xref: /openbmc/linux/drivers/block/rbd.c (revision 233bde21)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38 
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48 
49 #include "rbd_types.h"
50 
51 #define RBD_DEBUG	/* Activate rbd_assert() calls */
52 
53 /*
54  * Increment the given counter and return its updated value.
55  * If the counter is already 0 it will not be incremented.
56  * If the counter is already at its maximum value returns
57  * -EINVAL without updating it.
58  */
59 static int atomic_inc_return_safe(atomic_t *v)
60 {
61 	unsigned int counter;
62 
63 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
64 	if (counter <= (unsigned int)INT_MAX)
65 		return (int)counter;
66 
67 	atomic_dec(v);
68 
69 	return -EINVAL;
70 }
71 
72 /* Decrement the counter.  Return the resulting value, or -EINVAL */
73 static int atomic_dec_return_safe(atomic_t *v)
74 {
75 	int counter;
76 
77 	counter = atomic_dec_return(v);
78 	if (counter >= 0)
79 		return counter;
80 
81 	atomic_inc(v);
82 
83 	return -EINVAL;
84 }
85 
86 #define RBD_DRV_NAME "rbd"
87 
88 #define RBD_MINORS_PER_MAJOR		256
89 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
90 
91 #define RBD_MAX_PARENT_CHAIN_LEN	16
92 
93 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
94 #define RBD_MAX_SNAP_NAME_LEN	\
95 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
96 
97 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
98 
99 #define RBD_SNAP_HEAD_NAME	"-"
100 
101 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
102 
103 /* This allows a single page to hold an image name sent by OSD */
104 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
105 #define RBD_IMAGE_ID_LEN_MAX	64
106 
107 #define RBD_OBJ_PREFIX_LEN_MAX	64
108 
109 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
110 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
111 
112 /* Feature bits */
113 
114 #define RBD_FEATURE_LAYERING		(1ULL<<0)
115 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
116 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
117 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
118 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
119 
120 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
121 				 RBD_FEATURE_STRIPINGV2 |	\
122 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
123 				 RBD_FEATURE_DATA_POOL |	\
124 				 RBD_FEATURE_OPERATIONS)
125 
126 /* Features supported by this (client software) implementation. */
127 
128 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
129 
130 /*
131  * An RBD device name will be "rbd#", where the "rbd" comes from
132  * RBD_DRV_NAME above, and # is a unique integer identifier.
133  */
134 #define DEV_NAME_LEN		32
135 
136 /*
137  * block device image metadata (in-memory version)
138  */
139 struct rbd_image_header {
140 	/* These six fields never change for a given rbd image */
141 	char *object_prefix;
142 	__u8 obj_order;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	s64 data_pool_id;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	u64			object_no;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 enum rbd_watch_state {
323 	RBD_WATCH_STATE_UNREGISTERED,
324 	RBD_WATCH_STATE_REGISTERED,
325 	RBD_WATCH_STATE_ERROR,
326 };
327 
328 enum rbd_lock_state {
329 	RBD_LOCK_STATE_UNLOCKED,
330 	RBD_LOCK_STATE_LOCKED,
331 	RBD_LOCK_STATE_RELEASING,
332 };
333 
334 /* WatchNotify::ClientId */
335 struct rbd_client_id {
336 	u64 gid;
337 	u64 handle;
338 };
339 
340 struct rbd_mapping {
341 	u64                     size;
342 	u64                     features;
343 };
344 
345 /*
346  * a single device
347  */
348 struct rbd_device {
349 	int			dev_id;		/* blkdev unique id */
350 
351 	int			major;		/* blkdev assigned major */
352 	int			minor;
353 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
354 
355 	u32			image_format;	/* Either 1 or 2 */
356 	struct rbd_client	*rbd_client;
357 
358 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
359 
360 	spinlock_t		lock;		/* queue, flags, open_count */
361 
362 	struct rbd_image_header	header;
363 	unsigned long		flags;		/* possibly lock protected */
364 	struct rbd_spec		*spec;
365 	struct rbd_options	*opts;
366 	char			*config_info;	/* add{,_single_major} string */
367 
368 	struct ceph_object_id	header_oid;
369 	struct ceph_object_locator header_oloc;
370 
371 	struct ceph_file_layout	layout;		/* used for all rbd requests */
372 
373 	struct mutex		watch_mutex;
374 	enum rbd_watch_state	watch_state;
375 	struct ceph_osd_linger_request *watch_handle;
376 	u64			watch_cookie;
377 	struct delayed_work	watch_dwork;
378 
379 	struct rw_semaphore	lock_rwsem;
380 	enum rbd_lock_state	lock_state;
381 	char			lock_cookie[32];
382 	struct rbd_client_id	owner_cid;
383 	struct work_struct	acquired_lock_work;
384 	struct work_struct	released_lock_work;
385 	struct delayed_work	lock_dwork;
386 	struct work_struct	unlock_work;
387 	wait_queue_head_t	lock_waitq;
388 
389 	struct workqueue_struct	*task_wq;
390 
391 	struct rbd_spec		*parent_spec;
392 	u64			parent_overlap;
393 	atomic_t		parent_ref;
394 	struct rbd_device	*parent;
395 
396 	/* Block layer tags. */
397 	struct blk_mq_tag_set	tag_set;
398 
399 	/* protects updating the header */
400 	struct rw_semaphore     header_rwsem;
401 
402 	struct rbd_mapping	mapping;
403 
404 	struct list_head	node;
405 
406 	/* sysfs related */
407 	struct device		dev;
408 	unsigned long		open_count;	/* protected by lock */
409 };
410 
411 /*
412  * Flag bits for rbd_dev->flags:
413  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
414  *   by rbd_dev->lock
415  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
416  */
417 enum rbd_dev_flags {
418 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
419 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
420 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
421 };
422 
423 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
424 
425 static LIST_HEAD(rbd_dev_list);    /* devices */
426 static DEFINE_SPINLOCK(rbd_dev_list_lock);
427 
428 static LIST_HEAD(rbd_client_list);		/* clients */
429 static DEFINE_SPINLOCK(rbd_client_list_lock);
430 
431 /* Slab caches for frequently-allocated structures */
432 
433 static struct kmem_cache	*rbd_img_request_cache;
434 static struct kmem_cache	*rbd_obj_request_cache;
435 
436 static struct bio_set		*rbd_bio_clone;
437 
438 static int rbd_major;
439 static DEFINE_IDA(rbd_dev_id_ida);
440 
441 static struct workqueue_struct *rbd_wq;
442 
443 /*
444  * single-major requires >= 0.75 version of userspace rbd utility.
445  */
446 static bool single_major = true;
447 module_param(single_major, bool, S_IRUGO);
448 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
449 
450 static int rbd_img_request_submit(struct rbd_img_request *img_request);
451 
452 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
453 		       size_t count);
454 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
455 			  size_t count);
456 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
457 				    size_t count);
458 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
459 				       size_t count);
460 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
461 static void rbd_spec_put(struct rbd_spec *spec);
462 
463 static int rbd_dev_id_to_minor(int dev_id)
464 {
465 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
466 }
467 
468 static int minor_to_rbd_dev_id(int minor)
469 {
470 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
471 }
472 
473 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
474 {
475 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
476 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
477 }
478 
479 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
480 {
481 	bool is_lock_owner;
482 
483 	down_read(&rbd_dev->lock_rwsem);
484 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
485 	up_read(&rbd_dev->lock_rwsem);
486 	return is_lock_owner;
487 }
488 
489 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
490 {
491 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
492 }
493 
494 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
495 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
496 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
497 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
498 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
499 
500 static struct attribute *rbd_bus_attrs[] = {
501 	&bus_attr_add.attr,
502 	&bus_attr_remove.attr,
503 	&bus_attr_add_single_major.attr,
504 	&bus_attr_remove_single_major.attr,
505 	&bus_attr_supported_features.attr,
506 	NULL,
507 };
508 
509 static umode_t rbd_bus_is_visible(struct kobject *kobj,
510 				  struct attribute *attr, int index)
511 {
512 	if (!single_major &&
513 	    (attr == &bus_attr_add_single_major.attr ||
514 	     attr == &bus_attr_remove_single_major.attr))
515 		return 0;
516 
517 	return attr->mode;
518 }
519 
520 static const struct attribute_group rbd_bus_group = {
521 	.attrs = rbd_bus_attrs,
522 	.is_visible = rbd_bus_is_visible,
523 };
524 __ATTRIBUTE_GROUPS(rbd_bus);
525 
526 static struct bus_type rbd_bus_type = {
527 	.name		= "rbd",
528 	.bus_groups	= rbd_bus_groups,
529 };
530 
531 static void rbd_root_dev_release(struct device *dev)
532 {
533 }
534 
535 static struct device rbd_root_dev = {
536 	.init_name =    "rbd",
537 	.release =      rbd_root_dev_release,
538 };
539 
540 static __printf(2, 3)
541 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
542 {
543 	struct va_format vaf;
544 	va_list args;
545 
546 	va_start(args, fmt);
547 	vaf.fmt = fmt;
548 	vaf.va = &args;
549 
550 	if (!rbd_dev)
551 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
552 	else if (rbd_dev->disk)
553 		printk(KERN_WARNING "%s: %s: %pV\n",
554 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
555 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
556 		printk(KERN_WARNING "%s: image %s: %pV\n",
557 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
558 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
559 		printk(KERN_WARNING "%s: id %s: %pV\n",
560 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
561 	else	/* punt */
562 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
563 			RBD_DRV_NAME, rbd_dev, &vaf);
564 	va_end(args);
565 }
566 
567 #ifdef RBD_DEBUG
568 #define rbd_assert(expr)						\
569 		if (unlikely(!(expr))) {				\
570 			printk(KERN_ERR "\nAssertion failure in %s() "	\
571 						"at line %d:\n\n"	\
572 					"\trbd_assert(%s);\n\n",	\
573 					__func__, __LINE__, #expr);	\
574 			BUG();						\
575 		}
576 #else /* !RBD_DEBUG */
577 #  define rbd_assert(expr)	((void) 0)
578 #endif /* !RBD_DEBUG */
579 
580 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
581 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
582 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
583 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
584 
585 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
586 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
587 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
588 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
589 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
590 					u64 snap_id);
591 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
592 				u8 *order, u64 *snap_size);
593 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
594 		u64 *snap_features);
595 
596 static int rbd_open(struct block_device *bdev, fmode_t mode)
597 {
598 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
599 	bool removing = false;
600 
601 	spin_lock_irq(&rbd_dev->lock);
602 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
603 		removing = true;
604 	else
605 		rbd_dev->open_count++;
606 	spin_unlock_irq(&rbd_dev->lock);
607 	if (removing)
608 		return -ENOENT;
609 
610 	(void) get_device(&rbd_dev->dev);
611 
612 	return 0;
613 }
614 
615 static void rbd_release(struct gendisk *disk, fmode_t mode)
616 {
617 	struct rbd_device *rbd_dev = disk->private_data;
618 	unsigned long open_count_before;
619 
620 	spin_lock_irq(&rbd_dev->lock);
621 	open_count_before = rbd_dev->open_count--;
622 	spin_unlock_irq(&rbd_dev->lock);
623 	rbd_assert(open_count_before > 0);
624 
625 	put_device(&rbd_dev->dev);
626 }
627 
628 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
629 {
630 	int ro;
631 
632 	if (get_user(ro, (int __user *)arg))
633 		return -EFAULT;
634 
635 	/* Snapshots can't be marked read-write */
636 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
637 		return -EROFS;
638 
639 	/* Let blkdev_roset() handle it */
640 	return -ENOTTY;
641 }
642 
643 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
644 			unsigned int cmd, unsigned long arg)
645 {
646 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
647 	int ret;
648 
649 	switch (cmd) {
650 	case BLKROSET:
651 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
652 		break;
653 	default:
654 		ret = -ENOTTY;
655 	}
656 
657 	return ret;
658 }
659 
660 #ifdef CONFIG_COMPAT
661 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
662 				unsigned int cmd, unsigned long arg)
663 {
664 	return rbd_ioctl(bdev, mode, cmd, arg);
665 }
666 #endif /* CONFIG_COMPAT */
667 
668 static const struct block_device_operations rbd_bd_ops = {
669 	.owner			= THIS_MODULE,
670 	.open			= rbd_open,
671 	.release		= rbd_release,
672 	.ioctl			= rbd_ioctl,
673 #ifdef CONFIG_COMPAT
674 	.compat_ioctl		= rbd_compat_ioctl,
675 #endif
676 };
677 
678 /*
679  * Initialize an rbd client instance.  Success or not, this function
680  * consumes ceph_opts.  Caller holds client_mutex.
681  */
682 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
683 {
684 	struct rbd_client *rbdc;
685 	int ret = -ENOMEM;
686 
687 	dout("%s:\n", __func__);
688 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
689 	if (!rbdc)
690 		goto out_opt;
691 
692 	kref_init(&rbdc->kref);
693 	INIT_LIST_HEAD(&rbdc->node);
694 
695 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
696 	if (IS_ERR(rbdc->client))
697 		goto out_rbdc;
698 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
699 
700 	ret = ceph_open_session(rbdc->client);
701 	if (ret < 0)
702 		goto out_client;
703 
704 	spin_lock(&rbd_client_list_lock);
705 	list_add_tail(&rbdc->node, &rbd_client_list);
706 	spin_unlock(&rbd_client_list_lock);
707 
708 	dout("%s: rbdc %p\n", __func__, rbdc);
709 
710 	return rbdc;
711 out_client:
712 	ceph_destroy_client(rbdc->client);
713 out_rbdc:
714 	kfree(rbdc);
715 out_opt:
716 	if (ceph_opts)
717 		ceph_destroy_options(ceph_opts);
718 	dout("%s: error %d\n", __func__, ret);
719 
720 	return ERR_PTR(ret);
721 }
722 
723 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
724 {
725 	kref_get(&rbdc->kref);
726 
727 	return rbdc;
728 }
729 
730 /*
731  * Find a ceph client with specific addr and configuration.  If
732  * found, bump its reference count.
733  */
734 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
735 {
736 	struct rbd_client *client_node;
737 	bool found = false;
738 
739 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
740 		return NULL;
741 
742 	spin_lock(&rbd_client_list_lock);
743 	list_for_each_entry(client_node, &rbd_client_list, node) {
744 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
745 			__rbd_get_client(client_node);
746 
747 			found = true;
748 			break;
749 		}
750 	}
751 	spin_unlock(&rbd_client_list_lock);
752 
753 	return found ? client_node : NULL;
754 }
755 
756 /*
757  * (Per device) rbd map options
758  */
759 enum {
760 	Opt_queue_depth,
761 	Opt_last_int,
762 	/* int args above */
763 	Opt_last_string,
764 	/* string args above */
765 	Opt_read_only,
766 	Opt_read_write,
767 	Opt_lock_on_read,
768 	Opt_exclusive,
769 	Opt_err
770 };
771 
772 static match_table_t rbd_opts_tokens = {
773 	{Opt_queue_depth, "queue_depth=%d"},
774 	/* int args above */
775 	/* string args above */
776 	{Opt_read_only, "read_only"},
777 	{Opt_read_only, "ro"},		/* Alternate spelling */
778 	{Opt_read_write, "read_write"},
779 	{Opt_read_write, "rw"},		/* Alternate spelling */
780 	{Opt_lock_on_read, "lock_on_read"},
781 	{Opt_exclusive, "exclusive"},
782 	{Opt_err, NULL}
783 };
784 
785 struct rbd_options {
786 	int	queue_depth;
787 	bool	read_only;
788 	bool	lock_on_read;
789 	bool	exclusive;
790 };
791 
792 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
793 #define RBD_READ_ONLY_DEFAULT	false
794 #define RBD_LOCK_ON_READ_DEFAULT false
795 #define RBD_EXCLUSIVE_DEFAULT	false
796 
797 static int parse_rbd_opts_token(char *c, void *private)
798 {
799 	struct rbd_options *rbd_opts = private;
800 	substring_t argstr[MAX_OPT_ARGS];
801 	int token, intval, ret;
802 
803 	token = match_token(c, rbd_opts_tokens, argstr);
804 	if (token < Opt_last_int) {
805 		ret = match_int(&argstr[0], &intval);
806 		if (ret < 0) {
807 			pr_err("bad mount option arg (not int) at '%s'\n", c);
808 			return ret;
809 		}
810 		dout("got int token %d val %d\n", token, intval);
811 	} else if (token > Opt_last_int && token < Opt_last_string) {
812 		dout("got string token %d val %s\n", token, argstr[0].from);
813 	} else {
814 		dout("got token %d\n", token);
815 	}
816 
817 	switch (token) {
818 	case Opt_queue_depth:
819 		if (intval < 1) {
820 			pr_err("queue_depth out of range\n");
821 			return -EINVAL;
822 		}
823 		rbd_opts->queue_depth = intval;
824 		break;
825 	case Opt_read_only:
826 		rbd_opts->read_only = true;
827 		break;
828 	case Opt_read_write:
829 		rbd_opts->read_only = false;
830 		break;
831 	case Opt_lock_on_read:
832 		rbd_opts->lock_on_read = true;
833 		break;
834 	case Opt_exclusive:
835 		rbd_opts->exclusive = true;
836 		break;
837 	default:
838 		/* libceph prints "bad option" msg */
839 		return -EINVAL;
840 	}
841 
842 	return 0;
843 }
844 
845 static char* obj_op_name(enum obj_operation_type op_type)
846 {
847 	switch (op_type) {
848 	case OBJ_OP_READ:
849 		return "read";
850 	case OBJ_OP_WRITE:
851 		return "write";
852 	case OBJ_OP_DISCARD:
853 		return "discard";
854 	default:
855 		return "???";
856 	}
857 }
858 
859 /*
860  * Get a ceph client with specific addr and configuration, if one does
861  * not exist create it.  Either way, ceph_opts is consumed by this
862  * function.
863  */
864 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
865 {
866 	struct rbd_client *rbdc;
867 
868 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
869 	rbdc = rbd_client_find(ceph_opts);
870 	if (rbdc)	/* using an existing client */
871 		ceph_destroy_options(ceph_opts);
872 	else
873 		rbdc = rbd_client_create(ceph_opts);
874 	mutex_unlock(&client_mutex);
875 
876 	return rbdc;
877 }
878 
879 /*
880  * Destroy ceph client
881  *
882  * Caller must hold rbd_client_list_lock.
883  */
884 static void rbd_client_release(struct kref *kref)
885 {
886 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
887 
888 	dout("%s: rbdc %p\n", __func__, rbdc);
889 	spin_lock(&rbd_client_list_lock);
890 	list_del(&rbdc->node);
891 	spin_unlock(&rbd_client_list_lock);
892 
893 	ceph_destroy_client(rbdc->client);
894 	kfree(rbdc);
895 }
896 
897 /*
898  * Drop reference to ceph client node. If it's not referenced anymore, release
899  * it.
900  */
901 static void rbd_put_client(struct rbd_client *rbdc)
902 {
903 	if (rbdc)
904 		kref_put(&rbdc->kref, rbd_client_release);
905 }
906 
907 static bool rbd_image_format_valid(u32 image_format)
908 {
909 	return image_format == 1 || image_format == 2;
910 }
911 
912 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
913 {
914 	size_t size;
915 	u32 snap_count;
916 
917 	/* The header has to start with the magic rbd header text */
918 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
919 		return false;
920 
921 	/* The bio layer requires at least sector-sized I/O */
922 
923 	if (ondisk->options.order < SECTOR_SHIFT)
924 		return false;
925 
926 	/* If we use u64 in a few spots we may be able to loosen this */
927 
928 	if (ondisk->options.order > 8 * sizeof (int) - 1)
929 		return false;
930 
931 	/*
932 	 * The size of a snapshot header has to fit in a size_t, and
933 	 * that limits the number of snapshots.
934 	 */
935 	snap_count = le32_to_cpu(ondisk->snap_count);
936 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
937 	if (snap_count > size / sizeof (__le64))
938 		return false;
939 
940 	/*
941 	 * Not only that, but the size of the entire the snapshot
942 	 * header must also be representable in a size_t.
943 	 */
944 	size -= snap_count * sizeof (__le64);
945 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
946 		return false;
947 
948 	return true;
949 }
950 
951 /*
952  * returns the size of an object in the image
953  */
954 static u32 rbd_obj_bytes(struct rbd_image_header *header)
955 {
956 	return 1U << header->obj_order;
957 }
958 
959 static void rbd_init_layout(struct rbd_device *rbd_dev)
960 {
961 	if (rbd_dev->header.stripe_unit == 0 ||
962 	    rbd_dev->header.stripe_count == 0) {
963 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
964 		rbd_dev->header.stripe_count = 1;
965 	}
966 
967 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
968 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
969 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
970 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
971 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
972 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
973 }
974 
975 /*
976  * Fill an rbd image header with information from the given format 1
977  * on-disk header.
978  */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980 				 struct rbd_image_header_ondisk *ondisk)
981 {
982 	struct rbd_image_header *header = &rbd_dev->header;
983 	bool first_time = header->object_prefix == NULL;
984 	struct ceph_snap_context *snapc;
985 	char *object_prefix = NULL;
986 	char *snap_names = NULL;
987 	u64 *snap_sizes = NULL;
988 	u32 snap_count;
989 	int ret = -ENOMEM;
990 	u32 i;
991 
992 	/* Allocate this now to avoid having to handle failure below */
993 
994 	if (first_time) {
995 		object_prefix = kstrndup(ondisk->object_prefix,
996 					 sizeof(ondisk->object_prefix),
997 					 GFP_KERNEL);
998 		if (!object_prefix)
999 			return -ENOMEM;
1000 	}
1001 
1002 	/* Allocate the snapshot context and fill it in */
1003 
1004 	snap_count = le32_to_cpu(ondisk->snap_count);
1005 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1006 	if (!snapc)
1007 		goto out_err;
1008 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1009 	if (snap_count) {
1010 		struct rbd_image_snap_ondisk *snaps;
1011 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1012 
1013 		/* We'll keep a copy of the snapshot names... */
1014 
1015 		if (snap_names_len > (u64)SIZE_MAX)
1016 			goto out_2big;
1017 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1018 		if (!snap_names)
1019 			goto out_err;
1020 
1021 		/* ...as well as the array of their sizes. */
1022 		snap_sizes = kmalloc_array(snap_count,
1023 					   sizeof(*header->snap_sizes),
1024 					   GFP_KERNEL);
1025 		if (!snap_sizes)
1026 			goto out_err;
1027 
1028 		/*
1029 		 * Copy the names, and fill in each snapshot's id
1030 		 * and size.
1031 		 *
1032 		 * Note that rbd_dev_v1_header_info() guarantees the
1033 		 * ondisk buffer we're working with has
1034 		 * snap_names_len bytes beyond the end of the
1035 		 * snapshot id array, this memcpy() is safe.
