1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 100 #define RBD_MAX_SNAP_NAME_LEN \ 101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 102 103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 104 105 #define RBD_SNAP_HEAD_NAME "-" 106 107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 108 109 /* This allows a single page to hold an image name sent by OSD */ 110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 111 #define RBD_IMAGE_ID_LEN_MAX 64 112 113 #define RBD_OBJ_PREFIX_LEN_MAX 64 114 115 /* Feature bits */ 116 117 #define RBD_FEATURE_LAYERING (1<<0) 118 #define RBD_FEATURE_STRIPINGV2 (1<<1) 119 #define RBD_FEATURES_ALL \ 120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 121 122 /* Features supported by this (client software) implementation. */ 123 124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 125 126 /* 127 * An RBD device name will be "rbd#", where the "rbd" comes from 128 * RBD_DRV_NAME above, and # is a unique integer identifier. 129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 130 * enough to hold all possible device names. 131 */ 132 #define DEV_NAME_LEN 32 133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 134 135 /* 136 * block device image metadata (in-memory version) 137 */ 138 struct rbd_image_header { 139 /* These six fields never change for a given rbd image */ 140 char *object_prefix; 141 __u8 obj_order; 142 __u8 crypt_type; 143 __u8 comp_type; 144 u64 stripe_unit; 145 u64 stripe_count; 146 u64 features; /* Might be changeable someday? */ 147 148 /* The remaining fields need to be updated occasionally */ 149 u64 image_size; 150 struct ceph_snap_context *snapc; 151 char *snap_names; /* format 1 only */ 152 u64 *snap_sizes; /* format 1 only */ 153 }; 154 155 /* 156 * An rbd image specification. 157 * 158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 159 * identify an image. Each rbd_dev structure includes a pointer to 160 * an rbd_spec structure that encapsulates this identity. 161 * 162 * Each of the id's in an rbd_spec has an associated name. For a 163 * user-mapped image, the names are supplied and the id's associated 164 * with them are looked up. For a layered image, a parent image is 165 * defined by the tuple, and the names are looked up. 166 * 167 * An rbd_dev structure contains a parent_spec pointer which is 168 * non-null if the image it represents is a child in a layered 169 * image. This pointer will refer to the rbd_spec structure used 170 * by the parent rbd_dev for its own identity (i.e., the structure 171 * is shared between the parent and child). 172 * 173 * Since these structures are populated once, during the discovery 174 * phase of image construction, they are effectively immutable so 175 * we make no effort to synchronize access to them. 176 * 177 * Note that code herein does not assume the image name is known (it 178 * could be a null pointer). 179 */ 180 struct rbd_spec { 181 u64 pool_id; 182 const char *pool_name; 183 184 const char *image_id; 185 const char *image_name; 186 187 u64 snap_id; 188 const char *snap_name; 189 190 struct kref kref; 191 }; 192 193 /* 194 * an instance of the client. multiple devices may share an rbd client. 195 */ 196 struct rbd_client { 197 struct ceph_client *client; 198 struct kref kref; 199 struct list_head node; 200 }; 201 202 struct rbd_img_request; 203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 204 205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 206 207 struct rbd_obj_request; 208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 209 210 enum obj_request_type { 211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 212 }; 213 214 enum obj_operation_type { 215 OBJ_OP_WRITE, 216 OBJ_OP_READ, 217 OBJ_OP_DISCARD, 218 }; 219 220 enum obj_req_flags { 221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 225 }; 226 227 struct rbd_obj_request { 228 const char *object_name; 229 u64 offset; /* object start byte */ 230 u64 length; /* bytes from offset */ 231 unsigned long flags; 232 233 /* 234 * An object request associated with an image will have its 235 * img_data flag set; a standalone object request will not. 236 * 237 * A standalone object request will have which == BAD_WHICH 238 * and a null obj_request pointer. 239 * 240 * An object request initiated in support of a layered image 241 * object (to check for its existence before a write) will 242 * have which == BAD_WHICH and a non-null obj_request pointer. 243 * 244 * Finally, an object request for rbd image data will have 245 * which != BAD_WHICH, and will have a non-null img_request 246 * pointer. The value of which will be in the range 247 * 0..(img_request->obj_request_count-1). 248 */ 249 union { 250 struct rbd_obj_request *obj_request; /* STAT op */ 251 struct { 252 struct rbd_img_request *img_request; 253 u64 img_offset; 254 /* links for img_request->obj_requests list */ 255 struct list_head links; 256 }; 257 }; 258 u32 which; /* posn image request list */ 259 260 enum obj_request_type type; 261 union { 262 struct bio *bio_list; 263 struct { 264 struct page **pages; 265 u32 page_count; 266 }; 267 }; 268 struct page **copyup_pages; 269 u32 copyup_page_count; 270 271 struct ceph_osd_request *osd_req; 272 273 u64 xferred; /* bytes transferred */ 274 int result; 275 276 rbd_obj_callback_t callback; 277 struct completion completion; 278 279 struct kref kref; 280 }; 281 282 enum img_req_flags { 283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 287 }; 288 289 struct rbd_img_request { 290 struct rbd_device *rbd_dev; 291 u64 offset; /* starting image byte offset */ 292 u64 length; /* byte count from offset */ 293 unsigned long flags; 294 union { 295 u64 snap_id; /* for reads */ 296 struct ceph_snap_context *snapc; /* for writes */ 297 }; 298 union { 299 struct request *rq; /* block request */ 300 struct rbd_obj_request *obj_request; /* obj req initiator */ 301 }; 302 struct page **copyup_pages; 303 u32 copyup_page_count; 304 spinlock_t completion_lock;/* protects next_completion */ 305 u32 next_completion; 306 rbd_img_callback_t callback; 307 u64 xferred;/* aggregate bytes transferred */ 308 int result; /* first nonzero obj_request result */ 309 310 u32 obj_request_count; 311 struct list_head obj_requests; /* rbd_obj_request structs */ 312 313 struct kref kref; 314 }; 315 316 #define for_each_obj_request(ireq, oreq) \ 317 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 318 #define for_each_obj_request_from(ireq, oreq) \ 319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_safe(ireq, oreq, n) \ 321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 322 323 struct rbd_mapping { 324 u64 size; 325 u64 features; 326 bool read_only; 327 }; 328 329 /* 330 * a single device 331 */ 332 struct rbd_device { 333 int dev_id; /* blkdev unique id */ 334 335 int major; /* blkdev assigned major */ 336 int minor; 337 struct gendisk *disk; /* blkdev's gendisk and rq */ 338 339 u32 image_format; /* Either 1 or 2 */ 340 struct rbd_client *rbd_client; 341 342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 343 344 spinlock_t lock; /* queue, flags, open_count */ 345 346 struct rbd_image_header header; 347 unsigned long flags; /* possibly lock protected */ 348 struct rbd_spec *spec; 349 350 char *header_name; 351 352 struct ceph_file_layout layout; 353 354 struct ceph_osd_event *watch_event; 355 struct rbd_obj_request *watch_request; 356 357 struct rbd_spec *parent_spec; 358 u64 parent_overlap; 359 atomic_t parent_ref; 360 struct rbd_device *parent; 361 362 /* Block layer tags. */ 363 struct blk_mq_tag_set tag_set; 364 365 /* protects updating the header */ 366 struct rw_semaphore header_rwsem; 367 368 struct rbd_mapping mapping; 369 370 struct list_head node; 371 372 /* sysfs related */ 373 struct device dev; 374 unsigned long open_count; /* protected by lock */ 375 }; 376 377 /* 378 * Flag bits for rbd_dev->flags. If atomicity is required, 379 * rbd_dev->lock is used to protect access. 380 * 381 * Currently, only the "removing" flag (which is coupled with the 382 * "open_count" field) requires atomic access. 383 */ 384 enum rbd_dev_flags { 385 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 386 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 387 }; 388 389 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 390 391 static LIST_HEAD(rbd_dev_list); /* devices */ 392 static DEFINE_SPINLOCK(rbd_dev_list_lock); 393 394 static LIST_HEAD(rbd_client_list); /* clients */ 395 static DEFINE_SPINLOCK(rbd_client_list_lock); 396 397 /* Slab caches for frequently-allocated structures */ 398 399 static struct kmem_cache *rbd_img_request_cache; 400 static struct kmem_cache *rbd_obj_request_cache; 401 static struct kmem_cache *rbd_segment_name_cache; 402 403 static int rbd_major; 404 static DEFINE_IDA(rbd_dev_id_ida); 405 406 static struct workqueue_struct *rbd_wq; 407 408 /* 409 * Default to false for now, as single-major requires >= 0.75 version of 410 * userspace rbd utility. 411 */ 412 static bool single_major = false; 413 module_param(single_major, bool, S_IRUGO); 414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 415 416 static int rbd_img_request_submit(struct rbd_img_request *img_request); 417 418 static void rbd_dev_device_release(struct device *dev); 419 420 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 421 size_t count); 422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 423 size_t count); 424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 425 size_t count); 426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 427 size_t count); 428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 429 static void rbd_spec_put(struct rbd_spec *spec); 430 431 static int rbd_dev_id_to_minor(int dev_id) 432 { 433 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 434 } 435 436 static int minor_to_rbd_dev_id(int minor) 437 { 438 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 439 } 440 441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 445 446 static struct attribute *rbd_bus_attrs[] = { 447 &bus_attr_add.attr, 448 &bus_attr_remove.attr, 449 &bus_attr_add_single_major.attr, 450 &bus_attr_remove_single_major.attr, 451 NULL, 452 }; 453 454 static umode_t rbd_bus_is_visible(struct kobject *kobj, 455 struct attribute *attr, int index) 456 { 457 if (!single_major && 458 (attr == &bus_attr_add_single_major.attr || 459 attr == &bus_attr_remove_single_major.attr)) 460 return 0; 461 462 return attr->mode; 463 } 464 465 static const struct attribute_group rbd_bus_group = { 466 .attrs = rbd_bus_attrs, 467 .is_visible = rbd_bus_is_visible, 468 }; 469 __ATTRIBUTE_GROUPS(rbd_bus); 470 471 static struct bus_type rbd_bus_type = { 472 .name = "rbd", 473 .bus_groups = rbd_bus_groups, 474 }; 475 476 static void rbd_root_dev_release(struct device *dev) 477 { 478 } 479 480 static struct device rbd_root_dev = { 481 .init_name = "rbd", 482 .release = rbd_root_dev_release, 483 }; 484 485 static __printf(2, 3) 486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 487 { 488 struct va_format vaf; 489 va_list args; 490 491 va_start(args, fmt); 492 vaf.fmt = fmt; 493 vaf.va = &args; 494 495 if (!rbd_dev) 496 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 497 else if (rbd_dev->disk) 498 printk(KERN_WARNING "%s: %s: %pV\n", 499 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 500 else if (rbd_dev->spec && rbd_dev->spec->image_name) 501 printk(KERN_WARNING "%s: image %s: %pV\n", 502 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 503 else if (rbd_dev->spec && rbd_dev->spec->image_id) 504 printk(KERN_WARNING "%s: id %s: %pV\n", 505 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 506 else /* punt */ 507 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 508 RBD_DRV_NAME, rbd_dev, &vaf); 509 va_end(args); 510 } 511 512 #ifdef RBD_DEBUG 513 #define rbd_assert(expr) \ 514 if (unlikely(!(expr))) { \ 515 printk(KERN_ERR "\nAssertion failure in %s() " \ 516 "at line %d:\n\n" \ 517 "\trbd_assert(%s);\n\n", \ 518 __func__, __LINE__, #expr); \ 519 BUG(); \ 520 } 521 #else /* !RBD_DEBUG */ 522 # define rbd_assert(expr) ((void) 0) 523 #endif /* !RBD_DEBUG */ 524 525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 528 529 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 531 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 534 u64 snap_id); 535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 536 u8 *order, u64 *snap_size); 537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 538 u64 *snap_features); 539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 540 541 static int rbd_open(struct block_device *bdev, fmode_t mode) 542 { 543 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 544 bool removing = false; 545 546 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 547 return -EROFS; 548 549 spin_lock_irq(&rbd_dev->lock); 550 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 551 removing = true; 552 else 553 rbd_dev->open_count++; 554 spin_unlock_irq(&rbd_dev->lock); 555 if (removing) 556 return -ENOENT; 557 558 (void) get_device(&rbd_dev->dev); 559 560 return 0; 561 } 562 563 static void rbd_release(struct gendisk *disk, fmode_t mode) 564 { 565 struct rbd_device *rbd_dev = disk->private_data; 566 unsigned long open_count_before; 567 568 spin_lock_irq(&rbd_dev->lock); 569 open_count_before = rbd_dev->open_count--; 570 spin_unlock_irq(&rbd_dev->lock); 571 rbd_assert(open_count_before > 0); 572 573 put_device(&rbd_dev->dev); 574 } 575 576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 577 { 578 int ret = 0; 579 int val; 580 bool ro; 581 bool ro_changed = false; 582 583 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 584 if (get_user(val, (int __user *)(arg))) 585 return -EFAULT; 586 587 ro = val ? true : false; 588 /* Snapshot doesn't allow to write*/ 589 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 590 return -EROFS; 591 592 spin_lock_irq(&rbd_dev->lock); 593 /* prevent others open this device */ 594 if (rbd_dev->open_count > 1) { 595 ret = -EBUSY; 596 goto out; 597 } 598 599 if (rbd_dev->mapping.read_only != ro) { 600 rbd_dev->mapping.read_only = ro; 601 ro_changed = true; 602 } 603 604 out: 605 spin_unlock_irq(&rbd_dev->lock); 606 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 607 if (ret == 0 && ro_changed) 608 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 609 610 return ret; 611 } 612 613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 614 unsigned int cmd, unsigned long arg) 615 { 616 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 617 int ret = 0; 618 619 switch (cmd) { 620 case BLKROSET: 621 ret = rbd_ioctl_set_ro(rbd_dev, arg); 622 break; 623 default: 624 ret = -ENOTTY; 625 } 626 627 return ret; 628 } 629 630 #ifdef CONFIG_COMPAT 631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 632 unsigned int cmd, unsigned long arg) 633 { 634 return rbd_ioctl(bdev, mode, cmd, arg); 635 } 636 #endif /* CONFIG_COMPAT */ 637 638 static const struct block_device_operations rbd_bd_ops = { 639 .owner = THIS_MODULE, 640 .open = rbd_open, 641 .release = rbd_release, 642 .ioctl = rbd_ioctl, 643 #ifdef CONFIG_COMPAT 644 .compat_ioctl = rbd_compat_ioctl, 645 #endif 646 }; 647 648 /* 649 * Initialize an rbd client instance. Success or not, this function 650 * consumes ceph_opts. Caller holds client_mutex. 651 */ 652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 653 { 654 struct rbd_client *rbdc; 655 int ret = -ENOMEM; 656 657 dout("%s:\n", __func__); 658 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 659 if (!rbdc) 660 goto out_opt; 661 662 kref_init(&rbdc->kref); 663 INIT_LIST_HEAD(&rbdc->node); 664 665 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 666 if (IS_ERR(rbdc->client)) 667 goto out_rbdc; 668 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 669 670 ret = ceph_open_session(rbdc->client); 671 if (ret < 0) 672 goto out_client; 673 674 spin_lock(&rbd_client_list_lock); 675 list_add_tail(&rbdc->node, &rbd_client_list); 676 spin_unlock(&rbd_client_list_lock); 677 678 dout("%s: rbdc %p\n", __func__, rbdc); 679 680 return rbdc; 681 out_client: 682 ceph_destroy_client(rbdc->client); 683 out_rbdc: 684 kfree(rbdc); 685 out_opt: 686 if (ceph_opts) 687 ceph_destroy_options(ceph_opts); 688 dout("%s: error %d\n", __func__, ret); 689 690 return ERR_PTR(ret); 691 } 692 693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 694 { 695 kref_get(&rbdc->kref); 696 697 return rbdc; 698 } 699 700 /* 701 * Find a ceph client with specific addr and configuration. If 702 * found, bump its reference count. 703 */ 704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *client_node; 707 bool found = false; 708 709 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 710 return NULL; 711 712 spin_lock(&rbd_client_list_lock); 713 list_for_each_entry(client_node, &rbd_client_list, node) { 714 if (!ceph_compare_options(ceph_opts, client_node->client)) { 715 __rbd_get_client(client_node); 716 717 found = true; 718 break; 719 } 720 } 721 spin_unlock(&rbd_client_list_lock); 722 723 return found ? client_node : NULL; 724 } 725 726 /* 727 * mount options 728 */ 729 enum { 730 Opt_last_int, 731 /* int args above */ 732 Opt_last_string, 733 /* string args above */ 734 Opt_read_only, 735 Opt_read_write, 736 /* Boolean args above */ 737 Opt_last_bool, 738 }; 739 740 static match_table_t rbd_opts_tokens = { 741 /* int args above */ 742 /* string args above */ 743 {Opt_read_only, "read_only"}, 744 {Opt_read_only, "ro"}, /* Alternate spelling */ 745 {Opt_read_write, "read_write"}, 746 {Opt_read_write, "rw"}, /* Alternate spelling */ 747 /* Boolean args above */ 748 {-1, NULL} 749 }; 750 751 struct rbd_options { 752 bool read_only; 753 }; 754 755 #define RBD_READ_ONLY_DEFAULT false 756 757 static int parse_rbd_opts_token(char *c, void *private) 758 { 759 struct rbd_options *rbd_opts = private; 760 substring_t argstr[MAX_OPT_ARGS]; 761 int token, intval, ret; 762 763 token = match_token(c, rbd_opts_tokens, argstr); 764 if (token < 0) 765 return -EINVAL; 766 767 if (token < Opt_last_int) { 768 ret = match_int(&argstr[0], &intval); 769 if (ret < 0) { 770 pr_err("bad mount option arg (not int) " 771 "at '%s'\n", c); 772 return ret; 773 } 774 dout("got int token %d val %d\n", token, intval); 775 } else if (token > Opt_last_int && token < Opt_last_string) { 776 dout("got string token %d val %s\n", token, 777 argstr[0].from); 778 } else if (token > Opt_last_string && token < Opt_last_bool) { 779 dout("got Boolean token %d\n", token); 780 } else { 781 dout("got token %d\n", token); 782 } 783 784 switch (token) { 785 case Opt_read_only: 786 rbd_opts->read_only = true; 787 break; 788 case Opt_read_write: 789 rbd_opts->read_only = false; 790 break; 791 default: 792 rbd_assert(false); 793 break; 794 } 795 return 0; 796 } 797 798 static char* obj_op_name(enum obj_operation_type op_type) 799 { 800 switch (op_type) { 801 case OBJ_OP_READ: 802 return "read"; 803 case OBJ_OP_WRITE: 804 return "write"; 805 case OBJ_OP_DISCARD: 806 return "discard"; 807 default: 808 return "???"; 809 } 810 } 811 812 /* 813 * Get a ceph client with specific addr and configuration, if one does 814 * not exist create it. Either way, ceph_opts is consumed by this 815 * function. 