1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 #include <linux/idr.h> 45 46 #include "rbd_types.h" 47 48 #define RBD_DEBUG /* Activate rbd_assert() calls */ 49 50 /* 51 * The basic unit of block I/O is a sector. It is interpreted in a 52 * number of contexts in Linux (blk, bio, genhd), but the default is 53 * universally 512 bytes. These symbols are just slightly more 54 * meaningful than the bare numbers they represent. 55 */ 56 #define SECTOR_SHIFT 9 57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 58 59 /* 60 * Increment the given counter and return its updated value. 61 * If the counter is already 0 it will not be incremented. 62 * If the counter is already at its maximum value returns 63 * -EINVAL without updating it. 64 */ 65 static int atomic_inc_return_safe(atomic_t *v) 66 { 67 unsigned int counter; 68 69 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 70 if (counter <= (unsigned int)INT_MAX) 71 return (int)counter; 72 73 atomic_dec(v); 74 75 return -EINVAL; 76 } 77 78 /* Decrement the counter. Return the resulting value, or -EINVAL */ 79 static int atomic_dec_return_safe(atomic_t *v) 80 { 81 int counter; 82 83 counter = atomic_dec_return(v); 84 if (counter >= 0) 85 return counter; 86 87 atomic_inc(v); 88 89 return -EINVAL; 90 } 91 92 #define RBD_DRV_NAME "rbd" 93 94 #define RBD_MINORS_PER_MAJOR 256 95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 96 97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 98 #define RBD_MAX_SNAP_NAME_LEN \ 99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 100 101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 102 103 #define RBD_SNAP_HEAD_NAME "-" 104 105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 106 107 /* This allows a single page to hold an image name sent by OSD */ 108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 109 #define RBD_IMAGE_ID_LEN_MAX 64 110 111 #define RBD_OBJ_PREFIX_LEN_MAX 64 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1<<1) 117 #define RBD_FEATURES_ALL \ 118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 119 120 /* Features supported by this (client software) implementation. */ 121 122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 123 124 /* 125 * An RBD device name will be "rbd#", where the "rbd" comes from 126 * RBD_DRV_NAME above, and # is a unique integer identifier. 127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 128 * enough to hold all possible device names. 129 */ 130 #define DEV_NAME_LEN 32 131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 132 133 /* 134 * block device image metadata (in-memory version) 135 */ 136 struct rbd_image_header { 137 /* These six fields never change for a given rbd image */ 138 char *object_prefix; 139 __u8 obj_order; 140 __u8 crypt_type; 141 __u8 comp_type; 142 u64 stripe_unit; 143 u64 stripe_count; 144 u64 features; /* Might be changeable someday? */ 145 146 /* The remaining fields need to be updated occasionally */ 147 u64 image_size; 148 struct ceph_snap_context *snapc; 149 char *snap_names; /* format 1 only */ 150 u64 *snap_sizes; /* format 1 only */ 151 }; 152 153 /* 154 * An rbd image specification. 155 * 156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 157 * identify an image. Each rbd_dev structure includes a pointer to 158 * an rbd_spec structure that encapsulates this identity. 159 * 160 * Each of the id's in an rbd_spec has an associated name. For a 161 * user-mapped image, the names are supplied and the id's associated 162 * with them are looked up. For a layered image, a parent image is 163 * defined by the tuple, and the names are looked up. 164 * 165 * An rbd_dev structure contains a parent_spec pointer which is 166 * non-null if the image it represents is a child in a layered 167 * image. This pointer will refer to the rbd_spec structure used 168 * by the parent rbd_dev for its own identity (i.e., the structure 169 * is shared between the parent and child). 170 * 171 * Since these structures are populated once, during the discovery 172 * phase of image construction, they are effectively immutable so 173 * we make no effort to synchronize access to them. 174 * 175 * Note that code herein does not assume the image name is known (it 176 * could be a null pointer). 177 */ 178 struct rbd_spec { 179 u64 pool_id; 180 const char *pool_name; 181 182 const char *image_id; 183 const char *image_name; 184 185 u64 snap_id; 186 const char *snap_name; 187 188 struct kref kref; 189 }; 190 191 /* 192 * an instance of the client. multiple devices may share an rbd client. 193 */ 194 struct rbd_client { 195 struct ceph_client *client; 196 struct kref kref; 197 struct list_head node; 198 }; 199 200 struct rbd_img_request; 201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 202 203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 204 205 struct rbd_obj_request; 206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 207 208 enum obj_request_type { 209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 210 }; 211 212 enum obj_req_flags { 213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 217 }; 218 219 struct rbd_obj_request { 220 const char *object_name; 221 u64 offset; /* object start byte */ 222 u64 length; /* bytes from offset */ 223 unsigned long flags; 224 225 /* 226 * An object request associated with an image will have its 227 * img_data flag set; a standalone object request will not. 228 * 229 * A standalone object request will have which == BAD_WHICH 230 * and a null obj_request pointer. 231 * 232 * An object request initiated in support of a layered image 233 * object (to check for its existence before a write) will 234 * have which == BAD_WHICH and a non-null obj_request pointer. 235 * 236 * Finally, an object request for rbd image data will have 237 * which != BAD_WHICH, and will have a non-null img_request 238 * pointer. The value of which will be in the range 239 * 0..(img_request->obj_request_count-1). 240 */ 241 union { 242 struct rbd_obj_request *obj_request; /* STAT op */ 243 struct { 244 struct rbd_img_request *img_request; 245 u64 img_offset; 246 /* links for img_request->obj_requests list */ 247 struct list_head links; 248 }; 249 }; 250 u32 which; /* posn image request list */ 251 252 enum obj_request_type type; 253 union { 254 struct bio *bio_list; 255 struct { 256 struct page **pages; 257 u32 page_count; 258 }; 259 }; 260 struct page **copyup_pages; 261 u32 copyup_page_count; 262 263 struct ceph_osd_request *osd_req; 264 265 u64 xferred; /* bytes transferred */ 266 int result; 267 268 rbd_obj_callback_t callback; 269 struct completion completion; 270 271 struct kref kref; 272 }; 273 274 enum img_req_flags { 275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 278 }; 279 280 struct rbd_img_request { 281 struct rbd_device *rbd_dev; 282 u64 offset; /* starting image byte offset */ 283 u64 length; /* byte count from offset */ 284 unsigned long flags; 285 union { 286 u64 snap_id; /* for reads */ 287 struct ceph_snap_context *snapc; /* for writes */ 288 }; 289 union { 290 struct request *rq; /* block request */ 291 struct rbd_obj_request *obj_request; /* obj req initiator */ 292 }; 293 struct page **copyup_pages; 294 u32 copyup_page_count; 295 spinlock_t completion_lock;/* protects next_completion */ 296 u32 next_completion; 297 rbd_img_callback_t callback; 298 u64 xferred;/* aggregate bytes transferred */ 299 int result; /* first nonzero obj_request result */ 300 301 u32 obj_request_count; 302 struct list_head obj_requests; /* rbd_obj_request structs */ 303 304 struct kref kref; 305 }; 306 307 #define for_each_obj_request(ireq, oreq) \ 308 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 309 #define for_each_obj_request_from(ireq, oreq) \ 310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 311 #define for_each_obj_request_safe(ireq, oreq, n) \ 312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 313 314 struct rbd_mapping { 315 u64 size; 316 u64 features; 317 bool read_only; 318 }; 319 320 /* 321 * a single device 322 */ 323 struct rbd_device { 324 int dev_id; /* blkdev unique id */ 325 326 int major; /* blkdev assigned major */ 327 int minor; 328 struct gendisk *disk; /* blkdev's gendisk and rq */ 329 330 u32 image_format; /* Either 1 or 2 */ 331 struct rbd_client *rbd_client; 332 333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 334 335 spinlock_t lock; /* queue, flags, open_count */ 336 337 struct rbd_image_header header; 338 unsigned long flags; /* possibly lock protected */ 339 struct rbd_spec *spec; 340 341 char *header_name; 342 343 struct ceph_file_layout layout; 344 345 struct ceph_osd_event *watch_event; 346 struct rbd_obj_request *watch_request; 347 348 struct rbd_spec *parent_spec; 349 u64 parent_overlap; 350 atomic_t parent_ref; 351 struct rbd_device *parent; 352 353 /* protects updating the header */ 354 struct rw_semaphore header_rwsem; 355 356 struct rbd_mapping mapping; 357 358 struct list_head node; 359 360 /* sysfs related */ 361 struct device dev; 362 unsigned long open_count; /* protected by lock */ 363 }; 364 365 /* 366 * Flag bits for rbd_dev->flags. If atomicity is required, 367 * rbd_dev->lock is used to protect access. 368 * 369 * Currently, only the "removing" flag (which is coupled with the 370 * "open_count" field) requires atomic access. 371 */ 372 enum rbd_dev_flags { 373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 375 }; 376 377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 378 379 static LIST_HEAD(rbd_dev_list); /* devices */ 380 static DEFINE_SPINLOCK(rbd_dev_list_lock); 381 382 static LIST_HEAD(rbd_client_list); /* clients */ 383 static DEFINE_SPINLOCK(rbd_client_list_lock); 384 385 /* Slab caches for frequently-allocated structures */ 386 387 static struct kmem_cache *rbd_img_request_cache; 388 static struct kmem_cache *rbd_obj_request_cache; 389 static struct kmem_cache *rbd_segment_name_cache; 390 391 static int rbd_major; 392 static DEFINE_IDA(rbd_dev_id_ida); 393 394 /* 395 * Default to false for now, as single-major requires >= 0.75 version of 396 * userspace rbd utility. 397 */ 398 static bool single_major = false; 399 module_param(single_major, bool, S_IRUGO); 400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 401 402 static int rbd_img_request_submit(struct rbd_img_request *img_request); 403 404 static void rbd_dev_device_release(struct device *dev); 405 406 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 407 size_t count); 408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 409 size_t count); 410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 411 size_t count); 412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 413 size_t count); 414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 415 static void rbd_spec_put(struct rbd_spec *spec); 416 417 static int rbd_dev_id_to_minor(int dev_id) 418 { 419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 420 } 421 422 static int minor_to_rbd_dev_id(int minor) 423 { 424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 425 } 426 427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 431 432 static struct attribute *rbd_bus_attrs[] = { 433 &bus_attr_add.attr, 434 &bus_attr_remove.attr, 435 &bus_attr_add_single_major.attr, 436 &bus_attr_remove_single_major.attr, 437 NULL, 438 }; 439 440 static umode_t rbd_bus_is_visible(struct kobject *kobj, 441 struct attribute *attr, int index) 442 { 443 if (!single_major && 444 (attr == &bus_attr_add_single_major.attr || 445 attr == &bus_attr_remove_single_major.attr)) 446 return 0; 447 448 return attr->mode; 449 } 450 451 static const struct attribute_group rbd_bus_group = { 452 .attrs = rbd_bus_attrs, 453 .is_visible = rbd_bus_is_visible, 454 }; 455 __ATTRIBUTE_GROUPS(rbd_bus); 456 457 static struct bus_type rbd_bus_type = { 458 .name = "rbd", 459 .bus_groups = rbd_bus_groups, 460 }; 461 462 static void rbd_root_dev_release(struct device *dev) 463 { 464 } 465 466 static struct device rbd_root_dev = { 467 .init_name = "rbd", 468 .release = rbd_root_dev_release, 469 }; 470 471 static __printf(2, 3) 472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 473 { 474 struct va_format vaf; 475 va_list args; 476 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 481 if (!rbd_dev) 482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 483 else if (rbd_dev->disk) 484 printk(KERN_WARNING "%s: %s: %pV\n", 485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 486 else if (rbd_dev->spec && rbd_dev->spec->image_name) 487 printk(KERN_WARNING "%s: image %s: %pV\n", 488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 489 else if (rbd_dev->spec && rbd_dev->spec->image_id) 490 printk(KERN_WARNING "%s: id %s: %pV\n", 491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 492 else /* punt */ 493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 494 RBD_DRV_NAME, rbd_dev, &vaf); 495 va_end(args); 496 } 497 498 #ifdef RBD_DEBUG 499 #define rbd_assert(expr) \ 500 if (unlikely(!(expr))) { \ 501 printk(KERN_ERR "\nAssertion failure in %s() " \ 502 "at line %d:\n\n" \ 503 "\trbd_assert(%s);\n\n", \ 504 __func__, __LINE__, #expr); \ 505 BUG(); \ 506 } 507 #else /* !RBD_DEBUG */ 508 # define rbd_assert(expr) ((void) 0) 509 #endif /* !RBD_DEBUG */ 510 511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 514 515 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev); 518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 519 u64 snap_id); 520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 521 u8 *order, u64 *snap_size); 522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 523 u64 *snap_features); 524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 525 526 static int rbd_open(struct block_device *bdev, fmode_t mode) 527 { 528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 529 bool removing = false; 530 531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 532 return -EROFS; 533 534 spin_lock_irq(&rbd_dev->lock); 535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 536 removing = true; 537 else 538 rbd_dev->open_count++; 539 spin_unlock_irq(&rbd_dev->lock); 540 if (removing) 541 return -ENOENT; 542 543 (void) get_device(&rbd_dev->dev); 544 set_device_ro(bdev, rbd_dev->mapping.read_only); 545 546 return 0; 547 } 548 549 static void rbd_release(struct gendisk *disk, fmode_t mode) 550 { 551 struct rbd_device *rbd_dev = disk->private_data; 552 unsigned long open_count_before; 553 554 spin_lock_irq(&rbd_dev->lock); 555 open_count_before = rbd_dev->open_count--; 556 spin_unlock_irq(&rbd_dev->lock); 557 rbd_assert(open_count_before > 0); 558 559 put_device(&rbd_dev->dev); 560 } 561 562 static const struct block_device_operations rbd_bd_ops = { 563 .owner = THIS_MODULE, 564 .open = rbd_open, 565 .release = rbd_release, 566 }; 567 568 /* 569 * Initialize an rbd client instance. Success or not, this function 570 * consumes ceph_opts. Caller holds client_mutex. 571 */ 572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 573 { 574 struct rbd_client *rbdc; 575 int ret = -ENOMEM; 576 577 dout("%s:\n", __func__); 578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 579 if (!rbdc) 580 goto out_opt; 581 582 kref_init(&rbdc->kref); 583 INIT_LIST_HEAD(&rbdc->node); 584 585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 586 if (IS_ERR(rbdc->client)) 587 goto out_rbdc; 588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 589 590 ret = ceph_open_session(rbdc->client); 591 if (ret < 0) 592 goto out_client; 593 594 spin_lock(&rbd_client_list_lock); 595 list_add_tail(&rbdc->node, &rbd_client_list); 596 spin_unlock(&rbd_client_list_lock); 597 598 dout("%s: rbdc %p\n", __func__, rbdc); 599 600 return rbdc; 601 out_client: 602 ceph_destroy_client(rbdc->client); 603 out_rbdc: 604 kfree(rbdc); 605 out_opt: 606 if (ceph_opts) 607 ceph_destroy_options(ceph_opts); 608 dout("%s: error %d\n", __func__, ret); 609 610 return ERR_PTR(ret); 611 } 612 613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 614 { 615 kref_get(&rbdc->kref); 616 617 return rbdc; 618 } 619 620 /* 621 * Find a ceph client with specific addr and configuration. If 622 * found, bump its reference count. 623 */ 624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 625 { 626 struct rbd_client *client_node; 627 bool found = false; 628 629 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 630 return NULL; 631 632 spin_lock(&rbd_client_list_lock); 633 list_for_each_entry(client_node, &rbd_client_list, node) { 634 if (!ceph_compare_options(ceph_opts, client_node->client)) { 635 __rbd_get_client(client_node); 636 637 found = true; 638 break; 639 } 640 } 641 spin_unlock(&rbd_client_list_lock); 642 643 return found ? client_node : NULL; 644 } 645 646 /* 647 * mount options 648 */ 649 enum { 650 Opt_last_int, 651 /* int args above */ 652 Opt_last_string, 653 /* string args above */ 654 Opt_read_only, 655 Opt_read_write, 656 /* Boolean args above */ 657 Opt_last_bool, 658 }; 659 660 static match_table_t rbd_opts_tokens = { 661 /* int args above */ 662 /* string args above */ 663 {Opt_read_only, "read_only"}, 664 {Opt_read_only, "ro"}, /* Alternate spelling */ 665 {Opt_read_write, "read_write"}, 666 {Opt_read_write, "rw"}, /* Alternate spelling */ 667 /* Boolean args above */ 668 {-1, NULL} 669 }; 670 671 struct rbd_options { 672 bool read_only; 673 }; 674 675 #define RBD_READ_ONLY_DEFAULT false 676 677 static int parse_rbd_opts_token(char *c, void *private) 678 { 679 struct rbd_options *rbd_opts = private; 680 substring_t argstr[MAX_OPT_ARGS]; 681 int token, intval, ret; 682 683 token = match_token(c, rbd_opts_tokens, argstr); 684 if (token < 0) 685 return -EINVAL; 686 687 if (token < Opt_last_int) { 688 ret = match_int(&argstr[0], &intval); 689 if (ret < 0) { 690 pr_err("bad mount option arg (not int) " 691 "at '%s'\n", c); 692 return ret; 693 } 694 dout("got int token %d val %d\n", token, intval); 695 } else if (token > Opt_last_int && token < Opt_last_string) { 696 dout("got string token %d val %s\n", token, 697 argstr[0].from); 698 } else if (token > Opt_last_string && token < Opt_last_bool) { 699 dout("got Boolean token %d\n", token); 700 } else { 701 dout("got token %d\n", token); 702 } 703 704 switch (token) { 705 case Opt_read_only: 706 rbd_opts->read_only = true; 707 break; 708 case Opt_read_write: 709 rbd_opts->read_only = false; 710 break; 711 default: 712 rbd_assert(false); 713 break; 714 } 715 return 0; 716 } 717 718 /* 719 * Get a ceph client with specific addr and configuration, if one does 720 * not exist create it. Either way, ceph_opts is consumed by this 721 * function. 