xref: /openbmc/linux/drivers/block/rbd.c (revision 1c2f87c2)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 
46 #include "rbd_types.h"
47 
48 #define RBD_DEBUG	/* Activate rbd_assert() calls */
49 
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define	SECTOR_SHIFT	9
57 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
58 
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67 	unsigned int counter;
68 
69 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 	if (counter <= (unsigned int)INT_MAX)
71 		return (int)counter;
72 
73 	atomic_dec(v);
74 
75 	return -EINVAL;
76 }
77 
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81 	int counter;
82 
83 	counter = atomic_dec_return(v);
84 	if (counter >= 0)
85 		return counter;
86 
87 	atomic_inc(v);
88 
89 	return -EINVAL;
90 }
91 
92 #define RBD_DRV_NAME "rbd"
93 
94 #define RBD_MINORS_PER_MAJOR		256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
96 
97 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
98 #define RBD_MAX_SNAP_NAME_LEN	\
99 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100 
101 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
102 
103 #define RBD_SNAP_HEAD_NAME	"-"
104 
105 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
106 
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX	64
110 
111 #define RBD_OBJ_PREFIX_LEN_MAX	64
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING	(1<<0)
116 #define RBD_FEATURE_STRIPINGV2	(1<<1)
117 #define RBD_FEATURES_ALL \
118 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119 
120 /* Features supported by this (client software) implementation. */
121 
122 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
123 
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN		32
131 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
132 
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137 	/* These six fields never change for a given rbd image */
138 	char *object_prefix;
139 	__u8 obj_order;
140 	__u8 crypt_type;
141 	__u8 comp_type;
142 	u64 stripe_unit;
143 	u64 stripe_count;
144 	u64 features;		/* Might be changeable someday? */
145 
146 	/* The remaining fields need to be updated occasionally */
147 	u64 image_size;
148 	struct ceph_snap_context *snapc;
149 	char *snap_names;	/* format 1 only */
150 	u64 *snap_sizes;	/* format 1 only */
151 };
152 
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179 	u64		pool_id;
180 	const char	*pool_name;
181 
182 	const char	*image_id;
183 	const char	*image_name;
184 
185 	u64		snap_id;
186 	const char	*snap_name;
187 
188 	struct kref	kref;
189 };
190 
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195 	struct ceph_client	*client;
196 	struct kref		kref;
197 	struct list_head	node;
198 };
199 
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202 
203 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
204 
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207 
208 enum obj_request_type {
209 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211 
212 enum obj_req_flags {
213 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
214 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
215 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
216 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
217 };
218 
219 struct rbd_obj_request {
220 	const char		*object_name;
221 	u64			offset;		/* object start byte */
222 	u64			length;		/* bytes from offset */
223 	unsigned long		flags;
224 
225 	/*
226 	 * An object request associated with an image will have its
227 	 * img_data flag set; a standalone object request will not.
228 	 *
229 	 * A standalone object request will have which == BAD_WHICH
230 	 * and a null obj_request pointer.
231 	 *
232 	 * An object request initiated in support of a layered image
233 	 * object (to check for its existence before a write) will
234 	 * have which == BAD_WHICH and a non-null obj_request pointer.
235 	 *
236 	 * Finally, an object request for rbd image data will have
237 	 * which != BAD_WHICH, and will have a non-null img_request
238 	 * pointer.  The value of which will be in the range
239 	 * 0..(img_request->obj_request_count-1).
240 	 */
241 	union {
242 		struct rbd_obj_request	*obj_request;	/* STAT op */
243 		struct {
244 			struct rbd_img_request	*img_request;
245 			u64			img_offset;
246 			/* links for img_request->obj_requests list */
247 			struct list_head	links;
248 		};
249 	};
250 	u32			which;		/* posn image request list */
251 
252 	enum obj_request_type	type;
253 	union {
254 		struct bio	*bio_list;
255 		struct {
256 			struct page	**pages;
257 			u32		page_count;
258 		};
259 	};
260 	struct page		**copyup_pages;
261 	u32			copyup_page_count;
262 
263 	struct ceph_osd_request	*osd_req;
264 
265 	u64			xferred;	/* bytes transferred */
266 	int			result;
267 
268 	rbd_obj_callback_t	callback;
269 	struct completion	completion;
270 
271 	struct kref		kref;
272 };
273 
274 enum img_req_flags {
275 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
276 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
277 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
278 };
279 
280 struct rbd_img_request {
281 	struct rbd_device	*rbd_dev;
282 	u64			offset;	/* starting image byte offset */
283 	u64			length;	/* byte count from offset */
284 	unsigned long		flags;
285 	union {
286 		u64			snap_id;	/* for reads */
287 		struct ceph_snap_context *snapc;	/* for writes */
288 	};
289 	union {
290 		struct request		*rq;		/* block request */
291 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
292 	};
293 	struct page		**copyup_pages;
294 	u32			copyup_page_count;
295 	spinlock_t		completion_lock;/* protects next_completion */
296 	u32			next_completion;
297 	rbd_img_callback_t	callback;
298 	u64			xferred;/* aggregate bytes transferred */
299 	int			result;	/* first nonzero obj_request result */
300 
301 	u32			obj_request_count;
302 	struct list_head	obj_requests;	/* rbd_obj_request structs */
303 
304 	struct kref		kref;
305 };
306 
307 #define for_each_obj_request(ireq, oreq) \
308 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313 
314 struct rbd_mapping {
315 	u64                     size;
316 	u64                     features;
317 	bool			read_only;
318 };
319 
320 /*
321  * a single device
322  */
323 struct rbd_device {
324 	int			dev_id;		/* blkdev unique id */
325 
326 	int			major;		/* blkdev assigned major */
327 	int			minor;
328 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
329 
330 	u32			image_format;	/* Either 1 or 2 */
331 	struct rbd_client	*rbd_client;
332 
333 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334 
335 	spinlock_t		lock;		/* queue, flags, open_count */
336 
337 	struct rbd_image_header	header;
338 	unsigned long		flags;		/* possibly lock protected */
339 	struct rbd_spec		*spec;
340 
341 	char			*header_name;
342 
343 	struct ceph_file_layout	layout;
344 
345 	struct ceph_osd_event   *watch_event;
346 	struct rbd_obj_request	*watch_request;
347 
348 	struct rbd_spec		*parent_spec;
349 	u64			parent_overlap;
350 	atomic_t		parent_ref;
351 	struct rbd_device	*parent;
352 
353 	/* protects updating the header */
354 	struct rw_semaphore     header_rwsem;
355 
356 	struct rbd_mapping	mapping;
357 
358 	struct list_head	node;
359 
360 	/* sysfs related */
361 	struct device		dev;
362 	unsigned long		open_count;	/* protected by lock */
363 };
364 
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
374 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
375 };
376 
377 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
378 
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381 
382 static LIST_HEAD(rbd_client_list);		/* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384 
385 /* Slab caches for frequently-allocated structures */
386 
387 static struct kmem_cache	*rbd_img_request_cache;
388 static struct kmem_cache	*rbd_obj_request_cache;
389 static struct kmem_cache	*rbd_segment_name_cache;
390 
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393 
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401 
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403 
404 static void rbd_dev_device_release(struct device *dev);
405 
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407 		       size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409 			  size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411 				    size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413 				       size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416 
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421 
422 static int minor_to_rbd_dev_id(int minor)
423 {
424 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426 
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431 
432 static struct attribute *rbd_bus_attrs[] = {
433 	&bus_attr_add.attr,
434 	&bus_attr_remove.attr,
435 	&bus_attr_add_single_major.attr,
436 	&bus_attr_remove_single_major.attr,
437 	NULL,
438 };
439 
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 				  struct attribute *attr, int index)
442 {
443 	if (!single_major &&
444 	    (attr == &bus_attr_add_single_major.attr ||
445 	     attr == &bus_attr_remove_single_major.attr))
446 		return 0;
447 
448 	return attr->mode;
449 }
450 
451 static const struct attribute_group rbd_bus_group = {
452 	.attrs = rbd_bus_attrs,
453 	.is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456 
457 static struct bus_type rbd_bus_type = {
458 	.name		= "rbd",
459 	.bus_groups	= rbd_bus_groups,
460 };
461 
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465 
466 static struct device rbd_root_dev = {
467 	.init_name =    "rbd",
468 	.release =      rbd_root_dev_release,
469 };
470 
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474 	struct va_format vaf;
475 	va_list args;
476 
477 	va_start(args, fmt);
478 	vaf.fmt = fmt;
479 	vaf.va = &args;
480 
481 	if (!rbd_dev)
482 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 	else if (rbd_dev->disk)
484 		printk(KERN_WARNING "%s: %s: %pV\n",
485 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 		printk(KERN_WARNING "%s: image %s: %pV\n",
488 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 		printk(KERN_WARNING "%s: id %s: %pV\n",
491 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492 	else	/* punt */
493 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 			RBD_DRV_NAME, rbd_dev, &vaf);
495 	va_end(args);
496 }
497 
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)						\
500 		if (unlikely(!(expr))) {				\
501 			printk(KERN_ERR "\nAssertion failure in %s() "	\
502 						"at line %d:\n\n"	\
503 					"\trbd_assert(%s);\n\n",	\
504 					__func__, __LINE__, #expr);	\
505 			BUG();						\
506 		}
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)	((void) 0)
509 #endif /* !RBD_DEBUG */
510 
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514 
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519 					u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 				u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523 		u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525 
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 	bool removing = false;
530 
531 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532 		return -EROFS;
533 
534 	spin_lock_irq(&rbd_dev->lock);
535 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536 		removing = true;
537 	else
538 		rbd_dev->open_count++;
539 	spin_unlock_irq(&rbd_dev->lock);
540 	if (removing)
541 		return -ENOENT;
542 
543 	(void) get_device(&rbd_dev->dev);
544 	set_device_ro(bdev, rbd_dev->mapping.read_only);
545 
546 	return 0;
547 }
548 
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551 	struct rbd_device *rbd_dev = disk->private_data;
552 	unsigned long open_count_before;
553 
554 	spin_lock_irq(&rbd_dev->lock);
555 	open_count_before = rbd_dev->open_count--;
556 	spin_unlock_irq(&rbd_dev->lock);
557 	rbd_assert(open_count_before > 0);
558 
559 	put_device(&rbd_dev->dev);
560 }
561 
562 static const struct block_device_operations rbd_bd_ops = {
563 	.owner			= THIS_MODULE,
564 	.open			= rbd_open,
565 	.release		= rbd_release,
566 };
567 
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574 	struct rbd_client *rbdc;
575 	int ret = -ENOMEM;
576 
577 	dout("%s:\n", __func__);
578 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579 	if (!rbdc)
580 		goto out_opt;
581 
582 	kref_init(&rbdc->kref);
583 	INIT_LIST_HEAD(&rbdc->node);
584 
585 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586 	if (IS_ERR(rbdc->client))
587 		goto out_rbdc;
588 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589 
590 	ret = ceph_open_session(rbdc->client);
591 	if (ret < 0)
592 		goto out_client;
593 
594 	spin_lock(&rbd_client_list_lock);
595 	list_add_tail(&rbdc->node, &rbd_client_list);
596 	spin_unlock(&rbd_client_list_lock);
597 
598 	dout("%s: rbdc %p\n", __func__, rbdc);
599 
600 	return rbdc;
601 out_client:
602 	ceph_destroy_client(rbdc->client);
603 out_rbdc:
604 	kfree(rbdc);
605 out_opt:
606 	if (ceph_opts)
607 		ceph_destroy_options(ceph_opts);
608 	dout("%s: error %d\n", __func__, ret);
609 
610 	return ERR_PTR(ret);
611 }
612 
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615 	kref_get(&rbdc->kref);
616 
617 	return rbdc;
618 }
619 
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626 	struct rbd_client *client_node;
627 	bool found = false;
628 
629 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630 		return NULL;
631 
632 	spin_lock(&rbd_client_list_lock);
633 	list_for_each_entry(client_node, &rbd_client_list, node) {
634 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
635 			__rbd_get_client(client_node);
636 
637 			found = true;
638 			break;
639 		}
640 	}
641 	spin_unlock(&rbd_client_list_lock);
642 
643 	return found ? client_node : NULL;
644 }
645 
646 /*
647  * mount options
648  */
649 enum {
650 	Opt_last_int,
651 	/* int args above */
652 	Opt_last_string,
653 	/* string args above */
654 	Opt_read_only,
655 	Opt_read_write,
656 	/* Boolean args above */
657 	Opt_last_bool,
658 };
659 
660 static match_table_t rbd_opts_tokens = {
661 	/* int args above */
662 	/* string args above */
663 	{Opt_read_only, "read_only"},
664 	{Opt_read_only, "ro"},		/* Alternate spelling */
665 	{Opt_read_write, "read_write"},
666 	{Opt_read_write, "rw"},		/* Alternate spelling */
667 	/* Boolean args above */
668 	{-1, NULL}
669 };
670 
671 struct rbd_options {
672 	bool	read_only;
673 };
674 
675 #define RBD_READ_ONLY_DEFAULT	false
676 
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679 	struct rbd_options *rbd_opts = private;
680 	substring_t argstr[MAX_OPT_ARGS];
681 	int token, intval, ret;
682 
683 	token = match_token(c, rbd_opts_tokens, argstr);
684 	if (token < 0)
685 		return -EINVAL;
686 
687 	if (token < Opt_last_int) {
688 		ret = match_int(&argstr[0], &intval);
689 		if (ret < 0) {
690 			pr_err("bad mount option arg (not int) "
691 			       "at '%s'\n", c);
692 			return ret;
693 		}
694 		dout("got int token %d val %d\n", token, intval);
695 	} else if (token > Opt_last_int && token < Opt_last_string) {
696 		dout("got string token %d val %s\n", token,
697 		     argstr[0].from);
698 	} else if (token > Opt_last_string && token < Opt_last_bool) {
699 		dout("got Boolean token %d\n", token);
700 	} else {
701 		dout("got token %d\n", token);
702 	}
703 
704 	switch (token) {
705 	case Opt_read_only:
706 		rbd_opts->read_only = true;
707 		break;
708 	case Opt_read_write:
709 		rbd_opts->read_only = false;
710 		break;
711 	default:
712 		rbd_assert(false);
713 		break;
714 	}
715 	return 0;
716 }
717 
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725 	struct rbd_client *rbdc;
726 
727 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728 	rbdc = rbd_client_find(ceph_opts);
729 	if (rbdc)	/* using an existing client */
730 		ceph_destroy_options(ceph_opts);
731 	else
732 		rbdc = rbd_client_create(ceph_opts);
733 	mutex_unlock(&client_mutex);
734 
735 	return rbdc;
736 }
737 
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746 
747 	dout("%s: rbdc %p\n", __func__, rbdc);
748 	spin_lock(&rbd_client_list_lock);
749 	list_del(&rbdc->node);
750 	spin_unlock(&rbd_client_list_lock);
751 
752 	ceph_destroy_client(rbdc->client);
753 	kfree(rbdc);
754 }
755 
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762 	if (rbdc)
763 		kref_put(&rbdc->kref, rbd_client_release);
764 }
765 
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768 	return image_format == 1 || image_format == 2;
769 }
770 
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773 	size_t size;
774 	u32 snap_count;
775 
776 	/* The header has to start with the magic rbd header text */
777 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778 		return false;
779 
780 	/* The bio layer requires at least sector-sized I/O */
781 
782 	if (ondisk->options.order < SECTOR_SHIFT)
783 		return false;
784 
785 	/* If we use u64 in a few spots we may be able to loosen this */
786 
787 	if (ondisk->options.order > 8 * sizeof (int) - 1)
788 		return false;
789 
790 	/*
791 	 * The size of a snapshot header has to fit in a size_t, and
792 	 * that limits the number of snapshots.
793 	 */
794 	snap_count = le32_to_cpu(ondisk->snap_count);
795 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
796 	if (snap_count > size / sizeof (__le64))
797 		return false;
798 
799 	/*
800 	 * Not only that, but the size of the entire the snapshot
801 	 * header must also be representable in a size_t.
802 	 */
803 	size -= snap_count * sizeof (__le64);
804 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805 		return false;
806 
807 	return true;
808 }
809 
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815 				 struct rbd_image_header_ondisk *ondisk)
816 {
817 	struct rbd_image_header *header = &rbd_dev->header;
818 	bool first_time = header->object_prefix == NULL;
819 	struct ceph_snap_context *snapc;
820 	char *object_prefix = NULL;
821 	char *snap_names = NULL;
822 	u64 *snap_sizes = NULL;
823 	u32 snap_count;
824 	size_t size;
825 	int ret = -ENOMEM;
826 	u32 i;
827 
828 	/* Allocate this now to avoid having to handle failure below */
829 
830 	if (first_time) {
831 		size_t len;
832 
833 		len = strnlen(ondisk->object_prefix,
834 				sizeof (ondisk->object_prefix));
835 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
836 		if (!object_prefix)
837 			return -ENOMEM;
838 		memcpy(object_prefix, ondisk->object_prefix, len);
839 		object_prefix[len] = '\0';
840 	}
841 
842 	/* Allocate the snapshot context and fill it in */
843 
844 	snap_count = le32_to_cpu(ondisk->snap_count);
845 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846 	if (!snapc)
847 		goto out_err;
848 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
849 	if (snap_count) {
850 		struct rbd_image_snap_ondisk *snaps;
851 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852 
853 		/* We'll keep a copy of the snapshot names... */
854 
855 		if (snap_names_len > (u64)SIZE_MAX)
856 			goto out_2big;
857 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858 		if (!snap_names)
859 			goto out_err;
860 
861 		/* ...as well as the array of their sizes. */
862 
863 		size = snap_count * sizeof (*header->snap_sizes);
864 		snap_sizes = kmalloc(size, GFP_KERNEL);
865 		if (!snap_sizes)
866 			goto out_err;
867 
868 		/*
869 		 * Copy the names, and fill in each snapshot's id
870 		 * and size.
871 		 *
872 		 * Note that rbd_dev_v1_header_info() guarantees the
873 		 * ondisk buffer we're working with has
874 		 * snap_names_len bytes beyond the end of the
875 		 * snapshot id array, this memcpy() is safe.