816 */ 817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 818 { 819 struct rbd_client *rbdc; 820 821 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 822 rbdc = rbd_client_find(ceph_opts); 823 if (rbdc) /* using an existing client */ 824 ceph_destroy_options(ceph_opts); 825 else 826 rbdc = rbd_client_create(ceph_opts); 827 mutex_unlock(&client_mutex); 828 829 return rbdc; 830 } 831 832 /* 833 * Destroy ceph client 834 * 835 * Caller must hold rbd_client_list_lock. 836 */ 837 static void rbd_client_release(struct kref *kref) 838 { 839 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 840 841 dout("%s: rbdc %p\n", __func__, rbdc); 842 spin_lock(&rbd_client_list_lock); 843 list_del(&rbdc->node); 844 spin_unlock(&rbd_client_list_lock); 845 846 ceph_destroy_client(rbdc->client); 847 kfree(rbdc); 848 } 849 850 /* 851 * Drop reference to ceph client node. If it's not referenced anymore, release 852 * it. 853 */ 854 static void rbd_put_client(struct rbd_client *rbdc) 855 { 856 if (rbdc) 857 kref_put(&rbdc->kref, rbd_client_release); 858 } 859 860 static bool rbd_image_format_valid(u32 image_format) 861 { 862 return image_format == 1 || image_format == 2; 863 } 864 865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 866 { 867 size_t size; 868 u32 snap_count; 869 870 /* The header has to start with the magic rbd header text */ 871 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 872 return false; 873 874 /* The bio layer requires at least sector-sized I/O */ 875 876 if (ondisk->options.order < SECTOR_SHIFT) 877 return false; 878 879 /* If we use u64 in a few spots we may be able to loosen this */ 880 881 if (ondisk->options.order > 8 * sizeof (int) - 1) 882 return false; 883 884 /* 885 * The size of a snapshot header has to fit in a size_t, and 886 * that limits the number of snapshots. 887 */ 888 snap_count = le32_to_cpu(ondisk->snap_count); 889 size = SIZE_MAX - sizeof (struct ceph_snap_context); 890 if (snap_count > size / sizeof (__le64)) 891 return false; 892 893 /* 894 * Not only that, but the size of the entire the snapshot 895 * header must also be representable in a size_t. 896 */ 897 size -= snap_count * sizeof (__le64); 898 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 899 return false; 900 901 return true; 902 } 903 904 /* 905 * Fill an rbd image header with information from the given format 1 906 * on-disk header. 907 */ 908 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 909 struct rbd_image_header_ondisk *ondisk) 910 { 911 struct rbd_image_header *header = &rbd_dev->header; 912 bool first_time = header->object_prefix == NULL; 913 struct ceph_snap_context *snapc; 914 char *object_prefix = NULL; 915 char *snap_names = NULL; 916 u64 *snap_sizes = NULL; 917 u32 snap_count; 918 size_t size; 919 int ret = -ENOMEM; 920 u32 i; 921 922 /* Allocate this now to avoid having to handle failure below */ 923 924 if (first_time) { 925 size_t len; 926 927 len = strnlen(ondisk->object_prefix, 928 sizeof (ondisk->object_prefix)); 929 object_prefix = kmalloc(len + 1, GFP_KERNEL); 930 if (!object_prefix) 931 return -ENOMEM; 932 memcpy(object_prefix, ondisk->object_prefix, len); 933 object_prefix[len] = '\0'; 934 } 935 936 /* Allocate the snapshot context and fill it in */ 937 938 snap_count = le32_to_cpu(ondisk->snap_count); 939 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 940 if (!snapc) 941 goto out_err; 942 snapc->seq = le64_to_cpu(ondisk->snap_seq); 943 if (snap_count) { 944 struct rbd_image_snap_ondisk *snaps; 945 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 946 947 /* We'll keep a copy of the snapshot names... */ 948 949 if (snap_names_len > (u64)SIZE_MAX) 950 goto out_2big; 951 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 952 if (!snap_names) 953 goto out_err; 954 955 /* ...as well as the array of their sizes. */ 956 957 size = snap_count * sizeof (*header->snap_sizes); 958 snap_sizes = kmalloc(size, GFP_KERNEL); 959 if (!snap_sizes) 960 goto out_err; 961 962 /* 963 * Copy the names, and fill in each snapshot's id 964 * and size. 965 * 966 * Note that rbd_dev_v1_header_info() guarantees the 967 * ondisk buffer we're working with has 968 * snap_names_len bytes beyond the end of the 969 * snapshot id array, this memcpy() is safe. 970 */ 971 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 972 snaps = ondisk->snaps; 973 for (i = 0; i < snap_count; i++) { 974 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 975 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 976 } 977 } 978 979 /* We won't fail any more, fill in the header */ 980 981 if (first_time) { 982 header->object_prefix = object_prefix; 983 header->obj_order = ondisk->options.order; 984 header->crypt_type = ondisk->options.crypt_type; 985 header->comp_type = ondisk->options.comp_type; 986 /* The rest aren't used for format 1 images */ 987 header->stripe_unit = 0; 988 header->stripe_count = 0; 989 header->features = 0; 990 } else { 991 ceph_put_snap_context(header->snapc); 992 kfree(header->snap_names); 993 kfree(header->snap_sizes); 994 } 995 996 /* The remaining fields always get updated (when we refresh) */ 997 998 header->image_size = le64_to_cpu(ondisk->image_size); 999 header->snapc = snapc; 1000 header->snap_names = snap_names; 1001 header->snap_sizes = snap_sizes; 1002 1003 return 0; 1004 out_2big: 1005 ret = -EIO; 1006 out_err: 1007 kfree(snap_sizes); 1008 kfree(snap_names); 1009 ceph_put_snap_context(snapc); 1010 kfree(object_prefix); 1011 1012 return ret; 1013 } 1014 1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1016 { 1017 const char *snap_name; 1018 1019 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1020 1021 /* Skip over names until we find the one we are looking for */ 1022 1023 snap_name = rbd_dev->header.snap_names; 1024 while (which--) 1025 snap_name += strlen(snap_name) + 1; 1026 1027 return kstrdup(snap_name, GFP_KERNEL); 1028 } 1029 1030 /* 1031 * Snapshot id comparison function for use with qsort()/bsearch(). 1032 * Note that result is for snapshots in *descending* order. 1033 */ 1034 static int snapid_compare_reverse(const void *s1, const void *s2) 1035 { 1036 u64 snap_id1 = *(u64 *)s1; 1037 u64 snap_id2 = *(u64 *)s2; 1038 1039 if (snap_id1 < snap_id2) 1040 return 1; 1041 return snap_id1 == snap_id2 ? 0 : -1; 1042 } 1043 1044 /* 1045 * Search a snapshot context to see if the given snapshot id is 1046 * present. 1047 * 1048 * Returns the position of the snapshot id in the array if it's found, 1049 * or BAD_SNAP_INDEX otherwise. 1050 * 1051 * Note: The snapshot array is in kept sorted (by the osd) in 1052 * reverse order, highest snapshot id first. 1053 */ 1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1055 { 1056 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1057 u64 *found; 1058 1059 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1060 sizeof (snap_id), snapid_compare_reverse); 1061 1062 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1063 } 1064 1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1066 u64 snap_id) 1067 { 1068 u32 which; 1069 const char *snap_name; 1070 1071 which = rbd_dev_snap_index(rbd_dev, snap_id); 1072 if (which == BAD_SNAP_INDEX) 1073 return ERR_PTR(-ENOENT); 1074 1075 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1076 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1077 } 1078 1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1080 { 1081 if (snap_id == CEPH_NOSNAP) 1082 return RBD_SNAP_HEAD_NAME; 1083 1084 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1085 if (rbd_dev->image_format == 1) 1086 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1087 1088 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1089 } 1090 1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1092 u64 *snap_size) 1093 { 1094 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1095 if (snap_id == CEPH_NOSNAP) { 1096 *snap_size = rbd_dev->header.image_size; 1097 } else if (rbd_dev->image_format == 1) { 1098 u32 which; 1099 1100 which = rbd_dev_snap_index(rbd_dev, snap_id); 1101 if (which == BAD_SNAP_INDEX) 1102 return -ENOENT; 1103 1104 *snap_size = rbd_dev->header.snap_sizes[which]; 1105 } else { 1106 u64 size = 0; 1107 int ret; 1108 1109 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1110 if (ret) 1111 return ret; 1112 1113 *snap_size = size; 1114 } 1115 return 0; 1116 } 1117 1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1119 u64 *snap_features) 1120 { 1121 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1122 if (snap_id == CEPH_NOSNAP) { 1123 *snap_features = rbd_dev->header.features; 1124 } else if (rbd_dev->image_format == 1) { 1125 *snap_features = 0; /* No features for format 1 */ 1126 } else { 1127 u64 features = 0; 1128 int ret; 1129 1130 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1131 if (ret) 1132 return ret; 1133 1134 *snap_features = features; 1135 } 1136 return 0; 1137 } 1138 1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1140 { 1141 u64 snap_id = rbd_dev->spec->snap_id; 1142 u64 size = 0; 1143 u64 features = 0; 1144 int ret; 1145 1146 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1147 if (ret) 1148 return ret; 1149 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1150 if (ret) 1151 return ret; 1152 1153 rbd_dev->mapping.size = size; 1154 rbd_dev->mapping.features = features; 1155 1156 return 0; 1157 } 1158 1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1160 { 1161 rbd_dev->mapping.size = 0; 1162 rbd_dev->mapping.features = 0; 1163 } 1164 1165 static void rbd_segment_name_free(const char *name) 1166 { 1167 /* The explicit cast here is needed to drop the const qualifier */ 1168 1169 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1170 } 1171 1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1173 { 1174 char *name; 1175 u64 segment; 1176 int ret; 1177 char *name_format; 1178 1179 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1180 if (!name) 1181 return NULL; 1182 segment = offset >> rbd_dev->header.obj_order; 1183 name_format = "%s.%012llx"; 1184 if (rbd_dev->image_format == 2) 1185 name_format = "%s.%016llx"; 1186 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1187 rbd_dev->header.object_prefix, segment); 1188 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1189 pr_err("error formatting segment name for #%llu (%d)\n", 1190 segment, ret); 1191 rbd_segment_name_free(name); 1192 name = NULL; 1193 } 1194 1195 return name; 1196 } 1197 1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1199 { 1200 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1201 1202 return offset & (segment_size - 1); 1203 } 1204 1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1206 u64 offset, u64 length) 1207 { 1208 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1209 1210 offset &= segment_size - 1; 1211 1212 rbd_assert(length <= U64_MAX - offset); 1213 if (offset + length > segment_size) 1214 length = segment_size - offset; 1215 1216 return length; 1217 } 1218 1219 /* 1220 * returns the size of an object in the image 1221 */ 1222 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1223 { 1224 return 1 << header->obj_order; 1225 } 1226 1227 /* 1228 * bio helpers 1229 */ 1230 1231 static void bio_chain_put(struct bio *chain) 1232 { 1233 struct bio *tmp; 1234 1235 while (chain) { 1236 tmp = chain; 1237 chain = chain->bi_next; 1238 bio_put(tmp); 1239 } 1240 } 1241 1242 /* 1243 * zeros a bio chain, starting at specific offset 1244 */ 1245 static void zero_bio_chain(struct bio *chain, int start_ofs) 1246 { 1247 struct bio_vec bv; 1248 struct bvec_iter iter; 1249 unsigned long flags; 1250 void *buf; 1251 int pos = 0; 1252 1253 while (chain) { 1254 bio_for_each_segment(bv, chain, iter) { 1255 if (pos + bv.bv_len > start_ofs) { 1256 int remainder = max(start_ofs - pos, 0); 1257 buf = bvec_kmap_irq(&bv, &flags); 1258 memset(buf + remainder, 0, 1259 bv.bv_len - remainder); 1260 flush_dcache_page(bv.bv_page); 1261 bvec_kunmap_irq(buf, &flags); 1262 } 1263 pos += bv.bv_len; 1264 } 1265 1266 chain = chain->bi_next; 1267 } 1268 } 1269 1270 /* 1271 * similar to zero_bio_chain(), zeros data defined by a page array, 1272 * starting at the given byte offset from the start of the array and 1273 * continuing up to the given end offset. The pages array is 1274 * assumed to be big enough to hold all bytes up to the end. 1275 */ 1276 static void zero_pages(struct page **pages, u64 offset, u64 end) 1277 { 1278 struct page **page = &pages[offset >> PAGE_SHIFT]; 1279 1280 rbd_assert(end > offset); 1281 rbd_assert(end - offset <= (u64)SIZE_MAX); 1282 while (offset < end) { 1283 size_t page_offset; 1284 size_t length; 1285 unsigned long flags; 1286 void *kaddr; 1287 1288 page_offset = offset & ~PAGE_MASK; 1289 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1290 local_irq_save(flags); 1291 kaddr = kmap_atomic(*page); 1292 memset(kaddr + page_offset, 0, length); 1293 flush_dcache_page(*page); 1294 kunmap_atomic(kaddr); 1295 local_irq_restore(flags); 1296 1297 offset += length; 1298 page++; 1299 } 1300 } 1301 1302 /* 1303 * Clone a portion of a bio, starting at the given byte offset 1304 * and continuing for the number of bytes indicated. 1305 */ 1306 static struct bio *bio_clone_range(struct bio *bio_src, 1307 unsigned int offset, 1308 unsigned int len, 1309 gfp_t gfpmask) 1310 { 1311 struct bio *bio; 1312 1313 bio = bio_clone(bio_src, gfpmask); 1314 if (!bio) 1315 return NULL; /* ENOMEM */ 1316 1317 bio_advance(bio, offset); 1318 bio->bi_iter.bi_size = len; 1319 1320 return bio; 1321 } 1322 1323 /* 1324 * Clone a portion of a bio chain, starting at the given byte offset 1325 * into the first bio in the source chain and continuing for the 1326 * number of bytes indicated. The result is another bio chain of 1327 * exactly the given length, or a null pointer on error. 1328 * 1329 * The bio_src and offset parameters are both in-out. On entry they 1330 * refer to the first source bio and the offset into that bio where 1331 * the start of data to be cloned is located. 1332 * 1333 * On return, bio_src is updated to refer to the bio in the source 1334 * chain that contains first un-cloned byte, and *offset will 1335 * contain the offset of that byte within that bio. 1336 */ 1337 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1338 unsigned int *offset, 1339 unsigned int len, 1340 gfp_t gfpmask) 1341 { 1342 struct bio *bi = *bio_src; 1343 unsigned int off = *offset; 1344 struct bio *chain = NULL; 1345 struct bio **end; 1346 1347 /* Build up a chain of clone bios up to the limit */ 1348 1349 if (!bi || off >= bi->bi_iter.bi_size || !len) 1350 return NULL; /* Nothing to clone */ 1351 1352 end = &chain; 1353 while (len) { 1354 unsigned int bi_size; 1355 struct bio *bio; 1356 1357 if (!bi) { 1358 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1359 goto out_err; /* EINVAL; ran out of bio's */ 1360 } 1361 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1362 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1363 if (!bio) 1364 goto out_err; /* ENOMEM */ 1365 1366 *end = bio; 1367 end = &bio->bi_next; 1368 1369 off += bi_size; 1370 if (off == bi->bi_iter.bi_size) { 1371 bi = bi->bi_next; 1372 off = 0; 1373 } 1374 len -= bi_size; 1375 } 1376 *bio_src = bi; 1377 *offset = off; 1378 1379 return chain; 1380 out_err: 1381 bio_chain_put(chain); 1382 1383 return NULL; 1384 } 1385 1386 /* 1387 * The default/initial value for all object request flags is 0. For 1388 * each flag, once its value is set to 1 it is never reset to 0 1389 * again. 1390 */ 1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1392 { 1393 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1394 struct rbd_device *rbd_dev; 1395 1396 rbd_dev = obj_request->img_request->rbd_dev; 1397 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1398 obj_request); 1399 } 1400 } 1401 1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1403 { 1404 smp_mb(); 1405 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1406 } 1407 1408 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1409 { 1410 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1411 struct rbd_device *rbd_dev = NULL; 1412 1413 if (obj_request_img_data_test(obj_request)) 1414 rbd_dev = obj_request->img_request->rbd_dev; 1415 rbd_warn(rbd_dev, "obj_request %p already marked done", 1416 obj_request); 1417 } 1418 } 1419 1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1421 { 1422 smp_mb(); 1423 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1424 } 1425 1426 /* 1427 * This sets the KNOWN flag after (possibly) setting the EXISTS 1428 * flag. The latter is set based on the "exists" value provided. 1429 * 1430 * Note that for our purposes once an object exists it never goes 1431 * away again. It's possible that the response from two existence 1432 * checks are separated by the creation of the target object, and 1433 * the first ("doesn't exist") response arrives *after* the second 1434 * ("does exist"). In that case we ignore the second one. 1435 */ 1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1437 bool exists) 1438 { 1439 if (exists) 1440 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1441 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1442 smp_mb(); 1443 } 1444 1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1446 { 1447 smp_mb(); 1448 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1449 } 1450 1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1452 { 1453 smp_mb(); 1454 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1455 } 1456 1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1458 { 1459 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1460 1461 return obj_request->img_offset < 1462 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1463 } 1464 1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1466 { 1467 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1468 atomic_read(&obj_request->kref.refcount)); 1469 kref_get(&obj_request->kref); 1470 } 1471 1472 static void rbd_obj_request_destroy(struct kref *kref); 1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1474 { 1475 rbd_assert(obj_request != NULL); 1476 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1477 atomic_read(&obj_request->kref.refcount)); 1478 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1479 } 1480 1481 static void rbd_img_request_get(struct rbd_img_request *img_request) 1482 { 1483 dout("%s: img %p (was %d)\n", __func__, img_request, 1484 atomic_read(&img_request->kref.refcount)); 1485 kref_get(&img_request->kref); 1486 } 1487 1488 static bool img_request_child_test(struct rbd_img_request *img_request); 1489 static void rbd_parent_request_destroy(struct kref *kref); 1490 static void rbd_img_request_destroy(struct kref *kref); 1491 static void rbd_img_request_put(struct rbd_img_request *img_request) 1492 { 1493 rbd_assert(img_request != NULL); 1494 dout("%s: img %p (was %d)\n", __func__, img_request, 1495 atomic_read(&img_request->kref.refcount)); 1496 if (img_request_child_test(img_request)) 1497 kref_put(&img_request->kref, rbd_parent_request_destroy); 1498 else 1499 kref_put(&img_request->kref, rbd_img_request_destroy); 1500 } 1501 1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1503 struct rbd_obj_request *obj_request) 1504 { 1505 rbd_assert(obj_request->img_request == NULL); 1506 1507 /* Image request now owns object's original reference */ 1508 obj_request->img_request = img_request; 1509 obj_request->which = img_request->obj_request_count; 1510 rbd_assert(!obj_request_img_data_test(obj_request)); 1511 obj_request_img_data_set(obj_request); 1512 rbd_assert(obj_request->which != BAD_WHICH); 1513 img_request->obj_request_count++; 1514 list_add_tail(&obj_request->links, &img_request->obj_requests); 1515 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1516 obj_request->which); 1517 } 1518 1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1520 struct rbd_obj_request *obj_request) 1521 { 1522 rbd_assert(obj_request->which != BAD_WHICH); 1523 1524 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1525 obj_request->which); 1526 list_del(&obj_request->links); 1527 rbd_assert(img_request->obj_request_count > 0); 1528 img_request->obj_request_count--; 1529 rbd_assert(obj_request->which == img_request->obj_request_count); 1530 obj_request->which = BAD_WHICH; 1531 rbd_assert(obj_request_img_data_test(obj_request)); 1532 rbd_assert(obj_request->img_request == img_request); 1533 obj_request->img_request = NULL; 1534 obj_request->callback = NULL; 1535 rbd_obj_request_put(obj_request); 1536 } 1537 1538 static bool obj_request_type_valid(enum obj_request_type type) 1539 { 1540 switch (type) { 1541 case OBJ_REQUEST_NODATA: 1542 case OBJ_REQUEST_BIO: 1543 case OBJ_REQUEST_PAGES: 1544 return true; 1545 default: 1546 return false; 1547 } 1548 } 1549 1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1551 struct rbd_obj_request *obj_request) 1552 { 1553 dout("%s %p\n", __func__, obj_request); 1554 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1555 } 1556 1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1558 { 1559 dout("%s %p\n", __func__, obj_request); 1560 ceph_osdc_cancel_request(obj_request->osd_req); 1561 } 1562 1563 /* 1564 * Wait for an object request to complete. If interrupted, cancel the 1565 * underlying osd request. 