1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 636 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 639 u64 snap_id); 640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 641 u8 *order, u64 *snap_size); 642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 643 644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 646 647 /* 648 * Return true if nothing else is pending. 649 */ 650 static bool pending_result_dec(struct pending_result *pending, int *result) 651 { 652 rbd_assert(pending->num_pending > 0); 653 654 if (*result && !pending->result) 655 pending->result = *result; 656 if (--pending->num_pending) 657 return false; 658 659 *result = pending->result; 660 return true; 661 } 662 663 static int rbd_open(struct block_device *bdev, fmode_t mode) 664 { 665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 666 bool removing = false; 667 668 spin_lock_irq(&rbd_dev->lock); 669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 670 removing = true; 671 else 672 rbd_dev->open_count++; 673 spin_unlock_irq(&rbd_dev->lock); 674 if (removing) 675 return -ENOENT; 676 677 (void) get_device(&rbd_dev->dev); 678 679 return 0; 680 } 681 682 static void rbd_release(struct gendisk *disk, fmode_t mode) 683 { 684 struct rbd_device *rbd_dev = disk->private_data; 685 unsigned long open_count_before; 686 687 spin_lock_irq(&rbd_dev->lock); 688 open_count_before = rbd_dev->open_count--; 689 spin_unlock_irq(&rbd_dev->lock); 690 rbd_assert(open_count_before > 0); 691 692 put_device(&rbd_dev->dev); 693 } 694 695 static const struct block_device_operations rbd_bd_ops = { 696 .owner = THIS_MODULE, 697 .open = rbd_open, 698 .release = rbd_release, 699 }; 700 701 /* 702 * Initialize an rbd client instance. Success or not, this function 703 * consumes ceph_opts. Caller holds client_mutex. 704 */ 705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 706 { 707 struct rbd_client *rbdc; 708 int ret = -ENOMEM; 709 710 dout("%s:\n", __func__); 711 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 712 if (!rbdc) 713 goto out_opt; 714 715 kref_init(&rbdc->kref); 716 INIT_LIST_HEAD(&rbdc->node); 717 718 rbdc->client = ceph_create_client(ceph_opts, rbdc); 719 if (IS_ERR(rbdc->client)) 720 goto out_rbdc; 721 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 722 723 ret = ceph_open_session(rbdc->client); 724 if (ret < 0) 725 goto out_client; 726 727 spin_lock(&rbd_client_list_lock); 728 list_add_tail(&rbdc->node, &rbd_client_list); 729 spin_unlock(&rbd_client_list_lock); 730 731 dout("%s: rbdc %p\n", __func__, rbdc); 732 733 return rbdc; 734 out_client: 735 ceph_destroy_client(rbdc->client); 736 out_rbdc: 737 kfree(rbdc); 738 out_opt: 739 if (ceph_opts) 740 ceph_destroy_options(ceph_opts); 741 dout("%s: error %d\n", __func__, ret); 742 743 return ERR_PTR(ret); 744 } 745 746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 747 { 748 kref_get(&rbdc->kref); 749 750 return rbdc; 751 } 752 753 /* 754 * Find a ceph client with specific addr and configuration. If 755 * found, bump its reference count. 756 */ 757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 758 { 759 struct rbd_client *client_node; 760 bool found = false; 761 762 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 763 return NULL; 764 765 spin_lock(&rbd_client_list_lock); 766 list_for_each_entry(client_node, &rbd_client_list, node) { 767 if (!ceph_compare_options(ceph_opts, client_node->client)) { 768 __rbd_get_client(client_node); 769 770 found = true; 771 break; 772 } 773 } 774 spin_unlock(&rbd_client_list_lock); 775 776 return found ? client_node : NULL; 777 } 778 779 /* 780 * (Per device) rbd map options 781 */ 782 enum { 783 Opt_queue_depth, 784 Opt_alloc_size, 785 Opt_lock_timeout, 786 /* int args above */ 787 Opt_pool_ns, 788 Opt_compression_hint, 789 /* string args above */ 790 Opt_read_only, 791 Opt_read_write, 792 Opt_lock_on_read, 793 Opt_exclusive, 794 Opt_notrim, 795 }; 796 797 enum { 798 Opt_compression_hint_none, 799 Opt_compression_hint_compressible, 800 Opt_compression_hint_incompressible, 801 }; 802 803 static const struct constant_table rbd_param_compression_hint[] = { 804 {"none", Opt_compression_hint_none}, 805 {"compressible", Opt_compression_hint_compressible}, 806 {"incompressible", Opt_compression_hint_incompressible}, 807 {} 808 }; 809 810 static const struct fs_parameter_spec rbd_parameters[] = { 811 fsparam_u32 ("alloc_size", Opt_alloc_size), 812 fsparam_enum ("compression_hint", Opt_compression_hint, 813 rbd_param_compression_hint), 814 fsparam_flag ("exclusive", Opt_exclusive), 815 fsparam_flag ("lock_on_read", Opt_lock_on_read), 816 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 817 fsparam_flag ("notrim", Opt_notrim), 818 fsparam_string ("_pool_ns", Opt_pool_ns), 819 fsparam_u32 ("queue_depth", Opt_queue_depth), 820 fsparam_flag ("read_only", Opt_read_only), 821 fsparam_flag ("read_write", Opt_read_write), 822 fsparam_flag ("ro", Opt_read_only), 823 fsparam_flag ("rw", Opt_read_write), 824 {} 825 }; 826 827 struct rbd_options { 828 int queue_depth; 829 int alloc_size; 830 unsigned long lock_timeout; 831 bool read_only; 832 bool lock_on_read; 833 bool exclusive; 834 bool trim; 835 836 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 837 }; 838 839 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 840 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 841 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 842 #define RBD_READ_ONLY_DEFAULT false 843 #define RBD_LOCK_ON_READ_DEFAULT false 844 #define RBD_EXCLUSIVE_DEFAULT false 845 #define RBD_TRIM_DEFAULT true 846 847 struct rbd_parse_opts_ctx { 848 struct rbd_spec *spec; 849 struct ceph_options *copts; 850 struct rbd_options *opts; 851 }; 852 853 static char* obj_op_name(enum obj_operation_type op_type) 854 { 855 switch (op_type) { 856 case OBJ_OP_READ: 857 return "read"; 858 case OBJ_OP_WRITE: 859 return "write"; 860 case OBJ_OP_DISCARD: 861 return "discard"; 862 case OBJ_OP_ZEROOUT: 863 return "zeroout"; 864 default: 865 return "???"; 866 } 867 } 868 869 /* 870 * Destroy ceph client 871 * 872 * Caller must hold rbd_client_list_lock. 873 */ 874 static void rbd_client_release(struct kref *kref) 875 { 876 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 877 878 dout("%s: rbdc %p\n", __func__, rbdc); 879 spin_lock(&rbd_client_list_lock); 880 list_del(&rbdc->node); 881 spin_unlock(&rbd_client_list_lock); 882 883 ceph_destroy_client(rbdc->client); 884 kfree(rbdc); 885 } 886 887 /* 888 * Drop reference to ceph client node. If it's not referenced anymore, release 889 * it. 890 */ 891 static void rbd_put_client(struct rbd_client *rbdc) 892 { 893 if (rbdc) 894 kref_put(&rbdc->kref, rbd_client_release); 895 } 896 897 /* 898 * Get a ceph client with specific addr and configuration, if one does 899 * not exist create it. Either way, ceph_opts is consumed by this 900 * function. 901 */ 902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 903 { 904 struct rbd_client *rbdc; 905 int ret; 906 907 mutex_lock(&client_mutex); 908 rbdc = rbd_client_find(ceph_opts); 909 if (rbdc) { 910 ceph_destroy_options(ceph_opts); 911 912 /* 913 * Using an existing client. Make sure ->pg_pools is up to 914 * date before we look up the pool id in do_rbd_add(). 915 */ 916 ret = ceph_wait_for_latest_osdmap(rbdc->client, 917 rbdc->client->options->mount_timeout); 918 if (ret) { 919 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 920 rbd_put_client(rbdc); 921 rbdc = ERR_PTR(ret); 922 } 923 } else { 924 rbdc = rbd_client_create(ceph_opts); 925 } 926 mutex_unlock(&client_mutex); 927 928 return rbdc; 929 } 930 931 static bool rbd_image_format_valid(u32 image_format) 932 { 933 return image_format == 1 || image_format == 2; 934 } 935 936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 937 { 938 size_t size; 939 u32 snap_count; 940 941 /* The header has to start with the magic rbd header text */ 942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 943 return false; 944 945 /* The bio layer requires at least sector-sized I/O */ 946 947 if (ondisk->options.order < SECTOR_SHIFT) 948 return false; 949 950 /* If we use u64 in a few spots we may be able to loosen this */ 951 952 if (ondisk->options.order > 8 * sizeof (int) - 1) 953 return false; 954 955 /* 956 * The size of a snapshot header has to fit in a size_t, and 957 * that limits the number of snapshots. 958 */ 959 snap_count = le32_to_cpu(ondisk->snap_count); 960 size = SIZE_MAX - sizeof (struct ceph_snap_context); 961 if (snap_count > size / sizeof (__le64)) 962 return false; 963 964 /* 965 * Not only that, but the size of the entire the snapshot 966 * header must also be representable in a size_t. 967 */ 968 size -= snap_count * sizeof (__le64); 969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 970 return false; 971 972 return true; 973 } 974 975 /* 976 * returns the size of an object in the image 977 */ 978 static u32 rbd_obj_bytes(struct rbd_image_header *header) 979 { 980 return 1U << header->obj_order; 981 } 982 983 static void rbd_init_layout(struct rbd_device *rbd_dev) 984 { 985 if (rbd_dev->header.stripe_unit == 0 || 986 rbd_dev->header.stripe_count == 0) { 987 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 988 rbd_dev->header.stripe_count = 1; 989 } 990 991 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 992 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 993 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 994 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 995 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 996 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 997 } 998 999 /* 1000 * Fill an rbd image header with information from the given format 1 1001 * on-disk header. 1002 */ 1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1004 struct rbd_image_header_ondisk *ondisk) 1005 { 1006 struct rbd_image_header *header = &rbd_dev->header; 1007 bool first_time = header->object_prefix == NULL; 1008 struct ceph_snap_context *snapc; 1009 char *object_prefix = NULL; 1010 char *snap_names = NULL; 1011 u64 *snap_sizes = NULL; 1012 u32 snap_count; 1013 int ret = -ENOMEM; 1014 u32 i; 1015 1016 /* Allocate this now to avoid having to handle failure below */ 1017 1018 if (first_time) { 1019 object_prefix = kstrndup(ondisk->object_prefix, 1020 sizeof(ondisk->object_prefix), 1021 GFP_KERNEL); 1022 if (!object_prefix) 1023 return -ENOMEM; 1024 } 1025 1026 /* Allocate the snapshot context and fill it in */ 1027 1028 snap_count = le32_to_cpu(ondisk->snap_count); 1029 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1030 if (!snapc) 1031 goto out_err; 1032 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1033 if (snap_count) { 1034 struct rbd_image_snap_ondisk *snaps; 1035 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1036 1037 /* We'll keep a copy of the snapshot names... */ 1038 1039 if (snap_names_len > (u64)SIZE_MAX) 1040 goto out_2big; 1041 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1042 if (!snap_names) 1043 goto out_err; 1044 1045 /* ...as well as the array of their sizes. */ 1046 snap_sizes = kmalloc_array(snap_count, 1047 sizeof(*header->snap_sizes), 1048 GFP_KERNEL); 1049 if (!snap_sizes) 1050 goto out_err; 1051 1052 /* 1053 * Copy the names, and fill in each snapshot's id 1054 * and size. 1055 * 1056 * Note that rbd_dev_v1_header_info() guarantees the 1057 * ondisk buffer we're working with has 1058 * snap_names_len bytes beyond the end of the 1059 * snapshot id array, this memcpy() is safe. 1060 */ 1061 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1062 snaps = ondisk->snaps; 1063 for (i = 0; i < snap_count; i++) { 1064 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1065 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1066 } 1067 } 1068 1069 /* We won't fail any more, fill in the header */ 1070 1071 if (first_time) { 1072 header->object_prefix = object_prefix; 1073 header->obj_order = ondisk->options.order; 1074 rbd_init_layout(rbd_dev); 1075 } else { 1076 ceph_put_snap_context(header->snapc); 1077 kfree(header->snap_names); 1078 kfree(header->snap_sizes); 1079 } 1080 1081 /* The remaining fields always get updated (when we refresh) */ 1082 1083 header->image_size = le64_to_cpu(ondisk->image_size); 1084 header->snapc = snapc; 1085 header->snap_names = snap_names; 1086 header->snap_sizes = snap_sizes; 1087 1088 return 0; 1089 out_2big: 1090 ret = -EIO; 1091 out_err: 1092 kfree(snap_sizes); 1093 kfree(snap_names); 1094 ceph_put_snap_context(snapc); 1095 kfree(object_prefix); 1096 1097 return ret; 1098 } 1099 1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1101 { 1102 const char *snap_name; 1103 1104 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1105 1106 /* Skip over names until we find the one we are looking for */ 1107 1108 snap_name = rbd_dev->header.snap_names; 1109 while (which--) 1110 snap_name += strlen(snap_name) + 1; 1111 1112 return kstrdup(snap_name, GFP_KERNEL); 1113 } 1114 1115 /* 1116 * Snapshot id comparison function for use with qsort()/bsearch(). 1117 * Note that result is for snapshots in *descending* order. 1118 */ 1119 static int snapid_compare_reverse(const void *s1, const void *s2) 1120 { 1121 u64 snap_id1 = *(u64 *)s1; 1122 u64 snap_id2 = *(u64 *)s2; 1123 1124 if (snap_id1 < snap_id2) 1125 return 1; 1126 return snap_id1 == snap_id2 ? 0 : -1; 1127 } 1128 1129 /* 1130 * Search a snapshot context to see if the given snapshot id is 1131 * present. 1132 * 1133 * Returns the position of the snapshot id in the array if it's found, 1134 * or BAD_SNAP_INDEX otherwise. 1135 * 1136 * Note: The snapshot array is in kept sorted (by the osd) in 1137 * reverse order, highest snapshot id first. 1138 */ 1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1140 { 1141 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1142 u64 *found; 1143 1144 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1145 sizeof (snap_id), snapid_compare_reverse); 1146 1147 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1148 } 1149 1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1151 u64 snap_id) 1152 { 1153 u32 which; 1154 const char *snap_name; 1155 1156 which = rbd_dev_snap_index(rbd_dev, snap_id); 1157 if (which == BAD_SNAP_INDEX) 1158 return ERR_PTR(-ENOENT); 1159 1160 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1161 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1162 } 1163 1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1165 { 1166 if (snap_id == CEPH_NOSNAP) 1167 return RBD_SNAP_HEAD_NAME; 1168 1169 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1170 if (rbd_dev->image_format == 1) 1171 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1172 1173 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1174 } 1175 1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1177 u64 *snap_size) 1178 { 1179 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1180 if (snap_id == CEPH_NOSNAP) { 1181 *snap_size = rbd_dev->header.image_size; 1182 } else if (rbd_dev->image_format == 1) { 1183 u32 which; 1184 1185 which = rbd_dev_snap_index(rbd_dev, snap_id); 1186 if (which == BAD_SNAP_INDEX) 1187 return -ENOENT; 1188 1189 *snap_size = rbd_dev->header.snap_sizes[which]; 1190 } else { 1191 u64 size = 0; 1192 int ret; 1193 1194 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1195 if (ret) 1196 return ret; 1197 1198 *snap_size = size; 1199 } 1200 return 0; 1201 } 1202 1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1204 { 1205 u64 snap_id = rbd_dev->spec->snap_id; 1206 u64 size = 0; 1207 int ret; 1208 1209 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1210 if (ret) 1211 return ret; 1212 1213 rbd_dev->mapping.size = size; 1214 return 0; 1215 } 1216 1217 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1218 { 1219 rbd_dev->mapping.size = 0; 1220 } 1221 1222 static void zero_bvec(struct bio_vec *bv) 1223 { 1224 void *buf; 1225 unsigned long flags; 1226 1227 buf = bvec_kmap_irq(bv, &flags); 1228 memset(buf, 0, bv->bv_len); 1229 flush_dcache_page(bv->bv_page); 1230 bvec_kunmap_irq(buf, &flags); 1231 } 1232 1233 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1234 { 1235 struct ceph_bio_iter it = *bio_pos; 1236 1237 ceph_bio_iter_advance(&it, off); 1238 ceph_bio_iter_advance_step(&it, bytes, ({ 1239 zero_bvec(&bv); 1240 })); 1241 } 1242 1243 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1244 { 1245 struct ceph_bvec_iter it = *bvec_pos; 1246 1247 ceph_bvec_iter_advance(&it, off); 1248 ceph_bvec_iter_advance_step(&it, bytes, ({ 1249 zero_bvec(&bv); 1250 })); 1251 } 1252 1253 /* 1254 * Zero a range in @obj_req data buffer defined by a bio (list) or 1255 * (private) bio_vec array. 1256 * 1257 * @off is relative to the start of the data buffer. 1258 */ 1259 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1260 u32 bytes) 1261 { 1262 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1263 1264 switch (obj_req->img_request->data_type) { 1265 case OBJ_REQUEST_BIO: 1266 zero_bios(&obj_req->bio_pos, off, bytes); 1267 break; 1268 case OBJ_REQUEST_BVECS: 1269 case OBJ_REQUEST_OWN_BVECS: 1270 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1271 break; 1272 default: 1273 BUG(); 1274 } 1275 } 1276 1277 static void rbd_obj_request_destroy(struct kref *kref); 1278 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1279 { 1280 rbd_assert(obj_request != NULL); 1281 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1282 kref_read(&obj_request->kref)); 1283 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1284 } 1285 1286 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1287 struct rbd_obj_request *obj_request) 1288 { 1289 rbd_assert(obj_request->img_request == NULL); 1290 1291 /* Image request now owns object's original reference */ 1292 obj_request->img_request = img_request; 1293 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1294 } 1295 1296 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1297 struct rbd_obj_request *obj_request) 1298 { 1299 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1300 list_del(&obj_request->ex.oe_item); 1301 rbd_assert(obj_request->img_request == img_request); 1302 rbd_obj_request_put(obj_request); 1303 } 1304 1305 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1306 { 1307 struct rbd_obj_request *obj_req = osd_req->r_priv; 1308 1309 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1310 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1311 obj_req->ex.oe_off, obj_req->ex.oe_len); 1312 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1313 } 1314 1315 /* 1316 * The default/initial value for all image request flags is 0. Each 1317 * is conditionally set to 1 at image request initialization time 1318 * and currently never change thereafter. 1319 */ 1320 static void img_request_layered_set(struct rbd_img_request *img_request) 1321 { 1322 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1323 } 1324 1325 static bool img_request_layered_test(struct rbd_img_request *img_request) 1326 { 1327 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1328 } 1329 1330 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1331 { 1332 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1333 1334 return !obj_req->ex.oe_off && 1335 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1336 } 1337 1338 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1339 { 1340 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1341 1342 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1343 rbd_dev->layout.object_size; 1344 } 1345 1346 /* 1347 * Must be called after rbd_obj_calc_img_extents(). 1348 */ 1349 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req) 1350 { 1351 if (!obj_req->num_img_extents || 1352 (rbd_obj_is_entire(obj_req) && 1353 !obj_req->img_request->snapc->num_snaps)) 1354 return false; 1355 1356 return true; 1357 } 1358 1359 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1360 { 1361 return ceph_file_extents_bytes(obj_req->img_extents, 1362 obj_req->num_img_extents); 1363 } 1364 1365 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1366 { 1367 switch (img_req->op_type) { 1368 case OBJ_OP_READ: 1369 return false; 1370 case OBJ_OP_WRITE: 1371 case OBJ_OP_DISCARD: 1372 case OBJ_OP_ZEROOUT: 1373 return true; 1374 default: 1375 BUG(); 1376 } 1377 } 1378 1379 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1380 { 1381 struct rbd_obj_request *obj_req = osd_req->r_priv; 1382 int result; 1383 1384 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1385 osd_req->r_result, obj_req); 1386 1387 /* 1388 * Writes aren't allowed to return a data payload. In some 1389 * guarded write cases (e.g. stat + zero on an empty object) 1390 * a stat response makes it through, but we don't care. 1391 */ 1392 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1393 result = 0; 1394 else 1395 result = osd_req->r_result; 1396 1397 rbd_obj_handle_request(obj_req, result); 1398 } 1399 1400 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1401 { 1402 struct rbd_obj_request *obj_request = osd_req->r_priv; 1403 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1404 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1405 1406 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1407 osd_req->r_snapid = obj_request->img_request->snap_id; 1408 } 1409 1410 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1411 { 1412 struct rbd_obj_request *obj_request = osd_req->r_priv; 1413 1414 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1415 ktime_get_real_ts64(&osd_req->r_mtime); 1416 osd_req->r_data_offset = obj_request->ex.oe_off; 1417 } 1418 1419 static struct ceph_osd_request * 1420 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1421 struct ceph_snap_context *snapc, int num_ops) 1422 { 1423 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1424 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1425 struct ceph_osd_request *req; 1426 const char *name_format = rbd_dev->image_format == 1 ? 