xref: /openbmc/linux/drivers/block/rbd.c (revision 36acd5e2)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static int rbd_set_read_only(struct block_device *bdev, bool ro)
696 {
697 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
698 
699 	/*
700 	 * Both images mapped read-only and snapshots can't be marked
701 	 * read-write.
702 	 */
703 	if (!ro) {
704 		if (rbd_is_ro(rbd_dev))
705 			return -EROFS;
706 
707 		rbd_assert(!rbd_is_snap(rbd_dev));
708 	}
709 
710 	return 0;
711 }
712 
713 static const struct block_device_operations rbd_bd_ops = {
714 	.owner			= THIS_MODULE,
715 	.open			= rbd_open,
716 	.release		= rbd_release,
717 	.set_read_only		= rbd_set_read_only,
718 };
719 
720 /*
721  * Initialize an rbd client instance.  Success or not, this function
722  * consumes ceph_opts.  Caller holds client_mutex.
723  */
724 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
725 {
726 	struct rbd_client *rbdc;
727 	int ret = -ENOMEM;
728 
729 	dout("%s:\n", __func__);
730 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
731 	if (!rbdc)
732 		goto out_opt;
733 
734 	kref_init(&rbdc->kref);
735 	INIT_LIST_HEAD(&rbdc->node);
736 
737 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
738 	if (IS_ERR(rbdc->client))
739 		goto out_rbdc;
740 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
741 
742 	ret = ceph_open_session(rbdc->client);
743 	if (ret < 0)
744 		goto out_client;
745 
746 	spin_lock(&rbd_client_list_lock);
747 	list_add_tail(&rbdc->node, &rbd_client_list);
748 	spin_unlock(&rbd_client_list_lock);
749 
750 	dout("%s: rbdc %p\n", __func__, rbdc);
751 
752 	return rbdc;
753 out_client:
754 	ceph_destroy_client(rbdc->client);
755 out_rbdc:
756 	kfree(rbdc);
757 out_opt:
758 	if (ceph_opts)
759 		ceph_destroy_options(ceph_opts);
760 	dout("%s: error %d\n", __func__, ret);
761 
762 	return ERR_PTR(ret);
763 }
764 
765 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
766 {
767 	kref_get(&rbdc->kref);
768 
769 	return rbdc;
770 }
771 
772 /*
773  * Find a ceph client with specific addr and configuration.  If
774  * found, bump its reference count.
775  */
776 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
777 {
778 	struct rbd_client *client_node;
779 	bool found = false;
780 
781 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
782 		return NULL;
783 
784 	spin_lock(&rbd_client_list_lock);
785 	list_for_each_entry(client_node, &rbd_client_list, node) {
786 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
787 			__rbd_get_client(client_node);
788 
789 			found = true;
790 			break;
791 		}
792 	}
793 	spin_unlock(&rbd_client_list_lock);
794 
795 	return found ? client_node : NULL;
796 }
797 
798 /*
799  * (Per device) rbd map options
800  */
801 enum {
802 	Opt_queue_depth,
803 	Opt_alloc_size,
804 	Opt_lock_timeout,
805 	/* int args above */
806 	Opt_pool_ns,
807 	Opt_compression_hint,
808 	/* string args above */
809 	Opt_read_only,
810 	Opt_read_write,
811 	Opt_lock_on_read,
812 	Opt_exclusive,
813 	Opt_notrim,
814 };
815 
816 enum {
817 	Opt_compression_hint_none,
818 	Opt_compression_hint_compressible,
819 	Opt_compression_hint_incompressible,
820 };
821 
822 static const struct constant_table rbd_param_compression_hint[] = {
823 	{"none",		Opt_compression_hint_none},
824 	{"compressible",	Opt_compression_hint_compressible},
825 	{"incompressible",	Opt_compression_hint_incompressible},
826 	{}
827 };
828 
829 static const struct fs_parameter_spec rbd_parameters[] = {
830 	fsparam_u32	("alloc_size",			Opt_alloc_size),
831 	fsparam_enum	("compression_hint",		Opt_compression_hint,
832 			 rbd_param_compression_hint),
833 	fsparam_flag	("exclusive",			Opt_exclusive),
834 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
835 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
836 	fsparam_flag	("notrim",			Opt_notrim),
837 	fsparam_string	("_pool_ns",			Opt_pool_ns),
838 	fsparam_u32	("queue_depth",			Opt_queue_depth),
839 	fsparam_flag	("read_only",			Opt_read_only),
840 	fsparam_flag	("read_write",			Opt_read_write),
841 	fsparam_flag	("ro",				Opt_read_only),
842 	fsparam_flag	("rw",				Opt_read_write),
843 	{}
844 };
845 
846 struct rbd_options {
847 	int	queue_depth;
848 	int	alloc_size;
849 	unsigned long	lock_timeout;
850 	bool	read_only;
851 	bool	lock_on_read;
852 	bool	exclusive;
853 	bool	trim;
854 
855 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
856 };
857 
858 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
859 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
860 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
861 #define RBD_READ_ONLY_DEFAULT	false
862 #define RBD_LOCK_ON_READ_DEFAULT false
863 #define RBD_EXCLUSIVE_DEFAULT	false
864 #define RBD_TRIM_DEFAULT	true
865 
866 struct rbd_parse_opts_ctx {
867 	struct rbd_spec		*spec;
868 	struct ceph_options	*copts;
869 	struct rbd_options	*opts;
870 };
871 
872 static char* obj_op_name(enum obj_operation_type op_type)
873 {
874 	switch (op_type) {
875 	case OBJ_OP_READ:
876 		return "read";
877 	case OBJ_OP_WRITE:
878 		return "write";
879 	case OBJ_OP_DISCARD:
880 		return "discard";
881 	case OBJ_OP_ZEROOUT:
882 		return "zeroout";
883 	default:
884 		return "???";
885 	}
886 }
887 
888 /*
889  * Destroy ceph client
890  *
891  * Caller must hold rbd_client_list_lock.
892  */
893 static void rbd_client_release(struct kref *kref)
894 {
895 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
896 
897 	dout("%s: rbdc %p\n", __func__, rbdc);
898 	spin_lock(&rbd_client_list_lock);
899 	list_del(&rbdc->node);
900 	spin_unlock(&rbd_client_list_lock);
901 
902 	ceph_destroy_client(rbdc->client);
903 	kfree(rbdc);
904 }
905 
906 /*
907  * Drop reference to ceph client node. If it's not referenced anymore, release
908  * it.
909  */
910 static void rbd_put_client(struct rbd_client *rbdc)
911 {
912 	if (rbdc)
913 		kref_put(&rbdc->kref, rbd_client_release);
914 }
915 
916 /*
917  * Get a ceph client with specific addr and configuration, if one does
918  * not exist create it.  Either way, ceph_opts is consumed by this
919  * function.
920  */
921 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
922 {
923 	struct rbd_client *rbdc;
924 	int ret;
925 
926 	mutex_lock(&client_mutex);
927 	rbdc = rbd_client_find(ceph_opts);
928 	if (rbdc) {
929 		ceph_destroy_options(ceph_opts);
930 
931 		/*
932 		 * Using an existing client.  Make sure ->pg_pools is up to
933 		 * date before we look up the pool id in do_rbd_add().
934 		 */
935 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
936 					rbdc->client->options->mount_timeout);
937 		if (ret) {
938 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
939 			rbd_put_client(rbdc);
940 			rbdc = ERR_PTR(ret);
941 		}
942 	} else {
943 		rbdc = rbd_client_create(ceph_opts);
944 	}
945 	mutex_unlock(&client_mutex);
946 
947 	return rbdc;
948 }
949 
950 static bool rbd_image_format_valid(u32 image_format)
951 {
952 	return image_format == 1 || image_format == 2;
953 }
954 
955 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
956 {
957 	size_t size;
958 	u32 snap_count;
959 
960 	/* The header has to start with the magic rbd header text */
961 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
962 		return false;
963 
964 	/* The bio layer requires at least sector-sized I/O */
965 
966 	if (ondisk->options.order < SECTOR_SHIFT)
967 		return false;
968 
969 	/* If we use u64 in a few spots we may be able to loosen this */
970 
971 	if (ondisk->options.order > 8 * sizeof (int) - 1)
972 		return false;
973 
974 	/*
975 	 * The size of a snapshot header has to fit in a size_t, and
976 	 * that limits the number of snapshots.
977 	 */
978 	snap_count = le32_to_cpu(ondisk->snap_count);
979 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
980 	if (snap_count > size / sizeof (__le64))
981 		return false;
982 
983 	/*
984 	 * Not only that, but the size of the entire the snapshot
985 	 * header must also be representable in a size_t.
986 	 */
987 	size -= snap_count * sizeof (__le64);
988 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
989 		return false;
990 
991 	return true;
992 }
993 
994 /*
995  * returns the size of an object in the image
996  */
997 static u32 rbd_obj_bytes(struct rbd_image_header *header)
998 {
999 	return 1U << header->obj_order;
1000 }
1001 
1002 static void rbd_init_layout(struct rbd_device *rbd_dev)
1003 {
1004 	if (rbd_dev->header.stripe_unit == 0 ||
1005 	    rbd_dev->header.stripe_count == 0) {
1006 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1007 		rbd_dev->header.stripe_count = 1;
1008 	}
1009 
1010 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1011 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1012 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1013 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1014 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1015 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1016 }
1017 
1018 /*
1019  * Fill an rbd image header with information from the given format 1
1020  * on-disk header.
1021  */
1022 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1023 				 struct rbd_image_header_ondisk *ondisk)
1024 {
1025 	struct rbd_image_header *header = &rbd_dev->header;
1026 	bool first_time = header->object_prefix == NULL;
1027 	struct ceph_snap_context *snapc;
1028 	char *object_prefix = NULL;
1029 	char *snap_names = NULL;
1030 	u64 *snap_sizes = NULL;
1031 	u32 snap_count;
1032 	int ret = -ENOMEM;
1033 	u32 i;
1034 
1035 	/* Allocate this now to avoid having to handle failure below */
1036 
1037 	if (first_time) {
1038 		object_prefix = kstrndup(ondisk->object_prefix,
1039 					 sizeof(ondisk->object_prefix),
1040 					 GFP_KERNEL);
1041 		if (!object_prefix)
1042 			return -ENOMEM;
1043 	}
1044 
1045 	/* Allocate the snapshot context and fill it in */
1046 
1047 	snap_count = le32_to_cpu(ondisk->snap_count);
1048 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1049 	if (!snapc)
1050 		goto out_err;
1051 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1052 	if (snap_count) {
1053 		struct rbd_image_snap_ondisk *snaps;
1054 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1055 
1056 		/* We'll keep a copy of the snapshot names... */
1057 
1058 		if (snap_names_len > (u64)SIZE_MAX)
1059 			goto out_2big;
1060 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1061 		if (!snap_names)
1062 			goto out_err;
1063 
1064 		/* ...as well as the array of their sizes. */
1065 		snap_sizes = kmalloc_array(snap_count,
1066 					   sizeof(*header->snap_sizes),
1067 					   GFP_KERNEL);
1068 		if (!snap_sizes)
1069 			goto out_err;
1070 
1071 		/*
1072 		 * Copy the names, and fill in each snapshot's id
1073 		 * and size.
1074 		 *
1075 		 * Note that rbd_dev_v1_header_info() guarantees the
1076 		 * ondisk buffer we're working with has
1077 		 * snap_names_len bytes beyond the end of the
1078 		 * snapshot id array, this memcpy() is safe.
1079 		 */
1080 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1081 		snaps = ondisk->snaps;
1082 		for (i = 0; i < snap_count; i++) {
1083 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1084 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1085 		}
1086 	}
1087 
1088 	/* We won't fail any more, fill in the header */
1089 
1090 	if (first_time) {
1091 		header->object_prefix = object_prefix;
1092 		header->obj_order = ondisk->options.order;
1093 		rbd_init_layout(rbd_dev);
1094 	} else {
1095 		ceph_put_snap_context(header->snapc);
1096 		kfree(header->snap_names);
1097 		kfree(header->snap_sizes);
1098 	}
1099 
1100 	/* The remaining fields always get updated (when we refresh) */
1101 
1102 	header->image_size = le64_to_cpu(ondisk->image_size);
1103 	header->snapc = snapc;
1104 	header->snap_names = snap_names;
1105 	header->snap_sizes = snap_sizes;
1106 
1107 	return 0;
1108 out_2big:
1109 	ret = -EIO;
1110 out_err:
1111 	kfree(snap_sizes);
1112 	kfree(snap_names);
1113 	ceph_put_snap_context(snapc);
1114 	kfree(object_prefix);
1115 
1116 	return ret;
1117 }
1118 
1119 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1120 {
1121 	const char *snap_name;
1122 
1123 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1124 
1125 	/* Skip over names until we find the one we are looking for */
1126 
1127 	snap_name = rbd_dev->header.snap_names;
1128 	while (which--)
1129 		snap_name += strlen(snap_name) + 1;
1130 
1131 	return kstrdup(snap_name, GFP_KERNEL);
1132 }
1133 
1134 /*
1135  * Snapshot id comparison function for use with qsort()/bsearch().
1136  * Note that result is for snapshots in *descending* order.
1137  */
1138 static int snapid_compare_reverse(const void *s1, const void *s2)
1139 {
1140 	u64 snap_id1 = *(u64 *)s1;
1141 	u64 snap_id2 = *(u64 *)s2;
1142 
1143 	if (snap_id1 < snap_id2)
1144 		return 1;
1145 	return snap_id1 == snap_id2 ? 0 : -1;
1146 }
1147 
1148 /*
1149  * Search a snapshot context to see if the given snapshot id is
1150  * present.
1151  *
1152  * Returns the position of the snapshot id in the array if it's found,
1153  * or BAD_SNAP_INDEX otherwise.
1154  *
1155  * Note: The snapshot array is in kept sorted (by the osd) in
1156  * reverse order, highest snapshot id first.
1157  */
1158 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1159 {
1160 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1161 	u64 *found;
1162 
1163 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1164 				sizeof (snap_id), snapid_compare_reverse);
1165 
1166 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1167 }
1168 
1169 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1170 					u64 snap_id)
1171 {
1172 	u32 which;
1173 	const char *snap_name;
1174 
1175 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1176 	if (which == BAD_SNAP_INDEX)
1177 		return ERR_PTR(-ENOENT);
1178 
1179 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1180 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1181 }
1182 
1183 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1184 {
1185 	if (snap_id == CEPH_NOSNAP)
1186 		return RBD_SNAP_HEAD_NAME;
1187 
1188 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1189 	if (rbd_dev->image_format == 1)
1190 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1191 
1192 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1193 }
1194 
1195 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1196 				u64 *snap_size)
1197 {
1198 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1199 	if (snap_id == CEPH_NOSNAP) {
1200 		*snap_size = rbd_dev->header.image_size;
1201 	} else if (rbd_dev->image_format == 1) {
1202 		u32 which;
1203 
1204 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1205 		if (which == BAD_SNAP_INDEX)
1206 			return -ENOENT;
1207 
1208 		*snap_size = rbd_dev->header.snap_sizes[which];
1209 	} else {
1210 		u64 size = 0;
1211 		int ret;
1212 
1213 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1214 		if (ret)
1215 			return ret;
1216 
1217 		*snap_size = size;
1218 	}
1219 	return 0;
1220 }
1221 
1222 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1223 {
1224 	u64 snap_id = rbd_dev->spec->snap_id;
1225 	u64 size = 0;
1226 	int ret;
1227 
1228 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1229 	if (ret)
1230 		return ret;
1231 
1232 	rbd_dev->mapping.size = size;
1233 	return 0;
1234 }
1235 
1236 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1237 {
1238 	rbd_dev->mapping.size = 0;
1239 }
1240 
1241 static void zero_bvec(struct bio_vec *bv)
1242 {
1243 	void *buf;
1244 	unsigned long flags;
1245 
1246 	buf = bvec_kmap_irq(bv, &flags);
1247 	memset(buf, 0, bv->bv_len);
1248 	flush_dcache_page(bv->bv_page);
1249 	bvec_kunmap_irq(buf, &flags);
1250 }
1251 
1252 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1253 {
1254 	struct ceph_bio_iter it = *bio_pos;
1255 
1256 	ceph_bio_iter_advance(&it, off);
1257 	ceph_bio_iter_advance_step(&it, bytes, ({
1258 		zero_bvec(&bv);
1259 	}));
1260 }
1261 
1262 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1263 {
1264 	struct ceph_bvec_iter it = *bvec_pos;
1265 
1266 	ceph_bvec_iter_advance(&it, off);
1267 	ceph_bvec_iter_advance_step(&it, bytes, ({
1268 		zero_bvec(&bv);
1269 	}));
1270 }
1271 
1272 /*
1273  * Zero a range in @obj_req data buffer defined by a bio (list) or
1274  * (private) bio_vec array.
1275  *
1276  * @off is relative to the start of the data buffer.
1277  */
1278 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1279 			       u32 bytes)
1280 {
1281 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1282 
1283 	switch (obj_req->img_request->data_type) {
1284 	case OBJ_REQUEST_BIO:
1285 		zero_bios(&obj_req->bio_pos, off, bytes);
1286 		break;
1287 	case OBJ_REQUEST_BVECS:
1288 	case OBJ_REQUEST_OWN_BVECS:
1289 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1290 		break;
1291 	default:
1292 		BUG();
1293 	}
1294 }
1295 
1296 static void rbd_obj_request_destroy(struct kref *kref);
1297 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1298 {
1299 	rbd_assert(obj_request != NULL);
1300 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1301 		kref_read(&obj_request->kref));
1302 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1303 }
1304 
1305 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1306 					struct rbd_obj_request *obj_request)
1307 {
1308 	rbd_assert(obj_request->img_request == NULL);
1309 
1310 	/* Image request now owns object's original reference */
1311 	obj_request->img_request = img_request;
1312 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1313 }
1314 
1315 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1316 					struct rbd_obj_request *obj_request)
1317 {
1318 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1319 	list_del(&obj_request->ex.oe_item);
1320 	rbd_assert(obj_request->img_request == img_request);
1321 	rbd_obj_request_put(obj_request);
1322 }
1323 
1324 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1325 {
1326 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1327 
1328 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1329 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1330 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1331 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1332 }
1333 
1334 /*
1335  * The default/initial value for all image request flags is 0.  Each
1336  * is conditionally set to 1 at image request initialization time
1337  * and currently never change thereafter.
1338  */
1339 static void img_request_layered_set(struct rbd_img_request *img_request)
1340 {
1341 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1342 }
1343 
1344 static bool img_request_layered_test(struct rbd_img_request *img_request)
1345 {
1346 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1347 }
1348 
1349 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1350 {
1351 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1352 
1353 	return !obj_req->ex.oe_off &&
1354 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1355 }
1356 
1357 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1358 {
1359 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1360 
1361 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1362 					rbd_dev->layout.object_size;
1363 }
1364 
1365 /*
1366  * Must be called after rbd_obj_calc_img_extents().
1367  */
1368 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1369 {
1370 	if (!obj_req->num_img_extents ||
1371 	    (rbd_obj_is_entire(obj_req) &&
1372 	     !obj_req->img_request->snapc->num_snaps))
1373 		return false;
1374 
1375 	return true;
1376 }
1377 
1378 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1379 {
1380 	return ceph_file_extents_bytes(obj_req->img_extents,
1381 				       obj_req->num_img_extents);
1382 }
1383 
1384 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1385 {
1386 	switch (img_req->op_type) {
1387 	case OBJ_OP_READ:
1388 		return false;
1389 	case OBJ_OP_WRITE:
1390 	case OBJ_OP_DISCARD:
1391 	case OBJ_OP_ZEROOUT:
1392 		return true;
1393 	default:
1394 		BUG();
1395 	}
1396 }
1397 
1398 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1399 {
1400 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1401 	int result;
1402 
1403 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1404 	     osd_req->r_result, obj_req);
1405 
1406 	/*
1407 	 * Writes aren't allowed to return a data payload.  In some
1408 	 * guarded write cases (e.g. stat + zero on an empty object)
1409 	 * a stat response makes it through, but we don't care.
1410 	 */
1411 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1412 		result = 0;
1413 	else
1414 		result = osd_req->r_result;
1415 
1416 	rbd_obj_handle_request(obj_req, result);
1417 }
1418 
1419 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1420 {
1421 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1422 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1423 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1424 
1425 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1426 	osd_req->r_snapid = obj_request->img_request->snap_id;
1427 }
1428 
1429 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1430 {
1431 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1432 
1433 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1434 	ktime_get_real_ts64(&osd_req->r_mtime);
1435 	osd_req->r_data_offset = obj_request->ex.oe_off;
1436 }
1437 
1438 static struct ceph_osd_request *
1439 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1440 			  struct ceph_snap_context *snapc, int num_ops)
1441 {
1442 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1443 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1444 	struct ceph_osd_request *req;
1445 	const char *name_format = rbd_dev->image_format == 1 ?
1446 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1447 	int ret;
1448 
1449 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1450 	if (!req)
1451 		return ERR_PTR(-ENOMEM);
1452 
1453 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1454 	req->r_callback = rbd_osd_req_callback;
1455 	req->r_priv = obj_req;
1456 
1457 	/*
1458 	 * Data objects may be stored in a separate pool, but always in
1459 	 * the same namespace in that pool as the header in its pool.
1460 	 */
1461 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1462 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1463 
1464 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1465 			       rbd_dev->header.object_prefix,
1466 			       obj_req->ex.oe_objno);
1467 	if (ret)
1468 		return ERR_PTR(ret);
1469 
1470 	return req;
1471 }
1472 
1473 static struct ceph_osd_request *
1474 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1475 {
1476 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1477 					 num_ops);
1478 }
1479 
1480 static struct rbd_obj_request *rbd_obj_request_create(void)
1481 {
1482 	struct rbd_obj_request *obj_request;
1483 
1484 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1485 	if (!obj_request)
1486 		return NULL;
1487 
1488 	ceph_object_extent_init(&obj_request->ex);
1489 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1490 	mutex_init(&obj_request->state_mutex);
1491 	kref_init(&obj_request->kref);
1492 
1493 	dout("%s %p\n", __func__, obj_request);
1494 	return obj_request;
1495 }
1496 
1497 static void rbd_obj_request_destroy(struct kref *kref)
1498 {
1499 	struct rbd_obj_request *obj_request;
1500 	struct ceph_osd_request *osd_req;
1501 	u32 i;
1502 
1503 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1504 
1505 	dout("%s: obj %p\n", __func__, obj_request);
1506 
1507 	while (!list_empty(&obj_request->osd_reqs)) {
1508 		osd_req = list_first_entry(&obj_request->osd_reqs,
1509 				    struct ceph_osd_request, r_private_item);
1510 		list_del_init(&osd_req->r_private_item);
1511 		ceph_osdc_put_request(osd_req);
1512 	}
1513 
1514 	switch (obj_request->img_request->data_type) {
1515 	case OBJ_REQUEST_NODATA:
1516 	case OBJ_REQUEST_BIO:
1517 	case OBJ_REQUEST_BVECS:
1518 		break;		/* Nothing to do */
1519 	case OBJ_REQUEST_OWN_BVECS:
1520 		kfree(obj_request->bvec_pos.bvecs);
1521 		break;
1522 	default:
1523 		BUG();
1524 	}
1525 
1526 	kfree(obj_request->img_extents);
1527 	if (obj_request->copyup_bvecs) {
1528 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1529 			if (obj_request->copyup_bvecs[i].bv_page)
1530 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1531 		}
1532 		kfree(obj_request->copyup_bvecs);
1533 	}
1534 
1535 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1536 }
1537 
1538 /* It's OK to call this for a device with no parent */
1539 
1540 static void rbd_spec_put(struct rbd_spec *spec);
1541 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1542 {
1543 	rbd_dev_remove_parent(rbd_dev);
1544 	rbd_spec_put(rbd_dev->parent_spec);
1545 	rbd_dev->parent_spec = NULL;
1546 	rbd_dev->parent_overlap = 0;
1547 }
1548 
1549 /*
1550  * Parent image reference counting is used to determine when an
1551  * image's parent fields can be safely torn down--after there are no
1552  * more in-flight requests to the parent image.  When the last
1553  * reference is dropped, cleaning them up is safe.
