xref: /openbmc/linux/drivers/block/rbd.c (revision 4a65896f94fa82370041823837cd75aac1186b54)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 	struct rbd_options	*opts;
352 
353 	char			*header_name;
354 
355 	struct ceph_file_layout	layout;
356 
357 	struct ceph_osd_event   *watch_event;
358 	struct rbd_obj_request	*watch_request;
359 
360 	struct rbd_spec		*parent_spec;
361 	u64			parent_overlap;
362 	atomic_t		parent_ref;
363 	struct rbd_device	*parent;
364 
365 	/* Block layer tags. */
366 	struct blk_mq_tag_set	tag_set;
367 
368 	/* protects updating the header */
369 	struct rw_semaphore     header_rwsem;
370 
371 	struct rbd_mapping	mapping;
372 
373 	struct list_head	node;
374 
375 	/* sysfs related */
376 	struct device		dev;
377 	unsigned long		open_count;	/* protected by lock */
378 };
379 
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
389 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
390 };
391 
392 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
393 
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396 
397 static LIST_HEAD(rbd_client_list);		/* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399 
400 /* Slab caches for frequently-allocated structures */
401 
402 static struct kmem_cache	*rbd_img_request_cache;
403 static struct kmem_cache	*rbd_obj_request_cache;
404 static struct kmem_cache	*rbd_segment_name_cache;
405 
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408 
409 static struct workqueue_struct *rbd_wq;
410 
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418 
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420 
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 		       size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 			  size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 				    size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 				       size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431 
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436 
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441 
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446 
447 static struct attribute *rbd_bus_attrs[] = {
448 	&bus_attr_add.attr,
449 	&bus_attr_remove.attr,
450 	&bus_attr_add_single_major.attr,
451 	&bus_attr_remove_single_major.attr,
452 	NULL,
453 };
454 
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 				  struct attribute *attr, int index)
457 {
458 	if (!single_major &&
459 	    (attr == &bus_attr_add_single_major.attr ||
460 	     attr == &bus_attr_remove_single_major.attr))
461 		return 0;
462 
463 	return attr->mode;
464 }
465 
466 static const struct attribute_group rbd_bus_group = {
467 	.attrs = rbd_bus_attrs,
468 	.is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471 
472 static struct bus_type rbd_bus_type = {
473 	.name		= "rbd",
474 	.bus_groups	= rbd_bus_groups,
475 };
476 
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480 
481 static struct device rbd_root_dev = {
482 	.init_name =    "rbd",
483 	.release =      rbd_root_dev_release,
484 };
485 
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 	struct va_format vaf;
490 	va_list args;
491 
492 	va_start(args, fmt);
493 	vaf.fmt = fmt;
494 	vaf.va = &args;
495 
496 	if (!rbd_dev)
497 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 	else if (rbd_dev->disk)
499 		printk(KERN_WARNING "%s: %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 		printk(KERN_WARNING "%s: image %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 		printk(KERN_WARNING "%s: id %s: %pV\n",
506 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 	else	/* punt */
508 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 			RBD_DRV_NAME, rbd_dev, &vaf);
510 	va_end(args);
511 }
512 
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)						\
515 		if (unlikely(!(expr))) {				\
516 			printk(KERN_ERR "\nAssertion failure in %s() "	\
517 						"at line %d:\n\n"	\
518 					"\trbd_assert(%s);\n\n",	\
519 					__func__, __LINE__, #expr);	\
520 			BUG();						\
521 		}
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)	((void) 0)
524 #endif /* !RBD_DEBUG */
525 
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530 
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 					u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 				u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 		u64 *snap_features);
541 
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 	bool removing = false;
546 
547 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 		return -EROFS;
549 
550 	spin_lock_irq(&rbd_dev->lock);
551 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 		removing = true;
553 	else
554 		rbd_dev->open_count++;
555 	spin_unlock_irq(&rbd_dev->lock);
556 	if (removing)
557 		return -ENOENT;
558 
559 	(void) get_device(&rbd_dev->dev);
560 
561 	return 0;
562 }
563 
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 	struct rbd_device *rbd_dev = disk->private_data;
567 	unsigned long open_count_before;
568 
569 	spin_lock_irq(&rbd_dev->lock);
570 	open_count_before = rbd_dev->open_count--;
571 	spin_unlock_irq(&rbd_dev->lock);
572 	rbd_assert(open_count_before > 0);
573 
574 	put_device(&rbd_dev->dev);
575 }
576 
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 	int ret = 0;
580 	int val;
581 	bool ro;
582 	bool ro_changed = false;
583 
584 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
585 	if (get_user(val, (int __user *)(arg)))
586 		return -EFAULT;
587 
588 	ro = val ? true : false;
589 	/* Snapshot doesn't allow to write*/
590 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 		return -EROFS;
592 
593 	spin_lock_irq(&rbd_dev->lock);
594 	/* prevent others open this device */
595 	if (rbd_dev->open_count > 1) {
596 		ret = -EBUSY;
597 		goto out;
598 	}
599 
600 	if (rbd_dev->mapping.read_only != ro) {
601 		rbd_dev->mapping.read_only = ro;
602 		ro_changed = true;
603 	}
604 
605 out:
606 	spin_unlock_irq(&rbd_dev->lock);
607 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 	if (ret == 0 && ro_changed)
609 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610 
611 	return ret;
612 }
613 
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 			unsigned int cmd, unsigned long arg)
616 {
617 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 	int ret = 0;
619 
620 	switch (cmd) {
621 	case BLKROSET:
622 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 		break;
624 	default:
625 		ret = -ENOTTY;
626 	}
627 
628 	return ret;
629 }
630 
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 				unsigned int cmd, unsigned long arg)
634 {
635 	return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638 
639 static const struct block_device_operations rbd_bd_ops = {
640 	.owner			= THIS_MODULE,
641 	.open			= rbd_open,
642 	.release		= rbd_release,
643 	.ioctl			= rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 	.compat_ioctl		= rbd_compat_ioctl,
646 #endif
647 };
648 
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 	struct rbd_client *rbdc;
656 	int ret = -ENOMEM;
657 
658 	dout("%s:\n", __func__);
659 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 	if (!rbdc)
661 		goto out_opt;
662 
663 	kref_init(&rbdc->kref);
664 	INIT_LIST_HEAD(&rbdc->node);
665 
666 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 	if (IS_ERR(rbdc->client))
668 		goto out_rbdc;
669 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670 
671 	ret = ceph_open_session(rbdc->client);
672 	if (ret < 0)
673 		goto out_client;
674 
675 	spin_lock(&rbd_client_list_lock);
676 	list_add_tail(&rbdc->node, &rbd_client_list);
677 	spin_unlock(&rbd_client_list_lock);
678 
679 	dout("%s: rbdc %p\n", __func__, rbdc);
680 
681 	return rbdc;
682 out_client:
683 	ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 	kfree(rbdc);
686 out_opt:
687 	if (ceph_opts)
688 		ceph_destroy_options(ceph_opts);
689 	dout("%s: error %d\n", __func__, ret);
690 
691 	return ERR_PTR(ret);
692 }
693 
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 	kref_get(&rbdc->kref);
697 
698 	return rbdc;
699 }
700 
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *client_node;
708 	bool found = false;
709 
710 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 		return NULL;
712 
713 	spin_lock(&rbd_client_list_lock);
714 	list_for_each_entry(client_node, &rbd_client_list, node) {
715 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 			__rbd_get_client(client_node);
717 
718 			found = true;
719 			break;
720 		}
721 	}
722 	spin_unlock(&rbd_client_list_lock);
723 
724 	return found ? client_node : NULL;
725 }
726 
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731 	Opt_queue_depth,
732 	Opt_last_int,
733 	/* int args above */
734 	Opt_last_string,
735 	/* string args above */
736 	Opt_read_only,
737 	Opt_read_write,
738 	Opt_err
739 };
740 
741 static match_table_t rbd_opts_tokens = {
742 	{Opt_queue_depth, "queue_depth=%d"},
743 	/* int args above */
744 	/* string args above */
745 	{Opt_read_only, "read_only"},
746 	{Opt_read_only, "ro"},		/* Alternate spelling */
747 	{Opt_read_write, "read_write"},
748 	{Opt_read_write, "rw"},		/* Alternate spelling */
749 	{Opt_err, NULL}
750 };
751 
752 struct rbd_options {
753 	int	queue_depth;
754 	bool	read_only;
755 };
756 
757 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT	false
759 
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 	struct rbd_options *rbd_opts = private;
763 	substring_t argstr[MAX_OPT_ARGS];
764 	int token, intval, ret;
765 
766 	token = match_token(c, rbd_opts_tokens, argstr);
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) at '%s'\n", c);
771 			return ret;
772 		}
773 		dout("got int token %d val %d\n", token, intval);
774 	} else if (token > Opt_last_int && token < Opt_last_string) {
775 		dout("got string token %d val %s\n", token, argstr[0].from);
776 	} else {
777 		dout("got token %d\n", token);
778 	}
779 
780 	switch (token) {
781 	case Opt_queue_depth:
782 		if (intval < 1) {
783 			pr_err("queue_depth out of range\n");
784 			return -EINVAL;
785 		}
786 		rbd_opts->queue_depth = intval;
787 		break;
788 	case Opt_read_only:
789 		rbd_opts->read_only = true;
790 		break;
791 	case Opt_read_write:
792 		rbd_opts->read_only = false;
793 		break;
794 	default:
795 		/* libceph prints "bad option" msg */
796 		return -EINVAL;
797 	}
798 
799 	return 0;
800 }
801 
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 	switch (op_type) {
805 	case OBJ_OP_READ:
806 		return "read";
807 	case OBJ_OP_WRITE:
808 		return "write";
809 	case OBJ_OP_DISCARD:
810 		return "discard";
811 	default:
812 		return "???";
813 	}
814 }
815 
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 	struct rbd_client *rbdc;
824 
825 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 	rbdc = rbd_client_find(ceph_opts);
827 	if (rbdc)	/* using an existing client */
828 		ceph_destroy_options(ceph_opts);
829 	else
830 		rbdc = rbd_client_create(ceph_opts);
831 	mutex_unlock(&client_mutex);
832 
833 	return rbdc;
834 }
835 
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844 
845 	dout("%s: rbdc %p\n", __func__, rbdc);
846 	spin_lock(&rbd_client_list_lock);
847 	list_del(&rbdc->node);
848 	spin_unlock(&rbd_client_list_lock);
849 
850 	ceph_destroy_client(rbdc->client);
851 	kfree(rbdc);
852 }
853 
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 	if (rbdc)
861 		kref_put(&rbdc->kref, rbd_client_release);
862 }
863 
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 	return image_format == 1 || image_format == 2;
867 }
868 
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 	size_t size;
872 	u32 snap_count;
873 
874 	/* The header has to start with the magic rbd header text */
875 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 		return false;
877 
878 	/* The bio layer requires at least sector-sized I/O */
879 
880 	if (ondisk->options.order < SECTOR_SHIFT)
881 		return false;
882 
883 	/* If we use u64 in a few spots we may be able to loosen this */
884 
885 	if (ondisk->options.order > 8 * sizeof (int) - 1)
886 		return false;
887 
888 	/*
889 	 * The size of a snapshot header has to fit in a size_t, and
890 	 * that limits the number of snapshots.
891 	 */
892 	snap_count = le32_to_cpu(ondisk->snap_count);
893 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 	if (snap_count > size / sizeof (__le64))
895 		return false;
896 
897 	/*
898 	 * Not only that, but the size of the entire the snapshot
899 	 * header must also be representable in a size_t.
900 	 */
901 	size -= snap_count * sizeof (__le64);
902 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 		return false;
904 
905 	return true;
906 }
907 
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 				 struct rbd_image_header_ondisk *ondisk)
914 {
915 	struct rbd_image_header *header = &rbd_dev->header;
916 	bool first_time = header->object_prefix == NULL;
917 	struct ceph_snap_context *snapc;
918 	char *object_prefix = NULL;
919 	char *snap_names = NULL;
920 	u64 *snap_sizes = NULL;
921 	u32 snap_count;
922 	size_t size;
923 	int ret = -ENOMEM;
924 	u32 i;
925 
926 	/* Allocate this now to avoid having to handle failure below */
927 
928 	if (first_time) {
929 		size_t len;
930 
931 		len = strnlen(ondisk->object_prefix,
932 				sizeof (ondisk->object_prefix));
933 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 		if (!object_prefix)
935 			return -ENOMEM;
936 		memcpy(object_prefix, ondisk->object_prefix, len);
937 		object_prefix[len] = '\0';
938 	}
939 
940 	/* Allocate the snapshot context and fill it in */
941 
942 	snap_count = le32_to_cpu(ondisk->snap_count);
943 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 	if (!snapc)
945 		goto out_err;
946 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 	if (snap_count) {
948 		struct rbd_image_snap_ondisk *snaps;
949 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950 
951 		/* We'll keep a copy of the snapshot names... */
952 
953 		if (snap_names_len > (u64)SIZE_MAX)
954 			goto out_2big;
955 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 		if (!snap_names)
957 			goto out_err;
958 
959 		/* ...as well as the array of their sizes. */
960 
961 		size = snap_count * sizeof (*header->snap_sizes);
962 		snap_sizes = kmalloc(size, GFP_KERNEL);
963 		if (!snap_sizes)
964 			goto out_err;
965 
966 		/*
967 		 * Copy the names, and fill in each snapshot's id
968 		 * and size.
969 		 *
970 		 * Note that rbd_dev_v1_header_info() guarantees the
971 		 * ondisk buffer we're working with has
972 		 * snap_names_len bytes beyond the end of the
973 		 * snapshot id array, this memcpy() is safe.