722 */ 723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 724 { 725 struct rbd_client *rbdc; 726 727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 728 rbdc = rbd_client_find(ceph_opts); 729 if (rbdc) /* using an existing client */ 730 ceph_destroy_options(ceph_opts); 731 else 732 rbdc = rbd_client_create(ceph_opts); 733 mutex_unlock(&client_mutex); 734 735 return rbdc; 736 } 737 738 /* 739 * Destroy ceph client 740 * 741 * Caller must hold rbd_client_list_lock. 742 */ 743 static void rbd_client_release(struct kref *kref) 744 { 745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 746 747 dout("%s: rbdc %p\n", __func__, rbdc); 748 spin_lock(&rbd_client_list_lock); 749 list_del(&rbdc->node); 750 spin_unlock(&rbd_client_list_lock); 751 752 ceph_destroy_client(rbdc->client); 753 kfree(rbdc); 754 } 755 756 /* 757 * Drop reference to ceph client node. If it's not referenced anymore, release 758 * it. 759 */ 760 static void rbd_put_client(struct rbd_client *rbdc) 761 { 762 if (rbdc) 763 kref_put(&rbdc->kref, rbd_client_release); 764 } 765 766 static bool rbd_image_format_valid(u32 image_format) 767 { 768 return image_format == 1 || image_format == 2; 769 } 770 771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 772 { 773 size_t size; 774 u32 snap_count; 775 776 /* The header has to start with the magic rbd header text */ 777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 778 return false; 779 780 /* The bio layer requires at least sector-sized I/O */ 781 782 if (ondisk->options.order < SECTOR_SHIFT) 783 return false; 784 785 /* If we use u64 in a few spots we may be able to loosen this */ 786 787 if (ondisk->options.order > 8 * sizeof (int) - 1) 788 return false; 789 790 /* 791 * The size of a snapshot header has to fit in a size_t, and 792 * that limits the number of snapshots. 793 */ 794 snap_count = le32_to_cpu(ondisk->snap_count); 795 size = SIZE_MAX - sizeof (struct ceph_snap_context); 796 if (snap_count > size / sizeof (__le64)) 797 return false; 798 799 /* 800 * Not only that, but the size of the entire the snapshot 801 * header must also be representable in a size_t. 802 */ 803 size -= snap_count * sizeof (__le64); 804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 805 return false; 806 807 return true; 808 } 809 810 /* 811 * Fill an rbd image header with information from the given format 1 812 * on-disk header. 813 */ 814 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 815 struct rbd_image_header_ondisk *ondisk) 816 { 817 struct rbd_image_header *header = &rbd_dev->header; 818 bool first_time = header->object_prefix == NULL; 819 struct ceph_snap_context *snapc; 820 char *object_prefix = NULL; 821 char *snap_names = NULL; 822 u64 *snap_sizes = NULL; 823 u32 snap_count; 824 size_t size; 825 int ret = -ENOMEM; 826 u32 i; 827 828 /* Allocate this now to avoid having to handle failure below */ 829 830 if (first_time) { 831 size_t len; 832 833 len = strnlen(ondisk->object_prefix, 834 sizeof (ondisk->object_prefix)); 835 object_prefix = kmalloc(len + 1, GFP_KERNEL); 836 if (!object_prefix) 837 return -ENOMEM; 838 memcpy(object_prefix, ondisk->object_prefix, len); 839 object_prefix[len] = '\0'; 840 } 841 842 /* Allocate the snapshot context and fill it in */ 843 844 snap_count = le32_to_cpu(ondisk->snap_count); 845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 846 if (!snapc) 847 goto out_err; 848 snapc->seq = le64_to_cpu(ondisk->snap_seq); 849 if (snap_count) { 850 struct rbd_image_snap_ondisk *snaps; 851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 852 853 /* We'll keep a copy of the snapshot names... */ 854 855 if (snap_names_len > (u64)SIZE_MAX) 856 goto out_2big; 857 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 858 if (!snap_names) 859 goto out_err; 860 861 /* ...as well as the array of their sizes. */ 862 863 size = snap_count * sizeof (*header->snap_sizes); 864 snap_sizes = kmalloc(size, GFP_KERNEL); 865 if (!snap_sizes) 866 goto out_err; 867 868 /* 869 * Copy the names, and fill in each snapshot's id 870 * and size. 871 * 872 * Note that rbd_dev_v1_header_info() guarantees the 873 * ondisk buffer we're working with has 874 * snap_names_len bytes beyond the end of the 875 * snapshot id array, this memcpy() is safe. 876 */ 877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 878 snaps = ondisk->snaps; 879 for (i = 0; i < snap_count; i++) { 880 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 882 } 883 } 884 885 /* We won't fail any more, fill in the header */ 886 887 if (first_time) { 888 header->object_prefix = object_prefix; 889 header->obj_order = ondisk->options.order; 890 header->crypt_type = ondisk->options.crypt_type; 891 header->comp_type = ondisk->options.comp_type; 892 /* The rest aren't used for format 1 images */ 893 header->stripe_unit = 0; 894 header->stripe_count = 0; 895 header->features = 0; 896 } else { 897 ceph_put_snap_context(header->snapc); 898 kfree(header->snap_names); 899 kfree(header->snap_sizes); 900 } 901 902 /* The remaining fields always get updated (when we refresh) */ 903 904 header->image_size = le64_to_cpu(ondisk->image_size); 905 header->snapc = snapc; 906 header->snap_names = snap_names; 907 header->snap_sizes = snap_sizes; 908 909 /* Make sure mapping size is consistent with header info */ 910 911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time) 912 if (rbd_dev->mapping.size != header->image_size) 913 rbd_dev->mapping.size = header->image_size; 914 915 return 0; 916 out_2big: 917 ret = -EIO; 918 out_err: 919 kfree(snap_sizes); 920 kfree(snap_names); 921 ceph_put_snap_context(snapc); 922 kfree(object_prefix); 923 924 return ret; 925 } 926 927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 928 { 929 const char *snap_name; 930 931 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 932 933 /* Skip over names until we find the one we are looking for */ 934 935 snap_name = rbd_dev->header.snap_names; 936 while (which--) 937 snap_name += strlen(snap_name) + 1; 938 939 return kstrdup(snap_name, GFP_KERNEL); 940 } 941 942 /* 943 * Snapshot id comparison function for use with qsort()/bsearch(). 944 * Note that result is for snapshots in *descending* order. 945 */ 946 static int snapid_compare_reverse(const void *s1, const void *s2) 947 { 948 u64 snap_id1 = *(u64 *)s1; 949 u64 snap_id2 = *(u64 *)s2; 950 951 if (snap_id1 < snap_id2) 952 return 1; 953 return snap_id1 == snap_id2 ? 0 : -1; 954 } 955 956 /* 957 * Search a snapshot context to see if the given snapshot id is 958 * present. 959 * 960 * Returns the position of the snapshot id in the array if it's found, 961 * or BAD_SNAP_INDEX otherwise. 962 * 963 * Note: The snapshot array is in kept sorted (by the osd) in 964 * reverse order, highest snapshot id first. 965 */ 966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 967 { 968 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 969 u64 *found; 970 971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 972 sizeof (snap_id), snapid_compare_reverse); 973 974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 975 } 976 977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 978 u64 snap_id) 979 { 980 u32 which; 981 const char *snap_name; 982 983 which = rbd_dev_snap_index(rbd_dev, snap_id); 984 if (which == BAD_SNAP_INDEX) 985 return ERR_PTR(-ENOENT); 986 987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 988 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 989 } 990 991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 992 { 993 if (snap_id == CEPH_NOSNAP) 994 return RBD_SNAP_HEAD_NAME; 995 996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 997 if (rbd_dev->image_format == 1) 998 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 999 1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1001 } 1002 1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1004 u64 *snap_size) 1005 { 1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1007 if (snap_id == CEPH_NOSNAP) { 1008 *snap_size = rbd_dev->header.image_size; 1009 } else if (rbd_dev->image_format == 1) { 1010 u32 which; 1011 1012 which = rbd_dev_snap_index(rbd_dev, snap_id); 1013 if (which == BAD_SNAP_INDEX) 1014 return -ENOENT; 1015 1016 *snap_size = rbd_dev->header.snap_sizes[which]; 1017 } else { 1018 u64 size = 0; 1019 int ret; 1020 1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1022 if (ret) 1023 return ret; 1024 1025 *snap_size = size; 1026 } 1027 return 0; 1028 } 1029 1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1031 u64 *snap_features) 1032 { 1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1034 if (snap_id == CEPH_NOSNAP) { 1035 *snap_features = rbd_dev->header.features; 1036 } else if (rbd_dev->image_format == 1) { 1037 *snap_features = 0; /* No features for format 1 */ 1038 } else { 1039 u64 features = 0; 1040 int ret; 1041 1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1043 if (ret) 1044 return ret; 1045 1046 *snap_features = features; 1047 } 1048 return 0; 1049 } 1050 1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1052 { 1053 u64 snap_id = rbd_dev->spec->snap_id; 1054 u64 size = 0; 1055 u64 features = 0; 1056 int ret; 1057 1058 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1059 if (ret) 1060 return ret; 1061 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1062 if (ret) 1063 return ret; 1064 1065 rbd_dev->mapping.size = size; 1066 rbd_dev->mapping.features = features; 1067 1068 return 0; 1069 } 1070 1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1072 { 1073 rbd_dev->mapping.size = 0; 1074 rbd_dev->mapping.features = 0; 1075 } 1076 1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1078 { 1079 char *name; 1080 u64 segment; 1081 int ret; 1082 char *name_format; 1083 1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1085 if (!name) 1086 return NULL; 1087 segment = offset >> rbd_dev->header.obj_order; 1088 name_format = "%s.%012llx"; 1089 if (rbd_dev->image_format == 2) 1090 name_format = "%s.%016llx"; 1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1092 rbd_dev->header.object_prefix, segment); 1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1094 pr_err("error formatting segment name for #%llu (%d)\n", 1095 segment, ret); 1096 kfree(name); 1097 name = NULL; 1098 } 1099 1100 return name; 1101 } 1102 1103 static void rbd_segment_name_free(const char *name) 1104 { 1105 /* The explicit cast here is needed to drop the const qualifier */ 1106 1107 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1108 } 1109 1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1111 { 1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1113 1114 return offset & (segment_size - 1); 1115 } 1116 1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1118 u64 offset, u64 length) 1119 { 1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1121 1122 offset &= segment_size - 1; 1123 1124 rbd_assert(length <= U64_MAX - offset); 1125 if (offset + length > segment_size) 1126 length = segment_size - offset; 1127 1128 return length; 1129 } 1130 1131 /* 1132 * returns the size of an object in the image 1133 */ 1134 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1135 { 1136 return 1 << header->obj_order; 1137 } 1138 1139 /* 1140 * bio helpers 1141 */ 1142 1143 static void bio_chain_put(struct bio *chain) 1144 { 1145 struct bio *tmp; 1146 1147 while (chain) { 1148 tmp = chain; 1149 chain = chain->bi_next; 1150 bio_put(tmp); 1151 } 1152 } 1153 1154 /* 1155 * zeros a bio chain, starting at specific offset 1156 */ 1157 static void zero_bio_chain(struct bio *chain, int start_ofs) 1158 { 1159 struct bio_vec bv; 1160 struct bvec_iter iter; 1161 unsigned long flags; 1162 void *buf; 1163 int pos = 0; 1164 1165 while (chain) { 1166 bio_for_each_segment(bv, chain, iter) { 1167 if (pos + bv.bv_len > start_ofs) { 1168 int remainder = max(start_ofs - pos, 0); 1169 buf = bvec_kmap_irq(&bv, &flags); 1170 memset(buf + remainder, 0, 1171 bv.bv_len - remainder); 1172 flush_dcache_page(bv.bv_page); 1173 bvec_kunmap_irq(buf, &flags); 1174 } 1175 pos += bv.bv_len; 1176 } 1177 1178 chain = chain->bi_next; 1179 } 1180 } 1181 1182 /* 1183 * similar to zero_bio_chain(), zeros data defined by a page array, 1184 * starting at the given byte offset from the start of the array and 1185 * continuing up to the given end offset. The pages array is 1186 * assumed to be big enough to hold all bytes up to the end. 1187 */ 1188 static void zero_pages(struct page **pages, u64 offset, u64 end) 1189 { 1190 struct page **page = &pages[offset >> PAGE_SHIFT]; 1191 1192 rbd_assert(end > offset); 1193 rbd_assert(end - offset <= (u64)SIZE_MAX); 1194 while (offset < end) { 1195 size_t page_offset; 1196 size_t length; 1197 unsigned long flags; 1198 void *kaddr; 1199 1200 page_offset = offset & ~PAGE_MASK; 1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1202 local_irq_save(flags); 1203 kaddr = kmap_atomic(*page); 1204 memset(kaddr + page_offset, 0, length); 1205 flush_dcache_page(*page); 1206 kunmap_atomic(kaddr); 1207 local_irq_restore(flags); 1208 1209 offset += length; 1210 page++; 1211 } 1212 } 1213 1214 /* 1215 * Clone a portion of a bio, starting at the given byte offset 1216 * and continuing for the number of bytes indicated. 1217 */ 1218 static struct bio *bio_clone_range(struct bio *bio_src, 1219 unsigned int offset, 1220 unsigned int len, 1221 gfp_t gfpmask) 1222 { 1223 struct bio *bio; 1224 1225 bio = bio_clone(bio_src, gfpmask); 1226 if (!bio) 1227 return NULL; /* ENOMEM */ 1228 1229 bio_advance(bio, offset); 1230 bio->bi_iter.bi_size = len; 1231 1232 return bio; 1233 } 1234 1235 /* 1236 * Clone a portion of a bio chain, starting at the given byte offset 1237 * into the first bio in the source chain and continuing for the 1238 * number of bytes indicated. The result is another bio chain of 1239 * exactly the given length, or a null pointer on error. 1240 * 1241 * The bio_src and offset parameters are both in-out. On entry they 1242 * refer to the first source bio and the offset into that bio where 1243 * the start of data to be cloned is located. 1244 * 1245 * On return, bio_src is updated to refer to the bio in the source 1246 * chain that contains first un-cloned byte, and *offset will 1247 * contain the offset of that byte within that bio. 1248 */ 1249 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1250 unsigned int *offset, 1251 unsigned int len, 1252 gfp_t gfpmask) 1253 { 1254 struct bio *bi = *bio_src; 1255 unsigned int off = *offset; 1256 struct bio *chain = NULL; 1257 struct bio **end; 1258 1259 /* Build up a chain of clone bios up to the limit */ 1260 1261 if (!bi || off >= bi->bi_iter.bi_size || !len) 1262 return NULL; /* Nothing to clone */ 1263 1264 end = &chain; 1265 while (len) { 1266 unsigned int bi_size; 1267 struct bio *bio; 1268 1269 if (!bi) { 1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1271 goto out_err; /* EINVAL; ran out of bio's */ 1272 } 1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1274 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1275 if (!bio) 1276 goto out_err; /* ENOMEM */ 1277 1278 *end = bio; 1279 end = &bio->bi_next; 1280 1281 off += bi_size; 1282 if (off == bi->bi_iter.bi_size) { 1283 bi = bi->bi_next; 1284 off = 0; 1285 } 1286 len -= bi_size; 1287 } 1288 *bio_src = bi; 1289 *offset = off; 1290 1291 return chain; 1292 out_err: 1293 bio_chain_put(chain); 1294 1295 return NULL; 1296 } 1297 1298 /* 1299 * The default/initial value for all object request flags is 0. For 1300 * each flag, once its value is set to 1 it is never reset to 0 1301 * again. 1302 */ 1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1304 { 1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1306 struct rbd_device *rbd_dev; 1307 1308 rbd_dev = obj_request->img_request->rbd_dev; 1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n", 1310 obj_request); 1311 } 1312 } 1313 1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1315 { 1316 smp_mb(); 1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1318 } 1319 1320 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1321 { 1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1323 struct rbd_device *rbd_dev = NULL; 1324 1325 if (obj_request_img_data_test(obj_request)) 1326 rbd_dev = obj_request->img_request->rbd_dev; 1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n", 1328 obj_request); 1329 } 1330 } 1331 1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1333 { 1334 smp_mb(); 1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1336 } 1337 1338 /* 1339 * This sets the KNOWN flag after (possibly) setting the EXISTS 1340 * flag. The latter is set based on the "exists" value provided. 1341 * 1342 * Note that for our purposes once an object exists it never goes 1343 * away again. It's possible that the response from two existence 1344 * checks are separated by the creation of the target object, and 1345 * the first ("doesn't exist") response arrives *after* the second 1346 * ("does exist"). In that case we ignore the second one. 1347 */ 1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1349 bool exists) 1350 { 1351 if (exists) 1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1354 smp_mb(); 1355 } 1356 1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1358 { 1359 smp_mb(); 1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1361 } 1362 1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1364 { 1365 smp_mb(); 1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1367 } 1368 1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1370 { 1371 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1372 atomic_read(&obj_request->kref.refcount)); 1373 kref_get(&obj_request->kref); 1374 } 1375 1376 static void rbd_obj_request_destroy(struct kref *kref); 1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1378 { 1379 rbd_assert(obj_request != NULL); 1380 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1381 atomic_read(&obj_request->kref.refcount)); 1382 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1383 } 1384 1385 static bool img_request_child_test(struct rbd_img_request *img_request); 1386 static void rbd_parent_request_destroy(struct kref *kref); 1387 static void rbd_img_request_destroy(struct kref *kref); 1388 static void rbd_img_request_put(struct rbd_img_request *img_request) 1389 { 1390 rbd_assert(img_request != NULL); 1391 dout("%s: img %p (was %d)\n", __func__, img_request, 1392 atomic_read(&img_request->kref.refcount)); 1393 if (img_request_child_test(img_request)) 1394 kref_put(&img_request->kref, rbd_parent_request_destroy); 1395 else 1396 kref_put(&img_request->kref, rbd_img_request_destroy); 1397 } 1398 1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1400 struct rbd_obj_request *obj_request) 1401 { 1402 rbd_assert(obj_request->img_request == NULL); 1403 1404 /* Image request now owns object's original reference */ 1405 obj_request->img_request = img_request; 1406 obj_request->which = img_request->obj_request_count; 1407 rbd_assert(!obj_request_img_data_test(obj_request)); 1408 obj_request_img_data_set(obj_request); 1409 rbd_assert(obj_request->which != BAD_WHICH); 1410 img_request->obj_request_count++; 1411 list_add_tail(&obj_request->links, &img_request->obj_requests); 1412 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1413 obj_request->which); 1414 } 1415 1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1417 struct rbd_obj_request *obj_request) 1418 { 1419 rbd_assert(obj_request->which != BAD_WHICH); 1420 1421 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1422 obj_request->which); 1423 list_del(&obj_request->links); 1424 rbd_assert(img_request->obj_request_count > 0); 1425 img_request->obj_request_count--; 1426 rbd_assert(obj_request->which == img_request->obj_request_count); 1427 obj_request->which = BAD_WHICH; 1428 rbd_assert(obj_request_img_data_test(obj_request)); 1429 rbd_assert(obj_request->img_request == img_request); 1430 obj_request->img_request = NULL; 1431 obj_request->callback = NULL; 1432 rbd_obj_request_put(obj_request); 1433 } 1434 1435 static bool obj_request_type_valid(enum obj_request_type type) 1436 { 1437 switch (type) { 1438 case OBJ_REQUEST_NODATA: 1439 case OBJ_REQUEST_BIO: 1440 case OBJ_REQUEST_PAGES: 1441 return true; 1442 default: 1443 return false; 1444 } 1445 } 1446 1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1448 struct rbd_obj_request *obj_request) 1449 { 1450 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request); 1451 1452 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1453 } 1454 1455 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1456 { 1457 1458 dout("%s: img %p\n", __func__, img_request); 1459 1460 /* 1461 * If no error occurred, compute the aggregate transfer 1462 * count for the image request. We could instead use 1463 * atomic64_cmpxchg() to update it as each object request 1464 * completes; not clear which way is better off hand. 1465 */ 1466 if (!img_request->result) { 1467 struct rbd_obj_request *obj_request; 1468 u64 xferred = 0; 1469 1470 for_each_obj_request(img_request, obj_request) 1471 xferred += obj_request->xferred; 1472 img_request->xferred = xferred; 1473 } 1474 1475 if (img_request->callback) 1476 img_request->callback(img_request); 1477 else 1478 rbd_img_request_put(img_request); 1479 } 1480 1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */ 1482 1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1484 { 1485 dout("%s: obj %p\n", __func__, obj_request); 1486 1487 return wait_for_completion_interruptible(&obj_request->completion); 1488 } 1489 1490 /* 1491 * The default/initial value for all image request flags is 0. Each 1492 * is conditionally set to 1 at image request initialization time 1493 * and currently never change thereafter. 