1427 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1428 int ret; 1429 1430 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1431 if (!req) 1432 return ERR_PTR(-ENOMEM); 1433 1434 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1435 req->r_callback = rbd_osd_req_callback; 1436 req->r_priv = obj_req; 1437 1438 /* 1439 * Data objects may be stored in a separate pool, but always in 1440 * the same namespace in that pool as the header in its pool. 1441 */ 1442 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1443 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1444 1445 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1446 rbd_dev->header.object_prefix, 1447 obj_req->ex.oe_objno); 1448 if (ret) 1449 return ERR_PTR(ret); 1450 1451 return req; 1452 } 1453 1454 static struct ceph_osd_request * 1455 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1456 { 1457 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1458 num_ops); 1459 } 1460 1461 static struct rbd_obj_request *rbd_obj_request_create(void) 1462 { 1463 struct rbd_obj_request *obj_request; 1464 1465 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1466 if (!obj_request) 1467 return NULL; 1468 1469 ceph_object_extent_init(&obj_request->ex); 1470 INIT_LIST_HEAD(&obj_request->osd_reqs); 1471 mutex_init(&obj_request->state_mutex); 1472 kref_init(&obj_request->kref); 1473 1474 dout("%s %p\n", __func__, obj_request); 1475 return obj_request; 1476 } 1477 1478 static void rbd_obj_request_destroy(struct kref *kref) 1479 { 1480 struct rbd_obj_request *obj_request; 1481 struct ceph_osd_request *osd_req; 1482 u32 i; 1483 1484 obj_request = container_of(kref, struct rbd_obj_request, kref); 1485 1486 dout("%s: obj %p\n", __func__, obj_request); 1487 1488 while (!list_empty(&obj_request->osd_reqs)) { 1489 osd_req = list_first_entry(&obj_request->osd_reqs, 1490 struct ceph_osd_request, r_private_item); 1491 list_del_init(&osd_req->r_private_item); 1492 ceph_osdc_put_request(osd_req); 1493 } 1494 1495 switch (obj_request->img_request->data_type) { 1496 case OBJ_REQUEST_NODATA: 1497 case OBJ_REQUEST_BIO: 1498 case OBJ_REQUEST_BVECS: 1499 break; /* Nothing to do */ 1500 case OBJ_REQUEST_OWN_BVECS: 1501 kfree(obj_request->bvec_pos.bvecs); 1502 break; 1503 default: 1504 BUG(); 1505 } 1506 1507 kfree(obj_request->img_extents); 1508 if (obj_request->copyup_bvecs) { 1509 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1510 if (obj_request->copyup_bvecs[i].bv_page) 1511 __free_page(obj_request->copyup_bvecs[i].bv_page); 1512 } 1513 kfree(obj_request->copyup_bvecs); 1514 } 1515 1516 kmem_cache_free(rbd_obj_request_cache, obj_request); 1517 } 1518 1519 /* It's OK to call this for a device with no parent */ 1520 1521 static void rbd_spec_put(struct rbd_spec *spec); 1522 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1523 { 1524 rbd_dev_remove_parent(rbd_dev); 1525 rbd_spec_put(rbd_dev->parent_spec); 1526 rbd_dev->parent_spec = NULL; 1527 rbd_dev->parent_overlap = 0; 1528 } 1529 1530 /* 1531 * Parent image reference counting is used to determine when an 1532 * image's parent fields can be safely torn down--after there are no 1533 * more in-flight requests to the parent image. When the last 1534 * reference is dropped, cleaning them up is safe. 1535 */ 1536 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1537 { 1538 int counter; 1539 1540 if (!rbd_dev->parent_spec) 1541 return; 1542 1543 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1544 if (counter > 0) 1545 return; 1546 1547 /* Last reference; clean up parent data structures */ 1548 1549 if (!counter) 1550 rbd_dev_unparent(rbd_dev); 1551 else 1552 rbd_warn(rbd_dev, "parent reference underflow"); 1553 } 1554 1555 /* 1556 * If an image has a non-zero parent overlap, get a reference to its 1557 * parent. 1558 * 1559 * Returns true if the rbd device has a parent with a non-zero 1560 * overlap and a reference for it was successfully taken, or 1561 * false otherwise. 1562 */ 1563 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1564 { 1565 int counter = 0; 1566 1567 if (!rbd_dev->parent_spec) 1568 return false; 1569 1570 if (rbd_dev->parent_overlap) 1571 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1572 1573 if (counter < 0) 1574 rbd_warn(rbd_dev, "parent reference overflow"); 1575 1576 return counter > 0; 1577 } 1578 1579 static void rbd_img_request_init(struct rbd_img_request *img_request, 1580 struct rbd_device *rbd_dev, 1581 enum obj_operation_type op_type) 1582 { 1583 memset(img_request, 0, sizeof(*img_request)); 1584 1585 img_request->rbd_dev = rbd_dev; 1586 img_request->op_type = op_type; 1587 1588 INIT_LIST_HEAD(&img_request->lock_item); 1589 INIT_LIST_HEAD(&img_request->object_extents); 1590 mutex_init(&img_request->state_mutex); 1591 } 1592 1593 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1594 { 1595 struct rbd_device *rbd_dev = img_req->rbd_dev; 1596 1597 lockdep_assert_held(&rbd_dev->header_rwsem); 1598 1599 if (rbd_img_is_write(img_req)) 1600 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 1601 else 1602 img_req->snap_id = rbd_dev->spec->snap_id; 1603 1604 if (rbd_dev_parent_get(rbd_dev)) 1605 img_request_layered_set(img_req); 1606 } 1607 1608 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1609 { 1610 struct rbd_obj_request *obj_request; 1611 struct rbd_obj_request *next_obj_request; 1612 1613 dout("%s: img %p\n", __func__, img_request); 1614 1615 WARN_ON(!list_empty(&img_request->lock_item)); 1616 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1617 rbd_img_obj_request_del(img_request, obj_request); 1618 1619 if (img_request_layered_test(img_request)) 1620 rbd_dev_parent_put(img_request->rbd_dev); 1621 1622 if (rbd_img_is_write(img_request)) 1623 ceph_put_snap_context(img_request->snapc); 1624 1625 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1626 kmem_cache_free(rbd_img_request_cache, img_request); 1627 } 1628 1629 #define BITS_PER_OBJ 2 1630 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1631 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1632 1633 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1634 u64 *index, u8 *shift) 1635 { 1636 u32 off; 1637 1638 rbd_assert(objno < rbd_dev->object_map_size); 1639 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1640 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1641 } 1642 1643 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1644 { 1645 u64 index; 1646 u8 shift; 1647 1648 lockdep_assert_held(&rbd_dev->object_map_lock); 1649 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1650 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1651 } 1652 1653 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1654 { 1655 u64 index; 1656 u8 shift; 1657 u8 *p; 1658 1659 lockdep_assert_held(&rbd_dev->object_map_lock); 1660 rbd_assert(!(val & ~OBJ_MASK)); 1661 1662 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1663 p = &rbd_dev->object_map[index]; 1664 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1665 } 1666 1667 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1668 { 1669 u8 state; 1670 1671 spin_lock(&rbd_dev->object_map_lock); 1672 state = __rbd_object_map_get(rbd_dev, objno); 1673 spin_unlock(&rbd_dev->object_map_lock); 1674 return state; 1675 } 1676 1677 static bool use_object_map(struct rbd_device *rbd_dev) 1678 { 1679 /* 1680 * An image mapped read-only can't use the object map -- it isn't 1681 * loaded because the header lock isn't acquired. Someone else can 1682 * write to the image and update the object map behind our back. 1683 * 1684 * A snapshot can't be written to, so using the object map is always 1685 * safe. 1686 */ 1687 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1688 return false; 1689 1690 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1691 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1692 } 1693 1694 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1695 { 1696 u8 state; 1697 1698 /* fall back to default logic if object map is disabled or invalid */ 1699 if (!use_object_map(rbd_dev)) 1700 return true; 1701 1702 state = rbd_object_map_get(rbd_dev, objno); 1703 return state != OBJECT_NONEXISTENT; 1704 } 1705 1706 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1707 struct ceph_object_id *oid) 1708 { 1709 if (snap_id == CEPH_NOSNAP) 1710 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1711 rbd_dev->spec->image_id); 1712 else 1713 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1714 rbd_dev->spec->image_id, snap_id); 1715 } 1716 1717 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1718 { 1719 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1720 CEPH_DEFINE_OID_ONSTACK(oid); 1721 u8 lock_type; 1722 char *lock_tag; 1723 struct ceph_locker *lockers; 1724 u32 num_lockers; 1725 bool broke_lock = false; 1726 int ret; 1727 1728 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1729 1730 again: 1731 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1732 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1733 if (ret != -EBUSY || broke_lock) { 1734 if (ret == -EEXIST) 1735 ret = 0; /* already locked by myself */ 1736 if (ret) 1737 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1738 return ret; 1739 } 1740 1741 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1742 RBD_LOCK_NAME, &lock_type, &lock_tag, 1743 &lockers, &num_lockers); 1744 if (ret) { 1745 if (ret == -ENOENT) 1746 goto again; 1747 1748 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1749 return ret; 1750 } 1751 1752 kfree(lock_tag); 1753 if (num_lockers == 0) 1754 goto again; 1755 1756 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1757 ENTITY_NAME(lockers[0].id.name)); 1758 1759 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1760 RBD_LOCK_NAME, lockers[0].id.cookie, 1761 &lockers[0].id.name); 1762 ceph_free_lockers(lockers, num_lockers); 1763 if (ret) { 1764 if (ret == -ENOENT) 1765 goto again; 1766 1767 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1768 return ret; 1769 } 1770 1771 broke_lock = true; 1772 goto again; 1773 } 1774 1775 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1776 { 1777 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1778 CEPH_DEFINE_OID_ONSTACK(oid); 1779 int ret; 1780 1781 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1782 1783 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1784 ""); 1785 if (ret && ret != -ENOENT) 1786 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1787 } 1788 1789 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1790 { 1791 u8 struct_v; 1792 u32 struct_len; 1793 u32 header_len; 1794 void *header_end; 1795 int ret; 1796 1797 ceph_decode_32_safe(p, end, header_len, e_inval); 1798 header_end = *p + header_len; 1799 1800 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1801 &struct_len); 1802 if (ret) 1803 return ret; 1804 1805 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1806 1807 *p = header_end; 1808 return 0; 1809 1810 e_inval: 1811 return -EINVAL; 1812 } 1813 1814 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1815 { 1816 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1817 CEPH_DEFINE_OID_ONSTACK(oid); 1818 struct page **pages; 1819 void *p, *end; 1820 size_t reply_len; 1821 u64 num_objects; 1822 u64 object_map_bytes; 1823 u64 object_map_size; 1824 int num_pages; 1825 int ret; 1826 1827 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1828 1829 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1830 rbd_dev->mapping.size); 1831 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1832 BITS_PER_BYTE); 1833 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1834 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1835 if (IS_ERR(pages)) 1836 return PTR_ERR(pages); 1837 1838 reply_len = num_pages * PAGE_SIZE; 1839 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1840 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1841 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1842 NULL, 0, pages, &reply_len); 1843 if (ret) 1844 goto out; 1845 1846 p = page_address(pages[0]); 1847 end = p + min(reply_len, (size_t)PAGE_SIZE); 1848 ret = decode_object_map_header(&p, end, &object_map_size); 1849 if (ret) 1850 goto out; 1851 1852 if (object_map_size != num_objects) { 1853 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1854 object_map_size, num_objects); 1855 ret = -EINVAL; 1856 goto out; 1857 } 1858 1859 if (offset_in_page(p) + object_map_bytes > reply_len) { 1860 ret = -EINVAL; 1861 goto out; 1862 } 1863 1864 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1865 if (!rbd_dev->object_map) { 1866 ret = -ENOMEM; 1867 goto out; 1868 } 1869 1870 rbd_dev->object_map_size = object_map_size; 1871 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1872 offset_in_page(p), object_map_bytes); 1873 1874 out: 1875 ceph_release_page_vector(pages, num_pages); 1876 return ret; 1877 } 1878 1879 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1880 { 1881 kvfree(rbd_dev->object_map); 1882 rbd_dev->object_map = NULL; 1883 rbd_dev->object_map_size = 0; 1884 } 1885 1886 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1887 { 1888 int ret; 1889 1890 ret = __rbd_object_map_load(rbd_dev); 1891 if (ret) 1892 return ret; 1893 1894 ret = rbd_dev_v2_get_flags(rbd_dev); 1895 if (ret) { 1896 rbd_object_map_free(rbd_dev); 1897 return ret; 1898 } 1899 1900 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1901 rbd_warn(rbd_dev, "object map is invalid"); 1902 1903 return 0; 1904 } 1905 1906 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1907 { 1908 int ret; 1909 1910 ret = rbd_object_map_lock(rbd_dev); 1911 if (ret) 1912 return ret; 1913 1914 ret = rbd_object_map_load(rbd_dev); 1915 if (ret) { 1916 rbd_object_map_unlock(rbd_dev); 1917 return ret; 1918 } 1919 1920 return 0; 1921 } 1922 1923 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1924 { 1925 rbd_object_map_free(rbd_dev); 1926 rbd_object_map_unlock(rbd_dev); 1927 } 1928 1929 /* 1930 * This function needs snap_id (or more precisely just something to 1931 * distinguish between HEAD and snapshot object maps), new_state and 1932 * current_state that were passed to rbd_object_map_update(). 1933 * 1934 * To avoid allocating and stashing a context we piggyback on the OSD 1935 * request. A HEAD update has two ops (assert_locked). For new_state 1936 * and current_state we decode our own object_map_update op, encoded in 1937 * rbd_cls_object_map_update(). 1938 */ 1939 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1940 struct ceph_osd_request *osd_req) 1941 { 1942 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1943 struct ceph_osd_data *osd_data; 1944 u64 objno; 1945 u8 state, new_state, current_state; 1946 bool has_current_state; 1947 void *p; 1948 1949 if (osd_req->r_result) 1950 return osd_req->r_result; 1951 1952 /* 1953 * Nothing to do for a snapshot object map. 1954 */ 1955 if (osd_req->r_num_ops == 1) 1956 return 0; 1957 1958 /* 1959 * Update in-memory HEAD object map. 1960 */ 1961 rbd_assert(osd_req->r_num_ops == 2); 1962 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1963 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1964 1965 p = page_address(osd_data->pages[0]); 1966 objno = ceph_decode_64(&p); 1967 rbd_assert(objno == obj_req->ex.oe_objno); 1968 rbd_assert(ceph_decode_64(&p) == objno + 1); 1969 new_state = ceph_decode_8(&p); 1970 has_current_state = ceph_decode_8(&p); 1971 if (has_current_state) 1972 current_state = ceph_decode_8(&p); 1973 1974 spin_lock(&rbd_dev->object_map_lock); 1975 state = __rbd_object_map_get(rbd_dev, objno); 1976 if (!has_current_state || current_state == state || 1977 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1978 __rbd_object_map_set(rbd_dev, objno, new_state); 1979 spin_unlock(&rbd_dev->object_map_lock); 1980 1981 return 0; 1982 } 1983 1984 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1985 { 1986 struct rbd_obj_request *obj_req = osd_req->r_priv; 1987 int result; 1988 1989 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1990 osd_req->r_result, obj_req); 1991 1992 result = rbd_object_map_update_finish(obj_req, osd_req); 1993 rbd_obj_handle_request(obj_req, result); 1994 } 1995 1996 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 1997 { 1998 u8 state = rbd_object_map_get(rbd_dev, objno); 1999 2000 if (state == new_state || 2001 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2002 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2003 return false; 2004 2005 return true; 2006 } 2007 2008 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2009 int which, u64 objno, u8 new_state, 2010 const u8 *current_state) 2011 { 2012 struct page **pages; 2013 void *p, *start; 2014 int ret; 2015 2016 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2017 if (ret) 2018 return ret; 2019 2020 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2021 if (IS_ERR(pages)) 2022 return PTR_ERR(pages); 2023 2024 p = start = page_address(pages[0]); 2025 ceph_encode_64(&p, objno); 2026 ceph_encode_64(&p, objno + 1); 2027 ceph_encode_8(&p, new_state); 2028 if (current_state) { 2029 ceph_encode_8(&p, 1); 2030 ceph_encode_8(&p, *current_state); 2031 } else { 2032 ceph_encode_8(&p, 0); 2033 } 2034 2035 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2036 false, true); 2037 return 0; 2038 } 2039 2040 /* 2041 * Return: 2042 * 0 - object map update sent 2043 * 1 - object map update isn't needed 2044 * <0 - error 2045 */ 2046 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2047 u8 new_state, const u8 *current_state) 2048 { 2049 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2050 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2051 struct ceph_osd_request *req; 2052 int num_ops = 1; 2053 int which = 0; 2054 int ret; 2055 2056 if (snap_id == CEPH_NOSNAP) { 2057 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2058 return 1; 2059 2060 num_ops++; /* assert_locked */ 2061 } 2062 2063 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2064 if (!req) 2065 return -ENOMEM; 2066 2067 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2068 req->r_callback = rbd_object_map_callback; 2069 req->r_priv = obj_req; 2070 2071 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2072 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2073 req->r_flags = CEPH_OSD_FLAG_WRITE; 2074 ktime_get_real_ts64(&req->r_mtime); 2075 2076 if (snap_id == CEPH_NOSNAP) { 2077 /* 2078 * Protect against possible race conditions during lock 2079 * ownership transitions. 2080 */ 2081 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2082 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2083 if (ret) 2084 return ret; 2085 } 2086 2087 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2088 new_state, current_state); 2089 if (ret) 2090 return ret; 2091 2092 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2093 if (ret) 2094 return ret; 2095 2096 ceph_osdc_start_request(osdc, req, false); 2097 return 0; 2098 } 2099 2100 static void prune_extents(struct ceph_file_extent *img_extents, 2101 u32 *num_img_extents, u64 overlap) 2102 { 2103 u32 cnt = *num_img_extents; 2104 2105 /* drop extents completely beyond the overlap */ 2106 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2107 cnt--; 2108 2109 if (cnt) { 2110 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2111 2112 /* trim final overlapping extent */ 2113 if (ex->fe_off + ex->fe_len > overlap) 2114 ex->fe_len = overlap - ex->fe_off; 2115 } 2116 2117 *num_img_extents = cnt; 2118 } 2119 2120 /* 2121 * Determine the byte range(s) covered by either just the object extent 2122 * or the entire object in the parent image. 2123 */ 2124 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2125 bool entire) 2126 { 2127 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2128 int ret; 2129 2130 if (!rbd_dev->parent_overlap) 2131 return 0; 2132 2133 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2134 entire ? 0 : obj_req->ex.oe_off, 2135 entire ? rbd_dev->layout.object_size : 2136 obj_req->ex.oe_len, 2137 &obj_req->img_extents, 2138 &obj_req->num_img_extents); 2139 if (ret) 2140 return ret; 2141 2142 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2143 rbd_dev->parent_overlap); 2144 return 0; 2145 } 2146 2147 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2148 { 2149 struct rbd_obj_request *obj_req = osd_req->r_priv; 2150 2151 switch (obj_req->img_request->data_type) { 2152 case OBJ_REQUEST_BIO: 2153 osd_req_op_extent_osd_data_bio(osd_req, which, 2154 &obj_req->bio_pos, 2155 obj_req->ex.oe_len); 2156 break; 2157 case OBJ_REQUEST_BVECS: 2158 case OBJ_REQUEST_OWN_BVECS: 2159 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2160 obj_req->ex.oe_len); 2161 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2162 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2163 &obj_req->bvec_pos); 2164 break; 2165 default: 2166 BUG(); 2167 } 2168 } 2169 2170 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2171 { 2172 struct page **pages; 2173 2174 /* 2175 * The response data for a STAT call consists of: 2176 * le64 length; 2177 * struct { 2178 * le32 tv_sec; 2179 * le32 tv_nsec; 2180 * } mtime; 2181 */ 2182 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2183 if (IS_ERR(pages)) 2184 return PTR_ERR(pages); 2185 2186 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2187 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2188 8 + sizeof(struct ceph_timespec), 2189 0, false, true); 2190 return 0; 2191 } 2192 2193 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2194 u32 bytes) 2195 { 2196 struct rbd_obj_request *obj_req = osd_req->r_priv; 2197 int ret; 2198 2199 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2200 if (ret) 2201 return ret; 2202 2203 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2204 obj_req->copyup_bvec_count, bytes); 2205 return 0; 2206 } 2207 2208 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2209 { 2210 obj_req->read_state = RBD_OBJ_READ_START; 2211 return 0; 2212 } 2213 2214 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2215 int which) 2216 { 2217 struct rbd_obj_request *obj_req = osd_req->r_priv; 2218 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2219 u16 opcode; 2220 2221 if (!use_object_map(rbd_dev) || 2222 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2223 osd_req_op_alloc_hint_init(osd_req, which++, 2224 rbd_dev->layout.object_size, 2225 rbd_dev->layout.object_size, 2226 rbd_dev->opts->alloc_hint_flags); 2227 } 2228 2229 if (rbd_obj_is_entire(obj_req)) 2230 opcode = CEPH_OSD_OP_WRITEFULL; 2231 else 2232 opcode = CEPH_OSD_OP_WRITE; 2233 2234 osd_req_op_extent_init(osd_req, which, opcode, 2235 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2236 rbd_osd_setup_data(osd_req, which); 2237 } 2238 2239 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2240 { 2241 int ret; 2242 2243 /* reverse map the entire object onto the parent */ 2244 ret = rbd_obj_calc_img_extents(obj_req, true); 2245 if (ret) 2246 return ret; 2247 2248 if (rbd_obj_copyup_enabled(obj_req)) 2249 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2250 2251 obj_req->write_state = RBD_OBJ_WRITE_START; 2252 return 0; 2253 } 2254 2255 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2256 { 2257 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2258 CEPH_OSD_OP_ZERO; 2259 } 2260 2261 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2262 int which) 2263 { 2264 struct rbd_obj_request *obj_req = osd_req->r_priv; 2265 2266 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2267 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2268 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2269 } else { 2270 osd_req_op_extent_init(osd_req, which, 2271 truncate_or_zero_opcode(obj_req), 2272 obj_req->ex.oe_off, obj_req->ex.oe_len, 2273 0, 0); 2274 } 2275 } 2276 2277 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2278 { 2279 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2280 u64 off, next_off; 2281 int ret; 2282 2283 /* 2284 * Align the range to alloc_size boundary and punt on discards 2285 * that are too small to free up any space. 2286 * 2287 * alloc_size == object_size && is_tail() is a special case for 2288 * filestore with filestore_punch_hole = false, needed to allow 2289 * truncate (in addition to delete). 