974 		 */
975 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 		snaps = ondisk->snaps;
977 		for (i = 0; i < snap_count; i++) {
978 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 		}
981 	}
982 
983 	/* We won't fail any more, fill in the header */
984 
985 	if (first_time) {
986 		header->object_prefix = object_prefix;
987 		header->obj_order = ondisk->options.order;
988 		header->crypt_type = ondisk->options.crypt_type;
989 		header->comp_type = ondisk->options.comp_type;
990 		/* The rest aren't used for format 1 images */
991 		header->stripe_unit = 0;
992 		header->stripe_count = 0;
993 		header->features = 0;
994 	} else {
995 		ceph_put_snap_context(header->snapc);
996 		kfree(header->snap_names);
997 		kfree(header->snap_sizes);
998 	}
999 
1000 	/* The remaining fields always get updated (when we refresh) */
1001 
1002 	header->image_size = le64_to_cpu(ondisk->image_size);
1003 	header->snapc = snapc;
1004 	header->snap_names = snap_names;
1005 	header->snap_sizes = snap_sizes;
1006 
1007 	return 0;
1008 out_2big:
1009 	ret = -EIO;
1010 out_err:
1011 	kfree(snap_sizes);
1012 	kfree(snap_names);
1013 	ceph_put_snap_context(snapc);
1014 	kfree(object_prefix);
1015 
1016 	return ret;
1017 }
1018 
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 	const char *snap_name;
1022 
1023 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024 
1025 	/* Skip over names until we find the one we are looking for */
1026 
1027 	snap_name = rbd_dev->header.snap_names;
1028 	while (which--)
1029 		snap_name += strlen(snap_name) + 1;
1030 
1031 	return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033 
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 	u64 snap_id1 = *(u64 *)s1;
1041 	u64 snap_id2 = *(u64 *)s2;
1042 
1043 	if (snap_id1 < snap_id2)
1044 		return 1;
1045 	return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047 
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 	u64 *found;
1062 
1063 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 				sizeof (snap_id), snapid_compare_reverse);
1065 
1066 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068 
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 					u64 snap_id)
1071 {
1072 	u32 which;
1073 	const char *snap_name;
1074 
1075 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 	if (which == BAD_SNAP_INDEX)
1077 		return ERR_PTR(-ENOENT);
1078 
1079 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082 
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 	if (snap_id == CEPH_NOSNAP)
1086 		return RBD_SNAP_HEAD_NAME;
1087 
1088 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 	if (rbd_dev->image_format == 1)
1090 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091 
1092 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094 
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 				u64 *snap_size)
1097 {
1098 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 	if (snap_id == CEPH_NOSNAP) {
1100 		*snap_size = rbd_dev->header.image_size;
1101 	} else if (rbd_dev->image_format == 1) {
1102 		u32 which;
1103 
1104 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 		if (which == BAD_SNAP_INDEX)
1106 			return -ENOENT;
1107 
1108 		*snap_size = rbd_dev->header.snap_sizes[which];
1109 	} else {
1110 		u64 size = 0;
1111 		int ret;
1112 
1113 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 		if (ret)
1115 			return ret;
1116 
1117 		*snap_size = size;
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 			u64 *snap_features)
1124 {
1125 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 	if (snap_id == CEPH_NOSNAP) {
1127 		*snap_features = rbd_dev->header.features;
1128 	} else if (rbd_dev->image_format == 1) {
1129 		*snap_features = 0;	/* No features for format 1 */
1130 	} else {
1131 		u64 features = 0;
1132 		int ret;
1133 
1134 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 		if (ret)
1136 			return ret;
1137 
1138 		*snap_features = features;
1139 	}
1140 	return 0;
1141 }
1142 
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 	u64 snap_id = rbd_dev->spec->snap_id;
1146 	u64 size = 0;
1147 	u64 features = 0;
1148 	int ret;
1149 
1150 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 	if (ret)
1152 		return ret;
1153 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 	if (ret)
1155 		return ret;
1156 
1157 	rbd_dev->mapping.size = size;
1158 	rbd_dev->mapping.features = features;
1159 
1160 	return 0;
1161 }
1162 
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 	rbd_dev->mapping.size = 0;
1166 	rbd_dev->mapping.features = 0;
1167 }
1168 
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 	/* The explicit cast here is needed to drop the const qualifier */
1172 
1173 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175 
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 	char *name;
1179 	u64 segment;
1180 	int ret;
1181 	char *name_format;
1182 
1183 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 	if (!name)
1185 		return NULL;
1186 	segment = offset >> rbd_dev->header.obj_order;
1187 	name_format = "%s.%012llx";
1188 	if (rbd_dev->image_format == 2)
1189 		name_format = "%s.%016llx";
1190 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 			rbd_dev->header.object_prefix, segment);
1192 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 		pr_err("error formatting segment name for #%llu (%d)\n",
1194 			segment, ret);
1195 		rbd_segment_name_free(name);
1196 		name = NULL;
1197 	}
1198 
1199 	return name;
1200 }
1201 
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205 
1206 	return offset & (segment_size - 1);
1207 }
1208 
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 				u64 offset, u64 length)
1211 {
1212 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213 
1214 	offset &= segment_size - 1;
1215 
1216 	rbd_assert(length <= U64_MAX - offset);
1217 	if (offset + length > segment_size)
1218 		length = segment_size - offset;
1219 
1220 	return length;
1221 }
1222 
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 	return 1 << header->obj_order;
1229 }
1230 
1231 /*
1232  * bio helpers
1233  */
1234 
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 	struct bio *tmp;
1238 
1239 	while (chain) {
1240 		tmp = chain;
1241 		chain = chain->bi_next;
1242 		bio_put(tmp);
1243 	}
1244 }
1245 
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 	struct bio_vec bv;
1252 	struct bvec_iter iter;
1253 	unsigned long flags;
1254 	void *buf;
1255 	int pos = 0;
1256 
1257 	while (chain) {
1258 		bio_for_each_segment(bv, chain, iter) {
1259 			if (pos + bv.bv_len > start_ofs) {
1260 				int remainder = max(start_ofs - pos, 0);
1261 				buf = bvec_kmap_irq(&bv, &flags);
1262 				memset(buf + remainder, 0,
1263 				       bv.bv_len - remainder);
1264 				flush_dcache_page(bv.bv_page);
1265 				bvec_kunmap_irq(buf, &flags);
1266 			}
1267 			pos += bv.bv_len;
1268 		}
1269 
1270 		chain = chain->bi_next;
1271 	}
1272 }
1273 
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 	struct page **page = &pages[offset >> PAGE_SHIFT];
1283 
1284 	rbd_assert(end > offset);
1285 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 	while (offset < end) {
1287 		size_t page_offset;
1288 		size_t length;
1289 		unsigned long flags;
1290 		void *kaddr;
1291 
1292 		page_offset = offset & ~PAGE_MASK;
1293 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 		local_irq_save(flags);
1295 		kaddr = kmap_atomic(*page);
1296 		memset(kaddr + page_offset, 0, length);
1297 		flush_dcache_page(*page);
1298 		kunmap_atomic(kaddr);
1299 		local_irq_restore(flags);
1300 
1301 		offset += length;
1302 		page++;
1303 	}
1304 }
1305 
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 					unsigned int offset,
1312 					unsigned int len,
1313 					gfp_t gfpmask)
1314 {
1315 	struct bio *bio;
1316 
1317 	bio = bio_clone(bio_src, gfpmask);
1318 	if (!bio)
1319 		return NULL;	/* ENOMEM */
1320 
1321 	bio_advance(bio, offset);
1322 	bio->bi_iter.bi_size = len;
1323 
1324 	return bio;
1325 }
1326 
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 					unsigned int *offset,
1343 					unsigned int len,
1344 					gfp_t gfpmask)
1345 {
1346 	struct bio *bi = *bio_src;
1347 	unsigned int off = *offset;
1348 	struct bio *chain = NULL;
1349 	struct bio **end;
1350 
1351 	/* Build up a chain of clone bios up to the limit */
1352 
1353 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 		return NULL;		/* Nothing to clone */
1355 
1356 	end = &chain;
1357 	while (len) {
1358 		unsigned int bi_size;
1359 		struct bio *bio;
1360 
1361 		if (!bi) {
1362 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 			goto out_err;	/* EINVAL; ran out of bio's */
1364 		}
1365 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 		if (!bio)
1368 			goto out_err;	/* ENOMEM */
1369 
1370 		*end = bio;
1371 		end = &bio->bi_next;
1372 
1373 		off += bi_size;
1374 		if (off == bi->bi_iter.bi_size) {
1375 			bi = bi->bi_next;
1376 			off = 0;
1377 		}
1378 		len -= bi_size;
1379 	}
1380 	*bio_src = bi;
1381 	*offset = off;
1382 
1383 	return chain;
1384 out_err:
1385 	bio_chain_put(chain);
1386 
1387 	return NULL;
1388 }
1389 
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 		struct rbd_device *rbd_dev;
1399 
1400 		rbd_dev = obj_request->img_request->rbd_dev;
1401 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 			obj_request);
1403 	}
1404 }
1405 
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 	smp_mb();
1409 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411 
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 		struct rbd_device *rbd_dev = NULL;
1416 
1417 		if (obj_request_img_data_test(obj_request))
1418 			rbd_dev = obj_request->img_request->rbd_dev;
1419 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 			obj_request);
1421 	}
1422 }
1423 
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 	smp_mb();
1427 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429 
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 				bool exists)
1442 {
1443 	if (exists)
1444 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 	smp_mb();
1447 }
1448 
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 	smp_mb();
1452 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454 
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 	smp_mb();
1458 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460 
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464 
1465 	return obj_request->img_offset <
1466 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468 
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 		atomic_read(&obj_request->kref.refcount));
1473 	kref_get(&obj_request->kref);
1474 }
1475 
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 	rbd_assert(obj_request != NULL);
1480 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 		atomic_read(&obj_request->kref.refcount));
1482 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484 
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 	dout("%s: img %p (was %d)\n", __func__, img_request,
1488 	     atomic_read(&img_request->kref.refcount));
1489 	kref_get(&img_request->kref);
1490 }
1491 
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 	rbd_assert(img_request != NULL);
1498 	dout("%s: img %p (was %d)\n", __func__, img_request,
1499 		atomic_read(&img_request->kref.refcount));
1500 	if (img_request_child_test(img_request))
1501 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 	else
1503 		kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505 
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 					struct rbd_obj_request *obj_request)
1508 {
1509 	rbd_assert(obj_request->img_request == NULL);
1510 
1511 	/* Image request now owns object's original reference */
1512 	obj_request->img_request = img_request;
1513 	obj_request->which = img_request->obj_request_count;
1514 	rbd_assert(!obj_request_img_data_test(obj_request));
1515 	obj_request_img_data_set(obj_request);
1516 	rbd_assert(obj_request->which != BAD_WHICH);
1517 	img_request->obj_request_count++;
1518 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 		obj_request->which);
1521 }
1522 
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 					struct rbd_obj_request *obj_request)
1525 {
1526 	rbd_assert(obj_request->which != BAD_WHICH);
1527 
1528 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 		obj_request->which);
1530 	list_del(&obj_request->links);
1531 	rbd_assert(img_request->obj_request_count > 0);
1532 	img_request->obj_request_count--;
1533 	rbd_assert(obj_request->which == img_request->obj_request_count);
1534 	obj_request->which = BAD_WHICH;
1535 	rbd_assert(obj_request_img_data_test(obj_request));
1536 	rbd_assert(obj_request->img_request == img_request);
1537 	obj_request->img_request = NULL;
1538 	obj_request->callback = NULL;
1539 	rbd_obj_request_put(obj_request);
1540 }
1541 
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 	switch (type) {
1545 	case OBJ_REQUEST_NODATA:
1546 	case OBJ_REQUEST_BIO:
1547 	case OBJ_REQUEST_PAGES:
1548 		return true;
1549 	default:
1550 		return false;
1551 	}
1552 }
1553 
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 				struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s %p\n", __func__, obj_request);
1558 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560 
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 	dout("%s %p\n", __func__, obj_request);
1564 	ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566 
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 				  unsigned long timeout)
1575 {
1576 	long ret;
1577 
1578 	dout("%s %p\n", __func__, obj_request);
1579 	ret = wait_for_completion_interruptible_timeout(
1580 					&obj_request->completion,
1581 					ceph_timeout_jiffies(timeout));
1582 	if (ret <= 0) {
1583 		if (ret == 0)
1584 			ret = -ETIMEDOUT;
1585 		rbd_obj_request_end(obj_request);
1586 	} else {
1587 		ret = 0;
1588 	}
1589 
1590 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 	return ret;
1592 }
1593 
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 	return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598 
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600 					unsigned long timeout)
1601 {
1602 	return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604 
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607 
1608 	dout("%s: img %p\n", __func__, img_request);
1609 
1610 	/*
1611 	 * If no error occurred, compute the aggregate transfer
1612 	 * count for the image request.  We could instead use
1613 	 * atomic64_cmpxchg() to update it as each object request
1614 	 * completes; not clear which way is better off hand.
1615 	 */
1616 	if (!img_request->result) {
1617 		struct rbd_obj_request *obj_request;
1618 		u64 xferred = 0;
1619 
1620 		for_each_obj_request(img_request, obj_request)
1621 			xferred += obj_request->xferred;
1622 		img_request->xferred = xferred;
1623 	}
1624 
1625 	if (img_request->callback)
1626 		img_request->callback(img_request);
1627 	else
1628 		rbd_img_request_put(img_request);
1629 }
1630 
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1639 	smp_mb();
1640 }
1641 
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644 	smp_mb();
1645 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647 
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654 	smp_mb();
1655 }
1656 
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659 	smp_mb();
1660 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662 
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1666 	smp_mb();
1667 }
1668 
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672 	smp_mb();
1673 }
1674 
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677 	smp_mb();
1678 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680 
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 	smp_mb();
1685 }
1686 
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690 	smp_mb();
1691 }
1692 
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695 	smp_mb();
1696 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698 
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702 	if (img_request_write_test(img_request))
1703 		return OBJ_OP_WRITE;
1704 	else if (img_request_discard_test(img_request))
1705 		return OBJ_OP_DISCARD;
1706 	else
1707 		return OBJ_OP_READ;
1708 }
1709 
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713 	u64 xferred = obj_request->xferred;
1714 	u64 length = obj_request->length;
1715 
1716 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717 		obj_request, obj_request->img_request, obj_request->result,
1718 		xferred, length);
1719 	/*
1720 	 * ENOENT means a hole in the image.  We zero-fill the entire
1721 	 * length of the request.  A short read also implies zero-fill
1722 	 * to the end of the request.  An error requires the whole
1723 	 * length of the request to be reported finished with an error
1724 	 * to the block layer.  In each case we update the xferred
1725 	 * count to indicate the whole request was satisfied.
1726 	 */
1727 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728 	if (obj_request->result == -ENOENT) {
1729 		if (obj_request->type == OBJ_REQUEST_BIO)
1730 			zero_bio_chain(obj_request->bio_list, 0);
1731 		else
1732 			zero_pages(obj_request->pages, 0, length);
1733 		obj_request->result = 0;
1734 	} else if (xferred < length && !obj_request->result) {
1735 		if (obj_request->type == OBJ_REQUEST_BIO)
1736 			zero_bio_chain(obj_request->bio_list, xferred);
1737 		else
1738 			zero_pages(obj_request->pages, xferred, length);
1739 	}
1740 	obj_request->xferred = length;
1741 	obj_request_done_set(obj_request);
1742 }
1743 
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1747 		obj_request->callback);
1748 	if (obj_request->callback)
1749 		obj_request->callback(obj_request);
1750 	else
1751 		complete_all(&obj_request->completion);
1752 }
1753 
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756 	dout("%s: obj %p\n", __func__, obj_request);
1757 	obj_request_done_set(obj_request);
1758 }
1759 
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762 	struct rbd_img_request *img_request = NULL;
1763 	struct rbd_device *rbd_dev = NULL;
1764 	bool layered = false;
1765 
1766 	if (obj_request_img_data_test(obj_request)) {
1767 		img_request = obj_request->img_request;
1768 		layered = img_request && img_request_layered_test(img_request);
1769 		rbd_dev = img_request->rbd_dev;
1770 	}
1771 
1772 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773 		obj_request, img_request, obj_request->result,
1774 		obj_request->xferred, obj_request->length);
1775 	if (layered && obj_request->result == -ENOENT &&
1776 			obj_request->img_offset < rbd_dev->parent_overlap)
1777 		rbd_img_parent_read(obj_request);
1778 	else if (img_request)
1779 		rbd_img_obj_request_read_callback(obj_request);
1780 	else
1781 		obj_request_done_set(obj_request);
1782 }
1783 
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 		obj_request->result, obj_request->length);
1788 	/*
1789 	 * There is no such thing as a successful short write.  Set
1790 	 * it to our originally-requested length.
1791 	 */
1792 	obj_request->xferred = obj_request->length;
1793 	obj_request_done_set(obj_request);
1794 }
1795 
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799 		obj_request->result, obj_request->length);
1800 	/*
1801 	 * There is no such thing as a successful short discard.  Set
1802 	 * it to our originally-requested length.
1803 	 */
1804 	obj_request->xferred = obj_request->length;
1805 	/* discarding a non-existent object is not a problem */
1806 	if (obj_request->result == -ENOENT)
1807 		obj_request->result = 0;
1808 	obj_request_done_set(obj_request);
1809 }
1810 
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817 	dout("%s: obj %p\n", __func__, obj_request);
1818 	obj_request_done_set(obj_request);
1819 }
1820 
1821 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1822 {
1823 	dout("%s: obj %p\n", __func__, obj_request);
1824 
1825 	if (obj_request_img_data_test(obj_request))
1826 		rbd_osd_copyup_callback(obj_request);
1827 	else
1828 		obj_request_done_set(obj_request);
1829 }
1830 
1831 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1832 				struct ceph_msg *msg)
1833 {
1834 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1835 	u16 opcode;
1836 
1837 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1838 	rbd_assert(osd_req == obj_request->osd_req);
1839 	if (obj_request_img_data_test(obj_request)) {
1840 		rbd_assert(obj_request->img_request);
1841 		rbd_assert(obj_request->which != BAD_WHICH);
1842 	} else {
1843 		rbd_assert(obj_request->which == BAD_WHICH);
1844 	}
1845 
1846 	if (osd_req->r_result < 0)
1847 		obj_request->result = osd_req->r_result;
1848 
1849 	/*
1850 	 * We support a 64-bit length, but ultimately it has to be
1851 	 * passed to the block layer, which just supports a 32-bit
1852 	 * length field.
1853 	 */
1854 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1855 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1856 
1857 	opcode = osd_req->r_ops[0].op;
1858 	switch (opcode) {
1859 	case CEPH_OSD_OP_READ:
1860 		rbd_osd_read_callback(obj_request);
1861 		break;
1862 	case CEPH_OSD_OP_SETALLOCHINT:
1863 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1864 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1865 		/* fall through */
1866 	case CEPH_OSD_OP_WRITE:
1867 	case CEPH_OSD_OP_WRITEFULL:
1868 		rbd_osd_write_callback(obj_request);
1869 		break;
1870 	case CEPH_OSD_OP_STAT:
1871 		rbd_osd_stat_callback(obj_request);
1872 		break;
1873 	case CEPH_OSD_OP_DELETE:
1874 	case CEPH_OSD_OP_TRUNCATE:
1875 	case CEPH_OSD_OP_ZERO:
1876 		rbd_osd_discard_callback(obj_request);
1877 		break;
1878 	case CEPH_OSD_OP_CALL:
1879 		rbd_osd_call_callback(obj_request);
1880 		break;
1881 	case CEPH_OSD_OP_NOTIFY_ACK:
1882 	case CEPH_OSD_OP_WATCH:
1883 		rbd_osd_trivial_callback(obj_request);
1884 		break;
1885 	default:
1886 		rbd_warn(NULL, "%s: unsupported op %hu",
1887 			obj_request->object_name, (unsigned short) opcode);
1888 		break;
1889 	}
1890 
1891 	if (obj_request_done_test(obj_request))
1892 		rbd_obj_request_complete(obj_request);
1893 }
1894 
1895 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1896 {
1897 	struct rbd_img_request *img_request = obj_request->img_request;
1898 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1899 	u64 snap_id;
1900 
1901 	rbd_assert(osd_req != NULL);
1902 
1903 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1904 	ceph_osdc_build_request(osd_req, obj_request->offset,
1905 			NULL, snap_id, NULL);
1906 }
1907 
1908 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1909 {
1910 	struct rbd_img_request *img_request = obj_request->img_request;
1911 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1912 	struct ceph_snap_context *snapc;
1913 	struct timespec mtime = CURRENT_TIME;
1914 
1915 	rbd_assert(osd_req != NULL);
1916 
1917 	snapc = img_request ? img_request->snapc : NULL;
1918 	ceph_osdc_build_request(osd_req, obj_request->offset,
1919 			snapc, CEPH_NOSNAP, &mtime);
1920 }
1921 
1922 /*
1923  * Create an osd request.  A read request has one osd op (read).
1924  * A write request has either one (watch) or two (hint+write) osd ops.
1925  * (All rbd data writes are prefixed with an allocation hint op, but
1926  * technically osd watch is a write request, hence this distinction.)
1927  */
1928 static struct ceph_osd_request *rbd_osd_req_create(
1929 					struct rbd_device *rbd_dev,
1930 					enum obj_operation_type op_type,
1931 					unsigned int num_ops,
1932 					struct rbd_obj_request *obj_request)
1933 {
1934 	struct ceph_snap_context *snapc = NULL;
1935 	struct ceph_osd_client *osdc;
1936 	struct ceph_osd_request *osd_req;
1937 
1938 	if (obj_request_img_data_test(obj_request) &&
1939 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1940 		struct rbd_img_request *img_request = obj_request->img_request;
1941 		if (op_type == OBJ_OP_WRITE) {
1942 			rbd_assert(img_request_write_test(img_request));
1943 		} else {
1944 			rbd_assert(img_request_discard_test(img_request));
1945 		}
1946 		snapc = img_request->snapc;
1947 	}
1948 
1949 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1950 
1951 	/* Allocate and initialize the request, for the num_ops ops */
1952 
1953 	osdc = &rbd_dev->rbd_client->client->osdc;
1954 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1955 					  GFP_NOIO);
1956 	if (!osd_req)
1957 		return NULL;	/* ENOMEM */
1958 
1959 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1960 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1961 	else
1962 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1963 
1964 	osd_req->r_callback = rbd_osd_req_callback;
1965 	osd_req->r_priv = obj_request;
1966 
1967 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1968 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1969 
1970 	return osd_req;
1971 }
1972 
1973 /*
1974  * Create a copyup osd request based on the information in the object
1975  * request supplied.  A copyup request has two or three osd ops, a
1976  * copyup method call, potentially a hint op, and a write or truncate
1977  * or zero op.