1494 */ 1495 static void img_request_write_set(struct rbd_img_request *img_request) 1496 { 1497 set_bit(IMG_REQ_WRITE, &img_request->flags); 1498 smp_mb(); 1499 } 1500 1501 static bool img_request_write_test(struct rbd_img_request *img_request) 1502 { 1503 smp_mb(); 1504 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1505 } 1506 1507 static void img_request_child_set(struct rbd_img_request *img_request) 1508 { 1509 set_bit(IMG_REQ_CHILD, &img_request->flags); 1510 smp_mb(); 1511 } 1512 1513 static void img_request_child_clear(struct rbd_img_request *img_request) 1514 { 1515 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1516 smp_mb(); 1517 } 1518 1519 static bool img_request_child_test(struct rbd_img_request *img_request) 1520 { 1521 smp_mb(); 1522 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1523 } 1524 1525 static void img_request_layered_set(struct rbd_img_request *img_request) 1526 { 1527 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1528 smp_mb(); 1529 } 1530 1531 static void img_request_layered_clear(struct rbd_img_request *img_request) 1532 { 1533 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1534 smp_mb(); 1535 } 1536 1537 static bool img_request_layered_test(struct rbd_img_request *img_request) 1538 { 1539 smp_mb(); 1540 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1541 } 1542 1543 static void 1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1545 { 1546 u64 xferred = obj_request->xferred; 1547 u64 length = obj_request->length; 1548 1549 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1550 obj_request, obj_request->img_request, obj_request->result, 1551 xferred, length); 1552 /* 1553 * ENOENT means a hole in the image. We zero-fill the entire 1554 * length of the request. A short read also implies zero-fill 1555 * to the end of the request. An error requires the whole 1556 * length of the request to be reported finished with an error 1557 * to the block layer. In each case we update the xferred 1558 * count to indicate the whole request was satisfied. 1559 */ 1560 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1561 if (obj_request->result == -ENOENT) { 1562 if (obj_request->type == OBJ_REQUEST_BIO) 1563 zero_bio_chain(obj_request->bio_list, 0); 1564 else 1565 zero_pages(obj_request->pages, 0, length); 1566 obj_request->result = 0; 1567 } else if (xferred < length && !obj_request->result) { 1568 if (obj_request->type == OBJ_REQUEST_BIO) 1569 zero_bio_chain(obj_request->bio_list, xferred); 1570 else 1571 zero_pages(obj_request->pages, xferred, length); 1572 } 1573 obj_request->xferred = length; 1574 obj_request_done_set(obj_request); 1575 } 1576 1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1578 { 1579 dout("%s: obj %p cb %p\n", __func__, obj_request, 1580 obj_request->callback); 1581 if (obj_request->callback) 1582 obj_request->callback(obj_request); 1583 else 1584 complete_all(&obj_request->completion); 1585 } 1586 1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1588 { 1589 dout("%s: obj %p\n", __func__, obj_request); 1590 obj_request_done_set(obj_request); 1591 } 1592 1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1594 { 1595 struct rbd_img_request *img_request = NULL; 1596 struct rbd_device *rbd_dev = NULL; 1597 bool layered = false; 1598 1599 if (obj_request_img_data_test(obj_request)) { 1600 img_request = obj_request->img_request; 1601 layered = img_request && img_request_layered_test(img_request); 1602 rbd_dev = img_request->rbd_dev; 1603 } 1604 1605 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1606 obj_request, img_request, obj_request->result, 1607 obj_request->xferred, obj_request->length); 1608 if (layered && obj_request->result == -ENOENT && 1609 obj_request->img_offset < rbd_dev->parent_overlap) 1610 rbd_img_parent_read(obj_request); 1611 else if (img_request) 1612 rbd_img_obj_request_read_callback(obj_request); 1613 else 1614 obj_request_done_set(obj_request); 1615 } 1616 1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1618 { 1619 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1620 obj_request->result, obj_request->length); 1621 /* 1622 * There is no such thing as a successful short write. Set 1623 * it to our originally-requested length. 1624 */ 1625 obj_request->xferred = obj_request->length; 1626 obj_request_done_set(obj_request); 1627 } 1628 1629 /* 1630 * For a simple stat call there's nothing to do. We'll do more if 1631 * this is part of a write sequence for a layered image. 1632 */ 1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1634 { 1635 dout("%s: obj %p\n", __func__, obj_request); 1636 obj_request_done_set(obj_request); 1637 } 1638 1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1640 struct ceph_msg *msg) 1641 { 1642 struct rbd_obj_request *obj_request = osd_req->r_priv; 1643 u16 opcode; 1644 1645 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1646 rbd_assert(osd_req == obj_request->osd_req); 1647 if (obj_request_img_data_test(obj_request)) { 1648 rbd_assert(obj_request->img_request); 1649 rbd_assert(obj_request->which != BAD_WHICH); 1650 } else { 1651 rbd_assert(obj_request->which == BAD_WHICH); 1652 } 1653 1654 if (osd_req->r_result < 0) 1655 obj_request->result = osd_req->r_result; 1656 1657 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1658 1659 /* 1660 * We support a 64-bit length, but ultimately it has to be 1661 * passed to blk_end_request(), which takes an unsigned int. 1662 */ 1663 obj_request->xferred = osd_req->r_reply_op_len[0]; 1664 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1665 1666 opcode = osd_req->r_ops[0].op; 1667 switch (opcode) { 1668 case CEPH_OSD_OP_READ: 1669 rbd_osd_read_callback(obj_request); 1670 break; 1671 case CEPH_OSD_OP_SETALLOCHINT: 1672 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1673 /* fall through */ 1674 case CEPH_OSD_OP_WRITE: 1675 rbd_osd_write_callback(obj_request); 1676 break; 1677 case CEPH_OSD_OP_STAT: 1678 rbd_osd_stat_callback(obj_request); 1679 break; 1680 case CEPH_OSD_OP_CALL: 1681 case CEPH_OSD_OP_NOTIFY_ACK: 1682 case CEPH_OSD_OP_WATCH: 1683 rbd_osd_trivial_callback(obj_request); 1684 break; 1685 default: 1686 rbd_warn(NULL, "%s: unsupported op %hu\n", 1687 obj_request->object_name, (unsigned short) opcode); 1688 break; 1689 } 1690 1691 if (obj_request_done_test(obj_request)) 1692 rbd_obj_request_complete(obj_request); 1693 } 1694 1695 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1696 { 1697 struct rbd_img_request *img_request = obj_request->img_request; 1698 struct ceph_osd_request *osd_req = obj_request->osd_req; 1699 u64 snap_id; 1700 1701 rbd_assert(osd_req != NULL); 1702 1703 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1704 ceph_osdc_build_request(osd_req, obj_request->offset, 1705 NULL, snap_id, NULL); 1706 } 1707 1708 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1709 { 1710 struct rbd_img_request *img_request = obj_request->img_request; 1711 struct ceph_osd_request *osd_req = obj_request->osd_req; 1712 struct ceph_snap_context *snapc; 1713 struct timespec mtime = CURRENT_TIME; 1714 1715 rbd_assert(osd_req != NULL); 1716 1717 snapc = img_request ? img_request->snapc : NULL; 1718 ceph_osdc_build_request(osd_req, obj_request->offset, 1719 snapc, CEPH_NOSNAP, &mtime); 1720 } 1721 1722 /* 1723 * Create an osd request. A read request has one osd op (read). 1724 * A write request has either one (watch) or two (hint+write) osd ops. 1725 * (All rbd data writes are prefixed with an allocation hint op, but 1726 * technically osd watch is a write request, hence this distinction.) 1727 */ 1728 static struct ceph_osd_request *rbd_osd_req_create( 1729 struct rbd_device *rbd_dev, 1730 bool write_request, 1731 unsigned int num_ops, 1732 struct rbd_obj_request *obj_request) 1733 { 1734 struct ceph_snap_context *snapc = NULL; 1735 struct ceph_osd_client *osdc; 1736 struct ceph_osd_request *osd_req; 1737 1738 if (obj_request_img_data_test(obj_request)) { 1739 struct rbd_img_request *img_request = obj_request->img_request; 1740 1741 rbd_assert(write_request == 1742 img_request_write_test(img_request)); 1743 if (write_request) 1744 snapc = img_request->snapc; 1745 } 1746 1747 rbd_assert(num_ops == 1 || (write_request && num_ops == 2)); 1748 1749 /* Allocate and initialize the request, for the num_ops ops */ 1750 1751 osdc = &rbd_dev->rbd_client->client->osdc; 1752 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1753 GFP_ATOMIC); 1754 if (!osd_req) 1755 return NULL; /* ENOMEM */ 1756 1757 if (write_request) 1758 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1759 else 1760 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1761 1762 osd_req->r_callback = rbd_osd_req_callback; 1763 osd_req->r_priv = obj_request; 1764 1765 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1766 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1767 1768 return osd_req; 1769 } 1770 1771 /* 1772 * Create a copyup osd request based on the information in the 1773 * object request supplied. A copyup request has three osd ops, 1774 * a copyup method call, a hint op, and a write op. 1775 */ 1776 static struct ceph_osd_request * 1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1778 { 1779 struct rbd_img_request *img_request; 1780 struct ceph_snap_context *snapc; 1781 struct rbd_device *rbd_dev; 1782 struct ceph_osd_client *osdc; 1783 struct ceph_osd_request *osd_req; 1784 1785 rbd_assert(obj_request_img_data_test(obj_request)); 1786 img_request = obj_request->img_request; 1787 rbd_assert(img_request); 1788 rbd_assert(img_request_write_test(img_request)); 1789 1790 /* Allocate and initialize the request, for the three ops */ 1791 1792 snapc = img_request->snapc; 1793 rbd_dev = img_request->rbd_dev; 1794 osdc = &rbd_dev->rbd_client->client->osdc; 1795 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC); 1796 if (!osd_req) 1797 return NULL; /* ENOMEM */ 1798 1799 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1800 osd_req->r_callback = rbd_osd_req_callback; 1801 osd_req->r_priv = obj_request; 1802 1803 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1804 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1805 1806 return osd_req; 1807 } 1808 1809 1810 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1811 { 1812 ceph_osdc_put_request(osd_req); 1813 } 1814 1815 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1816 1817 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1818 u64 offset, u64 length, 1819 enum obj_request_type type) 1820 { 1821 struct rbd_obj_request *obj_request; 1822 size_t size; 1823 char *name; 1824 1825 rbd_assert(obj_request_type_valid(type)); 1826 1827 size = strlen(object_name) + 1; 1828 name = kmalloc(size, GFP_KERNEL); 1829 if (!name) 1830 return NULL; 1831 1832 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 1833 if (!obj_request) { 1834 kfree(name); 1835 return NULL; 1836 } 1837 1838 obj_request->object_name = memcpy(name, object_name, size); 1839 obj_request->offset = offset; 1840 obj_request->length = length; 1841 obj_request->flags = 0; 1842 obj_request->which = BAD_WHICH; 1843 obj_request->type = type; 1844 INIT_LIST_HEAD(&obj_request->links); 1845 init_completion(&obj_request->completion); 1846 kref_init(&obj_request->kref); 1847 1848 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1849 offset, length, (int)type, obj_request); 1850 1851 return obj_request; 1852 } 1853 1854 static void rbd_obj_request_destroy(struct kref *kref) 1855 { 1856 struct rbd_obj_request *obj_request; 1857 1858 obj_request = container_of(kref, struct rbd_obj_request, kref); 1859 1860 dout("%s: obj %p\n", __func__, obj_request); 1861 1862 rbd_assert(obj_request->img_request == NULL); 1863 rbd_assert(obj_request->which == BAD_WHICH); 1864 1865 if (obj_request->osd_req) 1866 rbd_osd_req_destroy(obj_request->osd_req); 1867 1868 rbd_assert(obj_request_type_valid(obj_request->type)); 1869 switch (obj_request->type) { 1870 case OBJ_REQUEST_NODATA: 1871 break; /* Nothing to do */ 1872 case OBJ_REQUEST_BIO: 1873 if (obj_request->bio_list) 1874 bio_chain_put(obj_request->bio_list); 1875 break; 1876 case OBJ_REQUEST_PAGES: 1877 if (obj_request->pages) 1878 ceph_release_page_vector(obj_request->pages, 1879 obj_request->page_count); 1880 break; 1881 } 1882 1883 kfree(obj_request->object_name); 1884 obj_request->object_name = NULL; 1885 kmem_cache_free(rbd_obj_request_cache, obj_request); 1886 } 1887 1888 /* It's OK to call this for a device with no parent */ 1889 1890 static void rbd_spec_put(struct rbd_spec *spec); 1891 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1892 { 1893 rbd_dev_remove_parent(rbd_dev); 1894 rbd_spec_put(rbd_dev->parent_spec); 1895 rbd_dev->parent_spec = NULL; 1896 rbd_dev->parent_overlap = 0; 1897 } 1898 1899 /* 1900 * Parent image reference counting is used to determine when an 1901 * image's parent fields can be safely torn down--after there are no 1902 * more in-flight requests to the parent image. When the last 1903 * reference is dropped, cleaning them up is safe. 1904 */ 1905 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1906 { 1907 int counter; 1908 1909 if (!rbd_dev->parent_spec) 1910 return; 1911 1912 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1913 if (counter > 0) 1914 return; 1915 1916 /* Last reference; clean up parent data structures */ 1917 1918 if (!counter) 1919 rbd_dev_unparent(rbd_dev); 1920 else 1921 rbd_warn(rbd_dev, "parent reference underflow\n"); 1922 } 1923 1924 /* 1925 * If an image has a non-zero parent overlap, get a reference to its 1926 * parent. 1927 * 1928 * We must get the reference before checking for the overlap to 1929 * coordinate properly with zeroing the parent overlap in 1930 * rbd_dev_v2_parent_info() when an image gets flattened. We 1931 * drop it again if there is no overlap. 1932 * 1933 * Returns true if the rbd device has a parent with a non-zero 1934 * overlap and a reference for it was successfully taken, or 1935 * false otherwise. 1936 */ 1937 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1938 { 1939 int counter; 1940 1941 if (!rbd_dev->parent_spec) 1942 return false; 1943 1944 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1945 if (counter > 0 && rbd_dev->parent_overlap) 1946 return true; 1947 1948 /* Image was flattened, but parent is not yet torn down */ 1949 1950 if (counter < 0) 1951 rbd_warn(rbd_dev, "parent reference overflow\n"); 1952 1953 return false; 1954 } 1955 1956 /* 1957 * Caller is responsible for filling in the list of object requests 1958 * that comprises the image request, and the Linux request pointer 1959 * (if there is one). 1960 */ 1961 static struct rbd_img_request *rbd_img_request_create( 1962 struct rbd_device *rbd_dev, 1963 u64 offset, u64 length, 1964 bool write_request) 1965 { 1966 struct rbd_img_request *img_request; 1967 1968 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC); 1969 if (!img_request) 1970 return NULL; 1971 1972 if (write_request) { 1973 down_read(&rbd_dev->header_rwsem); 1974 ceph_get_snap_context(rbd_dev->header.snapc); 1975 up_read(&rbd_dev->header_rwsem); 1976 } 1977 1978 img_request->rq = NULL; 1979 img_request->rbd_dev = rbd_dev; 1980 img_request->offset = offset; 1981 img_request->length = length; 1982 img_request->flags = 0; 1983 if (write_request) { 1984 img_request_write_set(img_request); 1985 img_request->snapc = rbd_dev->header.snapc; 1986 } else { 1987 img_request->snap_id = rbd_dev->spec->snap_id; 1988 } 1989 if (rbd_dev_parent_get(rbd_dev)) 1990 img_request_layered_set(img_request); 1991 spin_lock_init(&img_request->completion_lock); 1992 img_request->next_completion = 0; 1993 img_request->callback = NULL; 1994 img_request->result = 0; 1995 img_request->obj_request_count = 0; 1996 INIT_LIST_HEAD(&img_request->obj_requests); 1997 kref_init(&img_request->kref); 1998 1999 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2000 write_request ? "write" : "read", offset, length, 2001 img_request); 2002 2003 return img_request; 2004 } 2005 2006 static void rbd_img_request_destroy(struct kref *kref) 2007 { 2008 struct rbd_img_request *img_request; 2009 struct rbd_obj_request *obj_request; 2010 struct rbd_obj_request *next_obj_request; 2011 2012 img_request = container_of(kref, struct rbd_img_request, kref); 2013 2014 dout("%s: img %p\n", __func__, img_request); 2015 2016 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2017 rbd_img_obj_request_del(img_request, obj_request); 2018 rbd_assert(img_request->obj_request_count == 0); 2019 2020 if (img_request_layered_test(img_request)) { 2021 img_request_layered_clear(img_request); 2022 rbd_dev_parent_put(img_request->rbd_dev); 2023 } 2024 2025 if (img_request_write_test(img_request)) 2026 ceph_put_snap_context(img_request->snapc); 2027 2028 kmem_cache_free(rbd_img_request_cache, img_request); 2029 } 2030 2031 static struct rbd_img_request *rbd_parent_request_create( 2032 struct rbd_obj_request *obj_request, 2033 u64 img_offset, u64 length) 2034 { 2035 struct rbd_img_request *parent_request; 2036 struct rbd_device *rbd_dev; 2037 2038 rbd_assert(obj_request->img_request); 2039 rbd_dev = obj_request->img_request->rbd_dev; 2040 2041 parent_request = rbd_img_request_create(rbd_dev->parent, 2042 img_offset, length, false); 2043 if (!parent_request) 2044 return NULL; 2045 2046 img_request_child_set(parent_request); 2047 rbd_obj_request_get(obj_request); 2048 parent_request->obj_request = obj_request; 2049 2050 return parent_request; 2051 } 2052 2053 static void rbd_parent_request_destroy(struct kref *kref) 2054 { 2055 struct rbd_img_request *parent_request; 2056 struct rbd_obj_request *orig_request; 2057 2058 parent_request = container_of(kref, struct rbd_img_request, kref); 2059 orig_request = parent_request->obj_request; 2060 2061 parent_request->obj_request = NULL; 2062 rbd_obj_request_put(orig_request); 2063 img_request_child_clear(parent_request); 2064 2065 rbd_img_request_destroy(kref); 2066 } 2067 2068 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2069 { 2070 struct rbd_img_request *img_request; 2071 unsigned int xferred; 2072 int result; 2073 bool more; 2074 2075 rbd_assert(obj_request_img_data_test(obj_request)); 2076 img_request = obj_request->img_request; 2077 2078 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2079 xferred = (unsigned int)obj_request->xferred; 2080 result = obj_request->result; 2081 if (result) { 2082 struct rbd_device *rbd_dev = img_request->rbd_dev; 2083 2084 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n", 2085 img_request_write_test(img_request) ? "write" : "read", 2086 obj_request->length, obj_request->img_offset, 2087 obj_request->offset); 2088 rbd_warn(rbd_dev, " result %d xferred %x\n", 2089 result, xferred); 2090 if (!img_request->result) 2091 img_request->result = result; 2092 } 2093 2094 /* Image object requests don't own their page array */ 2095 2096 if (obj_request->type == OBJ_REQUEST_PAGES) { 2097 obj_request->pages = NULL; 2098 obj_request->page_count = 0; 2099 } 2100 2101 if (img_request_child_test(img_request)) { 2102 rbd_assert(img_request->obj_request != NULL); 2103 more = obj_request->which < img_request->obj_request_count - 1; 2104 } else { 2105 rbd_assert(img_request->rq != NULL); 2106 more = blk_end_request(img_request->rq, result, xferred); 2107 } 2108 2109 return more; 2110 } 2111 2112 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2113 { 2114 struct rbd_img_request *img_request; 2115 u32 which = obj_request->which; 2116 bool more = true; 2117 2118 rbd_assert(obj_request_img_data_test(obj_request)); 2119 img_request = obj_request->img_request; 2120 2121 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2122 rbd_assert(img_request != NULL); 2123 rbd_assert(img_request->obj_request_count > 0); 2124 rbd_assert(which != BAD_WHICH); 2125 rbd_assert(which < img_request->obj_request_count); 2126 2127 spin_lock_irq(&img_request->completion_lock); 2128 if (which != img_request->next_completion) 2129 goto out; 2130 2131 for_each_obj_request_from(img_request, obj_request) { 2132 rbd_assert(more); 2133 rbd_assert(which < img_request->obj_request_count); 2134 2135 if (!obj_request_done_test(obj_request)) 2136 break; 2137 more = rbd_img_obj_end_request(obj_request); 2138 which++; 2139 } 2140 2141 rbd_assert(more ^ (which == img_request->obj_request_count)); 2142 img_request->next_completion = which; 2143 out: 2144 spin_unlock_irq(&img_request->completion_lock); 2145 2146 if (!more) 2147 rbd_img_request_complete(img_request); 2148 } 2149 2150 /* 2151 * Split up an image request into one or more object requests, each 2152 * to a different object. The "type" parameter indicates whether 2153 * "data_desc" is the pointer to the head of a list of bio 2154 * structures, or the base of a page array. In either case this 2155 * function assumes data_desc describes memory sufficient to hold 2156 * all data described by the image request. 2157 */ 2158 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2159 enum obj_request_type type, 2160 void *data_desc) 2161 { 2162 struct rbd_device *rbd_dev = img_request->rbd_dev; 2163 struct rbd_obj_request *obj_request = NULL; 2164 struct rbd_obj_request *next_obj_request; 2165 bool write_request = img_request_write_test(img_request); 2166 struct bio *bio_list = NULL; 2167 unsigned int bio_offset = 0; 2168 struct page **pages = NULL; 2169 u64 img_offset; 2170 u64 resid; 2171 u16 opcode; 2172 2173 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2174 (int)type, data_desc); 2175 2176 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 2177 img_offset = img_request->offset; 2178 resid = img_request->length; 2179 rbd_assert(resid > 0); 2180 2181 if (type == OBJ_REQUEST_BIO) { 2182 bio_list = data_desc; 2183 rbd_assert(img_offset == 2184 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2185 } else { 2186 rbd_assert(type == OBJ_REQUEST_PAGES); 2187 pages = data_desc; 2188 } 2189 2190 while (resid) { 2191 struct ceph_osd_request *osd_req; 2192 const char *object_name; 2193 u64 offset; 2194 u64 length; 2195 unsigned int which = 0; 2196 2197 object_name = rbd_segment_name(rbd_dev, img_offset); 2198 if (!object_name) 2199 goto out_unwind; 2200 offset = rbd_segment_offset(rbd_dev, img_offset); 2201 length = rbd_segment_length(rbd_dev, img_offset, resid); 2202 obj_request = rbd_obj_request_create(object_name, 2203 offset, length, type); 2204 /* object request has its own copy of the object name */ 2205 rbd_segment_name_free(object_name); 2206 if (!obj_request) 2207 goto out_unwind; 2208 2209 /* 2210 * set obj_request->img_request before creating the 2211 * osd_request so that it gets the right snapc 2212 */ 2213 rbd_img_obj_request_add(img_request, obj_request); 2214 2215 if (type == OBJ_REQUEST_BIO) { 2216 unsigned int clone_size; 2217 2218 rbd_assert(length <= (u64)UINT_MAX); 2219 clone_size = (unsigned int)length; 2220 obj_request->bio_list = 2221 bio_chain_clone_range(&bio_list, 2222 &bio_offset, 2223 clone_size, 2224 GFP_ATOMIC); 2225 if (!obj_request->bio_list) 2226 goto out_unwind; 2227 } else { 2228 unsigned int page_count; 2229 2230 obj_request->pages = pages; 2231 page_count = (u32)calc_pages_for(offset, length); 2232 obj_request->page_count = page_count; 2233 if ((offset + length) & ~PAGE_MASK) 2234 page_count--; /* more on last page */ 2235 pages += page_count; 2236 } 2237 2238 osd_req = rbd_osd_req_create(rbd_dev, write_request, 2239 (write_request ? 2 : 1), 2240 obj_request); 2241 if (!osd_req) 2242 goto out_unwind; 2243 obj_request->osd_req = osd_req; 2244 obj_request->callback = rbd_img_obj_callback; 2245 2246 if (write_request) { 2247 osd_req_op_alloc_hint_init(osd_req, which, 2248 rbd_obj_bytes(&rbd_dev->header), 2249 rbd_obj_bytes(&rbd_dev->header)); 2250 which++; 2251 } 2252 2253 osd_req_op_extent_init(osd_req, which, opcode, offset, length, 2254 0, 0); 2255 if (type == OBJ_REQUEST_BIO) 2256 osd_req_op_extent_osd_data_bio(osd_req, which, 2257 obj_request->bio_list, length); 2258 else 2259 osd_req_op_extent_osd_data_pages(osd_req, which, 2260 obj_request->pages, length, 2261 offset & ~PAGE_MASK, false, false); 2262 2263 if (write_request) 2264 rbd_osd_req_format_write(obj_request); 2265 else 2266 rbd_osd_req_format_read(obj_request); 2267 2268 obj_request->img_offset = img_offset; 2269 2270 img_offset += length; 2271 resid -= length; 2272 } 2273 2274 return 0; 2275 2276 out_unwind: 2277 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2278 rbd_img_obj_request_del(img_request, obj_request); 2279 2280 return -ENOMEM; 2281 } 2282 2283 static void 2284 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2285 { 2286 struct rbd_img_request *img_request; 2287 struct rbd_device *rbd_dev; 2288 struct page **pages; 2289 u32 page_count; 2290 2291 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2292 rbd_assert(obj_request_img_data_test(obj_request)); 2293 img_request = obj_request->img_request; 2294 rbd_assert(img_request); 2295 2296 rbd_dev = img_request->rbd_dev; 2297 rbd_assert(rbd_dev); 2298 2299 pages = obj_request->copyup_pages; 2300 rbd_assert(pages != NULL); 2301 obj_request->copyup_pages = NULL; 2302 page_count = obj_request->copyup_page_count; 2303 rbd_assert(page_count); 2304 obj_request->copyup_page_count = 0; 2305 ceph_release_page_vector(pages, page_count); 2306 2307 /* 2308 * We want the transfer count to reflect the size of the 2309 * original write request. There is no such thing as a 2310 * successful short write, so if the request was successful 2311 * we can just set it to the originally-requested length. 2312 */ 2313 if (!obj_request->result) 2314 obj_request->xferred = obj_request->length; 2315 2316 /* Finish up with the normal image object callback */ 2317 2318 rbd_img_obj_callback(obj_request); 2319 } 2320 2321 static void 2322 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2323 { 2324 struct rbd_obj_request *orig_request; 2325 struct ceph_osd_request *osd_req; 2326 struct ceph_osd_client *osdc; 2327 struct rbd_device *rbd_dev; 2328 struct page **pages; 2329 u32 page_count; 2330 int img_result; 2331 u64 parent_length; 2332 u64 offset; 2333 u64 length; 2334 2335 rbd_assert(img_request_child_test(img_request)); 2336 2337 /* First get what we need from the image request */ 2338 2339 pages = img_request->copyup_pages; 2340 rbd_assert(pages != NULL); 2341 img_request->copyup_pages = NULL; 2342 page_count = img_request->copyup_page_count; 2343 rbd_assert(page_count); 2344 img_request->copyup_page_count = 0; 2345 2346 orig_request = img_request->obj_request; 2347 rbd_assert(orig_request != NULL); 2348 rbd_assert(obj_request_type_valid(orig_request->type)); 2349 img_result = img_request->result; 2350 parent_length = img_request->length; 2351 rbd_assert(parent_length == img_request->xferred); 2352 rbd_img_request_put(img_request); 2353 2354 rbd_assert(orig_request->img_request); 2355 rbd_dev = orig_request->img_request->rbd_dev; 2356 rbd_assert(rbd_dev); 2357 2358 /* 2359 * If the overlap has become 0 (most likely because the 2360 * image has been flattened) we need to free the pages 2361 * and re-submit the original write request. 2362 */ 2363 if (!rbd_dev->parent_overlap) { 2364 struct ceph_osd_client *osdc; 2365 2366 ceph_release_page_vector(pages, page_count); 2367 osdc = &rbd_dev->rbd_client->client->osdc; 2368 img_result = rbd_obj_request_submit(osdc, orig_request); 2369 if (!img_result) 2370 return; 2371 } 2372 2373 if (img_result) 2374 goto out_err; 2375 2376 /* 2377 * The original osd request is of no use to use any more. 2378 * We need a new one that can hold the three ops in a copyup 2379 * request. Allocate the new copyup osd request for the 2380 * original request, and release the old one. 2381 */ 2382 img_result = -ENOMEM; 2383 osd_req = rbd_osd_req_create_copyup(orig_request); 2384 if (!osd_req) 2385 goto out_err; 2386 rbd_osd_req_destroy(orig_request->osd_req); 2387 orig_request->osd_req = osd_req; 2388 orig_request->copyup_pages = pages; 2389 orig_request->copyup_page_count = page_count; 2390 2391 /* Initialize the copyup op */ 2392 2393 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2394 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2395 false, false); 2396 2397 /* Then the hint op */ 2398 2399 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header), 2400 rbd_obj_bytes(&rbd_dev->header)); 2401 2402 /* And the original write request op */ 2403 2404 offset = orig_request->offset; 2405 length = orig_request->length; 2406 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE, 2407 offset, length, 0, 0); 2408 if (orig_request->type == OBJ_REQUEST_BIO) 2409 osd_req_op_extent_osd_data_bio(osd_req, 2, 2410 orig_request->bio_list, length); 2411 else 2412 osd_req_op_extent_osd_data_pages(osd_req, 2, 2413 orig_request->pages, length, 2414 offset & ~PAGE_MASK, false, false); 2415 2416 rbd_osd_req_format_write(orig_request); 2417 2418 /* All set, send it off. */ 2419 2420 orig_request->callback = rbd_img_obj_copyup_callback; 2421 osdc = &rbd_dev->rbd_client->client->osdc; 2422 img_result = rbd_obj_request_submit(osdc, orig_request); 2423 if (!img_result) 2424 return; 2425 out_err: 2426 /* Record the error code and complete the request */ 2427 2428 orig_request->result = img_result; 2429 orig_request->xferred = 0; 2430 obj_request_done_set(orig_request); 2431 rbd_obj_request_complete(orig_request); 2432 } 2433 2434 /* 2435 * Read from the parent image the range of data that covers the 2436 * entire target of the given object request. This is used for 2437 * satisfying a layered image write request when the target of an 2438 * object request from the image request does not exist. 2439 * 2440 * A page array big enough to hold the returned data is allocated 2441 * and supplied to rbd_img_request_fill() as the "data descriptor." 2442 * When the read completes, this page array will be transferred to 2443 * the original object request for the copyup operation. 2444 * 2445 * If an error occurs, record it as the result of the original 2446 * object request and mark it done so it gets completed. 2447 */ 2448 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2449 { 2450 struct rbd_img_request *img_request = NULL; 2451 struct rbd_img_request *parent_request = NULL; 2452 struct rbd_device *rbd_dev; 2453 u64 img_offset; 2454 u64 length; 2455 struct page **pages = NULL; 2456 u32 page_count; 2457 int result; 2458 2459 rbd_assert(obj_request_img_data_test(obj_request)); 2460 rbd_assert(obj_request_type_valid(obj_request->type)); 2461 2462 img_request = obj_request->img_request; 2463 rbd_assert(img_request != NULL); 2464 rbd_dev = img_request->rbd_dev; 2465 rbd_assert(rbd_dev->parent != NULL); 2466 2467 /* 2468 * Determine the byte range covered by the object in the 2469 * child image to which the original request was to be sent. 2470 */ 2471 img_offset = obj_request->img_offset - obj_request->offset; 2472 length = (u64)1 << rbd_dev->header.obj_order; 2473 2474 /* 2475 * There is no defined parent data beyond the parent 2476 * overlap, so limit what we read at that boundary if 2477 * necessary. 2478 */ 2479 if (img_offset + length > rbd_dev->parent_overlap) { 2480 rbd_assert(img_offset < rbd_dev->parent_overlap); 2481 length = rbd_dev->parent_overlap - img_offset; 2482 } 2483 2484 /* 2485 * Allocate a page array big enough to receive the data read 2486 * from the parent. 2487 */ 2488 page_count = (u32)calc_pages_for(0, length); 2489 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2490 if (IS_ERR(pages)) { 2491 result = PTR_ERR(pages); 2492 pages = NULL; 2493 goto out_err; 2494 } 2495 2496 result = -ENOMEM; 2497 parent_request = rbd_parent_request_create(obj_request, 2498 img_offset, length); 2499 if (!parent_request) 2500 goto out_err; 2501 2502 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2503 if (result) 2504 goto out_err; 2505 parent_request->copyup_pages = pages; 2506 parent_request->copyup_page_count = page_count; 2507 2508 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2509 result = rbd_img_request_submit(parent_request); 2510 if (!result) 2511 return 0; 2512 2513 parent_request->copyup_pages = NULL; 2514 parent_request->copyup_page_count = 0; 2515 parent_request->obj_request = NULL; 2516 rbd_obj_request_put(obj_request); 2517 out_err: 2518 if (pages) 2519 ceph_release_page_vector(pages, page_count); 2520 if (parent_request) 2521 rbd_img_request_put(parent_request); 2522 obj_request->result = result; 2523 obj_request->xferred = 0; 2524 obj_request_done_set(obj_request); 2525 2526 return result; 2527 } 2528 2529 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2530 { 2531 struct rbd_obj_request *orig_request; 2532 struct rbd_device *rbd_dev; 2533 int result; 2534 2535 rbd_assert(!obj_request_img_data_test(obj_request)); 2536 2537 /* 2538 * All we need from the object request is the original 2539 * request and the result of the STAT op. Grab those, then 2540 * we're done with the request. 2541 */ 2542 orig_request = obj_request->obj_request; 2543 obj_request->obj_request = NULL; 2544 rbd_obj_request_put(orig_request); 2545 rbd_assert(orig_request); 2546 rbd_assert(orig_request->img_request); 2547 2548 result = obj_request->result; 2549 obj_request->result = 0; 2550 2551 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2552 obj_request, orig_request, result, 2553 obj_request->xferred, obj_request->length); 2554 rbd_obj_request_put(obj_request); 2555 2556 /* 2557 * If the overlap has become 0 (most likely because the 2558 * image has been flattened) we need to free the pages 2559 * and re-submit the original write request. 2560 */ 2561 rbd_dev = orig_request->img_request->rbd_dev; 2562 if (!rbd_dev->parent_overlap) { 2563 struct ceph_osd_client *osdc; 2564 2565 osdc = &rbd_dev->rbd_client->client->osdc; 2566 result = rbd_obj_request_submit(osdc, orig_request); 2567 if (!result) 2568 return; 2569 } 2570 2571 /* 2572 * Our only purpose here is to determine whether the object 2573 * exists, and we don't want to treat the non-existence as 2574 * an error. If something else comes back, transfer the 2575 * error to the original request and complete it now. 2576 */ 2577 if (!result) { 2578 obj_request_existence_set(orig_request, true); 2579 } else if (result == -ENOENT) { 2580 obj_request_existence_set(orig_request, false); 2581 } else if (result) { 2582 orig_request->result = result; 2583 goto out; 2584 } 2585 2586 /* 2587 * Resubmit the original request now that we have recorded 2588 * whether the target object exists. 2589 */ 2590 orig_request->result = rbd_img_obj_request_submit(orig_request); 2591 out: 2592 if (orig_request->result) 2593 rbd_obj_request_complete(orig_request); 2594 } 2595 2596 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2597 { 2598 struct rbd_obj_request *stat_request; 2599 struct rbd_device *rbd_dev; 2600 struct ceph_osd_client *osdc; 2601 struct page **pages = NULL; 2602 u32 page_count; 2603 size_t size; 2604 int ret; 2605 2606 /* 2607 * The response data for a STAT call consists of: 2608 * le64 length; 2609 * struct { 2610 * le32 tv_sec; 2611 * le32 tv_nsec; 2612 * } mtime; 2613 */ 2614 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2615 page_count = (u32)calc_pages_for(0, size); 2616 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2617 if (IS_ERR(pages)) 2618 return PTR_ERR(pages); 2619 2620 ret = -ENOMEM; 2621 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2622 OBJ_REQUEST_PAGES); 2623 if (!stat_request) 2624 goto out; 2625 2626 rbd_obj_request_get(obj_request); 2627 stat_request->obj_request = obj_request; 2628 stat_request->pages = pages; 2629 stat_request->page_count = page_count; 2630 2631 rbd_assert(obj_request->img_request); 2632 rbd_dev = obj_request->img_request->rbd_dev; 2633 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2634 stat_request); 2635 if (!stat_request->osd_req) 2636 goto out; 2637 stat_request->callback = rbd_img_obj_exists_callback; 2638 2639 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2640 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2641 false, false); 2642 rbd_osd_req_format_read(stat_request); 2643 2644 osdc = &rbd_dev->rbd_client->client->osdc; 2645 ret = rbd_obj_request_submit(osdc, stat_request); 2646 out: 2647 if (ret) 2648 rbd_obj_request_put(obj_request); 2649 2650 return ret; 2651 } 2652 2653 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2654 { 2655 struct rbd_img_request *img_request; 2656 struct rbd_device *rbd_dev; 2657 bool known; 2658 2659 rbd_assert(obj_request_img_data_test(obj_request)); 2660 2661 img_request = obj_request->img_request; 2662 rbd_assert(img_request); 2663 rbd_dev = img_request->rbd_dev; 2664 2665 /* 2666 * Only writes to layered images need special handling. 2667 * Reads and non-layered writes are simple object requests. 