1566 */ 1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1568 { 1569 int ret; 1570 1571 dout("%s %p\n", __func__, obj_request); 1572 1573 ret = wait_for_completion_interruptible(&obj_request->completion); 1574 if (ret < 0) { 1575 dout("%s %p interrupted\n", __func__, obj_request); 1576 rbd_obj_request_end(obj_request); 1577 return ret; 1578 } 1579 1580 dout("%s %p done\n", __func__, obj_request); 1581 return 0; 1582 } 1583 1584 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1585 { 1586 1587 dout("%s: img %p\n", __func__, img_request); 1588 1589 /* 1590 * If no error occurred, compute the aggregate transfer 1591 * count for the image request. We could instead use 1592 * atomic64_cmpxchg() to update it as each object request 1593 * completes; not clear which way is better off hand. 1594 */ 1595 if (!img_request->result) { 1596 struct rbd_obj_request *obj_request; 1597 u64 xferred = 0; 1598 1599 for_each_obj_request(img_request, obj_request) 1600 xferred += obj_request->xferred; 1601 img_request->xferred = xferred; 1602 } 1603 1604 if (img_request->callback) 1605 img_request->callback(img_request); 1606 else 1607 rbd_img_request_put(img_request); 1608 } 1609 1610 /* 1611 * The default/initial value for all image request flags is 0. Each 1612 * is conditionally set to 1 at image request initialization time 1613 * and currently never change thereafter. 1614 */ 1615 static void img_request_write_set(struct rbd_img_request *img_request) 1616 { 1617 set_bit(IMG_REQ_WRITE, &img_request->flags); 1618 smp_mb(); 1619 } 1620 1621 static bool img_request_write_test(struct rbd_img_request *img_request) 1622 { 1623 smp_mb(); 1624 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1625 } 1626 1627 /* 1628 * Set the discard flag when the img_request is an discard request 1629 */ 1630 static void img_request_discard_set(struct rbd_img_request *img_request) 1631 { 1632 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1633 smp_mb(); 1634 } 1635 1636 static bool img_request_discard_test(struct rbd_img_request *img_request) 1637 { 1638 smp_mb(); 1639 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1640 } 1641 1642 static void img_request_child_set(struct rbd_img_request *img_request) 1643 { 1644 set_bit(IMG_REQ_CHILD, &img_request->flags); 1645 smp_mb(); 1646 } 1647 1648 static void img_request_child_clear(struct rbd_img_request *img_request) 1649 { 1650 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1651 smp_mb(); 1652 } 1653 1654 static bool img_request_child_test(struct rbd_img_request *img_request) 1655 { 1656 smp_mb(); 1657 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1658 } 1659 1660 static void img_request_layered_set(struct rbd_img_request *img_request) 1661 { 1662 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1663 smp_mb(); 1664 } 1665 1666 static void img_request_layered_clear(struct rbd_img_request *img_request) 1667 { 1668 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1669 smp_mb(); 1670 } 1671 1672 static bool img_request_layered_test(struct rbd_img_request *img_request) 1673 { 1674 smp_mb(); 1675 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1676 } 1677 1678 static enum obj_operation_type 1679 rbd_img_request_op_type(struct rbd_img_request *img_request) 1680 { 1681 if (img_request_write_test(img_request)) 1682 return OBJ_OP_WRITE; 1683 else if (img_request_discard_test(img_request)) 1684 return OBJ_OP_DISCARD; 1685 else 1686 return OBJ_OP_READ; 1687 } 1688 1689 static void 1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1691 { 1692 u64 xferred = obj_request->xferred; 1693 u64 length = obj_request->length; 1694 1695 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1696 obj_request, obj_request->img_request, obj_request->result, 1697 xferred, length); 1698 /* 1699 * ENOENT means a hole in the image. We zero-fill the entire 1700 * length of the request. A short read also implies zero-fill 1701 * to the end of the request. An error requires the whole 1702 * length of the request to be reported finished with an error 1703 * to the block layer. In each case we update the xferred 1704 * count to indicate the whole request was satisfied. 1705 */ 1706 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1707 if (obj_request->result == -ENOENT) { 1708 if (obj_request->type == OBJ_REQUEST_BIO) 1709 zero_bio_chain(obj_request->bio_list, 0); 1710 else 1711 zero_pages(obj_request->pages, 0, length); 1712 obj_request->result = 0; 1713 } else if (xferred < length && !obj_request->result) { 1714 if (obj_request->type == OBJ_REQUEST_BIO) 1715 zero_bio_chain(obj_request->bio_list, xferred); 1716 else 1717 zero_pages(obj_request->pages, xferred, length); 1718 } 1719 obj_request->xferred = length; 1720 obj_request_done_set(obj_request); 1721 } 1722 1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1724 { 1725 dout("%s: obj %p cb %p\n", __func__, obj_request, 1726 obj_request->callback); 1727 if (obj_request->callback) 1728 obj_request->callback(obj_request); 1729 else 1730 complete_all(&obj_request->completion); 1731 } 1732 1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1734 { 1735 dout("%s: obj %p\n", __func__, obj_request); 1736 obj_request_done_set(obj_request); 1737 } 1738 1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1740 { 1741 struct rbd_img_request *img_request = NULL; 1742 struct rbd_device *rbd_dev = NULL; 1743 bool layered = false; 1744 1745 if (obj_request_img_data_test(obj_request)) { 1746 img_request = obj_request->img_request; 1747 layered = img_request && img_request_layered_test(img_request); 1748 rbd_dev = img_request->rbd_dev; 1749 } 1750 1751 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1752 obj_request, img_request, obj_request->result, 1753 obj_request->xferred, obj_request->length); 1754 if (layered && obj_request->result == -ENOENT && 1755 obj_request->img_offset < rbd_dev->parent_overlap) 1756 rbd_img_parent_read(obj_request); 1757 else if (img_request) 1758 rbd_img_obj_request_read_callback(obj_request); 1759 else 1760 obj_request_done_set(obj_request); 1761 } 1762 1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1764 { 1765 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1766 obj_request->result, obj_request->length); 1767 /* 1768 * There is no such thing as a successful short write. Set 1769 * it to our originally-requested length. 1770 */ 1771 obj_request->xferred = obj_request->length; 1772 obj_request_done_set(obj_request); 1773 } 1774 1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1776 { 1777 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1778 obj_request->result, obj_request->length); 1779 /* 1780 * There is no such thing as a successful short discard. Set 1781 * it to our originally-requested length. 1782 */ 1783 obj_request->xferred = obj_request->length; 1784 /* discarding a non-existent object is not a problem */ 1785 if (obj_request->result == -ENOENT) 1786 obj_request->result = 0; 1787 obj_request_done_set(obj_request); 1788 } 1789 1790 /* 1791 * For a simple stat call there's nothing to do. We'll do more if 1792 * this is part of a write sequence for a layered image. 1793 */ 1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1795 { 1796 dout("%s: obj %p\n", __func__, obj_request); 1797 obj_request_done_set(obj_request); 1798 } 1799 1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1801 struct ceph_msg *msg) 1802 { 1803 struct rbd_obj_request *obj_request = osd_req->r_priv; 1804 u16 opcode; 1805 1806 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1807 rbd_assert(osd_req == obj_request->osd_req); 1808 if (obj_request_img_data_test(obj_request)) { 1809 rbd_assert(obj_request->img_request); 1810 rbd_assert(obj_request->which != BAD_WHICH); 1811 } else { 1812 rbd_assert(obj_request->which == BAD_WHICH); 1813 } 1814 1815 if (osd_req->r_result < 0) 1816 obj_request->result = osd_req->r_result; 1817 1818 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1819 1820 /* 1821 * We support a 64-bit length, but ultimately it has to be 1822 * passed to the block layer, which just supports a 32-bit 1823 * length field. 1824 */ 1825 obj_request->xferred = osd_req->r_reply_op_len[0]; 1826 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1827 1828 opcode = osd_req->r_ops[0].op; 1829 switch (opcode) { 1830 case CEPH_OSD_OP_READ: 1831 rbd_osd_read_callback(obj_request); 1832 break; 1833 case CEPH_OSD_OP_SETALLOCHINT: 1834 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1835 /* fall through */ 1836 case CEPH_OSD_OP_WRITE: 1837 rbd_osd_write_callback(obj_request); 1838 break; 1839 case CEPH_OSD_OP_STAT: 1840 rbd_osd_stat_callback(obj_request); 1841 break; 1842 case CEPH_OSD_OP_DELETE: 1843 case CEPH_OSD_OP_TRUNCATE: 1844 case CEPH_OSD_OP_ZERO: 1845 rbd_osd_discard_callback(obj_request); 1846 break; 1847 case CEPH_OSD_OP_CALL: 1848 case CEPH_OSD_OP_NOTIFY_ACK: 1849 case CEPH_OSD_OP_WATCH: 1850 rbd_osd_trivial_callback(obj_request); 1851 break; 1852 default: 1853 rbd_warn(NULL, "%s: unsupported op %hu", 1854 obj_request->object_name, (unsigned short) opcode); 1855 break; 1856 } 1857 1858 if (obj_request_done_test(obj_request)) 1859 rbd_obj_request_complete(obj_request); 1860 } 1861 1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1863 { 1864 struct rbd_img_request *img_request = obj_request->img_request; 1865 struct ceph_osd_request *osd_req = obj_request->osd_req; 1866 u64 snap_id; 1867 1868 rbd_assert(osd_req != NULL); 1869 1870 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1871 ceph_osdc_build_request(osd_req, obj_request->offset, 1872 NULL, snap_id, NULL); 1873 } 1874 1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1876 { 1877 struct rbd_img_request *img_request = obj_request->img_request; 1878 struct ceph_osd_request *osd_req = obj_request->osd_req; 1879 struct ceph_snap_context *snapc; 1880 struct timespec mtime = CURRENT_TIME; 1881 1882 rbd_assert(osd_req != NULL); 1883 1884 snapc = img_request ? img_request->snapc : NULL; 1885 ceph_osdc_build_request(osd_req, obj_request->offset, 1886 snapc, CEPH_NOSNAP, &mtime); 1887 } 1888 1889 /* 1890 * Create an osd request. A read request has one osd op (read). 1891 * A write request has either one (watch) or two (hint+write) osd ops. 1892 * (All rbd data writes are prefixed with an allocation hint op, but 1893 * technically osd watch is a write request, hence this distinction.) 1894 */ 1895 static struct ceph_osd_request *rbd_osd_req_create( 1896 struct rbd_device *rbd_dev, 1897 enum obj_operation_type op_type, 1898 unsigned int num_ops, 1899 struct rbd_obj_request *obj_request) 1900 { 1901 struct ceph_snap_context *snapc = NULL; 1902 struct ceph_osd_client *osdc; 1903 struct ceph_osd_request *osd_req; 1904 1905 if (obj_request_img_data_test(obj_request) && 1906 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1907 struct rbd_img_request *img_request = obj_request->img_request; 1908 if (op_type == OBJ_OP_WRITE) { 1909 rbd_assert(img_request_write_test(img_request)); 1910 } else { 1911 rbd_assert(img_request_discard_test(img_request)); 1912 } 1913 snapc = img_request->snapc; 1914 } 1915 1916 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1917 1918 /* Allocate and initialize the request, for the num_ops ops */ 1919 1920 osdc = &rbd_dev->rbd_client->client->osdc; 1921 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1922 GFP_ATOMIC); 1923 if (!osd_req) 1924 return NULL; /* ENOMEM */ 1925 1926 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1927 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1928 else 1929 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1930 1931 osd_req->r_callback = rbd_osd_req_callback; 1932 osd_req->r_priv = obj_request; 1933 1934 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1935 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1936 1937 return osd_req; 1938 } 1939 1940 /* 1941 * Create a copyup osd request based on the information in the object 1942 * request supplied. A copyup request has two or three osd ops, a 1943 * copyup method call, potentially a hint op, and a write or truncate 1944 * or zero op. 1945 */ 1946 static struct ceph_osd_request * 1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1948 { 1949 struct rbd_img_request *img_request; 1950 struct ceph_snap_context *snapc; 1951 struct rbd_device *rbd_dev; 1952 struct ceph_osd_client *osdc; 1953 struct ceph_osd_request *osd_req; 1954 int num_osd_ops = 3; 1955 1956 rbd_assert(obj_request_img_data_test(obj_request)); 1957 img_request = obj_request->img_request; 1958 rbd_assert(img_request); 1959 rbd_assert(img_request_write_test(img_request) || 1960 img_request_discard_test(img_request)); 1961 1962 if (img_request_discard_test(img_request)) 1963 num_osd_ops = 2; 1964 1965 /* Allocate and initialize the request, for all the ops */ 1966 1967 snapc = img_request->snapc; 1968 rbd_dev = img_request->rbd_dev; 1969 osdc = &rbd_dev->rbd_client->client->osdc; 1970 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 1971 false, GFP_ATOMIC); 1972 if (!osd_req) 1973 return NULL; /* ENOMEM */ 1974 1975 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1976 osd_req->r_callback = rbd_osd_req_callback; 1977 osd_req->r_priv = obj_request; 1978 1979 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1980 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1981 1982 return osd_req; 1983 } 1984 1985 1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1987 { 1988 ceph_osdc_put_request(osd_req); 1989 } 1990 1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1992 1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1994 u64 offset, u64 length, 1995 enum obj_request_type type) 1996 { 1997 struct rbd_obj_request *obj_request; 1998 size_t size; 1999 char *name; 2000 2001 rbd_assert(obj_request_type_valid(type)); 2002 2003 size = strlen(object_name) + 1; 2004 name = kmalloc(size, GFP_KERNEL); 2005 if (!name) 2006 return NULL; 2007 2008 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 2009 if (!obj_request) { 2010 kfree(name); 2011 return NULL; 2012 } 2013 2014 obj_request->object_name = memcpy(name, object_name, size); 2015 obj_request->offset = offset; 2016 obj_request->length = length; 2017 obj_request->flags = 0; 2018 obj_request->which = BAD_WHICH; 2019 obj_request->type = type; 2020 INIT_LIST_HEAD(&obj_request->links); 2021 init_completion(&obj_request->completion); 2022 kref_init(&obj_request->kref); 2023 2024 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2025 offset, length, (int)type, obj_request); 2026 2027 return obj_request; 2028 } 2029 2030 static void rbd_obj_request_destroy(struct kref *kref) 2031 { 2032 struct rbd_obj_request *obj_request; 2033 2034 obj_request = container_of(kref, struct rbd_obj_request, kref); 2035 2036 dout("%s: obj %p\n", __func__, obj_request); 2037 2038 rbd_assert(obj_request->img_request == NULL); 2039 rbd_assert(obj_request->which == BAD_WHICH); 2040 2041 if (obj_request->osd_req) 2042 rbd_osd_req_destroy(obj_request->osd_req); 2043 2044 rbd_assert(obj_request_type_valid(obj_request->type)); 2045 switch (obj_request->type) { 2046 case OBJ_REQUEST_NODATA: 2047 break; /* Nothing to do */ 2048 case OBJ_REQUEST_BIO: 2049 if (obj_request->bio_list) 2050 bio_chain_put(obj_request->bio_list); 2051 break; 2052 case OBJ_REQUEST_PAGES: 2053 if (obj_request->pages) 2054 ceph_release_page_vector(obj_request->pages, 2055 obj_request->page_count); 2056 break; 2057 } 2058 2059 kfree(obj_request->object_name); 2060 obj_request->object_name = NULL; 2061 kmem_cache_free(rbd_obj_request_cache, obj_request); 2062 } 2063 2064 /* It's OK to call this for a device with no parent */ 2065 2066 static void rbd_spec_put(struct rbd_spec *spec); 2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2068 { 2069 rbd_dev_remove_parent(rbd_dev); 2070 rbd_spec_put(rbd_dev->parent_spec); 2071 rbd_dev->parent_spec = NULL; 2072 rbd_dev->parent_overlap = 0; 2073 } 2074 2075 /* 2076 * Parent image reference counting is used to determine when an 2077 * image's parent fields can be safely torn down--after there are no 2078 * more in-flight requests to the parent image. When the last 2079 * reference is dropped, cleaning them up is safe. 2080 */ 2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2082 { 2083 int counter; 2084 2085 if (!rbd_dev->parent_spec) 2086 return; 2087 2088 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2089 if (counter > 0) 2090 return; 2091 2092 /* Last reference; clean up parent data structures */ 2093 2094 if (!counter) 2095 rbd_dev_unparent(rbd_dev); 2096 else 2097 rbd_warn(rbd_dev, "parent reference underflow"); 2098 } 2099 2100 /* 2101 * If an image has a non-zero parent overlap, get a reference to its 2102 * parent. 2103 * 2104 * Returns true if the rbd device has a parent with a non-zero 2105 * overlap and a reference for it was successfully taken, or 2106 * false otherwise. 2107 */ 2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2109 { 2110 int counter = 0; 2111 2112 if (!rbd_dev->parent_spec) 2113 return false; 2114 2115 down_read(&rbd_dev->header_rwsem); 2116 if (rbd_dev->parent_overlap) 2117 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2118 up_read(&rbd_dev->header_rwsem); 2119 2120 if (counter < 0) 2121 rbd_warn(rbd_dev, "parent reference overflow"); 2122 2123 return counter > 0; 2124 } 2125 2126 /* 2127 * Caller is responsible for filling in the list of object requests 2128 * that comprises the image request, and the Linux request pointer 2129 * (if there is one). 