876 		 */
877 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878 		snaps = ondisk->snaps;
879 		for (i = 0; i < snap_count; i++) {
880 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882 		}
883 	}
884 
885 	/* We won't fail any more, fill in the header */
886 
887 	if (first_time) {
888 		header->object_prefix = object_prefix;
889 		header->obj_order = ondisk->options.order;
890 		header->crypt_type = ondisk->options.crypt_type;
891 		header->comp_type = ondisk->options.comp_type;
892 		/* The rest aren't used for format 1 images */
893 		header->stripe_unit = 0;
894 		header->stripe_count = 0;
895 		header->features = 0;
896 	} else {
897 		ceph_put_snap_context(header->snapc);
898 		kfree(header->snap_names);
899 		kfree(header->snap_sizes);
900 	}
901 
902 	/* The remaining fields always get updated (when we refresh) */
903 
904 	header->image_size = le64_to_cpu(ondisk->image_size);
905 	header->snapc = snapc;
906 	header->snap_names = snap_names;
907 	header->snap_sizes = snap_sizes;
908 
909 	/* Make sure mapping size is consistent with header info */
910 
911 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912 		if (rbd_dev->mapping.size != header->image_size)
913 			rbd_dev->mapping.size = header->image_size;
914 
915 	return 0;
916 out_2big:
917 	ret = -EIO;
918 out_err:
919 	kfree(snap_sizes);
920 	kfree(snap_names);
921 	ceph_put_snap_context(snapc);
922 	kfree(object_prefix);
923 
924 	return ret;
925 }
926 
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929 	const char *snap_name;
930 
931 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932 
933 	/* Skip over names until we find the one we are looking for */
934 
935 	snap_name = rbd_dev->header.snap_names;
936 	while (which--)
937 		snap_name += strlen(snap_name) + 1;
938 
939 	return kstrdup(snap_name, GFP_KERNEL);
940 }
941 
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948 	u64 snap_id1 = *(u64 *)s1;
949 	u64 snap_id2 = *(u64 *)s2;
950 
951 	if (snap_id1 < snap_id2)
952 		return 1;
953 	return snap_id1 == snap_id2 ? 0 : -1;
954 }
955 
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969 	u64 *found;
970 
971 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972 				sizeof (snap_id), snapid_compare_reverse);
973 
974 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976 
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978 					u64 snap_id)
979 {
980 	u32 which;
981 	const char *snap_name;
982 
983 	which = rbd_dev_snap_index(rbd_dev, snap_id);
984 	if (which == BAD_SNAP_INDEX)
985 		return ERR_PTR(-ENOENT);
986 
987 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990 
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993 	if (snap_id == CEPH_NOSNAP)
994 		return RBD_SNAP_HEAD_NAME;
995 
996 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997 	if (rbd_dev->image_format == 1)
998 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999 
1000 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002 
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004 				u64 *snap_size)
1005 {
1006 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007 	if (snap_id == CEPH_NOSNAP) {
1008 		*snap_size = rbd_dev->header.image_size;
1009 	} else if (rbd_dev->image_format == 1) {
1010 		u32 which;
1011 
1012 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1013 		if (which == BAD_SNAP_INDEX)
1014 			return -ENOENT;
1015 
1016 		*snap_size = rbd_dev->header.snap_sizes[which];
1017 	} else {
1018 		u64 size = 0;
1019 		int ret;
1020 
1021 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022 		if (ret)
1023 			return ret;
1024 
1025 		*snap_size = size;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031 			u64 *snap_features)
1032 {
1033 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034 	if (snap_id == CEPH_NOSNAP) {
1035 		*snap_features = rbd_dev->header.features;
1036 	} else if (rbd_dev->image_format == 1) {
1037 		*snap_features = 0;	/* No features for format 1 */
1038 	} else {
1039 		u64 features = 0;
1040 		int ret;
1041 
1042 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043 		if (ret)
1044 			return ret;
1045 
1046 		*snap_features = features;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053 	u64 snap_id = rbd_dev->spec->snap_id;
1054 	u64 size = 0;
1055 	u64 features = 0;
1056 	int ret;
1057 
1058 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059 	if (ret)
1060 		return ret;
1061 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062 	if (ret)
1063 		return ret;
1064 
1065 	rbd_dev->mapping.size = size;
1066 	rbd_dev->mapping.features = features;
1067 
1068 	return 0;
1069 }
1070 
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073 	rbd_dev->mapping.size = 0;
1074 	rbd_dev->mapping.features = 0;
1075 }
1076 
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079 	char *name;
1080 	u64 segment;
1081 	int ret;
1082 	char *name_format;
1083 
1084 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085 	if (!name)
1086 		return NULL;
1087 	segment = offset >> rbd_dev->header.obj_order;
1088 	name_format = "%s.%012llx";
1089 	if (rbd_dev->image_format == 2)
1090 		name_format = "%s.%016llx";
1091 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092 			rbd_dev->header.object_prefix, segment);
1093 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094 		pr_err("error formatting segment name for #%llu (%d)\n",
1095 			segment, ret);
1096 		kfree(name);
1097 		name = NULL;
1098 	}
1099 
1100 	return name;
1101 }
1102 
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105 	/* The explicit cast here is needed to drop the const qualifier */
1106 
1107 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109 
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113 
1114 	return offset & (segment_size - 1);
1115 }
1116 
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118 				u64 offset, u64 length)
1119 {
1120 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121 
1122 	offset &= segment_size - 1;
1123 
1124 	rbd_assert(length <= U64_MAX - offset);
1125 	if (offset + length > segment_size)
1126 		length = segment_size - offset;
1127 
1128 	return length;
1129 }
1130 
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136 	return 1 << header->obj_order;
1137 }
1138 
1139 /*
1140  * bio helpers
1141  */
1142 
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145 	struct bio *tmp;
1146 
1147 	while (chain) {
1148 		tmp = chain;
1149 		chain = chain->bi_next;
1150 		bio_put(tmp);
1151 	}
1152 }
1153 
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159 	struct bio_vec bv;
1160 	struct bvec_iter iter;
1161 	unsigned long flags;
1162 	void *buf;
1163 	int pos = 0;
1164 
1165 	while (chain) {
1166 		bio_for_each_segment(bv, chain, iter) {
1167 			if (pos + bv.bv_len > start_ofs) {
1168 				int remainder = max(start_ofs - pos, 0);
1169 				buf = bvec_kmap_irq(&bv, &flags);
1170 				memset(buf + remainder, 0,
1171 				       bv.bv_len - remainder);
1172 				flush_dcache_page(bv.bv_page);
1173 				bvec_kunmap_irq(buf, &flags);
1174 			}
1175 			pos += bv.bv_len;
1176 		}
1177 
1178 		chain = chain->bi_next;
1179 	}
1180 }
1181 
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190 	struct page **page = &pages[offset >> PAGE_SHIFT];
1191 
1192 	rbd_assert(end > offset);
1193 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1194 	while (offset < end) {
1195 		size_t page_offset;
1196 		size_t length;
1197 		unsigned long flags;
1198 		void *kaddr;
1199 
1200 		page_offset = offset & ~PAGE_MASK;
1201 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202 		local_irq_save(flags);
1203 		kaddr = kmap_atomic(*page);
1204 		memset(kaddr + page_offset, 0, length);
1205 		flush_dcache_page(*page);
1206 		kunmap_atomic(kaddr);
1207 		local_irq_restore(flags);
1208 
1209 		offset += length;
1210 		page++;
1211 	}
1212 }
1213 
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219 					unsigned int offset,
1220 					unsigned int len,
1221 					gfp_t gfpmask)
1222 {
1223 	struct bio *bio;
1224 
1225 	bio = bio_clone(bio_src, gfpmask);
1226 	if (!bio)
1227 		return NULL;	/* ENOMEM */
1228 
1229 	bio_advance(bio, offset);
1230 	bio->bi_iter.bi_size = len;
1231 
1232 	return bio;
1233 }
1234 
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250 					unsigned int *offset,
1251 					unsigned int len,
1252 					gfp_t gfpmask)
1253 {
1254 	struct bio *bi = *bio_src;
1255 	unsigned int off = *offset;
1256 	struct bio *chain = NULL;
1257 	struct bio **end;
1258 
1259 	/* Build up a chain of clone bios up to the limit */
1260 
1261 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1262 		return NULL;		/* Nothing to clone */
1263 
1264 	end = &chain;
1265 	while (len) {
1266 		unsigned int bi_size;
1267 		struct bio *bio;
1268 
1269 		if (!bi) {
1270 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271 			goto out_err;	/* EINVAL; ran out of bio's */
1272 		}
1273 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275 		if (!bio)
1276 			goto out_err;	/* ENOMEM */
1277 
1278 		*end = bio;
1279 		end = &bio->bi_next;
1280 
1281 		off += bi_size;
1282 		if (off == bi->bi_iter.bi_size) {
1283 			bi = bi->bi_next;
1284 			off = 0;
1285 		}
1286 		len -= bi_size;
1287 	}
1288 	*bio_src = bi;
1289 	*offset = off;
1290 
1291 	return chain;
1292 out_err:
1293 	bio_chain_put(chain);
1294 
1295 	return NULL;
1296 }
1297 
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306 		struct rbd_device *rbd_dev;
1307 
1308 		rbd_dev = obj_request->img_request->rbd_dev;
1309 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310 			obj_request);
1311 	}
1312 }
1313 
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316 	smp_mb();
1317 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319 
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323 		struct rbd_device *rbd_dev = NULL;
1324 
1325 		if (obj_request_img_data_test(obj_request))
1326 			rbd_dev = obj_request->img_request->rbd_dev;
1327 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328 			obj_request);
1329 	}
1330 }
1331 
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334 	smp_mb();
1335 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337 
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349 				bool exists)
1350 {
1351 	if (exists)
1352 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354 	smp_mb();
1355 }
1356 
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359 	smp_mb();
1360 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362 
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365 	smp_mb();
1366 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368 
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372 		atomic_read(&obj_request->kref.refcount));
1373 	kref_get(&obj_request->kref);
1374 }
1375 
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379 	rbd_assert(obj_request != NULL);
1380 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381 		atomic_read(&obj_request->kref.refcount));
1382 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384 
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1389 {
1390 	rbd_assert(img_request != NULL);
1391 	dout("%s: img %p (was %d)\n", __func__, img_request,
1392 		atomic_read(&img_request->kref.refcount));
1393 	if (img_request_child_test(img_request))
1394 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1395 	else
1396 		kref_put(&img_request->kref, rbd_img_request_destroy);
1397 }
1398 
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400 					struct rbd_obj_request *obj_request)
1401 {
1402 	rbd_assert(obj_request->img_request == NULL);
1403 
1404 	/* Image request now owns object's original reference */
1405 	obj_request->img_request = img_request;
1406 	obj_request->which = img_request->obj_request_count;
1407 	rbd_assert(!obj_request_img_data_test(obj_request));
1408 	obj_request_img_data_set(obj_request);
1409 	rbd_assert(obj_request->which != BAD_WHICH);
1410 	img_request->obj_request_count++;
1411 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1412 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413 		obj_request->which);
1414 }
1415 
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417 					struct rbd_obj_request *obj_request)
1418 {
1419 	rbd_assert(obj_request->which != BAD_WHICH);
1420 
1421 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422 		obj_request->which);
1423 	list_del(&obj_request->links);
1424 	rbd_assert(img_request->obj_request_count > 0);
1425 	img_request->obj_request_count--;
1426 	rbd_assert(obj_request->which == img_request->obj_request_count);
1427 	obj_request->which = BAD_WHICH;
1428 	rbd_assert(obj_request_img_data_test(obj_request));
1429 	rbd_assert(obj_request->img_request == img_request);
1430 	obj_request->img_request = NULL;
1431 	obj_request->callback = NULL;
1432 	rbd_obj_request_put(obj_request);
1433 }
1434 
1435 static bool obj_request_type_valid(enum obj_request_type type)
1436 {
1437 	switch (type) {
1438 	case OBJ_REQUEST_NODATA:
1439 	case OBJ_REQUEST_BIO:
1440 	case OBJ_REQUEST_PAGES:
1441 		return true;
1442 	default:
1443 		return false;
1444 	}
1445 }
1446 
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448 				struct rbd_obj_request *obj_request)
1449 {
1450 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451 
1452 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453 }
1454 
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456 {
1457 
1458 	dout("%s: img %p\n", __func__, img_request);
1459 
1460 	/*
1461 	 * If no error occurred, compute the aggregate transfer
1462 	 * count for the image request.  We could instead use
1463 	 * atomic64_cmpxchg() to update it as each object request
1464 	 * completes; not clear which way is better off hand.
1465 	 */
1466 	if (!img_request->result) {
1467 		struct rbd_obj_request *obj_request;
1468 		u64 xferred = 0;
1469 
1470 		for_each_obj_request(img_request, obj_request)
1471 			xferred += obj_request->xferred;
1472 		img_request->xferred = xferred;
1473 	}
1474 
1475 	if (img_request->callback)
1476 		img_request->callback(img_request);
1477 	else
1478 		rbd_img_request_put(img_request);
1479 }
1480 
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482 
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484 {
1485 	dout("%s: obj %p\n", __func__, obj_request);
1486 
1487 	return wait_for_completion_interruptible(&obj_request->completion);
1488 }
1489 
1490 /*
1491  * The default/initial value for all image request flags is 0.  Each
1492  * is conditionally set to 1 at image request initialization time
1493  * and currently never change thereafter.
1494  */
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1496 {
1497 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1498 	smp_mb();
1499 }
1500 
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1502 {
1503 	smp_mb();
1504 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505 }
1506 
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1508 {
1509 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1510 	smp_mb();
1511 }
1512 
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1514 {
1515 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516 	smp_mb();
1517 }
1518 
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1520 {
1521 	smp_mb();
1522 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523 }
1524 
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1526 {
1527 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528 	smp_mb();
1529 }
1530 
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1532 {
1533 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534 	smp_mb();
1535 }
1536 
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1538 {
1539 	smp_mb();
1540 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541 }
1542 
1543 static void
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545 {
1546 	u64 xferred = obj_request->xferred;
1547 	u64 length = obj_request->length;
1548 
1549 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550 		obj_request, obj_request->img_request, obj_request->result,
1551 		xferred, length);
1552 	/*
1553 	 * ENOENT means a hole in the image.  We zero-fill the entire
1554 	 * length of the request.  A short read also implies zero-fill
1555 	 * to the end of the request.  An error requires the whole
1556 	 * length of the request to be reported finished with an error
1557 	 * to the block layer.  In each case we update the xferred
1558 	 * count to indicate the whole request was satisfied.
1559 	 */
1560 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561 	if (obj_request->result == -ENOENT) {
1562 		if (obj_request->type == OBJ_REQUEST_BIO)
1563 			zero_bio_chain(obj_request->bio_list, 0);
1564 		else
1565 			zero_pages(obj_request->pages, 0, length);
1566 		obj_request->result = 0;
1567 	} else if (xferred < length && !obj_request->result) {
1568 		if (obj_request->type == OBJ_REQUEST_BIO)
1569 			zero_bio_chain(obj_request->bio_list, xferred);
1570 		else
1571 			zero_pages(obj_request->pages, xferred, length);
1572 	}
1573 	obj_request->xferred = length;
1574 	obj_request_done_set(obj_request);
1575 }
1576 
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578 {
1579 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1580 		obj_request->callback);
1581 	if (obj_request->callback)
1582 		obj_request->callback(obj_request);
1583 	else
1584 		complete_all(&obj_request->completion);
1585 }
1586 
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588 {
1589 	dout("%s: obj %p\n", __func__, obj_request);
1590 	obj_request_done_set(obj_request);
1591 }
1592 
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594 {
1595 	struct rbd_img_request *img_request = NULL;
1596 	struct rbd_device *rbd_dev = NULL;
1597 	bool layered = false;
1598 
1599 	if (obj_request_img_data_test(obj_request)) {
1600 		img_request = obj_request->img_request;
1601 		layered = img_request && img_request_layered_test(img_request);
1602 		rbd_dev = img_request->rbd_dev;
1603 	}
1604 
1605 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606 		obj_request, img_request, obj_request->result,
1607 		obj_request->xferred, obj_request->length);
1608 	if (layered && obj_request->result == -ENOENT &&
1609 			obj_request->img_offset < rbd_dev->parent_overlap)
1610 		rbd_img_parent_read(obj_request);
1611 	else if (img_request)
1612 		rbd_img_obj_request_read_callback(obj_request);
1613 	else
1614 		obj_request_done_set(obj_request);
1615 }
1616 
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618 {
1619 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620 		obj_request->result, obj_request->length);
1621 	/*
1622 	 * There is no such thing as a successful short write.  Set
1623 	 * it to our originally-requested length.
1624 	 */
1625 	obj_request->xferred = obj_request->length;
1626 	obj_request_done_set(obj_request);
1627 }
1628 
1629 /*
1630  * For a simple stat call there's nothing to do.  We'll do more if
1631  * this is part of a write sequence for a layered image.
1632  */
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634 {
1635 	dout("%s: obj %p\n", __func__, obj_request);
1636 	obj_request_done_set(obj_request);
1637 }
1638 
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640 				struct ceph_msg *msg)
1641 {
1642 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1643 	u16 opcode;
1644 
1645 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646 	rbd_assert(osd_req == obj_request->osd_req);
1647 	if (obj_request_img_data_test(obj_request)) {
1648 		rbd_assert(obj_request->img_request);
1649 		rbd_assert(obj_request->which != BAD_WHICH);
1650 	} else {
1651 		rbd_assert(obj_request->which == BAD_WHICH);
1652 	}
1653 
1654 	if (osd_req->r_result < 0)
1655 		obj_request->result = osd_req->r_result;
1656 
1657 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658 
1659 	/*
1660 	 * We support a 64-bit length, but ultimately it has to be
1661 	 * passed to blk_end_request(), which takes an unsigned int.
1662 	 */
1663 	obj_request->xferred = osd_req->r_reply_op_len[0];
1664 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665 
1666 	opcode = osd_req->r_ops[0].op;
1667 	switch (opcode) {
1668 	case CEPH_OSD_OP_READ:
1669 		rbd_osd_read_callback(obj_request);
1670 		break;
1671 	case CEPH_OSD_OP_SETALLOCHINT:
1672 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673 		/* fall through */
1674 	case CEPH_OSD_OP_WRITE:
1675 		rbd_osd_write_callback(obj_request);
1676 		break;
1677 	case CEPH_OSD_OP_STAT:
1678 		rbd_osd_stat_callback(obj_request);
1679 		break;
1680 	case CEPH_OSD_OP_CALL:
1681 	case CEPH_OSD_OP_NOTIFY_ACK:
1682 	case CEPH_OSD_OP_WATCH:
1683 		rbd_osd_trivial_callback(obj_request);
1684 		break;
1685 	default:
1686 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1687 			obj_request->object_name, (unsigned short) opcode);
1688 		break;
1689 	}
1690 
1691 	if (obj_request_done_test(obj_request))
1692 		rbd_obj_request_complete(obj_request);
1693 }
1694 
1695 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696 {
1697 	struct rbd_img_request *img_request = obj_request->img_request;
1698 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1699 	u64 snap_id;
1700 
1701 	rbd_assert(osd_req != NULL);
1702 
1703 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704 	ceph_osdc_build_request(osd_req, obj_request->offset,
1705 			NULL, snap_id, NULL);
1706 }
1707 
1708 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709 {
1710 	struct rbd_img_request *img_request = obj_request->img_request;
1711 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1712 	struct ceph_snap_context *snapc;
1713 	struct timespec mtime = CURRENT_TIME;
1714 
1715 	rbd_assert(osd_req != NULL);
1716 
1717 	snapc = img_request ? img_request->snapc : NULL;
1718 	ceph_osdc_build_request(osd_req, obj_request->offset,
1719 			snapc, CEPH_NOSNAP, &mtime);
1720 }
1721 
1722 /*
1723  * Create an osd request.  A read request has one osd op (read).