2668 * Layered writes that start beyond the end of the overlap 2669 * with the parent have no parent data, so they too are 2670 * simple object requests. Finally, if the target object is 2671 * known to already exist, its parent data has already been 2672 * copied, so a write to the object can also be handled as a 2673 * simple object request. 2674 */ 2675 if (!img_request_write_test(img_request) || 2676 !img_request_layered_test(img_request) || 2677 rbd_dev->parent_overlap <= obj_request->img_offset || 2678 ((known = obj_request_known_test(obj_request)) && 2679 obj_request_exists_test(obj_request))) { 2680 2681 struct rbd_device *rbd_dev; 2682 struct ceph_osd_client *osdc; 2683 2684 rbd_dev = obj_request->img_request->rbd_dev; 2685 osdc = &rbd_dev->rbd_client->client->osdc; 2686 2687 return rbd_obj_request_submit(osdc, obj_request); 2688 } 2689 2690 /* 2691 * It's a layered write. The target object might exist but 2692 * we may not know that yet. If we know it doesn't exist, 2693 * start by reading the data for the full target object from 2694 * the parent so we can use it for a copyup to the target. 2695 */ 2696 if (known) 2697 return rbd_img_obj_parent_read_full(obj_request); 2698 2699 /* We don't know whether the target exists. Go find out. */ 2700 2701 return rbd_img_obj_exists_submit(obj_request); 2702 } 2703 2704 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2705 { 2706 struct rbd_obj_request *obj_request; 2707 struct rbd_obj_request *next_obj_request; 2708 2709 dout("%s: img %p\n", __func__, img_request); 2710 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2711 int ret; 2712 2713 ret = rbd_img_obj_request_submit(obj_request); 2714 if (ret) 2715 return ret; 2716 } 2717 2718 return 0; 2719 } 2720 2721 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2722 { 2723 struct rbd_obj_request *obj_request; 2724 struct rbd_device *rbd_dev; 2725 u64 obj_end; 2726 u64 img_xferred; 2727 int img_result; 2728 2729 rbd_assert(img_request_child_test(img_request)); 2730 2731 /* First get what we need from the image request and release it */ 2732 2733 obj_request = img_request->obj_request; 2734 img_xferred = img_request->xferred; 2735 img_result = img_request->result; 2736 rbd_img_request_put(img_request); 2737 2738 /* 2739 * If the overlap has become 0 (most likely because the 2740 * image has been flattened) we need to re-submit the 2741 * original request. 2742 */ 2743 rbd_assert(obj_request); 2744 rbd_assert(obj_request->img_request); 2745 rbd_dev = obj_request->img_request->rbd_dev; 2746 if (!rbd_dev->parent_overlap) { 2747 struct ceph_osd_client *osdc; 2748 2749 osdc = &rbd_dev->rbd_client->client->osdc; 2750 img_result = rbd_obj_request_submit(osdc, obj_request); 2751 if (!img_result) 2752 return; 2753 } 2754 2755 obj_request->result = img_result; 2756 if (obj_request->result) 2757 goto out; 2758 2759 /* 2760 * We need to zero anything beyond the parent overlap 2761 * boundary. Since rbd_img_obj_request_read_callback() 2762 * will zero anything beyond the end of a short read, an 2763 * easy way to do this is to pretend the data from the 2764 * parent came up short--ending at the overlap boundary. 2765 */ 2766 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2767 obj_end = obj_request->img_offset + obj_request->length; 2768 if (obj_end > rbd_dev->parent_overlap) { 2769 u64 xferred = 0; 2770 2771 if (obj_request->img_offset < rbd_dev->parent_overlap) 2772 xferred = rbd_dev->parent_overlap - 2773 obj_request->img_offset; 2774 2775 obj_request->xferred = min(img_xferred, xferred); 2776 } else { 2777 obj_request->xferred = img_xferred; 2778 } 2779 out: 2780 rbd_img_obj_request_read_callback(obj_request); 2781 rbd_obj_request_complete(obj_request); 2782 } 2783 2784 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2785 { 2786 struct rbd_img_request *img_request; 2787 int result; 2788 2789 rbd_assert(obj_request_img_data_test(obj_request)); 2790 rbd_assert(obj_request->img_request != NULL); 2791 rbd_assert(obj_request->result == (s32) -ENOENT); 2792 rbd_assert(obj_request_type_valid(obj_request->type)); 2793 2794 /* rbd_read_finish(obj_request, obj_request->length); */ 2795 img_request = rbd_parent_request_create(obj_request, 2796 obj_request->img_offset, 2797 obj_request->length); 2798 result = -ENOMEM; 2799 if (!img_request) 2800 goto out_err; 2801 2802 if (obj_request->type == OBJ_REQUEST_BIO) 2803 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2804 obj_request->bio_list); 2805 else 2806 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2807 obj_request->pages); 2808 if (result) 2809 goto out_err; 2810 2811 img_request->callback = rbd_img_parent_read_callback; 2812 result = rbd_img_request_submit(img_request); 2813 if (result) 2814 goto out_err; 2815 2816 return; 2817 out_err: 2818 if (img_request) 2819 rbd_img_request_put(img_request); 2820 obj_request->result = result; 2821 obj_request->xferred = 0; 2822 obj_request_done_set(obj_request); 2823 } 2824 2825 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 2826 { 2827 struct rbd_obj_request *obj_request; 2828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2829 int ret; 2830 2831 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2832 OBJ_REQUEST_NODATA); 2833 if (!obj_request) 2834 return -ENOMEM; 2835 2836 ret = -ENOMEM; 2837 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2838 obj_request); 2839 if (!obj_request->osd_req) 2840 goto out; 2841 2842 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2843 notify_id, 0, 0); 2844 rbd_osd_req_format_read(obj_request); 2845 2846 ret = rbd_obj_request_submit(osdc, obj_request); 2847 if (ret) 2848 goto out; 2849 ret = rbd_obj_request_wait(obj_request); 2850 out: 2851 rbd_obj_request_put(obj_request); 2852 2853 return ret; 2854 } 2855 2856 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2857 { 2858 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2859 int ret; 2860 2861 if (!rbd_dev) 2862 return; 2863 2864 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2865 rbd_dev->header_name, (unsigned long long)notify_id, 2866 (unsigned int)opcode); 2867 ret = rbd_dev_refresh(rbd_dev); 2868 if (ret) 2869 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret); 2870 2871 rbd_obj_notify_ack_sync(rbd_dev, notify_id); 2872 } 2873 2874 /* 2875 * Request sync osd watch/unwatch. The value of "start" determines 2876 * whether a watch request is being initiated or torn down. 2877 */ 2878 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start) 2879 { 2880 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2881 struct rbd_obj_request *obj_request; 2882 int ret; 2883 2884 rbd_assert(start ^ !!rbd_dev->watch_event); 2885 rbd_assert(start ^ !!rbd_dev->watch_request); 2886 2887 if (start) { 2888 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 2889 &rbd_dev->watch_event); 2890 if (ret < 0) 2891 return ret; 2892 rbd_assert(rbd_dev->watch_event != NULL); 2893 } 2894 2895 ret = -ENOMEM; 2896 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2897 OBJ_REQUEST_NODATA); 2898 if (!obj_request) 2899 goto out_cancel; 2900 2901 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1, 2902 obj_request); 2903 if (!obj_request->osd_req) 2904 goto out_cancel; 2905 2906 if (start) 2907 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 2908 else 2909 ceph_osdc_unregister_linger_request(osdc, 2910 rbd_dev->watch_request->osd_req); 2911 2912 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 2913 rbd_dev->watch_event->cookie, 0, start ? 1 : 0); 2914 rbd_osd_req_format_write(obj_request); 2915 2916 ret = rbd_obj_request_submit(osdc, obj_request); 2917 if (ret) 2918 goto out_cancel; 2919 ret = rbd_obj_request_wait(obj_request); 2920 if (ret) 2921 goto out_cancel; 2922 ret = obj_request->result; 2923 if (ret) 2924 goto out_cancel; 2925 2926 /* 2927 * A watch request is set to linger, so the underlying osd 2928 * request won't go away until we unregister it. We retain 2929 * a pointer to the object request during that time (in 2930 * rbd_dev->watch_request), so we'll keep a reference to 2931 * it. We'll drop that reference (below) after we've 2932 * unregistered it. 2933 */ 2934 if (start) { 2935 rbd_dev->watch_request = obj_request; 2936 2937 return 0; 2938 } 2939 2940 /* We have successfully torn down the watch request */ 2941 2942 rbd_obj_request_put(rbd_dev->watch_request); 2943 rbd_dev->watch_request = NULL; 2944 out_cancel: 2945 /* Cancel the event if we're tearing down, or on error */ 2946 ceph_osdc_cancel_event(rbd_dev->watch_event); 2947 rbd_dev->watch_event = NULL; 2948 if (obj_request) 2949 rbd_obj_request_put(obj_request); 2950 2951 return ret; 2952 } 2953 2954 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 2955 { 2956 return __rbd_dev_header_watch_sync(rbd_dev, true); 2957 } 2958 2959 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 2960 { 2961 int ret; 2962 2963 ret = __rbd_dev_header_watch_sync(rbd_dev, false); 2964 if (ret) { 2965 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n", 2966 ret); 2967 } 2968 } 2969 2970 /* 2971 * Synchronous osd object method call. Returns the number of bytes 2972 * returned in the outbound buffer, or a negative error code. 2973 */ 2974 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 2975 const char *object_name, 2976 const char *class_name, 2977 const char *method_name, 2978 const void *outbound, 2979 size_t outbound_size, 2980 void *inbound, 2981 size_t inbound_size) 2982 { 2983 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2984 struct rbd_obj_request *obj_request; 2985 struct page **pages; 2986 u32 page_count; 2987 int ret; 2988 2989 /* 2990 * Method calls are ultimately read operations. The result 2991 * should placed into the inbound buffer provided. They 2992 * also supply outbound data--parameters for the object 2993 * method. Currently if this is present it will be a 2994 * snapshot id. 2995 */ 2996 page_count = (u32)calc_pages_for(0, inbound_size); 2997 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2998 if (IS_ERR(pages)) 2999 return PTR_ERR(pages); 3000 3001 ret = -ENOMEM; 3002 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3003 OBJ_REQUEST_PAGES); 3004 if (!obj_request) 3005 goto out; 3006 3007 obj_request->pages = pages; 3008 obj_request->page_count = page_count; 3009 3010 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3011 obj_request); 3012 if (!obj_request->osd_req) 3013 goto out; 3014 3015 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3016 class_name, method_name); 3017 if (outbound_size) { 3018 struct ceph_pagelist *pagelist; 3019 3020 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3021 if (!pagelist) 3022 goto out; 3023 3024 ceph_pagelist_init(pagelist); 3025 ceph_pagelist_append(pagelist, outbound, outbound_size); 3026 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3027 pagelist); 3028 } 3029 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3030 obj_request->pages, inbound_size, 3031 0, false, false); 3032 rbd_osd_req_format_read(obj_request); 3033 3034 ret = rbd_obj_request_submit(osdc, obj_request); 3035 if (ret) 3036 goto out; 3037 ret = rbd_obj_request_wait(obj_request); 3038 if (ret) 3039 goto out; 3040 3041 ret = obj_request->result; 3042 if (ret < 0) 3043 goto out; 3044 3045 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3046 ret = (int)obj_request->xferred; 3047 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3048 out: 3049 if (obj_request) 3050 rbd_obj_request_put(obj_request); 3051 else 3052 ceph_release_page_vector(pages, page_count); 3053 3054 return ret; 3055 } 3056 3057 static void rbd_request_fn(struct request_queue *q) 3058 __releases(q->queue_lock) __acquires(q->queue_lock) 3059 { 3060 struct rbd_device *rbd_dev = q->queuedata; 3061 bool read_only = rbd_dev->mapping.read_only; 3062 struct request *rq; 3063 int result; 3064 3065 while ((rq = blk_fetch_request(q))) { 3066 bool write_request = rq_data_dir(rq) == WRITE; 3067 struct rbd_img_request *img_request; 3068 u64 offset; 3069 u64 length; 3070 3071 /* Ignore any non-FS requests that filter through. */ 3072 3073 if (rq->cmd_type != REQ_TYPE_FS) { 3074 dout("%s: non-fs request type %d\n", __func__, 3075 (int) rq->cmd_type); 3076 __blk_end_request_all(rq, 0); 3077 continue; 3078 } 3079 3080 /* Ignore/skip any zero-length requests */ 3081 3082 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT; 3083 length = (u64) blk_rq_bytes(rq); 3084 3085 if (!length) { 3086 dout("%s: zero-length request\n", __func__); 3087 __blk_end_request_all(rq, 0); 3088 continue; 3089 } 3090 3091 spin_unlock_irq(q->queue_lock); 3092 3093 /* Disallow writes to a read-only device */ 3094 3095 if (write_request) { 3096 result = -EROFS; 3097 if (read_only) 3098 goto end_request; 3099 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3100 } 3101 3102 /* 3103 * Quit early if the mapped snapshot no longer 3104 * exists. It's still possible the snapshot will 3105 * have disappeared by the time our request arrives 3106 * at the osd, but there's no sense in sending it if 3107 * we already know. 3108 */ 3109 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3110 dout("request for non-existent snapshot"); 3111 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3112 result = -ENXIO; 3113 goto end_request; 3114 } 3115 3116 result = -EINVAL; 3117 if (offset && length > U64_MAX - offset + 1) { 3118 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n", 3119 offset, length); 3120 goto end_request; /* Shouldn't happen */ 3121 } 3122 3123 result = -EIO; 3124 if (offset + length > rbd_dev->mapping.size) { 3125 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n", 3126 offset, length, rbd_dev->mapping.size); 3127 goto end_request; 3128 } 3129 3130 result = -ENOMEM; 3131 img_request = rbd_img_request_create(rbd_dev, offset, length, 3132 write_request); 3133 if (!img_request) 3134 goto end_request; 3135 3136 img_request->rq = rq; 3137 3138 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3139 rq->bio); 3140 if (!result) 3141 result = rbd_img_request_submit(img_request); 3142 if (result) 3143 rbd_img_request_put(img_request); 3144 end_request: 3145 spin_lock_irq(q->queue_lock); 3146 if (result < 0) { 3147 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n", 3148 write_request ? "write" : "read", 3149 length, offset, result); 3150 3151 __blk_end_request_all(rq, result); 3152 } 3153 } 3154 } 3155 3156 /* 3157 * a queue callback. Makes sure that we don't create a bio that spans across 3158 * multiple osd objects. One exception would be with a single page bios, 3159 * which we handle later at bio_chain_clone_range() 3160 */ 3161 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3162 struct bio_vec *bvec) 3163 { 3164 struct rbd_device *rbd_dev = q->queuedata; 3165 sector_t sector_offset; 3166 sector_t sectors_per_obj; 3167 sector_t obj_sector_offset; 3168 int ret; 3169 3170 /* 3171 * Find how far into its rbd object the partition-relative 3172 * bio start sector is to offset relative to the enclosing 3173 * device. 3174 */ 3175 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3176 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3177 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3178 3179 /* 3180 * Compute the number of bytes from that offset to the end 3181 * of the object. Account for what's already used by the bio. 3182 */ 3183 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3184 if (ret > bmd->bi_size) 3185 ret -= bmd->bi_size; 3186 else 3187 ret = 0; 3188 3189 /* 3190 * Don't send back more than was asked for. And if the bio 3191 * was empty, let the whole thing through because: "Note 3192 * that a block device *must* allow a single page to be 3193 * added to an empty bio." 3194 */ 3195 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3196 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3197 ret = (int) bvec->bv_len; 3198 3199 return ret; 3200 } 3201 3202 static void rbd_free_disk(struct rbd_device *rbd_dev) 3203 { 3204 struct gendisk *disk = rbd_dev->disk; 3205 3206 if (!disk) 3207 return; 3208 3209 rbd_dev->disk = NULL; 3210 if (disk->flags & GENHD_FL_UP) { 3211 del_gendisk(disk); 3212 if (disk->queue) 3213 blk_cleanup_queue(disk->queue); 3214 } 3215 put_disk(disk); 3216 } 3217 3218 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3219 const char *object_name, 3220 u64 offset, u64 length, void *buf) 3221 3222 { 3223 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3224 struct rbd_obj_request *obj_request; 3225 struct page **pages = NULL; 3226 u32 page_count; 3227 size_t size; 3228 int ret; 3229 3230 page_count = (u32) calc_pages_for(offset, length); 3231 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3232 if (IS_ERR(pages)) 3233 ret = PTR_ERR(pages); 3234 3235 ret = -ENOMEM; 3236 obj_request = rbd_obj_request_create(object_name, offset, length, 3237 OBJ_REQUEST_PAGES); 3238 if (!obj_request) 3239 goto out; 3240 3241 obj_request->pages = pages; 3242 obj_request->page_count = page_count; 3243 3244 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3245 obj_request); 3246 if (!obj_request->osd_req) 3247 goto out; 3248 3249 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3250 offset, length, 0, 0); 3251 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3252 obj_request->pages, 3253 obj_request->length, 3254 obj_request->offset & ~PAGE_MASK, 3255 false, false); 3256 rbd_osd_req_format_read(obj_request); 3257 3258 ret = rbd_obj_request_submit(osdc, obj_request); 3259 if (ret) 3260 goto out; 3261 ret = rbd_obj_request_wait(obj_request); 3262 if (ret) 3263 goto out; 3264 3265 ret = obj_request->result; 3266 if (ret < 0) 3267 goto out; 3268 3269 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3270 size = (size_t) obj_request->xferred; 3271 ceph_copy_from_page_vector(pages, buf, 0, size); 3272 rbd_assert(size <= (size_t)INT_MAX); 3273 ret = (int)size; 3274 out: 3275 if (obj_request) 3276 rbd_obj_request_put(obj_request); 3277 else 3278 ceph_release_page_vector(pages, page_count); 3279 3280 return ret; 3281 } 3282 3283 /* 3284 * Read the complete header for the given rbd device. On successful 3285 * return, the rbd_dev->header field will contain up-to-date 3286 * information about the image. 3287 */ 3288 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3289 { 3290 struct rbd_image_header_ondisk *ondisk = NULL; 3291 u32 snap_count = 0; 3292 u64 names_size = 0; 3293 u32 want_count; 3294 int ret; 3295 3296 /* 3297 * The complete header will include an array of its 64-bit 3298 * snapshot ids, followed by the names of those snapshots as 3299 * a contiguous block of NUL-terminated strings. Note that 3300 * the number of snapshots could change by the time we read 3301 * it in, in which case we re-read it. 3302 */ 3303 do { 3304 size_t size; 3305 3306 kfree(ondisk); 3307 3308 size = sizeof (*ondisk); 3309 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3310 size += names_size; 3311 ondisk = kmalloc(size, GFP_KERNEL); 3312 if (!ondisk) 3313 return -ENOMEM; 3314 3315 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3316 0, size, ondisk); 3317 if (ret < 0) 3318 goto out; 3319 if ((size_t)ret < size) { 3320 ret = -ENXIO; 3321 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3322 size, ret); 3323 goto out; 3324 } 3325 if (!rbd_dev_ondisk_valid(ondisk)) { 3326 ret = -ENXIO; 3327 rbd_warn(rbd_dev, "invalid header"); 3328 goto out; 3329 } 3330 3331 names_size = le64_to_cpu(ondisk->snap_names_len); 3332 want_count = snap_count; 3333 snap_count = le32_to_cpu(ondisk->snap_count); 3334 } while (snap_count != want_count); 3335 3336 ret = rbd_header_from_disk(rbd_dev, ondisk); 3337 out: 3338 kfree(ondisk); 3339 3340 return ret; 3341 } 3342 3343 /* 3344 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3345 * has disappeared from the (just updated) snapshot context. 