1036 		 */
1037 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1038 		snaps = ondisk->snaps;
1039 		for (i = 0; i < snap_count; i++) {
1040 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1041 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1042 		}
1043 	}
1044 
1045 	/* We won't fail any more, fill in the header */
1046 
1047 	if (first_time) {
1048 		header->object_prefix = object_prefix;
1049 		header->obj_order = ondisk->options.order;
1050 		rbd_init_layout(rbd_dev);
1051 	} else {
1052 		ceph_put_snap_context(header->snapc);
1053 		kfree(header->snap_names);
1054 		kfree(header->snap_sizes);
1055 	}
1056 
1057 	/* The remaining fields always get updated (when we refresh) */
1058 
1059 	header->image_size = le64_to_cpu(ondisk->image_size);
1060 	header->snapc = snapc;
1061 	header->snap_names = snap_names;
1062 	header->snap_sizes = snap_sizes;
1063 
1064 	return 0;
1065 out_2big:
1066 	ret = -EIO;
1067 out_err:
1068 	kfree(snap_sizes);
1069 	kfree(snap_names);
1070 	ceph_put_snap_context(snapc);
1071 	kfree(object_prefix);
1072 
1073 	return ret;
1074 }
1075 
1076 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1077 {
1078 	const char *snap_name;
1079 
1080 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1081 
1082 	/* Skip over names until we find the one we are looking for */
1083 
1084 	snap_name = rbd_dev->header.snap_names;
1085 	while (which--)
1086 		snap_name += strlen(snap_name) + 1;
1087 
1088 	return kstrdup(snap_name, GFP_KERNEL);
1089 }
1090 
1091 /*
1092  * Snapshot id comparison function for use with qsort()/bsearch().
1093  * Note that result is for snapshots in *descending* order.
1094  */
1095 static int snapid_compare_reverse(const void *s1, const void *s2)
1096 {
1097 	u64 snap_id1 = *(u64 *)s1;
1098 	u64 snap_id2 = *(u64 *)s2;
1099 
1100 	if (snap_id1 < snap_id2)
1101 		return 1;
1102 	return snap_id1 == snap_id2 ? 0 : -1;
1103 }
1104 
1105 /*
1106  * Search a snapshot context to see if the given snapshot id is
1107  * present.
1108  *
1109  * Returns the position of the snapshot id in the array if it's found,
1110  * or BAD_SNAP_INDEX otherwise.
1111  *
1112  * Note: The snapshot array is in kept sorted (by the osd) in
1113  * reverse order, highest snapshot id first.
1114  */
1115 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1116 {
1117 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1118 	u64 *found;
1119 
1120 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1121 				sizeof (snap_id), snapid_compare_reverse);
1122 
1123 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1124 }
1125 
1126 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1127 					u64 snap_id)
1128 {
1129 	u32 which;
1130 	const char *snap_name;
1131 
1132 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1133 	if (which == BAD_SNAP_INDEX)
1134 		return ERR_PTR(-ENOENT);
1135 
1136 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1137 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1138 }
1139 
1140 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1141 {
1142 	if (snap_id == CEPH_NOSNAP)
1143 		return RBD_SNAP_HEAD_NAME;
1144 
1145 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1146 	if (rbd_dev->image_format == 1)
1147 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1148 
1149 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1150 }
1151 
1152 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1153 				u64 *snap_size)
1154 {
1155 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1156 	if (snap_id == CEPH_NOSNAP) {
1157 		*snap_size = rbd_dev->header.image_size;
1158 	} else if (rbd_dev->image_format == 1) {
1159 		u32 which;
1160 
1161 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1162 		if (which == BAD_SNAP_INDEX)
1163 			return -ENOENT;
1164 
1165 		*snap_size = rbd_dev->header.snap_sizes[which];
1166 	} else {
1167 		u64 size = 0;
1168 		int ret;
1169 
1170 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1171 		if (ret)
1172 			return ret;
1173 
1174 		*snap_size = size;
1175 	}
1176 	return 0;
1177 }
1178 
1179 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1180 			u64 *snap_features)
1181 {
1182 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183 	if (snap_id == CEPH_NOSNAP) {
1184 		*snap_features = rbd_dev->header.features;
1185 	} else if (rbd_dev->image_format == 1) {
1186 		*snap_features = 0;	/* No features for format 1 */
1187 	} else {
1188 		u64 features = 0;
1189 		int ret;
1190 
1191 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1192 		if (ret)
1193 			return ret;
1194 
1195 		*snap_features = features;
1196 	}
1197 	return 0;
1198 }
1199 
1200 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1201 {
1202 	u64 snap_id = rbd_dev->spec->snap_id;
1203 	u64 size = 0;
1204 	u64 features = 0;
1205 	int ret;
1206 
1207 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1208 	if (ret)
1209 		return ret;
1210 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1211 	if (ret)
1212 		return ret;
1213 
1214 	rbd_dev->mapping.size = size;
1215 	rbd_dev->mapping.features = features;
1216 
1217 	return 0;
1218 }
1219 
1220 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1221 {
1222 	rbd_dev->mapping.size = 0;
1223 	rbd_dev->mapping.features = 0;
1224 }
1225 
1226 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1227 {
1228 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1229 
1230 	return offset & (segment_size - 1);
1231 }
1232 
1233 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1234 				u64 offset, u64 length)
1235 {
1236 	u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1237 
1238 	offset &= segment_size - 1;
1239 
1240 	rbd_assert(length <= U64_MAX - offset);
1241 	if (offset + length > segment_size)
1242 		length = segment_size - offset;
1243 
1244 	return length;
1245 }
1246 
1247 /*
1248  * bio helpers
1249  */
1250 
1251 static void bio_chain_put(struct bio *chain)
1252 {
1253 	struct bio *tmp;
1254 
1255 	while (chain) {
1256 		tmp = chain;
1257 		chain = chain->bi_next;
1258 		bio_put(tmp);
1259 	}
1260 }
1261 
1262 /*
1263  * zeros a bio chain, starting at specific offset
1264  */
1265 static void zero_bio_chain(struct bio *chain, int start_ofs)
1266 {
1267 	struct bio_vec bv;
1268 	struct bvec_iter iter;
1269 	unsigned long flags;
1270 	void *buf;
1271 	int pos = 0;
1272 
1273 	while (chain) {
1274 		bio_for_each_segment(bv, chain, iter) {
1275 			if (pos + bv.bv_len > start_ofs) {
1276 				int remainder = max(start_ofs - pos, 0);
1277 				buf = bvec_kmap_irq(&bv, &flags);
1278 				memset(buf + remainder, 0,
1279 				       bv.bv_len - remainder);
1280 				flush_dcache_page(bv.bv_page);
1281 				bvec_kunmap_irq(buf, &flags);
1282 			}
1283 			pos += bv.bv_len;
1284 		}
1285 
1286 		chain = chain->bi_next;
1287 	}
1288 }
1289 
1290 /*
1291  * similar to zero_bio_chain(), zeros data defined by a page array,
1292  * starting at the given byte offset from the start of the array and
1293  * continuing up to the given end offset.  The pages array is
1294  * assumed to be big enough to hold all bytes up to the end.
1295  */
1296 static void zero_pages(struct page **pages, u64 offset, u64 end)
1297 {
1298 	struct page **page = &pages[offset >> PAGE_SHIFT];
1299 
1300 	rbd_assert(end > offset);
1301 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1302 	while (offset < end) {
1303 		size_t page_offset;
1304 		size_t length;
1305 		unsigned long flags;
1306 		void *kaddr;
1307 
1308 		page_offset = offset & ~PAGE_MASK;
1309 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1310 		local_irq_save(flags);
1311 		kaddr = kmap_atomic(*page);
1312 		memset(kaddr + page_offset, 0, length);
1313 		flush_dcache_page(*page);
1314 		kunmap_atomic(kaddr);
1315 		local_irq_restore(flags);
1316 
1317 		offset += length;
1318 		page++;
1319 	}
1320 }
1321 
1322 /*
1323  * Clone a portion of a bio, starting at the given byte offset
1324  * and continuing for the number of bytes indicated.
1325  */
1326 static struct bio *bio_clone_range(struct bio *bio_src,
1327 					unsigned int offset,
1328 					unsigned int len,
1329 					gfp_t gfpmask)
1330 {
1331 	struct bio *bio;
1332 
1333 	bio = bio_clone_fast(bio_src, gfpmask, rbd_bio_clone);
1334 	if (!bio)
1335 		return NULL;	/* ENOMEM */
1336 
1337 	bio_advance(bio, offset);
1338 	bio->bi_iter.bi_size = len;
1339 
1340 	return bio;
1341 }
1342 
1343 /*
1344  * Clone a portion of a bio chain, starting at the given byte offset
1345  * into the first bio in the source chain and continuing for the
1346  * number of bytes indicated.  The result is another bio chain of
1347  * exactly the given length, or a null pointer on error.
1348  *
1349  * The bio_src and offset parameters are both in-out.  On entry they
1350  * refer to the first source bio and the offset into that bio where
1351  * the start of data to be cloned is located.
1352  *
1353  * On return, bio_src is updated to refer to the bio in the source
1354  * chain that contains first un-cloned byte, and *offset will
1355  * contain the offset of that byte within that bio.
1356  */
1357 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1358 					unsigned int *offset,
1359 					unsigned int len,
1360 					gfp_t gfpmask)
1361 {
1362 	struct bio *bi = *bio_src;
1363 	unsigned int off = *offset;
1364 	struct bio *chain = NULL;
1365 	struct bio **end;
1366 
1367 	/* Build up a chain of clone bios up to the limit */
1368 
1369 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1370 		return NULL;		/* Nothing to clone */
1371 
1372 	end = &chain;
1373 	while (len) {
1374 		unsigned int bi_size;
1375 		struct bio *bio;
1376 
1377 		if (!bi) {
1378 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1379 			goto out_err;	/* EINVAL; ran out of bio's */
1380 		}
1381 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1382 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1383 		if (!bio)
1384 			goto out_err;	/* ENOMEM */
1385 
1386 		*end = bio;
1387 		end = &bio->bi_next;
1388 
1389 		off += bi_size;
1390 		if (off == bi->bi_iter.bi_size) {
1391 			bi = bi->bi_next;
1392 			off = 0;
1393 		}
1394 		len -= bi_size;
1395 	}
1396 	*bio_src = bi;
1397 	*offset = off;
1398 
1399 	return chain;
1400 out_err:
1401 	bio_chain_put(chain);
1402 
1403 	return NULL;
1404 }
1405 
1406 /*
1407  * The default/initial value for all object request flags is 0.  For
1408  * each flag, once its value is set to 1 it is never reset to 0
1409  * again.
1410  */
1411 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1412 {
1413 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1414 		struct rbd_device *rbd_dev;
1415 
1416 		rbd_dev = obj_request->img_request->rbd_dev;
1417 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1418 			obj_request);
1419 	}
1420 }
1421 
1422 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1423 {
1424 	smp_mb();
1425 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1426 }
1427 
1428 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1429 {
1430 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1431 		struct rbd_device *rbd_dev = NULL;
1432 
1433 		if (obj_request_img_data_test(obj_request))
1434 			rbd_dev = obj_request->img_request->rbd_dev;
1435 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1436 			obj_request);
1437 	}
1438 }
1439 
1440 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1441 {
1442 	smp_mb();
1443 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1444 }
1445 
1446 /*
1447  * This sets the KNOWN flag after (possibly) setting the EXISTS
1448  * flag.  The latter is set based on the "exists" value provided.
1449  *
1450  * Note that for our purposes once an object exists it never goes
1451  * away again.  It's possible that the response from two existence
1452  * checks are separated by the creation of the target object, and
1453  * the first ("doesn't exist") response arrives *after* the second
1454  * ("does exist").  In that case we ignore the second one.
1455  */
1456 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1457 				bool exists)
1458 {
1459 	if (exists)
1460 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1461 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1462 	smp_mb();
1463 }
1464 
1465 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1466 {
1467 	smp_mb();
1468 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1469 }
1470 
1471 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1472 {
1473 	smp_mb();
1474 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1475 }
1476 
1477 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1478 {
1479 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1480 
1481 	return obj_request->img_offset <
1482 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1483 }
1484 
1485 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1486 {
1487 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1488 		kref_read(&obj_request->kref));
1489 	kref_get(&obj_request->kref);
1490 }
1491 
1492 static void rbd_obj_request_destroy(struct kref *kref);
1493 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1494 {
1495 	rbd_assert(obj_request != NULL);
1496 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1497 		kref_read(&obj_request->kref));
1498 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1499 }
1500 
1501 static void rbd_img_request_get(struct rbd_img_request *img_request)
1502 {
1503 	dout("%s: img %p (was %d)\n", __func__, img_request,
1504 	     kref_read(&img_request->kref));
1505 	kref_get(&img_request->kref);
1506 }
1507 
1508 static bool img_request_child_test(struct rbd_img_request *img_request);
1509 static void rbd_parent_request_destroy(struct kref *kref);
1510 static void rbd_img_request_destroy(struct kref *kref);
1511 static void rbd_img_request_put(struct rbd_img_request *img_request)
1512 {
1513 	rbd_assert(img_request != NULL);
1514 	dout("%s: img %p (was %d)\n", __func__, img_request,
1515 		kref_read(&img_request->kref));
1516 	if (img_request_child_test(img_request))
1517 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1518 	else
1519 		kref_put(&img_request->kref, rbd_img_request_destroy);
1520 }
1521 
1522 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1523 					struct rbd_obj_request *obj_request)
1524 {
1525 	rbd_assert(obj_request->img_request == NULL);
1526 
1527 	/* Image request now owns object's original reference */
1528 	obj_request->img_request = img_request;
1529 	obj_request->which = img_request->obj_request_count;
1530 	rbd_assert(!obj_request_img_data_test(obj_request));
1531 	obj_request_img_data_set(obj_request);
1532 	rbd_assert(obj_request->which != BAD_WHICH);
1533 	img_request->obj_request_count++;
1534 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1535 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1536 		obj_request->which);
1537 }
1538 
1539 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1540 					struct rbd_obj_request *obj_request)
1541 {
1542 	rbd_assert(obj_request->which != BAD_WHICH);
1543 
1544 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1545 		obj_request->which);
1546 	list_del(&obj_request->links);
1547 	rbd_assert(img_request->obj_request_count > 0);
1548 	img_request->obj_request_count--;
1549 	rbd_assert(obj_request->which == img_request->obj_request_count);
1550 	obj_request->which = BAD_WHICH;
1551 	rbd_assert(obj_request_img_data_test(obj_request));
1552 	rbd_assert(obj_request->img_request == img_request);
1553 	obj_request->img_request = NULL;
1554 	obj_request->callback = NULL;
1555 	rbd_obj_request_put(obj_request);
1556 }
1557 
1558 static bool obj_request_type_valid(enum obj_request_type type)
1559 {
1560 	switch (type) {
1561 	case OBJ_REQUEST_NODATA:
1562 	case OBJ_REQUEST_BIO:
1563 	case OBJ_REQUEST_PAGES:
1564 		return true;
1565 	default:
1566 		return false;
1567 	}
1568 }
1569 
1570 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1571 
1572 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1573 {
1574 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1575 
1576 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1577 	     obj_request, obj_request->object_no, obj_request->offset,
1578 	     obj_request->length, osd_req);
1579 	if (obj_request_img_data_test(obj_request)) {
1580 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1581 		rbd_img_request_get(obj_request->img_request);
1582 	}
1583 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1584 }
1585 
1586 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1587 {
1588 
1589 	dout("%s: img %p\n", __func__, img_request);
1590 
1591 	/*
1592 	 * If no error occurred, compute the aggregate transfer
1593 	 * count for the image request.  We could instead use
1594 	 * atomic64_cmpxchg() to update it as each object request
1595 	 * completes; not clear which way is better off hand.
1596 	 */
1597 	if (!img_request->result) {
1598 		struct rbd_obj_request *obj_request;
1599 		u64 xferred = 0;
1600 
1601 		for_each_obj_request(img_request, obj_request)
1602 			xferred += obj_request->xferred;
1603 		img_request->xferred = xferred;
1604 	}
1605 
1606 	if (img_request->callback)
1607 		img_request->callback(img_request);
1608 	else
1609 		rbd_img_request_put(img_request);
1610 }
1611 
1612 /*
1613  * The default/initial value for all image request flags is 0.  Each
1614  * is conditionally set to 1 at image request initialization time
1615  * and currently never change thereafter.
1616  */
1617 static void img_request_write_set(struct rbd_img_request *img_request)
1618 {
1619 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1620 	smp_mb();
1621 }
1622 
1623 static bool img_request_write_test(struct rbd_img_request *img_request)
1624 {
1625 	smp_mb();
1626 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1627 }
1628 
1629 /*
1630  * Set the discard flag when the img_request is an discard request
1631  */
1632 static void img_request_discard_set(struct rbd_img_request *img_request)
1633 {
1634 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1635 	smp_mb();
1636 }
1637 
1638 static bool img_request_discard_test(struct rbd_img_request *img_request)
1639 {
1640 	smp_mb();
1641 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1642 }
1643 
1644 static void img_request_child_set(struct rbd_img_request *img_request)
1645 {
1646 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1647 	smp_mb();
1648 }
1649 
1650 static void img_request_child_clear(struct rbd_img_request *img_request)
1651 {
1652 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1653 	smp_mb();
1654 }
1655 
1656 static bool img_request_child_test(struct rbd_img_request *img_request)
1657 {
1658 	smp_mb();
1659 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1660 }
1661 
1662 static void img_request_layered_set(struct rbd_img_request *img_request)
1663 {
1664 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1665 	smp_mb();
1666 }
1667 
1668 static void img_request_layered_clear(struct rbd_img_request *img_request)
1669 {
1670 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1671 	smp_mb();
1672 }
1673 
1674 static bool img_request_layered_test(struct rbd_img_request *img_request)
1675 {
1676 	smp_mb();
1677 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1678 }
1679 
1680 static enum obj_operation_type
1681 rbd_img_request_op_type(struct rbd_img_request *img_request)
1682 {
1683 	if (img_request_write_test(img_request))
1684 		return OBJ_OP_WRITE;
1685 	else if (img_request_discard_test(img_request))
1686 		return OBJ_OP_DISCARD;
1687 	else
1688 		return OBJ_OP_READ;
1689 }
1690 
1691 static void
1692 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1693 {
1694 	u64 xferred = obj_request->xferred;
1695 	u64 length = obj_request->length;
1696 
1697 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1698 		obj_request, obj_request->img_request, obj_request->result,
1699 		xferred, length);
1700 	/*
1701 	 * ENOENT means a hole in the image.  We zero-fill the entire
1702 	 * length of the request.  A short read also implies zero-fill
1703 	 * to the end of the request.  An error requires the whole
1704 	 * length of the request to be reported finished with an error
1705 	 * to the block layer.  In each case we update the xferred
1706 	 * count to indicate the whole request was satisfied.
1707 	 */
1708 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1709 	if (obj_request->result == -ENOENT) {
1710 		if (obj_request->type == OBJ_REQUEST_BIO)
1711 			zero_bio_chain(obj_request->bio_list, 0);
1712 		else
1713 			zero_pages(obj_request->pages, 0, length);
1714 		obj_request->result = 0;
1715 	} else if (xferred < length && !obj_request->result) {
1716 		if (obj_request->type == OBJ_REQUEST_BIO)
1717 			zero_bio_chain(obj_request->bio_list, xferred);
1718 		else
1719 			zero_pages(obj_request->pages, xferred, length);
1720 	}
1721 	obj_request->xferred = length;
1722 	obj_request_done_set(obj_request);
1723 }
1724 
1725 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1726 {
1727 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1728 		obj_request->callback);
1729 	obj_request->callback(obj_request);
1730 }
1731 
1732 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1733 {
1734 	obj_request->result = err;
1735 	obj_request->xferred = 0;
1736 	/*
1737 	 * kludge - mirror rbd_obj_request_submit() to match a put in
1738 	 * rbd_img_obj_callback()
1739 	 */
1740 	if (obj_request_img_data_test(obj_request)) {
1741 		WARN_ON(obj_request->callback != rbd_img_obj_callback);
1742 		rbd_img_request_get(obj_request->img_request);
1743 	}
1744 	obj_request_done_set(obj_request);
1745 	rbd_obj_request_complete(obj_request);
1746 }
1747 
1748 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1749 {
1750 	struct rbd_img_request *img_request = NULL;
1751 	struct rbd_device *rbd_dev = NULL;
1752 	bool layered = false;
1753 
1754 	if (obj_request_img_data_test(obj_request)) {
1755 		img_request = obj_request->img_request;
1756 		layered = img_request && img_request_layered_test(img_request);
1757 		rbd_dev = img_request->rbd_dev;
1758 	}
1759 
1760 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1761 		obj_request, img_request, obj_request->result,
1762 		obj_request->xferred, obj_request->length);
1763 	if (layered && obj_request->result == -ENOENT &&
1764 			obj_request->img_offset < rbd_dev->parent_overlap)
1765 		rbd_img_parent_read(obj_request);
1766 	else if (img_request)
1767 		rbd_img_obj_request_read_callback(obj_request);
1768 	else
1769 		obj_request_done_set(obj_request);
1770 }
1771 
1772 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1773 {
1774 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775 		obj_request->result, obj_request->length);
1776 	/*
1777 	 * There is no such thing as a successful short write.  Set
1778 	 * it to our originally-requested length.
1779 	 */
1780 	obj_request->xferred = obj_request->length;
1781 	obj_request_done_set(obj_request);
1782 }
1783 
1784 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1785 {
1786 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 		obj_request->result, obj_request->length);
1788 	/*
1789 	 * There is no such thing as a successful short discard.  Set
1790 	 * it to our originally-requested length.
1791 	 */
1792 	obj_request->xferred = obj_request->length;
1793 	/* discarding a non-existent object is not a problem */
1794 	if (obj_request->result == -ENOENT)
1795 		obj_request->result = 0;
1796 	obj_request_done_set(obj_request);
1797 }
1798 
1799 /*
1800  * For a simple stat call there's nothing to do.  We'll do more if
1801  * this is part of a write sequence for a layered image.
1802  */
1803 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1804 {
1805 	dout("%s: obj %p\n", __func__, obj_request);
1806 	obj_request_done_set(obj_request);
1807 }
1808 
1809 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1810 {
1811 	dout("%s: obj %p\n", __func__, obj_request);
1812 
1813 	if (obj_request_img_data_test(obj_request))
1814 		rbd_osd_copyup_callback(obj_request);
1815 	else
1816 		obj_request_done_set(obj_request);
1817 }
1818 
1819 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1820 {
1821 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1822 	u16 opcode;
1823 
1824 	dout("%s: osd_req %p\n", __func__, osd_req);
1825 	rbd_assert(osd_req == obj_request->osd_req);
1826 	if (obj_request_img_data_test(obj_request)) {
1827 		rbd_assert(obj_request->img_request);
1828 		rbd_assert(obj_request->which != BAD_WHICH);
1829 	} else {
1830 		rbd_assert(obj_request->which == BAD_WHICH);
1831 	}
1832 
1833 	if (osd_req->r_result < 0)
1834 		obj_request->result = osd_req->r_result;
1835 
1836 	/*
1837 	 * We support a 64-bit length, but ultimately it has to be
1838 	 * passed to the block layer, which just supports a 32-bit
1839 	 * length field.