2290 */ 2291 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2292 !rbd_obj_is_tail(obj_req)) { 2293 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2294 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2295 rbd_dev->opts->alloc_size); 2296 if (off >= next_off) 2297 return 1; 2298 2299 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2300 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2301 off, next_off - off); 2302 obj_req->ex.oe_off = off; 2303 obj_req->ex.oe_len = next_off - off; 2304 } 2305 2306 /* reverse map the entire object onto the parent */ 2307 ret = rbd_obj_calc_img_extents(obj_req, true); 2308 if (ret) 2309 return ret; 2310 2311 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2312 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2313 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2314 2315 obj_req->write_state = RBD_OBJ_WRITE_START; 2316 return 0; 2317 } 2318 2319 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2320 int which) 2321 { 2322 struct rbd_obj_request *obj_req = osd_req->r_priv; 2323 u16 opcode; 2324 2325 if (rbd_obj_is_entire(obj_req)) { 2326 if (obj_req->num_img_extents) { 2327 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2328 osd_req_op_init(osd_req, which++, 2329 CEPH_OSD_OP_CREATE, 0); 2330 opcode = CEPH_OSD_OP_TRUNCATE; 2331 } else { 2332 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2333 osd_req_op_init(osd_req, which++, 2334 CEPH_OSD_OP_DELETE, 0); 2335 opcode = 0; 2336 } 2337 } else { 2338 opcode = truncate_or_zero_opcode(obj_req); 2339 } 2340 2341 if (opcode) 2342 osd_req_op_extent_init(osd_req, which, opcode, 2343 obj_req->ex.oe_off, obj_req->ex.oe_len, 2344 0, 0); 2345 } 2346 2347 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2348 { 2349 int ret; 2350 2351 /* reverse map the entire object onto the parent */ 2352 ret = rbd_obj_calc_img_extents(obj_req, true); 2353 if (ret) 2354 return ret; 2355 2356 if (rbd_obj_copyup_enabled(obj_req)) 2357 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2358 if (!obj_req->num_img_extents) { 2359 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2360 if (rbd_obj_is_entire(obj_req)) 2361 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2362 } 2363 2364 obj_req->write_state = RBD_OBJ_WRITE_START; 2365 return 0; 2366 } 2367 2368 static int count_write_ops(struct rbd_obj_request *obj_req) 2369 { 2370 struct rbd_img_request *img_req = obj_req->img_request; 2371 2372 switch (img_req->op_type) { 2373 case OBJ_OP_WRITE: 2374 if (!use_object_map(img_req->rbd_dev) || 2375 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2376 return 2; /* setallochint + write/writefull */ 2377 2378 return 1; /* write/writefull */ 2379 case OBJ_OP_DISCARD: 2380 return 1; /* delete/truncate/zero */ 2381 case OBJ_OP_ZEROOUT: 2382 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2383 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2384 return 2; /* create + truncate */ 2385 2386 return 1; /* delete/truncate/zero */ 2387 default: 2388 BUG(); 2389 } 2390 } 2391 2392 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2393 int which) 2394 { 2395 struct rbd_obj_request *obj_req = osd_req->r_priv; 2396 2397 switch (obj_req->img_request->op_type) { 2398 case OBJ_OP_WRITE: 2399 __rbd_osd_setup_write_ops(osd_req, which); 2400 break; 2401 case OBJ_OP_DISCARD: 2402 __rbd_osd_setup_discard_ops(osd_req, which); 2403 break; 2404 case OBJ_OP_ZEROOUT: 2405 __rbd_osd_setup_zeroout_ops(osd_req, which); 2406 break; 2407 default: 2408 BUG(); 2409 } 2410 } 2411 2412 /* 2413 * Prune the list of object requests (adjust offset and/or length, drop 2414 * redundant requests). Prepare object request state machines and image 2415 * request state machine for execution. 2416 */ 2417 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2418 { 2419 struct rbd_obj_request *obj_req, *next_obj_req; 2420 int ret; 2421 2422 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2423 switch (img_req->op_type) { 2424 case OBJ_OP_READ: 2425 ret = rbd_obj_init_read(obj_req); 2426 break; 2427 case OBJ_OP_WRITE: 2428 ret = rbd_obj_init_write(obj_req); 2429 break; 2430 case OBJ_OP_DISCARD: 2431 ret = rbd_obj_init_discard(obj_req); 2432 break; 2433 case OBJ_OP_ZEROOUT: 2434 ret = rbd_obj_init_zeroout(obj_req); 2435 break; 2436 default: 2437 BUG(); 2438 } 2439 if (ret < 0) 2440 return ret; 2441 if (ret > 0) { 2442 rbd_img_obj_request_del(img_req, obj_req); 2443 continue; 2444 } 2445 } 2446 2447 img_req->state = RBD_IMG_START; 2448 return 0; 2449 } 2450 2451 union rbd_img_fill_iter { 2452 struct ceph_bio_iter bio_iter; 2453 struct ceph_bvec_iter bvec_iter; 2454 }; 2455 2456 struct rbd_img_fill_ctx { 2457 enum obj_request_type pos_type; 2458 union rbd_img_fill_iter *pos; 2459 union rbd_img_fill_iter iter; 2460 ceph_object_extent_fn_t set_pos_fn; 2461 ceph_object_extent_fn_t count_fn; 2462 ceph_object_extent_fn_t copy_fn; 2463 }; 2464 2465 static struct ceph_object_extent *alloc_object_extent(void *arg) 2466 { 2467 struct rbd_img_request *img_req = arg; 2468 struct rbd_obj_request *obj_req; 2469 2470 obj_req = rbd_obj_request_create(); 2471 if (!obj_req) 2472 return NULL; 2473 2474 rbd_img_obj_request_add(img_req, obj_req); 2475 return &obj_req->ex; 2476 } 2477 2478 /* 2479 * While su != os && sc == 1 is technically not fancy (it's the same 2480 * layout as su == os && sc == 1), we can't use the nocopy path for it 2481 * because ->set_pos_fn() should be called only once per object. 2482 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2483 * treat su != os && sc == 1 as fancy. 2484 */ 2485 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2486 { 2487 return l->stripe_unit != l->object_size; 2488 } 2489 2490 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2491 struct ceph_file_extent *img_extents, 2492 u32 num_img_extents, 2493 struct rbd_img_fill_ctx *fctx) 2494 { 2495 u32 i; 2496 int ret; 2497 2498 img_req->data_type = fctx->pos_type; 2499 2500 /* 2501 * Create object requests and set each object request's starting 2502 * position in the provided bio (list) or bio_vec array. 2503 */ 2504 fctx->iter = *fctx->pos; 2505 for (i = 0; i < num_img_extents; i++) { 2506 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2507 img_extents[i].fe_off, 2508 img_extents[i].fe_len, 2509 &img_req->object_extents, 2510 alloc_object_extent, img_req, 2511 fctx->set_pos_fn, &fctx->iter); 2512 if (ret) 2513 return ret; 2514 } 2515 2516 return __rbd_img_fill_request(img_req); 2517 } 2518 2519 /* 2520 * Map a list of image extents to a list of object extents, create the 2521 * corresponding object requests (normally each to a different object, 2522 * but not always) and add them to @img_req. For each object request, 2523 * set up its data descriptor to point to the corresponding chunk(s) of 2524 * @fctx->pos data buffer. 2525 * 2526 * Because ceph_file_to_extents() will merge adjacent object extents 2527 * together, each object request's data descriptor may point to multiple 2528 * different chunks of @fctx->pos data buffer. 2529 * 2530 * @fctx->pos data buffer is assumed to be large enough. 2531 */ 2532 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2533 struct ceph_file_extent *img_extents, 2534 u32 num_img_extents, 2535 struct rbd_img_fill_ctx *fctx) 2536 { 2537 struct rbd_device *rbd_dev = img_req->rbd_dev; 2538 struct rbd_obj_request *obj_req; 2539 u32 i; 2540 int ret; 2541 2542 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2543 !rbd_layout_is_fancy(&rbd_dev->layout)) 2544 return rbd_img_fill_request_nocopy(img_req, img_extents, 2545 num_img_extents, fctx); 2546 2547 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2548 2549 /* 2550 * Create object requests and determine ->bvec_count for each object 2551 * request. Note that ->bvec_count sum over all object requests may 2552 * be greater than the number of bio_vecs in the provided bio (list) 2553 * or bio_vec array because when mapped, those bio_vecs can straddle 2554 * stripe unit boundaries. 2555 */ 2556 fctx->iter = *fctx->pos; 2557 for (i = 0; i < num_img_extents; i++) { 2558 ret = ceph_file_to_extents(&rbd_dev->layout, 2559 img_extents[i].fe_off, 2560 img_extents[i].fe_len, 2561 &img_req->object_extents, 2562 alloc_object_extent, img_req, 2563 fctx->count_fn, &fctx->iter); 2564 if (ret) 2565 return ret; 2566 } 2567 2568 for_each_obj_request(img_req, obj_req) { 2569 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2570 sizeof(*obj_req->bvec_pos.bvecs), 2571 GFP_NOIO); 2572 if (!obj_req->bvec_pos.bvecs) 2573 return -ENOMEM; 2574 } 2575 2576 /* 2577 * Fill in each object request's private bio_vec array, splitting and 2578 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2579 */ 2580 fctx->iter = *fctx->pos; 2581 for (i = 0; i < num_img_extents; i++) { 2582 ret = ceph_iterate_extents(&rbd_dev->layout, 2583 img_extents[i].fe_off, 2584 img_extents[i].fe_len, 2585 &img_req->object_extents, 2586 fctx->copy_fn, &fctx->iter); 2587 if (ret) 2588 return ret; 2589 } 2590 2591 return __rbd_img_fill_request(img_req); 2592 } 2593 2594 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2595 u64 off, u64 len) 2596 { 2597 struct ceph_file_extent ex = { off, len }; 2598 union rbd_img_fill_iter dummy = {}; 2599 struct rbd_img_fill_ctx fctx = { 2600 .pos_type = OBJ_REQUEST_NODATA, 2601 .pos = &dummy, 2602 }; 2603 2604 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2605 } 2606 2607 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2608 { 2609 struct rbd_obj_request *obj_req = 2610 container_of(ex, struct rbd_obj_request, ex); 2611 struct ceph_bio_iter *it = arg; 2612 2613 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2614 obj_req->bio_pos = *it; 2615 ceph_bio_iter_advance(it, bytes); 2616 } 2617 2618 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2619 { 2620 struct rbd_obj_request *obj_req = 2621 container_of(ex, struct rbd_obj_request, ex); 2622 struct ceph_bio_iter *it = arg; 2623 2624 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2625 ceph_bio_iter_advance_step(it, bytes, ({ 2626 obj_req->bvec_count++; 2627 })); 2628 2629 } 2630 2631 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2632 { 2633 struct rbd_obj_request *obj_req = 2634 container_of(ex, struct rbd_obj_request, ex); 2635 struct ceph_bio_iter *it = arg; 2636 2637 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2638 ceph_bio_iter_advance_step(it, bytes, ({ 2639 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2640 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2641 })); 2642 } 2643 2644 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2645 struct ceph_file_extent *img_extents, 2646 u32 num_img_extents, 2647 struct ceph_bio_iter *bio_pos) 2648 { 2649 struct rbd_img_fill_ctx fctx = { 2650 .pos_type = OBJ_REQUEST_BIO, 2651 .pos = (union rbd_img_fill_iter *)bio_pos, 2652 .set_pos_fn = set_bio_pos, 2653 .count_fn = count_bio_bvecs, 2654 .copy_fn = copy_bio_bvecs, 2655 }; 2656 2657 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2658 &fctx); 2659 } 2660 2661 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2662 u64 off, u64 len, struct bio *bio) 2663 { 2664 struct ceph_file_extent ex = { off, len }; 2665 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2666 2667 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2668 } 2669 2670 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2671 { 2672 struct rbd_obj_request *obj_req = 2673 container_of(ex, struct rbd_obj_request, ex); 2674 struct ceph_bvec_iter *it = arg; 2675 2676 obj_req->bvec_pos = *it; 2677 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2678 ceph_bvec_iter_advance(it, bytes); 2679 } 2680 2681 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2682 { 2683 struct rbd_obj_request *obj_req = 2684 container_of(ex, struct rbd_obj_request, ex); 2685 struct ceph_bvec_iter *it = arg; 2686 2687 ceph_bvec_iter_advance_step(it, bytes, ({ 2688 obj_req->bvec_count++; 2689 })); 2690 } 2691 2692 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2693 { 2694 struct rbd_obj_request *obj_req = 2695 container_of(ex, struct rbd_obj_request, ex); 2696 struct ceph_bvec_iter *it = arg; 2697 2698 ceph_bvec_iter_advance_step(it, bytes, ({ 2699 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2700 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2701 })); 2702 } 2703 2704 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2705 struct ceph_file_extent *img_extents, 2706 u32 num_img_extents, 2707 struct ceph_bvec_iter *bvec_pos) 2708 { 2709 struct rbd_img_fill_ctx fctx = { 2710 .pos_type = OBJ_REQUEST_BVECS, 2711 .pos = (union rbd_img_fill_iter *)bvec_pos, 2712 .set_pos_fn = set_bvec_pos, 2713 .count_fn = count_bvecs, 2714 .copy_fn = copy_bvecs, 2715 }; 2716 2717 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2718 &fctx); 2719 } 2720 2721 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2722 struct ceph_file_extent *img_extents, 2723 u32 num_img_extents, 2724 struct bio_vec *bvecs) 2725 { 2726 struct ceph_bvec_iter it = { 2727 .bvecs = bvecs, 2728 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2729 num_img_extents) }, 2730 }; 2731 2732 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2733 &it); 2734 } 2735 2736 static void rbd_img_handle_request_work(struct work_struct *work) 2737 { 2738 struct rbd_img_request *img_req = 2739 container_of(work, struct rbd_img_request, work); 2740 2741 rbd_img_handle_request(img_req, img_req->work_result); 2742 } 2743 2744 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2745 { 2746 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2747 img_req->work_result = result; 2748 queue_work(rbd_wq, &img_req->work); 2749 } 2750 2751 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2752 { 2753 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2754 2755 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2756 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2757 return true; 2758 } 2759 2760 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2761 obj_req->ex.oe_objno); 2762 return false; 2763 } 2764 2765 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2766 { 2767 struct ceph_osd_request *osd_req; 2768 int ret; 2769 2770 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2771 if (IS_ERR(osd_req)) 2772 return PTR_ERR(osd_req); 2773 2774 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2775 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2776 rbd_osd_setup_data(osd_req, 0); 2777 rbd_osd_format_read(osd_req); 2778 2779 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2780 if (ret) 2781 return ret; 2782 2783 rbd_osd_submit(osd_req); 2784 return 0; 2785 } 2786 2787 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2788 { 2789 struct rbd_img_request *img_req = obj_req->img_request; 2790 struct rbd_device *parent = img_req->rbd_dev->parent; 2791 struct rbd_img_request *child_img_req; 2792 int ret; 2793 2794 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2795 if (!child_img_req) 2796 return -ENOMEM; 2797 2798 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2799 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2800 child_img_req->obj_request = obj_req; 2801 2802 down_read(&parent->header_rwsem); 2803 rbd_img_capture_header(child_img_req); 2804 up_read(&parent->header_rwsem); 2805 2806 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2807 obj_req); 2808 2809 if (!rbd_img_is_write(img_req)) { 2810 switch (img_req->data_type) { 2811 case OBJ_REQUEST_BIO: 2812 ret = __rbd_img_fill_from_bio(child_img_req, 2813 obj_req->img_extents, 2814 obj_req->num_img_extents, 2815 &obj_req->bio_pos); 2816 break; 2817 case OBJ_REQUEST_BVECS: 2818 case OBJ_REQUEST_OWN_BVECS: 2819 ret = __rbd_img_fill_from_bvecs(child_img_req, 2820 obj_req->img_extents, 2821 obj_req->num_img_extents, 2822 &obj_req->bvec_pos); 2823 break; 2824 default: 2825 BUG(); 2826 } 2827 } else { 2828 ret = rbd_img_fill_from_bvecs(child_img_req, 2829 obj_req->img_extents, 2830 obj_req->num_img_extents, 2831 obj_req->copyup_bvecs); 2832 } 2833 if (ret) { 2834 rbd_img_request_destroy(child_img_req); 2835 return ret; 2836 } 2837 2838 /* avoid parent chain recursion */ 2839 rbd_img_schedule(child_img_req, 0); 2840 return 0; 2841 } 2842 2843 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2844 { 2845 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2846 int ret; 2847 2848 again: 2849 switch (obj_req->read_state) { 2850 case RBD_OBJ_READ_START: 2851 rbd_assert(!*result); 2852 2853 if (!rbd_obj_may_exist(obj_req)) { 2854 *result = -ENOENT; 2855 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2856 goto again; 2857 } 2858 2859 ret = rbd_obj_read_object(obj_req); 2860 if (ret) { 2861 *result = ret; 2862 return true; 2863 } 2864 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2865 return false; 2866 case RBD_OBJ_READ_OBJECT: 2867 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2868 /* reverse map this object extent onto the parent */ 2869 ret = rbd_obj_calc_img_extents(obj_req, false); 2870 if (ret) { 2871 *result = ret; 2872 return true; 2873 } 2874 if (obj_req->num_img_extents) { 2875 ret = rbd_obj_read_from_parent(obj_req); 2876 if (ret) { 2877 *result = ret; 2878 return true; 2879 } 2880 obj_req->read_state = RBD_OBJ_READ_PARENT; 2881 return false; 2882 } 2883 } 2884 2885 /* 2886 * -ENOENT means a hole in the image -- zero-fill the entire 2887 * length of the request. A short read also implies zero-fill 2888 * to the end of the request. 2889 */ 2890 if (*result == -ENOENT) { 2891 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2892 *result = 0; 2893 } else if (*result >= 0) { 2894 if (*result < obj_req->ex.oe_len) 2895 rbd_obj_zero_range(obj_req, *result, 2896 obj_req->ex.oe_len - *result); 2897 else 2898 rbd_assert(*result == obj_req->ex.oe_len); 2899 *result = 0; 2900 } 2901 return true; 2902 case RBD_OBJ_READ_PARENT: 2903 /* 2904 * The parent image is read only up to the overlap -- zero-fill 2905 * from the overlap to the end of the request. 2906 */ 2907 if (!*result) { 2908 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2909 2910 if (obj_overlap < obj_req->ex.oe_len) 2911 rbd_obj_zero_range(obj_req, obj_overlap, 2912 obj_req->ex.oe_len - obj_overlap); 2913 } 2914 return true; 2915 default: 2916 BUG(); 2917 } 2918 } 2919 2920 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2921 { 2922 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2923 2924 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2925 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2926 2927 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2928 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2929 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2930 return true; 2931 } 2932 2933 return false; 2934 } 2935 2936 /* 2937 * Return: 2938 * 0 - object map update sent 2939 * 1 - object map update isn't needed 2940 * <0 - error 2941 */ 2942 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2943 { 2944 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2945 u8 new_state; 2946 2947 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2948 return 1; 2949 2950 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2951 new_state = OBJECT_PENDING; 2952 else 2953 new_state = OBJECT_EXISTS; 2954 2955 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2956 } 2957 2958 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2959 { 2960 struct ceph_osd_request *osd_req; 2961 int num_ops = count_write_ops(obj_req); 2962 int which = 0; 2963 int ret; 2964 2965 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2966 num_ops++; /* stat */ 2967 2968 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2969 if (IS_ERR(osd_req)) 2970 return PTR_ERR(osd_req); 2971 2972 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2973 ret = rbd_osd_setup_stat(osd_req, which++); 2974 if (ret) 2975 return ret; 2976 } 2977 2978 rbd_osd_setup_write_ops(osd_req, which); 2979 rbd_osd_format_write(osd_req); 2980 2981 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2982 if (ret) 2983 return ret; 2984 2985 rbd_osd_submit(osd_req); 2986 return 0; 2987 } 2988 2989 /* 2990 * copyup_bvecs pages are never highmem pages 2991 */ 2992 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2993 { 2994 struct ceph_bvec_iter it = { 2995 .bvecs = bvecs, 2996 .iter = { .bi_size = bytes }, 2997 }; 2998 2999 ceph_bvec_iter_advance_step(&it, bytes, ({ 3000 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 3001 bv.bv_len)) 3002 return false; 3003 })); 3004 return true; 3005 } 3006 3007 #define MODS_ONLY U32_MAX 3008 3009 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3010 u32 bytes) 3011 { 3012 struct ceph_osd_request *osd_req; 3013 int ret; 3014 3015 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3016 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3017 3018 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3019 if (IS_ERR(osd_req)) 3020 return PTR_ERR(osd_req); 3021 3022 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3023 if (ret) 3024 return ret; 3025 3026 rbd_osd_format_write(osd_req); 3027 3028 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3029 if (ret) 3030 return ret; 3031 3032 rbd_osd_submit(osd_req); 3033 return 0; 3034 } 3035 3036 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3037 u32 bytes) 3038 { 3039 struct ceph_osd_request *osd_req; 3040 int num_ops = count_write_ops(obj_req); 3041 int which = 0; 3042 int ret; 3043 3044 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3045 3046 if (bytes != MODS_ONLY) 3047 num_ops++; /* copyup */ 3048 3049 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3050 if (IS_ERR(osd_req)) 3051 return PTR_ERR(osd_req); 3052 3053 if (bytes != MODS_ONLY) { 3054 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3055 if (ret) 3056 return ret; 3057 } 3058 3059 rbd_osd_setup_write_ops(osd_req, which); 3060 rbd_osd_format_write(osd_req); 3061 3062 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3063 if (ret) 3064 return ret; 3065 3066 rbd_osd_submit(osd_req); 3067 return 0; 3068 } 3069 3070 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3071 { 3072 u32 i; 3073 3074 rbd_assert(!obj_req->copyup_bvecs); 3075 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3076 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3077 sizeof(*obj_req->copyup_bvecs), 3078 GFP_NOIO); 3079 if (!obj_req->copyup_bvecs) 3080 return -ENOMEM; 3081 3082 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3083 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3084 3085 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 3086 if (!obj_req->copyup_bvecs[i].bv_page) 3087 return -ENOMEM; 3088 3089 obj_req->copyup_bvecs[i].bv_offset = 0; 3090 obj_req->copyup_bvecs[i].bv_len = len; 3091 obj_overlap -= len; 3092 } 3093 3094 rbd_assert(!obj_overlap); 3095 return 0; 3096 } 3097 3098 /* 3099 * The target object doesn't exist. Read the data for the entire 3100 * target object up to the overlap point (if any) from the parent, 3101 * so we can use it for a copyup. 3102 */ 3103 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3104 { 3105 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3106 int ret; 3107 3108 rbd_assert(obj_req->num_img_extents); 3109 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3110 rbd_dev->parent_overlap); 3111 if (!obj_req->num_img_extents) { 3112 /* 3113 * The overlap has become 0 (most likely because the 3114 * image has been flattened). Re-submit the original write 3115 * request -- pass MODS_ONLY since the copyup isn't needed 3116 * anymore. 3117 */ 3118 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3119 } 3120 3121 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3122 if (ret) 3123 return ret; 3124 3125 return rbd_obj_read_from_parent(obj_req); 3126 } 3127 3128 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3129 { 3130 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3131 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3132 u8 new_state; 3133 u32 i; 3134 int ret; 3135 3136 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3137 3138 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3139 return; 3140 3141 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3142 return; 3143 3144 for (i = 0; i < snapc->num_snaps; i++) { 3145 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3146 i + 1 < snapc->num_snaps) 3147 new_state = OBJECT_EXISTS_CLEAN; 3148 else 3149 new_state = OBJECT_EXISTS; 3150 3151 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3152 new_state, NULL); 3153 if (ret < 0) { 3154 obj_req->pending.result = ret; 3155 return; 3156 } 3157 3158 rbd_assert(!ret); 3159 obj_req->pending.num_pending++; 3160 } 3161 } 3162 3163 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3164 { 3165 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3166 int ret; 3167 3168 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3169 3170 /* 3171 * Only send non-zero copyup data to save some I/O and network 3172 * bandwidth -- zero copyup data is equivalent to the object not 3173 * existing. 