1978  */
1979 static struct ceph_osd_request *
1980 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1981 {
1982 	struct rbd_img_request *img_request;
1983 	struct ceph_snap_context *snapc;
1984 	struct rbd_device *rbd_dev;
1985 	struct ceph_osd_client *osdc;
1986 	struct ceph_osd_request *osd_req;
1987 	int num_osd_ops = 3;
1988 
1989 	rbd_assert(obj_request_img_data_test(obj_request));
1990 	img_request = obj_request->img_request;
1991 	rbd_assert(img_request);
1992 	rbd_assert(img_request_write_test(img_request) ||
1993 			img_request_discard_test(img_request));
1994 
1995 	if (img_request_discard_test(img_request))
1996 		num_osd_ops = 2;
1997 
1998 	/* Allocate and initialize the request, for all the ops */
1999 
2000 	snapc = img_request->snapc;
2001 	rbd_dev = img_request->rbd_dev;
2002 	osdc = &rbd_dev->rbd_client->client->osdc;
2003 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2004 						false, GFP_NOIO);
2005 	if (!osd_req)
2006 		return NULL;	/* ENOMEM */
2007 
2008 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2009 	osd_req->r_callback = rbd_osd_req_callback;
2010 	osd_req->r_priv = obj_request;
2011 
2012 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2013 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2014 
2015 	return osd_req;
2016 }
2017 
2018 
2019 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2020 {
2021 	ceph_osdc_put_request(osd_req);
2022 }
2023 
2024 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2025 
2026 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2027 						u64 offset, u64 length,
2028 						enum obj_request_type type)
2029 {
2030 	struct rbd_obj_request *obj_request;
2031 	size_t size;
2032 	char *name;
2033 
2034 	rbd_assert(obj_request_type_valid(type));
2035 
2036 	size = strlen(object_name) + 1;
2037 	name = kmalloc(size, GFP_NOIO);
2038 	if (!name)
2039 		return NULL;
2040 
2041 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2042 	if (!obj_request) {
2043 		kfree(name);
2044 		return NULL;
2045 	}
2046 
2047 	obj_request->object_name = memcpy(name, object_name, size);
2048 	obj_request->offset = offset;
2049 	obj_request->length = length;
2050 	obj_request->flags = 0;
2051 	obj_request->which = BAD_WHICH;
2052 	obj_request->type = type;
2053 	INIT_LIST_HEAD(&obj_request->links);
2054 	init_completion(&obj_request->completion);
2055 	kref_init(&obj_request->kref);
2056 
2057 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2058 		offset, length, (int)type, obj_request);
2059 
2060 	return obj_request;
2061 }
2062 
2063 static void rbd_obj_request_destroy(struct kref *kref)
2064 {
2065 	struct rbd_obj_request *obj_request;
2066 
2067 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2068 
2069 	dout("%s: obj %p\n", __func__, obj_request);
2070 
2071 	rbd_assert(obj_request->img_request == NULL);
2072 	rbd_assert(obj_request->which == BAD_WHICH);
2073 
2074 	if (obj_request->osd_req)
2075 		rbd_osd_req_destroy(obj_request->osd_req);
2076 
2077 	rbd_assert(obj_request_type_valid(obj_request->type));
2078 	switch (obj_request->type) {
2079 	case OBJ_REQUEST_NODATA:
2080 		break;		/* Nothing to do */
2081 	case OBJ_REQUEST_BIO:
2082 		if (obj_request->bio_list)
2083 			bio_chain_put(obj_request->bio_list);
2084 		break;
2085 	case OBJ_REQUEST_PAGES:
2086 		if (obj_request->pages)
2087 			ceph_release_page_vector(obj_request->pages,
2088 						obj_request->page_count);
2089 		break;
2090 	}
2091 
2092 	kfree(obj_request->object_name);
2093 	obj_request->object_name = NULL;
2094 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2095 }
2096 
2097 /* It's OK to call this for a device with no parent */
2098 
2099 static void rbd_spec_put(struct rbd_spec *spec);
2100 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2101 {
2102 	rbd_dev_remove_parent(rbd_dev);
2103 	rbd_spec_put(rbd_dev->parent_spec);
2104 	rbd_dev->parent_spec = NULL;
2105 	rbd_dev->parent_overlap = 0;
2106 }
2107 
2108 /*
2109  * Parent image reference counting is used to determine when an
2110  * image's parent fields can be safely torn down--after there are no
2111  * more in-flight requests to the parent image.  When the last
2112  * reference is dropped, cleaning them up is safe.
2113  */
2114 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2115 {
2116 	int counter;
2117 
2118 	if (!rbd_dev->parent_spec)
2119 		return;
2120 
2121 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2122 	if (counter > 0)
2123 		return;
2124 
2125 	/* Last reference; clean up parent data structures */
2126 
2127 	if (!counter)
2128 		rbd_dev_unparent(rbd_dev);
2129 	else
2130 		rbd_warn(rbd_dev, "parent reference underflow");
2131 }
2132 
2133 /*
2134  * If an image has a non-zero parent overlap, get a reference to its
2135  * parent.
2136  *
2137  * Returns true if the rbd device has a parent with a non-zero
2138  * overlap and a reference for it was successfully taken, or
2139  * false otherwise.
2140  */
2141 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2142 {
2143 	int counter = 0;
2144 
2145 	if (!rbd_dev->parent_spec)
2146 		return false;
2147 
2148 	down_read(&rbd_dev->header_rwsem);
2149 	if (rbd_dev->parent_overlap)
2150 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2151 	up_read(&rbd_dev->header_rwsem);
2152 
2153 	if (counter < 0)
2154 		rbd_warn(rbd_dev, "parent reference overflow");
2155 
2156 	return counter > 0;
2157 }
2158 
2159 /*
2160  * Caller is responsible for filling in the list of object requests
2161  * that comprises the image request, and the Linux request pointer
2162  * (if there is one).
2163  */
2164 static struct rbd_img_request *rbd_img_request_create(
2165 					struct rbd_device *rbd_dev,
2166 					u64 offset, u64 length,
2167 					enum obj_operation_type op_type,
2168 					struct ceph_snap_context *snapc)
2169 {
2170 	struct rbd_img_request *img_request;
2171 
2172 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2173 	if (!img_request)
2174 		return NULL;
2175 
2176 	img_request->rq = NULL;
2177 	img_request->rbd_dev = rbd_dev;
2178 	img_request->offset = offset;
2179 	img_request->length = length;
2180 	img_request->flags = 0;
2181 	if (op_type == OBJ_OP_DISCARD) {
2182 		img_request_discard_set(img_request);
2183 		img_request->snapc = snapc;
2184 	} else if (op_type == OBJ_OP_WRITE) {
2185 		img_request_write_set(img_request);
2186 		img_request->snapc = snapc;
2187 	} else {
2188 		img_request->snap_id = rbd_dev->spec->snap_id;
2189 	}
2190 	if (rbd_dev_parent_get(rbd_dev))
2191 		img_request_layered_set(img_request);
2192 	spin_lock_init(&img_request->completion_lock);
2193 	img_request->next_completion = 0;
2194 	img_request->callback = NULL;
2195 	img_request->result = 0;
2196 	img_request->obj_request_count = 0;
2197 	INIT_LIST_HEAD(&img_request->obj_requests);
2198 	kref_init(&img_request->kref);
2199 
2200 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2201 		obj_op_name(op_type), offset, length, img_request);
2202 
2203 	return img_request;
2204 }
2205 
2206 static void rbd_img_request_destroy(struct kref *kref)
2207 {
2208 	struct rbd_img_request *img_request;
2209 	struct rbd_obj_request *obj_request;
2210 	struct rbd_obj_request *next_obj_request;
2211 
2212 	img_request = container_of(kref, struct rbd_img_request, kref);
2213 
2214 	dout("%s: img %p\n", __func__, img_request);
2215 
2216 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2217 		rbd_img_obj_request_del(img_request, obj_request);
2218 	rbd_assert(img_request->obj_request_count == 0);
2219 
2220 	if (img_request_layered_test(img_request)) {
2221 		img_request_layered_clear(img_request);
2222 		rbd_dev_parent_put(img_request->rbd_dev);
2223 	}
2224 
2225 	if (img_request_write_test(img_request) ||
2226 		img_request_discard_test(img_request))
2227 		ceph_put_snap_context(img_request->snapc);
2228 
2229 	kmem_cache_free(rbd_img_request_cache, img_request);
2230 }
2231 
2232 static struct rbd_img_request *rbd_parent_request_create(
2233 					struct rbd_obj_request *obj_request,
2234 					u64 img_offset, u64 length)
2235 {
2236 	struct rbd_img_request *parent_request;
2237 	struct rbd_device *rbd_dev;
2238 
2239 	rbd_assert(obj_request->img_request);
2240 	rbd_dev = obj_request->img_request->rbd_dev;
2241 
2242 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2243 						length, OBJ_OP_READ, NULL);
2244 	if (!parent_request)
2245 		return NULL;
2246 
2247 	img_request_child_set(parent_request);
2248 	rbd_obj_request_get(obj_request);
2249 	parent_request->obj_request = obj_request;
2250 
2251 	return parent_request;
2252 }
2253 
2254 static void rbd_parent_request_destroy(struct kref *kref)
2255 {
2256 	struct rbd_img_request *parent_request;
2257 	struct rbd_obj_request *orig_request;
2258 
2259 	parent_request = container_of(kref, struct rbd_img_request, kref);
2260 	orig_request = parent_request->obj_request;
2261 
2262 	parent_request->obj_request = NULL;
2263 	rbd_obj_request_put(orig_request);
2264 	img_request_child_clear(parent_request);
2265 
2266 	rbd_img_request_destroy(kref);
2267 }
2268 
2269 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2270 {
2271 	struct rbd_img_request *img_request;
2272 	unsigned int xferred;
2273 	int result;
2274 	bool more;
2275 
2276 	rbd_assert(obj_request_img_data_test(obj_request));
2277 	img_request = obj_request->img_request;
2278 
2279 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2280 	xferred = (unsigned int)obj_request->xferred;
2281 	result = obj_request->result;
2282 	if (result) {
2283 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2284 		enum obj_operation_type op_type;
2285 
2286 		if (img_request_discard_test(img_request))
2287 			op_type = OBJ_OP_DISCARD;
2288 		else if (img_request_write_test(img_request))
2289 			op_type = OBJ_OP_WRITE;
2290 		else
2291 			op_type = OBJ_OP_READ;
2292 
2293 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2294 			obj_op_name(op_type), obj_request->length,
2295 			obj_request->img_offset, obj_request->offset);
2296 		rbd_warn(rbd_dev, "  result %d xferred %x",
2297 			result, xferred);
2298 		if (!img_request->result)
2299 			img_request->result = result;
2300 		/*
2301 		 * Need to end I/O on the entire obj_request worth of
2302 		 * bytes in case of error.
2303 		 */
2304 		xferred = obj_request->length;
2305 	}
2306 
2307 	/* Image object requests don't own their page array */
2308 
2309 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2310 		obj_request->pages = NULL;
2311 		obj_request->page_count = 0;
2312 	}
2313 
2314 	if (img_request_child_test(img_request)) {
2315 		rbd_assert(img_request->obj_request != NULL);
2316 		more = obj_request->which < img_request->obj_request_count - 1;
2317 	} else {
2318 		rbd_assert(img_request->rq != NULL);
2319 
2320 		more = blk_update_request(img_request->rq, result, xferred);
2321 		if (!more)
2322 			__blk_mq_end_request(img_request->rq, result);
2323 	}
2324 
2325 	return more;
2326 }
2327 
2328 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2329 {
2330 	struct rbd_img_request *img_request;
2331 	u32 which = obj_request->which;
2332 	bool more = true;
2333 
2334 	rbd_assert(obj_request_img_data_test(obj_request));
2335 	img_request = obj_request->img_request;
2336 
2337 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2338 	rbd_assert(img_request != NULL);
2339 	rbd_assert(img_request->obj_request_count > 0);
2340 	rbd_assert(which != BAD_WHICH);
2341 	rbd_assert(which < img_request->obj_request_count);
2342 
2343 	spin_lock_irq(&img_request->completion_lock);
2344 	if (which != img_request->next_completion)
2345 		goto out;
2346 
2347 	for_each_obj_request_from(img_request, obj_request) {
2348 		rbd_assert(more);
2349 		rbd_assert(which < img_request->obj_request_count);
2350 
2351 		if (!obj_request_done_test(obj_request))
2352 			break;
2353 		more = rbd_img_obj_end_request(obj_request);
2354 		which++;
2355 	}
2356 
2357 	rbd_assert(more ^ (which == img_request->obj_request_count));
2358 	img_request->next_completion = which;
2359 out:
2360 	spin_unlock_irq(&img_request->completion_lock);
2361 	rbd_img_request_put(img_request);
2362 
2363 	if (!more)
2364 		rbd_img_request_complete(img_request);
2365 }
2366 
2367 /*
2368  * Add individual osd ops to the given ceph_osd_request and prepare
2369  * them for submission. num_ops is the current number of
2370  * osd operations already to the object request.
2371  */
2372 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2373 				struct ceph_osd_request *osd_request,
2374 				enum obj_operation_type op_type,
2375 				unsigned int num_ops)
2376 {
2377 	struct rbd_img_request *img_request = obj_request->img_request;
2378 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2379 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2380 	u64 offset = obj_request->offset;
2381 	u64 length = obj_request->length;
2382 	u64 img_end;
2383 	u16 opcode;
2384 
2385 	if (op_type == OBJ_OP_DISCARD) {
2386 		if (!offset && length == object_size &&
2387 		    (!img_request_layered_test(img_request) ||
2388 		     !obj_request_overlaps_parent(obj_request))) {
2389 			opcode = CEPH_OSD_OP_DELETE;
2390 		} else if ((offset + length == object_size)) {
2391 			opcode = CEPH_OSD_OP_TRUNCATE;
2392 		} else {
2393 			down_read(&rbd_dev->header_rwsem);
2394 			img_end = rbd_dev->header.image_size;
2395 			up_read(&rbd_dev->header_rwsem);
2396 
2397 			if (obj_request->img_offset + length == img_end)
2398 				opcode = CEPH_OSD_OP_TRUNCATE;
2399 			else
2400 				opcode = CEPH_OSD_OP_ZERO;
2401 		}
2402 	} else if (op_type == OBJ_OP_WRITE) {
2403 		if (!offset && length == object_size)
2404 			opcode = CEPH_OSD_OP_WRITEFULL;
2405 		else
2406 			opcode = CEPH_OSD_OP_WRITE;
2407 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2408 					object_size, object_size);
2409 		num_ops++;
2410 	} else {
2411 		opcode = CEPH_OSD_OP_READ;
2412 	}
2413 
2414 	if (opcode == CEPH_OSD_OP_DELETE)
2415 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2416 	else
2417 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2418 				       offset, length, 0, 0);
2419 
2420 	if (obj_request->type == OBJ_REQUEST_BIO)
2421 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2422 					obj_request->bio_list, length);
2423 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2424 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2425 					obj_request->pages, length,
2426 					offset & ~PAGE_MASK, false, false);
2427 
2428 	/* Discards are also writes */
2429 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2430 		rbd_osd_req_format_write(obj_request);
2431 	else
2432 		rbd_osd_req_format_read(obj_request);
2433 }
2434 
2435 /*
2436  * Split up an image request into one or more object requests, each
2437  * to a different object.  The "type" parameter indicates whether
2438  * "data_desc" is the pointer to the head of a list of bio
2439  * structures, or the base of a page array.  In either case this
2440  * function assumes data_desc describes memory sufficient to hold
2441  * all data described by the image request.
2442  */
2443 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2444 					enum obj_request_type type,
2445 					void *data_desc)
2446 {
2447 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2448 	struct rbd_obj_request *obj_request = NULL;
2449 	struct rbd_obj_request *next_obj_request;
2450 	struct bio *bio_list = NULL;
2451 	unsigned int bio_offset = 0;
2452 	struct page **pages = NULL;
2453 	enum obj_operation_type op_type;
2454 	u64 img_offset;
2455 	u64 resid;
2456 
2457 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2458 		(int)type, data_desc);
2459 
2460 	img_offset = img_request->offset;
2461 	resid = img_request->length;
2462 	rbd_assert(resid > 0);
2463 	op_type = rbd_img_request_op_type(img_request);
2464 
2465 	if (type == OBJ_REQUEST_BIO) {
2466 		bio_list = data_desc;
2467 		rbd_assert(img_offset ==
2468 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2469 	} else if (type == OBJ_REQUEST_PAGES) {
2470 		pages = data_desc;
2471 	}
2472 
2473 	while (resid) {
2474 		struct ceph_osd_request *osd_req;
2475 		const char *object_name;
2476 		u64 offset;
2477 		u64 length;
2478 
2479 		object_name = rbd_segment_name(rbd_dev, img_offset);
2480 		if (!object_name)
2481 			goto out_unwind;
2482 		offset = rbd_segment_offset(rbd_dev, img_offset);
2483 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2484 		obj_request = rbd_obj_request_create(object_name,
2485 						offset, length, type);
2486 		/* object request has its own copy of the object name */
2487 		rbd_segment_name_free(object_name);
2488 		if (!obj_request)
2489 			goto out_unwind;
2490 
2491 		/*
2492 		 * set obj_request->img_request before creating the
2493 		 * osd_request so that it gets the right snapc
2494 		 */
2495 		rbd_img_obj_request_add(img_request, obj_request);
2496 
2497 		if (type == OBJ_REQUEST_BIO) {
2498 			unsigned int clone_size;
2499 
2500 			rbd_assert(length <= (u64)UINT_MAX);
2501 			clone_size = (unsigned int)length;
2502 			obj_request->bio_list =
2503 					bio_chain_clone_range(&bio_list,
2504 								&bio_offset,
2505 								clone_size,
2506 								GFP_NOIO);
2507 			if (!obj_request->bio_list)
2508 				goto out_unwind;
2509 		} else if (type == OBJ_REQUEST_PAGES) {
2510 			unsigned int page_count;
2511 
2512 			obj_request->pages = pages;
2513 			page_count = (u32)calc_pages_for(offset, length);
2514 			obj_request->page_count = page_count;
2515 			if ((offset + length) & ~PAGE_MASK)
2516 				page_count--;	/* more on last page */
2517 			pages += page_count;
2518 		}
2519 
2520 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2521 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2522 					obj_request);
2523 		if (!osd_req)
2524 			goto out_unwind;
2525 
2526 		obj_request->osd_req = osd_req;
2527 		obj_request->callback = rbd_img_obj_callback;
2528 		obj_request->img_offset = img_offset;
2529 
2530 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2531 
2532 		rbd_img_request_get(img_request);
2533 
2534 		img_offset += length;
2535 		resid -= length;
2536 	}
2537 
2538 	return 0;
2539 
2540 out_unwind:
2541 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2542 		rbd_img_obj_request_del(img_request, obj_request);
2543 
2544 	return -ENOMEM;
2545 }
2546 
2547 static void
2548 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2549 {
2550 	struct rbd_img_request *img_request;
2551 	struct rbd_device *rbd_dev;
2552 	struct page **pages;
2553 	u32 page_count;
2554 
2555 	dout("%s: obj %p\n", __func__, obj_request);
2556 
2557 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2558 		obj_request->type == OBJ_REQUEST_NODATA);
2559 	rbd_assert(obj_request_img_data_test(obj_request));
2560 	img_request = obj_request->img_request;
2561 	rbd_assert(img_request);
2562 
2563 	rbd_dev = img_request->rbd_dev;
2564 	rbd_assert(rbd_dev);
2565 
2566 	pages = obj_request->copyup_pages;
2567 	rbd_assert(pages != NULL);
2568 	obj_request->copyup_pages = NULL;
2569 	page_count = obj_request->copyup_page_count;
2570 	rbd_assert(page_count);
2571 	obj_request->copyup_page_count = 0;
2572 	ceph_release_page_vector(pages, page_count);
2573 
2574 	/*
2575 	 * We want the transfer count to reflect the size of the
2576 	 * original write request.  There is no such thing as a
2577 	 * successful short write, so if the request was successful
2578 	 * we can just set it to the originally-requested length.