1840 	 */
1841 	obj_request->xferred = osd_req->r_ops[0].outdata_len;
1842 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1843 
1844 	opcode = osd_req->r_ops[0].op;
1845 	switch (opcode) {
1846 	case CEPH_OSD_OP_READ:
1847 		rbd_osd_read_callback(obj_request);
1848 		break;
1849 	case CEPH_OSD_OP_SETALLOCHINT:
1850 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1851 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1852 		/* fall through */
1853 	case CEPH_OSD_OP_WRITE:
1854 	case CEPH_OSD_OP_WRITEFULL:
1855 		rbd_osd_write_callback(obj_request);
1856 		break;
1857 	case CEPH_OSD_OP_STAT:
1858 		rbd_osd_stat_callback(obj_request);
1859 		break;
1860 	case CEPH_OSD_OP_DELETE:
1861 	case CEPH_OSD_OP_TRUNCATE:
1862 	case CEPH_OSD_OP_ZERO:
1863 		rbd_osd_discard_callback(obj_request);
1864 		break;
1865 	case CEPH_OSD_OP_CALL:
1866 		rbd_osd_call_callback(obj_request);
1867 		break;
1868 	default:
1869 		rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1870 			 obj_request->object_no, opcode);
1871 		break;
1872 	}
1873 
1874 	if (obj_request_done_test(obj_request))
1875 		rbd_obj_request_complete(obj_request);
1876 }
1877 
1878 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1879 {
1880 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1881 
1882 	rbd_assert(obj_request_img_data_test(obj_request));
1883 	osd_req->r_snapid = obj_request->img_request->snap_id;
1884 }
1885 
1886 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1887 {
1888 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1889 
1890 	ktime_get_real_ts(&osd_req->r_mtime);
1891 	osd_req->r_data_offset = obj_request->offset;
1892 }
1893 
1894 static struct ceph_osd_request *
1895 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1896 		     struct ceph_snap_context *snapc,
1897 		     int num_ops, unsigned int flags,
1898 		     struct rbd_obj_request *obj_request)
1899 {
1900 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1901 	struct ceph_osd_request *req;
1902 	const char *name_format = rbd_dev->image_format == 1 ?
1903 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1904 
1905 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1906 	if (!req)
1907 		return NULL;
1908 
1909 	req->r_flags = flags;
1910 	req->r_callback = rbd_osd_req_callback;
1911 	req->r_priv = obj_request;
1912 
1913 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1914 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1915 			rbd_dev->header.object_prefix, obj_request->object_no))
1916 		goto err_req;
1917 
1918 	if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1919 		goto err_req;
1920 
1921 	return req;
1922 
1923 err_req:
1924 	ceph_osdc_put_request(req);
1925 	return NULL;
1926 }
1927 
1928 /*
1929  * Create an osd request.  A read request has one osd op (read).
1930  * A write request has either one (watch) or two (hint+write) osd ops.
1931  * (All rbd data writes are prefixed with an allocation hint op, but
1932  * technically osd watch is a write request, hence this distinction.)
1933  */
1934 static struct ceph_osd_request *rbd_osd_req_create(
1935 					struct rbd_device *rbd_dev,
1936 					enum obj_operation_type op_type,
1937 					unsigned int num_ops,
1938 					struct rbd_obj_request *obj_request)
1939 {
1940 	struct ceph_snap_context *snapc = NULL;
1941 
1942 	if (obj_request_img_data_test(obj_request) &&
1943 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1944 		struct rbd_img_request *img_request = obj_request->img_request;
1945 		if (op_type == OBJ_OP_WRITE) {
1946 			rbd_assert(img_request_write_test(img_request));
1947 		} else {
1948 			rbd_assert(img_request_discard_test(img_request));
1949 		}
1950 		snapc = img_request->snapc;
1951 	}
1952 
1953 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1954 
1955 	return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1956 	    (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1957 	    CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1958 }
1959 
1960 /*
1961  * Create a copyup osd request based on the information in the object
1962  * request supplied.  A copyup request has two or three osd ops, a
1963  * copyup method call, potentially a hint op, and a write or truncate
1964  * or zero op.
1965  */
1966 static struct ceph_osd_request *
1967 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1968 {
1969 	struct rbd_img_request *img_request;
1970 	int num_osd_ops = 3;
1971 
1972 	rbd_assert(obj_request_img_data_test(obj_request));
1973 	img_request = obj_request->img_request;
1974 	rbd_assert(img_request);
1975 	rbd_assert(img_request_write_test(img_request) ||
1976 			img_request_discard_test(img_request));
1977 
1978 	if (img_request_discard_test(img_request))
1979 		num_osd_ops = 2;
1980 
1981 	return __rbd_osd_req_create(img_request->rbd_dev,
1982 				    img_request->snapc, num_osd_ops,
1983 				    CEPH_OSD_FLAG_WRITE, obj_request);
1984 }
1985 
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988 	ceph_osdc_put_request(osd_req);
1989 }
1990 
1991 static struct rbd_obj_request *
1992 rbd_obj_request_create(enum obj_request_type type)
1993 {
1994 	struct rbd_obj_request *obj_request;
1995 
1996 	rbd_assert(obj_request_type_valid(type));
1997 
1998 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1999 	if (!obj_request)
2000 		return NULL;
2001 
2002 	obj_request->which = BAD_WHICH;
2003 	obj_request->type = type;
2004 	INIT_LIST_HEAD(&obj_request->links);
2005 	kref_init(&obj_request->kref);
2006 
2007 	dout("%s %p\n", __func__, obj_request);
2008 	return obj_request;
2009 }
2010 
2011 static void rbd_obj_request_destroy(struct kref *kref)
2012 {
2013 	struct rbd_obj_request *obj_request;
2014 
2015 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2016 
2017 	dout("%s: obj %p\n", __func__, obj_request);
2018 
2019 	rbd_assert(obj_request->img_request == NULL);
2020 	rbd_assert(obj_request->which == BAD_WHICH);
2021 
2022 	if (obj_request->osd_req)
2023 		rbd_osd_req_destroy(obj_request->osd_req);
2024 
2025 	rbd_assert(obj_request_type_valid(obj_request->type));
2026 	switch (obj_request->type) {
2027 	case OBJ_REQUEST_NODATA:
2028 		break;		/* Nothing to do */
2029 	case OBJ_REQUEST_BIO:
2030 		if (obj_request->bio_list)
2031 			bio_chain_put(obj_request->bio_list);
2032 		break;
2033 	case OBJ_REQUEST_PAGES:
2034 		/* img_data requests don't own their page array */
2035 		if (obj_request->pages &&
2036 		    !obj_request_img_data_test(obj_request))
2037 			ceph_release_page_vector(obj_request->pages,
2038 						obj_request->page_count);
2039 		break;
2040 	}
2041 
2042 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2043 }
2044 
2045 /* It's OK to call this for a device with no parent */
2046 
2047 static void rbd_spec_put(struct rbd_spec *spec);
2048 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2049 {
2050 	rbd_dev_remove_parent(rbd_dev);
2051 	rbd_spec_put(rbd_dev->parent_spec);
2052 	rbd_dev->parent_spec = NULL;
2053 	rbd_dev->parent_overlap = 0;
2054 }
2055 
2056 /*
2057  * Parent image reference counting is used to determine when an
2058  * image's parent fields can be safely torn down--after there are no
2059  * more in-flight requests to the parent image.  When the last
2060  * reference is dropped, cleaning them up is safe.
2061  */
2062 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2063 {
2064 	int counter;
2065 
2066 	if (!rbd_dev->parent_spec)
2067 		return;
2068 
2069 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2070 	if (counter > 0)
2071 		return;
2072 
2073 	/* Last reference; clean up parent data structures */
2074 
2075 	if (!counter)
2076 		rbd_dev_unparent(rbd_dev);
2077 	else
2078 		rbd_warn(rbd_dev, "parent reference underflow");
2079 }
2080 
2081 /*
2082  * If an image has a non-zero parent overlap, get a reference to its
2083  * parent.
2084  *
2085  * Returns true if the rbd device has a parent with a non-zero
2086  * overlap and a reference for it was successfully taken, or
2087  * false otherwise.
2088  */
2089 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2090 {
2091 	int counter = 0;
2092 
2093 	if (!rbd_dev->parent_spec)
2094 		return false;
2095 
2096 	down_read(&rbd_dev->header_rwsem);
2097 	if (rbd_dev->parent_overlap)
2098 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2099 	up_read(&rbd_dev->header_rwsem);
2100 
2101 	if (counter < 0)
2102 		rbd_warn(rbd_dev, "parent reference overflow");
2103 
2104 	return counter > 0;
2105 }
2106 
2107 /*
2108  * Caller is responsible for filling in the list of object requests
2109  * that comprises the image request, and the Linux request pointer
2110  * (if there is one).
2111  */
2112 static struct rbd_img_request *rbd_img_request_create(
2113 					struct rbd_device *rbd_dev,
2114 					u64 offset, u64 length,
2115 					enum obj_operation_type op_type,
2116 					struct ceph_snap_context *snapc)
2117 {
2118 	struct rbd_img_request *img_request;
2119 
2120 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
2121 	if (!img_request)
2122 		return NULL;
2123 
2124 	img_request->rbd_dev = rbd_dev;
2125 	img_request->offset = offset;
2126 	img_request->length = length;
2127 	if (op_type == OBJ_OP_DISCARD) {
2128 		img_request_discard_set(img_request);
2129 		img_request->snapc = snapc;
2130 	} else if (op_type == OBJ_OP_WRITE) {
2131 		img_request_write_set(img_request);
2132 		img_request->snapc = snapc;
2133 	} else {
2134 		img_request->snap_id = rbd_dev->spec->snap_id;
2135 	}
2136 	if (rbd_dev_parent_get(rbd_dev))
2137 		img_request_layered_set(img_request);
2138 
2139 	spin_lock_init(&img_request->completion_lock);
2140 	INIT_LIST_HEAD(&img_request->obj_requests);
2141 	kref_init(&img_request->kref);
2142 
2143 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2144 		obj_op_name(op_type), offset, length, img_request);
2145 
2146 	return img_request;
2147 }
2148 
2149 static void rbd_img_request_destroy(struct kref *kref)
2150 {
2151 	struct rbd_img_request *img_request;
2152 	struct rbd_obj_request *obj_request;
2153 	struct rbd_obj_request *next_obj_request;
2154 
2155 	img_request = container_of(kref, struct rbd_img_request, kref);
2156 
2157 	dout("%s: img %p\n", __func__, img_request);
2158 
2159 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2160 		rbd_img_obj_request_del(img_request, obj_request);
2161 	rbd_assert(img_request->obj_request_count == 0);
2162 
2163 	if (img_request_layered_test(img_request)) {
2164 		img_request_layered_clear(img_request);
2165 		rbd_dev_parent_put(img_request->rbd_dev);
2166 	}
2167 
2168 	if (img_request_write_test(img_request) ||
2169 		img_request_discard_test(img_request))
2170 		ceph_put_snap_context(img_request->snapc);
2171 
2172 	kmem_cache_free(rbd_img_request_cache, img_request);
2173 }
2174 
2175 static struct rbd_img_request *rbd_parent_request_create(
2176 					struct rbd_obj_request *obj_request,
2177 					u64 img_offset, u64 length)
2178 {
2179 	struct rbd_img_request *parent_request;
2180 	struct rbd_device *rbd_dev;
2181 
2182 	rbd_assert(obj_request->img_request);
2183 	rbd_dev = obj_request->img_request->rbd_dev;
2184 
2185 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2186 						length, OBJ_OP_READ, NULL);
2187 	if (!parent_request)
2188 		return NULL;
2189 
2190 	img_request_child_set(parent_request);
2191 	rbd_obj_request_get(obj_request);
2192 	parent_request->obj_request = obj_request;
2193 
2194 	return parent_request;
2195 }
2196 
2197 static void rbd_parent_request_destroy(struct kref *kref)
2198 {
2199 	struct rbd_img_request *parent_request;
2200 	struct rbd_obj_request *orig_request;
2201 
2202 	parent_request = container_of(kref, struct rbd_img_request, kref);
2203 	orig_request = parent_request->obj_request;
2204 
2205 	parent_request->obj_request = NULL;
2206 	rbd_obj_request_put(orig_request);
2207 	img_request_child_clear(parent_request);
2208 
2209 	rbd_img_request_destroy(kref);
2210 }
2211 
2212 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2213 {
2214 	struct rbd_img_request *img_request;
2215 	unsigned int xferred;
2216 	int result;
2217 	bool more;
2218 
2219 	rbd_assert(obj_request_img_data_test(obj_request));
2220 	img_request = obj_request->img_request;
2221 
2222 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2223 	xferred = (unsigned int)obj_request->xferred;
2224 	result = obj_request->result;
2225 	if (result) {
2226 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2227 		enum obj_operation_type op_type;
2228 
2229 		if (img_request_discard_test(img_request))
2230 			op_type = OBJ_OP_DISCARD;
2231 		else if (img_request_write_test(img_request))
2232 			op_type = OBJ_OP_WRITE;
2233 		else
2234 			op_type = OBJ_OP_READ;
2235 
2236 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2237 			obj_op_name(op_type), obj_request->length,
2238 			obj_request->img_offset, obj_request->offset);
2239 		rbd_warn(rbd_dev, "  result %d xferred %x",
2240 			result, xferred);
2241 		if (!img_request->result)
2242 			img_request->result = result;
2243 		/*
2244 		 * Need to end I/O on the entire obj_request worth of
2245 		 * bytes in case of error.
2246 		 */
2247 		xferred = obj_request->length;
2248 	}
2249 
2250 	if (img_request_child_test(img_request)) {
2251 		rbd_assert(img_request->obj_request != NULL);
2252 		more = obj_request->which < img_request->obj_request_count - 1;
2253 	} else {
2254 		blk_status_t status = errno_to_blk_status(result);
2255 
2256 		rbd_assert(img_request->rq != NULL);
2257 
2258 		more = blk_update_request(img_request->rq, status, xferred);
2259 		if (!more)
2260 			__blk_mq_end_request(img_request->rq, status);
2261 	}
2262 
2263 	return more;
2264 }
2265 
2266 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2267 {
2268 	struct rbd_img_request *img_request;
2269 	u32 which = obj_request->which;
2270 	bool more = true;
2271 
2272 	rbd_assert(obj_request_img_data_test(obj_request));
2273 	img_request = obj_request->img_request;
2274 
2275 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2276 	rbd_assert(img_request != NULL);
2277 	rbd_assert(img_request->obj_request_count > 0);
2278 	rbd_assert(which != BAD_WHICH);
2279 	rbd_assert(which < img_request->obj_request_count);
2280 
2281 	spin_lock_irq(&img_request->completion_lock);
2282 	if (which != img_request->next_completion)
2283 		goto out;
2284 
2285 	for_each_obj_request_from(img_request, obj_request) {
2286 		rbd_assert(more);
2287 		rbd_assert(which < img_request->obj_request_count);
2288 
2289 		if (!obj_request_done_test(obj_request))
2290 			break;
2291 		more = rbd_img_obj_end_request(obj_request);
2292 		which++;
2293 	}
2294 
2295 	rbd_assert(more ^ (which == img_request->obj_request_count));
2296 	img_request->next_completion = which;
2297 out:
2298 	spin_unlock_irq(&img_request->completion_lock);
2299 	rbd_img_request_put(img_request);
2300 
2301 	if (!more)
2302 		rbd_img_request_complete(img_request);
2303 }
2304 
2305 /*
2306  * Add individual osd ops to the given ceph_osd_request and prepare
2307  * them for submission. num_ops is the current number of
2308  * osd operations already to the object request.
2309  */
2310 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2311 				struct ceph_osd_request *osd_request,
2312 				enum obj_operation_type op_type,
2313 				unsigned int num_ops)
2314 {
2315 	struct rbd_img_request *img_request = obj_request->img_request;
2316 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2317 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2318 	u64 offset = obj_request->offset;
2319 	u64 length = obj_request->length;
2320 	u64 img_end;
2321 	u16 opcode;
2322 
2323 	if (op_type == OBJ_OP_DISCARD) {
2324 		if (!offset && length == object_size &&
2325 		    (!img_request_layered_test(img_request) ||
2326 		     !obj_request_overlaps_parent(obj_request))) {
2327 			opcode = CEPH_OSD_OP_DELETE;
2328 		} else if ((offset + length == object_size)) {
2329 			opcode = CEPH_OSD_OP_TRUNCATE;
2330 		} else {
2331 			down_read(&rbd_dev->header_rwsem);
2332 			img_end = rbd_dev->header.image_size;
2333 			up_read(&rbd_dev->header_rwsem);
2334 
2335 			if (obj_request->img_offset + length == img_end)
2336 				opcode = CEPH_OSD_OP_TRUNCATE;
2337 			else
2338 				opcode = CEPH_OSD_OP_ZERO;
2339 		}
2340 	} else if (op_type == OBJ_OP_WRITE) {
2341 		if (!offset && length == object_size)
2342 			opcode = CEPH_OSD_OP_WRITEFULL;
2343 		else
2344 			opcode = CEPH_OSD_OP_WRITE;
2345 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2346 					object_size, object_size);
2347 		num_ops++;
2348 	} else {
2349 		opcode = CEPH_OSD_OP_READ;
2350 	}
2351 
2352 	if (opcode == CEPH_OSD_OP_DELETE)
2353 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2354 	else
2355 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2356 				       offset, length, 0, 0);
2357 
2358 	if (obj_request->type == OBJ_REQUEST_BIO)
2359 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2360 					obj_request->bio_list, length);
2361 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2362 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2363 					obj_request->pages, length,
2364 					offset & ~PAGE_MASK, false, false);
2365 
2366 	/* Discards are also writes */
2367 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2368 		rbd_osd_req_format_write(obj_request);
2369 	else
2370 		rbd_osd_req_format_read(obj_request);
2371 }
2372 
2373 /*
2374  * Split up an image request into one or more object requests, each
2375  * to a different object.  The "type" parameter indicates whether
2376  * "data_desc" is the pointer to the head of a list of bio
2377  * structures, or the base of a page array.  In either case this
2378  * function assumes data_desc describes memory sufficient to hold
2379  * all data described by the image request.
2380  */
2381 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2382 					enum obj_request_type type,
2383 					void *data_desc)
2384 {
2385 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2386 	struct rbd_obj_request *obj_request = NULL;
2387 	struct rbd_obj_request *next_obj_request;
2388 	struct bio *bio_list = NULL;
2389 	unsigned int bio_offset = 0;
2390 	struct page **pages = NULL;
2391 	enum obj_operation_type op_type;
2392 	u64 img_offset;
2393 	u64 resid;
2394 
2395 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2396 		(int)type, data_desc);
2397 
2398 	img_offset = img_request->offset;
2399 	resid = img_request->length;
2400 	rbd_assert(resid > 0);
2401 	op_type = rbd_img_request_op_type(img_request);
2402 
2403 	if (type == OBJ_REQUEST_BIO) {
2404 		bio_list = data_desc;
2405 		rbd_assert(img_offset ==
2406 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2407 	} else if (type == OBJ_REQUEST_PAGES) {
2408 		pages = data_desc;
2409 	}
2410 
2411 	while (resid) {
2412 		struct ceph_osd_request *osd_req;
2413 		u64 object_no = img_offset >> rbd_dev->header.obj_order;
2414 		u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2415 		u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2416 
2417 		obj_request = rbd_obj_request_create(type);
2418 		if (!obj_request)
2419 			goto out_unwind;
2420 
2421 		obj_request->object_no = object_no;
2422 		obj_request->offset = offset;
2423 		obj_request->length = length;
2424 
2425 		/*
2426 		 * set obj_request->img_request before creating the
2427 		 * osd_request so that it gets the right snapc
2428 		 */
2429 		rbd_img_obj_request_add(img_request, obj_request);
2430 
2431 		if (type == OBJ_REQUEST_BIO) {
2432 			unsigned int clone_size;
2433 
2434 			rbd_assert(length <= (u64)UINT_MAX);
2435 			clone_size = (unsigned int)length;
2436 			obj_request->bio_list =
2437 					bio_chain_clone_range(&bio_list,
2438 								&bio_offset,
2439 								clone_size,
2440 								GFP_NOIO);
2441 			if (!obj_request->bio_list)
2442 				goto out_unwind;
2443 		} else if (type == OBJ_REQUEST_PAGES) {
2444 			unsigned int page_count;
2445 
2446 			obj_request->pages = pages;
2447 			page_count = (u32)calc_pages_for(offset, length);
2448 			obj_request->page_count = page_count;
2449 			if ((offset + length) & ~PAGE_MASK)
2450 				page_count--;	/* more on last page */
2451 			pages += page_count;
2452 		}
2453 
2454 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2455 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2456 					obj_request);
2457 		if (!osd_req)
2458 			goto out_unwind;
2459 
2460 		obj_request->osd_req = osd_req;
2461 		obj_request->callback = rbd_img_obj_callback;
2462 		obj_request->img_offset = img_offset;
2463 
2464 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2465 
2466 		img_offset += length;
2467 		resid -= length;
2468 	}
2469 
2470 	return 0;
2471 
2472 out_unwind:
2473 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2474 		rbd_img_obj_request_del(img_request, obj_request);
2475 
2476 	return -ENOMEM;
2477 }
2478 
2479 static void
2480 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2481 {
2482 	struct rbd_img_request *img_request;
2483 	struct rbd_device *rbd_dev;
2484 	struct page **pages;
2485 	u32 page_count;
2486 
2487 	dout("%s: obj %p\n", __func__, obj_request);
2488 
2489 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2490 		obj_request->type == OBJ_REQUEST_NODATA);
2491 	rbd_assert(obj_request_img_data_test(obj_request));
2492 	img_request = obj_request->img_request;
2493 	rbd_assert(img_request);
2494 
2495 	rbd_dev = img_request->rbd_dev;
2496 	rbd_assert(rbd_dev);
2497 
2498 	pages = obj_request->copyup_pages;
2499 	rbd_assert(pages != NULL);
2500 	obj_request->copyup_pages = NULL;
2501 	page_count = obj_request->copyup_page_count;
2502 	rbd_assert(page_count);
2503 	obj_request->copyup_page_count = 0;
2504 	ceph_release_page_vector(pages, page_count);
2505 
2506 	/*
2507 	 * We want the transfer count to reflect the size of the
2508 	 * original write request.  There is no such thing as a
2509 	 * successful short write, so if the request was successful
2510 	 * we can just set it to the originally-requested length.