3174 */ 3175 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3176 bytes = 0; 3177 3178 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3179 /* 3180 * Send a copyup request with an empty snapshot context to 3181 * deep-copyup the object through all existing snapshots. 3182 * A second request with the current snapshot context will be 3183 * sent for the actual modification. 3184 */ 3185 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3186 if (ret) { 3187 obj_req->pending.result = ret; 3188 return; 3189 } 3190 3191 obj_req->pending.num_pending++; 3192 bytes = MODS_ONLY; 3193 } 3194 3195 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3196 if (ret) { 3197 obj_req->pending.result = ret; 3198 return; 3199 } 3200 3201 obj_req->pending.num_pending++; 3202 } 3203 3204 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3205 { 3206 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3207 int ret; 3208 3209 again: 3210 switch (obj_req->copyup_state) { 3211 case RBD_OBJ_COPYUP_START: 3212 rbd_assert(!*result); 3213 3214 ret = rbd_obj_copyup_read_parent(obj_req); 3215 if (ret) { 3216 *result = ret; 3217 return true; 3218 } 3219 if (obj_req->num_img_extents) 3220 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3221 else 3222 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3223 return false; 3224 case RBD_OBJ_COPYUP_READ_PARENT: 3225 if (*result) 3226 return true; 3227 3228 if (is_zero_bvecs(obj_req->copyup_bvecs, 3229 rbd_obj_img_extents_bytes(obj_req))) { 3230 dout("%s %p detected zeros\n", __func__, obj_req); 3231 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3232 } 3233 3234 rbd_obj_copyup_object_maps(obj_req); 3235 if (!obj_req->pending.num_pending) { 3236 *result = obj_req->pending.result; 3237 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3238 goto again; 3239 } 3240 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3241 return false; 3242 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3243 if (!pending_result_dec(&obj_req->pending, result)) 3244 return false; 3245 fallthrough; 3246 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3247 if (*result) { 3248 rbd_warn(rbd_dev, "snap object map update failed: %d", 3249 *result); 3250 return true; 3251 } 3252 3253 rbd_obj_copyup_write_object(obj_req); 3254 if (!obj_req->pending.num_pending) { 3255 *result = obj_req->pending.result; 3256 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3257 goto again; 3258 } 3259 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3260 return false; 3261 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3262 if (!pending_result_dec(&obj_req->pending, result)) 3263 return false; 3264 fallthrough; 3265 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3266 return true; 3267 default: 3268 BUG(); 3269 } 3270 } 3271 3272 /* 3273 * Return: 3274 * 0 - object map update sent 3275 * 1 - object map update isn't needed 3276 * <0 - error 3277 */ 3278 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3279 { 3280 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3281 u8 current_state = OBJECT_PENDING; 3282 3283 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3284 return 1; 3285 3286 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3287 return 1; 3288 3289 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3290 ¤t_state); 3291 } 3292 3293 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3294 { 3295 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3296 int ret; 3297 3298 again: 3299 switch (obj_req->write_state) { 3300 case RBD_OBJ_WRITE_START: 3301 rbd_assert(!*result); 3302 3303 if (rbd_obj_write_is_noop(obj_req)) 3304 return true; 3305 3306 ret = rbd_obj_write_pre_object_map(obj_req); 3307 if (ret < 0) { 3308 *result = ret; 3309 return true; 3310 } 3311 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3312 if (ret > 0) 3313 goto again; 3314 return false; 3315 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3316 if (*result) { 3317 rbd_warn(rbd_dev, "pre object map update failed: %d", 3318 *result); 3319 return true; 3320 } 3321 ret = rbd_obj_write_object(obj_req); 3322 if (ret) { 3323 *result = ret; 3324 return true; 3325 } 3326 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3327 return false; 3328 case RBD_OBJ_WRITE_OBJECT: 3329 if (*result == -ENOENT) { 3330 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3331 *result = 0; 3332 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3333 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3334 goto again; 3335 } 3336 /* 3337 * On a non-existent object: 3338 * delete - -ENOENT, truncate/zero - 0 3339 */ 3340 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3341 *result = 0; 3342 } 3343 if (*result) 3344 return true; 3345 3346 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3347 goto again; 3348 case __RBD_OBJ_WRITE_COPYUP: 3349 if (!rbd_obj_advance_copyup(obj_req, result)) 3350 return false; 3351 fallthrough; 3352 case RBD_OBJ_WRITE_COPYUP: 3353 if (*result) { 3354 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3355 return true; 3356 } 3357 ret = rbd_obj_write_post_object_map(obj_req); 3358 if (ret < 0) { 3359 *result = ret; 3360 return true; 3361 } 3362 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3363 if (ret > 0) 3364 goto again; 3365 return false; 3366 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3367 if (*result) 3368 rbd_warn(rbd_dev, "post object map update failed: %d", 3369 *result); 3370 return true; 3371 default: 3372 BUG(); 3373 } 3374 } 3375 3376 /* 3377 * Return true if @obj_req is completed. 3378 */ 3379 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3380 int *result) 3381 { 3382 struct rbd_img_request *img_req = obj_req->img_request; 3383 struct rbd_device *rbd_dev = img_req->rbd_dev; 3384 bool done; 3385 3386 mutex_lock(&obj_req->state_mutex); 3387 if (!rbd_img_is_write(img_req)) 3388 done = rbd_obj_advance_read(obj_req, result); 3389 else 3390 done = rbd_obj_advance_write(obj_req, result); 3391 mutex_unlock(&obj_req->state_mutex); 3392 3393 if (done && *result) { 3394 rbd_assert(*result < 0); 3395 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3396 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3397 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3398 } 3399 return done; 3400 } 3401 3402 /* 3403 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3404 * recursion. 3405 */ 3406 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3407 { 3408 if (__rbd_obj_handle_request(obj_req, &result)) 3409 rbd_img_handle_request(obj_req->img_request, result); 3410 } 3411 3412 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3413 { 3414 struct rbd_device *rbd_dev = img_req->rbd_dev; 3415 3416 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3417 return false; 3418 3419 if (rbd_is_ro(rbd_dev)) 3420 return false; 3421 3422 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3423 if (rbd_dev->opts->lock_on_read || 3424 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3425 return true; 3426 3427 return rbd_img_is_write(img_req); 3428 } 3429 3430 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3431 { 3432 struct rbd_device *rbd_dev = img_req->rbd_dev; 3433 bool locked; 3434 3435 lockdep_assert_held(&rbd_dev->lock_rwsem); 3436 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3437 spin_lock(&rbd_dev->lock_lists_lock); 3438 rbd_assert(list_empty(&img_req->lock_item)); 3439 if (!locked) 3440 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3441 else 3442 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3443 spin_unlock(&rbd_dev->lock_lists_lock); 3444 return locked; 3445 } 3446 3447 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3448 { 3449 struct rbd_device *rbd_dev = img_req->rbd_dev; 3450 bool need_wakeup; 3451 3452 lockdep_assert_held(&rbd_dev->lock_rwsem); 3453 spin_lock(&rbd_dev->lock_lists_lock); 3454 rbd_assert(!list_empty(&img_req->lock_item)); 3455 list_del_init(&img_req->lock_item); 3456 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3457 list_empty(&rbd_dev->running_list)); 3458 spin_unlock(&rbd_dev->lock_lists_lock); 3459 if (need_wakeup) 3460 complete(&rbd_dev->releasing_wait); 3461 } 3462 3463 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3464 { 3465 struct rbd_device *rbd_dev = img_req->rbd_dev; 3466 3467 if (!need_exclusive_lock(img_req)) 3468 return 1; 3469 3470 if (rbd_lock_add_request(img_req)) 3471 return 1; 3472 3473 if (rbd_dev->opts->exclusive) { 3474 WARN_ON(1); /* lock got released? */ 3475 return -EROFS; 3476 } 3477 3478 /* 3479 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3480 * and cancel_delayed_work() in wake_lock_waiters(). 3481 */ 3482 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3483 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3484 return 0; 3485 } 3486 3487 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3488 { 3489 struct rbd_obj_request *obj_req; 3490 3491 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3492 3493 for_each_obj_request(img_req, obj_req) { 3494 int result = 0; 3495 3496 if (__rbd_obj_handle_request(obj_req, &result)) { 3497 if (result) { 3498 img_req->pending.result = result; 3499 return; 3500 } 3501 } else { 3502 img_req->pending.num_pending++; 3503 } 3504 } 3505 } 3506 3507 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3508 { 3509 struct rbd_device *rbd_dev = img_req->rbd_dev; 3510 int ret; 3511 3512 again: 3513 switch (img_req->state) { 3514 case RBD_IMG_START: 3515 rbd_assert(!*result); 3516 3517 ret = rbd_img_exclusive_lock(img_req); 3518 if (ret < 0) { 3519 *result = ret; 3520 return true; 3521 } 3522 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3523 if (ret > 0) 3524 goto again; 3525 return false; 3526 case RBD_IMG_EXCLUSIVE_LOCK: 3527 if (*result) 3528 return true; 3529 3530 rbd_assert(!need_exclusive_lock(img_req) || 3531 __rbd_is_lock_owner(rbd_dev)); 3532 3533 rbd_img_object_requests(img_req); 3534 if (!img_req->pending.num_pending) { 3535 *result = img_req->pending.result; 3536 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3537 goto again; 3538 } 3539 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3540 return false; 3541 case __RBD_IMG_OBJECT_REQUESTS: 3542 if (!pending_result_dec(&img_req->pending, result)) 3543 return false; 3544 fallthrough; 3545 case RBD_IMG_OBJECT_REQUESTS: 3546 return true; 3547 default: 3548 BUG(); 3549 } 3550 } 3551 3552 /* 3553 * Return true if @img_req is completed. 3554 */ 3555 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3556 int *result) 3557 { 3558 struct rbd_device *rbd_dev = img_req->rbd_dev; 3559 bool done; 3560 3561 if (need_exclusive_lock(img_req)) { 3562 down_read(&rbd_dev->lock_rwsem); 3563 mutex_lock(&img_req->state_mutex); 3564 done = rbd_img_advance(img_req, result); 3565 if (done) 3566 rbd_lock_del_request(img_req); 3567 mutex_unlock(&img_req->state_mutex); 3568 up_read(&rbd_dev->lock_rwsem); 3569 } else { 3570 mutex_lock(&img_req->state_mutex); 3571 done = rbd_img_advance(img_req, result); 3572 mutex_unlock(&img_req->state_mutex); 3573 } 3574 3575 if (done && *result) { 3576 rbd_assert(*result < 0); 3577 rbd_warn(rbd_dev, "%s%s result %d", 3578 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3579 obj_op_name(img_req->op_type), *result); 3580 } 3581 return done; 3582 } 3583 3584 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3585 { 3586 again: 3587 if (!__rbd_img_handle_request(img_req, &result)) 3588 return; 3589 3590 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3591 struct rbd_obj_request *obj_req = img_req->obj_request; 3592 3593 rbd_img_request_destroy(img_req); 3594 if (__rbd_obj_handle_request(obj_req, &result)) { 3595 img_req = obj_req->img_request; 3596 goto again; 3597 } 3598 } else { 3599 struct request *rq = blk_mq_rq_from_pdu(img_req); 3600 3601 rbd_img_request_destroy(img_req); 3602 blk_mq_end_request(rq, errno_to_blk_status(result)); 3603 } 3604 } 3605 3606 static const struct rbd_client_id rbd_empty_cid; 3607 3608 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3609 const struct rbd_client_id *rhs) 3610 { 3611 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3612 } 3613 3614 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3615 { 3616 struct rbd_client_id cid; 3617 3618 mutex_lock(&rbd_dev->watch_mutex); 3619 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3620 cid.handle = rbd_dev->watch_cookie; 3621 mutex_unlock(&rbd_dev->watch_mutex); 3622 return cid; 3623 } 3624 3625 /* 3626 * lock_rwsem must be held for write 3627 */ 3628 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3629 const struct rbd_client_id *cid) 3630 { 3631 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3632 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3633 cid->gid, cid->handle); 3634 rbd_dev->owner_cid = *cid; /* struct */ 3635 } 3636 3637 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3638 { 3639 mutex_lock(&rbd_dev->watch_mutex); 3640 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3641 mutex_unlock(&rbd_dev->watch_mutex); 3642 } 3643 3644 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3645 { 3646 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3647 3648 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3649 strcpy(rbd_dev->lock_cookie, cookie); 3650 rbd_set_owner_cid(rbd_dev, &cid); 3651 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3652 } 3653 3654 /* 3655 * lock_rwsem must be held for write 3656 */ 3657 static int rbd_lock(struct rbd_device *rbd_dev) 3658 { 3659 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3660 char cookie[32]; 3661 int ret; 3662 3663 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3664 rbd_dev->lock_cookie[0] != '\0'); 3665 3666 format_lock_cookie(rbd_dev, cookie); 3667 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3668 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3669 RBD_LOCK_TAG, "", 0); 3670 if (ret) 3671 return ret; 3672 3673 __rbd_lock(rbd_dev, cookie); 3674 return 0; 3675 } 3676 3677 /* 3678 * lock_rwsem must be held for write 3679 */ 3680 static void rbd_unlock(struct rbd_device *rbd_dev) 3681 { 3682 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3683 int ret; 3684 3685 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3686 rbd_dev->lock_cookie[0] == '\0'); 3687 3688 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3689 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3690 if (ret && ret != -ENOENT) 3691 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3692 3693 /* treat errors as the image is unlocked */ 3694 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3695 rbd_dev->lock_cookie[0] = '\0'; 3696 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3697 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3698 } 3699 3700 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3701 enum rbd_notify_op notify_op, 3702 struct page ***preply_pages, 3703 size_t *preply_len) 3704 { 3705 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3706 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3707 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3708 int buf_size = sizeof(buf); 3709 void *p = buf; 3710 3711 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3712 3713 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3714 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3715 ceph_encode_32(&p, notify_op); 3716 ceph_encode_64(&p, cid.gid); 3717 ceph_encode_64(&p, cid.handle); 3718 3719 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3720 &rbd_dev->header_oloc, buf, buf_size, 3721 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3722 } 3723 3724 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3725 enum rbd_notify_op notify_op) 3726 { 3727 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3728 } 3729 3730 static void rbd_notify_acquired_lock(struct work_struct *work) 3731 { 3732 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3733 acquired_lock_work); 3734 3735 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3736 } 3737 3738 static void rbd_notify_released_lock(struct work_struct *work) 3739 { 3740 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3741 released_lock_work); 3742 3743 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3744 } 3745 3746 static int rbd_request_lock(struct rbd_device *rbd_dev) 3747 { 3748 struct page **reply_pages; 3749 size_t reply_len; 3750 bool lock_owner_responded = false; 3751 int ret; 3752 3753 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3754 3755 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3756 &reply_pages, &reply_len); 3757 if (ret && ret != -ETIMEDOUT) { 3758 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3759 goto out; 3760 } 3761 3762 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3763 void *p = page_address(reply_pages[0]); 3764 void *const end = p + reply_len; 3765 u32 n; 3766 3767 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3768 while (n--) { 3769 u8 struct_v; 3770 u32 len; 3771 3772 ceph_decode_need(&p, end, 8 + 8, e_inval); 3773 p += 8 + 8; /* skip gid and cookie */ 3774 3775 ceph_decode_32_safe(&p, end, len, e_inval); 3776 if (!len) 3777 continue; 3778 3779 if (lock_owner_responded) { 3780 rbd_warn(rbd_dev, 3781 "duplicate lock owners detected"); 3782 ret = -EIO; 3783 goto out; 3784 } 3785 3786 lock_owner_responded = true; 3787 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3788 &struct_v, &len); 3789 if (ret) { 3790 rbd_warn(rbd_dev, 3791 "failed to decode ResponseMessage: %d", 3792 ret); 3793 goto e_inval; 3794 } 3795 3796 ret = ceph_decode_32(&p); 3797 } 3798 } 3799 3800 if (!lock_owner_responded) { 3801 rbd_warn(rbd_dev, "no lock owners detected"); 3802 ret = -ETIMEDOUT; 3803 } 3804 3805 out: 3806 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3807 return ret; 3808 3809 e_inval: 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 3814 /* 3815 * Either image request state machine(s) or rbd_add_acquire_lock() 3816 * (i.e. "rbd map"). 3817 */ 3818 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3819 { 3820 struct rbd_img_request *img_req; 3821 3822 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3823 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3824 3825 cancel_delayed_work(&rbd_dev->lock_dwork); 3826 if (!completion_done(&rbd_dev->acquire_wait)) { 3827 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3828 list_empty(&rbd_dev->running_list)); 3829 rbd_dev->acquire_err = result; 3830 complete_all(&rbd_dev->acquire_wait); 3831 return; 3832 } 3833 3834 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3835 mutex_lock(&img_req->state_mutex); 3836 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3837 rbd_img_schedule(img_req, result); 3838 mutex_unlock(&img_req->state_mutex); 3839 } 3840 3841 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3842 } 3843 3844 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3845 struct ceph_locker **lockers, u32 *num_lockers) 3846 { 3847 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3848 u8 lock_type; 3849 char *lock_tag; 3850 int ret; 3851 3852 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3853 3854 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3855 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3856 &lock_type, &lock_tag, lockers, num_lockers); 3857 if (ret) 3858 return ret; 3859 3860 if (*num_lockers == 0) { 3861 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3862 goto out; 3863 } 3864 3865 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3866 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3867 lock_tag); 3868 ret = -EBUSY; 3869 goto out; 3870 } 3871 3872 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3873 rbd_warn(rbd_dev, "shared lock type detected"); 3874 ret = -EBUSY; 3875 goto out; 3876 } 3877 3878 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3879 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3880 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3881 (*lockers)[0].id.cookie); 3882 ret = -EBUSY; 3883 goto out; 3884 } 3885 3886 out: 3887 kfree(lock_tag); 3888 return ret; 3889 } 3890 3891 static int find_watcher(struct rbd_device *rbd_dev, 3892 const struct ceph_locker *locker) 3893 { 3894 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3895 struct ceph_watch_item *watchers; 3896 u32 num_watchers; 3897 u64 cookie; 3898 int i; 3899 int ret; 3900 3901 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3902 &rbd_dev->header_oloc, &watchers, 3903 &num_watchers); 3904 if (ret) 3905 return ret; 3906 3907 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3908 for (i = 0; i < num_watchers; i++) { 3909 /* 3910 * Ignore addr->type while comparing. This mimics 3911 * entity_addr_t::get_legacy_str() + strcmp(). 3912 */ 3913 if (ceph_addr_equal_no_type(&watchers[i].addr, 3914 &locker->info.addr) && 3915 watchers[i].cookie == cookie) { 3916 struct rbd_client_id cid = { 3917 .gid = le64_to_cpu(watchers[i].name.num), 3918 .handle = cookie, 3919 }; 3920 3921 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3922 rbd_dev, cid.gid, cid.handle); 3923 rbd_set_owner_cid(rbd_dev, &cid); 3924 ret = 1; 3925 goto out; 3926 } 3927 } 3928 3929 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3930 ret = 0; 3931 out: 3932 kfree(watchers); 3933 return ret; 3934 } 3935 3936 /* 3937 * lock_rwsem must be held for write 3938 */ 3939 static int rbd_try_lock(struct rbd_device *rbd_dev) 3940 { 3941 struct ceph_client *client = rbd_dev->rbd_client->client; 3942 struct ceph_locker *lockers; 3943 u32 num_lockers; 3944 int ret; 3945 3946 for (;;) { 3947 ret = rbd_lock(rbd_dev); 3948 if (ret != -EBUSY) 3949 return ret; 3950 3951 /* determine if the current lock holder is still alive */ 3952 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3953 if (ret) 3954 return ret; 3955 3956 if (num_lockers == 0) 3957 goto again; 3958 3959 ret = find_watcher(rbd_dev, lockers); 3960 if (ret) 3961 goto out; /* request lock or error */ 3962 3963 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 3964 ENTITY_NAME(lockers[0].id.name)); 3965 3966 ret = ceph_monc_blocklist_add(&client->monc, 3967 &lockers[0].info.addr); 3968 if (ret) { 3969 rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d", 3970 ENTITY_NAME(lockers[0].id.name), ret); 3971 goto out; 3972 } 3973 3974 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3975 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3976 lockers[0].id.cookie, 3977 &lockers[0].id.name); 3978 if (ret && ret != -ENOENT) 3979 goto out; 3980 3981 again: 3982 ceph_free_lockers(lockers, num_lockers); 3983 } 3984 3985 out: 3986 ceph_free_lockers(lockers, num_lockers); 3987 return ret; 3988 } 3989 3990 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 3991 { 3992 int ret; 3993 3994 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 3995 ret = rbd_object_map_open(rbd_dev); 3996 if (ret) 3997 return ret; 3998 } 3999 4000 return 0; 4001 } 4002 4003 /* 4004 * Return: 4005 * 0 - lock acquired 4006 * 1 - caller should call rbd_request_lock() 4007 * <0 - error 4008 */ 4009 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4010 { 4011 int ret; 4012 4013 down_read(&rbd_dev->lock_rwsem); 4014 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4015 rbd_dev->lock_state); 4016 if (__rbd_is_lock_owner(rbd_dev)) { 4017 up_read(&rbd_dev->lock_rwsem); 4018 return 0; 4019 } 4020 4021 up_read(&rbd_dev->lock_rwsem); 4022 down_write(&rbd_dev->lock_rwsem); 4023 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4024 rbd_dev->lock_state); 4025 if (__rbd_is_lock_owner(rbd_dev)) { 4026 up_write(&rbd_dev->lock_rwsem); 4027 return 0; 4028 } 4029 4030 ret = rbd_try_lock(rbd_dev); 4031 if (ret < 0) { 4032 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4033 if (ret == -EBLOCKLISTED) 4034 goto out; 4035 4036 ret = 1; /* request lock anyway */ 4037 } 4038 if (ret > 0) { 4039 up_write(&rbd_dev->lock_rwsem); 4040 return ret; 4041 } 4042 4043 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4044 rbd_assert(list_empty(&rbd_dev->running_list)); 4045 4046 ret = rbd_post_acquire_action(rbd_dev); 4047 if (ret) { 4048 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4049 /* 4050 * Can't stay in RBD_LOCK_STATE_LOCKED because 4051 * rbd_lock_add_request() would let the request through, 4052 * assuming that e.g. object map is locked and loaded. 