1554  */
1555 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1556 {
1557 	int counter;
1558 
1559 	if (!rbd_dev->parent_spec)
1560 		return;
1561 
1562 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1563 	if (counter > 0)
1564 		return;
1565 
1566 	/* Last reference; clean up parent data structures */
1567 
1568 	if (!counter)
1569 		rbd_dev_unparent(rbd_dev);
1570 	else
1571 		rbd_warn(rbd_dev, "parent reference underflow");
1572 }
1573 
1574 /*
1575  * If an image has a non-zero parent overlap, get a reference to its
1576  * parent.
1577  *
1578  * Returns true if the rbd device has a parent with a non-zero
1579  * overlap and a reference for it was successfully taken, or
1580  * false otherwise.
1581  */
1582 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1583 {
1584 	int counter = 0;
1585 
1586 	if (!rbd_dev->parent_spec)
1587 		return false;
1588 
1589 	if (rbd_dev->parent_overlap)
1590 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1591 
1592 	if (counter < 0)
1593 		rbd_warn(rbd_dev, "parent reference overflow");
1594 
1595 	return counter > 0;
1596 }
1597 
1598 static void rbd_img_request_init(struct rbd_img_request *img_request,
1599 				 struct rbd_device *rbd_dev,
1600 				 enum obj_operation_type op_type)
1601 {
1602 	memset(img_request, 0, sizeof(*img_request));
1603 
1604 	img_request->rbd_dev = rbd_dev;
1605 	img_request->op_type = op_type;
1606 
1607 	INIT_LIST_HEAD(&img_request->lock_item);
1608 	INIT_LIST_HEAD(&img_request->object_extents);
1609 	mutex_init(&img_request->state_mutex);
1610 }
1611 
1612 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1613 {
1614 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1615 
1616 	lockdep_assert_held(&rbd_dev->header_rwsem);
1617 
1618 	if (rbd_img_is_write(img_req))
1619 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1620 	else
1621 		img_req->snap_id = rbd_dev->spec->snap_id;
1622 
1623 	if (rbd_dev_parent_get(rbd_dev))
1624 		img_request_layered_set(img_req);
1625 }
1626 
1627 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1628 {
1629 	struct rbd_obj_request *obj_request;
1630 	struct rbd_obj_request *next_obj_request;
1631 
1632 	dout("%s: img %p\n", __func__, img_request);
1633 
1634 	WARN_ON(!list_empty(&img_request->lock_item));
1635 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1636 		rbd_img_obj_request_del(img_request, obj_request);
1637 
1638 	if (img_request_layered_test(img_request))
1639 		rbd_dev_parent_put(img_request->rbd_dev);
1640 
1641 	if (rbd_img_is_write(img_request))
1642 		ceph_put_snap_context(img_request->snapc);
1643 
1644 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1645 		kmem_cache_free(rbd_img_request_cache, img_request);
1646 }
1647 
1648 #define BITS_PER_OBJ	2
1649 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1650 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1651 
1652 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1653 				   u64 *index, u8 *shift)
1654 {
1655 	u32 off;
1656 
1657 	rbd_assert(objno < rbd_dev->object_map_size);
1658 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1659 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1660 }
1661 
1662 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1663 {
1664 	u64 index;
1665 	u8 shift;
1666 
1667 	lockdep_assert_held(&rbd_dev->object_map_lock);
1668 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1669 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1670 }
1671 
1672 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1673 {
1674 	u64 index;
1675 	u8 shift;
1676 	u8 *p;
1677 
1678 	lockdep_assert_held(&rbd_dev->object_map_lock);
1679 	rbd_assert(!(val & ~OBJ_MASK));
1680 
1681 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1682 	p = &rbd_dev->object_map[index];
1683 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1684 }
1685 
1686 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1687 {
1688 	u8 state;
1689 
1690 	spin_lock(&rbd_dev->object_map_lock);
1691 	state = __rbd_object_map_get(rbd_dev, objno);
1692 	spin_unlock(&rbd_dev->object_map_lock);
1693 	return state;
1694 }
1695 
1696 static bool use_object_map(struct rbd_device *rbd_dev)
1697 {
1698 	/*
1699 	 * An image mapped read-only can't use the object map -- it isn't
1700 	 * loaded because the header lock isn't acquired.  Someone else can
1701 	 * write to the image and update the object map behind our back.
1702 	 *
1703 	 * A snapshot can't be written to, so using the object map is always
1704 	 * safe.
1705 	 */
1706 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1707 		return false;
1708 
1709 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1710 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1711 }
1712 
1713 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1714 {
1715 	u8 state;
1716 
1717 	/* fall back to default logic if object map is disabled or invalid */
1718 	if (!use_object_map(rbd_dev))
1719 		return true;
1720 
1721 	state = rbd_object_map_get(rbd_dev, objno);
1722 	return state != OBJECT_NONEXISTENT;
1723 }
1724 
1725 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1726 				struct ceph_object_id *oid)
1727 {
1728 	if (snap_id == CEPH_NOSNAP)
1729 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1730 				rbd_dev->spec->image_id);
1731 	else
1732 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1733 				rbd_dev->spec->image_id, snap_id);
1734 }
1735 
1736 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1737 {
1738 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1739 	CEPH_DEFINE_OID_ONSTACK(oid);
1740 	u8 lock_type;
1741 	char *lock_tag;
1742 	struct ceph_locker *lockers;
1743 	u32 num_lockers;
1744 	bool broke_lock = false;
1745 	int ret;
1746 
1747 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1748 
1749 again:
1750 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1751 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1752 	if (ret != -EBUSY || broke_lock) {
1753 		if (ret == -EEXIST)
1754 			ret = 0; /* already locked by myself */
1755 		if (ret)
1756 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1757 		return ret;
1758 	}
1759 
1760 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1761 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1762 				 &lockers, &num_lockers);
1763 	if (ret) {
1764 		if (ret == -ENOENT)
1765 			goto again;
1766 
1767 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1768 		return ret;
1769 	}
1770 
1771 	kfree(lock_tag);
1772 	if (num_lockers == 0)
1773 		goto again;
1774 
1775 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1776 		 ENTITY_NAME(lockers[0].id.name));
1777 
1778 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1779 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1780 				  &lockers[0].id.name);
1781 	ceph_free_lockers(lockers, num_lockers);
1782 	if (ret) {
1783 		if (ret == -ENOENT)
1784 			goto again;
1785 
1786 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1787 		return ret;
1788 	}
1789 
1790 	broke_lock = true;
1791 	goto again;
1792 }
1793 
1794 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1795 {
1796 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1797 	CEPH_DEFINE_OID_ONSTACK(oid);
1798 	int ret;
1799 
1800 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1801 
1802 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1803 			      "");
1804 	if (ret && ret != -ENOENT)
1805 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1806 }
1807 
1808 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1809 {
1810 	u8 struct_v;
1811 	u32 struct_len;
1812 	u32 header_len;
1813 	void *header_end;
1814 	int ret;
1815 
1816 	ceph_decode_32_safe(p, end, header_len, e_inval);
1817 	header_end = *p + header_len;
1818 
1819 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1820 				  &struct_len);
1821 	if (ret)
1822 		return ret;
1823 
1824 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1825 
1826 	*p = header_end;
1827 	return 0;
1828 
1829 e_inval:
1830 	return -EINVAL;
1831 }
1832 
1833 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1834 {
1835 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1836 	CEPH_DEFINE_OID_ONSTACK(oid);
1837 	struct page **pages;
1838 	void *p, *end;
1839 	size_t reply_len;
1840 	u64 num_objects;
1841 	u64 object_map_bytes;
1842 	u64 object_map_size;
1843 	int num_pages;
1844 	int ret;
1845 
1846 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1847 
1848 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1849 					   rbd_dev->mapping.size);
1850 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1851 					    BITS_PER_BYTE);
1852 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1853 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1854 	if (IS_ERR(pages))
1855 		return PTR_ERR(pages);
1856 
1857 	reply_len = num_pages * PAGE_SIZE;
1858 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1859 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1860 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1861 			     NULL, 0, pages, &reply_len);
1862 	if (ret)
1863 		goto out;
1864 
1865 	p = page_address(pages[0]);
1866 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1867 	ret = decode_object_map_header(&p, end, &object_map_size);
1868 	if (ret)
1869 		goto out;
1870 
1871 	if (object_map_size != num_objects) {
1872 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1873 			 object_map_size, num_objects);
1874 		ret = -EINVAL;
1875 		goto out;
1876 	}
1877 
1878 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1879 		ret = -EINVAL;
1880 		goto out;
1881 	}
1882 
1883 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1884 	if (!rbd_dev->object_map) {
1885 		ret = -ENOMEM;
1886 		goto out;
1887 	}
1888 
1889 	rbd_dev->object_map_size = object_map_size;
1890 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1891 				   offset_in_page(p), object_map_bytes);
1892 
1893 out:
1894 	ceph_release_page_vector(pages, num_pages);
1895 	return ret;
1896 }
1897 
1898 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1899 {
1900 	kvfree(rbd_dev->object_map);
1901 	rbd_dev->object_map = NULL;
1902 	rbd_dev->object_map_size = 0;
1903 }
1904 
1905 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1906 {
1907 	int ret;
1908 
1909 	ret = __rbd_object_map_load(rbd_dev);
1910 	if (ret)
1911 		return ret;
1912 
1913 	ret = rbd_dev_v2_get_flags(rbd_dev);
1914 	if (ret) {
1915 		rbd_object_map_free(rbd_dev);
1916 		return ret;
1917 	}
1918 
1919 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1920 		rbd_warn(rbd_dev, "object map is invalid");
1921 
1922 	return 0;
1923 }
1924 
1925 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1926 {
1927 	int ret;
1928 
1929 	ret = rbd_object_map_lock(rbd_dev);
1930 	if (ret)
1931 		return ret;
1932 
1933 	ret = rbd_object_map_load(rbd_dev);
1934 	if (ret) {
1935 		rbd_object_map_unlock(rbd_dev);
1936 		return ret;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1943 {
1944 	rbd_object_map_free(rbd_dev);
1945 	rbd_object_map_unlock(rbd_dev);
1946 }
1947 
1948 /*
1949  * This function needs snap_id (or more precisely just something to
1950  * distinguish between HEAD and snapshot object maps), new_state and
1951  * current_state that were passed to rbd_object_map_update().
1952  *
1953  * To avoid allocating and stashing a context we piggyback on the OSD
1954  * request.  A HEAD update has two ops (assert_locked).  For new_state
1955  * and current_state we decode our own object_map_update op, encoded in
1956  * rbd_cls_object_map_update().
1957  */
1958 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1959 					struct ceph_osd_request *osd_req)
1960 {
1961 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1962 	struct ceph_osd_data *osd_data;
1963 	u64 objno;
1964 	u8 state, new_state, current_state;
1965 	bool has_current_state;
1966 	void *p;
1967 
1968 	if (osd_req->r_result)
1969 		return osd_req->r_result;
1970 
1971 	/*
1972 	 * Nothing to do for a snapshot object map.
1973 	 */
1974 	if (osd_req->r_num_ops == 1)
1975 		return 0;
1976 
1977 	/*
1978 	 * Update in-memory HEAD object map.
1979 	 */
1980 	rbd_assert(osd_req->r_num_ops == 2);
1981 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1982 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1983 
1984 	p = page_address(osd_data->pages[0]);
1985 	objno = ceph_decode_64(&p);
1986 	rbd_assert(objno == obj_req->ex.oe_objno);
1987 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1988 	new_state = ceph_decode_8(&p);
1989 	has_current_state = ceph_decode_8(&p);
1990 	if (has_current_state)
1991 		current_state = ceph_decode_8(&p);
1992 
1993 	spin_lock(&rbd_dev->object_map_lock);
1994 	state = __rbd_object_map_get(rbd_dev, objno);
1995 	if (!has_current_state || current_state == state ||
1996 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1997 		__rbd_object_map_set(rbd_dev, objno, new_state);
1998 	spin_unlock(&rbd_dev->object_map_lock);
1999 
2000 	return 0;
2001 }
2002 
2003 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2004 {
2005 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2006 	int result;
2007 
2008 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2009 	     osd_req->r_result, obj_req);
2010 
2011 	result = rbd_object_map_update_finish(obj_req, osd_req);
2012 	rbd_obj_handle_request(obj_req, result);
2013 }
2014 
2015 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2016 {
2017 	u8 state = rbd_object_map_get(rbd_dev, objno);
2018 
2019 	if (state == new_state ||
2020 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2021 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2022 		return false;
2023 
2024 	return true;
2025 }
2026 
2027 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2028 				     int which, u64 objno, u8 new_state,
2029 				     const u8 *current_state)
2030 {
2031 	struct page **pages;
2032 	void *p, *start;
2033 	int ret;
2034 
2035 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2036 	if (ret)
2037 		return ret;
2038 
2039 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2040 	if (IS_ERR(pages))
2041 		return PTR_ERR(pages);
2042 
2043 	p = start = page_address(pages[0]);
2044 	ceph_encode_64(&p, objno);
2045 	ceph_encode_64(&p, objno + 1);
2046 	ceph_encode_8(&p, new_state);
2047 	if (current_state) {
2048 		ceph_encode_8(&p, 1);
2049 		ceph_encode_8(&p, *current_state);
2050 	} else {
2051 		ceph_encode_8(&p, 0);
2052 	}
2053 
2054 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2055 					  false, true);
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Return:
2061  *   0 - object map update sent
2062  *   1 - object map update isn't needed
2063  *  <0 - error
2064  */
2065 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2066 				 u8 new_state, const u8 *current_state)
2067 {
2068 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2069 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2070 	struct ceph_osd_request *req;
2071 	int num_ops = 1;
2072 	int which = 0;
2073 	int ret;
2074 
2075 	if (snap_id == CEPH_NOSNAP) {
2076 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2077 			return 1;
2078 
2079 		num_ops++; /* assert_locked */
2080 	}
2081 
2082 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2083 	if (!req)
2084 		return -ENOMEM;
2085 
2086 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2087 	req->r_callback = rbd_object_map_callback;
2088 	req->r_priv = obj_req;
2089 
2090 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2091 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2092 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2093 	ktime_get_real_ts64(&req->r_mtime);
2094 
2095 	if (snap_id == CEPH_NOSNAP) {
2096 		/*
2097 		 * Protect against possible race conditions during lock
2098 		 * ownership transitions.
2099 		 */
2100 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2101 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2102 		if (ret)
2103 			return ret;
2104 	}
2105 
2106 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2107 					new_state, current_state);
2108 	if (ret)
2109 		return ret;
2110 
2111 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2112 	if (ret)
2113 		return ret;
2114 
2115 	ceph_osdc_start_request(osdc, req, false);
2116 	return 0;
2117 }
2118 
2119 static void prune_extents(struct ceph_file_extent *img_extents,
2120 			  u32 *num_img_extents, u64 overlap)
2121 {
2122 	u32 cnt = *num_img_extents;
2123 
2124 	/* drop extents completely beyond the overlap */
2125 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2126 		cnt--;
2127 
2128 	if (cnt) {
2129 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2130 
2131 		/* trim final overlapping extent */
2132 		if (ex->fe_off + ex->fe_len > overlap)
2133 			ex->fe_len = overlap - ex->fe_off;
2134 	}
2135 
2136 	*num_img_extents = cnt;
2137 }
2138 
2139 /*
2140  * Determine the byte range(s) covered by either just the object extent
2141  * or the entire object in the parent image.
2142  */
2143 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2144 				    bool entire)
2145 {
2146 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2147 	int ret;
2148 
2149 	if (!rbd_dev->parent_overlap)
2150 		return 0;
2151 
2152 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2153 				  entire ? 0 : obj_req->ex.oe_off,
2154 				  entire ? rbd_dev->layout.object_size :
2155 							obj_req->ex.oe_len,
2156 				  &obj_req->img_extents,
2157 				  &obj_req->num_img_extents);
2158 	if (ret)
2159 		return ret;
2160 
2161 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2162 		      rbd_dev->parent_overlap);
2163 	return 0;
2164 }
2165 
2166 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2167 {
2168 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2169 
2170 	switch (obj_req->img_request->data_type) {
2171 	case OBJ_REQUEST_BIO:
2172 		osd_req_op_extent_osd_data_bio(osd_req, which,
2173 					       &obj_req->bio_pos,
2174 					       obj_req->ex.oe_len);
2175 		break;
2176 	case OBJ_REQUEST_BVECS:
2177 	case OBJ_REQUEST_OWN_BVECS:
2178 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2179 							obj_req->ex.oe_len);
2180 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2181 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2182 						    &obj_req->bvec_pos);
2183 		break;
2184 	default:
2185 		BUG();
2186 	}
2187 }
2188 
2189 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2190 {
2191 	struct page **pages;
2192 
2193 	/*
2194 	 * The response data for a STAT call consists of:
2195 	 *     le64 length;
2196 	 *     struct {
2197 	 *         le32 tv_sec;
2198 	 *         le32 tv_nsec;
2199 	 *     } mtime;
2200 	 */
2201 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2202 	if (IS_ERR(pages))
2203 		return PTR_ERR(pages);
2204 
2205 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2206 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2207 				     8 + sizeof(struct ceph_timespec),
2208 				     0, false, true);
2209 	return 0;
2210 }
2211 
2212 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2213 				u32 bytes)
2214 {
2215 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2216 	int ret;
2217 
2218 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2219 	if (ret)
2220 		return ret;
2221 
2222 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2223 					  obj_req->copyup_bvec_count, bytes);
2224 	return 0;
2225 }
2226 
2227 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2228 {
2229 	obj_req->read_state = RBD_OBJ_READ_START;
2230 	return 0;
2231 }
2232 
2233 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2234 				      int which)
2235 {
2236 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2237 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2238 	u16 opcode;
2239 
2240 	if (!use_object_map(rbd_dev) ||
2241 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2242 		osd_req_op_alloc_hint_init(osd_req, which++,
2243 					   rbd_dev->layout.object_size,
2244 					   rbd_dev->layout.object_size,
2245 					   rbd_dev->opts->alloc_hint_flags);
2246 	}
2247 
2248 	if (rbd_obj_is_entire(obj_req))
2249 		opcode = CEPH_OSD_OP_WRITEFULL;
2250 	else
2251 		opcode = CEPH_OSD_OP_WRITE;
2252 
2253 	osd_req_op_extent_init(osd_req, which, opcode,
2254 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2255 	rbd_osd_setup_data(osd_req, which);
2256 }
2257 
2258 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2259 {
2260 	int ret;
2261 
2262 	/* reverse map the entire object onto the parent */
2263 	ret = rbd_obj_calc_img_extents(obj_req, true);
2264 	if (ret)
2265 		return ret;
2266 
2267 	if (rbd_obj_copyup_enabled(obj_req))
2268 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2269 
2270 	obj_req->write_state = RBD_OBJ_WRITE_START;
2271 	return 0;
2272 }
2273 
2274 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2275 {
2276 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2277 					  CEPH_OSD_OP_ZERO;
2278 }
2279 
2280 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2281 					int which)
2282 {
2283 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2284 
2285 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2286 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2287 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2288 	} else {
2289 		osd_req_op_extent_init(osd_req, which,
2290 				       truncate_or_zero_opcode(obj_req),
2291 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2292 				       0, 0);
2293 	}
2294 }
2295 
2296 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2297 {
2298 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2299 	u64 off, next_off;
2300 	int ret;
2301 
2302 	/*
2303 	 * Align the range to alloc_size boundary and punt on discards
2304 	 * that are too small to free up any space.
2305 	 *
2306 	 * alloc_size == object_size && is_tail() is a special case for
2307 	 * filestore with filestore_punch_hole = false, needed to allow
2308 	 * truncate (in addition to delete).
2309 	 */
2310 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2311 	    !rbd_obj_is_tail(obj_req)) {
2312 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2313 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2314 				      rbd_dev->opts->alloc_size);
2315 		if (off >= next_off)
2316 			return 1;
2317 
2318 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2319 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2320 		     off, next_off - off);
2321 		obj_req->ex.oe_off = off;
2322 		obj_req->ex.oe_len = next_off - off;
2323 	}
2324 
2325 	/* reverse map the entire object onto the parent */
2326 	ret = rbd_obj_calc_img_extents(obj_req, true);
2327 	if (ret)
2328 		return ret;
2329 
2330 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2331 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2332 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2333 
2334 	obj_req->write_state = RBD_OBJ_WRITE_START;
2335 	return 0;
2336 }
2337 
2338 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2339 					int which)
2340 {
2341 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2342 	u16 opcode;
2343 
2344 	if (rbd_obj_is_entire(obj_req)) {
2345 		if (obj_req->num_img_extents) {
2346 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2347 				osd_req_op_init(osd_req, which++,
2348 						CEPH_OSD_OP_CREATE, 0);
2349 			opcode = CEPH_OSD_OP_TRUNCATE;
2350 		} else {
2351 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2352 			osd_req_op_init(osd_req, which++,
2353 					CEPH_OSD_OP_DELETE, 0);
2354 			opcode = 0;
2355 		}
2356 	} else {
2357 		opcode = truncate_or_zero_opcode(obj_req);
2358 	}
2359 
2360 	if (opcode)
2361 		osd_req_op_extent_init(osd_req, which, opcode,
2362 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2363 				       0, 0);
2364 }
2365 
2366 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2367 {
2368 	int ret;
2369 
2370 	/* reverse map the entire object onto the parent */
2371 	ret = rbd_obj_calc_img_extents(obj_req, true);
2372 	if (ret)
2373 		return ret;
2374 
2375 	if (rbd_obj_copyup_enabled(obj_req))
2376 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2377 	if (!obj_req->num_img_extents) {
2378 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2379 		if (rbd_obj_is_entire(obj_req))
2380 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2381 	}
2382 
2383 	obj_req->write_state = RBD_OBJ_WRITE_START;
2384 	return 0;
2385 }
2386 
2387 static int count_write_ops(struct rbd_obj_request *obj_req)
2388 {
2389 	struct rbd_img_request *img_req = obj_req->img_request;
2390 
2391 	switch (img_req->op_type) {
2392 	case OBJ_OP_WRITE:
2393 		if (!use_object_map(img_req->rbd_dev) ||
2394 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2395 			return 2; /* setallochint + write/writefull */
2396 
2397 		return 1; /* write/writefull */
2398 	case OBJ_OP_DISCARD:
2399 		return 1; /* delete/truncate/zero */
2400 	case OBJ_OP_ZEROOUT:
2401 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2402 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2403 			return 2; /* create + truncate */
2404 
2405 		return 1; /* delete/truncate/zero */
2406 	default:
2407 		BUG();
2408 	}
2409 }
2410 
2411 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2412 				    int which)
2413 {
2414 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2415 
2416 	switch (obj_req->img_request->op_type) {
2417 	case OBJ_OP_WRITE:
2418 		__rbd_osd_setup_write_ops(osd_req, which);
2419 		break;
2420 	case OBJ_OP_DISCARD:
2421 		__rbd_osd_setup_discard_ops(osd_req, which);
2422 		break;
2423 	case OBJ_OP_ZEROOUT:
2424 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2425 		break;
2426 	default:
2427 		BUG();
2428 	}
2429 }
2430 
2431 /*
2432  * Prune the list of object requests (adjust offset and/or length, drop
2433  * redundant requests).  Prepare object request state machines and image
2434  * request state machine for execution.