2511 	 */
2512 	if (!obj_request->result)
2513 		obj_request->xferred = obj_request->length;
2514 
2515 	obj_request_done_set(obj_request);
2516 }
2517 
2518 static void
2519 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2520 {
2521 	struct rbd_obj_request *orig_request;
2522 	struct ceph_osd_request *osd_req;
2523 	struct rbd_device *rbd_dev;
2524 	struct page **pages;
2525 	enum obj_operation_type op_type;
2526 	u32 page_count;
2527 	int img_result;
2528 	u64 parent_length;
2529 
2530 	rbd_assert(img_request_child_test(img_request));
2531 
2532 	/* First get what we need from the image request */
2533 
2534 	pages = img_request->copyup_pages;
2535 	rbd_assert(pages != NULL);
2536 	img_request->copyup_pages = NULL;
2537 	page_count = img_request->copyup_page_count;
2538 	rbd_assert(page_count);
2539 	img_request->copyup_page_count = 0;
2540 
2541 	orig_request = img_request->obj_request;
2542 	rbd_assert(orig_request != NULL);
2543 	rbd_assert(obj_request_type_valid(orig_request->type));
2544 	img_result = img_request->result;
2545 	parent_length = img_request->length;
2546 	rbd_assert(img_result || parent_length == img_request->xferred);
2547 	rbd_img_request_put(img_request);
2548 
2549 	rbd_assert(orig_request->img_request);
2550 	rbd_dev = orig_request->img_request->rbd_dev;
2551 	rbd_assert(rbd_dev);
2552 
2553 	/*
2554 	 * If the overlap has become 0 (most likely because the
2555 	 * image has been flattened) we need to free the pages
2556 	 * and re-submit the original write request.
2557 	 */
2558 	if (!rbd_dev->parent_overlap) {
2559 		ceph_release_page_vector(pages, page_count);
2560 		rbd_obj_request_submit(orig_request);
2561 		return;
2562 	}
2563 
2564 	if (img_result)
2565 		goto out_err;
2566 
2567 	/*
2568 	 * The original osd request is of no use to use any more.
2569 	 * We need a new one that can hold the three ops in a copyup
2570 	 * request.  Allocate the new copyup osd request for the
2571 	 * original request, and release the old one.
2572 	 */
2573 	img_result = -ENOMEM;
2574 	osd_req = rbd_osd_req_create_copyup(orig_request);
2575 	if (!osd_req)
2576 		goto out_err;
2577 	rbd_osd_req_destroy(orig_request->osd_req);
2578 	orig_request->osd_req = osd_req;
2579 	orig_request->copyup_pages = pages;
2580 	orig_request->copyup_page_count = page_count;
2581 
2582 	/* Initialize the copyup op */
2583 
2584 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2585 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2586 						false, false);
2587 
2588 	/* Add the other op(s) */
2589 
2590 	op_type = rbd_img_request_op_type(orig_request->img_request);
2591 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2592 
2593 	/* All set, send it off. */
2594 
2595 	rbd_obj_request_submit(orig_request);
2596 	return;
2597 
2598 out_err:
2599 	ceph_release_page_vector(pages, page_count);
2600 	rbd_obj_request_error(orig_request, img_result);
2601 }
2602 
2603 /*
2604  * Read from the parent image the range of data that covers the
2605  * entire target of the given object request.  This is used for
2606  * satisfying a layered image write request when the target of an
2607  * object request from the image request does not exist.
2608  *
2609  * A page array big enough to hold the returned data is allocated
2610  * and supplied to rbd_img_request_fill() as the "data descriptor."
2611  * When the read completes, this page array will be transferred to
2612  * the original object request for the copyup operation.
2613  *
2614  * If an error occurs, it is recorded as the result of the original
2615  * object request in rbd_img_obj_exists_callback().
2616  */
2617 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2618 {
2619 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2620 	struct rbd_img_request *parent_request = NULL;
2621 	u64 img_offset;
2622 	u64 length;
2623 	struct page **pages = NULL;
2624 	u32 page_count;
2625 	int result;
2626 
2627 	rbd_assert(rbd_dev->parent != NULL);
2628 
2629 	/*
2630 	 * Determine the byte range covered by the object in the
2631 	 * child image to which the original request was to be sent.
2632 	 */
2633 	img_offset = obj_request->img_offset - obj_request->offset;
2634 	length = rbd_obj_bytes(&rbd_dev->header);
2635 
2636 	/*
2637 	 * There is no defined parent data beyond the parent
2638 	 * overlap, so limit what we read at that boundary if
2639 	 * necessary.
2640 	 */
2641 	if (img_offset + length > rbd_dev->parent_overlap) {
2642 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2643 		length = rbd_dev->parent_overlap - img_offset;
2644 	}
2645 
2646 	/*
2647 	 * Allocate a page array big enough to receive the data read
2648 	 * from the parent.
2649 	 */
2650 	page_count = (u32)calc_pages_for(0, length);
2651 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2652 	if (IS_ERR(pages)) {
2653 		result = PTR_ERR(pages);
2654 		pages = NULL;
2655 		goto out_err;
2656 	}
2657 
2658 	result = -ENOMEM;
2659 	parent_request = rbd_parent_request_create(obj_request,
2660 						img_offset, length);
2661 	if (!parent_request)
2662 		goto out_err;
2663 
2664 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2665 	if (result)
2666 		goto out_err;
2667 
2668 	parent_request->copyup_pages = pages;
2669 	parent_request->copyup_page_count = page_count;
2670 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2671 
2672 	result = rbd_img_request_submit(parent_request);
2673 	if (!result)
2674 		return 0;
2675 
2676 	parent_request->copyup_pages = NULL;
2677 	parent_request->copyup_page_count = 0;
2678 out_err:
2679 	if (pages)
2680 		ceph_release_page_vector(pages, page_count);
2681 	if (parent_request)
2682 		rbd_img_request_put(parent_request);
2683 	return result;
2684 }
2685 
2686 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2687 {
2688 	struct rbd_obj_request *orig_request;
2689 	struct rbd_device *rbd_dev;
2690 	int result;
2691 
2692 	rbd_assert(!obj_request_img_data_test(obj_request));
2693 
2694 	/*
2695 	 * All we need from the object request is the original
2696 	 * request and the result of the STAT op.  Grab those, then
2697 	 * we're done with the request.
2698 	 */
2699 	orig_request = obj_request->obj_request;
2700 	obj_request->obj_request = NULL;
2701 	rbd_obj_request_put(orig_request);
2702 	rbd_assert(orig_request);
2703 	rbd_assert(orig_request->img_request);
2704 
2705 	result = obj_request->result;
2706 	obj_request->result = 0;
2707 
2708 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2709 		obj_request, orig_request, result,
2710 		obj_request->xferred, obj_request->length);
2711 	rbd_obj_request_put(obj_request);
2712 
2713 	/*
2714 	 * If the overlap has become 0 (most likely because the
2715 	 * image has been flattened) we need to re-submit the
2716 	 * original request.
2717 	 */
2718 	rbd_dev = orig_request->img_request->rbd_dev;
2719 	if (!rbd_dev->parent_overlap) {
2720 		rbd_obj_request_submit(orig_request);
2721 		return;
2722 	}
2723 
2724 	/*
2725 	 * Our only purpose here is to determine whether the object
2726 	 * exists, and we don't want to treat the non-existence as
2727 	 * an error.  If something else comes back, transfer the
2728 	 * error to the original request and complete it now.
2729 	 */
2730 	if (!result) {
2731 		obj_request_existence_set(orig_request, true);
2732 	} else if (result == -ENOENT) {
2733 		obj_request_existence_set(orig_request, false);
2734 	} else {
2735 		goto fail_orig_request;
2736 	}
2737 
2738 	/*
2739 	 * Resubmit the original request now that we have recorded
2740 	 * whether the target object exists.
2741 	 */
2742 	result = rbd_img_obj_request_submit(orig_request);
2743 	if (result)
2744 		goto fail_orig_request;
2745 
2746 	return;
2747 
2748 fail_orig_request:
2749 	rbd_obj_request_error(orig_request, result);
2750 }
2751 
2752 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2753 {
2754 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2755 	struct rbd_obj_request *stat_request;
2756 	struct page **pages;
2757 	u32 page_count;
2758 	size_t size;
2759 	int ret;
2760 
2761 	stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2762 	if (!stat_request)
2763 		return -ENOMEM;
2764 
2765 	stat_request->object_no = obj_request->object_no;
2766 
2767 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2768 						   stat_request);
2769 	if (!stat_request->osd_req) {
2770 		ret = -ENOMEM;
2771 		goto fail_stat_request;
2772 	}
2773 
2774 	/*
2775 	 * The response data for a STAT call consists of:
2776 	 *     le64 length;
2777 	 *     struct {
2778 	 *         le32 tv_sec;
2779 	 *         le32 tv_nsec;
2780 	 *     } mtime;
2781 	 */
2782 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2783 	page_count = (u32)calc_pages_for(0, size);
2784 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2785 	if (IS_ERR(pages)) {
2786 		ret = PTR_ERR(pages);
2787 		goto fail_stat_request;
2788 	}
2789 
2790 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2791 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2792 				     false, false);
2793 
2794 	rbd_obj_request_get(obj_request);
2795 	stat_request->obj_request = obj_request;
2796 	stat_request->pages = pages;
2797 	stat_request->page_count = page_count;
2798 	stat_request->callback = rbd_img_obj_exists_callback;
2799 
2800 	rbd_obj_request_submit(stat_request);
2801 	return 0;
2802 
2803 fail_stat_request:
2804 	rbd_obj_request_put(stat_request);
2805 	return ret;
2806 }
2807 
2808 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2809 {
2810 	struct rbd_img_request *img_request = obj_request->img_request;
2811 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2812 
2813 	/* Reads */
2814 	if (!img_request_write_test(img_request) &&
2815 	    !img_request_discard_test(img_request))
2816 		return true;
2817 
2818 	/* Non-layered writes */
2819 	if (!img_request_layered_test(img_request))
2820 		return true;
2821 
2822 	/*
2823 	 * Layered writes outside of the parent overlap range don't
2824 	 * share any data with the parent.
2825 	 */
2826 	if (!obj_request_overlaps_parent(obj_request))
2827 		return true;
2828 
2829 	/*
2830 	 * Entire-object layered writes - we will overwrite whatever
2831 	 * parent data there is anyway.
2832 	 */
2833 	if (!obj_request->offset &&
2834 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2835 		return true;
2836 
2837 	/*
2838 	 * If the object is known to already exist, its parent data has
2839 	 * already been copied.
2840 	 */
2841 	if (obj_request_known_test(obj_request) &&
2842 	    obj_request_exists_test(obj_request))
2843 		return true;
2844 
2845 	return false;
2846 }
2847 
2848 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2849 {
2850 	rbd_assert(obj_request_img_data_test(obj_request));
2851 	rbd_assert(obj_request_type_valid(obj_request->type));
2852 	rbd_assert(obj_request->img_request);
2853 
2854 	if (img_obj_request_simple(obj_request)) {
2855 		rbd_obj_request_submit(obj_request);
2856 		return 0;
2857 	}
2858 
2859 	/*
2860 	 * It's a layered write.  The target object might exist but
2861 	 * we may not know that yet.  If we know it doesn't exist,
2862 	 * start by reading the data for the full target object from
2863 	 * the parent so we can use it for a copyup to the target.
2864 	 */
2865 	if (obj_request_known_test(obj_request))
2866 		return rbd_img_obj_parent_read_full(obj_request);
2867 
2868 	/* We don't know whether the target exists.  Go find out. */
2869 
2870 	return rbd_img_obj_exists_submit(obj_request);
2871 }
2872 
2873 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2874 {
2875 	struct rbd_obj_request *obj_request;
2876 	struct rbd_obj_request *next_obj_request;
2877 	int ret = 0;
2878 
2879 	dout("%s: img %p\n", __func__, img_request);
2880 
2881 	rbd_img_request_get(img_request);
2882 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2883 		ret = rbd_img_obj_request_submit(obj_request);
2884 		if (ret)
2885 			goto out_put_ireq;
2886 	}
2887 
2888 out_put_ireq:
2889 	rbd_img_request_put(img_request);
2890 	return ret;
2891 }
2892 
2893 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2894 {
2895 	struct rbd_obj_request *obj_request;
2896 	struct rbd_device *rbd_dev;
2897 	u64 obj_end;
2898 	u64 img_xferred;
2899 	int img_result;
2900 
2901 	rbd_assert(img_request_child_test(img_request));
2902 
2903 	/* First get what we need from the image request and release it */
2904 
2905 	obj_request = img_request->obj_request;
2906 	img_xferred = img_request->xferred;
2907 	img_result = img_request->result;
2908 	rbd_img_request_put(img_request);
2909 
2910 	/*
2911 	 * If the overlap has become 0 (most likely because the
2912 	 * image has been flattened) we need to re-submit the
2913 	 * original request.
2914 	 */
2915 	rbd_assert(obj_request);
2916 	rbd_assert(obj_request->img_request);
2917 	rbd_dev = obj_request->img_request->rbd_dev;
2918 	if (!rbd_dev->parent_overlap) {
2919 		rbd_obj_request_submit(obj_request);
2920 		return;
2921 	}
2922 
2923 	obj_request->result = img_result;
2924 	if (obj_request->result)
2925 		goto out;
2926 
2927 	/*
2928 	 * We need to zero anything beyond the parent overlap
2929 	 * boundary.  Since rbd_img_obj_request_read_callback()
2930 	 * will zero anything beyond the end of a short read, an
2931 	 * easy way to do this is to pretend the data from the
2932 	 * parent came up short--ending at the overlap boundary.
2933 	 */
2934 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2935 	obj_end = obj_request->img_offset + obj_request->length;
2936 	if (obj_end > rbd_dev->parent_overlap) {
2937 		u64 xferred = 0;
2938 
2939 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2940 			xferred = rbd_dev->parent_overlap -
2941 					obj_request->img_offset;
2942 
2943 		obj_request->xferred = min(img_xferred, xferred);
2944 	} else {
2945 		obj_request->xferred = img_xferred;
2946 	}
2947 out:
2948 	rbd_img_obj_request_read_callback(obj_request);
2949 	rbd_obj_request_complete(obj_request);
2950 }
2951 
2952 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2953 {
2954 	struct rbd_img_request *img_request;
2955 	int result;
2956 
2957 	rbd_assert(obj_request_img_data_test(obj_request));
2958 	rbd_assert(obj_request->img_request != NULL);
2959 	rbd_assert(obj_request->result == (s32) -ENOENT);
2960 	rbd_assert(obj_request_type_valid(obj_request->type));
2961 
2962 	/* rbd_read_finish(obj_request, obj_request->length); */
2963 	img_request = rbd_parent_request_create(obj_request,
2964 						obj_request->img_offset,
2965 						obj_request->length);
2966 	result = -ENOMEM;
2967 	if (!img_request)
2968 		goto out_err;
2969 
2970 	if (obj_request->type == OBJ_REQUEST_BIO)
2971 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2972 						obj_request->bio_list);
2973 	else
2974 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2975 						obj_request->pages);
2976 	if (result)
2977 		goto out_err;
2978 
2979 	img_request->callback = rbd_img_parent_read_callback;
2980 	result = rbd_img_request_submit(img_request);
2981 	if (result)
2982 		goto out_err;
2983 
2984 	return;
2985 out_err:
2986 	if (img_request)
2987 		rbd_img_request_put(img_request);
2988 	obj_request->result = result;
2989 	obj_request->xferred = 0;
2990 	obj_request_done_set(obj_request);
2991 }
2992 
2993 static const struct rbd_client_id rbd_empty_cid;
2994 
2995 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2996 			  const struct rbd_client_id *rhs)
2997 {
2998 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2999 }
3000 
3001 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3002 {
3003 	struct rbd_client_id cid;
3004 
3005 	mutex_lock(&rbd_dev->watch_mutex);
3006 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3007 	cid.handle = rbd_dev->watch_cookie;
3008 	mutex_unlock(&rbd_dev->watch_mutex);
3009 	return cid;
3010 }
3011 
3012 /*
3013  * lock_rwsem must be held for write
3014  */
3015 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3016 			      const struct rbd_client_id *cid)
3017 {
3018 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3019 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3020 	     cid->gid, cid->handle);
3021 	rbd_dev->owner_cid = *cid; /* struct */
3022 }
3023 
3024 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3025 {
3026 	mutex_lock(&rbd_dev->watch_mutex);
3027 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3028 	mutex_unlock(&rbd_dev->watch_mutex);
3029 }
3030 
3031 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3032 {
3033 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3034 
3035 	strcpy(rbd_dev->lock_cookie, cookie);
3036 	rbd_set_owner_cid(rbd_dev, &cid);
3037 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3038 }
3039 
3040 /*
3041  * lock_rwsem must be held for write
3042  */
3043 static int rbd_lock(struct rbd_device *rbd_dev)
3044 {
3045 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3046 	char cookie[32];
3047 	int ret;
3048 
3049 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3050 		rbd_dev->lock_cookie[0] != '\0');
3051 
3052 	format_lock_cookie(rbd_dev, cookie);
3053 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3054 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3055 			    RBD_LOCK_TAG, "", 0);
3056 	if (ret)
3057 		return ret;
3058 
3059 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3060 	__rbd_lock(rbd_dev, cookie);
3061 	return 0;
3062 }
3063 
3064 /*
3065  * lock_rwsem must be held for write
3066  */
3067 static void rbd_unlock(struct rbd_device *rbd_dev)
3068 {
3069 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3070 	int ret;
3071 
3072 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3073 		rbd_dev->lock_cookie[0] == '\0');
3074 
3075 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3076 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3077 	if (ret && ret != -ENOENT)
3078 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
3079 
3080 	/* treat errors as the image is unlocked */
3081 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3082 	rbd_dev->lock_cookie[0] = '\0';
3083 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3084 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3085 }
3086 
3087 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3088 				enum rbd_notify_op notify_op,
3089 				struct page ***preply_pages,
3090 				size_t *preply_len)
3091 {
3092 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3093 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3094 	int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3095 	char buf[buf_size];
3096 	void *p = buf;
3097 
3098 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3099 
3100 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3101 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3102 	ceph_encode_32(&p, notify_op);
3103 	ceph_encode_64(&p, cid.gid);
3104 	ceph_encode_64(&p, cid.handle);
3105 
3106 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3107 				&rbd_dev->header_oloc, buf, buf_size,
3108 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3109 }
3110 
3111 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3112 			       enum rbd_notify_op notify_op)
3113 {
3114 	struct page **reply_pages;
3115 	size_t reply_len;
3116 
3117 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3118 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3119 }
3120 
3121 static void rbd_notify_acquired_lock(struct work_struct *work)
3122 {
3123 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3124 						  acquired_lock_work);
3125 
3126 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3127 }
3128 
3129 static void rbd_notify_released_lock(struct work_struct *work)
3130 {
3131 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3132 						  released_lock_work);
3133 
3134 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3135 }
3136 
3137 static int rbd_request_lock(struct rbd_device *rbd_dev)
3138 {
3139 	struct page **reply_pages;
3140 	size_t reply_len;
3141 	bool lock_owner_responded = false;
3142 	int ret;
3143 
3144 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3145 
3146 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3147 				   &reply_pages, &reply_len);
3148 	if (ret && ret != -ETIMEDOUT) {
3149 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3150 		goto out;
3151 	}
3152 
3153 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3154 		void *p = page_address(reply_pages[0]);
3155 		void *const end = p + reply_len;
3156 		u32 n;
3157 
3158 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3159 		while (n--) {
3160 			u8 struct_v;
3161 			u32 len;
3162 
3163 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3164 			p += 8 + 8; /* skip gid and cookie */
3165 
3166 			ceph_decode_32_safe(&p, end, len, e_inval);
3167 			if (!len)
3168 				continue;
3169 
3170 			if (lock_owner_responded) {
3171 				rbd_warn(rbd_dev,
3172 					 "duplicate lock owners detected");
3173 				ret = -EIO;
3174 				goto out;
3175 			}
3176 
3177 			lock_owner_responded = true;
3178 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3179 						  &struct_v, &len);
3180 			if (ret) {
3181 				rbd_warn(rbd_dev,
3182 					 "failed to decode ResponseMessage: %d",
3183 					 ret);
3184 				goto e_inval;
3185 			}
3186 
3187 			ret = ceph_decode_32(&p);
3188 		}
3189 	}
3190 
3191 	if (!lock_owner_responded) {
3192 		rbd_warn(rbd_dev, "no lock owners detected");
3193 		ret = -ETIMEDOUT;
3194 	}
3195 
3196 out:
3197 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3198 	return ret;
3199 
3200 e_inval:
3201 	ret = -EINVAL;
3202 	goto out;
3203 }
3204 
3205 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3206 {
3207 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3208 
3209 	cancel_delayed_work(&rbd_dev->lock_dwork);
3210 	if (wake_all)
3211 		wake_up_all(&rbd_dev->lock_waitq);
3212 	else
3213 		wake_up(&rbd_dev->lock_waitq);
3214 }
3215 
3216 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3217 			       struct ceph_locker **lockers, u32 *num_lockers)
3218 {
3219 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3220 	u8 lock_type;
3221 	char *lock_tag;
3222 	int ret;
3223 
3224 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3225 
3226 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3227 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3228 				 &lock_type, &lock_tag, lockers, num_lockers);
3229 	if (ret)
3230 		return ret;
3231 
3232 	if (*num_lockers == 0) {
3233 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3234 		goto out;
3235 	}
3236 
3237 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3238 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3239 			 lock_tag);
3240 		ret = -EBUSY;
3241 		goto out;
3242 	}
3243 
3244 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3245 		rbd_warn(rbd_dev, "shared lock type detected");
3246 		ret = -EBUSY;
3247 		goto out;
3248 	}
3249 
3250 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3251 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3252 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3253 			 (*lockers)[0].id.cookie);
3254 		ret = -EBUSY;
3255 		goto out;
3256 	}
3257 
3258 out:
3259 	kfree(lock_tag);
3260 	return ret;
3261 }
3262 
3263 static int find_watcher(struct rbd_device *rbd_dev,
3264 			const struct ceph_locker *locker)
3265 {
3266 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3267 	struct ceph_watch_item *watchers;
3268 	u32 num_watchers;
3269 	u64 cookie;
3270 	int i;
3271 	int ret;
3272 
3273 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3274 				      &rbd_dev->header_oloc, &watchers,
3275 				      &num_watchers);
3276 	if (ret)
3277 		return ret;
3278 
3279 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3280 	for (i = 0; i < num_watchers; i++) {
3281 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3282 			    sizeof(locker->info.addr)) &&
3283 		    watchers[i].cookie == cookie) {
3284 			struct rbd_client_id cid = {
3285 				.gid = le64_to_cpu(watchers[i].name.num),
3286 				.handle = cookie,
3287 			};
3288 
3289 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3290 			     rbd_dev, cid.gid, cid.handle);
3291 			rbd_set_owner_cid(rbd_dev, &cid);
3292 			ret = 1;
3293 			goto out;
3294 		}
3295 	}
3296 
3297 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3298 	ret = 0;
3299 out:
3300 	kfree(watchers);
3301 	return ret;
3302 }
3303 
3304 /*
3305  * lock_rwsem must be held for write
3306  */
3307 static int rbd_try_lock(struct rbd_device *rbd_dev)
3308 {
3309 	struct ceph_client *client = rbd_dev->rbd_client->client;
3310 	struct ceph_locker *lockers;
3311 	u32 num_lockers;
3312 	int ret;
3313 
3314 	for (;;) {
3315 		ret = rbd_lock(rbd_dev);
3316 		if (ret != -EBUSY)
3317 			return ret;
3318 
3319 		/* determine if the current lock holder is still alive */
3320 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3321 		if (ret)
3322 			return ret;
3323 
3324 		if (num_lockers == 0)
3325 			goto again;
3326 
3327 		ret = find_watcher(rbd_dev, lockers);
3328 		if (ret) {
3329 			if (ret > 0)
3330 				ret = 0; /* have to request lock */
3331 			goto out;
3332 		}
3333 
3334 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3335 			 ENTITY_NAME(lockers[0].id.name));
3336 
3337 		ret = ceph_monc_blacklist_add(&client->monc,
3338 					      &lockers[0].info.addr);
3339 		if (ret) {
3340 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3341 				 ENTITY_NAME(lockers[0].id.name), ret);
3342 			goto out;
3343 		}
3344 
3345 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3346 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3347 					  lockers[0].id.cookie,
3348 					  &lockers[0].id.name);
3349 		if (ret && ret != -ENOENT)
3350 			goto out;
3351 
3352 again:
3353 		ceph_free_lockers(lockers, num_lockers);
3354 	}
3355 
3356 out:
3357 	ceph_free_lockers(lockers, num_lockers);
3358 	return ret;
3359 }
3360 
3361 /*
3362  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3363  */
3364 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3365 						int *pret)
3366 {
3367 	enum rbd_lock_state lock_state;
3368 
3369 	down_read(&rbd_dev->lock_rwsem);
3370 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3371 	     rbd_dev->lock_state);
3372 	if (__rbd_is_lock_owner(rbd_dev)) {
3373 		lock_state = rbd_dev->lock_state;
3374 		up_read(&rbd_dev->lock_rwsem);
3375 		return lock_state;
3376 	}
3377 
3378 	up_read(&rbd_dev->lock_rwsem);
3379 	down_write(&rbd_dev->lock_rwsem);
3380 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3381 	     rbd_dev->lock_state);
3382 	if (!__rbd_is_lock_owner(rbd_dev)) {
3383 		*pret = rbd_try_lock(rbd_dev);
3384 		if (*pret)
3385 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3386 	}
3387 
3388 	lock_state = rbd_dev->lock_state;
3389 	up_write(&rbd_dev->lock_rwsem);
3390 	return lock_state;
3391 }
3392 
3393 static void rbd_acquire_lock(struct work_struct *work)
3394 {
3395 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3396 					    struct rbd_device, lock_dwork);
3397 	enum rbd_lock_state lock_state;
3398 	int ret = 0;
3399 
3400 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3401 again:
3402 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3403 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3404 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3405 			wake_requests(rbd_dev, true);
3406 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3407 		     rbd_dev, lock_state, ret);
3408 		return;
3409 	}
3410 
3411 	ret = rbd_request_lock(rbd_dev);
3412 	if (ret == -ETIMEDOUT) {
3413 		goto again; /* treat this as a dead client */
3414 	} else if (ret == -EROFS) {
3415 		rbd_warn(rbd_dev, "peer will not release lock");
3416 		/*
3417 		 * If this is rbd_add_acquire_lock(), we want to fail
3418 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3419 		 * want to block.