2579 	 */
2580 	if (!obj_request->result)
2581 		obj_request->xferred = obj_request->length;
2582 
2583 	obj_request_done_set(obj_request);
2584 }
2585 
2586 static void
2587 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2588 {
2589 	struct rbd_obj_request *orig_request;
2590 	struct ceph_osd_request *osd_req;
2591 	struct ceph_osd_client *osdc;
2592 	struct rbd_device *rbd_dev;
2593 	struct page **pages;
2594 	enum obj_operation_type op_type;
2595 	u32 page_count;
2596 	int img_result;
2597 	u64 parent_length;
2598 
2599 	rbd_assert(img_request_child_test(img_request));
2600 
2601 	/* First get what we need from the image request */
2602 
2603 	pages = img_request->copyup_pages;
2604 	rbd_assert(pages != NULL);
2605 	img_request->copyup_pages = NULL;
2606 	page_count = img_request->copyup_page_count;
2607 	rbd_assert(page_count);
2608 	img_request->copyup_page_count = 0;
2609 
2610 	orig_request = img_request->obj_request;
2611 	rbd_assert(orig_request != NULL);
2612 	rbd_assert(obj_request_type_valid(orig_request->type));
2613 	img_result = img_request->result;
2614 	parent_length = img_request->length;
2615 	rbd_assert(parent_length == img_request->xferred);
2616 	rbd_img_request_put(img_request);
2617 
2618 	rbd_assert(orig_request->img_request);
2619 	rbd_dev = orig_request->img_request->rbd_dev;
2620 	rbd_assert(rbd_dev);
2621 
2622 	/*
2623 	 * If the overlap has become 0 (most likely because the
2624 	 * image has been flattened) we need to free the pages
2625 	 * and re-submit the original write request.
2626 	 */
2627 	if (!rbd_dev->parent_overlap) {
2628 		struct ceph_osd_client *osdc;
2629 
2630 		ceph_release_page_vector(pages, page_count);
2631 		osdc = &rbd_dev->rbd_client->client->osdc;
2632 		img_result = rbd_obj_request_submit(osdc, orig_request);
2633 		if (!img_result)
2634 			return;
2635 	}
2636 
2637 	if (img_result)
2638 		goto out_err;
2639 
2640 	/*
2641 	 * The original osd request is of no use to use any more.
2642 	 * We need a new one that can hold the three ops in a copyup
2643 	 * request.  Allocate the new copyup osd request for the
2644 	 * original request, and release the old one.
2645 	 */
2646 	img_result = -ENOMEM;
2647 	osd_req = rbd_osd_req_create_copyup(orig_request);
2648 	if (!osd_req)
2649 		goto out_err;
2650 	rbd_osd_req_destroy(orig_request->osd_req);
2651 	orig_request->osd_req = osd_req;
2652 	orig_request->copyup_pages = pages;
2653 	orig_request->copyup_page_count = page_count;
2654 
2655 	/* Initialize the copyup op */
2656 
2657 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2658 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2659 						false, false);
2660 
2661 	/* Add the other op(s) */
2662 
2663 	op_type = rbd_img_request_op_type(orig_request->img_request);
2664 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2665 
2666 	/* All set, send it off. */
2667 
2668 	osdc = &rbd_dev->rbd_client->client->osdc;
2669 	img_result = rbd_obj_request_submit(osdc, orig_request);
2670 	if (!img_result)
2671 		return;
2672 out_err:
2673 	/* Record the error code and complete the request */
2674 
2675 	orig_request->result = img_result;
2676 	orig_request->xferred = 0;
2677 	obj_request_done_set(orig_request);
2678 	rbd_obj_request_complete(orig_request);
2679 }
2680 
2681 /*
2682  * Read from the parent image the range of data that covers the
2683  * entire target of the given object request.  This is used for
2684  * satisfying a layered image write request when the target of an
2685  * object request from the image request does not exist.
2686  *
2687  * A page array big enough to hold the returned data is allocated
2688  * and supplied to rbd_img_request_fill() as the "data descriptor."
2689  * When the read completes, this page array will be transferred to
2690  * the original object request for the copyup operation.
2691  *
2692  * If an error occurs, record it as the result of the original
2693  * object request and mark it done so it gets completed.
2694  */
2695 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2696 {
2697 	struct rbd_img_request *img_request = NULL;
2698 	struct rbd_img_request *parent_request = NULL;
2699 	struct rbd_device *rbd_dev;
2700 	u64 img_offset;
2701 	u64 length;
2702 	struct page **pages = NULL;
2703 	u32 page_count;
2704 	int result;
2705 
2706 	rbd_assert(obj_request_img_data_test(obj_request));
2707 	rbd_assert(obj_request_type_valid(obj_request->type));
2708 
2709 	img_request = obj_request->img_request;
2710 	rbd_assert(img_request != NULL);
2711 	rbd_dev = img_request->rbd_dev;
2712 	rbd_assert(rbd_dev->parent != NULL);
2713 
2714 	/*
2715 	 * Determine the byte range covered by the object in the
2716 	 * child image to which the original request was to be sent.
2717 	 */
2718 	img_offset = obj_request->img_offset - obj_request->offset;
2719 	length = (u64)1 << rbd_dev->header.obj_order;
2720 
2721 	/*
2722 	 * There is no defined parent data beyond the parent
2723 	 * overlap, so limit what we read at that boundary if
2724 	 * necessary.
2725 	 */
2726 	if (img_offset + length > rbd_dev->parent_overlap) {
2727 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2728 		length = rbd_dev->parent_overlap - img_offset;
2729 	}
2730 
2731 	/*
2732 	 * Allocate a page array big enough to receive the data read
2733 	 * from the parent.
2734 	 */
2735 	page_count = (u32)calc_pages_for(0, length);
2736 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2737 	if (IS_ERR(pages)) {
2738 		result = PTR_ERR(pages);
2739 		pages = NULL;
2740 		goto out_err;
2741 	}
2742 
2743 	result = -ENOMEM;
2744 	parent_request = rbd_parent_request_create(obj_request,
2745 						img_offset, length);
2746 	if (!parent_request)
2747 		goto out_err;
2748 
2749 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2750 	if (result)
2751 		goto out_err;
2752 	parent_request->copyup_pages = pages;
2753 	parent_request->copyup_page_count = page_count;
2754 
2755 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2756 	result = rbd_img_request_submit(parent_request);
2757 	if (!result)
2758 		return 0;
2759 
2760 	parent_request->copyup_pages = NULL;
2761 	parent_request->copyup_page_count = 0;
2762 	parent_request->obj_request = NULL;
2763 	rbd_obj_request_put(obj_request);
2764 out_err:
2765 	if (pages)
2766 		ceph_release_page_vector(pages, page_count);
2767 	if (parent_request)
2768 		rbd_img_request_put(parent_request);
2769 	obj_request->result = result;
2770 	obj_request->xferred = 0;
2771 	obj_request_done_set(obj_request);
2772 
2773 	return result;
2774 }
2775 
2776 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2777 {
2778 	struct rbd_obj_request *orig_request;
2779 	struct rbd_device *rbd_dev;
2780 	int result;
2781 
2782 	rbd_assert(!obj_request_img_data_test(obj_request));
2783 
2784 	/*
2785 	 * All we need from the object request is the original
2786 	 * request and the result of the STAT op.  Grab those, then
2787 	 * we're done with the request.
2788 	 */
2789 	orig_request = obj_request->obj_request;
2790 	obj_request->obj_request = NULL;
2791 	rbd_obj_request_put(orig_request);
2792 	rbd_assert(orig_request);
2793 	rbd_assert(orig_request->img_request);
2794 
2795 	result = obj_request->result;
2796 	obj_request->result = 0;
2797 
2798 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2799 		obj_request, orig_request, result,
2800 		obj_request->xferred, obj_request->length);
2801 	rbd_obj_request_put(obj_request);
2802 
2803 	/*
2804 	 * If the overlap has become 0 (most likely because the
2805 	 * image has been flattened) we need to free the pages
2806 	 * and re-submit the original write request.
2807 	 */
2808 	rbd_dev = orig_request->img_request->rbd_dev;
2809 	if (!rbd_dev->parent_overlap) {
2810 		struct ceph_osd_client *osdc;
2811 
2812 		osdc = &rbd_dev->rbd_client->client->osdc;
2813 		result = rbd_obj_request_submit(osdc, orig_request);
2814 		if (!result)
2815 			return;
2816 	}
2817 
2818 	/*
2819 	 * Our only purpose here is to determine whether the object
2820 	 * exists, and we don't want to treat the non-existence as
2821 	 * an error.  If something else comes back, transfer the
2822 	 * error to the original request and complete it now.
2823 	 */
2824 	if (!result) {
2825 		obj_request_existence_set(orig_request, true);
2826 	} else if (result == -ENOENT) {
2827 		obj_request_existence_set(orig_request, false);
2828 	} else if (result) {
2829 		orig_request->result = result;
2830 		goto out;
2831 	}
2832 
2833 	/*
2834 	 * Resubmit the original request now that we have recorded
2835 	 * whether the target object exists.
2836 	 */
2837 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2838 out:
2839 	if (orig_request->result)
2840 		rbd_obj_request_complete(orig_request);
2841 }
2842 
2843 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2844 {
2845 	struct rbd_obj_request *stat_request;
2846 	struct rbd_device *rbd_dev;
2847 	struct ceph_osd_client *osdc;
2848 	struct page **pages = NULL;
2849 	u32 page_count;
2850 	size_t size;
2851 	int ret;
2852 
2853 	/*
2854 	 * The response data for a STAT call consists of:
2855 	 *     le64 length;
2856 	 *     struct {
2857 	 *         le32 tv_sec;
2858 	 *         le32 tv_nsec;
2859 	 *     } mtime;
2860 	 */
2861 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2862 	page_count = (u32)calc_pages_for(0, size);
2863 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2864 	if (IS_ERR(pages))
2865 		return PTR_ERR(pages);
2866 
2867 	ret = -ENOMEM;
2868 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2869 							OBJ_REQUEST_PAGES);
2870 	if (!stat_request)
2871 		goto out;
2872 
2873 	rbd_obj_request_get(obj_request);
2874 	stat_request->obj_request = obj_request;
2875 	stat_request->pages = pages;
2876 	stat_request->page_count = page_count;
2877 
2878 	rbd_assert(obj_request->img_request);
2879 	rbd_dev = obj_request->img_request->rbd_dev;
2880 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2881 						   stat_request);
2882 	if (!stat_request->osd_req)
2883 		goto out;
2884 	stat_request->callback = rbd_img_obj_exists_callback;
2885 
2886 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2887 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2888 					false, false);
2889 	rbd_osd_req_format_read(stat_request);
2890 
2891 	osdc = &rbd_dev->rbd_client->client->osdc;
2892 	ret = rbd_obj_request_submit(osdc, stat_request);
2893 out:
2894 	if (ret)
2895 		rbd_obj_request_put(obj_request);
2896 
2897 	return ret;
2898 }
2899 
2900 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2901 {
2902 	struct rbd_img_request *img_request;
2903 	struct rbd_device *rbd_dev;
2904 
2905 	rbd_assert(obj_request_img_data_test(obj_request));
2906 
2907 	img_request = obj_request->img_request;
2908 	rbd_assert(img_request);
2909 	rbd_dev = img_request->rbd_dev;
2910 
2911 	/* Reads */
2912 	if (!img_request_write_test(img_request) &&
2913 	    !img_request_discard_test(img_request))
2914 		return true;
2915 
2916 	/* Non-layered writes */
2917 	if (!img_request_layered_test(img_request))
2918 		return true;
2919 
2920 	/*
2921 	 * Layered writes outside of the parent overlap range don't
2922 	 * share any data with the parent.
2923 	 */
2924 	if (!obj_request_overlaps_parent(obj_request))
2925 		return true;
2926 
2927 	/*
2928 	 * Entire-object layered writes - we will overwrite whatever
2929 	 * parent data there is anyway.
2930 	 */
2931 	if (!obj_request->offset &&
2932 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2933 		return true;
2934 
2935 	/*
2936 	 * If the object is known to already exist, its parent data has
2937 	 * already been copied.
2938 	 */
2939 	if (obj_request_known_test(obj_request) &&
2940 	    obj_request_exists_test(obj_request))
2941 		return true;
2942 
2943 	return false;
2944 }
2945 
2946 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2947 {
2948 	if (img_obj_request_simple(obj_request)) {
2949 		struct rbd_device *rbd_dev;
2950 		struct ceph_osd_client *osdc;
2951 
2952 		rbd_dev = obj_request->img_request->rbd_dev;
2953 		osdc = &rbd_dev->rbd_client->client->osdc;
2954 
2955 		return rbd_obj_request_submit(osdc, obj_request);
2956 	}
2957 
2958 	/*
2959 	 * It's a layered write.  The target object might exist but
2960 	 * we may not know that yet.  If we know it doesn't exist,
2961 	 * start by reading the data for the full target object from
2962 	 * the parent so we can use it for a copyup to the target.
2963 	 */
2964 	if (obj_request_known_test(obj_request))
2965 		return rbd_img_obj_parent_read_full(obj_request);
2966 
2967 	/* We don't know whether the target exists.  Go find out. */
2968 
2969 	return rbd_img_obj_exists_submit(obj_request);
2970 }
2971 
2972 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2973 {
2974 	struct rbd_obj_request *obj_request;
2975 	struct rbd_obj_request *next_obj_request;
2976 
2977 	dout("%s: img %p\n", __func__, img_request);
2978 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2979 		int ret;
2980 
2981 		ret = rbd_img_obj_request_submit(obj_request);
2982 		if (ret)
2983 			return ret;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2990 {
2991 	struct rbd_obj_request *obj_request;
2992 	struct rbd_device *rbd_dev;
2993 	u64 obj_end;
2994 	u64 img_xferred;
2995 	int img_result;
2996 
2997 	rbd_assert(img_request_child_test(img_request));
2998 
2999 	/* First get what we need from the image request and release it */
3000 
3001 	obj_request = img_request->obj_request;
3002 	img_xferred = img_request->xferred;
3003 	img_result = img_request->result;
3004 	rbd_img_request_put(img_request);
3005 
3006 	/*
3007 	 * If the overlap has become 0 (most likely because the
3008 	 * image has been flattened) we need to re-submit the
3009 	 * original request.
3010 	 */
3011 	rbd_assert(obj_request);
3012 	rbd_assert(obj_request->img_request);
3013 	rbd_dev = obj_request->img_request->rbd_dev;
3014 	if (!rbd_dev->parent_overlap) {
3015 		struct ceph_osd_client *osdc;
3016 
3017 		osdc = &rbd_dev->rbd_client->client->osdc;
3018 		img_result = rbd_obj_request_submit(osdc, obj_request);
3019 		if (!img_result)
3020 			return;
3021 	}
3022 
3023 	obj_request->result = img_result;
3024 	if (obj_request->result)
3025 		goto out;
3026 
3027 	/*
3028 	 * We need to zero anything beyond the parent overlap
3029 	 * boundary.  Since rbd_img_obj_request_read_callback()
3030 	 * will zero anything beyond the end of a short read, an
3031 	 * easy way to do this is to pretend the data from the
3032 	 * parent came up short--ending at the overlap boundary.
3033 	 */
3034 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3035 	obj_end = obj_request->img_offset + obj_request->length;
3036 	if (obj_end > rbd_dev->parent_overlap) {
3037 		u64 xferred = 0;
3038 
3039 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3040 			xferred = rbd_dev->parent_overlap -
3041 					obj_request->img_offset;
3042 
3043 		obj_request->xferred = min(img_xferred, xferred);
3044 	} else {
3045 		obj_request->xferred = img_xferred;
3046 	}
3047 out:
3048 	rbd_img_obj_request_read_callback(obj_request);
3049 	rbd_obj_request_complete(obj_request);
3050 }
3051 
3052 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3053 {
3054 	struct rbd_img_request *img_request;
3055 	int result;
3056 
3057 	rbd_assert(obj_request_img_data_test(obj_request));
3058 	rbd_assert(obj_request->img_request != NULL);
3059 	rbd_assert(obj_request->result == (s32) -ENOENT);
3060 	rbd_assert(obj_request_type_valid(obj_request->type));
3061 
3062 	/* rbd_read_finish(obj_request, obj_request->length); */
3063 	img_request = rbd_parent_request_create(obj_request,
3064 						obj_request->img_offset,
3065 						obj_request->length);
3066 	result = -ENOMEM;
3067 	if (!img_request)
3068 		goto out_err;
3069 
3070 	if (obj_request->type == OBJ_REQUEST_BIO)
3071 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3072 						obj_request->bio_list);
3073 	else
3074 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3075 						obj_request->pages);
3076 	if (result)
3077 		goto out_err;
3078 
3079 	img_request->callback = rbd_img_parent_read_callback;
3080 	result = rbd_img_request_submit(img_request);
3081 	if (result)
3082 		goto out_err;
3083 
3084 	return;
3085 out_err:
3086 	if (img_request)
3087 		rbd_img_request_put(img_request);
3088 	obj_request->result = result;
3089 	obj_request->xferred = 0;
3090 	obj_request_done_set(obj_request);
3091 }
3092 
3093 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3094 {
3095 	struct rbd_obj_request *obj_request;
3096 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3097 	int ret;
3098 
3099 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3100 							OBJ_REQUEST_NODATA);
3101 	if (!obj_request)
3102 		return -ENOMEM;
3103 
3104 	ret = -ENOMEM;
3105 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3106 						  obj_request);
3107 	if (!obj_request->osd_req)
3108 		goto out;
3109 
3110 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3111 					notify_id, 0, 0);
3112 	rbd_osd_req_format_read(obj_request);
3113 
3114 	ret = rbd_obj_request_submit(osdc, obj_request);
3115 	if (ret)
3116 		goto out;
3117 	ret = rbd_obj_request_wait(obj_request);
3118 out:
3119 	rbd_obj_request_put(obj_request);
3120 
3121 	return ret;
3122 }
3123 
3124 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3125 {
3126 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3127 	int ret;
3128 
3129 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3130 		rbd_dev->header_name, (unsigned long long)notify_id,
3131 		(unsigned int)opcode);
3132 
3133 	/*
3134 	 * Until adequate refresh error handling is in place, there is
3135 	 * not much we can do here, except warn.
3136 	 *
3137 	 * See http://tracker.ceph.com/issues/5040
3138 	 */
3139 	ret = rbd_dev_refresh(rbd_dev);
3140 	if (ret)
3141 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3142 
3143 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3144 	if (ret)
3145 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3146 }
3147 
3148 /*
3149  * Send a (un)watch request and wait for the ack.  Return a request
3150  * with a ref held on success or error.
3151  */
3152 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3153 						struct rbd_device *rbd_dev,
3154 						bool watch)
3155 {
3156 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3157 	struct ceph_options *opts = osdc->client->options;
3158 	struct rbd_obj_request *obj_request;
3159 	int ret;
3160 
3161 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3162 					     OBJ_REQUEST_NODATA);
3163 	if (!obj_request)
3164 		return ERR_PTR(-ENOMEM);
3165 
3166 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3167 						  obj_request);
3168 	if (!obj_request->osd_req) {
3169 		ret = -ENOMEM;
3170 		goto out;
3171 	}
3172 
3173 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3174 			      rbd_dev->watch_event->cookie, 0, watch);
3175 	rbd_osd_req_format_write(obj_request);
3176 
3177 	if (watch)
3178 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3179 
3180 	ret = rbd_obj_request_submit(osdc, obj_request);
3181 	if (ret)
3182 		goto out;
3183 
3184 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3185 	if (ret)
3186 		goto out;
3187 
3188 	ret = obj_request->result;
3189 	if (ret) {
3190 		if (watch)
3191 			rbd_obj_request_end(obj_request);
3192 		goto out;
3193 	}
3194 
3195 	return obj_request;
3196 
3197 out:
3198 	rbd_obj_request_put(obj_request);
3199 	return ERR_PTR(ret);
3200 }
3201 
3202 /*
3203  * Initiate a watch request, synchronously.