2435  */
2436 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2437 {
2438 	struct rbd_obj_request *obj_req, *next_obj_req;
2439 	int ret;
2440 
2441 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2442 		switch (img_req->op_type) {
2443 		case OBJ_OP_READ:
2444 			ret = rbd_obj_init_read(obj_req);
2445 			break;
2446 		case OBJ_OP_WRITE:
2447 			ret = rbd_obj_init_write(obj_req);
2448 			break;
2449 		case OBJ_OP_DISCARD:
2450 			ret = rbd_obj_init_discard(obj_req);
2451 			break;
2452 		case OBJ_OP_ZEROOUT:
2453 			ret = rbd_obj_init_zeroout(obj_req);
2454 			break;
2455 		default:
2456 			BUG();
2457 		}
2458 		if (ret < 0)
2459 			return ret;
2460 		if (ret > 0) {
2461 			rbd_img_obj_request_del(img_req, obj_req);
2462 			continue;
2463 		}
2464 	}
2465 
2466 	img_req->state = RBD_IMG_START;
2467 	return 0;
2468 }
2469 
2470 union rbd_img_fill_iter {
2471 	struct ceph_bio_iter	bio_iter;
2472 	struct ceph_bvec_iter	bvec_iter;
2473 };
2474 
2475 struct rbd_img_fill_ctx {
2476 	enum obj_request_type	pos_type;
2477 	union rbd_img_fill_iter	*pos;
2478 	union rbd_img_fill_iter	iter;
2479 	ceph_object_extent_fn_t	set_pos_fn;
2480 	ceph_object_extent_fn_t	count_fn;
2481 	ceph_object_extent_fn_t	copy_fn;
2482 };
2483 
2484 static struct ceph_object_extent *alloc_object_extent(void *arg)
2485 {
2486 	struct rbd_img_request *img_req = arg;
2487 	struct rbd_obj_request *obj_req;
2488 
2489 	obj_req = rbd_obj_request_create();
2490 	if (!obj_req)
2491 		return NULL;
2492 
2493 	rbd_img_obj_request_add(img_req, obj_req);
2494 	return &obj_req->ex;
2495 }
2496 
2497 /*
2498  * While su != os && sc == 1 is technically not fancy (it's the same
2499  * layout as su == os && sc == 1), we can't use the nocopy path for it
2500  * because ->set_pos_fn() should be called only once per object.
2501  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2502  * treat su != os && sc == 1 as fancy.
2503  */
2504 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2505 {
2506 	return l->stripe_unit != l->object_size;
2507 }
2508 
2509 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2510 				       struct ceph_file_extent *img_extents,
2511 				       u32 num_img_extents,
2512 				       struct rbd_img_fill_ctx *fctx)
2513 {
2514 	u32 i;
2515 	int ret;
2516 
2517 	img_req->data_type = fctx->pos_type;
2518 
2519 	/*
2520 	 * Create object requests and set each object request's starting
2521 	 * position in the provided bio (list) or bio_vec array.
2522 	 */
2523 	fctx->iter = *fctx->pos;
2524 	for (i = 0; i < num_img_extents; i++) {
2525 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2526 					   img_extents[i].fe_off,
2527 					   img_extents[i].fe_len,
2528 					   &img_req->object_extents,
2529 					   alloc_object_extent, img_req,
2530 					   fctx->set_pos_fn, &fctx->iter);
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	return __rbd_img_fill_request(img_req);
2536 }
2537 
2538 /*
2539  * Map a list of image extents to a list of object extents, create the
2540  * corresponding object requests (normally each to a different object,
2541  * but not always) and add them to @img_req.  For each object request,
2542  * set up its data descriptor to point to the corresponding chunk(s) of
2543  * @fctx->pos data buffer.
2544  *
2545  * Because ceph_file_to_extents() will merge adjacent object extents
2546  * together, each object request's data descriptor may point to multiple
2547  * different chunks of @fctx->pos data buffer.
2548  *
2549  * @fctx->pos data buffer is assumed to be large enough.
2550  */
2551 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2552 				struct ceph_file_extent *img_extents,
2553 				u32 num_img_extents,
2554 				struct rbd_img_fill_ctx *fctx)
2555 {
2556 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2557 	struct rbd_obj_request *obj_req;
2558 	u32 i;
2559 	int ret;
2560 
2561 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2562 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2563 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2564 						   num_img_extents, fctx);
2565 
2566 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2567 
2568 	/*
2569 	 * Create object requests and determine ->bvec_count for each object
2570 	 * request.  Note that ->bvec_count sum over all object requests may
2571 	 * be greater than the number of bio_vecs in the provided bio (list)
2572 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2573 	 * stripe unit boundaries.
2574 	 */
2575 	fctx->iter = *fctx->pos;
2576 	for (i = 0; i < num_img_extents; i++) {
2577 		ret = ceph_file_to_extents(&rbd_dev->layout,
2578 					   img_extents[i].fe_off,
2579 					   img_extents[i].fe_len,
2580 					   &img_req->object_extents,
2581 					   alloc_object_extent, img_req,
2582 					   fctx->count_fn, &fctx->iter);
2583 		if (ret)
2584 			return ret;
2585 	}
2586 
2587 	for_each_obj_request(img_req, obj_req) {
2588 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2589 					      sizeof(*obj_req->bvec_pos.bvecs),
2590 					      GFP_NOIO);
2591 		if (!obj_req->bvec_pos.bvecs)
2592 			return -ENOMEM;
2593 	}
2594 
2595 	/*
2596 	 * Fill in each object request's private bio_vec array, splitting and
2597 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2598 	 */
2599 	fctx->iter = *fctx->pos;
2600 	for (i = 0; i < num_img_extents; i++) {
2601 		ret = ceph_iterate_extents(&rbd_dev->layout,
2602 					   img_extents[i].fe_off,
2603 					   img_extents[i].fe_len,
2604 					   &img_req->object_extents,
2605 					   fctx->copy_fn, &fctx->iter);
2606 		if (ret)
2607 			return ret;
2608 	}
2609 
2610 	return __rbd_img_fill_request(img_req);
2611 }
2612 
2613 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2614 			       u64 off, u64 len)
2615 {
2616 	struct ceph_file_extent ex = { off, len };
2617 	union rbd_img_fill_iter dummy = {};
2618 	struct rbd_img_fill_ctx fctx = {
2619 		.pos_type = OBJ_REQUEST_NODATA,
2620 		.pos = &dummy,
2621 	};
2622 
2623 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2624 }
2625 
2626 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2627 {
2628 	struct rbd_obj_request *obj_req =
2629 	    container_of(ex, struct rbd_obj_request, ex);
2630 	struct ceph_bio_iter *it = arg;
2631 
2632 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2633 	obj_req->bio_pos = *it;
2634 	ceph_bio_iter_advance(it, bytes);
2635 }
2636 
2637 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 	struct rbd_obj_request *obj_req =
2640 	    container_of(ex, struct rbd_obj_request, ex);
2641 	struct ceph_bio_iter *it = arg;
2642 
2643 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 	ceph_bio_iter_advance_step(it, bytes, ({
2645 		obj_req->bvec_count++;
2646 	}));
2647 
2648 }
2649 
2650 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2651 {
2652 	struct rbd_obj_request *obj_req =
2653 	    container_of(ex, struct rbd_obj_request, ex);
2654 	struct ceph_bio_iter *it = arg;
2655 
2656 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2657 	ceph_bio_iter_advance_step(it, bytes, ({
2658 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2659 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2660 	}));
2661 }
2662 
2663 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2664 				   struct ceph_file_extent *img_extents,
2665 				   u32 num_img_extents,
2666 				   struct ceph_bio_iter *bio_pos)
2667 {
2668 	struct rbd_img_fill_ctx fctx = {
2669 		.pos_type = OBJ_REQUEST_BIO,
2670 		.pos = (union rbd_img_fill_iter *)bio_pos,
2671 		.set_pos_fn = set_bio_pos,
2672 		.count_fn = count_bio_bvecs,
2673 		.copy_fn = copy_bio_bvecs,
2674 	};
2675 
2676 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2677 				    &fctx);
2678 }
2679 
2680 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2681 				 u64 off, u64 len, struct bio *bio)
2682 {
2683 	struct ceph_file_extent ex = { off, len };
2684 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2685 
2686 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2687 }
2688 
2689 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2690 {
2691 	struct rbd_obj_request *obj_req =
2692 	    container_of(ex, struct rbd_obj_request, ex);
2693 	struct ceph_bvec_iter *it = arg;
2694 
2695 	obj_req->bvec_pos = *it;
2696 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2697 	ceph_bvec_iter_advance(it, bytes);
2698 }
2699 
2700 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702 	struct rbd_obj_request *obj_req =
2703 	    container_of(ex, struct rbd_obj_request, ex);
2704 	struct ceph_bvec_iter *it = arg;
2705 
2706 	ceph_bvec_iter_advance_step(it, bytes, ({
2707 		obj_req->bvec_count++;
2708 	}));
2709 }
2710 
2711 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2712 {
2713 	struct rbd_obj_request *obj_req =
2714 	    container_of(ex, struct rbd_obj_request, ex);
2715 	struct ceph_bvec_iter *it = arg;
2716 
2717 	ceph_bvec_iter_advance_step(it, bytes, ({
2718 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2719 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2720 	}));
2721 }
2722 
2723 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2724 				     struct ceph_file_extent *img_extents,
2725 				     u32 num_img_extents,
2726 				     struct ceph_bvec_iter *bvec_pos)
2727 {
2728 	struct rbd_img_fill_ctx fctx = {
2729 		.pos_type = OBJ_REQUEST_BVECS,
2730 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2731 		.set_pos_fn = set_bvec_pos,
2732 		.count_fn = count_bvecs,
2733 		.copy_fn = copy_bvecs,
2734 	};
2735 
2736 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2737 				    &fctx);
2738 }
2739 
2740 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2741 				   struct ceph_file_extent *img_extents,
2742 				   u32 num_img_extents,
2743 				   struct bio_vec *bvecs)
2744 {
2745 	struct ceph_bvec_iter it = {
2746 		.bvecs = bvecs,
2747 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2748 							     num_img_extents) },
2749 	};
2750 
2751 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2752 					 &it);
2753 }
2754 
2755 static void rbd_img_handle_request_work(struct work_struct *work)
2756 {
2757 	struct rbd_img_request *img_req =
2758 	    container_of(work, struct rbd_img_request, work);
2759 
2760 	rbd_img_handle_request(img_req, img_req->work_result);
2761 }
2762 
2763 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2764 {
2765 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2766 	img_req->work_result = result;
2767 	queue_work(rbd_wq, &img_req->work);
2768 }
2769 
2770 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2771 {
2772 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2773 
2774 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2775 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2776 		return true;
2777 	}
2778 
2779 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2780 	     obj_req->ex.oe_objno);
2781 	return false;
2782 }
2783 
2784 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2785 {
2786 	struct ceph_osd_request *osd_req;
2787 	int ret;
2788 
2789 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2790 	if (IS_ERR(osd_req))
2791 		return PTR_ERR(osd_req);
2792 
2793 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2794 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2795 	rbd_osd_setup_data(osd_req, 0);
2796 	rbd_osd_format_read(osd_req);
2797 
2798 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2799 	if (ret)
2800 		return ret;
2801 
2802 	rbd_osd_submit(osd_req);
2803 	return 0;
2804 }
2805 
2806 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2807 {
2808 	struct rbd_img_request *img_req = obj_req->img_request;
2809 	struct rbd_device *parent = img_req->rbd_dev->parent;
2810 	struct rbd_img_request *child_img_req;
2811 	int ret;
2812 
2813 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2814 	if (!child_img_req)
2815 		return -ENOMEM;
2816 
2817 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2818 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2819 	child_img_req->obj_request = obj_req;
2820 
2821 	down_read(&parent->header_rwsem);
2822 	rbd_img_capture_header(child_img_req);
2823 	up_read(&parent->header_rwsem);
2824 
2825 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2826 	     obj_req);
2827 
2828 	if (!rbd_img_is_write(img_req)) {
2829 		switch (img_req->data_type) {
2830 		case OBJ_REQUEST_BIO:
2831 			ret = __rbd_img_fill_from_bio(child_img_req,
2832 						      obj_req->img_extents,
2833 						      obj_req->num_img_extents,
2834 						      &obj_req->bio_pos);
2835 			break;
2836 		case OBJ_REQUEST_BVECS:
2837 		case OBJ_REQUEST_OWN_BVECS:
2838 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2839 						      obj_req->img_extents,
2840 						      obj_req->num_img_extents,
2841 						      &obj_req->bvec_pos);
2842 			break;
2843 		default:
2844 			BUG();
2845 		}
2846 	} else {
2847 		ret = rbd_img_fill_from_bvecs(child_img_req,
2848 					      obj_req->img_extents,
2849 					      obj_req->num_img_extents,
2850 					      obj_req->copyup_bvecs);
2851 	}
2852 	if (ret) {
2853 		rbd_img_request_destroy(child_img_req);
2854 		return ret;
2855 	}
2856 
2857 	/* avoid parent chain recursion */
2858 	rbd_img_schedule(child_img_req, 0);
2859 	return 0;
2860 }
2861 
2862 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2863 {
2864 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2865 	int ret;
2866 
2867 again:
2868 	switch (obj_req->read_state) {
2869 	case RBD_OBJ_READ_START:
2870 		rbd_assert(!*result);
2871 
2872 		if (!rbd_obj_may_exist(obj_req)) {
2873 			*result = -ENOENT;
2874 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2875 			goto again;
2876 		}
2877 
2878 		ret = rbd_obj_read_object(obj_req);
2879 		if (ret) {
2880 			*result = ret;
2881 			return true;
2882 		}
2883 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2884 		return false;
2885 	case RBD_OBJ_READ_OBJECT:
2886 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2887 			/* reverse map this object extent onto the parent */
2888 			ret = rbd_obj_calc_img_extents(obj_req, false);
2889 			if (ret) {
2890 				*result = ret;
2891 				return true;
2892 			}
2893 			if (obj_req->num_img_extents) {
2894 				ret = rbd_obj_read_from_parent(obj_req);
2895 				if (ret) {
2896 					*result = ret;
2897 					return true;
2898 				}
2899 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2900 				return false;
2901 			}
2902 		}
2903 
2904 		/*
2905 		 * -ENOENT means a hole in the image -- zero-fill the entire
2906 		 * length of the request.  A short read also implies zero-fill
2907 		 * to the end of the request.
2908 		 */
2909 		if (*result == -ENOENT) {
2910 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2911 			*result = 0;
2912 		} else if (*result >= 0) {
2913 			if (*result < obj_req->ex.oe_len)
2914 				rbd_obj_zero_range(obj_req, *result,
2915 						obj_req->ex.oe_len - *result);
2916 			else
2917 				rbd_assert(*result == obj_req->ex.oe_len);
2918 			*result = 0;
2919 		}
2920 		return true;
2921 	case RBD_OBJ_READ_PARENT:
2922 		/*
2923 		 * The parent image is read only up to the overlap -- zero-fill
2924 		 * from the overlap to the end of the request.
2925 		 */
2926 		if (!*result) {
2927 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2928 
2929 			if (obj_overlap < obj_req->ex.oe_len)
2930 				rbd_obj_zero_range(obj_req, obj_overlap,
2931 					    obj_req->ex.oe_len - obj_overlap);
2932 		}
2933 		return true;
2934 	default:
2935 		BUG();
2936 	}
2937 }
2938 
2939 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2940 {
2941 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2942 
2943 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2944 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2945 
2946 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2947 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2948 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2949 		return true;
2950 	}
2951 
2952 	return false;
2953 }
2954 
2955 /*
2956  * Return:
2957  *   0 - object map update sent
2958  *   1 - object map update isn't needed
2959  *  <0 - error
2960  */
2961 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2962 {
2963 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2964 	u8 new_state;
2965 
2966 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2967 		return 1;
2968 
2969 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2970 		new_state = OBJECT_PENDING;
2971 	else
2972 		new_state = OBJECT_EXISTS;
2973 
2974 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2975 }
2976 
2977 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2978 {
2979 	struct ceph_osd_request *osd_req;
2980 	int num_ops = count_write_ops(obj_req);
2981 	int which = 0;
2982 	int ret;
2983 
2984 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2985 		num_ops++; /* stat */
2986 
2987 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2988 	if (IS_ERR(osd_req))
2989 		return PTR_ERR(osd_req);
2990 
2991 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2992 		ret = rbd_osd_setup_stat(osd_req, which++);
2993 		if (ret)
2994 			return ret;
2995 	}
2996 
2997 	rbd_osd_setup_write_ops(osd_req, which);
2998 	rbd_osd_format_write(osd_req);
2999 
3000 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3001 	if (ret)
3002 		return ret;
3003 
3004 	rbd_osd_submit(osd_req);
3005 	return 0;
3006 }
3007 
3008 /*
3009  * copyup_bvecs pages are never highmem pages
3010  */
3011 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3012 {
3013 	struct ceph_bvec_iter it = {
3014 		.bvecs = bvecs,
3015 		.iter = { .bi_size = bytes },
3016 	};
3017 
3018 	ceph_bvec_iter_advance_step(&it, bytes, ({
3019 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3020 			       bv.bv_len))
3021 			return false;
3022 	}));
3023 	return true;
3024 }
3025 
3026 #define MODS_ONLY	U32_MAX
3027 
3028 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3029 				      u32 bytes)
3030 {
3031 	struct ceph_osd_request *osd_req;
3032 	int ret;
3033 
3034 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3035 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3036 
3037 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3038 	if (IS_ERR(osd_req))
3039 		return PTR_ERR(osd_req);
3040 
3041 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3042 	if (ret)
3043 		return ret;
3044 
3045 	rbd_osd_format_write(osd_req);
3046 
3047 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3048 	if (ret)
3049 		return ret;
3050 
3051 	rbd_osd_submit(osd_req);
3052 	return 0;
3053 }
3054 
3055 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3056 					u32 bytes)
3057 {
3058 	struct ceph_osd_request *osd_req;
3059 	int num_ops = count_write_ops(obj_req);
3060 	int which = 0;
3061 	int ret;
3062 
3063 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3064 
3065 	if (bytes != MODS_ONLY)
3066 		num_ops++; /* copyup */
3067 
3068 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3069 	if (IS_ERR(osd_req))
3070 		return PTR_ERR(osd_req);
3071 
3072 	if (bytes != MODS_ONLY) {
3073 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3074 		if (ret)
3075 			return ret;
3076 	}
3077 
3078 	rbd_osd_setup_write_ops(osd_req, which);
3079 	rbd_osd_format_write(osd_req);
3080 
3081 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3082 	if (ret)
3083 		return ret;
3084 
3085 	rbd_osd_submit(osd_req);
3086 	return 0;
3087 }
3088 
3089 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3090 {
3091 	u32 i;
3092 
3093 	rbd_assert(!obj_req->copyup_bvecs);
3094 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3095 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3096 					sizeof(*obj_req->copyup_bvecs),
3097 					GFP_NOIO);
3098 	if (!obj_req->copyup_bvecs)
3099 		return -ENOMEM;
3100 
3101 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3102 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3103 
3104 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3105 		if (!obj_req->copyup_bvecs[i].bv_page)
3106 			return -ENOMEM;
3107 
3108 		obj_req->copyup_bvecs[i].bv_offset = 0;
3109 		obj_req->copyup_bvecs[i].bv_len = len;
3110 		obj_overlap -= len;
3111 	}
3112 
3113 	rbd_assert(!obj_overlap);
3114 	return 0;
3115 }
3116 
3117 /*
3118  * The target object doesn't exist.  Read the data for the entire
3119  * target object up to the overlap point (if any) from the parent,
3120  * so we can use it for a copyup.
3121  */
3122 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3123 {
3124 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3125 	int ret;
3126 
3127 	rbd_assert(obj_req->num_img_extents);
3128 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3129 		      rbd_dev->parent_overlap);
3130 	if (!obj_req->num_img_extents) {
3131 		/*
3132 		 * The overlap has become 0 (most likely because the
3133 		 * image has been flattened).  Re-submit the original write
3134 		 * request -- pass MODS_ONLY since the copyup isn't needed
3135 		 * anymore.
3136 		 */
3137 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3138 	}
3139 
3140 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3141 	if (ret)
3142 		return ret;
3143 
3144 	return rbd_obj_read_from_parent(obj_req);
3145 }
3146 
3147 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3148 {
3149 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3150 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3151 	u8 new_state;
3152 	u32 i;
3153 	int ret;
3154 
3155 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3156 
3157 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3158 		return;
3159 
3160 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3161 		return;
3162 
3163 	for (i = 0; i < snapc->num_snaps; i++) {
3164 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3165 		    i + 1 < snapc->num_snaps)
3166 			new_state = OBJECT_EXISTS_CLEAN;
3167 		else
3168 			new_state = OBJECT_EXISTS;
3169 
3170 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3171 					    new_state, NULL);
3172 		if (ret < 0) {
3173 			obj_req->pending.result = ret;
3174 			return;
3175 		}
3176 
3177 		rbd_assert(!ret);
3178 		obj_req->pending.num_pending++;
3179 	}
3180 }
3181 
3182 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3183 {
3184 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3185 	int ret;
3186 
3187 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188 
3189 	/*
3190 	 * Only send non-zero copyup data to save some I/O and network
3191 	 * bandwidth -- zero copyup data is equivalent to the object not
3192 	 * existing.
3193 	 */
3194 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3195 		bytes = 0;
3196 
3197 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3198 		/*
3199 		 * Send a copyup request with an empty snapshot context to
3200 		 * deep-copyup the object through all existing snapshots.
3201 		 * A second request with the current snapshot context will be
3202 		 * sent for the actual modification.