2130 */ 2131 static struct rbd_img_request *rbd_img_request_create( 2132 struct rbd_device *rbd_dev, 2133 u64 offset, u64 length, 2134 enum obj_operation_type op_type, 2135 struct ceph_snap_context *snapc) 2136 { 2137 struct rbd_img_request *img_request; 2138 2139 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2140 if (!img_request) 2141 return NULL; 2142 2143 img_request->rq = NULL; 2144 img_request->rbd_dev = rbd_dev; 2145 img_request->offset = offset; 2146 img_request->length = length; 2147 img_request->flags = 0; 2148 if (op_type == OBJ_OP_DISCARD) { 2149 img_request_discard_set(img_request); 2150 img_request->snapc = snapc; 2151 } else if (op_type == OBJ_OP_WRITE) { 2152 img_request_write_set(img_request); 2153 img_request->snapc = snapc; 2154 } else { 2155 img_request->snap_id = rbd_dev->spec->snap_id; 2156 } 2157 if (rbd_dev_parent_get(rbd_dev)) 2158 img_request_layered_set(img_request); 2159 spin_lock_init(&img_request->completion_lock); 2160 img_request->next_completion = 0; 2161 img_request->callback = NULL; 2162 img_request->result = 0; 2163 img_request->obj_request_count = 0; 2164 INIT_LIST_HEAD(&img_request->obj_requests); 2165 kref_init(&img_request->kref); 2166 2167 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2168 obj_op_name(op_type), offset, length, img_request); 2169 2170 return img_request; 2171 } 2172 2173 static void rbd_img_request_destroy(struct kref *kref) 2174 { 2175 struct rbd_img_request *img_request; 2176 struct rbd_obj_request *obj_request; 2177 struct rbd_obj_request *next_obj_request; 2178 2179 img_request = container_of(kref, struct rbd_img_request, kref); 2180 2181 dout("%s: img %p\n", __func__, img_request); 2182 2183 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2184 rbd_img_obj_request_del(img_request, obj_request); 2185 rbd_assert(img_request->obj_request_count == 0); 2186 2187 if (img_request_layered_test(img_request)) { 2188 img_request_layered_clear(img_request); 2189 rbd_dev_parent_put(img_request->rbd_dev); 2190 } 2191 2192 if (img_request_write_test(img_request) || 2193 img_request_discard_test(img_request)) 2194 ceph_put_snap_context(img_request->snapc); 2195 2196 kmem_cache_free(rbd_img_request_cache, img_request); 2197 } 2198 2199 static struct rbd_img_request *rbd_parent_request_create( 2200 struct rbd_obj_request *obj_request, 2201 u64 img_offset, u64 length) 2202 { 2203 struct rbd_img_request *parent_request; 2204 struct rbd_device *rbd_dev; 2205 2206 rbd_assert(obj_request->img_request); 2207 rbd_dev = obj_request->img_request->rbd_dev; 2208 2209 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2210 length, OBJ_OP_READ, NULL); 2211 if (!parent_request) 2212 return NULL; 2213 2214 img_request_child_set(parent_request); 2215 rbd_obj_request_get(obj_request); 2216 parent_request->obj_request = obj_request; 2217 2218 return parent_request; 2219 } 2220 2221 static void rbd_parent_request_destroy(struct kref *kref) 2222 { 2223 struct rbd_img_request *parent_request; 2224 struct rbd_obj_request *orig_request; 2225 2226 parent_request = container_of(kref, struct rbd_img_request, kref); 2227 orig_request = parent_request->obj_request; 2228 2229 parent_request->obj_request = NULL; 2230 rbd_obj_request_put(orig_request); 2231 img_request_child_clear(parent_request); 2232 2233 rbd_img_request_destroy(kref); 2234 } 2235 2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2237 { 2238 struct rbd_img_request *img_request; 2239 unsigned int xferred; 2240 int result; 2241 bool more; 2242 2243 rbd_assert(obj_request_img_data_test(obj_request)); 2244 img_request = obj_request->img_request; 2245 2246 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2247 xferred = (unsigned int)obj_request->xferred; 2248 result = obj_request->result; 2249 if (result) { 2250 struct rbd_device *rbd_dev = img_request->rbd_dev; 2251 enum obj_operation_type op_type; 2252 2253 if (img_request_discard_test(img_request)) 2254 op_type = OBJ_OP_DISCARD; 2255 else if (img_request_write_test(img_request)) 2256 op_type = OBJ_OP_WRITE; 2257 else 2258 op_type = OBJ_OP_READ; 2259 2260 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2261 obj_op_name(op_type), obj_request->length, 2262 obj_request->img_offset, obj_request->offset); 2263 rbd_warn(rbd_dev, " result %d xferred %x", 2264 result, xferred); 2265 if (!img_request->result) 2266 img_request->result = result; 2267 } 2268 2269 /* Image object requests don't own their page array */ 2270 2271 if (obj_request->type == OBJ_REQUEST_PAGES) { 2272 obj_request->pages = NULL; 2273 obj_request->page_count = 0; 2274 } 2275 2276 if (img_request_child_test(img_request)) { 2277 rbd_assert(img_request->obj_request != NULL); 2278 more = obj_request->which < img_request->obj_request_count - 1; 2279 } else { 2280 rbd_assert(img_request->rq != NULL); 2281 2282 more = blk_update_request(img_request->rq, result, xferred); 2283 if (!more) 2284 __blk_mq_end_request(img_request->rq, result); 2285 } 2286 2287 return more; 2288 } 2289 2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2291 { 2292 struct rbd_img_request *img_request; 2293 u32 which = obj_request->which; 2294 bool more = true; 2295 2296 rbd_assert(obj_request_img_data_test(obj_request)); 2297 img_request = obj_request->img_request; 2298 2299 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2300 rbd_assert(img_request != NULL); 2301 rbd_assert(img_request->obj_request_count > 0); 2302 rbd_assert(which != BAD_WHICH); 2303 rbd_assert(which < img_request->obj_request_count); 2304 2305 spin_lock_irq(&img_request->completion_lock); 2306 if (which != img_request->next_completion) 2307 goto out; 2308 2309 for_each_obj_request_from(img_request, obj_request) { 2310 rbd_assert(more); 2311 rbd_assert(which < img_request->obj_request_count); 2312 2313 if (!obj_request_done_test(obj_request)) 2314 break; 2315 more = rbd_img_obj_end_request(obj_request); 2316 which++; 2317 } 2318 2319 rbd_assert(more ^ (which == img_request->obj_request_count)); 2320 img_request->next_completion = which; 2321 out: 2322 spin_unlock_irq(&img_request->completion_lock); 2323 rbd_img_request_put(img_request); 2324 2325 if (!more) 2326 rbd_img_request_complete(img_request); 2327 } 2328 2329 /* 2330 * Add individual osd ops to the given ceph_osd_request and prepare 2331 * them for submission. num_ops is the current number of 2332 * osd operations already to the object request. 2333 */ 2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2335 struct ceph_osd_request *osd_request, 2336 enum obj_operation_type op_type, 2337 unsigned int num_ops) 2338 { 2339 struct rbd_img_request *img_request = obj_request->img_request; 2340 struct rbd_device *rbd_dev = img_request->rbd_dev; 2341 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2342 u64 offset = obj_request->offset; 2343 u64 length = obj_request->length; 2344 u64 img_end; 2345 u16 opcode; 2346 2347 if (op_type == OBJ_OP_DISCARD) { 2348 if (!offset && length == object_size && 2349 (!img_request_layered_test(img_request) || 2350 !obj_request_overlaps_parent(obj_request))) { 2351 opcode = CEPH_OSD_OP_DELETE; 2352 } else if ((offset + length == object_size)) { 2353 opcode = CEPH_OSD_OP_TRUNCATE; 2354 } else { 2355 down_read(&rbd_dev->header_rwsem); 2356 img_end = rbd_dev->header.image_size; 2357 up_read(&rbd_dev->header_rwsem); 2358 2359 if (obj_request->img_offset + length == img_end) 2360 opcode = CEPH_OSD_OP_TRUNCATE; 2361 else 2362 opcode = CEPH_OSD_OP_ZERO; 2363 } 2364 } else if (op_type == OBJ_OP_WRITE) { 2365 opcode = CEPH_OSD_OP_WRITE; 2366 osd_req_op_alloc_hint_init(osd_request, num_ops, 2367 object_size, object_size); 2368 num_ops++; 2369 } else { 2370 opcode = CEPH_OSD_OP_READ; 2371 } 2372 2373 if (opcode == CEPH_OSD_OP_DELETE) 2374 osd_req_op_init(osd_request, num_ops, opcode); 2375 else 2376 osd_req_op_extent_init(osd_request, num_ops, opcode, 2377 offset, length, 0, 0); 2378 2379 if (obj_request->type == OBJ_REQUEST_BIO) 2380 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2381 obj_request->bio_list, length); 2382 else if (obj_request->type == OBJ_REQUEST_PAGES) 2383 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2384 obj_request->pages, length, 2385 offset & ~PAGE_MASK, false, false); 2386 2387 /* Discards are also writes */ 2388 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2389 rbd_osd_req_format_write(obj_request); 2390 else 2391 rbd_osd_req_format_read(obj_request); 2392 } 2393 2394 /* 2395 * Split up an image request into one or more object requests, each 2396 * to a different object. The "type" parameter indicates whether 2397 * "data_desc" is the pointer to the head of a list of bio 2398 * structures, or the base of a page array. In either case this 2399 * function assumes data_desc describes memory sufficient to hold 2400 * all data described by the image request. 2401 */ 2402 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2403 enum obj_request_type type, 2404 void *data_desc) 2405 { 2406 struct rbd_device *rbd_dev = img_request->rbd_dev; 2407 struct rbd_obj_request *obj_request = NULL; 2408 struct rbd_obj_request *next_obj_request; 2409 struct bio *bio_list = NULL; 2410 unsigned int bio_offset = 0; 2411 struct page **pages = NULL; 2412 enum obj_operation_type op_type; 2413 u64 img_offset; 2414 u64 resid; 2415 2416 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2417 (int)type, data_desc); 2418 2419 img_offset = img_request->offset; 2420 resid = img_request->length; 2421 rbd_assert(resid > 0); 2422 op_type = rbd_img_request_op_type(img_request); 2423 2424 if (type == OBJ_REQUEST_BIO) { 2425 bio_list = data_desc; 2426 rbd_assert(img_offset == 2427 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2428 } else if (type == OBJ_REQUEST_PAGES) { 2429 pages = data_desc; 2430 } 2431 2432 while (resid) { 2433 struct ceph_osd_request *osd_req; 2434 const char *object_name; 2435 u64 offset; 2436 u64 length; 2437 2438 object_name = rbd_segment_name(rbd_dev, img_offset); 2439 if (!object_name) 2440 goto out_unwind; 2441 offset = rbd_segment_offset(rbd_dev, img_offset); 2442 length = rbd_segment_length(rbd_dev, img_offset, resid); 2443 obj_request = rbd_obj_request_create(object_name, 2444 offset, length, type); 2445 /* object request has its own copy of the object name */ 2446 rbd_segment_name_free(object_name); 2447 if (!obj_request) 2448 goto out_unwind; 2449 2450 /* 2451 * set obj_request->img_request before creating the 2452 * osd_request so that it gets the right snapc 2453 */ 2454 rbd_img_obj_request_add(img_request, obj_request); 2455 2456 if (type == OBJ_REQUEST_BIO) { 2457 unsigned int clone_size; 2458 2459 rbd_assert(length <= (u64)UINT_MAX); 2460 clone_size = (unsigned int)length; 2461 obj_request->bio_list = 2462 bio_chain_clone_range(&bio_list, 2463 &bio_offset, 2464 clone_size, 2465 GFP_ATOMIC); 2466 if (!obj_request->bio_list) 2467 goto out_unwind; 2468 } else if (type == OBJ_REQUEST_PAGES) { 2469 unsigned int page_count; 2470 2471 obj_request->pages = pages; 2472 page_count = (u32)calc_pages_for(offset, length); 2473 obj_request->page_count = page_count; 2474 if ((offset + length) & ~PAGE_MASK) 2475 page_count--; /* more on last page */ 2476 pages += page_count; 2477 } 2478 2479 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2480 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2481 obj_request); 2482 if (!osd_req) 2483 goto out_unwind; 2484 2485 obj_request->osd_req = osd_req; 2486 obj_request->callback = rbd_img_obj_callback; 2487 obj_request->img_offset = img_offset; 2488 2489 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2490 2491 rbd_img_request_get(img_request); 2492 2493 img_offset += length; 2494 resid -= length; 2495 } 2496 2497 return 0; 2498 2499 out_unwind: 2500 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2501 rbd_img_obj_request_del(img_request, obj_request); 2502 2503 return -ENOMEM; 2504 } 2505 2506 static void 2507 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2508 { 2509 struct rbd_img_request *img_request; 2510 struct rbd_device *rbd_dev; 2511 struct page **pages; 2512 u32 page_count; 2513 2514 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2515 obj_request->type == OBJ_REQUEST_NODATA); 2516 rbd_assert(obj_request_img_data_test(obj_request)); 2517 img_request = obj_request->img_request; 2518 rbd_assert(img_request); 2519 2520 rbd_dev = img_request->rbd_dev; 2521 rbd_assert(rbd_dev); 2522 2523 pages = obj_request->copyup_pages; 2524 rbd_assert(pages != NULL); 2525 obj_request->copyup_pages = NULL; 2526 page_count = obj_request->copyup_page_count; 2527 rbd_assert(page_count); 2528 obj_request->copyup_page_count = 0; 2529 ceph_release_page_vector(pages, page_count); 2530 2531 /* 2532 * We want the transfer count to reflect the size of the 2533 * original write request. There is no such thing as a 2534 * successful short write, so if the request was successful 2535 * we can just set it to the originally-requested length. 2536 */ 2537 if (!obj_request->result) 2538 obj_request->xferred = obj_request->length; 2539 2540 /* Finish up with the normal image object callback */ 2541 2542 rbd_img_obj_callback(obj_request); 2543 } 2544 2545 static void 2546 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2547 { 2548 struct rbd_obj_request *orig_request; 2549 struct ceph_osd_request *osd_req; 2550 struct ceph_osd_client *osdc; 2551 struct rbd_device *rbd_dev; 2552 struct page **pages; 2553 enum obj_operation_type op_type; 2554 u32 page_count; 2555 int img_result; 2556 u64 parent_length; 2557 2558 rbd_assert(img_request_child_test(img_request)); 2559 2560 /* First get what we need from the image request */ 2561 2562 pages = img_request->copyup_pages; 2563 rbd_assert(pages != NULL); 2564 img_request->copyup_pages = NULL; 2565 page_count = img_request->copyup_page_count; 2566 rbd_assert(page_count); 2567 img_request->copyup_page_count = 0; 2568 2569 orig_request = img_request->obj_request; 2570 rbd_assert(orig_request != NULL); 2571 rbd_assert(obj_request_type_valid(orig_request->type)); 2572 img_result = img_request->result; 2573 parent_length = img_request->length; 2574 rbd_assert(parent_length == img_request->xferred); 2575 rbd_img_request_put(img_request); 2576 2577 rbd_assert(orig_request->img_request); 2578 rbd_dev = orig_request->img_request->rbd_dev; 2579 rbd_assert(rbd_dev); 2580 2581 /* 2582 * If the overlap has become 0 (most likely because the 2583 * image has been flattened) we need to free the pages 2584 * and re-submit the original write request. 2585 */ 2586 if (!rbd_dev->parent_overlap) { 2587 struct ceph_osd_client *osdc; 2588 2589 ceph_release_page_vector(pages, page_count); 2590 osdc = &rbd_dev->rbd_client->client->osdc; 2591 img_result = rbd_obj_request_submit(osdc, orig_request); 2592 if (!img_result) 2593 return; 2594 } 2595 2596 if (img_result) 2597 goto out_err; 2598 2599 /* 2600 * The original osd request is of no use to use any more. 2601 * We need a new one that can hold the three ops in a copyup 2602 * request. Allocate the new copyup osd request for the 2603 * original request, and release the old one. 2604 */ 2605 img_result = -ENOMEM; 2606 osd_req = rbd_osd_req_create_copyup(orig_request); 2607 if (!osd_req) 2608 goto out_err; 2609 rbd_osd_req_destroy(orig_request->osd_req); 2610 orig_request->osd_req = osd_req; 2611 orig_request->copyup_pages = pages; 2612 orig_request->copyup_page_count = page_count; 2613 2614 /* Initialize the copyup op */ 2615 2616 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2617 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2618 false, false); 2619 2620 /* Add the other op(s) */ 2621 2622 op_type = rbd_img_request_op_type(orig_request->img_request); 2623 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2624 2625 /* All set, send it off. */ 2626 2627 orig_request->callback = rbd_img_obj_copyup_callback; 2628 osdc = &rbd_dev->rbd_client->client->osdc; 2629 img_result = rbd_obj_request_submit(osdc, orig_request); 2630 if (!img_result) 2631 return; 2632 out_err: 2633 /* Record the error code and complete the request */ 2634 2635 orig_request->result = img_result; 2636 orig_request->xferred = 0; 2637 obj_request_done_set(orig_request); 2638 rbd_obj_request_complete(orig_request); 2639 } 2640 2641 /* 2642 * Read from the parent image the range of data that covers the 2643 * entire target of the given object request. This is used for 2644 * satisfying a layered image write request when the target of an 2645 * object request from the image request does not exist. 2646 * 2647 * A page array big enough to hold the returned data is allocated 2648 * and supplied to rbd_img_request_fill() as the "data descriptor." 2649 * When the read completes, this page array will be transferred to 2650 * the original object request for the copyup operation. 2651 * 2652 * If an error occurs, record it as the result of the original 2653 * object request and mark it done so it gets completed. 2654 */ 2655 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2656 { 2657 struct rbd_img_request *img_request = NULL; 2658 struct rbd_img_request *parent_request = NULL; 2659 struct rbd_device *rbd_dev; 2660 u64 img_offset; 2661 u64 length; 2662 struct page **pages = NULL; 2663 u32 page_count; 2664 int result; 2665 2666 rbd_assert(obj_request_img_data_test(obj_request)); 2667 rbd_assert(obj_request_type_valid(obj_request->type)); 2668 2669 img_request = obj_request->img_request; 2670 rbd_assert(img_request != NULL); 2671 rbd_dev = img_request->rbd_dev; 2672 rbd_assert(rbd_dev->parent != NULL); 2673 2674 /* 2675 * Determine the byte range covered by the object in the 2676 * child image to which the original request was to be sent. 2677 */ 2678 img_offset = obj_request->img_offset - obj_request->offset; 2679 length = (u64)1 << rbd_dev->header.obj_order; 2680 2681 /* 2682 * There is no defined parent data beyond the parent 2683 * overlap, so limit what we read at that boundary if 2684 * necessary. 2685 */ 2686 if (img_offset + length > rbd_dev->parent_overlap) { 2687 rbd_assert(img_offset < rbd_dev->parent_overlap); 2688 length = rbd_dev->parent_overlap - img_offset; 2689 } 2690 2691 /* 2692 * Allocate a page array big enough to receive the data read 2693 * from the parent. 2694 */ 2695 page_count = (u32)calc_pages_for(0, length); 2696 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2697 if (IS_ERR(pages)) { 2698 result = PTR_ERR(pages); 2699 pages = NULL; 2700 goto out_err; 2701 } 2702 2703 result = -ENOMEM; 2704 parent_request = rbd_parent_request_create(obj_request, 2705 img_offset, length); 2706 if (!parent_request) 2707 goto out_err; 2708 2709 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2710 if (result) 2711 goto out_err; 2712 parent_request->copyup_pages = pages; 2713 parent_request->copyup_page_count = page_count; 2714 2715 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2716 result = rbd_img_request_submit(parent_request); 2717 if (!result) 2718 return 0; 2719 2720 parent_request->copyup_pages = NULL; 2721 parent_request->copyup_page_count = 0; 2722 parent_request->obj_request = NULL; 2723 rbd_obj_request_put(obj_request); 2724 out_err: 2725 if (pages) 2726 ceph_release_page_vector(pages, page_count); 2727 if (parent_request) 2728 rbd_img_request_put(parent_request); 2729 obj_request->result = result; 2730 obj_request->xferred = 0; 2731 obj_request_done_set(obj_request); 2732 2733 return result; 2734 } 2735 2736 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2737 { 2738 struct rbd_obj_request *orig_request; 2739 struct rbd_device *rbd_dev; 2740 int result; 2741 2742 rbd_assert(!obj_request_img_data_test(obj_request)); 2743 2744 /* 2745 * All we need from the object request is the original 2746 * request and the result of the STAT op. Grab those, then 2747 * we're done with the request. 2748 */ 2749 orig_request = obj_request->obj_request; 2750 obj_request->obj_request = NULL; 2751 rbd_obj_request_put(orig_request); 2752 rbd_assert(orig_request); 2753 rbd_assert(orig_request->img_request); 2754 2755 result = obj_request->result; 2756 obj_request->result = 0; 2757 2758 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2759 obj_request, orig_request, result, 2760 obj_request->xferred, obj_request->length); 2761 rbd_obj_request_put(obj_request); 2762 2763 /* 2764 * If the overlap has become 0 (most likely because the 2765 * image has been flattened) we need to free the pages 2766 * and re-submit the original write request. 2767 */ 2768 rbd_dev = orig_request->img_request->rbd_dev; 2769 if (!rbd_dev->parent_overlap) { 2770 struct ceph_osd_client *osdc; 2771 2772 osdc = &rbd_dev->rbd_client->client->osdc; 2773 result = rbd_obj_request_submit(osdc, orig_request); 2774 if (!result) 2775 return; 2776 } 2777 2778 /* 2779 * Our only purpose here is to determine whether the object 2780 * exists, and we don't want to treat the non-existence as 2781 * an error. If something else comes back, transfer the 2782 * error to the original request and complete it now. 2783 */ 2784 if (!result) { 2785 obj_request_existence_set(orig_request, true); 2786 } else if (result == -ENOENT) { 2787 obj_request_existence_set(orig_request, false); 2788 } else if (result) { 2789 orig_request->result = result; 2790 goto out; 2791 } 2792 2793 /* 2794 * Resubmit the original request now that we have recorded 2795 * whether the target object exists. 