4053 */ 4054 rbd_unlock(rbd_dev); 4055 } 4056 4057 out: 4058 wake_lock_waiters(rbd_dev, ret); 4059 up_write(&rbd_dev->lock_rwsem); 4060 return ret; 4061 } 4062 4063 static void rbd_acquire_lock(struct work_struct *work) 4064 { 4065 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4066 struct rbd_device, lock_dwork); 4067 int ret; 4068 4069 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4070 again: 4071 ret = rbd_try_acquire_lock(rbd_dev); 4072 if (ret <= 0) { 4073 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4074 return; 4075 } 4076 4077 ret = rbd_request_lock(rbd_dev); 4078 if (ret == -ETIMEDOUT) { 4079 goto again; /* treat this as a dead client */ 4080 } else if (ret == -EROFS) { 4081 rbd_warn(rbd_dev, "peer will not release lock"); 4082 down_write(&rbd_dev->lock_rwsem); 4083 wake_lock_waiters(rbd_dev, ret); 4084 up_write(&rbd_dev->lock_rwsem); 4085 } else if (ret < 0) { 4086 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4087 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4088 RBD_RETRY_DELAY); 4089 } else { 4090 /* 4091 * lock owner acked, but resend if we don't see them 4092 * release the lock 4093 */ 4094 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4095 rbd_dev); 4096 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4097 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4098 } 4099 } 4100 4101 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4102 { 4103 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4104 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4105 4106 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4107 return false; 4108 4109 /* 4110 * Ensure that all in-flight IO is flushed. 4111 */ 4112 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4113 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4114 if (list_empty(&rbd_dev->running_list)) 4115 return true; 4116 4117 up_write(&rbd_dev->lock_rwsem); 4118 wait_for_completion(&rbd_dev->releasing_wait); 4119 4120 down_write(&rbd_dev->lock_rwsem); 4121 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4122 return false; 4123 4124 rbd_assert(list_empty(&rbd_dev->running_list)); 4125 return true; 4126 } 4127 4128 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4129 { 4130 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4131 rbd_object_map_close(rbd_dev); 4132 } 4133 4134 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4135 { 4136 rbd_assert(list_empty(&rbd_dev->running_list)); 4137 4138 rbd_pre_release_action(rbd_dev); 4139 rbd_unlock(rbd_dev); 4140 } 4141 4142 /* 4143 * lock_rwsem must be held for write 4144 */ 4145 static void rbd_release_lock(struct rbd_device *rbd_dev) 4146 { 4147 if (!rbd_quiesce_lock(rbd_dev)) 4148 return; 4149 4150 __rbd_release_lock(rbd_dev); 4151 4152 /* 4153 * Give others a chance to grab the lock - we would re-acquire 4154 * almost immediately if we got new IO while draining the running 4155 * list otherwise. We need to ack our own notifications, so this 4156 * lock_dwork will be requeued from rbd_handle_released_lock() by 4157 * way of maybe_kick_acquire(). 4158 */ 4159 cancel_delayed_work(&rbd_dev->lock_dwork); 4160 } 4161 4162 static void rbd_release_lock_work(struct work_struct *work) 4163 { 4164 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4165 unlock_work); 4166 4167 down_write(&rbd_dev->lock_rwsem); 4168 rbd_release_lock(rbd_dev); 4169 up_write(&rbd_dev->lock_rwsem); 4170 } 4171 4172 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4173 { 4174 bool have_requests; 4175 4176 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4177 if (__rbd_is_lock_owner(rbd_dev)) 4178 return; 4179 4180 spin_lock(&rbd_dev->lock_lists_lock); 4181 have_requests = !list_empty(&rbd_dev->acquiring_list); 4182 spin_unlock(&rbd_dev->lock_lists_lock); 4183 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4184 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4185 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4186 } 4187 } 4188 4189 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4190 void **p) 4191 { 4192 struct rbd_client_id cid = { 0 }; 4193 4194 if (struct_v >= 2) { 4195 cid.gid = ceph_decode_64(p); 4196 cid.handle = ceph_decode_64(p); 4197 } 4198 4199 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4200 cid.handle); 4201 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4202 down_write(&rbd_dev->lock_rwsem); 4203 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4204 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4205 __func__, rbd_dev, cid.gid, cid.handle); 4206 } else { 4207 rbd_set_owner_cid(rbd_dev, &cid); 4208 } 4209 downgrade_write(&rbd_dev->lock_rwsem); 4210 } else { 4211 down_read(&rbd_dev->lock_rwsem); 4212 } 4213 4214 maybe_kick_acquire(rbd_dev); 4215 up_read(&rbd_dev->lock_rwsem); 4216 } 4217 4218 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4219 void **p) 4220 { 4221 struct rbd_client_id cid = { 0 }; 4222 4223 if (struct_v >= 2) { 4224 cid.gid = ceph_decode_64(p); 4225 cid.handle = ceph_decode_64(p); 4226 } 4227 4228 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4229 cid.handle); 4230 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4231 down_write(&rbd_dev->lock_rwsem); 4232 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4233 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4234 __func__, rbd_dev, cid.gid, cid.handle, 4235 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4236 } else { 4237 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4238 } 4239 downgrade_write(&rbd_dev->lock_rwsem); 4240 } else { 4241 down_read(&rbd_dev->lock_rwsem); 4242 } 4243 4244 maybe_kick_acquire(rbd_dev); 4245 up_read(&rbd_dev->lock_rwsem); 4246 } 4247 4248 /* 4249 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4250 * ResponseMessage is needed. 4251 */ 4252 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4253 void **p) 4254 { 4255 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4256 struct rbd_client_id cid = { 0 }; 4257 int result = 1; 4258 4259 if (struct_v >= 2) { 4260 cid.gid = ceph_decode_64(p); 4261 cid.handle = ceph_decode_64(p); 4262 } 4263 4264 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4265 cid.handle); 4266 if (rbd_cid_equal(&cid, &my_cid)) 4267 return result; 4268 4269 down_read(&rbd_dev->lock_rwsem); 4270 if (__rbd_is_lock_owner(rbd_dev)) { 4271 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4272 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4273 goto out_unlock; 4274 4275 /* 4276 * encode ResponseMessage(0) so the peer can detect 4277 * a missing owner 4278 */ 4279 result = 0; 4280 4281 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4282 if (!rbd_dev->opts->exclusive) { 4283 dout("%s rbd_dev %p queueing unlock_work\n", 4284 __func__, rbd_dev); 4285 queue_work(rbd_dev->task_wq, 4286 &rbd_dev->unlock_work); 4287 } else { 4288 /* refuse to release the lock */ 4289 result = -EROFS; 4290 } 4291 } 4292 } 4293 4294 out_unlock: 4295 up_read(&rbd_dev->lock_rwsem); 4296 return result; 4297 } 4298 4299 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4300 u64 notify_id, u64 cookie, s32 *result) 4301 { 4302 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4303 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4304 int buf_size = sizeof(buf); 4305 int ret; 4306 4307 if (result) { 4308 void *p = buf; 4309 4310 /* encode ResponseMessage */ 4311 ceph_start_encoding(&p, 1, 1, 4312 buf_size - CEPH_ENCODING_START_BLK_LEN); 4313 ceph_encode_32(&p, *result); 4314 } else { 4315 buf_size = 0; 4316 } 4317 4318 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4319 &rbd_dev->header_oloc, notify_id, cookie, 4320 buf, buf_size); 4321 if (ret) 4322 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4323 } 4324 4325 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4326 u64 cookie) 4327 { 4328 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4329 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4330 } 4331 4332 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4333 u64 notify_id, u64 cookie, s32 result) 4334 { 4335 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4336 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4337 } 4338 4339 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4340 u64 notifier_id, void *data, size_t data_len) 4341 { 4342 struct rbd_device *rbd_dev = arg; 4343 void *p = data; 4344 void *const end = p + data_len; 4345 u8 struct_v = 0; 4346 u32 len; 4347 u32 notify_op; 4348 int ret; 4349 4350 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4351 __func__, rbd_dev, cookie, notify_id, data_len); 4352 if (data_len) { 4353 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4354 &struct_v, &len); 4355 if (ret) { 4356 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4357 ret); 4358 return; 4359 } 4360 4361 notify_op = ceph_decode_32(&p); 4362 } else { 4363 /* legacy notification for header updates */ 4364 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4365 len = 0; 4366 } 4367 4368 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4369 switch (notify_op) { 4370 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4371 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4372 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4373 break; 4374 case RBD_NOTIFY_OP_RELEASED_LOCK: 4375 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4376 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4377 break; 4378 case RBD_NOTIFY_OP_REQUEST_LOCK: 4379 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4380 if (ret <= 0) 4381 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4382 cookie, ret); 4383 else 4384 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4385 break; 4386 case RBD_NOTIFY_OP_HEADER_UPDATE: 4387 ret = rbd_dev_refresh(rbd_dev); 4388 if (ret) 4389 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4390 4391 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4392 break; 4393 default: 4394 if (rbd_is_lock_owner(rbd_dev)) 4395 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4396 cookie, -EOPNOTSUPP); 4397 else 4398 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4399 break; 4400 } 4401 } 4402 4403 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4404 4405 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4406 { 4407 struct rbd_device *rbd_dev = arg; 4408 4409 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4410 4411 down_write(&rbd_dev->lock_rwsem); 4412 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4413 up_write(&rbd_dev->lock_rwsem); 4414 4415 mutex_lock(&rbd_dev->watch_mutex); 4416 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4417 __rbd_unregister_watch(rbd_dev); 4418 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4419 4420 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4421 } 4422 mutex_unlock(&rbd_dev->watch_mutex); 4423 } 4424 4425 /* 4426 * watch_mutex must be locked 4427 */ 4428 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4429 { 4430 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4431 struct ceph_osd_linger_request *handle; 4432 4433 rbd_assert(!rbd_dev->watch_handle); 4434 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4435 4436 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4437 &rbd_dev->header_oloc, rbd_watch_cb, 4438 rbd_watch_errcb, rbd_dev); 4439 if (IS_ERR(handle)) 4440 return PTR_ERR(handle); 4441 4442 rbd_dev->watch_handle = handle; 4443 return 0; 4444 } 4445 4446 /* 4447 * watch_mutex must be locked 4448 */ 4449 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4450 { 4451 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4452 int ret; 4453 4454 rbd_assert(rbd_dev->watch_handle); 4455 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4456 4457 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4458 if (ret) 4459 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4460 4461 rbd_dev->watch_handle = NULL; 4462 } 4463 4464 static int rbd_register_watch(struct rbd_device *rbd_dev) 4465 { 4466 int ret; 4467 4468 mutex_lock(&rbd_dev->watch_mutex); 4469 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4470 ret = __rbd_register_watch(rbd_dev); 4471 if (ret) 4472 goto out; 4473 4474 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4475 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4476 4477 out: 4478 mutex_unlock(&rbd_dev->watch_mutex); 4479 return ret; 4480 } 4481 4482 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4483 { 4484 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4485 4486 cancel_work_sync(&rbd_dev->acquired_lock_work); 4487 cancel_work_sync(&rbd_dev->released_lock_work); 4488 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4489 cancel_work_sync(&rbd_dev->unlock_work); 4490 } 4491 4492 /* 4493 * header_rwsem must not be held to avoid a deadlock with 4494 * rbd_dev_refresh() when flushing notifies. 4495 */ 4496 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4497 { 4498 cancel_tasks_sync(rbd_dev); 4499 4500 mutex_lock(&rbd_dev->watch_mutex); 4501 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4502 __rbd_unregister_watch(rbd_dev); 4503 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4504 mutex_unlock(&rbd_dev->watch_mutex); 4505 4506 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4507 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4508 } 4509 4510 /* 4511 * lock_rwsem must be held for write 4512 */ 4513 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4514 { 4515 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4516 char cookie[32]; 4517 int ret; 4518 4519 if (!rbd_quiesce_lock(rbd_dev)) 4520 return; 4521 4522 format_lock_cookie(rbd_dev, cookie); 4523 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4524 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4525 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4526 RBD_LOCK_TAG, cookie); 4527 if (ret) { 4528 if (ret != -EOPNOTSUPP) 4529 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4530 ret); 4531 4532 /* 4533 * Lock cookie cannot be updated on older OSDs, so do 4534 * a manual release and queue an acquire. 4535 */ 4536 __rbd_release_lock(rbd_dev); 4537 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4538 } else { 4539 __rbd_lock(rbd_dev, cookie); 4540 wake_lock_waiters(rbd_dev, 0); 4541 } 4542 } 4543 4544 static void rbd_reregister_watch(struct work_struct *work) 4545 { 4546 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4547 struct rbd_device, watch_dwork); 4548 int ret; 4549 4550 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4551 4552 mutex_lock(&rbd_dev->watch_mutex); 4553 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4554 mutex_unlock(&rbd_dev->watch_mutex); 4555 return; 4556 } 4557 4558 ret = __rbd_register_watch(rbd_dev); 4559 if (ret) { 4560 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4561 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4562 queue_delayed_work(rbd_dev->task_wq, 4563 &rbd_dev->watch_dwork, 4564 RBD_RETRY_DELAY); 4565 mutex_unlock(&rbd_dev->watch_mutex); 4566 return; 4567 } 4568 4569 mutex_unlock(&rbd_dev->watch_mutex); 4570 down_write(&rbd_dev->lock_rwsem); 4571 wake_lock_waiters(rbd_dev, ret); 4572 up_write(&rbd_dev->lock_rwsem); 4573 return; 4574 } 4575 4576 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4577 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4578 mutex_unlock(&rbd_dev->watch_mutex); 4579 4580 down_write(&rbd_dev->lock_rwsem); 4581 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4582 rbd_reacquire_lock(rbd_dev); 4583 up_write(&rbd_dev->lock_rwsem); 4584 4585 ret = rbd_dev_refresh(rbd_dev); 4586 if (ret) 4587 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4588 } 4589 4590 /* 4591 * Synchronous osd object method call. Returns the number of bytes 4592 * returned in the outbound buffer, or a negative error code. 4593 */ 4594 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4595 struct ceph_object_id *oid, 4596 struct ceph_object_locator *oloc, 4597 const char *method_name, 4598 const void *outbound, 4599 size_t outbound_size, 4600 void *inbound, 4601 size_t inbound_size) 4602 { 4603 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4604 struct page *req_page = NULL; 4605 struct page *reply_page; 4606 int ret; 4607 4608 /* 4609 * Method calls are ultimately read operations. The result 4610 * should placed into the inbound buffer provided. They 4611 * also supply outbound data--parameters for the object 4612 * method. Currently if this is present it will be a 4613 * snapshot id. 4614 */ 4615 if (outbound) { 4616 if (outbound_size > PAGE_SIZE) 4617 return -E2BIG; 4618 4619 req_page = alloc_page(GFP_KERNEL); 4620 if (!req_page) 4621 return -ENOMEM; 4622 4623 memcpy(page_address(req_page), outbound, outbound_size); 4624 } 4625 4626 reply_page = alloc_page(GFP_KERNEL); 4627 if (!reply_page) { 4628 if (req_page) 4629 __free_page(req_page); 4630 return -ENOMEM; 4631 } 4632 4633 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4634 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4635 &reply_page, &inbound_size); 4636 if (!ret) { 4637 memcpy(inbound, page_address(reply_page), inbound_size); 4638 ret = inbound_size; 4639 } 4640 4641 if (req_page) 4642 __free_page(req_page); 4643 __free_page(reply_page); 4644 return ret; 4645 } 4646 4647 static void rbd_queue_workfn(struct work_struct *work) 4648 { 4649 struct rbd_img_request *img_request = 4650 container_of(work, struct rbd_img_request, work); 4651 struct rbd_device *rbd_dev = img_request->rbd_dev; 4652 enum obj_operation_type op_type = img_request->op_type; 4653 struct request *rq = blk_mq_rq_from_pdu(img_request); 4654 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4655 u64 length = blk_rq_bytes(rq); 4656 u64 mapping_size; 4657 int result; 4658 4659 /* Ignore/skip any zero-length requests */ 4660 if (!length) { 4661 dout("%s: zero-length request\n", __func__); 4662 result = 0; 4663 goto err_img_request; 4664 } 4665 4666 blk_mq_start_request(rq); 4667 4668 down_read(&rbd_dev->header_rwsem); 4669 mapping_size = rbd_dev->mapping.size; 4670 rbd_img_capture_header(img_request); 4671 up_read(&rbd_dev->header_rwsem); 4672 4673 if (offset + length > mapping_size) { 4674 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4675 length, mapping_size); 4676 result = -EIO; 4677 goto err_img_request; 4678 } 4679 4680 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4681 img_request, obj_op_name(op_type), offset, length); 4682 4683 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4684 result = rbd_img_fill_nodata(img_request, offset, length); 4685 else 4686 result = rbd_img_fill_from_bio(img_request, offset, length, 4687 rq->bio); 4688 if (result) 4689 goto err_img_request; 4690 4691 rbd_img_handle_request(img_request, 0); 4692 return; 4693 4694 err_img_request: 4695 rbd_img_request_destroy(img_request); 4696 if (result) 4697 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4698 obj_op_name(op_type), length, offset, result); 4699 blk_mq_end_request(rq, errno_to_blk_status(result)); 4700 } 4701 4702 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4703 const struct blk_mq_queue_data *bd) 4704 { 4705 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4706 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4707 enum obj_operation_type op_type; 4708 4709 switch (req_op(bd->rq)) { 4710 case REQ_OP_DISCARD: 4711 op_type = OBJ_OP_DISCARD; 4712 break; 4713 case REQ_OP_WRITE_ZEROES: 4714 op_type = OBJ_OP_ZEROOUT; 4715 break; 4716 case REQ_OP_WRITE: 4717 op_type = OBJ_OP_WRITE; 4718 break; 4719 case REQ_OP_READ: 4720 op_type = OBJ_OP_READ; 4721 break; 4722 default: 4723 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4724 return BLK_STS_IOERR; 4725 } 4726 4727 rbd_img_request_init(img_req, rbd_dev, op_type); 4728 4729 if (rbd_img_is_write(img_req)) { 4730 if (rbd_is_ro(rbd_dev)) { 4731 rbd_warn(rbd_dev, "%s on read-only mapping", 4732 obj_op_name(img_req->op_type)); 4733 return BLK_STS_IOERR; 4734 } 4735 rbd_assert(!rbd_is_snap(rbd_dev)); 4736 } 4737 4738 INIT_WORK(&img_req->work, rbd_queue_workfn); 4739 queue_work(rbd_wq, &img_req->work); 4740 return BLK_STS_OK; 4741 } 4742 4743 static void rbd_free_disk(struct rbd_device *rbd_dev) 4744 { 4745 blk_cleanup_disk(rbd_dev->disk); 4746 blk_mq_free_tag_set(&rbd_dev->tag_set); 4747 rbd_dev->disk = NULL; 4748 } 4749 4750 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4751 struct ceph_object_id *oid, 4752 struct ceph_object_locator *oloc, 4753 void *buf, int buf_len) 4754 4755 { 4756 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4757 struct ceph_osd_request *req; 4758 struct page **pages; 4759 int num_pages = calc_pages_for(0, buf_len); 4760 int ret; 4761 4762 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4763 if (!req) 4764 return -ENOMEM; 4765 4766 ceph_oid_copy(&req->r_base_oid, oid); 4767 ceph_oloc_copy(&req->r_base_oloc, oloc); 4768 req->r_flags = CEPH_OSD_FLAG_READ; 4769 4770 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4771 if (IS_ERR(pages)) { 4772 ret = PTR_ERR(pages); 4773 goto out_req; 4774 } 4775 4776 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4777 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4778 true); 4779 4780 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4781 if (ret) 4782 goto out_req; 4783 4784 ceph_osdc_start_request(osdc, req, false); 4785 ret = ceph_osdc_wait_request(osdc, req); 4786 if (ret >= 0) 4787 ceph_copy_from_page_vector(pages, buf, 0, ret); 4788 4789 out_req: 4790 ceph_osdc_put_request(req); 4791 return ret; 4792 } 4793 4794 /* 4795 * Read the complete header for the given rbd device. On successful 4796 * return, the rbd_dev->header field will contain up-to-date 4797 * information about the image. 