)
4443 		goto fail_rbd_dev;
4444 
4445 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4446 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4447 						   rbd_dev->name);
4448 	if (!rbd_dev->task_wq)
4449 		goto fail_dev_id;
4450 
4451 	/* we have a ref from do_rbd_add() */
4452 	__module_get(THIS_MODULE);
4453 
4454 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4455 	return rbd_dev;
4456 
4457 fail_dev_id:
4458 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4459 fail_rbd_dev:
4460 	rbd_dev_free(rbd_dev);
4461 	return NULL;
4462 }
4463 
4464 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4465 {
4466 	if (rbd_dev)
4467 		put_device(&rbd_dev->dev);
4468 }
4469 
4470 /*
4471  * Get the size and object order for an image snapshot, or if
4472  * snap_id is CEPH_NOSNAP, gets this information for the base
4473  * image.
4474  */
4475 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4476 				u8 *order, u64 *snap_size)
4477 {
4478 	__le64 snapid = cpu_to_le64(snap_id);
4479 	int ret;
4480 	struct {
4481 		u8 order;
4482 		__le64 size;
4483 	} __attribute__ ((packed)) size_buf = { 0 };
4484 
4485 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4486 				  &rbd_dev->header_oloc, "get_size",
4487 				  &snapid, sizeof(snapid),
4488 				  &size_buf, sizeof(size_buf));
4489 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4490 	if (ret < 0)
4491 		return ret;
4492 	if (ret < sizeof (size_buf))
4493 		return -ERANGE;
4494 
4495 	if (order) {
4496 		*order = size_buf.order;
4497 		dout("  order %u", (unsigned int)*order);
4498 	}
4499 	*snap_size = le64_to_cpu(size_buf.size);
4500 
4501 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4502 		(unsigned long long)snap_id,
4503 		(unsigned long long)*snap_size);
4504 
4505 	return 0;
4506 }
4507 
4508 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4509 {
4510 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4511 					&rbd_dev->header.obj_order,
4512 					&rbd_dev->header.image_size);
4513 }
4514 
4515 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4516 {
4517 	void *reply_buf;
4518 	int ret;
4519 	void *p;
4520 
4521 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4522 	if (!reply_buf)
4523 		return -ENOMEM;
4524 
4525 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4526 				  &rbd_dev->header_oloc, "get_object_prefix",
4527 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4528 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4529 	if (ret < 0)
4530 		goto out;
4531 
4532 	p = reply_buf;
4533 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4534 						p + ret, NULL, GFP_NOIO);
4535 	ret = 0;
4536 
4537 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4538 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4539 		rbd_dev->header.object_prefix = NULL;
4540 	} else {
4541 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4542 	}
4543 out:
4544 	kfree(reply_buf);
4545 
4546 	return ret;
4547 }
4548 
4549 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4550 		u64 *snap_features)
4551 {
4552 	__le64 snapid = cpu_to_le64(snap_id);
4553 	struct {
4554 		__le64 features;
4555 		__le64 incompat;
4556 	} __attribute__ ((packed)) features_buf = { 0 };
4557 	u64 unsup;
4558 	int ret;
4559 
4560 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4561 				  &rbd_dev->header_oloc, "get_features",
4562 				  &snapid, sizeof(snapid),
4563 				  &features_buf, sizeof(features_buf));
4564 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4565 	if (ret < 0)
4566 		return ret;
4567 	if (ret < sizeof (features_buf))
4568 		return -ERANGE;
4569 
4570 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4571 	if (unsup) {
4572 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4573 			 unsup);
4574 		return -ENXIO;
4575 	}
4576 
4577 	*snap_features = le64_to_cpu(features_buf.features);
4578 
4579 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4580 		(unsigned long long)snap_id,
4581 		(unsigned long long)*snap_features,
4582 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4583 
4584 	return 0;
4585 }
4586 
4587 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4588 {
4589 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4590 						&rbd_dev->header.features);
4591 }
4592 
4593 struct parent_image_info {
4594 	u64		pool_id;
4595 	const char	*pool_ns;
4596 	const char	*image_id;
4597 	u64		snap_id;
4598 
4599 	bool		has_overlap;
4600 	u64		overlap;
4601 };
4602 
4603 /*
4604  * The caller is responsible for @pii.
4605  */
4606 static int decode_parent_image_spec(void **p, void *end,
4607 				    struct parent_image_info *pii)
4608 {
4609 	u8 struct_v;
4610 	u32 struct_len;
4611 	int ret;
4612 
4613 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4614 				  &struct_v, &struct_len);
4615 	if (ret)
4616 		return ret;
4617 
4618 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4619 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4620 	if (IS_ERR(pii->pool_ns)) {
4621 		ret = PTR_ERR(pii->pool_ns);
4622 		pii->pool_ns = NULL;
4623 		return ret;
4624 	}
4625 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4626 	if (IS_ERR(pii->image_id)) {
4627 		ret = PTR_ERR(pii->image_id);
4628 		pii->image_id = NULL;
4629 		return ret;
4630 	}
4631 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4632 	return 0;
4633 
4634 e_inval:
4635 	return -EINVAL;
4636 }
4637 
4638 static int __get_parent_info(struct rbd_device *rbd_dev,
4639 			     struct page *req_page,
4640 			     struct page *reply_page,
4641 			     struct parent_image_info *pii)
4642 {
4643 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4644 	size_t reply_len = PAGE_SIZE;
4645 	void *p, *end;
4646 	int ret;
4647 
4648 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4649 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4650 			     req_page, sizeof(u64), reply_page, &reply_len);
4651 	if (ret)
4652 		return ret == -EOPNOTSUPP ? 1 : ret;
4653 
4654 	p = page_address(reply_page);
4655 	end = p + reply_len;
4656 	ret = decode_parent_image_spec(&p, end, pii);
4657 	if (ret)
4658 		return ret;
4659 
4660 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4661 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4662 			     req_page, sizeof(u64), reply_page, &reply_len);
4663 	if (ret)
4664 		return ret;
4665 
4666 	p = page_address(reply_page);
4667 	end = p + reply_len;
4668 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4669 	if (pii->has_overlap)
4670 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4671 
4672 	return 0;
4673 
4674 e_inval:
4675 	return -EINVAL;
4676 }
4677 
4678 /*
4679  * The caller is responsible for @pii.