3203 		 */
3204 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3205 		if (ret) {
3206 			obj_req->pending.result = ret;
3207 			return;
3208 		}
3209 
3210 		obj_req->pending.num_pending++;
3211 		bytes = MODS_ONLY;
3212 	}
3213 
3214 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3215 	if (ret) {
3216 		obj_req->pending.result = ret;
3217 		return;
3218 	}
3219 
3220 	obj_req->pending.num_pending++;
3221 }
3222 
3223 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3224 {
3225 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3226 	int ret;
3227 
3228 again:
3229 	switch (obj_req->copyup_state) {
3230 	case RBD_OBJ_COPYUP_START:
3231 		rbd_assert(!*result);
3232 
3233 		ret = rbd_obj_copyup_read_parent(obj_req);
3234 		if (ret) {
3235 			*result = ret;
3236 			return true;
3237 		}
3238 		if (obj_req->num_img_extents)
3239 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3240 		else
3241 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3242 		return false;
3243 	case RBD_OBJ_COPYUP_READ_PARENT:
3244 		if (*result)
3245 			return true;
3246 
3247 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3248 				  rbd_obj_img_extents_bytes(obj_req))) {
3249 			dout("%s %p detected zeros\n", __func__, obj_req);
3250 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3251 		}
3252 
3253 		rbd_obj_copyup_object_maps(obj_req);
3254 		if (!obj_req->pending.num_pending) {
3255 			*result = obj_req->pending.result;
3256 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3257 			goto again;
3258 		}
3259 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3260 		return false;
3261 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3262 		if (!pending_result_dec(&obj_req->pending, result))
3263 			return false;
3264 		fallthrough;
3265 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3266 		if (*result) {
3267 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3268 				 *result);
3269 			return true;
3270 		}
3271 
3272 		rbd_obj_copyup_write_object(obj_req);
3273 		if (!obj_req->pending.num_pending) {
3274 			*result = obj_req->pending.result;
3275 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3276 			goto again;
3277 		}
3278 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3279 		return false;
3280 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3281 		if (!pending_result_dec(&obj_req->pending, result))
3282 			return false;
3283 		fallthrough;
3284 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3285 		return true;
3286 	default:
3287 		BUG();
3288 	}
3289 }
3290 
3291 /*
3292  * Return:
3293  *   0 - object map update sent
3294  *   1 - object map update isn't needed
3295  *  <0 - error
3296  */
3297 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3298 {
3299 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 	u8 current_state = OBJECT_PENDING;
3301 
3302 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3303 		return 1;
3304 
3305 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3306 		return 1;
3307 
3308 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3309 				     &current_state);
3310 }
3311 
3312 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3313 {
3314 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3315 	int ret;
3316 
3317 again:
3318 	switch (obj_req->write_state) {
3319 	case RBD_OBJ_WRITE_START:
3320 		rbd_assert(!*result);
3321 
3322 		if (rbd_obj_write_is_noop(obj_req))
3323 			return true;
3324 
3325 		ret = rbd_obj_write_pre_object_map(obj_req);
3326 		if (ret < 0) {
3327 			*result = ret;
3328 			return true;
3329 		}
3330 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3331 		if (ret > 0)
3332 			goto again;
3333 		return false;
3334 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3335 		if (*result) {
3336 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3337 				 *result);
3338 			return true;
3339 		}
3340 		ret = rbd_obj_write_object(obj_req);
3341 		if (ret) {
3342 			*result = ret;
3343 			return true;
3344 		}
3345 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3346 		return false;
3347 	case RBD_OBJ_WRITE_OBJECT:
3348 		if (*result == -ENOENT) {
3349 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3350 				*result = 0;
3351 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3352 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3353 				goto again;
3354 			}
3355 			/*
3356 			 * On a non-existent object:
3357 			 *   delete - -ENOENT, truncate/zero - 0
3358 			 */
3359 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3360 				*result = 0;
3361 		}
3362 		if (*result)
3363 			return true;
3364 
3365 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3366 		goto again;
3367 	case __RBD_OBJ_WRITE_COPYUP:
3368 		if (!rbd_obj_advance_copyup(obj_req, result))
3369 			return false;
3370 		fallthrough;
3371 	case RBD_OBJ_WRITE_COPYUP:
3372 		if (*result) {
3373 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3374 			return true;
3375 		}
3376 		ret = rbd_obj_write_post_object_map(obj_req);
3377 		if (ret < 0) {
3378 			*result = ret;
3379 			return true;
3380 		}
3381 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3382 		if (ret > 0)
3383 			goto again;
3384 		return false;
3385 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3386 		if (*result)
3387 			rbd_warn(rbd_dev, "post object map update failed: %d",
3388 				 *result);
3389 		return true;
3390 	default:
3391 		BUG();
3392 	}
3393 }
3394 
3395 /*
3396  * Return true if @obj_req is completed.
3397  */
3398 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3399 				     int *result)
3400 {
3401 	struct rbd_img_request *img_req = obj_req->img_request;
3402 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3403 	bool done;
3404 
3405 	mutex_lock(&obj_req->state_mutex);
3406 	if (!rbd_img_is_write(img_req))
3407 		done = rbd_obj_advance_read(obj_req, result);
3408 	else
3409 		done = rbd_obj_advance_write(obj_req, result);
3410 	mutex_unlock(&obj_req->state_mutex);
3411 
3412 	if (done && *result) {
3413 		rbd_assert(*result < 0);
3414 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3415 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3416 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3417 	}
3418 	return done;
3419 }
3420 
3421 /*
3422  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3423  * recursion.
3424  */
3425 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3426 {
3427 	if (__rbd_obj_handle_request(obj_req, &result))
3428 		rbd_img_handle_request(obj_req->img_request, result);
3429 }
3430 
3431 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3432 {
3433 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3434 
3435 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3436 		return false;
3437 
3438 	if (rbd_is_ro(rbd_dev))
3439 		return false;
3440 
3441 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3442 	if (rbd_dev->opts->lock_on_read ||
3443 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3444 		return true;
3445 
3446 	return rbd_img_is_write(img_req);
3447 }
3448 
3449 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 	bool locked;
3453 
3454 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3455 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3456 	spin_lock(&rbd_dev->lock_lists_lock);
3457 	rbd_assert(list_empty(&img_req->lock_item));
3458 	if (!locked)
3459 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3460 	else
3461 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3462 	spin_unlock(&rbd_dev->lock_lists_lock);
3463 	return locked;
3464 }
3465 
3466 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3467 {
3468 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3469 	bool need_wakeup;
3470 
3471 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3472 	spin_lock(&rbd_dev->lock_lists_lock);
3473 	rbd_assert(!list_empty(&img_req->lock_item));
3474 	list_del_init(&img_req->lock_item);
3475 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3476 		       list_empty(&rbd_dev->running_list));
3477 	spin_unlock(&rbd_dev->lock_lists_lock);
3478 	if (need_wakeup)
3479 		complete(&rbd_dev->releasing_wait);
3480 }
3481 
3482 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3483 {
3484 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3485 
3486 	if (!need_exclusive_lock(img_req))
3487 		return 1;
3488 
3489 	if (rbd_lock_add_request(img_req))
3490 		return 1;
3491 
3492 	if (rbd_dev->opts->exclusive) {
3493 		WARN_ON(1); /* lock got released? */
3494 		return -EROFS;
3495 	}
3496 
3497 	/*
3498 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3499 	 * and cancel_delayed_work() in wake_lock_waiters().
3500 	 */
3501 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3502 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3503 	return 0;
3504 }
3505 
3506 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3507 {
3508 	struct rbd_obj_request *obj_req;
3509 
3510 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3511 
3512 	for_each_obj_request(img_req, obj_req) {
3513 		int result = 0;
3514 
3515 		if (__rbd_obj_handle_request(obj_req, &result)) {
3516 			if (result) {
3517 				img_req->pending.result = result;
3518 				return;
3519 			}
3520 		} else {
3521 			img_req->pending.num_pending++;
3522 		}
3523 	}
3524 }
3525 
3526 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3527 {
3528 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3529 	int ret;
3530 
3531 again:
3532 	switch (img_req->state) {
3533 	case RBD_IMG_START:
3534 		rbd_assert(!*result);
3535 
3536 		ret = rbd_img_exclusive_lock(img_req);
3537 		if (ret < 0) {
3538 			*result = ret;
3539 			return true;
3540 		}
3541 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3542 		if (ret > 0)
3543 			goto again;
3544 		return false;
3545 	case RBD_IMG_EXCLUSIVE_LOCK:
3546 		if (*result)
3547 			return true;
3548 
3549 		rbd_assert(!need_exclusive_lock(img_req) ||
3550 			   __rbd_is_lock_owner(rbd_dev));
3551 
3552 		rbd_img_object_requests(img_req);
3553 		if (!img_req->pending.num_pending) {
3554 			*result = img_req->pending.result;
3555 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3556 			goto again;
3557 		}
3558 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3559 		return false;
3560 	case __RBD_IMG_OBJECT_REQUESTS:
3561 		if (!pending_result_dec(&img_req->pending, result))
3562 			return false;
3563 		fallthrough;
3564 	case RBD_IMG_OBJECT_REQUESTS:
3565 		return true;
3566 	default:
3567 		BUG();
3568 	}
3569 }
3570 
3571 /*
3572  * Return true if @img_req is completed.
3573  */
3574 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3575 				     int *result)
3576 {
3577 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3578 	bool done;
3579 
3580 	if (need_exclusive_lock(img_req)) {
3581 		down_read(&rbd_dev->lock_rwsem);
3582 		mutex_lock(&img_req->state_mutex);
3583 		done = rbd_img_advance(img_req, result);
3584 		if (done)
3585 			rbd_lock_del_request(img_req);
3586 		mutex_unlock(&img_req->state_mutex);
3587 		up_read(&rbd_dev->lock_rwsem);
3588 	} else {
3589 		mutex_lock(&img_req->state_mutex);
3590 		done = rbd_img_advance(img_req, result);
3591 		mutex_unlock(&img_req->state_mutex);
3592 	}
3593 
3594 	if (done && *result) {
3595 		rbd_assert(*result < 0);
3596 		rbd_warn(rbd_dev, "%s%s result %d",
3597 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3598 		      obj_op_name(img_req->op_type), *result);
3599 	}
3600 	return done;
3601 }
3602 
3603 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3604 {
3605 again:
3606 	if (!__rbd_img_handle_request(img_req, &result))
3607 		return;
3608 
3609 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3610 		struct rbd_obj_request *obj_req = img_req->obj_request;
3611 
3612 		rbd_img_request_destroy(img_req);
3613 		if (__rbd_obj_handle_request(obj_req, &result)) {
3614 			img_req = obj_req->img_request;
3615 			goto again;
3616 		}
3617 	} else {
3618 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3619 
3620 		rbd_img_request_destroy(img_req);
3621 		blk_mq_end_request(rq, errno_to_blk_status(result));
3622 	}
3623 }
3624 
3625 static const struct rbd_client_id rbd_empty_cid;
3626 
3627 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3628 			  const struct rbd_client_id *rhs)
3629 {
3630 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3631 }
3632 
3633 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3634 {
3635 	struct rbd_client_id cid;
3636 
3637 	mutex_lock(&rbd_dev->watch_mutex);
3638 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3639 	cid.handle = rbd_dev->watch_cookie;
3640 	mutex_unlock(&rbd_dev->watch_mutex);
3641 	return cid;
3642 }
3643 
3644 /*
3645  * lock_rwsem must be held for write
3646  */
3647 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3648 			      const struct rbd_client_id *cid)
3649 {
3650 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3651 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3652 	     cid->gid, cid->handle);
3653 	rbd_dev->owner_cid = *cid; /* struct */
3654 }
3655 
3656 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3657 {
3658 	mutex_lock(&rbd_dev->watch_mutex);
3659 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3660 	mutex_unlock(&rbd_dev->watch_mutex);
3661 }
3662 
3663 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3664 {
3665 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3666 
3667 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3668 	strcpy(rbd_dev->lock_cookie, cookie);
3669 	rbd_set_owner_cid(rbd_dev, &cid);
3670 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3671 }
3672 
3673 /*
3674  * lock_rwsem must be held for write
3675  */
3676 static int rbd_lock(struct rbd_device *rbd_dev)
3677 {
3678 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3679 	char cookie[32];
3680 	int ret;
3681 
3682 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3683 		rbd_dev->lock_cookie[0] != '\0');
3684 
3685 	format_lock_cookie(rbd_dev, cookie);
3686 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3687 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3688 			    RBD_LOCK_TAG, "", 0);
3689 	if (ret)
3690 		return ret;
3691 
3692 	__rbd_lock(rbd_dev, cookie);
3693 	return 0;
3694 }
3695 
3696 /*
3697  * lock_rwsem must be held for write
3698  */
3699 static void rbd_unlock(struct rbd_device *rbd_dev)
3700 {
3701 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3702 	int ret;
3703 
3704 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3705 		rbd_dev->lock_cookie[0] == '\0');
3706 
3707 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3708 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3709 	if (ret && ret != -ENOENT)
3710 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3711 
3712 	/* treat errors as the image is unlocked */
3713 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3714 	rbd_dev->lock_cookie[0] = '\0';
3715 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3716 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3717 }
3718 
3719 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3720 				enum rbd_notify_op notify_op,
3721 				struct page ***preply_pages,
3722 				size_t *preply_len)
3723 {
3724 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3725 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3726 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3727 	int buf_size = sizeof(buf);
3728 	void *p = buf;
3729 
3730 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3731 
3732 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3733 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3734 	ceph_encode_32(&p, notify_op);
3735 	ceph_encode_64(&p, cid.gid);
3736 	ceph_encode_64(&p, cid.handle);
3737 
3738 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3739 				&rbd_dev->header_oloc, buf, buf_size,
3740 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3741 }
3742 
3743 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3744 			       enum rbd_notify_op notify_op)
3745 {
3746 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3747 }
3748 
3749 static void rbd_notify_acquired_lock(struct work_struct *work)
3750 {
3751 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3752 						  acquired_lock_work);
3753 
3754 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3755 }
3756 
3757 static void rbd_notify_released_lock(struct work_struct *work)
3758 {
3759 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3760 						  released_lock_work);
3761 
3762 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3763 }
3764 
3765 static int rbd_request_lock(struct rbd_device *rbd_dev)
3766 {
3767 	struct page **reply_pages;
3768 	size_t reply_len;
3769 	bool lock_owner_responded = false;
3770 	int ret;
3771 
3772 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3773 
3774 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3775 				   &reply_pages, &reply_len);
3776 	if (ret && ret != -ETIMEDOUT) {
3777 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3778 		goto out;
3779 	}
3780 
3781 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3782 		void *p = page_address(reply_pages[0]);
3783 		void *const end = p + reply_len;
3784 		u32 n;
3785 
3786 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3787 		while (n--) {
3788 			u8 struct_v;
3789 			u32 len;
3790 
3791 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3792 			p += 8 + 8; /* skip gid and cookie */
3793 
3794 			ceph_decode_32_safe(&p, end, len, e_inval);
3795 			if (!len)
3796 				continue;
3797 
3798 			if (lock_owner_responded) {
3799 				rbd_warn(rbd_dev,
3800 					 "duplicate lock owners detected");
3801 				ret = -EIO;
3802 				goto out;
3803 			}
3804 
3805 			lock_owner_responded = true;
3806 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3807 						  &struct_v, &len);
3808 			if (ret) {
3809 				rbd_warn(rbd_dev,
3810 					 "failed to decode ResponseMessage: %d",
3811 					 ret);
3812 				goto e_inval;
3813 			}
3814 
3815 			ret = ceph_decode_32(&p);
3816 		}
3817 	}
3818 
3819 	if (!lock_owner_responded) {
3820 		rbd_warn(rbd_dev, "no lock owners detected");
3821 		ret = -ETIMEDOUT;
3822 	}
3823 
3824 out:
3825 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3826 	return ret;
3827 
3828 e_inval:
3829 	ret = -EINVAL;
3830 	goto out;
3831 }
3832 
3833 /*
3834  * Either image request state machine(s) or rbd_add_acquire_lock()
3835  * (i.e. "rbd map").
3836  */
3837 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3838 {
3839 	struct rbd_img_request *img_req;
3840 
3841 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3842 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3843 
3844 	cancel_delayed_work(&rbd_dev->lock_dwork);
3845 	if (!completion_done(&rbd_dev->acquire_wait)) {
3846 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3847 			   list_empty(&rbd_dev->running_list));
3848 		rbd_dev->acquire_err = result;
3849 		complete_all(&rbd_dev->acquire_wait);
3850 		return;
3851 	}
3852 
3853 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3854 		mutex_lock(&img_req->state_mutex);
3855 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3856 		rbd_img_schedule(img_req, result);
3857 		mutex_unlock(&img_req->state_mutex);
3858 	}
3859 
3860 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3861 }
3862 
3863 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3864 			       struct ceph_locker **lockers, u32 *num_lockers)
3865 {
3866 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3867 	u8 lock_type;
3868 	char *lock_tag;
3869 	int ret;
3870 
3871 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3872 
3873 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3874 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3875 				 &lock_type, &lock_tag, lockers, num_lockers);
3876 	if (ret)
3877 		return ret;
3878 
3879 	if (*num_lockers == 0) {
3880 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3881 		goto out;
3882 	}
3883 
3884 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3885 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3886 			 lock_tag);
3887 		ret = -EBUSY;
3888 		goto out;
3889 	}
3890 
3891 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3892 		rbd_warn(rbd_dev, "shared lock type detected");
3893 		ret = -EBUSY;
3894 		goto out;
3895 	}
3896 
3897 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3898 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3899 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3900 			 (*lockers)[0].id.cookie);
3901 		ret = -EBUSY;
3902 		goto out;
3903 	}
3904 
3905 out:
3906 	kfree(lock_tag);
3907 	return ret;
3908 }
3909 
3910 static int find_watcher(struct rbd_device *rbd_dev,
3911 			const struct ceph_locker *locker)
3912 {
3913 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3914 	struct ceph_watch_item *watchers;
3915 	u32 num_watchers;
3916 	u64 cookie;
3917 	int i;
3918 	int ret;
3919 
3920 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3921 				      &rbd_dev->header_oloc, &watchers,
3922 				      &num_watchers);
3923 	if (ret)
3924 		return ret;
3925 
3926 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3927 	for (i = 0; i < num_watchers; i++) {
3928 		/*
3929 		 * Ignore addr->type while comparing.  This mimics
3930 		 * entity_addr_t::get_legacy_str() + strcmp().
3931 		 */
3932 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3933 					    &locker->info.addr) &&
3934 		    watchers[i].cookie == cookie) {
3935 			struct rbd_client_id cid = {
3936 				.gid = le64_to_cpu(watchers[i].name.num),
3937 				.handle = cookie,
3938 			};
3939 
3940 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3941 			     rbd_dev, cid.gid, cid.handle);
3942 			rbd_set_owner_cid(rbd_dev, &cid);
3943 			ret = 1;
3944 			goto out;
3945 		}
3946 	}
3947 
3948 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3949 	ret = 0;
3950 out:
3951 	kfree(watchers);
3952 	return ret;
3953 }
3954 
3955 /*
3956  * lock_rwsem must be held for write
3957  */
3958 static int rbd_try_lock(struct rbd_device *rbd_dev)
3959 {
3960 	struct ceph_client *client = rbd_dev->rbd_client->client;
3961 	struct ceph_locker *lockers;
3962 	u32 num_lockers;
3963 	int ret;
3964 
3965 	for (;;) {
3966 		ret = rbd_lock(rbd_dev);
3967 		if (ret != -EBUSY)
3968 			return ret;
3969 
3970 		/* determine if the current lock holder is still alive */
3971 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3972 		if (ret)
3973 			return ret;
3974 
3975 		if (num_lockers == 0)
3976 			goto again;
3977 
3978 		ret = find_watcher(rbd_dev, lockers);
3979 		if (ret)
3980 			goto out; /* request lock or error */
3981 
3982 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3983 			 ENTITY_NAME(lockers[0].id.name));
3984 
3985 		ret = ceph_monc_blocklist_add(&client->monc,
3986 					      &lockers[0].info.addr);
3987 		if (ret) {
3988 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3989 				 ENTITY_NAME(lockers[0].id.name), ret);
3990 			goto out;
3991 		}
3992 
3993 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3994 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3995 					  lockers[0].id.cookie,
3996 					  &lockers[0].id.name);
3997 		if (ret && ret != -ENOENT)
3998 			goto out;
3999 
4000 again:
4001 		ceph_free_lockers(lockers, num_lockers);
4002 	}
4003 
4004 out:
4005 	ceph_free_lockers(lockers, num_lockers);
4006 	return ret;
4007 }
4008 
4009 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4010 {
4011 	int ret;
4012 
4013 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4014 		ret = rbd_object_map_open(rbd_dev);
4015 		if (ret)
4016 			return ret;
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 /*
4023  * Return:
4024  *   0 - lock acquired
4025  *   1 - caller should call rbd_request_lock()
4026  *  <0 - error
4027  */
4028 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4029 {
4030 	int ret;
4031 
4032 	down_read(&rbd_dev->lock_rwsem);
4033 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4034 	     rbd_dev->lock_state);
4035 	if (__rbd_is_lock_owner(rbd_dev)) {
4036 		up_read(&rbd_dev->lock_rwsem);
4037 		return 0;
4038 	}
4039 
4040 	up_read(&rbd_dev->lock_rwsem);
4041 	down_write(&rbd_dev->lock_rwsem);
4042 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4043 	     rbd_dev->lock_state);
4044 	if (__rbd_is_lock_owner(rbd_dev)) {
4045 		up_write(&rbd_dev->lock_rwsem);
4046 		return 0;
4047 	}
4048 
4049 	ret = rbd_try_lock(rbd_dev);
4050 	if (ret < 0) {
4051 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4052 		if (ret == -EBLOCKLISTED)
4053 			goto out;
4054 
4055 		ret = 1; /* request lock anyway */
4056 	}
4057 	if (ret > 0) {
4058 		up_write(&rbd_dev->lock_rwsem);
4059 		return ret;
4060 	}
4061 
4062 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4063 	rbd_assert(list_empty(&rbd_dev->running_list));
4064 
4065 	ret = rbd_post_acquire_action(rbd_dev);
4066 	if (ret) {
4067 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4068 		/*
4069 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4070 		 * rbd_lock_add_request() would let the request through,
4071 		 * assuming that e.g. object map is locked and loaded.
4072 		 */
4073 		rbd_unlock(rbd_dev);
4074 	}
4075 
4076 out:
4077 	wake_lock_waiters(rbd_dev, ret);
4078 	up_write(&rbd_dev->lock_rwsem);
4079 	return ret;
4080 }
4081 
4082 static void rbd_acquire_lock(struct work_struct *work)
4083 {
4084 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4085 					    struct rbd_device, lock_dwork);
4086 	int ret;
4087 
4088 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4089 again:
4090 	ret = rbd_try_acquire_lock(rbd_dev);
4091 	if (ret <= 0) {
4092 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4093 		return;
4094 	}
4095 
4096 	ret = rbd_request_lock(rbd_dev);
4097 	if (ret == -ETIMEDOUT) {
4098 		goto again; /* treat this as a dead client */
4099 	} else if (ret == -EROFS) {
4100 		rbd_warn(rbd_dev, "peer will not release lock");
4101 		down_write(&rbd_dev->lock_rwsem);
4102 		wake_lock_waiters(rbd_dev, ret);
4103 		up_write(&rbd_dev->lock_rwsem);
4104 	} else if (ret < 0) {
4105 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4106 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4107 				 RBD_RETRY_DELAY);
4108 	} else {
4109 		/*
4110 		 * lock owner acked, but resend if we don't see them
4111 		 * release the lock
4112 		 */
4113 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4114 		     rbd_dev);
4115 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4116 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4117 	}
4118 }
4119 
4120 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4121 {
4122 	bool need_wait;
4123 
4124 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4125 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4126 
4127 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4128 		return false;
4129 
4130 	/*
4131 	 * Ensure that all in-flight IO is flushed.