4798 */ 4799 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4800 { 4801 struct rbd_image_header_ondisk *ondisk = NULL; 4802 u32 snap_count = 0; 4803 u64 names_size = 0; 4804 u32 want_count; 4805 int ret; 4806 4807 /* 4808 * The complete header will include an array of its 64-bit 4809 * snapshot ids, followed by the names of those snapshots as 4810 * a contiguous block of NUL-terminated strings. Note that 4811 * the number of snapshots could change by the time we read 4812 * it in, in which case we re-read it. 4813 */ 4814 do { 4815 size_t size; 4816 4817 kfree(ondisk); 4818 4819 size = sizeof (*ondisk); 4820 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4821 size += names_size; 4822 ondisk = kmalloc(size, GFP_KERNEL); 4823 if (!ondisk) 4824 return -ENOMEM; 4825 4826 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4827 &rbd_dev->header_oloc, ondisk, size); 4828 if (ret < 0) 4829 goto out; 4830 if ((size_t)ret < size) { 4831 ret = -ENXIO; 4832 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4833 size, ret); 4834 goto out; 4835 } 4836 if (!rbd_dev_ondisk_valid(ondisk)) { 4837 ret = -ENXIO; 4838 rbd_warn(rbd_dev, "invalid header"); 4839 goto out; 4840 } 4841 4842 names_size = le64_to_cpu(ondisk->snap_names_len); 4843 want_count = snap_count; 4844 snap_count = le32_to_cpu(ondisk->snap_count); 4845 } while (snap_count != want_count); 4846 4847 ret = rbd_header_from_disk(rbd_dev, ondisk); 4848 out: 4849 kfree(ondisk); 4850 4851 return ret; 4852 } 4853 4854 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4855 { 4856 sector_t size; 4857 4858 /* 4859 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4860 * try to update its size. If REMOVING is set, updating size 4861 * is just useless work since the device can't be opened. 4862 */ 4863 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4864 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4865 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4866 dout("setting size to %llu sectors", (unsigned long long)size); 4867 set_capacity_and_notify(rbd_dev->disk, size); 4868 } 4869 } 4870 4871 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4872 { 4873 u64 mapping_size; 4874 int ret; 4875 4876 down_write(&rbd_dev->header_rwsem); 4877 mapping_size = rbd_dev->mapping.size; 4878 4879 ret = rbd_dev_header_info(rbd_dev); 4880 if (ret) 4881 goto out; 4882 4883 /* 4884 * If there is a parent, see if it has disappeared due to the 4885 * mapped image getting flattened. 4886 */ 4887 if (rbd_dev->parent) { 4888 ret = rbd_dev_v2_parent_info(rbd_dev); 4889 if (ret) 4890 goto out; 4891 } 4892 4893 rbd_assert(!rbd_is_snap(rbd_dev)); 4894 rbd_dev->mapping.size = rbd_dev->header.image_size; 4895 4896 out: 4897 up_write(&rbd_dev->header_rwsem); 4898 if (!ret && mapping_size != rbd_dev->mapping.size) 4899 rbd_dev_update_size(rbd_dev); 4900 4901 return ret; 4902 } 4903 4904 static const struct blk_mq_ops rbd_mq_ops = { 4905 .queue_rq = rbd_queue_rq, 4906 }; 4907 4908 static int rbd_init_disk(struct rbd_device *rbd_dev) 4909 { 4910 struct gendisk *disk; 4911 struct request_queue *q; 4912 unsigned int objset_bytes = 4913 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4914 int err; 4915 4916 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4917 rbd_dev->tag_set.ops = &rbd_mq_ops; 4918 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4919 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4920 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4921 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4922 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4923 4924 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4925 if (err) 4926 return err; 4927 4928 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev); 4929 if (IS_ERR(disk)) { 4930 err = PTR_ERR(disk); 4931 goto out_tag_set; 4932 } 4933 q = disk->queue; 4934 4935 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4936 rbd_dev->dev_id); 4937 disk->major = rbd_dev->major; 4938 disk->first_minor = rbd_dev->minor; 4939 if (single_major) { 4940 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 4941 disk->flags |= GENHD_FL_EXT_DEVT; 4942 } else { 4943 disk->minors = RBD_MINORS_PER_MAJOR; 4944 } 4945 disk->fops = &rbd_bd_ops; 4946 disk->private_data = rbd_dev; 4947 4948 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4949 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4950 4951 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4952 q->limits.max_sectors = queue_max_hw_sectors(q); 4953 blk_queue_max_segments(q, USHRT_MAX); 4954 blk_queue_max_segment_size(q, UINT_MAX); 4955 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 4956 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 4957 4958 if (rbd_dev->opts->trim) { 4959 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 4960 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 4961 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 4962 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 4963 } 4964 4965 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4966 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 4967 4968 rbd_dev->disk = disk; 4969 4970 return 0; 4971 out_tag_set: 4972 blk_mq_free_tag_set(&rbd_dev->tag_set); 4973 return err; 4974 } 4975 4976 /* 4977 sysfs 4978 */ 4979 4980 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4981 { 4982 return container_of(dev, struct rbd_device, dev); 4983 } 4984 4985 static ssize_t rbd_size_show(struct device *dev, 4986 struct device_attribute *attr, char *buf) 4987 { 4988 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4989 4990 return sprintf(buf, "%llu\n", 4991 (unsigned long long)rbd_dev->mapping.size); 4992 } 4993 4994 static ssize_t rbd_features_show(struct device *dev, 4995 struct device_attribute *attr, char *buf) 4996 { 4997 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4998 4999 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5000 } 5001 5002 static ssize_t rbd_major_show(struct device *dev, 5003 struct device_attribute *attr, char *buf) 5004 { 5005 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5006 5007 if (rbd_dev->major) 5008 return sprintf(buf, "%d\n", rbd_dev->major); 5009 5010 return sprintf(buf, "(none)\n"); 5011 } 5012 5013 static ssize_t rbd_minor_show(struct device *dev, 5014 struct device_attribute *attr, char *buf) 5015 { 5016 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5017 5018 return sprintf(buf, "%d\n", rbd_dev->minor); 5019 } 5020 5021 static ssize_t rbd_client_addr_show(struct device *dev, 5022 struct device_attribute *attr, char *buf) 5023 { 5024 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5025 struct ceph_entity_addr *client_addr = 5026 ceph_client_addr(rbd_dev->rbd_client->client); 5027 5028 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5029 le32_to_cpu(client_addr->nonce)); 5030 } 5031 5032 static ssize_t rbd_client_id_show(struct device *dev, 5033 struct device_attribute *attr, char *buf) 5034 { 5035 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5036 5037 return sprintf(buf, "client%lld\n", 5038 ceph_client_gid(rbd_dev->rbd_client->client)); 5039 } 5040 5041 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5042 struct device_attribute *attr, char *buf) 5043 { 5044 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5045 5046 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5047 } 5048 5049 static ssize_t rbd_config_info_show(struct device *dev, 5050 struct device_attribute *attr, char *buf) 5051 { 5052 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5053 5054 if (!capable(CAP_SYS_ADMIN)) 5055 return -EPERM; 5056 5057 return sprintf(buf, "%s\n", rbd_dev->config_info); 5058 } 5059 5060 static ssize_t rbd_pool_show(struct device *dev, 5061 struct device_attribute *attr, char *buf) 5062 { 5063 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5064 5065 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5066 } 5067 5068 static ssize_t rbd_pool_id_show(struct device *dev, 5069 struct device_attribute *attr, char *buf) 5070 { 5071 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5072 5073 return sprintf(buf, "%llu\n", 5074 (unsigned long long) rbd_dev->spec->pool_id); 5075 } 5076 5077 static ssize_t rbd_pool_ns_show(struct device *dev, 5078 struct device_attribute *attr, char *buf) 5079 { 5080 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5081 5082 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5083 } 5084 5085 static ssize_t rbd_name_show(struct device *dev, 5086 struct device_attribute *attr, char *buf) 5087 { 5088 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5089 5090 if (rbd_dev->spec->image_name) 5091 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5092 5093 return sprintf(buf, "(unknown)\n"); 5094 } 5095 5096 static ssize_t rbd_image_id_show(struct device *dev, 5097 struct device_attribute *attr, char *buf) 5098 { 5099 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5100 5101 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5102 } 5103 5104 /* 5105 * Shows the name of the currently-mapped snapshot (or 5106 * RBD_SNAP_HEAD_NAME for the base image). 5107 */ 5108 static ssize_t rbd_snap_show(struct device *dev, 5109 struct device_attribute *attr, 5110 char *buf) 5111 { 5112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5113 5114 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5115 } 5116 5117 static ssize_t rbd_snap_id_show(struct device *dev, 5118 struct device_attribute *attr, char *buf) 5119 { 5120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5121 5122 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5123 } 5124 5125 /* 5126 * For a v2 image, shows the chain of parent images, separated by empty 5127 * lines. For v1 images or if there is no parent, shows "(no parent 5128 * image)". 5129 */ 5130 static ssize_t rbd_parent_show(struct device *dev, 5131 struct device_attribute *attr, 5132 char *buf) 5133 { 5134 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5135 ssize_t count = 0; 5136 5137 if (!rbd_dev->parent) 5138 return sprintf(buf, "(no parent image)\n"); 5139 5140 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5141 struct rbd_spec *spec = rbd_dev->parent_spec; 5142 5143 count += sprintf(&buf[count], "%s" 5144 "pool_id %llu\npool_name %s\n" 5145 "pool_ns %s\n" 5146 "image_id %s\nimage_name %s\n" 5147 "snap_id %llu\nsnap_name %s\n" 5148 "overlap %llu\n", 5149 !count ? "" : "\n", /* first? */ 5150 spec->pool_id, spec->pool_name, 5151 spec->pool_ns ?: "", 5152 spec->image_id, spec->image_name ?: "(unknown)", 5153 spec->snap_id, spec->snap_name, 5154 rbd_dev->parent_overlap); 5155 } 5156 5157 return count; 5158 } 5159 5160 static ssize_t rbd_image_refresh(struct device *dev, 5161 struct device_attribute *attr, 5162 const char *buf, 5163 size_t size) 5164 { 5165 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5166 int ret; 5167 5168 if (!capable(CAP_SYS_ADMIN)) 5169 return -EPERM; 5170 5171 ret = rbd_dev_refresh(rbd_dev); 5172 if (ret) 5173 return ret; 5174 5175 return size; 5176 } 5177 5178 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5179 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5180 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5181 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5182 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5183 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5184 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5185 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5186 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5187 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5188 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5189 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5190 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5191 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5192 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5193 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5194 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5195 5196 static struct attribute *rbd_attrs[] = { 5197 &dev_attr_size.attr, 5198 &dev_attr_features.attr, 5199 &dev_attr_major.attr, 5200 &dev_attr_minor.attr, 5201 &dev_attr_client_addr.attr, 5202 &dev_attr_client_id.attr, 5203 &dev_attr_cluster_fsid.attr, 5204 &dev_attr_config_info.attr, 5205 &dev_attr_pool.attr, 5206 &dev_attr_pool_id.attr, 5207 &dev_attr_pool_ns.attr, 5208 &dev_attr_name.attr, 5209 &dev_attr_image_id.attr, 5210 &dev_attr_current_snap.attr, 5211 &dev_attr_snap_id.attr, 5212 &dev_attr_parent.attr, 5213 &dev_attr_refresh.attr, 5214 NULL 5215 }; 5216 5217 static struct attribute_group rbd_attr_group = { 5218 .attrs = rbd_attrs, 5219 }; 5220 5221 static const struct attribute_group *rbd_attr_groups[] = { 5222 &rbd_attr_group, 5223 NULL 5224 }; 5225 5226 static void rbd_dev_release(struct device *dev); 5227 5228 static const struct device_type rbd_device_type = { 5229 .name = "rbd", 5230 .groups = rbd_attr_groups, 5231 .release = rbd_dev_release, 5232 }; 5233 5234 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5235 { 5236 kref_get(&spec->kref); 5237 5238 return spec; 5239 } 5240 5241 static void rbd_spec_free(struct kref *kref); 5242 static void rbd_spec_put(struct rbd_spec *spec) 5243 { 5244 if (spec) 5245 kref_put(&spec->kref, rbd_spec_free); 5246 } 5247 5248 static struct rbd_spec *rbd_spec_alloc(void) 5249 { 5250 struct rbd_spec *spec; 5251 5252 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5253 if (!spec) 5254 return NULL; 5255 5256 spec->pool_id = CEPH_NOPOOL; 5257 spec->snap_id = CEPH_NOSNAP; 5258 kref_init(&spec->kref); 5259 5260 return spec; 5261 } 5262 5263 static void rbd_spec_free(struct kref *kref) 5264 { 5265 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5266 5267 kfree(spec->pool_name); 5268 kfree(spec->pool_ns); 5269 kfree(spec->image_id); 5270 kfree(spec->image_name); 5271 kfree(spec->snap_name); 5272 kfree(spec); 5273 } 5274 5275 static void rbd_dev_free(struct rbd_device *rbd_dev) 5276 { 5277 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5278 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5279 5280 ceph_oid_destroy(&rbd_dev->header_oid); 5281 ceph_oloc_destroy(&rbd_dev->header_oloc); 5282 kfree(rbd_dev->config_info); 5283 5284 rbd_put_client(rbd_dev->rbd_client); 5285 rbd_spec_put(rbd_dev->spec); 5286 kfree(rbd_dev->opts); 5287 kfree(rbd_dev); 5288 } 5289 5290 static void rbd_dev_release(struct device *dev) 5291 { 5292 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5293 bool need_put = !!rbd_dev->opts; 5294 5295 if (need_put) { 5296 destroy_workqueue(rbd_dev->task_wq); 5297 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5298 } 5299 5300 rbd_dev_free(rbd_dev); 5301 5302 /* 5303 * This is racy, but way better than putting module outside of 5304 * the release callback. The race window is pretty small, so 5305 * doing something similar to dm (dm-builtin.c) is overkill. 5306 */ 5307 if (need_put) 5308 module_put(THIS_MODULE); 5309 } 5310 5311 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 5312 struct rbd_spec *spec) 5313 { 5314 struct rbd_device *rbd_dev; 5315 5316 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5317 if (!rbd_dev) 5318 return NULL; 5319 5320 spin_lock_init(&rbd_dev->lock); 5321 INIT_LIST_HEAD(&rbd_dev->node); 5322 init_rwsem(&rbd_dev->header_rwsem); 5323 5324 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5325 ceph_oid_init(&rbd_dev->header_oid); 5326 rbd_dev->header_oloc.pool = spec->pool_id; 5327 if (spec->pool_ns) { 5328 WARN_ON(!*spec->pool_ns); 5329 rbd_dev->header_oloc.pool_ns = 5330 ceph_find_or_create_string(spec->pool_ns, 5331 strlen(spec->pool_ns)); 5332 } 5333 5334 mutex_init(&rbd_dev->watch_mutex); 5335 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5336 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5337 5338 init_rwsem(&rbd_dev->lock_rwsem); 5339 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5340 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5341 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5342 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5343 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5344 spin_lock_init(&rbd_dev->lock_lists_lock); 5345 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5346 INIT_LIST_HEAD(&rbd_dev->running_list); 5347 init_completion(&rbd_dev->acquire_wait); 5348 init_completion(&rbd_dev->releasing_wait); 5349 5350 spin_lock_init(&rbd_dev->object_map_lock); 5351 5352 rbd_dev->dev.bus = &rbd_bus_type; 5353 rbd_dev->dev.type = &rbd_device_type; 5354 rbd_dev->dev.parent = &rbd_root_dev; 5355 device_initialize(&rbd_dev->dev); 5356 5357 rbd_dev->rbd_client = rbdc; 5358 rbd_dev->spec = spec; 5359 5360 return rbd_dev; 5361 } 5362 5363 /* 5364 * Create a mapping rbd_dev. 5365 */ 5366 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5367 struct rbd_spec *spec, 5368 struct rbd_options *opts) 5369 { 5370 struct rbd_device *rbd_dev; 5371 5372 rbd_dev = __rbd_dev_create(rbdc, spec); 5373 if (!rbd_dev) 5374 return NULL; 5375 5376 rbd_dev->opts = opts; 5377 5378 /* get an id and fill in device name */ 5379 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5380 minor_to_rbd_dev_id(1 << MINORBITS), 5381 GFP_KERNEL); 5382 if (rbd_dev->dev_id < 0) 5383 goto fail_rbd_dev; 5384 5385 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5386 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5387 rbd_dev->name); 5388 if (!rbd_dev->task_wq) 5389 goto fail_dev_id; 5390 5391 /* we have a ref from do_rbd_add() */ 5392 __module_get(THIS_MODULE); 5393 5394 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5395 return rbd_dev; 5396 5397 fail_dev_id: 5398 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5399 fail_rbd_dev: 5400 rbd_dev_free(rbd_dev); 5401 return NULL; 5402 } 5403 5404 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5405 { 5406 if (rbd_dev) 5407 put_device(&rbd_dev->dev); 5408 } 5409 5410 /* 5411 * Get the size and object order for an image snapshot, or if 5412 * snap_id is CEPH_NOSNAP, gets this information for the base 5413 * image. 5414 */ 5415 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5416 u8 *order, u64 *snap_size) 5417 { 5418 __le64 snapid = cpu_to_le64(snap_id); 5419 int ret; 5420 struct { 5421 u8 order; 5422 __le64 size; 5423 } __attribute__ ((packed)) size_buf = { 0 }; 5424 5425 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5426 &rbd_dev->header_oloc, "get_size", 5427 &snapid, sizeof(snapid), 5428 &size_buf, sizeof(size_buf)); 5429 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5430 if (ret < 0) 5431 return ret; 5432 if (ret < sizeof (size_buf)) 5433 return -ERANGE; 5434 5435 if (order) { 5436 *order = size_buf.order; 5437 dout(" order %u", (unsigned int)*order); 5438 } 5439 *snap_size = le64_to_cpu(size_buf.size); 5440 5441 dout(" snap_id 0x%016llx snap_size = %llu\n", 5442 (unsigned long long)snap_id, 5443 (unsigned long long)*snap_size); 5444 5445 return 0; 5446 } 5447 5448 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 5449 { 5450 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 5451 &rbd_dev->header.obj_order, 5452 &rbd_dev->header.image_size); 5453 } 5454 5455 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5456 { 5457 size_t size; 5458 void *reply_buf; 5459 int ret; 5460 void *p; 5461 5462 /* Response will be an encoded string, which includes a length */ 5463 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5464 reply_buf = kzalloc(size, GFP_KERNEL); 5465 if (!reply_buf) 5466 return -ENOMEM; 5467 5468 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5469 &rbd_dev->header_oloc, "get_object_prefix", 5470 NULL, 0, reply_buf, size); 5471 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5472 if (ret < 0) 5473 goto out; 5474 5475 p = reply_buf; 5476 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5477 p + ret, NULL, GFP_NOIO); 5478 ret = 0; 5479 5480 if (IS_ERR(rbd_dev->header.object_prefix)) { 5481 ret = PTR_ERR(rbd_dev->header.object_prefix); 5482 rbd_dev->header.object_prefix = NULL; 5483 } else { 5484 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5485 } 5486 out: 5487 kfree(reply_buf); 5488 5489 return ret; 5490 } 5491 5492 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5493 bool read_only, u64 *snap_features) 5494 { 5495 struct { 5496 __le64 snap_id; 5497 u8 read_only; 5498 } features_in; 5499 struct { 5500 __le64 features; 5501 __le64 incompat; 5502 } __attribute__ ((packed)) features_buf = { 0 }; 5503 u64 unsup; 5504 int ret; 5505 5506 features_in.snap_id = cpu_to_le64(snap_id); 5507 features_in.read_only = read_only; 5508 5509 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5510 &rbd_dev->header_oloc, "get_features", 5511 &features_in, sizeof(features_in), 5512 &features_buf, sizeof(features_buf)); 5513 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5514 if (ret < 0) 5515 return ret; 5516 if (ret < sizeof (features_buf)) 5517 return -ERANGE; 5518 5519 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5520 if (unsup) { 5521 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5522 unsup); 5523 return -ENXIO; 5524 } 5525 5526 *snap_features = le64_to_cpu(features_buf.features); 5527 5528 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5529 (unsigned long long)snap_id, 5530 (unsigned long long)*snap_features, 5531 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5532 5533 return 0; 5534 } 5535 5536 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5537 { 5538 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5539 rbd_is_ro(rbd_dev), 5540 &rbd_dev->header.features); 5541 } 5542 5543 /* 5544 * These are generic image flags, but since they are used only for 5545 * object map, store them in rbd_dev->object_map_flags. 5546 * 5547 * For the same reason, this function is called only on object map 5548 * (re)load and not on header refresh. 5549 */ 5550 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5551 { 5552 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5553 __le64 flags; 5554 int ret; 5555 5556 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5557 &rbd_dev->header_oloc, "get_flags", 5558 &snapid, sizeof(snapid), 5559 &flags, sizeof(flags)); 5560 if (ret < 0) 5561 return ret; 5562 if (ret < sizeof(flags)) 5563 return -EBADMSG; 5564 5565 rbd_dev->object_map_flags = le64_to_cpu(flags); 5566 return 0; 5567 } 5568 5569 struct parent_image_info { 5570 u64 pool_id; 5571 const char *pool_ns; 5572 const char *image_id; 5573 u64 snap_id; 5574 5575 bool has_overlap; 5576 u64 overlap; 5577 }; 5578 5579 /* 5580 * The caller is responsible for @pii. 5581 */ 5582 static int decode_parent_image_spec(void **p, void *end, 5583 struct parent_image_info *pii) 5584 { 5585 u8 struct_v; 5586 u32 struct_len; 5587 int ret; 5588 5589 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5590 &struct_v, &struct_len); 5591 if (ret) 5592 return ret; 5593 5594 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5595 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5596 if (IS_ERR(pii->pool_ns)) { 5597 ret = PTR_ERR(pii->pool_ns); 5598 pii->pool_ns = NULL; 5599 return ret; 5600 } 5601 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5602 if (IS_ERR(pii->image_id)) { 5603 ret = PTR_ERR(pii->image_id); 5604 pii->image_id = NULL; 5605 return ret; 5606 } 5607 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5608 return 0; 5609 5610 e_inval: 5611 return -EINVAL; 5612 } 5613 5614 static int __get_parent_info(struct rbd_device *rbd_dev, 5615 struct page *req_page, 5616 struct page *reply_page, 5617 struct parent_image_info *pii) 5618 { 5619 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5620 size_t reply_len = PAGE_SIZE; 5621 void *p, *end; 5622 int ret; 5623 5624 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5625 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5626 req_page, sizeof(u64), &reply_page, &reply_len); 5627 if (ret) 5628 return ret == -EOPNOTSUPP ? 