4680  */
4681 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4682 				    struct page *req_page,
4683 				    struct page *reply_page,
4684 				    struct parent_image_info *pii)
4685 {
4686 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4687 	size_t reply_len = PAGE_SIZE;
4688 	void *p, *end;
4689 	int ret;
4690 
4691 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4692 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4693 			     req_page, sizeof(u64), reply_page, &reply_len);
4694 	if (ret)
4695 		return ret;
4696 
4697 	p = page_address(reply_page);
4698 	end = p + reply_len;
4699 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4700 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4701 	if (IS_ERR(pii->image_id)) {
4702 		ret = PTR_ERR(pii->image_id);
4703 		pii->image_id = NULL;
4704 		return ret;
4705 	}
4706 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4707 	pii->has_overlap = true;
4708 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4709 
4710 	return 0;
4711 
4712 e_inval:
4713 	return -EINVAL;
4714 }
4715 
4716 static int get_parent_info(struct rbd_device *rbd_dev,
4717 			   struct parent_image_info *pii)
4718 {
4719 	struct page *req_page, *reply_page;
4720 	void *p;
4721 	int ret;
4722 
4723 	req_page = alloc_page(GFP_KERNEL);
4724 	if (!req_page)
4725 		return -ENOMEM;
4726 
4727 	reply_page = alloc_page(GFP_KERNEL);
4728 	if (!reply_page) {
4729 		__free_page(req_page);
4730 		return -ENOMEM;
4731 	}
4732 
4733 	p = page_address(req_page);
4734 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
4735 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4736 	if (ret > 0)
4737 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4738 					       pii);
4739 
4740 	__free_page(req_page);
4741 	__free_page(reply_page);
4742 	return ret;
4743 }
4744 
4745 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4746 {
4747 	struct rbd_spec *parent_spec;
4748 	struct parent_image_info pii = { 0 };
4749 	int ret;
4750 
4751 	parent_spec = rbd_spec_alloc();
4752 	if (!parent_spec)
4753 		return -ENOMEM;
4754 
4755 	ret = get_parent_info(rbd_dev, &pii);
4756 	if (ret)
4757 		goto out_err;
4758 
4759 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4760 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4761 	     pii.has_overlap, pii.overlap);
4762 
4763 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4764 		/*
4765 		 * Either the parent never existed, or we have
4766 		 * record of it but the image got flattened so it no
4767 		 * longer has a parent.  When the parent of a
4768 		 * layered image disappears we immediately set the
4769 		 * overlap to 0.  The effect of this is that all new
4770 		 * requests will be treated as if the image had no
4771 		 * parent.
4772 		 *
4773 		 * If !pii.has_overlap, the parent image spec is not
4774 		 * applicable.  It's there to avoid duplication in each
4775 		 * snapshot record.
4776 		 */
4777 		if (rbd_dev->parent_overlap) {
4778 			rbd_dev->parent_overlap = 0;
4779 			rbd_dev_parent_put(rbd_dev);
4780 			pr_info("%s: clone image has been flattened\n",
4781 				rbd_dev->disk->disk_name);
4782 		}
4783 
4784 		goto out;	/* No parent?  No problem. */
4785 	}
4786 
4787 	/* The ceph file layout needs to fit pool id in 32 bits */
4788 
4789 	ret = -EIO;
4790 	if (pii.pool_id > (u64)U32_MAX) {
4791 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4792 			(unsigned long long)pii.pool_id, U32_MAX);
4793 		goto out_err;
4794 	}
4795 
4796 	/*
4797 	 * The parent won't change (except when the clone is
4798 	 * flattened, already handled that).  So we only need to
4799 	 * record the parent spec we have not already done so.
4800 	 */
4801 	if (!rbd_dev->parent_spec) {
4802 		parent_spec->pool_id = pii.pool_id;
4803 		if (pii.pool_ns && *pii.pool_ns) {
4804 			parent_spec->pool_ns = pii.pool_ns;
4805 			pii.pool_ns = NULL;
4806 		}
4807 		parent_spec->image_id = pii.image_id;
4808 		pii.image_id = NULL;
4809 		parent_spec->snap_id = pii.snap_id;
4810 
4811 		rbd_dev->parent_spec = parent_spec;
4812 		parent_spec = NULL;	/* rbd_dev now owns this */
4813 	}
4814 
4815 	/*
4816 	 * We always update the parent overlap.  If it's zero we issue
4817 	 * a warning, as we will proceed as if there was no parent.
4818 	 */
4819 	if (!pii.overlap) {
4820 		if (parent_spec) {
4821 			/* refresh, careful to warn just once */
4822 			if (rbd_dev->parent_overlap)
4823 				rbd_warn(rbd_dev,
4824 				    "clone now standalone (overlap became 0)");
4825 		} else {
4826 			/* initial probe */
4827 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4828 		}
4829 	}
4830 	rbd_dev->parent_overlap = pii.overlap;
4831 
4832 out:
4833 	ret = 0;
4834 out_err:
4835 	kfree(pii.pool_ns);
4836 	kfree(pii.image_id);
4837 	rbd_spec_put(parent_spec);
4838 	return ret;
4839 }
4840 
4841 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4842 {
4843 	struct {
4844 		__le64 stripe_unit;
4845 		__le64 stripe_count;
4846 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4847 	size_t size = sizeof (striping_info_buf);
4848 	void *p;
4849 	int ret;
4850 
4851 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4852 				&rbd_dev->header_oloc, "get_stripe_unit_count",
4853 				NULL, 0, &striping_info_buf, size);
4854 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4855 	if (ret < 0)
4856 		return ret;
4857 	if (ret < size)
4858 		return -ERANGE;
4859 
4860 	p = &striping_info_buf;
4861 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4862 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
4863 	return 0;
4864 }
4865 
4866 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4867 {
4868 	__le64 data_pool_id;
4869 	int ret;
4870 
4871 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4872 				  &rbd_dev->header_oloc, "get_data_pool",
4873 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
4874 	if (ret < 0)
4875 		return ret;
4876 	if (ret < sizeof(data_pool_id))
4877 		return -EBADMSG;
4878 
4879 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4880 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4881 	return 0;
4882 }
4883 
4884 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4885 {
4886 	CEPH_DEFINE_OID_ONSTACK(oid);
4887 	size_t image_id_size;
4888 	char *image_id;
4889 	void *p;
4890 	void *end;
4891 	size_t size;
4892 	void *reply_buf = NULL;
4893 	size_t len = 0;
4894 	char *image_name = NULL;
4895 	int ret;
4896 
4897 	rbd_assert(!rbd_dev->spec->image_name);
4898 
4899 	len = strlen(rbd_dev->spec->image_id);
4900 	image_id_size = sizeof (__le32) + len;
4901 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4902 	if (!image_id)
4903 		return NULL;
4904 
4905 	p = image_id;
4906 	end = image_id + image_id_size;
4907 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4908 
4909 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4910 	reply_buf = kmalloc(size, GFP_KERNEL);
4911 	if (!reply_buf)
4912 		goto out;
4913 
4914 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4915 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4916 				  "dir_get_name", image_id, image_id_size,
4917 				  reply_buf, size);
4918 	if (ret < 0)
4919 		goto out;
4920 	p = reply_buf;
4921 	end = reply_buf + ret;
4922 
4923 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4924 	if (IS_ERR(image_name))
4925 		image_name = NULL;
4926 	else
4927 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4928 out:
4929 	kfree(reply_buf);
4930 	kfree(image_id);
4931 
4932 	return image_name;
4933 }
4934 
4935 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4936 {
4937 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4938 	const char *snap_name;
4939 	u32 which = 0;
4940 
4941 	/* Skip over names until we find the one we are looking for */
4942 
4943 	snap_name = rbd_dev->header.snap_names;
4944 	while (which < snapc->num_snaps) {
4945 		if (!strcmp(name, snap_name))
4946 			return snapc->snaps[which];
4947 		snap_name += strlen(snap_name) + 1;
4948 		which++;
4949 	}
4950 	return CEPH_NOSNAP;
4951 }
4952 
4953 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4954 {
4955 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4956 	u32 which;
4957 	bool found = false;
4958 	u64 snap_id;
4959 
4960 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4961 		const char *snap_name;
4962 
4963 		snap_id = snapc->snaps[which];
4964 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4965 		if (IS_ERR(snap_name)) {
4966 			/* ignore no-longer existing snapshots */
4967 			if (PTR_ERR(snap_name) == -ENOENT)
4968 				continue;
4969 			else
4970 				break;
4971 		}
4972 		found = !strcmp(name, snap_name);
4973 		kfree(snap_name);
4974 	}
4975 	return found ? snap_id : CEPH_NOSNAP;
4976 }
4977 
4978 /*
4979  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4980  * no snapshot by that name is found, or if an error occurs.