3420 		 */
3421 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3422 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3423 			/* wake "rbd map --exclusive" process */
3424 			wake_requests(rbd_dev, false);
3425 		}
3426 	} else if (ret < 0) {
3427 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3428 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3429 				 RBD_RETRY_DELAY);
3430 	} else {
3431 		/*
3432 		 * lock owner acked, but resend if we don't see them
3433 		 * release the lock
3434 		 */
3435 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3436 		     rbd_dev);
3437 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3438 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3439 	}
3440 }
3441 
3442 /*
3443  * lock_rwsem must be held for write
3444  */
3445 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3446 {
3447 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3448 	     rbd_dev->lock_state);
3449 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3450 		return false;
3451 
3452 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3453 	downgrade_write(&rbd_dev->lock_rwsem);
3454 	/*
3455 	 * Ensure that all in-flight IO is flushed.
3456 	 *
3457 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3458 	 * may be shared with other devices.
3459 	 */
3460 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3461 	up_read(&rbd_dev->lock_rwsem);
3462 
3463 	down_write(&rbd_dev->lock_rwsem);
3464 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3465 	     rbd_dev->lock_state);
3466 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3467 		return false;
3468 
3469 	rbd_unlock(rbd_dev);
3470 	/*
3471 	 * Give others a chance to grab the lock - we would re-acquire
3472 	 * almost immediately if we got new IO during ceph_osdc_sync()
3473 	 * otherwise.  We need to ack our own notifications, so this
3474 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3475 	 * after wake_requests() in rbd_handle_released_lock().
3476 	 */
3477 	cancel_delayed_work(&rbd_dev->lock_dwork);
3478 	return true;
3479 }
3480 
3481 static void rbd_release_lock_work(struct work_struct *work)
3482 {
3483 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3484 						  unlock_work);
3485 
3486 	down_write(&rbd_dev->lock_rwsem);
3487 	rbd_release_lock(rbd_dev);
3488 	up_write(&rbd_dev->lock_rwsem);
3489 }
3490 
3491 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3492 				     void **p)
3493 {
3494 	struct rbd_client_id cid = { 0 };
3495 
3496 	if (struct_v >= 2) {
3497 		cid.gid = ceph_decode_64(p);
3498 		cid.handle = ceph_decode_64(p);
3499 	}
3500 
3501 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3502 	     cid.handle);
3503 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3504 		down_write(&rbd_dev->lock_rwsem);
3505 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3506 			/*
3507 			 * we already know that the remote client is
3508 			 * the owner
3509 			 */
3510 			up_write(&rbd_dev->lock_rwsem);
3511 			return;
3512 		}
3513 
3514 		rbd_set_owner_cid(rbd_dev, &cid);
3515 		downgrade_write(&rbd_dev->lock_rwsem);
3516 	} else {
3517 		down_read(&rbd_dev->lock_rwsem);
3518 	}
3519 
3520 	if (!__rbd_is_lock_owner(rbd_dev))
3521 		wake_requests(rbd_dev, false);
3522 	up_read(&rbd_dev->lock_rwsem);
3523 }
3524 
3525 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3526 				     void **p)
3527 {
3528 	struct rbd_client_id cid = { 0 };
3529 
3530 	if (struct_v >= 2) {
3531 		cid.gid = ceph_decode_64(p);
3532 		cid.handle = ceph_decode_64(p);
3533 	}
3534 
3535 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3536 	     cid.handle);
3537 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3538 		down_write(&rbd_dev->lock_rwsem);
3539 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3540 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3541 			     __func__, rbd_dev, cid.gid, cid.handle,
3542 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3543 			up_write(&rbd_dev->lock_rwsem);
3544 			return;
3545 		}
3546 
3547 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3548 		downgrade_write(&rbd_dev->lock_rwsem);
3549 	} else {
3550 		down_read(&rbd_dev->lock_rwsem);
3551 	}
3552 
3553 	if (!__rbd_is_lock_owner(rbd_dev))
3554 		wake_requests(rbd_dev, false);
3555 	up_read(&rbd_dev->lock_rwsem);
3556 }
3557 
3558 /*
3559  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3560  * ResponseMessage is needed.
3561  */
3562 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3563 				   void **p)
3564 {
3565 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3566 	struct rbd_client_id cid = { 0 };
3567 	int result = 1;
3568 
3569 	if (struct_v >= 2) {
3570 		cid.gid = ceph_decode_64(p);
3571 		cid.handle = ceph_decode_64(p);
3572 	}
3573 
3574 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3575 	     cid.handle);
3576 	if (rbd_cid_equal(&cid, &my_cid))
3577 		return result;
3578 
3579 	down_read(&rbd_dev->lock_rwsem);
3580 	if (__rbd_is_lock_owner(rbd_dev)) {
3581 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3582 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3583 			goto out_unlock;
3584 
3585 		/*
3586 		 * encode ResponseMessage(0) so the peer can detect
3587 		 * a missing owner
3588 		 */
3589 		result = 0;
3590 
3591 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3592 			if (!rbd_dev->opts->exclusive) {
3593 				dout("%s rbd_dev %p queueing unlock_work\n",
3594 				     __func__, rbd_dev);
3595 				queue_work(rbd_dev->task_wq,
3596 					   &rbd_dev->unlock_work);
3597 			} else {
3598 				/* refuse to release the lock */
3599 				result = -EROFS;
3600 			}
3601 		}
3602 	}
3603 
3604 out_unlock:
3605 	up_read(&rbd_dev->lock_rwsem);
3606 	return result;
3607 }
3608 
3609 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3610 				     u64 notify_id, u64 cookie, s32 *result)
3611 {
3612 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3613 	int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3614 	char buf[buf_size];
3615 	int ret;
3616 
3617 	if (result) {
3618 		void *p = buf;
3619 
3620 		/* encode ResponseMessage */
3621 		ceph_start_encoding(&p, 1, 1,
3622 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3623 		ceph_encode_32(&p, *result);
3624 	} else {
3625 		buf_size = 0;
3626 	}
3627 
3628 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3629 				   &rbd_dev->header_oloc, notify_id, cookie,
3630 				   buf, buf_size);
3631 	if (ret)
3632 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3633 }
3634 
3635 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3636 				   u64 cookie)
3637 {
3638 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3639 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3640 }
3641 
3642 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3643 					  u64 notify_id, u64 cookie, s32 result)
3644 {
3645 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3646 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3647 }
3648 
3649 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3650 			 u64 notifier_id, void *data, size_t data_len)
3651 {
3652 	struct rbd_device *rbd_dev = arg;
3653 	void *p = data;
3654 	void *const end = p + data_len;
3655 	u8 struct_v = 0;
3656 	u32 len;
3657 	u32 notify_op;
3658 	int ret;
3659 
3660 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3661 	     __func__, rbd_dev, cookie, notify_id, data_len);
3662 	if (data_len) {
3663 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3664 					  &struct_v, &len);
3665 		if (ret) {
3666 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3667 				 ret);
3668 			return;
3669 		}
3670 
3671 		notify_op = ceph_decode_32(&p);
3672 	} else {
3673 		/* legacy notification for header updates */
3674 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3675 		len = 0;
3676 	}
3677 
3678 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3679 	switch (notify_op) {
3680 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3681 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3682 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3683 		break;
3684 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3685 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3686 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3687 		break;
3688 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3689 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3690 		if (ret <= 0)
3691 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3692 						      cookie, ret);
3693 		else
3694 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3695 		break;
3696 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3697 		ret = rbd_dev_refresh(rbd_dev);
3698 		if (ret)
3699 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3700 
3701 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3702 		break;
3703 	default:
3704 		if (rbd_is_lock_owner(rbd_dev))
3705 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3706 						      cookie, -EOPNOTSUPP);
3707 		else
3708 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3709 		break;
3710 	}
3711 }
3712 
3713 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3714 
3715 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3716 {
3717 	struct rbd_device *rbd_dev = arg;
3718 
3719 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3720 
3721 	down_write(&rbd_dev->lock_rwsem);
3722 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3723 	up_write(&rbd_dev->lock_rwsem);
3724 
3725 	mutex_lock(&rbd_dev->watch_mutex);
3726 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3727 		__rbd_unregister_watch(rbd_dev);
3728 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3729 
3730 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3731 	}
3732 	mutex_unlock(&rbd_dev->watch_mutex);
3733 }
3734 
3735 /*
3736  * watch_mutex must be locked
3737  */
3738 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3739 {
3740 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3741 	struct ceph_osd_linger_request *handle;
3742 
3743 	rbd_assert(!rbd_dev->watch_handle);
3744 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3745 
3746 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3747 				 &rbd_dev->header_oloc, rbd_watch_cb,
3748 				 rbd_watch_errcb, rbd_dev);
3749 	if (IS_ERR(handle))
3750 		return PTR_ERR(handle);
3751 
3752 	rbd_dev->watch_handle = handle;
3753 	return 0;
3754 }
3755 
3756 /*
3757  * watch_mutex must be locked
3758  */
3759 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3760 {
3761 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3762 	int ret;
3763 
3764 	rbd_assert(rbd_dev->watch_handle);
3765 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3766 
3767 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3768 	if (ret)
3769 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3770 
3771 	rbd_dev->watch_handle = NULL;
3772 }
3773 
3774 static int rbd_register_watch(struct rbd_device *rbd_dev)
3775 {
3776 	int ret;
3777 
3778 	mutex_lock(&rbd_dev->watch_mutex);
3779 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3780 	ret = __rbd_register_watch(rbd_dev);
3781 	if (ret)
3782 		goto out;
3783 
3784 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3785 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3786 
3787 out:
3788 	mutex_unlock(&rbd_dev->watch_mutex);
3789 	return ret;
3790 }
3791 
3792 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3793 {
3794 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3795 
3796 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3797 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3798 	cancel_work_sync(&rbd_dev->released_lock_work);
3799 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3800 	cancel_work_sync(&rbd_dev->unlock_work);
3801 }
3802 
3803 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3804 {
3805 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3806 	cancel_tasks_sync(rbd_dev);
3807 
3808 	mutex_lock(&rbd_dev->watch_mutex);
3809 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3810 		__rbd_unregister_watch(rbd_dev);
3811 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3812 	mutex_unlock(&rbd_dev->watch_mutex);
3813 
3814 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3815 }
3816 
3817 /*
3818  * lock_rwsem must be held for write
3819  */
3820 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3821 {
3822 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3823 	char cookie[32];
3824 	int ret;
3825 
3826 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3827 
3828 	format_lock_cookie(rbd_dev, cookie);
3829 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3830 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3831 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3832 				  RBD_LOCK_TAG, cookie);
3833 	if (ret) {
3834 		if (ret != -EOPNOTSUPP)
3835 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3836 				 ret);
3837 
3838 		/*
3839 		 * Lock cookie cannot be updated on older OSDs, so do
3840 		 * a manual release and queue an acquire.
3841 		 */
3842 		if (rbd_release_lock(rbd_dev))
3843 			queue_delayed_work(rbd_dev->task_wq,
3844 					   &rbd_dev->lock_dwork, 0);
3845 	} else {
3846 		__rbd_lock(rbd_dev, cookie);
3847 	}
3848 }
3849 
3850 static void rbd_reregister_watch(struct work_struct *work)
3851 {
3852 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3853 					    struct rbd_device, watch_dwork);
3854 	int ret;
3855 
3856 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3857 
3858 	mutex_lock(&rbd_dev->watch_mutex);
3859 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3860 		mutex_unlock(&rbd_dev->watch_mutex);
3861 		return;
3862 	}
3863 
3864 	ret = __rbd_register_watch(rbd_dev);
3865 	if (ret) {
3866 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3867 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3868 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3869 			wake_requests(rbd_dev, true);
3870 		} else {
3871 			queue_delayed_work(rbd_dev->task_wq,
3872 					   &rbd_dev->watch_dwork,
3873 					   RBD_RETRY_DELAY);
3874 		}
3875 		mutex_unlock(&rbd_dev->watch_mutex);
3876 		return;
3877 	}
3878 
3879 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3880 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3881 	mutex_unlock(&rbd_dev->watch_mutex);
3882 
3883 	down_write(&rbd_dev->lock_rwsem);
3884 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3885 		rbd_reacquire_lock(rbd_dev);
3886 	up_write(&rbd_dev->lock_rwsem);
3887 
3888 	ret = rbd_dev_refresh(rbd_dev);
3889 	if (ret)
3890 		rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3891 }
3892 
3893 /*
3894  * Synchronous osd object method call.  Returns the number of bytes
3895  * returned in the outbound buffer, or a negative error code.
3896  */
3897 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3898 			     struct ceph_object_id *oid,
3899 			     struct ceph_object_locator *oloc,
3900 			     const char *method_name,
3901 			     const void *outbound,
3902 			     size_t outbound_size,
3903 			     void *inbound,
3904 			     size_t inbound_size)
3905 {
3906 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3907 	struct page *req_page = NULL;
3908 	struct page *reply_page;
3909 	int ret;
3910 
3911 	/*
3912 	 * Method calls are ultimately read operations.  The result
3913 	 * should placed into the inbound buffer provided.  They
3914 	 * also supply outbound data--parameters for the object
3915 	 * method.  Currently if this is present it will be a
3916 	 * snapshot id.
3917 	 */
3918 	if (outbound) {
3919 		if (outbound_size > PAGE_SIZE)
3920 			return -E2BIG;
3921 
3922 		req_page = alloc_page(GFP_KERNEL);
3923 		if (!req_page)
3924 			return -ENOMEM;
3925 
3926 		memcpy(page_address(req_page), outbound, outbound_size);
3927 	}
3928 
3929 	reply_page = alloc_page(GFP_KERNEL);
3930 	if (!reply_page) {
3931 		if (req_page)
3932 			__free_page(req_page);
3933 		return -ENOMEM;
3934 	}
3935 
3936 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3937 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3938 			     reply_page, &inbound_size);
3939 	if (!ret) {
3940 		memcpy(inbound, page_address(reply_page), inbound_size);
3941 		ret = inbound_size;
3942 	}
3943 
3944 	if (req_page)
3945 		__free_page(req_page);
3946 	__free_page(reply_page);
3947 	return ret;
3948 }
3949 
3950 /*
3951  * lock_rwsem must be held for read
3952  */
3953 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3954 {
3955 	DEFINE_WAIT(wait);
3956 
3957 	do {
3958 		/*
3959 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3960 		 * and cancel_delayed_work() in wake_requests().
3961 		 */
3962 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3963 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3964 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3965 					  TASK_UNINTERRUPTIBLE);
3966 		up_read(&rbd_dev->lock_rwsem);
3967 		schedule();
3968 		down_read(&rbd_dev->lock_rwsem);
3969 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3970 		 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3971 
3972 	finish_wait(&rbd_dev->lock_waitq, &wait);
3973 }
3974 
3975 static void rbd_queue_workfn(struct work_struct *work)
3976 {
3977 	struct request *rq = blk_mq_rq_from_pdu(work);
3978 	struct rbd_device *rbd_dev = rq->q->queuedata;
3979 	struct rbd_img_request *img_request;
3980 	struct ceph_snap_context *snapc = NULL;
3981 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3982 	u64 length = blk_rq_bytes(rq);
3983 	enum obj_operation_type op_type;
3984 	u64 mapping_size;
3985 	bool must_be_locked;
3986 	int result;
3987 
3988 	switch (req_op(rq)) {
3989 	case REQ_OP_DISCARD:
3990 	case REQ_OP_WRITE_ZEROES:
3991 		op_type = OBJ_OP_DISCARD;
3992 		break;
3993 	case REQ_OP_WRITE:
3994 		op_type = OBJ_OP_WRITE;
3995 		break;
3996 	case REQ_OP_READ:
3997 		op_type = OBJ_OP_READ;
3998 		break;
3999 	default:
4000 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4001 		result = -EIO;
4002 		goto err;
4003 	}
4004 
4005 	/* Ignore/skip any zero-length requests */
4006 
4007 	if (!length) {
4008 		dout("%s: zero-length request\n", __func__);
4009 		result = 0;
4010 		goto err_rq;
4011 	}
4012 
4013 	rbd_assert(op_type == OBJ_OP_READ ||
4014 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
4015 
4016 	/*
4017 	 * Quit early if the mapped snapshot no longer exists.  It's
4018 	 * still possible the snapshot will have disappeared by the
4019 	 * time our request arrives at the osd, but there's no sense in
4020 	 * sending it if we already know.
4021 	 */
4022 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4023 		dout("request for non-existent snapshot");
4024 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4025 		result = -ENXIO;
4026 		goto err_rq;
4027 	}
4028 
4029 	if (offset && length > U64_MAX - offset + 1) {
4030 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4031 			 length);
4032 		result = -EINVAL;
4033 		goto err_rq;	/* Shouldn't happen */
4034 	}
4035 
4036 	blk_mq_start_request(rq);
4037 
4038 	down_read(&rbd_dev->header_rwsem);
4039 	mapping_size = rbd_dev->mapping.size;
4040 	if (op_type != OBJ_OP_READ) {
4041 		snapc = rbd_dev->header.snapc;
4042 		ceph_get_snap_context(snapc);
4043 	}
4044 	up_read(&rbd_dev->header_rwsem);
4045 
4046 	if (offset + length > mapping_size) {
4047 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4048 			 length, mapping_size);
4049 		result = -EIO;
4050 		goto err_rq;
4051 	}
4052 
4053 	must_be_locked =
4054 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
4055 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
4056 	if (must_be_locked) {
4057 		down_read(&rbd_dev->lock_rwsem);
4058 		if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4059 		    !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4060 			if (rbd_dev->opts->exclusive) {
4061 				rbd_warn(rbd_dev, "exclusive lock required");
4062 				result = -EROFS;
4063 				goto err_unlock;
4064 			}
4065 			rbd_wait_state_locked(rbd_dev);
4066 		}
4067 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4068 			result = -EBLACKLISTED;
4069 			goto err_unlock;
4070 		}
4071 	}
4072 
4073 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4074 					     snapc);
4075 	if (!img_request) {
4076 		result = -ENOMEM;
4077 		goto err_unlock;
4078 	}
4079 	img_request->rq = rq;
4080 	snapc = NULL; /* img_request consumes a ref */
4081 
4082 	if (op_type == OBJ_OP_DISCARD)
4083 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4084 					      NULL);
4085 	else
4086 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4087 					      rq->bio);
4088 	if (result)
4089 		goto err_img_request;
4090 
4091 	result = rbd_img_request_submit(img_request);
4092 	if (result)
4093 		goto err_img_request;
4094 
4095 	if (must_be_locked)
4096 		up_read(&rbd_dev->lock_rwsem);
4097 	return;
4098 
4099 err_img_request:
4100 	rbd_img_request_put(img_request);
4101 err_unlock:
4102 	if (must_be_locked)
4103 		up_read(&rbd_dev->lock_rwsem);
4104 err_rq:
4105 	if (result)
4106 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4107 			 obj_op_name(op_type), length, offset, result);
4108 	ceph_put_snap_context(snapc);
4109 err:
4110 	blk_mq_end_request(rq, errno_to_blk_status(result));
4111 }
4112 
4113 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4114 		const struct blk_mq_queue_data *bd)
4115 {
4116 	struct request *rq = bd->rq;
4117 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4118 
4119 	queue_work(rbd_wq, work);
4120 	return BLK_STS_OK;
4121 }
4122 
4123 static void rbd_free_disk(struct rbd_device *rbd_dev)
4124 {
4125 	blk_cleanup_queue(rbd_dev->disk->queue);
4126 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4127 	put_disk(rbd_dev->disk);
4128 	rbd_dev->disk = NULL;
4129 }
4130 
4131 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4132 			     struct ceph_object_id *oid,
4133 			     struct ceph_object_locator *oloc,
4134 			     void *buf, int buf_len)
4135 
4136 {
4137 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4138 	struct ceph_osd_request *req;
4139 	struct page **pages;
4140 	int num_pages = calc_pages_for(0, buf_len);
4141 	int ret;
4142 
4143 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4144 	if (!req)
4145 		return -ENOMEM;
4146 
4147 	ceph_oid_copy(&req->r_base_oid, oid);
4148 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4149 	req->r_flags = CEPH_OSD_FLAG_READ;
4150 
4151 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4152 	if (ret)
4153 		goto out_req;
4154 
4155 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4156 	if (IS_ERR(pages)) {
4157 		ret = PTR_ERR(pages);
4158 		goto out_req;
4159 	}
4160 
4161 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4162 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4163 					 true);
4164 
4165 	ceph_osdc_start_request(osdc, req, false);
4166 	ret = ceph_osdc_wait_request(osdc, req);
4167 	if (ret >= 0)
4168 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4169 
4170 out_req:
4171 	ceph_osdc_put_request(req);
4172 	return ret;
4173 }
4174 
4175 /*
4176  * Read the complete header for the given rbd device.  On successful
4177  * return, the rbd_dev->header field will contain up-to-date
4178  * information about the image.