1724  * A write request has either one (watch) or two (hint+write) osd ops.
1725  * (All rbd data writes are prefixed with an allocation hint op, but
1726  * technically osd watch is a write request, hence this distinction.)
1727  */
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729 					struct rbd_device *rbd_dev,
1730 					bool write_request,
1731 					unsigned int num_ops,
1732 					struct rbd_obj_request *obj_request)
1733 {
1734 	struct ceph_snap_context *snapc = NULL;
1735 	struct ceph_osd_client *osdc;
1736 	struct ceph_osd_request *osd_req;
1737 
1738 	if (obj_request_img_data_test(obj_request)) {
1739 		struct rbd_img_request *img_request = obj_request->img_request;
1740 
1741 		rbd_assert(write_request ==
1742 				img_request_write_test(img_request));
1743 		if (write_request)
1744 			snapc = img_request->snapc;
1745 	}
1746 
1747 	rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748 
1749 	/* Allocate and initialize the request, for the num_ops ops */
1750 
1751 	osdc = &rbd_dev->rbd_client->client->osdc;
1752 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753 					  GFP_ATOMIC);
1754 	if (!osd_req)
1755 		return NULL;	/* ENOMEM */
1756 
1757 	if (write_request)
1758 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759 	else
1760 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761 
1762 	osd_req->r_callback = rbd_osd_req_callback;
1763 	osd_req->r_priv = obj_request;
1764 
1765 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767 
1768 	return osd_req;
1769 }
1770 
1771 /*
1772  * Create a copyup osd request based on the information in the
1773  * object request supplied.  A copyup request has three osd ops,
1774  * a copyup method call, a hint op, and a write op.
1775  */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779 	struct rbd_img_request *img_request;
1780 	struct ceph_snap_context *snapc;
1781 	struct rbd_device *rbd_dev;
1782 	struct ceph_osd_client *osdc;
1783 	struct ceph_osd_request *osd_req;
1784 
1785 	rbd_assert(obj_request_img_data_test(obj_request));
1786 	img_request = obj_request->img_request;
1787 	rbd_assert(img_request);
1788 	rbd_assert(img_request_write_test(img_request));
1789 
1790 	/* Allocate and initialize the request, for the three ops */
1791 
1792 	snapc = img_request->snapc;
1793 	rbd_dev = img_request->rbd_dev;
1794 	osdc = &rbd_dev->rbd_client->client->osdc;
1795 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796 	if (!osd_req)
1797 		return NULL;	/* ENOMEM */
1798 
1799 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 	osd_req->r_callback = rbd_osd_req_callback;
1801 	osd_req->r_priv = obj_request;
1802 
1803 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805 
1806 	return osd_req;
1807 }
1808 
1809 
1810 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811 {
1812 	ceph_osdc_put_request(osd_req);
1813 }
1814 
1815 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1816 
1817 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818 						u64 offset, u64 length,
1819 						enum obj_request_type type)
1820 {
1821 	struct rbd_obj_request *obj_request;
1822 	size_t size;
1823 	char *name;
1824 
1825 	rbd_assert(obj_request_type_valid(type));
1826 
1827 	size = strlen(object_name) + 1;
1828 	name = kmalloc(size, GFP_KERNEL);
1829 	if (!name)
1830 		return NULL;
1831 
1832 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833 	if (!obj_request) {
1834 		kfree(name);
1835 		return NULL;
1836 	}
1837 
1838 	obj_request->object_name = memcpy(name, object_name, size);
1839 	obj_request->offset = offset;
1840 	obj_request->length = length;
1841 	obj_request->flags = 0;
1842 	obj_request->which = BAD_WHICH;
1843 	obj_request->type = type;
1844 	INIT_LIST_HEAD(&obj_request->links);
1845 	init_completion(&obj_request->completion);
1846 	kref_init(&obj_request->kref);
1847 
1848 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849 		offset, length, (int)type, obj_request);
1850 
1851 	return obj_request;
1852 }
1853 
1854 static void rbd_obj_request_destroy(struct kref *kref)
1855 {
1856 	struct rbd_obj_request *obj_request;
1857 
1858 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1859 
1860 	dout("%s: obj %p\n", __func__, obj_request);
1861 
1862 	rbd_assert(obj_request->img_request == NULL);
1863 	rbd_assert(obj_request->which == BAD_WHICH);
1864 
1865 	if (obj_request->osd_req)
1866 		rbd_osd_req_destroy(obj_request->osd_req);
1867 
1868 	rbd_assert(obj_request_type_valid(obj_request->type));
1869 	switch (obj_request->type) {
1870 	case OBJ_REQUEST_NODATA:
1871 		break;		/* Nothing to do */
1872 	case OBJ_REQUEST_BIO:
1873 		if (obj_request->bio_list)
1874 			bio_chain_put(obj_request->bio_list);
1875 		break;
1876 	case OBJ_REQUEST_PAGES:
1877 		if (obj_request->pages)
1878 			ceph_release_page_vector(obj_request->pages,
1879 						obj_request->page_count);
1880 		break;
1881 	}
1882 
1883 	kfree(obj_request->object_name);
1884 	obj_request->object_name = NULL;
1885 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1886 }
1887 
1888 /* It's OK to call this for a device with no parent */
1889 
1890 static void rbd_spec_put(struct rbd_spec *spec);
1891 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892 {
1893 	rbd_dev_remove_parent(rbd_dev);
1894 	rbd_spec_put(rbd_dev->parent_spec);
1895 	rbd_dev->parent_spec = NULL;
1896 	rbd_dev->parent_overlap = 0;
1897 }
1898 
1899 /*
1900  * Parent image reference counting is used to determine when an
1901  * image's parent fields can be safely torn down--after there are no
1902  * more in-flight requests to the parent image.  When the last
1903  * reference is dropped, cleaning them up is safe.
1904  */
1905 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1906 {
1907 	int counter;
1908 
1909 	if (!rbd_dev->parent_spec)
1910 		return;
1911 
1912 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913 	if (counter > 0)
1914 		return;
1915 
1916 	/* Last reference; clean up parent data structures */
1917 
1918 	if (!counter)
1919 		rbd_dev_unparent(rbd_dev);
1920 	else
1921 		rbd_warn(rbd_dev, "parent reference underflow\n");
1922 }
1923 
1924 /*
1925  * If an image has a non-zero parent overlap, get a reference to its
1926  * parent.
1927  *
1928  * We must get the reference before checking for the overlap to
1929  * coordinate properly with zeroing the parent overlap in
1930  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1931  * drop it again if there is no overlap.
1932  *
1933  * Returns true if the rbd device has a parent with a non-zero
1934  * overlap and a reference for it was successfully taken, or
1935  * false otherwise.
1936  */
1937 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1938 {
1939 	int counter;
1940 
1941 	if (!rbd_dev->parent_spec)
1942 		return false;
1943 
1944 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945 	if (counter > 0 && rbd_dev->parent_overlap)
1946 		return true;
1947 
1948 	/* Image was flattened, but parent is not yet torn down */
1949 
1950 	if (counter < 0)
1951 		rbd_warn(rbd_dev, "parent reference overflow\n");
1952 
1953 	return false;
1954 }
1955 
1956 /*
1957  * Caller is responsible for filling in the list of object requests
1958  * that comprises the image request, and the Linux request pointer
1959  * (if there is one).
1960  */
1961 static struct rbd_img_request *rbd_img_request_create(
1962 					struct rbd_device *rbd_dev,
1963 					u64 offset, u64 length,
1964 					bool write_request)
1965 {
1966 	struct rbd_img_request *img_request;
1967 
1968 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969 	if (!img_request)
1970 		return NULL;
1971 
1972 	if (write_request) {
1973 		down_read(&rbd_dev->header_rwsem);
1974 		ceph_get_snap_context(rbd_dev->header.snapc);
1975 		up_read(&rbd_dev->header_rwsem);
1976 	}
1977 
1978 	img_request->rq = NULL;
1979 	img_request->rbd_dev = rbd_dev;
1980 	img_request->offset = offset;
1981 	img_request->length = length;
1982 	img_request->flags = 0;
1983 	if (write_request) {
1984 		img_request_write_set(img_request);
1985 		img_request->snapc = rbd_dev->header.snapc;
1986 	} else {
1987 		img_request->snap_id = rbd_dev->spec->snap_id;
1988 	}
1989 	if (rbd_dev_parent_get(rbd_dev))
1990 		img_request_layered_set(img_request);
1991 	spin_lock_init(&img_request->completion_lock);
1992 	img_request->next_completion = 0;
1993 	img_request->callback = NULL;
1994 	img_request->result = 0;
1995 	img_request->obj_request_count = 0;
1996 	INIT_LIST_HEAD(&img_request->obj_requests);
1997 	kref_init(&img_request->kref);
1998 
1999 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000 		write_request ? "write" : "read", offset, length,
2001 		img_request);
2002 
2003 	return img_request;
2004 }
2005 
2006 static void rbd_img_request_destroy(struct kref *kref)
2007 {
2008 	struct rbd_img_request *img_request;
2009 	struct rbd_obj_request *obj_request;
2010 	struct rbd_obj_request *next_obj_request;
2011 
2012 	img_request = container_of(kref, struct rbd_img_request, kref);
2013 
2014 	dout("%s: img %p\n", __func__, img_request);
2015 
2016 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017 		rbd_img_obj_request_del(img_request, obj_request);
2018 	rbd_assert(img_request->obj_request_count == 0);
2019 
2020 	if (img_request_layered_test(img_request)) {
2021 		img_request_layered_clear(img_request);
2022 		rbd_dev_parent_put(img_request->rbd_dev);
2023 	}
2024 
2025 	if (img_request_write_test(img_request))
2026 		ceph_put_snap_context(img_request->snapc);
2027 
2028 	kmem_cache_free(rbd_img_request_cache, img_request);
2029 }
2030 
2031 static struct rbd_img_request *rbd_parent_request_create(
2032 					struct rbd_obj_request *obj_request,
2033 					u64 img_offset, u64 length)
2034 {
2035 	struct rbd_img_request *parent_request;
2036 	struct rbd_device *rbd_dev;
2037 
2038 	rbd_assert(obj_request->img_request);
2039 	rbd_dev = obj_request->img_request->rbd_dev;
2040 
2041 	parent_request = rbd_img_request_create(rbd_dev->parent,
2042 						img_offset, length, false);
2043 	if (!parent_request)
2044 		return NULL;
2045 
2046 	img_request_child_set(parent_request);
2047 	rbd_obj_request_get(obj_request);
2048 	parent_request->obj_request = obj_request;
2049 
2050 	return parent_request;
2051 }
2052 
2053 static void rbd_parent_request_destroy(struct kref *kref)
2054 {
2055 	struct rbd_img_request *parent_request;
2056 	struct rbd_obj_request *orig_request;
2057 
2058 	parent_request = container_of(kref, struct rbd_img_request, kref);
2059 	orig_request = parent_request->obj_request;
2060 
2061 	parent_request->obj_request = NULL;
2062 	rbd_obj_request_put(orig_request);
2063 	img_request_child_clear(parent_request);
2064 
2065 	rbd_img_request_destroy(kref);
2066 }
2067 
2068 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069 {
2070 	struct rbd_img_request *img_request;
2071 	unsigned int xferred;
2072 	int result;
2073 	bool more;
2074 
2075 	rbd_assert(obj_request_img_data_test(obj_request));
2076 	img_request = obj_request->img_request;
2077 
2078 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079 	xferred = (unsigned int)obj_request->xferred;
2080 	result = obj_request->result;
2081 	if (result) {
2082 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2083 
2084 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085 			img_request_write_test(img_request) ? "write" : "read",
2086 			obj_request->length, obj_request->img_offset,
2087 			obj_request->offset);
2088 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2089 			result, xferred);
2090 		if (!img_request->result)
2091 			img_request->result = result;
2092 	}
2093 
2094 	/* Image object requests don't own their page array */
2095 
2096 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2097 		obj_request->pages = NULL;
2098 		obj_request->page_count = 0;
2099 	}
2100 
2101 	if (img_request_child_test(img_request)) {
2102 		rbd_assert(img_request->obj_request != NULL);
2103 		more = obj_request->which < img_request->obj_request_count - 1;
2104 	} else {
2105 		rbd_assert(img_request->rq != NULL);
2106 		more = blk_end_request(img_request->rq, result, xferred);
2107 	}
2108 
2109 	return more;
2110 }
2111 
2112 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2113 {
2114 	struct rbd_img_request *img_request;
2115 	u32 which = obj_request->which;
2116 	bool more = true;
2117 
2118 	rbd_assert(obj_request_img_data_test(obj_request));
2119 	img_request = obj_request->img_request;
2120 
2121 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122 	rbd_assert(img_request != NULL);
2123 	rbd_assert(img_request->obj_request_count > 0);
2124 	rbd_assert(which != BAD_WHICH);
2125 	rbd_assert(which < img_request->obj_request_count);
2126 
2127 	spin_lock_irq(&img_request->completion_lock);
2128 	if (which != img_request->next_completion)
2129 		goto out;
2130 
2131 	for_each_obj_request_from(img_request, obj_request) {
2132 		rbd_assert(more);
2133 		rbd_assert(which < img_request->obj_request_count);
2134 
2135 		if (!obj_request_done_test(obj_request))
2136 			break;
2137 		more = rbd_img_obj_end_request(obj_request);
2138 		which++;
2139 	}
2140 
2141 	rbd_assert(more ^ (which == img_request->obj_request_count));
2142 	img_request->next_completion = which;
2143 out:
2144 	spin_unlock_irq(&img_request->completion_lock);
2145 
2146 	if (!more)
2147 		rbd_img_request_complete(img_request);
2148 }
2149 
2150 /*
2151  * Split up an image request into one or more object requests, each
2152  * to a different object.  The "type" parameter indicates whether
2153  * "data_desc" is the pointer to the head of a list of bio
2154  * structures, or the base of a page array.  In either case this
2155  * function assumes data_desc describes memory sufficient to hold
2156  * all data described by the image request.
2157  */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159 					enum obj_request_type type,
2160 					void *data_desc)
2161 {
2162 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2163 	struct rbd_obj_request *obj_request = NULL;
2164 	struct rbd_obj_request *next_obj_request;
2165 	bool write_request = img_request_write_test(img_request);
2166 	struct bio *bio_list = NULL;
2167 	unsigned int bio_offset = 0;
2168 	struct page **pages = NULL;
2169 	u64 img_offset;
2170 	u64 resid;
2171 	u16 opcode;
2172 
2173 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174 		(int)type, data_desc);
2175 
2176 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177 	img_offset = img_request->offset;
2178 	resid = img_request->length;
2179 	rbd_assert(resid > 0);
2180 
2181 	if (type == OBJ_REQUEST_BIO) {
2182 		bio_list = data_desc;
2183 		rbd_assert(img_offset ==
2184 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185 	} else {
2186 		rbd_assert(type == OBJ_REQUEST_PAGES);
2187 		pages = data_desc;
2188 	}
2189 
2190 	while (resid) {
2191 		struct ceph_osd_request *osd_req;
2192 		const char *object_name;
2193 		u64 offset;
2194 		u64 length;
2195 		unsigned int which = 0;
2196 
2197 		object_name = rbd_segment_name(rbd_dev, img_offset);
2198 		if (!object_name)
2199 			goto out_unwind;
2200 		offset = rbd_segment_offset(rbd_dev, img_offset);
2201 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2202 		obj_request = rbd_obj_request_create(object_name,
2203 						offset, length, type);
2204 		/* object request has its own copy of the object name */
2205 		rbd_segment_name_free(object_name);
2206 		if (!obj_request)
2207 			goto out_unwind;
2208 
2209 		/*
2210 		 * set obj_request->img_request before creating the
2211 		 * osd_request so that it gets the right snapc
2212 		 */
2213 		rbd_img_obj_request_add(img_request, obj_request);
2214 
2215 		if (type == OBJ_REQUEST_BIO) {
2216 			unsigned int clone_size;
2217 
2218 			rbd_assert(length <= (u64)UINT_MAX);
2219 			clone_size = (unsigned int)length;
2220 			obj_request->bio_list =
2221 					bio_chain_clone_range(&bio_list,
2222 								&bio_offset,
2223 								clone_size,
2224 								GFP_ATOMIC);
2225 			if (!obj_request->bio_list)
2226 				goto out_unwind;
2227 		} else {
2228 			unsigned int page_count;
2229 
2230 			obj_request->pages = pages;
2231 			page_count = (u32)calc_pages_for(offset, length);
2232 			obj_request->page_count = page_count;
2233 			if ((offset + length) & ~PAGE_MASK)
2234 				page_count--;	/* more on last page */
2235 			pages += page_count;
2236 		}
2237 
2238 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239 					     (write_request ? 2 : 1),
2240 					     obj_request);
2241 		if (!osd_req)
2242 			goto out_unwind;
2243 		obj_request->osd_req = osd_req;
2244 		obj_request->callback = rbd_img_obj_callback;
2245 
2246 		if (write_request) {
2247 			osd_req_op_alloc_hint_init(osd_req, which,
2248 					     rbd_obj_bytes(&rbd_dev->header),
2249 					     rbd_obj_bytes(&rbd_dev->header));
2250 			which++;
2251 		}
2252 
2253 		osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254 				       0, 0);
2255 		if (type == OBJ_REQUEST_BIO)
2256 			osd_req_op_extent_osd_data_bio(osd_req, which,
2257 					obj_request->bio_list, length);
2258 		else
2259 			osd_req_op_extent_osd_data_pages(osd_req, which,
2260 					obj_request->pages, length,
2261 					offset & ~PAGE_MASK, false, false);
2262 
2263 		if (write_request)
2264 			rbd_osd_req_format_write(obj_request);
2265 		else
2266 			rbd_osd_req_format_read(obj_request);
2267 
2268 		obj_request->img_offset = img_offset;
2269 
2270 		img_offset += length;
2271 		resid -= length;
2272 	}
2273 
2274 	return 0;
2275 
2276 out_unwind:
2277 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278 		rbd_img_obj_request_del(img_request, obj_request);
2279 
2280 	return -ENOMEM;
2281 }
2282 
2283 static void
2284 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285 {
2286 	struct rbd_img_request *img_request;
2287 	struct rbd_device *rbd_dev;
2288 	struct page **pages;
2289 	u32 page_count;
2290 
2291 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292 	rbd_assert(obj_request_img_data_test(obj_request));
2293 	img_request = obj_request->img_request;
2294 	rbd_assert(img_request);
2295 
2296 	rbd_dev = img_request->rbd_dev;
2297 	rbd_assert(rbd_dev);
2298 
2299 	pages = obj_request->copyup_pages;
2300 	rbd_assert(pages != NULL);
2301 	obj_request->copyup_pages = NULL;
2302 	page_count = obj_request->copyup_page_count;
2303 	rbd_assert(page_count);
2304 	obj_request->copyup_page_count = 0;
2305 	ceph_release_page_vector(pages, page_count);
2306 
2307 	/*
2308 	 * We want the transfer count to reflect the size of the
2309 	 * original write request.  There is no such thing as a
2310 	 * successful short write, so if the request was successful
2311 	 * we can just set it to the originally-requested length.