4132 	 */
4133 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4134 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4135 	need_wait = !list_empty(&rbd_dev->running_list);
4136 	downgrade_write(&rbd_dev->lock_rwsem);
4137 	if (need_wait)
4138 		wait_for_completion(&rbd_dev->releasing_wait);
4139 	up_read(&rbd_dev->lock_rwsem);
4140 
4141 	down_write(&rbd_dev->lock_rwsem);
4142 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4143 		return false;
4144 
4145 	rbd_assert(list_empty(&rbd_dev->running_list));
4146 	return true;
4147 }
4148 
4149 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4150 {
4151 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4152 		rbd_object_map_close(rbd_dev);
4153 }
4154 
4155 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4156 {
4157 	rbd_assert(list_empty(&rbd_dev->running_list));
4158 
4159 	rbd_pre_release_action(rbd_dev);
4160 	rbd_unlock(rbd_dev);
4161 }
4162 
4163 /*
4164  * lock_rwsem must be held for write
4165  */
4166 static void rbd_release_lock(struct rbd_device *rbd_dev)
4167 {
4168 	if (!rbd_quiesce_lock(rbd_dev))
4169 		return;
4170 
4171 	__rbd_release_lock(rbd_dev);
4172 
4173 	/*
4174 	 * Give others a chance to grab the lock - we would re-acquire
4175 	 * almost immediately if we got new IO while draining the running
4176 	 * list otherwise.  We need to ack our own notifications, so this
4177 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4178 	 * way of maybe_kick_acquire().
4179 	 */
4180 	cancel_delayed_work(&rbd_dev->lock_dwork);
4181 }
4182 
4183 static void rbd_release_lock_work(struct work_struct *work)
4184 {
4185 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4186 						  unlock_work);
4187 
4188 	down_write(&rbd_dev->lock_rwsem);
4189 	rbd_release_lock(rbd_dev);
4190 	up_write(&rbd_dev->lock_rwsem);
4191 }
4192 
4193 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4194 {
4195 	bool have_requests;
4196 
4197 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4198 	if (__rbd_is_lock_owner(rbd_dev))
4199 		return;
4200 
4201 	spin_lock(&rbd_dev->lock_lists_lock);
4202 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4203 	spin_unlock(&rbd_dev->lock_lists_lock);
4204 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4205 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4206 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4207 	}
4208 }
4209 
4210 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4211 				     void **p)
4212 {
4213 	struct rbd_client_id cid = { 0 };
4214 
4215 	if (struct_v >= 2) {
4216 		cid.gid = ceph_decode_64(p);
4217 		cid.handle = ceph_decode_64(p);
4218 	}
4219 
4220 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4221 	     cid.handle);
4222 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4223 		down_write(&rbd_dev->lock_rwsem);
4224 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4225 			/*
4226 			 * we already know that the remote client is
4227 			 * the owner
4228 			 */
4229 			up_write(&rbd_dev->lock_rwsem);
4230 			return;
4231 		}
4232 
4233 		rbd_set_owner_cid(rbd_dev, &cid);
4234 		downgrade_write(&rbd_dev->lock_rwsem);
4235 	} else {
4236 		down_read(&rbd_dev->lock_rwsem);
4237 	}
4238 
4239 	maybe_kick_acquire(rbd_dev);
4240 	up_read(&rbd_dev->lock_rwsem);
4241 }
4242 
4243 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4244 				     void **p)
4245 {
4246 	struct rbd_client_id cid = { 0 };
4247 
4248 	if (struct_v >= 2) {
4249 		cid.gid = ceph_decode_64(p);
4250 		cid.handle = ceph_decode_64(p);
4251 	}
4252 
4253 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4254 	     cid.handle);
4255 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4256 		down_write(&rbd_dev->lock_rwsem);
4257 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4258 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4259 			     __func__, rbd_dev, cid.gid, cid.handle,
4260 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4261 			up_write(&rbd_dev->lock_rwsem);
4262 			return;
4263 		}
4264 
4265 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4266 		downgrade_write(&rbd_dev->lock_rwsem);
4267 	} else {
4268 		down_read(&rbd_dev->lock_rwsem);
4269 	}
4270 
4271 	maybe_kick_acquire(rbd_dev);
4272 	up_read(&rbd_dev->lock_rwsem);
4273 }
4274 
4275 /*
4276  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4277  * ResponseMessage is needed.
4278  */
4279 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4280 				   void **p)
4281 {
4282 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4283 	struct rbd_client_id cid = { 0 };
4284 	int result = 1;
4285 
4286 	if (struct_v >= 2) {
4287 		cid.gid = ceph_decode_64(p);
4288 		cid.handle = ceph_decode_64(p);
4289 	}
4290 
4291 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4292 	     cid.handle);
4293 	if (rbd_cid_equal(&cid, &my_cid))
4294 		return result;
4295 
4296 	down_read(&rbd_dev->lock_rwsem);
4297 	if (__rbd_is_lock_owner(rbd_dev)) {
4298 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4299 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4300 			goto out_unlock;
4301 
4302 		/*
4303 		 * encode ResponseMessage(0) so the peer can detect
4304 		 * a missing owner
4305 		 */
4306 		result = 0;
4307 
4308 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4309 			if (!rbd_dev->opts->exclusive) {
4310 				dout("%s rbd_dev %p queueing unlock_work\n",
4311 				     __func__, rbd_dev);
4312 				queue_work(rbd_dev->task_wq,
4313 					   &rbd_dev->unlock_work);
4314 			} else {
4315 				/* refuse to release the lock */
4316 				result = -EROFS;
4317 			}
4318 		}
4319 	}
4320 
4321 out_unlock:
4322 	up_read(&rbd_dev->lock_rwsem);
4323 	return result;
4324 }
4325 
4326 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4327 				     u64 notify_id, u64 cookie, s32 *result)
4328 {
4329 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4330 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4331 	int buf_size = sizeof(buf);
4332 	int ret;
4333 
4334 	if (result) {
4335 		void *p = buf;
4336 
4337 		/* encode ResponseMessage */
4338 		ceph_start_encoding(&p, 1, 1,
4339 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4340 		ceph_encode_32(&p, *result);
4341 	} else {
4342 		buf_size = 0;
4343 	}
4344 
4345 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4346 				   &rbd_dev->header_oloc, notify_id, cookie,
4347 				   buf, buf_size);
4348 	if (ret)
4349 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4350 }
4351 
4352 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4353 				   u64 cookie)
4354 {
4355 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4356 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4357 }
4358 
4359 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4360 					  u64 notify_id, u64 cookie, s32 result)
4361 {
4362 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4363 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4364 }
4365 
4366 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4367 			 u64 notifier_id, void *data, size_t data_len)
4368 {
4369 	struct rbd_device *rbd_dev = arg;
4370 	void *p = data;
4371 	void *const end = p + data_len;
4372 	u8 struct_v = 0;
4373 	u32 len;
4374 	u32 notify_op;
4375 	int ret;
4376 
4377 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4378 	     __func__, rbd_dev, cookie, notify_id, data_len);
4379 	if (data_len) {
4380 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4381 					  &struct_v, &len);
4382 		if (ret) {
4383 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4384 				 ret);
4385 			return;
4386 		}
4387 
4388 		notify_op = ceph_decode_32(&p);
4389 	} else {
4390 		/* legacy notification for header updates */
4391 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4392 		len = 0;
4393 	}
4394 
4395 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4396 	switch (notify_op) {
4397 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4398 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4399 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4400 		break;
4401 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4402 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4403 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4404 		break;
4405 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4406 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4407 		if (ret <= 0)
4408 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4409 						      cookie, ret);
4410 		else
4411 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4412 		break;
4413 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4414 		ret = rbd_dev_refresh(rbd_dev);
4415 		if (ret)
4416 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4417 
4418 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4419 		break;
4420 	default:
4421 		if (rbd_is_lock_owner(rbd_dev))
4422 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4423 						      cookie, -EOPNOTSUPP);
4424 		else
4425 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4426 		break;
4427 	}
4428 }
4429 
4430 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4431 
4432 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4433 {
4434 	struct rbd_device *rbd_dev = arg;
4435 
4436 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4437 
4438 	down_write(&rbd_dev->lock_rwsem);
4439 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4440 	up_write(&rbd_dev->lock_rwsem);
4441 
4442 	mutex_lock(&rbd_dev->watch_mutex);
4443 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4444 		__rbd_unregister_watch(rbd_dev);
4445 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4446 
4447 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4448 	}
4449 	mutex_unlock(&rbd_dev->watch_mutex);
4450 }
4451 
4452 /*
4453  * watch_mutex must be locked
4454  */
4455 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4456 {
4457 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4458 	struct ceph_osd_linger_request *handle;
4459 
4460 	rbd_assert(!rbd_dev->watch_handle);
4461 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4462 
4463 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4464 				 &rbd_dev->header_oloc, rbd_watch_cb,
4465 				 rbd_watch_errcb, rbd_dev);
4466 	if (IS_ERR(handle))
4467 		return PTR_ERR(handle);
4468 
4469 	rbd_dev->watch_handle = handle;
4470 	return 0;
4471 }
4472 
4473 /*
4474  * watch_mutex must be locked
4475  */
4476 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4477 {
4478 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4479 	int ret;
4480 
4481 	rbd_assert(rbd_dev->watch_handle);
4482 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4483 
4484 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4485 	if (ret)
4486 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4487 
4488 	rbd_dev->watch_handle = NULL;
4489 }
4490 
4491 static int rbd_register_watch(struct rbd_device *rbd_dev)
4492 {
4493 	int ret;
4494 
4495 	mutex_lock(&rbd_dev->watch_mutex);
4496 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4497 	ret = __rbd_register_watch(rbd_dev);
4498 	if (ret)
4499 		goto out;
4500 
4501 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4502 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4503 
4504 out:
4505 	mutex_unlock(&rbd_dev->watch_mutex);
4506 	return ret;
4507 }
4508 
4509 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4510 {
4511 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4512 
4513 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4514 	cancel_work_sync(&rbd_dev->released_lock_work);
4515 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4516 	cancel_work_sync(&rbd_dev->unlock_work);
4517 }
4518 
4519 /*
4520  * header_rwsem must not be held to avoid a deadlock with
4521  * rbd_dev_refresh() when flushing notifies.
4522  */
4523 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4524 {
4525 	cancel_tasks_sync(rbd_dev);
4526 
4527 	mutex_lock(&rbd_dev->watch_mutex);
4528 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4529 		__rbd_unregister_watch(rbd_dev);
4530 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4531 	mutex_unlock(&rbd_dev->watch_mutex);
4532 
4533 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4534 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4535 }
4536 
4537 /*
4538  * lock_rwsem must be held for write
4539  */
4540 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4541 {
4542 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4543 	char cookie[32];
4544 	int ret;
4545 
4546 	if (!rbd_quiesce_lock(rbd_dev))
4547 		return;
4548 
4549 	format_lock_cookie(rbd_dev, cookie);
4550 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4551 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4552 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4553 				  RBD_LOCK_TAG, cookie);
4554 	if (ret) {
4555 		if (ret != -EOPNOTSUPP)
4556 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4557 				 ret);
4558 
4559 		/*
4560 		 * Lock cookie cannot be updated on older OSDs, so do
4561 		 * a manual release and queue an acquire.
4562 		 */
4563 		__rbd_release_lock(rbd_dev);
4564 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4565 	} else {
4566 		__rbd_lock(rbd_dev, cookie);
4567 		wake_lock_waiters(rbd_dev, 0);
4568 	}
4569 }
4570 
4571 static void rbd_reregister_watch(struct work_struct *work)
4572 {
4573 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4574 					    struct rbd_device, watch_dwork);
4575 	int ret;
4576 
4577 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4578 
4579 	mutex_lock(&rbd_dev->watch_mutex);
4580 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4581 		mutex_unlock(&rbd_dev->watch_mutex);
4582 		return;
4583 	}
4584 
4585 	ret = __rbd_register_watch(rbd_dev);
4586 	if (ret) {
4587 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4588 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4589 			queue_delayed_work(rbd_dev->task_wq,
4590 					   &rbd_dev->watch_dwork,
4591 					   RBD_RETRY_DELAY);
4592 			mutex_unlock(&rbd_dev->watch_mutex);
4593 			return;
4594 		}
4595 
4596 		mutex_unlock(&rbd_dev->watch_mutex);
4597 		down_write(&rbd_dev->lock_rwsem);
4598 		wake_lock_waiters(rbd_dev, ret);
4599 		up_write(&rbd_dev->lock_rwsem);
4600 		return;
4601 	}
4602 
4603 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4604 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4605 	mutex_unlock(&rbd_dev->watch_mutex);
4606 
4607 	down_write(&rbd_dev->lock_rwsem);
4608 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4609 		rbd_reacquire_lock(rbd_dev);
4610 	up_write(&rbd_dev->lock_rwsem);
4611 
4612 	ret = rbd_dev_refresh(rbd_dev);
4613 	if (ret)
4614 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4615 }
4616 
4617 /*
4618  * Synchronous osd object method call.  Returns the number of bytes
4619  * returned in the outbound buffer, or a negative error code.
4620  */
4621 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4622 			     struct ceph_object_id *oid,
4623 			     struct ceph_object_locator *oloc,
4624 			     const char *method_name,
4625 			     const void *outbound,
4626 			     size_t outbound_size,
4627 			     void *inbound,
4628 			     size_t inbound_size)
4629 {
4630 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4631 	struct page *req_page = NULL;
4632 	struct page *reply_page;
4633 	int ret;
4634 
4635 	/*
4636 	 * Method calls are ultimately read operations.  The result
4637 	 * should placed into the inbound buffer provided.  They
4638 	 * also supply outbound data--parameters for the object
4639 	 * method.  Currently if this is present it will be a
4640 	 * snapshot id.
4641 	 */
4642 	if (outbound) {
4643 		if (outbound_size > PAGE_SIZE)
4644 			return -E2BIG;
4645 
4646 		req_page = alloc_page(GFP_KERNEL);
4647 		if (!req_page)
4648 			return -ENOMEM;
4649 
4650 		memcpy(page_address(req_page), outbound, outbound_size);
4651 	}
4652 
4653 	reply_page = alloc_page(GFP_KERNEL);
4654 	if (!reply_page) {
4655 		if (req_page)
4656 			__free_page(req_page);
4657 		return -ENOMEM;
4658 	}
4659 
4660 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4661 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4662 			     &reply_page, &inbound_size);
4663 	if (!ret) {
4664 		memcpy(inbound, page_address(reply_page), inbound_size);
4665 		ret = inbound_size;
4666 	}
4667 
4668 	if (req_page)
4669 		__free_page(req_page);
4670 	__free_page(reply_page);
4671 	return ret;
4672 }
4673 
4674 static void rbd_queue_workfn(struct work_struct *work)
4675 {
4676 	struct rbd_img_request *img_request =
4677 	    container_of(work, struct rbd_img_request, work);
4678 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4679 	enum obj_operation_type op_type = img_request->op_type;
4680 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4681 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4682 	u64 length = blk_rq_bytes(rq);
4683 	u64 mapping_size;
4684 	int result;
4685 
4686 	/* Ignore/skip any zero-length requests */
4687 	if (!length) {
4688 		dout("%s: zero-length request\n", __func__);
4689 		result = 0;
4690 		goto err_img_request;
4691 	}
4692 
4693 	blk_mq_start_request(rq);
4694 
4695 	down_read(&rbd_dev->header_rwsem);
4696 	mapping_size = rbd_dev->mapping.size;
4697 	rbd_img_capture_header(img_request);
4698 	up_read(&rbd_dev->header_rwsem);
4699 
4700 	if (offset + length > mapping_size) {
4701 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4702 			 length, mapping_size);
4703 		result = -EIO;
4704 		goto err_img_request;
4705 	}
4706 
4707 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4708 	     img_request, obj_op_name(op_type), offset, length);
4709 
4710 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4711 		result = rbd_img_fill_nodata(img_request, offset, length);
4712 	else
4713 		result = rbd_img_fill_from_bio(img_request, offset, length,
4714 					       rq->bio);
4715 	if (result)
4716 		goto err_img_request;
4717 
4718 	rbd_img_handle_request(img_request, 0);
4719 	return;
4720 
4721 err_img_request:
4722 	rbd_img_request_destroy(img_request);
4723 	if (result)
4724 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4725 			 obj_op_name(op_type), length, offset, result);
4726 	blk_mq_end_request(rq, errno_to_blk_status(result));
4727 }
4728 
4729 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4730 		const struct blk_mq_queue_data *bd)
4731 {
4732 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4733 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4734 	enum obj_operation_type op_type;
4735 
4736 	switch (req_op(bd->rq)) {
4737 	case REQ_OP_DISCARD:
4738 		op_type = OBJ_OP_DISCARD;
4739 		break;
4740 	case REQ_OP_WRITE_ZEROES:
4741 		op_type = OBJ_OP_ZEROOUT;
4742 		break;
4743 	case REQ_OP_WRITE:
4744 		op_type = OBJ_OP_WRITE;
4745 		break;
4746 	case REQ_OP_READ:
4747 		op_type = OBJ_OP_READ;
4748 		break;
4749 	default:
4750 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4751 		return BLK_STS_IOERR;
4752 	}
4753 
4754 	rbd_img_request_init(img_req, rbd_dev, op_type);
4755 
4756 	if (rbd_img_is_write(img_req)) {
4757 		if (rbd_is_ro(rbd_dev)) {
4758 			rbd_warn(rbd_dev, "%s on read-only mapping",
4759 				 obj_op_name(img_req->op_type));
4760 			return BLK_STS_IOERR;
4761 		}
4762 		rbd_assert(!rbd_is_snap(rbd_dev));
4763 	}
4764 
4765 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4766 	queue_work(rbd_wq, &img_req->work);
4767 	return BLK_STS_OK;
4768 }
4769 
4770 static void rbd_free_disk(struct rbd_device *rbd_dev)
4771 {
4772 	blk_cleanup_queue(rbd_dev->disk->queue);
4773 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4774 	put_disk(rbd_dev->disk);
4775 	rbd_dev->disk = NULL;
4776 }
4777 
4778 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4779 			     struct ceph_object_id *oid,
4780 			     struct ceph_object_locator *oloc,
4781 			     void *buf, int buf_len)
4782 
4783 {
4784 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4785 	struct ceph_osd_request *req;
4786 	struct page **pages;
4787 	int num_pages = calc_pages_for(0, buf_len);
4788 	int ret;
4789 
4790 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4791 	if (!req)
4792 		return -ENOMEM;
4793 
4794 	ceph_oid_copy(&req->r_base_oid, oid);
4795 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4796 	req->r_flags = CEPH_OSD_FLAG_READ;
4797 
4798 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4799 	if (IS_ERR(pages)) {
4800 		ret = PTR_ERR(pages);
4801 		goto out_req;
4802 	}
4803 
4804 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4805 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4806 					 true);
4807 
4808 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4809 	if (ret)
4810 		goto out_req;
4811 
4812 	ceph_osdc_start_request(osdc, req, false);
4813 	ret = ceph_osdc_wait_request(osdc, req);
4814 	if (ret >= 0)
4815 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4816 
4817 out_req:
4818 	ceph_osdc_put_request(req);
4819 	return ret;
4820 }
4821 
4822 /*
4823  * Read the complete header for the given rbd device.  On successful
4824  * return, the rbd_dev->header field will contain up-to-date
4825  * information about the image.
4826  */
4827 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4828 {
4829 	struct rbd_image_header_ondisk *ondisk = NULL;
4830 	u32 snap_count = 0;
4831 	u64 names_size = 0;
4832 	u32 want_count;
4833 	int ret;
4834 
4835 	/*
4836 	 * The complete header will include an array of its 64-bit
4837 	 * snapshot ids, followed by the names of those snapshots as
4838 	 * a contiguous block of NUL-terminated strings.  Note that
4839 	 * the number of snapshots could change by the time we read
4840 	 * it in, in which case we re-read it.
4841 	 */
4842 	do {
4843 		size_t size;
4844 
4845 		kfree(ondisk);
4846 
4847 		size = sizeof (*ondisk);
4848 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4849 		size += names_size;
4850 		ondisk = kmalloc(size, GFP_KERNEL);
4851 		if (!ondisk)
4852 			return -ENOMEM;
4853 
4854 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4855 					&rbd_dev->header_oloc, ondisk, size);
4856 		if (ret < 0)
4857 			goto out;
4858 		if ((size_t)ret < size) {
4859 			ret = -ENXIO;
4860 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4861 				size, ret);
4862 			goto out;
4863 		}
4864 		if (!rbd_dev_ondisk_valid(ondisk)) {
4865 			ret = -ENXIO;
4866 			rbd_warn(rbd_dev, "invalid header");
4867 			goto out;
4868 		}
4869 
4870 		names_size = le64_to_cpu(ondisk->snap_names_len);
4871 		want_count = snap_count;
4872 		snap_count = le32_to_cpu(ondisk->snap_count);
4873 	} while (snap_count != want_count);
4874 
4875 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4876 out:
4877 	kfree(ondisk);
4878 
4879 	return ret;
4880 }
4881 
4882 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4883 {
4884 	sector_t size;
4885 
4886 	/*
4887 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4888 	 * try to update its size.  If REMOVING is set, updating size
4889 	 * is just useless work since the device can't be opened.
4890 	 */
4891 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4892 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4893 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4894 		dout("setting size to %llu sectors", (unsigned long long)size);
4895 		set_capacity_and_notify(rbd_dev->disk, size);
4896 	}
4897 }
4898 
4899 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4900 {
4901 	u64 mapping_size;
4902 	int ret;
4903 
4904 	down_write(&rbd_dev->header_rwsem);
4905 	mapping_size = rbd_dev->mapping.size;
4906 
4907 	ret = rbd_dev_header_info(rbd_dev);
4908 	if (ret)
4909 		goto out;
4910 
4911 	/*
4912 	 * If there is a parent, see if it has disappeared due to the
4913 	 * mapped image getting flattened.
4914 	 */
4915 	if (rbd_dev->parent) {
4916 		ret = rbd_dev_v2_parent_info(rbd_dev);
4917 		if (ret)
4918 			goto out;
4919 	}
4920 
4921 	rbd_assert(!rbd_is_snap(rbd_dev));
4922 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4923 
4924 out:
4925 	up_write(&rbd_dev->header_rwsem);
4926 	if (!ret && mapping_size != rbd_dev->mapping.size)
4927 		rbd_dev_update_size(rbd_dev);
4928 
4929 	return ret;
4930 }
4931 
4932 static const struct blk_mq_ops rbd_mq_ops = {
4933 	.queue_rq	= rbd_queue_rq,
4934 };
4935 
4936 static int rbd_init_disk(struct rbd_device *rbd_dev)
4937 {
4938 	struct gendisk *disk;
4939 	struct request_queue *q;
4940 	unsigned int objset_bytes =
4941 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4942 	int err;
4943 
4944 	/* create gendisk info */
4945 	disk = alloc_disk(single_major ?
4946 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4947 			  RBD_MINORS_PER_MAJOR);
4948 	if (!disk)
4949 		return -ENOMEM;
4950 
4951 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4952 		 rbd_dev->dev_id);
4953 	disk->major = rbd_dev->major;
4954 	disk->first_minor = rbd_dev->minor;
4955 	if (single_major)
4956 		disk->flags |= GENHD_FL_EXT_DEVT;
4957 	disk->fops = &rbd_bd_ops;
4958 	disk->private_data = rbd_dev;
4959 
4960 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4961 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4962 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4963 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4964 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4965 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4966 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4967 
4968 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4969 	if (err)
4970 		goto out_disk;
4971 
4972 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4973 	if (IS_ERR(q)) {
4974 		err = PTR_ERR(q);
4975 		goto out_tag_set;
4976 	}
4977 
4978 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4979 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4980 
4981 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4982 	q->limits.max_sectors = queue_max_hw_sectors(q);
4983 	blk_queue_max_segments(q, USHRT_MAX);
4984 	blk_queue_max_segment_size(q, UINT_MAX);
4985 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4986 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4987 
4988 	if (rbd_dev->opts->trim) {
4989 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4990 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4991 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4992 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4993 	}
4994 
4995 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4996 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4997 
4998 	/*
4999 	 * disk_release() expects a queue ref from add_disk() and will
5000 	 * put it.  Hold an extra ref until add_disk() is called.