4179  */
4180 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4181 {
4182 	struct rbd_image_header_ondisk *ondisk = NULL;
4183 	u32 snap_count = 0;
4184 	u64 names_size = 0;
4185 	u32 want_count;
4186 	int ret;
4187 
4188 	/*
4189 	 * The complete header will include an array of its 64-bit
4190 	 * snapshot ids, followed by the names of those snapshots as
4191 	 * a contiguous block of NUL-terminated strings.  Note that
4192 	 * the number of snapshots could change by the time we read
4193 	 * it in, in which case we re-read it.
4194 	 */
4195 	do {
4196 		size_t size;
4197 
4198 		kfree(ondisk);
4199 
4200 		size = sizeof (*ondisk);
4201 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4202 		size += names_size;
4203 		ondisk = kmalloc(size, GFP_KERNEL);
4204 		if (!ondisk)
4205 			return -ENOMEM;
4206 
4207 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4208 					&rbd_dev->header_oloc, ondisk, size);
4209 		if (ret < 0)
4210 			goto out;
4211 		if ((size_t)ret < size) {
4212 			ret = -ENXIO;
4213 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4214 				size, ret);
4215 			goto out;
4216 		}
4217 		if (!rbd_dev_ondisk_valid(ondisk)) {
4218 			ret = -ENXIO;
4219 			rbd_warn(rbd_dev, "invalid header");
4220 			goto out;
4221 		}
4222 
4223 		names_size = le64_to_cpu(ondisk->snap_names_len);
4224 		want_count = snap_count;
4225 		snap_count = le32_to_cpu(ondisk->snap_count);
4226 	} while (snap_count != want_count);
4227 
4228 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4229 out:
4230 	kfree(ondisk);
4231 
4232 	return ret;
4233 }
4234 
4235 /*
4236  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4237  * has disappeared from the (just updated) snapshot context.
4238  */
4239 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4240 {
4241 	u64 snap_id;
4242 
4243 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4244 		return;
4245 
4246 	snap_id = rbd_dev->spec->snap_id;
4247 	if (snap_id == CEPH_NOSNAP)
4248 		return;
4249 
4250 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4251 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4252 }
4253 
4254 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4255 {
4256 	sector_t size;
4257 
4258 	/*
4259 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4260 	 * try to update its size.  If REMOVING is set, updating size
4261 	 * is just useless work since the device can't be opened.
4262 	 */
4263 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4264 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4265 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4266 		dout("setting size to %llu sectors", (unsigned long long)size);
4267 		set_capacity(rbd_dev->disk, size);
4268 		revalidate_disk(rbd_dev->disk);
4269 	}
4270 }
4271 
4272 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4273 {
4274 	u64 mapping_size;
4275 	int ret;
4276 
4277 	down_write(&rbd_dev->header_rwsem);
4278 	mapping_size = rbd_dev->mapping.size;
4279 
4280 	ret = rbd_dev_header_info(rbd_dev);
4281 	if (ret)
4282 		goto out;
4283 
4284 	/*
4285 	 * If there is a parent, see if it has disappeared due to the
4286 	 * mapped image getting flattened.
4287 	 */
4288 	if (rbd_dev->parent) {
4289 		ret = rbd_dev_v2_parent_info(rbd_dev);
4290 		if (ret)
4291 			goto out;
4292 	}
4293 
4294 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4295 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4296 	} else {
4297 		/* validate mapped snapshot's EXISTS flag */
4298 		rbd_exists_validate(rbd_dev);
4299 	}
4300 
4301 out:
4302 	up_write(&rbd_dev->header_rwsem);
4303 	if (!ret && mapping_size != rbd_dev->mapping.size)
4304 		rbd_dev_update_size(rbd_dev);
4305 
4306 	return ret;
4307 }
4308 
4309 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4310 		unsigned int hctx_idx, unsigned int numa_node)
4311 {
4312 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4313 
4314 	INIT_WORK(work, rbd_queue_workfn);
4315 	return 0;
4316 }
4317 
4318 static const struct blk_mq_ops rbd_mq_ops = {
4319 	.queue_rq	= rbd_queue_rq,
4320 	.init_request	= rbd_init_request,
4321 };
4322 
4323 static int rbd_init_disk(struct rbd_device *rbd_dev)
4324 {
4325 	struct gendisk *disk;
4326 	struct request_queue *q;
4327 	u64 segment_size;
4328 	int err;
4329 
4330 	/* create gendisk info */
4331 	disk = alloc_disk(single_major ?
4332 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4333 			  RBD_MINORS_PER_MAJOR);
4334 	if (!disk)
4335 		return -ENOMEM;
4336 
4337 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4338 		 rbd_dev->dev_id);
4339 	disk->major = rbd_dev->major;
4340 	disk->first_minor = rbd_dev->minor;
4341 	if (single_major)
4342 		disk->flags |= GENHD_FL_EXT_DEVT;
4343 	disk->fops = &rbd_bd_ops;
4344 	disk->private_data = rbd_dev;
4345 
4346 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4347 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4348 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4349 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4350 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4351 	rbd_dev->tag_set.nr_hw_queues = 1;
4352 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4353 
4354 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4355 	if (err)
4356 		goto out_disk;
4357 
4358 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4359 	if (IS_ERR(q)) {
4360 		err = PTR_ERR(q);
4361 		goto out_tag_set;
4362 	}
4363 
4364 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4365 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4366 
4367 	/* set io sizes to object size */
4368 	segment_size = rbd_obj_bytes(&rbd_dev->header);
4369 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4370 	q->limits.max_sectors = queue_max_hw_sectors(q);
4371 	blk_queue_max_segments(q, USHRT_MAX);
4372 	blk_queue_max_segment_size(q, segment_size);
4373 	blk_queue_io_min(q, segment_size);
4374 	blk_queue_io_opt(q, segment_size);
4375 
4376 	/* enable the discard support */
4377 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4378 	q->limits.discard_granularity = segment_size;
4379 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4380 	blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE);
4381 
4382 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4383 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4384 
4385 	/*
4386 	 * disk_release() expects a queue ref from add_disk() and will
4387 	 * put it.  Hold an extra ref until add_disk() is called.
4388 	 */
4389 	WARN_ON(!blk_get_queue(q));
4390 	disk->queue = q;
4391 	q->queuedata = rbd_dev;
4392 
4393 	rbd_dev->disk = disk;
4394 
4395 	return 0;
4396 out_tag_set:
4397 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4398 out_disk:
4399 	put_disk(disk);
4400 	return err;
4401 }
4402 
4403 /*
4404   sysfs
4405 */
4406 
4407 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4408 {
4409 	return container_of(dev, struct rbd_device, dev);
4410 }
4411 
4412 static ssize_t rbd_size_show(struct device *dev,
4413 			     struct device_attribute *attr, char *buf)
4414 {
4415 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4416 
4417 	return sprintf(buf, "%llu\n",
4418 		(unsigned long long)rbd_dev->mapping.size);
4419 }
4420 
4421 /*
4422  * Note this shows the features for whatever's mapped, which is not
4423  * necessarily the base image.
4424  */
4425 static ssize_t rbd_features_show(struct device *dev,
4426 			     struct device_attribute *attr, char *buf)
4427 {
4428 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4429 
4430 	return sprintf(buf, "0x%016llx\n",
4431 			(unsigned long long)rbd_dev->mapping.features);
4432 }
4433 
4434 static ssize_t rbd_major_show(struct device *dev,
4435 			      struct device_attribute *attr, char *buf)
4436 {
4437 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4438 
4439 	if (rbd_dev->major)
4440 		return sprintf(buf, "%d\n", rbd_dev->major);
4441 
4442 	return sprintf(buf, "(none)\n");
4443 }
4444 
4445 static ssize_t rbd_minor_show(struct device *dev,
4446 			      struct device_attribute *attr, char *buf)
4447 {
4448 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4449 
4450 	return sprintf(buf, "%d\n", rbd_dev->minor);
4451 }
4452 
4453 static ssize_t rbd_client_addr_show(struct device *dev,
4454 				    struct device_attribute *attr, char *buf)
4455 {
4456 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4457 	struct ceph_entity_addr *client_addr =
4458 	    ceph_client_addr(rbd_dev->rbd_client->client);
4459 
4460 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4461 		       le32_to_cpu(client_addr->nonce));
4462 }
4463 
4464 static ssize_t rbd_client_id_show(struct device *dev,
4465 				  struct device_attribute *attr, char *buf)
4466 {
4467 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4468 
4469 	return sprintf(buf, "client%lld\n",
4470 		       ceph_client_gid(rbd_dev->rbd_client->client));
4471 }
4472 
4473 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4474 				     struct device_attribute *attr, char *buf)
4475 {
4476 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4477 
4478 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4479 }
4480 
4481 static ssize_t rbd_config_info_show(struct device *dev,
4482 				    struct device_attribute *attr, char *buf)
4483 {
4484 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4485 
4486 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4487 }
4488 
4489 static ssize_t rbd_pool_show(struct device *dev,
4490 			     struct device_attribute *attr, char *buf)
4491 {
4492 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4493 
4494 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4495 }
4496 
4497 static ssize_t rbd_pool_id_show(struct device *dev,
4498 			     struct device_attribute *attr, char *buf)
4499 {
4500 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4501 
4502 	return sprintf(buf, "%llu\n",
4503 			(unsigned long long) rbd_dev->spec->pool_id);
4504 }
4505 
4506 static ssize_t rbd_name_show(struct device *dev,
4507 			     struct device_attribute *attr, char *buf)
4508 {
4509 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4510 
4511 	if (rbd_dev->spec->image_name)
4512 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4513 
4514 	return sprintf(buf, "(unknown)\n");
4515 }
4516 
4517 static ssize_t rbd_image_id_show(struct device *dev,
4518 			     struct device_attribute *attr, char *buf)
4519 {
4520 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4521 
4522 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4523 }
4524 
4525 /*
4526  * Shows the name of the currently-mapped snapshot (or
4527  * RBD_SNAP_HEAD_NAME for the base image).
4528  */
4529 static ssize_t rbd_snap_show(struct device *dev,
4530 			     struct device_attribute *attr,
4531 			     char *buf)
4532 {
4533 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4534 
4535 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4536 }
4537 
4538 static ssize_t rbd_snap_id_show(struct device *dev,
4539 				struct device_attribute *attr, char *buf)
4540 {
4541 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4542 
4543 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4544 }
4545 
4546 /*
4547  * For a v2 image, shows the chain of parent images, separated by empty
4548  * lines.  For v1 images or if there is no parent, shows "(no parent
4549  * image)".
4550  */
4551 static ssize_t rbd_parent_show(struct device *dev,
4552 			       struct device_attribute *attr,
4553 			       char *buf)
4554 {
4555 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4556 	ssize_t count = 0;
4557 
4558 	if (!rbd_dev->parent)
4559 		return sprintf(buf, "(no parent image)\n");
4560 
4561 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4562 		struct rbd_spec *spec = rbd_dev->parent_spec;
4563 
4564 		count += sprintf(&buf[count], "%s"
4565 			    "pool_id %llu\npool_name %s\n"
4566 			    "image_id %s\nimage_name %s\n"
4567 			    "snap_id %llu\nsnap_name %s\n"
4568 			    "overlap %llu\n",
4569 			    !count ? "" : "\n", /* first? */
4570 			    spec->pool_id, spec->pool_name,
4571 			    spec->image_id, spec->image_name ?: "(unknown)",
4572 			    spec->snap_id, spec->snap_name,
4573 			    rbd_dev->parent_overlap);
4574 	}
4575 
4576 	return count;
4577 }
4578 
4579 static ssize_t rbd_image_refresh(struct device *dev,
4580 				 struct device_attribute *attr,
4581 				 const char *buf,
4582 				 size_t size)
4583 {
4584 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4585 	int ret;
4586 
4587 	ret = rbd_dev_refresh(rbd_dev);
4588 	if (ret)
4589 		return ret;
4590 
4591 	return size;
4592 }
4593 
4594 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4595 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4596 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4597 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4598 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4599 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4600 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4601 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4602 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4603 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4604 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4605 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4606 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4607 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4608 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4609 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4610 
4611 static struct attribute *rbd_attrs[] = {
4612 	&dev_attr_size.attr,
4613 	&dev_attr_features.attr,
4614 	&dev_attr_major.attr,
4615 	&dev_attr_minor.attr,
4616 	&dev_attr_client_addr.attr,
4617 	&dev_attr_client_id.attr,
4618 	&dev_attr_cluster_fsid.attr,
4619 	&dev_attr_config_info.attr,
4620 	&dev_attr_pool.attr,
4621 	&dev_attr_pool_id.attr,
4622 	&dev_attr_name.attr,
4623 	&dev_attr_image_id.attr,
4624 	&dev_attr_current_snap.attr,
4625 	&dev_attr_snap_id.attr,
4626 	&dev_attr_parent.attr,
4627 	&dev_attr_refresh.attr,
4628 	NULL
4629 };
4630 
4631 static struct attribute_group rbd_attr_group = {
4632 	.attrs = rbd_attrs,
4633 };
4634 
4635 static const struct attribute_group *rbd_attr_groups[] = {
4636 	&rbd_attr_group,
4637 	NULL
4638 };
4639 
4640 static void rbd_dev_release(struct device *dev);
4641 
4642 static const struct device_type rbd_device_type = {
4643 	.name		= "rbd",
4644 	.groups		= rbd_attr_groups,
4645 	.release	= rbd_dev_release,
4646 };
4647 
4648 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4649 {
4650 	kref_get(&spec->kref);
4651 
4652 	return spec;
4653 }
4654 
4655 static void rbd_spec_free(struct kref *kref);
4656 static void rbd_spec_put(struct rbd_spec *spec)
4657 {
4658 	if (spec)
4659 		kref_put(&spec->kref, rbd_spec_free);
4660 }
4661 
4662 static struct rbd_spec *rbd_spec_alloc(void)
4663 {
4664 	struct rbd_spec *spec;
4665 
4666 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4667 	if (!spec)
4668 		return NULL;
4669 
4670 	spec->pool_id = CEPH_NOPOOL;
4671 	spec->snap_id = CEPH_NOSNAP;
4672 	kref_init(&spec->kref);
4673 
4674 	return spec;
4675 }
4676 
4677 static void rbd_spec_free(struct kref *kref)
4678 {
4679 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4680 
4681 	kfree(spec->pool_name);
4682 	kfree(spec->image_id);
4683 	kfree(spec->image_name);
4684 	kfree(spec->snap_name);
4685 	kfree(spec);
4686 }
4687 
4688 static void rbd_dev_free(struct rbd_device *rbd_dev)
4689 {
4690 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4691 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4692 
4693 	ceph_oid_destroy(&rbd_dev->header_oid);
4694 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4695 	kfree(rbd_dev->config_info);
4696 
4697 	rbd_put_client(rbd_dev->rbd_client);
4698 	rbd_spec_put(rbd_dev->spec);
4699 	kfree(rbd_dev->opts);
4700 	kfree(rbd_dev);
4701 }
4702 
4703 static void rbd_dev_release(struct device *dev)
4704 {
4705 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4706 	bool need_put = !!rbd_dev->opts;
4707 
4708 	if (need_put) {
4709 		destroy_workqueue(rbd_dev->task_wq);
4710 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4711 	}
4712 
4713 	rbd_dev_free(rbd_dev);
4714 
4715 	/*
4716 	 * This is racy, but way better than putting module outside of
4717 	 * the release callback.  The race window is pretty small, so
4718 	 * doing something similar to dm (dm-builtin.c) is overkill.
4719 	 */
4720 	if (need_put)
4721 		module_put(THIS_MODULE);
4722 }
4723 
4724 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4725 					   struct rbd_spec *spec)
4726 {
4727 	struct rbd_device *rbd_dev;
4728 
4729 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4730 	if (!rbd_dev)
4731 		return NULL;
4732 
4733 	spin_lock_init(&rbd_dev->lock);
4734 	INIT_LIST_HEAD(&rbd_dev->node);
4735 	init_rwsem(&rbd_dev->header_rwsem);
4736 
4737 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4738 	ceph_oid_init(&rbd_dev->header_oid);
4739 	rbd_dev->header_oloc.pool = spec->pool_id;
4740 
4741 	mutex_init(&rbd_dev->watch_mutex);
4742 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4743 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4744 
4745 	init_rwsem(&rbd_dev->lock_rwsem);
4746 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4747 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4748 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4749 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4750 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4751 	init_waitqueue_head(&rbd_dev->lock_waitq);
4752 
4753 	rbd_dev->dev.bus = &rbd_bus_type;
4754 	rbd_dev->dev.type = &rbd_device_type;
4755 	rbd_dev->dev.parent = &rbd_root_dev;
4756 	device_initialize(&rbd_dev->dev);
4757 
4758 	rbd_dev->rbd_client = rbdc;
4759 	rbd_dev->spec = spec;
4760 
4761 	return rbd_dev;
4762 }
4763 
4764 /*
4765  * Create a mapping rbd_dev.
4766  */
4767 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4768 					 struct rbd_spec *spec,
4769 					 struct rbd_options *opts)
4770 {
4771 	struct rbd_device *rbd_dev;
4772 
4773 	rbd_dev = __rbd_dev_create(rbdc, spec);
4774 	if (!rbd_dev)
4775 		return NULL;
4776 
4777 	rbd_dev->opts = opts;
4778 
4779 	/* get an id and fill in device name */
4780 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4781 					 minor_to_rbd_dev_id(1 << MINORBITS),
4782 					 GFP_KERNEL);
4783 	if (rbd_dev->dev_id < 0)
4784 		goto fail_rbd_dev;
4785 
4786 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4787 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4788 						   rbd_dev->name);
4789 	if (!rbd_dev->task_wq)
4790 		goto fail_dev_id;
4791 
4792 	/* we have a ref from do_rbd_add() */
4793 	__module_get(THIS_MODULE);
4794 
4795 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4796 	return rbd_dev;
4797 
4798 fail_dev_id:
4799 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4800 fail_rbd_dev:
4801 	rbd_dev_free(rbd_dev);
4802 	return NULL;
4803 }
4804 
4805 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4806 {
4807 	if (rbd_dev)
4808 		put_device(&rbd_dev->dev);
4809 }
4810 
4811 /*
4812  * Get the size and object order for an image snapshot, or if
4813  * snap_id is CEPH_NOSNAP, gets this information for the base
4814  * image.
4815  */
4816 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4817 				u8 *order, u64 *snap_size)
4818 {
4819 	__le64 snapid = cpu_to_le64(snap_id);
4820 	int ret;
4821 	struct {
4822 		u8 order;
4823 		__le64 size;
4824 	} __attribute__ ((packed)) size_buf = { 0 };
4825 
4826 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4827 				  &rbd_dev->header_oloc, "get_size",
4828 				  &snapid, sizeof(snapid),
4829 				  &size_buf, sizeof(size_buf));
4830 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4831 	if (ret < 0)
4832 		return ret;
4833 	if (ret < sizeof (size_buf))
4834 		return -ERANGE;
4835 
4836 	if (order) {
4837 		*order = size_buf.order;
4838 		dout("  order %u", (unsigned int)*order);
4839 	}
4840 	*snap_size = le64_to_cpu(size_buf.size);
4841 
4842 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4843 		(unsigned long long)snap_id,
4844 		(unsigned long long)*snap_size);
4845 
4846 	return 0;
4847 }
4848 
4849 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4850 {
4851 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4852 					&rbd_dev->header.obj_order,
4853 					&rbd_dev->header.image_size);
4854 }
4855 
4856 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4857 {
4858 	void *reply_buf;
4859 	int ret;
4860 	void *p;
4861 
4862 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4863 	if (!reply_buf)
4864 		return -ENOMEM;
4865 
4866 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4867 				  &rbd_dev->header_oloc, "get_object_prefix",
4868 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4869 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4870 	if (ret < 0)
4871 		goto out;
4872 
4873 	p = reply_buf;
4874 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4875 						p + ret, NULL, GFP_NOIO);
4876 	ret = 0;
4877 
4878 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4879 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4880 		rbd_dev->header.object_prefix = NULL;
4881 	} else {
4882 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4883 	}
4884 out:
4885 	kfree(reply_buf);
4886 
4887 	return ret;
4888 }
4889 
4890 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4891 		u64 *snap_features)
4892 {
4893 	__le64 snapid = cpu_to_le64(snap_id);
4894 	struct {
4895 		__le64 features;
4896 		__le64 incompat;
4897 	} __attribute__ ((packed)) features_buf = { 0 };
4898 	u64 unsup;
4899 	int ret;
4900 
4901 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4902 				  &rbd_dev->header_oloc, "get_features",
4903 				  &snapid, sizeof(snapid),
4904 				  &features_buf, sizeof(features_buf));
4905 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4906 	if (ret < 0)
4907 		return ret;
4908 	if (ret < sizeof (features_buf))
4909 		return -ERANGE;
4910 
4911 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4912 	if (unsup) {
4913 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4914 			 unsup);
4915 		return -ENXIO;
4916 	}
4917 
4918 	*snap_features = le64_to_cpu(features_buf.features);
4919 
4920 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4921 		(unsigned long long)snap_id,
4922 		(unsigned long long)*snap_features,
4923 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4924 
4925 	return 0;
4926 }
4927 
4928 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4929 {
4930 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4931 						&rbd_dev->header.features);
4932 }
4933 
4934 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4935 {
4936 	struct rbd_spec *parent_spec;
4937 	size_t size;
4938 	void *reply_buf = NULL;
4939 	__le64 snapid;
4940 	void *p;
4941 	void *end;
4942 	u64 pool_id;
4943 	char *image_id;
4944 	u64 snap_id;
4945 	u64 overlap;
4946 	int ret;
4947 
4948 	parent_spec = rbd_spec_alloc();
4949 	if (!parent_spec)
4950 		return -ENOMEM;
4951 
4952 	size = sizeof (__le64) +				/* pool_id */
4953 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4954 		sizeof (__le64) +				/* snap_id */
4955 		sizeof (__le64);				/* overlap */
4956 	reply_buf = kmalloc(size, GFP_KERNEL);
4957 	if (!reply_buf) {
4958 		ret = -ENOMEM;
4959 		goto out_err;
4960 	}
4961 
4962 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4963 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4964 				  &rbd_dev->header_oloc, "get_parent",
4965 				  &snapid, sizeof(snapid), reply_buf, size);
4966 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4967 	if (ret < 0)
4968 		goto out_err;
4969 
4970 	p = reply_buf;
4971 	end = reply_buf + ret;
4972 	ret = -ERANGE;
4973 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4974 	if (pool_id == CEPH_NOPOOL) {
4975 		/*
4976 		 * Either the parent never existed, or we have
4977 		 * record of it but the image got flattened so it no
4978 		 * longer has a parent.  When the parent of a
4979 		 * layered image disappears we immediately set the
4980 		 * overlap to 0.  The effect of this is that all new
4981 		 * requests will be treated as if the image had no
4982 		 * parent.