2796 */ 2797 orig_request->result = rbd_img_obj_request_submit(orig_request); 2798 out: 2799 if (orig_request->result) 2800 rbd_obj_request_complete(orig_request); 2801 } 2802 2803 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2804 { 2805 struct rbd_obj_request *stat_request; 2806 struct rbd_device *rbd_dev; 2807 struct ceph_osd_client *osdc; 2808 struct page **pages = NULL; 2809 u32 page_count; 2810 size_t size; 2811 int ret; 2812 2813 /* 2814 * The response data for a STAT call consists of: 2815 * le64 length; 2816 * struct { 2817 * le32 tv_sec; 2818 * le32 tv_nsec; 2819 * } mtime; 2820 */ 2821 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2822 page_count = (u32)calc_pages_for(0, size); 2823 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2824 if (IS_ERR(pages)) 2825 return PTR_ERR(pages); 2826 2827 ret = -ENOMEM; 2828 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2829 OBJ_REQUEST_PAGES); 2830 if (!stat_request) 2831 goto out; 2832 2833 rbd_obj_request_get(obj_request); 2834 stat_request->obj_request = obj_request; 2835 stat_request->pages = pages; 2836 stat_request->page_count = page_count; 2837 2838 rbd_assert(obj_request->img_request); 2839 rbd_dev = obj_request->img_request->rbd_dev; 2840 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2841 stat_request); 2842 if (!stat_request->osd_req) 2843 goto out; 2844 stat_request->callback = rbd_img_obj_exists_callback; 2845 2846 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2847 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2848 false, false); 2849 rbd_osd_req_format_read(stat_request); 2850 2851 osdc = &rbd_dev->rbd_client->client->osdc; 2852 ret = rbd_obj_request_submit(osdc, stat_request); 2853 out: 2854 if (ret) 2855 rbd_obj_request_put(obj_request); 2856 2857 return ret; 2858 } 2859 2860 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2861 { 2862 struct rbd_img_request *img_request; 2863 struct rbd_device *rbd_dev; 2864 2865 rbd_assert(obj_request_img_data_test(obj_request)); 2866 2867 img_request = obj_request->img_request; 2868 rbd_assert(img_request); 2869 rbd_dev = img_request->rbd_dev; 2870 2871 /* Reads */ 2872 if (!img_request_write_test(img_request) && 2873 !img_request_discard_test(img_request)) 2874 return true; 2875 2876 /* Non-layered writes */ 2877 if (!img_request_layered_test(img_request)) 2878 return true; 2879 2880 /* 2881 * Layered writes outside of the parent overlap range don't 2882 * share any data with the parent. 2883 */ 2884 if (!obj_request_overlaps_parent(obj_request)) 2885 return true; 2886 2887 /* 2888 * Entire-object layered writes - we will overwrite whatever 2889 * parent data there is anyway. 2890 */ 2891 if (!obj_request->offset && 2892 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2893 return true; 2894 2895 /* 2896 * If the object is known to already exist, its parent data has 2897 * already been copied. 2898 */ 2899 if (obj_request_known_test(obj_request) && 2900 obj_request_exists_test(obj_request)) 2901 return true; 2902 2903 return false; 2904 } 2905 2906 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2907 { 2908 if (img_obj_request_simple(obj_request)) { 2909 struct rbd_device *rbd_dev; 2910 struct ceph_osd_client *osdc; 2911 2912 rbd_dev = obj_request->img_request->rbd_dev; 2913 osdc = &rbd_dev->rbd_client->client->osdc; 2914 2915 return rbd_obj_request_submit(osdc, obj_request); 2916 } 2917 2918 /* 2919 * It's a layered write. The target object might exist but 2920 * we may not know that yet. If we know it doesn't exist, 2921 * start by reading the data for the full target object from 2922 * the parent so we can use it for a copyup to the target. 2923 */ 2924 if (obj_request_known_test(obj_request)) 2925 return rbd_img_obj_parent_read_full(obj_request); 2926 2927 /* We don't know whether the target exists. Go find out. */ 2928 2929 return rbd_img_obj_exists_submit(obj_request); 2930 } 2931 2932 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2933 { 2934 struct rbd_obj_request *obj_request; 2935 struct rbd_obj_request *next_obj_request; 2936 2937 dout("%s: img %p\n", __func__, img_request); 2938 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2939 int ret; 2940 2941 ret = rbd_img_obj_request_submit(obj_request); 2942 if (ret) 2943 return ret; 2944 } 2945 2946 return 0; 2947 } 2948 2949 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2950 { 2951 struct rbd_obj_request *obj_request; 2952 struct rbd_device *rbd_dev; 2953 u64 obj_end; 2954 u64 img_xferred; 2955 int img_result; 2956 2957 rbd_assert(img_request_child_test(img_request)); 2958 2959 /* First get what we need from the image request and release it */ 2960 2961 obj_request = img_request->obj_request; 2962 img_xferred = img_request->xferred; 2963 img_result = img_request->result; 2964 rbd_img_request_put(img_request); 2965 2966 /* 2967 * If the overlap has become 0 (most likely because the 2968 * image has been flattened) we need to re-submit the 2969 * original request. 2970 */ 2971 rbd_assert(obj_request); 2972 rbd_assert(obj_request->img_request); 2973 rbd_dev = obj_request->img_request->rbd_dev; 2974 if (!rbd_dev->parent_overlap) { 2975 struct ceph_osd_client *osdc; 2976 2977 osdc = &rbd_dev->rbd_client->client->osdc; 2978 img_result = rbd_obj_request_submit(osdc, obj_request); 2979 if (!img_result) 2980 return; 2981 } 2982 2983 obj_request->result = img_result; 2984 if (obj_request->result) 2985 goto out; 2986 2987 /* 2988 * We need to zero anything beyond the parent overlap 2989 * boundary. Since rbd_img_obj_request_read_callback() 2990 * will zero anything beyond the end of a short read, an 2991 * easy way to do this is to pretend the data from the 2992 * parent came up short--ending at the overlap boundary. 2993 */ 2994 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2995 obj_end = obj_request->img_offset + obj_request->length; 2996 if (obj_end > rbd_dev->parent_overlap) { 2997 u64 xferred = 0; 2998 2999 if (obj_request->img_offset < rbd_dev->parent_overlap) 3000 xferred = rbd_dev->parent_overlap - 3001 obj_request->img_offset; 3002 3003 obj_request->xferred = min(img_xferred, xferred); 3004 } else { 3005 obj_request->xferred = img_xferred; 3006 } 3007 out: 3008 rbd_img_obj_request_read_callback(obj_request); 3009 rbd_obj_request_complete(obj_request); 3010 } 3011 3012 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3013 { 3014 struct rbd_img_request *img_request; 3015 int result; 3016 3017 rbd_assert(obj_request_img_data_test(obj_request)); 3018 rbd_assert(obj_request->img_request != NULL); 3019 rbd_assert(obj_request->result == (s32) -ENOENT); 3020 rbd_assert(obj_request_type_valid(obj_request->type)); 3021 3022 /* rbd_read_finish(obj_request, obj_request->length); */ 3023 img_request = rbd_parent_request_create(obj_request, 3024 obj_request->img_offset, 3025 obj_request->length); 3026 result = -ENOMEM; 3027 if (!img_request) 3028 goto out_err; 3029 3030 if (obj_request->type == OBJ_REQUEST_BIO) 3031 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3032 obj_request->bio_list); 3033 else 3034 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3035 obj_request->pages); 3036 if (result) 3037 goto out_err; 3038 3039 img_request->callback = rbd_img_parent_read_callback; 3040 result = rbd_img_request_submit(img_request); 3041 if (result) 3042 goto out_err; 3043 3044 return; 3045 out_err: 3046 if (img_request) 3047 rbd_img_request_put(img_request); 3048 obj_request->result = result; 3049 obj_request->xferred = 0; 3050 obj_request_done_set(obj_request); 3051 } 3052 3053 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3054 { 3055 struct rbd_obj_request *obj_request; 3056 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3057 int ret; 3058 3059 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3060 OBJ_REQUEST_NODATA); 3061 if (!obj_request) 3062 return -ENOMEM; 3063 3064 ret = -ENOMEM; 3065 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3066 obj_request); 3067 if (!obj_request->osd_req) 3068 goto out; 3069 3070 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3071 notify_id, 0, 0); 3072 rbd_osd_req_format_read(obj_request); 3073 3074 ret = rbd_obj_request_submit(osdc, obj_request); 3075 if (ret) 3076 goto out; 3077 ret = rbd_obj_request_wait(obj_request); 3078 out: 3079 rbd_obj_request_put(obj_request); 3080 3081 return ret; 3082 } 3083 3084 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3085 { 3086 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3087 int ret; 3088 3089 if (!rbd_dev) 3090 return; 3091 3092 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3093 rbd_dev->header_name, (unsigned long long)notify_id, 3094 (unsigned int)opcode); 3095 3096 /* 3097 * Until adequate refresh error handling is in place, there is 3098 * not much we can do here, except warn. 3099 * 3100 * See http://tracker.ceph.com/issues/5040 3101 */ 3102 ret = rbd_dev_refresh(rbd_dev); 3103 if (ret) 3104 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3105 3106 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3107 if (ret) 3108 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3109 } 3110 3111 /* 3112 * Send a (un)watch request and wait for the ack. Return a request 3113 * with a ref held on success or error. 3114 */ 3115 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3116 struct rbd_device *rbd_dev, 3117 bool watch) 3118 { 3119 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3120 struct rbd_obj_request *obj_request; 3121 int ret; 3122 3123 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3124 OBJ_REQUEST_NODATA); 3125 if (!obj_request) 3126 return ERR_PTR(-ENOMEM); 3127 3128 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3129 obj_request); 3130 if (!obj_request->osd_req) { 3131 ret = -ENOMEM; 3132 goto out; 3133 } 3134 3135 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3136 rbd_dev->watch_event->cookie, 0, watch); 3137 rbd_osd_req_format_write(obj_request); 3138 3139 if (watch) 3140 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3141 3142 ret = rbd_obj_request_submit(osdc, obj_request); 3143 if (ret) 3144 goto out; 3145 3146 ret = rbd_obj_request_wait(obj_request); 3147 if (ret) 3148 goto out; 3149 3150 ret = obj_request->result; 3151 if (ret) { 3152 if (watch) 3153 rbd_obj_request_end(obj_request); 3154 goto out; 3155 } 3156 3157 return obj_request; 3158 3159 out: 3160 rbd_obj_request_put(obj_request); 3161 return ERR_PTR(ret); 3162 } 3163 3164 /* 3165 * Initiate a watch request, synchronously. 3166 */ 3167 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3168 { 3169 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3170 struct rbd_obj_request *obj_request; 3171 int ret; 3172 3173 rbd_assert(!rbd_dev->watch_event); 3174 rbd_assert(!rbd_dev->watch_request); 3175 3176 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3177 &rbd_dev->watch_event); 3178 if (ret < 0) 3179 return ret; 3180 3181 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3182 if (IS_ERR(obj_request)) { 3183 ceph_osdc_cancel_event(rbd_dev->watch_event); 3184 rbd_dev->watch_event = NULL; 3185 return PTR_ERR(obj_request); 3186 } 3187 3188 /* 3189 * A watch request is set to linger, so the underlying osd 3190 * request won't go away until we unregister it. We retain 3191 * a pointer to the object request during that time (in 3192 * rbd_dev->watch_request), so we'll keep a reference to it. 3193 * We'll drop that reference after we've unregistered it in 3194 * rbd_dev_header_unwatch_sync(). 3195 */ 3196 rbd_dev->watch_request = obj_request; 3197 3198 return 0; 3199 } 3200 3201 /* 3202 * Tear down a watch request, synchronously. 3203 */ 3204 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3205 { 3206 struct rbd_obj_request *obj_request; 3207 3208 rbd_assert(rbd_dev->watch_event); 3209 rbd_assert(rbd_dev->watch_request); 3210 3211 rbd_obj_request_end(rbd_dev->watch_request); 3212 rbd_obj_request_put(rbd_dev->watch_request); 3213 rbd_dev->watch_request = NULL; 3214 3215 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3216 if (!IS_ERR(obj_request)) 3217 rbd_obj_request_put(obj_request); 3218 else 3219 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3220 PTR_ERR(obj_request)); 3221 3222 ceph_osdc_cancel_event(rbd_dev->watch_event); 3223 rbd_dev->watch_event = NULL; 3224 } 3225 3226 /* 3227 * Synchronous osd object method call. Returns the number of bytes 3228 * returned in the outbound buffer, or a negative error code. 3229 */ 3230 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3231 const char *object_name, 3232 const char *class_name, 3233 const char *method_name, 3234 const void *outbound, 3235 size_t outbound_size, 3236 void *inbound, 3237 size_t inbound_size) 3238 { 3239 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3240 struct rbd_obj_request *obj_request; 3241 struct page **pages; 3242 u32 page_count; 3243 int ret; 3244 3245 /* 3246 * Method calls are ultimately read operations. The result 3247 * should placed into the inbound buffer provided. They 3248 * also supply outbound data--parameters for the object 3249 * method. Currently if this is present it will be a 3250 * snapshot id. 3251 */ 3252 page_count = (u32)calc_pages_for(0, inbound_size); 3253 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3254 if (IS_ERR(pages)) 3255 return PTR_ERR(pages); 3256 3257 ret = -ENOMEM; 3258 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3259 OBJ_REQUEST_PAGES); 3260 if (!obj_request) 3261 goto out; 3262 3263 obj_request->pages = pages; 3264 obj_request->page_count = page_count; 3265 3266 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3267 obj_request); 3268 if (!obj_request->osd_req) 3269 goto out; 3270 3271 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3272 class_name, method_name); 3273 if (outbound_size) { 3274 struct ceph_pagelist *pagelist; 3275 3276 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3277 if (!pagelist) 3278 goto out; 3279 3280 ceph_pagelist_init(pagelist); 3281 ceph_pagelist_append(pagelist, outbound, outbound_size); 3282 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3283 pagelist); 3284 } 3285 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3286 obj_request->pages, inbound_size, 3287 0, false, false); 3288 rbd_osd_req_format_read(obj_request); 3289 3290 ret = rbd_obj_request_submit(osdc, obj_request); 3291 if (ret) 3292 goto out; 3293 ret = rbd_obj_request_wait(obj_request); 3294 if (ret) 3295 goto out; 3296 3297 ret = obj_request->result; 3298 if (ret < 0) 3299 goto out; 3300 3301 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3302 ret = (int)obj_request->xferred; 3303 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3304 out: 3305 if (obj_request) 3306 rbd_obj_request_put(obj_request); 3307 else 3308 ceph_release_page_vector(pages, page_count); 3309 3310 return ret; 3311 } 3312 3313 static void rbd_queue_workfn(struct work_struct *work) 3314 { 3315 struct request *rq = blk_mq_rq_from_pdu(work); 3316 struct rbd_device *rbd_dev = rq->q->queuedata; 3317 struct rbd_img_request *img_request; 3318 struct ceph_snap_context *snapc = NULL; 3319 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3320 u64 length = blk_rq_bytes(rq); 3321 enum obj_operation_type op_type; 3322 u64 mapping_size; 3323 int result; 3324 3325 if (rq->cmd_type != REQ_TYPE_FS) { 3326 dout("%s: non-fs request type %d\n", __func__, 3327 (int) rq->cmd_type); 3328 result = -EIO; 3329 goto err; 3330 } 3331 3332 if (rq->cmd_flags & REQ_DISCARD) 3333 op_type = OBJ_OP_DISCARD; 3334 else if (rq->cmd_flags & REQ_WRITE) 3335 op_type = OBJ_OP_WRITE; 3336 else 3337 op_type = OBJ_OP_READ; 3338 3339 /* Ignore/skip any zero-length requests */ 3340 3341 if (!length) { 3342 dout("%s: zero-length request\n", __func__); 3343 result = 0; 3344 goto err_rq; 3345 } 3346 3347 /* Only reads are allowed to a read-only device */ 3348 3349 if (op_type != OBJ_OP_READ) { 3350 if (rbd_dev->mapping.read_only) { 3351 result = -EROFS; 3352 goto err_rq; 3353 } 3354 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3355 } 3356 3357 /* 3358 * Quit early if the mapped snapshot no longer exists. It's 3359 * still possible the snapshot will have disappeared by the 3360 * time our request arrives at the osd, but there's no sense in 3361 * sending it if we already know. 3362 */ 3363 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3364 dout("request for non-existent snapshot"); 3365 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3366 result = -ENXIO; 3367 goto err_rq; 3368 } 3369 3370 if (offset && length > U64_MAX - offset + 1) { 3371 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3372 length); 3373 result = -EINVAL; 3374 goto err_rq; /* Shouldn't happen */ 3375 } 3376 3377 blk_mq_start_request(rq); 3378 3379 down_read(&rbd_dev->header_rwsem); 3380 mapping_size = rbd_dev->mapping.size; 3381 if (op_type != OBJ_OP_READ) { 3382 snapc = rbd_dev->header.snapc; 3383 ceph_get_snap_context(snapc); 3384 } 3385 up_read(&rbd_dev->header_rwsem); 3386 3387 if (offset + length > mapping_size) { 3388 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3389 length, mapping_size); 3390 result = -EIO; 3391 goto err_rq; 3392 } 3393 3394 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3395 snapc); 3396 if (!img_request) { 3397 result = -ENOMEM; 3398 goto err_rq; 3399 } 3400 img_request->rq = rq; 3401 3402 if (op_type == OBJ_OP_DISCARD) 3403 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3404 NULL); 3405 else 3406 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3407 rq->bio); 3408 if (result) 3409 goto err_img_request; 3410 3411 result = rbd_img_request_submit(img_request); 3412 if (result) 3413 goto err_img_request; 3414 3415 return; 3416 3417 err_img_request: 3418 rbd_img_request_put(img_request); 3419 err_rq: 3420 if (result) 3421 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3422 obj_op_name(op_type), length, offset, result); 3423 ceph_put_snap_context(snapc); 3424 err: 3425 blk_mq_end_request(rq, result); 3426 } 3427 3428 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3429 const struct blk_mq_queue_data *bd) 3430 { 3431 struct request *rq = bd->rq; 3432 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3433 3434 queue_work(rbd_wq, work); 3435 return BLK_MQ_RQ_QUEUE_OK; 3436 } 3437 3438 /* 3439 * a queue callback. Makes sure that we don't create a bio that spans across 3440 * multiple osd objects. One exception would be with a single page bios, 3441 * which we handle later at bio_chain_clone_range() 3442 */ 3443 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3444 struct bio_vec *bvec) 3445 { 3446 struct rbd_device *rbd_dev = q->queuedata; 3447 sector_t sector_offset; 3448 sector_t sectors_per_obj; 3449 sector_t obj_sector_offset; 3450 int ret; 3451 3452 /* 3453 * Find how far into its rbd object the partition-relative 3454 * bio start sector is to offset relative to the enclosing 3455 * device. 3456 */ 3457 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3458 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3459 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3460 3461 /* 3462 * Compute the number of bytes from that offset to the end 3463 * of the object. Account for what's already used by the bio. 3464 */ 3465 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3466 if (ret > bmd->bi_size) 3467 ret -= bmd->bi_size; 3468 else 3469 ret = 0; 3470 3471 /* 3472 * Don't send back more than was asked for. And if the bio 3473 * was empty, let the whole thing through because: "Note 3474 * that a block device *must* allow a single page to be 3475 * added to an empty bio." 3476 */ 3477 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3478 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3479 ret = (int) bvec->bv_len; 3480 3481 return ret; 3482 } 3483 3484 static void rbd_free_disk(struct rbd_device *rbd_dev) 3485 { 3486 struct gendisk *disk = rbd_dev->disk; 3487 3488 if (!disk) 3489 return; 3490 3491 rbd_dev->disk = NULL; 3492 if (disk->flags & GENHD_FL_UP) { 3493 del_gendisk(disk); 3494 if (disk->queue) 3495 blk_cleanup_queue(disk->queue); 3496 blk_mq_free_tag_set(&rbd_dev->tag_set); 3497 } 3498 put_disk(disk); 3499 } 3500 3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3502 const char *object_name, 3503 u64 offset, u64 length, void *buf) 3504 3505 { 3506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3507 struct rbd_obj_request *obj_request; 3508 struct page **pages = NULL; 3509 u32 page_count; 3510 size_t size; 3511 int ret; 3512 3513 page_count = (u32) calc_pages_for(offset, length); 3514 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3515 if (IS_ERR(pages)) 3516 return PTR_ERR(pages); 3517 3518 ret = -ENOMEM; 3519 obj_request = rbd_obj_request_create(object_name, offset, length, 3520 OBJ_REQUEST_PAGES); 3521 if (!obj_request) 3522 goto out; 3523 3524 obj_request->pages = pages; 3525 obj_request->page_count = page_count; 3526 3527 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3528 obj_request); 3529 if (!obj_request->osd_req) 3530 goto out; 3531 3532 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3533 offset, length, 0, 0); 3534 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3535 obj_request->pages, 3536 obj_request->length, 3537 obj_request->offset & ~PAGE_MASK, 3538 false, false); 3539 rbd_osd_req_format_read(obj_request); 3540 3541 ret = rbd_obj_request_submit(osdc, obj_request); 3542 if (ret) 3543 goto out; 3544 ret = rbd_obj_request_wait(obj_request); 3545 if (ret) 3546 goto out; 3547 3548 ret = obj_request->result; 3549 if (ret < 0) 3550 goto out; 3551 3552 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3553 size = (size_t) obj_request->xferred; 3554 ceph_copy_from_page_vector(pages, buf, 0, size); 3555 rbd_assert(size <= (size_t)INT_MAX); 3556 ret = (int)size; 3557 out: 3558 if (obj_request) 3559 rbd_obj_request_put(obj_request); 3560 else 3561 ceph_release_page_vector(pages, page_count); 3562 3563 return ret; 3564 } 3565 3566 /* 3567 * Read the complete header for the given rbd device. On successful 3568 * return, the rbd_dev->header field will contain up-to-date 3569 * information about the image. 