3204  */
3205 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3206 {
3207 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3208 	struct rbd_obj_request *obj_request;
3209 	int ret;
3210 
3211 	rbd_assert(!rbd_dev->watch_event);
3212 	rbd_assert(!rbd_dev->watch_request);
3213 
3214 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3215 				     &rbd_dev->watch_event);
3216 	if (ret < 0)
3217 		return ret;
3218 
3219 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3220 	if (IS_ERR(obj_request)) {
3221 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3222 		rbd_dev->watch_event = NULL;
3223 		return PTR_ERR(obj_request);
3224 	}
3225 
3226 	/*
3227 	 * A watch request is set to linger, so the underlying osd
3228 	 * request won't go away until we unregister it.  We retain
3229 	 * a pointer to the object request during that time (in
3230 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3231 	 * We'll drop that reference after we've unregistered it in
3232 	 * rbd_dev_header_unwatch_sync().
3233 	 */
3234 	rbd_dev->watch_request = obj_request;
3235 
3236 	return 0;
3237 }
3238 
3239 /*
3240  * Tear down a watch request, synchronously.
3241  */
3242 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3243 {
3244 	struct rbd_obj_request *obj_request;
3245 
3246 	rbd_assert(rbd_dev->watch_event);
3247 	rbd_assert(rbd_dev->watch_request);
3248 
3249 	rbd_obj_request_end(rbd_dev->watch_request);
3250 	rbd_obj_request_put(rbd_dev->watch_request);
3251 	rbd_dev->watch_request = NULL;
3252 
3253 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3254 	if (!IS_ERR(obj_request))
3255 		rbd_obj_request_put(obj_request);
3256 	else
3257 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3258 			 PTR_ERR(obj_request));
3259 
3260 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3261 	rbd_dev->watch_event = NULL;
3262 
3263 	dout("%s flushing notifies\n", __func__);
3264 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3265 }
3266 
3267 /*
3268  * Synchronous osd object method call.  Returns the number of bytes
3269  * returned in the outbound buffer, or a negative error code.
3270  */
3271 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3272 			     const char *object_name,
3273 			     const char *class_name,
3274 			     const char *method_name,
3275 			     const void *outbound,
3276 			     size_t outbound_size,
3277 			     void *inbound,
3278 			     size_t inbound_size)
3279 {
3280 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3281 	struct rbd_obj_request *obj_request;
3282 	struct page **pages;
3283 	u32 page_count;
3284 	int ret;
3285 
3286 	/*
3287 	 * Method calls are ultimately read operations.  The result
3288 	 * should placed into the inbound buffer provided.  They
3289 	 * also supply outbound data--parameters for the object
3290 	 * method.  Currently if this is present it will be a
3291 	 * snapshot id.
3292 	 */
3293 	page_count = (u32)calc_pages_for(0, inbound_size);
3294 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3295 	if (IS_ERR(pages))
3296 		return PTR_ERR(pages);
3297 
3298 	ret = -ENOMEM;
3299 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3300 							OBJ_REQUEST_PAGES);
3301 	if (!obj_request)
3302 		goto out;
3303 
3304 	obj_request->pages = pages;
3305 	obj_request->page_count = page_count;
3306 
3307 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3308 						  obj_request);
3309 	if (!obj_request->osd_req)
3310 		goto out;
3311 
3312 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3313 					class_name, method_name);
3314 	if (outbound_size) {
3315 		struct ceph_pagelist *pagelist;
3316 
3317 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3318 		if (!pagelist)
3319 			goto out;
3320 
3321 		ceph_pagelist_init(pagelist);
3322 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3323 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3324 						pagelist);
3325 	}
3326 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3327 					obj_request->pages, inbound_size,
3328 					0, false, false);
3329 	rbd_osd_req_format_read(obj_request);
3330 
3331 	ret = rbd_obj_request_submit(osdc, obj_request);
3332 	if (ret)
3333 		goto out;
3334 	ret = rbd_obj_request_wait(obj_request);
3335 	if (ret)
3336 		goto out;
3337 
3338 	ret = obj_request->result;
3339 	if (ret < 0)
3340 		goto out;
3341 
3342 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3343 	ret = (int)obj_request->xferred;
3344 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3345 out:
3346 	if (obj_request)
3347 		rbd_obj_request_put(obj_request);
3348 	else
3349 		ceph_release_page_vector(pages, page_count);
3350 
3351 	return ret;
3352 }
3353 
3354 static void rbd_queue_workfn(struct work_struct *work)
3355 {
3356 	struct request *rq = blk_mq_rq_from_pdu(work);
3357 	struct rbd_device *rbd_dev = rq->q->queuedata;
3358 	struct rbd_img_request *img_request;
3359 	struct ceph_snap_context *snapc = NULL;
3360 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3361 	u64 length = blk_rq_bytes(rq);
3362 	enum obj_operation_type op_type;
3363 	u64 mapping_size;
3364 	int result;
3365 
3366 	if (rq->cmd_type != REQ_TYPE_FS) {
3367 		dout("%s: non-fs request type %d\n", __func__,
3368 			(int) rq->cmd_type);
3369 		result = -EIO;
3370 		goto err;
3371 	}
3372 
3373 	if (rq->cmd_flags & REQ_DISCARD)
3374 		op_type = OBJ_OP_DISCARD;
3375 	else if (rq->cmd_flags & REQ_WRITE)
3376 		op_type = OBJ_OP_WRITE;
3377 	else
3378 		op_type = OBJ_OP_READ;
3379 
3380 	/* Ignore/skip any zero-length requests */
3381 
3382 	if (!length) {
3383 		dout("%s: zero-length request\n", __func__);
3384 		result = 0;
3385 		goto err_rq;
3386 	}
3387 
3388 	/* Only reads are allowed to a read-only device */
3389 
3390 	if (op_type != OBJ_OP_READ) {
3391 		if (rbd_dev->mapping.read_only) {
3392 			result = -EROFS;
3393 			goto err_rq;
3394 		}
3395 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3396 	}
3397 
3398 	/*
3399 	 * Quit early if the mapped snapshot no longer exists.  It's
3400 	 * still possible the snapshot will have disappeared by the
3401 	 * time our request arrives at the osd, but there's no sense in
3402 	 * sending it if we already know.
3403 	 */
3404 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3405 		dout("request for non-existent snapshot");
3406 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3407 		result = -ENXIO;
3408 		goto err_rq;
3409 	}
3410 
3411 	if (offset && length > U64_MAX - offset + 1) {
3412 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3413 			 length);
3414 		result = -EINVAL;
3415 		goto err_rq;	/* Shouldn't happen */
3416 	}
3417 
3418 	blk_mq_start_request(rq);
3419 
3420 	down_read(&rbd_dev->header_rwsem);
3421 	mapping_size = rbd_dev->mapping.size;
3422 	if (op_type != OBJ_OP_READ) {
3423 		snapc = rbd_dev->header.snapc;
3424 		ceph_get_snap_context(snapc);
3425 	}
3426 	up_read(&rbd_dev->header_rwsem);
3427 
3428 	if (offset + length > mapping_size) {
3429 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3430 			 length, mapping_size);
3431 		result = -EIO;
3432 		goto err_rq;
3433 	}
3434 
3435 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3436 					     snapc);
3437 	if (!img_request) {
3438 		result = -ENOMEM;
3439 		goto err_rq;
3440 	}
3441 	img_request->rq = rq;
3442 	snapc = NULL; /* img_request consumes a ref */
3443 
3444 	if (op_type == OBJ_OP_DISCARD)
3445 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3446 					      NULL);
3447 	else
3448 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3449 					      rq->bio);
3450 	if (result)
3451 		goto err_img_request;
3452 
3453 	result = rbd_img_request_submit(img_request);
3454 	if (result)
3455 		goto err_img_request;
3456 
3457 	return;
3458 
3459 err_img_request:
3460 	rbd_img_request_put(img_request);
3461 err_rq:
3462 	if (result)
3463 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3464 			 obj_op_name(op_type), length, offset, result);
3465 	ceph_put_snap_context(snapc);
3466 err:
3467 	blk_mq_end_request(rq, result);
3468 }
3469 
3470 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3471 		const struct blk_mq_queue_data *bd)
3472 {
3473 	struct request *rq = bd->rq;
3474 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3475 
3476 	queue_work(rbd_wq, work);
3477 	return BLK_MQ_RQ_QUEUE_OK;
3478 }
3479 
3480 static void rbd_free_disk(struct rbd_device *rbd_dev)
3481 {
3482 	struct gendisk *disk = rbd_dev->disk;
3483 
3484 	if (!disk)
3485 		return;
3486 
3487 	rbd_dev->disk = NULL;
3488 	if (disk->flags & GENHD_FL_UP) {
3489 		del_gendisk(disk);
3490 		if (disk->queue)
3491 			blk_cleanup_queue(disk->queue);
3492 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3493 	}
3494 	put_disk(disk);
3495 }
3496 
3497 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3498 				const char *object_name,
3499 				u64 offset, u64 length, void *buf)
3500 
3501 {
3502 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3503 	struct rbd_obj_request *obj_request;
3504 	struct page **pages = NULL;
3505 	u32 page_count;
3506 	size_t size;
3507 	int ret;
3508 
3509 	page_count = (u32) calc_pages_for(offset, length);
3510 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3511 	if (IS_ERR(pages))
3512 		return PTR_ERR(pages);
3513 
3514 	ret = -ENOMEM;
3515 	obj_request = rbd_obj_request_create(object_name, offset, length,
3516 							OBJ_REQUEST_PAGES);
3517 	if (!obj_request)
3518 		goto out;
3519 
3520 	obj_request->pages = pages;
3521 	obj_request->page_count = page_count;
3522 
3523 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3524 						  obj_request);
3525 	if (!obj_request->osd_req)
3526 		goto out;
3527 
3528 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3529 					offset, length, 0, 0);
3530 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3531 					obj_request->pages,
3532 					obj_request->length,
3533 					obj_request->offset & ~PAGE_MASK,
3534 					false, false);
3535 	rbd_osd_req_format_read(obj_request);
3536 
3537 	ret = rbd_obj_request_submit(osdc, obj_request);
3538 	if (ret)
3539 		goto out;
3540 	ret = rbd_obj_request_wait(obj_request);
3541 	if (ret)
3542 		goto out;
3543 
3544 	ret = obj_request->result;
3545 	if (ret < 0)
3546 		goto out;
3547 
3548 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3549 	size = (size_t) obj_request->xferred;
3550 	ceph_copy_from_page_vector(pages, buf, 0, size);
3551 	rbd_assert(size <= (size_t)INT_MAX);
3552 	ret = (int)size;
3553 out:
3554 	if (obj_request)
3555 		rbd_obj_request_put(obj_request);
3556 	else
3557 		ceph_release_page_vector(pages, page_count);
3558 
3559 	return ret;
3560 }
3561 
3562 /*
3563  * Read the complete header for the given rbd device.  On successful
3564  * return, the rbd_dev->header field will contain up-to-date
3565  * information about the image.
3566  */
3567 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3568 {
3569 	struct rbd_image_header_ondisk *ondisk = NULL;
3570 	u32 snap_count = 0;
3571 	u64 names_size = 0;
3572 	u32 want_count;
3573 	int ret;
3574 
3575 	/*
3576 	 * The complete header will include an array of its 64-bit
3577 	 * snapshot ids, followed by the names of those snapshots as
3578 	 * a contiguous block of NUL-terminated strings.  Note that
3579 	 * the number of snapshots could change by the time we read
3580 	 * it in, in which case we re-read it.
3581 	 */
3582 	do {
3583 		size_t size;
3584 
3585 		kfree(ondisk);
3586 
3587 		size = sizeof (*ondisk);
3588 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3589 		size += names_size;
3590 		ondisk = kmalloc(size, GFP_KERNEL);
3591 		if (!ondisk)
3592 			return -ENOMEM;
3593 
3594 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3595 				       0, size, ondisk);
3596 		if (ret < 0)
3597 			goto out;
3598 		if ((size_t)ret < size) {
3599 			ret = -ENXIO;
3600 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3601 				size, ret);
3602 			goto out;
3603 		}
3604 		if (!rbd_dev_ondisk_valid(ondisk)) {
3605 			ret = -ENXIO;
3606 			rbd_warn(rbd_dev, "invalid header");
3607 			goto out;
3608 		}
3609 
3610 		names_size = le64_to_cpu(ondisk->snap_names_len);
3611 		want_count = snap_count;
3612 		snap_count = le32_to_cpu(ondisk->snap_count);
3613 	} while (snap_count != want_count);
3614 
3615 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3616 out:
3617 	kfree(ondisk);
3618 
3619 	return ret;
3620 }
3621 
3622 /*
3623  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3624  * has disappeared from the (just updated) snapshot context.
3625  */
3626 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3627 {
3628 	u64 snap_id;
3629 
3630 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3631 		return;
3632 
3633 	snap_id = rbd_dev->spec->snap_id;
3634 	if (snap_id == CEPH_NOSNAP)
3635 		return;
3636 
3637 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3638 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3639 }
3640 
3641 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3642 {
3643 	sector_t size;
3644 
3645 	/*
3646 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3647 	 * try to update its size.  If REMOVING is set, updating size
3648 	 * is just useless work since the device can't be opened.
3649 	 */
3650 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3651 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3652 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3653 		dout("setting size to %llu sectors", (unsigned long long)size);
3654 		set_capacity(rbd_dev->disk, size);
3655 		revalidate_disk(rbd_dev->disk);
3656 	}
3657 }
3658 
3659 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3660 {
3661 	u64 mapping_size;
3662 	int ret;
3663 
3664 	down_write(&rbd_dev->header_rwsem);
3665 	mapping_size = rbd_dev->mapping.size;
3666 
3667 	ret = rbd_dev_header_info(rbd_dev);
3668 	if (ret)
3669 		goto out;
3670 
3671 	/*
3672 	 * If there is a parent, see if it has disappeared due to the
3673 	 * mapped image getting flattened.
3674 	 */
3675 	if (rbd_dev->parent) {
3676 		ret = rbd_dev_v2_parent_info(rbd_dev);
3677 		if (ret)
3678 			goto out;
3679 	}
3680 
3681 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3682 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3683 	} else {
3684 		/* validate mapped snapshot's EXISTS flag */
3685 		rbd_exists_validate(rbd_dev);
3686 	}
3687 
3688 out:
3689 	up_write(&rbd_dev->header_rwsem);
3690 	if (!ret && mapping_size != rbd_dev->mapping.size)
3691 		rbd_dev_update_size(rbd_dev);
3692 
3693 	return ret;
3694 }
3695 
3696 static int rbd_init_request(void *data, struct request *rq,
3697 		unsigned int hctx_idx, unsigned int request_idx,
3698 		unsigned int numa_node)
3699 {
3700 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3701 
3702 	INIT_WORK(work, rbd_queue_workfn);
3703 	return 0;
3704 }
3705 
3706 static struct blk_mq_ops rbd_mq_ops = {
3707 	.queue_rq	= rbd_queue_rq,
3708 	.map_queue	= blk_mq_map_queue,
3709 	.init_request	= rbd_init_request,
3710 };
3711 
3712 static int rbd_init_disk(struct rbd_device *rbd_dev)
3713 {
3714 	struct gendisk *disk;
3715 	struct request_queue *q;
3716 	u64 segment_size;
3717 	int err;
3718 
3719 	/* create gendisk info */
3720 	disk = alloc_disk(single_major ?
3721 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3722 			  RBD_MINORS_PER_MAJOR);
3723 	if (!disk)
3724 		return -ENOMEM;
3725 
3726 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3727 		 rbd_dev->dev_id);
3728 	disk->major = rbd_dev->major;
3729 	disk->first_minor = rbd_dev->minor;
3730 	if (single_major)
3731 		disk->flags |= GENHD_FL_EXT_DEVT;
3732 	disk->fops = &rbd_bd_ops;
3733 	disk->private_data = rbd_dev;
3734 
3735 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3736 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3737 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3738 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3739 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3740 	rbd_dev->tag_set.nr_hw_queues = 1;
3741 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3742 
3743 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3744 	if (err)
3745 		goto out_disk;
3746 
3747 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3748 	if (IS_ERR(q)) {
3749 		err = PTR_ERR(q);
3750 		goto out_tag_set;
3751 	}
3752 
3753 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3754 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3755 
3756 	/* set io sizes to object size */
3757 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3758 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3759 	q->limits.max_sectors = queue_max_hw_sectors(q);
3760 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3761 	blk_queue_max_segment_size(q, segment_size);
3762 	blk_queue_io_min(q, segment_size);
3763 	blk_queue_io_opt(q, segment_size);
3764 
3765 	/* enable the discard support */
3766 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3767 	q->limits.discard_granularity = segment_size;
3768 	q->limits.discard_alignment = segment_size;
3769 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3770 	q->limits.discard_zeroes_data = 1;
3771 
3772 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3773 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3774 
3775 	disk->queue = q;
3776 
3777 	q->queuedata = rbd_dev;
3778 
3779 	rbd_dev->disk = disk;
3780 
3781 	return 0;
3782 out_tag_set:
3783 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3784 out_disk:
3785 	put_disk(disk);
3786 	return err;
3787 }
3788 
3789 /*
3790   sysfs
3791 */
3792 
3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3794 {
3795 	return container_of(dev, struct rbd_device, dev);
3796 }
3797 
3798 static ssize_t rbd_size_show(struct device *dev,
3799 			     struct device_attribute *attr, char *buf)
3800 {
3801 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3802 
3803 	return sprintf(buf, "%llu\n",
3804 		(unsigned long long)rbd_dev->mapping.size);
3805 }
3806 
3807 /*
3808  * Note this shows the features for whatever's mapped, which is not
3809  * necessarily the base image.