1 : ret; 5629 5630 p = page_address(reply_page); 5631 end = p + reply_len; 5632 ret = decode_parent_image_spec(&p, end, pii); 5633 if (ret) 5634 return ret; 5635 5636 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5637 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5638 req_page, sizeof(u64), &reply_page, &reply_len); 5639 if (ret) 5640 return ret; 5641 5642 p = page_address(reply_page); 5643 end = p + reply_len; 5644 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5645 if (pii->has_overlap) 5646 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5647 5648 return 0; 5649 5650 e_inval: 5651 return -EINVAL; 5652 } 5653 5654 /* 5655 * The caller is responsible for @pii. 5656 */ 5657 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5658 struct page *req_page, 5659 struct page *reply_page, 5660 struct parent_image_info *pii) 5661 { 5662 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5663 size_t reply_len = PAGE_SIZE; 5664 void *p, *end; 5665 int ret; 5666 5667 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5668 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5669 req_page, sizeof(u64), &reply_page, &reply_len); 5670 if (ret) 5671 return ret; 5672 5673 p = page_address(reply_page); 5674 end = p + reply_len; 5675 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5676 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5677 if (IS_ERR(pii->image_id)) { 5678 ret = PTR_ERR(pii->image_id); 5679 pii->image_id = NULL; 5680 return ret; 5681 } 5682 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5683 pii->has_overlap = true; 5684 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5685 5686 return 0; 5687 5688 e_inval: 5689 return -EINVAL; 5690 } 5691 5692 static int get_parent_info(struct rbd_device *rbd_dev, 5693 struct parent_image_info *pii) 5694 { 5695 struct page *req_page, *reply_page; 5696 void *p; 5697 int ret; 5698 5699 req_page = alloc_page(GFP_KERNEL); 5700 if (!req_page) 5701 return -ENOMEM; 5702 5703 reply_page = alloc_page(GFP_KERNEL); 5704 if (!reply_page) { 5705 __free_page(req_page); 5706 return -ENOMEM; 5707 } 5708 5709 p = page_address(req_page); 5710 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5711 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5712 if (ret > 0) 5713 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5714 pii); 5715 5716 __free_page(req_page); 5717 __free_page(reply_page); 5718 return ret; 5719 } 5720 5721 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5722 { 5723 struct rbd_spec *parent_spec; 5724 struct parent_image_info pii = { 0 }; 5725 int ret; 5726 5727 parent_spec = rbd_spec_alloc(); 5728 if (!parent_spec) 5729 return -ENOMEM; 5730 5731 ret = get_parent_info(rbd_dev, &pii); 5732 if (ret) 5733 goto out_err; 5734 5735 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5736 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 5737 pii.has_overlap, pii.overlap); 5738 5739 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 5740 /* 5741 * Either the parent never existed, or we have 5742 * record of it but the image got flattened so it no 5743 * longer has a parent. When the parent of a 5744 * layered image disappears we immediately set the 5745 * overlap to 0. The effect of this is that all new 5746 * requests will be treated as if the image had no 5747 * parent. 5748 * 5749 * If !pii.has_overlap, the parent image spec is not 5750 * applicable. It's there to avoid duplication in each 5751 * snapshot record. 5752 */ 5753 if (rbd_dev->parent_overlap) { 5754 rbd_dev->parent_overlap = 0; 5755 rbd_dev_parent_put(rbd_dev); 5756 pr_info("%s: clone image has been flattened\n", 5757 rbd_dev->disk->disk_name); 5758 } 5759 5760 goto out; /* No parent? No problem. */ 5761 } 5762 5763 /* The ceph file layout needs to fit pool id in 32 bits */ 5764 5765 ret = -EIO; 5766 if (pii.pool_id > (u64)U32_MAX) { 5767 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5768 (unsigned long long)pii.pool_id, U32_MAX); 5769 goto out_err; 5770 } 5771 5772 /* 5773 * The parent won't change (except when the clone is 5774 * flattened, already handled that). So we only need to 5775 * record the parent spec we have not already done so. 5776 */ 5777 if (!rbd_dev->parent_spec) { 5778 parent_spec->pool_id = pii.pool_id; 5779 if (pii.pool_ns && *pii.pool_ns) { 5780 parent_spec->pool_ns = pii.pool_ns; 5781 pii.pool_ns = NULL; 5782 } 5783 parent_spec->image_id = pii.image_id; 5784 pii.image_id = NULL; 5785 parent_spec->snap_id = pii.snap_id; 5786 5787 rbd_dev->parent_spec = parent_spec; 5788 parent_spec = NULL; /* rbd_dev now owns this */ 5789 } 5790 5791 /* 5792 * We always update the parent overlap. If it's zero we issue 5793 * a warning, as we will proceed as if there was no parent. 5794 */ 5795 if (!pii.overlap) { 5796 if (parent_spec) { 5797 /* refresh, careful to warn just once */ 5798 if (rbd_dev->parent_overlap) 5799 rbd_warn(rbd_dev, 5800 "clone now standalone (overlap became 0)"); 5801 } else { 5802 /* initial probe */ 5803 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5804 } 5805 } 5806 rbd_dev->parent_overlap = pii.overlap; 5807 5808 out: 5809 ret = 0; 5810 out_err: 5811 kfree(pii.pool_ns); 5812 kfree(pii.image_id); 5813 rbd_spec_put(parent_spec); 5814 return ret; 5815 } 5816 5817 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5818 { 5819 struct { 5820 __le64 stripe_unit; 5821 __le64 stripe_count; 5822 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5823 size_t size = sizeof (striping_info_buf); 5824 void *p; 5825 int ret; 5826 5827 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5828 &rbd_dev->header_oloc, "get_stripe_unit_count", 5829 NULL, 0, &striping_info_buf, size); 5830 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5831 if (ret < 0) 5832 return ret; 5833 if (ret < size) 5834 return -ERANGE; 5835 5836 p = &striping_info_buf; 5837 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 5838 rbd_dev->header.stripe_count = ceph_decode_64(&p); 5839 return 0; 5840 } 5841 5842 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5843 { 5844 __le64 data_pool_id; 5845 int ret; 5846 5847 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5848 &rbd_dev->header_oloc, "get_data_pool", 5849 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5850 if (ret < 0) 5851 return ret; 5852 if (ret < sizeof(data_pool_id)) 5853 return -EBADMSG; 5854 5855 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5856 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5857 return 0; 5858 } 5859 5860 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5861 { 5862 CEPH_DEFINE_OID_ONSTACK(oid); 5863 size_t image_id_size; 5864 char *image_id; 5865 void *p; 5866 void *end; 5867 size_t size; 5868 void *reply_buf = NULL; 5869 size_t len = 0; 5870 char *image_name = NULL; 5871 int ret; 5872 5873 rbd_assert(!rbd_dev->spec->image_name); 5874 5875 len = strlen(rbd_dev->spec->image_id); 5876 image_id_size = sizeof (__le32) + len; 5877 image_id = kmalloc(image_id_size, GFP_KERNEL); 5878 if (!image_id) 5879 return NULL; 5880 5881 p = image_id; 5882 end = image_id + image_id_size; 5883 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5884 5885 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5886 reply_buf = kmalloc(size, GFP_KERNEL); 5887 if (!reply_buf) 5888 goto out; 5889 5890 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5891 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5892 "dir_get_name", image_id, image_id_size, 5893 reply_buf, size); 5894 if (ret < 0) 5895 goto out; 5896 p = reply_buf; 5897 end = reply_buf + ret; 5898 5899 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5900 if (IS_ERR(image_name)) 5901 image_name = NULL; 5902 else 5903 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5904 out: 5905 kfree(reply_buf); 5906 kfree(image_id); 5907 5908 return image_name; 5909 } 5910 5911 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5912 { 5913 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5914 const char *snap_name; 5915 u32 which = 0; 5916 5917 /* Skip over names until we find the one we are looking for */ 5918 5919 snap_name = rbd_dev->header.snap_names; 5920 while (which < snapc->num_snaps) { 5921 if (!strcmp(name, snap_name)) 5922 return snapc->snaps[which]; 5923 snap_name += strlen(snap_name) + 1; 5924 which++; 5925 } 5926 return CEPH_NOSNAP; 5927 } 5928 5929 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5930 { 5931 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5932 u32 which; 5933 bool found = false; 5934 u64 snap_id; 5935 5936 for (which = 0; !found && which < snapc->num_snaps; which++) { 5937 const char *snap_name; 5938 5939 snap_id = snapc->snaps[which]; 5940 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5941 if (IS_ERR(snap_name)) { 5942 /* ignore no-longer existing snapshots */ 5943 if (PTR_ERR(snap_name) == -ENOENT) 5944 continue; 5945 else 5946 break; 5947 } 5948 found = !strcmp(name, snap_name); 5949 kfree(snap_name); 5950 } 5951 return found ? snap_id : CEPH_NOSNAP; 5952 } 5953 5954 /* 5955 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5956 * no snapshot by that name is found, or if an error occurs. 5957 */ 5958 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5959 { 5960 if (rbd_dev->image_format == 1) 5961 return rbd_v1_snap_id_by_name(rbd_dev, name); 5962 5963 return rbd_v2_snap_id_by_name(rbd_dev, name); 5964 } 5965 5966 /* 5967 * An image being mapped will have everything but the snap id. 5968 */ 5969 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5970 { 5971 struct rbd_spec *spec = rbd_dev->spec; 5972 5973 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5974 rbd_assert(spec->image_id && spec->image_name); 5975 rbd_assert(spec->snap_name); 5976 5977 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5978 u64 snap_id; 5979 5980 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5981 if (snap_id == CEPH_NOSNAP) 5982 return -ENOENT; 5983 5984 spec->snap_id = snap_id; 5985 } else { 5986 spec->snap_id = CEPH_NOSNAP; 5987 } 5988 5989 return 0; 5990 } 5991 5992 /* 5993 * A parent image will have all ids but none of the names. 5994 * 5995 * All names in an rbd spec are dynamically allocated. It's OK if we 5996 * can't figure out the name for an image id. 5997 */ 5998 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5999 { 6000 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6001 struct rbd_spec *spec = rbd_dev->spec; 6002 const char *pool_name; 6003 const char *image_name; 6004 const char *snap_name; 6005 int ret; 6006 6007 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6008 rbd_assert(spec->image_id); 6009 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6010 6011 /* Get the pool name; we have to make our own copy of this */ 6012 6013 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6014 if (!pool_name) { 6015 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6016 return -EIO; 6017 } 6018 pool_name = kstrdup(pool_name, GFP_KERNEL); 6019 if (!pool_name) 6020 return -ENOMEM; 6021 6022 /* Fetch the image name; tolerate failure here */ 6023 6024 image_name = rbd_dev_image_name(rbd_dev); 6025 if (!image_name) 6026 rbd_warn(rbd_dev, "unable to get image name"); 6027 6028 /* Fetch the snapshot name */ 6029 6030 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6031 if (IS_ERR(snap_name)) { 6032 ret = PTR_ERR(snap_name); 6033 goto out_err; 6034 } 6035 6036 spec->pool_name = pool_name; 6037 spec->image_name = image_name; 6038 spec->snap_name = snap_name; 6039 6040 return 0; 6041 6042 out_err: 6043 kfree(image_name); 6044 kfree(pool_name); 6045 return ret; 6046 } 6047 6048 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 6049 { 6050 size_t size; 6051 int ret; 6052 void *reply_buf; 6053 void *p; 6054 void *end; 6055 u64 seq; 6056 u32 snap_count; 6057 struct ceph_snap_context *snapc; 6058 u32 i; 6059 6060 /* 6061 * We'll need room for the seq value (maximum snapshot id), 6062 * snapshot count, and array of that many snapshot ids. 6063 * For now we have a fixed upper limit on the number we're 6064 * prepared to receive. 6065 */ 6066 size = sizeof (__le64) + sizeof (__le32) + 6067 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6068 reply_buf = kzalloc(size, GFP_KERNEL); 6069 if (!reply_buf) 6070 return -ENOMEM; 6071 6072 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6073 &rbd_dev->header_oloc, "get_snapcontext", 6074 NULL, 0, reply_buf, size); 6075 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6076 if (ret < 0) 6077 goto out; 6078 6079 p = reply_buf; 6080 end = reply_buf + ret; 6081 ret = -ERANGE; 6082 ceph_decode_64_safe(&p, end, seq, out); 6083 ceph_decode_32_safe(&p, end, snap_count, out); 6084 6085 /* 6086 * Make sure the reported number of snapshot ids wouldn't go 6087 * beyond the end of our buffer. But before checking that, 6088 * make sure the computed size of the snapshot context we 6089 * allocate is representable in a size_t. 6090 */ 6091 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6092 / sizeof (u64)) { 6093 ret = -EINVAL; 6094 goto out; 6095 } 6096 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6097 goto out; 6098 ret = 0; 6099 6100 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6101 if (!snapc) { 6102 ret = -ENOMEM; 6103 goto out; 6104 } 6105 snapc->seq = seq; 6106 for (i = 0; i < snap_count; i++) 6107 snapc->snaps[i] = ceph_decode_64(&p); 6108 6109 ceph_put_snap_context(rbd_dev->header.snapc); 6110 rbd_dev->header.snapc = snapc; 6111 6112 dout(" snap context seq = %llu, snap_count = %u\n", 6113 (unsigned long long)seq, (unsigned int)snap_count); 6114 out: 6115 kfree(reply_buf); 6116 6117 return ret; 6118 } 6119 6120 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6121 u64 snap_id) 6122 { 6123 size_t size; 6124 void *reply_buf; 6125 __le64 snapid; 6126 int ret; 6127 void *p; 6128 void *end; 6129 char *snap_name; 6130 6131 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6132 reply_buf = kmalloc(size, GFP_KERNEL); 6133 if (!reply_buf) 6134 return ERR_PTR(-ENOMEM); 6135 6136 snapid = cpu_to_le64(snap_id); 6137 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6138 &rbd_dev->header_oloc, "get_snapshot_name", 6139 &snapid, sizeof(snapid), reply_buf, size); 6140 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6141 if (ret < 0) { 6142 snap_name = ERR_PTR(ret); 6143 goto out; 6144 } 6145 6146 p = reply_buf; 6147 end = reply_buf + ret; 6148 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6149 if (IS_ERR(snap_name)) 6150 goto out; 6151 6152 dout(" snap_id 0x%016llx snap_name = %s\n", 6153 (unsigned long long)snap_id, snap_name); 6154 out: 6155 kfree(reply_buf); 6156 6157 return snap_name; 6158 } 6159 6160 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 6161 { 6162 bool first_time = rbd_dev->header.object_prefix == NULL; 6163 int ret; 6164 6165 ret = rbd_dev_v2_image_size(rbd_dev); 6166 if (ret) 6167 return ret; 6168 6169 if (first_time) { 6170 ret = rbd_dev_v2_header_onetime(rbd_dev); 6171 if (ret) 6172 return ret; 6173 } 6174 6175 ret = rbd_dev_v2_snap_context(rbd_dev); 6176 if (ret && first_time) { 6177 kfree(rbd_dev->header.object_prefix); 6178 rbd_dev->header.object_prefix = NULL; 6179 } 6180 6181 return ret; 6182 } 6183 6184 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 6185 { 6186 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6187 6188 if (rbd_dev->image_format == 1) 6189 return rbd_dev_v1_header_info(rbd_dev); 6190 6191 return rbd_dev_v2_header_info(rbd_dev); 6192 } 6193 6194 /* 6195 * Skips over white space at *buf, and updates *buf to point to the 6196 * first found non-space character (if any). Returns the length of 6197 * the token (string of non-white space characters) found. Note 6198 * that *buf must be terminated with '\0'. 6199 */ 6200 static inline size_t next_token(const char **buf) 6201 { 6202 /* 6203 * These are the characters that produce nonzero for 6204 * isspace() in the "C" and "POSIX" locales. 6205 */ 6206 const char *spaces = " \f\n\r\t\v"; 6207 6208 *buf += strspn(*buf, spaces); /* Find start of token */ 6209 6210 return strcspn(*buf, spaces); /* Return token length */ 6211 } 6212 6213 /* 6214 * Finds the next token in *buf, dynamically allocates a buffer big 6215 * enough to hold a copy of it, and copies the token into the new 6216 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6217 * that a duplicate buffer is created even for a zero-length token. 6218 * 6219 * Returns a pointer to the newly-allocated duplicate, or a null 6220 * pointer if memory for the duplicate was not available. If 6221 * the lenp argument is a non-null pointer, the length of the token 6222 * (not including the '\0') is returned in *lenp. 6223 * 6224 * If successful, the *buf pointer will be updated to point beyond 6225 * the end of the found token. 6226 * 6227 * Note: uses GFP_KERNEL for allocation. 6228 */ 6229 static inline char *dup_token(const char **buf, size_t *lenp) 6230 { 6231 char *dup; 6232 size_t len; 6233 6234 len = next_token(buf); 6235 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6236 if (!dup) 6237 return NULL; 6238 *(dup + len) = '\0'; 6239 *buf += len; 6240 6241 if (lenp) 6242 *lenp = len; 6243 6244 return dup; 6245 } 6246 6247 static int rbd_parse_param(struct fs_parameter *param, 6248 struct rbd_parse_opts_ctx *pctx) 6249 { 6250 struct rbd_options *opt = pctx->opts; 6251 struct fs_parse_result result; 6252 struct p_log log = {.prefix = "rbd"}; 6253 int token, ret; 6254 6255 ret = ceph_parse_param(param, pctx->copts, NULL); 6256 if (ret != -ENOPARAM) 6257 return ret; 6258 6259 token = __fs_parse(&log, rbd_parameters, param, &result); 6260 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6261 if (token < 0) { 6262 if (token == -ENOPARAM) 6263 return inval_plog(&log, "Unknown parameter '%s'", 6264 param->key); 6265 return token; 6266 } 6267 6268 switch (token) { 6269 case Opt_queue_depth: 6270 if (result.uint_32 < 1) 6271 goto out_of_range; 6272 opt->queue_depth = result.uint_32; 6273 break; 6274 case Opt_alloc_size: 6275 if (result.uint_32 < SECTOR_SIZE) 6276 goto out_of_range; 6277 if (!is_power_of_2(result.uint_32)) 6278 return inval_plog(&log, "alloc_size must be a power of 2"); 6279 opt->alloc_size = result.uint_32; 6280 break; 6281 case Opt_lock_timeout: 6282 /* 0 is "wait forever" (i.e. infinite timeout) */ 6283 if (result.uint_32 > INT_MAX / 1000) 6284 goto out_of_range; 6285 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6286 break; 6287 case Opt_pool_ns: 6288 kfree(pctx->spec->pool_ns); 6289 pctx->spec->pool_ns = param->string; 6290 param->string = NULL; 6291 break; 6292 case Opt_compression_hint: 6293 switch (result.uint_32) { 6294 case Opt_compression_hint_none: 6295 opt->alloc_hint_flags &= 6296 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6297 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6298 break; 6299 case Opt_compression_hint_compressible: 6300 opt->alloc_hint_flags |= 6301 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6302 opt->alloc_hint_flags &= 6303 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6304 break; 6305 case Opt_compression_hint_incompressible: 6306 opt->alloc_hint_flags |= 6307 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6308 opt->alloc_hint_flags &= 6309 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6310 break; 6311 default: 6312 BUG(); 6313 } 6314 break; 6315 case Opt_read_only: 6316 opt->read_only = true; 6317 break; 6318 case Opt_read_write: 6319 opt->read_only = false; 6320 break; 6321 case Opt_lock_on_read: 6322 opt->lock_on_read = true; 6323 break; 6324 case Opt_exclusive: 6325 opt->exclusive = true; 6326 break; 6327 case Opt_notrim: 6328 opt->trim = false; 6329 break; 6330 default: 6331 BUG(); 6332 } 6333 6334 return 0; 6335 6336 out_of_range: 6337 return inval_plog(&log, "%s out of range", param->key); 6338 } 6339 6340 /* 6341 * This duplicates most of generic_parse_monolithic(), untying it from 6342 * fs_context and skipping standard superblock and security options. 6343 */ 6344 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6345 { 6346 char *key; 6347 int ret = 0; 6348 6349 dout("%s '%s'\n", __func__, options); 6350 while ((key = strsep(&options, ",")) != NULL) { 6351 if (*key) { 6352 struct fs_parameter param = { 6353 .key = key, 6354 .type = fs_value_is_flag, 6355 }; 6356 char *value = strchr(key, '='); 6357 size_t v_len = 0; 6358 6359 if (value) { 6360 if (value == key) 6361 continue; 6362 *value++ = 0; 6363 v_len = strlen(value); 6364 param.string = kmemdup_nul(value, v_len, 6365 GFP_KERNEL); 6366 if (!param.string) 6367 return -ENOMEM; 6368 param.type = fs_value_is_string; 6369 } 6370 param.size = v_len; 6371 6372 ret = rbd_parse_param(¶m, pctx); 6373 kfree(param.string); 6374 if (ret) 6375 break; 6376 } 6377 } 6378 6379 return ret; 6380 } 6381 6382 /* 6383 * Parse the options provided for an "rbd add" (i.e., rbd image 6384 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6385 * and the data written is passed here via a NUL-terminated buffer. 6386 * Returns 0 if successful or an error code otherwise. 6387 * 6388 * The information extracted from these options is recorded in 6389 * the other parameters which return dynamically-allocated 6390 * structures: 6391 * ceph_opts 6392 * The address of a pointer that will refer to a ceph options 6393 * structure. Caller must release the returned pointer using 6394 * ceph_destroy_options() when it is no longer needed. 6395 * rbd_opts 6396 * Address of an rbd options pointer. Fully initialized by 6397 * this function; caller must release with kfree(). 6398 * spec 6399 * Address of an rbd image specification pointer. Fully 6400 * initialized by this function based on parsed options. 6401 * Caller must release with rbd_spec_put(). 6402 * 6403 * The options passed take this form: 6404 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6405 * where: 6406 * <mon_addrs> 6407 * A comma-separated list of one or more monitor addresses. 6408 * A monitor address is an ip address, optionally followed 6409 * by a port number (separated by a colon). 6410 * I.e.: ip1[:port1][,ip2[:port2]...] 6411 * <options> 6412 * A comma-separated list of ceph and/or rbd options. 6413 * <pool_name> 6414 * The name of the rados pool containing the rbd image. 6415 * <image_name> 6416 * The name of the image in that pool to map. 6417 * <snap_id> 6418 * An optional snapshot id. If provided, the mapping will 6419 * present data from the image at the time that snapshot was 6420 * created. The image head is used if no snapshot id is 6421 * provided. Snapshot mappings are always read-only. 6422 */ 6423 static int rbd_add_parse_args(const char *buf, 6424 struct ceph_options **ceph_opts, 6425 struct rbd_options **opts, 6426 struct rbd_spec **rbd_spec) 6427 { 6428 size_t len; 6429 char *options; 6430 const char *mon_addrs; 6431 char *snap_name; 6432 size_t mon_addrs_size; 6433 struct rbd_parse_opts_ctx pctx = { 0 }; 6434 int ret; 6435 6436 /* The first four tokens are required */ 6437 6438 len = next_token(&buf); 6439 if (!len) { 6440 rbd_warn(NULL, "no monitor address(es) provided"); 6441 return -EINVAL; 6442 } 6443 mon_addrs = buf; 6444 mon_addrs_size = len; 6445 buf += len; 6446 6447 ret = -EINVAL; 6448 options = dup_token(&buf, NULL); 6449 if (!options) 6450 return -ENOMEM; 6451 if (!*options) { 6452 rbd_warn(NULL, "no options provided"); 6453 goto out_err; 6454 } 6455 6456 pctx.spec = rbd_spec_alloc(); 6457 if (!pctx.spec) 6458 goto out_mem; 6459 6460 pctx.spec->pool_name = dup_token(&buf, NULL); 6461 if (!pctx.spec->pool_name) 6462 goto out_mem; 6463 if (!*pctx.spec->pool_name) { 6464 rbd_warn(NULL, "no pool name provided"); 6465 goto out_err; 6466 } 6467 6468 pctx.spec->image_name = dup_token(&buf, NULL); 6469 if (!pctx.spec->image_name) 6470 goto out_mem; 6471 if (!*pctx.spec->image_name) { 6472 rbd_warn(NULL, "no image name provided"); 6473 goto out_err; 6474 } 6475 6476 /* 6477 * Snapshot name is optional; default is to use "-" 6478 * (indicating the head/no snapshot). 