4981  */
4982 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4983 {
4984 	if (rbd_dev->image_format == 1)
4985 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4986 
4987 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4988 }
4989 
4990 /*
4991  * An image being mapped will have everything but the snap id.
4992  */
4993 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4994 {
4995 	struct rbd_spec *spec = rbd_dev->spec;
4996 
4997 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4998 	rbd_assert(spec->image_id && spec->image_name);
4999 	rbd_assert(spec->snap_name);
5000 
5001 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5002 		u64 snap_id;
5003 
5004 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5005 		if (snap_id == CEPH_NOSNAP)
5006 			return -ENOENT;
5007 
5008 		spec->snap_id = snap_id;
5009 	} else {
5010 		spec->snap_id = CEPH_NOSNAP;
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 /*
5017  * A parent image will have all ids but none of the names.
5018  *
5019  * All names in an rbd spec are dynamically allocated.  It's OK if we
5020  * can't figure out the name for an image id.
5021  */
5022 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5023 {
5024 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5025 	struct rbd_spec *spec = rbd_dev->spec;
5026 	const char *pool_name;
5027 	const char *image_name;
5028 	const char *snap_name;
5029 	int ret;
5030 
5031 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5032 	rbd_assert(spec->image_id);
5033 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5034 
5035 	/* Get the pool name; we have to make our own copy of this */
5036 
5037 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5038 	if (!pool_name) {
5039 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5040 		return -EIO;
5041 	}
5042 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5043 	if (!pool_name)
5044 		return -ENOMEM;
5045 
5046 	/* Fetch the image name; tolerate failure here */
5047 
5048 	image_name = rbd_dev_image_name(rbd_dev);
5049 	if (!image_name)
5050 		rbd_warn(rbd_dev, "unable to get image name");
5051 
5052 	/* Fetch the snapshot name */
5053 
5054 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5055 	if (IS_ERR(snap_name)) {
5056 		ret = PTR_ERR(snap_name);
5057 		goto out_err;
5058 	}
5059 
5060 	spec->pool_name = pool_name;
5061 	spec->image_name = image_name;
5062 	spec->snap_name = snap_name;
5063 
5064 	return 0;
5065 
5066 out_err:
5067 	kfree(image_name);
5068 	kfree(pool_name);
5069 	return ret;
5070 }
5071 
5072 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5073 {
5074 	size_t size;
5075 	int ret;
5076 	void *reply_buf;
5077 	void *p;
5078 	void *end;
5079 	u64 seq;
5080 	u32 snap_count;
5081 	struct ceph_snap_context *snapc;
5082 	u32 i;
5083 
5084 	/*
5085 	 * We'll need room for the seq value (maximum snapshot id),
5086 	 * snapshot count, and array of that many snapshot ids.
5087 	 * For now we have a fixed upper limit on the number we're
5088 	 * prepared to receive.
5089 	 */
5090 	size = sizeof (__le64) + sizeof (__le32) +
5091 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5092 	reply_buf = kzalloc(size, GFP_KERNEL);
5093 	if (!reply_buf)
5094 		return -ENOMEM;
5095 
5096 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5097 				  &rbd_dev->header_oloc, "get_snapcontext",
5098 				  NULL, 0, reply_buf, size);
5099 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5100 	if (ret < 0)
5101 		goto out;
5102 
5103 	p = reply_buf;
5104 	end = reply_buf + ret;
5105 	ret = -ERANGE;
5106 	ceph_decode_64_safe(&p, end, seq, out);
5107 	ceph_decode_32_safe(&p, end, snap_count, out);
5108 
5109 	/*
5110 	 * Make sure the reported number of snapshot ids wouldn't go
5111 	 * beyond the end of our buffer.  But before checking that,
5112 	 * make sure the computed size of the snapshot context we
5113 	 * allocate is representable in a size_t.