3810  */
3811 static ssize_t rbd_features_show(struct device *dev,
3812 			     struct device_attribute *attr, char *buf)
3813 {
3814 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815 
3816 	return sprintf(buf, "0x%016llx\n",
3817 			(unsigned long long)rbd_dev->mapping.features);
3818 }
3819 
3820 static ssize_t rbd_major_show(struct device *dev,
3821 			      struct device_attribute *attr, char *buf)
3822 {
3823 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824 
3825 	if (rbd_dev->major)
3826 		return sprintf(buf, "%d\n", rbd_dev->major);
3827 
3828 	return sprintf(buf, "(none)\n");
3829 }
3830 
3831 static ssize_t rbd_minor_show(struct device *dev,
3832 			      struct device_attribute *attr, char *buf)
3833 {
3834 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835 
3836 	return sprintf(buf, "%d\n", rbd_dev->minor);
3837 }
3838 
3839 static ssize_t rbd_client_id_show(struct device *dev,
3840 				  struct device_attribute *attr, char *buf)
3841 {
3842 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843 
3844 	return sprintf(buf, "client%lld\n",
3845 			ceph_client_id(rbd_dev->rbd_client->client));
3846 }
3847 
3848 static ssize_t rbd_pool_show(struct device *dev,
3849 			     struct device_attribute *attr, char *buf)
3850 {
3851 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852 
3853 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3854 }
3855 
3856 static ssize_t rbd_pool_id_show(struct device *dev,
3857 			     struct device_attribute *attr, char *buf)
3858 {
3859 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860 
3861 	return sprintf(buf, "%llu\n",
3862 			(unsigned long long) rbd_dev->spec->pool_id);
3863 }
3864 
3865 static ssize_t rbd_name_show(struct device *dev,
3866 			     struct device_attribute *attr, char *buf)
3867 {
3868 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869 
3870 	if (rbd_dev->spec->image_name)
3871 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3872 
3873 	return sprintf(buf, "(unknown)\n");
3874 }
3875 
3876 static ssize_t rbd_image_id_show(struct device *dev,
3877 			     struct device_attribute *attr, char *buf)
3878 {
3879 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880 
3881 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3882 }
3883 
3884 /*
3885  * Shows the name of the currently-mapped snapshot (or
3886  * RBD_SNAP_HEAD_NAME for the base image).
3887  */
3888 static ssize_t rbd_snap_show(struct device *dev,
3889 			     struct device_attribute *attr,
3890 			     char *buf)
3891 {
3892 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893 
3894 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3895 }
3896 
3897 /*
3898  * For a v2 image, shows the chain of parent images, separated by empty
3899  * lines.  For v1 images or if there is no parent, shows "(no parent
3900  * image)".
3901  */
3902 static ssize_t rbd_parent_show(struct device *dev,
3903 			       struct device_attribute *attr,
3904 			       char *buf)
3905 {
3906 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3907 	ssize_t count = 0;
3908 
3909 	if (!rbd_dev->parent)
3910 		return sprintf(buf, "(no parent image)\n");
3911 
3912 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3913 		struct rbd_spec *spec = rbd_dev->parent_spec;
3914 
3915 		count += sprintf(&buf[count], "%s"
3916 			    "pool_id %llu\npool_name %s\n"
3917 			    "image_id %s\nimage_name %s\n"
3918 			    "snap_id %llu\nsnap_name %s\n"
3919 			    "overlap %llu\n",
3920 			    !count ? "" : "\n", /* first? */
3921 			    spec->pool_id, spec->pool_name,
3922 			    spec->image_id, spec->image_name ?: "(unknown)",
3923 			    spec->snap_id, spec->snap_name,
3924 			    rbd_dev->parent_overlap);
3925 	}
3926 
3927 	return count;
3928 }
3929 
3930 static ssize_t rbd_image_refresh(struct device *dev,
3931 				 struct device_attribute *attr,
3932 				 const char *buf,
3933 				 size_t size)
3934 {
3935 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3936 	int ret;
3937 
3938 	ret = rbd_dev_refresh(rbd_dev);
3939 	if (ret)
3940 		return ret;
3941 
3942 	return size;
3943 }
3944 
3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3957 
3958 static struct attribute *rbd_attrs[] = {
3959 	&dev_attr_size.attr,
3960 	&dev_attr_features.attr,
3961 	&dev_attr_major.attr,
3962 	&dev_attr_minor.attr,
3963 	&dev_attr_client_id.attr,
3964 	&dev_attr_pool.attr,
3965 	&dev_attr_pool_id.attr,
3966 	&dev_attr_name.attr,
3967 	&dev_attr_image_id.attr,
3968 	&dev_attr_current_snap.attr,
3969 	&dev_attr_parent.attr,
3970 	&dev_attr_refresh.attr,
3971 	NULL
3972 };
3973 
3974 static struct attribute_group rbd_attr_group = {
3975 	.attrs = rbd_attrs,
3976 };
3977 
3978 static const struct attribute_group *rbd_attr_groups[] = {
3979 	&rbd_attr_group,
3980 	NULL
3981 };
3982 
3983 static void rbd_dev_release(struct device *dev);
3984 
3985 static struct device_type rbd_device_type = {
3986 	.name		= "rbd",
3987 	.groups		= rbd_attr_groups,
3988 	.release	= rbd_dev_release,
3989 };
3990 
3991 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3992 {
3993 	kref_get(&spec->kref);
3994 
3995 	return spec;
3996 }
3997 
3998 static void rbd_spec_free(struct kref *kref);
3999 static void rbd_spec_put(struct rbd_spec *spec)
4000 {
4001 	if (spec)
4002 		kref_put(&spec->kref, rbd_spec_free);
4003 }
4004 
4005 static struct rbd_spec *rbd_spec_alloc(void)
4006 {
4007 	struct rbd_spec *spec;
4008 
4009 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4010 	if (!spec)
4011 		return NULL;
4012 
4013 	spec->pool_id = CEPH_NOPOOL;
4014 	spec->snap_id = CEPH_NOSNAP;
4015 	kref_init(&spec->kref);
4016 
4017 	return spec;
4018 }
4019 
4020 static void rbd_spec_free(struct kref *kref)
4021 {
4022 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4023 
4024 	kfree(spec->pool_name);
4025 	kfree(spec->image_id);
4026 	kfree(spec->image_name);
4027 	kfree(spec->snap_name);
4028 	kfree(spec);
4029 }
4030 
4031 static void rbd_dev_release(struct device *dev)
4032 {
4033 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4034 	bool need_put = !!rbd_dev->opts;
4035 
4036 	rbd_put_client(rbd_dev->rbd_client);
4037 	rbd_spec_put(rbd_dev->spec);
4038 	kfree(rbd_dev->opts);
4039 	kfree(rbd_dev);
4040 
4041 	/*
4042 	 * This is racy, but way better than putting module outside of
4043 	 * the release callback.  The race window is pretty small, so
4044 	 * doing something similar to dm (dm-builtin.c) is overkill.
4045 	 */
4046 	if (need_put)
4047 		module_put(THIS_MODULE);
4048 }
4049 
4050 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4051 					 struct rbd_spec *spec,
4052 					 struct rbd_options *opts)
4053 {
4054 	struct rbd_device *rbd_dev;
4055 
4056 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4057 	if (!rbd_dev)
4058 		return NULL;
4059 
4060 	spin_lock_init(&rbd_dev->lock);
4061 	rbd_dev->flags = 0;
4062 	atomic_set(&rbd_dev->parent_ref, 0);
4063 	INIT_LIST_HEAD(&rbd_dev->node);
4064 	init_rwsem(&rbd_dev->header_rwsem);
4065 
4066 	rbd_dev->dev.bus = &rbd_bus_type;
4067 	rbd_dev->dev.type = &rbd_device_type;
4068 	rbd_dev->dev.parent = &rbd_root_dev;
4069 	device_initialize(&rbd_dev->dev);
4070 
4071 	rbd_dev->rbd_client = rbdc;
4072 	rbd_dev->spec = spec;
4073 	rbd_dev->opts = opts;
4074 
4075 	/* Initialize the layout used for all rbd requests */
4076 
4077 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4078 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4079 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4080 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4081 
4082 	/*
4083 	 * If this is a mapping rbd_dev (as opposed to a parent one),
4084 	 * pin our module.  We have a ref from do_rbd_add(), so use
4085 	 * __module_get().
4086 	 */
4087 	if (rbd_dev->opts)
4088 		__module_get(THIS_MODULE);
4089 
4090 	return rbd_dev;
4091 }
4092 
4093 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4094 {
4095 	if (rbd_dev)
4096 		put_device(&rbd_dev->dev);
4097 }
4098 
4099 /*
4100  * Get the size and object order for an image snapshot, or if
4101  * snap_id is CEPH_NOSNAP, gets this information for the base
4102  * image.
4103  */
4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4105 				u8 *order, u64 *snap_size)
4106 {
4107 	__le64 snapid = cpu_to_le64(snap_id);
4108 	int ret;
4109 	struct {
4110 		u8 order;
4111 		__le64 size;
4112 	} __attribute__ ((packed)) size_buf = { 0 };
4113 
4114 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4115 				"rbd", "get_size",
4116 				&snapid, sizeof (snapid),
4117 				&size_buf, sizeof (size_buf));
4118 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4119 	if (ret < 0)
4120 		return ret;
4121 	if (ret < sizeof (size_buf))
4122 		return -ERANGE;
4123 
4124 	if (order) {
4125 		*order = size_buf.order;
4126 		dout("  order %u", (unsigned int)*order);
4127 	}
4128 	*snap_size = le64_to_cpu(size_buf.size);
4129 
4130 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4131 		(unsigned long long)snap_id,
4132 		(unsigned long long)*snap_size);
4133 
4134 	return 0;
4135 }
4136 
4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4138 {
4139 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4140 					&rbd_dev->header.obj_order,
4141 					&rbd_dev->header.image_size);
4142 }
4143 
4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4145 {
4146 	void *reply_buf;
4147 	int ret;
4148 	void *p;
4149 
4150 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4151 	if (!reply_buf)
4152 		return -ENOMEM;
4153 
4154 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155 				"rbd", "get_object_prefix", NULL, 0,
4156 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4157 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 	if (ret < 0)
4159 		goto out;
4160 
4161 	p = reply_buf;
4162 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4163 						p + ret, NULL, GFP_NOIO);
4164 	ret = 0;
4165 
4166 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4167 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4168 		rbd_dev->header.object_prefix = NULL;
4169 	} else {
4170 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4171 	}
4172 out:
4173 	kfree(reply_buf);
4174 
4175 	return ret;
4176 }
4177 
4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4179 		u64 *snap_features)
4180 {
4181 	__le64 snapid = cpu_to_le64(snap_id);
4182 	struct {
4183 		__le64 features;
4184 		__le64 incompat;
4185 	} __attribute__ ((packed)) features_buf = { 0 };
4186 	u64 unsup;
4187 	int ret;
4188 
4189 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4190 				"rbd", "get_features",
4191 				&snapid, sizeof (snapid),
4192 				&features_buf, sizeof (features_buf));
4193 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4194 	if (ret < 0)
4195 		return ret;
4196 	if (ret < sizeof (features_buf))
4197 		return -ERANGE;
4198 
4199 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4200 	if (unsup) {
4201 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4202 			 unsup);
4203 		return -ENXIO;
4204 	}
4205 
4206 	*snap_features = le64_to_cpu(features_buf.features);
4207 
4208 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4209 		(unsigned long long)snap_id,
4210 		(unsigned long long)*snap_features,
4211 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4212 
4213 	return 0;
4214 }
4215 
4216 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4217 {
4218 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4219 						&rbd_dev->header.features);
4220 }
4221 
4222 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4223 {
4224 	struct rbd_spec *parent_spec;
4225 	size_t size;
4226 	void *reply_buf = NULL;
4227 	__le64 snapid;
4228 	void *p;
4229 	void *end;
4230 	u64 pool_id;
4231 	char *image_id;
4232 	u64 snap_id;
4233 	u64 overlap;
4234 	int ret;
4235 
4236 	parent_spec = rbd_spec_alloc();
4237 	if (!parent_spec)
4238 		return -ENOMEM;
4239 
4240 	size = sizeof (__le64) +				/* pool_id */
4241 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4242 		sizeof (__le64) +				/* snap_id */
4243 		sizeof (__le64);				/* overlap */
4244 	reply_buf = kmalloc(size, GFP_KERNEL);
4245 	if (!reply_buf) {
4246 		ret = -ENOMEM;
4247 		goto out_err;
4248 	}
4249 
4250 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4251 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4252 				"rbd", "get_parent",
4253 				&snapid, sizeof (snapid),
4254 				reply_buf, size);
4255 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4256 	if (ret < 0)
4257 		goto out_err;
4258 
4259 	p = reply_buf;
4260 	end = reply_buf + ret;
4261 	ret = -ERANGE;
4262 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4263 	if (pool_id == CEPH_NOPOOL) {
4264 		/*
4265 		 * Either the parent never existed, or we have
4266 		 * record of it but the image got flattened so it no
4267 		 * longer has a parent.  When the parent of a
4268 		 * layered image disappears we immediately set the
4269 		 * overlap to 0.  The effect of this is that all new
4270 		 * requests will be treated as if the image had no
4271 		 * parent.
4272 		 */
4273 		if (rbd_dev->parent_overlap) {
4274 			rbd_dev->parent_overlap = 0;
4275 			rbd_dev_parent_put(rbd_dev);
4276 			pr_info("%s: clone image has been flattened\n",
4277 				rbd_dev->disk->disk_name);
4278 		}
4279 
4280 		goto out;	/* No parent?  No problem. */
4281 	}
4282 
4283 	/* The ceph file layout needs to fit pool id in 32 bits */
4284 
4285 	ret = -EIO;
4286 	if (pool_id > (u64)U32_MAX) {
4287 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4288 			(unsigned long long)pool_id, U32_MAX);
4289 		goto out_err;
4290 	}
4291 
4292 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4293 	if (IS_ERR(image_id)) {
4294 		ret = PTR_ERR(image_id);
4295 		goto out_err;
4296 	}
4297 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4298 	ceph_decode_64_safe(&p, end, overlap, out_err);
4299 
4300 	/*
4301 	 * The parent won't change (except when the clone is
4302 	 * flattened, already handled that).  So we only need to
4303 	 * record the parent spec we have not already done so.
4304 	 */
4305 	if (!rbd_dev->parent_spec) {
4306 		parent_spec->pool_id = pool_id;
4307 		parent_spec->image_id = image_id;
4308 		parent_spec->snap_id = snap_id;
4309 		rbd_dev->parent_spec = parent_spec;
4310 		parent_spec = NULL;	/* rbd_dev now owns this */
4311 	} else {
4312 		kfree(image_id);
4313 	}
4314 
4315 	/*
4316 	 * We always update the parent overlap.  If it's zero we issue
4317 	 * a warning, as we will proceed as if there was no parent.
4318 	 */
4319 	if (!overlap) {
4320 		if (parent_spec) {
4321 			/* refresh, careful to warn just once */
4322 			if (rbd_dev->parent_overlap)
4323 				rbd_warn(rbd_dev,
4324 				    "clone now standalone (overlap became 0)");
4325 		} else {
4326 			/* initial probe */
4327 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4328 		}
4329 	}
4330 	rbd_dev->parent_overlap = overlap;
4331 
4332 out:
4333 	ret = 0;
4334 out_err:
4335 	kfree(reply_buf);
4336 	rbd_spec_put(parent_spec);
4337 
4338 	return ret;
4339 }
4340 
4341 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4342 {
4343 	struct {
4344 		__le64 stripe_unit;
4345 		__le64 stripe_count;
4346 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4347 	size_t size = sizeof (striping_info_buf);
4348 	void *p;
4349 	u64 obj_size;
4350 	u64 stripe_unit;
4351 	u64 stripe_count;
4352 	int ret;
4353 
4354 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4355 				"rbd", "get_stripe_unit_count", NULL, 0,
4356 				(char *)&striping_info_buf, size);
4357 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4358 	if (ret < 0)
4359 		return ret;
4360 	if (ret < size)
4361 		return -ERANGE;
4362 
4363 	/*
4364 	 * We don't actually support the "fancy striping" feature
4365 	 * (STRIPINGV2) yet, but if the striping sizes are the
4366 	 * defaults the behavior is the same as before.  So find
4367 	 * out, and only fail if the image has non-default values.
4368 	 */
4369 	ret = -EINVAL;
4370 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4371 	p = &striping_info_buf;
4372 	stripe_unit = ceph_decode_64(&p);
4373 	if (stripe_unit != obj_size) {
4374 		rbd_warn(rbd_dev, "unsupported stripe unit "
4375 				"(got %llu want %llu)",
4376 				stripe_unit, obj_size);
4377 		return -EINVAL;
4378 	}
4379 	stripe_count = ceph_decode_64(&p);
4380 	if (stripe_count != 1) {
4381 		rbd_warn(rbd_dev, "unsupported stripe count "
4382 				"(got %llu want 1)", stripe_count);
4383 		return -EINVAL;
4384 	}
4385 	rbd_dev->header.stripe_unit = stripe_unit;
4386 	rbd_dev->header.stripe_count = stripe_count;
4387 
4388 	return 0;
4389 }
4390 
4391 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4392 {
4393 	size_t image_id_size;
4394 	char *image_id;
4395 	void *p;
4396 	void *end;
4397 	size_t size;
4398 	void *reply_buf = NULL;
4399 	size_t len = 0;
4400 	char *image_name = NULL;
4401 	int ret;
4402 
4403 	rbd_assert(!rbd_dev->spec->image_name);
4404 
4405 	len = strlen(rbd_dev->spec->image_id);
4406 	image_id_size = sizeof (__le32) + len;
4407 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4408 	if (!image_id)
4409 		return NULL;
4410 
4411 	p = image_id;
4412 	end = image_id + image_id_size;
4413 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4414 
4415 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4416 	reply_buf = kmalloc(size, GFP_KERNEL);
4417 	if (!reply_buf)
4418 		goto out;
4419 
4420 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4421 				"rbd", "dir_get_name",
4422 				image_id, image_id_size,
4423 				reply_buf, size);
4424 	if (ret < 0)
4425 		goto out;
4426 	p = reply_buf;
4427 	end = reply_buf + ret;
4428 
4429 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4430 	if (IS_ERR(image_name))
4431 		image_name = NULL;
4432 	else
4433 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4434 out:
4435 	kfree(reply_buf);
4436 	kfree(image_id);
4437 
4438 	return image_name;
4439 }
4440 
4441 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4442 {
4443 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4444 	const char *snap_name;
4445 	u32 which = 0;
4446 
4447 	/* Skip over names until we find the one we are looking for */
4448 
4449 	snap_name = rbd_dev->header.snap_names;
4450 	while (which < snapc->num_snaps) {
4451 		if (!strcmp(name, snap_name))
4452 			return snapc->snaps[which];
4453 		snap_name += strlen(snap_name) + 1;
4454 		which++;
4455 	}
4456 	return CEPH_NOSNAP;
4457 }
4458 
4459 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4460 {
4461 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4462 	u32 which;
4463 	bool found = false;
4464 	u64 snap_id;
4465 
4466 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4467 		const char *snap_name;
4468 
4469 		snap_id = snapc->snaps[which];
4470 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4471 		if (IS_ERR(snap_name)) {
4472 			/* ignore no-longer existing snapshots */
4473 			if (PTR_ERR(snap_name) == -ENOENT)
4474 				continue;
4475 			else
4476 				break;
4477 		}
4478 		found = !strcmp(name, snap_name);
4479 		kfree(snap_name);
4480 	}
4481 	return found ? snap_id : CEPH_NOSNAP;
4482 }
4483 
4484 /*
4485  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4486  * no snapshot by that name is found, or if an error occurs.
4487  */
4488 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4489 {
4490 	if (rbd_dev->image_format == 1)
4491 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4492 
4493 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4494 }
4495 
4496 /*
4497  * An image being mapped will have everything but the snap id.