3570 */ 3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3572 { 3573 struct rbd_image_header_ondisk *ondisk = NULL; 3574 u32 snap_count = 0; 3575 u64 names_size = 0; 3576 u32 want_count; 3577 int ret; 3578 3579 /* 3580 * The complete header will include an array of its 64-bit 3581 * snapshot ids, followed by the names of those snapshots as 3582 * a contiguous block of NUL-terminated strings. Note that 3583 * the number of snapshots could change by the time we read 3584 * it in, in which case we re-read it. 3585 */ 3586 do { 3587 size_t size; 3588 3589 kfree(ondisk); 3590 3591 size = sizeof (*ondisk); 3592 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3593 size += names_size; 3594 ondisk = kmalloc(size, GFP_KERNEL); 3595 if (!ondisk) 3596 return -ENOMEM; 3597 3598 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3599 0, size, ondisk); 3600 if (ret < 0) 3601 goto out; 3602 if ((size_t)ret < size) { 3603 ret = -ENXIO; 3604 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3605 size, ret); 3606 goto out; 3607 } 3608 if (!rbd_dev_ondisk_valid(ondisk)) { 3609 ret = -ENXIO; 3610 rbd_warn(rbd_dev, "invalid header"); 3611 goto out; 3612 } 3613 3614 names_size = le64_to_cpu(ondisk->snap_names_len); 3615 want_count = snap_count; 3616 snap_count = le32_to_cpu(ondisk->snap_count); 3617 } while (snap_count != want_count); 3618 3619 ret = rbd_header_from_disk(rbd_dev, ondisk); 3620 out: 3621 kfree(ondisk); 3622 3623 return ret; 3624 } 3625 3626 /* 3627 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3628 * has disappeared from the (just updated) snapshot context. 3629 */ 3630 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3631 { 3632 u64 snap_id; 3633 3634 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3635 return; 3636 3637 snap_id = rbd_dev->spec->snap_id; 3638 if (snap_id == CEPH_NOSNAP) 3639 return; 3640 3641 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3642 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3643 } 3644 3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3646 { 3647 sector_t size; 3648 bool removing; 3649 3650 /* 3651 * Don't hold the lock while doing disk operations, 3652 * or lock ordering will conflict with the bdev mutex via: 3653 * rbd_add() -> blkdev_get() -> rbd_open() 3654 */ 3655 spin_lock_irq(&rbd_dev->lock); 3656 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3657 spin_unlock_irq(&rbd_dev->lock); 3658 /* 3659 * If the device is being removed, rbd_dev->disk has 3660 * been destroyed, so don't try to update its size 3661 */ 3662 if (!removing) { 3663 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3664 dout("setting size to %llu sectors", (unsigned long long)size); 3665 set_capacity(rbd_dev->disk, size); 3666 revalidate_disk(rbd_dev->disk); 3667 } 3668 } 3669 3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3671 { 3672 u64 mapping_size; 3673 int ret; 3674 3675 down_write(&rbd_dev->header_rwsem); 3676 mapping_size = rbd_dev->mapping.size; 3677 3678 ret = rbd_dev_header_info(rbd_dev); 3679 if (ret) 3680 goto out; 3681 3682 /* 3683 * If there is a parent, see if it has disappeared due to the 3684 * mapped image getting flattened. 3685 */ 3686 if (rbd_dev->parent) { 3687 ret = rbd_dev_v2_parent_info(rbd_dev); 3688 if (ret) 3689 goto out; 3690 } 3691 3692 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3693 rbd_dev->mapping.size = rbd_dev->header.image_size; 3694 } else { 3695 /* validate mapped snapshot's EXISTS flag */ 3696 rbd_exists_validate(rbd_dev); 3697 } 3698 3699 out: 3700 up_write(&rbd_dev->header_rwsem); 3701 if (!ret && mapping_size != rbd_dev->mapping.size) 3702 rbd_dev_update_size(rbd_dev); 3703 3704 return ret; 3705 } 3706 3707 static int rbd_init_request(void *data, struct request *rq, 3708 unsigned int hctx_idx, unsigned int request_idx, 3709 unsigned int numa_node) 3710 { 3711 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3712 3713 INIT_WORK(work, rbd_queue_workfn); 3714 return 0; 3715 } 3716 3717 static struct blk_mq_ops rbd_mq_ops = { 3718 .queue_rq = rbd_queue_rq, 3719 .map_queue = blk_mq_map_queue, 3720 .init_request = rbd_init_request, 3721 }; 3722 3723 static int rbd_init_disk(struct rbd_device *rbd_dev) 3724 { 3725 struct gendisk *disk; 3726 struct request_queue *q; 3727 u64 segment_size; 3728 int err; 3729 3730 /* create gendisk info */ 3731 disk = alloc_disk(single_major ? 3732 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3733 RBD_MINORS_PER_MAJOR); 3734 if (!disk) 3735 return -ENOMEM; 3736 3737 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3738 rbd_dev->dev_id); 3739 disk->major = rbd_dev->major; 3740 disk->first_minor = rbd_dev->minor; 3741 if (single_major) 3742 disk->flags |= GENHD_FL_EXT_DEVT; 3743 disk->fops = &rbd_bd_ops; 3744 disk->private_data = rbd_dev; 3745 3746 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3747 rbd_dev->tag_set.ops = &rbd_mq_ops; 3748 rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ; 3749 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3750 rbd_dev->tag_set.flags = 3751 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3752 rbd_dev->tag_set.nr_hw_queues = 1; 3753 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3754 3755 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3756 if (err) 3757 goto out_disk; 3758 3759 q = blk_mq_init_queue(&rbd_dev->tag_set); 3760 if (IS_ERR(q)) { 3761 err = PTR_ERR(q); 3762 goto out_tag_set; 3763 } 3764 3765 /* We use the default size, but let's be explicit about it. */ 3766 blk_queue_physical_block_size(q, SECTOR_SIZE); 3767 3768 /* set io sizes to object size */ 3769 segment_size = rbd_obj_bytes(&rbd_dev->header); 3770 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3771 blk_queue_max_segment_size(q, segment_size); 3772 blk_queue_io_min(q, segment_size); 3773 blk_queue_io_opt(q, segment_size); 3774 3775 /* enable the discard support */ 3776 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3777 q->limits.discard_granularity = segment_size; 3778 q->limits.discard_alignment = segment_size; 3779 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE; 3780 q->limits.discard_zeroes_data = 1; 3781 3782 blk_queue_merge_bvec(q, rbd_merge_bvec); 3783 disk->queue = q; 3784 3785 q->queuedata = rbd_dev; 3786 3787 rbd_dev->disk = disk; 3788 3789 return 0; 3790 out_tag_set: 3791 blk_mq_free_tag_set(&rbd_dev->tag_set); 3792 out_disk: 3793 put_disk(disk); 3794 return err; 3795 } 3796 3797 /* 3798 sysfs 3799 */ 3800 3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3802 { 3803 return container_of(dev, struct rbd_device, dev); 3804 } 3805 3806 static ssize_t rbd_size_show(struct device *dev, 3807 struct device_attribute *attr, char *buf) 3808 { 3809 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3810 3811 return sprintf(buf, "%llu\n", 3812 (unsigned long long)rbd_dev->mapping.size); 3813 } 3814 3815 /* 3816 * Note this shows the features for whatever's mapped, which is not 3817 * necessarily the base image. 3818 */ 3819 static ssize_t rbd_features_show(struct device *dev, 3820 struct device_attribute *attr, char *buf) 3821 { 3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3823 3824 return sprintf(buf, "0x%016llx\n", 3825 (unsigned long long)rbd_dev->mapping.features); 3826 } 3827 3828 static ssize_t rbd_major_show(struct device *dev, 3829 struct device_attribute *attr, char *buf) 3830 { 3831 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3832 3833 if (rbd_dev->major) 3834 return sprintf(buf, "%d\n", rbd_dev->major); 3835 3836 return sprintf(buf, "(none)\n"); 3837 } 3838 3839 static ssize_t rbd_minor_show(struct device *dev, 3840 struct device_attribute *attr, char *buf) 3841 { 3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3843 3844 return sprintf(buf, "%d\n", rbd_dev->minor); 3845 } 3846 3847 static ssize_t rbd_client_id_show(struct device *dev, 3848 struct device_attribute *attr, char *buf) 3849 { 3850 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3851 3852 return sprintf(buf, "client%lld\n", 3853 ceph_client_id(rbd_dev->rbd_client->client)); 3854 } 3855 3856 static ssize_t rbd_pool_show(struct device *dev, 3857 struct device_attribute *attr, char *buf) 3858 { 3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3860 3861 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3862 } 3863 3864 static ssize_t rbd_pool_id_show(struct device *dev, 3865 struct device_attribute *attr, char *buf) 3866 { 3867 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3868 3869 return sprintf(buf, "%llu\n", 3870 (unsigned long long) rbd_dev->spec->pool_id); 3871 } 3872 3873 static ssize_t rbd_name_show(struct device *dev, 3874 struct device_attribute *attr, char *buf) 3875 { 3876 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3877 3878 if (rbd_dev->spec->image_name) 3879 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3880 3881 return sprintf(buf, "(unknown)\n"); 3882 } 3883 3884 static ssize_t rbd_image_id_show(struct device *dev, 3885 struct device_attribute *attr, char *buf) 3886 { 3887 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3888 3889 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3890 } 3891 3892 /* 3893 * Shows the name of the currently-mapped snapshot (or 3894 * RBD_SNAP_HEAD_NAME for the base image). 3895 */ 3896 static ssize_t rbd_snap_show(struct device *dev, 3897 struct device_attribute *attr, 3898 char *buf) 3899 { 3900 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3901 3902 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3903 } 3904 3905 /* 3906 * For a v2 image, shows the chain of parent images, separated by empty 3907 * lines. For v1 images or if there is no parent, shows "(no parent 3908 * image)". 3909 */ 3910 static ssize_t rbd_parent_show(struct device *dev, 3911 struct device_attribute *attr, 3912 char *buf) 3913 { 3914 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3915 ssize_t count = 0; 3916 3917 if (!rbd_dev->parent) 3918 return sprintf(buf, "(no parent image)\n"); 3919 3920 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3921 struct rbd_spec *spec = rbd_dev->parent_spec; 3922 3923 count += sprintf(&buf[count], "%s" 3924 "pool_id %llu\npool_name %s\n" 3925 "image_id %s\nimage_name %s\n" 3926 "snap_id %llu\nsnap_name %s\n" 3927 "overlap %llu\n", 3928 !count ? "" : "\n", /* first? */ 3929 spec->pool_id, spec->pool_name, 3930 spec->image_id, spec->image_name ?: "(unknown)", 3931 spec->snap_id, spec->snap_name, 3932 rbd_dev->parent_overlap); 3933 } 3934 3935 return count; 3936 } 3937 3938 static ssize_t rbd_image_refresh(struct device *dev, 3939 struct device_attribute *attr, 3940 const char *buf, 3941 size_t size) 3942 { 3943 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3944 int ret; 3945 3946 ret = rbd_dev_refresh(rbd_dev); 3947 if (ret) 3948 return ret; 3949 3950 return size; 3951 } 3952 3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3965 3966 static struct attribute *rbd_attrs[] = { 3967 &dev_attr_size.attr, 3968 &dev_attr_features.attr, 3969 &dev_attr_major.attr, 3970 &dev_attr_minor.attr, 3971 &dev_attr_client_id.attr, 3972 &dev_attr_pool.attr, 3973 &dev_attr_pool_id.attr, 3974 &dev_attr_name.attr, 3975 &dev_attr_image_id.attr, 3976 &dev_attr_current_snap.attr, 3977 &dev_attr_parent.attr, 3978 &dev_attr_refresh.attr, 3979 NULL 3980 }; 3981 3982 static struct attribute_group rbd_attr_group = { 3983 .attrs = rbd_attrs, 3984 }; 3985 3986 static const struct attribute_group *rbd_attr_groups[] = { 3987 &rbd_attr_group, 3988 NULL 3989 }; 3990 3991 static void rbd_sysfs_dev_release(struct device *dev) 3992 { 3993 } 3994 3995 static struct device_type rbd_device_type = { 3996 .name = "rbd", 3997 .groups = rbd_attr_groups, 3998 .release = rbd_sysfs_dev_release, 3999 }; 4000 4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4002 { 4003 kref_get(&spec->kref); 4004 4005 return spec; 4006 } 4007 4008 static void rbd_spec_free(struct kref *kref); 4009 static void rbd_spec_put(struct rbd_spec *spec) 4010 { 4011 if (spec) 4012 kref_put(&spec->kref, rbd_spec_free); 4013 } 4014 4015 static struct rbd_spec *rbd_spec_alloc(void) 4016 { 4017 struct rbd_spec *spec; 4018 4019 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4020 if (!spec) 4021 return NULL; 4022 4023 spec->pool_id = CEPH_NOPOOL; 4024 spec->snap_id = CEPH_NOSNAP; 4025 kref_init(&spec->kref); 4026 4027 return spec; 4028 } 4029 4030 static void rbd_spec_free(struct kref *kref) 4031 { 4032 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4033 4034 kfree(spec->pool_name); 4035 kfree(spec->image_id); 4036 kfree(spec->image_name); 4037 kfree(spec->snap_name); 4038 kfree(spec); 4039 } 4040 4041 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4042 struct rbd_spec *spec) 4043 { 4044 struct rbd_device *rbd_dev; 4045 4046 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4047 if (!rbd_dev) 4048 return NULL; 4049 4050 spin_lock_init(&rbd_dev->lock); 4051 rbd_dev->flags = 0; 4052 atomic_set(&rbd_dev->parent_ref, 0); 4053 INIT_LIST_HEAD(&rbd_dev->node); 4054 init_rwsem(&rbd_dev->header_rwsem); 4055 4056 rbd_dev->spec = spec; 4057 rbd_dev->rbd_client = rbdc; 4058 4059 /* Initialize the layout used for all rbd requests */ 4060 4061 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4062 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4063 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4064 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4065 4066 return rbd_dev; 4067 } 4068 4069 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4070 { 4071 rbd_put_client(rbd_dev->rbd_client); 4072 rbd_spec_put(rbd_dev->spec); 4073 kfree(rbd_dev); 4074 } 4075 4076 /* 4077 * Get the size and object order for an image snapshot, or if 4078 * snap_id is CEPH_NOSNAP, gets this information for the base 4079 * image. 4080 */ 4081 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4082 u8 *order, u64 *snap_size) 4083 { 4084 __le64 snapid = cpu_to_le64(snap_id); 4085 int ret; 4086 struct { 4087 u8 order; 4088 __le64 size; 4089 } __attribute__ ((packed)) size_buf = { 0 }; 4090 4091 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4092 "rbd", "get_size", 4093 &snapid, sizeof (snapid), 4094 &size_buf, sizeof (size_buf)); 4095 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4096 if (ret < 0) 4097 return ret; 4098 if (ret < sizeof (size_buf)) 4099 return -ERANGE; 4100 4101 if (order) { 4102 *order = size_buf.order; 4103 dout(" order %u", (unsigned int)*order); 4104 } 4105 *snap_size = le64_to_cpu(size_buf.size); 4106 4107 dout(" snap_id 0x%016llx snap_size = %llu\n", 4108 (unsigned long long)snap_id, 4109 (unsigned long long)*snap_size); 4110 4111 return 0; 4112 } 4113 4114 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4115 { 4116 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4117 &rbd_dev->header.obj_order, 4118 &rbd_dev->header.image_size); 4119 } 4120 4121 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4122 { 4123 void *reply_buf; 4124 int ret; 4125 void *p; 4126 4127 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4128 if (!reply_buf) 4129 return -ENOMEM; 4130 4131 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4132 "rbd", "get_object_prefix", NULL, 0, 4133 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4134 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4135 if (ret < 0) 4136 goto out; 4137 4138 p = reply_buf; 4139 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4140 p + ret, NULL, GFP_NOIO); 4141 ret = 0; 4142 4143 if (IS_ERR(rbd_dev->header.object_prefix)) { 4144 ret = PTR_ERR(rbd_dev->header.object_prefix); 4145 rbd_dev->header.object_prefix = NULL; 4146 } else { 4147 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4148 } 4149 out: 4150 kfree(reply_buf); 4151 4152 return ret; 4153 } 4154 4155 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4156 u64 *snap_features) 4157 { 4158 __le64 snapid = cpu_to_le64(snap_id); 4159 struct { 4160 __le64 features; 4161 __le64 incompat; 4162 } __attribute__ ((packed)) features_buf = { 0 }; 4163 u64 incompat; 4164 int ret; 4165 4166 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4167 "rbd", "get_features", 4168 &snapid, sizeof (snapid), 4169 &features_buf, sizeof (features_buf)); 4170 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4171 if (ret < 0) 4172 return ret; 4173 if (ret < sizeof (features_buf)) 4174 return -ERANGE; 4175 4176 incompat = le64_to_cpu(features_buf.incompat); 4177 if (incompat & ~RBD_FEATURES_SUPPORTED) 4178 return -ENXIO; 4179 4180 *snap_features = le64_to_cpu(features_buf.features); 4181 4182 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4183 (unsigned long long)snap_id, 4184 (unsigned long long)*snap_features, 4185 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4186 4187 return 0; 4188 } 4189 4190 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4191 { 4192 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4193 &rbd_dev->header.features); 4194 } 4195 4196 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4197 { 4198 struct rbd_spec *parent_spec; 4199 size_t size; 4200 void *reply_buf = NULL; 4201 __le64 snapid; 4202 void *p; 4203 void *end; 4204 u64 pool_id; 4205 char *image_id; 4206 u64 snap_id; 4207 u64 overlap; 4208 int ret; 4209 4210 parent_spec = rbd_spec_alloc(); 4211 if (!parent_spec) 4212 return -ENOMEM; 4213 4214 size = sizeof (__le64) + /* pool_id */ 4215 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4216 sizeof (__le64) + /* snap_id */ 4217 sizeof (__le64); /* overlap */ 4218 reply_buf = kmalloc(size, GFP_KERNEL); 4219 if (!reply_buf) { 4220 ret = -ENOMEM; 4221 goto out_err; 4222 } 4223 4224 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4225 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4226 "rbd", "get_parent", 4227 &snapid, sizeof (snapid), 4228 reply_buf, size); 4229 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4230 if (ret < 0) 4231 goto out_err; 4232 4233 p = reply_buf; 4234 end = reply_buf + ret; 4235 ret = -ERANGE; 4236 ceph_decode_64_safe(&p, end, pool_id, out_err); 4237 if (pool_id == CEPH_NOPOOL) { 4238 /* 4239 * Either the parent never existed, or we have 4240 * record of it but the image got flattened so it no 4241 * longer has a parent. When the parent of a 4242 * layered image disappears we immediately set the 4243 * overlap to 0. The effect of this is that all new 4244 * requests will be treated as if the image had no 4245 * parent. 