5114 	 */
5115 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5116 				 / sizeof (u64)) {
5117 		ret = -EINVAL;
5118 		goto out;
5119 	}
5120 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5121 		goto out;
5122 	ret = 0;
5123 
5124 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5125 	if (!snapc) {
5126 		ret = -ENOMEM;
5127 		goto out;
5128 	}
5129 	snapc->seq = seq;
5130 	for (i = 0; i < snap_count; i++)
5131 		snapc->snaps[i] = ceph_decode_64(&p);
5132 
5133 	ceph_put_snap_context(rbd_dev->header.snapc);
5134 	rbd_dev->header.snapc = snapc;
5135 
5136 	dout("  snap context seq = %llu, snap_count = %u\n",
5137 		(unsigned long long)seq, (unsigned int)snap_count);
5138 out:
5139 	kfree(reply_buf);
5140 
5141 	return ret;
5142 }
5143 
5144 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5145 					u64 snap_id)
5146 {
5147 	size_t size;
5148 	void *reply_buf;
5149 	__le64 snapid;
5150 	int ret;
5151 	void *p;
5152 	void *end;
5153 	char *snap_name;
5154 
5155 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5156 	reply_buf = kmalloc(size, GFP_KERNEL);
5157 	if (!reply_buf)
5158 		return ERR_PTR(-ENOMEM);
5159 
5160 	snapid = cpu_to_le64(snap_id);
5161 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5162 				  &rbd_dev->header_oloc, "get_snapshot_name",
5163 				  &snapid, sizeof(snapid), reply_buf, size);
5164 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5165 	if (ret < 0) {
5166 		snap_name = ERR_PTR(ret);
5167 		goto out;
5168 	}
5169 
5170 	p = reply_buf;
5171 	end = reply_buf + ret;
5172 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5173 	if (IS_ERR(snap_name))
5174 		goto out;
5175 
5176 	dout("  snap_id 0x%016llx snap_name = %s\n",
5177 		(unsigned long long)snap_id, snap_name);
5178 out:
5179 	kfree(reply_buf);
5180 
5181 	return snap_name;
5182 }
5183 
5184 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5185 {
5186 	bool first_time = rbd_dev->header.object_prefix == NULL;
5187 	int ret;
5188 
5189 	ret = rbd_dev_v2_image_size(rbd_dev);
5190 	if (ret)
5191 		return ret;
5192 
5193 	if (first_time) {
5194 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5195 		if (ret)
5196 			return ret;
5197 	}
5198 
5199 	ret = rbd_dev_v2_snap_context(rbd_dev);
5200 	if (ret && first_time) {
5201 		kfree(rbd_dev->header.object_prefix);
5202 		rbd_dev->header.object_prefix = NULL;
5203 	}
5204 
5205 	return ret;
5206 }
5207 
5208 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5209 {
5210 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5211 
5212 	if (rbd_dev->image_format == 1)
5213 		return rbd_dev_v1_header_info(rbd_dev);
5214 
5215 	return rbd_dev_v2_header_info(rbd_dev);
5216 }
5217 
5218 /*
5219  * Skips over white space at *buf, and updates *buf to point to the
5220  * first found non-space character (if any). Returns the length of
5221  * the token (string of non-white space characters) found.  Note
5222  * that *buf must be terminated with '\0'.
5223  */
5224 static inline size_t next_token(const char **buf)
5225 {
5226         /*
5227         * These are the characters that produce nonzero for
5228         * isspace() in the "C" and "POSIX" locales.
5229         */
5230         const char *spaces = " \f\n\r\t\v";
5231 
5232         *buf += strspn(*buf, spaces);	/* Find start of token */
5233 
5234 	return strcspn(*buf, spaces);   /* Return token length */
5235 }
5236 
5237 /*
5238  * Finds the next token in *buf, dynamically allocates a buffer big
5239  * enough to hold a copy of it, and copies the token into the new
5240  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5241  * that a duplicate buffer is created even for a zero-length token.
5242  *
5243  * Returns a pointer to the newly-allocated duplicate, or a null
5244  * pointer if memory for the duplicate was not available.  If
5245  * the lenp argument is a non-null pointer, the length of the token
5246  * (not including the '\0') is returned in *lenp.
5247  *
5248  * If successful, the *buf pointer will be updated to point beyond
5249  * the end of the found token.
5250  *
5251  * Note: uses GFP_KERNEL for allocation.
5252  */
5253 static inline char *dup_token(const char **buf, size_t *lenp)
5254 {
5255 	char *dup;
5256 	size_t len;
5257 
5258 	len = next_token(buf);
5259 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5260 	if (!dup)
5261 		return NULL;
5262 	*(dup + len) = '\0';
5263 	*buf += len;
5264 
5265 	if (lenp)
5266 		*lenp = len;
5267 
5268 	return dup;
5269 }
5270 
5271 /*
5272  * Parse the options provided for an "rbd add" (i.e., rbd image
5273  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5274  * and the data written is passed here via a NUL-terminated buffer.
5275  * Returns 0 if successful or an error code otherwise.
5276  *
5277  * The information extracted from these options is recorded in
5278  * the other parameters which return dynamically-allocated
5279  * structures:
5280  *  ceph_opts
5281  *      The address of a pointer that will refer to a ceph options
5282  *      structure.  Caller must release the returned pointer using
5283  *      ceph_destroy_options() when it is no longer needed.
5284  *  rbd_opts
5285  *	Address of an rbd options pointer.  Fully initialized by
5286  *	this function; caller must release with kfree().
5287  *  spec
5288  *	Address of an rbd image specification pointer.  Fully
5289  *	initialized by this function based on parsed options.
5290  *	Caller must release with rbd_spec_put().
5291  *
5292  * The options passed take this form:
5293  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5294  * where:
5295  *  <mon_addrs>
5296  *      A comma-separated list of one or more monitor addresses.
5297  *      A monitor address is an ip address, optionally followed
5298  *      by a port number (separated by a colon).
5299  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5300  *  <options>
5301  *      A comma-separated list of ceph and/or rbd options.
5302  *  <pool_name>
5303  *      The name of the rados pool containing the rbd image.
5304  *  <image_name>
5305  *      The name of the image in that pool to map.
5306  *  <snap_id>
5307  *      An optional snapshot id.  If provided, the mapping will
5308  *      present data from the image at the time that snapshot was
5309  *      created.  The image head is used if no snapshot id is
5310  *      provided.  Snapshot mappings are always read-only.
5311  */
5312 static int rbd_add_parse_args(const char *buf,
5313 				struct ceph_options **ceph_opts,
5314 				struct rbd_options **opts,
5315 				struct rbd_spec **rbd_spec)
5316 {
5317 	size_t len;
5318 	char *options;
5319 	const char *mon_addrs;
5320 	char *snap_name;
5321 	size_t mon_addrs_size;
5322 	struct parse_rbd_opts_ctx pctx = { 0 };
5323 	struct ceph_options *copts;
5324 	int ret;
5325 
5326 	/* The first four tokens are required */
5327 
5328 	len = next_token(&buf);
5329 	if (!len) {
5330 		rbd_warn(NULL, "no monitor address(es) provided");
5331 		return -EINVAL;
5332 	}
5333 	mon_addrs = buf;
5334 	mon_addrs_size = len + 1;
5335 	buf += len;
5336 
5337 	ret = -EINVAL;
5338 	options = dup_token(&buf, NULL);
5339 	if (!options)
5340 		return -ENOMEM;
5341 	if (!*options) {
5342 		rbd_warn(NULL, "no options provided");
5343 		goto out_err;
5344 	}
5345 
5346 	pctx.spec = rbd_spec_alloc();
5347 	if (!pctx.spec)
5348 		goto out_mem;
5349 
5350 	pctx.spec->pool_name = dup_token(&buf, NULL);
5351 	if (!pctx.spec->pool_name)
5352 		goto out_mem;
5353 	if (!*pctx.spec->pool_name) {
5354 		rbd_warn(NULL, "no pool name provided");
5355 		goto out_err;
5356 	}
5357 
5358 	pctx.spec->image_name = dup_token(&buf, NULL);
5359 	if (!pctx.spec->image_name)
5360 		goto out_mem;
5361 	if (!*pctx.spec->image_name) {
5362 		rbd_warn(NULL, "no image name provided");
5363 		goto out_err;
5364 	}
5365 
5366 	/*
5367 	 * Snapshot name is optional; default is to use "-"
5368 	 * (indicating the head/no snapshot).