2312 	 */
2313 	if (!obj_request->result)
2314 		obj_request->xferred = obj_request->length;
2315 
2316 	/* Finish up with the normal image object callback */
2317 
2318 	rbd_img_obj_callback(obj_request);
2319 }
2320 
2321 static void
2322 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323 {
2324 	struct rbd_obj_request *orig_request;
2325 	struct ceph_osd_request *osd_req;
2326 	struct ceph_osd_client *osdc;
2327 	struct rbd_device *rbd_dev;
2328 	struct page **pages;
2329 	u32 page_count;
2330 	int img_result;
2331 	u64 parent_length;
2332 	u64 offset;
2333 	u64 length;
2334 
2335 	rbd_assert(img_request_child_test(img_request));
2336 
2337 	/* First get what we need from the image request */
2338 
2339 	pages = img_request->copyup_pages;
2340 	rbd_assert(pages != NULL);
2341 	img_request->copyup_pages = NULL;
2342 	page_count = img_request->copyup_page_count;
2343 	rbd_assert(page_count);
2344 	img_request->copyup_page_count = 0;
2345 
2346 	orig_request = img_request->obj_request;
2347 	rbd_assert(orig_request != NULL);
2348 	rbd_assert(obj_request_type_valid(orig_request->type));
2349 	img_result = img_request->result;
2350 	parent_length = img_request->length;
2351 	rbd_assert(parent_length == img_request->xferred);
2352 	rbd_img_request_put(img_request);
2353 
2354 	rbd_assert(orig_request->img_request);
2355 	rbd_dev = orig_request->img_request->rbd_dev;
2356 	rbd_assert(rbd_dev);
2357 
2358 	/*
2359 	 * If the overlap has become 0 (most likely because the
2360 	 * image has been flattened) we need to free the pages
2361 	 * and re-submit the original write request.
2362 	 */
2363 	if (!rbd_dev->parent_overlap) {
2364 		struct ceph_osd_client *osdc;
2365 
2366 		ceph_release_page_vector(pages, page_count);
2367 		osdc = &rbd_dev->rbd_client->client->osdc;
2368 		img_result = rbd_obj_request_submit(osdc, orig_request);
2369 		if (!img_result)
2370 			return;
2371 	}
2372 
2373 	if (img_result)
2374 		goto out_err;
2375 
2376 	/*
2377 	 * The original osd request is of no use to use any more.
2378 	 * We need a new one that can hold the three ops in a copyup
2379 	 * request.  Allocate the new copyup osd request for the
2380 	 * original request, and release the old one.
2381 	 */
2382 	img_result = -ENOMEM;
2383 	osd_req = rbd_osd_req_create_copyup(orig_request);
2384 	if (!osd_req)
2385 		goto out_err;
2386 	rbd_osd_req_destroy(orig_request->osd_req);
2387 	orig_request->osd_req = osd_req;
2388 	orig_request->copyup_pages = pages;
2389 	orig_request->copyup_page_count = page_count;
2390 
2391 	/* Initialize the copyup op */
2392 
2393 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395 						false, false);
2396 
2397 	/* Then the hint op */
2398 
2399 	osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400 				   rbd_obj_bytes(&rbd_dev->header));
2401 
2402 	/* And the original write request op */
2403 
2404 	offset = orig_request->offset;
2405 	length = orig_request->length;
2406 	osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407 					offset, length, 0, 0);
2408 	if (orig_request->type == OBJ_REQUEST_BIO)
2409 		osd_req_op_extent_osd_data_bio(osd_req, 2,
2410 					orig_request->bio_list, length);
2411 	else
2412 		osd_req_op_extent_osd_data_pages(osd_req, 2,
2413 					orig_request->pages, length,
2414 					offset & ~PAGE_MASK, false, false);
2415 
2416 	rbd_osd_req_format_write(orig_request);
2417 
2418 	/* All set, send it off. */
2419 
2420 	orig_request->callback = rbd_img_obj_copyup_callback;
2421 	osdc = &rbd_dev->rbd_client->client->osdc;
2422 	img_result = rbd_obj_request_submit(osdc, orig_request);
2423 	if (!img_result)
2424 		return;
2425 out_err:
2426 	/* Record the error code and complete the request */
2427 
2428 	orig_request->result = img_result;
2429 	orig_request->xferred = 0;
2430 	obj_request_done_set(orig_request);
2431 	rbd_obj_request_complete(orig_request);
2432 }
2433 
2434 /*
2435  * Read from the parent image the range of data that covers the
2436  * entire target of the given object request.  This is used for
2437  * satisfying a layered image write request when the target of an
2438  * object request from the image request does not exist.
2439  *
2440  * A page array big enough to hold the returned data is allocated
2441  * and supplied to rbd_img_request_fill() as the "data descriptor."
2442  * When the read completes, this page array will be transferred to
2443  * the original object request for the copyup operation.
2444  *
2445  * If an error occurs, record it as the result of the original
2446  * object request and mark it done so it gets completed.
2447  */
2448 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449 {
2450 	struct rbd_img_request *img_request = NULL;
2451 	struct rbd_img_request *parent_request = NULL;
2452 	struct rbd_device *rbd_dev;
2453 	u64 img_offset;
2454 	u64 length;
2455 	struct page **pages = NULL;
2456 	u32 page_count;
2457 	int result;
2458 
2459 	rbd_assert(obj_request_img_data_test(obj_request));
2460 	rbd_assert(obj_request_type_valid(obj_request->type));
2461 
2462 	img_request = obj_request->img_request;
2463 	rbd_assert(img_request != NULL);
2464 	rbd_dev = img_request->rbd_dev;
2465 	rbd_assert(rbd_dev->parent != NULL);
2466 
2467 	/*
2468 	 * Determine the byte range covered by the object in the
2469 	 * child image to which the original request was to be sent.
2470 	 */
2471 	img_offset = obj_request->img_offset - obj_request->offset;
2472 	length = (u64)1 << rbd_dev->header.obj_order;
2473 
2474 	/*
2475 	 * There is no defined parent data beyond the parent
2476 	 * overlap, so limit what we read at that boundary if
2477 	 * necessary.
2478 	 */
2479 	if (img_offset + length > rbd_dev->parent_overlap) {
2480 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2481 		length = rbd_dev->parent_overlap - img_offset;
2482 	}
2483 
2484 	/*
2485 	 * Allocate a page array big enough to receive the data read
2486 	 * from the parent.
2487 	 */
2488 	page_count = (u32)calc_pages_for(0, length);
2489 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490 	if (IS_ERR(pages)) {
2491 		result = PTR_ERR(pages);
2492 		pages = NULL;
2493 		goto out_err;
2494 	}
2495 
2496 	result = -ENOMEM;
2497 	parent_request = rbd_parent_request_create(obj_request,
2498 						img_offset, length);
2499 	if (!parent_request)
2500 		goto out_err;
2501 
2502 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503 	if (result)
2504 		goto out_err;
2505 	parent_request->copyup_pages = pages;
2506 	parent_request->copyup_page_count = page_count;
2507 
2508 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509 	result = rbd_img_request_submit(parent_request);
2510 	if (!result)
2511 		return 0;
2512 
2513 	parent_request->copyup_pages = NULL;
2514 	parent_request->copyup_page_count = 0;
2515 	parent_request->obj_request = NULL;
2516 	rbd_obj_request_put(obj_request);
2517 out_err:
2518 	if (pages)
2519 		ceph_release_page_vector(pages, page_count);
2520 	if (parent_request)
2521 		rbd_img_request_put(parent_request);
2522 	obj_request->result = result;
2523 	obj_request->xferred = 0;
2524 	obj_request_done_set(obj_request);
2525 
2526 	return result;
2527 }
2528 
2529 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530 {
2531 	struct rbd_obj_request *orig_request;
2532 	struct rbd_device *rbd_dev;
2533 	int result;
2534 
2535 	rbd_assert(!obj_request_img_data_test(obj_request));
2536 
2537 	/*
2538 	 * All we need from the object request is the original
2539 	 * request and the result of the STAT op.  Grab those, then
2540 	 * we're done with the request.
2541 	 */
2542 	orig_request = obj_request->obj_request;
2543 	obj_request->obj_request = NULL;
2544 	rbd_obj_request_put(orig_request);
2545 	rbd_assert(orig_request);
2546 	rbd_assert(orig_request->img_request);
2547 
2548 	result = obj_request->result;
2549 	obj_request->result = 0;
2550 
2551 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552 		obj_request, orig_request, result,
2553 		obj_request->xferred, obj_request->length);
2554 	rbd_obj_request_put(obj_request);
2555 
2556 	/*
2557 	 * If the overlap has become 0 (most likely because the
2558 	 * image has been flattened) we need to free the pages
2559 	 * and re-submit the original write request.
2560 	 */
2561 	rbd_dev = orig_request->img_request->rbd_dev;
2562 	if (!rbd_dev->parent_overlap) {
2563 		struct ceph_osd_client *osdc;
2564 
2565 		osdc = &rbd_dev->rbd_client->client->osdc;
2566 		result = rbd_obj_request_submit(osdc, orig_request);
2567 		if (!result)
2568 			return;
2569 	}
2570 
2571 	/*
2572 	 * Our only purpose here is to determine whether the object
2573 	 * exists, and we don't want to treat the non-existence as
2574 	 * an error.  If something else comes back, transfer the
2575 	 * error to the original request and complete it now.
2576 	 */
2577 	if (!result) {
2578 		obj_request_existence_set(orig_request, true);
2579 	} else if (result == -ENOENT) {
2580 		obj_request_existence_set(orig_request, false);
2581 	} else if (result) {
2582 		orig_request->result = result;
2583 		goto out;
2584 	}
2585 
2586 	/*
2587 	 * Resubmit the original request now that we have recorded
2588 	 * whether the target object exists.
2589 	 */
2590 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2591 out:
2592 	if (orig_request->result)
2593 		rbd_obj_request_complete(orig_request);
2594 }
2595 
2596 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597 {
2598 	struct rbd_obj_request *stat_request;
2599 	struct rbd_device *rbd_dev;
2600 	struct ceph_osd_client *osdc;
2601 	struct page **pages = NULL;
2602 	u32 page_count;
2603 	size_t size;
2604 	int ret;
2605 
2606 	/*
2607 	 * The response data for a STAT call consists of:
2608 	 *     le64 length;
2609 	 *     struct {
2610 	 *         le32 tv_sec;
2611 	 *         le32 tv_nsec;
2612 	 *     } mtime;
2613 	 */
2614 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615 	page_count = (u32)calc_pages_for(0, size);
2616 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617 	if (IS_ERR(pages))
2618 		return PTR_ERR(pages);
2619 
2620 	ret = -ENOMEM;
2621 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622 							OBJ_REQUEST_PAGES);
2623 	if (!stat_request)
2624 		goto out;
2625 
2626 	rbd_obj_request_get(obj_request);
2627 	stat_request->obj_request = obj_request;
2628 	stat_request->pages = pages;
2629 	stat_request->page_count = page_count;
2630 
2631 	rbd_assert(obj_request->img_request);
2632 	rbd_dev = obj_request->img_request->rbd_dev;
2633 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634 						   stat_request);
2635 	if (!stat_request->osd_req)
2636 		goto out;
2637 	stat_request->callback = rbd_img_obj_exists_callback;
2638 
2639 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641 					false, false);
2642 	rbd_osd_req_format_read(stat_request);
2643 
2644 	osdc = &rbd_dev->rbd_client->client->osdc;
2645 	ret = rbd_obj_request_submit(osdc, stat_request);
2646 out:
2647 	if (ret)
2648 		rbd_obj_request_put(obj_request);
2649 
2650 	return ret;
2651 }
2652 
2653 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2654 {
2655 	struct rbd_img_request *img_request;
2656 	struct rbd_device *rbd_dev;
2657 	bool known;
2658 
2659 	rbd_assert(obj_request_img_data_test(obj_request));
2660 
2661 	img_request = obj_request->img_request;
2662 	rbd_assert(img_request);
2663 	rbd_dev = img_request->rbd_dev;
2664 
2665 	/*
2666 	 * Only writes to layered images need special handling.
2667 	 * Reads and non-layered writes are simple object requests.
2668 	 * Layered writes that start beyond the end of the overlap
2669 	 * with the parent have no parent data, so they too are
2670 	 * simple object requests.  Finally, if the target object is
2671 	 * known to already exist, its parent data has already been
2672 	 * copied, so a write to the object can also be handled as a
2673 	 * simple object request.
2674 	 */
2675 	if (!img_request_write_test(img_request) ||
2676 		!img_request_layered_test(img_request) ||
2677 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2678 		((known = obj_request_known_test(obj_request)) &&
2679 			obj_request_exists_test(obj_request))) {
2680 
2681 		struct rbd_device *rbd_dev;
2682 		struct ceph_osd_client *osdc;
2683 
2684 		rbd_dev = obj_request->img_request->rbd_dev;
2685 		osdc = &rbd_dev->rbd_client->client->osdc;
2686 
2687 		return rbd_obj_request_submit(osdc, obj_request);
2688 	}
2689 
2690 	/*
2691 	 * It's a layered write.  The target object might exist but
2692 	 * we may not know that yet.  If we know it doesn't exist,
2693 	 * start by reading the data for the full target object from
2694 	 * the parent so we can use it for a copyup to the target.
2695 	 */
2696 	if (known)
2697 		return rbd_img_obj_parent_read_full(obj_request);
2698 
2699 	/* We don't know whether the target exists.  Go find out. */
2700 
2701 	return rbd_img_obj_exists_submit(obj_request);
2702 }
2703 
2704 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705 {
2706 	struct rbd_obj_request *obj_request;
2707 	struct rbd_obj_request *next_obj_request;
2708 
2709 	dout("%s: img %p\n", __func__, img_request);
2710 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711 		int ret;
2712 
2713 		ret = rbd_img_obj_request_submit(obj_request);
2714 		if (ret)
2715 			return ret;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722 {
2723 	struct rbd_obj_request *obj_request;
2724 	struct rbd_device *rbd_dev;
2725 	u64 obj_end;
2726 	u64 img_xferred;
2727 	int img_result;
2728 
2729 	rbd_assert(img_request_child_test(img_request));
2730 
2731 	/* First get what we need from the image request and release it */
2732 
2733 	obj_request = img_request->obj_request;
2734 	img_xferred = img_request->xferred;
2735 	img_result = img_request->result;
2736 	rbd_img_request_put(img_request);
2737 
2738 	/*
2739 	 * If the overlap has become 0 (most likely because the
2740 	 * image has been flattened) we need to re-submit the
2741 	 * original request.
2742 	 */
2743 	rbd_assert(obj_request);
2744 	rbd_assert(obj_request->img_request);
2745 	rbd_dev = obj_request->img_request->rbd_dev;
2746 	if (!rbd_dev->parent_overlap) {
2747 		struct ceph_osd_client *osdc;
2748 
2749 		osdc = &rbd_dev->rbd_client->client->osdc;
2750 		img_result = rbd_obj_request_submit(osdc, obj_request);
2751 		if (!img_result)
2752 			return;
2753 	}
2754 
2755 	obj_request->result = img_result;
2756 	if (obj_request->result)
2757 		goto out;
2758 
2759 	/*
2760 	 * We need to zero anything beyond the parent overlap
2761 	 * boundary.  Since rbd_img_obj_request_read_callback()
2762 	 * will zero anything beyond the end of a short read, an
2763 	 * easy way to do this is to pretend the data from the
2764 	 * parent came up short--ending at the overlap boundary.
2765 	 */
2766 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767 	obj_end = obj_request->img_offset + obj_request->length;
2768 	if (obj_end > rbd_dev->parent_overlap) {
2769 		u64 xferred = 0;
2770 
2771 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2772 			xferred = rbd_dev->parent_overlap -
2773 					obj_request->img_offset;
2774 
2775 		obj_request->xferred = min(img_xferred, xferred);
2776 	} else {
2777 		obj_request->xferred = img_xferred;
2778 	}
2779 out:
2780 	rbd_img_obj_request_read_callback(obj_request);
2781 	rbd_obj_request_complete(obj_request);
2782 }
2783 
2784 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785 {
2786 	struct rbd_img_request *img_request;
2787 	int result;
2788 
2789 	rbd_assert(obj_request_img_data_test(obj_request));
2790 	rbd_assert(obj_request->img_request != NULL);
2791 	rbd_assert(obj_request->result == (s32) -ENOENT);
2792 	rbd_assert(obj_request_type_valid(obj_request->type));
2793 
2794 	/* rbd_read_finish(obj_request, obj_request->length); */
2795 	img_request = rbd_parent_request_create(obj_request,
2796 						obj_request->img_offset,
2797 						obj_request->length);
2798 	result = -ENOMEM;
2799 	if (!img_request)
2800 		goto out_err;
2801 
2802 	if (obj_request->type == OBJ_REQUEST_BIO)
2803 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804 						obj_request->bio_list);
2805 	else
2806 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807 						obj_request->pages);
2808 	if (result)
2809 		goto out_err;
2810 
2811 	img_request->callback = rbd_img_parent_read_callback;
2812 	result = rbd_img_request_submit(img_request);
2813 	if (result)
2814 		goto out_err;
2815 
2816 	return;
2817 out_err:
2818 	if (img_request)
2819 		rbd_img_request_put(img_request);
2820 	obj_request->result = result;
2821 	obj_request->xferred = 0;
2822 	obj_request_done_set(obj_request);
2823 }
2824 
2825 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826 {
2827 	struct rbd_obj_request *obj_request;
2828 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829 	int ret;
2830 
2831 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832 							OBJ_REQUEST_NODATA);
2833 	if (!obj_request)
2834 		return -ENOMEM;
2835 
2836 	ret = -ENOMEM;
2837 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838 						  obj_request);
2839 	if (!obj_request->osd_req)
2840 		goto out;
2841 
2842 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843 					notify_id, 0, 0);
2844 	rbd_osd_req_format_read(obj_request);
2845 
2846 	ret = rbd_obj_request_submit(osdc, obj_request);
2847 	if (ret)
2848 		goto out;
2849 	ret = rbd_obj_request_wait(obj_request);
2850 out:
2851 	rbd_obj_request_put(obj_request);
2852 
2853 	return ret;
2854 }
2855 
2856 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857 {
2858 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859 	int ret;
2860 
2861 	if (!rbd_dev)
2862 		return;
2863 
2864 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865 		rbd_dev->header_name, (unsigned long long)notify_id,
2866 		(unsigned int)opcode);
2867 	ret = rbd_dev_refresh(rbd_dev);
2868 	if (ret)
2869 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870 
2871 	rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872 }
2873 
2874 /*
2875  * Request sync osd watch/unwatch.  The value of "start" determines
2876  * whether a watch request is being initiated or torn down.