3346 */ 3347 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3348 { 3349 u64 snap_id; 3350 3351 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3352 return; 3353 3354 snap_id = rbd_dev->spec->snap_id; 3355 if (snap_id == CEPH_NOSNAP) 3356 return; 3357 3358 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3360 } 3361 3362 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3363 { 3364 sector_t size; 3365 bool removing; 3366 3367 /* 3368 * Don't hold the lock while doing disk operations, 3369 * or lock ordering will conflict with the bdev mutex via: 3370 * rbd_add() -> blkdev_get() -> rbd_open() 3371 */ 3372 spin_lock_irq(&rbd_dev->lock); 3373 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3374 spin_unlock_irq(&rbd_dev->lock); 3375 /* 3376 * If the device is being removed, rbd_dev->disk has 3377 * been destroyed, so don't try to update its size 3378 */ 3379 if (!removing) { 3380 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3381 dout("setting size to %llu sectors", (unsigned long long)size); 3382 set_capacity(rbd_dev->disk, size); 3383 revalidate_disk(rbd_dev->disk); 3384 } 3385 } 3386 3387 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3388 { 3389 u64 mapping_size; 3390 int ret; 3391 3392 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 3393 down_write(&rbd_dev->header_rwsem); 3394 mapping_size = rbd_dev->mapping.size; 3395 if (rbd_dev->image_format == 1) 3396 ret = rbd_dev_v1_header_info(rbd_dev); 3397 else 3398 ret = rbd_dev_v2_header_info(rbd_dev); 3399 3400 /* If it's a mapped snapshot, validate its EXISTS flag */ 3401 3402 rbd_exists_validate(rbd_dev); 3403 up_write(&rbd_dev->header_rwsem); 3404 3405 if (mapping_size != rbd_dev->mapping.size) { 3406 rbd_dev_update_size(rbd_dev); 3407 } 3408 3409 return ret; 3410 } 3411 3412 static int rbd_init_disk(struct rbd_device *rbd_dev) 3413 { 3414 struct gendisk *disk; 3415 struct request_queue *q; 3416 u64 segment_size; 3417 3418 /* create gendisk info */ 3419 disk = alloc_disk(single_major ? 3420 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3421 RBD_MINORS_PER_MAJOR); 3422 if (!disk) 3423 return -ENOMEM; 3424 3425 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3426 rbd_dev->dev_id); 3427 disk->major = rbd_dev->major; 3428 disk->first_minor = rbd_dev->minor; 3429 if (single_major) 3430 disk->flags |= GENHD_FL_EXT_DEVT; 3431 disk->fops = &rbd_bd_ops; 3432 disk->private_data = rbd_dev; 3433 3434 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3435 if (!q) 3436 goto out_disk; 3437 3438 /* We use the default size, but let's be explicit about it. */ 3439 blk_queue_physical_block_size(q, SECTOR_SIZE); 3440 3441 /* set io sizes to object size */ 3442 segment_size = rbd_obj_bytes(&rbd_dev->header); 3443 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3444 blk_queue_max_segment_size(q, segment_size); 3445 blk_queue_io_min(q, segment_size); 3446 blk_queue_io_opt(q, segment_size); 3447 3448 blk_queue_merge_bvec(q, rbd_merge_bvec); 3449 disk->queue = q; 3450 3451 q->queuedata = rbd_dev; 3452 3453 rbd_dev->disk = disk; 3454 3455 return 0; 3456 out_disk: 3457 put_disk(disk); 3458 3459 return -ENOMEM; 3460 } 3461 3462 /* 3463 sysfs 3464 */ 3465 3466 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3467 { 3468 return container_of(dev, struct rbd_device, dev); 3469 } 3470 3471 static ssize_t rbd_size_show(struct device *dev, 3472 struct device_attribute *attr, char *buf) 3473 { 3474 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3475 3476 return sprintf(buf, "%llu\n", 3477 (unsigned long long)rbd_dev->mapping.size); 3478 } 3479 3480 /* 3481 * Note this shows the features for whatever's mapped, which is not 3482 * necessarily the base image. 3483 */ 3484 static ssize_t rbd_features_show(struct device *dev, 3485 struct device_attribute *attr, char *buf) 3486 { 3487 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3488 3489 return sprintf(buf, "0x%016llx\n", 3490 (unsigned long long)rbd_dev->mapping.features); 3491 } 3492 3493 static ssize_t rbd_major_show(struct device *dev, 3494 struct device_attribute *attr, char *buf) 3495 { 3496 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3497 3498 if (rbd_dev->major) 3499 return sprintf(buf, "%d\n", rbd_dev->major); 3500 3501 return sprintf(buf, "(none)\n"); 3502 } 3503 3504 static ssize_t rbd_minor_show(struct device *dev, 3505 struct device_attribute *attr, char *buf) 3506 { 3507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3508 3509 return sprintf(buf, "%d\n", rbd_dev->minor); 3510 } 3511 3512 static ssize_t rbd_client_id_show(struct device *dev, 3513 struct device_attribute *attr, char *buf) 3514 { 3515 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3516 3517 return sprintf(buf, "client%lld\n", 3518 ceph_client_id(rbd_dev->rbd_client->client)); 3519 } 3520 3521 static ssize_t rbd_pool_show(struct device *dev, 3522 struct device_attribute *attr, char *buf) 3523 { 3524 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3525 3526 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3527 } 3528 3529 static ssize_t rbd_pool_id_show(struct device *dev, 3530 struct device_attribute *attr, char *buf) 3531 { 3532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3533 3534 return sprintf(buf, "%llu\n", 3535 (unsigned long long) rbd_dev->spec->pool_id); 3536 } 3537 3538 static ssize_t rbd_name_show(struct device *dev, 3539 struct device_attribute *attr, char *buf) 3540 { 3541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3542 3543 if (rbd_dev->spec->image_name) 3544 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3545 3546 return sprintf(buf, "(unknown)\n"); 3547 } 3548 3549 static ssize_t rbd_image_id_show(struct device *dev, 3550 struct device_attribute *attr, char *buf) 3551 { 3552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3553 3554 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3555 } 3556 3557 /* 3558 * Shows the name of the currently-mapped snapshot (or 3559 * RBD_SNAP_HEAD_NAME for the base image). 3560 */ 3561 static ssize_t rbd_snap_show(struct device *dev, 3562 struct device_attribute *attr, 3563 char *buf) 3564 { 3565 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3566 3567 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3568 } 3569 3570 /* 3571 * For an rbd v2 image, shows the pool id, image id, and snapshot id 3572 * for the parent image. If there is no parent, simply shows 3573 * "(no parent image)". 3574 */ 3575 static ssize_t rbd_parent_show(struct device *dev, 3576 struct device_attribute *attr, 3577 char *buf) 3578 { 3579 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3580 struct rbd_spec *spec = rbd_dev->parent_spec; 3581 int count; 3582 char *bufp = buf; 3583 3584 if (!spec) 3585 return sprintf(buf, "(no parent image)\n"); 3586 3587 count = sprintf(bufp, "pool_id %llu\npool_name %s\n", 3588 (unsigned long long) spec->pool_id, spec->pool_name); 3589 if (count < 0) 3590 return count; 3591 bufp += count; 3592 3593 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id, 3594 spec->image_name ? spec->image_name : "(unknown)"); 3595 if (count < 0) 3596 return count; 3597 bufp += count; 3598 3599 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n", 3600 (unsigned long long) spec->snap_id, spec->snap_name); 3601 if (count < 0) 3602 return count; 3603 bufp += count; 3604 3605 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap); 3606 if (count < 0) 3607 return count; 3608 bufp += count; 3609 3610 return (ssize_t) (bufp - buf); 3611 } 3612 3613 static ssize_t rbd_image_refresh(struct device *dev, 3614 struct device_attribute *attr, 3615 const char *buf, 3616 size_t size) 3617 { 3618 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3619 int ret; 3620 3621 ret = rbd_dev_refresh(rbd_dev); 3622 if (ret) 3623 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret); 3624 3625 return ret < 0 ? ret : size; 3626 } 3627 3628 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3629 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3630 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3631 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3632 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3633 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3634 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3635 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3636 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3637 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3638 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3639 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3640 3641 static struct attribute *rbd_attrs[] = { 3642 &dev_attr_size.attr, 3643 &dev_attr_features.attr, 3644 &dev_attr_major.attr, 3645 &dev_attr_minor.attr, 3646 &dev_attr_client_id.attr, 3647 &dev_attr_pool.attr, 3648 &dev_attr_pool_id.attr, 3649 &dev_attr_name.attr, 3650 &dev_attr_image_id.attr, 3651 &dev_attr_current_snap.attr, 3652 &dev_attr_parent.attr, 3653 &dev_attr_refresh.attr, 3654 NULL 3655 }; 3656 3657 static struct attribute_group rbd_attr_group = { 3658 .attrs = rbd_attrs, 3659 }; 3660 3661 static const struct attribute_group *rbd_attr_groups[] = { 3662 &rbd_attr_group, 3663 NULL 3664 }; 3665 3666 static void rbd_sysfs_dev_release(struct device *dev) 3667 { 3668 } 3669 3670 static struct device_type rbd_device_type = { 3671 .name = "rbd", 3672 .groups = rbd_attr_groups, 3673 .release = rbd_sysfs_dev_release, 3674 }; 3675 3676 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3677 { 3678 kref_get(&spec->kref); 3679 3680 return spec; 3681 } 3682 3683 static void rbd_spec_free(struct kref *kref); 3684 static void rbd_spec_put(struct rbd_spec *spec) 3685 { 3686 if (spec) 3687 kref_put(&spec->kref, rbd_spec_free); 3688 } 3689 3690 static struct rbd_spec *rbd_spec_alloc(void) 3691 { 3692 struct rbd_spec *spec; 3693 3694 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3695 if (!spec) 3696 return NULL; 3697 kref_init(&spec->kref); 3698 3699 return spec; 3700 } 3701 3702 static void rbd_spec_free(struct kref *kref) 3703 { 3704 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3705 3706 kfree(spec->pool_name); 3707 kfree(spec->image_id); 3708 kfree(spec->image_name); 3709 kfree(spec->snap_name); 3710 kfree(spec); 3711 } 3712 3713 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3714 struct rbd_spec *spec) 3715 { 3716 struct rbd_device *rbd_dev; 3717 3718 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3719 if (!rbd_dev) 3720 return NULL; 3721 3722 spin_lock_init(&rbd_dev->lock); 3723 rbd_dev->flags = 0; 3724 atomic_set(&rbd_dev->parent_ref, 0); 3725 INIT_LIST_HEAD(&rbd_dev->node); 3726 init_rwsem(&rbd_dev->header_rwsem); 3727 3728 rbd_dev->spec = spec; 3729 rbd_dev->rbd_client = rbdc; 3730 3731 /* Initialize the layout used for all rbd requests */ 3732 3733 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3734 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3735 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3736 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3737 3738 return rbd_dev; 3739 } 3740 3741 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3742 { 3743 rbd_put_client(rbd_dev->rbd_client); 3744 rbd_spec_put(rbd_dev->spec); 3745 kfree(rbd_dev); 3746 } 3747 3748 /* 3749 * Get the size and object order for an image snapshot, or if 3750 * snap_id is CEPH_NOSNAP, gets this information for the base 3751 * image. 3752 */ 3753 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3754 u8 *order, u64 *snap_size) 3755 { 3756 __le64 snapid = cpu_to_le64(snap_id); 3757 int ret; 3758 struct { 3759 u8 order; 3760 __le64 size; 3761 } __attribute__ ((packed)) size_buf = { 0 }; 3762 3763 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3764 "rbd", "get_size", 3765 &snapid, sizeof (snapid), 3766 &size_buf, sizeof (size_buf)); 3767 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3768 if (ret < 0) 3769 return ret; 3770 if (ret < sizeof (size_buf)) 3771 return -ERANGE; 3772 3773 if (order) { 3774 *order = size_buf.order; 3775 dout(" order %u", (unsigned int)*order); 3776 } 3777 *snap_size = le64_to_cpu(size_buf.size); 3778 3779 dout(" snap_id 0x%016llx snap_size = %llu\n", 3780 (unsigned long long)snap_id, 3781 (unsigned long long)*snap_size); 3782 3783 return 0; 3784 } 3785 3786 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3787 { 3788 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3789 &rbd_dev->header.obj_order, 3790 &rbd_dev->header.image_size); 3791 } 3792 3793 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3794 { 3795 void *reply_buf; 3796 int ret; 3797 void *p; 3798 3799 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3800 if (!reply_buf) 3801 return -ENOMEM; 3802 3803 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3804 "rbd", "get_object_prefix", NULL, 0, 3805 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 3806 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3807 if (ret < 0) 3808 goto out; 3809 3810 p = reply_buf; 3811 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3812 p + ret, NULL, GFP_NOIO); 3813 ret = 0; 3814 3815 if (IS_ERR(rbd_dev->header.object_prefix)) { 3816 ret = PTR_ERR(rbd_dev->header.object_prefix); 3817 rbd_dev->header.object_prefix = NULL; 3818 } else { 3819 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3820 } 3821 out: 3822 kfree(reply_buf); 3823 3824 return ret; 3825 } 3826 3827 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3828 u64 *snap_features) 3829 { 3830 __le64 snapid = cpu_to_le64(snap_id); 3831 struct { 3832 __le64 features; 3833 __le64 incompat; 3834 } __attribute__ ((packed)) features_buf = { 0 }; 3835 u64 incompat; 3836 int ret; 3837 3838 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3839 "rbd", "get_features", 3840 &snapid, sizeof (snapid), 3841 &features_buf, sizeof (features_buf)); 3842 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3843 if (ret < 0) 3844 return ret; 3845 if (ret < sizeof (features_buf)) 3846 return -ERANGE; 3847 3848 incompat = le64_to_cpu(features_buf.incompat); 3849 if (incompat & ~RBD_FEATURES_SUPPORTED) 3850 return -ENXIO; 3851 3852 *snap_features = le64_to_cpu(features_buf.features); 3853 3854 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 3855 (unsigned long long)snap_id, 3856 (unsigned long long)*snap_features, 3857 (unsigned long long)le64_to_cpu(features_buf.incompat)); 3858 3859 return 0; 3860 } 3861 3862 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 3863 { 3864 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 3865 &rbd_dev->header.features); 3866 } 3867 3868 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 3869 { 3870 struct rbd_spec *parent_spec; 3871 size_t size; 3872 void *reply_buf = NULL; 3873 __le64 snapid; 3874 void *p; 3875 void *end; 3876 u64 pool_id; 3877 char *image_id; 3878 u64 snap_id; 3879 u64 overlap; 3880 int ret; 3881 3882 parent_spec = rbd_spec_alloc(); 3883 if (!parent_spec) 3884 return -ENOMEM; 3885 3886 size = sizeof (__le64) + /* pool_id */ 3887 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 3888 sizeof (__le64) + /* snap_id */ 3889 sizeof (__le64); /* overlap */ 3890 reply_buf = kmalloc(size, GFP_KERNEL); 3891 if (!reply_buf) { 3892 ret = -ENOMEM; 3893 goto out_err; 3894 } 3895 3896 snapid = cpu_to_le64(CEPH_NOSNAP); 3897 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3898 "rbd", "get_parent", 3899 &snapid, sizeof (snapid), 3900 reply_buf, size); 3901 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3902 if (ret < 0) 3903 goto out_err; 3904 3905 p = reply_buf; 3906 end = reply_buf + ret; 3907 ret = -ERANGE; 3908 ceph_decode_64_safe(&p, end, pool_id, out_err); 3909 if (pool_id == CEPH_NOPOOL) { 3910 /* 3911 * Either the parent never existed, or we have 3912 * record of it but the image got flattened so it no 3913 * longer has a parent. When the parent of a 3914 * layered image disappears we immediately set the 3915 * overlap to 0. The effect of this is that all new 3916 * requests will be treated as if the image had no 3917 * parent. 3918 */ 3919 if (rbd_dev->parent_overlap) { 3920 rbd_dev->parent_overlap = 0; 3921 smp_mb(); 3922 rbd_dev_parent_put(rbd_dev); 3923 pr_info("%s: clone image has been flattened\n", 3924 rbd_dev->disk->disk_name); 3925 } 3926 3927 goto out; /* No parent? No problem. */ 3928 } 3929 3930 /* The ceph file layout needs to fit pool id in 32 bits */ 3931 3932 ret = -EIO; 3933 if (pool_id > (u64)U32_MAX) { 3934 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n", 3935 (unsigned long long)pool_id, U32_MAX); 3936 goto out_err; 3937 } 3938 3939 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 3940 if (IS_ERR(image_id)) { 3941 ret = PTR_ERR(image_id); 3942 goto out_err; 3943 } 3944 ceph_decode_64_safe(&p, end, snap_id, out_err); 3945 ceph_decode_64_safe(&p, end, overlap, out_err); 3946 3947 /* 3948 * The parent won't change (except when the clone is 3949 * flattened, already handled that). So we only need to 3950 * record the parent spec we have not already done so. 3951 */ 3952 if (!rbd_dev->parent_spec) { 3953 parent_spec->pool_id = pool_id; 3954 parent_spec->image_id = image_id; 3955 parent_spec->snap_id = snap_id; 3956 rbd_dev->parent_spec = parent_spec; 3957 parent_spec = NULL; /* rbd_dev now owns this */ 3958 } 3959 3960 /* 3961 * We always update the parent overlap. If it's zero we 3962 * treat it specially. 3963 */ 3964 rbd_dev->parent_overlap = overlap; 3965 smp_mb(); 3966 if (!overlap) { 3967 3968 /* A null parent_spec indicates it's the initial probe */ 3969 3970 if (parent_spec) { 3971 /* 3972 * The overlap has become zero, so the clone 3973 * must have been resized down to 0 at some 3974 * point. Treat this the same as a flatten. 3975 */ 3976 rbd_dev_parent_put(rbd_dev); 3977 pr_info("%s: clone image now standalone\n", 3978 rbd_dev->disk->disk_name); 3979 } else { 3980 /* 3981 * For the initial probe, if we find the 3982 * overlap is zero we just pretend there was 3983 * no parent image. 3984 */ 3985 rbd_warn(rbd_dev, "ignoring parent of " 3986 "clone with overlap 0\n"); 3987 } 3988 } 3989 out: 3990 ret = 0; 3991 out_err: 3992 kfree(reply_buf); 3993 rbd_spec_put(parent_spec); 3994 3995 return ret; 3996 } 3997 3998 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 3999 { 4000 struct { 4001 __le64 stripe_unit; 4002 __le64 stripe_count; 4003 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4004 size_t size = sizeof (striping_info_buf); 4005 void *p; 4006 u64 obj_size; 4007 u64 stripe_unit; 4008 u64 stripe_count; 4009 int ret; 4010 4011 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4012 "rbd", "get_stripe_unit_count", NULL, 0, 4013 (char *)&striping_info_buf, size); 4014 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4015 if (ret < 0) 4016 return ret; 4017 if (ret < size) 4018 return -ERANGE; 4019 4020 /* 4021 * We don't actually support the "fancy striping" feature 4022 * (STRIPINGV2) yet, but if the striping sizes are the 4023 * defaults the behavior is the same as before. So find 4024 * out, and only fail if the image has non-default values. 