5369 	 */
5370 	len = next_token(&buf);
5371 	if (!len) {
5372 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5373 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5374 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5375 		ret = -ENAMETOOLONG;
5376 		goto out_err;
5377 	}
5378 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5379 	if (!snap_name)
5380 		goto out_mem;
5381 	*(snap_name + len) = '\0';
5382 	pctx.spec->snap_name = snap_name;
5383 
5384 	/* Initialize all rbd options to the defaults */
5385 
5386 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5387 	if (!pctx.opts)
5388 		goto out_mem;
5389 
5390 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5391 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5392 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5393 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5394 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5395 	pctx.opts->trim = RBD_TRIM_DEFAULT;
5396 
5397 	copts = ceph_parse_options(options, mon_addrs,
5398 				   mon_addrs + mon_addrs_size - 1,
5399 				   parse_rbd_opts_token, &pctx);
5400 	if (IS_ERR(copts)) {
5401 		ret = PTR_ERR(copts);
5402 		goto out_err;
5403 	}
5404 	kfree(options);
5405 
5406 	*ceph_opts = copts;
5407 	*opts = pctx.opts;
5408 	*rbd_spec = pctx.spec;
5409 
5410 	return 0;
5411 out_mem:
5412 	ret = -ENOMEM;
5413 out_err:
5414 	kfree(pctx.opts);
5415 	rbd_spec_put(pctx.spec);
5416 	kfree(options);
5417 
5418 	return ret;
5419 }
5420 
5421 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5422 {
5423 	down_write(&rbd_dev->lock_rwsem);
5424 	if (__rbd_is_lock_owner(rbd_dev))
5425 		rbd_unlock(rbd_dev);
5426 	up_write(&rbd_dev->lock_rwsem);
5427 }
5428 
5429 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5430 {
5431 	int ret;
5432 
5433 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5434 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5435 		return -EINVAL;
5436 	}
5437 
5438 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5439 	down_read(&rbd_dev->lock_rwsem);
5440 	ret = rbd_wait_state_locked(rbd_dev, true);
5441 	up_read(&rbd_dev->lock_rwsem);
5442 	if (ret) {
5443 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5444 		return -EROFS;
5445 	}
5446 
5447 	return 0;
5448 }
5449 
5450 /*
5451  * An rbd format 2 image has a unique identifier, distinct from the
5452  * name given to it by the user.  Internally, that identifier is
5453  * what's used to specify the names of objects related to the image.
5454  *
5455  * A special "rbd id" object is used to map an rbd image name to its
5456  * id.  If that object doesn't exist, then there is no v2 rbd image
5457  * with the supplied name.
5458  *
5459  * This function will record the given rbd_dev's image_id field if
5460  * it can be determined, and in that case will return 0.  If any
5461  * errors occur a negative errno will be returned and the rbd_dev's
5462  * image_id field will be unchanged (and should be NULL).
5463  */
5464 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5465 {
5466 	int ret;
5467 	size_t size;
5468 	CEPH_DEFINE_OID_ONSTACK(oid);
5469 	void *response;
5470 	char *image_id;
5471 
5472 	/*
5473 	 * When probing a parent image, the image id is already
5474 	 * known (and the image name likely is not).  There's no
5475 	 * need to fetch the image id again in this case.  We
5476 	 * do still need to set the image format though.
5477 	 */
5478 	if (rbd_dev->spec->image_id) {
5479 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5480 
5481 		return 0;
5482 	}
5483 
5484 	/*
5485 	 * First, see if the format 2 image id file exists, and if
5486 	 * so, get the image's persistent id from it.
5487 	 */
5488 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5489 			       rbd_dev->spec->image_name);
5490 	if (ret)
5491 		return ret;
5492 
5493 	dout("rbd id object name is %s\n", oid.name);
5494 
5495 	/* Response will be an encoded string, which includes a length */
5496 
5497 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5498 	response = kzalloc(size, GFP_NOIO);
5499 	if (!response) {
5500 		ret = -ENOMEM;
5501 		goto out;
5502 	}
5503 
5504 	/* If it doesn't exist we'll assume it's a format 1 image */
5505 
5506 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5507 				  "get_id", NULL, 0,
5508 				  response, RBD_IMAGE_ID_LEN_MAX);
5509 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5510 	if (ret == -ENOENT) {
5511 		image_id = kstrdup("", GFP_KERNEL);
5512 		ret = image_id ? 0 : -ENOMEM;
5513 		if (!ret)
5514 			rbd_dev->image_format = 1;
5515 	} else if (ret >= 0) {
5516 		void *p = response;
5517 
5518 		image_id = ceph_extract_encoded_string(&p, p + ret,
5519 						NULL, GFP_NOIO);
5520 		ret = PTR_ERR_OR_ZERO(image_id);
5521 		if (!ret)
5522 			rbd_dev->image_format = 2;
5523 	}
5524 
5525 	if (!ret) {
5526 		rbd_dev->spec->image_id = image_id;
5527 		dout("image_id is %s\n", image_id);
5528 	}
5529 out:
5530 	kfree(response);
5531 	ceph_oid_destroy(&oid);
5532 	return ret;
5533 }
5534 
5535 /*
5536  * Undo whatever state changes are made by v1 or v2 header info
5537  * call.
5538  */
5539 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5540 {
5541 	struct rbd_image_header	*header;
5542 
5543 	rbd_dev_parent_put(rbd_dev);
5544 
5545 	/* Free dynamic fields from the header, then zero it out */
5546 
5547 	header = &rbd_dev->header;
5548 	ceph_put_snap_context(header->snapc);
5549 	kfree(header->snap_sizes);
5550 	kfree(header->snap_names);
5551 	kfree(header->object_prefix);
5552 	memset(header, 0, sizeof (*header));
5553 }
5554 
5555 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5556 {
5557 	int ret;
5558 
5559 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5560 	if (ret)
5561 		goto out_err;
5562 
5563 	/*
5564 	 * Get the and check features for the image.  Currently the
5565 	 * features are assumed to never change.