2877  */
2878 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2879 {
2880 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2881 	struct rbd_obj_request *obj_request;
2882 	int ret;
2883 
2884 	rbd_assert(start ^ !!rbd_dev->watch_event);
2885 	rbd_assert(start ^ !!rbd_dev->watch_request);
2886 
2887 	if (start) {
2888 		ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2889 						&rbd_dev->watch_event);
2890 		if (ret < 0)
2891 			return ret;
2892 		rbd_assert(rbd_dev->watch_event != NULL);
2893 	}
2894 
2895 	ret = -ENOMEM;
2896 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2897 							OBJ_REQUEST_NODATA);
2898 	if (!obj_request)
2899 		goto out_cancel;
2900 
2901 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2902 						  obj_request);
2903 	if (!obj_request->osd_req)
2904 		goto out_cancel;
2905 
2906 	if (start)
2907 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908 	else
2909 		ceph_osdc_unregister_linger_request(osdc,
2910 					rbd_dev->watch_request->osd_req);
2911 
2912 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2913 				rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2914 	rbd_osd_req_format_write(obj_request);
2915 
2916 	ret = rbd_obj_request_submit(osdc, obj_request);
2917 	if (ret)
2918 		goto out_cancel;
2919 	ret = rbd_obj_request_wait(obj_request);
2920 	if (ret)
2921 		goto out_cancel;
2922 	ret = obj_request->result;
2923 	if (ret)
2924 		goto out_cancel;
2925 
2926 	/*
2927 	 * A watch request is set to linger, so the underlying osd
2928 	 * request won't go away until we unregister it.  We retain
2929 	 * a pointer to the object request during that time (in
2930 	 * rbd_dev->watch_request), so we'll keep a reference to
2931 	 * it.  We'll drop that reference (below) after we've
2932 	 * unregistered it.
2933 	 */
2934 	if (start) {
2935 		rbd_dev->watch_request = obj_request;
2936 
2937 		return 0;
2938 	}
2939 
2940 	/* We have successfully torn down the watch request */
2941 
2942 	rbd_obj_request_put(rbd_dev->watch_request);
2943 	rbd_dev->watch_request = NULL;
2944 out_cancel:
2945 	/* Cancel the event if we're tearing down, or on error */
2946 	ceph_osdc_cancel_event(rbd_dev->watch_event);
2947 	rbd_dev->watch_event = NULL;
2948 	if (obj_request)
2949 		rbd_obj_request_put(obj_request);
2950 
2951 	return ret;
2952 }
2953 
2954 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2955 {
2956 	return __rbd_dev_header_watch_sync(rbd_dev, true);
2957 }
2958 
2959 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2960 {
2961 	int ret;
2962 
2963 	ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2964 	if (ret) {
2965 		rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2966 			 ret);
2967 	}
2968 }
2969 
2970 /*
2971  * Synchronous osd object method call.  Returns the number of bytes
2972  * returned in the outbound buffer, or a negative error code.
2973  */
2974 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2975 			     const char *object_name,
2976 			     const char *class_name,
2977 			     const char *method_name,
2978 			     const void *outbound,
2979 			     size_t outbound_size,
2980 			     void *inbound,
2981 			     size_t inbound_size)
2982 {
2983 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2984 	struct rbd_obj_request *obj_request;
2985 	struct page **pages;
2986 	u32 page_count;
2987 	int ret;
2988 
2989 	/*
2990 	 * Method calls are ultimately read operations.  The result
2991 	 * should placed into the inbound buffer provided.  They
2992 	 * also supply outbound data--parameters for the object
2993 	 * method.  Currently if this is present it will be a
2994 	 * snapshot id.
2995 	 */
2996 	page_count = (u32)calc_pages_for(0, inbound_size);
2997 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998 	if (IS_ERR(pages))
2999 		return PTR_ERR(pages);
3000 
3001 	ret = -ENOMEM;
3002 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3003 							OBJ_REQUEST_PAGES);
3004 	if (!obj_request)
3005 		goto out;
3006 
3007 	obj_request->pages = pages;
3008 	obj_request->page_count = page_count;
3009 
3010 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3011 						  obj_request);
3012 	if (!obj_request->osd_req)
3013 		goto out;
3014 
3015 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3016 					class_name, method_name);
3017 	if (outbound_size) {
3018 		struct ceph_pagelist *pagelist;
3019 
3020 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021 		if (!pagelist)
3022 			goto out;
3023 
3024 		ceph_pagelist_init(pagelist);
3025 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3026 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3027 						pagelist);
3028 	}
3029 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3030 					obj_request->pages, inbound_size,
3031 					0, false, false);
3032 	rbd_osd_req_format_read(obj_request);
3033 
3034 	ret = rbd_obj_request_submit(osdc, obj_request);
3035 	if (ret)
3036 		goto out;
3037 	ret = rbd_obj_request_wait(obj_request);
3038 	if (ret)
3039 		goto out;
3040 
3041 	ret = obj_request->result;
3042 	if (ret < 0)
3043 		goto out;
3044 
3045 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3046 	ret = (int)obj_request->xferred;
3047 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3048 out:
3049 	if (obj_request)
3050 		rbd_obj_request_put(obj_request);
3051 	else
3052 		ceph_release_page_vector(pages, page_count);
3053 
3054 	return ret;
3055 }
3056 
3057 static void rbd_request_fn(struct request_queue *q)
3058 		__releases(q->queue_lock) __acquires(q->queue_lock)
3059 {
3060 	struct rbd_device *rbd_dev = q->queuedata;
3061 	bool read_only = rbd_dev->mapping.read_only;
3062 	struct request *rq;
3063 	int result;
3064 
3065 	while ((rq = blk_fetch_request(q))) {
3066 		bool write_request = rq_data_dir(rq) == WRITE;
3067 		struct rbd_img_request *img_request;
3068 		u64 offset;
3069 		u64 length;
3070 
3071 		/* Ignore any non-FS requests that filter through. */
3072 
3073 		if (rq->cmd_type != REQ_TYPE_FS) {
3074 			dout("%s: non-fs request type %d\n", __func__,
3075 				(int) rq->cmd_type);
3076 			__blk_end_request_all(rq, 0);
3077 			continue;
3078 		}
3079 
3080 		/* Ignore/skip any zero-length requests */
3081 
3082 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3083 		length = (u64) blk_rq_bytes(rq);
3084 
3085 		if (!length) {
3086 			dout("%s: zero-length request\n", __func__);
3087 			__blk_end_request_all(rq, 0);
3088 			continue;
3089 		}
3090 
3091 		spin_unlock_irq(q->queue_lock);
3092 
3093 		/* Disallow writes to a read-only device */
3094 
3095 		if (write_request) {
3096 			result = -EROFS;
3097 			if (read_only)
3098 				goto end_request;
3099 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100 		}
3101 
3102 		/*
3103 		 * Quit early if the mapped snapshot no longer
3104 		 * exists.  It's still possible the snapshot will
3105 		 * have disappeared by the time our request arrives
3106 		 * at the osd, but there's no sense in sending it if
3107 		 * we already know.
3108 		 */
3109 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3110 			dout("request for non-existent snapshot");
3111 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3112 			result = -ENXIO;
3113 			goto end_request;
3114 		}
3115 
3116 		result = -EINVAL;
3117 		if (offset && length > U64_MAX - offset + 1) {
3118 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3119 				offset, length);
3120 			goto end_request;	/* Shouldn't happen */
3121 		}
3122 
3123 		result = -EIO;
3124 		if (offset + length > rbd_dev->mapping.size) {
3125 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3126 				offset, length, rbd_dev->mapping.size);
3127 			goto end_request;
3128 		}
3129 
3130 		result = -ENOMEM;
3131 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3132 							write_request);
3133 		if (!img_request)
3134 			goto end_request;
3135 
3136 		img_request->rq = rq;
3137 
3138 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3139 						rq->bio);
3140 		if (!result)
3141 			result = rbd_img_request_submit(img_request);
3142 		if (result)
3143 			rbd_img_request_put(img_request);
3144 end_request:
3145 		spin_lock_irq(q->queue_lock);
3146 		if (result < 0) {
3147 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3148 				write_request ? "write" : "read",
3149 				length, offset, result);
3150 
3151 			__blk_end_request_all(rq, result);
3152 		}
3153 	}
3154 }
3155 
3156 /*
3157  * a queue callback. Makes sure that we don't create a bio that spans across
3158  * multiple osd objects. One exception would be with a single page bios,
3159  * which we handle later at bio_chain_clone_range()
3160  */
3161 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3162 			  struct bio_vec *bvec)
3163 {
3164 	struct rbd_device *rbd_dev = q->queuedata;
3165 	sector_t sector_offset;
3166 	sector_t sectors_per_obj;
3167 	sector_t obj_sector_offset;
3168 	int ret;
3169 
3170 	/*
3171 	 * Find how far into its rbd object the partition-relative
3172 	 * bio start sector is to offset relative to the enclosing
3173 	 * device.
3174 	 */
3175 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3176 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3177 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3178 
3179 	/*
3180 	 * Compute the number of bytes from that offset to the end
3181 	 * of the object.  Account for what's already used by the bio.
3182 	 */
3183 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3184 	if (ret > bmd->bi_size)
3185 		ret -= bmd->bi_size;
3186 	else
3187 		ret = 0;
3188 
3189 	/*
3190 	 * Don't send back more than was asked for.  And if the bio
3191 	 * was empty, let the whole thing through because:  "Note
3192 	 * that a block device *must* allow a single page to be
3193 	 * added to an empty bio."
3194 	 */
3195 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3196 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3197 		ret = (int) bvec->bv_len;
3198 
3199 	return ret;
3200 }
3201 
3202 static void rbd_free_disk(struct rbd_device *rbd_dev)
3203 {
3204 	struct gendisk *disk = rbd_dev->disk;
3205 
3206 	if (!disk)
3207 		return;
3208 
3209 	rbd_dev->disk = NULL;
3210 	if (disk->flags & GENHD_FL_UP) {
3211 		del_gendisk(disk);
3212 		if (disk->queue)
3213 			blk_cleanup_queue(disk->queue);
3214 	}
3215 	put_disk(disk);
3216 }
3217 
3218 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3219 				const char *object_name,
3220 				u64 offset, u64 length, void *buf)
3221 
3222 {
3223 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3224 	struct rbd_obj_request *obj_request;
3225 	struct page **pages = NULL;
3226 	u32 page_count;
3227 	size_t size;
3228 	int ret;
3229 
3230 	page_count = (u32) calc_pages_for(offset, length);
3231 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3232 	if (IS_ERR(pages))
3233 		ret = PTR_ERR(pages);
3234 
3235 	ret = -ENOMEM;
3236 	obj_request = rbd_obj_request_create(object_name, offset, length,
3237 							OBJ_REQUEST_PAGES);
3238 	if (!obj_request)
3239 		goto out;
3240 
3241 	obj_request->pages = pages;
3242 	obj_request->page_count = page_count;
3243 
3244 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3245 						  obj_request);
3246 	if (!obj_request->osd_req)
3247 		goto out;
3248 
3249 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250 					offset, length, 0, 0);
3251 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252 					obj_request->pages,
3253 					obj_request->length,
3254 					obj_request->offset & ~PAGE_MASK,
3255 					false, false);
3256 	rbd_osd_req_format_read(obj_request);
3257 
3258 	ret = rbd_obj_request_submit(osdc, obj_request);
3259 	if (ret)
3260 		goto out;
3261 	ret = rbd_obj_request_wait(obj_request);
3262 	if (ret)
3263 		goto out;
3264 
3265 	ret = obj_request->result;
3266 	if (ret < 0)
3267 		goto out;
3268 
3269 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270 	size = (size_t) obj_request->xferred;
3271 	ceph_copy_from_page_vector(pages, buf, 0, size);
3272 	rbd_assert(size <= (size_t)INT_MAX);
3273 	ret = (int)size;
3274 out:
3275 	if (obj_request)
3276 		rbd_obj_request_put(obj_request);
3277 	else
3278 		ceph_release_page_vector(pages, page_count);
3279 
3280 	return ret;
3281 }
3282 
3283 /*
3284  * Read the complete header for the given rbd device.  On successful
3285  * return, the rbd_dev->header field will contain up-to-date
3286  * information about the image.
3287  */
3288 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289 {
3290 	struct rbd_image_header_ondisk *ondisk = NULL;
3291 	u32 snap_count = 0;
3292 	u64 names_size = 0;
3293 	u32 want_count;
3294 	int ret;
3295 
3296 	/*
3297 	 * The complete header will include an array of its 64-bit
3298 	 * snapshot ids, followed by the names of those snapshots as
3299 	 * a contiguous block of NUL-terminated strings.  Note that
3300 	 * the number of snapshots could change by the time we read
3301 	 * it in, in which case we re-read it.
3302 	 */
3303 	do {
3304 		size_t size;
3305 
3306 		kfree(ondisk);
3307 
3308 		size = sizeof (*ondisk);
3309 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310 		size += names_size;
3311 		ondisk = kmalloc(size, GFP_KERNEL);
3312 		if (!ondisk)
3313 			return -ENOMEM;
3314 
3315 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316 				       0, size, ondisk);
3317 		if (ret < 0)
3318 			goto out;
3319 		if ((size_t)ret < size) {
3320 			ret = -ENXIO;
3321 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322 				size, ret);
3323 			goto out;
3324 		}
3325 		if (!rbd_dev_ondisk_valid(ondisk)) {
3326 			ret = -ENXIO;
3327 			rbd_warn(rbd_dev, "invalid header");
3328 			goto out;
3329 		}
3330 
3331 		names_size = le64_to_cpu(ondisk->snap_names_len);
3332 		want_count = snap_count;
3333 		snap_count = le32_to_cpu(ondisk->snap_count);
3334 	} while (snap_count != want_count);
3335 
3336 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3337 out:
3338 	kfree(ondisk);
3339 
3340 	return ret;
3341 }
3342 
3343 /*
3344  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345  * has disappeared from the (just updated) snapshot context.
3346  */
3347 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348 {
3349 	u64 snap_id;
3350 
3351 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352 		return;
3353 
3354 	snap_id = rbd_dev->spec->snap_id;
3355 	if (snap_id == CEPH_NOSNAP)
3356 		return;
3357 
3358 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360 }
3361 
3362 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363 {
3364 	sector_t size;
3365 	bool removing;
3366 
3367 	/*
3368 	 * Don't hold the lock while doing disk operations,
3369 	 * or lock ordering will conflict with the bdev mutex via:
3370 	 * rbd_add() -> blkdev_get() -> rbd_open()
3371 	 */
3372 	spin_lock_irq(&rbd_dev->lock);
3373 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374 	spin_unlock_irq(&rbd_dev->lock);
3375 	/*
3376 	 * If the device is being removed, rbd_dev->disk has
3377 	 * been destroyed, so don't try to update its size
3378 	 */
3379 	if (!removing) {
3380 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381 		dout("setting size to %llu sectors", (unsigned long long)size);
3382 		set_capacity(rbd_dev->disk, size);
3383 		revalidate_disk(rbd_dev->disk);
3384 	}
3385 }
3386 
3387 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388 {
3389 	u64 mapping_size;
3390 	int ret;
3391 
3392 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393 	down_write(&rbd_dev->header_rwsem);
3394 	mapping_size = rbd_dev->mapping.size;
3395 	if (rbd_dev->image_format == 1)
3396 		ret = rbd_dev_v1_header_info(rbd_dev);
3397 	else
3398 		ret = rbd_dev_v2_header_info(rbd_dev);
3399 
3400 	/* If it's a mapped snapshot, validate its EXISTS flag */
3401 
3402 	rbd_exists_validate(rbd_dev);
3403 	up_write(&rbd_dev->header_rwsem);
3404 
3405 	if (mapping_size != rbd_dev->mapping.size) {
3406 		rbd_dev_update_size(rbd_dev);
3407 	}
3408 
3409 	return ret;
3410 }
3411 
3412 static int rbd_init_disk(struct rbd_device *rbd_dev)
3413 {
3414 	struct gendisk *disk;
3415 	struct request_queue *q;
3416 	u64 segment_size;
3417 
3418 	/* create gendisk info */
3419 	disk = alloc_disk(single_major ?
3420 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3421 			  RBD_MINORS_PER_MAJOR);
3422 	if (!disk)
3423 		return -ENOMEM;
3424 
3425 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3426 		 rbd_dev->dev_id);
3427 	disk->major = rbd_dev->major;
3428 	disk->first_minor = rbd_dev->minor;
3429 	if (single_major)
3430 		disk->flags |= GENHD_FL_EXT_DEVT;
3431 	disk->fops = &rbd_bd_ops;
3432 	disk->private_data = rbd_dev;
3433 
3434 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3435 	if (!q)
3436 		goto out_disk;
3437 
3438 	/* We use the default size, but let's be explicit about it. */
3439 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3440 
3441 	/* set io sizes to object size */
3442 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3443 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3444 	blk_queue_max_segment_size(q, segment_size);
3445 	blk_queue_io_min(q, segment_size);
3446 	blk_queue_io_opt(q, segment_size);
3447 
3448 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3449 	disk->queue = q;
3450 
3451 	q->queuedata = rbd_dev;
3452 
3453 	rbd_dev->disk = disk;
3454 
3455 	return 0;
3456 out_disk:
3457 	put_disk(disk);
3458 
3459 	return -ENOMEM;
3460 }
3461 
3462 /*
3463   sysfs
3464 */
3465 
3466 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3467 {
3468 	return container_of(dev, struct rbd_device, dev);
3469 }
3470 
3471 static ssize_t rbd_size_show(struct device *dev,
3472 			     struct device_attribute *attr, char *buf)
3473 {
3474 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475 
3476 	return sprintf(buf, "%llu\n",
3477 		(unsigned long long)rbd_dev->mapping.size);
3478 }
3479 
3480 /*
3481  * Note this shows the features for whatever's mapped, which is not
3482  * necessarily the base image.
3483  */
3484 static ssize_t rbd_features_show(struct device *dev,
3485 			     struct device_attribute *attr, char *buf)
3486 {
3487 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488 
3489 	return sprintf(buf, "0x%016llx\n",
3490 			(unsigned long long)rbd_dev->mapping.features);
3491 }
3492 
3493 static ssize_t rbd_major_show(struct device *dev,
3494 			      struct device_attribute *attr, char *buf)
3495 {
3496 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497 
3498 	if (rbd_dev->major)
3499 		return sprintf(buf, "%d\n", rbd_dev->major);
3500 
3501 	return sprintf(buf, "(none)\n");
3502 }
3503 
3504 static ssize_t rbd_minor_show(struct device *dev,
3505 			      struct device_attribute *attr, char *buf)
3506 {
3507 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508 
3509 	return sprintf(buf, "%d\n", rbd_dev->minor);
3510 }
3511 
3512 static ssize_t rbd_client_id_show(struct device *dev,
3513 				  struct device_attribute *attr, char *buf)
3514 {
3515 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516 
3517 	return sprintf(buf, "client%lld\n",
3518 			ceph_client_id(rbd_dev->rbd_client->client));
3519 }
3520 
3521 static ssize_t rbd_pool_show(struct device *dev,
3522 			     struct device_attribute *attr, char *buf)
3523 {
3524 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525 
3526 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3527 }
3528 
3529 static ssize_t rbd_pool_id_show(struct device *dev,
3530 			     struct device_attribute *attr, char *buf)
3531 {
3532 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533 
3534 	return sprintf(buf, "%llu\n",
3535 			(unsigned long long) rbd_dev->spec->pool_id);
3536 }
3537 
3538 static ssize_t rbd_name_show(struct device *dev,
3539 			     struct device_attribute *attr, char *buf)
3540 {
3541 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542 
3543 	if (rbd_dev->spec->image_name)
3544 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3545 
3546 	return sprintf(buf, "(unknown)\n");
3547 }
3548 
3549 static ssize_t rbd_image_id_show(struct device *dev,
3550 			     struct device_attribute *attr, char *buf)
3551 {
3552 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553 
3554 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3555 }
3556 
3557 /*
3558  * Shows the name of the currently-mapped snapshot (or
3559  * RBD_SNAP_HEAD_NAME for the base image).