5001 	 */
5002 	WARN_ON(!blk_get_queue(q));
5003 	disk->queue = q;
5004 	q->queuedata = rbd_dev;
5005 
5006 	rbd_dev->disk = disk;
5007 
5008 	return 0;
5009 out_tag_set:
5010 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5011 out_disk:
5012 	put_disk(disk);
5013 	return err;
5014 }
5015 
5016 /*
5017   sysfs
5018 */
5019 
5020 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5021 {
5022 	return container_of(dev, struct rbd_device, dev);
5023 }
5024 
5025 static ssize_t rbd_size_show(struct device *dev,
5026 			     struct device_attribute *attr, char *buf)
5027 {
5028 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029 
5030 	return sprintf(buf, "%llu\n",
5031 		(unsigned long long)rbd_dev->mapping.size);
5032 }
5033 
5034 static ssize_t rbd_features_show(struct device *dev,
5035 			     struct device_attribute *attr, char *buf)
5036 {
5037 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 
5039 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5040 }
5041 
5042 static ssize_t rbd_major_show(struct device *dev,
5043 			      struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 
5047 	if (rbd_dev->major)
5048 		return sprintf(buf, "%d\n", rbd_dev->major);
5049 
5050 	return sprintf(buf, "(none)\n");
5051 }
5052 
5053 static ssize_t rbd_minor_show(struct device *dev,
5054 			      struct device_attribute *attr, char *buf)
5055 {
5056 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 
5058 	return sprintf(buf, "%d\n", rbd_dev->minor);
5059 }
5060 
5061 static ssize_t rbd_client_addr_show(struct device *dev,
5062 				    struct device_attribute *attr, char *buf)
5063 {
5064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065 	struct ceph_entity_addr *client_addr =
5066 	    ceph_client_addr(rbd_dev->rbd_client->client);
5067 
5068 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5069 		       le32_to_cpu(client_addr->nonce));
5070 }
5071 
5072 static ssize_t rbd_client_id_show(struct device *dev,
5073 				  struct device_attribute *attr, char *buf)
5074 {
5075 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076 
5077 	return sprintf(buf, "client%lld\n",
5078 		       ceph_client_gid(rbd_dev->rbd_client->client));
5079 }
5080 
5081 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5082 				     struct device_attribute *attr, char *buf)
5083 {
5084 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 
5086 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5087 }
5088 
5089 static ssize_t rbd_config_info_show(struct device *dev,
5090 				    struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	if (!capable(CAP_SYS_ADMIN))
5095 		return -EPERM;
5096 
5097 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5098 }
5099 
5100 static ssize_t rbd_pool_show(struct device *dev,
5101 			     struct device_attribute *attr, char *buf)
5102 {
5103 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104 
5105 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5106 }
5107 
5108 static ssize_t rbd_pool_id_show(struct device *dev,
5109 			     struct device_attribute *attr, char *buf)
5110 {
5111 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112 
5113 	return sprintf(buf, "%llu\n",
5114 			(unsigned long long) rbd_dev->spec->pool_id);
5115 }
5116 
5117 static ssize_t rbd_pool_ns_show(struct device *dev,
5118 				struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5123 }
5124 
5125 static ssize_t rbd_name_show(struct device *dev,
5126 			     struct device_attribute *attr, char *buf)
5127 {
5128 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5129 
5130 	if (rbd_dev->spec->image_name)
5131 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5132 
5133 	return sprintf(buf, "(unknown)\n");
5134 }
5135 
5136 static ssize_t rbd_image_id_show(struct device *dev,
5137 			     struct device_attribute *attr, char *buf)
5138 {
5139 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5140 
5141 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5142 }
5143 
5144 /*
5145  * Shows the name of the currently-mapped snapshot (or
5146  * RBD_SNAP_HEAD_NAME for the base image).
5147  */
5148 static ssize_t rbd_snap_show(struct device *dev,
5149 			     struct device_attribute *attr,
5150 			     char *buf)
5151 {
5152 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153 
5154 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5155 }
5156 
5157 static ssize_t rbd_snap_id_show(struct device *dev,
5158 				struct device_attribute *attr, char *buf)
5159 {
5160 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161 
5162 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5163 }
5164 
5165 /*
5166  * For a v2 image, shows the chain of parent images, separated by empty
5167  * lines.  For v1 images or if there is no parent, shows "(no parent
5168  * image)".
5169  */
5170 static ssize_t rbd_parent_show(struct device *dev,
5171 			       struct device_attribute *attr,
5172 			       char *buf)
5173 {
5174 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175 	ssize_t count = 0;
5176 
5177 	if (!rbd_dev->parent)
5178 		return sprintf(buf, "(no parent image)\n");
5179 
5180 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5181 		struct rbd_spec *spec = rbd_dev->parent_spec;
5182 
5183 		count += sprintf(&buf[count], "%s"
5184 			    "pool_id %llu\npool_name %s\n"
5185 			    "pool_ns %s\n"
5186 			    "image_id %s\nimage_name %s\n"
5187 			    "snap_id %llu\nsnap_name %s\n"
5188 			    "overlap %llu\n",
5189 			    !count ? "" : "\n", /* first? */
5190 			    spec->pool_id, spec->pool_name,
5191 			    spec->pool_ns ?: "",
5192 			    spec->image_id, spec->image_name ?: "(unknown)",
5193 			    spec->snap_id, spec->snap_name,
5194 			    rbd_dev->parent_overlap);
5195 	}
5196 
5197 	return count;
5198 }
5199 
5200 static ssize_t rbd_image_refresh(struct device *dev,
5201 				 struct device_attribute *attr,
5202 				 const char *buf,
5203 				 size_t size)
5204 {
5205 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5206 	int ret;
5207 
5208 	if (!capable(CAP_SYS_ADMIN))
5209 		return -EPERM;
5210 
5211 	ret = rbd_dev_refresh(rbd_dev);
5212 	if (ret)
5213 		return ret;
5214 
5215 	return size;
5216 }
5217 
5218 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5219 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5220 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5221 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5222 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5223 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5224 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5225 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5226 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5227 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5228 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5229 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5230 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5231 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5232 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5233 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5234 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5235 
5236 static struct attribute *rbd_attrs[] = {
5237 	&dev_attr_size.attr,
5238 	&dev_attr_features.attr,
5239 	&dev_attr_major.attr,
5240 	&dev_attr_minor.attr,
5241 	&dev_attr_client_addr.attr,
5242 	&dev_attr_client_id.attr,
5243 	&dev_attr_cluster_fsid.attr,
5244 	&dev_attr_config_info.attr,
5245 	&dev_attr_pool.attr,
5246 	&dev_attr_pool_id.attr,
5247 	&dev_attr_pool_ns.attr,
5248 	&dev_attr_name.attr,
5249 	&dev_attr_image_id.attr,
5250 	&dev_attr_current_snap.attr,
5251 	&dev_attr_snap_id.attr,
5252 	&dev_attr_parent.attr,
5253 	&dev_attr_refresh.attr,
5254 	NULL
5255 };
5256 
5257 static struct attribute_group rbd_attr_group = {
5258 	.attrs = rbd_attrs,
5259 };
5260 
5261 static const struct attribute_group *rbd_attr_groups[] = {
5262 	&rbd_attr_group,
5263 	NULL
5264 };
5265 
5266 static void rbd_dev_release(struct device *dev);
5267 
5268 static const struct device_type rbd_device_type = {
5269 	.name		= "rbd",
5270 	.groups		= rbd_attr_groups,
5271 	.release	= rbd_dev_release,
5272 };
5273 
5274 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5275 {
5276 	kref_get(&spec->kref);
5277 
5278 	return spec;
5279 }
5280 
5281 static void rbd_spec_free(struct kref *kref);
5282 static void rbd_spec_put(struct rbd_spec *spec)
5283 {
5284 	if (spec)
5285 		kref_put(&spec->kref, rbd_spec_free);
5286 }
5287 
5288 static struct rbd_spec *rbd_spec_alloc(void)
5289 {
5290 	struct rbd_spec *spec;
5291 
5292 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5293 	if (!spec)
5294 		return NULL;
5295 
5296 	spec->pool_id = CEPH_NOPOOL;
5297 	spec->snap_id = CEPH_NOSNAP;
5298 	kref_init(&spec->kref);
5299 
5300 	return spec;
5301 }
5302 
5303 static void rbd_spec_free(struct kref *kref)
5304 {
5305 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5306 
5307 	kfree(spec->pool_name);
5308 	kfree(spec->pool_ns);
5309 	kfree(spec->image_id);
5310 	kfree(spec->image_name);
5311 	kfree(spec->snap_name);
5312 	kfree(spec);
5313 }
5314 
5315 static void rbd_dev_free(struct rbd_device *rbd_dev)
5316 {
5317 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5318 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5319 
5320 	ceph_oid_destroy(&rbd_dev->header_oid);
5321 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5322 	kfree(rbd_dev->config_info);
5323 
5324 	rbd_put_client(rbd_dev->rbd_client);
5325 	rbd_spec_put(rbd_dev->spec);
5326 	kfree(rbd_dev->opts);
5327 	kfree(rbd_dev);
5328 }
5329 
5330 static void rbd_dev_release(struct device *dev)
5331 {
5332 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5333 	bool need_put = !!rbd_dev->opts;
5334 
5335 	if (need_put) {
5336 		destroy_workqueue(rbd_dev->task_wq);
5337 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5338 	}
5339 
5340 	rbd_dev_free(rbd_dev);
5341 
5342 	/*
5343 	 * This is racy, but way better than putting module outside of
5344 	 * the release callback.  The race window is pretty small, so
5345 	 * doing something similar to dm (dm-builtin.c) is overkill.
5346 	 */
5347 	if (need_put)
5348 		module_put(THIS_MODULE);
5349 }
5350 
5351 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5352 					   struct rbd_spec *spec)
5353 {
5354 	struct rbd_device *rbd_dev;
5355 
5356 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5357 	if (!rbd_dev)
5358 		return NULL;
5359 
5360 	spin_lock_init(&rbd_dev->lock);
5361 	INIT_LIST_HEAD(&rbd_dev->node);
5362 	init_rwsem(&rbd_dev->header_rwsem);
5363 
5364 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5365 	ceph_oid_init(&rbd_dev->header_oid);
5366 	rbd_dev->header_oloc.pool = spec->pool_id;
5367 	if (spec->pool_ns) {
5368 		WARN_ON(!*spec->pool_ns);
5369 		rbd_dev->header_oloc.pool_ns =
5370 		    ceph_find_or_create_string(spec->pool_ns,
5371 					       strlen(spec->pool_ns));
5372 	}
5373 
5374 	mutex_init(&rbd_dev->watch_mutex);
5375 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5376 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5377 
5378 	init_rwsem(&rbd_dev->lock_rwsem);
5379 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5380 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5381 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5382 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5383 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5384 	spin_lock_init(&rbd_dev->lock_lists_lock);
5385 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5386 	INIT_LIST_HEAD(&rbd_dev->running_list);
5387 	init_completion(&rbd_dev->acquire_wait);
5388 	init_completion(&rbd_dev->releasing_wait);
5389 
5390 	spin_lock_init(&rbd_dev->object_map_lock);
5391 
5392 	rbd_dev->dev.bus = &rbd_bus_type;
5393 	rbd_dev->dev.type = &rbd_device_type;
5394 	rbd_dev->dev.parent = &rbd_root_dev;
5395 	device_initialize(&rbd_dev->dev);
5396 
5397 	rbd_dev->rbd_client = rbdc;
5398 	rbd_dev->spec = spec;
5399 
5400 	return rbd_dev;
5401 }
5402 
5403 /*
5404  * Create a mapping rbd_dev.
5405  */
5406 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5407 					 struct rbd_spec *spec,
5408 					 struct rbd_options *opts)
5409 {
5410 	struct rbd_device *rbd_dev;
5411 
5412 	rbd_dev = __rbd_dev_create(rbdc, spec);
5413 	if (!rbd_dev)
5414 		return NULL;
5415 
5416 	rbd_dev->opts = opts;
5417 
5418 	/* get an id and fill in device name */
5419 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5420 					 minor_to_rbd_dev_id(1 << MINORBITS),
5421 					 GFP_KERNEL);
5422 	if (rbd_dev->dev_id < 0)
5423 		goto fail_rbd_dev;
5424 
5425 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5426 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5427 						   rbd_dev->name);
5428 	if (!rbd_dev->task_wq)
5429 		goto fail_dev_id;
5430 
5431 	/* we have a ref from do_rbd_add() */
5432 	__module_get(THIS_MODULE);
5433 
5434 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5435 	return rbd_dev;
5436 
5437 fail_dev_id:
5438 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5439 fail_rbd_dev:
5440 	rbd_dev_free(rbd_dev);
5441 	return NULL;
5442 }
5443 
5444 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5445 {
5446 	if (rbd_dev)
5447 		put_device(&rbd_dev->dev);
5448 }
5449 
5450 /*
5451  * Get the size and object order for an image snapshot, or if
5452  * snap_id is CEPH_NOSNAP, gets this information for the base
5453  * image.
5454  */
5455 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5456 				u8 *order, u64 *snap_size)
5457 {
5458 	__le64 snapid = cpu_to_le64(snap_id);
5459 	int ret;
5460 	struct {
5461 		u8 order;
5462 		__le64 size;
5463 	} __attribute__ ((packed)) size_buf = { 0 };
5464 
5465 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5466 				  &rbd_dev->header_oloc, "get_size",
5467 				  &snapid, sizeof(snapid),
5468 				  &size_buf, sizeof(size_buf));
5469 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5470 	if (ret < 0)
5471 		return ret;
5472 	if (ret < sizeof (size_buf))
5473 		return -ERANGE;
5474 
5475 	if (order) {
5476 		*order = size_buf.order;
5477 		dout("  order %u", (unsigned int)*order);
5478 	}
5479 	*snap_size = le64_to_cpu(size_buf.size);
5480 
5481 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5482 		(unsigned long long)snap_id,
5483 		(unsigned long long)*snap_size);
5484 
5485 	return 0;
5486 }
5487 
5488 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5489 {
5490 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5491 					&rbd_dev->header.obj_order,
5492 					&rbd_dev->header.image_size);
5493 }
5494 
5495 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5496 {
5497 	size_t size;
5498 	void *reply_buf;
5499 	int ret;
5500 	void *p;
5501 
5502 	/* Response will be an encoded string, which includes a length */
5503 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5504 	reply_buf = kzalloc(size, GFP_KERNEL);
5505 	if (!reply_buf)
5506 		return -ENOMEM;
5507 
5508 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5509 				  &rbd_dev->header_oloc, "get_object_prefix",
5510 				  NULL, 0, reply_buf, size);
5511 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5512 	if (ret < 0)
5513 		goto out;
5514 
5515 	p = reply_buf;
5516 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5517 						p + ret, NULL, GFP_NOIO);
5518 	ret = 0;
5519 
5520 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5521 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5522 		rbd_dev->header.object_prefix = NULL;
5523 	} else {
5524 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5525 	}
5526 out:
5527 	kfree(reply_buf);
5528 
5529 	return ret;
5530 }
5531 
5532 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5533 				     bool read_only, u64 *snap_features)
5534 {
5535 	struct {
5536 		__le64 snap_id;
5537 		u8 read_only;
5538 	} features_in;
5539 	struct {
5540 		__le64 features;
5541 		__le64 incompat;
5542 	} __attribute__ ((packed)) features_buf = { 0 };
5543 	u64 unsup;
5544 	int ret;
5545 
5546 	features_in.snap_id = cpu_to_le64(snap_id);
5547 	features_in.read_only = read_only;
5548 
5549 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5550 				  &rbd_dev->header_oloc, "get_features",
5551 				  &features_in, sizeof(features_in),
5552 				  &features_buf, sizeof(features_buf));
5553 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5554 	if (ret < 0)
5555 		return ret;
5556 	if (ret < sizeof (features_buf))
5557 		return -ERANGE;
5558 
5559 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5560 	if (unsup) {
5561 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5562 			 unsup);
5563 		return -ENXIO;
5564 	}
5565 
5566 	*snap_features = le64_to_cpu(features_buf.features);
5567 
5568 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5569 		(unsigned long long)snap_id,
5570 		(unsigned long long)*snap_features,
5571 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5572 
5573 	return 0;
5574 }
5575 
5576 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5577 {
5578 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5579 					 rbd_is_ro(rbd_dev),
5580 					 &rbd_dev->header.features);
5581 }
5582 
5583 /*
5584  * These are generic image flags, but since they are used only for
5585  * object map, store them in rbd_dev->object_map_flags.
5586  *
5587  * For the same reason, this function is called only on object map
5588  * (re)load and not on header refresh.
5589  */
5590 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5591 {
5592 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5593 	__le64 flags;
5594 	int ret;
5595 
5596 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5597 				  &rbd_dev->header_oloc, "get_flags",
5598 				  &snapid, sizeof(snapid),
5599 				  &flags, sizeof(flags));
5600 	if (ret < 0)
5601 		return ret;
5602 	if (ret < sizeof(flags))
5603 		return -EBADMSG;
5604 
5605 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5606 	return 0;
5607 }
5608 
5609 struct parent_image_info {
5610 	u64		pool_id;
5611 	const char	*pool_ns;
5612 	const char	*image_id;
5613 	u64		snap_id;
5614 
5615 	bool		has_overlap;
5616 	u64		overlap;
5617 };
5618 
5619 /*
5620  * The caller is responsible for @pii.
5621  */
5622 static int decode_parent_image_spec(void **p, void *end,
5623 				    struct parent_image_info *pii)
5624 {
5625 	u8 struct_v;
5626 	u32 struct_len;
5627 	int ret;
5628 
5629 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5630 				  &struct_v, &struct_len);
5631 	if (ret)
5632 		return ret;
5633 
5634 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5635 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5636 	if (IS_ERR(pii->pool_ns)) {
5637 		ret = PTR_ERR(pii->pool_ns);
5638 		pii->pool_ns = NULL;
5639 		return ret;
5640 	}
5641 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5642 	if (IS_ERR(pii->image_id)) {
5643 		ret = PTR_ERR(pii->image_id);
5644 		pii->image_id = NULL;
5645 		return ret;
5646 	}
5647 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5648 	return 0;
5649 
5650 e_inval:
5651 	return -EINVAL;
5652 }
5653 
5654 static int __get_parent_info(struct rbd_device *rbd_dev,
5655 			     struct page *req_page,
5656 			     struct page *reply_page,
5657 			     struct parent_image_info *pii)
5658 {
5659 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5660 	size_t reply_len = PAGE_SIZE;
5661 	void *p, *end;
5662 	int ret;
5663 
5664 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5665 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5666 			     req_page, sizeof(u64), &reply_page, &reply_len);
5667 	if (ret)
5668 		return ret == -EOPNOTSUPP ? 1 : ret;
5669 
5670 	p = page_address(reply_page);
5671 	end = p + reply_len;
5672 	ret = decode_parent_image_spec(&p, end, pii);
5673 	if (ret)
5674 		return ret;
5675 
5676 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5677 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5678 			     req_page, sizeof(u64), &reply_page, &reply_len);
5679 	if (ret)
5680 		return ret;
5681 
5682 	p = page_address(reply_page);
5683 	end = p + reply_len;
5684 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5685 	if (pii->has_overlap)
5686 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5687 
5688 	return 0;
5689 
5690 e_inval:
5691 	return -EINVAL;
5692 }
5693 
5694 /*
5695  * The caller is responsible for @pii.
5696  */
5697 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5698 				    struct page *req_page,
5699 				    struct page *reply_page,
5700 				    struct parent_image_info *pii)
5701 {
5702 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5703 	size_t reply_len = PAGE_SIZE;
5704 	void *p, *end;
5705 	int ret;
5706 
5707 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5708 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5709 			     req_page, sizeof(u64), &reply_page, &reply_len);
5710 	if (ret)
5711 		return ret;
5712 
5713 	p = page_address(reply_page);
5714 	end = p + reply_len;
5715 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5716 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5717 	if (IS_ERR(pii->image_id)) {
5718 		ret = PTR_ERR(pii->image_id);
5719 		pii->image_id = NULL;
5720 		return ret;
5721 	}
5722 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5723 	pii->has_overlap = true;
5724 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5725 
5726 	return 0;
5727 
5728 e_inval:
5729 	return -EINVAL;
5730 }
5731 
5732 static int get_parent_info(struct rbd_device *rbd_dev,
5733 			   struct parent_image_info *pii)
5734 {
5735 	struct page *req_page, *reply_page;
5736 	void *p;
5737 	int ret;
5738 
5739 	req_page = alloc_page(GFP_KERNEL);
5740 	if (!req_page)
5741 		return -ENOMEM;
5742 
5743 	reply_page = alloc_page(GFP_KERNEL);
5744 	if (!reply_page) {
5745 		__free_page(req_page);
5746 		return -ENOMEM;
5747 	}
5748 
5749 	p = page_address(req_page);
5750 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5751 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5752 	if (ret > 0)
5753 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5754 					       pii);
5755 
5756 	__free_page(req_page);
5757 	__free_page(reply_page);
5758 	return ret;
5759 }
5760 
5761 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5762 {
5763 	struct rbd_spec *parent_spec;
5764 	struct parent_image_info pii = { 0 };
5765 	int ret;
5766 
5767 	parent_spec = rbd_spec_alloc();
5768 	if (!parent_spec)
5769 		return -ENOMEM;
5770 
5771 	ret = get_parent_info(rbd_dev, &pii);
5772 	if (ret)
5773 		goto out_err;
5774 
5775 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5776 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5777 	     pii.has_overlap, pii.overlap);
5778 
5779 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5780 		/*
5781 		 * Either the parent never existed, or we have
5782 		 * record of it but the image got flattened so it no
5783 		 * longer has a parent.  When the parent of a
5784 		 * layered image disappears we immediately set the
5785 		 * overlap to 0.  The effect of this is that all new
5786 		 * requests will be treated as if the image had no
5787 		 * parent.
5788 		 *
5789 		 * If !pii.has_overlap, the parent image spec is not
5790 		 * applicable.  It's there to avoid duplication in each
5791 		 * snapshot record.
5792 		 */
5793 		if (rbd_dev->parent_overlap) {
5794 			rbd_dev->parent_overlap = 0;
5795 			rbd_dev_parent_put(rbd_dev);
5796 			pr_info("%s: clone image has been flattened\n",
5797 				rbd_dev->disk->disk_name);
5798 		}
5799 
5800 		goto out;	/* No parent?  No problem. */
5801 	}
5802 
5803 	/* The ceph file layout needs to fit pool id in 32 bits */
5804 
5805 	ret = -EIO;
5806 	if (pii.pool_id > (u64)U32_MAX) {
5807 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5808 			(unsigned long long)pii.pool_id, U32_MAX);
5809 		goto out_err;
5810 	}
5811 
5812 	/*
5813 	 * The parent won't change (except when the clone is
5814 	 * flattened, already handled that).  So we only need to
5815 	 * record the parent spec we have not already done so.
5816 	 */
5817 	if (!rbd_dev->parent_spec) {
5818 		parent_spec->pool_id = pii.pool_id;
5819 		if (pii.pool_ns && *pii.pool_ns) {
5820 			parent_spec->pool_ns = pii.pool_ns;
5821 			pii.pool_ns = NULL;
5822 		}
5823 		parent_spec->image_id = pii.image_id;
5824 		pii.image_id = NULL;
5825 		parent_spec->snap_id = pii.snap_id;
5826 
5827 		rbd_dev->parent_spec = parent_spec;
5828 		parent_spec = NULL;	/* rbd_dev now owns this */
5829 	}
5830 
5831 	/*
5832 	 * We always update the parent overlap.  If it's zero we issue
5833 	 * a warning, as we will proceed as if there was no parent.