4498  */
4499 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4500 {
4501 	struct rbd_spec *spec = rbd_dev->spec;
4502 
4503 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4504 	rbd_assert(spec->image_id && spec->image_name);
4505 	rbd_assert(spec->snap_name);
4506 
4507 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4508 		u64 snap_id;
4509 
4510 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4511 		if (snap_id == CEPH_NOSNAP)
4512 			return -ENOENT;
4513 
4514 		spec->snap_id = snap_id;
4515 	} else {
4516 		spec->snap_id = CEPH_NOSNAP;
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 /*
4523  * A parent image will have all ids but none of the names.
4524  *
4525  * All names in an rbd spec are dynamically allocated.  It's OK if we
4526  * can't figure out the name for an image id.
4527  */
4528 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4529 {
4530 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4531 	struct rbd_spec *spec = rbd_dev->spec;
4532 	const char *pool_name;
4533 	const char *image_name;
4534 	const char *snap_name;
4535 	int ret;
4536 
4537 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4538 	rbd_assert(spec->image_id);
4539 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4540 
4541 	/* Get the pool name; we have to make our own copy of this */
4542 
4543 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4544 	if (!pool_name) {
4545 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4546 		return -EIO;
4547 	}
4548 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4549 	if (!pool_name)
4550 		return -ENOMEM;
4551 
4552 	/* Fetch the image name; tolerate failure here */
4553 
4554 	image_name = rbd_dev_image_name(rbd_dev);
4555 	if (!image_name)
4556 		rbd_warn(rbd_dev, "unable to get image name");
4557 
4558 	/* Fetch the snapshot name */
4559 
4560 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4561 	if (IS_ERR(snap_name)) {
4562 		ret = PTR_ERR(snap_name);
4563 		goto out_err;
4564 	}
4565 
4566 	spec->pool_name = pool_name;
4567 	spec->image_name = image_name;
4568 	spec->snap_name = snap_name;
4569 
4570 	return 0;
4571 
4572 out_err:
4573 	kfree(image_name);
4574 	kfree(pool_name);
4575 	return ret;
4576 }
4577 
4578 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4579 {
4580 	size_t size;
4581 	int ret;
4582 	void *reply_buf;
4583 	void *p;
4584 	void *end;
4585 	u64 seq;
4586 	u32 snap_count;
4587 	struct ceph_snap_context *snapc;
4588 	u32 i;
4589 
4590 	/*
4591 	 * We'll need room for the seq value (maximum snapshot id),
4592 	 * snapshot count, and array of that many snapshot ids.
4593 	 * For now we have a fixed upper limit on the number we're
4594 	 * prepared to receive.
4595 	 */
4596 	size = sizeof (__le64) + sizeof (__le32) +
4597 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4598 	reply_buf = kzalloc(size, GFP_KERNEL);
4599 	if (!reply_buf)
4600 		return -ENOMEM;
4601 
4602 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4603 				"rbd", "get_snapcontext", NULL, 0,
4604 				reply_buf, size);
4605 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4606 	if (ret < 0)
4607 		goto out;
4608 
4609 	p = reply_buf;
4610 	end = reply_buf + ret;
4611 	ret = -ERANGE;
4612 	ceph_decode_64_safe(&p, end, seq, out);
4613 	ceph_decode_32_safe(&p, end, snap_count, out);
4614 
4615 	/*
4616 	 * Make sure the reported number of snapshot ids wouldn't go
4617 	 * beyond the end of our buffer.  But before checking that,
4618 	 * make sure the computed size of the snapshot context we
4619 	 * allocate is representable in a size_t.
4620 	 */
4621 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4622 				 / sizeof (u64)) {
4623 		ret = -EINVAL;
4624 		goto out;
4625 	}
4626 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4627 		goto out;
4628 	ret = 0;
4629 
4630 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4631 	if (!snapc) {
4632 		ret = -ENOMEM;
4633 		goto out;
4634 	}
4635 	snapc->seq = seq;
4636 	for (i = 0; i < snap_count; i++)
4637 		snapc->snaps[i] = ceph_decode_64(&p);
4638 
4639 	ceph_put_snap_context(rbd_dev->header.snapc);
4640 	rbd_dev->header.snapc = snapc;
4641 
4642 	dout("  snap context seq = %llu, snap_count = %u\n",
4643 		(unsigned long long)seq, (unsigned int)snap_count);
4644 out:
4645 	kfree(reply_buf);
4646 
4647 	return ret;
4648 }
4649 
4650 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4651 					u64 snap_id)
4652 {
4653 	size_t size;
4654 	void *reply_buf;
4655 	__le64 snapid;
4656 	int ret;
4657 	void *p;
4658 	void *end;
4659 	char *snap_name;
4660 
4661 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4662 	reply_buf = kmalloc(size, GFP_KERNEL);
4663 	if (!reply_buf)
4664 		return ERR_PTR(-ENOMEM);
4665 
4666 	snapid = cpu_to_le64(snap_id);
4667 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4668 				"rbd", "get_snapshot_name",
4669 				&snapid, sizeof (snapid),
4670 				reply_buf, size);
4671 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672 	if (ret < 0) {
4673 		snap_name = ERR_PTR(ret);
4674 		goto out;
4675 	}
4676 
4677 	p = reply_buf;
4678 	end = reply_buf + ret;
4679 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4680 	if (IS_ERR(snap_name))
4681 		goto out;
4682 
4683 	dout("  snap_id 0x%016llx snap_name = %s\n",
4684 		(unsigned long long)snap_id, snap_name);
4685 out:
4686 	kfree(reply_buf);
4687 
4688 	return snap_name;
4689 }
4690 
4691 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4692 {
4693 	bool first_time = rbd_dev->header.object_prefix == NULL;
4694 	int ret;
4695 
4696 	ret = rbd_dev_v2_image_size(rbd_dev);
4697 	if (ret)
4698 		return ret;
4699 
4700 	if (first_time) {
4701 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4702 		if (ret)
4703 			return ret;
4704 	}
4705 
4706 	ret = rbd_dev_v2_snap_context(rbd_dev);
4707 	if (ret && first_time) {
4708 		kfree(rbd_dev->header.object_prefix);
4709 		rbd_dev->header.object_prefix = NULL;
4710 	}
4711 
4712 	return ret;
4713 }
4714 
4715 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4716 {
4717 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4718 
4719 	if (rbd_dev->image_format == 1)
4720 		return rbd_dev_v1_header_info(rbd_dev);
4721 
4722 	return rbd_dev_v2_header_info(rbd_dev);
4723 }
4724 
4725 /*
4726  * Get a unique rbd identifier for the given new rbd_dev, and add
4727  * the rbd_dev to the global list.
4728  */
4729 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4730 {
4731 	int new_dev_id;
4732 
4733 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4734 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4735 				    GFP_KERNEL);
4736 	if (new_dev_id < 0)
4737 		return new_dev_id;
4738 
4739 	rbd_dev->dev_id = new_dev_id;
4740 
4741 	spin_lock(&rbd_dev_list_lock);
4742 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4743 	spin_unlock(&rbd_dev_list_lock);
4744 
4745 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4746 
4747 	return 0;
4748 }
4749 
4750 /*
4751  * Remove an rbd_dev from the global list, and record that its
4752  * identifier is no longer in use.
4753  */
4754 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4755 {
4756 	spin_lock(&rbd_dev_list_lock);
4757 	list_del_init(&rbd_dev->node);
4758 	spin_unlock(&rbd_dev_list_lock);
4759 
4760 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4761 
4762 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4763 }
4764 
4765 /*
4766  * Skips over white space at *buf, and updates *buf to point to the
4767  * first found non-space character (if any). Returns the length of
4768  * the token (string of non-white space characters) found.  Note
4769  * that *buf must be terminated with '\0'.
4770  */
4771 static inline size_t next_token(const char **buf)
4772 {
4773         /*
4774         * These are the characters that produce nonzero for
4775         * isspace() in the "C" and "POSIX" locales.
4776         */
4777         const char *spaces = " \f\n\r\t\v";
4778 
4779         *buf += strspn(*buf, spaces);	/* Find start of token */
4780 
4781 	return strcspn(*buf, spaces);   /* Return token length */
4782 }
4783 
4784 /*
4785  * Finds the next token in *buf, dynamically allocates a buffer big
4786  * enough to hold a copy of it, and copies the token into the new
4787  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4788  * that a duplicate buffer is created even for a zero-length token.
4789  *
4790  * Returns a pointer to the newly-allocated duplicate, or a null
4791  * pointer if memory for the duplicate was not available.  If
4792  * the lenp argument is a non-null pointer, the length of the token
4793  * (not including the '\0') is returned in *lenp.
4794  *
4795  * If successful, the *buf pointer will be updated to point beyond
4796  * the end of the found token.
4797  *
4798  * Note: uses GFP_KERNEL for allocation.
4799  */
4800 static inline char *dup_token(const char **buf, size_t *lenp)
4801 {
4802 	char *dup;
4803 	size_t len;
4804 
4805 	len = next_token(buf);
4806 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4807 	if (!dup)
4808 		return NULL;
4809 	*(dup + len) = '\0';
4810 	*buf += len;
4811 
4812 	if (lenp)
4813 		*lenp = len;
4814 
4815 	return dup;
4816 }
4817 
4818 /*
4819  * Parse the options provided for an "rbd add" (i.e., rbd image
4820  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4821  * and the data written is passed here via a NUL-terminated buffer.
4822  * Returns 0 if successful or an error code otherwise.
4823  *
4824  * The information extracted from these options is recorded in
4825  * the other parameters which return dynamically-allocated
4826  * structures:
4827  *  ceph_opts
4828  *      The address of a pointer that will refer to a ceph options
4829  *      structure.  Caller must release the returned pointer using
4830  *      ceph_destroy_options() when it is no longer needed.
4831  *  rbd_opts
4832  *	Address of an rbd options pointer.  Fully initialized by
4833  *	this function; caller must release with kfree().
4834  *  spec
4835  *	Address of an rbd image specification pointer.  Fully
4836  *	initialized by this function based on parsed options.
4837  *	Caller must release with rbd_spec_put().
4838  *
4839  * The options passed take this form:
4840  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4841  * where:
4842  *  <mon_addrs>
4843  *      A comma-separated list of one or more monitor addresses.
4844  *      A monitor address is an ip address, optionally followed
4845  *      by a port number (separated by a colon).
4846  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4847  *  <options>
4848  *      A comma-separated list of ceph and/or rbd options.
4849  *  <pool_name>
4850  *      The name of the rados pool containing the rbd image.
4851  *  <image_name>
4852  *      The name of the image in that pool to map.
4853  *  <snap_id>
4854  *      An optional snapshot id.  If provided, the mapping will
4855  *      present data from the image at the time that snapshot was
4856  *      created.  The image head is used if no snapshot id is
4857  *      provided.  Snapshot mappings are always read-only.
4858  */
4859 static int rbd_add_parse_args(const char *buf,
4860 				struct ceph_options **ceph_opts,
4861 				struct rbd_options **opts,
4862 				struct rbd_spec **rbd_spec)
4863 {
4864 	size_t len;
4865 	char *options;
4866 	const char *mon_addrs;
4867 	char *snap_name;
4868 	size_t mon_addrs_size;
4869 	struct rbd_spec *spec = NULL;
4870 	struct rbd_options *rbd_opts = NULL;
4871 	struct ceph_options *copts;
4872 	int ret;
4873 
4874 	/* The first four tokens are required */
4875 
4876 	len = next_token(&buf);
4877 	if (!len) {
4878 		rbd_warn(NULL, "no monitor address(es) provided");
4879 		return -EINVAL;
4880 	}
4881 	mon_addrs = buf;
4882 	mon_addrs_size = len + 1;
4883 	buf += len;
4884 
4885 	ret = -EINVAL;
4886 	options = dup_token(&buf, NULL);
4887 	if (!options)
4888 		return -ENOMEM;
4889 	if (!*options) {
4890 		rbd_warn(NULL, "no options provided");
4891 		goto out_err;
4892 	}
4893 
4894 	spec = rbd_spec_alloc();
4895 	if (!spec)
4896 		goto out_mem;
4897 
4898 	spec->pool_name = dup_token(&buf, NULL);
4899 	if (!spec->pool_name)
4900 		goto out_mem;
4901 	if (!*spec->pool_name) {
4902 		rbd_warn(NULL, "no pool name provided");
4903 		goto out_err;
4904 	}
4905 
4906 	spec->image_name = dup_token(&buf, NULL);
4907 	if (!spec->image_name)
4908 		goto out_mem;
4909 	if (!*spec->image_name) {
4910 		rbd_warn(NULL, "no image name provided");
4911 		goto out_err;
4912 	}
4913 
4914 	/*
4915 	 * Snapshot name is optional; default is to use "-"
4916 	 * (indicating the head/no snapshot).
4917 	 */
4918 	len = next_token(&buf);
4919 	if (!len) {
4920 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4921 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4922 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4923 		ret = -ENAMETOOLONG;
4924 		goto out_err;
4925 	}
4926 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4927 	if (!snap_name)
4928 		goto out_mem;
4929 	*(snap_name + len) = '\0';
4930 	spec->snap_name = snap_name;
4931 
4932 	/* Initialize all rbd options to the defaults */
4933 
4934 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4935 	if (!rbd_opts)
4936 		goto out_mem;
4937 
4938 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4939 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4940 
4941 	copts = ceph_parse_options(options, mon_addrs,
4942 					mon_addrs + mon_addrs_size - 1,
4943 					parse_rbd_opts_token, rbd_opts);
4944 	if (IS_ERR(copts)) {
4945 		ret = PTR_ERR(copts);
4946 		goto out_err;
4947 	}
4948 	kfree(options);
4949 
4950 	*ceph_opts = copts;
4951 	*opts = rbd_opts;
4952 	*rbd_spec = spec;
4953 
4954 	return 0;
4955 out_mem:
4956 	ret = -ENOMEM;
4957 out_err:
4958 	kfree(rbd_opts);
4959 	rbd_spec_put(spec);
4960 	kfree(options);
4961 
4962 	return ret;
4963 }
4964 
4965 /*
4966  * Return pool id (>= 0) or a negative error code.
4967  */
4968 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4969 {
4970 	struct ceph_options *opts = rbdc->client->options;
4971 	u64 newest_epoch;
4972 	int tries = 0;
4973 	int ret;
4974 
4975 again:
4976 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4977 	if (ret == -ENOENT && tries++ < 1) {
4978 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4979 					       &newest_epoch);
4980 		if (ret < 0)
4981 			return ret;
4982 
4983 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4984 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4985 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4986 						     newest_epoch,
4987 						     opts->mount_timeout);
4988 			goto again;
4989 		} else {
4990 			/* the osdmap we have is new enough */
4991 			return -ENOENT;
4992 		}
4993 	}
4994 
4995 	return ret;
4996 }
4997 
4998 /*
4999  * An rbd format 2 image has a unique identifier, distinct from the
5000  * name given to it by the user.  Internally, that identifier is
5001  * what's used to specify the names of objects related to the image.
5002  *
5003  * A special "rbd id" object is used to map an rbd image name to its
5004  * id.  If that object doesn't exist, then there is no v2 rbd image
5005  * with the supplied name.
5006  *
5007  * This function will record the given rbd_dev's image_id field if
5008  * it can be determined, and in that case will return 0.  If any
5009  * errors occur a negative errno will be returned and the rbd_dev's
5010  * image_id field will be unchanged (and should be NULL).
5011  */
5012 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5013 {
5014 	int ret;
5015 	size_t size;
5016 	char *object_name;
5017 	void *response;
5018 	char *image_id;
5019 
5020 	/*
5021 	 * When probing a parent image, the image id is already
5022 	 * known (and the image name likely is not).  There's no
5023 	 * need to fetch the image id again in this case.  We
5024 	 * do still need to set the image format though.
5025 	 */
5026 	if (rbd_dev->spec->image_id) {
5027 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5028 
5029 		return 0;
5030 	}
5031 
5032 	/*
5033 	 * First, see if the format 2 image id file exists, and if
5034 	 * so, get the image's persistent id from it.
5035 	 */
5036 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5037 	object_name = kmalloc(size, GFP_NOIO);
5038 	if (!object_name)
5039 		return -ENOMEM;
5040 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5041 	dout("rbd id object name is %s\n", object_name);
5042 
5043 	/* Response will be an encoded string, which includes a length */
5044 
5045 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5046 	response = kzalloc(size, GFP_NOIO);
5047 	if (!response) {
5048 		ret = -ENOMEM;
5049 		goto out;
5050 	}
5051 
5052 	/* If it doesn't exist we'll assume it's a format 1 image */
5053 
5054 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5055 				"rbd", "get_id", NULL, 0,
5056 				response, RBD_IMAGE_ID_LEN_MAX);
5057 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5058 	if (ret == -ENOENT) {
5059 		image_id = kstrdup("", GFP_KERNEL);
5060 		ret = image_id ? 0 : -ENOMEM;
5061 		if (!ret)
5062 			rbd_dev->image_format = 1;
5063 	} else if (ret >= 0) {
5064 		void *p = response;
5065 
5066 		image_id = ceph_extract_encoded_string(&p, p + ret,
5067 						NULL, GFP_NOIO);
5068 		ret = PTR_ERR_OR_ZERO(image_id);
5069 		if (!ret)
5070 			rbd_dev->image_format = 2;
5071 	}
5072 
5073 	if (!ret) {
5074 		rbd_dev->spec->image_id = image_id;
5075 		dout("image_id is %s\n", image_id);
5076 	}
5077 out:
5078 	kfree(response);
5079 	kfree(object_name);
5080 
5081 	return ret;
5082 }
5083 
5084 /*
5085  * Undo whatever state changes are made by v1 or v2 header info
5086  * call.
5087  */
5088 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5089 {
5090 	struct rbd_image_header	*header;
5091 
5092 	rbd_dev_parent_put(rbd_dev);
5093 
5094 	/* Free dynamic fields from the header, then zero it out */
5095 
5096 	header = &rbd_dev->header;
5097 	ceph_put_snap_context(header->snapc);
5098 	kfree(header->snap_sizes);
5099 	kfree(header->snap_names);
5100 	kfree(header->object_prefix);
5101 	memset(header, 0, sizeof (*header));
5102 }
5103 
5104 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5105 {
5106 	int ret;
5107 
5108 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5109 	if (ret)
5110 		goto out_err;
5111 
5112 	/*
5113 	 * Get the and check features for the image.  Currently the
5114 	 * features are assumed to never change.
5115 	 */
5116 	ret = rbd_dev_v2_features(rbd_dev);
5117 	if (ret)
5118 		goto out_err;
5119 
5120 	/* If the image supports fancy striping, get its parameters */
5121 
5122 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5123 		ret = rbd_dev_v2_striping_info(rbd_dev);
5124 		if (ret < 0)
5125 			goto out_err;
5126 	}
5127 	/* No support for crypto and compression type format 2 images */
5128 
5129 	return 0;
5130 out_err:
5131 	rbd_dev->header.features = 0;
5132 	kfree(rbd_dev->header.object_prefix);
5133 	rbd_dev->header.object_prefix = NULL;
5134 
5135 	return ret;
5136 }
5137 
5138 /*
5139  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5140  * rbd_dev_image_probe() recursion depth, which means it's also the
5141  * length of the already discovered part of the parent chain.