5566 	 */
5567 	ret = rbd_dev_v2_features(rbd_dev);
5568 	if (ret)
5569 		goto out_err;
5570 
5571 	/* If the image supports fancy striping, get its parameters */
5572 
5573 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5574 		ret = rbd_dev_v2_striping_info(rbd_dev);
5575 		if (ret < 0)
5576 			goto out_err;
5577 	}
5578 
5579 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5580 		ret = rbd_dev_v2_data_pool(rbd_dev);
5581 		if (ret)
5582 			goto out_err;
5583 	}
5584 
5585 	rbd_init_layout(rbd_dev);
5586 	return 0;
5587 
5588 out_err:
5589 	rbd_dev->header.features = 0;
5590 	kfree(rbd_dev->header.object_prefix);
5591 	rbd_dev->header.object_prefix = NULL;
5592 	return ret;
5593 }
5594 
5595 /*
5596  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5597  * rbd_dev_image_probe() recursion depth, which means it's also the
5598  * length of the already discovered part of the parent chain.
5599  */
5600 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5601 {
5602 	struct rbd_device *parent = NULL;
5603 	int ret;
5604 
5605 	if (!rbd_dev->parent_spec)
5606 		return 0;
5607 
5608 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5609 		pr_info("parent chain is too long (%d)\n", depth);
5610 		ret = -EINVAL;
5611 		goto out_err;
5612 	}
5613 
5614 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5615 	if (!parent) {
5616 		ret = -ENOMEM;
5617 		goto out_err;
5618 	}
5619 
5620 	/*
5621 	 * Images related by parent/child relationships always share
5622 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5623 	 */
5624 	__rbd_get_client(rbd_dev->rbd_client);
5625 	rbd_spec_get(rbd_dev->parent_spec);
5626 
5627 	ret = rbd_dev_image_probe(parent, depth);
5628 	if (ret < 0)
5629 		goto out_err;
5630 
5631 	rbd_dev->parent = parent;
5632 	atomic_set(&rbd_dev->parent_ref, 1);
5633 	return 0;
5634 
5635 out_err:
5636 	rbd_dev_unparent(rbd_dev);
5637 	rbd_dev_destroy(parent);
5638 	return ret;
5639 }
5640 
5641 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5642 {
5643 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5644 	rbd_dev_mapping_clear(rbd_dev);
5645 	rbd_free_disk(rbd_dev);
5646 	if (!single_major)
5647 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5648 }
5649 
5650 /*
5651  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5652  * upon return.
5653  */
5654 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5655 {
5656 	int ret;
5657 
5658 	/* Record our major and minor device numbers. */
5659 
5660 	if (!single_major) {
5661 		ret = register_blkdev(0, rbd_dev->name);
5662 		if (ret < 0)
5663 			goto err_out_unlock;
5664 
5665 		rbd_dev->major = ret;
5666 		rbd_dev->minor = 0;
5667 	} else {
5668 		rbd_dev->major = rbd_major;
5669 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5670 	}
5671 
5672 	/* Set up the blkdev mapping. */
5673 
5674 	ret = rbd_init_disk(rbd_dev);
5675 	if (ret)
5676 		goto err_out_blkdev;
5677 
5678 	ret = rbd_dev_mapping_set(rbd_dev);
5679 	if (ret)
5680 		goto err_out_disk;
5681 
5682 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5683 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5684 
5685 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5686 	if (ret)
5687 		goto err_out_mapping;
5688 
5689 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5690 	up_write(&rbd_dev->header_rwsem);
5691 	return 0;
5692 
5693 err_out_mapping:
5694 	rbd_dev_mapping_clear(rbd_dev);
5695 err_out_disk:
5696 	rbd_free_disk(rbd_dev);
5697 err_out_blkdev:
5698 	if (!single_major)
5699 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5700 err_out_unlock:
5701 	up_write(&rbd_dev->header_rwsem);
5702 	return ret;
5703 }
5704 
5705 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5706 {
5707 	struct rbd_spec *spec = rbd_dev->spec;
5708 	int ret;
5709 
5710 	/* Record the header object name for this rbd image. */
5711 
5712 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5713 	if (rbd_dev->image_format == 1)
5714 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5715 				       spec->image_name, RBD_SUFFIX);
5716 	else
5717 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5718 				       RBD_HEADER_PREFIX, spec->image_id);
5719 
5720 	return ret;
5721 }
5722 
5723 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5724 {
5725 	rbd_dev_unprobe(rbd_dev);
5726 	if (rbd_dev->opts)
5727 		rbd_unregister_watch(rbd_dev);
5728 	rbd_dev->image_format = 0;
5729 	kfree(rbd_dev->spec->image_id);
5730 	rbd_dev->spec->image_id = NULL;
5731 }
5732 
5733 /*
5734  * Probe for the existence of the header object for the given rbd
5735  * device.  If this image is the one being mapped (i.e., not a
5736  * parent), initiate a watch on its header object before using that
5737  * object to get detailed information about the rbd image.
5738  */
5739 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5740 {
5741 	int ret;
5742 
5743 	/*
5744 	 * Get the id from the image id object.  Unless there's an
5745 	 * error, rbd_dev->spec->image_id will be filled in with
5746 	 * a dynamically-allocated string, and rbd_dev->image_format
5747 	 * will be set to either 1 or 2.
5748 	 */
5749 	ret = rbd_dev_image_id(rbd_dev);
5750 	if (ret)
5751 		return ret;
5752 
5753 	ret = rbd_dev_header_name(rbd_dev);
5754 	if (ret)
5755 		goto err_out_format;
5756 
5757 	if (!depth) {
5758 		ret = rbd_register_watch(rbd_dev);
5759 		if (ret) {
5760 			if (ret == -ENOENT)
5761 				pr_info("image %s/%s%s%s does not exist\n",
5762 					rbd_dev->spec->pool_name,
5763 					rbd_dev->spec->pool_ns ?: "",
5764 					rbd_dev->spec->pool_ns ? "/" : "",
5765 					rbd_dev->spec->image_name);
5766 			goto err_out_format;
5767 		}
5768 	}
5769 
5770 	ret = rbd_dev_header_info(rbd_dev);
5771 	if (ret)
5772 		goto err_out_watch;
5773 
5774 	/*
5775 	 * If this image is the one being mapped, we have pool name and
5776 	 * id, image name and id, and snap name - need to fill snap id.
5777 	 * Otherwise this is a parent image, identified by pool, image
5778 	 * and snap ids - need to fill in names for those ids.