3560  */
3561 static ssize_t rbd_snap_show(struct device *dev,
3562 			     struct device_attribute *attr,
3563 			     char *buf)
3564 {
3565 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566 
3567 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3568 }
3569 
3570 /*
3571  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3572  * for the parent image.  If there is no parent, simply shows
3573  * "(no parent image)".
3574  */
3575 static ssize_t rbd_parent_show(struct device *dev,
3576 			     struct device_attribute *attr,
3577 			     char *buf)
3578 {
3579 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580 	struct rbd_spec *spec = rbd_dev->parent_spec;
3581 	int count;
3582 	char *bufp = buf;
3583 
3584 	if (!spec)
3585 		return sprintf(buf, "(no parent image)\n");
3586 
3587 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3588 			(unsigned long long) spec->pool_id, spec->pool_name);
3589 	if (count < 0)
3590 		return count;
3591 	bufp += count;
3592 
3593 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3594 			spec->image_name ? spec->image_name : "(unknown)");
3595 	if (count < 0)
3596 		return count;
3597 	bufp += count;
3598 
3599 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3600 			(unsigned long long) spec->snap_id, spec->snap_name);
3601 	if (count < 0)
3602 		return count;
3603 	bufp += count;
3604 
3605 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3606 	if (count < 0)
3607 		return count;
3608 	bufp += count;
3609 
3610 	return (ssize_t) (bufp - buf);
3611 }
3612 
3613 static ssize_t rbd_image_refresh(struct device *dev,
3614 				 struct device_attribute *attr,
3615 				 const char *buf,
3616 				 size_t size)
3617 {
3618 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3619 	int ret;
3620 
3621 	ret = rbd_dev_refresh(rbd_dev);
3622 	if (ret)
3623 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3624 
3625 	return ret < 0 ? ret : size;
3626 }
3627 
3628 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3629 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3630 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3631 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3632 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3633 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3634 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3635 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3636 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3637 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3638 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3639 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3640 
3641 static struct attribute *rbd_attrs[] = {
3642 	&dev_attr_size.attr,
3643 	&dev_attr_features.attr,
3644 	&dev_attr_major.attr,
3645 	&dev_attr_minor.attr,
3646 	&dev_attr_client_id.attr,
3647 	&dev_attr_pool.attr,
3648 	&dev_attr_pool_id.attr,
3649 	&dev_attr_name.attr,
3650 	&dev_attr_image_id.attr,
3651 	&dev_attr_current_snap.attr,
3652 	&dev_attr_parent.attr,
3653 	&dev_attr_refresh.attr,
3654 	NULL
3655 };
3656 
3657 static struct attribute_group rbd_attr_group = {
3658 	.attrs = rbd_attrs,
3659 };
3660 
3661 static const struct attribute_group *rbd_attr_groups[] = {
3662 	&rbd_attr_group,
3663 	NULL
3664 };
3665 
3666 static void rbd_sysfs_dev_release(struct device *dev)
3667 {
3668 }
3669 
3670 static struct device_type rbd_device_type = {
3671 	.name		= "rbd",
3672 	.groups		= rbd_attr_groups,
3673 	.release	= rbd_sysfs_dev_release,
3674 };
3675 
3676 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3677 {
3678 	kref_get(&spec->kref);
3679 
3680 	return spec;
3681 }
3682 
3683 static void rbd_spec_free(struct kref *kref);
3684 static void rbd_spec_put(struct rbd_spec *spec)
3685 {
3686 	if (spec)
3687 		kref_put(&spec->kref, rbd_spec_free);
3688 }
3689 
3690 static struct rbd_spec *rbd_spec_alloc(void)
3691 {
3692 	struct rbd_spec *spec;
3693 
3694 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3695 	if (!spec)
3696 		return NULL;
3697 	kref_init(&spec->kref);
3698 
3699 	return spec;
3700 }
3701 
3702 static void rbd_spec_free(struct kref *kref)
3703 {
3704 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3705 
3706 	kfree(spec->pool_name);
3707 	kfree(spec->image_id);
3708 	kfree(spec->image_name);
3709 	kfree(spec->snap_name);
3710 	kfree(spec);
3711 }
3712 
3713 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3714 				struct rbd_spec *spec)
3715 {
3716 	struct rbd_device *rbd_dev;
3717 
3718 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3719 	if (!rbd_dev)
3720 		return NULL;
3721 
3722 	spin_lock_init(&rbd_dev->lock);
3723 	rbd_dev->flags = 0;
3724 	atomic_set(&rbd_dev->parent_ref, 0);
3725 	INIT_LIST_HEAD(&rbd_dev->node);
3726 	init_rwsem(&rbd_dev->header_rwsem);
3727 
3728 	rbd_dev->spec = spec;
3729 	rbd_dev->rbd_client = rbdc;
3730 
3731 	/* Initialize the layout used for all rbd requests */
3732 
3733 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3734 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3735 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3736 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3737 
3738 	return rbd_dev;
3739 }
3740 
3741 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3742 {
3743 	rbd_put_client(rbd_dev->rbd_client);
3744 	rbd_spec_put(rbd_dev->spec);
3745 	kfree(rbd_dev);
3746 }
3747 
3748 /*
3749  * Get the size and object order for an image snapshot, or if
3750  * snap_id is CEPH_NOSNAP, gets this information for the base
3751  * image.
3752  */
3753 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3754 				u8 *order, u64 *snap_size)
3755 {
3756 	__le64 snapid = cpu_to_le64(snap_id);
3757 	int ret;
3758 	struct {
3759 		u8 order;
3760 		__le64 size;
3761 	} __attribute__ ((packed)) size_buf = { 0 };
3762 
3763 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764 				"rbd", "get_size",
3765 				&snapid, sizeof (snapid),
3766 				&size_buf, sizeof (size_buf));
3767 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3768 	if (ret < 0)
3769 		return ret;
3770 	if (ret < sizeof (size_buf))
3771 		return -ERANGE;
3772 
3773 	if (order) {
3774 		*order = size_buf.order;
3775 		dout("  order %u", (unsigned int)*order);
3776 	}
3777 	*snap_size = le64_to_cpu(size_buf.size);
3778 
3779 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3780 		(unsigned long long)snap_id,
3781 		(unsigned long long)*snap_size);
3782 
3783 	return 0;
3784 }
3785 
3786 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3787 {
3788 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3789 					&rbd_dev->header.obj_order,
3790 					&rbd_dev->header.image_size);
3791 }
3792 
3793 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3794 {
3795 	void *reply_buf;
3796 	int ret;
3797 	void *p;
3798 
3799 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3800 	if (!reply_buf)
3801 		return -ENOMEM;
3802 
3803 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804 				"rbd", "get_object_prefix", NULL, 0,
3805 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3806 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3807 	if (ret < 0)
3808 		goto out;
3809 
3810 	p = reply_buf;
3811 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3812 						p + ret, NULL, GFP_NOIO);
3813 	ret = 0;
3814 
3815 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3816 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3817 		rbd_dev->header.object_prefix = NULL;
3818 	} else {
3819 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3820 	}
3821 out:
3822 	kfree(reply_buf);
3823 
3824 	return ret;
3825 }
3826 
3827 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3828 		u64 *snap_features)
3829 {
3830 	__le64 snapid = cpu_to_le64(snap_id);
3831 	struct {
3832 		__le64 features;
3833 		__le64 incompat;
3834 	} __attribute__ ((packed)) features_buf = { 0 };
3835 	u64 incompat;
3836 	int ret;
3837 
3838 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839 				"rbd", "get_features",
3840 				&snapid, sizeof (snapid),
3841 				&features_buf, sizeof (features_buf));
3842 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3843 	if (ret < 0)
3844 		return ret;
3845 	if (ret < sizeof (features_buf))
3846 		return -ERANGE;
3847 
3848 	incompat = le64_to_cpu(features_buf.incompat);
3849 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3850 		return -ENXIO;
3851 
3852 	*snap_features = le64_to_cpu(features_buf.features);
3853 
3854 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3855 		(unsigned long long)snap_id,
3856 		(unsigned long long)*snap_features,
3857 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3858 
3859 	return 0;
3860 }
3861 
3862 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3863 {
3864 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3865 						&rbd_dev->header.features);
3866 }
3867 
3868 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3869 {
3870 	struct rbd_spec *parent_spec;
3871 	size_t size;
3872 	void *reply_buf = NULL;
3873 	__le64 snapid;
3874 	void *p;
3875 	void *end;
3876 	u64 pool_id;
3877 	char *image_id;
3878 	u64 snap_id;
3879 	u64 overlap;
3880 	int ret;
3881 
3882 	parent_spec = rbd_spec_alloc();
3883 	if (!parent_spec)
3884 		return -ENOMEM;
3885 
3886 	size = sizeof (__le64) +				/* pool_id */
3887 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
3888 		sizeof (__le64) +				/* snap_id */
3889 		sizeof (__le64);				/* overlap */
3890 	reply_buf = kmalloc(size, GFP_KERNEL);
3891 	if (!reply_buf) {
3892 		ret = -ENOMEM;
3893 		goto out_err;
3894 	}
3895 
3896 	snapid = cpu_to_le64(CEPH_NOSNAP);
3897 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3898 				"rbd", "get_parent",
3899 				&snapid, sizeof (snapid),
3900 				reply_buf, size);
3901 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3902 	if (ret < 0)
3903 		goto out_err;
3904 
3905 	p = reply_buf;
3906 	end = reply_buf + ret;
3907 	ret = -ERANGE;
3908 	ceph_decode_64_safe(&p, end, pool_id, out_err);
3909 	if (pool_id == CEPH_NOPOOL) {
3910 		/*
3911 		 * Either the parent never existed, or we have
3912 		 * record of it but the image got flattened so it no
3913 		 * longer has a parent.  When the parent of a
3914 		 * layered image disappears we immediately set the
3915 		 * overlap to 0.  The effect of this is that all new
3916 		 * requests will be treated as if the image had no
3917 		 * parent.
3918 		 */
3919 		if (rbd_dev->parent_overlap) {
3920 			rbd_dev->parent_overlap = 0;
3921 			smp_mb();
3922 			rbd_dev_parent_put(rbd_dev);
3923 			pr_info("%s: clone image has been flattened\n",
3924 				rbd_dev->disk->disk_name);
3925 		}
3926 
3927 		goto out;	/* No parent?  No problem. */
3928 	}
3929 
3930 	/* The ceph file layout needs to fit pool id in 32 bits */
3931 
3932 	ret = -EIO;
3933 	if (pool_id > (u64)U32_MAX) {
3934 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3935 			(unsigned long long)pool_id, U32_MAX);
3936 		goto out_err;
3937 	}
3938 
3939 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3940 	if (IS_ERR(image_id)) {
3941 		ret = PTR_ERR(image_id);
3942 		goto out_err;
3943 	}
3944 	ceph_decode_64_safe(&p, end, snap_id, out_err);
3945 	ceph_decode_64_safe(&p, end, overlap, out_err);
3946 
3947 	/*
3948 	 * The parent won't change (except when the clone is
3949 	 * flattened, already handled that).  So we only need to
3950 	 * record the parent spec we have not already done so.
3951 	 */
3952 	if (!rbd_dev->parent_spec) {
3953 		parent_spec->pool_id = pool_id;
3954 		parent_spec->image_id = image_id;
3955 		parent_spec->snap_id = snap_id;
3956 		rbd_dev->parent_spec = parent_spec;
3957 		parent_spec = NULL;	/* rbd_dev now owns this */
3958 	}
3959 
3960 	/*
3961 	 * We always update the parent overlap.  If it's zero we
3962 	 * treat it specially.
3963 	 */
3964 	rbd_dev->parent_overlap = overlap;
3965 	smp_mb();
3966 	if (!overlap) {
3967 
3968 		/* A null parent_spec indicates it's the initial probe */
3969 
3970 		if (parent_spec) {
3971 			/*
3972 			 * The overlap has become zero, so the clone
3973 			 * must have been resized down to 0 at some
3974 			 * point.  Treat this the same as a flatten.
3975 			 */
3976 			rbd_dev_parent_put(rbd_dev);
3977 			pr_info("%s: clone image now standalone\n",
3978 				rbd_dev->disk->disk_name);
3979 		} else {
3980 			/*
3981 			 * For the initial probe, if we find the
3982 			 * overlap is zero we just pretend there was
3983 			 * no parent image.
3984 			 */
3985 			rbd_warn(rbd_dev, "ignoring parent of "
3986 						"clone with overlap 0\n");
3987 		}
3988 	}
3989 out:
3990 	ret = 0;
3991 out_err:
3992 	kfree(reply_buf);
3993 	rbd_spec_put(parent_spec);
3994 
3995 	return ret;
3996 }
3997 
3998 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3999 {
4000 	struct {
4001 		__le64 stripe_unit;
4002 		__le64 stripe_count;
4003 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4004 	size_t size = sizeof (striping_info_buf);
4005 	void *p;
4006 	u64 obj_size;
4007 	u64 stripe_unit;
4008 	u64 stripe_count;
4009 	int ret;
4010 
4011 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4012 				"rbd", "get_stripe_unit_count", NULL, 0,
4013 				(char *)&striping_info_buf, size);
4014 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4015 	if (ret < 0)
4016 		return ret;
4017 	if (ret < size)
4018 		return -ERANGE;
4019 
4020 	/*
4021 	 * We don't actually support the "fancy striping" feature
4022 	 * (STRIPINGV2) yet, but if the striping sizes are the
4023 	 * defaults the behavior is the same as before.  So find
4024 	 * out, and only fail if the image has non-default values.
4025 	 */
4026 	ret = -EINVAL;
4027 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4028 	p = &striping_info_buf;
4029 	stripe_unit = ceph_decode_64(&p);
4030 	if (stripe_unit != obj_size) {
4031 		rbd_warn(rbd_dev, "unsupported stripe unit "
4032 				"(got %llu want %llu)",
4033 				stripe_unit, obj_size);
4034 		return -EINVAL;
4035 	}
4036 	stripe_count = ceph_decode_64(&p);
4037 	if (stripe_count != 1) {
4038 		rbd_warn(rbd_dev, "unsupported stripe count "
4039 				"(got %llu want 1)", stripe_count);
4040 		return -EINVAL;
4041 	}
4042 	rbd_dev->header.stripe_unit = stripe_unit;
4043 	rbd_dev->header.stripe_count = stripe_count;
4044 
4045 	return 0;
4046 }
4047 
4048 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4049 {
4050 	size_t image_id_size;
4051 	char *image_id;
4052 	void *p;
4053 	void *end;
4054 	size_t size;
4055 	void *reply_buf = NULL;
4056 	size_t len = 0;
4057 	char *image_name = NULL;
4058 	int ret;
4059 
4060 	rbd_assert(!rbd_dev->spec->image_name);
4061 
4062 	len = strlen(rbd_dev->spec->image_id);
4063 	image_id_size = sizeof (__le32) + len;
4064 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4065 	if (!image_id)
4066 		return NULL;
4067 
4068 	p = image_id;
4069 	end = image_id + image_id_size;
4070 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4071 
4072 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4073 	reply_buf = kmalloc(size, GFP_KERNEL);
4074 	if (!reply_buf)
4075 		goto out;
4076 
4077 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4078 				"rbd", "dir_get_name",
4079 				image_id, image_id_size,
4080 				reply_buf, size);
4081 	if (ret < 0)
4082 		goto out;
4083 	p = reply_buf;
4084 	end = reply_buf + ret;
4085 
4086 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4087 	if (IS_ERR(image_name))
4088 		image_name = NULL;
4089 	else
4090 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4091 out:
4092 	kfree(reply_buf);
4093 	kfree(image_id);
4094 
4095 	return image_name;
4096 }
4097 
4098 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099 {
4100 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4101 	const char *snap_name;
4102 	u32 which = 0;
4103 
4104 	/* Skip over names until we find the one we are looking for */
4105 
4106 	snap_name = rbd_dev->header.snap_names;
4107 	while (which < snapc->num_snaps) {
4108 		if (!strcmp(name, snap_name))
4109 			return snapc->snaps[which];
4110 		snap_name += strlen(snap_name) + 1;
4111 		which++;
4112 	}
4113 	return CEPH_NOSNAP;
4114 }
4115 
4116 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4117 {
4118 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4119 	u32 which;
4120 	bool found = false;
4121 	u64 snap_id;
4122 
4123 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4124 		const char *snap_name;
4125 
4126 		snap_id = snapc->snaps[which];
4127 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4128 		if (IS_ERR(snap_name)) {
4129 			/* ignore no-longer existing snapshots */
4130 			if (PTR_ERR(snap_name) == -ENOENT)
4131 				continue;
4132 			else
4133 				break;
4134 		}
4135 		found = !strcmp(name, snap_name);
4136 		kfree(snap_name);
4137 	}
4138 	return found ? snap_id : CEPH_NOSNAP;
4139 }
4140 
4141 /*
4142  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4143  * no snapshot by that name is found, or if an error occurs.
4144  */
4145 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146 {
4147 	if (rbd_dev->image_format == 1)
4148 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4149 
4150 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4151 }
4152 
4153 /*
4154  * When an rbd image has a parent image, it is identified by the
4155  * pool, image, and snapshot ids (not names).  This function fills
4156  * in the names for those ids.  (It's OK if we can't figure out the
4157  * name for an image id, but the pool and snapshot ids should always
4158  * exist and have names.)  All names in an rbd spec are dynamically
4159  * allocated.
4160  *
4161  * When an image being mapped (not a parent) is probed, we have the
4162  * pool name and pool id, image name and image id, and the snapshot
4163  * name.  The only thing we're missing is the snapshot id.
4164  */
4165 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4166 {
4167 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4168 	struct rbd_spec *spec = rbd_dev->spec;
4169 	const char *pool_name;
4170 	const char *image_name;
4171 	const char *snap_name;
4172 	int ret;
4173 
4174 	/*
4175 	 * An image being mapped will have the pool name (etc.), but
4176 	 * we need to look up the snapshot id.