4025 */ 4026 ret = -EINVAL; 4027 obj_size = (u64)1 << rbd_dev->header.obj_order; 4028 p = &striping_info_buf; 4029 stripe_unit = ceph_decode_64(&p); 4030 if (stripe_unit != obj_size) { 4031 rbd_warn(rbd_dev, "unsupported stripe unit " 4032 "(got %llu want %llu)", 4033 stripe_unit, obj_size); 4034 return -EINVAL; 4035 } 4036 stripe_count = ceph_decode_64(&p); 4037 if (stripe_count != 1) { 4038 rbd_warn(rbd_dev, "unsupported stripe count " 4039 "(got %llu want 1)", stripe_count); 4040 return -EINVAL; 4041 } 4042 rbd_dev->header.stripe_unit = stripe_unit; 4043 rbd_dev->header.stripe_count = stripe_count; 4044 4045 return 0; 4046 } 4047 4048 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4049 { 4050 size_t image_id_size; 4051 char *image_id; 4052 void *p; 4053 void *end; 4054 size_t size; 4055 void *reply_buf = NULL; 4056 size_t len = 0; 4057 char *image_name = NULL; 4058 int ret; 4059 4060 rbd_assert(!rbd_dev->spec->image_name); 4061 4062 len = strlen(rbd_dev->spec->image_id); 4063 image_id_size = sizeof (__le32) + len; 4064 image_id = kmalloc(image_id_size, GFP_KERNEL); 4065 if (!image_id) 4066 return NULL; 4067 4068 p = image_id; 4069 end = image_id + image_id_size; 4070 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4071 4072 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4073 reply_buf = kmalloc(size, GFP_KERNEL); 4074 if (!reply_buf) 4075 goto out; 4076 4077 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4078 "rbd", "dir_get_name", 4079 image_id, image_id_size, 4080 reply_buf, size); 4081 if (ret < 0) 4082 goto out; 4083 p = reply_buf; 4084 end = reply_buf + ret; 4085 4086 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4087 if (IS_ERR(image_name)) 4088 image_name = NULL; 4089 else 4090 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4091 out: 4092 kfree(reply_buf); 4093 kfree(image_id); 4094 4095 return image_name; 4096 } 4097 4098 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4099 { 4100 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4101 const char *snap_name; 4102 u32 which = 0; 4103 4104 /* Skip over names until we find the one we are looking for */ 4105 4106 snap_name = rbd_dev->header.snap_names; 4107 while (which < snapc->num_snaps) { 4108 if (!strcmp(name, snap_name)) 4109 return snapc->snaps[which]; 4110 snap_name += strlen(snap_name) + 1; 4111 which++; 4112 } 4113 return CEPH_NOSNAP; 4114 } 4115 4116 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4117 { 4118 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4119 u32 which; 4120 bool found = false; 4121 u64 snap_id; 4122 4123 for (which = 0; !found && which < snapc->num_snaps; which++) { 4124 const char *snap_name; 4125 4126 snap_id = snapc->snaps[which]; 4127 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4128 if (IS_ERR(snap_name)) { 4129 /* ignore no-longer existing snapshots */ 4130 if (PTR_ERR(snap_name) == -ENOENT) 4131 continue; 4132 else 4133 break; 4134 } 4135 found = !strcmp(name, snap_name); 4136 kfree(snap_name); 4137 } 4138 return found ? snap_id : CEPH_NOSNAP; 4139 } 4140 4141 /* 4142 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4143 * no snapshot by that name is found, or if an error occurs. 4144 */ 4145 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4146 { 4147 if (rbd_dev->image_format == 1) 4148 return rbd_v1_snap_id_by_name(rbd_dev, name); 4149 4150 return rbd_v2_snap_id_by_name(rbd_dev, name); 4151 } 4152 4153 /* 4154 * When an rbd image has a parent image, it is identified by the 4155 * pool, image, and snapshot ids (not names). This function fills 4156 * in the names for those ids. (It's OK if we can't figure out the 4157 * name for an image id, but the pool and snapshot ids should always 4158 * exist and have names.) All names in an rbd spec are dynamically 4159 * allocated. 4160 * 4161 * When an image being mapped (not a parent) is probed, we have the 4162 * pool name and pool id, image name and image id, and the snapshot 4163 * name. The only thing we're missing is the snapshot id. 4164 */ 4165 static int rbd_dev_spec_update(struct rbd_device *rbd_dev) 4166 { 4167 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4168 struct rbd_spec *spec = rbd_dev->spec; 4169 const char *pool_name; 4170 const char *image_name; 4171 const char *snap_name; 4172 int ret; 4173 4174 /* 4175 * An image being mapped will have the pool name (etc.), but 4176 * we need to look up the snapshot id. 4177 */ 4178 if (spec->pool_name) { 4179 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4180 u64 snap_id; 4181 4182 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4183 if (snap_id == CEPH_NOSNAP) 4184 return -ENOENT; 4185 spec->snap_id = snap_id; 4186 } else { 4187 spec->snap_id = CEPH_NOSNAP; 4188 } 4189 4190 return 0; 4191 } 4192 4193 /* Get the pool name; we have to make our own copy of this */ 4194 4195 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4196 if (!pool_name) { 4197 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4198 return -EIO; 4199 } 4200 pool_name = kstrdup(pool_name, GFP_KERNEL); 4201 if (!pool_name) 4202 return -ENOMEM; 4203 4204 /* Fetch the image name; tolerate failure here */ 4205 4206 image_name = rbd_dev_image_name(rbd_dev); 4207 if (!image_name) 4208 rbd_warn(rbd_dev, "unable to get image name"); 4209 4210 /* Look up the snapshot name, and make a copy */ 4211 4212 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4213 if (IS_ERR(snap_name)) { 4214 ret = PTR_ERR(snap_name); 4215 goto out_err; 4216 } 4217 4218 spec->pool_name = pool_name; 4219 spec->image_name = image_name; 4220 spec->snap_name = snap_name; 4221 4222 return 0; 4223 out_err: 4224 kfree(image_name); 4225 kfree(pool_name); 4226 4227 return ret; 4228 } 4229 4230 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4231 { 4232 size_t size; 4233 int ret; 4234 void *reply_buf; 4235 void *p; 4236 void *end; 4237 u64 seq; 4238 u32 snap_count; 4239 struct ceph_snap_context *snapc; 4240 u32 i; 4241 4242 /* 4243 * We'll need room for the seq value (maximum snapshot id), 4244 * snapshot count, and array of that many snapshot ids. 4245 * For now we have a fixed upper limit on the number we're 4246 * prepared to receive. 4247 */ 4248 size = sizeof (__le64) + sizeof (__le32) + 4249 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4250 reply_buf = kzalloc(size, GFP_KERNEL); 4251 if (!reply_buf) 4252 return -ENOMEM; 4253 4254 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4255 "rbd", "get_snapcontext", NULL, 0, 4256 reply_buf, size); 4257 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4258 if (ret < 0) 4259 goto out; 4260 4261 p = reply_buf; 4262 end = reply_buf + ret; 4263 ret = -ERANGE; 4264 ceph_decode_64_safe(&p, end, seq, out); 4265 ceph_decode_32_safe(&p, end, snap_count, out); 4266 4267 /* 4268 * Make sure the reported number of snapshot ids wouldn't go 4269 * beyond the end of our buffer. But before checking that, 4270 * make sure the computed size of the snapshot context we 4271 * allocate is representable in a size_t. 4272 */ 4273 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4274 / sizeof (u64)) { 4275 ret = -EINVAL; 4276 goto out; 4277 } 4278 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4279 goto out; 4280 ret = 0; 4281 4282 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4283 if (!snapc) { 4284 ret = -ENOMEM; 4285 goto out; 4286 } 4287 snapc->seq = seq; 4288 for (i = 0; i < snap_count; i++) 4289 snapc->snaps[i] = ceph_decode_64(&p); 4290 4291 ceph_put_snap_context(rbd_dev->header.snapc); 4292 rbd_dev->header.snapc = snapc; 4293 4294 dout(" snap context seq = %llu, snap_count = %u\n", 4295 (unsigned long long)seq, (unsigned int)snap_count); 4296 out: 4297 kfree(reply_buf); 4298 4299 return ret; 4300 } 4301 4302 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4303 u64 snap_id) 4304 { 4305 size_t size; 4306 void *reply_buf; 4307 __le64 snapid; 4308 int ret; 4309 void *p; 4310 void *end; 4311 char *snap_name; 4312 4313 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4314 reply_buf = kmalloc(size, GFP_KERNEL); 4315 if (!reply_buf) 4316 return ERR_PTR(-ENOMEM); 4317 4318 snapid = cpu_to_le64(snap_id); 4319 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4320 "rbd", "get_snapshot_name", 4321 &snapid, sizeof (snapid), 4322 reply_buf, size); 4323 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4324 if (ret < 0) { 4325 snap_name = ERR_PTR(ret); 4326 goto out; 4327 } 4328 4329 p = reply_buf; 4330 end = reply_buf + ret; 4331 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4332 if (IS_ERR(snap_name)) 4333 goto out; 4334 4335 dout(" snap_id 0x%016llx snap_name = %s\n", 4336 (unsigned long long)snap_id, snap_name); 4337 out: 4338 kfree(reply_buf); 4339 4340 return snap_name; 4341 } 4342 4343 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4344 { 4345 bool first_time = rbd_dev->header.object_prefix == NULL; 4346 int ret; 4347 4348 ret = rbd_dev_v2_image_size(rbd_dev); 4349 if (ret) 4350 return ret; 4351 4352 if (first_time) { 4353 ret = rbd_dev_v2_header_onetime(rbd_dev); 4354 if (ret) 4355 return ret; 4356 } 4357 4358 /* 4359 * If the image supports layering, get the parent info. We 4360 * need to probe the first time regardless. Thereafter we 4361 * only need to if there's a parent, to see if it has 4362 * disappeared due to the mapped image getting flattened. 4363 */ 4364 if (rbd_dev->header.features & RBD_FEATURE_LAYERING && 4365 (first_time || rbd_dev->parent_spec)) { 4366 bool warn; 4367 4368 ret = rbd_dev_v2_parent_info(rbd_dev); 4369 if (ret) 4370 return ret; 4371 4372 /* 4373 * Print a warning if this is the initial probe and 4374 * the image has a parent. Don't print it if the 4375 * image now being probed is itself a parent. We 4376 * can tell at this point because we won't know its 4377 * pool name yet (just its pool id). 4378 */ 4379 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name; 4380 if (first_time && warn) 4381 rbd_warn(rbd_dev, "WARNING: kernel layering " 4382 "is EXPERIMENTAL!"); 4383 } 4384 4385 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) 4386 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 4387 rbd_dev->mapping.size = rbd_dev->header.image_size; 4388 4389 ret = rbd_dev_v2_snap_context(rbd_dev); 4390 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4391 4392 return ret; 4393 } 4394 4395 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4396 { 4397 struct device *dev; 4398 int ret; 4399 4400 dev = &rbd_dev->dev; 4401 dev->bus = &rbd_bus_type; 4402 dev->type = &rbd_device_type; 4403 dev->parent = &rbd_root_dev; 4404 dev->release = rbd_dev_device_release; 4405 dev_set_name(dev, "%d", rbd_dev->dev_id); 4406 ret = device_register(dev); 4407 4408 return ret; 4409 } 4410 4411 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4412 { 4413 device_unregister(&rbd_dev->dev); 4414 } 4415 4416 /* 4417 * Get a unique rbd identifier for the given new rbd_dev, and add 4418 * the rbd_dev to the global list. 4419 */ 4420 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4421 { 4422 int new_dev_id; 4423 4424 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4425 0, minor_to_rbd_dev_id(1 << MINORBITS), 4426 GFP_KERNEL); 4427 if (new_dev_id < 0) 4428 return new_dev_id; 4429 4430 rbd_dev->dev_id = new_dev_id; 4431 4432 spin_lock(&rbd_dev_list_lock); 4433 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4434 spin_unlock(&rbd_dev_list_lock); 4435 4436 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4437 4438 return 0; 4439 } 4440 4441 /* 4442 * Remove an rbd_dev from the global list, and record that its 4443 * identifier is no longer in use. 4444 */ 4445 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4446 { 4447 spin_lock(&rbd_dev_list_lock); 4448 list_del_init(&rbd_dev->node); 4449 spin_unlock(&rbd_dev_list_lock); 4450 4451 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4452 4453 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4454 } 4455 4456 /* 4457 * Skips over white space at *buf, and updates *buf to point to the 4458 * first found non-space character (if any). Returns the length of 4459 * the token (string of non-white space characters) found. Note 4460 * that *buf must be terminated with '\0'. 4461 */ 4462 static inline size_t next_token(const char **buf) 4463 { 4464 /* 4465 * These are the characters that produce nonzero for 4466 * isspace() in the "C" and "POSIX" locales. 4467 */ 4468 const char *spaces = " \f\n\r\t\v"; 4469 4470 *buf += strspn(*buf, spaces); /* Find start of token */ 4471 4472 return strcspn(*buf, spaces); /* Return token length */ 4473 } 4474 4475 /* 4476 * Finds the next token in *buf, and if the provided token buffer is 4477 * big enough, copies the found token into it. The result, if 4478 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4479 * must be terminated with '\0' on entry. 4480 * 4481 * Returns the length of the token found (not including the '\0'). 4482 * Return value will be 0 if no token is found, and it will be >= 4483 * token_size if the token would not fit. 4484 * 4485 * The *buf pointer will be updated to point beyond the end of the 4486 * found token. Note that this occurs even if the token buffer is 4487 * too small to hold it. 4488 */ 4489 static inline size_t copy_token(const char **buf, 4490 char *token, 4491 size_t token_size) 4492 { 4493 size_t len; 4494 4495 len = next_token(buf); 4496 if (len < token_size) { 4497 memcpy(token, *buf, len); 4498 *(token + len) = '\0'; 4499 } 4500 *buf += len; 4501 4502 return len; 4503 } 4504 4505 /* 4506 * Finds the next token in *buf, dynamically allocates a buffer big 4507 * enough to hold a copy of it, and copies the token into the new 4508 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4509 * that a duplicate buffer is created even for a zero-length token. 4510 * 4511 * Returns a pointer to the newly-allocated duplicate, or a null 4512 * pointer if memory for the duplicate was not available. If 4513 * the lenp argument is a non-null pointer, the length of the token 4514 * (not including the '\0') is returned in *lenp. 4515 * 4516 * If successful, the *buf pointer will be updated to point beyond 4517 * the end of the found token. 4518 * 4519 * Note: uses GFP_KERNEL for allocation. 4520 */ 4521 static inline char *dup_token(const char **buf, size_t *lenp) 4522 { 4523 char *dup; 4524 size_t len; 4525 4526 len = next_token(buf); 4527 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4528 if (!dup) 4529 return NULL; 4530 *(dup + len) = '\0'; 4531 *buf += len; 4532 4533 if (lenp) 4534 *lenp = len; 4535 4536 return dup; 4537 } 4538 4539 /* 4540 * Parse the options provided for an "rbd add" (i.e., rbd image 4541 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4542 * and the data written is passed here via a NUL-terminated buffer. 4543 * Returns 0 if successful or an error code otherwise. 4544 * 4545 * The information extracted from these options is recorded in 4546 * the other parameters which return dynamically-allocated 4547 * structures: 4548 * ceph_opts 4549 * The address of a pointer that will refer to a ceph options 4550 * structure. Caller must release the returned pointer using 4551 * ceph_destroy_options() when it is no longer needed. 4552 * rbd_opts 4553 * Address of an rbd options pointer. Fully initialized by 4554 * this function; caller must release with kfree(). 4555 * spec 4556 * Address of an rbd image specification pointer. Fully 4557 * initialized by this function based on parsed options. 4558 * Caller must release with rbd_spec_put(). 4559 * 4560 * The options passed take this form: 4561 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4562 * where: 4563 * <mon_addrs> 4564 * A comma-separated list of one or more monitor addresses. 4565 * A monitor address is an ip address, optionally followed 4566 * by a port number (separated by a colon). 4567 * I.e.: ip1[:port1][,ip2[:port2]...] 4568 * <options> 4569 * A comma-separated list of ceph and/or rbd options. 4570 * <pool_name> 4571 * The name of the rados pool containing the rbd image. 4572 * <image_name> 4573 * The name of the image in that pool to map. 4574 * <snap_id> 4575 * An optional snapshot id. If provided, the mapping will 4576 * present data from the image at the time that snapshot was 4577 * created. The image head is used if no snapshot id is 4578 * provided. Snapshot mappings are always read-only. 4579 */ 4580 static int rbd_add_parse_args(const char *buf, 4581 struct ceph_options **ceph_opts, 4582 struct rbd_options **opts, 4583 struct rbd_spec **rbd_spec) 4584 { 4585 size_t len; 4586 char *options; 4587 const char *mon_addrs; 4588 char *snap_name; 4589 size_t mon_addrs_size; 4590 struct rbd_spec *spec = NULL; 4591 struct rbd_options *rbd_opts = NULL; 4592 struct ceph_options *copts; 4593 int ret; 4594 4595 /* The first four tokens are required */ 4596 4597 len = next_token(&buf); 4598 if (!len) { 4599 rbd_warn(NULL, "no monitor address(es) provided"); 4600 return -EINVAL; 4601 } 4602 mon_addrs = buf; 4603 mon_addrs_size = len + 1; 4604 buf += len; 4605 4606 ret = -EINVAL; 4607 options = dup_token(&buf, NULL); 4608 if (!options) 4609 return -ENOMEM; 4610 if (!*options) { 4611 rbd_warn(NULL, "no options provided"); 4612 goto out_err; 4613 } 4614 4615 spec = rbd_spec_alloc(); 4616 if (!spec) 4617 goto out_mem; 4618 4619 spec->pool_name = dup_token(&buf, NULL); 4620 if (!spec->pool_name) 4621 goto out_mem; 4622 if (!*spec->pool_name) { 4623 rbd_warn(NULL, "no pool name provided"); 4624 goto out_err; 4625 } 4626 4627 spec->image_name = dup_token(&buf, NULL); 4628 if (!spec->image_name) 4629 goto out_mem; 4630 if (!*spec->image_name) { 4631 rbd_warn(NULL, "no image name provided"); 4632 goto out_err; 4633 } 4634 4635 /* 4636 * Snapshot name is optional; default is to use "-" 4637 * (indicating the head/no snapshot). 4638 */ 4639 len = next_token(&buf); 4640 if (!len) { 4641 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4642 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4643 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4644 ret = -ENAMETOOLONG; 4645 goto out_err; 4646 } 4647 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4648 if (!snap_name) 4649 goto out_mem; 4650 *(snap_name + len) = '\0'; 4651 spec->snap_name = snap_name; 4652 4653 /* Initialize all rbd options to the defaults */ 4654 4655 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4656 if (!rbd_opts) 4657 goto out_mem; 4658 4659 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4660 4661 copts = ceph_parse_options(options, mon_addrs, 4662 mon_addrs + mon_addrs_size - 1, 4663 parse_rbd_opts_token, rbd_opts); 4664 if (IS_ERR(copts)) { 4665 ret = PTR_ERR(copts); 4666 goto out_err; 4667 } 4668 kfree(options); 4669 4670 *ceph_opts = copts; 4671 *opts = rbd_opts; 4672 *rbd_spec = spec; 4673 4674 return 0; 4675 out_mem: 4676 ret = -ENOMEM; 4677 out_err: 4678 kfree(rbd_opts); 4679 rbd_spec_put(spec); 4680 kfree(options); 4681 4682 return ret; 4683 } 4684 4685 /* 4686 * An rbd format 2 image has a unique identifier, distinct from the 4687 * name given to it by the user. Internally, that identifier is 4688 * what's used to specify the names of objects related to the image. 