5779 	 */
5780 	if (!depth)
5781 		ret = rbd_spec_fill_snap_id(rbd_dev);
5782 	else
5783 		ret = rbd_spec_fill_names(rbd_dev);
5784 	if (ret) {
5785 		if (ret == -ENOENT)
5786 			pr_info("snap %s/%s%s%s@%s does not exist\n",
5787 				rbd_dev->spec->pool_name,
5788 				rbd_dev->spec->pool_ns ?: "",
5789 				rbd_dev->spec->pool_ns ? "/" : "",
5790 				rbd_dev->spec->image_name,
5791 				rbd_dev->spec->snap_name);
5792 		goto err_out_probe;
5793 	}
5794 
5795 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5796 		ret = rbd_dev_v2_parent_info(rbd_dev);
5797 		if (ret)
5798 			goto err_out_probe;
5799 
5800 		/*
5801 		 * Need to warn users if this image is the one being
5802 		 * mapped and has a parent.
5803 		 */
5804 		if (!depth && rbd_dev->parent_spec)
5805 			rbd_warn(rbd_dev,
5806 				 "WARNING: kernel layering is EXPERIMENTAL!");
5807 	}
5808 
5809 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5810 	if (ret)
5811 		goto err_out_probe;
5812 
5813 	dout("discovered format %u image, header name is %s\n",
5814 		rbd_dev->image_format, rbd_dev->header_oid.name);
5815 	return 0;
5816 
5817 err_out_probe:
5818 	rbd_dev_unprobe(rbd_dev);
5819 err_out_watch:
5820 	if (!depth)
5821 		rbd_unregister_watch(rbd_dev);
5822 err_out_format:
5823 	rbd_dev->image_format = 0;
5824 	kfree(rbd_dev->spec->image_id);
5825 	rbd_dev->spec->image_id = NULL;
5826 	return ret;
5827 }
5828 
5829 static ssize_t do_rbd_add(struct bus_type *bus,
5830 			  const char *buf,
5831 			  size_t count)
5832 {
5833 	struct rbd_device *rbd_dev = NULL;
5834 	struct ceph_options *ceph_opts = NULL;
5835 	struct rbd_options *rbd_opts = NULL;
5836 	struct rbd_spec *spec = NULL;
5837 	struct rbd_client *rbdc;
5838 	int rc;
5839 
5840 	if (!try_module_get(THIS_MODULE))
5841 		return -ENODEV;
5842 
5843 	/* parse add command */
5844 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5845 	if (rc < 0)
5846 		goto out;
5847 
5848 	rbdc = rbd_get_client(ceph_opts);
5849 	if (IS_ERR(rbdc)) {
5850 		rc = PTR_ERR(rbdc);
5851 		goto err_out_args;
5852 	}
5853 
5854 	/* pick the pool */
5855 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5856 	if (rc < 0) {
5857 		if (rc == -ENOENT)
5858 			pr_info("pool %s does not exist\n", spec->pool_name);
5859 		goto err_out_client;
5860 	}
5861 	spec->pool_id = (u64)rc;
5862 
5863 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5864 	if (!rbd_dev) {
5865 		rc = -ENOMEM;
5866 		goto err_out_client;
5867 	}
5868 	rbdc = NULL;		/* rbd_dev now owns this */
5869 	spec = NULL;		/* rbd_dev now owns this */
5870 	rbd_opts = NULL;	/* rbd_dev now owns this */
5871 
5872 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5873 	if (!rbd_dev->config_info) {
5874 		rc = -ENOMEM;
5875 		goto err_out_rbd_dev;
5876 	}
5877 
5878 	down_write(&rbd_dev->header_rwsem);
5879 	rc = rbd_dev_image_probe(rbd_dev, 0);
5880 	if (rc < 0) {
5881 		up_write(&rbd_dev->header_rwsem);
5882 		goto err_out_rbd_dev;
5883 	}
5884 
5885 	/* If we are mapping a snapshot it must be marked read-only */
5886 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5887 		rbd_dev->opts->read_only = true;
5888 
5889 	rc = rbd_dev_device_setup(rbd_dev);
5890 	if (rc)
5891 		goto err_out_image_probe;
5892 
5893 	if (rbd_dev->opts->exclusive) {
5894 		rc = rbd_add_acquire_lock(rbd_dev);
5895 		if (rc)
5896 			goto err_out_device_setup;
5897 	}
5898 
5899 	/* Everything's ready.  Announce the disk to the world. */
5900 
5901 	rc = device_add(&rbd_dev->dev);
5902 	if (rc)
5903 		goto err_out_image_lock;
5904 
5905 	add_disk(rbd_dev->disk);
5906 	/* see rbd_init_disk() */
5907 	blk_put_queue(rbd_dev->disk->queue);
5908 
5909 	spin_lock(&rbd_dev_list_lock);
5910 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
5911 	spin_unlock(&rbd_dev_list_lock);
5912 
5913 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5914 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5915 		rbd_dev->header.features);
5916 	rc = count;
5917 out:
5918 	module_put(THIS_MODULE);
5919 	return rc;
5920 
5921 err_out_image_lock:
5922 	rbd_dev_image_unlock(rbd_dev);
5923 err_out_device_setup:
5924 	rbd_dev_device_release(rbd_dev);
5925 err_out_image_probe:
5926 	rbd_dev_image_release(rbd_dev);
5927 err_out_rbd_dev:
5928 	rbd_dev_destroy(rbd_dev);
5929 err_out_client:
5930 	rbd_put_client(rbdc);
5931 err_out_args:
5932 	rbd_spec_put(spec);
5933 	kfree(rbd_opts);
5934 	goto out;
5935 }
5936 
5937 static ssize_t rbd_add(struct bus_type *bus,
5938 		       const char *buf,
5939 		       size_t count)
5940 {
5941 	if (single_major)
5942 		return -EINVAL;
5943 
5944 	return do_rbd_add(bus, buf, count);
5945 }
5946 
5947 static ssize_t rbd_add_single_major(struct bus_type *bus,
5948 				    const char *buf,
5949 				    size_t count)
5950 {
5951 	return do_rbd_add(bus, buf, count);
5952 }
5953 
5954 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5955 {
5956 	while (rbd_dev->parent) {
5957 		struct rbd_device *first = rbd_dev;
5958 		struct rbd_device *second = first->parent;
5959 		struct rbd_device *third;
5960 
5961 		/*
5962 		 * Follow to the parent with no grandparent and
5963 		 * remove it.