4177 	 */
4178 	if (spec->pool_name) {
4179 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4180 			u64 snap_id;
4181 
4182 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4183 			if (snap_id == CEPH_NOSNAP)
4184 				return -ENOENT;
4185 			spec->snap_id = snap_id;
4186 		} else {
4187 			spec->snap_id = CEPH_NOSNAP;
4188 		}
4189 
4190 		return 0;
4191 	}
4192 
4193 	/* Get the pool name; we have to make our own copy of this */
4194 
4195 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4196 	if (!pool_name) {
4197 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4198 		return -EIO;
4199 	}
4200 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4201 	if (!pool_name)
4202 		return -ENOMEM;
4203 
4204 	/* Fetch the image name; tolerate failure here */
4205 
4206 	image_name = rbd_dev_image_name(rbd_dev);
4207 	if (!image_name)
4208 		rbd_warn(rbd_dev, "unable to get image name");
4209 
4210 	/* Look up the snapshot name, and make a copy */
4211 
4212 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4213 	if (IS_ERR(snap_name)) {
4214 		ret = PTR_ERR(snap_name);
4215 		goto out_err;
4216 	}
4217 
4218 	spec->pool_name = pool_name;
4219 	spec->image_name = image_name;
4220 	spec->snap_name = snap_name;
4221 
4222 	return 0;
4223 out_err:
4224 	kfree(image_name);
4225 	kfree(pool_name);
4226 
4227 	return ret;
4228 }
4229 
4230 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4231 {
4232 	size_t size;
4233 	int ret;
4234 	void *reply_buf;
4235 	void *p;
4236 	void *end;
4237 	u64 seq;
4238 	u32 snap_count;
4239 	struct ceph_snap_context *snapc;
4240 	u32 i;
4241 
4242 	/*
4243 	 * We'll need room for the seq value (maximum snapshot id),
4244 	 * snapshot count, and array of that many snapshot ids.
4245 	 * For now we have a fixed upper limit on the number we're
4246 	 * prepared to receive.
4247 	 */
4248 	size = sizeof (__le64) + sizeof (__le32) +
4249 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4250 	reply_buf = kzalloc(size, GFP_KERNEL);
4251 	if (!reply_buf)
4252 		return -ENOMEM;
4253 
4254 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255 				"rbd", "get_snapcontext", NULL, 0,
4256 				reply_buf, size);
4257 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4258 	if (ret < 0)
4259 		goto out;
4260 
4261 	p = reply_buf;
4262 	end = reply_buf + ret;
4263 	ret = -ERANGE;
4264 	ceph_decode_64_safe(&p, end, seq, out);
4265 	ceph_decode_32_safe(&p, end, snap_count, out);
4266 
4267 	/*
4268 	 * Make sure the reported number of snapshot ids wouldn't go
4269 	 * beyond the end of our buffer.  But before checking that,
4270 	 * make sure the computed size of the snapshot context we
4271 	 * allocate is representable in a size_t.
4272 	 */
4273 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4274 				 / sizeof (u64)) {
4275 		ret = -EINVAL;
4276 		goto out;
4277 	}
4278 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4279 		goto out;
4280 	ret = 0;
4281 
4282 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4283 	if (!snapc) {
4284 		ret = -ENOMEM;
4285 		goto out;
4286 	}
4287 	snapc->seq = seq;
4288 	for (i = 0; i < snap_count; i++)
4289 		snapc->snaps[i] = ceph_decode_64(&p);
4290 
4291 	ceph_put_snap_context(rbd_dev->header.snapc);
4292 	rbd_dev->header.snapc = snapc;
4293 
4294 	dout("  snap context seq = %llu, snap_count = %u\n",
4295 		(unsigned long long)seq, (unsigned int)snap_count);
4296 out:
4297 	kfree(reply_buf);
4298 
4299 	return ret;
4300 }
4301 
4302 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4303 					u64 snap_id)
4304 {
4305 	size_t size;
4306 	void *reply_buf;
4307 	__le64 snapid;
4308 	int ret;
4309 	void *p;
4310 	void *end;
4311 	char *snap_name;
4312 
4313 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4314 	reply_buf = kmalloc(size, GFP_KERNEL);
4315 	if (!reply_buf)
4316 		return ERR_PTR(-ENOMEM);
4317 
4318 	snapid = cpu_to_le64(snap_id);
4319 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4320 				"rbd", "get_snapshot_name",
4321 				&snapid, sizeof (snapid),
4322 				reply_buf, size);
4323 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4324 	if (ret < 0) {
4325 		snap_name = ERR_PTR(ret);
4326 		goto out;
4327 	}
4328 
4329 	p = reply_buf;
4330 	end = reply_buf + ret;
4331 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4332 	if (IS_ERR(snap_name))
4333 		goto out;
4334 
4335 	dout("  snap_id 0x%016llx snap_name = %s\n",
4336 		(unsigned long long)snap_id, snap_name);
4337 out:
4338 	kfree(reply_buf);
4339 
4340 	return snap_name;
4341 }
4342 
4343 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4344 {
4345 	bool first_time = rbd_dev->header.object_prefix == NULL;
4346 	int ret;
4347 
4348 	ret = rbd_dev_v2_image_size(rbd_dev);
4349 	if (ret)
4350 		return ret;
4351 
4352 	if (first_time) {
4353 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4354 		if (ret)
4355 			return ret;
4356 	}
4357 
4358 	/*
4359 	 * If the image supports layering, get the parent info.  We
4360 	 * need to probe the first time regardless.  Thereafter we
4361 	 * only need to if there's a parent, to see if it has
4362 	 * disappeared due to the mapped image getting flattened.
4363 	 */
4364 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4365 			(first_time || rbd_dev->parent_spec)) {
4366 		bool warn;
4367 
4368 		ret = rbd_dev_v2_parent_info(rbd_dev);
4369 		if (ret)
4370 			return ret;
4371 
4372 		/*
4373 		 * Print a warning if this is the initial probe and
4374 		 * the image has a parent.  Don't print it if the
4375 		 * image now being probed is itself a parent.  We
4376 		 * can tell at this point because we won't know its
4377 		 * pool name yet (just its pool id).
4378 		 */
4379 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4380 		if (first_time && warn)
4381 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4382 					"is EXPERIMENTAL!");
4383 	}
4384 
4385 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4386 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4387 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4388 
4389 	ret = rbd_dev_v2_snap_context(rbd_dev);
4390 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4391 
4392 	return ret;
4393 }
4394 
4395 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4396 {
4397 	struct device *dev;
4398 	int ret;
4399 
4400 	dev = &rbd_dev->dev;
4401 	dev->bus = &rbd_bus_type;
4402 	dev->type = &rbd_device_type;
4403 	dev->parent = &rbd_root_dev;
4404 	dev->release = rbd_dev_device_release;
4405 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4406 	ret = device_register(dev);
4407 
4408 	return ret;
4409 }
4410 
4411 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4412 {
4413 	device_unregister(&rbd_dev->dev);
4414 }
4415 
4416 /*
4417  * Get a unique rbd identifier for the given new rbd_dev, and add
4418  * the rbd_dev to the global list.
4419  */
4420 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4421 {
4422 	int new_dev_id;
4423 
4424 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4425 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4426 				    GFP_KERNEL);
4427 	if (new_dev_id < 0)
4428 		return new_dev_id;
4429 
4430 	rbd_dev->dev_id = new_dev_id;
4431 
4432 	spin_lock(&rbd_dev_list_lock);
4433 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4434 	spin_unlock(&rbd_dev_list_lock);
4435 
4436 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4437 
4438 	return 0;
4439 }
4440 
4441 /*
4442  * Remove an rbd_dev from the global list, and record that its
4443  * identifier is no longer in use.
4444  */
4445 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4446 {
4447 	spin_lock(&rbd_dev_list_lock);
4448 	list_del_init(&rbd_dev->node);
4449 	spin_unlock(&rbd_dev_list_lock);
4450 
4451 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4452 
4453 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4454 }
4455 
4456 /*
4457  * Skips over white space at *buf, and updates *buf to point to the
4458  * first found non-space character (if any). Returns the length of
4459  * the token (string of non-white space characters) found.  Note
4460  * that *buf must be terminated with '\0'.
4461  */
4462 static inline size_t next_token(const char **buf)
4463 {
4464         /*
4465         * These are the characters that produce nonzero for
4466         * isspace() in the "C" and "POSIX" locales.
4467         */
4468         const char *spaces = " \f\n\r\t\v";
4469 
4470         *buf += strspn(*buf, spaces);	/* Find start of token */
4471 
4472 	return strcspn(*buf, spaces);   /* Return token length */
4473 }
4474 
4475 /*
4476  * Finds the next token in *buf, and if the provided token buffer is
4477  * big enough, copies the found token into it.  The result, if
4478  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4479  * must be terminated with '\0' on entry.
4480  *
4481  * Returns the length of the token found (not including the '\0').
4482  * Return value will be 0 if no token is found, and it will be >=
4483  * token_size if the token would not fit.
4484  *
4485  * The *buf pointer will be updated to point beyond the end of the
4486  * found token.  Note that this occurs even if the token buffer is
4487  * too small to hold it.
4488  */
4489 static inline size_t copy_token(const char **buf,
4490 				char *token,
4491 				size_t token_size)
4492 {
4493         size_t len;
4494 
4495 	len = next_token(buf);
4496 	if (len < token_size) {
4497 		memcpy(token, *buf, len);
4498 		*(token + len) = '\0';
4499 	}
4500 	*buf += len;
4501 
4502         return len;
4503 }
4504 
4505 /*
4506  * Finds the next token in *buf, dynamically allocates a buffer big
4507  * enough to hold a copy of it, and copies the token into the new
4508  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4509  * that a duplicate buffer is created even for a zero-length token.
4510  *
4511  * Returns a pointer to the newly-allocated duplicate, or a null
4512  * pointer if memory for the duplicate was not available.  If
4513  * the lenp argument is a non-null pointer, the length of the token
4514  * (not including the '\0') is returned in *lenp.
4515  *
4516  * If successful, the *buf pointer will be updated to point beyond
4517  * the end of the found token.
4518  *
4519  * Note: uses GFP_KERNEL for allocation.
4520  */
4521 static inline char *dup_token(const char **buf, size_t *lenp)
4522 {
4523 	char *dup;
4524 	size_t len;
4525 
4526 	len = next_token(buf);
4527 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4528 	if (!dup)
4529 		return NULL;
4530 	*(dup + len) = '\0';
4531 	*buf += len;
4532 
4533 	if (lenp)
4534 		*lenp = len;
4535 
4536 	return dup;
4537 }
4538 
4539 /*
4540  * Parse the options provided for an "rbd add" (i.e., rbd image
4541  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4542  * and the data written is passed here via a NUL-terminated buffer.
4543  * Returns 0 if successful or an error code otherwise.
4544  *
4545  * The information extracted from these options is recorded in
4546  * the other parameters which return dynamically-allocated
4547  * structures:
4548  *  ceph_opts
4549  *      The address of a pointer that will refer to a ceph options
4550  *      structure.  Caller must release the returned pointer using
4551  *      ceph_destroy_options() when it is no longer needed.
4552  *  rbd_opts
4553  *	Address of an rbd options pointer.  Fully initialized by
4554  *	this function; caller must release with kfree().
4555  *  spec
4556  *	Address of an rbd image specification pointer.  Fully
4557  *	initialized by this function based on parsed options.
4558  *	Caller must release with rbd_spec_put().
4559  *
4560  * The options passed take this form:
4561  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4562  * where:
4563  *  <mon_addrs>
4564  *      A comma-separated list of one or more monitor addresses.
4565  *      A monitor address is an ip address, optionally followed
4566  *      by a port number (separated by a colon).
4567  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4568  *  <options>
4569  *      A comma-separated list of ceph and/or rbd options.
4570  *  <pool_name>
4571  *      The name of the rados pool containing the rbd image.
4572  *  <image_name>
4573  *      The name of the image in that pool to map.
4574  *  <snap_id>
4575  *      An optional snapshot id.  If provided, the mapping will
4576  *      present data from the image at the time that snapshot was
4577  *      created.  The image head is used if no snapshot id is
4578  *      provided.  Snapshot mappings are always read-only.
4579  */
4580 static int rbd_add_parse_args(const char *buf,
4581 				struct ceph_options **ceph_opts,
4582 				struct rbd_options **opts,
4583 				struct rbd_spec **rbd_spec)
4584 {
4585 	size_t len;
4586 	char *options;
4587 	const char *mon_addrs;
4588 	char *snap_name;
4589 	size_t mon_addrs_size;
4590 	struct rbd_spec *spec = NULL;
4591 	struct rbd_options *rbd_opts = NULL;
4592 	struct ceph_options *copts;
4593 	int ret;
4594 
4595 	/* The first four tokens are required */
4596 
4597 	len = next_token(&buf);
4598 	if (!len) {
4599 		rbd_warn(NULL, "no monitor address(es) provided");
4600 		return -EINVAL;
4601 	}
4602 	mon_addrs = buf;
4603 	mon_addrs_size = len + 1;
4604 	buf += len;
4605 
4606 	ret = -EINVAL;
4607 	options = dup_token(&buf, NULL);
4608 	if (!options)
4609 		return -ENOMEM;
4610 	if (!*options) {
4611 		rbd_warn(NULL, "no options provided");
4612 		goto out_err;
4613 	}
4614 
4615 	spec = rbd_spec_alloc();
4616 	if (!spec)
4617 		goto out_mem;
4618 
4619 	spec->pool_name = dup_token(&buf, NULL);
4620 	if (!spec->pool_name)
4621 		goto out_mem;
4622 	if (!*spec->pool_name) {
4623 		rbd_warn(NULL, "no pool name provided");
4624 		goto out_err;
4625 	}
4626 
4627 	spec->image_name = dup_token(&buf, NULL);
4628 	if (!spec->image_name)
4629 		goto out_mem;
4630 	if (!*spec->image_name) {
4631 		rbd_warn(NULL, "no image name provided");
4632 		goto out_err;
4633 	}
4634 
4635 	/*
4636 	 * Snapshot name is optional; default is to use "-"
4637 	 * (indicating the head/no snapshot).
4638 	 */
4639 	len = next_token(&buf);
4640 	if (!len) {
4641 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4642 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4643 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4644 		ret = -ENAMETOOLONG;
4645 		goto out_err;
4646 	}
4647 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4648 	if (!snap_name)
4649 		goto out_mem;
4650 	*(snap_name + len) = '\0';
4651 	spec->snap_name = snap_name;
4652 
4653 	/* Initialize all rbd options to the defaults */
4654 
4655 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4656 	if (!rbd_opts)
4657 		goto out_mem;
4658 
4659 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4660 
4661 	copts = ceph_parse_options(options, mon_addrs,
4662 					mon_addrs + mon_addrs_size - 1,
4663 					parse_rbd_opts_token, rbd_opts);
4664 	if (IS_ERR(copts)) {
4665 		ret = PTR_ERR(copts);
4666 		goto out_err;
4667 	}
4668 	kfree(options);
4669 
4670 	*ceph_opts = copts;
4671 	*opts = rbd_opts;
4672 	*rbd_spec = spec;
4673 
4674 	return 0;
4675 out_mem:
4676 	ret = -ENOMEM;
4677 out_err:
4678 	kfree(rbd_opts);
4679 	rbd_spec_put(spec);
4680 	kfree(options);
4681 
4682 	return ret;
4683 }
4684 
4685 /*
4686  * An rbd format 2 image has a unique identifier, distinct from the
4687  * name given to it by the user.  Internally, that identifier is
4688  * what's used to specify the names of objects related to the image.
4689  *
4690  * A special "rbd id" object is used to map an rbd image name to its
4691  * id.  If that object doesn't exist, then there is no v2 rbd image
4692  * with the supplied name.
4693  *
4694  * This function will record the given rbd_dev's image_id field if
4695  * it can be determined, and in that case will return 0.  If any
4696  * errors occur a negative errno will be returned and the rbd_dev's
4697  * image_id field will be unchanged (and should be NULL).
4698  */
4699 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4700 {
4701 	int ret;
4702 	size_t size;
4703 	char *object_name;
4704 	void *response;
4705 	char *image_id;
4706 
4707 	/*
4708 	 * When probing a parent image, the image id is already
4709 	 * known (and the image name likely is not).  There's no
4710 	 * need to fetch the image id again in this case.  We
4711 	 * do still need to set the image format though.
4712 	 */
4713 	if (rbd_dev->spec->image_id) {
4714 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4715 
4716 		return 0;
4717 	}
4718 
4719 	/*
4720 	 * First, see if the format 2 image id file exists, and if
4721 	 * so, get the image's persistent id from it.
4722 	 */
4723 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4724 	object_name = kmalloc(size, GFP_NOIO);
4725 	if (!object_name)
4726 		return -ENOMEM;
4727 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4728 	dout("rbd id object name is %s\n", object_name);
4729 
4730 	/* Response will be an encoded string, which includes a length */
4731 
4732 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4733 	response = kzalloc(size, GFP_NOIO);
4734 	if (!response) {
4735 		ret = -ENOMEM;
4736 		goto out;
4737 	}
4738 
4739 	/* If it doesn't exist we'll assume it's a format 1 image */
4740 
4741 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4742 				"rbd", "get_id", NULL, 0,
4743 				response, RBD_IMAGE_ID_LEN_MAX);
4744 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4745 	if (ret == -ENOENT) {
4746 		image_id = kstrdup("", GFP_KERNEL);
4747 		ret = image_id ? 0 : -ENOMEM;
4748 		if (!ret)
4749 			rbd_dev->image_format = 1;
4750 	} else if (ret > sizeof (__le32)) {
4751 		void *p = response;
4752 
4753 		image_id = ceph_extract_encoded_string(&p, p + ret,
4754 						NULL, GFP_NOIO);
4755 		ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4756 		if (!ret)
4757 			rbd_dev->image_format = 2;
4758 	} else {
4759 		ret = -EINVAL;
4760 	}
4761 
4762 	if (!ret) {
4763 		rbd_dev->spec->image_id = image_id;
4764 		dout("image_id is %s\n", image_id);
4765 	}
4766 out:
4767 	kfree(response);
4768 	kfree(object_name);
4769 
4770 	return ret;
4771 }
4772 
4773 /*
4774  * Undo whatever state changes are made by v1 or v2 header info
4775  * call.
4776  */
4777 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4778 {
4779 	struct rbd_image_header	*header;
4780 
4781 	/* Drop parent reference unless it's already been done (or none) */
4782 
4783 	if (rbd_dev->parent_overlap)
4784 		rbd_dev_parent_put(rbd_dev);
4785 
4786 	/* Free dynamic fields from the header, then zero it out */
4787 
4788 	header = &rbd_dev->header;
4789 	ceph_put_snap_context(header->snapc);
4790 	kfree(header->snap_sizes);
4791 	kfree(header->snap_names);
4792 	kfree(header->object_prefix);
4793 	memset(header, 0, sizeof (*header));
4794 }
4795 
4796 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4797 {
4798 	int ret;
4799 
4800 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4801 	if (ret)
4802 		goto out_err;
4803 
4804 	/*
4805 	 * Get the and check features for the image.  Currently the
4806 	 * features are assumed to never change.