5834 	 */
5835 	if (!pii.overlap) {
5836 		if (parent_spec) {
5837 			/* refresh, careful to warn just once */
5838 			if (rbd_dev->parent_overlap)
5839 				rbd_warn(rbd_dev,
5840 				    "clone now standalone (overlap became 0)");
5841 		} else {
5842 			/* initial probe */
5843 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5844 		}
5845 	}
5846 	rbd_dev->parent_overlap = pii.overlap;
5847 
5848 out:
5849 	ret = 0;
5850 out_err:
5851 	kfree(pii.pool_ns);
5852 	kfree(pii.image_id);
5853 	rbd_spec_put(parent_spec);
5854 	return ret;
5855 }
5856 
5857 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5858 {
5859 	struct {
5860 		__le64 stripe_unit;
5861 		__le64 stripe_count;
5862 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5863 	size_t size = sizeof (striping_info_buf);
5864 	void *p;
5865 	int ret;
5866 
5867 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5868 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5869 				NULL, 0, &striping_info_buf, size);
5870 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5871 	if (ret < 0)
5872 		return ret;
5873 	if (ret < size)
5874 		return -ERANGE;
5875 
5876 	p = &striping_info_buf;
5877 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5878 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5879 	return 0;
5880 }
5881 
5882 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5883 {
5884 	__le64 data_pool_id;
5885 	int ret;
5886 
5887 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5888 				  &rbd_dev->header_oloc, "get_data_pool",
5889 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5890 	if (ret < 0)
5891 		return ret;
5892 	if (ret < sizeof(data_pool_id))
5893 		return -EBADMSG;
5894 
5895 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5896 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5897 	return 0;
5898 }
5899 
5900 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5901 {
5902 	CEPH_DEFINE_OID_ONSTACK(oid);
5903 	size_t image_id_size;
5904 	char *image_id;
5905 	void *p;
5906 	void *end;
5907 	size_t size;
5908 	void *reply_buf = NULL;
5909 	size_t len = 0;
5910 	char *image_name = NULL;
5911 	int ret;
5912 
5913 	rbd_assert(!rbd_dev->spec->image_name);
5914 
5915 	len = strlen(rbd_dev->spec->image_id);
5916 	image_id_size = sizeof (__le32) + len;
5917 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5918 	if (!image_id)
5919 		return NULL;
5920 
5921 	p = image_id;
5922 	end = image_id + image_id_size;
5923 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5924 
5925 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5926 	reply_buf = kmalloc(size, GFP_KERNEL);
5927 	if (!reply_buf)
5928 		goto out;
5929 
5930 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5931 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5932 				  "dir_get_name", image_id, image_id_size,
5933 				  reply_buf, size);
5934 	if (ret < 0)
5935 		goto out;
5936 	p = reply_buf;
5937 	end = reply_buf + ret;
5938 
5939 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5940 	if (IS_ERR(image_name))
5941 		image_name = NULL;
5942 	else
5943 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5944 out:
5945 	kfree(reply_buf);
5946 	kfree(image_id);
5947 
5948 	return image_name;
5949 }
5950 
5951 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5952 {
5953 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5954 	const char *snap_name;
5955 	u32 which = 0;
5956 
5957 	/* Skip over names until we find the one we are looking for */
5958 
5959 	snap_name = rbd_dev->header.snap_names;
5960 	while (which < snapc->num_snaps) {
5961 		if (!strcmp(name, snap_name))
5962 			return snapc->snaps[which];
5963 		snap_name += strlen(snap_name) + 1;
5964 		which++;
5965 	}
5966 	return CEPH_NOSNAP;
5967 }
5968 
5969 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5970 {
5971 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5972 	u32 which;
5973 	bool found = false;
5974 	u64 snap_id;
5975 
5976 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5977 		const char *snap_name;
5978 
5979 		snap_id = snapc->snaps[which];
5980 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5981 		if (IS_ERR(snap_name)) {
5982 			/* ignore no-longer existing snapshots */
5983 			if (PTR_ERR(snap_name) == -ENOENT)
5984 				continue;
5985 			else
5986 				break;
5987 		}
5988 		found = !strcmp(name, snap_name);
5989 		kfree(snap_name);
5990 	}
5991 	return found ? snap_id : CEPH_NOSNAP;
5992 }
5993 
5994 /*
5995  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5996  * no snapshot by that name is found, or if an error occurs.
5997  */
5998 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5999 {
6000 	if (rbd_dev->image_format == 1)
6001 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6002 
6003 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6004 }
6005 
6006 /*
6007  * An image being mapped will have everything but the snap id.
6008  */
6009 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6010 {
6011 	struct rbd_spec *spec = rbd_dev->spec;
6012 
6013 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6014 	rbd_assert(spec->image_id && spec->image_name);
6015 	rbd_assert(spec->snap_name);
6016 
6017 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6018 		u64 snap_id;
6019 
6020 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6021 		if (snap_id == CEPH_NOSNAP)
6022 			return -ENOENT;
6023 
6024 		spec->snap_id = snap_id;
6025 	} else {
6026 		spec->snap_id = CEPH_NOSNAP;
6027 	}
6028 
6029 	return 0;
6030 }
6031 
6032 /*
6033  * A parent image will have all ids but none of the names.
6034  *
6035  * All names in an rbd spec are dynamically allocated.  It's OK if we
6036  * can't figure out the name for an image id.
6037  */
6038 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6039 {
6040 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6041 	struct rbd_spec *spec = rbd_dev->spec;
6042 	const char *pool_name;
6043 	const char *image_name;
6044 	const char *snap_name;
6045 	int ret;
6046 
6047 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6048 	rbd_assert(spec->image_id);
6049 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6050 
6051 	/* Get the pool name; we have to make our own copy of this */
6052 
6053 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6054 	if (!pool_name) {
6055 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6056 		return -EIO;
6057 	}
6058 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6059 	if (!pool_name)
6060 		return -ENOMEM;
6061 
6062 	/* Fetch the image name; tolerate failure here */
6063 
6064 	image_name = rbd_dev_image_name(rbd_dev);
6065 	if (!image_name)
6066 		rbd_warn(rbd_dev, "unable to get image name");
6067 
6068 	/* Fetch the snapshot name */
6069 
6070 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6071 	if (IS_ERR(snap_name)) {
6072 		ret = PTR_ERR(snap_name);
6073 		goto out_err;
6074 	}
6075 
6076 	spec->pool_name = pool_name;
6077 	spec->image_name = image_name;
6078 	spec->snap_name = snap_name;
6079 
6080 	return 0;
6081 
6082 out_err:
6083 	kfree(image_name);
6084 	kfree(pool_name);
6085 	return ret;
6086 }
6087 
6088 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6089 {
6090 	size_t size;
6091 	int ret;
6092 	void *reply_buf;
6093 	void *p;
6094 	void *end;
6095 	u64 seq;
6096 	u32 snap_count;
6097 	struct ceph_snap_context *snapc;
6098 	u32 i;
6099 
6100 	/*
6101 	 * We'll need room for the seq value (maximum snapshot id),
6102 	 * snapshot count, and array of that many snapshot ids.
6103 	 * For now we have a fixed upper limit on the number we're
6104 	 * prepared to receive.
6105 	 */
6106 	size = sizeof (__le64) + sizeof (__le32) +
6107 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6108 	reply_buf = kzalloc(size, GFP_KERNEL);
6109 	if (!reply_buf)
6110 		return -ENOMEM;
6111 
6112 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6113 				  &rbd_dev->header_oloc, "get_snapcontext",
6114 				  NULL, 0, reply_buf, size);
6115 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6116 	if (ret < 0)
6117 		goto out;
6118 
6119 	p = reply_buf;
6120 	end = reply_buf + ret;
6121 	ret = -ERANGE;
6122 	ceph_decode_64_safe(&p, end, seq, out);
6123 	ceph_decode_32_safe(&p, end, snap_count, out);
6124 
6125 	/*
6126 	 * Make sure the reported number of snapshot ids wouldn't go
6127 	 * beyond the end of our buffer.  But before checking that,
6128 	 * make sure the computed size of the snapshot context we
6129 	 * allocate is representable in a size_t.
6130 	 */
6131 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6132 				 / sizeof (u64)) {
6133 		ret = -EINVAL;
6134 		goto out;
6135 	}
6136 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6137 		goto out;
6138 	ret = 0;
6139 
6140 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6141 	if (!snapc) {
6142 		ret = -ENOMEM;
6143 		goto out;
6144 	}
6145 	snapc->seq = seq;
6146 	for (i = 0; i < snap_count; i++)
6147 		snapc->snaps[i] = ceph_decode_64(&p);
6148 
6149 	ceph_put_snap_context(rbd_dev->header.snapc);
6150 	rbd_dev->header.snapc = snapc;
6151 
6152 	dout("  snap context seq = %llu, snap_count = %u\n",
6153 		(unsigned long long)seq, (unsigned int)snap_count);
6154 out:
6155 	kfree(reply_buf);
6156 
6157 	return ret;
6158 }
6159 
6160 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6161 					u64 snap_id)
6162 {
6163 	size_t size;
6164 	void *reply_buf;
6165 	__le64 snapid;
6166 	int ret;
6167 	void *p;
6168 	void *end;
6169 	char *snap_name;
6170 
6171 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6172 	reply_buf = kmalloc(size, GFP_KERNEL);
6173 	if (!reply_buf)
6174 		return ERR_PTR(-ENOMEM);
6175 
6176 	snapid = cpu_to_le64(snap_id);
6177 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6178 				  &rbd_dev->header_oloc, "get_snapshot_name",
6179 				  &snapid, sizeof(snapid), reply_buf, size);
6180 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6181 	if (ret < 0) {
6182 		snap_name = ERR_PTR(ret);
6183 		goto out;
6184 	}
6185 
6186 	p = reply_buf;
6187 	end = reply_buf + ret;
6188 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6189 	if (IS_ERR(snap_name))
6190 		goto out;
6191 
6192 	dout("  snap_id 0x%016llx snap_name = %s\n",
6193 		(unsigned long long)snap_id, snap_name);
6194 out:
6195 	kfree(reply_buf);
6196 
6197 	return snap_name;
6198 }
6199 
6200 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6201 {
6202 	bool first_time = rbd_dev->header.object_prefix == NULL;
6203 	int ret;
6204 
6205 	ret = rbd_dev_v2_image_size(rbd_dev);
6206 	if (ret)
6207 		return ret;
6208 
6209 	if (first_time) {
6210 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6211 		if (ret)
6212 			return ret;
6213 	}
6214 
6215 	ret = rbd_dev_v2_snap_context(rbd_dev);
6216 	if (ret && first_time) {
6217 		kfree(rbd_dev->header.object_prefix);
6218 		rbd_dev->header.object_prefix = NULL;
6219 	}
6220 
6221 	return ret;
6222 }
6223 
6224 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6225 {
6226 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6227 
6228 	if (rbd_dev->image_format == 1)
6229 		return rbd_dev_v1_header_info(rbd_dev);
6230 
6231 	return rbd_dev_v2_header_info(rbd_dev);
6232 }
6233 
6234 /*
6235  * Skips over white space at *buf, and updates *buf to point to the
6236  * first found non-space character (if any). Returns the length of
6237  * the token (string of non-white space characters) found.  Note
6238  * that *buf must be terminated with '\0'.
6239  */
6240 static inline size_t next_token(const char **buf)
6241 {
6242         /*
6243         * These are the characters that produce nonzero for
6244         * isspace() in the "C" and "POSIX" locales.
6245         */
6246         const char *spaces = " \f\n\r\t\v";
6247 
6248         *buf += strspn(*buf, spaces);	/* Find start of token */
6249 
6250 	return strcspn(*buf, spaces);   /* Return token length */
6251 }
6252 
6253 /*
6254  * Finds the next token in *buf, dynamically allocates a buffer big
6255  * enough to hold a copy of it, and copies the token into the new
6256  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6257  * that a duplicate buffer is created even for a zero-length token.
6258  *
6259  * Returns a pointer to the newly-allocated duplicate, or a null
6260  * pointer if memory for the duplicate was not available.  If
6261  * the lenp argument is a non-null pointer, the length of the token
6262  * (not including the '\0') is returned in *lenp.
6263  *
6264  * If successful, the *buf pointer will be updated to point beyond
6265  * the end of the found token.
6266  *
6267  * Note: uses GFP_KERNEL for allocation.
6268  */
6269 static inline char *dup_token(const char **buf, size_t *lenp)
6270 {
6271 	char *dup;
6272 	size_t len;
6273 
6274 	len = next_token(buf);
6275 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6276 	if (!dup)
6277 		return NULL;
6278 	*(dup + len) = '\0';
6279 	*buf += len;
6280 
6281 	if (lenp)
6282 		*lenp = len;
6283 
6284 	return dup;
6285 }
6286 
6287 static int rbd_parse_param(struct fs_parameter *param,
6288 			    struct rbd_parse_opts_ctx *pctx)
6289 {
6290 	struct rbd_options *opt = pctx->opts;
6291 	struct fs_parse_result result;
6292 	struct p_log log = {.prefix = "rbd"};
6293 	int token, ret;
6294 
6295 	ret = ceph_parse_param(param, pctx->copts, NULL);
6296 	if (ret != -ENOPARAM)
6297 		return ret;
6298 
6299 	token = __fs_parse(&log, rbd_parameters, param, &result);
6300 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6301 	if (token < 0) {
6302 		if (token == -ENOPARAM)
6303 			return inval_plog(&log, "Unknown parameter '%s'",
6304 					  param->key);
6305 		return token;
6306 	}
6307 
6308 	switch (token) {
6309 	case Opt_queue_depth:
6310 		if (result.uint_32 < 1)
6311 			goto out_of_range;
6312 		opt->queue_depth = result.uint_32;
6313 		break;
6314 	case Opt_alloc_size:
6315 		if (result.uint_32 < SECTOR_SIZE)
6316 			goto out_of_range;
6317 		if (!is_power_of_2(result.uint_32))
6318 			return inval_plog(&log, "alloc_size must be a power of 2");
6319 		opt->alloc_size = result.uint_32;
6320 		break;
6321 	case Opt_lock_timeout:
6322 		/* 0 is "wait forever" (i.e. infinite timeout) */
6323 		if (result.uint_32 > INT_MAX / 1000)
6324 			goto out_of_range;
6325 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6326 		break;
6327 	case Opt_pool_ns:
6328 		kfree(pctx->spec->pool_ns);
6329 		pctx->spec->pool_ns = param->string;
6330 		param->string = NULL;
6331 		break;
6332 	case Opt_compression_hint:
6333 		switch (result.uint_32) {
6334 		case Opt_compression_hint_none:
6335 			opt->alloc_hint_flags &=
6336 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6337 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6338 			break;
6339 		case Opt_compression_hint_compressible:
6340 			opt->alloc_hint_flags |=
6341 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6342 			opt->alloc_hint_flags &=
6343 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6344 			break;
6345 		case Opt_compression_hint_incompressible:
6346 			opt->alloc_hint_flags |=
6347 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6348 			opt->alloc_hint_flags &=
6349 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6350 			break;
6351 		default:
6352 			BUG();
6353 		}
6354 		break;
6355 	case Opt_read_only:
6356 		opt->read_only = true;
6357 		break;
6358 	case Opt_read_write:
6359 		opt->read_only = false;
6360 		break;
6361 	case Opt_lock_on_read:
6362 		opt->lock_on_read = true;
6363 		break;
6364 	case Opt_exclusive:
6365 		opt->exclusive = true;
6366 		break;
6367 	case Opt_notrim:
6368 		opt->trim = false;
6369 		break;
6370 	default:
6371 		BUG();
6372 	}
6373 
6374 	return 0;
6375 
6376 out_of_range:
6377 	return inval_plog(&log, "%s out of range", param->key);
6378 }
6379 
6380 /*
6381  * This duplicates most of generic_parse_monolithic(), untying it from
6382  * fs_context and skipping standard superblock and security options.
6383  */
6384 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6385 {
6386 	char *key;
6387 	int ret = 0;
6388 
6389 	dout("%s '%s'\n", __func__, options);
6390 	while ((key = strsep(&options, ",")) != NULL) {
6391 		if (*key) {
6392 			struct fs_parameter param = {
6393 				.key	= key,
6394 				.type	= fs_value_is_flag,
6395 			};
6396 			char *value = strchr(key, '=');
6397 			size_t v_len = 0;
6398 
6399 			if (value) {
6400 				if (value == key)
6401 					continue;
6402 				*value++ = 0;
6403 				v_len = strlen(value);
6404 				param.string = kmemdup_nul(value, v_len,
6405 							   GFP_KERNEL);
6406 				if (!param.string)
6407 					return -ENOMEM;
6408 				param.type = fs_value_is_string;
6409 			}
6410 			param.size = v_len;
6411 
6412 			ret = rbd_parse_param(&param, pctx);
6413 			kfree(param.string);
6414 			if (ret)
6415 				break;
6416 		}
6417 	}
6418 
6419 	return ret;
6420 }
6421 
6422 /*
6423  * Parse the options provided for an "rbd add" (i.e., rbd image
6424  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6425  * and the data written is passed here via a NUL-terminated buffer.
6426  * Returns 0 if successful or an error code otherwise.
6427  *
6428  * The information extracted from these options is recorded in
6429  * the other parameters which return dynamically-allocated
6430  * structures:
6431  *  ceph_opts
6432  *      The address of a pointer that will refer to a ceph options
6433  *      structure.  Caller must release the returned pointer using
6434  *      ceph_destroy_options() when it is no longer needed.
6435  *  rbd_opts
6436  *	Address of an rbd options pointer.  Fully initialized by
6437  *	this function; caller must release with kfree().
6438  *  spec
6439  *	Address of an rbd image specification pointer.  Fully
6440  *	initialized by this function based on parsed options.
6441  *	Caller must release with rbd_spec_put().
6442  *
6443  * The options passed take this form:
6444  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6445  * where:
6446  *  <mon_addrs>
6447  *      A comma-separated list of one or more monitor addresses.
6448  *      A monitor address is an ip address, optionally followed
6449  *      by a port number (separated by a colon).
6450  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6451  *  <options>
6452  *      A comma-separated list of ceph and/or rbd options.
6453  *  <pool_name>
6454  *      The name of the rados pool containing the rbd image.
6455  *  <image_name>
6456  *      The name of the image in that pool to map.
6457  *  <snap_id>
6458  *      An optional snapshot id.  If provided, the mapping will
6459  *      present data from the image at the time that snapshot was
6460  *      created.  The image head is used if no snapshot id is
6461  *      provided.  Snapshot mappings are always read-only.
6462  */
6463 static int rbd_add_parse_args(const char *buf,
6464 				struct ceph_options **ceph_opts,
6465 				struct rbd_options **opts,
6466 				struct rbd_spec **rbd_spec)
6467 {
6468 	size_t len;
6469 	char *options;
6470 	const char *mon_addrs;
6471 	char *snap_name;
6472 	size_t mon_addrs_size;
6473 	struct rbd_parse_opts_ctx pctx = { 0 };
6474 	int ret;
6475 
6476 	/* The first four tokens are required */
6477 
6478 	len = next_token(&buf);
6479 	if (!len) {
6480 		rbd_warn(NULL, "no monitor address(es) provided");
6481 		return -EINVAL;
6482 	}
6483 	mon_addrs = buf;
6484 	mon_addrs_size = len;
6485 	buf += len;
6486 
6487 	ret = -EINVAL;
6488 	options = dup_token(&buf, NULL);
6489 	if (!options)
6490 		return -ENOMEM;
6491 	if (!*options) {
6492 		rbd_warn(NULL, "no options provided");
6493 		goto out_err;
6494 	}
6495 
6496 	pctx.spec = rbd_spec_alloc();
6497 	if (!pctx.spec)
6498 		goto out_mem;
6499 
6500 	pctx.spec->pool_name = dup_token(&buf, NULL);
6501 	if (!pctx.spec->pool_name)
6502 		goto out_mem;
6503 	if (!*pctx.spec->pool_name) {
6504 		rbd_warn(NULL, "no pool name provided");
6505 		goto out_err;
6506 	}
6507 
6508 	pctx.spec->image_name = dup_token(&buf, NULL);
6509 	if (!pctx.spec->image_name)
6510 		goto out_mem;
6511 	if (!*pctx.spec->image_name) {
6512 		rbd_warn(NULL, "no image name provided");
6513 		goto out_err;
6514 	}
6515 
6516 	/*
6517 	 * Snapshot name is optional; default is to use "-"
6518 	 * (indicating the head/no snapshot).
6519 	 */
6520 	len = next_token(&buf);
6521 	if (!len) {
6522 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6523 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6524 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6525 		ret = -ENAMETOOLONG;
6526 		goto out_err;
6527 	}
6528 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6529 	if (!snap_name)
6530 		goto out_mem;
6531 	*(snap_name + len) = '\0';
6532 	pctx.spec->snap_name = snap_name;
6533 
6534 	pctx.copts = ceph_alloc_options();
6535 	if (!pctx.copts)
6536 		goto out_mem;
6537 
6538 	/* Initialize all rbd options to the defaults */
6539 
6540 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6541 	if (!pctx.opts)
6542 		goto out_mem;
6543 
6544 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6545 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6546 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6547 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6548 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6549 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6550 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6551 
6552 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6553 	if (ret)
6554 		goto out_err;
6555 
6556 	ret = rbd_parse_options(options, &pctx);
6557 	if (ret)
6558 		goto out_err;
6559 
6560 	*ceph_opts = pctx.copts;
6561 	*opts = pctx.opts;
6562 	*rbd_spec = pctx.spec;
6563 	kfree(options);
6564 	return 0;
6565 
6566 out_mem:
6567 	ret = -ENOMEM;
6568 out_err:
6569 	kfree(pctx.opts);
6570 	ceph_destroy_options(pctx.copts);
6571 	rbd_spec_put(pctx.spec);
6572 	kfree(options);
6573 	return ret;
6574 }
6575 
6576 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6577 {
6578 	down_write(&rbd_dev->lock_rwsem);
6579 	if (__rbd_is_lock_owner(rbd_dev))
6580 		__rbd_release_lock(rbd_dev);
6581 	up_write(&rbd_dev->lock_rwsem);
6582 }
6583 
6584 /*
6585  * If the wait is interrupted, an error is returned even if the lock
6586  * was successfully acquired.  rbd_dev_image_unlock() will release it
6587  * if needed.
6588  */
6589 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6590 {
6591 	long ret;
6592 
6593 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6594 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6595 			return 0;
6596 
6597 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6598 		return -EINVAL;
6599 	}
6600 
6601 	if (rbd_is_ro(rbd_dev))
6602 		return 0;
6603 
6604 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6605 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6606 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6607 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6608 	if (ret > 0) {
6609 		ret = rbd_dev->acquire_err;
6610 	} else {
6611 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6612 		if (!ret)
6613 			ret = -ETIMEDOUT;
6614 	}
6615 
6616 	if (ret) {
6617 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6618 		return ret;
6619 	}
6620 
6621 	/*
6622 	 * The lock may have been released by now, unless automatic lock
6623 	 * transitions are disabled.