5964 		 */
5965 		while (second && (third = second->parent)) {
5966 			first = second;
5967 			second = third;
5968 		}
5969 		rbd_assert(second);
5970 		rbd_dev_image_release(second);
5971 		rbd_dev_destroy(second);
5972 		first->parent = NULL;
5973 		first->parent_overlap = 0;
5974 
5975 		rbd_assert(first->parent_spec);
5976 		rbd_spec_put(first->parent_spec);
5977 		first->parent_spec = NULL;
5978 	}
5979 }
5980 
5981 static ssize_t do_rbd_remove(struct bus_type *bus,
5982 			     const char *buf,
5983 			     size_t count)
5984 {
5985 	struct rbd_device *rbd_dev = NULL;
5986 	struct list_head *tmp;
5987 	int dev_id;
5988 	char opt_buf[6];
5989 	bool already = false;
5990 	bool force = false;
5991 	int ret;
5992 
5993 	dev_id = -1;
5994 	opt_buf[0] = '\0';
5995 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
5996 	if (dev_id < 0) {
5997 		pr_err("dev_id out of range\n");
5998 		return -EINVAL;
5999 	}
6000 	if (opt_buf[0] != '\0') {
6001 		if (!strcmp(opt_buf, "force")) {
6002 			force = true;
6003 		} else {
6004 			pr_err("bad remove option at '%s'\n", opt_buf);
6005 			return -EINVAL;
6006 		}
6007 	}
6008 
6009 	ret = -ENOENT;
6010 	spin_lock(&rbd_dev_list_lock);
6011 	list_for_each(tmp, &rbd_dev_list) {
6012 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6013 		if (rbd_dev->dev_id == dev_id) {
6014 			ret = 0;
6015 			break;
6016 		}
6017 	}
6018 	if (!ret) {
6019 		spin_lock_irq(&rbd_dev->lock);
6020 		if (rbd_dev->open_count && !force)
6021 			ret = -EBUSY;
6022 		else
6023 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6024 							&rbd_dev->flags);
6025 		spin_unlock_irq(&rbd_dev->lock);
6026 	}
6027 	spin_unlock(&rbd_dev_list_lock);
6028 	if (ret < 0 || already)
6029 		return ret;
6030 
6031 	if (force) {
6032 		/*
6033 		 * Prevent new IO from being queued and wait for existing
6034 		 * IO to complete/fail.
6035 		 */
6036 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6037 		blk_set_queue_dying(rbd_dev->disk->queue);
6038 	}
6039 
6040 	del_gendisk(rbd_dev->disk);
6041 	spin_lock(&rbd_dev_list_lock);
6042 	list_del_init(&rbd_dev->node);
6043 	spin_unlock(&rbd_dev_list_lock);
6044 	device_del(&rbd_dev->dev);
6045 
6046 	rbd_dev_image_unlock(rbd_dev);
6047 	rbd_dev_device_release(rbd_dev);
6048 	rbd_dev_image_release(rbd_dev);
6049 	rbd_dev_destroy(rbd_dev);
6050 	return count;
6051 }
6052 
6053 static ssize_t rbd_remove(struct bus_type *bus,
6054 			  const char *buf,
6055 			  size_t count)
6056 {
6057 	if (single_major)
6058 		return -EINVAL;
6059 
6060 	return do_rbd_remove(bus, buf, count);
6061 }
6062 
6063 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6064 				       const char *buf,
6065 				       size_t count)
6066 {
6067 	return do_rbd_remove(bus, buf, count);
6068 }
6069 
6070 /*
6071  * create control files in sysfs
6072  * /sys/bus/rbd/...
6073  */
6074 static int __init rbd_sysfs_init(void)
6075 {
6076 	int ret;
6077 
6078 	ret = device_register(&rbd_root_dev);
6079 	if (ret < 0)
6080 		return ret;
6081 
6082 	ret = bus_register(&rbd_bus_type);
6083 	if (ret < 0)
6084 		device_unregister(&rbd_root_dev);
6085 
6086 	return ret;
6087 }
6088 
6089 static void __exit rbd_sysfs_cleanup(void)
6090 {
6091 	bus_unregister(&rbd_bus_type);
6092 	device_unregister(&rbd_root_dev);
6093 }
6094 
6095 static int __init rbd_slab_init(void)
6096 {
6097 	rbd_assert(!rbd_img_request_cache);
6098 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6099 	if (!rbd_img_request_cache)
6100 		return -ENOMEM;
6101 
6102 	rbd_assert(!rbd_obj_request_cache);
6103 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6104 	if (!rbd_obj_request_cache)
6105 		goto out_err;
6106 
6107 	return 0;
6108 
6109 out_err:
6110 	kmem_cache_destroy(rbd_img_request_cache);
6111 	rbd_img_request_cache = NULL;
6112 	return -ENOMEM;
6113 }
6114 
6115 static void rbd_slab_exit(void)
6116 {
6117 	rbd_assert(rbd_obj_request_cache);
6118 	kmem_cache_destroy(rbd_obj_request_cache);
6119 	rbd_obj_request_cache = NULL;
6120 
6121 	rbd_assert(rbd_img_request_cache);
6122 	kmem_cache_destroy(rbd_img_request_cache);
6123 	rbd_img_request_cache = NULL;
6124 }
6125 
6126 static int __init rbd_init(void)
6127 {
6128 	int rc;
6129 
6130 	if (!libceph_compatible(NULL)) {
6131 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6132 		return -EINVAL;
6133 	}
6134 
6135 	rc = rbd_slab_init();
6136 	if (rc)
6137 		return rc;
6138 
6139 	/*
6140 	 * The number of active work items is limited by the number of
6141 	 * rbd devices * queue depth, so leave @max_active at default.
6142 	 */
6143 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6144 	if (!rbd_wq) {
6145 		rc = -ENOMEM;
6146 		goto err_out_slab;
6147 	}
6148 
6149 	if (single_major) {
6150 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6151 		if (rbd_major < 0) {
6152 			rc = rbd_major;
6153 			goto err_out_wq;
6154 		}
6155 	}
6156 
6157 	rc = rbd_sysfs_init();
6158 	if (rc)
6159 		goto err_out_blkdev;
6160 
6161 	if (single_major)
6162 		pr_info("loaded (major %d)\n", rbd_major);
6163 	else
6164 		pr_info("loaded\n");
6165 
6166 	return 0;
6167 
6168 err_out_blkdev:
6169 	if (single_major)
6170 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6171 err_out_wq:
6172 	destroy_workqueue(rbd_wq);
6173 err_out_slab:
6174 	rbd_slab_exit();
6175 	return rc;
6176 }
6177 
6178 static void __exit rbd_exit(void)
6179 {
6180 	ida_destroy(&rbd_dev_id_ida);
6181 	rbd_sysfs_cleanup();
6182 	if (single_major)
6183 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6184 	destroy_workqueue(rbd_wq);
6185 	rbd_slab_exit();
6186 }
6187 
6188 module_init(rbd_init);
6189 module_exit(rbd_exit);
6190 
6191 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6192 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6193 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6194 /* following authorship retained from original osdblk.c */
6195 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6196 
6197 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6198 MODULE_LICENSE("GPL");
6199