4807 	 */
4808 	ret = rbd_dev_v2_features(rbd_dev);
4809 	if (ret)
4810 		goto out_err;
4811 
4812 	/* If the image supports fancy striping, get its parameters */
4813 
4814 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4815 		ret = rbd_dev_v2_striping_info(rbd_dev);
4816 		if (ret < 0)
4817 			goto out_err;
4818 	}
4819 	/* No support for crypto and compression type format 2 images */
4820 
4821 	return 0;
4822 out_err:
4823 	rbd_dev->header.features = 0;
4824 	kfree(rbd_dev->header.object_prefix);
4825 	rbd_dev->header.object_prefix = NULL;
4826 
4827 	return ret;
4828 }
4829 
4830 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4831 {
4832 	struct rbd_device *parent = NULL;
4833 	struct rbd_spec *parent_spec;
4834 	struct rbd_client *rbdc;
4835 	int ret;
4836 
4837 	if (!rbd_dev->parent_spec)
4838 		return 0;
4839 	/*
4840 	 * We need to pass a reference to the client and the parent
4841 	 * spec when creating the parent rbd_dev.  Images related by
4842 	 * parent/child relationships always share both.
4843 	 */
4844 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4845 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4846 
4847 	ret = -ENOMEM;
4848 	parent = rbd_dev_create(rbdc, parent_spec);
4849 	if (!parent)
4850 		goto out_err;
4851 
4852 	ret = rbd_dev_image_probe(parent, false);
4853 	if (ret < 0)
4854 		goto out_err;
4855 	rbd_dev->parent = parent;
4856 	atomic_set(&rbd_dev->parent_ref, 1);
4857 
4858 	return 0;
4859 out_err:
4860 	if (parent) {
4861 		rbd_dev_unparent(rbd_dev);
4862 		kfree(rbd_dev->header_name);
4863 		rbd_dev_destroy(parent);
4864 	} else {
4865 		rbd_put_client(rbdc);
4866 		rbd_spec_put(parent_spec);
4867 	}
4868 
4869 	return ret;
4870 }
4871 
4872 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4873 {
4874 	int ret;
4875 
4876 	/* Get an id and fill in device name. */
4877 
4878 	ret = rbd_dev_id_get(rbd_dev);
4879 	if (ret)
4880 		return ret;
4881 
4882 	BUILD_BUG_ON(DEV_NAME_LEN
4883 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4884 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4885 
4886 	/* Record our major and minor device numbers. */
4887 
4888 	if (!single_major) {
4889 		ret = register_blkdev(0, rbd_dev->name);
4890 		if (ret < 0)
4891 			goto err_out_id;
4892 
4893 		rbd_dev->major = ret;
4894 		rbd_dev->minor = 0;
4895 	} else {
4896 		rbd_dev->major = rbd_major;
4897 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4898 	}
4899 
4900 	/* Set up the blkdev mapping. */
4901 
4902 	ret = rbd_init_disk(rbd_dev);
4903 	if (ret)
4904 		goto err_out_blkdev;
4905 
4906 	ret = rbd_dev_mapping_set(rbd_dev);
4907 	if (ret)
4908 		goto err_out_disk;
4909 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4910 
4911 	ret = rbd_bus_add_dev(rbd_dev);
4912 	if (ret)
4913 		goto err_out_mapping;
4914 
4915 	/* Everything's ready.  Announce the disk to the world. */
4916 
4917 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4918 	add_disk(rbd_dev->disk);
4919 
4920 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4921 		(unsigned long long) rbd_dev->mapping.size);
4922 
4923 	return ret;
4924 
4925 err_out_mapping:
4926 	rbd_dev_mapping_clear(rbd_dev);
4927 err_out_disk:
4928 	rbd_free_disk(rbd_dev);
4929 err_out_blkdev:
4930 	if (!single_major)
4931 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
4932 err_out_id:
4933 	rbd_dev_id_put(rbd_dev);
4934 	rbd_dev_mapping_clear(rbd_dev);
4935 
4936 	return ret;
4937 }
4938 
4939 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4940 {
4941 	struct rbd_spec *spec = rbd_dev->spec;
4942 	size_t size;
4943 
4944 	/* Record the header object name for this rbd image. */
4945 
4946 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947 
4948 	if (rbd_dev->image_format == 1)
4949 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4950 	else
4951 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4952 
4953 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4954 	if (!rbd_dev->header_name)
4955 		return -ENOMEM;
4956 
4957 	if (rbd_dev->image_format == 1)
4958 		sprintf(rbd_dev->header_name, "%s%s",
4959 			spec->image_name, RBD_SUFFIX);
4960 	else
4961 		sprintf(rbd_dev->header_name, "%s%s",
4962 			RBD_HEADER_PREFIX, spec->image_id);
4963 	return 0;
4964 }
4965 
4966 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4967 {
4968 	rbd_dev_unprobe(rbd_dev);
4969 	kfree(rbd_dev->header_name);
4970 	rbd_dev->header_name = NULL;
4971 	rbd_dev->image_format = 0;
4972 	kfree(rbd_dev->spec->image_id);
4973 	rbd_dev->spec->image_id = NULL;
4974 
4975 	rbd_dev_destroy(rbd_dev);
4976 }
4977 
4978 /*
4979  * Probe for the existence of the header object for the given rbd
4980  * device.  If this image is the one being mapped (i.e., not a
4981  * parent), initiate a watch on its header object before using that
4982  * object to get detailed information about the rbd image.
4983  */
4984 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4985 {
4986 	int ret;
4987 
4988 	/*
4989 	 * Get the id from the image id object.  Unless there's an
4990 	 * error, rbd_dev->spec->image_id will be filled in with
4991 	 * a dynamically-allocated string, and rbd_dev->image_format
4992 	 * will be set to either 1 or 2.
4993 	 */
4994 	ret = rbd_dev_image_id(rbd_dev);
4995 	if (ret)
4996 		return ret;
4997 	rbd_assert(rbd_dev->spec->image_id);
4998 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4999 
5000 	ret = rbd_dev_header_name(rbd_dev);
5001 	if (ret)
5002 		goto err_out_format;
5003 
5004 	if (mapping) {
5005 		ret = rbd_dev_header_watch_sync(rbd_dev);
5006 		if (ret)
5007 			goto out_header_name;
5008 	}
5009 
5010 	if (rbd_dev->image_format == 1)
5011 		ret = rbd_dev_v1_header_info(rbd_dev);
5012 	else
5013 		ret = rbd_dev_v2_header_info(rbd_dev);
5014 	if (ret)
5015 		goto err_out_watch;
5016 
5017 	ret = rbd_dev_spec_update(rbd_dev);
5018 	if (ret)
5019 		goto err_out_probe;
5020 
5021 	ret = rbd_dev_probe_parent(rbd_dev);
5022 	if (ret)
5023 		goto err_out_probe;
5024 
5025 	dout("discovered format %u image, header name is %s\n",
5026 		rbd_dev->image_format, rbd_dev->header_name);
5027 
5028 	return 0;
5029 err_out_probe:
5030 	rbd_dev_unprobe(rbd_dev);
5031 err_out_watch:
5032 	if (mapping)
5033 		rbd_dev_header_unwatch_sync(rbd_dev);
5034 out_header_name:
5035 	kfree(rbd_dev->header_name);
5036 	rbd_dev->header_name = NULL;
5037 err_out_format:
5038 	rbd_dev->image_format = 0;
5039 	kfree(rbd_dev->spec->image_id);
5040 	rbd_dev->spec->image_id = NULL;
5041 
5042 	dout("probe failed, returning %d\n", ret);
5043 
5044 	return ret;
5045 }
5046 
5047 static ssize_t do_rbd_add(struct bus_type *bus,
5048 			  const char *buf,
5049 			  size_t count)
5050 {
5051 	struct rbd_device *rbd_dev = NULL;
5052 	struct ceph_options *ceph_opts = NULL;
5053 	struct rbd_options *rbd_opts = NULL;
5054 	struct rbd_spec *spec = NULL;
5055 	struct rbd_client *rbdc;
5056 	struct ceph_osd_client *osdc;
5057 	bool read_only;
5058 	int rc = -ENOMEM;
5059 
5060 	if (!try_module_get(THIS_MODULE))
5061 		return -ENODEV;
5062 
5063 	/* parse add command */
5064 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5065 	if (rc < 0)
5066 		goto err_out_module;
5067 	read_only = rbd_opts->read_only;
5068 	kfree(rbd_opts);
5069 	rbd_opts = NULL;	/* done with this */
5070 
5071 	rbdc = rbd_get_client(ceph_opts);
5072 	if (IS_ERR(rbdc)) {
5073 		rc = PTR_ERR(rbdc);
5074 		goto err_out_args;
5075 	}
5076 
5077 	/* pick the pool */
5078 	osdc = &rbdc->client->osdc;
5079 	rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5080 	if (rc < 0)
5081 		goto err_out_client;
5082 	spec->pool_id = (u64)rc;
5083 
5084 	/* The ceph file layout needs to fit pool id in 32 bits */
5085 
5086 	if (spec->pool_id > (u64)U32_MAX) {
5087 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5088 				(unsigned long long)spec->pool_id, U32_MAX);
5089 		rc = -EIO;
5090 		goto err_out_client;
5091 	}
5092 
5093 	rbd_dev = rbd_dev_create(rbdc, spec);
5094 	if (!rbd_dev)
5095 		goto err_out_client;
5096 	rbdc = NULL;		/* rbd_dev now owns this */
5097 	spec = NULL;		/* rbd_dev now owns this */
5098 
5099 	rc = rbd_dev_image_probe(rbd_dev, true);
5100 	if (rc < 0)
5101 		goto err_out_rbd_dev;
5102 
5103 	/* If we are mapping a snapshot it must be marked read-only */
5104 
5105 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5106 		read_only = true;
5107 	rbd_dev->mapping.read_only = read_only;
5108 
5109 	rc = rbd_dev_device_setup(rbd_dev);
5110 	if (rc) {
5111 		/*
5112 		 * rbd_dev_header_unwatch_sync() can't be moved into
5113 		 * rbd_dev_image_release() without refactoring, see
5114 		 * commit 1f3ef78861ac.
5115 		 */
5116 		rbd_dev_header_unwatch_sync(rbd_dev);
5117 		rbd_dev_image_release(rbd_dev);
5118 		goto err_out_module;
5119 	}
5120 
5121 	return count;
5122 
5123 err_out_rbd_dev:
5124 	rbd_dev_destroy(rbd_dev);
5125 err_out_client:
5126 	rbd_put_client(rbdc);
5127 err_out_args:
5128 	rbd_spec_put(spec);
5129 err_out_module:
5130 	module_put(THIS_MODULE);
5131 
5132 	dout("Error adding device %s\n", buf);
5133 
5134 	return (ssize_t)rc;
5135 }
5136 
5137 static ssize_t rbd_add(struct bus_type *bus,
5138 		       const char *buf,
5139 		       size_t count)
5140 {
5141 	if (single_major)
5142 		return -EINVAL;
5143 
5144 	return do_rbd_add(bus, buf, count);
5145 }
5146 
5147 static ssize_t rbd_add_single_major(struct bus_type *bus,
5148 				    const char *buf,
5149 				    size_t count)
5150 {
5151 	return do_rbd_add(bus, buf, count);
5152 }
5153 
5154 static void rbd_dev_device_release(struct device *dev)
5155 {
5156 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157 
5158 	rbd_free_disk(rbd_dev);
5159 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5160 	rbd_dev_mapping_clear(rbd_dev);
5161 	if (!single_major)
5162 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163 	rbd_dev_id_put(rbd_dev);
5164 	rbd_dev_mapping_clear(rbd_dev);
5165 }
5166 
5167 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5168 {
5169 	while (rbd_dev->parent) {
5170 		struct rbd_device *first = rbd_dev;
5171 		struct rbd_device *second = first->parent;
5172 		struct rbd_device *third;
5173 
5174 		/*
5175 		 * Follow to the parent with no grandparent and
5176 		 * remove it.
5177 		 */
5178 		while (second && (third = second->parent)) {
5179 			first = second;
5180 			second = third;
5181 		}
5182 		rbd_assert(second);
5183 		rbd_dev_image_release(second);
5184 		first->parent = NULL;
5185 		first->parent_overlap = 0;
5186 
5187 		rbd_assert(first->parent_spec);
5188 		rbd_spec_put(first->parent_spec);
5189 		first->parent_spec = NULL;
5190 	}
5191 }
5192 
5193 static ssize_t do_rbd_remove(struct bus_type *bus,
5194 			     const char *buf,
5195 			     size_t count)
5196 {
5197 	struct rbd_device *rbd_dev = NULL;
5198 	struct list_head *tmp;
5199 	int dev_id;
5200 	unsigned long ul;
5201 	bool already = false;
5202 	int ret;
5203 
5204 	ret = kstrtoul(buf, 10, &ul);
5205 	if (ret)
5206 		return ret;
5207 
5208 	/* convert to int; abort if we lost anything in the conversion */
5209 	dev_id = (int)ul;
5210 	if (dev_id != ul)
5211 		return -EINVAL;
5212 
5213 	ret = -ENOENT;
5214 	spin_lock(&rbd_dev_list_lock);
5215 	list_for_each(tmp, &rbd_dev_list) {
5216 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5217 		if (rbd_dev->dev_id == dev_id) {
5218 			ret = 0;
5219 			break;
5220 		}
5221 	}
5222 	if (!ret) {
5223 		spin_lock_irq(&rbd_dev->lock);
5224 		if (rbd_dev->open_count)
5225 			ret = -EBUSY;
5226 		else
5227 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5228 							&rbd_dev->flags);
5229 		spin_unlock_irq(&rbd_dev->lock);
5230 	}
5231 	spin_unlock(&rbd_dev_list_lock);
5232 	if (ret < 0 || already)
5233 		return ret;
5234 
5235 	rbd_dev_header_unwatch_sync(rbd_dev);
5236 	/*
5237 	 * flush remaining watch callbacks - these must be complete
5238 	 * before the osd_client is shutdown
5239 	 */
5240 	dout("%s: flushing notifies", __func__);
5241 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5242 
5243 	/*
5244 	 * Don't free anything from rbd_dev->disk until after all
5245 	 * notifies are completely processed. Otherwise
5246 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5247 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5248 	 */
5249 	rbd_bus_del_dev(rbd_dev);
5250 	rbd_dev_image_release(rbd_dev);
5251 	module_put(THIS_MODULE);
5252 
5253 	return count;
5254 }
5255 
5256 static ssize_t rbd_remove(struct bus_type *bus,
5257 			  const char *buf,
5258 			  size_t count)
5259 {
5260 	if (single_major)
5261 		return -EINVAL;
5262 
5263 	return do_rbd_remove(bus, buf, count);
5264 }
5265 
5266 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5267 				       const char *buf,
5268 				       size_t count)
5269 {
5270 	return do_rbd_remove(bus, buf, count);
5271 }
5272 
5273 /*
5274  * create control files in sysfs
5275  * /sys/bus/rbd/...
5276  */
5277 static int rbd_sysfs_init(void)
5278 {
5279 	int ret;
5280 
5281 	ret = device_register(&rbd_root_dev);
5282 	if (ret < 0)
5283 		return ret;
5284 
5285 	ret = bus_register(&rbd_bus_type);
5286 	if (ret < 0)
5287 		device_unregister(&rbd_root_dev);
5288 
5289 	return ret;
5290 }
5291 
5292 static void rbd_sysfs_cleanup(void)
5293 {
5294 	bus_unregister(&rbd_bus_type);
5295 	device_unregister(&rbd_root_dev);
5296 }
5297 
5298 static int rbd_slab_init(void)
5299 {
5300 	rbd_assert(!rbd_img_request_cache);
5301 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5302 					sizeof (struct rbd_img_request),
5303 					__alignof__(struct rbd_img_request),
5304 					0, NULL);
5305 	if (!rbd_img_request_cache)
5306 		return -ENOMEM;
5307 
5308 	rbd_assert(!rbd_obj_request_cache);
5309 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5310 					sizeof (struct rbd_obj_request),
5311 					__alignof__(struct rbd_obj_request),
5312 					0, NULL);
5313 	if (!rbd_obj_request_cache)
5314 		goto out_err;
5315 
5316 	rbd_assert(!rbd_segment_name_cache);
5317 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5318 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5319 	if (rbd_segment_name_cache)
5320 		return 0;
5321 out_err:
5322 	if (rbd_obj_request_cache) {
5323 		kmem_cache_destroy(rbd_obj_request_cache);
5324 		rbd_obj_request_cache = NULL;
5325 	}
5326 
5327 	kmem_cache_destroy(rbd_img_request_cache);
5328 	rbd_img_request_cache = NULL;
5329 
5330 	return -ENOMEM;
5331 }
5332 
5333 static void rbd_slab_exit(void)
5334 {
5335 	rbd_assert(rbd_segment_name_cache);
5336 	kmem_cache_destroy(rbd_segment_name_cache);
5337 	rbd_segment_name_cache = NULL;
5338 
5339 	rbd_assert(rbd_obj_request_cache);
5340 	kmem_cache_destroy(rbd_obj_request_cache);
5341 	rbd_obj_request_cache = NULL;
5342 
5343 	rbd_assert(rbd_img_request_cache);
5344 	kmem_cache_destroy(rbd_img_request_cache);
5345 	rbd_img_request_cache = NULL;
5346 }
5347 
5348 static int __init rbd_init(void)
5349 {
5350 	int rc;
5351 
5352 	if (!libceph_compatible(NULL)) {
5353 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5354 		return -EINVAL;
5355 	}
5356 
5357 	rc = rbd_slab_init();
5358 	if (rc)
5359 		return rc;
5360 
5361 	if (single_major) {
5362 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5363 		if (rbd_major < 0) {
5364 			rc = rbd_major;
5365 			goto err_out_slab;
5366 		}
5367 	}
5368 
5369 	rc = rbd_sysfs_init();
5370 	if (rc)
5371 		goto err_out_blkdev;
5372 
5373 	if (single_major)
5374 		pr_info("loaded (major %d)\n", rbd_major);
5375 	else
5376 		pr_info("loaded\n");
5377 
5378 	return 0;
5379 
5380 err_out_blkdev:
5381 	if (single_major)
5382 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5383 err_out_slab:
5384 	rbd_slab_exit();
5385 	return rc;
5386 }
5387 
5388 static void __exit rbd_exit(void)
5389 {
5390 	rbd_sysfs_cleanup();
5391 	if (single_major)
5392 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5393 	rbd_slab_exit();
5394 }
5395 
5396 module_init(rbd_init);
5397 module_exit(rbd_exit);
5398 
5399 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5400 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5401 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5402 /* following authorship retained from original osdblk.c */
5403 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5404 
5405 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5406 MODULE_LICENSE("GPL");
5407