6624 	 */
6625 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6626 	return 0;
6627 }
6628 
6629 /*
6630  * An rbd format 2 image has a unique identifier, distinct from the
6631  * name given to it by the user.  Internally, that identifier is
6632  * what's used to specify the names of objects related to the image.
6633  *
6634  * A special "rbd id" object is used to map an rbd image name to its
6635  * id.  If that object doesn't exist, then there is no v2 rbd image
6636  * with the supplied name.
6637  *
6638  * This function will record the given rbd_dev's image_id field if
6639  * it can be determined, and in that case will return 0.  If any
6640  * errors occur a negative errno will be returned and the rbd_dev's
6641  * image_id field will be unchanged (and should be NULL).
6642  */
6643 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6644 {
6645 	int ret;
6646 	size_t size;
6647 	CEPH_DEFINE_OID_ONSTACK(oid);
6648 	void *response;
6649 	char *image_id;
6650 
6651 	/*
6652 	 * When probing a parent image, the image id is already
6653 	 * known (and the image name likely is not).  There's no
6654 	 * need to fetch the image id again in this case.  We
6655 	 * do still need to set the image format though.
6656 	 */
6657 	if (rbd_dev->spec->image_id) {
6658 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6659 
6660 		return 0;
6661 	}
6662 
6663 	/*
6664 	 * First, see if the format 2 image id file exists, and if
6665 	 * so, get the image's persistent id from it.
6666 	 */
6667 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6668 			       rbd_dev->spec->image_name);
6669 	if (ret)
6670 		return ret;
6671 
6672 	dout("rbd id object name is %s\n", oid.name);
6673 
6674 	/* Response will be an encoded string, which includes a length */
6675 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6676 	response = kzalloc(size, GFP_NOIO);
6677 	if (!response) {
6678 		ret = -ENOMEM;
6679 		goto out;
6680 	}
6681 
6682 	/* If it doesn't exist we'll assume it's a format 1 image */
6683 
6684 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6685 				  "get_id", NULL, 0,
6686 				  response, size);
6687 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6688 	if (ret == -ENOENT) {
6689 		image_id = kstrdup("", GFP_KERNEL);
6690 		ret = image_id ? 0 : -ENOMEM;
6691 		if (!ret)
6692 			rbd_dev->image_format = 1;
6693 	} else if (ret >= 0) {
6694 		void *p = response;
6695 
6696 		image_id = ceph_extract_encoded_string(&p, p + ret,
6697 						NULL, GFP_NOIO);
6698 		ret = PTR_ERR_OR_ZERO(image_id);
6699 		if (!ret)
6700 			rbd_dev->image_format = 2;
6701 	}
6702 
6703 	if (!ret) {
6704 		rbd_dev->spec->image_id = image_id;
6705 		dout("image_id is %s\n", image_id);
6706 	}
6707 out:
6708 	kfree(response);
6709 	ceph_oid_destroy(&oid);
6710 	return ret;
6711 }
6712 
6713 /*
6714  * Undo whatever state changes are made by v1 or v2 header info
6715  * call.
6716  */
6717 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6718 {
6719 	struct rbd_image_header	*header;
6720 
6721 	rbd_dev_parent_put(rbd_dev);
6722 	rbd_object_map_free(rbd_dev);
6723 	rbd_dev_mapping_clear(rbd_dev);
6724 
6725 	/* Free dynamic fields from the header, then zero it out */
6726 
6727 	header = &rbd_dev->header;
6728 	ceph_put_snap_context(header->snapc);
6729 	kfree(header->snap_sizes);
6730 	kfree(header->snap_names);
6731 	kfree(header->object_prefix);
6732 	memset(header, 0, sizeof (*header));
6733 }
6734 
6735 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6736 {
6737 	int ret;
6738 
6739 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6740 	if (ret)
6741 		goto out_err;
6742 
6743 	/*
6744 	 * Get the and check features for the image.  Currently the
6745 	 * features are assumed to never change.
6746 	 */
6747 	ret = rbd_dev_v2_features(rbd_dev);
6748 	if (ret)
6749 		goto out_err;
6750 
6751 	/* If the image supports fancy striping, get its parameters */
6752 
6753 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6754 		ret = rbd_dev_v2_striping_info(rbd_dev);
6755 		if (ret < 0)
6756 			goto out_err;
6757 	}
6758 
6759 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6760 		ret = rbd_dev_v2_data_pool(rbd_dev);
6761 		if (ret)
6762 			goto out_err;
6763 	}
6764 
6765 	rbd_init_layout(rbd_dev);
6766 	return 0;
6767 
6768 out_err:
6769 	rbd_dev->header.features = 0;
6770 	kfree(rbd_dev->header.object_prefix);
6771 	rbd_dev->header.object_prefix = NULL;
6772 	return ret;
6773 }
6774 
6775 /*
6776  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6777  * rbd_dev_image_probe() recursion depth, which means it's also the
6778  * length of the already discovered part of the parent chain.
6779  */
6780 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6781 {
6782 	struct rbd_device *parent = NULL;
6783 	int ret;
6784 
6785 	if (!rbd_dev->parent_spec)
6786 		return 0;
6787 
6788 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6789 		pr_info("parent chain is too long (%d)\n", depth);
6790 		ret = -EINVAL;
6791 		goto out_err;
6792 	}
6793 
6794 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6795 	if (!parent) {
6796 		ret = -ENOMEM;
6797 		goto out_err;
6798 	}
6799 
6800 	/*
6801 	 * Images related by parent/child relationships always share
6802 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6803 	 */
6804 	__rbd_get_client(rbd_dev->rbd_client);
6805 	rbd_spec_get(rbd_dev->parent_spec);
6806 
6807 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6808 
6809 	ret = rbd_dev_image_probe(parent, depth);
6810 	if (ret < 0)
6811 		goto out_err;
6812 
6813 	rbd_dev->parent = parent;
6814 	atomic_set(&rbd_dev->parent_ref, 1);
6815 	return 0;
6816 
6817 out_err:
6818 	rbd_dev_unparent(rbd_dev);
6819 	rbd_dev_destroy(parent);
6820 	return ret;
6821 }
6822 
6823 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6824 {
6825 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6826 	rbd_free_disk(rbd_dev);
6827 	if (!single_major)
6828 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6829 }
6830 
6831 /*
6832  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6833  * upon return.
6834  */
6835 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6836 {
6837 	int ret;
6838 
6839 	/* Record our major and minor device numbers. */
6840 
6841 	if (!single_major) {
6842 		ret = register_blkdev(0, rbd_dev->name);
6843 		if (ret < 0)
6844 			goto err_out_unlock;
6845 
6846 		rbd_dev->major = ret;
6847 		rbd_dev->minor = 0;
6848 	} else {
6849 		rbd_dev->major = rbd_major;
6850 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6851 	}
6852 
6853 	/* Set up the blkdev mapping. */
6854 
6855 	ret = rbd_init_disk(rbd_dev);
6856 	if (ret)
6857 		goto err_out_blkdev;
6858 
6859 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6860 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6861 
6862 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6863 	if (ret)
6864 		goto err_out_disk;
6865 
6866 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6867 	up_write(&rbd_dev->header_rwsem);
6868 	return 0;
6869 
6870 err_out_disk:
6871 	rbd_free_disk(rbd_dev);
6872 err_out_blkdev:
6873 	if (!single_major)
6874 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6875 err_out_unlock:
6876 	up_write(&rbd_dev->header_rwsem);
6877 	return ret;
6878 }
6879 
6880 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6881 {
6882 	struct rbd_spec *spec = rbd_dev->spec;
6883 	int ret;
6884 
6885 	/* Record the header object name for this rbd image. */
6886 
6887 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6888 	if (rbd_dev->image_format == 1)
6889 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6890 				       spec->image_name, RBD_SUFFIX);
6891 	else
6892 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6893 				       RBD_HEADER_PREFIX, spec->image_id);
6894 
6895 	return ret;
6896 }
6897 
6898 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6899 {
6900 	if (!is_snap) {
6901 		pr_info("image %s/%s%s%s does not exist\n",
6902 			rbd_dev->spec->pool_name,
6903 			rbd_dev->spec->pool_ns ?: "",
6904 			rbd_dev->spec->pool_ns ? "/" : "",
6905 			rbd_dev->spec->image_name);
6906 	} else {
6907 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6908 			rbd_dev->spec->pool_name,
6909 			rbd_dev->spec->pool_ns ?: "",
6910 			rbd_dev->spec->pool_ns ? "/" : "",
6911 			rbd_dev->spec->image_name,
6912 			rbd_dev->spec->snap_name);
6913 	}
6914 }
6915 
6916 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6917 {
6918 	if (!rbd_is_ro(rbd_dev))
6919 		rbd_unregister_watch(rbd_dev);
6920 
6921 	rbd_dev_unprobe(rbd_dev);
6922 	rbd_dev->image_format = 0;
6923 	kfree(rbd_dev->spec->image_id);
6924 	rbd_dev->spec->image_id = NULL;
6925 }
6926 
6927 /*
6928  * Probe for the existence of the header object for the given rbd
6929  * device.  If this image is the one being mapped (i.e., not a
6930  * parent), initiate a watch on its header object before using that
6931  * object to get detailed information about the rbd image.
6932  *
6933  * On success, returns with header_rwsem held for write if called
6934  * with @depth == 0.
6935  */
6936 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6937 {
6938 	bool need_watch = !rbd_is_ro(rbd_dev);
6939 	int ret;
6940 
6941 	/*
6942 	 * Get the id from the image id object.  Unless there's an
6943 	 * error, rbd_dev->spec->image_id will be filled in with
6944 	 * a dynamically-allocated string, and rbd_dev->image_format
6945 	 * will be set to either 1 or 2.
6946 	 */
6947 	ret = rbd_dev_image_id(rbd_dev);
6948 	if (ret)
6949 		return ret;
6950 
6951 	ret = rbd_dev_header_name(rbd_dev);
6952 	if (ret)
6953 		goto err_out_format;
6954 
6955 	if (need_watch) {
6956 		ret = rbd_register_watch(rbd_dev);
6957 		if (ret) {
6958 			if (ret == -ENOENT)
6959 				rbd_print_dne(rbd_dev, false);
6960 			goto err_out_format;
6961 		}
6962 	}
6963 
6964 	if (!depth)
6965 		down_write(&rbd_dev->header_rwsem);
6966 
6967 	ret = rbd_dev_header_info(rbd_dev);
6968 	if (ret) {
6969 		if (ret == -ENOENT && !need_watch)
6970 			rbd_print_dne(rbd_dev, false);
6971 		goto err_out_probe;
6972 	}
6973 
6974 	/*
6975 	 * If this image is the one being mapped, we have pool name and
6976 	 * id, image name and id, and snap name - need to fill snap id.
6977 	 * Otherwise this is a parent image, identified by pool, image
6978 	 * and snap ids - need to fill in names for those ids.
6979 	 */
6980 	if (!depth)
6981 		ret = rbd_spec_fill_snap_id(rbd_dev);
6982 	else
6983 		ret = rbd_spec_fill_names(rbd_dev);
6984 	if (ret) {
6985 		if (ret == -ENOENT)
6986 			rbd_print_dne(rbd_dev, true);
6987 		goto err_out_probe;
6988 	}
6989 
6990 	ret = rbd_dev_mapping_set(rbd_dev);
6991 	if (ret)
6992 		goto err_out_probe;
6993 
6994 	if (rbd_is_snap(rbd_dev) &&
6995 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6996 		ret = rbd_object_map_load(rbd_dev);
6997 		if (ret)
6998 			goto err_out_probe;
6999 	}
7000 
7001 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7002 		ret = rbd_dev_v2_parent_info(rbd_dev);
7003 		if (ret)
7004 			goto err_out_probe;
7005 	}
7006 
7007 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7008 	if (ret)
7009 		goto err_out_probe;
7010 
7011 	dout("discovered format %u image, header name is %s\n",
7012 		rbd_dev->image_format, rbd_dev->header_oid.name);
7013 	return 0;
7014 
7015 err_out_probe:
7016 	if (!depth)
7017 		up_write(&rbd_dev->header_rwsem);
7018 	if (need_watch)
7019 		rbd_unregister_watch(rbd_dev);
7020 	rbd_dev_unprobe(rbd_dev);
7021 err_out_format:
7022 	rbd_dev->image_format = 0;
7023 	kfree(rbd_dev->spec->image_id);
7024 	rbd_dev->spec->image_id = NULL;
7025 	return ret;
7026 }
7027 
7028 static ssize_t do_rbd_add(struct bus_type *bus,
7029 			  const char *buf,
7030 			  size_t count)
7031 {
7032 	struct rbd_device *rbd_dev = NULL;
7033 	struct ceph_options *ceph_opts = NULL;
7034 	struct rbd_options *rbd_opts = NULL;
7035 	struct rbd_spec *spec = NULL;
7036 	struct rbd_client *rbdc;
7037 	int rc;
7038 
7039 	if (!capable(CAP_SYS_ADMIN))
7040 		return -EPERM;
7041 
7042 	if (!try_module_get(THIS_MODULE))
7043 		return -ENODEV;
7044 
7045 	/* parse add command */
7046 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7047 	if (rc < 0)
7048 		goto out;
7049 
7050 	rbdc = rbd_get_client(ceph_opts);
7051 	if (IS_ERR(rbdc)) {
7052 		rc = PTR_ERR(rbdc);
7053 		goto err_out_args;
7054 	}
7055 
7056 	/* pick the pool */
7057 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7058 	if (rc < 0) {
7059 		if (rc == -ENOENT)
7060 			pr_info("pool %s does not exist\n", spec->pool_name);
7061 		goto err_out_client;
7062 	}
7063 	spec->pool_id = (u64)rc;
7064 
7065 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7066 	if (!rbd_dev) {
7067 		rc = -ENOMEM;
7068 		goto err_out_client;
7069 	}
7070 	rbdc = NULL;		/* rbd_dev now owns this */
7071 	spec = NULL;		/* rbd_dev now owns this */
7072 	rbd_opts = NULL;	/* rbd_dev now owns this */
7073 
7074 	/* if we are mapping a snapshot it will be a read-only mapping */
7075 	if (rbd_dev->opts->read_only ||
7076 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7077 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7078 
7079 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7080 	if (!rbd_dev->config_info) {
7081 		rc = -ENOMEM;
7082 		goto err_out_rbd_dev;
7083 	}
7084 
7085 	rc = rbd_dev_image_probe(rbd_dev, 0);
7086 	if (rc < 0)
7087 		goto err_out_rbd_dev;
7088 
7089 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7090 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7091 			 rbd_dev->layout.object_size);
7092 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7093 	}
7094 
7095 	rc = rbd_dev_device_setup(rbd_dev);
7096 	if (rc)
7097 		goto err_out_image_probe;
7098 
7099 	rc = rbd_add_acquire_lock(rbd_dev);
7100 	if (rc)
7101 		goto err_out_image_lock;
7102 
7103 	/* Everything's ready.  Announce the disk to the world. */
7104 
7105 	rc = device_add(&rbd_dev->dev);
7106 	if (rc)
7107 		goto err_out_image_lock;
7108 
7109 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7110 	/* see rbd_init_disk() */
7111 	blk_put_queue(rbd_dev->disk->queue);
7112 
7113 	spin_lock(&rbd_dev_list_lock);
7114 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7115 	spin_unlock(&rbd_dev_list_lock);
7116 
7117 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7118 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7119 		rbd_dev->header.features);
7120 	rc = count;
7121 out:
7122 	module_put(THIS_MODULE);
7123 	return rc;
7124 
7125 err_out_image_lock:
7126 	rbd_dev_image_unlock(rbd_dev);
7127 	rbd_dev_device_release(rbd_dev);
7128 err_out_image_probe:
7129 	rbd_dev_image_release(rbd_dev);
7130 err_out_rbd_dev:
7131 	rbd_dev_destroy(rbd_dev);
7132 err_out_client:
7133 	rbd_put_client(rbdc);
7134 err_out_args:
7135 	rbd_spec_put(spec);
7136 	kfree(rbd_opts);
7137 	goto out;
7138 }
7139 
7140 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7141 {
7142 	if (single_major)
7143 		return -EINVAL;
7144 
7145 	return do_rbd_add(bus, buf, count);
7146 }
7147 
7148 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7149 				      size_t count)
7150 {
7151 	return do_rbd_add(bus, buf, count);
7152 }
7153 
7154 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7155 {
7156 	while (rbd_dev->parent) {
7157 		struct rbd_device *first = rbd_dev;
7158 		struct rbd_device *second = first->parent;
7159 		struct rbd_device *third;
7160 
7161 		/*
7162 		 * Follow to the parent with no grandparent and
7163 		 * remove it.
7164 		 */
7165 		while (second && (third = second->parent)) {
7166 			first = second;
7167 			second = third;
7168 		}
7169 		rbd_assert(second);
7170 		rbd_dev_image_release(second);
7171 		rbd_dev_destroy(second);
7172 		first->parent = NULL;
7173 		first->parent_overlap = 0;
7174 
7175 		rbd_assert(first->parent_spec);
7176 		rbd_spec_put(first->parent_spec);
7177 		first->parent_spec = NULL;
7178 	}
7179 }
7180 
7181 static ssize_t do_rbd_remove(struct bus_type *bus,
7182 			     const char *buf,
7183 			     size_t count)
7184 {
7185 	struct rbd_device *rbd_dev = NULL;
7186 	struct list_head *tmp;
7187 	int dev_id;
7188 	char opt_buf[6];
7189 	bool force = false;
7190 	int ret;
7191 
7192 	if (!capable(CAP_SYS_ADMIN))
7193 		return -EPERM;
7194 
7195 	dev_id = -1;
7196 	opt_buf[0] = '\0';
7197 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7198 	if (dev_id < 0) {
7199 		pr_err("dev_id out of range\n");
7200 		return -EINVAL;
7201 	}
7202 	if (opt_buf[0] != '\0') {
7203 		if (!strcmp(opt_buf, "force")) {
7204 			force = true;
7205 		} else {
7206 			pr_err("bad remove option at '%s'\n", opt_buf);
7207 			return -EINVAL;
7208 		}
7209 	}
7210 
7211 	ret = -ENOENT;
7212 	spin_lock(&rbd_dev_list_lock);
7213 	list_for_each(tmp, &rbd_dev_list) {
7214 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7215 		if (rbd_dev->dev_id == dev_id) {
7216 			ret = 0;
7217 			break;
7218 		}
7219 	}
7220 	if (!ret) {
7221 		spin_lock_irq(&rbd_dev->lock);
7222 		if (rbd_dev->open_count && !force)
7223 			ret = -EBUSY;
7224 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7225 					  &rbd_dev->flags))
7226 			ret = -EINPROGRESS;
7227 		spin_unlock_irq(&rbd_dev->lock);
7228 	}
7229 	spin_unlock(&rbd_dev_list_lock);
7230 	if (ret)
7231 		return ret;
7232 
7233 	if (force) {
7234 		/*
7235 		 * Prevent new IO from being queued and wait for existing
7236 		 * IO to complete/fail.
7237 		 */
7238 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7239 		blk_set_queue_dying(rbd_dev->disk->queue);
7240 	}
7241 
7242 	del_gendisk(rbd_dev->disk);
7243 	spin_lock(&rbd_dev_list_lock);
7244 	list_del_init(&rbd_dev->node);
7245 	spin_unlock(&rbd_dev_list_lock);
7246 	device_del(&rbd_dev->dev);
7247 
7248 	rbd_dev_image_unlock(rbd_dev);
7249 	rbd_dev_device_release(rbd_dev);
7250 	rbd_dev_image_release(rbd_dev);
7251 	rbd_dev_destroy(rbd_dev);
7252 	return count;
7253 }
7254 
7255 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7256 {
7257 	if (single_major)
7258 		return -EINVAL;
7259 
7260 	return do_rbd_remove(bus, buf, count);
7261 }
7262 
7263 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7264 					 size_t count)
7265 {
7266 	return do_rbd_remove(bus, buf, count);
7267 }
7268 
7269 /*
7270  * create control files in sysfs
7271  * /sys/bus/rbd/...
7272  */
7273 static int __init rbd_sysfs_init(void)
7274 {
7275 	int ret;
7276 
7277 	ret = device_register(&rbd_root_dev);
7278 	if (ret < 0)
7279 		return ret;
7280 
7281 	ret = bus_register(&rbd_bus_type);
7282 	if (ret < 0)
7283 		device_unregister(&rbd_root_dev);
7284 
7285 	return ret;
7286 }
7287 
7288 static void __exit rbd_sysfs_cleanup(void)
7289 {
7290 	bus_unregister(&rbd_bus_type);
7291 	device_unregister(&rbd_root_dev);
7292 }
7293 
7294 static int __init rbd_slab_init(void)
7295 {
7296 	rbd_assert(!rbd_img_request_cache);
7297 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7298 	if (!rbd_img_request_cache)
7299 		return -ENOMEM;
7300 
7301 	rbd_assert(!rbd_obj_request_cache);
7302 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7303 	if (!rbd_obj_request_cache)
7304 		goto out_err;
7305 
7306 	return 0;
7307 
7308 out_err:
7309 	kmem_cache_destroy(rbd_img_request_cache);
7310 	rbd_img_request_cache = NULL;
7311 	return -ENOMEM;
7312 }
7313 
7314 static void rbd_slab_exit(void)
7315 {
7316 	rbd_assert(rbd_obj_request_cache);
7317 	kmem_cache_destroy(rbd_obj_request_cache);
7318 	rbd_obj_request_cache = NULL;
7319 
7320 	rbd_assert(rbd_img_request_cache);
7321 	kmem_cache_destroy(rbd_img_request_cache);
7322 	rbd_img_request_cache = NULL;
7323 }
7324 
7325 static int __init rbd_init(void)
7326 {
7327 	int rc;
7328 
7329 	if (!libceph_compatible(NULL)) {
7330 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7331 		return -EINVAL;
7332 	}
7333 
7334 	rc = rbd_slab_init();
7335 	if (rc)
7336 		return rc;
7337 
7338 	/*
7339 	 * The number of active work items is limited by the number of
7340 	 * rbd devices * queue depth, so leave @max_active at default.
7341 	 */
7342 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7343 	if (!rbd_wq) {
7344 		rc = -ENOMEM;
7345 		goto err_out_slab;
7346 	}
7347 
7348 	if (single_major) {
7349 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7350 		if (rbd_major < 0) {
7351 			rc = rbd_major;
7352 			goto err_out_wq;
7353 		}
7354 	}
7355 
7356 	rc = rbd_sysfs_init();
7357 	if (rc)
7358 		goto err_out_blkdev;
7359 
7360 	if (single_major)
7361 		pr_info("loaded (major %d)\n", rbd_major);
7362 	else
7363 		pr_info("loaded\n");
7364 
7365 	return 0;
7366 
7367 err_out_blkdev:
7368 	if (single_major)
7369 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7370 err_out_wq:
7371 	destroy_workqueue(rbd_wq);
7372 err_out_slab:
7373 	rbd_slab_exit();
7374 	return rc;
7375 }
7376 
7377 static void __exit rbd_exit(void)
7378 {
7379 	ida_destroy(&rbd_dev_id_ida);
7380 	rbd_sysfs_cleanup();
7381 	if (single_major)
7382 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7383 	destroy_workqueue(rbd_wq);
7384 	rbd_slab_exit();
7385 }
7386 
7387 module_init(rbd_init);
7388 module_exit(rbd_exit);
7389 
7390 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7391 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7392 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7393 /* following authorship retained from original osdblk.c */
7394 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7395 
7396 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7397 MODULE_LICENSE("GPL");
7398