5142  */
5143 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5144 {
5145 	struct rbd_device *parent = NULL;
5146 	int ret;
5147 
5148 	if (!rbd_dev->parent_spec)
5149 		return 0;
5150 
5151 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5152 		pr_info("parent chain is too long (%d)\n", depth);
5153 		ret = -EINVAL;
5154 		goto out_err;
5155 	}
5156 
5157 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5158 				NULL);
5159 	if (!parent) {
5160 		ret = -ENOMEM;
5161 		goto out_err;
5162 	}
5163 
5164 	/*
5165 	 * Images related by parent/child relationships always share
5166 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5167 	 */
5168 	__rbd_get_client(rbd_dev->rbd_client);
5169 	rbd_spec_get(rbd_dev->parent_spec);
5170 
5171 	ret = rbd_dev_image_probe(parent, depth);
5172 	if (ret < 0)
5173 		goto out_err;
5174 
5175 	rbd_dev->parent = parent;
5176 	atomic_set(&rbd_dev->parent_ref, 1);
5177 	return 0;
5178 
5179 out_err:
5180 	rbd_dev_unparent(rbd_dev);
5181 	rbd_dev_destroy(parent);
5182 	return ret;
5183 }
5184 
5185 /*
5186  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5187  * upon return.
5188  */
5189 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5190 {
5191 	int ret;
5192 
5193 	/* Get an id and fill in device name. */
5194 
5195 	ret = rbd_dev_id_get(rbd_dev);
5196 	if (ret)
5197 		goto err_out_unlock;
5198 
5199 	BUILD_BUG_ON(DEV_NAME_LEN
5200 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5201 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5202 
5203 	/* Record our major and minor device numbers. */
5204 
5205 	if (!single_major) {
5206 		ret = register_blkdev(0, rbd_dev->name);
5207 		if (ret < 0)
5208 			goto err_out_id;
5209 
5210 		rbd_dev->major = ret;
5211 		rbd_dev->minor = 0;
5212 	} else {
5213 		rbd_dev->major = rbd_major;
5214 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5215 	}
5216 
5217 	/* Set up the blkdev mapping. */
5218 
5219 	ret = rbd_init_disk(rbd_dev);
5220 	if (ret)
5221 		goto err_out_blkdev;
5222 
5223 	ret = rbd_dev_mapping_set(rbd_dev);
5224 	if (ret)
5225 		goto err_out_disk;
5226 
5227 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5228 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5229 
5230 	dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5231 	ret = device_add(&rbd_dev->dev);
5232 	if (ret)
5233 		goto err_out_mapping;
5234 
5235 	/* Everything's ready.  Announce the disk to the world. */
5236 
5237 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5238 	up_write(&rbd_dev->header_rwsem);
5239 
5240 	add_disk(rbd_dev->disk);
5241 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5242 		(unsigned long long) rbd_dev->mapping.size);
5243 
5244 	return ret;
5245 
5246 err_out_mapping:
5247 	rbd_dev_mapping_clear(rbd_dev);
5248 err_out_disk:
5249 	rbd_free_disk(rbd_dev);
5250 err_out_blkdev:
5251 	if (!single_major)
5252 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5253 err_out_id:
5254 	rbd_dev_id_put(rbd_dev);
5255 err_out_unlock:
5256 	up_write(&rbd_dev->header_rwsem);
5257 	return ret;
5258 }
5259 
5260 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5261 {
5262 	struct rbd_spec *spec = rbd_dev->spec;
5263 	size_t size;
5264 
5265 	/* Record the header object name for this rbd image. */
5266 
5267 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5268 
5269 	if (rbd_dev->image_format == 1)
5270 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5271 	else
5272 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5273 
5274 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5275 	if (!rbd_dev->header_name)
5276 		return -ENOMEM;
5277 
5278 	if (rbd_dev->image_format == 1)
5279 		sprintf(rbd_dev->header_name, "%s%s",
5280 			spec->image_name, RBD_SUFFIX);
5281 	else
5282 		sprintf(rbd_dev->header_name, "%s%s",
5283 			RBD_HEADER_PREFIX, spec->image_id);
5284 	return 0;
5285 }
5286 
5287 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5288 {
5289 	rbd_dev_unprobe(rbd_dev);
5290 	kfree(rbd_dev->header_name);
5291 	rbd_dev->header_name = NULL;
5292 	rbd_dev->image_format = 0;
5293 	kfree(rbd_dev->spec->image_id);
5294 	rbd_dev->spec->image_id = NULL;
5295 
5296 	rbd_dev_destroy(rbd_dev);
5297 }
5298 
5299 /*
5300  * Probe for the existence of the header object for the given rbd
5301  * device.  If this image is the one being mapped (i.e., not a
5302  * parent), initiate a watch on its header object before using that
5303  * object to get detailed information about the rbd image.
5304  */
5305 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5306 {
5307 	int ret;
5308 
5309 	/*
5310 	 * Get the id from the image id object.  Unless there's an
5311 	 * error, rbd_dev->spec->image_id will be filled in with
5312 	 * a dynamically-allocated string, and rbd_dev->image_format
5313 	 * will be set to either 1 or 2.
5314 	 */
5315 	ret = rbd_dev_image_id(rbd_dev);
5316 	if (ret)
5317 		return ret;
5318 
5319 	ret = rbd_dev_header_name(rbd_dev);
5320 	if (ret)
5321 		goto err_out_format;
5322 
5323 	if (!depth) {
5324 		ret = rbd_dev_header_watch_sync(rbd_dev);
5325 		if (ret) {
5326 			if (ret == -ENOENT)
5327 				pr_info("image %s/%s does not exist\n",
5328 					rbd_dev->spec->pool_name,
5329 					rbd_dev->spec->image_name);
5330 			goto out_header_name;
5331 		}
5332 	}
5333 
5334 	ret = rbd_dev_header_info(rbd_dev);
5335 	if (ret)
5336 		goto err_out_watch;
5337 
5338 	/*
5339 	 * If this image is the one being mapped, we have pool name and
5340 	 * id, image name and id, and snap name - need to fill snap id.
5341 	 * Otherwise this is a parent image, identified by pool, image
5342 	 * and snap ids - need to fill in names for those ids.
5343 	 */
5344 	if (!depth)
5345 		ret = rbd_spec_fill_snap_id(rbd_dev);
5346 	else
5347 		ret = rbd_spec_fill_names(rbd_dev);
5348 	if (ret) {
5349 		if (ret == -ENOENT)
5350 			pr_info("snap %s/%s@%s does not exist\n",
5351 				rbd_dev->spec->pool_name,
5352 				rbd_dev->spec->image_name,
5353 				rbd_dev->spec->snap_name);
5354 		goto err_out_probe;
5355 	}
5356 
5357 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5358 		ret = rbd_dev_v2_parent_info(rbd_dev);
5359 		if (ret)
5360 			goto err_out_probe;
5361 
5362 		/*
5363 		 * Need to warn users if this image is the one being
5364 		 * mapped and has a parent.
5365 		 */
5366 		if (!depth && rbd_dev->parent_spec)
5367 			rbd_warn(rbd_dev,
5368 				 "WARNING: kernel layering is EXPERIMENTAL!");
5369 	}
5370 
5371 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5372 	if (ret)
5373 		goto err_out_probe;
5374 
5375 	dout("discovered format %u image, header name is %s\n",
5376 		rbd_dev->image_format, rbd_dev->header_name);
5377 	return 0;
5378 
5379 err_out_probe:
5380 	rbd_dev_unprobe(rbd_dev);
5381 err_out_watch:
5382 	if (!depth)
5383 		rbd_dev_header_unwatch_sync(rbd_dev);
5384 out_header_name:
5385 	kfree(rbd_dev->header_name);
5386 	rbd_dev->header_name = NULL;
5387 err_out_format:
5388 	rbd_dev->image_format = 0;
5389 	kfree(rbd_dev->spec->image_id);
5390 	rbd_dev->spec->image_id = NULL;
5391 	return ret;
5392 }
5393 
5394 static ssize_t do_rbd_add(struct bus_type *bus,
5395 			  const char *buf,
5396 			  size_t count)
5397 {
5398 	struct rbd_device *rbd_dev = NULL;
5399 	struct ceph_options *ceph_opts = NULL;
5400 	struct rbd_options *rbd_opts = NULL;
5401 	struct rbd_spec *spec = NULL;
5402 	struct rbd_client *rbdc;
5403 	bool read_only;
5404 	int rc;
5405 
5406 	if (!try_module_get(THIS_MODULE))
5407 		return -ENODEV;
5408 
5409 	/* parse add command */
5410 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5411 	if (rc < 0)
5412 		goto out;
5413 
5414 	rbdc = rbd_get_client(ceph_opts);
5415 	if (IS_ERR(rbdc)) {
5416 		rc = PTR_ERR(rbdc);
5417 		goto err_out_args;
5418 	}
5419 
5420 	/* pick the pool */
5421 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5422 	if (rc < 0) {
5423 		if (rc == -ENOENT)
5424 			pr_info("pool %s does not exist\n", spec->pool_name);
5425 		goto err_out_client;
5426 	}
5427 	spec->pool_id = (u64)rc;
5428 
5429 	/* The ceph file layout needs to fit pool id in 32 bits */
5430 
5431 	if (spec->pool_id > (u64)U32_MAX) {
5432 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5433 				(unsigned long long)spec->pool_id, U32_MAX);
5434 		rc = -EIO;
5435 		goto err_out_client;
5436 	}
5437 
5438 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5439 	if (!rbd_dev) {
5440 		rc = -ENOMEM;
5441 		goto err_out_client;
5442 	}
5443 	rbdc = NULL;		/* rbd_dev now owns this */
5444 	spec = NULL;		/* rbd_dev now owns this */
5445 	rbd_opts = NULL;	/* rbd_dev now owns this */
5446 
5447 	down_write(&rbd_dev->header_rwsem);
5448 	rc = rbd_dev_image_probe(rbd_dev, 0);
5449 	if (rc < 0)
5450 		goto err_out_rbd_dev;
5451 
5452 	/* If we are mapping a snapshot it must be marked read-only */
5453 
5454 	read_only = rbd_dev->opts->read_only;
5455 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5456 		read_only = true;
5457 	rbd_dev->mapping.read_only = read_only;
5458 
5459 	rc = rbd_dev_device_setup(rbd_dev);
5460 	if (rc) {
5461 		/*
5462 		 * rbd_dev_header_unwatch_sync() can't be moved into
5463 		 * rbd_dev_image_release() without refactoring, see
5464 		 * commit 1f3ef78861ac.
5465 		 */
5466 		rbd_dev_header_unwatch_sync(rbd_dev);
5467 		rbd_dev_image_release(rbd_dev);
5468 		goto out;
5469 	}
5470 
5471 	rc = count;
5472 out:
5473 	module_put(THIS_MODULE);
5474 	return rc;
5475 
5476 err_out_rbd_dev:
5477 	up_write(&rbd_dev->header_rwsem);
5478 	rbd_dev_destroy(rbd_dev);
5479 err_out_client:
5480 	rbd_put_client(rbdc);
5481 err_out_args:
5482 	rbd_spec_put(spec);
5483 	kfree(rbd_opts);
5484 	goto out;
5485 }
5486 
5487 static ssize_t rbd_add(struct bus_type *bus,
5488 		       const char *buf,
5489 		       size_t count)
5490 {
5491 	if (single_major)
5492 		return -EINVAL;
5493 
5494 	return do_rbd_add(bus, buf, count);
5495 }
5496 
5497 static ssize_t rbd_add_single_major(struct bus_type *bus,
5498 				    const char *buf,
5499 				    size_t count)
5500 {
5501 	return do_rbd_add(bus, buf, count);
5502 }
5503 
5504 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5505 {
5506 	rbd_free_disk(rbd_dev);
5507 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508 	device_del(&rbd_dev->dev);
5509 	rbd_dev_mapping_clear(rbd_dev);
5510 	if (!single_major)
5511 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5512 	rbd_dev_id_put(rbd_dev);
5513 }
5514 
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517 	while (rbd_dev->parent) {
5518 		struct rbd_device *first = rbd_dev;
5519 		struct rbd_device *second = first->parent;
5520 		struct rbd_device *third;
5521 
5522 		/*
5523 		 * Follow to the parent with no grandparent and
5524 		 * remove it.
5525 		 */
5526 		while (second && (third = second->parent)) {
5527 			first = second;
5528 			second = third;
5529 		}
5530 		rbd_assert(second);
5531 		rbd_dev_image_release(second);
5532 		first->parent = NULL;
5533 		first->parent_overlap = 0;
5534 
5535 		rbd_assert(first->parent_spec);
5536 		rbd_spec_put(first->parent_spec);
5537 		first->parent_spec = NULL;
5538 	}
5539 }
5540 
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542 			     const char *buf,
5543 			     size_t count)
5544 {
5545 	struct rbd_device *rbd_dev = NULL;
5546 	struct list_head *tmp;
5547 	int dev_id;
5548 	unsigned long ul;
5549 	bool already = false;
5550 	int ret;
5551 
5552 	ret = kstrtoul(buf, 10, &ul);
5553 	if (ret)
5554 		return ret;
5555 
5556 	/* convert to int; abort if we lost anything in the conversion */
5557 	dev_id = (int)ul;
5558 	if (dev_id != ul)
5559 		return -EINVAL;
5560 
5561 	ret = -ENOENT;
5562 	spin_lock(&rbd_dev_list_lock);
5563 	list_for_each(tmp, &rbd_dev_list) {
5564 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5565 		if (rbd_dev->dev_id == dev_id) {
5566 			ret = 0;
5567 			break;
5568 		}
5569 	}
5570 	if (!ret) {
5571 		spin_lock_irq(&rbd_dev->lock);
5572 		if (rbd_dev->open_count)
5573 			ret = -EBUSY;
5574 		else
5575 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576 							&rbd_dev->flags);
5577 		spin_unlock_irq(&rbd_dev->lock);
5578 	}
5579 	spin_unlock(&rbd_dev_list_lock);
5580 	if (ret < 0 || already)
5581 		return ret;
5582 
5583 	rbd_dev_header_unwatch_sync(rbd_dev);
5584 
5585 	/*
5586 	 * Don't free anything from rbd_dev->disk until after all
5587 	 * notifies are completely processed. Otherwise
5588 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5589 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5590 	 */
5591 	rbd_dev_device_release(rbd_dev);
5592 	rbd_dev_image_release(rbd_dev);
5593 
5594 	return count;
5595 }
5596 
5597 static ssize_t rbd_remove(struct bus_type *bus,
5598 			  const char *buf,
5599 			  size_t count)
5600 {
5601 	if (single_major)
5602 		return -EINVAL;
5603 
5604 	return do_rbd_remove(bus, buf, count);
5605 }
5606 
5607 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5608 				       const char *buf,
5609 				       size_t count)
5610 {
5611 	return do_rbd_remove(bus, buf, count);
5612 }
5613 
5614 /*
5615  * create control files in sysfs
5616  * /sys/bus/rbd/...
5617  */
5618 static int rbd_sysfs_init(void)
5619 {
5620 	int ret;
5621 
5622 	ret = device_register(&rbd_root_dev);
5623 	if (ret < 0)
5624 		return ret;
5625 
5626 	ret = bus_register(&rbd_bus_type);
5627 	if (ret < 0)
5628 		device_unregister(&rbd_root_dev);
5629 
5630 	return ret;
5631 }
5632 
5633 static void rbd_sysfs_cleanup(void)
5634 {
5635 	bus_unregister(&rbd_bus_type);
5636 	device_unregister(&rbd_root_dev);
5637 }
5638 
5639 static int rbd_slab_init(void)
5640 {
5641 	rbd_assert(!rbd_img_request_cache);
5642 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5643 	if (!rbd_img_request_cache)
5644 		return -ENOMEM;
5645 
5646 	rbd_assert(!rbd_obj_request_cache);
5647 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5648 	if (!rbd_obj_request_cache)
5649 		goto out_err;
5650 
5651 	rbd_assert(!rbd_segment_name_cache);
5652 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5653 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5654 	if (rbd_segment_name_cache)
5655 		return 0;
5656 out_err:
5657 	kmem_cache_destroy(rbd_obj_request_cache);
5658 	rbd_obj_request_cache = NULL;
5659 
5660 	kmem_cache_destroy(rbd_img_request_cache);
5661 	rbd_img_request_cache = NULL;
5662 
5663 	return -ENOMEM;
5664 }
5665 
5666 static void rbd_slab_exit(void)
5667 {
5668 	rbd_assert(rbd_segment_name_cache);
5669 	kmem_cache_destroy(rbd_segment_name_cache);
5670 	rbd_segment_name_cache = NULL;
5671 
5672 	rbd_assert(rbd_obj_request_cache);
5673 	kmem_cache_destroy(rbd_obj_request_cache);
5674 	rbd_obj_request_cache = NULL;
5675 
5676 	rbd_assert(rbd_img_request_cache);
5677 	kmem_cache_destroy(rbd_img_request_cache);
5678 	rbd_img_request_cache = NULL;
5679 }
5680 
5681 static int __init rbd_init(void)
5682 {
5683 	int rc;
5684 
5685 	if (!libceph_compatible(NULL)) {
5686 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5687 		return -EINVAL;
5688 	}
5689 
5690 	rc = rbd_slab_init();
5691 	if (rc)
5692 		return rc;
5693 
5694 	/*
5695 	 * The number of active work items is limited by the number of
5696 	 * rbd devices * queue depth, so leave @max_active at default.
5697 	 */
5698 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5699 	if (!rbd_wq) {
5700 		rc = -ENOMEM;
5701 		goto err_out_slab;
5702 	}
5703 
5704 	if (single_major) {
5705 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5706 		if (rbd_major < 0) {
5707 			rc = rbd_major;
5708 			goto err_out_wq;
5709 		}
5710 	}
5711 
5712 	rc = rbd_sysfs_init();
5713 	if (rc)
5714 		goto err_out_blkdev;
5715 
5716 	if (single_major)
5717 		pr_info("loaded (major %d)\n", rbd_major);
5718 	else
5719 		pr_info("loaded\n");
5720 
5721 	return 0;
5722 
5723 err_out_blkdev:
5724 	if (single_major)
5725 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5726 err_out_wq:
5727 	destroy_workqueue(rbd_wq);
5728 err_out_slab:
5729 	rbd_slab_exit();
5730 	return rc;
5731 }
5732 
5733 static void __exit rbd_exit(void)
5734 {
5735 	ida_destroy(&rbd_dev_id_ida);
5736 	rbd_sysfs_cleanup();
5737 	if (single_major)
5738 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5739 	destroy_workqueue(rbd_wq);
5740 	rbd_slab_exit();
5741 }
5742 
5743 module_init(rbd_init);
5744 module_exit(rbd_exit);
5745 
5746 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5747 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5748 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5749 /* following authorship retained from original osdblk.c */
5750 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5751 
5752 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5753 MODULE_LICENSE("GPL");
5754