4983 		 */
4984 		if (rbd_dev->parent_overlap) {
4985 			rbd_dev->parent_overlap = 0;
4986 			rbd_dev_parent_put(rbd_dev);
4987 			pr_info("%s: clone image has been flattened\n",
4988 				rbd_dev->disk->disk_name);
4989 		}
4990 
4991 		goto out;	/* No parent?  No problem. */
4992 	}
4993 
4994 	/* The ceph file layout needs to fit pool id in 32 bits */
4995 
4996 	ret = -EIO;
4997 	if (pool_id > (u64)U32_MAX) {
4998 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4999 			(unsigned long long)pool_id, U32_MAX);
5000 		goto out_err;
5001 	}
5002 
5003 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5004 	if (IS_ERR(image_id)) {
5005 		ret = PTR_ERR(image_id);
5006 		goto out_err;
5007 	}
5008 	ceph_decode_64_safe(&p, end, snap_id, out_err);
5009 	ceph_decode_64_safe(&p, end, overlap, out_err);
5010 
5011 	/*
5012 	 * The parent won't change (except when the clone is
5013 	 * flattened, already handled that).  So we only need to
5014 	 * record the parent spec we have not already done so.
5015 	 */
5016 	if (!rbd_dev->parent_spec) {
5017 		parent_spec->pool_id = pool_id;
5018 		parent_spec->image_id = image_id;
5019 		parent_spec->snap_id = snap_id;
5020 		rbd_dev->parent_spec = parent_spec;
5021 		parent_spec = NULL;	/* rbd_dev now owns this */
5022 	} else {
5023 		kfree(image_id);
5024 	}
5025 
5026 	/*
5027 	 * We always update the parent overlap.  If it's zero we issue
5028 	 * a warning, as we will proceed as if there was no parent.
5029 	 */
5030 	if (!overlap) {
5031 		if (parent_spec) {
5032 			/* refresh, careful to warn just once */
5033 			if (rbd_dev->parent_overlap)
5034 				rbd_warn(rbd_dev,
5035 				    "clone now standalone (overlap became 0)");
5036 		} else {
5037 			/* initial probe */
5038 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5039 		}
5040 	}
5041 	rbd_dev->parent_overlap = overlap;
5042 
5043 out:
5044 	ret = 0;
5045 out_err:
5046 	kfree(reply_buf);
5047 	rbd_spec_put(parent_spec);
5048 
5049 	return ret;
5050 }
5051 
5052 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5053 {
5054 	struct {
5055 		__le64 stripe_unit;
5056 		__le64 stripe_count;
5057 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5058 	size_t size = sizeof (striping_info_buf);
5059 	void *p;
5060 	u64 obj_size;
5061 	u64 stripe_unit;
5062 	u64 stripe_count;
5063 	int ret;
5064 
5065 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5066 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5067 				NULL, 0, &striping_info_buf, size);
5068 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5069 	if (ret < 0)
5070 		return ret;
5071 	if (ret < size)
5072 		return -ERANGE;
5073 
5074 	/*
5075 	 * We don't actually support the "fancy striping" feature
5076 	 * (STRIPINGV2) yet, but if the striping sizes are the
5077 	 * defaults the behavior is the same as before.  So find
5078 	 * out, and only fail if the image has non-default values.
5079 	 */
5080 	ret = -EINVAL;
5081 	obj_size = rbd_obj_bytes(&rbd_dev->header);
5082 	p = &striping_info_buf;
5083 	stripe_unit = ceph_decode_64(&p);
5084 	if (stripe_unit != obj_size) {
5085 		rbd_warn(rbd_dev, "unsupported stripe unit "
5086 				"(got %llu want %llu)",
5087 				stripe_unit, obj_size);
5088 		return -EINVAL;
5089 	}
5090 	stripe_count = ceph_decode_64(&p);
5091 	if (stripe_count != 1) {
5092 		rbd_warn(rbd_dev, "unsupported stripe count "
5093 				"(got %llu want 1)", stripe_count);
5094 		return -EINVAL;
5095 	}
5096 	rbd_dev->header.stripe_unit = stripe_unit;
5097 	rbd_dev->header.stripe_count = stripe_count;
5098 
5099 	return 0;
5100 }
5101 
5102 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5103 {
5104 	__le64 data_pool_id;
5105 	int ret;
5106 
5107 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5108 				  &rbd_dev->header_oloc, "get_data_pool",
5109 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5110 	if (ret < 0)
5111 		return ret;
5112 	if (ret < sizeof(data_pool_id))
5113 		return -EBADMSG;
5114 
5115 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5116 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5117 	return 0;
5118 }
5119 
5120 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5121 {
5122 	CEPH_DEFINE_OID_ONSTACK(oid);
5123 	size_t image_id_size;
5124 	char *image_id;
5125 	void *p;
5126 	void *end;
5127 	size_t size;
5128 	void *reply_buf = NULL;
5129 	size_t len = 0;
5130 	char *image_name = NULL;
5131 	int ret;
5132 
5133 	rbd_assert(!rbd_dev->spec->image_name);
5134 
5135 	len = strlen(rbd_dev->spec->image_id);
5136 	image_id_size = sizeof (__le32) + len;
5137 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5138 	if (!image_id)
5139 		return NULL;
5140 
5141 	p = image_id;
5142 	end = image_id + image_id_size;
5143 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5144 
5145 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5146 	reply_buf = kmalloc(size, GFP_KERNEL);
5147 	if (!reply_buf)
5148 		goto out;
5149 
5150 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5151 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5152 				  "dir_get_name", image_id, image_id_size,
5153 				  reply_buf, size);
5154 	if (ret < 0)
5155 		goto out;
5156 	p = reply_buf;
5157 	end = reply_buf + ret;
5158 
5159 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5160 	if (IS_ERR(image_name))
5161 		image_name = NULL;
5162 	else
5163 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5164 out:
5165 	kfree(reply_buf);
5166 	kfree(image_id);
5167 
5168 	return image_name;
5169 }
5170 
5171 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5172 {
5173 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5174 	const char *snap_name;
5175 	u32 which = 0;
5176 
5177 	/* Skip over names until we find the one we are looking for */
5178 
5179 	snap_name = rbd_dev->header.snap_names;
5180 	while (which < snapc->num_snaps) {
5181 		if (!strcmp(name, snap_name))
5182 			return snapc->snaps[which];
5183 		snap_name += strlen(snap_name) + 1;
5184 		which++;
5185 	}
5186 	return CEPH_NOSNAP;
5187 }
5188 
5189 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5190 {
5191 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5192 	u32 which;
5193 	bool found = false;
5194 	u64 snap_id;
5195 
5196 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5197 		const char *snap_name;
5198 
5199 		snap_id = snapc->snaps[which];
5200 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5201 		if (IS_ERR(snap_name)) {
5202 			/* ignore no-longer existing snapshots */
5203 			if (PTR_ERR(snap_name) == -ENOENT)
5204 				continue;
5205 			else
5206 				break;
5207 		}
5208 		found = !strcmp(name, snap_name);
5209 		kfree(snap_name);
5210 	}
5211 	return found ? snap_id : CEPH_NOSNAP;
5212 }
5213 
5214 /*
5215  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5216  * no snapshot by that name is found, or if an error occurs.
5217  */
5218 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5219 {
5220 	if (rbd_dev->image_format == 1)
5221 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5222 
5223 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5224 }
5225 
5226 /*
5227  * An image being mapped will have everything but the snap id.
5228  */
5229 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5230 {
5231 	struct rbd_spec *spec = rbd_dev->spec;
5232 
5233 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5234 	rbd_assert(spec->image_id && spec->image_name);
5235 	rbd_assert(spec->snap_name);
5236 
5237 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5238 		u64 snap_id;
5239 
5240 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5241 		if (snap_id == CEPH_NOSNAP)
5242 			return -ENOENT;
5243 
5244 		spec->snap_id = snap_id;
5245 	} else {
5246 		spec->snap_id = CEPH_NOSNAP;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 /*
5253  * A parent image will have all ids but none of the names.
5254  *
5255  * All names in an rbd spec are dynamically allocated.  It's OK if we
5256  * can't figure out the name for an image id.
5257  */
5258 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5259 {
5260 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5261 	struct rbd_spec *spec = rbd_dev->spec;
5262 	const char *pool_name;
5263 	const char *image_name;
5264 	const char *snap_name;
5265 	int ret;
5266 
5267 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5268 	rbd_assert(spec->image_id);
5269 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5270 
5271 	/* Get the pool name; we have to make our own copy of this */
5272 
5273 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5274 	if (!pool_name) {
5275 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5276 		return -EIO;
5277 	}
5278 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5279 	if (!pool_name)
5280 		return -ENOMEM;
5281 
5282 	/* Fetch the image name; tolerate failure here */
5283 
5284 	image_name = rbd_dev_image_name(rbd_dev);
5285 	if (!image_name)
5286 		rbd_warn(rbd_dev, "unable to get image name");
5287 
5288 	/* Fetch the snapshot name */
5289 
5290 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5291 	if (IS_ERR(snap_name)) {
5292 		ret = PTR_ERR(snap_name);
5293 		goto out_err;
5294 	}
5295 
5296 	spec->pool_name = pool_name;
5297 	spec->image_name = image_name;
5298 	spec->snap_name = snap_name;
5299 
5300 	return 0;
5301 
5302 out_err:
5303 	kfree(image_name);
5304 	kfree(pool_name);
5305 	return ret;
5306 }
5307 
5308 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5309 {
5310 	size_t size;
5311 	int ret;
5312 	void *reply_buf;
5313 	void *p;
5314 	void *end;
5315 	u64 seq;
5316 	u32 snap_count;
5317 	struct ceph_snap_context *snapc;
5318 	u32 i;
5319 
5320 	/*
5321 	 * We'll need room for the seq value (maximum snapshot id),
5322 	 * snapshot count, and array of that many snapshot ids.
5323 	 * For now we have a fixed upper limit on the number we're
5324 	 * prepared to receive.
5325 	 */
5326 	size = sizeof (__le64) + sizeof (__le32) +
5327 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5328 	reply_buf = kzalloc(size, GFP_KERNEL);
5329 	if (!reply_buf)
5330 		return -ENOMEM;
5331 
5332 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5333 				  &rbd_dev->header_oloc, "get_snapcontext",
5334 				  NULL, 0, reply_buf, size);
5335 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5336 	if (ret < 0)
5337 		goto out;
5338 
5339 	p = reply_buf;
5340 	end = reply_buf + ret;
5341 	ret = -ERANGE;
5342 	ceph_decode_64_safe(&p, end, seq, out);
5343 	ceph_decode_32_safe(&p, end, snap_count, out);
5344 
5345 	/*
5346 	 * Make sure the reported number of snapshot ids wouldn't go
5347 	 * beyond the end of our buffer.  But before checking that,
5348 	 * make sure the computed size of the snapshot context we
5349 	 * allocate is representable in a size_t.
5350 	 */
5351 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5352 				 / sizeof (u64)) {
5353 		ret = -EINVAL;
5354 		goto out;
5355 	}
5356 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5357 		goto out;
5358 	ret = 0;
5359 
5360 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5361 	if (!snapc) {
5362 		ret = -ENOMEM;
5363 		goto out;
5364 	}
5365 	snapc->seq = seq;
5366 	for (i = 0; i < snap_count; i++)
5367 		snapc->snaps[i] = ceph_decode_64(&p);
5368 
5369 	ceph_put_snap_context(rbd_dev->header.snapc);
5370 	rbd_dev->header.snapc = snapc;
5371 
5372 	dout("  snap context seq = %llu, snap_count = %u\n",
5373 		(unsigned long long)seq, (unsigned int)snap_count);
5374 out:
5375 	kfree(reply_buf);
5376 
5377 	return ret;
5378 }
5379 
5380 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5381 					u64 snap_id)
5382 {
5383 	size_t size;
5384 	void *reply_buf;
5385 	__le64 snapid;
5386 	int ret;
5387 	void *p;
5388 	void *end;
5389 	char *snap_name;
5390 
5391 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5392 	reply_buf = kmalloc(size, GFP_KERNEL);
5393 	if (!reply_buf)
5394 		return ERR_PTR(-ENOMEM);
5395 
5396 	snapid = cpu_to_le64(snap_id);
5397 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5398 				  &rbd_dev->header_oloc, "get_snapshot_name",
5399 				  &snapid, sizeof(snapid), reply_buf, size);
5400 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5401 	if (ret < 0) {
5402 		snap_name = ERR_PTR(ret);
5403 		goto out;
5404 	}
5405 
5406 	p = reply_buf;
5407 	end = reply_buf + ret;
5408 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5409 	if (IS_ERR(snap_name))
5410 		goto out;
5411 
5412 	dout("  snap_id 0x%016llx snap_name = %s\n",
5413 		(unsigned long long)snap_id, snap_name);
5414 out:
5415 	kfree(reply_buf);
5416 
5417 	return snap_name;
5418 }
5419 
5420 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5421 {
5422 	bool first_time = rbd_dev->header.object_prefix == NULL;
5423 	int ret;
5424 
5425 	ret = rbd_dev_v2_image_size(rbd_dev);
5426 	if (ret)
5427 		return ret;
5428 
5429 	if (first_time) {
5430 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5431 		if (ret)
5432 			return ret;
5433 	}
5434 
5435 	ret = rbd_dev_v2_snap_context(rbd_dev);
5436 	if (ret && first_time) {
5437 		kfree(rbd_dev->header.object_prefix);
5438 		rbd_dev->header.object_prefix = NULL;
5439 	}
5440 
5441 	return ret;
5442 }
5443 
5444 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5445 {
5446 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5447 
5448 	if (rbd_dev->image_format == 1)
5449 		return rbd_dev_v1_header_info(rbd_dev);
5450 
5451 	return rbd_dev_v2_header_info(rbd_dev);
5452 }
5453 
5454 /*
5455  * Skips over white space at *buf, and updates *buf to point to the
5456  * first found non-space character (if any). Returns the length of
5457  * the token (string of non-white space characters) found.  Note
5458  * that *buf must be terminated with '\0'.
5459  */
5460 static inline size_t next_token(const char **buf)
5461 {
5462         /*
5463         * These are the characters that produce nonzero for
5464         * isspace() in the "C" and "POSIX" locales.
5465         */
5466         const char *spaces = " \f\n\r\t\v";
5467 
5468         *buf += strspn(*buf, spaces);	/* Find start of token */
5469 
5470 	return strcspn(*buf, spaces);   /* Return token length */
5471 }
5472 
5473 /*
5474  * Finds the next token in *buf, dynamically allocates a buffer big
5475  * enough to hold a copy of it, and copies the token into the new
5476  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5477  * that a duplicate buffer is created even for a zero-length token.
5478  *
5479  * Returns a pointer to the newly-allocated duplicate, or a null
5480  * pointer if memory for the duplicate was not available.  If
5481  * the lenp argument is a non-null pointer, the length of the token
5482  * (not including the '\0') is returned in *lenp.
5483  *
5484  * If successful, the *buf pointer will be updated to point beyond
5485  * the end of the found token.
5486  *
5487  * Note: uses GFP_KERNEL for allocation.
5488  */
5489 static inline char *dup_token(const char **buf, size_t *lenp)
5490 {
5491 	char *dup;
5492 	size_t len;
5493 
5494 	len = next_token(buf);
5495 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5496 	if (!dup)
5497 		return NULL;
5498 	*(dup + len) = '\0';
5499 	*buf += len;
5500 
5501 	if (lenp)
5502 		*lenp = len;
5503 
5504 	return dup;
5505 }
5506 
5507 /*
5508  * Parse the options provided for an "rbd add" (i.e., rbd image
5509  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5510  * and the data written is passed here via a NUL-terminated buffer.
5511  * Returns 0 if successful or an error code otherwise.
5512  *
5513  * The information extracted from these options is recorded in
5514  * the other parameters which return dynamically-allocated
5515  * structures:
5516  *  ceph_opts
5517  *      The address of a pointer that will refer to a ceph options
5518  *      structure.  Caller must release the returned pointer using
5519  *      ceph_destroy_options() when it is no longer needed.
5520  *  rbd_opts
5521  *	Address of an rbd options pointer.  Fully initialized by
5522  *	this function; caller must release with kfree().
5523  *  spec
5524  *	Address of an rbd image specification pointer.  Fully
5525  *	initialized by this function based on parsed options.
5526  *	Caller must release with rbd_spec_put().
5527  *
5528  * The options passed take this form:
5529  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5530  * where:
5531  *  <mon_addrs>
5532  *      A comma-separated list of one or more monitor addresses.
5533  *      A monitor address is an ip address, optionally followed
5534  *      by a port number (separated by a colon).
5535  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5536  *  <options>
5537  *      A comma-separated list of ceph and/or rbd options.
5538  *  <pool_name>
5539  *      The name of the rados pool containing the rbd image.
5540  *  <image_name>
5541  *      The name of the image in that pool to map.
5542  *  <snap_id>
5543  *      An optional snapshot id.  If provided, the mapping will
5544  *      present data from the image at the time that snapshot was
5545  *      created.  The image head is used if no snapshot id is
5546  *      provided.  Snapshot mappings are always read-only.
5547  */
5548 static int rbd_add_parse_args(const char *buf,
5549 				struct ceph_options **ceph_opts,
5550 				struct rbd_options **opts,
5551 				struct rbd_spec **rbd_spec)
5552 {
5553 	size_t len;
5554 	char *options;
5555 	const char *mon_addrs;
5556 	char *snap_name;
5557 	size_t mon_addrs_size;
5558 	struct rbd_spec *spec = NULL;
5559 	struct rbd_options *rbd_opts = NULL;
5560 	struct ceph_options *copts;
5561 	int ret;
5562 
5563 	/* The first four tokens are required */
5564 
5565 	len = next_token(&buf);
5566 	if (!len) {
5567 		rbd_warn(NULL, "no monitor address(es) provided");
5568 		return -EINVAL;
5569 	}
5570 	mon_addrs = buf;
5571 	mon_addrs_size = len + 1;
5572 	buf += len;
5573 
5574 	ret = -EINVAL;
5575 	options = dup_token(&buf, NULL);
5576 	if (!options)
5577 		return -ENOMEM;
5578 	if (!*options) {
5579 		rbd_warn(NULL, "no options provided");
5580 		goto out_err;
5581 	}
5582 
5583 	spec = rbd_spec_alloc();
5584 	if (!spec)
5585 		goto out_mem;
5586 
5587 	spec->pool_name = dup_token(&buf, NULL);
5588 	if (!spec->pool_name)
5589 		goto out_mem;
5590 	if (!*spec->pool_name) {
5591 		rbd_warn(NULL, "no pool name provided");
5592 		goto out_err;
5593 	}
5594 
5595 	spec->image_name = dup_token(&buf, NULL);
5596 	if (!spec->image_name)
5597 		goto out_mem;
5598 	if (!*spec->image_name) {
5599 		rbd_warn(NULL, "no image name provided");
5600 		goto out_err;
5601 	}
5602 
5603 	/*
5604 	 * Snapshot name is optional; default is to use "-"
5605 	 * (indicating the head/no snapshot).
5606 	 */
5607 	len = next_token(&buf);
5608 	if (!len) {
5609 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5610 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5611 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5612 		ret = -ENAMETOOLONG;
5613 		goto out_err;
5614 	}
5615 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5616 	if (!snap_name)
5617 		goto out_mem;
5618 	*(snap_name + len) = '\0';
5619 	spec->snap_name = snap_name;
5620 
5621 	/* Initialize all rbd options to the defaults */
5622 
5623 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5624 	if (!rbd_opts)
5625 		goto out_mem;
5626 
5627 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5628 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5629 	rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5630 	rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5631 
5632 	copts = ceph_parse_options(options, mon_addrs,
5633 					mon_addrs + mon_addrs_size - 1,
5634 					parse_rbd_opts_token, rbd_opts);
5635 	if (IS_ERR(copts)) {
5636 		ret = PTR_ERR(copts);
5637 		goto out_err;
5638 	}
5639 	kfree(options);
5640 
5641 	*ceph_opts = copts;
5642 	*opts = rbd_opts;
5643 	*rbd_spec = spec;
5644 
5645 	return 0;
5646 out_mem:
5647 	ret = -ENOMEM;
5648 out_err:
5649 	kfree(rbd_opts);
5650 	rbd_spec_put(spec);
5651 	kfree(options);
5652 
5653 	return ret;
5654 }
5655 
5656 /*
5657  * Return pool id (>= 0) or a negative error code.
5658  */
5659 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5660 {
5661 	struct ceph_options *opts = rbdc->client->options;
5662 	u64 newest_epoch;
5663 	int tries = 0;
5664 	int ret;
5665 
5666 again:
5667 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5668 	if (ret == -ENOENT && tries++ < 1) {
5669 		ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5670 					    &newest_epoch);
5671 		if (ret < 0)
5672 			return ret;
5673 
5674 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5675 			ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5676 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5677 						     newest_epoch,
5678 						     opts->mount_timeout);
5679 			goto again;
5680 		} else {
5681 			/* the osdmap we have is new enough */
5682 			return -ENOENT;
5683 		}
5684 	}
5685 
5686 	return ret;
5687 }
5688 
5689 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5690 {
5691 	down_write(&rbd_dev->lock_rwsem);
5692 	if (__rbd_is_lock_owner(rbd_dev))
5693 		rbd_unlock(rbd_dev);
5694 	up_write(&rbd_dev->lock_rwsem);
5695 }
5696 
5697 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5698 {
5699 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5700 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5701 		return -EINVAL;
5702 	}
5703 
5704 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5705 	down_read(&rbd_dev->lock_rwsem);
5706 	rbd_wait_state_locked(rbd_dev);
5707 	up_read(&rbd_dev->lock_rwsem);
5708 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5709 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5710 		return -EROFS;
5711 	}
5712 
5713 	return 0;
5714 }
5715 
5716 /*
5717  * An rbd format 2 image has a unique identifier, distinct from the
5718  * name given to it by the user.  Internally, that identifier is
5719  * what's used to specify the names of objects related to the image.
5720  *
5721  * A special "rbd id" object is used to map an rbd image name to its
5722  * id.  If that object doesn't exist, then there is no v2 rbd image
5723  * with the supplied name.
5724  *
5725  * This function will record the given rbd_dev's image_id field if
5726  * it can be determined, and in that case will return 0.  If any
5727  * errors occur a negative errno will be returned and the rbd_dev's
5728  * image_id field will be unchanged (and should be NULL).