4246 */ 4247 if (rbd_dev->parent_overlap) { 4248 rbd_dev->parent_overlap = 0; 4249 rbd_dev_parent_put(rbd_dev); 4250 pr_info("%s: clone image has been flattened\n", 4251 rbd_dev->disk->disk_name); 4252 } 4253 4254 goto out; /* No parent? No problem. */ 4255 } 4256 4257 /* The ceph file layout needs to fit pool id in 32 bits */ 4258 4259 ret = -EIO; 4260 if (pool_id > (u64)U32_MAX) { 4261 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4262 (unsigned long long)pool_id, U32_MAX); 4263 goto out_err; 4264 } 4265 4266 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4267 if (IS_ERR(image_id)) { 4268 ret = PTR_ERR(image_id); 4269 goto out_err; 4270 } 4271 ceph_decode_64_safe(&p, end, snap_id, out_err); 4272 ceph_decode_64_safe(&p, end, overlap, out_err); 4273 4274 /* 4275 * The parent won't change (except when the clone is 4276 * flattened, already handled that). So we only need to 4277 * record the parent spec we have not already done so. 4278 */ 4279 if (!rbd_dev->parent_spec) { 4280 parent_spec->pool_id = pool_id; 4281 parent_spec->image_id = image_id; 4282 parent_spec->snap_id = snap_id; 4283 rbd_dev->parent_spec = parent_spec; 4284 parent_spec = NULL; /* rbd_dev now owns this */ 4285 } else { 4286 kfree(image_id); 4287 } 4288 4289 /* 4290 * We always update the parent overlap. If it's zero we issue 4291 * a warning, as we will proceed as if there was no parent. 4292 */ 4293 if (!overlap) { 4294 if (parent_spec) { 4295 /* refresh, careful to warn just once */ 4296 if (rbd_dev->parent_overlap) 4297 rbd_warn(rbd_dev, 4298 "clone now standalone (overlap became 0)"); 4299 } else { 4300 /* initial probe */ 4301 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4302 } 4303 } 4304 rbd_dev->parent_overlap = overlap; 4305 4306 out: 4307 ret = 0; 4308 out_err: 4309 kfree(reply_buf); 4310 rbd_spec_put(parent_spec); 4311 4312 return ret; 4313 } 4314 4315 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4316 { 4317 struct { 4318 __le64 stripe_unit; 4319 __le64 stripe_count; 4320 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4321 size_t size = sizeof (striping_info_buf); 4322 void *p; 4323 u64 obj_size; 4324 u64 stripe_unit; 4325 u64 stripe_count; 4326 int ret; 4327 4328 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4329 "rbd", "get_stripe_unit_count", NULL, 0, 4330 (char *)&striping_info_buf, size); 4331 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4332 if (ret < 0) 4333 return ret; 4334 if (ret < size) 4335 return -ERANGE; 4336 4337 /* 4338 * We don't actually support the "fancy striping" feature 4339 * (STRIPINGV2) yet, but if the striping sizes are the 4340 * defaults the behavior is the same as before. So find 4341 * out, and only fail if the image has non-default values. 4342 */ 4343 ret = -EINVAL; 4344 obj_size = (u64)1 << rbd_dev->header.obj_order; 4345 p = &striping_info_buf; 4346 stripe_unit = ceph_decode_64(&p); 4347 if (stripe_unit != obj_size) { 4348 rbd_warn(rbd_dev, "unsupported stripe unit " 4349 "(got %llu want %llu)", 4350 stripe_unit, obj_size); 4351 return -EINVAL; 4352 } 4353 stripe_count = ceph_decode_64(&p); 4354 if (stripe_count != 1) { 4355 rbd_warn(rbd_dev, "unsupported stripe count " 4356 "(got %llu want 1)", stripe_count); 4357 return -EINVAL; 4358 } 4359 rbd_dev->header.stripe_unit = stripe_unit; 4360 rbd_dev->header.stripe_count = stripe_count; 4361 4362 return 0; 4363 } 4364 4365 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4366 { 4367 size_t image_id_size; 4368 char *image_id; 4369 void *p; 4370 void *end; 4371 size_t size; 4372 void *reply_buf = NULL; 4373 size_t len = 0; 4374 char *image_name = NULL; 4375 int ret; 4376 4377 rbd_assert(!rbd_dev->spec->image_name); 4378 4379 len = strlen(rbd_dev->spec->image_id); 4380 image_id_size = sizeof (__le32) + len; 4381 image_id = kmalloc(image_id_size, GFP_KERNEL); 4382 if (!image_id) 4383 return NULL; 4384 4385 p = image_id; 4386 end = image_id + image_id_size; 4387 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4388 4389 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4390 reply_buf = kmalloc(size, GFP_KERNEL); 4391 if (!reply_buf) 4392 goto out; 4393 4394 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4395 "rbd", "dir_get_name", 4396 image_id, image_id_size, 4397 reply_buf, size); 4398 if (ret < 0) 4399 goto out; 4400 p = reply_buf; 4401 end = reply_buf + ret; 4402 4403 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4404 if (IS_ERR(image_name)) 4405 image_name = NULL; 4406 else 4407 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4408 out: 4409 kfree(reply_buf); 4410 kfree(image_id); 4411 4412 return image_name; 4413 } 4414 4415 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4416 { 4417 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4418 const char *snap_name; 4419 u32 which = 0; 4420 4421 /* Skip over names until we find the one we are looking for */ 4422 4423 snap_name = rbd_dev->header.snap_names; 4424 while (which < snapc->num_snaps) { 4425 if (!strcmp(name, snap_name)) 4426 return snapc->snaps[which]; 4427 snap_name += strlen(snap_name) + 1; 4428 which++; 4429 } 4430 return CEPH_NOSNAP; 4431 } 4432 4433 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4434 { 4435 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4436 u32 which; 4437 bool found = false; 4438 u64 snap_id; 4439 4440 for (which = 0; !found && which < snapc->num_snaps; which++) { 4441 const char *snap_name; 4442 4443 snap_id = snapc->snaps[which]; 4444 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4445 if (IS_ERR(snap_name)) { 4446 /* ignore no-longer existing snapshots */ 4447 if (PTR_ERR(snap_name) == -ENOENT) 4448 continue; 4449 else 4450 break; 4451 } 4452 found = !strcmp(name, snap_name); 4453 kfree(snap_name); 4454 } 4455 return found ? snap_id : CEPH_NOSNAP; 4456 } 4457 4458 /* 4459 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4460 * no snapshot by that name is found, or if an error occurs. 4461 */ 4462 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4463 { 4464 if (rbd_dev->image_format == 1) 4465 return rbd_v1_snap_id_by_name(rbd_dev, name); 4466 4467 return rbd_v2_snap_id_by_name(rbd_dev, name); 4468 } 4469 4470 /* 4471 * An image being mapped will have everything but the snap id. 4472 */ 4473 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4474 { 4475 struct rbd_spec *spec = rbd_dev->spec; 4476 4477 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4478 rbd_assert(spec->image_id && spec->image_name); 4479 rbd_assert(spec->snap_name); 4480 4481 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4482 u64 snap_id; 4483 4484 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4485 if (snap_id == CEPH_NOSNAP) 4486 return -ENOENT; 4487 4488 spec->snap_id = snap_id; 4489 } else { 4490 spec->snap_id = CEPH_NOSNAP; 4491 } 4492 4493 return 0; 4494 } 4495 4496 /* 4497 * A parent image will have all ids but none of the names. 4498 * 4499 * All names in an rbd spec are dynamically allocated. It's OK if we 4500 * can't figure out the name for an image id. 4501 */ 4502 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4503 { 4504 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4505 struct rbd_spec *spec = rbd_dev->spec; 4506 const char *pool_name; 4507 const char *image_name; 4508 const char *snap_name; 4509 int ret; 4510 4511 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4512 rbd_assert(spec->image_id); 4513 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4514 4515 /* Get the pool name; we have to make our own copy of this */ 4516 4517 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4518 if (!pool_name) { 4519 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4520 return -EIO; 4521 } 4522 pool_name = kstrdup(pool_name, GFP_KERNEL); 4523 if (!pool_name) 4524 return -ENOMEM; 4525 4526 /* Fetch the image name; tolerate failure here */ 4527 4528 image_name = rbd_dev_image_name(rbd_dev); 4529 if (!image_name) 4530 rbd_warn(rbd_dev, "unable to get image name"); 4531 4532 /* Fetch the snapshot name */ 4533 4534 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4535 if (IS_ERR(snap_name)) { 4536 ret = PTR_ERR(snap_name); 4537 goto out_err; 4538 } 4539 4540 spec->pool_name = pool_name; 4541 spec->image_name = image_name; 4542 spec->snap_name = snap_name; 4543 4544 return 0; 4545 4546 out_err: 4547 kfree(image_name); 4548 kfree(pool_name); 4549 return ret; 4550 } 4551 4552 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4553 { 4554 size_t size; 4555 int ret; 4556 void *reply_buf; 4557 void *p; 4558 void *end; 4559 u64 seq; 4560 u32 snap_count; 4561 struct ceph_snap_context *snapc; 4562 u32 i; 4563 4564 /* 4565 * We'll need room for the seq value (maximum snapshot id), 4566 * snapshot count, and array of that many snapshot ids. 4567 * For now we have a fixed upper limit on the number we're 4568 * prepared to receive. 4569 */ 4570 size = sizeof (__le64) + sizeof (__le32) + 4571 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4572 reply_buf = kzalloc(size, GFP_KERNEL); 4573 if (!reply_buf) 4574 return -ENOMEM; 4575 4576 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4577 "rbd", "get_snapcontext", NULL, 0, 4578 reply_buf, size); 4579 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4580 if (ret < 0) 4581 goto out; 4582 4583 p = reply_buf; 4584 end = reply_buf + ret; 4585 ret = -ERANGE; 4586 ceph_decode_64_safe(&p, end, seq, out); 4587 ceph_decode_32_safe(&p, end, snap_count, out); 4588 4589 /* 4590 * Make sure the reported number of snapshot ids wouldn't go 4591 * beyond the end of our buffer. But before checking that, 4592 * make sure the computed size of the snapshot context we 4593 * allocate is representable in a size_t. 4594 */ 4595 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4596 / sizeof (u64)) { 4597 ret = -EINVAL; 4598 goto out; 4599 } 4600 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4601 goto out; 4602 ret = 0; 4603 4604 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4605 if (!snapc) { 4606 ret = -ENOMEM; 4607 goto out; 4608 } 4609 snapc->seq = seq; 4610 for (i = 0; i < snap_count; i++) 4611 snapc->snaps[i] = ceph_decode_64(&p); 4612 4613 ceph_put_snap_context(rbd_dev->header.snapc); 4614 rbd_dev->header.snapc = snapc; 4615 4616 dout(" snap context seq = %llu, snap_count = %u\n", 4617 (unsigned long long)seq, (unsigned int)snap_count); 4618 out: 4619 kfree(reply_buf); 4620 4621 return ret; 4622 } 4623 4624 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4625 u64 snap_id) 4626 { 4627 size_t size; 4628 void *reply_buf; 4629 __le64 snapid; 4630 int ret; 4631 void *p; 4632 void *end; 4633 char *snap_name; 4634 4635 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4636 reply_buf = kmalloc(size, GFP_KERNEL); 4637 if (!reply_buf) 4638 return ERR_PTR(-ENOMEM); 4639 4640 snapid = cpu_to_le64(snap_id); 4641 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4642 "rbd", "get_snapshot_name", 4643 &snapid, sizeof (snapid), 4644 reply_buf, size); 4645 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4646 if (ret < 0) { 4647 snap_name = ERR_PTR(ret); 4648 goto out; 4649 } 4650 4651 p = reply_buf; 4652 end = reply_buf + ret; 4653 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4654 if (IS_ERR(snap_name)) 4655 goto out; 4656 4657 dout(" snap_id 0x%016llx snap_name = %s\n", 4658 (unsigned long long)snap_id, snap_name); 4659 out: 4660 kfree(reply_buf); 4661 4662 return snap_name; 4663 } 4664 4665 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4666 { 4667 bool first_time = rbd_dev->header.object_prefix == NULL; 4668 int ret; 4669 4670 ret = rbd_dev_v2_image_size(rbd_dev); 4671 if (ret) 4672 return ret; 4673 4674 if (first_time) { 4675 ret = rbd_dev_v2_header_onetime(rbd_dev); 4676 if (ret) 4677 return ret; 4678 } 4679 4680 ret = rbd_dev_v2_snap_context(rbd_dev); 4681 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4682 4683 return ret; 4684 } 4685 4686 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4687 { 4688 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4689 4690 if (rbd_dev->image_format == 1) 4691 return rbd_dev_v1_header_info(rbd_dev); 4692 4693 return rbd_dev_v2_header_info(rbd_dev); 4694 } 4695 4696 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4697 { 4698 struct device *dev; 4699 int ret; 4700 4701 dev = &rbd_dev->dev; 4702 dev->bus = &rbd_bus_type; 4703 dev->type = &rbd_device_type; 4704 dev->parent = &rbd_root_dev; 4705 dev->release = rbd_dev_device_release; 4706 dev_set_name(dev, "%d", rbd_dev->dev_id); 4707 ret = device_register(dev); 4708 4709 return ret; 4710 } 4711 4712 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4713 { 4714 device_unregister(&rbd_dev->dev); 4715 } 4716 4717 /* 4718 * Get a unique rbd identifier for the given new rbd_dev, and add 4719 * the rbd_dev to the global list. 4720 */ 4721 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4722 { 4723 int new_dev_id; 4724 4725 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4726 0, minor_to_rbd_dev_id(1 << MINORBITS), 4727 GFP_KERNEL); 4728 if (new_dev_id < 0) 4729 return new_dev_id; 4730 4731 rbd_dev->dev_id = new_dev_id; 4732 4733 spin_lock(&rbd_dev_list_lock); 4734 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4735 spin_unlock(&rbd_dev_list_lock); 4736 4737 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4738 4739 return 0; 4740 } 4741 4742 /* 4743 * Remove an rbd_dev from the global list, and record that its 4744 * identifier is no longer in use. 4745 */ 4746 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4747 { 4748 spin_lock(&rbd_dev_list_lock); 4749 list_del_init(&rbd_dev->node); 4750 spin_unlock(&rbd_dev_list_lock); 4751 4752 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4753 4754 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4755 } 4756 4757 /* 4758 * Skips over white space at *buf, and updates *buf to point to the 4759 * first found non-space character (if any). Returns the length of 4760 * the token (string of non-white space characters) found. Note 4761 * that *buf must be terminated with '\0'. 4762 */ 4763 static inline size_t next_token(const char **buf) 4764 { 4765 /* 4766 * These are the characters that produce nonzero for 4767 * isspace() in the "C" and "POSIX" locales. 4768 */ 4769 const char *spaces = " \f\n\r\t\v"; 4770 4771 *buf += strspn(*buf, spaces); /* Find start of token */ 4772 4773 return strcspn(*buf, spaces); /* Return token length */ 4774 } 4775 4776 /* 4777 * Finds the next token in *buf, dynamically allocates a buffer big 4778 * enough to hold a copy of it, and copies the token into the new 4779 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4780 * that a duplicate buffer is created even for a zero-length token. 4781 * 4782 * Returns a pointer to the newly-allocated duplicate, or a null 4783 * pointer if memory for the duplicate was not available. If 4784 * the lenp argument is a non-null pointer, the length of the token 4785 * (not including the '\0') is returned in *lenp. 4786 * 4787 * If successful, the *buf pointer will be updated to point beyond 4788 * the end of the found token. 4789 * 4790 * Note: uses GFP_KERNEL for allocation. 4791 */ 4792 static inline char *dup_token(const char **buf, size_t *lenp) 4793 { 4794 char *dup; 4795 size_t len; 4796 4797 len = next_token(buf); 4798 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4799 if (!dup) 4800 return NULL; 4801 *(dup + len) = '\0'; 4802 *buf += len; 4803 4804 if (lenp) 4805 *lenp = len; 4806 4807 return dup; 4808 } 4809 4810 /* 4811 * Parse the options provided for an "rbd add" (i.e., rbd image 4812 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4813 * and the data written is passed here via a NUL-terminated buffer. 4814 * Returns 0 if successful or an error code otherwise. 4815 * 4816 * The information extracted from these options is recorded in 4817 * the other parameters which return dynamically-allocated 4818 * structures: 4819 * ceph_opts 4820 * The address of a pointer that will refer to a ceph options 4821 * structure. Caller must release the returned pointer using 4822 * ceph_destroy_options() when it is no longer needed. 4823 * rbd_opts 4824 * Address of an rbd options pointer. Fully initialized by 4825 * this function; caller must release with kfree(). 4826 * spec 4827 * Address of an rbd image specification pointer. Fully 4828 * initialized by this function based on parsed options. 4829 * Caller must release with rbd_spec_put(). 4830 * 4831 * The options passed take this form: 4832 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4833 * where: 4834 * <mon_addrs> 4835 * A comma-separated list of one or more monitor addresses. 4836 * A monitor address is an ip address, optionally followed 4837 * by a port number (separated by a colon). 4838 * I.e.: ip1[:port1][,ip2[:port2]...] 4839 * <options> 4840 * A comma-separated list of ceph and/or rbd options. 4841 * <pool_name> 4842 * The name of the rados pool containing the rbd image. 4843 * <image_name> 4844 * The name of the image in that pool to map. 4845 * <snap_id> 4846 * An optional snapshot id. If provided, the mapping will 4847 * present data from the image at the time that snapshot was 4848 * created. The image head is used if no snapshot id is 4849 * provided. Snapshot mappings are always read-only. 4850 */ 4851 static int rbd_add_parse_args(const char *buf, 4852 struct ceph_options **ceph_opts, 4853 struct rbd_options **opts, 4854 struct rbd_spec **rbd_spec) 4855 { 4856 size_t len; 4857 char *options; 4858 const char *mon_addrs; 4859 char *snap_name; 4860 size_t mon_addrs_size; 4861 struct rbd_spec *spec = NULL; 4862 struct rbd_options *rbd_opts = NULL; 4863 struct ceph_options *copts; 4864 int ret; 4865 4866 /* The first four tokens are required */ 4867 4868 len = next_token(&buf); 4869 if (!len) { 4870 rbd_warn(NULL, "no monitor address(es) provided"); 4871 return -EINVAL; 4872 } 4873 mon_addrs = buf; 4874 mon_addrs_size = len + 1; 4875 buf += len; 4876 4877 ret = -EINVAL; 4878 options = dup_token(&buf, NULL); 4879 if (!options) 4880 return -ENOMEM; 4881 if (!*options) { 4882 rbd_warn(NULL, "no options provided"); 4883 goto out_err; 4884 } 4885 4886 spec = rbd_spec_alloc(); 4887 if (!spec) 4888 goto out_mem; 4889 4890 spec->pool_name = dup_token(&buf, NULL); 4891 if (!spec->pool_name) 4892 goto out_mem; 4893 if (!*spec->pool_name) { 4894 rbd_warn(NULL, "no pool name provided"); 4895 goto out_err; 4896 } 4897 4898 spec->image_name = dup_token(&buf, NULL); 4899 if (!spec->image_name) 4900 goto out_mem; 4901 if (!*spec->image_name) { 4902 rbd_warn(NULL, "no image name provided"); 4903 goto out_err; 4904 } 4905 4906 /* 4907 * Snapshot name is optional; default is to use "-" 4908 * (indicating the head/no snapshot). 4909 */ 4910 len = next_token(&buf); 4911 if (!len) { 4912 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4913 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4914 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4915 ret = -ENAMETOOLONG; 4916 goto out_err; 4917 } 4918 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4919 if (!snap_name) 4920 goto out_mem; 4921 *(snap_name + len) = '\0'; 4922 spec->snap_name = snap_name; 4923 4924 /* Initialize all rbd options to the defaults */ 4925 4926 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4927 if (!rbd_opts) 4928 goto out_mem; 4929 4930 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4931 4932 copts = ceph_parse_options(options, mon_addrs, 4933 mon_addrs + mon_addrs_size - 1, 4934 parse_rbd_opts_token, rbd_opts); 4935 if (IS_ERR(copts)) { 4936 ret = PTR_ERR(copts); 4937 goto out_err; 4938 } 4939 kfree(options); 4940 4941 *ceph_opts = copts; 4942 *opts = rbd_opts; 4943 *rbd_spec = spec; 4944 4945 return 0; 4946 out_mem: 4947 ret = -ENOMEM; 4948 out_err: 4949 kfree(rbd_opts); 4950 rbd_spec_put(spec); 4951 kfree(options); 4952 4953 return ret; 4954 } 4955 4956 /* 4957 * Return pool id (>= 0) or a negative error code. 4958 */ 4959 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4960 { 4961 u64 newest_epoch; 4962 unsigned long timeout = rbdc->client->options->mount_timeout * HZ; 4963 int tries = 0; 4964 int ret; 4965 4966 again: 4967 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4968 if (ret == -ENOENT && tries++ < 1) { 4969 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4970 &newest_epoch); 4971 if (ret < 0) 4972 return ret; 4973 4974 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4975 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4976 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4977 newest_epoch, timeout); 4978 goto again; 4979 } else { 4980 /* the osdmap we have is new enough */ 4981 return -ENOENT; 4982 } 4983 } 4984 4985 return ret; 4986 } 4987 4988 /* 4989 * An rbd format 2 image has a unique identifier, distinct from the 4990 * name given to it by the user. Internally, that identifier is 4991 * what's used to specify the names of objects related to the image. 