4689 * 4690 * A special "rbd id" object is used to map an rbd image name to its 4691 * id. If that object doesn't exist, then there is no v2 rbd image 4692 * with the supplied name. 4693 * 4694 * This function will record the given rbd_dev's image_id field if 4695 * it can be determined, and in that case will return 0. If any 4696 * errors occur a negative errno will be returned and the rbd_dev's 4697 * image_id field will be unchanged (and should be NULL). 4698 */ 4699 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4700 { 4701 int ret; 4702 size_t size; 4703 char *object_name; 4704 void *response; 4705 char *image_id; 4706 4707 /* 4708 * When probing a parent image, the image id is already 4709 * known (and the image name likely is not). There's no 4710 * need to fetch the image id again in this case. We 4711 * do still need to set the image format though. 4712 */ 4713 if (rbd_dev->spec->image_id) { 4714 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4715 4716 return 0; 4717 } 4718 4719 /* 4720 * First, see if the format 2 image id file exists, and if 4721 * so, get the image's persistent id from it. 4722 */ 4723 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4724 object_name = kmalloc(size, GFP_NOIO); 4725 if (!object_name) 4726 return -ENOMEM; 4727 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4728 dout("rbd id object name is %s\n", object_name); 4729 4730 /* Response will be an encoded string, which includes a length */ 4731 4732 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4733 response = kzalloc(size, GFP_NOIO); 4734 if (!response) { 4735 ret = -ENOMEM; 4736 goto out; 4737 } 4738 4739 /* If it doesn't exist we'll assume it's a format 1 image */ 4740 4741 ret = rbd_obj_method_sync(rbd_dev, object_name, 4742 "rbd", "get_id", NULL, 0, 4743 response, RBD_IMAGE_ID_LEN_MAX); 4744 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4745 if (ret == -ENOENT) { 4746 image_id = kstrdup("", GFP_KERNEL); 4747 ret = image_id ? 0 : -ENOMEM; 4748 if (!ret) 4749 rbd_dev->image_format = 1; 4750 } else if (ret > sizeof (__le32)) { 4751 void *p = response; 4752 4753 image_id = ceph_extract_encoded_string(&p, p + ret, 4754 NULL, GFP_NOIO); 4755 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0; 4756 if (!ret) 4757 rbd_dev->image_format = 2; 4758 } else { 4759 ret = -EINVAL; 4760 } 4761 4762 if (!ret) { 4763 rbd_dev->spec->image_id = image_id; 4764 dout("image_id is %s\n", image_id); 4765 } 4766 out: 4767 kfree(response); 4768 kfree(object_name); 4769 4770 return ret; 4771 } 4772 4773 /* 4774 * Undo whatever state changes are made by v1 or v2 header info 4775 * call. 4776 */ 4777 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4778 { 4779 struct rbd_image_header *header; 4780 4781 /* Drop parent reference unless it's already been done (or none) */ 4782 4783 if (rbd_dev->parent_overlap) 4784 rbd_dev_parent_put(rbd_dev); 4785 4786 /* Free dynamic fields from the header, then zero it out */ 4787 4788 header = &rbd_dev->header; 4789 ceph_put_snap_context(header->snapc); 4790 kfree(header->snap_sizes); 4791 kfree(header->snap_names); 4792 kfree(header->object_prefix); 4793 memset(header, 0, sizeof (*header)); 4794 } 4795 4796 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 4797 { 4798 int ret; 4799 4800 ret = rbd_dev_v2_object_prefix(rbd_dev); 4801 if (ret) 4802 goto out_err; 4803 4804 /* 4805 * Get the and check features for the image. Currently the 4806 * features are assumed to never change. 4807 */ 4808 ret = rbd_dev_v2_features(rbd_dev); 4809 if (ret) 4810 goto out_err; 4811 4812 /* If the image supports fancy striping, get its parameters */ 4813 4814 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4815 ret = rbd_dev_v2_striping_info(rbd_dev); 4816 if (ret < 0) 4817 goto out_err; 4818 } 4819 /* No support for crypto and compression type format 2 images */ 4820 4821 return 0; 4822 out_err: 4823 rbd_dev->header.features = 0; 4824 kfree(rbd_dev->header.object_prefix); 4825 rbd_dev->header.object_prefix = NULL; 4826 4827 return ret; 4828 } 4829 4830 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 4831 { 4832 struct rbd_device *parent = NULL; 4833 struct rbd_spec *parent_spec; 4834 struct rbd_client *rbdc; 4835 int ret; 4836 4837 if (!rbd_dev->parent_spec) 4838 return 0; 4839 /* 4840 * We need to pass a reference to the client and the parent 4841 * spec when creating the parent rbd_dev. Images related by 4842 * parent/child relationships always share both. 4843 */ 4844 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 4845 rbdc = __rbd_get_client(rbd_dev->rbd_client); 4846 4847 ret = -ENOMEM; 4848 parent = rbd_dev_create(rbdc, parent_spec); 4849 if (!parent) 4850 goto out_err; 4851 4852 ret = rbd_dev_image_probe(parent, false); 4853 if (ret < 0) 4854 goto out_err; 4855 rbd_dev->parent = parent; 4856 atomic_set(&rbd_dev->parent_ref, 1); 4857 4858 return 0; 4859 out_err: 4860 if (parent) { 4861 rbd_dev_unparent(rbd_dev); 4862 kfree(rbd_dev->header_name); 4863 rbd_dev_destroy(parent); 4864 } else { 4865 rbd_put_client(rbdc); 4866 rbd_spec_put(parent_spec); 4867 } 4868 4869 return ret; 4870 } 4871 4872 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 4873 { 4874 int ret; 4875 4876 /* Get an id and fill in device name. */ 4877 4878 ret = rbd_dev_id_get(rbd_dev); 4879 if (ret) 4880 return ret; 4881 4882 BUILD_BUG_ON(DEV_NAME_LEN 4883 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 4884 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 4885 4886 /* Record our major and minor device numbers. */ 4887 4888 if (!single_major) { 4889 ret = register_blkdev(0, rbd_dev->name); 4890 if (ret < 0) 4891 goto err_out_id; 4892 4893 rbd_dev->major = ret; 4894 rbd_dev->minor = 0; 4895 } else { 4896 rbd_dev->major = rbd_major; 4897 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 4898 } 4899 4900 /* Set up the blkdev mapping. */ 4901 4902 ret = rbd_init_disk(rbd_dev); 4903 if (ret) 4904 goto err_out_blkdev; 4905 4906 ret = rbd_dev_mapping_set(rbd_dev); 4907 if (ret) 4908 goto err_out_disk; 4909 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 4910 4911 ret = rbd_bus_add_dev(rbd_dev); 4912 if (ret) 4913 goto err_out_mapping; 4914 4915 /* Everything's ready. Announce the disk to the world. */ 4916 4917 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4918 add_disk(rbd_dev->disk); 4919 4920 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 4921 (unsigned long long) rbd_dev->mapping.size); 4922 4923 return ret; 4924 4925 err_out_mapping: 4926 rbd_dev_mapping_clear(rbd_dev); 4927 err_out_disk: 4928 rbd_free_disk(rbd_dev); 4929 err_out_blkdev: 4930 if (!single_major) 4931 unregister_blkdev(rbd_dev->major, rbd_dev->name); 4932 err_out_id: 4933 rbd_dev_id_put(rbd_dev); 4934 rbd_dev_mapping_clear(rbd_dev); 4935 4936 return ret; 4937 } 4938 4939 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 4940 { 4941 struct rbd_spec *spec = rbd_dev->spec; 4942 size_t size; 4943 4944 /* Record the header object name for this rbd image. */ 4945 4946 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4947 4948 if (rbd_dev->image_format == 1) 4949 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 4950 else 4951 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 4952 4953 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 4954 if (!rbd_dev->header_name) 4955 return -ENOMEM; 4956 4957 if (rbd_dev->image_format == 1) 4958 sprintf(rbd_dev->header_name, "%s%s", 4959 spec->image_name, RBD_SUFFIX); 4960 else 4961 sprintf(rbd_dev->header_name, "%s%s", 4962 RBD_HEADER_PREFIX, spec->image_id); 4963 return 0; 4964 } 4965 4966 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 4967 { 4968 rbd_dev_unprobe(rbd_dev); 4969 kfree(rbd_dev->header_name); 4970 rbd_dev->header_name = NULL; 4971 rbd_dev->image_format = 0; 4972 kfree(rbd_dev->spec->image_id); 4973 rbd_dev->spec->image_id = NULL; 4974 4975 rbd_dev_destroy(rbd_dev); 4976 } 4977 4978 /* 4979 * Probe for the existence of the header object for the given rbd 4980 * device. If this image is the one being mapped (i.e., not a 4981 * parent), initiate a watch on its header object before using that 4982 * object to get detailed information about the rbd image. 4983 */ 4984 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 4985 { 4986 int ret; 4987 4988 /* 4989 * Get the id from the image id object. Unless there's an 4990 * error, rbd_dev->spec->image_id will be filled in with 4991 * a dynamically-allocated string, and rbd_dev->image_format 4992 * will be set to either 1 or 2. 4993 */ 4994 ret = rbd_dev_image_id(rbd_dev); 4995 if (ret) 4996 return ret; 4997 rbd_assert(rbd_dev->spec->image_id); 4998 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4999 5000 ret = rbd_dev_header_name(rbd_dev); 5001 if (ret) 5002 goto err_out_format; 5003 5004 if (mapping) { 5005 ret = rbd_dev_header_watch_sync(rbd_dev); 5006 if (ret) 5007 goto out_header_name; 5008 } 5009 5010 if (rbd_dev->image_format == 1) 5011 ret = rbd_dev_v1_header_info(rbd_dev); 5012 else 5013 ret = rbd_dev_v2_header_info(rbd_dev); 5014 if (ret) 5015 goto err_out_watch; 5016 5017 ret = rbd_dev_spec_update(rbd_dev); 5018 if (ret) 5019 goto err_out_probe; 5020 5021 ret = rbd_dev_probe_parent(rbd_dev); 5022 if (ret) 5023 goto err_out_probe; 5024 5025 dout("discovered format %u image, header name is %s\n", 5026 rbd_dev->image_format, rbd_dev->header_name); 5027 5028 return 0; 5029 err_out_probe: 5030 rbd_dev_unprobe(rbd_dev); 5031 err_out_watch: 5032 if (mapping) 5033 rbd_dev_header_unwatch_sync(rbd_dev); 5034 out_header_name: 5035 kfree(rbd_dev->header_name); 5036 rbd_dev->header_name = NULL; 5037 err_out_format: 5038 rbd_dev->image_format = 0; 5039 kfree(rbd_dev->spec->image_id); 5040 rbd_dev->spec->image_id = NULL; 5041 5042 dout("probe failed, returning %d\n", ret); 5043 5044 return ret; 5045 } 5046 5047 static ssize_t do_rbd_add(struct bus_type *bus, 5048 const char *buf, 5049 size_t count) 5050 { 5051 struct rbd_device *rbd_dev = NULL; 5052 struct ceph_options *ceph_opts = NULL; 5053 struct rbd_options *rbd_opts = NULL; 5054 struct rbd_spec *spec = NULL; 5055 struct rbd_client *rbdc; 5056 struct ceph_osd_client *osdc; 5057 bool read_only; 5058 int rc = -ENOMEM; 5059 5060 if (!try_module_get(THIS_MODULE)) 5061 return -ENODEV; 5062 5063 /* parse add command */ 5064 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5065 if (rc < 0) 5066 goto err_out_module; 5067 read_only = rbd_opts->read_only; 5068 kfree(rbd_opts); 5069 rbd_opts = NULL; /* done with this */ 5070 5071 rbdc = rbd_get_client(ceph_opts); 5072 if (IS_ERR(rbdc)) { 5073 rc = PTR_ERR(rbdc); 5074 goto err_out_args; 5075 } 5076 5077 /* pick the pool */ 5078 osdc = &rbdc->client->osdc; 5079 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name); 5080 if (rc < 0) 5081 goto err_out_client; 5082 spec->pool_id = (u64)rc; 5083 5084 /* The ceph file layout needs to fit pool id in 32 bits */ 5085 5086 if (spec->pool_id > (u64)U32_MAX) { 5087 rbd_warn(NULL, "pool id too large (%llu > %u)\n", 5088 (unsigned long long)spec->pool_id, U32_MAX); 5089 rc = -EIO; 5090 goto err_out_client; 5091 } 5092 5093 rbd_dev = rbd_dev_create(rbdc, spec); 5094 if (!rbd_dev) 5095 goto err_out_client; 5096 rbdc = NULL; /* rbd_dev now owns this */ 5097 spec = NULL; /* rbd_dev now owns this */ 5098 5099 rc = rbd_dev_image_probe(rbd_dev, true); 5100 if (rc < 0) 5101 goto err_out_rbd_dev; 5102 5103 /* If we are mapping a snapshot it must be marked read-only */ 5104 5105 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5106 read_only = true; 5107 rbd_dev->mapping.read_only = read_only; 5108 5109 rc = rbd_dev_device_setup(rbd_dev); 5110 if (rc) { 5111 /* 5112 * rbd_dev_header_unwatch_sync() can't be moved into 5113 * rbd_dev_image_release() without refactoring, see 5114 * commit 1f3ef78861ac. 5115 */ 5116 rbd_dev_header_unwatch_sync(rbd_dev); 5117 rbd_dev_image_release(rbd_dev); 5118 goto err_out_module; 5119 } 5120 5121 return count; 5122 5123 err_out_rbd_dev: 5124 rbd_dev_destroy(rbd_dev); 5125 err_out_client: 5126 rbd_put_client(rbdc); 5127 err_out_args: 5128 rbd_spec_put(spec); 5129 err_out_module: 5130 module_put(THIS_MODULE); 5131 5132 dout("Error adding device %s\n", buf); 5133 5134 return (ssize_t)rc; 5135 } 5136 5137 static ssize_t rbd_add(struct bus_type *bus, 5138 const char *buf, 5139 size_t count) 5140 { 5141 if (single_major) 5142 return -EINVAL; 5143 5144 return do_rbd_add(bus, buf, count); 5145 } 5146 5147 static ssize_t rbd_add_single_major(struct bus_type *bus, 5148 const char *buf, 5149 size_t count) 5150 { 5151 return do_rbd_add(bus, buf, count); 5152 } 5153 5154 static void rbd_dev_device_release(struct device *dev) 5155 { 5156 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5157 5158 rbd_free_disk(rbd_dev); 5159 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5160 rbd_dev_mapping_clear(rbd_dev); 5161 if (!single_major) 5162 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5163 rbd_dev_id_put(rbd_dev); 5164 rbd_dev_mapping_clear(rbd_dev); 5165 } 5166 5167 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5168 { 5169 while (rbd_dev->parent) { 5170 struct rbd_device *first = rbd_dev; 5171 struct rbd_device *second = first->parent; 5172 struct rbd_device *third; 5173 5174 /* 5175 * Follow to the parent with no grandparent and 5176 * remove it. 5177 */ 5178 while (second && (third = second->parent)) { 5179 first = second; 5180 second = third; 5181 } 5182 rbd_assert(second); 5183 rbd_dev_image_release(second); 5184 first->parent = NULL; 5185 first->parent_overlap = 0; 5186 5187 rbd_assert(first->parent_spec); 5188 rbd_spec_put(first->parent_spec); 5189 first->parent_spec = NULL; 5190 } 5191 } 5192 5193 static ssize_t do_rbd_remove(struct bus_type *bus, 5194 const char *buf, 5195 size_t count) 5196 { 5197 struct rbd_device *rbd_dev = NULL; 5198 struct list_head *tmp; 5199 int dev_id; 5200 unsigned long ul; 5201 bool already = false; 5202 int ret; 5203 5204 ret = kstrtoul(buf, 10, &ul); 5205 if (ret) 5206 return ret; 5207 5208 /* convert to int; abort if we lost anything in the conversion */ 5209 dev_id = (int)ul; 5210 if (dev_id != ul) 5211 return -EINVAL; 5212 5213 ret = -ENOENT; 5214 spin_lock(&rbd_dev_list_lock); 5215 list_for_each(tmp, &rbd_dev_list) { 5216 rbd_dev = list_entry(tmp, struct rbd_device, node); 5217 if (rbd_dev->dev_id == dev_id) { 5218 ret = 0; 5219 break; 5220 } 5221 } 5222 if (!ret) { 5223 spin_lock_irq(&rbd_dev->lock); 5224 if (rbd_dev->open_count) 5225 ret = -EBUSY; 5226 else 5227 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5228 &rbd_dev->flags); 5229 spin_unlock_irq(&rbd_dev->lock); 5230 } 5231 spin_unlock(&rbd_dev_list_lock); 5232 if (ret < 0 || already) 5233 return ret; 5234 5235 rbd_dev_header_unwatch_sync(rbd_dev); 5236 /* 5237 * flush remaining watch callbacks - these must be complete 5238 * before the osd_client is shutdown 5239 */ 5240 dout("%s: flushing notifies", __func__); 5241 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5242 5243 /* 5244 * Don't free anything from rbd_dev->disk until after all 5245 * notifies are completely processed. Otherwise 5246 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5247 * in a potential use after free of rbd_dev->disk or rbd_dev. 5248 */ 5249 rbd_bus_del_dev(rbd_dev); 5250 rbd_dev_image_release(rbd_dev); 5251 module_put(THIS_MODULE); 5252 5253 return count; 5254 } 5255 5256 static ssize_t rbd_remove(struct bus_type *bus, 5257 const char *buf, 5258 size_t count) 5259 { 5260 if (single_major) 5261 return -EINVAL; 5262 5263 return do_rbd_remove(bus, buf, count); 5264 } 5265 5266 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5267 const char *buf, 5268 size_t count) 5269 { 5270 return do_rbd_remove(bus, buf, count); 5271 } 5272 5273 /* 5274 * create control files in sysfs 5275 * /sys/bus/rbd/... 5276 */ 5277 static int rbd_sysfs_init(void) 5278 { 5279 int ret; 5280 5281 ret = device_register(&rbd_root_dev); 5282 if (ret < 0) 5283 return ret; 5284 5285 ret = bus_register(&rbd_bus_type); 5286 if (ret < 0) 5287 device_unregister(&rbd_root_dev); 5288 5289 return ret; 5290 } 5291 5292 static void rbd_sysfs_cleanup(void) 5293 { 5294 bus_unregister(&rbd_bus_type); 5295 device_unregister(&rbd_root_dev); 5296 } 5297 5298 static int rbd_slab_init(void) 5299 { 5300 rbd_assert(!rbd_img_request_cache); 5301 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5302 sizeof (struct rbd_img_request), 5303 __alignof__(struct rbd_img_request), 5304 0, NULL); 5305 if (!rbd_img_request_cache) 5306 return -ENOMEM; 5307 5308 rbd_assert(!rbd_obj_request_cache); 5309 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5310 sizeof (struct rbd_obj_request), 5311 __alignof__(struct rbd_obj_request), 5312 0, NULL); 5313 if (!rbd_obj_request_cache) 5314 goto out_err; 5315 5316 rbd_assert(!rbd_segment_name_cache); 5317 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5318 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5319 if (rbd_segment_name_cache) 5320 return 0; 5321 out_err: 5322 if (rbd_obj_request_cache) { 5323 kmem_cache_destroy(rbd_obj_request_cache); 5324 rbd_obj_request_cache = NULL; 5325 } 5326 5327 kmem_cache_destroy(rbd_img_request_cache); 5328 rbd_img_request_cache = NULL; 5329 5330 return -ENOMEM; 5331 } 5332 5333 static void rbd_slab_exit(void) 5334 { 5335 rbd_assert(rbd_segment_name_cache); 5336 kmem_cache_destroy(rbd_segment_name_cache); 5337 rbd_segment_name_cache = NULL; 5338 5339 rbd_assert(rbd_obj_request_cache); 5340 kmem_cache_destroy(rbd_obj_request_cache); 5341 rbd_obj_request_cache = NULL; 5342 5343 rbd_assert(rbd_img_request_cache); 5344 kmem_cache_destroy(rbd_img_request_cache); 5345 rbd_img_request_cache = NULL; 5346 } 5347 5348 static int __init rbd_init(void) 5349 { 5350 int rc; 5351 5352 if (!libceph_compatible(NULL)) { 5353 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5354 return -EINVAL; 5355 } 5356 5357 rc = rbd_slab_init(); 5358 if (rc) 5359 return rc; 5360 5361 if (single_major) { 5362 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5363 if (rbd_major < 0) { 5364 rc = rbd_major; 5365 goto err_out_slab; 5366 } 5367 } 5368 5369 rc = rbd_sysfs_init(); 5370 if (rc) 5371 goto err_out_blkdev; 5372 5373 if (single_major) 5374 pr_info("loaded (major %d)\n", rbd_major); 5375 else 5376 pr_info("loaded\n"); 5377 5378 return 0; 5379 5380 err_out_blkdev: 5381 if (single_major) 5382 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5383 err_out_slab: 5384 rbd_slab_exit(); 5385 return rc; 5386 } 5387 5388 static void __exit rbd_exit(void) 5389 { 5390 rbd_sysfs_cleanup(); 5391 if (single_major) 5392 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5393 rbd_slab_exit(); 5394 } 5395 5396 module_init(rbd_init); 5397 module_exit(rbd_exit); 5398 5399 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5400 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5401 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5402 /* following authorship retained from original osdblk.c */ 5403 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5404 5405 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5406 MODULE_LICENSE("GPL"); 5407