5729  */
5730 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5731 {
5732 	int ret;
5733 	size_t size;
5734 	CEPH_DEFINE_OID_ONSTACK(oid);
5735 	void *response;
5736 	char *image_id;
5737 
5738 	/*
5739 	 * When probing a parent image, the image id is already
5740 	 * known (and the image name likely is not).  There's no
5741 	 * need to fetch the image id again in this case.  We
5742 	 * do still need to set the image format though.
5743 	 */
5744 	if (rbd_dev->spec->image_id) {
5745 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5746 
5747 		return 0;
5748 	}
5749 
5750 	/*
5751 	 * First, see if the format 2 image id file exists, and if
5752 	 * so, get the image's persistent id from it.
5753 	 */
5754 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5755 			       rbd_dev->spec->image_name);
5756 	if (ret)
5757 		return ret;
5758 
5759 	dout("rbd id object name is %s\n", oid.name);
5760 
5761 	/* Response will be an encoded string, which includes a length */
5762 
5763 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5764 	response = kzalloc(size, GFP_NOIO);
5765 	if (!response) {
5766 		ret = -ENOMEM;
5767 		goto out;
5768 	}
5769 
5770 	/* If it doesn't exist we'll assume it's a format 1 image */
5771 
5772 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5773 				  "get_id", NULL, 0,
5774 				  response, RBD_IMAGE_ID_LEN_MAX);
5775 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5776 	if (ret == -ENOENT) {
5777 		image_id = kstrdup("", GFP_KERNEL);
5778 		ret = image_id ? 0 : -ENOMEM;
5779 		if (!ret)
5780 			rbd_dev->image_format = 1;
5781 	} else if (ret >= 0) {
5782 		void *p = response;
5783 
5784 		image_id = ceph_extract_encoded_string(&p, p + ret,
5785 						NULL, GFP_NOIO);
5786 		ret = PTR_ERR_OR_ZERO(image_id);
5787 		if (!ret)
5788 			rbd_dev->image_format = 2;
5789 	}
5790 
5791 	if (!ret) {
5792 		rbd_dev->spec->image_id = image_id;
5793 		dout("image_id is %s\n", image_id);
5794 	}
5795 out:
5796 	kfree(response);
5797 	ceph_oid_destroy(&oid);
5798 	return ret;
5799 }
5800 
5801 /*
5802  * Undo whatever state changes are made by v1 or v2 header info
5803  * call.
5804  */
5805 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5806 {
5807 	struct rbd_image_header	*header;
5808 
5809 	rbd_dev_parent_put(rbd_dev);
5810 
5811 	/* Free dynamic fields from the header, then zero it out */
5812 
5813 	header = &rbd_dev->header;
5814 	ceph_put_snap_context(header->snapc);
5815 	kfree(header->snap_sizes);
5816 	kfree(header->snap_names);
5817 	kfree(header->object_prefix);
5818 	memset(header, 0, sizeof (*header));
5819 }
5820 
5821 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5822 {
5823 	int ret;
5824 
5825 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5826 	if (ret)
5827 		goto out_err;
5828 
5829 	/*
5830 	 * Get the and check features for the image.  Currently the
5831 	 * features are assumed to never change.
5832 	 */
5833 	ret = rbd_dev_v2_features(rbd_dev);
5834 	if (ret)
5835 		goto out_err;
5836 
5837 	/* If the image supports fancy striping, get its parameters */
5838 
5839 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5840 		ret = rbd_dev_v2_striping_info(rbd_dev);
5841 		if (ret < 0)
5842 			goto out_err;
5843 	}
5844 
5845 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5846 		ret = rbd_dev_v2_data_pool(rbd_dev);
5847 		if (ret)
5848 			goto out_err;
5849 	}
5850 
5851 	rbd_init_layout(rbd_dev);
5852 	return 0;
5853 
5854 out_err:
5855 	rbd_dev->header.features = 0;
5856 	kfree(rbd_dev->header.object_prefix);
5857 	rbd_dev->header.object_prefix = NULL;
5858 	return ret;
5859 }
5860 
5861 /*
5862  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5863  * rbd_dev_image_probe() recursion depth, which means it's also the
5864  * length of the already discovered part of the parent chain.
5865  */
5866 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5867 {
5868 	struct rbd_device *parent = NULL;
5869 	int ret;
5870 
5871 	if (!rbd_dev->parent_spec)
5872 		return 0;
5873 
5874 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5875 		pr_info("parent chain is too long (%d)\n", depth);
5876 		ret = -EINVAL;
5877 		goto out_err;
5878 	}
5879 
5880 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5881 	if (!parent) {
5882 		ret = -ENOMEM;
5883 		goto out_err;
5884 	}
5885 
5886 	/*
5887 	 * Images related by parent/child relationships always share
5888 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5889 	 */
5890 	__rbd_get_client(rbd_dev->rbd_client);
5891 	rbd_spec_get(rbd_dev->parent_spec);
5892 
5893 	ret = rbd_dev_image_probe(parent, depth);
5894 	if (ret < 0)
5895 		goto out_err;
5896 
5897 	rbd_dev->parent = parent;
5898 	atomic_set(&rbd_dev->parent_ref, 1);
5899 	return 0;
5900 
5901 out_err:
5902 	rbd_dev_unparent(rbd_dev);
5903 	rbd_dev_destroy(parent);
5904 	return ret;
5905 }
5906 
5907 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5908 {
5909 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5910 	rbd_dev_mapping_clear(rbd_dev);
5911 	rbd_free_disk(rbd_dev);
5912 	if (!single_major)
5913 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5914 }
5915 
5916 /*
5917  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5918  * upon return.
5919  */
5920 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5921 {
5922 	int ret;
5923 
5924 	/* Record our major and minor device numbers. */
5925 
5926 	if (!single_major) {
5927 		ret = register_blkdev(0, rbd_dev->name);
5928 		if (ret < 0)
5929 			goto err_out_unlock;
5930 
5931 		rbd_dev->major = ret;
5932 		rbd_dev->minor = 0;
5933 	} else {
5934 		rbd_dev->major = rbd_major;
5935 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5936 	}
5937 
5938 	/* Set up the blkdev mapping. */
5939 
5940 	ret = rbd_init_disk(rbd_dev);
5941 	if (ret)
5942 		goto err_out_blkdev;
5943 
5944 	ret = rbd_dev_mapping_set(rbd_dev);
5945 	if (ret)
5946 		goto err_out_disk;
5947 
5948 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5949 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5950 
5951 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5952 	if (ret)
5953 		goto err_out_mapping;
5954 
5955 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5956 	up_write(&rbd_dev->header_rwsem);
5957 	return 0;
5958 
5959 err_out_mapping:
5960 	rbd_dev_mapping_clear(rbd_dev);
5961 err_out_disk:
5962 	rbd_free_disk(rbd_dev);
5963 err_out_blkdev:
5964 	if (!single_major)
5965 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5966 err_out_unlock:
5967 	up_write(&rbd_dev->header_rwsem);
5968 	return ret;
5969 }
5970 
5971 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5972 {
5973 	struct rbd_spec *spec = rbd_dev->spec;
5974 	int ret;
5975 
5976 	/* Record the header object name for this rbd image. */
5977 
5978 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5979 	if (rbd_dev->image_format == 1)
5980 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5981 				       spec->image_name, RBD_SUFFIX);
5982 	else
5983 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5984 				       RBD_HEADER_PREFIX, spec->image_id);
5985 
5986 	return ret;
5987 }
5988 
5989 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5990 {
5991 	rbd_dev_unprobe(rbd_dev);
5992 	if (rbd_dev->opts)
5993 		rbd_unregister_watch(rbd_dev);
5994 	rbd_dev->image_format = 0;
5995 	kfree(rbd_dev->spec->image_id);
5996 	rbd_dev->spec->image_id = NULL;
5997 }
5998 
5999 /*
6000  * Probe for the existence of the header object for the given rbd
6001  * device.  If this image is the one being mapped (i.e., not a
6002  * parent), initiate a watch on its header object before using that
6003  * object to get detailed information about the rbd image.
6004  */
6005 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6006 {
6007 	int ret;
6008 
6009 	/*
6010 	 * Get the id from the image id object.  Unless there's an
6011 	 * error, rbd_dev->spec->image_id will be filled in with
6012 	 * a dynamically-allocated string, and rbd_dev->image_format
6013 	 * will be set to either 1 or 2.
6014 	 */
6015 	ret = rbd_dev_image_id(rbd_dev);
6016 	if (ret)
6017 		return ret;
6018 
6019 	ret = rbd_dev_header_name(rbd_dev);
6020 	if (ret)
6021 		goto err_out_format;
6022 
6023 	if (!depth) {
6024 		ret = rbd_register_watch(rbd_dev);
6025 		if (ret) {
6026 			if (ret == -ENOENT)
6027 				pr_info("image %s/%s does not exist\n",
6028 					rbd_dev->spec->pool_name,
6029 					rbd_dev->spec->image_name);
6030 			goto err_out_format;
6031 		}
6032 	}
6033 
6034 	ret = rbd_dev_header_info(rbd_dev);
6035 	if (ret)
6036 		goto err_out_watch;
6037 
6038 	/*
6039 	 * If this image is the one being mapped, we have pool name and
6040 	 * id, image name and id, and snap name - need to fill snap id.
6041 	 * Otherwise this is a parent image, identified by pool, image
6042 	 * and snap ids - need to fill in names for those ids.
6043 	 */
6044 	if (!depth)
6045 		ret = rbd_spec_fill_snap_id(rbd_dev);
6046 	else
6047 		ret = rbd_spec_fill_names(rbd_dev);
6048 	if (ret) {
6049 		if (ret == -ENOENT)
6050 			pr_info("snap %s/%s@%s does not exist\n",
6051 				rbd_dev->spec->pool_name,
6052 				rbd_dev->spec->image_name,
6053 				rbd_dev->spec->snap_name);
6054 		goto err_out_probe;
6055 	}
6056 
6057 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6058 		ret = rbd_dev_v2_parent_info(rbd_dev);
6059 		if (ret)
6060 			goto err_out_probe;
6061 
6062 		/*
6063 		 * Need to warn users if this image is the one being
6064 		 * mapped and has a parent.
6065 		 */
6066 		if (!depth && rbd_dev->parent_spec)
6067 			rbd_warn(rbd_dev,
6068 				 "WARNING: kernel layering is EXPERIMENTAL!");
6069 	}
6070 
6071 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6072 	if (ret)
6073 		goto err_out_probe;
6074 
6075 	dout("discovered format %u image, header name is %s\n",
6076 		rbd_dev->image_format, rbd_dev->header_oid.name);
6077 	return 0;
6078 
6079 err_out_probe:
6080 	rbd_dev_unprobe(rbd_dev);
6081 err_out_watch:
6082 	if (!depth)
6083 		rbd_unregister_watch(rbd_dev);
6084 err_out_format:
6085 	rbd_dev->image_format = 0;
6086 	kfree(rbd_dev->spec->image_id);
6087 	rbd_dev->spec->image_id = NULL;
6088 	return ret;
6089 }
6090 
6091 static ssize_t do_rbd_add(struct bus_type *bus,
6092 			  const char *buf,
6093 			  size_t count)
6094 {
6095 	struct rbd_device *rbd_dev = NULL;
6096 	struct ceph_options *ceph_opts = NULL;
6097 	struct rbd_options *rbd_opts = NULL;
6098 	struct rbd_spec *spec = NULL;
6099 	struct rbd_client *rbdc;
6100 	int rc;
6101 
6102 	if (!try_module_get(THIS_MODULE))
6103 		return -ENODEV;
6104 
6105 	/* parse add command */
6106 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6107 	if (rc < 0)
6108 		goto out;
6109 
6110 	rbdc = rbd_get_client(ceph_opts);
6111 	if (IS_ERR(rbdc)) {
6112 		rc = PTR_ERR(rbdc);
6113 		goto err_out_args;
6114 	}
6115 
6116 	/* pick the pool */
6117 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6118 	if (rc < 0) {
6119 		if (rc == -ENOENT)
6120 			pr_info("pool %s does not exist\n", spec->pool_name);
6121 		goto err_out_client;
6122 	}
6123 	spec->pool_id = (u64)rc;
6124 
6125 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6126 	if (!rbd_dev) {
6127 		rc = -ENOMEM;
6128 		goto err_out_client;
6129 	}
6130 	rbdc = NULL;		/* rbd_dev now owns this */
6131 	spec = NULL;		/* rbd_dev now owns this */
6132 	rbd_opts = NULL;	/* rbd_dev now owns this */
6133 
6134 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6135 	if (!rbd_dev->config_info) {
6136 		rc = -ENOMEM;
6137 		goto err_out_rbd_dev;
6138 	}
6139 
6140 	down_write(&rbd_dev->header_rwsem);
6141 	rc = rbd_dev_image_probe(rbd_dev, 0);
6142 	if (rc < 0) {
6143 		up_write(&rbd_dev->header_rwsem);
6144 		goto err_out_rbd_dev;
6145 	}
6146 
6147 	/* If we are mapping a snapshot it must be marked read-only */
6148 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6149 		rbd_dev->opts->read_only = true;
6150 
6151 	rc = rbd_dev_device_setup(rbd_dev);
6152 	if (rc)
6153 		goto err_out_image_probe;
6154 
6155 	if (rbd_dev->opts->exclusive) {
6156 		rc = rbd_add_acquire_lock(rbd_dev);
6157 		if (rc)
6158 			goto err_out_device_setup;
6159 	}
6160 
6161 	/* Everything's ready.  Announce the disk to the world. */
6162 
6163 	rc = device_add(&rbd_dev->dev);
6164 	if (rc)
6165 		goto err_out_image_lock;
6166 
6167 	add_disk(rbd_dev->disk);
6168 	/* see rbd_init_disk() */
6169 	blk_put_queue(rbd_dev->disk->queue);
6170 
6171 	spin_lock(&rbd_dev_list_lock);
6172 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6173 	spin_unlock(&rbd_dev_list_lock);
6174 
6175 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6176 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6177 		rbd_dev->header.features);
6178 	rc = count;
6179 out:
6180 	module_put(THIS_MODULE);
6181 	return rc;
6182 
6183 err_out_image_lock:
6184 	rbd_dev_image_unlock(rbd_dev);
6185 err_out_device_setup:
6186 	rbd_dev_device_release(rbd_dev);
6187 err_out_image_probe:
6188 	rbd_dev_image_release(rbd_dev);
6189 err_out_rbd_dev:
6190 	rbd_dev_destroy(rbd_dev);
6191 err_out_client:
6192 	rbd_put_client(rbdc);
6193 err_out_args:
6194 	rbd_spec_put(spec);
6195 	kfree(rbd_opts);
6196 	goto out;
6197 }
6198 
6199 static ssize_t rbd_add(struct bus_type *bus,
6200 		       const char *buf,
6201 		       size_t count)
6202 {
6203 	if (single_major)
6204 		return -EINVAL;
6205 
6206 	return do_rbd_add(bus, buf, count);
6207 }
6208 
6209 static ssize_t rbd_add_single_major(struct bus_type *bus,
6210 				    const char *buf,
6211 				    size_t count)
6212 {
6213 	return do_rbd_add(bus, buf, count);
6214 }
6215 
6216 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6217 {
6218 	while (rbd_dev->parent) {
6219 		struct rbd_device *first = rbd_dev;
6220 		struct rbd_device *second = first->parent;
6221 		struct rbd_device *third;
6222 
6223 		/*
6224 		 * Follow to the parent with no grandparent and
6225 		 * remove it.
6226 		 */
6227 		while (second && (third = second->parent)) {
6228 			first = second;
6229 			second = third;
6230 		}
6231 		rbd_assert(second);
6232 		rbd_dev_image_release(second);
6233 		rbd_dev_destroy(second);
6234 		first->parent = NULL;
6235 		first->parent_overlap = 0;
6236 
6237 		rbd_assert(first->parent_spec);
6238 		rbd_spec_put(first->parent_spec);
6239 		first->parent_spec = NULL;
6240 	}
6241 }
6242 
6243 static ssize_t do_rbd_remove(struct bus_type *bus,
6244 			     const char *buf,
6245 			     size_t count)
6246 {
6247 	struct rbd_device *rbd_dev = NULL;
6248 	struct list_head *tmp;
6249 	int dev_id;
6250 	char opt_buf[6];
6251 	bool already = false;
6252 	bool force = false;
6253 	int ret;
6254 
6255 	dev_id = -1;
6256 	opt_buf[0] = '\0';
6257 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6258 	if (dev_id < 0) {
6259 		pr_err("dev_id out of range\n");
6260 		return -EINVAL;
6261 	}
6262 	if (opt_buf[0] != '\0') {
6263 		if (!strcmp(opt_buf, "force")) {
6264 			force = true;
6265 		} else {
6266 			pr_err("bad remove option at '%s'\n", opt_buf);
6267 			return -EINVAL;
6268 		}
6269 	}
6270 
6271 	ret = -ENOENT;
6272 	spin_lock(&rbd_dev_list_lock);
6273 	list_for_each(tmp, &rbd_dev_list) {
6274 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6275 		if (rbd_dev->dev_id == dev_id) {
6276 			ret = 0;
6277 			break;
6278 		}
6279 	}
6280 	if (!ret) {
6281 		spin_lock_irq(&rbd_dev->lock);
6282 		if (rbd_dev->open_count && !force)
6283 			ret = -EBUSY;
6284 		else
6285 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6286 							&rbd_dev->flags);
6287 		spin_unlock_irq(&rbd_dev->lock);
6288 	}
6289 	spin_unlock(&rbd_dev_list_lock);
6290 	if (ret < 0 || already)
6291 		return ret;
6292 
6293 	if (force) {
6294 		/*
6295 		 * Prevent new IO from being queued and wait for existing
6296 		 * IO to complete/fail.
6297 		 */
6298 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6299 		blk_set_queue_dying(rbd_dev->disk->queue);
6300 	}
6301 
6302 	del_gendisk(rbd_dev->disk);
6303 	spin_lock(&rbd_dev_list_lock);
6304 	list_del_init(&rbd_dev->node);
6305 	spin_unlock(&rbd_dev_list_lock);
6306 	device_del(&rbd_dev->dev);
6307 
6308 	rbd_dev_image_unlock(rbd_dev);
6309 	rbd_dev_device_release(rbd_dev);
6310 	rbd_dev_image_release(rbd_dev);
6311 	rbd_dev_destroy(rbd_dev);
6312 	return count;
6313 }
6314 
6315 static ssize_t rbd_remove(struct bus_type *bus,
6316 			  const char *buf,
6317 			  size_t count)
6318 {
6319 	if (single_major)
6320 		return -EINVAL;
6321 
6322 	return do_rbd_remove(bus, buf, count);
6323 }
6324 
6325 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6326 				       const char *buf,
6327 				       size_t count)
6328 {
6329 	return do_rbd_remove(bus, buf, count);
6330 }
6331 
6332 /*
6333  * create control files in sysfs
6334  * /sys/bus/rbd/...
6335  */
6336 static int rbd_sysfs_init(void)
6337 {
6338 	int ret;
6339 
6340 	ret = device_register(&rbd_root_dev);
6341 	if (ret < 0)
6342 		return ret;
6343 
6344 	ret = bus_register(&rbd_bus_type);
6345 	if (ret < 0)
6346 		device_unregister(&rbd_root_dev);
6347 
6348 	return ret;
6349 }
6350 
6351 static void rbd_sysfs_cleanup(void)
6352 {
6353 	bus_unregister(&rbd_bus_type);
6354 	device_unregister(&rbd_root_dev);
6355 }
6356 
6357 static int rbd_slab_init(void)
6358 {
6359 	rbd_assert(!rbd_img_request_cache);
6360 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6361 	if (!rbd_img_request_cache)
6362 		return -ENOMEM;
6363 
6364 	rbd_assert(!rbd_obj_request_cache);
6365 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6366 	if (!rbd_obj_request_cache)
6367 		goto out_err;
6368 
6369 	rbd_assert(!rbd_bio_clone);
6370 	rbd_bio_clone = bioset_create(BIO_POOL_SIZE, 0, 0);
6371 	if (!rbd_bio_clone)
6372 		goto out_err_clone;
6373 
6374 	return 0;
6375 
6376 out_err_clone:
6377 	kmem_cache_destroy(rbd_obj_request_cache);
6378 	rbd_obj_request_cache = NULL;
6379 out_err:
6380 	kmem_cache_destroy(rbd_img_request_cache);
6381 	rbd_img_request_cache = NULL;
6382 	return -ENOMEM;
6383 }
6384 
6385 static void rbd_slab_exit(void)
6386 {
6387 	rbd_assert(rbd_obj_request_cache);
6388 	kmem_cache_destroy(rbd_obj_request_cache);
6389 	rbd_obj_request_cache = NULL;
6390 
6391 	rbd_assert(rbd_img_request_cache);
6392 	kmem_cache_destroy(rbd_img_request_cache);
6393 	rbd_img_request_cache = NULL;
6394 
6395 	rbd_assert(rbd_bio_clone);
6396 	bioset_free(rbd_bio_clone);
6397 	rbd_bio_clone = NULL;
6398 }
6399 
6400 static int __init rbd_init(void)
6401 {
6402 	int rc;
6403 
6404 	if (!libceph_compatible(NULL)) {
6405 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6406 		return -EINVAL;
6407 	}
6408 
6409 	rc = rbd_slab_init();
6410 	if (rc)
6411 		return rc;
6412 
6413 	/*
6414 	 * The number of active work items is limited by the number of
6415 	 * rbd devices * queue depth, so leave @max_active at default.
6416 	 */
6417 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6418 	if (!rbd_wq) {
6419 		rc = -ENOMEM;
6420 		goto err_out_slab;
6421 	}
6422 
6423 	if (single_major) {
6424 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6425 		if (rbd_major < 0) {
6426 			rc = rbd_major;
6427 			goto err_out_wq;
6428 		}
6429 	}
6430 
6431 	rc = rbd_sysfs_init();
6432 	if (rc)
6433 		goto err_out_blkdev;
6434 
6435 	if (single_major)
6436 		pr_info("loaded (major %d)\n", rbd_major);
6437 	else
6438 		pr_info("loaded\n");
6439 
6440 	return 0;
6441 
6442 err_out_blkdev:
6443 	if (single_major)
6444 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6445 err_out_wq:
6446 	destroy_workqueue(rbd_wq);
6447 err_out_slab:
6448 	rbd_slab_exit();
6449 	return rc;
6450 }
6451 
6452 static void __exit rbd_exit(void)
6453 {
6454 	ida_destroy(&rbd_dev_id_ida);
6455 	rbd_sysfs_cleanup();
6456 	if (single_major)
6457 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6458 	destroy_workqueue(rbd_wq);
6459 	rbd_slab_exit();
6460 }
6461 
6462 module_init(rbd_init);
6463 module_exit(rbd_exit);
6464 
6465 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6466 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6467 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6468 /* following authorship retained from original osdblk.c */
6469 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6470 
6471 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6472 MODULE_LICENSE("GPL");
6473