4992 * 4993 * A special "rbd id" object is used to map an rbd image name to its 4994 * id. If that object doesn't exist, then there is no v2 rbd image 4995 * with the supplied name. 4996 * 4997 * This function will record the given rbd_dev's image_id field if 4998 * it can be determined, and in that case will return 0. If any 4999 * errors occur a negative errno will be returned and the rbd_dev's 5000 * image_id field will be unchanged (and should be NULL). 5001 */ 5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5003 { 5004 int ret; 5005 size_t size; 5006 char *object_name; 5007 void *response; 5008 char *image_id; 5009 5010 /* 5011 * When probing a parent image, the image id is already 5012 * known (and the image name likely is not). There's no 5013 * need to fetch the image id again in this case. We 5014 * do still need to set the image format though. 5015 */ 5016 if (rbd_dev->spec->image_id) { 5017 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5018 5019 return 0; 5020 } 5021 5022 /* 5023 * First, see if the format 2 image id file exists, and if 5024 * so, get the image's persistent id from it. 5025 */ 5026 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5027 object_name = kmalloc(size, GFP_NOIO); 5028 if (!object_name) 5029 return -ENOMEM; 5030 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5031 dout("rbd id object name is %s\n", object_name); 5032 5033 /* Response will be an encoded string, which includes a length */ 5034 5035 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5036 response = kzalloc(size, GFP_NOIO); 5037 if (!response) { 5038 ret = -ENOMEM; 5039 goto out; 5040 } 5041 5042 /* If it doesn't exist we'll assume it's a format 1 image */ 5043 5044 ret = rbd_obj_method_sync(rbd_dev, object_name, 5045 "rbd", "get_id", NULL, 0, 5046 response, RBD_IMAGE_ID_LEN_MAX); 5047 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5048 if (ret == -ENOENT) { 5049 image_id = kstrdup("", GFP_KERNEL); 5050 ret = image_id ? 0 : -ENOMEM; 5051 if (!ret) 5052 rbd_dev->image_format = 1; 5053 } else if (ret >= 0) { 5054 void *p = response; 5055 5056 image_id = ceph_extract_encoded_string(&p, p + ret, 5057 NULL, GFP_NOIO); 5058 ret = PTR_ERR_OR_ZERO(image_id); 5059 if (!ret) 5060 rbd_dev->image_format = 2; 5061 } 5062 5063 if (!ret) { 5064 rbd_dev->spec->image_id = image_id; 5065 dout("image_id is %s\n", image_id); 5066 } 5067 out: 5068 kfree(response); 5069 kfree(object_name); 5070 5071 return ret; 5072 } 5073 5074 /* 5075 * Undo whatever state changes are made by v1 or v2 header info 5076 * call. 5077 */ 5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5079 { 5080 struct rbd_image_header *header; 5081 5082 rbd_dev_parent_put(rbd_dev); 5083 5084 /* Free dynamic fields from the header, then zero it out */ 5085 5086 header = &rbd_dev->header; 5087 ceph_put_snap_context(header->snapc); 5088 kfree(header->snap_sizes); 5089 kfree(header->snap_names); 5090 kfree(header->object_prefix); 5091 memset(header, 0, sizeof (*header)); 5092 } 5093 5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5095 { 5096 int ret; 5097 5098 ret = rbd_dev_v2_object_prefix(rbd_dev); 5099 if (ret) 5100 goto out_err; 5101 5102 /* 5103 * Get the and check features for the image. Currently the 5104 * features are assumed to never change. 5105 */ 5106 ret = rbd_dev_v2_features(rbd_dev); 5107 if (ret) 5108 goto out_err; 5109 5110 /* If the image supports fancy striping, get its parameters */ 5111 5112 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5113 ret = rbd_dev_v2_striping_info(rbd_dev); 5114 if (ret < 0) 5115 goto out_err; 5116 } 5117 /* No support for crypto and compression type format 2 images */ 5118 5119 return 0; 5120 out_err: 5121 rbd_dev->header.features = 0; 5122 kfree(rbd_dev->header.object_prefix); 5123 rbd_dev->header.object_prefix = NULL; 5124 5125 return ret; 5126 } 5127 5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5129 { 5130 struct rbd_device *parent = NULL; 5131 struct rbd_spec *parent_spec; 5132 struct rbd_client *rbdc; 5133 int ret; 5134 5135 if (!rbd_dev->parent_spec) 5136 return 0; 5137 /* 5138 * We need to pass a reference to the client and the parent 5139 * spec when creating the parent rbd_dev. Images related by 5140 * parent/child relationships always share both. 5141 */ 5142 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5143 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5144 5145 ret = -ENOMEM; 5146 parent = rbd_dev_create(rbdc, parent_spec); 5147 if (!parent) 5148 goto out_err; 5149 5150 ret = rbd_dev_image_probe(parent, false); 5151 if (ret < 0) 5152 goto out_err; 5153 rbd_dev->parent = parent; 5154 atomic_set(&rbd_dev->parent_ref, 1); 5155 5156 return 0; 5157 out_err: 5158 if (parent) { 5159 rbd_dev_unparent(rbd_dev); 5160 kfree(rbd_dev->header_name); 5161 rbd_dev_destroy(parent); 5162 } else { 5163 rbd_put_client(rbdc); 5164 rbd_spec_put(parent_spec); 5165 } 5166 5167 return ret; 5168 } 5169 5170 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5171 { 5172 int ret; 5173 5174 /* Get an id and fill in device name. */ 5175 5176 ret = rbd_dev_id_get(rbd_dev); 5177 if (ret) 5178 return ret; 5179 5180 BUILD_BUG_ON(DEV_NAME_LEN 5181 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5182 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5183 5184 /* Record our major and minor device numbers. */ 5185 5186 if (!single_major) { 5187 ret = register_blkdev(0, rbd_dev->name); 5188 if (ret < 0) 5189 goto err_out_id; 5190 5191 rbd_dev->major = ret; 5192 rbd_dev->minor = 0; 5193 } else { 5194 rbd_dev->major = rbd_major; 5195 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5196 } 5197 5198 /* Set up the blkdev mapping. */ 5199 5200 ret = rbd_init_disk(rbd_dev); 5201 if (ret) 5202 goto err_out_blkdev; 5203 5204 ret = rbd_dev_mapping_set(rbd_dev); 5205 if (ret) 5206 goto err_out_disk; 5207 5208 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5209 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5210 5211 ret = rbd_bus_add_dev(rbd_dev); 5212 if (ret) 5213 goto err_out_mapping; 5214 5215 /* Everything's ready. Announce the disk to the world. */ 5216 5217 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5218 add_disk(rbd_dev->disk); 5219 5220 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5221 (unsigned long long) rbd_dev->mapping.size); 5222 5223 return ret; 5224 5225 err_out_mapping: 5226 rbd_dev_mapping_clear(rbd_dev); 5227 err_out_disk: 5228 rbd_free_disk(rbd_dev); 5229 err_out_blkdev: 5230 if (!single_major) 5231 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5232 err_out_id: 5233 rbd_dev_id_put(rbd_dev); 5234 rbd_dev_mapping_clear(rbd_dev); 5235 5236 return ret; 5237 } 5238 5239 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5240 { 5241 struct rbd_spec *spec = rbd_dev->spec; 5242 size_t size; 5243 5244 /* Record the header object name for this rbd image. */ 5245 5246 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5247 5248 if (rbd_dev->image_format == 1) 5249 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5250 else 5251 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5252 5253 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5254 if (!rbd_dev->header_name) 5255 return -ENOMEM; 5256 5257 if (rbd_dev->image_format == 1) 5258 sprintf(rbd_dev->header_name, "%s%s", 5259 spec->image_name, RBD_SUFFIX); 5260 else 5261 sprintf(rbd_dev->header_name, "%s%s", 5262 RBD_HEADER_PREFIX, spec->image_id); 5263 return 0; 5264 } 5265 5266 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5267 { 5268 rbd_dev_unprobe(rbd_dev); 5269 kfree(rbd_dev->header_name); 5270 rbd_dev->header_name = NULL; 5271 rbd_dev->image_format = 0; 5272 kfree(rbd_dev->spec->image_id); 5273 rbd_dev->spec->image_id = NULL; 5274 5275 rbd_dev_destroy(rbd_dev); 5276 } 5277 5278 /* 5279 * Probe for the existence of the header object for the given rbd 5280 * device. If this image is the one being mapped (i.e., not a 5281 * parent), initiate a watch on its header object before using that 5282 * object to get detailed information about the rbd image. 5283 */ 5284 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5285 { 5286 int ret; 5287 5288 /* 5289 * Get the id from the image id object. Unless there's an 5290 * error, rbd_dev->spec->image_id will be filled in with 5291 * a dynamically-allocated string, and rbd_dev->image_format 5292 * will be set to either 1 or 2. 5293 */ 5294 ret = rbd_dev_image_id(rbd_dev); 5295 if (ret) 5296 return ret; 5297 5298 ret = rbd_dev_header_name(rbd_dev); 5299 if (ret) 5300 goto err_out_format; 5301 5302 if (mapping) { 5303 ret = rbd_dev_header_watch_sync(rbd_dev); 5304 if (ret) 5305 goto out_header_name; 5306 } 5307 5308 ret = rbd_dev_header_info(rbd_dev); 5309 if (ret) 5310 goto err_out_watch; 5311 5312 /* 5313 * If this image is the one being mapped, we have pool name and 5314 * id, image name and id, and snap name - need to fill snap id. 5315 * Otherwise this is a parent image, identified by pool, image 5316 * and snap ids - need to fill in names for those ids. 5317 */ 5318 if (mapping) 5319 ret = rbd_spec_fill_snap_id(rbd_dev); 5320 else 5321 ret = rbd_spec_fill_names(rbd_dev); 5322 if (ret) 5323 goto err_out_probe; 5324 5325 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5326 ret = rbd_dev_v2_parent_info(rbd_dev); 5327 if (ret) 5328 goto err_out_probe; 5329 5330 /* 5331 * Need to warn users if this image is the one being 5332 * mapped and has a parent. 5333 */ 5334 if (mapping && rbd_dev->parent_spec) 5335 rbd_warn(rbd_dev, 5336 "WARNING: kernel layering is EXPERIMENTAL!"); 5337 } 5338 5339 ret = rbd_dev_probe_parent(rbd_dev); 5340 if (ret) 5341 goto err_out_probe; 5342 5343 dout("discovered format %u image, header name is %s\n", 5344 rbd_dev->image_format, rbd_dev->header_name); 5345 return 0; 5346 5347 err_out_probe: 5348 rbd_dev_unprobe(rbd_dev); 5349 err_out_watch: 5350 if (mapping) 5351 rbd_dev_header_unwatch_sync(rbd_dev); 5352 out_header_name: 5353 kfree(rbd_dev->header_name); 5354 rbd_dev->header_name = NULL; 5355 err_out_format: 5356 rbd_dev->image_format = 0; 5357 kfree(rbd_dev->spec->image_id); 5358 rbd_dev->spec->image_id = NULL; 5359 return ret; 5360 } 5361 5362 static ssize_t do_rbd_add(struct bus_type *bus, 5363 const char *buf, 5364 size_t count) 5365 { 5366 struct rbd_device *rbd_dev = NULL; 5367 struct ceph_options *ceph_opts = NULL; 5368 struct rbd_options *rbd_opts = NULL; 5369 struct rbd_spec *spec = NULL; 5370 struct rbd_client *rbdc; 5371 bool read_only; 5372 int rc = -ENOMEM; 5373 5374 if (!try_module_get(THIS_MODULE)) 5375 return -ENODEV; 5376 5377 /* parse add command */ 5378 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5379 if (rc < 0) 5380 goto err_out_module; 5381 read_only = rbd_opts->read_only; 5382 kfree(rbd_opts); 5383 rbd_opts = NULL; /* done with this */ 5384 5385 rbdc = rbd_get_client(ceph_opts); 5386 if (IS_ERR(rbdc)) { 5387 rc = PTR_ERR(rbdc); 5388 goto err_out_args; 5389 } 5390 5391 /* pick the pool */ 5392 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5393 if (rc < 0) 5394 goto err_out_client; 5395 spec->pool_id = (u64)rc; 5396 5397 /* The ceph file layout needs to fit pool id in 32 bits */ 5398 5399 if (spec->pool_id > (u64)U32_MAX) { 5400 rbd_warn(NULL, "pool id too large (%llu > %u)", 5401 (unsigned long long)spec->pool_id, U32_MAX); 5402 rc = -EIO; 5403 goto err_out_client; 5404 } 5405 5406 rbd_dev = rbd_dev_create(rbdc, spec); 5407 if (!rbd_dev) 5408 goto err_out_client; 5409 rbdc = NULL; /* rbd_dev now owns this */ 5410 spec = NULL; /* rbd_dev now owns this */ 5411 5412 rc = rbd_dev_image_probe(rbd_dev, true); 5413 if (rc < 0) 5414 goto err_out_rbd_dev; 5415 5416 /* If we are mapping a snapshot it must be marked read-only */ 5417 5418 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5419 read_only = true; 5420 rbd_dev->mapping.read_only = read_only; 5421 5422 rc = rbd_dev_device_setup(rbd_dev); 5423 if (rc) { 5424 /* 5425 * rbd_dev_header_unwatch_sync() can't be moved into 5426 * rbd_dev_image_release() without refactoring, see 5427 * commit 1f3ef78861ac. 5428 */ 5429 rbd_dev_header_unwatch_sync(rbd_dev); 5430 rbd_dev_image_release(rbd_dev); 5431 goto err_out_module; 5432 } 5433 5434 return count; 5435 5436 err_out_rbd_dev: 5437 rbd_dev_destroy(rbd_dev); 5438 err_out_client: 5439 rbd_put_client(rbdc); 5440 err_out_args: 5441 rbd_spec_put(spec); 5442 err_out_module: 5443 module_put(THIS_MODULE); 5444 5445 dout("Error adding device %s\n", buf); 5446 5447 return (ssize_t)rc; 5448 } 5449 5450 static ssize_t rbd_add(struct bus_type *bus, 5451 const char *buf, 5452 size_t count) 5453 { 5454 if (single_major) 5455 return -EINVAL; 5456 5457 return do_rbd_add(bus, buf, count); 5458 } 5459 5460 static ssize_t rbd_add_single_major(struct bus_type *bus, 5461 const char *buf, 5462 size_t count) 5463 { 5464 return do_rbd_add(bus, buf, count); 5465 } 5466 5467 static void rbd_dev_device_release(struct device *dev) 5468 { 5469 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5470 5471 rbd_free_disk(rbd_dev); 5472 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5473 rbd_dev_mapping_clear(rbd_dev); 5474 if (!single_major) 5475 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5476 rbd_dev_id_put(rbd_dev); 5477 rbd_dev_mapping_clear(rbd_dev); 5478 } 5479 5480 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5481 { 5482 while (rbd_dev->parent) { 5483 struct rbd_device *first = rbd_dev; 5484 struct rbd_device *second = first->parent; 5485 struct rbd_device *third; 5486 5487 /* 5488 * Follow to the parent with no grandparent and 5489 * remove it. 5490 */ 5491 while (second && (third = second->parent)) { 5492 first = second; 5493 second = third; 5494 } 5495 rbd_assert(second); 5496 rbd_dev_image_release(second); 5497 first->parent = NULL; 5498 first->parent_overlap = 0; 5499 5500 rbd_assert(first->parent_spec); 5501 rbd_spec_put(first->parent_spec); 5502 first->parent_spec = NULL; 5503 } 5504 } 5505 5506 static ssize_t do_rbd_remove(struct bus_type *bus, 5507 const char *buf, 5508 size_t count) 5509 { 5510 struct rbd_device *rbd_dev = NULL; 5511 struct list_head *tmp; 5512 int dev_id; 5513 unsigned long ul; 5514 bool already = false; 5515 int ret; 5516 5517 ret = kstrtoul(buf, 10, &ul); 5518 if (ret) 5519 return ret; 5520 5521 /* convert to int; abort if we lost anything in the conversion */ 5522 dev_id = (int)ul; 5523 if (dev_id != ul) 5524 return -EINVAL; 5525 5526 ret = -ENOENT; 5527 spin_lock(&rbd_dev_list_lock); 5528 list_for_each(tmp, &rbd_dev_list) { 5529 rbd_dev = list_entry(tmp, struct rbd_device, node); 5530 if (rbd_dev->dev_id == dev_id) { 5531 ret = 0; 5532 break; 5533 } 5534 } 5535 if (!ret) { 5536 spin_lock_irq(&rbd_dev->lock); 5537 if (rbd_dev->open_count) 5538 ret = -EBUSY; 5539 else 5540 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5541 &rbd_dev->flags); 5542 spin_unlock_irq(&rbd_dev->lock); 5543 } 5544 spin_unlock(&rbd_dev_list_lock); 5545 if (ret < 0 || already) 5546 return ret; 5547 5548 rbd_dev_header_unwatch_sync(rbd_dev); 5549 /* 5550 * flush remaining watch callbacks - these must be complete 5551 * before the osd_client is shutdown 5552 */ 5553 dout("%s: flushing notifies", __func__); 5554 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5555 5556 /* 5557 * Don't free anything from rbd_dev->disk until after all 5558 * notifies are completely processed. Otherwise 5559 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5560 * in a potential use after free of rbd_dev->disk or rbd_dev. 5561 */ 5562 rbd_bus_del_dev(rbd_dev); 5563 rbd_dev_image_release(rbd_dev); 5564 module_put(THIS_MODULE); 5565 5566 return count; 5567 } 5568 5569 static ssize_t rbd_remove(struct bus_type *bus, 5570 const char *buf, 5571 size_t count) 5572 { 5573 if (single_major) 5574 return -EINVAL; 5575 5576 return do_rbd_remove(bus, buf, count); 5577 } 5578 5579 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5580 const char *buf, 5581 size_t count) 5582 { 5583 return do_rbd_remove(bus, buf, count); 5584 } 5585 5586 /* 5587 * create control files in sysfs 5588 * /sys/bus/rbd/... 5589 */ 5590 static int rbd_sysfs_init(void) 5591 { 5592 int ret; 5593 5594 ret = device_register(&rbd_root_dev); 5595 if (ret < 0) 5596 return ret; 5597 5598 ret = bus_register(&rbd_bus_type); 5599 if (ret < 0) 5600 device_unregister(&rbd_root_dev); 5601 5602 return ret; 5603 } 5604 5605 static void rbd_sysfs_cleanup(void) 5606 { 5607 bus_unregister(&rbd_bus_type); 5608 device_unregister(&rbd_root_dev); 5609 } 5610 5611 static int rbd_slab_init(void) 5612 { 5613 rbd_assert(!rbd_img_request_cache); 5614 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5615 sizeof (struct rbd_img_request), 5616 __alignof__(struct rbd_img_request), 5617 0, NULL); 5618 if (!rbd_img_request_cache) 5619 return -ENOMEM; 5620 5621 rbd_assert(!rbd_obj_request_cache); 5622 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5623 sizeof (struct rbd_obj_request), 5624 __alignof__(struct rbd_obj_request), 5625 0, NULL); 5626 if (!rbd_obj_request_cache) 5627 goto out_err; 5628 5629 rbd_assert(!rbd_segment_name_cache); 5630 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5631 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5632 if (rbd_segment_name_cache) 5633 return 0; 5634 out_err: 5635 if (rbd_obj_request_cache) { 5636 kmem_cache_destroy(rbd_obj_request_cache); 5637 rbd_obj_request_cache = NULL; 5638 } 5639 5640 kmem_cache_destroy(rbd_img_request_cache); 5641 rbd_img_request_cache = NULL; 5642 5643 return -ENOMEM; 5644 } 5645 5646 static void rbd_slab_exit(void) 5647 { 5648 rbd_assert(rbd_segment_name_cache); 5649 kmem_cache_destroy(rbd_segment_name_cache); 5650 rbd_segment_name_cache = NULL; 5651 5652 rbd_assert(rbd_obj_request_cache); 5653 kmem_cache_destroy(rbd_obj_request_cache); 5654 rbd_obj_request_cache = NULL; 5655 5656 rbd_assert(rbd_img_request_cache); 5657 kmem_cache_destroy(rbd_img_request_cache); 5658 rbd_img_request_cache = NULL; 5659 } 5660 5661 static int __init rbd_init(void) 5662 { 5663 int rc; 5664 5665 if (!libceph_compatible(NULL)) { 5666 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5667 return -EINVAL; 5668 } 5669 5670 rc = rbd_slab_init(); 5671 if (rc) 5672 return rc; 5673 5674 /* 5675 * The number of active work items is limited by the number of 5676 * rbd devices, so leave @max_active at default. 5677 */ 5678 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5679 if (!rbd_wq) { 5680 rc = -ENOMEM; 5681 goto err_out_slab; 5682 } 5683 5684 if (single_major) { 5685 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5686 if (rbd_major < 0) { 5687 rc = rbd_major; 5688 goto err_out_wq; 5689 } 5690 } 5691 5692 rc = rbd_sysfs_init(); 5693 if (rc) 5694 goto err_out_blkdev; 5695 5696 if (single_major) 5697 pr_info("loaded (major %d)\n", rbd_major); 5698 else 5699 pr_info("loaded\n"); 5700 5701 return 0; 5702 5703 err_out_blkdev: 5704 if (single_major) 5705 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5706 err_out_wq: 5707 destroy_workqueue(rbd_wq); 5708 err_out_slab: 5709 rbd_slab_exit(); 5710 return rc; 5711 } 5712 5713 static void __exit rbd_exit(void) 5714 { 5715 ida_destroy(&rbd_dev_id_ida); 5716 rbd_sysfs_cleanup(); 5717 if (single_major) 5718 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5719 destroy_workqueue(rbd_wq); 5720 rbd_slab_exit(); 5721 } 5722 5723 module_init(rbd_init); 5724 module_exit(rbd_exit); 5725 5726 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5727 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5728 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5729 /* following authorship retained from original osdblk.c */ 5730 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5731 5732 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5733 MODULE_LICENSE("GPL"); 5734