6479 */ 6480 len = next_token(&buf); 6481 if (!len) { 6482 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6483 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6484 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6485 ret = -ENAMETOOLONG; 6486 goto out_err; 6487 } 6488 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6489 if (!snap_name) 6490 goto out_mem; 6491 *(snap_name + len) = '\0'; 6492 pctx.spec->snap_name = snap_name; 6493 6494 pctx.copts = ceph_alloc_options(); 6495 if (!pctx.copts) 6496 goto out_mem; 6497 6498 /* Initialize all rbd options to the defaults */ 6499 6500 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6501 if (!pctx.opts) 6502 goto out_mem; 6503 6504 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6505 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6506 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6507 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6508 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6509 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6510 pctx.opts->trim = RBD_TRIM_DEFAULT; 6511 6512 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL); 6513 if (ret) 6514 goto out_err; 6515 6516 ret = rbd_parse_options(options, &pctx); 6517 if (ret) 6518 goto out_err; 6519 6520 *ceph_opts = pctx.copts; 6521 *opts = pctx.opts; 6522 *rbd_spec = pctx.spec; 6523 kfree(options); 6524 return 0; 6525 6526 out_mem: 6527 ret = -ENOMEM; 6528 out_err: 6529 kfree(pctx.opts); 6530 ceph_destroy_options(pctx.copts); 6531 rbd_spec_put(pctx.spec); 6532 kfree(options); 6533 return ret; 6534 } 6535 6536 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6537 { 6538 down_write(&rbd_dev->lock_rwsem); 6539 if (__rbd_is_lock_owner(rbd_dev)) 6540 __rbd_release_lock(rbd_dev); 6541 up_write(&rbd_dev->lock_rwsem); 6542 } 6543 6544 /* 6545 * If the wait is interrupted, an error is returned even if the lock 6546 * was successfully acquired. rbd_dev_image_unlock() will release it 6547 * if needed. 6548 */ 6549 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6550 { 6551 long ret; 6552 6553 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6554 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6555 return 0; 6556 6557 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6558 return -EINVAL; 6559 } 6560 6561 if (rbd_is_ro(rbd_dev)) 6562 return 0; 6563 6564 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6565 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6566 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6567 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6568 if (ret > 0) { 6569 ret = rbd_dev->acquire_err; 6570 } else { 6571 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6572 if (!ret) 6573 ret = -ETIMEDOUT; 6574 } 6575 6576 if (ret) { 6577 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret); 6578 return ret; 6579 } 6580 6581 /* 6582 * The lock may have been released by now, unless automatic lock 6583 * transitions are disabled. 6584 */ 6585 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6586 return 0; 6587 } 6588 6589 /* 6590 * An rbd format 2 image has a unique identifier, distinct from the 6591 * name given to it by the user. Internally, that identifier is 6592 * what's used to specify the names of objects related to the image. 6593 * 6594 * A special "rbd id" object is used to map an rbd image name to its 6595 * id. If that object doesn't exist, then there is no v2 rbd image 6596 * with the supplied name. 6597 * 6598 * This function will record the given rbd_dev's image_id field if 6599 * it can be determined, and in that case will return 0. If any 6600 * errors occur a negative errno will be returned and the rbd_dev's 6601 * image_id field will be unchanged (and should be NULL). 6602 */ 6603 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6604 { 6605 int ret; 6606 size_t size; 6607 CEPH_DEFINE_OID_ONSTACK(oid); 6608 void *response; 6609 char *image_id; 6610 6611 /* 6612 * When probing a parent image, the image id is already 6613 * known (and the image name likely is not). There's no 6614 * need to fetch the image id again in this case. We 6615 * do still need to set the image format though. 6616 */ 6617 if (rbd_dev->spec->image_id) { 6618 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6619 6620 return 0; 6621 } 6622 6623 /* 6624 * First, see if the format 2 image id file exists, and if 6625 * so, get the image's persistent id from it. 6626 */ 6627 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6628 rbd_dev->spec->image_name); 6629 if (ret) 6630 return ret; 6631 6632 dout("rbd id object name is %s\n", oid.name); 6633 6634 /* Response will be an encoded string, which includes a length */ 6635 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6636 response = kzalloc(size, GFP_NOIO); 6637 if (!response) { 6638 ret = -ENOMEM; 6639 goto out; 6640 } 6641 6642 /* If it doesn't exist we'll assume it's a format 1 image */ 6643 6644 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6645 "get_id", NULL, 0, 6646 response, size); 6647 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6648 if (ret == -ENOENT) { 6649 image_id = kstrdup("", GFP_KERNEL); 6650 ret = image_id ? 0 : -ENOMEM; 6651 if (!ret) 6652 rbd_dev->image_format = 1; 6653 } else if (ret >= 0) { 6654 void *p = response; 6655 6656 image_id = ceph_extract_encoded_string(&p, p + ret, 6657 NULL, GFP_NOIO); 6658 ret = PTR_ERR_OR_ZERO(image_id); 6659 if (!ret) 6660 rbd_dev->image_format = 2; 6661 } 6662 6663 if (!ret) { 6664 rbd_dev->spec->image_id = image_id; 6665 dout("image_id is %s\n", image_id); 6666 } 6667 out: 6668 kfree(response); 6669 ceph_oid_destroy(&oid); 6670 return ret; 6671 } 6672 6673 /* 6674 * Undo whatever state changes are made by v1 or v2 header info 6675 * call. 6676 */ 6677 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6678 { 6679 struct rbd_image_header *header; 6680 6681 rbd_dev_parent_put(rbd_dev); 6682 rbd_object_map_free(rbd_dev); 6683 rbd_dev_mapping_clear(rbd_dev); 6684 6685 /* Free dynamic fields from the header, then zero it out */ 6686 6687 header = &rbd_dev->header; 6688 ceph_put_snap_context(header->snapc); 6689 kfree(header->snap_sizes); 6690 kfree(header->snap_names); 6691 kfree(header->object_prefix); 6692 memset(header, 0, sizeof (*header)); 6693 } 6694 6695 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 6696 { 6697 int ret; 6698 6699 ret = rbd_dev_v2_object_prefix(rbd_dev); 6700 if (ret) 6701 goto out_err; 6702 6703 /* 6704 * Get the and check features for the image. Currently the 6705 * features are assumed to never change. 6706 */ 6707 ret = rbd_dev_v2_features(rbd_dev); 6708 if (ret) 6709 goto out_err; 6710 6711 /* If the image supports fancy striping, get its parameters */ 6712 6713 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 6714 ret = rbd_dev_v2_striping_info(rbd_dev); 6715 if (ret < 0) 6716 goto out_err; 6717 } 6718 6719 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 6720 ret = rbd_dev_v2_data_pool(rbd_dev); 6721 if (ret) 6722 goto out_err; 6723 } 6724 6725 rbd_init_layout(rbd_dev); 6726 return 0; 6727 6728 out_err: 6729 rbd_dev->header.features = 0; 6730 kfree(rbd_dev->header.object_prefix); 6731 rbd_dev->header.object_prefix = NULL; 6732 return ret; 6733 } 6734 6735 /* 6736 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6737 * rbd_dev_image_probe() recursion depth, which means it's also the 6738 * length of the already discovered part of the parent chain. 6739 */ 6740 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6741 { 6742 struct rbd_device *parent = NULL; 6743 int ret; 6744 6745 if (!rbd_dev->parent_spec) 6746 return 0; 6747 6748 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6749 pr_info("parent chain is too long (%d)\n", depth); 6750 ret = -EINVAL; 6751 goto out_err; 6752 } 6753 6754 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 6755 if (!parent) { 6756 ret = -ENOMEM; 6757 goto out_err; 6758 } 6759 6760 /* 6761 * Images related by parent/child relationships always share 6762 * rbd_client and spec/parent_spec, so bump their refcounts. 6763 */ 6764 __rbd_get_client(rbd_dev->rbd_client); 6765 rbd_spec_get(rbd_dev->parent_spec); 6766 6767 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6768 6769 ret = rbd_dev_image_probe(parent, depth); 6770 if (ret < 0) 6771 goto out_err; 6772 6773 rbd_dev->parent = parent; 6774 atomic_set(&rbd_dev->parent_ref, 1); 6775 return 0; 6776 6777 out_err: 6778 rbd_dev_unparent(rbd_dev); 6779 rbd_dev_destroy(parent); 6780 return ret; 6781 } 6782 6783 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6784 { 6785 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6786 rbd_free_disk(rbd_dev); 6787 if (!single_major) 6788 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6789 } 6790 6791 /* 6792 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6793 * upon return. 6794 */ 6795 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6796 { 6797 int ret; 6798 6799 /* Record our major and minor device numbers. */ 6800 6801 if (!single_major) { 6802 ret = register_blkdev(0, rbd_dev->name); 6803 if (ret < 0) 6804 goto err_out_unlock; 6805 6806 rbd_dev->major = ret; 6807 rbd_dev->minor = 0; 6808 } else { 6809 rbd_dev->major = rbd_major; 6810 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6811 } 6812 6813 /* Set up the blkdev mapping. */ 6814 6815 ret = rbd_init_disk(rbd_dev); 6816 if (ret) 6817 goto err_out_blkdev; 6818 6819 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6820 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6821 6822 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6823 if (ret) 6824 goto err_out_disk; 6825 6826 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6827 up_write(&rbd_dev->header_rwsem); 6828 return 0; 6829 6830 err_out_disk: 6831 rbd_free_disk(rbd_dev); 6832 err_out_blkdev: 6833 if (!single_major) 6834 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6835 err_out_unlock: 6836 up_write(&rbd_dev->header_rwsem); 6837 return ret; 6838 } 6839 6840 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6841 { 6842 struct rbd_spec *spec = rbd_dev->spec; 6843 int ret; 6844 6845 /* Record the header object name for this rbd image. */ 6846 6847 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6848 if (rbd_dev->image_format == 1) 6849 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6850 spec->image_name, RBD_SUFFIX); 6851 else 6852 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6853 RBD_HEADER_PREFIX, spec->image_id); 6854 6855 return ret; 6856 } 6857 6858 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6859 { 6860 if (!is_snap) { 6861 pr_info("image %s/%s%s%s does not exist\n", 6862 rbd_dev->spec->pool_name, 6863 rbd_dev->spec->pool_ns ?: "", 6864 rbd_dev->spec->pool_ns ? "/" : "", 6865 rbd_dev->spec->image_name); 6866 } else { 6867 pr_info("snap %s/%s%s%s@%s does not exist\n", 6868 rbd_dev->spec->pool_name, 6869 rbd_dev->spec->pool_ns ?: "", 6870 rbd_dev->spec->pool_ns ? "/" : "", 6871 rbd_dev->spec->image_name, 6872 rbd_dev->spec->snap_name); 6873 } 6874 } 6875 6876 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6877 { 6878 if (!rbd_is_ro(rbd_dev)) 6879 rbd_unregister_watch(rbd_dev); 6880 6881 rbd_dev_unprobe(rbd_dev); 6882 rbd_dev->image_format = 0; 6883 kfree(rbd_dev->spec->image_id); 6884 rbd_dev->spec->image_id = NULL; 6885 } 6886 6887 /* 6888 * Probe for the existence of the header object for the given rbd 6889 * device. If this image is the one being mapped (i.e., not a 6890 * parent), initiate a watch on its header object before using that 6891 * object to get detailed information about the rbd image. 6892 * 6893 * On success, returns with header_rwsem held for write if called 6894 * with @depth == 0. 6895 */ 6896 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6897 { 6898 bool need_watch = !rbd_is_ro(rbd_dev); 6899 int ret; 6900 6901 /* 6902 * Get the id from the image id object. Unless there's an 6903 * error, rbd_dev->spec->image_id will be filled in with 6904 * a dynamically-allocated string, and rbd_dev->image_format 6905 * will be set to either 1 or 2. 6906 */ 6907 ret = rbd_dev_image_id(rbd_dev); 6908 if (ret) 6909 return ret; 6910 6911 ret = rbd_dev_header_name(rbd_dev); 6912 if (ret) 6913 goto err_out_format; 6914 6915 if (need_watch) { 6916 ret = rbd_register_watch(rbd_dev); 6917 if (ret) { 6918 if (ret == -ENOENT) 6919 rbd_print_dne(rbd_dev, false); 6920 goto err_out_format; 6921 } 6922 } 6923 6924 if (!depth) 6925 down_write(&rbd_dev->header_rwsem); 6926 6927 ret = rbd_dev_header_info(rbd_dev); 6928 if (ret) { 6929 if (ret == -ENOENT && !need_watch) 6930 rbd_print_dne(rbd_dev, false); 6931 goto err_out_probe; 6932 } 6933 6934 /* 6935 * If this image is the one being mapped, we have pool name and 6936 * id, image name and id, and snap name - need to fill snap id. 6937 * Otherwise this is a parent image, identified by pool, image 6938 * and snap ids - need to fill in names for those ids. 6939 */ 6940 if (!depth) 6941 ret = rbd_spec_fill_snap_id(rbd_dev); 6942 else 6943 ret = rbd_spec_fill_names(rbd_dev); 6944 if (ret) { 6945 if (ret == -ENOENT) 6946 rbd_print_dne(rbd_dev, true); 6947 goto err_out_probe; 6948 } 6949 6950 ret = rbd_dev_mapping_set(rbd_dev); 6951 if (ret) 6952 goto err_out_probe; 6953 6954 if (rbd_is_snap(rbd_dev) && 6955 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6956 ret = rbd_object_map_load(rbd_dev); 6957 if (ret) 6958 goto err_out_probe; 6959 } 6960 6961 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6962 ret = rbd_dev_v2_parent_info(rbd_dev); 6963 if (ret) 6964 goto err_out_probe; 6965 } 6966 6967 ret = rbd_dev_probe_parent(rbd_dev, depth); 6968 if (ret) 6969 goto err_out_probe; 6970 6971 dout("discovered format %u image, header name is %s\n", 6972 rbd_dev->image_format, rbd_dev->header_oid.name); 6973 return 0; 6974 6975 err_out_probe: 6976 if (!depth) 6977 up_write(&rbd_dev->header_rwsem); 6978 if (need_watch) 6979 rbd_unregister_watch(rbd_dev); 6980 rbd_dev_unprobe(rbd_dev); 6981 err_out_format: 6982 rbd_dev->image_format = 0; 6983 kfree(rbd_dev->spec->image_id); 6984 rbd_dev->spec->image_id = NULL; 6985 return ret; 6986 } 6987 6988 static ssize_t do_rbd_add(struct bus_type *bus, 6989 const char *buf, 6990 size_t count) 6991 { 6992 struct rbd_device *rbd_dev = NULL; 6993 struct ceph_options *ceph_opts = NULL; 6994 struct rbd_options *rbd_opts = NULL; 6995 struct rbd_spec *spec = NULL; 6996 struct rbd_client *rbdc; 6997 int rc; 6998 6999 if (!capable(CAP_SYS_ADMIN)) 7000 return -EPERM; 7001 7002 if (!try_module_get(THIS_MODULE)) 7003 return -ENODEV; 7004 7005 /* parse add command */ 7006 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7007 if (rc < 0) 7008 goto out; 7009 7010 rbdc = rbd_get_client(ceph_opts); 7011 if (IS_ERR(rbdc)) { 7012 rc = PTR_ERR(rbdc); 7013 goto err_out_args; 7014 } 7015 7016 /* pick the pool */ 7017 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7018 if (rc < 0) { 7019 if (rc == -ENOENT) 7020 pr_info("pool %s does not exist\n", spec->pool_name); 7021 goto err_out_client; 7022 } 7023 spec->pool_id = (u64)rc; 7024 7025 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7026 if (!rbd_dev) { 7027 rc = -ENOMEM; 7028 goto err_out_client; 7029 } 7030 rbdc = NULL; /* rbd_dev now owns this */ 7031 spec = NULL; /* rbd_dev now owns this */ 7032 rbd_opts = NULL; /* rbd_dev now owns this */ 7033 7034 /* if we are mapping a snapshot it will be a read-only mapping */ 7035 if (rbd_dev->opts->read_only || 7036 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7037 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7038 7039 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7040 if (!rbd_dev->config_info) { 7041 rc = -ENOMEM; 7042 goto err_out_rbd_dev; 7043 } 7044 7045 rc = rbd_dev_image_probe(rbd_dev, 0); 7046 if (rc < 0) 7047 goto err_out_rbd_dev; 7048 7049 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7050 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7051 rbd_dev->layout.object_size); 7052 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7053 } 7054 7055 rc = rbd_dev_device_setup(rbd_dev); 7056 if (rc) 7057 goto err_out_image_probe; 7058 7059 rc = rbd_add_acquire_lock(rbd_dev); 7060 if (rc) 7061 goto err_out_image_lock; 7062 7063 /* Everything's ready. Announce the disk to the world. */ 7064 7065 rc = device_add(&rbd_dev->dev); 7066 if (rc) 7067 goto err_out_image_lock; 7068 7069 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7070 7071 spin_lock(&rbd_dev_list_lock); 7072 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7073 spin_unlock(&rbd_dev_list_lock); 7074 7075 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7076 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7077 rbd_dev->header.features); 7078 rc = count; 7079 out: 7080 module_put(THIS_MODULE); 7081 return rc; 7082 7083 err_out_image_lock: 7084 rbd_dev_image_unlock(rbd_dev); 7085 rbd_dev_device_release(rbd_dev); 7086 err_out_image_probe: 7087 rbd_dev_image_release(rbd_dev); 7088 err_out_rbd_dev: 7089 rbd_dev_destroy(rbd_dev); 7090 err_out_client: 7091 rbd_put_client(rbdc); 7092 err_out_args: 7093 rbd_spec_put(spec); 7094 kfree(rbd_opts); 7095 goto out; 7096 } 7097 7098 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count) 7099 { 7100 if (single_major) 7101 return -EINVAL; 7102 7103 return do_rbd_add(bus, buf, count); 7104 } 7105 7106 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 7107 size_t count) 7108 { 7109 return do_rbd_add(bus, buf, count); 7110 } 7111 7112 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7113 { 7114 while (rbd_dev->parent) { 7115 struct rbd_device *first = rbd_dev; 7116 struct rbd_device *second = first->parent; 7117 struct rbd_device *third; 7118 7119 /* 7120 * Follow to the parent with no grandparent and 7121 * remove it. 7122 */ 7123 while (second && (third = second->parent)) { 7124 first = second; 7125 second = third; 7126 } 7127 rbd_assert(second); 7128 rbd_dev_image_release(second); 7129 rbd_dev_destroy(second); 7130 first->parent = NULL; 7131 first->parent_overlap = 0; 7132 7133 rbd_assert(first->parent_spec); 7134 rbd_spec_put(first->parent_spec); 7135 first->parent_spec = NULL; 7136 } 7137 } 7138 7139 static ssize_t do_rbd_remove(struct bus_type *bus, 7140 const char *buf, 7141 size_t count) 7142 { 7143 struct rbd_device *rbd_dev = NULL; 7144 struct list_head *tmp; 7145 int dev_id; 7146 char opt_buf[6]; 7147 bool force = false; 7148 int ret; 7149 7150 if (!capable(CAP_SYS_ADMIN)) 7151 return -EPERM; 7152 7153 dev_id = -1; 7154 opt_buf[0] = '\0'; 7155 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7156 if (dev_id < 0) { 7157 pr_err("dev_id out of range\n"); 7158 return -EINVAL; 7159 } 7160 if (opt_buf[0] != '\0') { 7161 if (!strcmp(opt_buf, "force")) { 7162 force = true; 7163 } else { 7164 pr_err("bad remove option at '%s'\n", opt_buf); 7165 return -EINVAL; 7166 } 7167 } 7168 7169 ret = -ENOENT; 7170 spin_lock(&rbd_dev_list_lock); 7171 list_for_each(tmp, &rbd_dev_list) { 7172 rbd_dev = list_entry(tmp, struct rbd_device, node); 7173 if (rbd_dev->dev_id == dev_id) { 7174 ret = 0; 7175 break; 7176 } 7177 } 7178 if (!ret) { 7179 spin_lock_irq(&rbd_dev->lock); 7180 if (rbd_dev->open_count && !force) 7181 ret = -EBUSY; 7182 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7183 &rbd_dev->flags)) 7184 ret = -EINPROGRESS; 7185 spin_unlock_irq(&rbd_dev->lock); 7186 } 7187 spin_unlock(&rbd_dev_list_lock); 7188 if (ret) 7189 return ret; 7190 7191 if (force) { 7192 /* 7193 * Prevent new IO from being queued and wait for existing 7194 * IO to complete/fail. 7195 */ 7196 blk_mq_freeze_queue(rbd_dev->disk->queue); 7197 blk_set_queue_dying(rbd_dev->disk->queue); 7198 } 7199 7200 del_gendisk(rbd_dev->disk); 7201 spin_lock(&rbd_dev_list_lock); 7202 list_del_init(&rbd_dev->node); 7203 spin_unlock(&rbd_dev_list_lock); 7204 device_del(&rbd_dev->dev); 7205 7206 rbd_dev_image_unlock(rbd_dev); 7207 rbd_dev_device_release(rbd_dev); 7208 rbd_dev_image_release(rbd_dev); 7209 rbd_dev_destroy(rbd_dev); 7210 return count; 7211 } 7212 7213 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count) 7214 { 7215 if (single_major) 7216 return -EINVAL; 7217 7218 return do_rbd_remove(bus, buf, count); 7219 } 7220 7221 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 7222 size_t count) 7223 { 7224 return do_rbd_remove(bus, buf, count); 7225 } 7226 7227 /* 7228 * create control files in sysfs 7229 * /sys/bus/rbd/... 7230 */ 7231 static int __init rbd_sysfs_init(void) 7232 { 7233 int ret; 7234 7235 ret = device_register(&rbd_root_dev); 7236 if (ret < 0) 7237 return ret; 7238 7239 ret = bus_register(&rbd_bus_type); 7240 if (ret < 0) 7241 device_unregister(&rbd_root_dev); 7242 7243 return ret; 7244 } 7245 7246 static void __exit rbd_sysfs_cleanup(void) 7247 { 7248 bus_unregister(&rbd_bus_type); 7249 device_unregister(&rbd_root_dev); 7250 } 7251 7252 static int __init rbd_slab_init(void) 7253 { 7254 rbd_assert(!rbd_img_request_cache); 7255 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7256 if (!rbd_img_request_cache) 7257 return -ENOMEM; 7258 7259 rbd_assert(!rbd_obj_request_cache); 7260 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7261 if (!rbd_obj_request_cache) 7262 goto out_err; 7263 7264 return 0; 7265 7266 out_err: 7267 kmem_cache_destroy(rbd_img_request_cache); 7268 rbd_img_request_cache = NULL; 7269 return -ENOMEM; 7270 } 7271 7272 static void rbd_slab_exit(void) 7273 { 7274 rbd_assert(rbd_obj_request_cache); 7275 kmem_cache_destroy(rbd_obj_request_cache); 7276 rbd_obj_request_cache = NULL; 7277 7278 rbd_assert(rbd_img_request_cache); 7279 kmem_cache_destroy(rbd_img_request_cache); 7280 rbd_img_request_cache = NULL; 7281 } 7282 7283 static int __init rbd_init(void) 7284 { 7285 int rc; 7286 7287 if (!libceph_compatible(NULL)) { 7288 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7289 return -EINVAL; 7290 } 7291 7292 rc = rbd_slab_init(); 7293 if (rc) 7294 return rc; 7295 7296 /* 7297 * The number of active work items is limited by the number of 7298 * rbd devices * queue depth, so leave @max_active at default. 7299 */ 7300 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7301 if (!rbd_wq) { 7302 rc = -ENOMEM; 7303 goto err_out_slab; 7304 } 7305 7306 if (single_major) { 7307 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7308 if (rbd_major < 0) { 7309 rc = rbd_major; 7310 goto err_out_wq; 7311 } 7312 } 7313 7314 rc = rbd_sysfs_init(); 7315 if (rc) 7316 goto err_out_blkdev; 7317 7318 if (single_major) 7319 pr_info("loaded (major %d)\n", rbd_major); 7320 else 7321 pr_info("loaded\n"); 7322 7323 return 0; 7324 7325 err_out_blkdev: 7326 if (single_major) 7327 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7328 err_out_wq: 7329 destroy_workqueue(rbd_wq); 7330 err_out_slab: 7331 rbd_slab_exit(); 7332 return rc; 7333 } 7334 7335 static void __exit rbd_exit(void) 7336 { 7337 ida_destroy(&rbd_dev_id_ida); 7338 rbd_sysfs_cleanup(); 7339 if (single_major) 7340 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7341 destroy_workqueue(rbd_wq); 7342 rbd_slab_exit(); 7343 } 7344 7345 module_init(rbd_init); 7346 module_exit(rbd_exit); 7347 7348 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7349 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7350 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7351 /* following authorship retained from original osdblk.c */ 7352 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7353 7354 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7355 MODULE_LICENSE("GPL"); 7356